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Our senses are our window to the world, and hearing is the window through which

we perceive the world of sound. While seemingly effortless, the process of hearing involves

complex transformations by which the auditory system consolidates acoustic information

from the environment into perceptual and cognitive experiences. Studies of auditory

processing try to elucidate the mechanisms underlying the function of the auditory system,

and infer computational strategies that are valuable both clinically and intellectually,

hence contributing to our understanding of the function of the brain.

In this thesis, we adopt both an experimental and computational approach in tack-

ling various aspects of auditory processing. We first investigate the neural basis underlying

the function of the auditory cortex, and explore the dynamics and computational mecha-

nisms of cortical processing. Our findings offer physiological evidence for a role of primary

cortical neurons in the integration of sound features at different time constants, and pos-

sibly in the formation of auditory objects.

Based on physiological principles of sound processing, we explore computational

implementations in tackling specific perceptual questions. We exploit our knowledge of

the neural mechanisms of cortical auditory processing to formulate models addressing the

problems of speech intelligibility and auditory scene analysis. The intelligibility model



focuses on a computational approach for evaluating loss of intelligibility, inspired from

mammalian physiology and human perception. It is based on a multi-resolution filter-

bank implementation of cortical response patterns, which extends into a robust metric for

assessing loss of intelligibility in communication channels and speech recordings.

This same cortical representation is extended further to develop a computational

scheme for auditory scene analysis. The model maps perceptual principles of auditory

grouping and stream formation into a computational system that combines aspects of

bottom-up, primitive sound processing with an internal representation of the world. It is

based on a framework of unsupervised adaptive learning with Kalman estimation. The

model is extremely valuable in exploring various aspects of sound organization in the brain,

allowing us to gain interesting insight into the neural basis of auditory scene analysis, as

well as practical implementations for sound separation in “cocktail-party” situations.
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Chapter 1

Introduction

“The purpose of computing is insight, not numbers”

Richard Hamming

We perceive the world through our senses, but only hearing can give us the delight of

enjoying a nice musical melody. Hearing is the process of discovering objects surrounding

us via the sounds they emit. It is the sense by which our brain consolidates the acoustic

information from the environment into a perceptual and cognitive experience.

Theories of auditory perception try to elucidate how the auditory system transforms

sound energy patterns into useful information about acoustic events in the environment.

Research in the area of auditory processing entails two main directions: (1) an exper-

imental approach which addresses the biological foundation of auditory perception and
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its psychoacoustical and behavioral manifestations, and (2) a computational methodology

which focuses on building engineering systems and theoretical models for sound processing.

On the experimental front, intense work on the physiology of hearing has expanded

our knowledge of the mechanisms of auditory processing in the brain. Higher-level pro-

cessing, specifically at the level of cortex, is of particular interest as it is the station where

the organization of acoustic signals into perceptual patterns takes place; hence leading to

a representation of the acoustic environment in terms of auditory objects. While much is

known about the neural mechanisms underlying the function of cortical structures, many

questions remain unanswered, and we are still far from having a complete picture of how

acoustic information is consolidated, and how auditory objects emerge. The temporal code

of cortex is an exceptionally powerful clue to understanding the role of auditory cortex in

hearing. This thesis examines the dynamics regulating the cortical function, and explores

its underlying neural mechanisms.

On the theoretical front, both theorists and engineers have tackled many problems

pertaining to auditory processing, ranging from models of cochlear sound filtering to real-

time communication systems. The significance of these models lies both in their practical

relevance in our everyday life, as well as their intellectual contribution to our understanding

of audition and the general function of the brain. In this thesis, we exploit our knowledge

of the neural mechanisms of cortical auditory processing to formulate models addressing

the questions of speech intelligibility, auditory streaming and sound separation.

1.1 From sound to meaning

Acoustic signals are transmitted by physical disturbance of a medium, causing vibration of

the eardrum, and ultimately resulting in our experiencing audible sound [148]. Despite its
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pervasiveness in our daily life, sound is a physical phenomenon that is hard to understand

in common-sense terms [54]. It is a familiar form of physical energy that is difficult to

visualize, either literally or conceptually, but the consequences of its presence are readily

discernible. A basic understanding of the physics of sound is an important initial step

in addressing the general question of auditory perception. Yet, the road from sound to

meaning is one that involves the entire apparatus of the auditory neural circuitry, extend-

ing from the ear to the brain. In this sense, the simple presence of physical vibrations in

our ear is not what makes us hear.

1.1.1 The magic of our auditory system

While seemingly effortless, the auditory system performs an incredibly complex task of

sound perception. We are equipped with an amazing computational tool that is both

competent and quite reliable in perceiving sounds. When listening to the environment

around us, sounds from all sources are combined together into one complex auditory field

that we have to “navigate” our way through in order to identify the individual sound

elements and sources. We do not have separate “pipelines” for each sound object in the

environment, as originally thought by ancient Greeks [148]. Sounds in our environment

are all lumped together in one acoustic input that reaches our ears. The nervous system

takes on the extraordinary job of telling us which instrument is playing in the orchestra,

whether a chorus is accompanying the music, and which melody is being played. It also

performs its task with an impressive degree of reliability, even in the presence of the most

severe distortions. Our ability to follow a conversation carried in a very noisy environment

is a testament to how robustly the biology carries its job of audition.

The perceptual capabilities of the auditory system rely on various cognitive princi-
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Figure 1.1: Schematic of stages of auditory processing (from [148]).

ples allowing us to attend to certain aspects of the acoustic information in the auditory

scene. Such capabilities make us very adept at listening to one voice in the midst of

other conversations and noise. While disregarding information from all other surrounding

sounds and noise interferences, we are able to orient our attentional focus towards the

voice of the speaker.

In the 19th century, the Russian writer Valdimir Odoevsky recounted the story of

a malicious sorcerer who gave a man the power to hear and see everything. This “gift”

caused this unfortunate man to experience nature as a completely fragmented world.

Nothing formed into a compact unit in his mind, and sounds became a torrent of erratic

meaningless mechanical vibrations, incoherent and with no meaning. This story told by

Odoevsky, a musician himself as well as a writer, alludes to how critical it is for the

auditory system to be able to attend to particular sound elements in the environment,

and to recognize unitary sound streams based on their common physical characteristics

and acoustical structures. Sound segregation is in effect one of the most important tasks

carried by the auditory system.

The segregation and perception of auditory objects in the environment is achieved

through a complex process of sound analysis and cognitive integration (Figure 1.1). The
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acoustic environment is parsed into a neural code representing its physical characteristics.

The particular structure of this neural code carries the information about the sound signal,

which then gets interpreted by the brain, and integrated with other sensory information

and prior experiences leading to our perception of the environment around us, and hence

to behavioral responses.

1.1.2 Challenges of audition

If sensory information is to be useful for the control of behavior, the nervous system must

be capable of making reliable perceptual judgments in a very rapid fashion. It must have

the capability of processing complex and constantly changing sensory information in “one

trial”. This task is not always made easy by nature as sensory information can and does

sometimes present conflicting or limited evidence about the environment. Nevertheless,

the auditory function adheres to a set of perceptual principles that allow it to organize

acoustic information in perceptually meaningful events, despite the lack of sensory evi-

dence. These universal rules are strongly invoked in cases of perceptual illusions, i.e. sit-

uations where a normally-functioning brain perceives “things” that may not be physically

present. By definition, illusions are perceptual phenomena that emerge as a consequence

of psychological principles which do not necessarily reflect an accurate representation of

the sensory information. In the case of audition, auditory illusions make us hear things

different from the actual nature of sound in the environment. To illustrate such effect,

we cite an example from vision, as similar principles underly the function of auditory and

visual perception. The phenomenon of subjective contours is a well known visual illusion,

and is illustrated in Figure 1.2. The figure demonstrates how our visual system perceives

contours that are not physically present, in a similar way that the auditory system can
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Figure 1.2: Contour visual illusion (from [137]).

perceive sounds that are not there.

Just like vision, auditory computation is a dynamic process. It is capable of con-

structing precise representations of the world by complementing signals in the environment

with information about the global context of an auditory scene. Internal models of the

world and prior knowledge and experience reflect our expectations from sensory inputs

and adapt to the changing flow of information coming from the environment, while adher-

ing to a universal set of perceptual rules. These intricate interactions complicate our job

of studying complex systems such as auditory processing, and compel us to presuppose

certain simplifications about the elements and structures of the system. It is not clear,

however, which level of abstraction or modelling assumptions are more appropriate for the

study of auditory perception, leading to a real controversy concerning the best approach

for modelling biological systems.

Looking back at the history of the computational theory of perception, an early

and important contribution was made by Gibson in the 1960s. His work is one of the

early attempts to understanding complex information-processing systems. According to

Gibson, “the function of the brain, when looped with its perceptual organs, is not to decode

signals, not to interpret messages, not to accept images, not to organize the sensory input

or to process the data, in modern terminology. It is to seek and extract information about

the environment from the flowing array of ambient energy” ([102], page 29). Gibson and

others were later criticized for their oversimplification of complex information processing
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in the brain and their simplistic understanding of perception. Marr wrote that Gibson

“did not understand properly what information processing was, which led him to seriously

underestimate the complexity of the information-processing problems ...” [102]. Later on,

Marr himself was criticized by Churchland and colleagues [35] who argued that his pure

vision view of the world is itself a dangerously simplified caricature of the problem of

visual perception. Slaney raised similar concerns about the simplified and purely bottom-

up views of perception in the auditory field [127].

As theoretical debate still continues about the proper direction for studying complex

sensory processing in the brain, we adopt a middle-ground approach in our study of

auditory processing. While mainly concerned with the neural encoding of sound in the

auditory system in a primarily “bottom-up” direction, we also consider aspects of “higher-

level” influences, particularly in addressing aspects of auditory processing related to scene

analysis.

1.2 Thesis outline

As we describe the intricacy of the hearing problem and its multiple facets, our sense

of the complexity of tackling its different aspects is only reinforced. In this thesis, we

focus on the computational task of hearing by raising questions such as which sensory

information does the brain extract, and how is it extracted and processed. This approach

views the auditory system as a computational tool that is separate from the anatomy in

which it is implemented. Nonetheless, as we focus on the higher-level functions of auditory

processing in the brain, it is only natural to explore its neural basis, and particularly at

the cortical level. By setting a biological foundation for the computational problem, we

can explore different implementations and modelling schemes targeting specific questions
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of sound processing.

This dissertation is organized in six chapters. Following this introduction is an au-

ditory system primer. In that chapter, we briefly review the present knowledge of the

biological auditory system. The survey summarizes what we know about the organiza-

tional and functional structures of the auditory system, focusing on the principles that are

essential in understanding how the computational models proposed in this thesis relate to

the biology. We also touch upon some unresolved questions concerning the role ascribed

to the auditory cortex, and we dedicate the next chapter to expand on these issues.

Chapter 3 explores evidence about known paradoxical properties of cortical neural

processing, namely the dynamics that underly temporal coding of sound signals in the

auditory cortex. We analyze neural data collected in the primary auditory cortex, and

argue for a dual role of cortical function in organizing the features of sound, in terms of

both slow spectrotemporal information patterns (syllabic segments in speech, timbre and

rhythm in music); as well as more fast transient and precise responses capturing the sound

texture. This study has important implications in the way we understand how auditory

percepts are formed in the brain.

Chapter 4 presents a computational approach for evaluating loss of intelligibility,

inspired from mammalian physiology and human perception. The model is based on

a multi-resolution filter-bank implementation of cortical response patterns. A powerful

and robust computational intelligibility measure based on this model is presented, where

estimates of the integrity of spectrotemporal modulations in a test signal or channel are

related to perceptual measures of speech intelligibility, as perceived by humans.

In Chapter 5, we explore another aspect of auditory perception, that of auditory

scene analysis and stream segregation. We develop and test a cortical model for sound
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organization based on adaptive learning and Kalman estimation. The model is founded

on perceptual principles of auditory grouping and stream formation. Such principles are

translated in a computational model which combines aspects of bottom-up sound process-

ing with an internal representation of the world, which adapts its intrinsic representation

based on the residual error between its own predictions and the actual sensory input. The

model proves to be quite powerful in organizing sounds in perceptual streams that corre-

spond to the actual perceived events in real-life situations. We present various simulations

addressing different aspects of auditory streaming, as well as sound separation from speech

mixtures.

Finally, we conclude in Chapter 6 with a summary of the main findings of this work,

and consider further prospects of this research field.
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Chapter 2

Auditory system primer

Hearing is one of the means by which organisms determine objects in their environment.

If these objects vibrate, they have the potential to produce sound, and that sound can

be an identifying characteristic of the object [66]. This chapter is intended to review our

current knowledge of the auditory system, and how it processes sound. We limit this

survey to the basic elements of biological auditory processing that are necessary for the

purpose of this thesis. Some existing computational models are also briefly reviewed as

they are relevant for our subsequent analysis of models for auditory processing.

2.1 Nature of sound

It is appropriate to start our study of sound processing by a description of the physical

properties of sound itself. Any object that vibrates can produce an audible sound, as
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a form of energy whose behavior is governed by the laws of physics. Sound is in fact

a physical disturbance that propagates through any elastic medium. It is hence the air

vibration -rather than the sound source itself- that starts the hearing process [66].

Sound is captured by an instantaneous amplitude or pressure waveform that varies

in time, making the latter the first dimension of hearing. As de Cheveigné puts it so

well [44], “Time must flow for sound to exist”. There is strong physiological evidence

that the time-variability of the acoustic waveform is encoded either explicitly or implic-

itly in the temporal patterns of neural responses. These temporal cues are parsed by

the auditory system to identify various sound properties such as source, identity, loca-

tion and meaning. Patterns representing different sound properties extend over a large

range of time scales, extending from microseconds (for sound localization) to hundreds of

milliseconds (syllabic segments) and even many seconds (phrase duration). The auditory

system is hence responsible for resolving information at different temporal resolutions and

integration windows.

Sound can be represented equally well by its frequency content. The Fourier theory

transforms the functional dependence of a signal from time to frequency [109]. It reveals

the frequency attributes of sound, and hence offers an equivalent representation of any

sound in terms of its individual frequencies (or sinusoidal vibrations). While both time

and frequency are valid dimensions for representing sound, the dynamic changes of sound

requires in effect a short-term analysis of its frequency content as the signal varies over

time. Biology seems to be “aware” of this fact, and is able to put together these two

representations (time and frequency) by mapping the spectral axis into a spatial axis,

making frequency the second dimension of hearing. This spatial axis is represented by

11



the tonotopic1 organization of the cochlea as well as the tonotopic maps found in various

auditory nuclei, as we shall see next in our review of the auditory pathway.

2.2 Auditory pathways

The hardware of the auditory system consists of the ear and parts of the central nervous

system (CNS). Technically, the term ear refers to the entire peripheral auditory apparatus

including the outer, middle, and inner ear. Sound information is then projected along a

multitude of channels making up the main auditory pathway. In the following section, we

briefly review the structure of the different auditory nuclei and review basic knowledge

about their role in sound perception.

2.2.1 Auditory periphery

Incoming sound waves entering the ear make the eardrum vibrate. The sound energy is

then converted into mechanical energy, which produces a complex spatio-temporal pattern

of vibrations along the basilar membrane of the cochlea (Figure 2.1). The maximal dis-

placement at each cochlear point corresponds to a distinct tone frequency in the stimulus,

creating a tonotopically ordered response axis along the length of the cochlea [54, 148].

The basilar membrane can then be thought of as a mechanical short-term Fourier analyzer

of sound frequency [87].

Following the cochlear stage, the stimulus frequency and intensity are then encoded

at the level of the cochlear nerve fibers through innervation of the inner hair cells. While

the activity of the nerve fibers is thought to be relatively homogeneous in terms of vibration

1The term “tonotopy” is used in the auditory literature to refer to the organization of frequency along a
logarithmic spatial axis, much like a xylophone. It must be noted, however, that the tonotopic organization
in the mammalian auditory system is not purely logarithmic, but tends to become linear below 500 Hz
[81].
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Figure 2.1: Structure and functionality of the human ear [87]. (left) Vibrations to

the eardrum are conveyed across a fluid-filled middle ear by three tiny, linked bones.

These in turn stimulate the cochlea by producing oscillatory pressure causing a travelling

wave along the basilar membrane. (right) Each frequency excites maximal motion at

a particular position along the basilar membrane, allowing the cochlea to perform a

spectral analysis of sound.

patterns [109], the next relay station -the cochlear nucleus, appears to be more intricate.

Various projections within the cochlear nucleus constitute parallel pathways for analyzing

different sound attributes. Present evidence suggests a role of the cochlear nucleus in

enhancing and sharpening the features of the neural patterns, prior to relaying them to

more central areas via the superior olivary complex (SOC) and the inferior colliculus (IC)

[116].

Computational model

To mimic the functionality of peripheral auditory processing, we use a computational

model that is grounded on extensive neurophysiological data from mammalian peripheral

stages of auditory processing [100, 147]. The choice of this model is motivated by its

biological foundation, its perceptual relevance as well as noise robustness as shown by

thorough analytical and experimental investigations established by Wang et al. [144]. It

is used in this thesis as one of the building blocks for our subsequent analysis of compu-
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Figure 2.2: Schematic of the early stages of auditory processing. Sound is analyzed

by a model of the cochlea (depicted on the left) consisting of a bank of 128 constant-Q

bandpass filters with center frequencies equally spaced on a logarithmic frequency axis

(tonotopic axis) spanning 5.2 octaves (e.g., 0.1-4kHz). Each filter output is then half-wave

rectified and lowpass filtered by an inner hair cell model to produce the auditory-nerve

response patterns (middle panel). A spatial first-difference operation is then applied

mimicking the function of a lateral inhibitory network (LIN) which sharpens the spectral

representation of the signal and extracts its harmonics and formants [131]. The short-

term integration is typically performed over 8 ms intervals. A final smoothing of the

responses on each channel results in the auditory spectrogram depicted on the right.

tational strategies of auditory perception. In this section, we describe briefly the steps

involved in computing an auditory spectrogram based on the original work presented in

[144, 147]. While not strictly biophysical, the model abstracts from physiological data

relevant for basic sound analysis. It consists of various stages based on a wavelet-analysis

of the acoustic waveform (s(t) in Equation 2.1), modelled as a three-step process:

• First, the frequency analysis in the cochlear stage is modelled by a bank of constant-Q

highly asymmetric bandpass filters (Q=4) equally spaced on a logarithmic frequency

axis (h(t, x) in Equation 2.1). The model employs 24 filters/octave over a 5.3 octave

range. The left panel of Figure 2.2 illustrates an incoming sound waveform processed

through a bank of frequency selective filters.
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• Next, the basilar membrane outputs are converted into inner hair cell intra-cellular

potentials (y2(t, x) in Equation 2.1). This process is modelled as a three-step op-

eration: a high-pass filter (the fluid-cilia coupling), followed by an instantaneous

nonlinear compression (gated ionic channels) captured by a nonlinear function g(.),

and then a low-pass filter w(.) (hair cell membrane leakage). Detailed description of

the mechanisms involved in each one of these steps can be found in [100].

• Finally, a lateral inhibitory network detects discontinuities in the responses across

the tonotopic axis of the auditory nerve array, inducing a sharpening of the filter-

bank frequency selectivity as seen in the cochlear nucleus [131]. It is modelled as a

first difference operation across the channel array, followed by a half-wave rectifier,

and then a short-term integrator. The temporal integration window is captured by

the function µ(t; τ) = e−t/τu(t) with time constant τ . This stage effectively sharpens

the bandwidths of the cochlear filters from about Q=4 to 12, as explained in detail

in [144].

y1(t, x) = s(t) ∗t h(t;x)

y2(t, x) = g(δty1(t, x)) ∗t w(t)

y3(t, x) = max(δxy2(t, x), 0) ∗t µ(t; τ)

(2.1)

Effectively, the above sequence of operations computes an auditory spectrogram of

the acoustic signal (Figure 2.2) using a bank of constant-Q filters, with a bandwidth tuning

Q of about 12 (or just under 10% of the center frequency of each filter). Dynamically,

the spectrogram also explicitly encodes all temporal “envelope modulations” in the signal

due to interactions between the spectral components that fall within the bandwidth of

each filter. The frequencies of these modulations are naturally limited by the maximum

bandwidth of the cochlear filters.
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2.2.2 Central pathways

Figure 2.3: The central auditory pathway [87]. The central pathways extend from the

cochlear nucleus to the auditory cortex through a complex midbrain circuitry. Each

nucleus mediates certain functions, such as sound localization and binaural sensory inte-

gration. It is important to note that the projections along the auditory pathway are far

more complex than those shown in the figure. For instance, there are extensive feedback

loops from the auditory cortex into the thalamus and inferior colliculus, which introduce

highly non-linear dynamics into the system [11].

At this stage along the auditory pathway, the acoustic waveform is converted into

a pattern of neural activity that faithfully maps the temporal and spectral attributes

of the incoming sound. The following stages begin the process of temporal integration

and the formation of a coherent auditory image. Nuclei of the midbrain, the Inferior

Colliculus (IC) in particular is believed to to be the first stage in the system where all the

acoustic information converges together, coming through projections from the superior

olivary complex and the lateral lemniscus [87] (Figure 2.3). The IC appears to act both as
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an integrative station as well as a switchboard to higher auditory and multi-modal sensory

areas. It also plays a key role in binaural hearing and thus in sound localization [55].

If the IC is believed to be the last station in the auditory pathway whose function

is directed towards the formation of auditory images, the subsequent auditory nuclei are

thought to play a role in the analysis of this auditory image and hence in the perception

of sound [55]. The nuclei beyond IC, including the auditory thalamus (Medial Geniculate

Body, MGB) and auditory cortex are hence involved in the process of auditory pattern

recognition, where the features of the auditory image are sharpened and grouped together

into streams, mediated by auditory memory and contextual information. Present evidence

seems to favor a role of cortical circuitry in auditory pattern recognition. As most of the

interesting auditory features are already extracted by the level of the IC, it is suggested

that the auditory cortex is playing a role in organizing these features in terms of auditory

objects [112].

It is, however, very important to stress that the structure and function of the cen-

tral auditory nervous system is far less understood than the periphery. The anatomical

complexity of the pathways, the neural morphology of cells and circuitry, as well as the

unknown nature of the neural code have made it very difficult to study the central path-

ways of the auditory system. Our current knowledge of the auditory functions mediated

by the different nuclei is very limited, and greatly speculative. Nonetheless, evidence from

imaging as well as physiological and anatomical studies are laying the grounds for a better

understanding of the function of the central auditory system and the neural strategies of

sound perception.
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Computational model

Despite claims that feature extraction is a secondary role of cortical circuitry in sound

processing [113], the case for the real contribution of cortex to auditory perception is far

from being resolved. The simplistic view of cortical neurons as “feature detectors” is by

itself not erroneous. We will show in this thesis how we can build on a simple view of

A1 as a feature detector to perform elaborate auditory functions, by taking into account

additional physiological facts to enhance our understanding of the cortical function. We

shall expand further on this topic in chapter 3.

Inspired from the computational role of cortical circuitry in auditory pattern recog-

nition, we adopt a model presented by Chi et al. [32] to mimic the functionality of central

auditory processing. The basis for this model is derived from physiological data in animals

[49, 90, 91], and psycho-acoustical data in humans [31].

The model consists of a multi-scale filter-bank represented by impulse responses

in the form of spectrotemporal Gabor functions [31]. Each filter is tuned to a range of

temporal (denoted ω, or rate) and spectral (denoted Ω, or scale) modulations, with a

spatial impulse response h
RF

(x; Ωc, φc) and temporal impulse response g
RF

(t;ωc, θc). The

overall impulse response of each filter is then a “separable” spectrotemporal modulation

function RF , given as the product of a temporal and spectral marginal functions (middle

panel of Figure 2.4):

g
RF

(t;ωc, θc) = g(t;ωc) cos θc + ĝ(t; θc) sin θc

h
RF

(x; Ωc, φc) = h(x;φc) cosφc + ĥ(x;φc) sin φc

RF(t, x;ωc, θc,Ωc, φc) = g
RF

(t;ωc, θc).hRF
(x; Ωc, φc)

(2.2)

This multi-scale multi-rate representation simulates the selectivity of cortical neurons to
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Figure 2.4: The cortical multi-scale representation of sound. The auditory spectrogram

of a speech sentence /right away/ (from Figure 2.2), spoken by a male is analyzed by

a bank of spectrotemporal modulation selective filters. The spectrotemporal response

field (STRF) of one such filter (tuned to ω = 4 Hz and Ω = 1 cycles/octaves) is shown

in middle panel. The output from each filter is computed by convolving the STRF with

the input spectrogram, to produce a new spectrogram as shown in the right panels. The

panels show the magnitude response of 4 such filters.

spectral local shapes, rate movements of spectra, as well as direction of movement (upward

or downward) (right panels of Figure 2.4). The spectrotemporal response of each filter to

an input spectrogram y(t, x) is given by:

r(t, x;ωc, θc,Ωc, φc) = y(t, x) ∗xt RF(t, x;ωc, θc,Ωc, φc)

= y(t, x) ∗xt [g
RF

(t;ωc, θc).hRF
(x; Ωc, φc)]

= y(t, x) ∗xt [g.h cos θc cosφc + g.ĥ cos θc sinφc

+ ĝ.h sin θc cosφc + ĝ.ĥ sin θc sinφc]

(2.3)

The output can be reduced to a 4 dimensional complex-valued mapping obtained from a

complex valued wavelet transform varying along time, frequency, spectral scale, temporal

rate. A functional description of the parameters of the cortical model is presented in [145].

Figure 2.4 illustrates the analysis stages through the multi-scale filter-bank. The in-

put spectrogram is decomposed through the various filters into a four-dimensional complex-

19



valued response (time, frequency, rate, and scale). Different views of this response can

be obtained by summing the outputs of all filters along one or more dimensions. The

magnitude of the output of 4 modulation selective filters are shown in the right panels of

Figure 2.4. The fast filters (+32Hz,–32Hz) reflect the fast temporal envelope in the origi-

nal speech utterance viewed through a 32 Hz filter, while the slow envelope dynamics are

captured by the overall patterns of the 8Hz filter. We can also note the different patterns

in the upward vs. downward filter responses, demonstrating the orientation selectivity of

the cortical filter-bank model. The spectral patterns can also be observed at the output

of the 1 vs. 8 cycles/octave.

2.3 Neural receptive fields

As we try to understand how the world is represented in the brain, a natural step is to

characterize the selectivity of sensory neurons to external stimuli, since the main workload

of information processing in the brain is carried out by neurons [87]. Clearly, different

neurons respond variably to different stimulus patterns, and a functional description of

each cell’s behavior is its receptive field. A receptive field is a description of the optimal

input that elicits the strongest response in a neuron. In the case of auditory neurons, the

receptive field is generally described as a two-dimensional (spectral and temporal) func-

tional, called STRF (Spectro-Temporal Receptive Field), which acts as a time-dependent

spectral transfer function, or a frequency-dependent dynamical filter [47, 88, 138].

In general, biological systems fall in the category of dynamical systems whose input-

output transformation can be described by a possibly nonlinear dynamical functional F [.]

mapping the values of the input s at different time instants to a value of the output or

response r at the current time t [89]. Under assumptions of bounded input amplitude,
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Figure 2.5: A receptive field captures the optimal input that elicits the strongest re-

sponse in a neuron. The convolution of the receptive field with the spectrotemporal

representation S(t, x) of a stimulus captures the linear component of the response of the

neuron r(t).

the functional F can be expanded into Volterra series components, as described by the

equation:

r = F [s] = V0[s] + V1[s] + ...Vn[s] (2.4)

where,

Vi[s(t)] =

∫

...

∫

vi(τ1, ..., τi).s(t− τ1)...s(t− τi)dτ1...dτi, (2.5)

and the order n could be conceivably infinite. A Volterra expansion is a generalized

Taylor series for nonlinear dynamical systems [30]. Using this general framework of system

representation, the receptive field of neurons is nothing but a second-order Volterra kernel

(v2). v2 describes a linear system transforming the time-dependent autocorrelation of the

stimulus (or equivalently, a time-frequency representation of the stimulus), to the response

r(t) [88]. This kernel is named spectrotemporal receptive field (STRF) (Figure 2.5).

STRFs have indisputably revealed a lot about the behavior of neurons in the au-

ditory system, especially at the cortical level. They offer a straightforward quantitative
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linear description of the neurons’ selectivity to specific stimulus patterns, and hence led

us to a better understanding of cortical processing. They have, however, been criticized

from many shortfalls:

• Linear model: When probed with more behaviorally relevant natural sound ensem-

bles, the linear STRF model proves to be an incomplete description of response

properties of nonlinear auditory neurons [138], and fails to successfully predict re-

sponses to many natural stimuli. A success prediction rate of 10% [101] to 40% [128]

was typically reported for classes of natural sounds.

• Lack of generalization: While the STRF model seems to give satisfactory results for

a large set of stimulus ensembles (ripples, modulated noise, random tone pips, classes

of natural sounds, etc), it appears that comparisons of receptive fields obtained from

different stimulus bases leads to striking difference between the derived kernels [138].

STRFs have also been reported to lack robustness relative to stimulus perturbations,

such as use of background noise with natural stimuli [9].

• Describing cortical dynamics: STRF models fail to capture various aspects of cortical

processing. If anything, they reveal a paradox in cortical dynamics, suggesting a slow

time constant for cortical processing, despite the known ability of A1 neurons for

temporal precision. For instance, STRF models cannot explain the sensitivity of A1

neurons to certain acoustic patterns, such as fast FM sweeps [113].

We shall explore some of these limitations in the following chapter, in our quest for a

better understanding of the auditory function and perception of sound.
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Chapter 3

Cortical timing paradox

The current knowledge of central auditory processing raises many questions related to

the neural basis of auditory perception and the physiological foundation of auditory scene

analysis. The involvement of cortical circuitry in representing sounds as auditory ob-

jects remains to be investigated. Recent evidence suggests a role of cerebral cortex in

scene analysis and auditory object formation (see review by Nelken [112], and references

therein), but the dynamics of cortical processing have not been carefully addressed in the

literature. To quote Nelken [113], “The issue of time constants is crucial for understand-

ing processing in A1... Studying the interplay between the different time constants will

lead us to a better understanding of the operations performed by A1 and therefore to a

more precise formulation of its role in the auditory pathway”. In this section of the thesis,

we try to address some of these very critical yet unanswered questions. At what time
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constants do cortical neurons operate? Are these time constants (or integration windows)

commensurate with the temporal dynamics of stream formation and auditory grouping?

The physiological evidence accumulated over many decades of research shows that

temporal responses in auditory neurons are surprisingly sluggish [39, 90, 107]. The upper-

limit of sustained locking to repetitive stimuli in A1 does not generally exceed 20 – 30

Hz [130]. Yet, the primary auditory cortex has been shown to be capable of remarkable

temporal precision. Various studies have shown that A1 neurons respond very accurately

to sound onsets and rapid transients with precision of the order of few milliseconds [5,

50, 51, 79]. Similar findings have also been reported in other sensory systems such as

the visual [8], and somatosensory cortex [122]. This apparent paradox in time scales

has a perceptual manifestation in the so-called resolution-integration paradox [48, 141].

Originally put forward by deBoer [46], this paradox addresses the contradiction in the

system’s role in integrating information over long periods of time, and yet being able to

maintain a rapid response and fine temporal resolution. Simply put, how is it possible for

a system to be both slow and fast at the same time?

Our main interest for raising such questions is to explore the computational strate-

gies that govern the cortical function. To do so, we re-examine physiological data collected

from cortical neurons. We start by summarizing our basic findings concerning the accu-

racy and extent of precise spiking in the primary auditory cortex. Next, we compare

receptive fields derived from the envelope and fine structure of the stimulus, and explore

their relationship and their ability to account for the details of cortical responses. Finally,

we examine whether synaptic depression and specific excitatory/ inhibitory mechanisms

can account for these findings, and the possible functional relevance of the fine structure

in auditory perception. The work presented here has been published in [61, 62].
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3.1 Exploring cortical dynamics

In addressing the resolution-integration paradox, researchers have generally studied these

two phenomena separately using stimuli that tend to highlight one or the other. For in-

stance, cortical responses were entrained using amplitude and frequency-modulated tones

and noise, drifting gratings, and click trains [56, 99, 130], whereas transient responses were

evoked using tone onsets and dynamic dots [8, 79]. In this work, we investigate the coexis-

tence of these two response properties in single-units of the primary auditory cortex (A1),

and explore their limits and characteristics with stimuli that combine both repetitive and

transient features. Understanding the interplay between these time constants leads to a

better understanding of the role of cortical circuitry in perceiving and grouping sounds.

3.1.1 The stimulus space

Time-frequency space

The nature of sound is set by its conjoint spectral and temporal attributes. Very often,

physiological investigations have assumed these two dimensions to be processed indepen-

dently, and hence spectral response fields [129] and rate tuning curves [91] have been

used as neural descriptors. It is becoming increasingly clear that the combination of both

spectral and temporal sound properties, and not simply their individual attributes, is im-

portant for auditory perception. The spectrotemporal domain is hence a natural choice

as a stimulus space. Not surprisingly so, as spectrotemporal representations are inherent

to the auditory system both anatomically and functionally.

We can best describe the time-frequency space in terms of Fourier series [118], as

this latter is a natural analytic description of any dynamic spectrum. It works by decom-

posing a given sound spectrum into its constituent elementary 2D Fourier components, as
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illustrated in Figure 3.1. Each Fourier element is a sine wave that is a function of both

time t and spatial location x, and is described as: Acos{2π(ωt + Ωx) + ψ}. The spatial

axis x corresponds to logarithmic frequency, i.e. x = log2(f/f0), where f0 is the lowest

frequency component of the signal. The elements ω (in Hertz, or cycles/second) and Ω (in

cycles/octave) are referred to as temporal and spectral modulation frequencies (since they

reflect the modulation energy in the acoustic spectrum at the specific frequencies ω and

Ω). Each individual Fourier component, termed ripple, is then associated with a unique

frequency modulation pair (ω,Ω) and defined by its peak amplitude A and phase ψ (Figure

3.1 (A)). Just like pure tones (or single sinusoids) can represent any finite-duration acous-

tical waveform, the 2D ripples can similarly decompose any acoustic spectrum of finite

duration and finite bandwidth into a unique set of ripple components. Being a complete

basis set, the decomposition of any signal S(t, x) is captured by its ripple content:

S(t, x) =
∞

∑

k=−∞

∞
∑

l=−∞

a
k,l
ej[2π(ωkt+Ωlx)+ψk,l] (3.1)

Stimulus parameters

Conventionally, cortical circuitry has been thought to encode sound envelopes. Previous

studies [47, 65, 108, 138], including work from the Neural Systems Laboratory [49, 90, 88],

tried to characterize cortical responses in terms of their sensitivity to edges and patterns

of the stimulus profile or envelope. Receptive fields of neurons (STRFs) have been derived

with a variety of stimuli: simple tone pulses [47], animal vocalizations [138], natural sounds

[101], white noise [80] and dynamic ripple [49, 108]. Irrespective of the stimulus choice

or parameter space (filter-bank output [138], spectrotemporal envelope [65, 88], Wigner

distribution [58]), these studies have all used some form of representation of the sound
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Figure 3.1: Schematic of stimulus spectrotemporal space. (A) A ripple profile with modula-

tions {4Hz,0.4 cycles/octave} appears as a single element in a 2D Fourier transform (red square

in the right panel). Ripples are basis functions for the spectrotemporal space. (B) TORC stim-

uli have a more rich envelope (leftmost panel), but is only confined within the ΛE space. We

only show the Fourier decomposition of the TORC profile, but clearly the noise carrier (middle

panel) contributes to the TORC energy outside the ΛE region. (C) A “complete” spectrogram

of a general sound fills in the entire spectrotemporal Fourier space (rightmost panel).

spectrum (or dynamic envelope) in the time-frequency space.

In contrast, the current study tries to use the entire time-frequency space described

above as working ground for defining the stimulus set. It expands the stimulus represen-

tation beyond the envelope profile of the stimulus, to also comprise the fast dynamics of

the sound, including the interplay between the envelope and the carrier of the stimulus.

We therefore formalize the description of the stimulus in terms of two main regions in the

time-space domain:
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• The stimulus profile: The stimulus profile is a steadily drifting spectral envelope,

moving at various slow rates [61, 88]. This stimulus, called TORC (Temporally-

Orthogonal Ripple Combination), consists of a linear sum of individual ripple ele-

ments with ωk ∈ {4,8,...,24} Hz, and Ωl ∈ {± 0.2, ± 0.4,..., ± 1.4 } cyc/oct. These

two parameters define the region ΛE in spectrotemporal space (Figure 3.1). This

region spans a range of spectral and temporal modulations previously shown to elicit

phase-locked responses in A1 [90, 91]. Sounds extended over 1 to 3 sec in time with

a periodicity T = 250ms, and spectral bandwidth X = 5 octaves.

• The stimulus fine structure: Beyond region ΛE , the stimulus is defined by its noise

carrier, which once transduced through the cochlear hair cells, creates frequency

beatings that mostly define the content in region ΛF (Figure 3.1). The region ΛF is

harder to formalize by design, since it depends on a realization of white noise with

random-phase tone components, as well as the mechanics of cochlear filtering. In

this study, we use the model described in chapter 2 to mimic as closely as possible

the effect of biological peripheral processing. The nature of the noise carrier used in

this study came in two variants:

1. A white noise carrier consisting of 501 random-phase tones, equally-spaced

along the tonotopic frequency axis, and spanning a range of 5 octaves, or,

2. a broadband carrier with harmonically-spaced tones, also spanning a 5 octaves

range. The harmonic fundamental frequencies used in the experiments spanned

the range (25-200) (Hz).

Throughout this study, all stimuli shared a common (logarithmic or harmonic) car-

rier consisting of the same instance of frozen broadband noise. As mentioned earlier, a
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Figure 3.2: Schematic of the stimulus envelope and fine structure. Left, a ripple stim-

ulus (4 Hz and 1 cycle/octave) is given as input to a cochlear filter-bank. Middle, the

time waveforms of the filter outputs (auditory spectrogram) show an overall pattern of

a 4 Hz drifting spectrogram, with detailed fast fluctuations. For display purposes, the

output of each filter is half-wave-rectified to reveal better the fluctuation patterns in the

spectrogram. Right, top, the output of the 1 kHz channel reveals the 4 Hz envelope

modulating a faster carrier. Middle trace, View of the channel output at a higher magni-

fication reveals a 1 kHz carrier with a rapidly fluctuating envelope or fine structure (red

curve). The fine structure is caused by interactions between the tones that fall within

the bandwidth of the 1 kHz filter. Bottom trace, A more detailed look of the modulated

output of the 1 kHz filter.

byproduct of cochlear filtering is the creation of amplitude-modulated complex waveforms

arising from the beating or interaction between the carrier tones that fall within the pass-

band of the filters. These complex waveforms are called the fine structure of the stimulus

[61]. They can be extracted by a Hilbert transform of the filter output [115], as shown by

the red trace in Figure 3.2. The dynamic range (rate of fluctuation) of the fine-structure

waveforms increases as the cochlear filter bandwidths become broader at higher frequen-

cies. Note that the fine-structure waveforms depend solely on the carrier of the ripple

(or TORC), and are independent of the global envelope. Because we constructed all our

stimuli with identical carrier tones, their fine-structure waveforms are identical.
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3.1.2 Cortical response properties

Using TORC stimuli, we examine properties of neuronal responses collected extracellularly

in the primary auditory cortex (A1) of ferrets (Mustela putorius). The data analyzed in

this work was collected in the Neural System Laboratory in the context of various studies

[49, 60, 69, 70] from a total of 8 domestic ferrets. Three of these ferrets were anesthetized

during the experiments (full procedural details in [132]). The remaining five ferrets were

used for awake recordings. Among the 5 animals used for the awake experiments, three

ferrets were awake but were not trained on any behavioral task, while the remaining two

were trained to perform an acoustic detection task while the recording was in session

[70]. Tungsten electrodes (5-7 MΩ) were used to record single and multi-unit responses at

different depths. To isolate single-unit responses, we employed both automatic [96] and

manual off-line spike-sorting procedures.

The data-set was based on cortical recordings from a total of 918 single units (37%

from anesthetized animals). The awake recordings were typically characterized by a more

vigorous firing rate; but apart from this difference, our analysis and findings apply to both

anesthetized and awake conditions, unless otherwise stated. Most units encountered in

both anesthetized and awake recordings responded in a sustained fashion to the TORC

stimuli as illustrated by the 1 sec response rasters for the two example neurons in Figure

3.3 (Each point in the raster plot corresponds to an action potential, or a spike). The

responses exhibit simultaneously two patterns of phase-locking. First, they are phase-

locked to the TORC envelopes, as evidenced by the changing raster display from one

TORC to the other. Second, the spikes are also precisely locked to the fine temporal

patterns, common to all TORCs, giving the appearance of vertically aligned episodes

in the raster plots across two or more TORCs. This dual pattern of locking explains
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Figure 3.3: Rasters of A1 responses: Cortical responses of two single units in A1 of an

anesthetized (left) and awake (right) animal. Each raster depicts repeated responses to

four different TORC stimuli. The bottom panels depict the PSTHs computed by aver-

aging the responses to repetitions of all TORC stimuli presented to that neuron. The

precision of the time of occurrence of spikes can be judged by their vertical alignment.

The PSTH contains frequent large peaks, indicating the occurrence of spikes at those

instants in response to many of the TORCs. The TORCs in the right panel are com-

posed of harmonically related tones (H-TORCs) with a fundamental frequency of 48 Hz.

Therefore, the PSTH displays regular peaks locked to the 48 Hz fundamental.

the disappearance of the vertically aligned episodes in some TORCs. This can be seen

more easily in the left panel of Figure 3.3 where the harmonic TORC elicits responses

locked to the fundamental frequency (48 Hz) of the harmonic sequence that makes up the

TORC carrier (and hence its fine-structure). The histogram in the bottom of Figure 3.3

(right panel) accumulates responses over all repetitions of all TORCs, and illustrates the

regularly-spaced 48 Hz peaks due to the periodicity of the fine-structure. Note that while

all raster spikes tend to occur at the regular 48 Hz intervals, they are completely missing

in some TORCs, seemingly because the TORC envelope gates the occurrence of the spikes

as we shall discuss later in more detail.
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3.1.3 Temporal resolution of cortical information

The reliability of the neural responses observed in A1 is directly related to the stimulus-

specific information carried by sensory neurons. This information could be encoded at

any temporal resolution driven by very different temporal patterns in the input sound. To

explore the temporal resolution of the neural code, we use a direct approach that relies

on statistical properties of the neuronal responses themselves. This analysis involves only

comparisons of spike trains with no reference to specific stimulus parameters.

Spike correlation methodology

The temporal resolution of neural responses is reflected in two major parameters: (1) how

reproducible each spike train is (i.e., is the same spike count reproduced from one trial

to the other), and (2) how accurate is the neural response at different trials (how much

jitter exists in the reproduction of each spike?). To address these questions, we define

an across-trial spike train correlation function from the neural responses of each neuron.

Such function is described by the equation:

r(τ) =
2

MN(MN − 1)

MN
∑

i=1

∑

j<i

ri,j(τ) (3.2)

for M stimuli and N trials of each stimulus, and where ri,j(τ) is the cross-correlation

between the ith and jth response traces. Effectively, this equation describes the correlation

of the response to each TORC sound with responses to (about 10) repetitions of the same

stimulus, as well as responses to all other stimuli (a total of 30 stimuli). While Equation

3.2 hints to intense computations (about 45,000 correlation operation for M=30 and N=10

on average), it can in fact be implemented in a greatly simplified way by taking advantage

of the fact that each spike train is a binary signal (a sequence of 1’s -spikes- and 0’s -no
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spikes-). In this study, the correlation function for each neuron was computed over a

window of ± 100ms, with a spike resolution (bin-size) of 1ms.

Using the correlation function defined in Equation 3.2, we would like to extract

parameters that reflect spike-timing jitter and spike reproducibility. To do so, we derive

an analytic correlation function based on a model of Poisson correlations [119]. Assuming

that each spike train is a realization of a Poisson-point process, its correlation function is

given by: r̂(τ) = λ2 + λδ(τ) ([119], pg. 287). The parameter λ corresponds to the spike-

rate of the process. By modelling spike jitter as a normal distribution with parameter

σ, we can replace the delta function in (r̂)(τ) by a Gaussian function. Additionally, we

introduce a variable α to control the area under the normal distribution. α, which varies

between 0 and 1, reflects the probability of spike reproducibility (1-α corresponds to the

probability of spike deletion). A probability α equals 1 indicates a Gaussian distribution

with a total area of 1, and thus perfect reproducibility of spikes. As α approaches zero,

the probability of spike reproducibility decreases, and thus, the peak of the correlation

function is reduced. Therefore, the overall analytic model to fit our correlation function

is depicted in Figure 3.4, and captured by the equation:

r̂(τ) = λ2 +
αλ

σ
√

2π
e−t

2/2σ2

(3.3)
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Spike correlation results

We fit the data function r(τ) (eq. 3.2) with the Poisson-based model r̂(τ) (eq. 3.3),

and extract the parameter triplet (α, σ, λ) for each neuron. These parameters are direct

correlates of the extent and accuracy of cortical phase-locking to the TORC fine-structure.

The range of values observed over our data set is illustrated in Figure 3.5. Over 63%

of anesthetized and 77% of awake recordings exhibited precise locking of less than 10ms

accuracy (σ ≤10ms). Note also that the awake population exhibited on average higher

precision (σmean of 18.7 vs. 11.7 ms in the middle panels of Figure 3.5). The distribution

of the spike reproducibility parameter (α) was biased towards 0 under all experimental

conditions (Figure 3.5, left panels). This is partly due to the fact that envelopes of different

TORC stimuli are uncorrelated; and hence spikes are suppressed (gated out) differently

from one TORC response to another. Therefore, computing a correlation function across

responses to all stimuli would exhibit a reduction of spike reproducibility. Finally, the

spike rate in the awake population was expectedly [60] significantly higher than in the

anesthetized (λmean of 18 vs. 9 as indicated in the left panels of Figure 3.5).
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3.2 Modelling cortical responses

So far, we have shown that the primary auditory cortex can respond precisely not only

to sound onsets, but also to rapid sustained stimuli with precision of the order of a few

milliseconds. This precise spiking to the fine structure of long-duration stimuli appears

to be contingent on the presence of relatively slow modulations of the stimulus spec-

trotemporal envelopes that can effectively excite the cortex. By using a specially designed

acoustic stimulus (the TORC), we can model the system properties that give rise to these

responses.

3.2.1 Defining a piecewise linear model

We start by outlining the methodological basis for modelling the dynamical system un-

der study. The key strategy of our analysis is to approximate the nonlinear mapping

between sensory inputs and cortical neural responses by a collection of piecewise linear

systems [117]. Conventionally, STRFs (Spectrotemporal receptive fields) have been used

to describe the linear relationship between the neural response of a unit and the dynamic

spectrum (time and frequency-dependent energy) of a stimulus. Various studies using the

STRF technique have tailored it to characterize the response sensitivity of neurons to the

stimulus modulation profile (or spectrotemporal envelope) [49, 108, 129]. The choice of

this approach was motivated by physiological evidence relating cortical neuronal responses

to the modulation frequencies of a stimulus profile.

In this work, we wish to expand the STRF-based technique to explore the time

constants of cortical neurons. We base our analysis on the theory of piecewise linear

(PWL) systems. PWL is a system identification technique which approximates a nonlinear

dynamical system via multiple linearizations at different operating points [98]. A classic
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approach in PWL system identification is to choose a priori defined griding of the input

space to define linearization regions [19, 86]. Within each region in this grid, a linear

approximation of the system is applied around a different operating point. Here, we follow

the griding theory introduced by Billings and Voon [19], where the input space is divided

into rectangular sets with sides parallel to the coordinate axes. This approach fits in

nicely with our analytic description of the ripple space in terms of its Fourier components

(Figure 3.1). The linearization can then be performed on each sub-region of the ripple

space (envelope and fine structure), as we show next.

3.2.2 Cortical functions with dual operating-point

The choice of the gridding {ΛE ,ΛF } of the stimulus space comes as a natural choice

reflecting both our stimulus construction methodology, as well as the definition of a PWL

model. In order to capture details of cortical encoding of both the stimulus envelope as

well as its fine structure, these two regions in ripple space are defined as the two operating

points for linearization of the system functional F [.] (Equation 2.4). Within each stimulus

partition, we employ standard linear techniques, namely the STRF approach through

reverse correlation [57]. Mathematically, the STRF is defined by the equation:

rlin =

∫

S(t, x) ∗t STRF (t, x)dx (3.4)

where the linear component of the firing rate rlin(t) is described by a convolution in

time (t) and integration over logarithmic frequency (x) of the spectrotemporal stimu-

lus representation S(t, x) and the STRF (t, x). Most STRF measurements are made by

reverse-correlating (or convolving) the stimulus spectrogram with the responses of the cell:

STRF (t, x) =

∫

dt′′
∫

dx′
∫

dt′M−1(t, x)S(t′ − t′′, x′)r(t′) (3.5)
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where M(t, x; t′, x′) =
∫

dt′′S(t′′− t, x)S(t′− t′′, x′) is the spectrotemporal autocorrelation

of the stimulus.

In this study, we define two linear functionals describing the linear processing in the

two partition ΛE and ΛF , and corresponding to two linear functions STRFE and STRFF .

Such estimates try to map different stimulus regions, and thus they differ in the choice of

the stimulus representation S(t, x). The two STRFs derived in this case are:

1. STRFE (for Envelope), which uses the stimulus profile or spectrotemporal envelope

for reverse correlation (see Figure 3.6(A)). In this case, the stimulus autocorrelation

function (M(t, x; t′, x′) in Equation 3.5) is straightforwardly defined in the Fourier

domain; as explained in detail in [88]. Note that the superscript “E” is used to easily

identify the STRF measured from the stimulus envelope.

2. STRFF (for Fine structure), which captures solely the spectrotemporal patterns in

the stimulus fine structure that selectively drive the neuron (independently of the

stimulus envelope). In this case, we use fine-structure profiles (see Figure 3.6(B)) as

a stimulus trigger for reverse correlation. These fine-structure profiles are obtained

by averaging the complete profiles of all TORC stimuli. In this case, the stimulus

autocorrelation is not trivial: it is approximately a periodic delta function in t− t′,

whose period depends on x and x′ (Figure 1 in [61]). Approximating it as an exact

delta function (the standard autocorrelation) gives the correct STRFF but with an

occasional periodic artifact at high spectral frequencies.

These STRFs reveal the differential selectivity of cortical cells to these two sources

of information in the acoustic stimulus. The relationship between STRFE and STRFF

reflects the interaction between cortical slow and fast dynamics. To further explore this
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Figure 3.6: Schematic illustrating the use of reverse-correlation to derive STRFs. Top,

Trace of a neuronal response. A–C, Three spectrotemporal representations of the TORC

stimuli. In all three cases, the stimulus profiles preceding the occurrence of action po-

tentials are averaged. Because the stimulus time evolves from left to right, the actual

spike-triggered average is a stimulus spectrogram represented from -250 to 0 ms, where

0 ms corresponds to the actual occurrence time of the spike. The final STRF is a time-

reversed average stimulus spectrogram, in which the time axis is flipped and the STRF

can then be interpreted as the receptive field of the neuron.

point, we can also employ a complete linearization of the system. We hence use a stimu-

lus representation S(t, x) that covers the entire stimulus space, and use it to derive what

would be a first order linear approximation of the entire system. Such functional is termed

STRFC and uses a Complete spectrotemporal representation S(t, x) of the stimulus includ-

ing both its envelope and fine-structure patterns (see Figure 3.6(C)). This spectrographic

representation of the stimulus captures both its envelope dynamics, which are comparable

with the envelope profile in Figure 3.6(A), as well as the stimulus fine temporal structure,
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created by the interaction of the TORC carrier tones during the filtering process. In this

case, the stimulus autocorrelation is a complex combination of the envelope autocorrela-

tion and fine-structure autocorrelation (Figure 1 in [61]).

Interplay of the two STRF operating points

One way to relate these three STRFs is to use an estimate of their total power defined as:

P =
1

TX

∫ T

0

∫ X

0
STRF (t, x)dtdx (3.6)

By contrasting the total power PT in the STRFC over the entire ripple space, to the

power PE of the STRFC in partition ΛE , we can estimate the contribution of the envelope

patterns to the total response represented by STRFC . Such contribution is captured by

the ratio ∆PE = PE/PT . The remainder remainder of the power (1 −∆PE) is ascribed

to the faster modulations of the STRFF . Clearly, this estimate assumes the two ranges of

STRFE and STRFF modulations are mutually exclusive, and hence ignores the relatively

small contribution of the fine structure to the slow modulations in the STRFE range.

Nevertheless, this approximation is adequate for our purposes, and we will assume that the

STRFC is composed of a linearly weighted sum of STRFE and STRFF in the proportions

of their power estimates ( ∆P
E

and 1−∆P
E

) (see Figure 3.8):

STRFCpredicted = ∆P
E
.STRFE + (1−∆P

E
).STRFF

ρ = < STRFC , STRFCpredicted >

(3.7)

A robust linear behavior of the STRFs would result in STRFC predicted being similar to

the measured STRFC . We use a correlation coefficient [119] as a measure of similarity

between the original STRFC and STRFCpredicted. The correlation coefficient ρ takes values
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between +1 and -1, with +1 indicating a perfect match between the two STRF measures.

The correlation puts our assumption of linearity to the test, and shows how much of the

STRFC power is captured by a linear sum of the powers in STRFF and STRFE.

3.2.3 Cortical receptive fields

STRF examples

STRFs in A1 exhibit a wide range of shapes and forms, reflecting the immense variety by

which A1 units process and integrate various stimulus features along the spectrotempo-

ral dimensions. Figure 3.7 displays several examples of receptive-field triplets (STRFE ,

STRFF , and STRFC) obtained for different neurons. Generally, the STRFC displays fea-

tures that are prominent for both the STRFE and STRFF , depending on the contribution

of each to the total power. The value in the lower right corner of each STRFE and STRFF

indicates its estimated contribution to the overall STRFC of that neuron, as captured by

the values of ∆PE and 1−∆PE . Apart from the center frequency of the STRFs, we found

no obvious relationship between the shapes of the STRFE and STRFF .

The left column of Figure 3.7 shows a selection of neurons characterized by the large

contribution of envelope features to their overall STRFC , and hence the close similarity

between their STRFC and the STRFE. Figure 3.7(A) is a classic example of a broadband

offset unit, which preferentially responds to the offset of a stimulus over a wide frequency

range. The broad tuning of this unit explains the weak contribution of the STRFF because

integrating from a large number of cochlear channels results in a complex waveform that

is weakly correlated with any particular channel. Figure 3.7(B) illustrates an example of

a spectrotemporally rich STRF with a similar STRFC . The STRFF here is rather simple,

completely lacking the inhibitory fields of the STRFE. Finally, Figure 3.7(C) depicts an
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Figure 3.7: Examples of STRFs, with gradually increasing contributions of fine structure

(from 5 to 40%). Each STRF triplet in each row corresponds to the STRFE , STRFF ,

and STRFC derived for one neuron. An estimate of the contributions of STRFE and

STRFF to the total power of the STRFC is indicated in each panel. Each triplet is

individually scaled to span the full range of colors in the color map. The fine-structure

characteristics of the cells shown in this figure are as follows: (A) λ: 3.9 spikes/sec, σ:

10 ms, α: 0.16, ∆PE : 94%; (B) λ: 10.7 spikes/sec, σ: 10 ms, α: 0.07, ∆PE : 92%; (C)

λ: 27.5 spikes/sec, σ: 1 ms, α: 0.01, ∆PE : 91%; (D) λ: 8.84 spikes/sec, σ: 4 ms, α: 0.3,

∆PE : 88%; (E) λ: 10.3 spikes/sec, σ: 1 ms, α: 0.05, ∆PE : 74%; (F) λ: 12.8 spikes/sec,

σ: 1 ms, α: 0.03, ∆PE : 61%.

example of a high-frequency cell, with a simple excitatory field at about 8 kHz. The

STRFE shares very similar features with the STRFF , with the exception of the much

faster temporal dynamics in the latter. The periodic structure of the STRFF is a result

of the fact that the TORC carrier tones near 8 kHz are approximately equally separated

within the narrow bandwidth of the STRFE, hence creating a pseudo-periodic carrier

waveform whose autocorrelation is also periodic.

The units depicted in the right column of Figure 3.7 are highly influenced by the fine-

structure features, because they all exhibit a relatively high contribution of the STRFF

to the overall response (i.e., lower ∆PE values). Figure 3.7(D) illustrates an example of

change in temporal dynamics in response to the stimulus fine structure. The STRFF of

this unit shares the excitatory field with the envelope-based STRFE at about 500 Hz,
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but its temporal extent is much more narrow, and lacks any inhibitory surround. The

example in Figure 3.7(E) illustrates a unit with very rapid temporal selectivity for the

STRFF . Finally, Figure 3.7(F) is a striking example of the independence of the fast and

slow temporal features in cortical STRFs. The STRFE of this unit exhibits two excitatory

fields surrounding an inhibitory region near the best frequency (BF) at 1 kHz. However,

its corresponding STRFF indicates a specific selectivity to particularly fast oscillatory

temporal patterns (at about 150 – 200 Hz). This selectivity is reflected in the consecutive

excitatory and inhibitory fields in the STRFF (about 2 kHz). In turn, this pattern strongly

dominates the STRFC . Note, however, that despite the similarity of the STRFF shapes of

the different neurons in Figure 3.7(E,F), their corresponding STRFEs are very different,

demonstrating again the independence of these two sources of information processing.

Relating the two functions

We examined the response fields that emerge when taking into account neuronal responses

to the envelope alone (STRFE), fine structure alone (STRFF ), or the combined features

(STRFC). These STRFs (Figure 3.8(A)) reveal the differential spectrotemporal selectivity

that cortical cells exhibit to these two sources of information in the acoustic stimulus, as we

will discuss below. Figure 3.8(A) illustrates an example of an STRF triplet derived from

the responses of one neuron. To demonstrate the relationship between these three STRF

descriptions, we computed the proportion of the power contributed to the STRFC by the

envelope and fine-structure sources. The two-dimensional Fourier transforms of all three

STRFs of this neuron are shown in Figure 3.8(A). The black box delimits the energy region

spanned by the TORC envelopes. By construction, the envelope-based STRFE is defined

only over the range ΛE , and thus contains no energy outside this area. In contrast, the
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Figure 3.8: Example of an STRF triplet of a neuron and its significance. (A) The three

STRFs (STRFE , STRFF , and STRFC) of a neuron, depicted both in the time-frequency

and Fourier domains. The black box delimiting a subregion of the Fourier domain marks

the range of spectrotemporal modulations spanned by the TORC stimuli (area ΛE).

The fine-structure characteristics of the cell shown in this figure are as follows: λ: 17.8

spikes/sec, σ: 3.5 ms, α: 0.02, ∆PE : 80%. (B) Estimating the contributions of the

envelope and fine structure to reconstruct the STRFC . (C) Top, Distribution of the

correlation coefficient relating the STRFC to its prediction using ∆PE (Equation 3.7).

Bottom, Distribution of values of ∆PE observed in our data set. (D) Scatter plot of

∆PE variations as a function of breadth of tuning of the STRFE . The solid curve is the

best exponential fit to the means of the data within ±3.5% around each ∆PE . The mean

points are shown as asterisks.

fine-structure spectrograms include both coarse and fine temporal and spectral patterns,

and thus the energy content of the STRFF spreads over a wider range of spectral and

temporal modulations. ∆PE is computed from this representation as the ratio of the

power within the box to the total power. For this neuron, ∆PE = 0.8, which results in a

predicted STRFC (Figure 3.8(B)) that strongly resembles the measured STRFC (Figure

3.8(A). Such resemblance has been observed for most units that exhibited highly precise

responses, and for which we successfully derived an STRFF (about 70% of units). This
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result supports the notion that the linear component of responses in A1 is very robust

and strongly captured by the STRF descriptors. Figure 3.8(C) shows the distribution

of correlation coefficients between the STRFC and the linearly predicted complete STRF

derived from all units. The distribution indicates a high degree of correlation, with mean

coefficient of +0.83 confirming the high degree of linearity in A1 responses, and thus

suggesting an independence of the expression of envelope and fine structure in cortical

responses. The range of values of ∆PE found in all units is shown in Figure 3.8(C). This

distribution is biased toward higher values of ∆PE , indicating that the majority of units

are driven primarily by their responses to time-varying spectral envelopes. This result

is consistent with the accepted notion that A1 is particularly sensitive to slowly varying

modulation patterns [49, 56]. Nevertheless, over half of all cells exhibit a significant

contribution (≤25%) to their STRFC from the fine-structure modulations, indicating that

regular regular envelope-based STRF measurements are insufficient to capture all relevant

spectrotemporal features of their response fields.

Responses to harmonic complexes

In 117 units, we recorded cortical responses using harmonic TORCs(also called H-TORCs)

as well as regular TORCs. Because of their regular structure, harmonic TORCs evoke pe-

riodic phase-locked responses that reflect the fundamental frequency of the stimulus car-

rier. Therefore, it is particularly easy to discern visually and computationally the degree

of neuronal locking to fine temporal structure of the stimulus. For instance, one simple

indicator of locking to the fine structure is the prominence of the Fourier coefficient at

the fundamental frequency, computed from the Fourier transform of the average PSTH of

all harmonic TORC responses. Recall that taking the average PSTH eliminates locking
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Figure 3.9: Harmonic TORC responses. (A) Fourier transform of PSTHs of three

neurons. Each neuron was tested with a different harmonic series, as indicated by the

fundamental frequencies marked by the red arrows. All three neurons exhibit noticeably

salient peaks at the fundamental component, and some of the upper harmonics. (B,C)

STRFEs estimated using regular TORCs (left) and H-TORCs (right) for different neu-

rons. The STRFE pairs are very similar, with correlation coefficients of +0.92 and +0.91.

The fine-structure characteristics of the cells shown in (B) and (C) are as follows: (B)

λ: 45.6 spikes/sec, σ: 3 ms, α: 0.2, ∆PE : 93%; (C) λ: 20.3 spikes/sec, σ: 8.5 ms, α:

0.01, ∆PE : 90%.

to the TORC envelopes, because these are uncorrelated across different TORCs. Figure

3.9(A) shows examples of this spectral analysis from 3 units. The red arrow points to the

peak corresponding to the spectral component (Fourier coefficient) at the fundamental

frequency used in the stimulus. All 3 units have strong locking to the harmonic funda-

mental frequency, up to 200 Hz. Of the 117 neurons tested, approximately half displayed

noticeable locking to their harmonic fundamental frequency (over the range 25 – 200 Hz).

This finding is remarkable for A1 units that are generally incapable of following sustained

temporal modulations beyond 20 Hz.

We exploited the fact that the harmonic TORCs and regular TORCs stimuli share
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the same envelope structure to extract and compare their envelope-based STRFEs. The

goal of such a comparison is to determine whether cortical processing of the envelope

is affected by the exact nature of the fine structure of the stimulus. Figure 3.9(B,C)

demonstrates that the STRFEs derived from either type of TORC are very similar for

both units. Such similarity has been observed for all units for which we recorded a full

set of TORCs and H-TORCs to derive a pair of STRFEs using both types of stimuli.

In all these cases, comparing the STRFE obtained from TORCs and harmonic TORCs

indicates a high degree of correlation between the two, with all correlation coefficients

greater than +0.5, and mean +0.75. This finding strongly supports the notion that the

cortical representation and processing of the envelope and the carrier do not seem to

influence each other substantially.

We will next explore the hypothesis that the envelope responses play a modulatory

role for the expression of the fast fine-structure responses. Finally, note that it is not

possible to obtain an STRFF from H-TORC responses because all fine-structure patterns

are at the same fundamental frequency.

Prediction of A1 responses

To illustrate directly the contribution of each of the STRFE, STRFC , and STRFF to the

description of the unit responses, we compared the actual responses to the TORC stimuli

to those predicted using the STRFs. This is a common approach used previously to

validate the linearity assumption underlying the definition and computation of the STRF

[49, 90, 138]. We expected that the STRFE would predict a smoothed version of the PSTH

of TORC responses, whereas the STRFC would predict a more detailed waveform that

includes the fine structure. Figure 3.10 illustrates plots of the response of a cortical unit
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Figure 3.10: Comparison of actual and predicted responses to 48 Hz H-TORCs. Each

plot illustrates a 250ms period histogram of the responses. Responses (blue) and predic-

tions (red) demonstrate the gating of the fine-structure peaks (arrows) by the responses

to the envelope (dashed line).

to H-TORCs along with the prediction of this response using the STRFE and STRFC .

The arrows mark the anticipated locations of the fine-structure peaks because the carrier

tones are multiples of a 48 Hz fundamental. As expected, the predictions demonstrate that

the envelope waveform effectively gates or modulates the expression of the fine-structure

peaks. Thus, when the predicted response to the envelope is small, the fine structure

diminishes; when the response to the envelope is large, the peaks are well expressed in the

PSTH.

3.3 Neural mechanisms

Why do dynamics of cortical responses differ from those observed in the thalamic in-

puts? Specifically, why do repetitive stimuli fail to elicit synchronized responses in A1

much beyond 20 Hz, a decade lower than typically found in the MGB? Such a significant

slowdown is apparently not caused by simple global low-pass filtering of thalamic inputs
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because cortical cells are transiently still able to encode faithfully the rapid fine structure

of the stimuli. Two potential mechanisms are examined here, both known to be operative

at the thalamocortical synapses and input layers of A1.

3.3.1 Synaptic dynamics

The first mechanism is the depressive character of the excitatory thalamocortical synapses.

When subjected to continuous or rapid stimulation, these synapses become temporarily

depressed/weakened as the supply of transmitter is exhausted. If the stimulus (thalamic

input) is transiently turned off or reduced, the synapse can recover its strength in time

for the next input. The potential rate at which the recipient cortical cell can respond to

its fluctuating thalamic input depends critically on the dynamics of this recovery phase.

Computational models of synaptic dynamics are readily available in the literature

[26, 29, 34, 139] and used to simulate responses in many cortical modalities including

the auditory and visual cortices. They model well known experimental and theoretical

findings that cortical responses phase-lock well up to 15–20 Hz and are generally incapable

of following much more rapid sustained periodic stimuli [56, 78, 90, 111, 130]. For instance,

model responses diminish in amplitude gradually as the input pulse rate increases beyond

15 Hz. At lower rates (<2 Hz), the onset response to each input pulse becomes highly

accentuated, and simultaneously, the response to the body of the pulse becomes relatively

suppressed (upper panel of Figure 3.11(A)). Nonetheless, responses of depressing synapses

maintain the fast carrier of the stimulation, even as the overall response level drops. Using

a slowly modulated stimulus, the response -while following the slow envelope dynamics in

the input-, occurs with a pattern dictated by the fast carrier. In fact, the carrier patterns

are particularly prominent at the onsets of the modulation pulses, and hence any spikes
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Figure 3.11: Modelling dynamic synapse mechanisms. (A) Dynamic synapse model in-

put (presynaptic stimulus) and output (postsynaptic responses) to various modulations

of a 200 Hz click train. Each row corresponds to the model responses to an unmodu-

lated 200 Hz click train, 5-Hz-modulated click train, and TORC-modulated click train,

respectively. The dashed line across the postsynaptic output panels represents the fir-

ing threshold. The simulation results of this figure are based on a model by Tosdyks

et al. [139]. (B)Transfer function of the single dynamic synapse model in response to

click-train stimuli.

that might be initiated by these onsets would likely reflect the timing of these peaks

(Figure 3.11(A), middle and lower panels).

Such a scheme amounts to a net input-output transfer function with a band-passed

shaped (Figure 3.11(B)), even though the dynamics of the model are inherently nonlin-

ear. These nonlinear mechanisms guarantee the co-existence of slow and fast response

patterns. Thus, when the (intracellular) response to the envelope is high, the fine struc-

ture associated with it rises and hence may exceed the spiking threshold causing precisely

phase-locked action potentials to occur. Therefore, the ability of the model to respond to

the fine structure is contingent on its ability to respond to the slow envelope, as they are

the ones who gate the expression of the fine-structure peaks by allowing the synapses to

“recover”.
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3.3.2 Cortical circuitry

Depressing thalamocortical synapses are only one part of a complex cortical circuitry

that involves co-activated excitatory and inhibitory influences that impinge on thalamo-

recipient cortical cells. In fact, it has been postulated that such interactions, coupled

with slow NMDA synapses, are themselves responsible for endowing the cortex with its

characteristic dynamics and temporal tuning [82, 92, 106]. The question therefore arises as

to whether a simple model circuit of an excitatory thalamocortical input and a concurrent

slower, intra-cortical, feedforward inhibitory input could give rise to the type of dynamics

observed in the cortex.

We know from physiological evidence that strong, feedforward, slightly delayed,

and longer-lasting inhibition arrives after the onset of a persistent excitatory input. This

inhibition reduces or suppresses the response, thus giving rise to the commonly seen phasic

response at the onset of a stimulus. By slowly modulating the input strength (<20 Hz),

one can alter the relative phase of the inhibition and excitation, and hence reduce the

mutual cancellation and increase the response. As the modulation rate is speeded up, it

induces sustained inhibition that attenuates the response again (Figure 3.12(A)).

Clearly, both synaptic depression and cortical circuitry can both individually act as

a plausible neural mechanism that could explain the temporal paradox observed in A1.

These two mechanisms do not have to be mutually exclusive, and can co-exist together.

Regardless of whether they act individually or together, they give rise to a net transfer

function with at a tuning around 5–15Hz (Figure 3.12(B)). The function has two main

features: (1) a band-pass shape, which captures the tuning observed in cortical responses,

as well as the low responsiveness to flat un-modulated stimuli; and (2) while tuned to a

particular modulation range, it extends to much faster dynamics, explaining the presence
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Figure 3.12: Modelling mechanisms of cortical interactions. (A) Schematic of cortical

interactions between fast excitatory input (possibly thalamic input), and slow cortico-

cortical inhibition. (B) Transfer function of the excitatory/ inhibitory cortical circuit

with static weights, as well as the individual excitatory and inhibitory components (He

and Hi).

of precise timing in sustained cortical responses.

3.3.3 Emergence of cortical STRFs

Although synaptic depression and feedforward inhibition have been implicated and mod-

elled to varying degrees at several sites along pre-cortical auditory pathways [105, 114],

they are ubiquitous in all sensory cortices. This may explain the significant (order of mag-

nitude) mismatch between the dynamics of the thalamus (medial and lateral geniculate

nucleus) and cortex. It is therefore quite likely that the specialized processing of the spec-

trotemporal envelopes, as parameterized by the (envelope-based) STRFE, is an emergent

property exclusive to the cortex. In this new light, the STRFE and STRFF can be viewed

as representing two distinct sources of information processing. The STRFE reflects the

explicit cortical extraction and processing of the stimulus spectrotemporal envelope and

the information it conveys. In contrast, the precise spiking (phase-locked to the input fine

structure) represents temporal dynamics inherited from pre-cortical stages [52, 94]; thus,
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the STRFF measured from these precise firings provides a window to the spectrotempo-

ral nature of the thalamic inputs to the cortex. The different origins of the STRFE and

STRFF explain the apparent independence between their shapes, as shown in Figure 3.7.

Precise, rapid, and sustained spiking is however quite infrequently encountered in

auditory cortical cells, though apparently common among many A1 neurons. Uncovering

fast sustained dynamics in cortical responses requires stimuli that combine both a fine

structure as well as a slowly modulated spectrotemporal envelope. In the absence of a

fine structure, spikes phase-lock to the relatively slow envelopes of the inputs (2–20 Hz),

and hence do not appear precisely timed except at sparsely spaced instants at which the

envelope changes rapidly such as at stimulus onset. Similarly, stimuli with rapid fine struc-

ture but without spectrotemporal modulations (such as a sustained pure or complex tone,

noise, or a fast click train) usually fail to elicit substantial response during their sustained

portions, presumably because of adaptation, synaptic depression, or inhibitory influences

[67, 71, 136]. Therefore, in a sense, the slowly modulated envelopes of acoustic stimuli

gate temporally precise and sustained cortical responses. When the stimulus envelope is

such that the “gate” is open, cortical cells can precisely phase-lock to the stimulus fine

structure up to relatively high rates (>200 Hz). When the gate is closed in the absence

of slow modulations, responses soon cease.

3.4 Functional significance

What is the functional significance and auditory perceptual correlates of precise cortical

responses? Cortical cells respond well to change, manifested as modulated envelopes of

carrier signals. The fine structure plays the important role of carrying these envelopes up

to the cortex, where they are extracted and analyzed. Therefore, it is possible that the
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precise spiking in the cortex reflects a pre-cortical carrier (fine structure), and that it has

certain perceptual correlates such as: (1) the detection of rapid transient events in an oth-

erwise slowly modulated signals such as speech [142], (2) the perception of “repetition” or

“residue” pitch of < 400 Hz [45, 133], and (3) the “roughness” or “texture” of the acoustic

signal (e.g., the continuum between whispered and a pure voiced quality corresponding to

the range from random to periodic fine structure [18, 104, 135]).

Additionally, we ascribed to synaptic depression and cortical circuitry the key in-

novation of the cortex: the creation of STRFEs to analyze and represent the spectrotem-

porally modulated envelopes of acoustic signals. These slow modulations are the main

carrier of information in speech and music. In speech, they reflect movements and shape

of the vocal tract, and consequently the sequence of syllabic segments in the speech stream.

In music, slow modulations reflect the dynamics of bowing and fingering, the timbre of

the instruments, and the rhythm and succession of notes. Analogously, spatiotemporal

modulations in visual images are correlates of changing scenes and moving objects.

Overall, one may conjecture that a key role of cortical processing is in fact analyzing

and representing the spectrotemporally modulated envelope of acoustic signals. These

profiles are indeed the information bearing component of sounds. As we shall see in the

next chapter, a direct correspondence between sound modulation and intelligibility of

speech can be established based solely on the modulation content of the signal. In the

following chapter, we explore the fact that the slow dynamics of cortical processing are

commensurate with time constants associated with auditory streaming, while fast temporal

events are essential for capturing the roughness or texture of acoustic signals and detection

of transient acoustic events. The interplay between these temporal dynamics is in fact at

the basis of what we presume is a cortical role in auditory scene analysis.
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Chapter 4

Speech Intelligibility

Modulation spectra are the main carrier of information in speech and music [55], even-

though not sufficient for sound quality and music appreciation. They are so critical in per-

ceiving sound that stimulations for cochlear implants preserve only the envelope attributes

of sounds. We establish the relationship between sound modulations and intelligibility of

sounds using a computational model of the auditory system. Intelligibility is defined by

the ISO 9921 standard as “a measure of effectiveness of understanding speech” [3]. It

is a critical measure for a wide range of applications such as transmitters design, room

acoustics, hearing aids characterization, etc. However, it is not a physical quantity like

loudness or voltage, making it an abstract percept that would require an objective metric

for evaluating it. In this study, we demonstrate that mapping sound into a spectrotempo-

ral modulation space can accurately predict the intelligibility level of a signal under any
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noise condition. We establish the validity of the algorithm by performing a psychoacoustic

study to correlate human estimates with model predictions.

We start by presenting an algorithm for a new intelligibility metric (the STMI),

and validate its applicability to conditions of white noise and reverberation, by comparing

its estimates to those of already existing intelligibility measures as well as psychoacoustic

human scores. Next, we demonstrate the STMI performance for severe noise conditions

under which existing measures fail, hence establishing the superiority of the suggested

STMI metric. The use of a biologically inspired metric is also valuable in elucidating the

role of the cortical representation of spectrotemporal modulation in the intelligibility and

perception of sounds. The work presented in this chapter has been published in [59].

4.1 Measures of intelligibility

The articulation index (AI) and speech transmission index (STI) are the most widely

available predictors of speech intelligibility up till now [6, 83, 93], and have proven to be

extremely valuable in a wide range of applications ranging from architectural designs to

vocoder characterization [20, 83, 84, 134]. The AI is an intelligibility metric that uses

an estimate of the signal-to-noise ratio in various bands of speech. It has originally been

developed in the late 1940’s, and was later established by the American National Standards

Institute as the speech intelligibility index (SII) ANSI-S3.5 [6]. Its main contribution

is demonstrating the importance of different frequency bands in the speech spectrum.

However, its applicability to various noise types is very limited, since it fails to effectively

account for reverberation or any non-stationary distortion, and hence is rarely applicable

in real-life situations. The STI, on the other hand, is a more realistic intelligibility measure.

It has been developed by Steeneken and Houtgast in the 1970’s at the well-known TNO
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Human Factors Laboratory in the Netherlands. The STI’s main improvement over the AI

is the attempt to include distortions in the time domain, by evaluating the modulation-

reduction in speech-like sounds. The STI uses modulated noise sounds as test signals to

measure the reduction in modulation depth across a test channel, and maps it to loss of

intelligibility. The Measurement of STI is defined by the International Electrotechnical

Commission standard IEC 60268-16 [2].

In an effort to understand the underlying biological mechanisms that render such

intelligibility measures meaningful, and how noise in general compromises the perception

of speech and other complex dynamic signals, we want to employ a computational model

directly relating our knowledge of the biology of hearing to the percepts of speech intelligi-

bility. We use the model described in chapter 2, based on the neural evidence presented in

chapter 3 as well as psychoacoustical measurements of human spectrotemporal modulation

transfer functions (MTF) [31, 53]. Based on the premise that faithful representation of

these modulations is critical for perception of sound [43, 53], we derive a novel intelligibility

index, the SpectroTemporal Modulation Index (STMI), which quantifies the degradation

in the encoding of spectral and temporal modulations due to any noise condition [59].

The STI, as we shall discuss later, is well suited to describe the effects of spectrotemporal

distortions that are separable along the spectral and temporal dimensions, e.g. static noise

(purely spectral) or reverberation (mostly temporal). The STMI, on the other hand, is a

major elaboration on the STI in that it incorporates explicitly the joint spectrotemporal

dimensions of the speech signal. As such, we expect it to be consistent with the STI in

its estimates of speech intelligibility in noise and reverberations, but also be applicable

to cases of joint (or inseparable) spectrotemporal distortions that are unsuitable for STI

measurements, as with certain kinds of severe nonlinear distortions of speech or phase-
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jitter and amplitude clipping in communication channels. Finally, like the STI, the STMI

effectively applies specific weighting functions on the signal spectrum and its modulations;

these assumptions arise naturally from the properties of the auditory model and hence

can now be ascribed a biological interpretation.

4.2 Intelligibility of communication channels

This section introduces the use of STMI for intelligibility in communication systems. We

call this variant STMIR (R, for ripples) as shall become clear next. We first define what

the STMIR is, and present an algorithm for its computation. Then, we present STMIR

estimates for intelligibility under conditions of white noise and reverberation, and compare

them to STI predictions.

4.2.1 STMIR procedure

Conceptually, the STMI is a measure of speech integrity as viewed by a model of the

auditory system. In order to characterize intelligibility of a communication system (e.g.,

a recording or transmission channel, a room, or a vocoder), we use the auditory model to

estimate the change in the spectrotemporal modulations that a test signal undergoes. We

use ripples (see Equation 3.1) as test signals, and quantify the difference in the spectrotem-

poral modulation content of clean and noise-contaminated ripples, as analyzed through

the auditory model (Figure 4.1). Ripples are ideal signals to characterize the Modulation

Transfer Function (MTF) of the model, both with and without noise. The MTF is defined

as the collection of responses of the auditory model filters to ripples at all temporal and

spectral modulations. It determines the model’s sensitivity to spectral and temporal mod-

ulations, and reflects how well these input modulations are faithfully transmitted through
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the model.

Based on a clean reference and a noisy target channel (representing the transmission

system under study), we quantify the difference between clean and noisy transfer functions,

and map this distance metric to a direct measure of channel fidelity in transmitting ripple,

and hence speech intelligibility in the system. We choose a Euclidian distance between the

clean transfer function (MTF) and the noisy one (MTF∗). The exact procedure for STMIR

computation is described in algorithm 1, with a reference to the auditory spectrogram and

cortical filter-bank analysis presented in chapter 2. The algorithm starts by measuring

the transfer function of the auditory model sensitivity to all spectrally and temporally

modulated ripples in the range 2-32 (Hz) and 0.25-8 (cycles/octave). The same procedure

is used to measure the transfer function of the noisy channel (MTF∗). The STMIR is then

taken to be the distance between MTF and MTF∗.
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Figure 4.1: Schematic of STMI computation. The clean and noisy speech signals are

given as inputs to the auditory model. Their outputs are normalized by the base signals

as explained in the text. The right panel shows the cortical output of both clean and

noisy inputs. These cortical patterns are then used to compute the template-based STMI.
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♣ Algorithm 1. (STMIR computation)

1. begin

2. computation of clean MTF

3. for ripple pair {α, β}

4. S100%(t, x)← L(1 + 100% sin(2π(ωαt+ Ωβx) + ψ))) (modulated ripple)

5. S0%(t, x)← L(1 + 0% sin(2π(ωαt+ Ωβx) + ψ))) (flat ripple)

6. y100%
α,β (t, x) ← auditory-spectrogram(S100%)

7. y0%
α,β(t, x) ← auditory-spectrogram(S0%)

8. for cortical filter (i, j) (cortical modulation filterbank)

9. ri,jα,β(x; 100%) ←
∫

T

∥

∥yα,β(t, x; 100%) ∗t,x STRF i,j(t, x)
∥

∥dt

10. ri,jα,β(x; 0%) ←
∫

T

∥

∥yα,β(t, x; 0%) ∗t,x STRF i,j(t, x)
∥

∥dt

11. Ri,jα,β(x)← ri,jα,β(x; 100%) − ri,jα,β(x; 0%) (subtract baseline)

12. MTF (x;ωα,Ωβ)← 1
|ŵ|.|Ŵ|

∑

i

∑

j R
i,j
α,β(x)

13. repeat algorithm for noisy MTF ∗

14. STMIR ← 1− ‖MTF −MTF ∗‖2/‖MTF‖2

15. end

The algorithm uses both fully modulated (S100%) and flat (S0%) ripples for MTF cal-

culation. The flat stimulus was used as an estimate of the base level of the signal, and

thus its content is subtracted from the 100% signal, leaving only the modulation content

present above the baseline level. The modulation energy at each cortical filter character-

izes the model’s expected response to the ripple signal. Hence, the STMIR was estimated

as a global measure of the attenuation in the modulation transfer function of the channel.

This eventually translates to a measure of the expected intelligibility of a speech signal
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transmitted through this channel.

Since the STMIR is analogous to the traditional STI (with narrow-band carriers),

we can compare the estimates of the former to those of the STI under distortions of white

gaussian noise and reverberation. These noise conditions are the same distortions for which

the STI has been reported to be a good predictor of intelligibility [84]. STMIR values

were computed from clean and degraded modulation transfer functions (MTF and MTF∗)

using algorithm 1. The results are displayed in Figure 4.2(A) for the reverberant and noisy

conditions. The stationary white noise condition used here were generated by adding to

the original signal a random Gaussian signal whose amplitude is de- fined according to the

signal-to-noise ratio (SNR) level. The reverberation effect were produced by convolving

the signal with Gaussian white noise whose envelope is exponentially decaying with various

time constants.
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Figure 4.2: Effect of combined white noise and reverberation on STMIR and STI.

(A) The STMI values shown in this plot are computed according to algorithm 1 for

noise conditions combining stationary noise and reverberation. (B) The panel shows the

correspondence between the STMIR and STI for the same conditions as in (A).

As expected, the STMIR decreases with increasing noise and reverberation. We also

measure the STI estimates under the same noise conditions, using the method derived by

Steeneken and Houtgast [134]. Although different in details, STMIR and STI measures
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deteriorate similarly under these noise and reverberation conditions, and an approximate

mapping between these two measures can be derived as shown in 4.2(B), exhibiting a very

good correspondence between the two measures.

4.2.2 Modulation Transfer Functions in noise

As the STMIR captures the degradation in modulation content of ripples and its effect on

intelligibility, it is valuable to examine the modulation transfer functions themselves. They

are effectively quantitative descriptions of specific noise effects on particular modulation

parameters. These MTFs are the basic computational parameter used to measure the

STMIR value, as detailed in algorithm 1. As different noise conditions are evaluated, the

extent of the degradation is dependent on the rate and scale of the modulations, and

the spectral content of the signal. Figure 4.3 summarizes the effect on all ripples (and

the clean MTF of the auditory model in Figure 4.3(A)) of added white noise, different

levels of reverberation, and combined effects of white noise and reverberation. In each

case, the MTF∗ is plotted as a function of {ωi,Ωj}, i.e., we integrate across the frequency

axis x. It is important to note here that one can apply any arbitrary noise condition and

compute the resulting MTF∗ using exactly the same expressions presented in algorithm

1. These plots illustrate the effects of each of these distortions as follows. For white

noise (Figure 4.3(B)) , the MTF∗ is gradually and equally attenuated over all ripples. For

increasing reverberation (Figure 4.3(C)) , higher rate ripples are more severely attenuated

than lower rates. Both these trends are seen in Figure 4.3(D) for the combined noise and

reverberation conditions. Note that the “random” weak patterns seen in Figure 4.3(D)

reflect the random noise structure in a given trial, and hence are variable over different

trials.

61



0.1

0.08

0.06

0.04

0.02

rate (Hz)

sc
al

e 
(c

/o
)

-32-16 -8 -4 -2 2 4 8 16 32
0.25

1.00

4.00

0.50

2.00

8.00

-16 -4 4 16
0.25

1.00

4.00

t = 0.05 sec

-16 -4 4 16

t = 0.1 sec

0.25

1.00

4.00

-16 -4 4 16
0.25

1.00

4.00

t = 0.2 sec

-16 -4 4 16
0.25

1.00

4.00

t = 0.5 sec
0.1

0.05

MTF of auditory model

White noise

Reverberation

White noise & reverberation

-16 -4 4 16
0.25

1.00

4.00

S/N = 40 dB

-16 -4 4 16
0.25

1.00

4.00

S/N = 10.2 dB

-16 -4 4 16
0.25

1.00

4.00

S/N = 1.2 dB

-16 -4 4 16
0.25

1.00

4.00

S/N = -9.1 dB

0.1

0.05

-16 -4 4 16
0.25

1.00

4.00

S/N=-9.1dB / t = 0.05s

-16 -4 4 16
0.25

1.00

4.00

S/N=-9.1dB / t = 0.2s

-16 -4 4 16
0.25

1.00

4.00

S/N=10.2dB / t = 0.05s

-16 -4 4 16
0.25

1.00

4.00

S/N=10.2dB / t = 0.2s

0.1

0.05

(B)

(C)

(D)

(A)

Figure 4.3: Effect of white noise and reverberation on the global MTF. (A) The global

(clean) MTF of the auditory model computed from all ripples, summarized by the rate-

scale plot (i.e., collapsing the frequency axis x). (B) The attenuation of the global MTF

(rate-scale plot) with increasing levels of white noise. (C) The attenuation of the global

MTF at higher rates with increasing reverberation. (D) The combined effect on the

global MTF of both additive white noise and reverberation.
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4.3 Intelligibility for noisy speech

In many situations, the communication channel under study is often inaccessible, or we

only have access to a noisy recording that was acquired in some unknown environment.

The applicability of intelligibility metrics such as STMIR is hence impossible for these

cases motivating the need for an intelligibility metric directly applicable to noisy speech

utterances or pre-recorded sentences. The following section describes an STMI variant

called STMIT (T, for templates) which addresses this case. We present the algorithm for

STMIT computation and validate its results by comparison to human scores reported by

subjects in the context of psychoacoustic tests.

4.3.1 STMIT procedure

In this section, we illustrate how the STMI is used to characterize the integrity of the

spectrotemporal modulations of a given speech signal when distorted by various kinds

of noise. We call this intelligibility metric STMIT . Like the STMIR, the STMIT is also

a measure of the integrity of spectrotemporal modulation content of a speech sample

contaminated by noise. The STMIT itself comes in two variants: it can be computed

either with prior access to the original clean signal, or when only a noisy recording is

available. In the first case, we can use the original clean sample as a reference (in a similar

fashion as the clean MTF for STMIR) and follow the procedure shown in 4.1. In the

latter case, we build a database of clean speech templates. This template database acts

as general representation of the modulation content in any “clean” speech, irrespective of

speaker, gender, linguistic material and content, and is hence a reference to which we can

compare any noisy signal. We typically used about 200 sec worth of clean speech taken

from utterances of the TIMIT speech database [1].
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The STMIR is in a way related to the speech-based standard STI, which uses the

clean speech modulations as reference [121]. However, unlike the STI method, the STMIR

is does not have to be limited to a specific clean reference, but uses generic templates of

clean speech without requiring that the clean and degraded speech samples originate from

the same exact tokens (same talker, same linguistic materials). Additionally, the STMI

maintains its advantage over STI and classic intelligibility measures by robustly predicting

sound degradation as result of severe and nonlinear distortions as we shall demonstrate.

The STMIT computation is detailed in algorithm 2. The procedure consists of

processing both the test signal x(t) and clean speech template(s) through the auditory

model to assess their spectrotemporal modulation content. The STMIT is then an estimate

of the degradation of this modulation content between the clean reference and the test

signal. Certain issues with the implementation of the algorithm can be addressed as

follows:

• Analysis frame: The analysis of the noisy signal is performed over different frames

of typically 2 seconds. Since the STMI procedure averages over the time dimension,

we use a frame size that is short enough to sustain a valid stationarity assumption,

but long enough to capture the temporal variability over a range of 1-2Hz. The same

frame length is also used for the clean template(s).

• Frame stack: We use a stack of previously-analyzed frames of test signal (typically

N=5) to compare to the average clean template. The use of a stack of previous frames

is aimed to give robustness to the STMI measure irrespective of the linguistic content

at any particular frame. The choice of a relatively small stack size is however taken

as a compromise between robust estimates and speed of intelligibility results.
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• Signal baseline: Analogous to using a flat ripple in the STMIR procedure, we use

a base signal to adjust the auditory outputs to the overall signal “spectrum”. The

“base” is taken to be a stationary noise signal with a spectrum identical to that of

the long-term average spectrum of the appropriate signal (clean or noisy speech).
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♣ Algorithm 2. (STMIT computation)

1. begin

2. initialize

3. L← length of test signal x(t)

4. τ ← frame size

5. T ← Templates of “clean” speech patterns (over frames of length τ)

6. Γ← Stack to hold N patterns of test signal

7. i← 0

8. do i← i+ 1

9. F (t)← ithnon− overlappingframe : ∀t ∈ [τi, τ(i + 1))

10. F (t)← (F − µF )/σF (normalize signal S)

11. F0(t)← fft−1
[

|S|ej2πΘ
]

(make base signal)

12. yF (t, x)← auditory-spectrogram(F (t))

13. yF0
(t, x)← auditory-spectrogram(F0(t))

14. r(ω,Ω;x)←
∫

‖yF (t, x) ∗t,x STRF (x, t;ω,Ω)‖ dt

15. r0(ω,Ω;x)←
∫

‖yF0
(t, x) ∗t,x STRF (x, t;ω,Ω)‖ dt

16. ri(ω,Ω;x)← r(ω,Ω;x)− r0(ω,Ω;x) (subtract base signal)

17. Γ← ri(ω,Ω;x) (add to test signal stack)

18. X ←∑N
j=1 Γj (average signal stack)

19. STMIT ← 1− ‖T.(X − T )‖2/‖T‖2

20. until i ≤
⌈

L
τ

⌉

21. end
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As the STMI of a channel gradually decreases, speech transmitted through it should

exhibit a concomitant loss of intelligibility that can be experimentally measured as in-

creased phoneme recognition error rates. To relate the STMI values directly to exper-

imental measurements of speech intelligibility, we plot in Figure 4.4(A) the STMIT of

speech tokens (computed from algorithm 2) with increasing additive noise and reverbera-

tion distortions.

STMIT with same speech token

as template

S
T

M
IT

0 0.2 0.4 0.50.30.1
reverberation constant (sec)

40 dB

10.2 dB

-1.2 dB

-9.1 dB

-15.7 dB

1

0.8

0.6

0.4

0.2

0.40.2 0.6 0.8 10

STMIT vs. psychoacoustic scores

100

80

60

40

20

P
h

o
n

em
e 

re
co

g
n

it
io

n
 (

%
)

STMIT

0 0.2 0.4 0.50.30.1

reverberation constant (sec)

40 dB

10.2 dB

-1.2 dB

-9.1 dB

-15.7 dB

100

80

60

40

20

P
h

o
n

em
e 

re
co

g
n

it
io

n
 (

%
)

Psychoacoustic

phoneme recognition

(A) (B) (C)

Figure 4.4: Comparing the effect of combined white noise and reverberation on the

STMIT and speech intelligibility. (A) The STMIT of speech signals distorted by noise

and reverberation. The STMIT is computed according to algorithm 2 using same speech

as template. (B) Experimental measurements of correct phoneme recognition of human

subjects in noisy and reverberant conditions. (C) The STMIT vs. correct percentages

of human psychoacoustic experiments for the noise conditions given in (A) and (B).

4.3.2 Human psychoacoustic testing

Next, we performed a psychoacoustic test of intelligibility with four human subjects for

white noise and reverberation conditions. Individual tests lasted about 3-4 hours, where

the subject was presented with 240 sets of noise-contaminated speech samples. Each

set consisted of five different CVC words (Consonant-Vowel-Consonant) played through

a loudspeaker in an acoustic chamber. The subject was then asked to report all the

phonemes heard through the loudspeaker. Afterwards, we counted the number of correct
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phonemes reported by each subject, and averaged the scores of all subjects for each noise

conditions. Figure 4.4(B) shows the error rates reported by the subjects in the pschyco-

acoustic tests. Figure 4.4(C) illustrates the equivalence between the STMIT estimates

and the percent correct recognition scores found in these psychoacoustic experiments.

The good correspondence between the STMIT and the human scores confirms that the

STMIT is indeed a direct measure of intelligibility of noisy speech under conditions of

combined white noise and reverberation.

As a side observation, one can notice the difference of the slopes of the STMIR

and STMIT estimates in figures 4.2(A) and 4.4(A). Even though they both seem to have

similar trends (drop with increasing reverberation level), the slope of STMIT appears

to be more shallow with reverberation, possibly because of time-averaging of the output

patterns. Additionally, the two measures (STMIR and STMIT ) are conceptually different

(use of ripples transfer function vs. speech tokens), and hence the difference in their

trends. We can empirically account for the difference between these two measures by a

simple expansive sigmoidal function.

4.4 Nonlinear speech distortions

What is the real advantage of the STMI over pre-existing intelligibility metrics? The

STI has been widely and successfully used in speech intelligibility assessments under noise

and reverberant degradation, and has also been adapted for use with speech signals di-

rectly [121]. Therefore, the results described above only demonstrate the correspondence

between the STMI and STI, and hence the validity of the new STMI index. Here, we

compare the performance of the two metrics under more difficult types of degradations:

random phase-jitter and phase-shifts. We also include the results of psychoacoustic exper-
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iments measuring the loss of intelligibility experienced by four subjects listening to words

distorted by these two conditions. All psychoacoustic experiments were conducted exactly

as described earlier in section 4.3.2. The subjects were presented with 160 different dis-

torted words and were then asked to repeat the phonemes heard. Scores of average correct

phonemes reported are presented in figures 4.5(B) and 4.6(B) for the two conditions.

Phase jitter

First, we analyze a noise condition called phase jitter. It is a distortion commonly asso-

ciated with telephone channels and caused by fluctuations of the power supply voltages

[16, 95]. Communication engineers report that channels cannot be defended against such

degradation, but it must be taken into account in the design of the receiver [95]. There-

fore, studying the effect of this distortion on speech intelligibility is critical for improving

the channel and receiver designs.
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Figure 4.5: Effect of phase jitter on STMI and STI. (A) A clean utterance (left panel)

is distorted through a phase jitter channel, with jitter variable α=0.4. The distorted

spectrogram in the right panel illustrates that the time dynamics of the signal are main-

tained while the spectral modulations are strongly affected by this type of noise. (B)

The STMIT and STMIR drop as the jitter α increases; while STI fails to capture the

presence of noise in this channel. Scores of human listeners (black curve) show a good

correspondence to the STMI trends.
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Phase jitter is commonly modelled by the transform:

r(t) = ℜ{s(t)ejΘ(t)} = s(t) cos(Θ(t)) (4.1)

where s(t) is the transmitted signal, r(t) is the received signal, and Θ(t) is the phase jitter

function modelled as a random process uniformly distributed over [0, 2απ] (0 < α < 1).

The jitter effectively destroys the carrier of the speech signal leaving its envelope largely

intact, especially for large values of α. Though the temporal dynamics of the signal are not

distorted, its spectral modulations are greatly affected by the phase jitter (Figure 4.5(A)).

For α = 1, the speech signal becomes a modulated white noise with the same envelope

as the original signal. Figure 4.5(B) illustrates the expected loss of intelligibility as a

function of jitter severity (α) as measured by the STI, STMIR, and STMIT (computed

as the mean of 10 different speech sentences from the TIMIT database). Both STMI

measures deteriorate with increasing jitter α. In contrast, the STI is insensitive to such

distortion, and actually predicts an intelligibility of 100% even at extreme jitter conditions

(α = 1), as shown by the dashed red curve. The failure of the STI can be directly explained

by the fact that phase jitter primarily affects the spectral dimension in speech, and hence

does not affect the modulation amplitude of the narrow-band carriers used in the STI

measurement. The STMI, on the other hand, captures successfully the substantial effect

of jitter on the spectrogram of oriented ripples as well as actual speech, and hence is able

to correctly predict intelligibility loss. The results of human testing confirm this finding,

as shown by the close agreement between human scores and STMI intelligibility estimates

in Figure 4.5(B).
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Phase shift

Next, we analyze the noise condition of inter-channel phase-shift or delay scatter. This

type of channel distortion is a linear phase-shifting of signal frequencies over limited spec-

trum ranges. Specifically, this distortion de-synchronizes frequency channels in the range

400-1900 (Hz) with respect to each other; by applying a simple linear phase shift that

varies from one frequency band to the other. The actual phase shifts are defined by the

function Φ = ωτi, applied over 300 Hz frequency bands, each indexed by i, over the range

400-1900 Hz (i = 1, 2...5), where ω = 2πf is the frequency at which the phase-shift is

applied, and τi is a parameter which controls the slope of the phase function in the ith

band. The effect of the phase-shifting appears as a spectrally jittered signal, but with min-

imal change to the temporal envelope modulation patterns at any given channel (Figure

4.6(A)). The parameter T captures the average time delay between the different frequency

bands, and controls the severity of de-synchronization.

Figure 4.6(B) illustrates the decrease in STMIR and STMIT with increasing delay

scatter (over a range of values T ), consistent with the increasing channel distortion of

the spectrogram of the ripple and speech signals. The STMIT drops faster because of

the specific arbitrary choice of frequency bands and shifts; and the drop (while it always

occurs) is variable in steepness depending on the exact test utterance. As with the previous

phase-jitter distortion, STI measures (noise or speech-based) are expected to be insensitive

to such phase-shift because this distortion does not significantly affect the modulated

envelope of the narrow-band carrier test signals used in standard STI computations, nor

does it affect the envelope modulations of the speech spectrogram. Human intelligibility

tests exhibit the same deterioration as that predicted by the STMI as illustrated in Figure

4.6(B). Our results are comparable to those of Greenberg and Arai [74] who studied the
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Figure 4.6: Effect of linear phase shift on STMI and STI. (A) The input speech signal

(left panel) is distorted by linear phase shifts on different frequency bands. Five frequency

bands (of uniform 300 Hz ranges going from 400 to 1900 Hz) are phase-shifted according

to the vector [τ ,2τ ,-3tau,4τ ,5τ ] (a different phase shift per frequency band) where τ is the

parameter that controls the amount of shift per band. The result is a de-synchronization

of the different frequency bands relative to each other, as shown by the noisy spectrogram

in the right panel. The shift parameter used in this case is τ=0.5 (average time shift across

channels of T ∼= 73ms). (B) The effect of the shift parameter τ (or T) on the STMIR,

STMIT and STI. Since for each value of the shift parameter (τ) different frequency bands

are time-shifted with various amounts relative to each other, the x-axis of the graph gives

an average estimate (T) of the time shifts across the different frequency bands (where T

∼= 146τ(ms)). The black curve shows the intelligibility scores of human listeners tested

with the same phase shift conditions.

intelligibility of a similarly (but not identically) distorted speech and concluded that scores

dropped below 50% only after the channel jitter exceeds 200ms.

4.5 Conclusion

In this chapter, we presented a quantitative assessment of intelligibility based on the

modulation content of signals. The algorithms developed here were based on a biological

foundation relating modulation content to speech intelligibility. While quality of sound

ultimately relies on the exact temporal patterns of a signal, understanding speech, despite

its lack of natural quality relies solely on its modulation components.
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The key findings presented here can be summarized as follows: (1) We have shown a

direct mapping between speech intelligibility and spectrotemporal modulations of speech,

(2) we have defined a new intelligibility metric (STMI) that has proven its robustness

under severe and nonlinear distortions, hence superseding previously available intelligibil-

ity metrics (e.g. the speech transmission index, STI), (3) we have defined a biological

framework explaining the superiority of the STMI, as well as explaining the benefits and

limitations of the STI, and finally, (4) we have refined our understanding of the role of

receptive field patterns in the cortex (particularly STRFEs). Earlier in chapter 3, we

have defined the functional significance of the presence of representations of modulation

envelopes in cortical responses, to the fact that slow modulations are the main carrier of

information in speech. The predominance of such STRFE patterns seems in accord with

the role of cortical circuitry in contributing to sound perception and understanding.

73



Chapter 5

Auditory scene analysis

As the brain takes on the job of representing the world that surrounds us, the auditory

system is responsible for making sense of the world of sound, in a process referred to

as auditory scene analysis. Technically, the term auditory scene analysis refers to the

cognitive task engaging the auditory system in identifying and building auditory objects

from mixtures of sounds present in a complex acoustic environment. In other words,

the auditory system is responsible for identifying how many sounds are present in the

environment, where they are coming from, and what do they mean. The spectrogram

in Figure 5.1 shows a mixture of two sounds: a male speaker uttering the phrase /she

had your dark suit/, when a cello starts playing a note about 750ms into the sentence.

While we know now that the spectrogram in the figure corresponds to these two particular

sounds, the auditory system has no prior knowledge of what the incoming sound mixture
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Figure 5.1: Spectrogram of a sound mixture. A male speaker is uttering the phrase

/she had you dark suit/ while a cello note is being played.

consists of, how many sounds are there and when each sound will begin and end. A

similar challenge is also faced by computational systems trying to mimic the auditory

functionality in sound separation and auditory scene analysis.

When talking about auditory scene analysis, a common term that gets quoted quite

often is the word “stream”. A formal definition of this term was given by Bregman

([21], pg. 10): “Our mental representations of acoustic events can be multi-fold in a way

that a mere word ‘sound’ does not suggest... It is useful to reserve the word ‘stream’

for a perceptual representation, and the phrase ‘acoustic event’ or the word ‘sound’ for a

physical cause”. Hence, we use the term stream to describe an internal representation of

what would be perceived as a distinct auditory object. Our computational strategy aims

to represent an acoustic mixture into various distinct auditory objects following principles

dictated by perceptual grouping and auditory organization.

Typically, there is a distinction in the literature between two perceptual components

of auditory scene analysis: auditory streaming, which refers to the perceptual organization

of sounds in time, and sound separation, which deals with concurrent sound segregation.

While not strictly independent, these two concepts are generally studied separately. On
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the one hand, interest in auditory streaming comes from psychologists and physiologists

studying the neural and cognitive basis of auditory organization. Musicians are also widely

interested in this idea, as melodies tend to exploit the brain’s ability to stream sounds in

time. Baroque melodies for instance tend to introduce multiple streams emanating from

one single instrument, by rapidly switching melodic sequences. On the other hand, studies

of sound separation rise mostly from the artificial intelligence and engineering community.

People interested in computational models of scene analysis are primarily interested in

building intelligent systems that can “hear” (i.e. identify and segregate sound elements).

Such systems, for the most part, are applied as front-end improvements for automatic

speech recognition and speaker identification models.

In this work, we present a modelling scheme of auditory scene analysis based on

principles of cortical sound processing, where we address various components pertinent

to both auditory streaming and sound separation. The chapter starts by a review of the

general principles of auditory perception, as well as an account of the available models

in the literature addressing the scene analysis problem. The following section lays the

basis for our proposed approach by motivating the choice of both unsupervised learning,

and Kalman-based estimation to achieve an adaptive prediction-based system. We then

elaborate on the implementation of this model in the context of a multi-scale multi-rate

cortical scheme. Next, we present a series of simulations addressing both the auditory

streaming problem, as well as speech separation cases; and conclude by a assessment of

some insights into biological auditory scene analysis learned from this model.
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5.1 Perceptual principles

5.1.1 Gestalt principles

The foundation of most work in auditory scene analysis can be traced back to early

work in perceptual psychology from the late 19th century. Originating from work by

Ehrenfels (1890) and Mach (1886), these principles (referred to as Gestalt theory) explain

our psychological, physiological, and behavioral perceptions in their contextual framework,

in accordance with a number of simple principles [21]. Specifically, they address the

binding question in our perception (auditory, visual ...), and how sensory input elements

are combined together to create mental patterns, or sensations of individual objects in the

environment. The German word Gestalt means “pattern” or “shape”, hence the use of

this term in reference to how sensory components are grouped together to create mental

patterns.

Gestalt Principles
Figure 5.2: Gestalt

principles, intuitively

understood in the the

context of visual per-

ception. The principles

shown here are: (a) con-

tinuity, (b) proximity,

(c) similarity, (d) com-

mon fate, (e) closure,

(f) good continuation,

and (g) symmetry (from

Engel and Singer [64]).

Gestalt theories have mostly been explored in visual perception, where they made

an important and lasting contribution to our understanding of the vision problem. Most
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Gestalt principles are in fact easily described in their visual context, as shown in Figure

5.2. Similar principles can also be described in the context of auditory events. Their

application for auditory perception is interpretable in terms of grouping cues used for

combining together auditory elements that belong to a common sound stream or percept.

We elaborate on five of these principles, as they are the most frequently cited as playing

a perceptual role in parsing the auditory scene into individual streams:

1. Proximity: Elements that are close together in time or space tend to group together.

In Figure 5.2(b), the quadruplet sets of individual circles tend to be perceived as

independent sets (the figure contains four sets), since the circles within each block are

closer together than circles from different blocks. In the context of auditory events,

this principle is used to refer to distances between physical acoustic attributes such

as frequency, onset, pitch and loudness. Frequency proximity is a straightforward

illustration of this principle. Frequency separation between sounds affects their

perceptual coherence, leading sounds that are close in frequency to group together

[21].

2. Similarity: Elements that lie closely together group together. The similarity in this

sense refers more to characteristics of the object or element. In case of visual ob-

jects, it includes characteristics such as shape, size, color, texture, value, etc. In

Figure 5.2(c), though all circles are equidistant, those similar in color tend to be

perceived together as belonging to one block. In the context of auditory perception,

this principle refers to acoustic features that cannot be described with a single phys-

ical attribute, such as similarity in timbre [76]. The principles of “similarity” and

“proximity” are hard to distinguish from each other in audition, and do basically

lead to very similar effects. Bregman suggests to reserve the use of the term “similar-
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ity” to cases where it is not possible to describe the physical basis of the dimension

along which two auditory elements are similar, such as similarity in timbre, instead

of proximity in timbre [21].

3. Good Continuation: Elements that maintain a smooth variation in time or space

tend to group together (Figure 5.2(f)). In terms of sound attributes, it refers to the

continuity or flow-in-time of sound originating from a common source. Intuitively,

abrupt changes indicate the appearance of a new source. Grouping of sounds is in

fact enhanced when frequency changes preceding and following interruption by noise

or silence are consistent with each other [21]. In this sense, “good continuation” can

be thought of as the continuous limit of the “proximity” principle.

4. Closure: Elements that form enclosed objects group together (Figure 5.2(e)). This

principle is very much invoked in visual scenes in cases of occlusions, which are

similar to the problem of masking in auditory scenes. The principle of “closure” is

in fact interpreted as an auditory compensation for masking [76], and evokes the

completion of fragmented sound features, as in the case of the continuity illusion.

This phenomenon occurs when a sound is briefly interrupted by a gap of silence.

If the gap is filled by a noise burst, the original sound is perceived as continuous

through the noise distracter. The illusion that the sound continues through the

noise occurs only when the frequency content and timing of the noise coincide such

that it is plausible that the sound would have continued smoothly through the noise

burst. This principle is commonly evoked for speech perception in noisy environment.

Carlyon and colleagues showed two-formant vowels can be easily identified when

alternating the formants in time while filling that gap silences with noise [28].
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5. Common fate: Elements with synchronized similar variability tend to group to-

gether (Figure 5.2(d)). In the auditory context, this principle states that sound

elements with synchronous changes such as common onset, vibrato, etc, fuse to-

gether as emanating from a single source. The main two type of auditory syn-

chronous changes studied in the literature are AM (Amplitude-Modulation) and

FM (Frequency-Modulation) changes [21].

We shall review the acoustic correlates of these principles in the following section. By

translating Gestalt principles into concrete grouping cues, it is possible to give a precise

formulation of their perceptual manifestation and their computational role, and hence

lay the foundation for formulating a model of auditory scene analysis inspired from these

perceptual principles, and guided by their underlying neural mechanisms.

5.1.2 Acoustic correlates

Psychoacoustic studies of auditory streaming have been accumulating evidence on group-

ing cues for many decades now. An exhaustive list of auditory cues known to play an

important role in auditory grouping and streaming of sounds has been compiled by Breg-

man in his “Auditory Scene Analysis” book [21]. Grouping cues are mostly acoustic

correlates of one or more Gestalt principle described above. They determine whether

sound components are to be fused together into a single perceptual stream or segregate

into separate streams. While it is becoming more evident that any sufficiently salient

perceptual difference along any auditory dimension may lead to stream segregation [110],

we review here various factors that are frequently mentioned in the literature for their role

in sound segregation or fusion.
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Figure 5.3: Auditory grouping cues. Frequency proximity: Tones that come close to-

gether in frequency group together. Harmonicity: Frequency channels that are harmon-

ically related fuse together. Onset synchrony: Frequency channels that share a common

onset group together. Timbre: The frequency channels that move up together main-

tain their spectral spacing and hence group together. The other frequency components

exhibit a different timbre quality and hence separate as different streams.

Frequency separation

Frequency separation is one of the most commonly invoked cues when talking about au-

ditory grouping. Sounds that are close together in frequency fuse together (Figure 5.3).

But how close do sound components need to be? A leading theory among experimental

psychologists and psychoacousticians addressing this particular point is peripheral chan-

nelling [110]: Streams are believed to fuse together when their excitation patterns in the

auditory periphery overlap. In other terms, grouping effects are promoted if the frequency

contents of two streams fall into the same cochlear channel. A classic study reviewing the

physical parameters of auditory streaming was performed by van Noorden in the 1970s

[140]. He explored the role of frequency proximity and presentation rate in streaming an

alternating sequence of tones “A” and “B” alternating in a sequence ABAB... As the tone

frequencies were brought closer together below a certain interval, listeners reported hear-

ing one stream instead of two. Van Noorden’s experiments set the ground for most of the

subsequent work in auditory streaming using alternating sounds. Studies have extended
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his findings to other factors which also influence streaming, such as temporal envelopes

and spatial location of sounds [37, 110]. Non-alternating sounds were also used for testing

the role of spectral separation in stream segregation. Hartman and Jonhnson [77] tested

the idea of peripheral channelling by using an interleaved melody paradigm. Psychoacous-

tic tests were performed for melody identification as streams of different melodies were

manipulated into different cochlear channels. As expected, a successful segregation of the

melodies was achieved when the streams were shifted into separate peripheral channels.

Harmonicity

Frequency channels that stand in harmonic relationship to each group together. It is in

fact known that harmonically related (or closely harmonic) complexes fuse together into

a single pitch (Figure 5.3). Based on this principle, complex sounds can be distinguished

based on the relationship between their fundamental frequencies. In a study by Rasch

in 1978 [124], he demonstrated that as the fundamentals of two complex tones depart

from simple harmonic relationship, the complex tones are heard more clearly as distinct

entities. Sound sources are in fact discernible as soon as their F0 difference is detectable,

and particularly in the case when their harmonics are resolved [42]. Frequency channels do

not have to be only harmonically related before they can fuse together. Work by Roberts

and Bregman [126] as well as others has provided evidence of fusion due to regularity in

spectral spacing. This shall be mentioned again in the section on the role of timbre as a

grouping cue.
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Onset/Offset synchrony

Onset and offset synchrony are also major grouping cues. Sound components that start or

end together in time are likely to have originated from the same sound source (Figure 5.3).

Rasch showed that two concurrent tone complexes are perceptually more distinct when

the sounds start at different points in time. An onset asynchrony as small as 10-30ms

increases the perceptual saliency of the tones in a mixture [21, 124], but our ability to

detect the difference in time of arrival of energy across different channels is in fact a little

as 1-2ms [42]. Offset asynchronies appear to also play a similar role as onsets, although

their effects were reportedly less pronounced [42].

AM and FM modulations

Temporal regularities in sound components - in the sense of common fluctuations of

sound both in frequency and amplitude, are important grouping cues ([72] and refer-

ences therein). As sounds are amplitude modulated, the auditory system uses differences

in their amplitude trajectories to distinguish the number of sources present and segregate

the different streams. Early work of von Békésy in the 1960s showed that modulating

tones at rates below 50 Hz helped listeners fuse together those that share a common mod-

ulation. Various studies have later confirmed and extended such finding, as most available

evidence focuses on the role of slower fluctuations [42]. Some studies have attempted to

explore the role of faster variations rates. An interesting study by Grimault and colleagues

[75] has in fact demonstrated a clear role of envelope fluctuations in stream segregation

-in the absence of any spectral or temporal fine structure cues, and seemingly independent

of modulation strength. On the other hand, the role of FM modulations in stream segre-

gation is still ill defined, with highly inconclusive results. FM incoherence is particularly
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hard to distinguish from harmonic mistuning. Nonetheless, there is some evidence that

FM contributes to the prominence of fusion of frequency components particularly in case

of masked vowels, or possibly in the presence of a steady noise background [42].

Sound timbre

Timbre is less frequently mentioned as a possible cue for auditory streaming. It is a mul-

tidimensional percept influenced by spectral shape, envelope shape, and spectral changes

over time [110]. It is now established that the auditory system exploits the regularity of

the spectral ratios of a pattern to fuse sound components together (Figure 5.3). A vi-

brato produces a frequency modulated sound complex, whose partials move up and down

in synchrony with each other, and hence fuse together as a coherent stream. Studies

investigating the timbre cue were mainly interested in addressing the role of peripheral

channelling in stream segregation, which tend to relate the timbre cue with the frequency

proximity. To explore the relevance of timbre regularity, a study by Dannenbring and

Bregman [40] addressed factors inexplicable by the channelling theory. Dannenbring and

Bregman tested streaming effects using a tone-noise pair. The noise was constructed to

be narrowband (about 1.5 semitones bandwidth), and maintaining its bandwidth to less

than one ERB guarantees that it induces similar excitation patterns as a tone, and hence

limiting any effect of peripheral channelling. The study found that segregation was greater

for tone-noise combinations than tone-tone or noise-noise sequences. The separation was

explained by the difference in temporal envelopes of tones and noise, hence leading to a

separation in timbre. A summary of other studies exploring the role of timbre as grouping

cue is reviewed by Moore and Gockel in [110].
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Spatial location

Sounds in natural environments emanate from different spatial locations. As they come

into the ear, localization cues based on sound binaural irregularities can identify the lo-

cation of sound sources. It is reasonable to think that sound elements originating from

a single source would share common spatial cues, and hence would tend to perceptually

group together. Surprisingly, evidence from experimental psychoacoustics hints to a rel-

atively weak role of lateralization in auditory grouping [21, 42]. It should be noted that

quantifying the role of true lateralization and binaural mechanisms while neutralizing other

acoustic grouping cues is quite challenging. Nonetheless, spatial location effects have been

studied under particular testing conditions. Hukin and Darwin have suggested a strong

effect of lateralization in vowel identification when the direction of sound is previously

cued (i.e., attending to sound from a particular direction prior to the test signal) [42].

Yost et al. [149] has also demonstrated a more pronounced role of binaural processing in

“cocktail party” situations when dealing with more than two concurrent sound sources.

Integration across cues

A question that naturally arises from listing the various grouping cues is how do they

compare to each other in terms of importance, and how does the auditory system incorpo-

rate the information provided by each one of them to segregate the different streams in an

auditory scene. Psychoacoustical evidence indicates that grouping is not “all-or-nothing”

[42]. The auditory system appears to gather evidence from all available sound features.

It then chooses the most appropriate ones for segregating streams.
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5.1.3 Top-down effects

Stream formation is a highly context-dependent process, giving rise to a very ambiguous

definition of what a perceptual auditory stream is. In Bregman’s own words, the use of the

word “stream” gives us the flexibility to “load it up with whatever theoretical properties

seem appropriate” [21]. A stream is a “perceptual unit that represents a single happening,”

where a happening can be the sound from a particular source, or even a collection of

different sounds distinct from others in the environment. For example, there is no clear

answer as to whether to call a melody played by an entire orchestra “a stream”, or whether

the particular piano or violin tunes by themselves are what should be defined as “streams”.

The particularity of the human brain is its ability to direct attention to the various sound

sources in the environment, and to select the level of granularity at which to attend to

sounds. The orchestral melody can be considered as a whole; or we can choose to focus

our attention on the specific instrumental tunes, or even to the sounds from the audience.

Naturally, our ability to attend to specific or multiple streams is limited by our brain’s

cognitive capabilities. Actively listening to more than one conversation is very difficult if

not in fact impossible.

The literature reviewing the role of attention in auditory streaming is very diverse

and controversial, especially in formulating theories relating auditory stream formation to

attention. There is no doubt that attentive mechanisms are invoked in auditory streaming

[27, 41]. However, the specific relationship between primitive segregation and auditory

selective attention is not yet resolved. Bregman favors an interpretation of stream segre-

gation mediated by pre-attentive grouping mechanisms [21]. In his book, Bregman pos-

tulates that auditory scene analysis entails two complementary processes: (a) primitive

segregation, which is a bottom-up pre-attentive process that parses a sound mixture on the
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basis of its acoustic properties, and (b) schema-based segregation, which is a top-down pro-

cess that involves learning and memory, and reflects our prior experience and familiarity

with the linguistic material or sound pattern. Primitive mechanisms rely on the general

properties of the sounds, and extract acoustic cues (as described in the previous section)

which we innately use for parsing streams, without relying on any previous experience or

knowledge. Schema-based mechanisms, on the other hand, invoke our specific experiences

and familiarity with sound sources and materials. For instance, contextual expectations

help us fill-in parts of a speech signal if masked or absent. They also help us recognize

our names in a sound mixture much easily than other less familiar sounds.

5.2 Literature review of CASA techniques

Efforts to understand the computational basis of streaming and sound segregation led to a

wide interest in building systems that perform “intelligent processing of sound mixtures”

[37]. The field of experimental auditory scene analysis slowly gave birth to a growing body

of work in computational sound analysis or what is commonly referred to as Computa-

tional Auditory Scene Analysis (CASA). Research in CASA has a strong interdisciplinary

component, as it draws its basis from psychophysical and psychoacoustical theories of

hearing, as well as machine learning and artificial intelligence principles.

Computational models for speech separation started with early work by Parsons

in 1976 [120], who introduced one of the original models of speech separation based on

pitch tracking in time. Attempts to build voice separation systems were followed by

work of Weintraub in the 80s [146], who used the difference in fundamental frequency to

separate two simultaneous voices. His system was based on coincidence detection (à la

Licklider [97]) as a measure of periodicity in different frequency bands; augmented by a
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Markov model for tracking the states of different speakers as they progress between voiced,

unvoiced, silent and transitional states. The outcome of the model allowed a tracking a

recovery of individual spectra of two simultaneous voices.

Attempts to give a more biological foundation to computational auditory scene anal-

ysis needed to address the various dimensions along which the biological system operates.

Efforts in this direction were launched with work of Brown and Cooke [23, 24, 38] who

introduced the notion of auditory maps. Their systems perform segregation in a purely

data-driven manner. Incoming sounds are processed using an auditory “font-end”, whose

output is segmented into atomic units. The acoustic elements are grouped into feature

maps that organize the auditory cues along dimensions of harmonicity, common onset,

continuity, modulation, etc. These are subsequently used to construct symbolic descrip-

tions of the auditory scene. The pitch values, onset and offset times, etc, are used as

grouping cues to cohere a group of auditory elements into their corresponding streams.

While the approach undertaken by Brown and Cooke tries to employ some biolog-

ical realism into their computational models, schema-related information is intrinsically

lacking in their strategy; an argument that was at the core of Ellis’s prediction-driven

CASA system [63]. His approach sought to reconcile the observed acoustic features with

the predictions of an internal model. At any time instant, adjustment of the model’s pre-

dictions are made based on its previous expectations from prior instants combined with

evidence from external observations. The predictions are based on a set of pre-defined ab-

stract elements: noise clouds, transient clicks, and wefts (representing wide-band periodic

segments), and the input signal is mapped into elements based on this sound vocabulary.

Recently, neural network models have also been sought to construct models of au-

ditory function. The theory of oscillatory networks was a particularly attractive one for
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scene analysis, as different populations of neural oscillators can be used to represent per-

ceptual streams. Work by Brown and Cooke [25], and Wang and Brown [143] presented a

model of stream segregation based on oscillatory networks, where synchronized oscillators

are interpreted as belonging to a common stream. Synchrony of individual oscillators is

initiated by regularity in the sound’s spectrotemporal elements, and hence lateral connec-

tions between oscillators are implemented to encode harmonicity, proximity in time and

frequency.

On the other side of the spectrum, many studies have attempted to solve the problem

of sound separation from a non-biological perspective. Systems built in this spirit are

free to expand on any cues with no constraints limiting their use on grounds of biological

plausibility. They are, however, limited by their own mathematical construction or model-

based approaches. Such is the case for the widely used Blind Source Separation (BBS)

techniques which rely on the statistical independence of the sources in the mixture [15].

As its name indicates, blind source separation attempts to separate a mixture of signals

into their individual sources, with no prior knowledge about the source statistics in general

(hence the term blind). BBS techniques are quite successful, but mostly when information

from multiple sensors is available and statistical independence or prior statistical regularity

is satisfied [150]. However, stream segregation continues to be a challenge for strictly

statistical techniques like BBS systems, particularly in the monaural case.

If any criticism is to be addressed to these currently available systems, it would most

likely be that their performance on the general task is rather poor. Most systems are,

however, to be credited for exploring important aspects of sound analysis, and examining

the role of many perceptual principles for the organization of sound. While their results

apply reasonably well to specific tasks set by the investigators, the applicability of their
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approaches to solving a general sound separation problem is quite limited, and the gap

between CASA systems and real audition is still considerably wide. These systems fall

short in applying successful information integration strategies to consolidate information

extracted from the acoustic signal, with contextual facts from the environment. A major

concern in most systems in fact deals with which patterns are to be extracted, and how

successful their cue-detection schemes operate. While these models are very useful for

a further understanding of sound organization principles, they lack a generalized scheme

for acoustic pattern integration. A system such as that presented by Weintraub [146] for

pitch extraction and tracking is not sufficient nor practical for building a robust sound

separation system. Other systems trying to formulate a more general approach such as that

undertaken by Ellis are constrained by a pre-defined classification of sounds into specific

elements (noise, transients, etc) [37, 63]. Such limitation does not generally lead to an

accurate characterization of acoustic events, hence resulting in very ambiguous outcomes.

Along with “general-purpose” models, more specific approaches have also been pro-

posed which do not specifically tackle auditory scene analysis as a comprehensive scheme

to building intelligent systems that can hear. Mostly relevant to our current study are

models addressing the question of auditory streaming or sequential stream segregation.

The earliest computational account for auditory streaming was presented in a model by

Beauvois and Meddis [12]. This model attempts to give an explanation of streaming in

terms of peripheral channeling. Streaming effects are simulated based on frequency differ-

ences and presentation rates of alternating pure tones, where frequency channels compete

with each other to result in one dominant foreground stream. An elaboration of this model

has been presented by McCabe and Denham [103], who extended it from a two-channel to

a multi-channel model. This new approach also introduced inhibitory feedback loops that
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enabled the model to allow for interactions between current and past response patterns

in different frequency channels. The model was successfully applied to simulate various

streaming effects such as alternating tone sequences, as well as the interaction between

background and foreground perceptions, and the temporal buildup of streaming percep-

tion. Nonetheless, both models are limited by their dependence on peripheral channelling

to account for streaming effects, and cannot easily generalize to general sound segregation

situations, such as concurrent speech. The models are also likely to fail in simulating

streaming effects that rely on segregation based on more complex grouping cues, such

as spectral patterns or timbre features. A case of streaming ripple sequences (as will be

shown in the results section of this chapter) is a particularly detrimental test that relies

on streaming broadband noise sequences that only vary in their spectral regularity. Any

model that relies solely on peripheral channelling or frequency separation is bound to fail

in accounting for such effect as both sounds (the two ripples to be streamed) are in effect

broadband, noise-like stimuli, that excite the same frequency regions along the tonotopic

axis.

5.3 Adaptive ASA architecture

Going back to the perceptual principles of sound organization, we have described a set of

acoustic cues that give the auditory system evidence from the environment as to which

elements should group together, and which should separate. The challenge that follows

is how to actually organize these features together so that they can lead to perceptually

meaningful streams. If we adhere to a modelling approach that does not rely on any

dictionaries of linguistic knowledge or databases of familiar sounds, our only hope for

achieving this goal is to rely on a robust representation of acoustic features that would
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expose regularities in sound patterns. This regularity reflects the constraints imposed

on acoustic events by the environment, as well as internal expectations arising from our

internal model of the world. In this work, we propose a model based on interaction between

this “higher-level” internal representation of the world and unsupervised sensory feature

classification, all governed by principles of cortical sound processing.

5.3.1 Unsupervised learning

Based on a set of feature maps representing various auditory cues described above, the

brain has to decide which sound elements cohere together into independent streams. In

the absence of any external supervision or prior information about the sound mixture

itself, the auditory system has to self-organize the sound elements into streams in an

unsupervised (or self-supervised) fashion. Unsupervised techniques are neural network

learning approaches that are notably biologically plausible. The biological system does

not in general have prior knowledge on what kind of input will be impinging on its sensory

organs, except for possible cases of expectation or context. And even in those cases, the

specifics of the external input are still unknown to the system. In building a computational

model mimicking the biological stream segregation process, the challenge lies in finding

natural groupings for clustering the different patterns in the input.

The literature of unsupervised learning is quite rich, and involves a wide spectrum

of techniques ranging from feature extraction methods that extract statistical regularities

directly from the input, to density estimation that builds parameterized statistical models

of the input. Somewhere in the middle of this spectrum lies competitive learning as an

approach whose goal is to distribute a number of vectors in a possibly high-dimensional

space. It can be implemented based solely on density estimation or feature extraction, but
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is most often formulated as a combination of the two methods. Competitive learning is

considered by many to be “a strong candidate model of cortical learning” [13], which makes

it very appealing for the task at hand. Techniques used for competitive learning involve

classifiers which for the most part operate on the basis of spatial or pattern regularity, to

find natural partitions of the input’s high-dimensional space. While quite successful, most

available techniques rely only on the low order statistics of their inputs. They handle the

inputs as a set of independent identically distributed (iid) samples, then implement some

form of Hebbian learning or probabilistic maximum likelihood estimation [17]. In doing

so, they fail to take into account any smoothness or coherence constraints in the signal

except in cases of hand-crafted architectures.

Hearing, however, is a dynamic process which tracks the changes in sound patterns

as they evolve in time. The temporal continuity in sound streams is a major clue as

to whether they come from a common source or not. Sound production (be it speech,

music, nature, etc ...) obeys natural laws that dictate a certain degree of smoothness

in the evolution of acoustic events in time. If a spectral pattern exhibits a sudden or

unexpected discontinuity, it is highly likely to have been generated by a different sound

source. Following these considerations, it is more appropriate to adopt an adaptive form of

competitive learning that takes into account these smoothness constraints, and can build

expectations of future responses based on inferences from the past and present.

5.3.2 Adaptive competitive learning

Sound mixtures entering the ear reflect a temporal regularity imposed by environmental

constraints and laws of nature. The role of the auditory system then is to make sense of

these sounds, which in effect translates to estimating and predicting an internal (hidden)
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state of the observed dynamical system (i.e, estimating the events in the environment that

produce the sounds). Accurate recognition of the sound streams present in the mixture is

synonymous to a correct estimation of the parameters of the model/environment giving

rise to the mixture. Such approach conforms with the principles of statistical inference

[85]. In effect, hidden (or “latent”) variable models are techniques that attempt to explain

observed data by some underlying hidden factors that we only have indirect information

about. Such models are well suited for incorporating a representation of the environmental

constraints on sound streams, and for adaptive prediction of the model’s probabilistic

representation of the observed environment. Such predictive approaches operate according

to the following scheme: sensory information provides evidence to the system, which would

either justify or cause it to change its internal representation of the world and the state

of objects in it.

The model we consider here consists of a set of random processes Z(t) symbolizing

the auditory objects (or streams) present in the scene, which are unknown a priori. The

set of K possible streams in the environment is represented by the vector set: ~Z =

{

Z1

,Z2

, · · · ,ZK
}

, where each vector Zα

(t) is an internal (abstract) representation of

stream α at time t. The sound mixture (or observed inputs) is represented by a set

of feature vectors: ~I =
{

I
1

, I
2

, · · · , IL
}

, where each vector I
β

(t) represents an acoustic

cue (pitch, onset, ...) derived from the spectrum of the sound at time instant t. These

features are extracted directly from the sound mixture, and depict a variety of possible

auditory grouping cues. Details about the representation of these features and how they

are extracted will be reviewed in the following section. For the time being, we need

to note that each feature I
β

(t) consists, in principle, of patterns belonging to only one

auditory object (Figure 5.4); in other words, the pre-processing stages are responsible for
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segregating the sound elements into clean frames or slices belonging to a unique auditory

object. As a concrete example, I
β

(t) may be derived from a spectrum consisting of the

harmonic patterns of a specific fundamental frequency F0, which makes them features

that fuse together as belonging to the same stream.

1 2
. . .

t

Internal model

Adaptive

unsupervised learning

K

Auditory scene

Figure 5.4: Internal world model and problem of estimation and clustering. At each

time instant t, a “slice” the acoustic spectrogram is mapped into a set of feature vectors

~I(t). These features are used as learning patterns to be clustered into separate clusters

Zα

(t) representing an internal representation of the auditory scene.

Our goal is twofold: (1) to infer the distribution of patterns {1, · · · , L} into a set of

K streams at each time instant t (clustering stage), and (2) to estimate the state of each

cluster α ∈ {1, · · · , L} given a newly observed input vector I
β

(estimation stage). The

first goal of inferring the segregation of sound patterns to different “internally-represented”

streams evokes the involvement of the brain in self-organizing the incoming sound mixtures

into their corresponding perceptual units. Our second objective accredits the cortex for

a role it has been attributed by many cognitive neuroscientists, that of learning and

maintaining an internal model of the external world [10]. We shall address the latter

estimation goal first and then take up the inference problem.
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The estimation problem

The problem of estimating the state of cluster α given an observation vector I
β

can be

addressed only given a formulation of the relationship between the observation and the

internal model. We adopt a linear mapping between the internal state vector Z and the

observable sound feature I, given by the equation:

I(t) = AZ(t) + ν(t) (5.1)

where the matrix A designates how the attributes of the internal model are transformed

to yield a measurable sound feature I. Equation 5.1 is referred to in the literature as

“the measurement equation” [123], since it captures how the measured sound features I

of a particular perceptual stream result from a set of underlying factors Z that cannot be

directly observed. For simplicity, we keep this equation in general terms without specifying

any superscripts to either Z, I or A in order to describe the general transformation from

internal model representation to observation space. The real transformation, however,

involves a relation between the state of one auditory object α giving rise to a specific

sound feature β. The term ν(t) represents a noise term that accounts for any discrepancy

not accounted for by the linear relationship between Z and I. The process ν(t) is also

called “measurement noise”, which we take to be a zero-mean Gaussian process with

covariance matrix Σ.

A complete formulation of the estimation problem requires the inclusion of another

equation that defines the dynamics governing the progression of the state vector Z in time.

Such time evolution is captured by the equation:

Z(t+ 1) = BZ(t) + η(t) (5.2)
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The matrix B is a time-invariant “state transition” matrix [123]. It represents the avail-

able knowledge of how the model’s attributes change over time, and is an appropriate

parameter to invoke any constraints or expectations of the evolution of sound streams,

such as temporal continuity. The “state noise” term η(t) is also considered to be Gaussian

with zero mean and covariance matrix Q. It accounts for any variability in the dynamics

of Z not captured by linearity.

To infer Z from I, we opt for an optimal vector that maximizes the model’s posterior

probability. The optimization function is then defined as:

J = maxP ( ~Z|~I)

a
= max

∏

α

P (Zα |I)

b
= max

∏

α

P (Zα |Iβ

)

c
= max

∑

α

logP (Zα |Iβ

)

d
= max

∑

α

[

logP (I
β |Zα

) + logP (Zα

)
]

= min
∑

α

[

− logP (I
β |Zα

)− log P (Zα

)
]

(5.3)

where the derivation above depends on the following facts: (a) The state vectors Zα

are

independent (since they represent independent streams in the environment), (b) at each

instant t, the state vector Zα

depends only on a unique feature vector I
β

(i.e., each stream

learns from only one observed input at a time, as shall be addressed in the next section),

(c) the log function is a monotonically increasing function, and (d) we apply Bayes rule to

transform the posterior distribution P (Zα |Iβ

) into a likelihood and prior product, where

P (I
β

) acts as a normalization constant and can be dropped from the optimization function.

The choice of β (in step b) is defined by a set of constraints that we will elaborate on later.
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For the time being, we assume that we have inferred the correct feature I
β

, and we need

to predict the model’s state Z.

Given the Gaussian distribution that characterizes the measurement equation (Equa-

tion 5.1), we can reduce the optimization function J to a least-square criterion [7]. To

do so, we approximate the probability distribution of Z by a Gaussian process around a

mean value Ẑ(t), representing the current estimate of Z at time t, and a covariance ma-

trix Π, depicting the variability in the estimate of Z in time. Consequently, the posterior

probability optimization function in Equation 5.3 reduces to:

J = min
∑

α

[

(I
β −AZα

)
T

Σ
−1

(I
β −AZα

) + (Z̄α −Zα

)
T

Π
−1

(Z̄α −Zα

)
]

(5.4)

Minimizing this function corresponds to finding the optimal vector Ẑα

by setting ∂J
∂Zα = 0.

The derivation is detailed in Appendix A, section A.1, resulting in the equation

Ẑα

= Z̄α

+ G (I
β −AZ̄α

) (5.5)

where G ,

(

A
T

Σ
−1

A + Π
−1

)−1

A
T

Σ
−1

. The optimal solution can be formulated in words

as: New estimate = Old estimate + Gain x residual error.

This derivation leads directly to a Kalman filter formulation [33], which offers a

recursive solution to the linear filtering problem (Equations 5.1 and 5.2) under assumptions

of Gaussian process and state noises. The Kalman solution is in fact a maximum a-

posteriori estimator (MAP), which results from the optimization function in Equation

5.3. Kalman filtering is one of the best known algorithms for accurately estimating and

predicting the internal state of an observed dynamical system. At each time instant, the

filter updates its estimate of the model’s state by improving the old estimate given the
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newly observed data. The correction term is often referred to as sensory innovation or

sensory residual error. It is captured by the term I
β −AZ̄α

in Equation 5.5 and reflects

the discrepancy between the predicted measurement AZ̄α

and the actual observation I
β

.

If the two are in complete agreement, the residual becomes zero, and hence the a priori

estimate Z̄α

corresponds exactly to the predicted a posteriori estimate. The gain term

G is a weighting factor indicating how much to “trust” the new observation against the

predicted a priori estimate. It adjusts as a function of the variance in the observations Σ

as well estimate error covariance Π. By formulating the optimal solution Ẑα

in Kalman

filtering terms, we can directly apply the Kalman equations to implement a solution to

the estimation problem [33, 123].

The clustering problem

The second goal set up for our adaptive learning algorithm is that of cluster allocation,

i.e., inferring which cluster (stream) α “wins” the input vector I
β

. This step invokes

the unsupervised learning attribute of neural processing. As mentioned earlier, competi-

tive learning is an appealing choice for cortical learning which allows the distribution of

patterns from several streams to be assigned to different clusters.

At each instant in time, a set of input features representing information about the

sound mixture “compete” amongst each other, in deciding which pattern gets attributed

to which class. The winning cluster for a specific pattern is the one that matches the best

the internal state of that cluster. The key element in inferring the distribution of input

patterns among the different clusters relies on a suitable choice for a similarity measure.

Given the formulation of the estimation problem as a Kalman prediction scheme, an

appropriate choice of distance measure is one that minimizes the sensory residual error
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between the predicted input projected by the internal world model, and the actual observed

sensory pattern representing the state of the environment at that particular moment in

time (Equation 5.5). Hence, the optimal clustering solution for each cluster α can decidedly

be formulated as:

E = min
β

(

I
β −AZα

)

(5.6)

which results in the following overall learning function:

Ẑα

= Z̄α

+ G (I
arg minβ [I

β
−AZ

α
] −AZ̄α

) (5.7)

The above formulation combines the clustering problem with the optimal solution derived

for the estimation problem, laying the foundation of the methodological approach for

the adaptive learning component of the model. The specifics of the model architecture

and implementation are going to be addressed next, and particularly the principles and

parameters of the predictive component of this approach: the “internal” world model.

5.3.3 Model architecture

The overall architecture of the system starts with an analysis of the sound mixture through

a model of peripheral auditory processing to extract an auditory spectrogram. The model

used is comparable to that described in chapter 2, and given by Yang et al. [147]. Using

this initial spectrotemporal representation of the sound input, a stage of primitive cues

extraction is performed, where acoustic grouping cues are selected as described earlier

in section 5.1.2. The outcome of this stage is to build a map of pitch traces and onset

patterns, as will be detailed in the implementation section.

The core of the model operates along the temporal axis, one time “slice” at a time. It
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examines each feature set at a given time instant through a multi-scale analysis, aimed at

analyzing timbre and spectral patterns in the input. This analysis is performed following

the multi-scale representation offered by the cortical model described in chapter 2.

The main component of the model is the adaptive learning module. We choose

principals of cortical processing as a general scheme for implementing the estimation and

clustering problems defined earlier. We define each cluster as a set of “cortical filters”;

where the term cortical filter is used here to represent a filter tuned to a specific temporal

modulation rate. These functions are organized in a filter-bank structure. Each one of

these filters is characterized by its transfer function, which yields a set of parameters that

describe its dynamics. The parameter set from the entire bank of filters define the value of

system parameters A and B governing the estimation problem, while the filters’ internal

states are captured by the variables Z. Different clusters are hence constructed of various

learning units, allowing each cluster to span a range of temporal scales. All clusters used

in the algorithm share the same range of temporal dynamics. We shall describe in the

following section how the mapping from the cortical filter-bank to the derivation of a

state-space formulation is performed.

The Kalman-based algorithm (Figure 5.5) progresses in two steps: (1) a prediction

step, which estimates the process state at time t, given previous states, and a temporal

continuity constraint where the current system output is assumed not to change from one

time instant to the next, and (2) a correction step, where this a priori estimate is corrected

by the observed input. The first step is responsible for projecting the estimates forward in

time to obtain a priori estimates for the next time instant. The second step is a feedback

stage, which uses the new observation to improve the state prediction, yielding a corrected

a posteriori estimate. This a posteriori estimate is then used to project forward in time,
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Figure 5.5: Schematic of the stream segregation model.

predicting the new a priori estimate for the next time step. We will describe the various

stages of the model in the following implementation section.

5.4 Implementation of the model

5.4.1 Pre-processing stage

The starting point for analyzing an auditory scene is performing a spectral estimation of

the sound. The signal undergoes a series of transformations converting the one-dimensional

time waveform to a two-dimensional time-frequency cochlear representation. The stages

of this spectral transformation follow the model of auditory periphery presented in chapter

2. The auditory spectrogram reveals the spectrotemporal patterns in the auditory scene,

hence setting the ground for a spectral analysis of the various acoustic primitive features.

Figure 5.6 illustrates an auditory spectrogram of an auditory scene to be analyzed.
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Figure 5.6: Pre-processing stages of adaptive learning model. At each time instant, a

spectral “slice” in time is analyzed for any harmonicity and onset cues. The spectrogram

corresponds to a mixture of a male and a female utterances. The spectrum in the upper

left panel shows harmonic peaks, which are found to correspond to fundamentals of 104Hz

and 227Hz. The same spectral slice also coincides with the start of syllabic segment of the

female voice, and hence the onset pattern (upper rightmost panel) exhibits harmonicity

relative to an F0 of 227Hz.

Pitch estimation

The first acoustic cues to be extracted from the auditory spectrogram are pitch estimates

(Figure 5.6). The goal of this stage is not to track any frequency trajectories, but simply

to extract harmonic structures (if any) at every instant in time. Frequency channels that

stand in harmonic relationship to each do in fact group together, and hence represent a

feature vector belonging to a common sound source. Our pitch extraction algorithm is

based on a template matching model, similar to that proposed by Goldstein [73]. The
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model transforms the spectral representation of a signal into a distribution of pitch es-

timates. Incoming spectra are compared against an array of harmonic templates, which

are constructed from sequences of frequency intervals around each harmonic partial of a

fundamental frequency. Pitch values are determined based on the best matches to the dif-

ferent template patterns. The strength of pitch estimate at different F0’s is judged based

on the stimulus excitation patterns that fall through the sieve intervals of the nominal

F0. In other words, evidence for a pitch match at F0 is based on the overall activation

energy in the spectrum that matches the F0 template. A threshold is set to choose the

values of F0 with the largest evidence weight at every instant in time. Depending on the

number of sound sources or harmonic structures present in the original signal, a set of 1-4

F0 matches typically emerge at every time instants, which can then be used as feature

cues that contribute to the learning stage.

While no definitive conclusions about the neural mechanisms of pitch have been

reached yet, there is general agreement on the perceptual and acoustic attributes giving

rise to the percept of pitch [94]. The model of template matching used here has been

presented as one of the biologically plausible mechanisms for periodicity pitch [36]. Work

by Shamma and Klein [133] suggested a biologically inspired model for the formation of

harmonic templates in the early stages of the auditory system based on the phase-locking

properties of cochlear filters. Their model explains how harmonic templates can emerge

in the peripheral auditory system from a simple coincidence detection network operating

across cochlear channels. Though quite successful in yielding proper pitch estimates of

various spectral patterns, the template matching method has been criticized for its lack of

robustness, and particularly in introducing additional estimates at octave or sub-harmonic

intervals of the fundamental frequency. These additional estimates are not a real concern
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for our scene analysis model. The learning module uses all the estimates available to find

the best match to a sound source. An F0 pattern as well as 2F0 do not present conflicting

information about a sound source. The learning procedure typically picks the F0 template

as a closer representation of a sound stream. The 2F0 template does not bare a harmonic

compatibility with a different source, and hence would not contribute as evidence in the

learning procedure.

An interesting observation from using a pitch extraction scheme is that it also con-

tributes in separating out frequency channels that are not harmonically related. While

it may seem counter-intuitive for some people to think of pitch as a separating rather

than grouping cue, this concept adds in fact another dimension to role of harmonicity in

scene analysis. Harmonicity is in fact playing a dual role in bringing together frequency

channels that relate to each other, but also pulling apart frequency channels that should

not be considered as a group. Following this interpretation, pitch is a dividing force that

flags apart frequency channels that should probably fall in separate streams, unless other

evidence indicates otherwise. As a whole, grouping/segregating cues are indeed playing

the role of exposing any differences where necessary and promoting fusion or grouping

where necessary. This force operating in both directions is only enhancing the salience of

perceptual similarities or differences between acoustic patterns represented in a multidi-

mensional perceptual auditory domain, and hence contributing to the parsing of auditory

scenes.

Onset estimation

Along with pitch estimates, onset maps are very effective and robust representations of

single sound sources. Onset synchrony is a particularly powerful cue for segregating acous-
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tic components. We employ a simple derivative approach via temporal differentiation to

boost the detection of transient energy in the signal. We then proceed to a spectral inte-

gration across frequency bands, followed by an energy threshold. Synchronous frequency

channels that get activated together emerge an onset spectral segments to be used as in-

put vectors in the learning module. Figure 5.6 illustrates the extraction of onset patterns

from an auditory spectrogram. The onset trace shown overlapping with the spectrogram

highlights the time instants when energy transient are detected. Those peaks are used

to extract the onset pattern from the temporal-differentiated spectrogram. Such pattern,

as shown in the upper rightmost panel of Figure 5.6, tends to coincide with one sound

source, since it is highly unlikely that two sound sources start at exactly the same time

instant.

5.4.2 Multi-scale representation

Spectral shape is an effective physical correlate of the percept of timbre [32, 145]. Inspired

from findings of cortical spectral analysis, we employ a multi-scale model based on a

wavelet decomposition of spectra into an array of local and global spectral patterns, as

introduced in Chapter 2. This spectral decomposition offers an insight into the timbre

components of each of the acoustic features extracted so far. The local and global spectral

shapes in the acoustic patterns are captured via a bank of spectral modulation filters tuned

at different scales (0.25 – 4 cycles/octave). On the one hand, the slowest modulation scales

capture the general trend in the spectrum, hence highlighting the components with broad

or coarse spectral attributes, such as speech formants. On the other hand, the high-order

scale coefficients describe the more dense spectral patterns corresponding to features with

higher spectral density, such as harmonic peaks. Unlike cepstral analysis commonly used
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in speech recognition systems, the multi-scale model operates locally along the tonotopic

frequency axis.
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Figure 5.7: Multi-scale auditory representation of the vowel \a\ of a male

voice. The multi-scale mapping highlights various features of the original spec-

trum, namely the fundamental frequency F0 and its harmonic partials, as well

as the formant peaks of the vowel (particularly F2 and F3).

Figure 5.7 shows the spectral patterns originating from the vowel \a\ produced

by a male speaker. The multi-scale representation exhibits various interesting features

about the original spectrum: The location of the fundamental frequency and harmonic

partials, the location of the formant frequencies. The Harmonic patterns are most notably

expressed at the high spectral scales (above 2 cycles/octave). The coarse structure of

spectrum, peaking at about 500-1000Hz is captured by the lower scales, which tend to

exhibit the overall global patterns of a spectrum. These low scales are in fact broadly

tuned filters that maintain the global shapes of sound patterns, and hence reflect the

general energy patterns in the spectrum. In the results shown later in this chapter, we

use spectral modulations in the range 0.125 − 4 (cycles/octave).
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5.4.3 Cortical filtering

The temporal dynamics of the model are shaped according to a cortical multi-rate analysis

similar to the one described in Chapter 2. This model is augmented by a predictive

learning step as described earlier. Specifically, an input multi-scale feature (2D pattern of

frequency-scale) is used as the external input pattern I
β

(t). At the same time instant t,

the model uses its past state Z(t− 1) to predict what the expected input should be. This

prediction is performed using a temporal coherence constraint where the past output of

all cortical filters is assumed to stay constant. The Kalman formulation is hence used to

predict the expected input at time t. This expected input is compared with the actual

observed input I
β

(t), and the residual error between the two is used to update the current

state of the filters as well as their current output Y (t).

To be able to apply the Kalman-predictive learning technique, we have to reformu-

late the cortical filtering process in term of Equations 5.2 and 5.1 (state and measurement

equations). This derivation is performed in three steps:

1. Writing the model dynamics in terms of a difference equation, relating the input I

and the output Y , via parameters A and B.

2. Converting the difference equation into state-space form, by defining a vector of state

variables Z. Z represents the model’s internal representation, which we choose

to be the state of the delay registers in a direct form II implementation of the

difference equation mentioned in step 1 [123]. The state-space form involves then two

equations: (a) The process equation, representing the dynamics of the variable Z, in

other words, the prediction Z̄ of the state Z(t) given prior states {Z(t− 1), ...Z(0)}

(i.e., based on prior data), and (b) a measurement equation which relates the data
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to the state variable Z. In our case, we are using the internal model to predict our

expectation from the world, and so we formulate the state-space equation to predict

the sensory input I.

3. From the state-space formulation, we can apply a Kalman filtering strategy. How-

ever, our ultimate goal is really to use this prediction for clustering sensory inputs

into different streams. So, we proceed with the Kalman prediction, but at the up-

date stage, we only update the states belonging to the cluster that minimizes the

residual error.

Next, we elaborate on each one of these steps.

∗ Writing a difference equation:

The dynamics of the model are governed by band-pass filters representing a multi-

rate analysis of the sensory input. The impulse response of each filter is defined by a basic

gamma probability density function (similar but slightly modified from the one defined in

[31]):

h(t) = t2e−3.5t sin(2πt)

The impulse responses of filters at different rates is given by a dilation operation and

sinusoidal interpolation of the function and its Hilbert transform:

h(t;ω) = ωh(ωt)

⇒ h(t;ω, θ) = h(t;ω) cos θ + ĥ(t;ω) sin θ

(5.8)

where ĥ stands for the Hilbert transform of h. This filtering operation can be approximated

by a difference linear model. We use the Steiglitz-McBride approximation [98] for finding

an IIR filter with the prescribed complex-valued time domain impulse response h(t;ω, θ).
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The approximation leads to a difference equation of the form:

a0Y (t)+a1Y (t−1)+ · · ·+anY (t−n) = b0X(t)+b1X(t−1)+ · · ·+bn−1X(t−n+1) (5.9)

where the vector of coefficients {a2, ...an} and {b2, ..., bn} represent the filter parameters

(nominator and denominator coefficients), and can be adjusted to appropriate sizes by

letting some entries take a zeros value. Writing the parameter vector ~a and ~b to the same

length simplifies the transition from a difference equation to a state-space form, as we

shall see next.

∗ Conversion to state-space form:

State-space methods are standard system formulations that modern control theory

resorts to when dealing with system dynamics and time-series analysis. Any nth order

difference equation can be represented by a first-order vector equation with a state vector

of n elements [123]. We want to transform the formulation of equation 5.9 into a state-

space form.

We perform a little twist in the formulation by actually using the past output

{Y (t − 1), Y (t − 2), . . .} to predict the current input X(t). This does not change the

actual procedure of writing a state-space equation, but only affects what the actual values

of parameters A and B are. It also allows to formalize our temporal constraint by also

setting Y (t) = Y (t). Hence, the problem is now defined as: given {Y (t− 1), Y (t− 1), . . .}

and {X(t − 1),X(t − 2), . . .}, what is the value of X(t)? In this sense, the right-hand

side of equation 5.9 represents the measurable process. This derivation of a state-space

equation is quite straight-forward, and is presented in detail in section A.2 of Appendix

A. The final representation of the difference equation is now given by:
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~Z(t) = B ~Z(t− 1) + CY (t) (5.10)

X(t) = A ~Z(t) (5.11)

where,
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∗ Kalman filter:

The Kalman theory is a well-established scheme for data estimation. By formulating

the cortical dynamics based on Equation 5.11, we can directly apply Kalman equations in

implementing the prediction module. The vectors Z(t) represent auxiliary parameters (or

hidden states) of the cortical model, and hence maintain an internal “image” of the data

in each cluster, as input observations are coming in. This cortical internal representation

can in effect be though of in terms of a perceptual organization of sound patterns, which

is later translated into actual streams or auditory objects.

5.4.4 Adaptive learning

The step of predictive learning is performed based on the dynamics schematized in Figure

5.5. The learning happens as the cycle between the model prediction and correction (based

on observed inputs) guides the revision and alteration of cluster representations, and allows

for a more accurate clustering function. Most simulations shown here limit the number of
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cluster K to 2. These two clusters are in effect symbolizing auditory streams pertaining to

the foreground vs. background in an auditory scene. This distinction is not necessary for

the actual implementation of the algorithm, but it leads to a more intuitive understanding

of the response patterns of the cortical filters. Following this interpretation, one can think

of one stream/cluster as the object/sound attended to, while everything else is falling in

the background, and hence in the opposite stream.

As interesting note concerning the behavior of the rate filters in the cortical model is

the fact that they are guided by their internal dynamics (as determined by their individual

impulse responses). Each rate filter “learns” according to the range of temporal modula-

tions and orientation it is tuned to (the orientation selectivity is obtained in conjunction

between the filter’s response and the input scale representation). The time constants of

these filters in effect act as a “memory” component, whereby the neuron learns at a cer-

tain rate. If no valid input is coming in, the neurons stop learning; which is manifested

by the relaxation of their outputs as they tend to drop toward zero, indicating a state of

“forgetting” of those particular filters.
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5.5 Results

In the introduction to this chapter, we described two aspects pertaining to auditory scene

analysis; namely, auditory streaming and particularly of alternating sounds, and segre-

gation of concurrent sound sources. Using our model, we investigate aspects associated

with both phenomena, and focus on extending our understanding of how each module

in our adaptive scheme interacts with the others in achieving the specified learning goal.

Simulating various sound organization effects is both beneficial in terms of testing the

capabilities of the model, as well studying the actual response patterns obtained from the

cortical model. Inspired from neural evidence in the auditory system, the model is in fact

a reflection of how we expect the stream formation to be happening in biology, of course

formulated in neural vocabulary, rather than abstract modelling terminology.

5.5.1 Streaming effects

Streaming effects are very commonly tested using cycles of repeated stimuli. Whether

for psychoacoustic testing or physiological experimentation, cycling stimuli are chosen for

their relative ease of manipulation. They also produce a very stable perceptual manifes-

tation after a certain number of repetitions. It is now well established that streaming is a

phenomenon that builds up over time before the perceptual manifestation of the streams is

well established for the listener. This scheme of cycling stimulus patterns is well suited to

be employed in our learning model, as any neural network structure does require to accu-

mulate certain evidence from its inputs before any learning or computational judgements

can be made. The duration required for the buildup of a stable representation varies de-

pending on the complexity of the sound patterns and the duration of the individual sound

elements constructing the entire sequence.
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Here, we describe a series of simulations of commonly known streaming paradigms

which illustrate various underlying principles of sound organization. Most these paradigms

have been described in a collection of demonstrations assembled by Bregman and Ahad

[22].

Alternating tone sequence

Alternating tones are the most classic paradigm used for studying auditory streaming. The

paradigm consists of simply repeating a tone “A” and tone “B” in a sequence ABAB...

By varying the frequency separation between the tones, as well as their presentation rate

(i.e. the duration of each tone), listeners are asked whether they hear one or two streams

[140]. As the tone frequency separation increases and the rate of presentation becomes

faster, the subjects report hearing two continuous streams, one going at a lower frequency

and one at a higher frequency. Additional factors are also important in determining the

subjects’s perception of one or two streams, including the listeners’ attentional readiness

while performing the task, and the overall presentation time of the sequence.

The schematic in Figure 5.8 shows results obtained from our adaptive learning

model. THis schematic is organized fron the bottom to the top to signify the information

flow from the input coming signal to higher-level organization of sound into perceptual

streams. In this case, the algorithm is presented with a sound sequence whose spectrogram

is shown in the lowermost panel of the figure. In this particular simulation, the tones are

chosen to be 500Hz and 2000Hz, each 125 msec, i.e. repeating 4 times per second. The

patterns go first through a multi-scale analysis. The figure shows 4 outputs of the spectral

analysis at 4 different time instants as the analysis progresses in time from tone A to tone

B. The middle panels show intermediary time instants as tone A fades away, and tone B
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begins to rise up. Next follows the cycle of adaptive learning via Kalman estimation and

competitive learning. The outcome is reflected in the responses of different cortical rate

filters after the presentation of the sequence. An interesting observation is that the filters

tuned at 4Hz show a continuous pattern of activation since they are tuned to presenta-

tion rate of each sequence A-A-A... or B-B-B..., repeating at a rate of 4Hz. The cortical

outputs are in effect responses to sequences A-A-A... (left blue cluster in Figure 5.8), and

B-B-B... in the other cluster. The topmost two panel represent a schematic of what the

perceived streams actually aggregate to. These patterns are obtained by simply summing

the outputs of the different rate filters in each cluster. The fact that certain cortical filters

are tuned to the presentation rate of the each tones A or B is very critical in explaining

the perception of a continuous stream despite the fact that each acoustic stream by itself

is in reality non-continuous. The energy response of a 4Hz filter to a 4Hz cycling sequence

is in fact a continuous pattern. This fact directly relates the dynamics of streaming to

the low-pass nature of cortical responses, which is a manifestation of the loss of cortical

phase-locking and synaptic depression (as discussed in chapter 3).
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Figure 5.8: Streaming of alternating tones. The data flow in this schematic goes from

top to bottom (as shown by the “data flow” arrow) indicating the bottom-up process

involved in the analysis of the sound mixture. The details of this schematic are in the

text. The patterns shown here correspond to the magnitude responses of the complex-

valued representation in the cortical model. The spectrograms representing the auditory

streams in the two topmost panels of the figure are obtained as the sum of the outputs

of all rate filters within each cluster.
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Alternating ripple sequence

A similar experiment can be performed by using alternating ripple sounds. We use static

ripples, in this case 0.5 cycle/octave and 2 cycle/octave. At each cycle of the alternating

sequence, a new instance of a white noise carrier is generated, and modulated spectrally

at either 0.5 or 2 cycles/octave (A or B sound). As we construct the entire alternating

ripple sequence ABAB..., the fine spectral structure of any two sounds never repeats.

This additional spin is aimed at varying any possible cues that could lead to a grouping

of ripple elements, and override the role of spectral modulation patterns. The fact that

carrier information is unique at each instance of either sound allows us to avoid the reliance

of principles such as peripheral channelling, which would take advantage of any regularity

in the frequency cues of the sound carriers in order to stream different ripples together.

Using a multi-scale representation of each sound pattern, the model successfully separates

these two noise patterns along a “spectral-modulation” dimension. Examples of multi-scale

ripple patterns are shown in the middle panel of Figure 5.9. The leftmost panel shows

a specific excitation pattern in response to a time slice coinciding with a 2 cycles/octave

sound. As the sounds change to 0.5 cycles/octave, we can notice a shift in the excitation

pattern (second multi-scale representation panel in Figure 5.9, at t = 288ms). Then, the

pattern completely moves toward 0.5 cycles/octave (right panels). The model successfully

organizes these alternating patterns into two clusters, shown in the top panels of Figure

fig:ABripples. Their spectrographic representations (in these two panels) appears a bit

smeared due to the temporally-extended response structure of the cortical filters at low

rates (±2Hz, ±4Hz). However, they illustrate the model’s capability in organizing these

two sound patterns which share a common spectral format.

Informal tests were also performed to judge listener’s ability to stream ripple sounds
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with different spectral patterns. Such patterns proved to be much harder to stream when

the carrier noise was randomized, but certain subjects were still able to report hearing

a streaming effect when the separation between the spectral patterns of ripple A and

B was large enough. This effect might be explained by prior training and acoustical or

musical background of the subjects, making it easier for some to organize these sounds at

a higher-level dimension (scale axis) without relying on any other dimensions.
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Figure 5.9: Streaming of alternating 0.5 and 2 cycles/octave ripples.
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Alternating tone cycles

Next, we focus on additional simulations collected by Bregaman and Ahad [22] as a set of

most common, and probably most useful, paradigms in studying organization of sound in

the auditory system from a streaming perspective. We choose from this series of demon-

strations those which can be implemented in our model. The first simulation is quite

analogous to the alternating tone sequence ABAB.... The paradigm corresponds to psy-

choacoustic tests run by Bregman ([22], demonstration 1) as shown in the lower rightmost

panel of Figure 5.10. The schematic represents a sequence of tone cycles alternating be-

tween high tones (H1,H2,H3) and low tones (L1,L2,L3). The actual cycle is constructed

by the sequence H1,L1,H2,L2,H3,L3,... The technical details of these sound correspond to

those set by Bregman [22]: The tone frequencies for the high sequence were 2500, 2000

and 1600 Hz, and for the low sequence 350, 430 and 550 Hz. These frequency ranges

are well separated along the tonotopic axis. The spectral patterns shown in the middle

panels of the Figure 5.10 indicate that the multi-scale representations used as input for

the learning module are very well disjoints in frequency. This separation is reflected in the

output of the adaptive learning algorithm, shown in the top most panels. It demonstrates

how successfully we can perceive two well segregated sound patterns: a high frequency

3-tone melody and a low frequency sequence. This simulation is a direct test of the prin-

ciple of sequential integration. The tones in the low (or high) frequency region fall in the

same cluster, because the acoustic features from pattern L1 and L2 appear to be simi-

lar (by virtue of frequency proximity), and quite dissociated from the other “competing”

patterns H1, H2, H3. This perception is only maintained as long as the sequences are

repeated at a relatively fast rate, guaranteeing that the dynamics of the cortical model

are commensurate with the presentation rate.
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Figure 5.10: Streaming in a cycle of 6 tones. The paradigm shown in the lower right

corner of this schematic corresponds to demonstration 1 in Bregman’s demonstrations

CD [22]
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Alternating vowels

Vowels are preferred test signals in many experiments dealing with stream segregation.

They are easy to synthesize and manipulate, with different fundamental frequencies, for-

mant structures, and excitation modes. The variability in their spectral shape is an

interesting feature to explore stream segregation. We perform a simulation analogous to

that carried out by Bregman ([22], demonstration 11). Instead of employing synthesized

vowels as used by Bregman, we use an alternating sequence of two natural vowels /e/ and

/ / produced by the same male speaker. The spectrogram of the sequence is shown in

the lower panel of Figure 5.11. Even though they are produced at the same pitch (same

speaker), the two vowels exhibit very distinct spectral shapes (different formant positions

and relative intensities). The divergence between the two patterns promote streaming

effects, hence contributing to their separation into two separate streams, shown in the

uppermost panel of Figure 5.11.
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Figure 5.11: Streaming of alternating vowels. The paradigm shown in the lower right

corner of this schematic corresponds to demonstration 11 in Bregman’s demonstrations

CD [22]
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Capturing interference tones

The involvement of attention in grouping mechanisms is of particular interest for any

study of sound perception. A very powerful principle that can be easily tested in humans

is orienting subjects to different streams and judging their ability to focus on certain

aspects of the attended stream, while interfering patterns are played in the background.

An illustration of such task is given in the paradigm of Figure 5.12, and the technical

implementation details follow those of Bregman [22]. The subjects are initially presented

a tone sweep AB or BA and asked to judge whether it is upward or downward going.

Such judgement is very easy and quite straightforward. When surrounding the AB/BA

sequence with an interfering tone X (leading to XABX or XBAX), it becomes quite hard

to judge the order of the sequence AB, due to the presence of the bracketing tones. Such

effect has been explained by Bregman as due to a loss of prominence of the pattern AB

(or BA) since a more higher-level percept emerges due to the four-tone structure (XABX

or XBAX). The effect of the surrounding interference can be almost nullified by extending

the sequence X in time prior to the sequence of interest. The sound would now consist of a

pattern XXXXXXABXX (Figure 5.12). The presence of a preceding sequence of X tones

leads to the emergence of a separate stream made up of the “X” pattern, and hence when

sound AB or BA is played, it falls into a different cluster, facilitating its release from the

surrounding tones. Such release allows it to partially restore its original saliency, hence

allowing us to get a better judgment of the AB-BA sequence.
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Figure 5.12: Segregation by capturing interfering tones. The paradigm shown in the

lower right corner of this schematic corresponds to demonstration 16 in Bregman’s

demonstrations CD [22]
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Crossing trajectories

The theory of crossing trajectories is one that tests the segregation of rising and falling

tone sequences, which overlap at a certain point in time. It is interesting to investigate

whether the auditory system would actually group the rising and falling tone patterns

together or not. Listeners report hearing a bouncing pattern when the sound elements

are individual tones, and it is very hard for subjects to follow an entire rising or falling

sequence. Such effect is illustrated in Figure 5.13, with technical details of tone frequencies

and duration in agreement with Bregman’s paradigm. The outcome of the learning model

is quite interesting, and constitutes a direct manifestation of the bouncing effect described

by Bregman. The best explanation put forward for this effect is one that favors grouping

of tones belonging to a similar frequency region together.

The next test - related to this simulation - is one which tests the crossing trajectories

in the case of a harmonic vs. single frequency patterns. Now, the rising pattern consists of

a harmonic sequence (1st, 2nd, 4th and 8th) harmonic of a sequence with F0 at the value of

the tone in the original rising pattern. By adding harmonicity to the mix, we present the

system with clues suggesting that the rising pattern should be segregated into a distinct

cluster, as it shares common features of periodicity. This spectral regularity influences the

organization of the patterns into their corresponding streams, leading the falling sequence

to now group into a distinct cluster (Figure 5.14).
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Figure 5.13: Segregation of crossing-trajectories. The paradigm shown in the lower right

corner of this schematic corresponds to demonstration 17 in Bregman’s demonstrations

CD [22]
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Figure 5.14: Segregation of crossing-trajectories (2). This simulation shows the second

demonstration of the paradigm, when the rising sequence consists of harmonic complexes

while the falling sequence is a frequency decreasing tone.
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Sine-wave speech

Language is certainly a powerful grouping feature that is hard to capture in terms of simple

acoustic cues, following the principles described earlier in this chapter. Nonetheless, we

are able to put acoustic elements together that sound to us like speech, even if we do not

understand the language. Sine-wave speech is a special case of sound signals designed to

lie at the end of a continuum representing speech patterns [125]. It consists of a number

of sinusoidal waves modelling the formant tracks of speech sentences. The spectrogram

in bottom panel of Figure 5.15 shows an example of such sentence. Most listeners first

hear a sine-wave signal as a series of tones, chirps, and blips, with no particular hint

to any particular meaning or language reference. After prompting, listeners are able to

recognize the words in the sentence, and start hearing these utterances as speech, despite

the very poor quality of the sound. In the context of our model, we claim that one

reason why sine-wave speech originally sounds like a collection of tones and blips is simply

because each sine wave is clustered into a separate stream, hence making it difficult for

the auditory system to integrate information across streams to be able to recognize the

linguistic meaning of the sentence. To test this hypothesis, we ran our model on a sine-

wave utterance, but using three clusters to test whether the three sine waveforms would

separate into the three different clusters. As expected, Figure 5.15 shows the outcome of

such simulation, and confirms our prediction of separating the three constituting energy

waveforms into different clusters, and hence separate streams.

In Figure 5.16, we explore an interesting extension to this idea of clustering the

separate waveform into separate clusters, and hence leading to difficulty in originally

recognizing the signal as speech, unless prompted. The test consists of giving the system

additional hints to group the three sinusoidal trajectories together. To do so, we introduce
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silences into the sentence, occurring at a rate of 20-50Hz. Interestingly, sinewave speech

sounds more intelligible when segments of silence are interleaved with the original signal.

The silence portions introduce common-onset cues giving evidence that the three sinusoidal

waves should be integrated together in the same perceptual stream. Figure 5.16 shows an

illustration of such simulation.
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Figure 5.15: Sine-wave speech. The paradigm shown in the lower right corner of this

schematic corresponds to demonstration 23 in Bregman’s demonstrations CD [22]. The

uppermost panels (representing the auditory streams) are now displaying the real-part of

the complex-valued output of the cortical model. We choose the real-part as opposed to

the magnitude in this case to better illustrate the patterns in response to fast changing

patterns in sine-wave speech.
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Figure 5.16: Sine-wave speech. The paradigm shown in the lower right corner of this

schematic corresponds to demonstration 23 in Bregman’s demonstrations CD [22]. Sim-

ilarly to Figure 5.15, we again display the output of the cortical model in terms of its

real-part, to better exhibit the fast patterns in the response.
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Tone in a mixture

In a final simulation of sound organization principles, we explore a paradigm which involves

a different structure of auditory segregation: simultaneous grouping. The paradigm shown

in Figure 5.17 illustrates a construction where different cues are put in competition with

each other. The paradigm consists of a cycle of an A tone, followed by a tone complex

B,C. The occurrence of tones B and C together delivers a strong onset cue, hinting that

these two elements should be grouped together. In the initial simulation where tone A is

played at a different frequency (1800Hz) than the complex (B: 650Hz and C: 300Hz), the

streams formed by the learning algorithm segregate the scene into a stream of A sounds,

and a distinct stream of BC complexes (Figure 5.17).

In a second simulation, tone A is shifted in frequency to match that of tone B in the

complex BC (right panel in paradigm schematic). As the frequency separation between A

and B is now zero, the system has to decide whether to group B with the already existing

cluster A, or whether to use the evidence of common onset in the complex BC to cluster

both tones B and C into a common new stream. Simulation results for this case are shown

in figure 5.18, and do actually match our perception of these sounds. Bregman explains

this result by a principle he calls “old-plus-new heuristic” [21]. This principle is proposed

as an organizational scheme used by the auditory system for sound organization, and is

described as: “If a spectrum becomes suddenly more complex or more intense, the auditory

system tries to interpret this as a continuing old sound joined by a new one that supplies

the additional acoustic stimulation”. In the context of the second simulation, we can

interpret the results as tone A being the “old” evidence, and the complex BC supplying

continuing “old” evidence (tone B), and new evidence for a new sound (C); hence the

organization of these elements into an A-B-A-B.. stream versus a C-C-C-... stream.
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Figure 5.17: Capturing tone in mixture. The paradigm shown in the lower right corner

of this schematic corresponds to demonstration 25 in Bregman’s demonstrations CD [22]

134



Time (sec)

F
re

q
u
en

cy
 (

K
H

z)

2  1

2

.5

 t=120ms  t=560ms

Multi-scale

Representation

Auditory

streams

Acoustic Scene

2

.5

2

.5

2

.5

F
re

q
u
en

cy
 (

K
H

z)

...

 t=440ms  t=880ms

-2Hz  -4Hz

 8Hz 32Hz

-2Hz   -4Hz

 8Hz 32Hz

Dynamic

Learning

.5 2 .5 2.5 2.5 2
Scale (c/o)

Data flow

Figure 5.18: Capturing tone in mixture (2). The paradigm shown in the lower right

corner of this schematic corresponds to demonstration 25 in Bregman’s demonstrations

CD [22]
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5.5.2 Speech segregation

A second component of our implementation of the adaptive learning model is to test

its applicability to speech separation under realistic conditions. We perform two main

evaluations of the model’s performance by either using original sentences, or combining

them into a sound mixture.

An important question pertaining to the evaluation method of CASA systems has

been raised by most researchers working in this field [37]. The most commonly adopted

approach is for each system to maintain a separate module to allow the reconstruction

of sound waveforms from the segregated signals, and hence be able to run listening tests.

Some studies however have supported the idea of integrating CASA systems with auto-

matic speech recognition (ASR systems, and hence bypassing the need for a complete

reconstruction of the sound waveform. Retaining a higher-level stream representation

interpretable by the ASR system suffices to evaluate the outcome of the speaker separa-

tion model. These evaluation techniques are however not always easily applicable, and

particularly using our model. We know of no ASR system currently available that can

easily interface with our cortical representation. Moreover, the difficulty in reconstructing

the acoustic waveform of the learned streams stems from the model’s extensive compu-

tational complexity. The model results in 4-dimensional complex-valued representations

(time-frequency-scale-cortical rate) per cluster, which makes it very difficult to implement

a re-synthesis module for the acoustic waveform. We hence use a correlation measure (nor-

malized correlation coefficient) to evaluate the correspondence between learned patterns,

and original or expected ones.
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Speech segregation using original utterances

In order to investigate how well the system separates sound pattern belonging to different

speakers, we test our model using a pair of sentences from two different speakers. These

two sentences are analyzed separately through our pre-processing stage, to basically map

the sound patterns into a multi-scale representation. The features extracted from both

speakers are then combined in an array of sound patterns, with no reference to which

speaker they belong to. They are then clustered using the adaptive learning model. The

only evidence that can indeed differentiate the features of a same speaker is the regularity

in the patterns themselves, in the absence of any other labelling of its source. These

patterns are then given as input to the adaptive learning model.

We run four separate set of tests using a different pair of: male-female speakers,

male-male speakers, female-female speakers. A fourth test is run with a female speaker

against a male speaker whose sentence has been modified so that the pitch now matches

the female range, but altering the spectral ratios of his formant energies. Each one of

these tests is performed with 100 different pairs of different male and female speakers and

utterances from the TIMIT database [1], where sentences range between 2 and 4 seconds

long. The results are shown in Figure 5.19, and are described as follows: We correlate

the output of the cortical model for one cluster with the original “clean” sentence, and

obtain a correlation coefficient between the two (ρl, or learning correlation). We also

correlate the model’s responses to the two original sentences, to obtain a baseline of how

well separated the original sentences are, and hence how well we can expect our model to

achieve if it were to perform perfectly. We call this correlation ρb, or baseline correlation.

Finally, we correlate the learned utterance not with its own original sentence but the other

“competing” utterance, to assess the level of confusion between the patterns of the learned
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Figure 5.19: Segregating speech utterances using original sentences. (A) The statistics

for male-female pairs are: ρ̄
l

= 0.92± 0.1, ρ̄c = 0.27± 0.12, ρ̄
b

= 0.19± 0.07. (B) The

statistics for male-male pairs are: ρ̄
l

= 0.9 ± 0.09, ρ̄c = 0.35 ± 0.05, ρ̄
b

= 0.24 ± 0.11.

(C) The statistics for female-female pairs are: ρ̄
l

= 0.85 ± 0.11, ρ̄c = 0.39 ± 0.16,

ρ̄
b

= 0.2± 0.09. (D) The statistics for female-modified male pairs are: ρ̄
l

= 0.94± 0.1,

ρ̄c = 0.2± 0.12, ρ̄
b

= 0.14± 0.07.

sentence and the competing sentence. We call this correlation ρc, or confusion correlation.

The values obtained for each speaker pair are shown in Figure 5.19, with the mean value

shown with a straight line, and the variance shown with a shaded box. The results lead

to quite a remarkable correspondence between the original and learned sentences, with

correlation coefficient as high as 0.94. We re-display these values in Figure 5.20, but only

plotting the results from the 50 best pairs, i.e. the pairs for which we achieved the best

separation. This figure confirms how successful the model’s performance is with mean

correlation values between 0.95–1.

A similar set of tests was also performed to test segregation of speech versus music
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Figure 5.20: Segregating speech utterances using original sentences: 50 best pairs from

Figure 5.19. (A) The statistics for male-female pairs are: ρ̄
l

= 1±0.01, ρ̄c = 0.19±0.07,

ρ̄
b

= 0.19±0.07. (B) The statistics for male-male pairs are: ρ̄
l

= 0.98±0.03, ρ̄c = 0.24±

0.10, ρ̄
b

= 0.22± 0.09. (C) The statistics for female-female pairs are: ρ̄
l

= 0.95± 0.05,

ρ̄c = 0.28 ± 0.11, ρ̄
b

= 0.22 ± 0.09. (D) The statistics for female-modified male pairs

are: ρ̄
l

= 1, ρ̄c = 0.12± 0.05, ρ̄
b

= 0.12± 0.05.

melodies. The model was successful in separating these two patterns into separate clusters,

particularly when the musical melody consisted of a tune from a single instrument. Musical

pieces from an entire orchestra would require a more elaborate restructuring of the model

under more complex perceptual principles enabling the identification of musical sounds

from many instruments as one perceptual stream, rather than a collection of individual

instrumental streams.
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Figure 5.21: Segregating speech mixtures. (A) The statistics for male-female pairs are:

ρ̄
l

= 0.78±0.06, ρ̄c = 0.45±0.12, ρ̄
b

= 0.21±0.08. (B) The statistics for male-male pairs

are: ρ̄
l

= 0.84 ± 0.06, ρ̄c = 0.42± 0.14, ρ̄
b

= 0.24± 0.1. (C) The statistics for female-

female pairs are: ρ̄
l

= 0.87± 0.07, ρ̄c = 0.83± 0.13, ρ̄
b

= 0.24± 0.11. (D) The statistics

for female-modified male pairs are: ρ̄
l

= 0.8± 0.06, ρ̄c = 0.4± 0.1, ρ̄
b

= 0.16± 0.08.

Speech segregation using utterance mixtures

In a second set of simulations, we employ the adaptive model in its entirety, by involving

the pitch and onset extraction modules. In this case, the input signal consists of a sound

mixture obtained by summing a pair of sentences from two different speakers. The analysis

is then performed on the sound mixture itself, by first extracting pitch and onset elements.

Depending on the saliency of each of these vectors, we also keep the original mixture

spectrum as additional vector for training the cortical model. In the absence of any pitch

or onset evidence, the original spectrum is then kept to represent any additional evidence

about the sound patterns at that time instant. For instance, a fricative (such as [s]) would

produce an aperiodic hissing that would not produce any salient pitch estimate.
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Figure 5.22: Segregating speech mixtures: 50 best pairs from Figure 5.21. (A) The

statistics for male-female pairs are: ρ̄
l

= 0.82± 0.04, ρ̄c = 0.41± 0.12, ρ̄
b

= 0.21± 0.08.

(B) The statistics for male-male pairs are: ρ̄
l

= 0.89±0.05, ρ̄c = 0.36±0.14, ρ̄
b

= 0.24±

0.12. (C) The statistics for female-female pairs are: ρ̄
l

= 0.92± 0.04, ρ̄c = 0.33± 0.12,

ρ̄
b

= 0.25± 0.1. (D) The statistics for female-modified male pairs are: ρ̄
l

= 0.85± 0.05,

ρ̄c = 0.37± 0.11, ρ̄
b

= 0.18± 0.09.

The outcome of these simulations is given in Figure 5.21. Figure 5.22 again shows the

best clustered 50 pairs from the original data set in Figure 5.21. Overall, while the outcome

of such simulations leads to more reduced correlation values than those obtained in the

earlier case with the original utterances, we are still able to achieve a correspondence of

0.8–0.9, which is rather remarkable using quite little evidence about the signal, consisting

of only pitch, onset and original patterns.
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5.6 Summary and Discussion

In this chapter, we presented a computational approach to the problem of auditory scene

analysis inspired from computational strategies of cortical sound processing. Based on

the notion of an internal world representation maintained by the cortex, we formulated a

sound organization scheme regulated by the statistical principles of Kalman filtering and

neural network rules of competitive learning. The model builds and maintains an internal

representation of sound streams available in the environment. This representation serves

both as a reference set for clustering sensory inputs into their corresponding perceptual

streams, as well as an adjustable judgement measure of the auditory scene, whose values

are adapted to reflect the variability in the sound streams. The model is founded on

perceptual principles of auditory grouping and stream formation. Such principles are

translated into a computational scheme that combines aspects of bottom-up primitive

sound processing with a top-down internal representation of the world, which adapts its

intrinsic representation based on the residual error between its own predictions and the

actual sensory input.

The model was tested under a variety of auditory streaming conditions, leading to

a successful outcome of these simulations in accord with the responses expected from lis-

tening tests. The system could account for the relationship between sequential streaming

and various grouping factors, such as frequency separation, presentation rate, timbre dif-

ferences, background on foreground effects. It also proved successful in reflecting the role

of simultaneous processes in separating concurrent sound patterns into their correspond-

ing perceptual streams. Furthermore, the model achieved a very remarkable performance

when tested with natural speech mixtures. It successfully identifies and segregates sound

elements corresponding to different speakers based on their spectro-temporal patterns,
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reflected in the variability of pitch and vocal tract parameters between speakers, as well

as the temporal dynamics of the utterances.

What sets this model apart from existing computational approaches to auditory

scene analysis is a combination of components which stem from its biological foundation

and its computational scheme:

• Data-driven cortical representation: The model relies on an initial stage of

data processing, that extracts “primitive” acoustic features from the sound mix-

ture. Along with the common cues generally invoked in most CASA systems (e.g.,

frequency proximity, onset synchrony, harmonicity), the model also explores more

high-level data mappings that expose differences between sound elements in a multi-

dimensional representation. Physiological evidence of neural response patterns in

central auditory areas shows the emergence of selectivity to particular spectral fea-

tures at the level of pre-cortical and cortical neurons. Such selectivity is much more

complex than simple tuning-curves in auditory nerve fibers. We exploit such organi-

zation in implementing a wavelet-based multi-scale representation of sound spectra,

which successfully captures the variability in sound elements beyond a simple time-

frequency mapping. The model is hence given an edge when dealing with cases of

interleaved complex pattern sequences (such as alternating ripples), as well as seg-

regation of speaker and sound characteristics in a way to enhance the differences

between their voice features (pitch, length of vocal tract, timbre, etc...).

• Cortical dynamics: Exploring the role of cortical dynamics in auditory scene

analysis is invoked in the model by using a bank of tuned rate-filters within each

cluster. Rate selectivity ensures a distribution of sound elements within each cluster

depending on their temporal dynamics, and guarantees a fidelity of representation

143



of changes along the time dimension in the response patterns of the filters. For

instance, in the streaming simulation of alternating A-B-A-B-... tones (Figure 5.8),

the presence of a 4Hz selective filter whose time constant is commensurate with the

presentation rate of the sequence ensures both responsiveness of the model to that

specific presentation speed, in addition to maintaining a non-interrupted response

pattern reflecting the perceived continuous A and B sounds once streaming effects

take place. Furthermore, the temporal dynamics within each cluster act as a memory

component to reflect past or already-learned features of the different sound streams,

as well as projecting them into the future.

• Kalman filtering: Kalman estimation sets a rigorous framework for robust infer-

ence of implicit information about the state of the system, reflecting the sensory

input from the environment. The simplicity and recursive nature of Kalman fil-

tering are some of its appealing properties – it makes real-time implementations of

the system much more feasible, and sets an attractive approach to computationally

implement sequential processing phenomena [21] in an optimal and straightforward

fashion . Along with its well-established benefits, Kalman filter’s real contribution

to the current model is its ability to track the changes of the filters’ states in time.

As the sound elements in the acoustic mixture vary with time, and given the con-

straints on the model to be able to learn the sound structures “on-the-fly”, it is of

paramount importance that the model robustly tracks these temporal changes. Such

requirement is mostly valuable in cases of speech and non-stationary signals where

temporal progression in time is an important clue to the organization of sounds into

separate streams.

144



• Interaction between primitive and top-down influences: The model offers

a natural and biologically plausible framework for interactions between primitive

and internal representations of acoustic elements. For cortical structures to be able

to maintain accurate estimates of auditory events, they have to reconcile between

their current states and the input from the environment. This interaction can be

understood in the context of adaptation of cortical structures to the requirements

of the external world along with predictive anticipation or cognitive influence of

the context in which the sounds are being segregated or fused. For instance, the

choice of the limiting boundaries between the different clusters can be reflected in

the choice of a distance measure (chosen to be euclidian distance in the current

model, Equation 5.6), which is an element that can be further explored in enforcing

specific “schema-based” processes into the “primitive” segregation of sounds.

Along with the main contributions of this model, we can reflect on the challenges

faced in the implementation and application of such system. As far as failures of the model

are concerned, they tend to occur mostly in cases where ambiguous and complex sound

patterns are being analyzed. For instance, specific situations of orchestral musical scenes

raise questions as to the level of granularity at which the system should operate to separate

the instrumental and background elements from the scene. Such decision does not have an

obvious answer, even theoretically, since our individual expectations and familiarity with

the musical melody and instruments define how we would perceive such a complex scene.

In the absence of more specific system modules reflecting prior experiences or learned

knowledge, one does not expect a general-purpose auditory organization system such as

the one presented in this chapter to be successful in handling such complex ambiguous

cases.
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The model is also faced with a challenging task of “learning” through a single pass

of the data. The system is in fact expected to “get it right” in one trial, with no repetition

or exposure to information from a given time instant more than once. The one-time

requirement is necessary to maintain the flow of temporal continuity constraints on the

learning process. Presenting the same time instants twice would disrupt such continuity,

and hence defeats the purpose of enforcing smoothness constraints on the learning function.

Nonetheless, the system proves to be quite successful despite this challenging aspect. It

also demonstrates that such model can be highly invaluable for real-time applications,

particularly interfacing with automatic speech recognition systems, hearing prostheses,

as well as general sound separation and enhancement applications. One of the obvious

shortcomings of the model however is the difficulty to re-synthesize the perceived streams

given the current structure of the system. Simplification of the computational load is

probably the best approach in alleviating the intense computational complexity of the

model. Nonetheless, the model is extremely valuable in exploring various aspects of sound

organization in the brain, allowing us to gain interesting insight into the neural basis of

auditory scene analysis.

The current model has interesting implications in suggesting a cortical basis for

sound organization and scene analsysi. The auditory cortex has been previously probed

for evidence of its role in auditory streaming and sound segregation. Mechanisms such as

synaptic depression [4] and adaptation or forward masking [14, 68] have been presented as

plausible neural mechanisms for explaining the perceptual effects of auditory streaming.

In the current model, we speculate that the very structure of response patterns in the

cortex, along with its tuned selectivity to specific sound features is also important in

understanding the cortical role of auditory stream formation and sound segregation. These
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properties are not necessarily contradictory with the explanations just mentioned about

a role of synaptic properties in cortical auditory streaming. We have indeed shown in

Chapter 3 that such neural mechanisms can in fact be attributed a role in explaining the

computational characteristics of cortical processing. The emergence of its unique temporal

properties is in fact in agreement with the known perceptual attributes of auditory scene

analysis.
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Chapter 6

Conclusion

6.1 Thesis overview

As we described the intricacy of the hearing problem and its multiple facets, our sense of

the complexity of tackling sound processing problems is only reinforced. In this thesis, we

focused on two directions of research pertaining to sound processing: neural and theoretical

modelling. The goal of the current work is to investigate the neural mechanisms underlying

auditory perception of complex sounds at the cortical level, and to formalize computational

models of these mechanisms. Such models can then be the backbone for simulating the

cognitive function of brain in artificial systems.

Our interest in focusing on the neural basis of auditory processing is not to for-

malize a canonical map of the cortex. We are instead more interested in learning the

computational strategies that govern the cortical function. In Chapter 3, we focused on a
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particularly important component of neural processing in audition, that of temporal en-

coding of sound. Evidence shown in this work argues for an interesting interplay between

multiple time scales that determine neural responses in the primary auditory cortex (A1).

While evidence for differential temporal encoding of sound has been know for decades,

its has often been assumed that cortical neurons are mainly characterized by their slow

response dynamics focusing on overall spectrotemporal patterns in sound that are most

relevant for speech and music perception. Here, we presented important physiological

evidence of cortical capability of showing precise time locking to sound features as low as

1msec. Such interplay between cortical time constants hints to a role of A1 in integration

of sound features at different scales, and possibly in the formation of auditory objects.

By reviewing various ingredients of physiological sound processing, we were able

to explore computational implementations of these principles in tackling specific percep-

tual questions. In Chapter 4, we described a computational approach to evaluating the

question of speech intelligibility. We demonstrated that mapping sound features into a

spectrotemporal modulation space can accurately predict the intelligibility level of a signal

under various noise condition. This algorithmic implementation of this concept defines a

new intelligibility metric (called the STMI, Spectro-Temporal Modulation Index) which

was validated by performing a psychoacoustic study to correlate human estimates with

model predictions.

We also exploited the neural evidence from studying cortical responses in formalizing

a general scheme for auditory scene analysis, where we abstract perceptual and physio-

logical principles of auditory processing into a statistical machine learning model. The

approach, described in Chapter 5 outlines an adaptive learning model of sound organiza-

tion into separate perceptual streams, based on a cortical model of dynamic filtering. It
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is based on reconciling evidence between observed sensory inputs and predictions of an

internal world representation, which reflects the dynamics of the cortical learning module.

The algorithm presents no assumption as far as the sound elements are concerned, and

relies on a dual operation between Kalman-based estimation and unsupervised learning

to organize sound elements into their corresponding perceptual streams. The model is

shown to be quite successful in reproducing streaming effects previously tests with human

subjects, as well as addressing the more practical question of speaker separation.

In addition to their scientific contribution, the models described in Chapters 4 and

5 find a direct applicability in many engineering problems, such as hearing-aid research

(where current collaboration work is under way for relating STMI estimates with behav-

ioral advantages of particular microphones in hearing-aid circuits), room acoustics and

communication channels, automatic sound processing, etc.

As our scientific curiosity drives us to explore the whole of “audition”, we find

ourselves facing a tremendously complex and intertwined problem that only collabora-

tive work can hope to address without falling into naive simplifications and oversights

of the bigger questions. While a considerable amount of effort is being put forward in

the scientific community, especially as far as modelling work is concerned, most of the

studies remain independent of each other, setting their own rules and simplifications of

the perceptual theory. Such approach hinders the progress towards generalized theories of

auditory perception, and hence the development of practical engineering tools for sound

processing. As our physiological knowledge expands with further investigation from ex-

perimental neuroscience, the need for better interpretations of the computational task of

biological sound processing becomes even greater. The gap between theoretical and exper-

imental neuroscience can only be bridged through improved and well-founded theories of
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the hearing problem, allowing the models to anticipate predictions that can be tested by

biological experiments, and setting the perfect interaction in collaborative efforts between

theory, experimentation, and engineering application.

6.2 Future prospects
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Figure 6.1: Receptive field patterns of a cortical neuron during a passive state are mod-

ified when the animal is engaged in a task that requires to detect the presence of a tone

frequency at 6KHz (shown by the black arrow in the right panel). The neural selectivity

is potentiated to enhance the responsiveness of this neuron to a 6KHz frequency (STRF

in right panel), hence increasing the likelihood of capturing the attended 6KHz target

during the acoustic task (from [70]).

By formalizing a model of auditory scene analysis or auditory perception, we see an

interesting extension of this work in light of recent data on neural plasticity in the auditory

cortex [70]. It is becoming increasingly clear from physiological studies that receptive fields

in the auditory cortex are constantly adapting and re-organizing dynamically to meet the

challenges of an ever-changing environment and new behavioral demands. These changes

can in fact be examined in the context of the interaction between sound inputs and the

internal states of the individual neurons, which drive it to anticipate certain patterns from

the environment. Directed attention and sound anticipation leads to changes in receptive

field properties of individual neurons and the cortical ensemble, which itself plays a role

in enhancing the behavioral performance during acoustic tasks (Figure 6.1).
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Appendix A

Derivation of predictive learning

A.1 Optimizing the learning function

We start with a posterior optimization function (Equation 5.3), which equivalently corre-

sponds to (Equation 5.4):

J = maxP ( ~Z|~I)

= min
∑

α

[

(I
β −AZα

)
T

Σ
−1

(I
β −AZα

) + (Z̄α −Zα

)
T

Π
−1

(Z̄α −Zα

)
]

(A.1)

Maximizing J corresponds to finding the optimal vector Ẑα

such that ∂J
∂Zα = 0.
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∂J
∂Zα = 0

⇒ −A
T

Σ
−1

(

I
β −AẐα

)

+ Π
−1

(

Ẑα − Z̄α
)

= 0

⇒
(

A
T

Σ
−1

A + Π
−1

)

Ẑα

= Π
−1Z̄ + A

T

Σ
−1

I
β

⇒ Ẑα
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(

A
T

Σ
−1

A + Π
−1

)−1 (

Π
−1 ±A

T

Σ
−1

A
)

Z̄ +
(

A
T

Σ
−1

A + Π
−1

)−1

A
T

Σ
−1

I
β

⇒ Ẑα

= Z̄ +
(

A
T

Σ
−1

A + Π
−1

)−1

A
T

Σ
−1

(

I
β −AZ̄α

)

⇒ Ẑα

= Z̄ + G
(

I
β −AZ̄α

)

(A.2)

where G ,

(

A
T

Σ
−1

A + Π
−1

)−1

A
T

Σ
−1

. The matrix inversion of
(

A
T

Σ
−1

A + Π
−1

)

is

performed under assumptions of non-singularity. Such assumption can be guaranteed by

a proper choice of the state matrix A and the noise covariance matrices Σ and Π.

A.2 Difference to state-space equation

In this section, we outline the steps involved in converting a difference equation into a

state-space equation. Consider the general difference equation:

a0Y (t)+a1Y (t−1)+ · · ·+anY (t−n) = b0X(t)+b1X(t−1)+ · · ·+bn−1X(t−n+1) (A.3)

The conversion into a state-space model can be achieved under two schemes: (1) a

controllable canonical state-space representation, and (2) an observable canonical form.

The difference between the two representation varies simply in the definition of the state

or internal variables, and can be chosen differently depending on the application [123]. In

the current work, we follow the derivation method based on the controllable state-space
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representation, as it gives a more intuitive interpretation of what the internal variables

are. We define the state variable to correspond to the state of the delay registers in a

direct form II representation of the difference equation [115]. We define the state variables

as:

Z(t) , Y (t)− {b1X(t− 1) + · · · + bnX(t− n)}

X(t) = a0Z(t) + a1Z(t− 1) + · · · + an−1Z(t− n+ 1)

(A.4)

From this representation, we define a vector of state variables

~Z(t) = [Z(t)Z(t − 1) · · · Z(t− n+ 1)]T , where T is the transpose operator. By rewriting

Equation A.4 in terms of delayed versions of the state variables Z, we get:

Z(t) = Y (t)− {b1Z(t− 1) + · · · + bnZ(t− n)} (A.5)

which can also be rewritten in vector form, as:
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Y (t) (A.6)

and X(t) is defined by:

X(t) = a0Z(t) + · · ·+ an−1Z(t− n+ 1) (A.7)

The final state-space equations are give by:
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~Z(t) = B ~Z(t− 1) + CY (t) (A.8)

X(t) = A ~Z(t) (A.9)

where,

A , [a0 · · · an−1] and B ,
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