
ABSTRACT

Title of dissertation: THEORY OF
SUPERCONDUCTING
PHASE QUBITS

Frederick W. Strauch
Doctor of Philosophy, 2004

Dissertation directed by: Professor Alex J. Dragt
Department of Physics

The theory of superconducting phase qubits—also known as current-biased

Josephson junctions—is presented. In the first part of this thesis, I introduce quan-

tum computation, quantum simulation, and their deep connection with symplectic

integration. I then consider the fundamental many-body theory of superconduc-

tivity and Josephson junctions and show how the quantum dynamics of a single

macroscopic degree of freedom, the gauge invariant phase difference, emerges. A

complete study of the Hilbert space structure of such a variable is performed for

the current-biased junction. The resulting resonance structure is studied in detail,

using various formalisms including the WKB approximation, instanton methods,

the complex scaling transformation, basis set stabilization, numerical integration,

and dynamical simulation using Lie algebraic wave-packet propagation.

The second part of this thesis explores how the current-biased junction can



be used as an element of a quantum computer—a quantum bit (qubit). Single

qubit operations are studied, followed by the presentation of the theory of coupled

qubit devices. My key result is the design and optimization of quantum logic gates

with high fidelity (F ∼ 0.9999) for capacitively coupled phase qubits with short

gate times (∼ 10 ns). Finally, I examine an advanced qubit-coupling scheme, a

resonant coupling method utilizing a harmonic oscillator as the auxiliary degree of

freedom. The models and methods presented here have been developed in direct

collaboration with an experimental program. These experiments are the first to

show spectroscopic evidence for entanglement between two and three macroscopic

degrees of freedom in a superconducting circuit.
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Chapter 1

Introduction

This thesis focuses on particular physical systems which, through significant hard

work, may one day be elements of a quantum computer. We start in this Chapter

by considering the important questions: What is a quantum computer? Why is

it interesting? and For what can it be used? Along the way we deal with issues

of entanglement, universal quantum logic gates, and quantum simulation protocols.

Finally, we point out the significant overlap between these issues and the study of

symplectic maps, and particularly symplectic integration. These theoretical consid-

erations will then be used in the remaining Chapters of this thesis to simulate and

characterize the fundamental dynamics of the phase qubit.

Recent work has shown that quantum computation can be more powerful than

classical models of computation. This follows from the fact, observed by Feynman

[1], that the simulation of an arbitrary state of a quantum system with n qubits

1



requires resources exponential (2n) in the number of elements (n). This exponen-

tial overhead is due to the existence of quantum entanglement [2]. Conversely, the

presence of entangled states is a necessary (although not sufficient) condition for

a quantum computer to be exponentially faster than a classical computer [3]. A

prime example is Shor’s algorithm [4] for factoring an n-bit number. This algo-

rithm runs exponentially faster (n3) than the known classical factoring algorithms

(exp(n1/3(log2 n)2/3)) [5].

These developments have inspired a significant effort, spanning many theo-

retical and experimental disciplines, to find suitable systems that can implement

quantum information processing. Many reviews on this new field exist [5, 6, 7, 8].

Most theoretical work on physical realizations of a quantum computer attempt to

reduce the system to some ideal set of simple Hamiltonians which are known to be

sufficient for implementing quantum algorithms. The Hamiltonians of most systems,

however, are certainly not simple. The reduction of the system to some ideal typi-

cally requires the neglect of higher energy levels as well as the dynamics of coupling

elements. Including these effects is necessary because ultimately one must show

that the implementation of quantum logic succeeds with high probability. One of

the central topics of this thesis is to show how one can approximate the ideal qubit

dynamics while taking into account all of the nuances of the real system.

Finally, we note that there are deep connections between unitary methods for

quantum systems and symplectic methods for classical systems. This connection is

due to the central role of Lie algebras in dynamical systems. Solving both Hamilton’s

and Schrödinger’s equations can be seen as the exponentiating of the Lie algebra.
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This is most clearly seen in quantum mechanics. The evolution of observables with

the Hamiltonian operator Ĥ is given by the wave-function |Ψ(t)〉, which for time-

independent Hamiltonians evolves as

|Ψ(t)〉 = exp(−iĤt/~)|Ψ(0)〉. (1.1)

A similar expression can be given for classical systems. The time-evolution of any

observable f(q, p), a function of the phase-space coordinates (q, p), is given by the

Hamiltonian H(q, p) through the symplectic map

f(q, p, t) = exp(−t : H(q, p) :)f(q, p). (1.2)

This map is called symplectic [9] since it generalizes the definition of a 2N × 2N

symplectic matrix M , which satisfies

M †JM = J (1.3)

where J the antisymmetric 2N × 2N matrix, with the block diagonal form

J =

(
0 −IN
IN 0

)

, (1.4)

and IN is the N ×N identity matrix. The full exponential in (1.2) is defined by its

power series. In the exponent, : H : is a Lie operator, whose action is defined by

: H(q, p) : f(q, p) = {H, f}(q, p) =
∂H

∂q

∂f

∂p
− ∂H

∂p

∂f

∂q
. (1.5)

Note that this is the Poisson bracket of H and f . The commutator of two Lie

operators is also a Lie operator, by the fundamental homomorphism

[: H1 :, : H2 :] =: H1 :: H2 : − : H2 :: H1 :=: {H1, H2} :, (1.6)
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which can be proved using the fundamental definition and the Jacobi property of

the Poisson bracket

{A, {B,C}} + {B, {C,A}} + {C, {A,B}} = 0. (1.7)

These instances of Lie algebraic and group properties are both governed by

the Baker-Campbell-Haussdorf (BCH) theorem [10]. This theorem states that the

product of two exponentials eA and eB is also the exponential of an element in the

free Lie algebra generated by A and B. That is

exp(A) exp(B) = exp(C) (1.8)

where

C = A+B + 1
2
[AB] + 1

12
([AAB] + [BBA]) + 1

24
([ABBA])

− 1
720

([BBBBA] + [AAAAB]) + 1
360

([BAAAB] + [ABBBA])
+ 1

120
([AABBA] + [BBAAB]) + · · · ,

(1.9)

and we have introduced an abbreviated commutator notation such that [XY Z] =

[X, [Y, Z]], [WXYZ] = [W, [XY Z]] = [W, [X, [Y, Z]]] and so on. In general, the

series for C is infinite, with all higher order terms formed only from commutators of

A andB—there are no terms like An or [AB]n. This deep property of the exponential

function is essential for our understanding of quantum logic, quantum simulation,

and symplectic integration.

The brief introduction of this Chapter cannot fully describe the interest and

usefulness of quantum computation. As a relatively new field of research, it is certain

that much remains to be discovered. Taking recent history as our guide, we may

only begin to know what is possible when working quantum computers have actually

been built.
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The remaining Chapters of this dissertation are devoted to a particular solid-

state device, the current-biased Josephson junction—called a phase qubit. In Chap-

ter 2 we explore the fundamental physics of the Josephson effect. We show how the

many-body dynamics reduces to the quantum mechanics of a single macroscopic de-

gree of freedom: γ, the phase difference across the junction. A critical examination

is made of various subtle issues regarding number-phase commutation relations, and

the periodicity of the phase in current-biased devices.

We fully explore the quantum mechanics of the simplest model of a junction in

Chapter 3. The resonances of the “washboard” potential are the focus of this Chap-

ter. We first introduce three methods of characterizing resonances: the stabilization

method for constructing a discrete density of states, the Gamow-Siegert method to

find poles of the Green’s function, and finally the continuum wavefunctions. To illus-

trate and justify these methods we examine two exactly solvable models. We then

show how stabilization, complex scaling, and a continuum normalization method

can be used to find and characterize the resonances of the washboard.

In Chapter 4 we extend this analysis by looking at a typical approximation

used in the literature, that of a quadratic plus cubic potential. Many analytical

results are derived in this Chapter: high-order perturbation theory for the energy

levels, tunneling rates from WKB, and instanton methods. We compare these results

with the exact numerical methods derived in Chapter 3.

In Chapter 5, we analyze how a junction can be used for quantum compu-

tation. We study two types of single qubit operations: Rabi oscillations to drive

logic transitions and adiabatic bias current ramps to shift the qubit operating point.
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In particular, we develop simple theoretical models of these operations. We then

compare these with numerical simulations that fully model the ideal dynamics of

the circuit and show how simple control pulses can optimize the fidelity.

Chapter 6 introduces a simple capacitive coupling scheme for two phase qubits.

We analyze the energy levels and entanglement structure of this device. We also

construct two model two-qubit operations: controlled phase and swap gates. We

then compare simple theoretical models of these operations with numerical simu-

lations that fully model the ideal dynamics of the circuit. We then show how to

optimize the fidelity.

In Chapter 7, we study the quantum mechanical behavior of a macroscopic,

three-body, superconducting circuit, based on recent experimental work by Dr.

Huizhong Xu [11]. Here, we provide theoretical analysis of the microwave spec-

troscopy of a resonator coupling two large Josephson junctions. By tuning each

junction separately into resonance with the resonator, strong coupling is observed

between each junction and the resonator. Bringing both junctions together into

resonance with the resonator, we find spectroscopic evidence for entanglement be-

tween all three degrees of freedom, and demonstrate a new method for controllable

coupling of distant qubits.

Finally, we conclude this dissertation in Chapter 8 by outlining some of the

remaining issues for quantum computation with phase qubits.

6



1.1 Quantum Computation

Historically, Feynman was the first to truly explore quantum computation. He was

inspired by the difficulty of simulating quantum systems using classical comput-

ers [1]. This led him to consider a quantum mechanical model of computation, by

constructing a Hamiltonian whose dynamics would produce logic gates on simple

two-state elements [12], now called quantum bits, or qubits [13]. The next key the-

oretical development was Deutsch’s observation [14] that the existence of quantum

superpositions (“quantum parallelism”) may allow quantum computers to sample a

larger space than that of classical computers. In this Section we review the basic

theory of quantum computation. We begin with the classical notion of a bit and the

fundamental reversible logic operations on one and two bits, and then extend these

to the quantum case. We conclude by discussing the concept of a universal set of

quantum logic gates.

1.1.1 Classical Reversible Computation

A general model for computation includes: (i) a memory storage medium, (ii) proce-

dures that manipulate the memory, and (iii) a set of instructions for manipulation.

The essence of all computational tasks can be represented by the dynamical manip-

ulation of information-storage elements. We shall first consider reversible computa-

tion because quantum computation, being a unitary operation, must be reversible.

While most existing classical computers use irreversible gates, the same algorithms

can always be implemented using reversible logic gates [7].
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The most fundamental element of information is the bit. A bit has only two

states, which we designate as |0〉 and |1〉, or in general by |x〉, where x can be 0 or 1.

The fundamental importance of the bit is due to Shannon’s coding theorem [7]. The

theorem states: given any information source with an alphabet of N symbols where

the relative frequency of the k-th symbol is given by pk (such that
∑N

k=1 pk = 1),

for that information source there exists a binary coding procedure for which the

average number of bits needed to encode each symbol of the information source is

the Shannon entropy:

H({pk}) = −
N∑

k=1

pk log2 pk. (1.10)

Based on this theorem there is no loss of generality to consider the bit as our abstract

general information storage element.

Dynamical manipulations of bits are called logic gates. A classical computer

can perform only two operations on a single bit: leave the bit alone, or flip it. In

matrix form we represent the two states of our bit by

|0〉 =

(
1
0

)

, |1〉 =

(
0
1

)

. (1.11)

Then the fundamental bit-flip operation would be the NOT gate X

X =

(
0 1
1 0

)

. (1.12)

This gate has the property that X|x〉 = |x⊕ 1〉, where x can be 0 or 1 (the addition

is modulo base 2 with 0 ⊕ 0 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1, and 1 ⊕ 1 = 0). Note that

X is unitary and therefore invertible. The operation that leaves the bit alone is the

identity

I =

(
1 0
0 1

)

(1.13)
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which has the correct property I|x〉 = |x〉.

For two bits, the four possible states are |xy〉 with both x and y independently

equal to 0 or 1. In matrix form we can set

|00〉 =







1
0
0
0






, |01〉 =







0
1
0
0






, |10〉 =







0
0
1
0






, |11〉 =







0
0
0
1






. (1.14)

A simple set of logical operations on these states is

I ⊗ I =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






, I ⊗X =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






,

USWAP =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






, UCNOT =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






.

(1.15)

These gates have the following effects on a two-bit state |x y〉:

I ⊗ I|x y〉 = |x y〉,

I ⊗X|x y〉 = |x y ⊕ 1〉,

USWAP|x y〉 = |y x〉,

UCNOT |x y〉 = |x y ⊕ x〉. (1.16)

They are also all unitary. The controlled-NOT gate UCNOT is particularly important

for computation, for it has the structure of a conditional operation: bit two is flipped

if and only if bit one is set to 1. In this way, bit one controls the state of bit two.

By combining these gates appropriately, all permutations of the states |x y〉 can be

generated. One useful identity for these gates is

UCNOTUSWAPUCNOT = USWAPUCNOTUSWAP. (1.17)
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Note that we have used the tensor product notation for the two bits and the

logic gates (e.g. I⊗X). The tensor product in vector space induces a tensor product

in matrix space given by

(
a00 a01

a10 a11

)

⊗
(
b00 b01
b10 b11

)

=







a00b00 a00b01 a01b00 a01b01
a00b10 a00b11 a01b10 a01b11
a10b00 a10b01 a11b00 a11b01
a10b10 a10b11 a11b10 a11b11






. (1.18)

It is perhaps surprising that the gates described above are not capable of

universal classical computation. For universal classical reversible computation, it is

necessary to include an appropriate three-bit gate. The matrix form for three bits is

|000〉 =















1
0
0
0
0
0
0
0















, |001〉 =















0
1
0
0
0
0
0
0















, |010〉 =















0
0
1
0
0
0
0
0















, |011〉 =















0
0
0
1
0
0
0
0















,

|100〉 =















0
0
0
0
1
0
0
0















, |101〉 =















0
0
0
0
0
1
0
0















, |110〉 =















0
0
0
0
0
0
1
0















, |111〉 =















0
0
0
0
0
0
0
1















.

(1.19)

One such three-bit gate is the Toffoli gate T . This gate has the matrix form

T =















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0















. (1.20)

The action of T on bit states can be summarized by T |x y z〉 = |x y (z ⊕ x · y)〉,

where x ·y denotes bitwise multiplication. The matrix T is also unitary. Bit three is
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flipped if and only if x = y = 1, a nice generalization of the controlled-not. Another

universal gate is the Fredkin gate F , which has the matrix form

F =















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1















. (1.21)

This gate acts on three-bit states as F |x y z〉 = |x′ y′ z〉, with x′ = x ⊕ z · (x ⊕ y)

and y′ = y ⊕ z · (x ⊕ y). The matrix F is unitary. This gate swaps x and y if and

only if z = 1. This gate is sometimes called a controlled-swap gate. All classical

computations can be implemented using networks of reversible two-bit gates and

either of these three-bit gates.

1.1.2 Quantum Logic Gates

For quantum computation, we must generalize our classical model. The qubit is

the quantum generalization of the bit. The key quantum feature we add to the bit

is the principle of superposition. That is, the state of each qubit of our quantum

computer can not only be |0〉 and |1〉, but also any linear combination

|Ψ〉 = c0|0〉 + c1|1〉. (1.22)

The amplitudes cx can be complex, and must satisfy |c0|2 + |c1|2 = 1. Note that the

overall phase of |Ψ〉 is generally irrelevant; we can therefore let c0 = cos θ be real

and by the normalization we have c1 = eiφ sin θ. Thus there are two real parameters

(θ, φ) that specify |Ψ〉. The two logic operations introduced above, the identity I
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and the NOT gate X, can now act on our quantum state |Ψ〉. Their quantum action

is just their classical action on each basis state |x〉, extended by linearity:

I|Ψ〉 = c0I|0〉 + c1I|1〉 = c0|0〉 + c1|1〉 (1.23)

X|Ψ〉 = c0X|0〉 + c1X|1〉 = c0|1〉 + c1|0〉. (1.24)

These logic gates are unitary operators on the qubit Hilbert space.

There are many more unitary operators which can act on qubits and have no

classical analogue. A convenient basis for these operators is the Pauli basis: {I, X,

Y , Z}, where I and X are defined above, and Y and Z are:

Y =

(
0 −i
i 0

)

, Z =

(
1 0
0 −1

)

. (1.25)

Letting ~σ = {X, Y, Z}, we can write an arbitrary unitary operator U by

U = eiφ exp (−iθ~n · ~σ) = eiφ cos(θ)I − ieiφ sin(θ)~n · ~σ, (1.26)

where U has been parametrized by two angles φ and θ, and a three-dimensional unit

vector ~n—a total of four real parameters.

A fundamental result, discussed below, is that every unitary operator (up to

the overall phase φ) can be constructed from repeated composition of only two

fundamental operators. Thus, while there are a continuum of values for θ and ~n,

only two such values are needed. The overall phase φ has no physical effect on a

qubit and can therefore be neglected.

Two important gates in quantum algorithms are the Hadamard gate UH and

the controlled-Z gate UCZ, also called the controlled-phase gate. These have the
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matrix form

UH =
1√
2

(
1 1
1 −1

)

, (1.27)

UCZ =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1






. (1.28)

The controlled-Z and the controlled-NOT gates are simply related

(I ⊗ UH)UCZ(I ⊗ UH) = UCNOT. (1.29)

The combination of the non-classical features of UH (superposition) and UCZ (controlled-

phase) have “interfered” to yield the “classical” controlled-NOT gate.

So far we have seen that the elements of quantum computing are significantly

different from the classical elements. While classical bits can be in only one of two

states (|0〉 or |1〉), and can only be manipulated in two ways (I or X), qubits can be

in an arbitrary superposition of |0〉 and |1〉, and can be manipulated in many ways

(recall the continuum of parameters for U above). This divide becomes even greater

when superposition is extended to multiple qubits. For example, the quantum state

of two independent qubits (A and B) is

|ΨA〉 ⊗ |ΨB〉 = (a0|0〉 + a1|1〉) ⊗ (b0|0〉 + b1|1〉)
= a0b0|00〉 + a0b1|01〉 + a1b0|10〉 + a1b1|11〉. (1.30)

This, however, is not the most general quantum state of two qubits, which is

|ΨAB〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉, (1.31)

with |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1. States of the form (1.31) cannot be written as

(1.30) unless the coefficients satisfy |c00c11 − c01c10| = 0. States that can be written
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in the the form given by (1.30) are called product states; states that cannot be so

written are called entangled states. Note that the number of real parameters needed

to specify the product states (1.30) are 4, i.e. 2 parameters for each qubit. For an

n-qubit product state we would need 2n real parameters. This is in contrast to the

generally entangled state (1.31), which requires 8 − 2 = 6 real parameters (two can

be removed since the phase is arbitrary and the amplitudes are normalized). For an

n-qubit entangled state, we would need 2n+1 − 2 real parameters. This exponential

difference, first noted by Feynman [1], suggests that the use of quantum systems

may generate great computational power.

The potential of quantum computation would be a curiosity if the relevant dy-

namics could not be generated by simple, physically realizable operations. The first

progress in formulating a realizable model of quantum computation was Deutsch’s

study of quantum networks (or circuits) [15], and the observation that certain funda-

mental operations on qubits could be universal. Universality means that an arbitary

operation on n-qubits can be achieved by repeated applications of elements of the

gate set G. Deutsch showed that a certain 3-qubit gate of the form

D =















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 i cos θ sin θ
0 0 0 0 0 1 sin θ i cos θ















, (1.32)

and the set of simple permutations of the qubits, together form a universal gate set.

This seems natural, as universal classical computation required the three-bit Toffoli

or Fredkin gate.

14



Deutsch’s work initiated a study of the complexity of constructing unitary

operations, and the discovery of simpler sets of universal gates. In particular, Di-

Vincenzo showed, using aspects of Lie group theory, that only two-qubit gates are

necessary to create D [16]. A particular two-qubit gate which (with qubit permu-

tation) is universal was given by Barenco [17]. Using Lie methods, Lloyd [18] and

independently Deutsch, Barenco, and Ekert [19] showed that almost any two-qubit

gate was universal. Finally, Barenco et al. [20] showed that the set of single-qubit

gates and the two-qubit controlled-NOT gate UCNOT formed a universal gate set.

The Lie theory needed to understand the universality of almost any gate [18,

19] is a simple application of the Baker-Campbell-Haussdorf relation (1.8)-(1.9).

Suppose we have two gates UA(τ) = eiτA and UB(τ) = eiτB, where A and B are

two Hermitian operators and the time τ is under our control. If we then form the

product

W = UA(τN)UB(τN−1)UA(τN−2) · · ·UA(τ3)UB(τ2)UA(τ1) (1.33)

we know that the C in W = eiC will be a sum of elements of the free Lie algebra

over A and B. If A and B are finite dimensional and sufficiently general, then we

can choose the τk in (1.33) such that any particular C in the algebra is realized.

A constructive argument that this is possible can be seen from the fundamental

Trotter-type formulae

ei(A+B)τ = lim
n→∞

(
eiAτ/neiBτ/n

)n
, (1.34)

e[A,B]τ = lim
n→∞

(

e−iB
√
τ/ne−iA

√
τ/neiB

√
τ/neiA

√
τ/n
)n

. (1.35)

(The n → ∞ limit is unnecessary for approximate work; see below). By using
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(1.34)-(1.35) and their generalizations, one can construct any element of the unitary

group by repeated applications of UA(τ) and UB(τ).

There is an important feature in the commutator formula (1.35): negative

values of τk seem to be needed. Most interactions, however, cannot be easily reversed

in the laboratory. This problem can be avoided for A and B of sufficiently small

dimension [21]. In this case eiτA is nearly a periodic function of τ with the period

depending on the distribution of the eigenvalues of A. In particular, there will be a

recurrence time τA such that eiτAA ' I. Then, negative values of τ can be simulated

by ei(τA−τ)A ' e−iτA.

The proven universality of the product (1.33) does not seem to be useful in

practice. The simple constructive formulae (1.34) and (1.35) will require a large

number of fundamental steps to achieve a given level of accuracy. In general, for

A and B d-by-d matrices the number of terms in the product (1.33) needed to

specify an arbitrary C is 2d2. For N qubits, d = 2N , and thus this construction is

exponential in the number of qubits. There are, however, many algorithms which

can be constructed by a number of gates polynomial in N . These issues will be

explored later when we consider quantum simulation.

There is, however, a particular decomposition of two-qubit gates which allows

us to understand even better the structure of universality. This canonical decom-

position theorem was first discovered by Kraus and Cirac [22], and independently

discussed using Lie group theory by Khaneja, Brockett, and Glaser [23]. That such

a decomposition exists can also be seen in the work of Makhlin [24]. A complete

discussion is given by Zhang et al. [25]. The central result is that any two-qubit
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unitary operator (acting on qubits A and B) can be written in the form:

U = (UA ⊗ UB)Ud (VA ⊗ VB) (1.36)

where UA and VA are operators on qubit A, UB and VB are operators on qubit B,

and Ud has the form

Ud = exp(i(αxX ⊗X + αyY ⊗ Y + αzZ ⊗ Z)). (1.37)

This form was discovered by Kraus and Cirac in the context of determining how

to generate as much entanglement as possible between two initially unentangled

systems. It is therefore useful, before deriving their result, to discuss how to quantify

the entanglement present in a given quantum state.

1.1.3 Entanglement

There are many measures of entanglement. We will define three related measures

below: the entropy of entanglement E (1.41), the entanglement of formation EF

(1.46), and the two-qubit concurrence C (1.47). Fortunately, one finds that in many

instances all measures are roughly equivalent. The basic principle is that entan-

glement is a resource shared between parties that can be used for the transfer or

manipulation of quantum information such as quantum teleportation [26]. There-

fore, any entanglement measure should be able to say something about how a given

quantum state can be used for these processes. For pure states, the entropy of entan-

glement is the fundamental measure. This is related to the Schmidt decomposition,

17



which for a quantum state |ΨAB〉 shared between parties A and B has the form

|ΨAB〉 =
d∑

k=1

ck|ak〉 ⊗ |bk〉. (1.38)

The coefficients ck can be chosen real and are called the Schmidt coefficients, while

|ak〉 and |bk〉 are called the Schmidt bases for systems A and B, respectively. For

simplicity we have assumed that the dimensions of A and B are both equal to

d. This special form of |ΨAB〉 follows from a singular-value decomposition of the

matrix cij = 〈iA jB|ΨAB〉, where |iA〉 and |jB〉 are arbitrary bases for systems A and

B. Now, all statistical properties of state |ΨAB〉 for system A are determined by the

reduced density matrix:

ρA = trB(|ΨAB〉〈ΨAB|) =

d∑

k=1

c2k|ak〉〈ak|. (1.39)

Similarly, all statistical properties for system B are determined by its reduced density

matrix:

ρB = trA(|ΨAB〉〈ΨAB|) =
d∑

k=1

c2k|bk〉〈bk|. (1.40)

Thus, the Schmidt decomposition of the state |ΨAB〉 directly yields the eigen-

values (c2k) and eigenvectors of both of the reduced density matrices ρA and ρB.

Any entanglement measure should only be a function of the Schmidt coefficients,

as these are the only properties of the state shared equally between systems A and

B. Furthermore, any entanglement measure should be equal to zero for product

states |ΨAB〉 = |ΦA〉 ⊗ |ΦB〉. These states are already in Schmidt form (1.38), with

c1 = 1 and ck 6=1 = 0. The entropy of entanglement is one such measure. For a
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d-dimensional quantum system, it is defined by the rule

E(ΨAB) = −trA(ρA log2 ρA) = −trB(ρB log2 ρB) = −
d∑

k=1

c2k log2(c
2
k). (1.41)

For two qubits, a maximally entangled state has c1 = c2 = 2−1/2 with a

quantum state of the form

|Ψ〉 =
1√
2

(|00〉 + |11〉) . (1.42)

Using these Schmidt coefficients in (1.41) we find E = 1. For a general d-dimensional

state (qudit) we have c1 = c2 = · · · = cd = d−1/2, that is

|Ψ〉 =
1√
d

(|00〉 + |11〉 + · · · |dd〉) (1.43)

with E = log2(d).

Both the unit of the entanglement measure (1.41), and states of the form

(1.42) have been called ebits [27], since maximally entangled two-qubit states such

as (1.42) have E = 1. Furthermore, there is a very physical motivation for this

measure [27]. By local operations (unitary transformations and measurements) and

classical communication between A and B, n copies of |ΨAB〉 can be converted into

N standard ebits with the asymptotic (n → ∞) relation N = nE(Ψ). Conversely,

local operations and classical communication can convert N standard ebits into

n copies of |ΨAB〉 with the same asymptotic ratio. These two procedures define

the entanglement of distillation (making ebits from Ψ) and the entanglement of

formation (making Ψ from ebits).

The above discussion is for pure states, defined as quantum system which

are described by a state vector such as (1.42) with certainty. A mixed state is a
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description for a quantum system which can be in one of several states |ψj〉, each

with probability pj. A mixed state is described by a density matrix ρ, of the form

ρ =
∑

j

pj |ψj〉〈ψj |. (1.44)

Note that the states |ψj〉 are not necessarily mutually orthogonal, nor are the weights

pj necessarily the eigenvalues of ρ. The form of (1.44) suggests that we compute the

entanglement of each pure state |ψj〉 using (1.41), and then perform the average

Ē(pj , ψj) =
∑

j

pjE(ψj). (1.45)

For a general density matrix ρ, there are in fact many different decompositions

of the form (1.44). For each we can calculate the average entanglement. The en-

tanglement of formation for ρ is then defined as the minimal average entanglement,

minimizing over all decompositions:

EF (ρ) = min
pj ,ψj

∑

j

pjE(ψj). (1.46)

If there is a decomposition of the density matrix such that it can be written as

a mixture of product states (E(ψj) = 0), then the mixed state has a vanishing

entanglement of formation (EF (ρ) = 0).

Finding the minimal decomposition in (1.46) is difficult, since there is no bound

on the number of pure states |ψj〉, which need not be orthogonal or linearly indepen-

dent. Nevertheless, Wootters [28] derived the exact entanglement of formation for

an arbitary two-qubit state. To this end he introduced the concurrence C, defined

for normalized pure states by

C(ψ) = |〈ψ|Y ⊗ Y |ψ∗〉|, (1.47)
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where |ψ∗〉 is the complex-conjugate of |ψ〉 in the two-qubit computation basis (in

which Y takes its standard Pauli form). Using the Schmidt decomposition (1.38)

for two-qubits (d = 2), one finds C(Ψ) = 2c1
√

1 − c21. This definition satisfies the

two properties required of an entanglement measure: on a product state (c1 = 1)

C(Ψ) = 0, while on a standard ebit (c1 = 1/
√

2) C(Ψ) = 1. For a general density

matrix one defines

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (1.48)

where the λk are the square roots of the eigenvalues of the matrix

ρ(Y ⊗ Y )ρ∗(Y ⊗ Y ), (1.49)

and the entanglement is

EF (ρ) = −x log2 x− (1 − x) log2(1 − x) (1.50)

with

x =
1

2

(

1 +
√

1 − C(ρ)2
)

. (1.51)

Two essential properties regarding the pure state concurrence (1.47) are needed

below, and these motivate the introduction of the “magic basis” for two-qubit states.

These basis states |Φk〉 are defined by the rules

|Φ1〉 = 2−1/2(|00〉 + |11〉),
|Φ2〉 = −i2−1/2(|00〉 − |11〉),
|Φ3〉 = 2−1/2(|01〉 − |10〉),
|Φ4〉 = −i2−1/2(|01〉 + |10〉).

(1.52)

This basis is magic for the following reasons. First, each state is maximally entangled

(with E(Φk) = C(Φk) = 1 for all k. Second, each state is a simultaneous eigenstate

of X ⊗X, Y ⊗ Y , and Z ⊗Z. Furthermore, Y ⊗ Y |Φ∗
k〉 = −|Φk〉 for all k. This last
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property allows an easy calculation of the concurrence for an arbitrary state when

written in the magic basis: for |Ψ〉 =
∑

k µk|Φk〉, the concurrence is

C(Ψ) = |
∑

k

µ2
k|. (1.53)

Since |Ψ〉 is normalized,
∑

k |µ2
k| = 1. Therefore, if |Ψ〉 is to be maximally entangled

with C(Ψ) = 1, each coefficient in the sum for the concurrence must add in phase,

or µ2
k = eiα|µk|2 for all k. Thus, up to an overall phase, all maximally entangled

states, when expressed in the magic basis, have real coefficients. Finally, the magic

basis coefficients of a product state satisfy
∑

k µ
2
k = 0.

1.2 Canonical Decomposition

Having defined the magic basis and the concurrence, we now state the logic of the

canonical decomposition theorem. First, in the magic basis one can show that an

arbitary unitary operator U has the form:

U =
∑

k

eiεk |Ψ̃k〉〈Ψk| (1.54)

where |Ψk〉 and |Ψ̃k〉 are two (possibly distinct) bases, in which each basis vector

is maximally entangled. Second, any maximally entangled basis can be constructed

from the standard magic basis by using local unitary operations and phases; that is

we can find UA, UB, VA, VB and phases ζk and ηk such that:

|Ψk〉 = e−iζkV †
A ⊗ V †

B|Φk〉
|Ψ̃k〉 = eiηkUA ⊗ UB|Φk〉.

(1.55)

Finally, using (1.54) and (1.55), one can write an arbitrary unitary operator as

U = (UA ⊗ UB)Ud(VA ⊗ VB) (1.56)

22



with

Ud =
∑

k

eiλk |Φk〉〈Φk|, (1.57)

and λk = εk+ζk+ηk. Since the |Φk〉 are simultaneous eigenvectors of X⊗X, Y ⊗Y ,

and Z ⊗ Z, Ud can be written

Ud = ei(α0I⊗I+αxX⊗X+αyY⊗Y+αzZ⊗Z), (1.58)

with
α0 = λ1 + λ2 + λ3 + λ4

αx = 1
4
(λ1 − λ2 − λ3 + λ4)

αy = 1
4
(−λ1 + λ2 − λ3 + λ4)

αz = 1
4
(λ1 + λ2 − λ3 − λ4).

(1.59)

By absorbing the global phase α0 into the local unitary operators, we have completed

the decomposition (1.36).

We first consider (1.55). Each |Ψk〉 is a maximally entangled state, and as

a basis there is the orthogonality condition 〈Ψj|Ψk〉 = δjk. Using these, and the

properties of the concurrence one can show [22] that the Schmidt decomposition of

each state must be

|Ψ1〉 = eiφ12−1/2(|a1〉 ⊗ |b1〉 + |a2〉 ⊗ |b2〉),
|Ψ2〉 = eiφ22−1/2(|a1〉 ⊗ |b1〉 − |a2〉 ⊗ |b2〉),
|Ψ3〉 = eiφ32−1/2(|a1〉 ⊗ |b2〉 + |a2〉 ⊗ |b1〉),
|Ψ4〉 = eiφ42−1/2(|a1〉 ⊗ |b2〉 − |a2〉 ⊗ |b1〉).

(1.60)

In (1.60), the Schmidt basis vectors |aj〉 and |bj〉 are arbitrary, but normalized such

that 〈aj|ak〉 = 〈bj |bk〉 = δjk. We present a simple argument why this must be the

case. Up to global phases, to specify a two-qubit basis one must use 14 real numbers.

These consist of 6 parameters for each state (see (1.31)), minus 6 for orthogonality

and 4 for the entanglement relations, or 4× 6− 6− 4 = 14. Similarly, if we remove

the global phases in (1.60) there are 3 parameters for each Schmidt vector, plus 2
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for the relative phases in the superpositions (in |Ψ1〉 and |Ψ3〉, for example); thus

4 × 3 + 2 = 14. Up to a simple relabelling of the states, the set given in (1.60) is

the only solution. Now, forming the unitary operators

VA = |0〉〈a1| + |1〉〈a2|
VB = |0〉〈b1| + |1〉〈b2| (1.61)

and using (1.60), we see that (1.55) is indeed correct.

We now prove (1.54). Let the symbol T denote the operation of taking the

transpose (of matrix elements) with respect to the magic basis. Then define the

symmetric unitary operators W1 = UTU and W2 = UUT . Since these operators

are symmetric, their eigenvectors are orthogonal and can be chosen to have real

coefficients. Let the eigenvectors of W1 be |Ψk〉 and those of W2 be |Ψ̃k〉. By the

first property of the concurrence, these vectors both form a maximally entangled

basis. In terms of these, we have:

W1 =
∑

k e
−i2εk |Ψk〉〈Ψk|,

W2 =
∑

k e
−i2εk |Ψ̃k〉〈Ψ̃k|.

(1.62)

Note that the eigenvalues of W1 and W2 are both e−i2εk since they are related by

the unitary transformation W2 = UW1U
†. Their eigenvectors must also be related:

|Ψ̃k〉 = e−iδkU |Ψk〉, where the phase is as yet undetermined. Altogether, we can

write U in the form:

U =
∑

k

e−iδk |Ψ̃k〉〈Ψk|. (1.63)

Since the coefficients of both |Ψk〉 and |Ψ̃k〉 are real in the magic basis we have

(|Ψ̃k〉〈Ψk|)T = |Ψk〉〈Ψ̃k|). Then, by forming W1, we find that δk = εk, proving

(1.54).
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Using the canonical decomposition, there is a large body of work showing

how to simplify quantum logic gate construction. The controlled-NOT gate UCNOT

can be exactly generated by repeated application of an arbitrary entangling two-

qubit gate U and single-qubit gates [29]. Similar constructions exist to construct an

arbitrary gate using single-qubit gates and U [30, 31], or a two-qubit Hamiltonian

[25] in optimal time [32, 33, 34, 35]. Finally, it has recently been shown that it takes

at most 3 applications of UCNOT, with single-qubit gates, to generate an arbitrary

two-qubit gate U [36].

These simplifications arise due to the assumption that single-qubit operations

are easy. The key aspect is therefore the nonlocal part of U , namely Ud in

U = (UA ⊗ UB)Ud (VA ⊗ VB) (1.64)

which has the form

Ud = exp (i(αxX ⊗X + αyY ⊗ Y + αzZ ⊗ Z)) . (1.65)

Since each of the terms in the exponent of Ud commute with each other, repeated

applications of the gate will evolve αx, αy, αz. Similarly, by simple single-qubit

logical gates one can permute these parameters, or reverse their sign. Using these

elements one can ensure that αx, αy, αz approach the appropriate target parameters.

Finally, the gate construction can be completed by applying any additional single-

qubit gates.

Some examples of the decomposition are the following. For UCNOT we have

UCNOT = eiπ/4(I ⊗ UH) exp
(

i
π

4
Z ⊗ Z

)

(Rz(π/2) ⊗Rz(π/2)UH) (1.66)

25



where we have defined Rz(φ) = exp(−iφZ/2). We also have

USWAP = e−iπ/4 exp
(

i
π

4
(X ⊗X + Y ⊗ Y + Z ⊗ Z)

)

. (1.67)

Finally, we will construct the following two quantum logic gates that are relevant

for coupled superconducting phase qubits described in Chapter 6 [37]: a controlled-

phase gate

U1(φ) =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iφ






, (1.68)

and a swap-like gate

U2(θ1, θ2) =







1 0 0 0
0 cos θ1 −i sin θ1 0
0 −i sin θ1 cos θ1 0
0 0 0 e−iθ2






. (1.69)

Their decompositions are

U1(φ) = e−iφ/4(Rz(−φ/2) ⊗Rz(−φ/2)) exp

(

−iφ
4
Z ⊗ Z

)

, (1.70)

and

U2(θ1, θ2) = e−iθ2/4(Rz(−θ2/2) ⊗ Rz(−θ2/2))
× exp

(
−i1

4
(2θ1X ⊗X + 2θ1Y ⊗ Y + θ2Z ⊗ Z)

)
.

(1.71)

1.3 Quantum Simulation

Feynman’s original work [1] on quantum computers was titled “Simulating Physics

with Computers”. From a physics perspective, quantum computers, if built, will be

perhaps most useful for simulating other quantum mechanical systems. Therefore,

much theoretical effort has been focused on precisely how one quantum system can

simulate the dynamics of another.
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The concept of simulation often has the unfortunate connotation of being

inferior to some real physical experiment. It is, of course, tempting to argue that

any physical quantum computer is actually a quantum simulator, simulating the

dynamics of an ideal quantum computer. In this view, there are only quantum

simulators.

The true goal of this section (and thesis) is not to merely simulate some par-

ticular system, but to understand how to control the dynamics of some system such

that it can simulate the dynamics of another arbitrary system. This concept of con-

trol is very important. In fact, many of the considerations of this section have been

studied as control techniques in nuclear magnetic resonance (NMR) spectroscopy

[38]. Quantum control theory is at the heart of quantum computation and quantum

simulation [39].

A key result of quantum simulation, given by Lloyd [40], is remarkably similar

to the quantum logic gate universality proof given above (1.33)-(1.35). Suppose we

are given the task of simulating an arbitrary N -body Hamiltonian H with two-body

interactions, using a quantum computer. We can write H in either of the forms

H =
∑

k

Hk +
∑

j<k

Hjk =
∑

K

H̃K (1.72)

where Hk acts on system k, and Hjk is the interaction between systems j and k; the

final sum is over all one and two-body interactions H̃K . Can such a general H be

simulated on our quantum computer efficiently?

The affirmative answer can be found by using a generalization of (1.34):

e−iHτ =
∏

K

e−iH̃Kτ +
∑

K>J

[HK , HJ ]τ
2/2 +O(τ 3). (1.73)
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This splitting formula shows that, if we have the ability to simulate each interaction

HK , by simulating each one in sequence, we can build up the full simulation of the

many-body Hamiltonian H . While such simulation is not exact, the error terms can

be made sufficiently small for small enough τ . If each term in the product can be

simulated efficiently, then the entire Hamiltonian can be simulated efficiently.

We now recount Lloyd’s analysis [40]. Each individual system can be described

by a discrete d-dimensional system, which can be encoded by nq = log2 d qubits.

For each such system the simulation of its internal Hamiltonian Hk requires using

approximately d2 fundamental operations, while the interaction terms Hjk may re-

quire d4 operations. The accuracy of the algorithm is determined by the number

of systems and size of the chosen time-step τ . For a total time T = nτ , the total

error is of order E ∼ L2T 2/n, and the total number of operations is Nop ∼ nLd2 for

the single-system terms Hk, or at most Nop ∼ nLd4 for the interaction terms Hjk.

For each, n is the number of timesteps and L is the number of terms in the Hamil-

tonian. Note that for long-range interactions, L ∼ N2, while for local interactions

(such as nearest-neighbor), L ∼ N . Observe that all of these simulation parameters

are polynomial in the number of elements N . By encoding the system in a set of

qubits, we can efficiently simulate the evolution of any wavefunction using H .

In contrast, on a classical computer, the wavefunction alone requires the stor-

age of dN numbers, which is exponential in N . Even the simple multiplication of

one term of H runs exponentially slower on a classical computer [41].

Lloyd’s analysis shows that we can simulate H by breaking it into the simpler

terms HK , each of which can be efficiently implemented using quantum logic gates.
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Other studies have followed this pattern [42, 43]. A more challenging question is

to assume that we have access to some many-body Hamiltonian H itself, plus some

restricted local operators (such as single-qubit gates). What types of Hamiltonians

can this set of interactions simulate, and can these simulations be done efficiently?

The solution to this inverse problem is much more difficult. While building up

H from simple elements was possible using the splitting formula, it is not so clear

how to start from H and end up with simpler elements. This problem has been

studied in many interesting cases, and is a topic of continuing research. We will

summarize the work of Nielsen and co-workers [44, 45, 46, 47]; a complete set of

references can be found therein.

The key result of [45] for qudits (d-level quantum systems) is this: “Let H

be a given two-body entangling Hamiltonian on N qudits, and let K be a desired

two-body Hamiltonian on N qudits. Then we have an efficient algorithm to simulate

evolution due to K using only (a) the ability to evolve according to H , and (b) the

ability to perform local unitaries (that is, single-qudit unitaries) on the individual

qudits.”

The simulation algorithm begins with the fundamental interactions, and uses

a series of composition laws to enlarge the group of accessible Hamiltonians, which

will ultimately include all possible two-body Hamiltonians, including the desired

Hamiltonian K. The composition rules are the following.

I. Scaling. If we can simulate Hamiltonian A, then by proper timing we

can simulate B = λA for any λ. This follows by setting tA = λtB such that

e−itAA = e−itBB.
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II. Splitting. If we can simulate A and B, then by using a splitting formula

we can simulate A+B. This approximate simulation uses the second order splitting

e−iτA/2e−iτBe−iτA/2 ' e−iτ(A+B)−iτ3C , (1.74)

where the correction term C can be calculated using the Baker-Campbell-Haussdorf

theorem (1.8)-(1.9). Later in this Chapter we will prove that for higher-order

schemes we must include −A and −B.

III. Commutating. If we can simulate A, −A, B, −B, then we can simulate

C = −i[A,B]. This is due to the formula

e−iτAe−iτBeiτAeiτB ' e−τ
2[A,B]. (1.75)

IV. Conjugating. If we can simulate A, and implement the gates U and U †,

then we can simulate the conjugated Hamiltonian UAU †, which follows from the

exact relation

U exp(−iτA)U † = exp(−iτUAU †). (1.76)

V. Symmetrizing. If we can implement a group of unitaries G = {g1, . . . , gN}

and simulate A, then we can simulate the symmetrized Hamiltonian

Ā =
1

N

N∑

j=1

g†jAgj, (1.77)

where N is the order of the group N = |G|. This follows by from the (simple)

splitting property (II)

e−iτĀ '
N∏

j=1

g†je
−iτAgj (1.78)
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and conjugation (IV). This important operation, introduced independently by Viola,

Knill and Lloyd [48, 49] and Zanardi [50] allows one to decouple all terms in A which

do not commute with the group G: after symmetrizing we have [Ā, gk] = 0 for all k.

As a particular example, consider the two-qubit Hamilonian

H = Z ⊗ I + 2X ⊗ Z + Z ⊗ Z. (1.79)

We can eliminate the coupling terms by averaging over the Pauli group of the second

qubit, with

G1 = {g1 = I ⊗ I, g2 = I ⊗X, g3 = I ⊗ Y, g4 = I ⊗ Z}. (1.80)

We find

1

4

(

g†1Hg1 + g†2Hg2 + g†2Hg2 + g†2Hg2

)

= Z ⊗ I, (1.81)

where we have used XZX = Y ZY = −Z. If instead, we use the full Pauli group

G2 = {g1 = I ⊗ I, g2 = I ⊗X, g3 = I ⊗ Y, g4 = I ⊗ Z
g5 = X ⊗ I, g6 = X ⊗X, g7 = X ⊗ Y, g8 = X ⊗ Z
g9 = Y ⊗ I, g10 = Y ⊗X, g11 = Y ⊗ Y, g12 = Y ⊗ Z
g13 = Z ⊗ I, g14 = Z ⊗X, g15 = Z ⊗ Y, g16 = Z ⊗ Z}

(1.82)

in (1.77) we find

H̄ =
1

16

16∑

j=1

g†jHgj = 0. (1.83)

Finally, by extracting the j = 1 term in (1.83), we have the decomposition

1

16

16∑

j=2

g†jHgj = −H. (1.84)

Thus, by symmetrization over the local unitary operators in G2, we can exactly

eliminate all of the dynamics of H , or even simulate −H . Note that while we

have explored a particular example, these constructions can be readily extended to

arbitrary n-qudit Hamiltonians [45].
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By application of the composition laws I-V, any Hamiltonian can be simulated.

The algorithm presented in [45] systematically isolates a particular term in the two-

qudit Hamiltonian H . This term can then be used, by the same composition laws,

to construct the desired two-qudit K. Thus, it is the simple ability of H to entangle

qudits, and not the particular form of H , that allows universal quantum simulation.

Note that composition law V allows us to simulate −A and −B, which are

needed for commutation (law III), from A, B and local unitaries. This simulation

uses the second-order splitting formula (1.74). We will explore higher-order algo-

rithms later in this Chapter, and find that the need to simulate −A reappears. We

will show that higher-order quantum simulation will generally require additional

resources.

1.4 Symplectic Integration

Symplectic integration was introduced by Ruth in 1983 [51], initially in the guise

of sequential canonical transformations. That the underlying technique was quite

general for all Lie algebras was first observed by Neri [52]. In this section we describe

symplectic integration. We will see how its results are in fact closely related to

universal quantum simulation.

The central goal of symplectic integration is to approximate the symplectic

map

exp(−ε : H0 :) = exp(−ε : (T + V ) :) (1.85)
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by the factorized from

N∏

i=1

exp(−tiε : T :) exp(−viε : V :), (1.86)

where the coefficients ti and vi are chosen to make the resulting symplectic map

approximate exp(−ε : H0 :) as closely as possible. We have assumed that H0 can

be written as the sum of kinetic energy T (p) which is a function of the momentum,

and the potential energy V (q) which is a function of the position. If this is true, the

product form of (1.86) is desirable since each term is both a symplectic map and

easy to evaluate:

exp(−ε : T :)q = (1 − ε : T : + · · · )q = q + εdT
dp
,

exp(−ε : T :)p = (1 − ε : T : + · · · )p = p,
exp(−ε : V :)q = (1 − ε : V : + · · · )q = q,
exp(−ε : V :)p = (1 − ε : V : + · · · )p = p− εdV

dq
.

(1.87)

That the product (1.86) can be used to approximate (1.85) follows from the

Baker-Campbell-Haussdorf theorem, which implies

N∏

i=1

exp(−tiεT ) exp(−viεV ) = exp(−εH(ε)) (1.88)

where we have simplified the notation by replacing : T : by T , : V : by V , and where

H(ε) is defined by

H(ε) = hTT + hV V + ε (hTV [TV ]) + ε2 (hTTV [TTV ] + hV V T [V V T ]) + · · · (1.89)

and the higher-order terms are all repeated commutators of T and V . By choosing

the coefficients ti and vi appropriately, one arranges to have hT = hV = 1, and the

remaining error terms equal to 0, up to some order in ε. We call a factorization an

n-th order scheme if the the first error term in H(ε) occurs at εn. A classic example

33



is the second-order factorization

S2(ε) = e−εV/2e−εT e−εV/2 = e−εH2(ε) (1.90)

where H2(ε) is

H2(ε) = T + V + ε2
(

1

12
[TTV ] − 1

24
[V V T ]

)

+ · · · (1.91)

1.4.1 Higher-Order Symplectic Integration

There are general methods to generate higher-order factorizations. The most direct

method [52] is to derive and hopefully solve the order conditions that arise from

the BCH expansion (1.89). In this method, the algebraic difficulties quickly grow

as the order n of the integrator increases [53]. Another, more subtle, method is to

symmetrize a lower-order integrator, as proposed by Yoshida [54] and Suzuki [55].

Suppose we have an n-th order factorization

Sn(ε) = exp(−εH0 − εn+1Hn). (1.92)

Then consider the symmetrized factorization

S̄(ε) = Sn(aε)Sn((1 − 2a)ε)Sn(aε). (1.93)

Using the Baker-Campbell-Haussdorf formula, we find

S̄(ε) = exp
(
−εH0 − εn+1

(
2an+1 + (1 − 2a)n+1

)
Hn +O(εn+3)

)
. (1.94)

If a satisifies

2an+1 + (1 − 2a)n+1 = 0 (1.95)
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then S̄ will be an integrator of order n + 2. Equation (1.95) can be satisfied if n is

an even integer, in which case

a = an =
1

2 − 21/(n+1)
, (1.96)

a result first found by Creutz and Gocksch [56]. A somewhat more complicated

construction was proposed by Suzuki

Sn+2(ε) = Sn(bε)Sn(bε)Sn((1 − 4b)ε)Sn(bε)Sn(bε), (1.97)

with

b = bn =
1

4 − 41/(n+1)
. (1.98)

Applying (1.95) and (1.96) to the second-order integrator (1.90) leads to the fourth-

order integrator found by Forest and Ruth [57]

SFR(ε) = e−aεV/2e−aεT e−(1−a)εV/2e−(1−2a)εT e−(1−a)εV/2e−aεT e−aεV/2 (1.99)

with a = (2 − 21/3)−1.

1.4.2 Sheng-Suzuki Theorem

Both of the symmetrized constructions (1.93) and (1.97) require negative timesteps,

since we have 1 − 2an < 1 − 4bn < 0. This is a general consequence of the form

N∏

i=1

exp(−tiεT ) exp(−viεV ). (1.100)

Sheng [58] and Suzuki [59] proved the important result that there is no integrator

above second order which is of this form with purely positive coefficients: ti > 0
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and vi > 0 for all i. To prove this, we follow the method of Chin [60], which is more

direct than Suzuki’s geometric arguments. The Taylor expansion of (1.100) is

1 + cT εT + cV εV + cTT ε
2T 2 + cTV ε

2TV + cV T ε
2V T + cV V ε

2V 2

+cTTT ε
3T 3 + cTTV ε

3T 2V + cTV T ε
3TV T + cTV V ε

3TV 2 + cV TT ε
3V T 2

+cV TV ε
3V TV + cV V T ε

3V 2T + cV V V ε
3V 3 + · · ·

(1.101)

where the coefficients, polynomials in ti and vi, can be found by direct expansion.

A few of these are

cT =
∑N

i=1 ti
cV =

∑N
i=1 vi

cTV =
∑N

i=1,j=i tivj
cTTV =

∑N
i=1,j=i,k=j(1 − δij/2)titjvk

cTV V =
∑N

i=1,j=i,k=j(1 − δjk/2)tivjvk.

(1.102)

These coefficients are related to the error coefficents of the symplectic map

exp(−εH(ε)). Performing a Taylor expansion of the exponential, using (1.89) and

comparing with (1.101) we find that

cT = hT ,
cV = hV ,
cTV = hTV + 1

2
hThV ,

cTTV = hTTV + 1
2
hThTV + 1

6
h2
ThV ,

cTV V = hV V T + 1
2
hV hTV + 1

6
hTh

2
V .

(1.103)

If the integrator of (1.100) is third-order or higher, we must have

hT = hV = 1, hTV = hTTV = hV V T = 0. (1.104)

We first observe that the expression for cTTV can be rewritten by reordering

the sums, yielding

cTTV =
1

2

N∑

k=1

vk

(
k∑

j=1

tj

)2

(1.105)

and similarly for cTV V

cTV V =
1

2

N∑

i=1

ti

(
N∑

j=i

vj

)2

. (1.106)
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Defining the variables

si =
∑i

j=1 tj, ui =
∑N

j=i vj, (1.107)

we observe that ti = si− si−1, s0 = 0, sN = eT = 1 and vi = ui− ui+1, u1 = eV = 1,

uN+1 = 0. Using definitions (1.107) in (1.102), (1.105), (1.106) and subsitituting

these and (1.104) into (1.103), we find that

N∑

i=1

(si − si−1)ui =
1

2
, (1.108)

1

2

N∑

i=1

ui(s
2
i − s2

i−1) =
1

6
, (1.109)

1

2

N∑

i−1

(si − si−1)u
2
i =

1

6
. (1.110)

If all ti = si − si−1 > 0, then (1.110) is a positive-definite quadratic form in the

variables ui. If we minimize this subject to (1.108)-(1.109) as constraints, and it is

greater than 1/6, then we will have proven that (1.104) cannot hold with ti > 0.

To do so we form the functional

F (ui, si, λ1, λ2) =
1

2

N∑

i=1

(si − si−1)u
2
i − λ1

(
N∑

i=1

(si − si−1)ui −
1

2

)

−λ2

(
N∑

i=1

ui(s
2
i − s2

i−1) −
1

3

)

, (1.111)

where λ1 and λ2 are Lagrange multipliers used to ensure the constraints (1.108)-

(1.109), through ∂F/∂λ1 = 0 and ∂F/∂λ2 = 0. Taking the variation of F with

respect to uk yields

∂F

∂uk
= (sk − sk−1) (uk − λ1 − λ2(sk + sk−1)) = 0 (1.112)

with the solution

uk = λ1 + λ2(sk + sk−1). (1.113)
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Substituting (1.113) into the first constraint (1.108) yields

λ1 + λ2

N∑

i=1

(s2
i − s2

i−1) = λ1 + λ2 =
1

2
, (1.114)

where we have used the relation
∑N

i=1(s
2
i − s2

i−1) = s2
N = 1. The second constraint

(1.109) yields

λ1 + λ2

N∑

i=1

(s2
i − s2

i−1)(si + si−1) =
1

3
(1.115)

which we simplify by defining

g =
N∑

i=1

(s2
i si−1 − sis

2
i−1) (1.116)

in terms of which (1.115) becomes

λ1 + λ2 + gλ2 =
1

3
. (1.117)

Substituting (1.114) in (1.117) we find gλ2 = −1/6. Finally, if we substitute (1.113)

in (1.111), with both constraints set to zero we find

F =
1

2

N∑

i=1

(si − si−1)(λ1 + λ2(si + si−1))
2 =

1

2
(λ2

1 + 2λ1λ2 + λ2
2(1 + g))

=
1

2
((λ1 + λ2)

2 + gλ2
2) =

1

2

(
1

4
+

1

36
g−1

)

=
1

8
+

1

72
g−1. (1.118)

Thus, the minimum of F is the maximum of g. To find this maximum we use

(1.116) to calculate

∂g

∂sk
= (sk+1 − sk−1)(sk+1 + sk−1 − 2sk) = 0 (1.119)

which yields

sk = (sk+1 + sk−1)/2 = k/N (1.120)
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where we have used the normalization sN = 1.

Finally, substituting (1.120) into g (1.116) we find

g =
1

N3

N∑

i=1

k(k − 1) =
1

3
(1 −N−2), (1.121)

with
∑N

k=0 k = N(N + 1)/2 and
∑N

k=0 k
2 = N(N + 1)(2N + 1)/6. That (1.121) is

a maximum can be shown by using (1.120) in the second derivatives

∂2g

∂sj∂sk
=

2

N
(δj,k+1 + δj,k−1 − 2δj,k). (1.122)

The eigenvalues of G = ∂2g/∂sj∂sk, as a matrix operator (using periodic boundary

conditions), are

Gn = − 8

N
sin2(πn/N) (1.123)

(1 ≤ n ≤ N), and always negative. Thus, (1.121) truly is the maximum of g, and

by (1.118) the minimum of F is

Fmin =
1

8
+

1

72
g−1 =

1

6
+

1

24

N−2

1 −N−2
>

1

6
. (1.124)

This proves that for any finite N there is no factorization of the form (1.100) that

satisfies (1.104) and has ti > 0. This is the Sheng-Suzuki theorem.

1.4.3 Extended Symplectic Integration

Recently, Suzuki [61] and Chin [62] have proposed a new factorization scheme

N∏

i=1

exp(−tiεT ) exp(−viεṼ ) (1.125)

where Ṽ is the modified potential

Ṽ = V + cε2[V V T ]. (1.126)
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For quadratic kinetic energies with the matrix form T = 1
2
pTM−1p this next (clas-

sical) commutator is solely a function of q

[V V T ] = {V, {V, T}} =

(
∂V

∂q

)T

M−1

(
∂V

∂q

)

. (1.127)

This extension of the original symplectic integration scheme is not restricted by the

Sheng-Suzuki theorem. Namely, there exist fourth-order factorizations of the form

(1.125) with coefficients ti > 0. One example [63] is

S4A(ε) = e−εV/6e−εT/2e−2εṼ /3e−εT/2e−εV/6 (1.128)

with Ṽ given by (1.126) with c = −1/48. Surprisingly, when this scheme is iterated

to higher orders [64, 65] negative time-steps reappear; this seems to be unavoidable

[66]. Thus, above fourth-order there is no known symplectic algorithm with purely

positive coefficients.

1.4.4 Wave-packet Propagation

The symplectic integrators given above can be directly applied to quantum mechan-

ical problems by letting ε = iτ . The kinetic energy operator is then diagonal in

momentum space and the potential energy operator is diagonal in position space.

Implementing these operators between alternating Fast Fourier Transforms (FFTs)

constitutes a convenient “split-operator” scheme for propagating wavepackets [67].

A clear discussion of this method can be found in [68]. While there are many other

propagation schemes of similar accuracy [69] the split-operator scheme is particu-

larly useful with time-dependent potentials [68, 70]. Associating a time-shift opera-

tor pt = −i∂/∂t with each kinetic energy term takes care of the correct sequencing
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of the potential energy operators. For the second-order method this yields

S2(t+ τ, t) = e−iτV (t+τ)/2e−iτT e−iτV (t)/2, (1.129)

while for the Forest-Ruth propagator we have

SFR(t+ τ, t) = e−iaτV (t+τ)/2e−iaεT e−i(1−a)τV (t+τ−aτ)/2e−i(1−2a)τT

×e−i(1−a)τV (t+aτ)/2e−aεT e−iaτV (t)/2 (1.130)

with a = (2 − 21/3)−1. Finally, Chin’s algorithm 4A gives

S4A(t+ τ, t) = e−iτV (t+τ)/6e−iτT/2e−i2τṼ (t+τ/2)/3e−iτT/2e−iτV (t)/6. (1.131)

1.5 Higher-Order Quantum Simulation

Recall that the general two-qudit simulation used the second-order splitting formula

(1.74). We now consider higher-order versions, the Forest-Ruth propagator

e−iτ(H1+H2) ' e−iaτH1/2e−iaτH2e−iτ(1−a)H1

×e−iτ(1−2a)H2e−iτ(1−a)H1e−iaτH2e−iaτH1/2
(1.132)

with a = (2 − 21/3)−1, and Chin’s propagator 4A

e−iτ(H1+H2) ' e−iτH1/6e−iτH2/2e−iτ2H̃1/3e−iτH2/2e−iτH1/6 (1.133)

with

H̃1 = H1 +
1

48
τ 2[H1, [H1, H2]]. (1.134)

The use of the Forest-Ruth propagator requires us to be able to simulate both

H1 and −H1, since (1−2a) < 0. One might be tempted to recall that symmetrization

(composition law V) allowed us to simulate −H1. However, the symmetrization
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procedure itself assumed a splitting formula. Thus, by the Sheng-Suzuki theorem

there is no general uniform higher-order quantum simulation algorithm when −H1

is not directly available. For certain interactions, however, the dynamics can be

reversed without using the full symmetrization procedure. The Ising interaction

Z ⊗ Z is an example, since

(I ⊗X)(Z ⊗ Z)(I ⊗X) = −Z ⊗ Z. (1.135)

Thus, while there is no general algorithm, interesting higher-order implementations

exist.

To use Chin’s propagator requires we must be able to simulate the commutator

[H1, [H1, H2]]. (1.136)

This simulation need only be to low order in τ , since the commutator is multiplied

by τ 2 in (1.134). Note that a direct use of the generalized commutator formula

requires negative timesteps, and thus the ability to simulate −H1. As this cannot

be done in general, we must look more carefully at the structure of H1. For certain

interactions we may be able to simulate the commutator directly.

We consider the example studied by Dodd et al. [44], where the given two-

qubit Hamiltonian is

H1 = Z ⊗ I + 2X ⊗ Z + Z ⊗ Z, (1.137)

and we wish to simulate

K = X ⊗ Z. (1.138)

Simulating K for time tK = π/4 will generate a gate equivalent to UCNOT. Note
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that by conjugating H1 with X ⊗ I, we get

H2 = −Z ⊗ I + 2X ⊗ Z − Z ⊗ Z (1.139)

and thus

K =
1

4
(H1 +H2). (1.140)

We can directly simulate H1 andH2, and thus we can use the second-order algorithm

to simulate K. Calculating the commutator we find

[H1, [H1, H2]] = −32Z ⊗ I − 32Z ⊗ Z + 32X ⊗ Z + 32X ⊗ I
= 8(H1 +H2) + 8(R⊗ I)(H1 +H2)(R

† ⊗ I) − 32Z ⊗ I + 32X ⊗ I,

(1.141)

where R = 2−1/2(I + iY ). As this is a sum of accessible Hamiltonians, we can

simulate the commutator using the first-order splitting e−iτ
3Ae−iτ

3B. The resulting

error will be of order τ 6, which can be neglected.

Using the Baker-Campbell-Haussdorf formula (1.8)-(1.9), and symbolic cal-

culations using Mathematica, we can calculate the error terms of the second and

fourth-order factorizations. We define the total propagators by

e−iτ(H1+H2)−iτn+1Cn . (1.142)

For the second-order factorization we find

C2 =
1

24
[H1H1H2] −

1

12
[H2H2H1]. (1.143)

For the Forest-Ruth propagator (with n = 4) we find

CFR = a1[H1H1H1H1H2] + a2[H2H2H2H2H1] + a3[H1H2H2H2H1]
+a4[H2H1H1H1H2] + a5[H1H1H2H2H1] + a6[H2H2H1H1H2]

(1.144)
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where the coefficients are

a1 = 1
960

(21 − 421/3 − 922/3)(−2 + 21/3)−5,
a2 = 1

120
(7 − 1721/3 + 1021/3)(−2 + 21/3)−5,

a3 = 1
120

(4 − 521/3 + 21/3)(−2 + 21/3)−5,
a4 = 1

240
(−2 + 521/3 − 322/3)(−2 + 21/3)−5,

a5 = 1
80

(3 − 521/3 + 222/3)(−2 + 21/3)−5,
a6 = 1

80
(−2 + 521/3 − 322/3)(−2 + 21/3)−5.

(1.145)

From Chin’s algorithm we have

C4A = b1[H1H1H1H1H2] + b2[H2H2H2H2H1] + b3[H1H2H2H2H1]
+b4[H2H1H1H1H2] + b5[H1H1H2H2H1] + b6[H2H2H1H1H2]

(1.146)

with
b1 = −79/155520, b2 = −73/25920
b3 = −1/2160, b4 = 1/3240
b5 = −1/4320, b6 = 1/2880.

(1.147)

We let each algorithm simulate the dynamics of K for a total time t = Nτ of

order unity. As a measure of the error we consider the norm E = |U − V |, where

U is the exact evolution and V the simulated evolution. Using the error terms

calculated above, we can approximate the total error by E ' Nτn+1‖Cn‖. We can

also calculate the total number n(H) of applications of H . Using τ ∼ N−1, and the

worst case for the norms of Cn for each factorization, we can show that

E2 ' 1
2
N−2, n2(H) = 3N,

EFR ' 16
7
N−4, nFR(H) = 7N,

E4A ' 8
105
N−4, n4A(H) = 10N.

(1.148)

We see the expected scaling of each factorization with N . To illustrate how the

number of applications compare, consider E ∼ 10−6. We find that n(H) ' 2100

for the second-order propagator, n(H) ' 270 for the Forest-Ruth propagator, and

n(H) ' 170 for the Chin-4A propagator. While the higher-order factorizations do

not reach the optimal value of n(H) = 3 [25], these methods are general and can be

extended to systems of higher dimension, and even higher accuracy.
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Chapter 2

The Josephson Effect

The phase qubit considered in this thesis relies on the Josephson effect. This remark-

able discovery by Brian Josephson [71] is that supercurrent can coherently tunnel

from one superconductor through an insulating barrier to another superconductor.

There are in fact two Josephson effects: there can be constant current at zero voltage

(the dc Josephson effect), alternating current at constant voltage (the ac Joseph-

son effect), all without dissipation of energy. This effect was so startling that John

Bardeen, of the Bardeen-Cooper-Schrieffer theory of superconductivity [72], initially

denied such a possibility [73, 74]. The Josephson effect was quickly measured and

is now both the foundation of the voltage standard and the fundamental physics

of superconducting qubit devices [6]. A tunnel junction from from three layers,

superconductor-insulator-superconductor is now called a Josephson junction. The

effect is actually more general than superconductivity, and has also been measured
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in superfluid helium [75, 76].

We first recount Feynman’s classic presentation [77]. Assume that there are

two macroscopic wavefunctions for two adjacent superconductors separated by an

insulating barrier, of the form Ψ1 = ρ
1/2
1 eiφ1 and Ψ2 = ρ

1/2
2 eiφ2 , where ρk is the

Cooper pair density of each superconductor (k = 1, 2). Further assume that these

two wavefunctions are weakly coupled (with some coupling strength K), and that

there is a voltage difference V across the two superconductors. For this system,

Feynman proposed that we write an effective Schrödinger equation:

i~
dΨ1

dt
= eVΨ1 +KΨ2,

i~
dΨ2

dt
= −eV Ψ2 +KΨ1. (2.1)

Here e is the electric charge. Substituting our wavefunctions, we find Josephson’s

current relation

I =
dρ1

dt
= −dρ2

dt
=

2K

~

√
ρ1ρ2 sin(φ2 − φ1), (2.2)

and Josephson’s voltage relation

d(φ2 − φ1)

dt
=

2eV

~
+
K

~

√
ρ1

ρ2

(

1 − ρ2

ρ1

)

cos(φ2 − φ1). (2.3)

If the two superconductors are similar and the net current is small, then ρ1 ' ρ2 = ρ0

and we can simplify the voltage relation (2.3) to

V =
~

2e

d

dt
(φ̇− φ̇). (2.4)

Defining the critical current Ic = 2Kρ0/~ we can rewrite the current relation (2.2)

as

I = Ic sin(φ2 − φ1). (2.5)
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Figure 2.1: Circuit diagram of the current-biased Josephson junction.

Note that the coherence of the superconductors is essential, since both (2.4) and

(2.5) involve the phase difference γ = φ2 − φ1.

From the Josephson relations (2.4)-(2.5) we can derive the classical dynamics of

the current-biased Josephson junction, whose circuit diagram is shown in Fig. 2.1. In

addition to the two superconductors, there is a capacitor formed across the insulating

barrier. The bias current can either charge the capacitor C or tunnel through the

junction, and these two channels add

I = Ic sin γ + CV̇ . (2.6)

where we have used γ = φ2 − φ1 and (2.5). Using (2.4) for the voltage, we find that

we have the following equation of motion for the phase difference γ

C(Φ0/2π)γ̈ + Ic sin γ − I = 0 (2.7)

where we have used the flux quantum Φ0 = h/2e.

The dynamics of (2.7) can also be derived from the Lagrangian

L =
1

2
C(Φ0/2π)2γ̇2 +

Φ0

2π
(Ic cos γ + Iγ) , (2.8)
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and we have introduced a factor of Φ0/2π to give L the units of energy. The canonical

momentum conjugate to γ is

p =
∂L
∂γ̇

= C(Φ0/2π)2γ̇ = mγ̇, (2.9)

where the effective mass is m = C(Φ0/2π)2. The Hamiltonian corresponding to L

is

H = pγ̇ −L. (2.10)

Using (2.9) and (2.8) in (2.10) we have

H =
1

2m
p2 − Φ0

2π
(Ic cos γ + Iγ) . (2.11)

We have applied standard Hamiltonian dynamics to the superconducting cir-

cuit of Fig. 2.1, with the phase γ as a classical variable. An entirely similar treatment

can be given to an inductor-capacitor (LC) harmonic oscillator. The main novelty

of (2.11) is the nonlinear current-voltage relations (2.4)-(2.5) of the Josephson junc-

tion. We now take the rather unfamiliar step to use the Hamiltonian of (2.11) as the

basis of a quantum dynamics for the phase. That is, we postulate that the phase is

governed by a wavefunction Ψ(γ, t) which satisfies the Schrödinger equation given

with the Hamiltonian (2.11) and the canoncial momentum operator p = −i~∂/∂γ,

i~
∂Ψ

∂t
(γ, t) = − ~

2

2m

∂2Ψ

∂γ2
(γ, t) − Φ0

2π
(Ic cos γ + Iγ) Ψ(γ, t). (2.12)

This crucial step was first argued by Philip Anderson in 1964 [78], and is

the basis for the study of macroscopic quantum phenomena initiated by Anthony

Leggett in 1980 [79, 80]. Indeed, the quantum dynamics of the phase is the basis
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of all superconducting qubits [6]. Quantum phenomena associated with (2.12) have

been observed experimentally. These include macroscopic quantum tunneling [81,

82, 83, 84], energy level quantization [85, 86, 87, 88] and pulsed [89, 90, 91] and

driven (Rabi) coherent oscillations [92, 93, 94].

Conceptually, there are several questions that arise. First, we have already

used the quantum mechanics of the system to find the Josephson relations (2.4)-

(2.5). In passing from (2.11) to (2.12), it seems that we are re-quantizing the system.

How can such a procedure be understood? Second, the meaning of the phase as a

fundamental quantum variable may seem somewhat mysterious. For example, it

is well-known that, for a harmonic oscillator, there is no uniquely defined phase

operator φ that is conjugate to the number operator N such that [φ,N ] = i [95].

What then does the superconducting phase γ represent, and what are the true

conjugate variables of the Josephson junction? Finally, a phase is normally defined

as a periodic variable which is only defined up to 2π. The Hamiltonian in (2.12),

however, breaks this periodicity by the term linear in the phase. How can such a

term arise? Does this truly model a current-biased Josephson junction?

In this Chapter, we critically examine these questions, and review the various

solutions that have been proposed in the literature. We will find that the first two

questions can be answered definitively. It is our opinion that the third question

is not completely resolved, although there are several intriguing possibilities. We

note that many (though not all) of these issues have been previously addressed by

Leggett ([96, 97, 98, 99, 100]). See also the review by Schön and Zaikin [101].

In the remainder of this thesis we take the view that the Hamiltonian of (2.12)
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is correct, taking the phase as an extended coordinate (−∞ < γ < ∞). The

justification for this is the following: The unresolved conceptual issues can only be

settled by a combination of theory and experiment. By choosing a definite model

we can generate theoretical results and predictions. Many of these predictions have

been tested in experiments, and the agreement is quite compelling. Thus, while

much remains to be learned aboutfor our the quantum dynamics of the phase, much

can been gained by using the simplest model.

2.1 Josephson Effect in the BCS model

We first review how the phase degree of freedom γ emerges from the microscopic

theory of superconductivity and the the Josephson effect. This many-body theory

is the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [72]. In brief,

the BCS theory is based on the fact that the Fermi surface of a metal is unstable in

the presence of an attractive interaction [102]. The electrons become Cooper pairs

whose dynamics yields superconductivity.

The standard BCS model Hamiltonian can be written [103]

H =
∑

k

εk(nk + n−k) −
∑

k,k′

Vk,k′b
†
kbk′ (2.13)

where we have used the operators

nk = C†
kCk,

n−k = C†
−kC−k,

b†k = C†
kC

†
−k,

bk = C−kCk,

(2.14)

and C†
k is the (fermionic) creation operator for an electron in momentum state k with

spin up and energy εk, C
†
−k the creation operator for an electron in momentum state
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−k with spin down. The operator b†k creates paired electrons, one with momentum

k and spin up, the other with momentum −k and spin down. The matrix Vk,k′ > 0

represents an effective attractive interaction between these paired electrons. For

simplicity (following [72]) this can be taken as constant V in a region of momentum

space such that εF − ~ωD < εk < εF + ~ωD and zero otherwise, where ~ωD is the

characteristic phonon energy. This phonon-mediated interaction is physically due

to the scattering of an electron off the crystal lattice. The lattice is then deformed

in such a way to attract another electron.

Of central importance to (2.13) is the ground state, which is approximately

given by

|φ〉 =
∏

k

(

uk + vke
iφb†k

)

|0〉 (2.15)

where |0〉 representes the vacuum state. The real amplitudes uk and vk satisfy

u2
k + v2

k = 1, and are found by the variational method of BCS [72] or the mean-field

approximation of Anderson [103]. Their explicit form is not needed here.

What is important about (2.15) is the uniform phase φ of the pair states, and

that the ground state energy is independent of φ. For an isolated superconductor it

is convenient to neglect it entirely, and set φ = 0. Josephson saw that this cannot

be done for coupled superconductors.

The tunneling Hamiltonian used by Josephson was first used by Cohen, Fali-

cov, and Phillips [104] to study tunneling between a superconducting and a normal

metal and subsequently studied thereafter [74, 105, 106]. It reads

H = HR +HL +HT (2.16)
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where HR and HL are BCS Hamiltonians of the form (2.13), and the tunneling term

is

HT =
∑

k,q,α

(

TkqαC
†
LkαCRqα + T ∗

kqαC
†
RqαCLkα

)

. (2.17)

This interaction represents the tunneling of electrons between the left and right

superconductors. The first term in the sum destroys a particle on the right in

momentum state q and spin state α, creates a particle on the left in momentum

state k and spin state α, with the tunneling amplitude Tkqα. Josephson showed that

tunneling of actual electron pairs can be found by working to second-order in HT

in perturbation theory. Pair tunneling occurs with only virtual excitation of the

quasi-particles—a superposition of an electron and a hole (see also [78]).

We follow work of Wallace and Stavn [107], who use the quasi-spin formalism

of Anderson [103]. They showed how these virtual excitations could be formally

eliminated by a canonical transformation to an effective pair-tunneling term. Taking

T2 ∼ |Tk,q,α|2 as a constant they obtained the new tunneling Hamiltonian

HT2
= −T2

∑

k,q

(

b†LkbRq + b†RqbLk

)

. (2.18)

The appropriate BCS state for the coupled superconductors is

|φ1, φ2〉 =
∏

k

(

uLk + vLke
iφ1b†Lk

)

⊗
(

uRk + vRke
iφ2b†Rk

)

|0〉. (2.19)

We see that there are now two phases, and global transformations of the electron

operators will not change the phase difference γ = φ2−φ1. Furthermore, the energy

of the state with the tunneling Hamiltonian now depends on γ. In fact, the coupling

energy is given by taking the expectation value of (2.18) with (2.19), which yields

∆E = −EJ cos γ (2.20)
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with

EJ = 2T2
∆2

V 2
. (2.21)

Here ∆ is the superconducting gap energy for each superconductor (assumed equal),

and V is the coupling energy of (2.13). This is of course the potential energy obtained

in (2.12). The current can also be directly calculated and is

J =
4eT2

~

∆2

V 2
sin γ. (2.22)

By adding a voltage term to the Hamiltonian, Wallace and Stavn also derive (2.5).

This brief summary of the Josephson effect shows that the phase difference γ

is the relevant new degree of freedom for coupled superconductors. As long as the

coupling energy of (2.21) is smaller than that of quasi-particle excitations, we can

restrict the dynamics to the BCS ground state (2.19). We can also, however, form

a superposition of such states [100], via

|Ψ〉 =

∫

dγΨ(γ)|φ, φ+ γ)〉. (2.23)

The states |φ, φ+γ〉 are essentially orthogonal, and the expansion coefficient Ψ(γ) is

precisely the wavefunction of the junction which appears in the Schrödinger equation

of (2.11), with (2.20) as a “potential energy.” Missing is the “kinetic energy”, which

is the electrostatic interaction

Q2

2C
=

e2

2C

(

1

2

∑

k

(nRk + nR−k − nLk − nL−k)

)2

. (2.24)

It remains to show that (2.24), when acting on (2.23), will yield the kinetic term of

(2.11). The difficulty is that states such as (2.19) are not states of definite number
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for either superconductor. Thus we must consider number states, and the possibilty

that the phase is conjugate to the number operator.

2.2 Number-Phase Operators

In the space of pair states, the number of electron pairs for the right superconductor

is

NR =
1

2

∑

k

(nRk + nR−k)

NL =
1

2

∑

k

(nLk + nL−k) (2.25)

and the charge difference across the capacitor is 2Q = 2e(NR −NL) and thus

Q2

2C
=

(2e)2

2C

(
NR −NL

2

)2

. (2.26)

If we define the relative number operator n = (NR − NL)/2, and assume the com-

mumation relation

[n, γ] = i (2.27)

then in the representation of γ we can let n = id/dγ, and we will have reproduced

two terms in (2.11):

Q2

2C
Ψ(γ) = −(2e)2

2C

∂2Ψ

∂γ2
(γ). (2.28)

We wish to examine this solution, namely the possibility of (2.27), in this section.

Note that there is no essential difference between (2.27) and the alternative form

[γ, n] = i, which is often found in the literature—the choice of sign is a conventional

choice that varies in the literature.
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First we consider the following formal manipulation by Anderson [78]. We

again consider the BCS state

|φ〉 =
∏

k

(

uk + vke
iφb†k

)

|0〉, (2.29)

and consider the following superposition of these states

|N〉 =

∫ 2π

0

dφe−iNφ|φ〉. (2.30)

To understand this state (and the notation), we see that each term in (2.29) with

N pairs is accompanied by a factor of eiNφ. Only these terms will survive the

integration in (2.30), which thus projects out fixed particle states. As an operator

we have N̂ |N〉 = N |N〉. Equivalently, we see that in the φ-representation there is

the relation

〈φ|N̂ |Ψ〉 = i
∂

∂φ
〈φ|Ψ〉 (2.31)

and thus it would seem that we have the commutation relation

[N, φ] = i. (2.32)

Unfortunately, there are two well-known problems with (2.32) [95], if N and

φ are both taken as Hermitian operators. The first problem is associated with the

matrix element

〈n|[N, φ]|n′〉 = 〈n|(Nφ− φN)|n′〉 ?
= (n− n′)〈n|φ|n′〉. (2.33)

Since the phase is a bounded operator we have 〈φ〉 < 2π, and thus (2.33) with n = n′

yields

〈n|[N, φ]|n〉 ?
= 0 6= i (2.34)
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contradicting (2.32). As indicated by the question marks, this argument is incorrect.

The mistake lies in letting N act to the left in 〈n|Nφ|n′〉. Assuming that (2.32)

is correct, with φ a periodic variable, N is Hermitian operator only on periodic

functions of φ, with eigenfunctions

〈φ|n〉 = (2π)1/2e−inφ. (2.35)

N is not Hermitian on φ|n′〉, which is not a periodic function of φ. Thus 〈n|Nφ|n′〉 6=

n〈n|φ|n′〉. Indeed, by using the full inner product we have

〈n|Nφ|n′〉 = 1
2π

∫ 2π

0
dφeinφi d

dφ

(
φe−in

′φ
)

= i− 1
2π

∫ 2π

0
i
(
deinφ

dφ

)

φe−in
′φ

= i+ n〈n|φ|n′〉
(2.36)

Using this correct evaluation of the commutator we find that that the commuation

relation (2.32) is not ruled out [108].

The second problem [95] is typical number operators such as NL and NR in

(2.25) are bounded from below. In this case we can show that φ is not a Hermitian

operator, or equivalently the periodic exponential operator

E = eiφ (2.37)

is not unitary. Observe that if (2.32) is correct, we have the commutation relations

[N,E] = −E, [N,E†] = E†. (2.38)

and thus

NE = E(N − 1), NE† = E†(N + 1) (2.39)

If we apply (2.39) to a state |n〉 we find

E|n〉 = |n− 1〉, E†|n〉 = |n+ 1〉. (2.40)
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If we let n = 0 we have E|0〉 = 0 while E†|0〉 = |1〉. This implies that

EE† = I, E†E = I − |0〉〈0|. (2.41)

The lower bound to N (N |0〉 = 0) prevents E from being a unitary operator.

These difficulties were initially ignored in Anderson’s original work [78], al-

though subsequent discussion [109] (regarding superfluids) and a similar treatment

by Leggett [110] (for two-band superconductors) suggested that the number-phase

commutator exists only as a matrix element for states with large 〈N〉. In this case

the lack of unitarity of E presumably does not arise, and thus φ is effectively Her-

mitian.

For the Josephson junction, these difficulties can be resolved in the following

way. If the total number NL + NR is fixed and tends to ∞, the number difference

operator n = (NR − NL)/2 has an unbounded spectrum from −∞ to +∞, and

therefore a conjugate phase variable exists: the relative phase γ = φR − φL. For

the relative variables the commutation relation (2.27) is correct, and thus we have

nearly derived (2.11) from the microscopic BCS model.

2.3 Exact Quantum Phase Model

An exact resolution of the number-phase problem of the previous section can be

studied using a somewhat simpler model of a Josephson junction. This is the two-

mode boson Hamiltonian

H =
Ec
8

(n2 − n1)
2 − EJ

N
(a†1a2 + a†2a1). (2.42)
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where a†1 and a†2 are creation operators for the bosonic modes 1 and 2, and the

number operators are n1 = a†1a1, n2 = a†2a2. This model is perhaps more relevant

for Bose-Einstein condensates [111] where the total number N = n1 + n2 and the

parameters Ec and EJ can all be controlled by laser intensity, trap geometry, or

magnetic fields.

We consider the exact quantum phase model proposed by Anglin, Drummond,

and Smerzi [112, 113]. They derive an exact Schrödinger equation from (2.42) that

reads

i~
∂Ψ

∂t
(φ, t) = −Ec

2

∂2Ψ

∂φ2
(φ, t) − EJ

(

1 +
2

N

)

cos φΨ(φ, t) − 2
EJ
N

sinφ
∂Ψ

∂φ
(φ, t).

(2.43)

In the limit N → ∞ we see that the surviving terms of (2.43) reproduce the terms

in (2.11). Thus, the Schrödinger equation for the relative phase variable can be

derived exactly. Similar results can be found in [114]) using somewhat different

phase representations. We follow the presentation in [113], with minor changes in

notation.

The Hamiltonian (2.42) conserves the total particle number N = n1 + n2,

which can therefore be considered constant. The appropriate states are then the

two-mode relative number states of the form

|n1, n2〉 = |N/2 + n,N/2 − n〉 = |n〉N (2.44)

where we have introduced the relative number n = (n1 − n2)/2. We can define

(relative) phase states by

|φ〉N =
1√

2NN !

(

a†1e
iφ/2 + a†2e

−iφ/2
)N

|0, 0〉 (2.45)
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which has the explicit form (using the binomial expansion)

|φ〉N =

N/2
∑

n=−N/2
cN,ne

inφ|N/2 + n,N/2 − n〉 (2.46)

with

cN,n =

(
N !

2N(N/2 + n)!(N/2 − n)!

)1/2

. (2.47)

The phase states |φ〉N are an overcomplete basis, related to coherent states.

We can expand any state (with N particles) as

|Ψ〉N =
1

2π

∫ 2π

0

dφΨ(φ)|φ〉N (2.48)

where Ψ(φ) is the wavefunction. Now, it is straightforward to calculate the action

of of the number operators n1 and n2 on (2.46),

n1|φ〉N = a†1a1|φ〉N = (N/2)|φ〉N − i(d/dφ)|φ〉N ,
n2|φ〉N = a†2a2|φ〉N = (N/2)|φ〉N + i(d/dφ)|φ〉N ,

(2.49)

and thus we have found the result

n|φ〉N = −i d
dφ

|φ〉N . (2.50)

We can also show that

a†1a2|φ〉N = (N/2)e−iφ|φ〉N − ie−iφ(d/dφ)|φ〉N ,
a†2a1|φ〉N = (N/2)eiφ|φ〉N + ieiφ(d/dφ)|φ〉N .

(2.51)

In deriving (2.51) we have used the following property of cN,n in (2.47):

cN,n±1

cN,n
=

(N/2 ∓ n)1/2

(N/2 ∓ n + 1)1/2
. (2.52)

Now, define the differential operator Hφ by

H|Ψ〉N =
1

2π

∫ 2π

0

dφ (HφΨ(φ)) |φ〉N . (2.53)

59



Hφ is the phase representation of the Hamiltonian (2.42). Using (2.50) and (2.51)

and integrating each derivative d|φ〉N/dφ by parts, we find

HφΨ(φ) = −Ec
2

∂2Ψ

∂φ2
(φ) − EJ

(

1 +
2

N

)

cosφΨ(φ) − 2
EJ
N

sinφ
∂Ψ

∂φ
(φ). (2.54)

Using the phase representation (2.54) for the Hamiltonian (2.42) we have found

that the Schrödinger equation

i
∂

∂t
|Ψ〉N = H|Ψ〉N (2.55)

takes the promised form

i~
∂Ψ

∂t
(φ, t) = −Ec

2

∂2Ψ

∂φ2
(φ, t) − EJ

(

1 +
2

N

)

cos φΨ(φ, t) − 2
EJ
N

sinφ
∂Ψ

∂φ
(φ, t).

(2.56)

The inner product between two states |Ψ〉N and |Φ〉N takes the form

〈Φ|Ψ〉N =
1

(2π)2

∫ 2π

0

dφ1dφ2Φ
∗(φ2)〈φ2|φ1〉NΨ(φ1). (2.57)

This differs from a usual inner product by the appearance of 〈φ2|φ1〉N , an indication

of the overcomplete basis. Using (2.46) and (2.47), we have

〈φ2|φ1〉N =

N/2
∑

n=−N/2

N !ein(φ1−φ2)

2N(N/2 + n)!(N/2 − n)!
=

[

cos

(
φ1 − φ2

2

)]N

. (2.58)

Here we have again used the binomial theorem. In the limit that N → ∞, however,

the inner product (2.58) becomes proportional (as a distribution) to a δ-function

lim
N→∞

〈φ2|φ1〉N = 2πδ(φ2 − φ1). (2.59)

In this limit, we can use Stirling’s approximation to simplify (2.47):

cN,n ' exp(−2n2/N) → 1, (2.60)
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and thus we find

|φ〉N '
N/2
∑

n=−N/2
einφ|n〉N , (2.61)

a result strikingly similar to (2.30).

The two-mode model shows how, in a controlled way, the phase-variable can be

introduced and an exact Schrödinger equation can be derived. In the limit N → ∞

this equation reproduces all the terms of (2.12) except the current-bias. Note that

there are no difficulties with a number-phase commutation relation, since in this

limit the relative number operator n has a discrete unbounded spectrum from −∞

to +∞. The relative phase φ is its conjugate variable, and is periodic.

2.4 Other Models

The relative number-phase model of a Josephson has actually been used long before

the analysis of Anglin, Drummond, and Smerzi. It appeared first in the very clever

derivation of the Josephson effect by Ferrell and Prange [115] (see also [116]). There

are actually a few subtleties that remain to be discussed. First, the transition

from the fermionic BCS states such as (2.19) to the bosonic model is not exact.

When a pair tunnels from one superconductor to the next, the final state must be

unoccupied, and there is no extra bosonic enhancment of the coupling energy. The

factor of 1/N in the tunneling term of (2.42) is needed to model this.

A more accurate fermionic model could be that based on quasi-spin operators

[103, 107]. Unfortunately, there seems to be some disagreement regarding the proper

formulation of the theory [117, 118, 119, 120, 121], and the validity of predicted
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corrections to the classical Josephson equations (2.4)-(2.5) [122, 123, 124, 125]. A

pedagogical introduction to the quasi-spin model of the Josephson effect can be

found in [126]. The quasi-spin method does contain the number-phase model as a

special case.

An entirely different modification of the theory is to include the charging

energy of the superconductors before considering the Josephson coupling [127, 128].

This modifies the perturbation theory, and yields a phase-dependent correction to

the capacitance ∆C(φ) which is proportional to Ec/∆, where Ec is the charging

energy e2/2C and ∆ is the gap energy. This correction ∆C(φ) is typically small for

the junctions we will consider.

Finally, the path-integral treatment of Ambegaokar, Eckern, and Schön is per-

haps the most elegant derivation of the dynamics of the phase [129, 130, 131]. They

begin with the full tunneling Hamiltonian (2.16) and the electrostatic interaction

(2.24), and by a sequence of auxiliary field definitions and semi-classical approxi-

mations to the path integral they first derive superconductivity in the BCS approx-

imation. Subsequent integrations reduce the dynamics to an effective Lagrangian

such as (2.8), including a capacitance renormalization and coupling terms to quasi-

particles. This capacitance renormalization is apparently different from that found

in [127]. A complete reconciliation of these different models has not been performed.

Most importantly, none of the above models addresses the periodicity of the phase,

which we now consider.
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2.5 Periodicity of the Phase

Anderson’s [78] model of the “tilted” washboard potential cannot be correct if the

phase is a periodic variable (defined on the range 0 ≤ γ < 2π). There are two

possibilities: (a) the phase is not a periodic variable but is an extended coordinate

(−∞ < γ <∞), or (b) the washboard potential is incorrect. For physical Josephson

junctions, experiments show that the washboard potential is a very good model: thus

the evidence suggests possibility (a). Alternatively, if position (b) is correct, the true

model must somehow reproduce the experimental observations. The theoretical

challenge is to show how either solution comes about. We now discuss the main

proposals. Surprisingly, all of these start from position (b).

2.5.1 Time-Dependent Hamiltonian

The simplest approach is to note that the Lagrangian of (2.8)

L =
1

2
C(Φ0/2π)2γ̇2 +

Φ0

2π
(Ic cos γ + Iγ) , (2.62)

can be modified by adding a total time derivative

∆L = −Φ0

2π

d

dt
(γQ(t)) (2.63)

with dQ/dt = I; the equations of motion (2.7) remain the same under this transfor-

mation. The new Lagrangian is

L2 =
1

2
C(Φ0/2π)2γ̇2 +

Φ0

2π
(Ic cos γ) − Φ0

2π
γ̇Q(t), (2.64)

with the new canonical momentum

p2 =
∂L2

∂γ̇
= C(Φ0/2π)2γ̇ − (Φ0/2π)Q = mγ̇ − pQ (2.65)
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where the mass is m = C(Φ0/2π)2 and the momentum pQ = (Φ0/2π)Q. The

Hamiltonian is

H =
1

2m
(p2 + pQ)2 − IcΦ0

2π
cos γ. (2.66)

Using n = ~
−1p2 we can rewrite this as

H =
1

2C
(2en +Q)2 − IcΦ0

2π
Ic cos γ. (2.67)

In this Hamiltonian the phase can be either extended or periodic. For a constant

current, the charge is Q = It, and thus H is explicity time-dependent. This model

was introduced [132] to study small capacitance current-biased junctions, where the

periodicity of φ and the fact that n has discrete spectrum are essential.

There is actually a hidden relation of (2.67) to the washboard when Q = It.

Note that there is the natural time-scale τ = 2e/I (called the Bloch period [133]).

This is the time-scale for one pair to tunnel through the junction. The Hamiltonian

(2.67) has a hidden symmetry, which can be written as

H(t+ τ) = eiφH(t)e−iφ. (2.68)

This symmetry is quite similar to periodic Hamiltonians H(t+τ) = H(t), often stud-

ied using Floquet theory [134]. By exploiting this symmetry it was shown [135] that

the time-dependent Floquet eigenfunctions are in fact precisely the eigenstates of the

washboard, with a new extended coordinate. We can therefore extract the essential

dynamics (Floquet eigenvalues and eigenstates) of the time-dependent Hamiltonian

(2.67) by studying the washboard. Note that the junctions we will consider have

bias currents of I ∼ 20µA., and thus τ ∼ 10−5 ns, while the frequency scale is f ∼ 6
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GHz, and thus fτ ∼ 10−5. The system transfers roughly 105 electron pairs over the

relevant timescale for the circuit. This is also the effective number of charge states

we would need to fully capture the dynamics. This large number suggests that the

distinction between the Floquet and washboard solutions may be irrelevant, and

we then recover the washboard dynamics. A quantitative numerical analysis has

confirmed some of these issues [136].

2.5.2 Stochastic Current-Bias

Note that both the washboard and time-dependent models treat the bias current as

an arbitrary classical quantity. In actuality, the current must come from somewhere,

and thus the true Hamiltonian must include extra degrees of freedom associated with

the current source. One possible model is that the current bias is a weakly coupled

system which, every so often, puts particles into superconductor L and takes them

from superconductor R. On average, it generates the bias current I. A theoretical

analysis of this model has been given by Rogovin, Nagel and Scully [137, 116, 138],

and also by Unnerstall [139]. The net effect of the current bias is to generate the

following master equation for the density matrix,

i~
dρ

dt
= [H, ρ] − i

~I

2e

(
JJ†ρ+ ρJJ† − 2J†ρJ

)
(2.69)

where J is an operator which transfers Cooper pairs from L to R. On the relative

number states we have

J |n〉 = |n+ 1〉. (2.70)
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Taking the matrix elements of (2.69) in the phase basis we find

i~
∂ρ

∂t
(φ, φ′) = [H, ρ] − i

~I

2e

(

1 − ei(φ−φ
′)
)

ρ(φ, φ′). (2.71)

Note that for small (φ − φ′) we can expand the exponential in (2.71) to get an

approximate washboard term

i~
∂ρ

∂t
(φ, φ′) ' [H, ρ] − ~I

2e
(φρ(φ, φ′) + ρ(φ, φ′)φ′) = [HWB, ρ] (2.72)

with the standard washboard Hamiltonian

HWBΨ(φ) = − ~
2

2m

∂2Ψ

∂φ2
− Φ0

2π
(Ic cosφ+ Iφ)Ψ(φ). (2.73)

There are a number of deficiencies in this approach. First, the current is

essentially a noisy current, which is only equal to I on average. Second, the master

equation (2.71) is arbitrary. The same physics can be achieved by a current source

which produces not one pair at a time, but many. In fact, we could consider multiple

current bias channels and get

i~
∂ρ

∂t
(φ, φ′) = [H, ρ] − i

~

2e

N∑

n=1

In

(

1 − ein(φ−φ′)
)

ρ(φ, φ′) (2.74)

with a total bias current of

I =

N∑

n=1

nIn. (2.75)

Finally, there is a basic prediction that distinguishes this model from the washboard.

If we include the higher-order terms in the expansion of the exponential in (2.64),

we find

i~
∂ρ

∂t
(φ, φ′) = [HWB, ρ] − i

~I

4e
(φ− φ′)2ρ(φ, φ′). (2.76)
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This last term is a well-known decoherence term [140], which will cause superpo-

sitions of the first two resonant-state wavefunctions (to be discussed in the next

Chapter) to decay at a rate greater than ω0, where ω0 is the frequency of small

oscillations in the well of the washboard. This is significantly faster than the deco-

herence rates seen in Rabi oscillation experiments [93, 92]. We conclude that this

model is not a viable generalization of the washboard.

2.5.3 Environment-Induced Decompactification

The final argument for the “decompactification” of the phase also explicitly intro-

duces additional degrees of freedom for the circuit. However, instead of assuming

weak coupling, we now assume adiabatic coupling whereby the environment essen-

tially measures the motion of the phase in such a way that displacements greater

than 2π become orthogonal. In other words, the environment makes φ and φ + 2π

distinguishable. There are actually several models with this property, all based on

an effective Hamiltonian similar to (2.67):

H =
1

2C
(2en+Q)2 − IcΦ0

2π
cos γ. (2.77)

where now the charge Q is itself an operator. In this case, when the phase evolves,

the charge is displaced in such a way that φ and φ+ 2π lead to orthogonal states of

Q.

Note that if the phase is an extended coordinate, the conjugate variable n

should have a continuous spectrum. That the charge should be a continuous variable

makes sense for many models of the circuit [141, 142]; consider, for example, an LC-
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oscillator. If the charges can move in a continuous fashion, the effective charge

across the junction need not be discrete.

The model studied by Zwerger, Dorsey and Fisher [143] uses a modification

of the Caldeira-Leggett analysis [97] where the environment is directly coupled to n

instead of φ. They found that for matrix elements of the system with Ohmic dissi-

pation, the dynamics of the periodic and extended coordinates coincide. Interaction

with the environment suppresses the possibility of interference of states with φ and

φ+2π. Note, however, that their analysis is quite involved and their choice of initial

conditions has come under criticism [144].

A clear analysis of a related model has been given by Apenko [145] and re-

viewed in [101]. By including an inductance for the external charge, he considers

the basic Hamiltonian

H =
1

2C
(2en+Q)2 +

P 2

2L
− EJ cos γ (2.78)

with EJ = Ic(Φ0/2π). The energy states of H can be written, with x = (Φ0/2π)γ

Ψξ(x,Q) = A
∞∑

n=−∞
e−i~

−1Q(x+nΦ0−ξ)χ(x+ nΦ0; ξ) (2.79)

where PΨξ(x,Q) = ξΨξ(x,Q) and χ(x; ξ) satisfies

− ~
2

2C

∂2χ

∂x2
(x) +

1

2L
(x− ξ)2χ(x) −EJ cos(2πx/Φ0)χ(x) = Eχ(x). (2.80)

This last equation is the Schrödinger equation for the rf-SQUID, whose circuit is

shown in Fig. 2.2, where ξ plays the role of an external flux. The wavefunctions

χ(x) are defined on an extended coordinate x. These wavefunctions are combined

in such a way that the total wavefunction Ψχ(x,Q) is periodic in x. However,
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Figure 2.2: Circuit diagram of the rf-SQUID (Superconducting Quantum Inteference

Device), a Josephson junction in an inductive loop.

the form of the wavefunction ensures that when only the properties of the phase are

considered, there is no interference between x and x+2π. The phase is now locked to

another degree of freedom (the charge Q), and has become an extended coordinate.

Note, however, that the circuit dynamics of (2.78) do not seem to correspond to the

physical circuit [144], nor is (2.80) the washboard.

This brings us to our final model, which is the most uncomplicated way to

derive the washboard. We directly consider the SQUID dynamics of Fig. 2.2, which

yields a Hamiltonian of the form

H =
1

2C
p2

Φ +
1

2L
(Φ − Φx)

2 − EJ cos(2πΦ/Φ0). (2.81)

The coupling of the current to the electromagnetic field through the inductor yields

the extended coordinate Φ of the flux. This flux is essentially the same coordinate

that would appear in a Hamiltonian for an LC-oscillator, without the junction.

Leggett has carefully analyzed [100] the many-body wavefunction for Fig. 2.2. The

charge pΦ is then a continous variable related to the electronic coordinates around

the loop, and furthermore we can make the replacement pΦ → −i~d/dΦ. The
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inductor now plays the role of a current bias, and if we take the limit L → ∞,

Φx/L → I, and write the flux as Φ = (Φ0/2π)γ, the Hamiltonian (2.81) reduces to

that of a particle in the washboard potential:

H =
1

2m
p2 − Φ0

2π
(Ic cos γ + Iγ) . (2.82)
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Chapter 3

Resonances of the Washboard

As discussed in Chapter 2, the dynamics of a single current-biased Josephson junc-

tion can be described using the Hamiltonian

H = 4Ec~
−2p2

γ − EJ(cos γ + Jγ), (3.1)

where γ is an extended coordinate −∞ < γ < ∞, J = I/Ic, and pγ = −i~d/dγ.

This Hamiltonian is equivalent to a particle in a washboard potential. To explore

the dynamics near a minimum of the washboard we define a scale factor α by

α =

(
8Ec
EJ

)1/4

(1 − J2)−1/8, (3.2)

the plasma frequency ω0

ω0 = ~
−1
√

8EcEJ(1 − J2)1/4, (3.3)

and perform the canonical transformation

x = α−1(γ − arcsinJ)
p = αpγ.

(3.4)

71



Neglecting an arbitary constant of energy we find

H/~ω0 =
1

2
~
−2p2 + α−2

(
1 − cos(αx) + J(1 − J2)−1/2(sin(αx) − αx)

)
. (3.5)

This transformation sets the potential minimum at x = 0, and for small displace-

ments about the minimum the particle will oscillate with the plasma frequency ω0.

There is a potential barrier that separates the bound motion in the well from free

running motion down the washboard. If we measure the barrier height in units of

~ω0, we find that the number of harmonic oscillator states that can be supported in

the well is

Ns =
∆U

~ω
= 2−1/2

(
EJ
Ec

)1/2
(
(1 − J2)1/4 − J(1 − J2)−1/4 arccos J

)
. (3.6)

The relevant region of this potential is shown in Fig. 3.1, for realistic junction

parameters and Ns near 3.

Josephson’s equations show that the voltage across the junction is

V = (Φ0/2π)dγ/dt. (3.7)

If the particle is bound in one of the wells of the washboard, its average velocity is

zero, and thus the junction exhibits zero average voltage (Vdc). However, if the junc-

tion is unbound, the particle freely runs down the washboard with V 6= 0, until any

dissipation from the environment becomes non-negligible. Quantum mechanically,

if the system has Vdc = 0 for t < 0, then it can be associated with a state that is

localized in a well of the washboard. Through time evolution, this state will tunnel

to the unbound region, eventually yielding a nonzero voltage. The escape rate has

a characteristic dependence on bias current and temperature, and is dominated by
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Figure 3.1: Washboard potential with typical Josephson junction parameters (CJ =

6pF, Ic = 20µA, I = 0.99Ic = 19.8µA) and a reduced barrier height Ns ∼ 3. The

relevant energy levels in a metastable well are indicated by the dashed lines. The

length and energy scale have been scaled by α and ~ω0 (see text).

quantum tunneling at low temperatures. This phenomenon of macroscopic quantum

tunneling has been seen experimentally by several groups [81, 84]. Furthermore, if

microwaves are applied to the junction, then for certain frequencies there is a clear

enhancement of the tunneling rate [85, 146]. This enhancement occurs in a way that

is consistent with a set of energy levels associated with the metastable well.

Strictly speaking, these energy levels are not true energy levels at all, but

the equivalent of scattering resonances. That is, the initially localized state of

the system is actually a superposition of the true eigenstates. These eigenstates

are the continuum eigenstates of the Hamiltonian with the natural Hilbert space

L2(−∞,∞). This metastable state eventually evolves into a state with appreciable

amplitude to be found outside the well, and does so with approximate exponential
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decay. Microwaves can drive transitions predominantly to localized states near a

resonance in the continuum. If these states are sufficiently long-lived, the lowest

two can be used as the two states of a qubit.

In this Chapter we introduce a set of analytical tools that can be used to

characterize the resonances of the washboard. The washboard is in fact an example

of the more general Wannier-Stark problem, originally studied in the context of an

electron in a crystal and a homogeneous static electric field. This problem is in fact

quite old and sometimes controversial. In 1960, Wannier proposed to analyze this

problem in terms of states localized about the minima of the potential [147]. In a

periodic potential with zero field, the energy eigenvalues are in fact energy bands,

labelled by the band index n and the quasimomentum k. Wannier functions are the

localized states formed by superpositions over the quasimomentum. However, the

band index is no longer a good quantum number in the presence of an electric field,

and because of this Wannier’s use of localized functions labelled by n came under

strong criticism from Zak [148], with subsequent discussion in [149, 150]. A concise

review of the literature on this subject can be found in the paper by Krieger and

Iafrate [133] (for a longer review see [151]).

There has been a revival of interest in Wannier-Stark systems due to recent

experiments with electrons in superlattices and with cold neutral atoms in acceler-

ated optical lattices. A number of theoretical studies have used the Wannier-Stark

picture of a ladder of localized states in each metastable well [152, 153, 154, 155,

156, 157]. The experiments have included the observation of Bloch oscillations [158],

the Wannier-Stark ladder [159, 160, 161], and various tunneling experiments with
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non-exponential decay [162, 163, 164]. The theoretical work is reviewed in [165].

While much can be learned by studying the atomic Wannier-Stark literature,

there are several issues that require special attention. First we must emphasize that

for a truly infinite system with an applied field there are no discrete eigenstates and

the Wannier-Stark states are actually resonances. This point is often glossed over

in the theoretical formalisms, which emphasize a discrete set of states in each well

of the periodic potential. Second, if we set the tilt to zero, then in the electronic

and atomic experiments the number of metastable states in each well is generally

small, while for the Josephson junction case there may be thousands of states. In

the Josephson junction, this is determined by the ratio EJ/Ec, which for current-

biased devices is of order 106. In the atomic physics case, the energy scale analogous

to the charging energy Ec is the recoil energy ER = ~
2k2
L/2M , where kL = 2π/λ,

λ is the wavelength of the laser used to create the optical potential, and M is the

mass of the atom. The analog of the Josephson energy EJ is the light shift V0 (also

known as the optical dipole moment), and is under experimental control, but is

typically of the same order of magnitude as the recoil energy (in the experiments in

[158] we find 1 < V0/ER < 7). Third, the tilt achieved in the Josephson junction is

such that there is virtually no overlap in energy of one well’s metastable states and

those of its neigboring wells, indicated in Fig. 3.2. Thus, one can approximate the

single well by a quadratic-plus-cubic potential (to be described in the next chapter),

and the physics is dominated by the first few levels localized in such a well. This

approximation is generally not possible for the atomic systems (see, however [166]),

where most of the interesting physics comes from interference between neighboring
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Figure 3.2: Washboard potential with typical Josephson junction parameters. The

relevant energy levels are in a metastable well in the dashed box. The length scale

is the true phase difference, the energy scale is EJ .

wells, such as the resonant tunneling case shown in Fig. 3.3, when the ground state

in one well coincides with the excited state of the next. This regime may also be

of interest for small current-biased junctions [167]. Note that the methods used in

this chapter, however, are equally applicable to both the Josephson junction and

Wannier-Stark situations.

We first illustrate how the resonances of a continuous spectrum can be iden-

tified by studying two simple models. The first is a simple model of alpha decay

introduced by Winter in 1961 [168]. The second is a one-dimensional model of an

atom in an electric field, as in the Stark effect in hydrogen. While this model was

studied before, its connection to the current literature was first made by Ludviks-

son [169]. Each of these models is analytically soluble in terms of simple functions,

which makes them ideal for the presentation of our general methods. There are four

76



−2 0 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

Position

P
ot

en
tia

l

Figure 3.3: Wannier-Stark potential with atomic physics parameters. The levels in

each well interact strongly with each other, here via resonant tunneling.

main methods.

The first method is to put the system in a box of length L. This bounded sys-

tem has a discrete spectrum whose eigenvalues depend on L. The resonance energies,

however, are only weakly dependent on L. Thus, by studying the eigenvalues as L is

varied, the resonances are those that are most stable. The stabilization method we

use is due to Mandelshtam, Ravuri and Taylor [170]. The virtue of this method is

that it is relatively easy to implement and quickly yields a graphical interpretation

of the spectrum. In the exactly solvable models the eigenvalues are determined by

the zeros of simple functions, while we use numerical basis set diagonalization for

the washboard.

The second method is to solve the Schrödinger equation subject to an outgoing

wave boundary condition. This boundary condition, originally due to Gamow [171]

and later refined by Siegert [172], yields a discrete spectrum of complex eigenvalues.
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This seems contradictory, since they are complex eigenvalues of an otherwise Her-

mitian Hamiltonian, whose eigenvalues must be real. However, the Gamow-Siegert

states are not normalizable and thus are not truly elements of the Hilbert space.

The Hamiltonian need not be Hermitian when applied outside the Hilbert space,

and thus its eigenvalues need not be real. The Gamow-Siegert states are some-

times incorporated into the quantum formalism through the rigged Hilbert space

[173]. Nevertheless, these eigenvalues are the poles of the Green’s function (also

called the resolvent operator) when considered as a function on the complex energy

plane. Since bound states are also poles of the Green’s function (on the negative real

axis), the Gamow-Siegert eigenvalues are the natural generalization of bound states.

Again, the eigenvalues for our simple models can be expressed as the complex roots

of simple functions. To solve the washboard, however, we show how the Gamow-

Siegert boundary conditions can be achieved through the method of complex scaling,

and find the eigenvalues through numerical basis set diagonalization.

The third method is to study the actual continuum eigenfunctions, which are

truly eigenstates, with delta-function normalization. This method, using semiclas-

sical WKB arguments was first used by Gurney and Condon [174] (see [175] for the

early history of quantum tunneling). Near a resonance these wavefunctions exhibit

a large variation in both amplitude and phase as the energy is varied. The normal-

ization of continuum states is generally difficult in practice, although it can be done

for the exactly solvable models we consider. For the washboard, we can easily use

numerical integration to find energy states. To fix the normalization, we develop

a normalization algorithm using asymptotic matching of the numerical solutions.
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Scattering phase shifts can also be found from the numerical solutions.

The final method to consider is the time-evolution of states. For our simple

models this can be done exactly in terms of an integral at each time of interest,

which can be done numerically. These integrals can be deformed into the complex

plane and separated into pole contributions (which are precisely the Gamow-Siegert

eigenvalues) and a background term. For the washboard we use the split-operator

FFT algorithm with absorbing boundaries to remove the effects of periodic boundary

conditions. We defer the numerical calculations of the washboard until Chapter 5,

when we discuss the current-biased junction as a single qubit.

These methods are applied to each model in the following sections, with de-

tailed comparisons for each. Doing so illustrates how resonances can be identified

from multiple points of view. While these methods are well-known, there is still

some confusion that can arise when discussing resonances. This is likely due to the

fact there is not one unique model of a resonance—thus we have considered several

and subjected them to detailed comparison. While there has been some discussion in

the past of the resonances of the washboard for Josephson junctions [176, 177, 178]),

at a technical level each used a combination of the cubic approximation and further

semi-classical approximations. Since their main focus was to model the first spec-

troscopy experiments [85] including the effects of dissipation from the outset, the

achieved accuracy was sufficient. The physical picture of the resonances, however,

remained lacking. To use these quantum states as elements in a quantum computer

a more sophisticated approach is necessary. Thus the present chapter goes far be-

yond these early studies of the fundamental quantum mechanics to clearly elucidate
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the resonances of the washboard.

3.1 Winter’s Model

Winter analyzed a simplified model of alpha decay in 1961 [168]. This model ex-

hibits all of the complexity of quasi-stationary resonance states, exponential decay,

and both the short and long time deviations, and can be exactly solved up to an

integration. Winter’s model is that of a particle on the half-line with a δ-function

barrier at some distance a:

H =
p2

2m
+ V (x), (3.8)

V (x) =

{
∞ x < 0

V0δ(x− a) x > 0

}

. (3.9)

In the following, we let the energy E be given by E = ~
2E/2m, and the coupling con-

stant V0 = ~
2g/2m (alternatively, we use units with ~ = 2m = 1). The parameters

E and g represent the energy and coupling constant of the δ-function.

3.1.1 Stabilization Method

The stabilization method looks at the properties of the discrete spectrum that results

when the system is confined to a box. Thus, we modify the potential and look at

the eigenfunctions of the differential equation

−d
2Ψ

dx2
(x) + v(x)Ψ(x) = EΨ(x) (3.10)

with the potential v(x) = 2m~
−2V (x):

v(x) =







∞ x < 0
gδ(x− a) 0 < x < L

∞ L < x






. (3.11)
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Due to the hard walls of the potential, the boundary conditions are Ψ(0) = Ψ(L) =

0. Since we have a free particle in the absence of the δ-function, we can write

Ψ(x) = Ak

{
sin(kx) sin(kL− ka) 0 < x < a
sin(ka) sin(kL− kx) a < x < L

}

. (3.12)

This form satisfies the boundary conditions, and has energy E = k2. The normal-

ization constant has the explicit form

Ak = 2k1/2

(
(2ka− sin(2ka)) sin2(kL− ka)
+(2kL− 2ka− sin(2kL− 2ka)) sin2(ka)

)−1/2

. (3.13)

To handle the presence of the δ-function, we integrate the Schrödinger equation

(3.10) with v(x) in (3.11) from a− ε to a+ ε. We find that there is a discontinuity

in the derivative of Ψ(x) at x = a:

− lim
ε→0

(
dΨ

dx
(a+ ε) − dΨ

dx
(a− ε)

)

+ gΨ(a) = 0. (3.14)

Substituting our form for the wavefunction, (3.12), into (3.14), we find that not

every value of k is allowed, but rather k must satisfy the quantization condition

F (k) = k sin(kL) + g sin(ka) sin(kL− ka) = 0. (3.15)

F (k) is plotted in Fig. 3.4. There are two parts to F (k). The first term is

independent of g, and corresponds to the full square well with walls at x = 0 and

x = L, whose eigenvalues would be given by sin(kL) = 0. For large g this term can

usually be ignored. The second term in (3.15), however, incorporates the δ-function,

and has the interesting physics. It is a product of sin(ka), whose roots (kn = nπ/a)

give the eigenvalues in the smaller left square well, and sin(kL − ka), whose roots

are the eigenvalues in the large right square well (kn = nπ/(L − a)) (see Fig.3.5).
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Figure 3.4: Quantization condition F (k), plotted with g = L = 30 and a = 1. The

roots k∗ of F yield the allowed energies E = k2
∗. The discrete resonance levels appear

near the minima of the overall modulation, here indicated by the arrows near π, 2π

and 3π.

Their multiplication yields the characteristic modulation pattern shown in the figure,

where the slow oscillations are due to the small well and the fast oscillations are

from the large well. Note that near either of these sets of roots the probability to

be in the other well is necessarily small due to the form of the wavefunction, i.e. if

sin(ka) = 0, then Ψ(x > a) = 0. Thus, the picture we see is that, in general, there

are two sets of eigenvalues, the first corresponding to states localized in the left well

with

k(1)
n ' nπ

a

(

1 − 1

ga

)

(3.16)

where we have included the first order effect of g−1; the second set of states are

localized in the right well with

k(2)
m ' mπ

L− a

(

1 − 1

g(L− a)

)

. (3.17)
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Figure 3.5: Schematic illustration of left and right well eigenfunctions, valid for

g → ∞, L = 6 and a = 1. The solid curve denotes the probability density of the

ground state of the left well (from x = 0 to x = 1). The dashed curve denotes

an excited state of the right well (from x = 1 to x = 6). The arrow indicates the

δ-function barrier. For this particular choice of L, the two states are degenerate.

For finite g, the true eigenstates are even and odd superpositions of these states.

For certain values of L, an eigenvalue of the right well would become degenerate

with one in the left. This is schematically illustrated in Fig. 3.5. From (3.16) and

(3.17), states will be degenerate if we set

L/a ' 1 +m/n− 1

ga
(1 −m/n). (3.18)

In this case we find that there is no degeneracy, but rather an avoided level crossing.

That is, if we substitute (3.18) for L and k = k
(1)
n + ∆k = k

(2)
m + ∆k into our

eigenvalue equation (3.15), then to lowest order we find (after some algebra)

∆k2 =
n2π2

g2a2

1

a2(L/a− 1)
. (3.19)
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Figure 3.6: Energy eigenvalues of discrete δ-well with g = 30 and a = 1. Each

curve represents the corresponding eigenvalue En(L) as the length L is increased.

The plateaus near π2, 4π2 and 9π2 indicate the energies of discrete resonance states

which are localized in the left well.

This shows that for large g the eigenvalues have split into k
(1)
n ±∆k. Note that our

expressions are simply given to lowest order in g−1. These can be systematically

improved and are an excellent guide to understanding the exact results given by the

numerical roots of the eigenvalue equation. An example of this discrete spectrum

is shown in Fig. 3.6, as L is increased. The states in the left well are nearly stable,

independent of L, except near each avoided level crossing. These states are the

resonances of the δ-well, and this figure is called the stablization diagram.

Now, one can imagine that in the limit that L→ ∞ the discrete states of the

right well have disappeared, leaving only the resonances. The stabilization method

84



reveals this limit from the finite L eigenvalue curves, such as Fig. 3.6. First, we

consider the discrete density of states

ρ(E) = tr[δ(E −H)] =
∑

n

δ(E −En). (3.20)

By a suitable averaging of ρ(E), one can extract out the continuum and the reso-

nance. That is, near a resonance one expects the density of states ρ(E) = ρR(E) +

ρ0(E) to have a background term ρ0(E) and resonance contribution ρR(E), often

taken to have the simple Lorentzian form

ρR(E) =
1

π

Γ/2

(E −E0)2 + (Γ/2)2
(3.21)

where E0 is the position of the resonance and Γ the full width. The background

contribution ρ0(E) can often be identified with the continuum when the perturbating

potential is zero. In our particular case ρ0(E) can be written as an explicit function

of E and L:

ρ0(E) = L
( m

2π2~2

)1/2

E−1/2 → L
1

2πE1/2
, (3.22)

where we have used dimensionless units by the replacement ~ = 1 and m = 1/2.

We remove this background level density and define the continuum level density

∆(E) = ρ(E) − ρ0(E). (3.23)

Mandelshtam, Ravuri and Taylor [170] proposed a simple averaging procedure

to extract ∆(E). That is, if we calculate the eigenvalues in a box, both the eigen-

states and the density of states are functions of the box size L. Averaging ρ(E) in

(3.20) over L we find that

ρ(E) =
1

L2 − L1

∫ L2

L1

dLρL(E) =
1

L2 − L1

∑

n

∫ L2

L1

dLδ(E −En(L)). (3.24)
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Figure 3.7: Continuum level density numerically constructed by the stabilization

method, with g = 30 and a = 1.

To perform this integral we must sum over all values of L such that En(L) = E.

Using δ(f(x)) = |f ′(0)|−1δ(x) we find the result

ρ(E) =
1

L2 − L1

∑

En(L)=E

∣
∣
∣
∣

dEn
dL

∣
∣
∣
∣

−1

. (3.25)

This equation has an obvious graphical meaning: sum the inverse slopes of the

eigenvalue curves that cross energy E. At energies near the stable eigenvalues dE/dL

is near zero, and thus there is a peak in the level density. Subtracting off the averaged

density of states of a free particle, we show the continuum level density ∆(E) in

Fig. 3.7.

3.1.2 Green’s Function and Complex Eigenvalue

We now consider the complex eigenvalues of the Hamiltonian. As discussed in the

introduction, the Gamow-Siegert states are not in the Hilbert space. However, in

certain expansions of the resolvent or the time-evolution operator the complex poles
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of the Green’s function G+(E) = (E + iε − H)−1 can be used. This is due to the

following alternative definition

G+(E) = −i
∫ ∞

0

dt exp[i(E + iε−H)t]. (3.26)

The Green’s function is proportional to the Fourier transform of the retarded propa-

gator (time evolution operator), and will arise when one considers energy-conserving

transitions. The introduction of iε ensures convergence of the integral, and this op-

erator plays a fundamental role in formal scattering theory [179], aspects of which

we will use below.

Of particular interest are the poles of the Green’s function. We have in fact,

implicitly encountered these, in the form of the Lorentzian density of states formula

(3.21), which is the simplest formula giving a pole in the complex energy plane:

ρR(E) =
1

π

Γ/2

(E − E0)2 + (Γ/2)2
=

Γ

2π

1

(E −E0 − iΓ/2)(E − E0 + iΓ/2)
. (3.27)

In this section we first show how the exact Green’s function can be constructed, and

then how the complex poles are precisely those associated with the Gamow-Siegert

states.

The Green’s function satisfies the differential equation

(

E +
d2

dx2
− V (x)

)

G+(x, x′;E) = δ(x− x′). (3.28)

Note that the + (which we now drop) implies a particular choice of boundary condi-

tion, namely we solve this equation subject to the condition that G(x, x′;E) remain

bounded as x, x′ → ∞ if E has a positive imaginary part (iε). First we consider the
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free Green’s function. A solution satisfying the boundary conditions, with E = k2,

is

G0(x, x
′) = Ak

{
sin(kx)eikx

′

0 < x < x′

sin(kx′)eikx 0 < x′ < x

}

. (3.29)

To fix Ak, we must treat the δ-function. Integrating (3.28) from x = x′ − ε to

x = x′ + ε we find

(
dG0

dx
(x′ + ε, x′) − dG0

dx
(x′ − ε, x′)

)

= 1. (3.30)

Substituting (3.29) into (3.30) yields Ak = −1/k. Now we consider the full Green’s

function of H = H0 + V . In operator terms we have

(E −H0)G− V G = I (3.31)

Multiplying by G0 = (E −H0)
−1 and using G0(E −H0) = I and rearranging yields

G = G0 +G0V G, (3.32)

which in coordinate-space is the integral equation

G(x, x′;E) = G0(x, x
′;E) +

∫

dyG0(x, y;E)V (y)G(y, x′;E). (3.33)

Since V (y) = gδ(y − a) this integration is trivial

G(x, x′;E) = G0(x, x
′;E) + gG0(x, a;E)G(a, x′;E) (3.34)

If we set x = a we can solve (3.34) for G(a, x′;E)

G(a, x′;E) =
G0(a, x

′;E)

1 − gG0(a, a;E)
. (3.35)

Altogether we have

G(x, x′;E) = G0(x, x
′;E) +

G0(x, a;E)G0(a, x
′;E)

g−1 −G0(a, a;E)
. (3.36)
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This is the full Green’s function for the problem, and has been solved by the simple

properties of the δ-function. This is an example of what is sometimes called a

separable potential, since V has the simple operator form V0|v〉〈v|, with 〈x|v〉 =

δ(x−a). Now, the poles of the Green’s function can only come from the denominator

of the second term in (3.36)

g−1 −G0(a, a;E) = g−1 + k−1 sin kaeika = 0. (3.37)

We now wish to show that this is a complex eigenvalue of the Schrödinger equation.

A complex eigenvalue is found by imposing outgoing wave boundary condi-

tions, thus we consider the wavefunction

Ψ(x) =

{
sin(kx)eika 0 < x < a
sin(ka)eikx a < x

}

. (3.38)

Now, we must integrate over the δ-function as in (3.14), where we found

− lim
ε→0

(
dΨ

dx
(a+ ε) − dΨ

dx
(a− ε)

)

+ gΨ(a) = 0. (3.39)

For our outgoing wave ansatz (3.38) we find that k must satisfy the complex eigen-

value equation

−
(
ikeika sin(ka) − keika cos(ka)

)
+ geika sin ka = 0 (3.40)

which can be simplified to

g−1 + k−1eika sin ka = 0. (3.41)

Thus, the complex poles of the Green’s function (3.37) are precisely the eigenvalues

of the Gamow-Siegert states. As bound states are also poles of the Green’s function,

this is a traditional method of identifying metastable states, i.e. resonances.
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In the limit of large g, we can solve the eigenvalue equation (3.41) perturba-

tively, to find

kn ≈ nπ

a

(
1 − (ga)−1 + (ga)−2 − inπ(ga)−2

)
(3.42)

and thus

En ≈ n2π2

a2

(
1 − 2(ga)−1

)
− i

2n3π3

a2
(ga)−2. (3.43)

The real part is the resonance energy E0, the imaginary part the half-width Γ/2.

Finally, we note that having computed the Green’s function we can compute

the exact continuum level density. By Cauchy’s formula for the pinciple value

G(E) =
1

E −H + iε
= P

(
1

E −H

)

+ iπδ(E −H), (3.44)

we can write the continuum level density in the form [180]

∆(E) = tr[δ(E −H) − δ(E −H0)]
= −π−1Im (tr[G(E) −G0(E)]) .

(3.45)

Note that for a continuous spectrum each individual trace in (3.45) is divergent,

although their difference is not. For Winter’s model the trace can be computed

exactly. Using the operator form of (3.36)

G = G0 +
G0|a〉〈a|G0

g−1 − 〈a|G0|a〉
, (3.46)

and the cyclic property of the trace (tr(AB) = tr(BA)) we find

tr[G−G0] =
〈a|G2

0|a〉
g−1 − 〈a|G0|a〉

. (3.47)

Finally we note that

G2
0 =

1

(E −H0)2
= −∂G0

∂E
(3.48)
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Figure 3.8: Exact continuum level density for the δ-well, constructed from the

Green’s function, with g = 30 and a = 1.

and thus

∆(E) =
1

π
Im

( 〈a|∂G0/∂E|a〉
g−1 − 〈a|G0|a〉

)

. (3.49)

The derivatives of (3.29) (with Ak = −1/k) are straightforward using d/dE =

(2k)−1d/dk, and the final result is

∆(E) =
1

πk3

sin2(ka)(1 − ga/2) − ka sin(2ka)

2g−1 + 2k−1 sin(2ka) + 2gk−2 sin2(ka)
. (3.50)

Naturally, the poles of ∆(E) are the same as the Green’s function. This continuum

level density is plotted in Fig. 3.8. Note its resemblance to Fig. 3.7, the level density

constructed from the stabilization diagram.

3.1.3 Continuum Solutions

While the discrete and complex approaches to resonances are useful, the most com-

plete method is to consider the full continuous spectrum of the Hamiltonian. The
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continuum solutions of this model are not too hard to find. Writing the wavefunction

as

Ψ(x) =

{
A sin(kx) 0 < x < a

B sin(kx) + C cos(kx) a < x

}

, (3.51)

continuity at x = a requires

A sin(ka) = B sin(ka) + C cos(ka) (3.52)

and the derivative discontinuity (3.14) requires

kB cos(ka) − kC sin(ka) − kA cos(ka) − 2gA sin(ka) = 0 (3.53)

which can be solved

B = A(1 + gk−1 sin(ka) cos(ka))
C = A(−gk−1 cos2(ka)).

(3.54)

It remains to compute the continuum normalization integral

∫ ∞

0

dxΨE(x)Ψ′
E(x) = δ(E − E ′). (3.55)

Before doing so, we compute the following integral

∫∞
0
dz cos(kz) cos(k′z)dz = 1

2

∫∞
−∞ dz cos(kz) cos(k′z)

= 1
8

∫∞
−∞ dz

(
ei(k+k

′)z + e−i(k+k
′)z + ei(k−k

′)z + ei(k
′−k)z)

= π
2

(δ(k + k′) + δ(k − k′)) ,
(3.56)

and similarly

∫ ∞

0

dz sin(kz) sin(k′z) =
π

2
(δ(k − k′) − δ(k + k′)) . (3.57)

We also compute

I(k, k′) =

∫ ∞

0

dz
(
k−1 sin(kz) cos(k′z) + k′−1 sin(k′z) cos(kz)

)
. (3.58)
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Note that this can be written

I(k, k′) =

∫ ∞

0

dz

∫ z

0

dy (cos(ky) cos(k′z) + cos(k′y) cos(kz)) (3.59)

By the symmetries of the integrand, we can extend the integration from its

original wedge in the y − z plane to the whole space

I(k, k′) =
1

8

∫ ∞

−∞
dz

∫ ∞

−∞
dy (cos(ky) cos(k′z) + cos(k′y) cos(kz)) , (3.60)

as these integrals factorize we can use (3.56) to show

I(k, k′) = π2δ(k)δ(k′). (3.61)

Note however, that for the normalization we only need the δ(k − k′) term. Sub-

stituting our wavefunction (3.51) and using (3.56) and (3.57) we find (after some

algebra)

∫ ∞

0

dxΨk(x)Ψ
′
k(x) = A2π

2
δ(k − k′)

(
1 + gk−1 sin(ka) cos(ka) + g2k−2 sin2(ka)

)
.

(3.62)

For continuum normalization this should be δ(E − E ′) = (2k)−1δ(k − k′), thus

A2 =
1

πk

1

1 + gk−1 sin(2ka) + g2k−2 sin2(ka)
. (3.63)

These continuum solutions have an intuitive interpretation when considering

the scattering of a particle off of the potential. The nature of the scattering is found

by looking at the form of the wavefunctions. Thus, a final rewrite of these continuum

states is useful [181]

Ψ(x) =

(
1

πk

)1/2{
X(k) sin(kx) 0 < x < a

sin(kx+ φ(k)) a < x

}

, (3.64)
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Figure 3.9: Resonant part of the scattering phase shift φR(E) (divided by π), with

g = 30 and a = 1. At each resonance energy, the phase shift increases by π. This

rapid variation allows a superposition of nearby energies to effectively cancel outside

the well.

where X(k) is the internal amplitude

X2(k) =
1

1 + gk−1 sin(2ka) + g2k−2 sin2(ka)
, (3.65)

and φ(k) is the scattering phase shift

φ(k) = −ka + arctan

(
ka

ga+ kacot(ka)

)

. (3.66)

The phase shift has two contributions, the first is the phase shift associated with

scattering off a hard wall at x = a, the second corresponding to scattering into (and

subsequently out of) the metastable square well, thus we define φR = φ+ka. These

functions are plotted in Figs. 3.9 and 3.10. Near the resonance energies the internal

amplitude of the wavefunction goes through a maximum, and the resonant part of

the phase shift quickly rises by π. In terms of a quasi-stationary state, these two
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Figure 3.10: Internal amplitude (squared) X2(E), for g = 30. At each resonance

energy, the internal amplitude is very large. This large amplitude allows the super-

position of nearby energies to be highly localized in the well.

functions serve two complementary purposes. The large internal amplitude shows

that a state localized in the well will have most of its overlap with the continuum

states near resonance. The rapid variation of the phase shift shows that such a state

will have very little amplitude outside the well, since the varying phase shift allows

the external wavefunctions to cancel efficiently. Finally, by taking the derivative

of the phase shift with respect to energy we find an exact relation between the

continuum level density (3.50) and the phase shift (3.66)

∆(E) =
1

π

dφ

dE
. (3.67)

3.1.4 Time Evolution

The motivation for studying the continuum states is that they can directly describe

the decay of a metastable state. To understand this approach, consider a wave packet
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analysis of scattering. The scattering wavefunctions (3.64) in this one-dimensional

example can be written as

Ψ(x) ∼ e−ikx − Seikx, (3.68)

where the scattering S-matrix relates the ingoing and outgoing waves, and is simply

related to the phase shift

S(E) = exp(i2φ(E)). (3.69)

The poles of the Green’s function are also the poles of both the internal amplitude

X(k) and the S-matrix.

The scattering states have the simple time evolution

Ψ(x, t) ∼ e−ikx−iEt/~ − eikx−iEt/~+2iφ. (3.70)

If we prepare an ingoing wavepacket centered at k0, the peak of the outgoing wave

will be found at the location of stationary phase, which is (with E = ~
2k2/2m,

v = ~k0/m)

x = v

(

t− 2~
dφ

dE

)

. (3.71)

Thus we find that the outgoing wave emerges after the so-called Wigner time delay

[182]

τ = 2~
dφ

dE
. (3.72)

The connection between the phase shift and ∆(E) given by (3.67) shows that

this delay will be longest for the resonance energies near maxima of ∆(E). For the

characteristic Lorentzian (3.21), this maxima is ∆(E0) = 2/πΓ and we find

τ = 4~/Γ. (3.73)
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Thus the width of the resonance and the time-delay of the wave-packet are directly

connected, the latter associated with the preparation and subsequent decay of the

metastable state.

An alternative connection can be made by constructing not an ingoing wave-

packet (from ∞) which scatters off of the potential, but a state Ψ that is initially

localized in the well. Since the continuum wavefunctions have large internal ampli-

tude for energies near the resonance, the energy distribution for the localized state

can be approximated by the Lorentzian form

|c(E)|2 = |〈Ψ|E〉|2 ' 1

π

Γ/2

(E −E0)2 + Γ2/4
. (3.74)

This quantity is key to the survival amplitude A(t), which is

A(t) = 〈Ψ|e−iHt/~|Ψ〉 =

∫ ∞

−∞
dE|c(E)|2e−iEt/~. (3.75)

Note that we have let the integration run from −∞ to ∞, while for our particular

example the energy is bounded from below—thus c(E) = 0 for E < 0. Taking the

Lorentzian distribution (3.74) literally, we can perform integral in (3.75) by contour

integration, picking up the pole in |c(E)|2 at E = E0 − iΓ/2, to find

A(t) ' e−iE0t/~e−Γt/2~. (3.76)

Since the Lorentzian distribution is not literally true (especially for E < 0), this

expression is neither correct for short times (when energies greater the resonance

are important) nor for long times (when the energies near 0 are important) [183].

Nevertheless, it is this connection that shows how a resonance yields metastable

states with characteristic exponential decay.
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More careful study of Winter’s model reveals the deviations from exponential

decay. First, if we choose the initial state to be

Ψ(x) =

{
(2/a)1/2 sin(nπx/a) 0 < x < a

0 a < x

}

, (3.77)

then the energy coefficent is

c(E) =
21/2nπ1/2a1/2(−1)n sin(ka)

k1/2((ka)2 − (nπ)2)
X(k) (3.78)

where X(k) is the internal amplitude of (3.65), and c(E) = 0 for E < 0. Inserting

(3.78) for c(E) into (3.75) for the survival amplitude A(t) solves the problem. By

deforming the contour of integration into the complex plane one can show that

A(t) =
∑

n

Cne
−iEnt + A0(t) (3.79)

where the sum is over the poles En of |c(E)|2 in the complex plane, and A0(t) is a

remaining integral that extends from E = 0 to E = −i∞. The dominant term in

the sum yields exponential decay, while the remainder yields a power law. These

features are shown in Fig. 3.11, where the survival probability P (t) = |A(t)|2 is

shown , where we consider the weak barrier g = 6. The lowest complex eigenvalue

for this g is k = 2.75794 − i0.140433. Performing the energy integral numerically,

we find that P (t) exhibits some initial oscillations (shown in Fig. 3.12), then settles

into a period of exponential decay, and finally the late stage is governed by a power

law of the form P (t) ≈ Ct−3, and is determined by the density of states at low

energy. This long-time deviation is expected for any system with a lower bound to

the energy [183, 184].
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Figure 3.11: Time evolution of a quasi-stationary state in Winter’s model, with

g = 6 and a = 1. The localized state decays nearly exponentially (indicated by the

dashed line) until t ≈ 14, when the decay crosses over into a power law.
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Figure 3.12: Very short time evolution of a quasi-stationary state in Winter’s model,

with g = 6. For short times, the decay of the localized state exhibits oscillations

over the expected exponential decay (indicated by the dashed line).
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All of these features were found in Winter’s initial study, and reexamined in

[185], which inspired our figure. More recent work has focused on the asymptotic

form of the decaying wavepacket [186, 187], with improved expressions beyond the

non-normalizable Gamow-Siegert wavefunction. Note that using pole expansions

to describe the wavefunction can be quite tricky and can lead to incorrect results

unless carefully analyzed (see the controversy in [188, 189, 190]). However, all of this

work shows that for intermediate times the complex poles of the Green’s function

dominate the time evolution, and thus there is approximate exponential decay with

a wavefunction that can be locally approximated by the Gamow-Siegert state.

There have been attempts to use rigged-Hilbert-space ideas to promote ex-

ponential decay from an approximate to an exact law [191, 192]. This is probably

irrelevant now that the short time deviations from exponential decay have been ob-

served experimentally [162]. Long time deviation have not been observed, probably

due to the effects of continuous measurement [184]. That is, unless one can turn

the measuring device on and off, the effects of continuous weak measurement will

confine one’s observations to the intermediate regime where the decay is predom-

inantly exponential; this is a type of Zeno effect. Another Zeno effect is due to

continuous strong measurement which forces the system into either short time de-

cay, or no decay whatsoever [193]. These and so-called anti-Zeno effects [194] might

be observable in current-biased Josephson junctions [195].
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3.2 Ludviksson’s Model

In this section, we consider a simple model of the Stark effect. This problem is inter-

esting in its own right, but especially since the asymptotic properties of the potential

are signficantly different from the α-decay models. In particular, the energy is not

bounded from below, and the wavefunctions are suitably modified. These properties

are shared with the Wannier-Stark system and the Josephson junction washboard.

While this model attracted a great deal of prior attention [196, 197, 198, 199, 200],

it was Ludviksson’s reference to the work of Leggett and Schmid that caught our

attention. It is for this reason that we, perhaps unfairly, attribute the model to him.

As with Winter’s model, we consider the stabilization, Gamow-Siegert, and scatter-

ing state methods. Note that the last method involves the construction of the phase

shifts and S-matrix for a tilted potential, concepts necessary for the washboard.

Finally, we note that this particular model and its variations have been studied

by many others since Ludviksson [201, 202, 203, 204]. The studies by Reichl and

co-workers are particularly clear [205, 206, 207]. In addition, this model has recently

been extended to the molecular Stark effect [208, 209]. In spite of this long history,

our work is the first to introduce the continuum level density ∆(E) and its relation

to the Green’s function, the scattering phase shifts, and the stabilization method.

The Hamiltonian for this model is

H =
p2
z

2m
− V0δ(z) − Fz, (3.80)

with pz = −i~d/dz and F is the force on the particle. The units can be scaled out
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by letting z = αx, with α a length scale given by

α =

(
~

2

2mF

)1/3

(3.81)

from which we can also define an energy scale

E0 = Fα =

(
~

2F 2

2m

)1/3

, (3.82)

and a dimensionless coupling constant

g =
V0

E0α
= V0

(
4m2

~4F

)1/3

. (3.83)

Using these quantities, we can rewrite the Hamiltonian (3.80) as

h = H/E0 = − d2

dx2
− gδ(x) − x. (3.84)

We will use this h in the remainder of this section. Note that we have chosen to put

the coupling constant in front of the δ-function. Alternatively, we can define x′ =

gx, and E ′
0 = g2E0, in which case we have h′ = g−2h

h′ = H/E ′
0 = − d2

dx′2
− δ(x′) − g−3x′ (3.85)

This convention is sometimes found in the literature. For any particular expression

the constants F , m and ~ can be reintroduced using the scaling transformations

above.

3.2.1 Stabilization Method

We place the “tilt plus δ-function” into a box of length L, and thus consider

−d
2Ψ

dx2
+ v(x)Ψ(x) = EΨ(x) (3.86)
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with

v(x) =

{
−gδ(x) − x x < L

∞ x > L

}

. (3.87)

The appropriate solutions to this equation are the Airy functions Ai(−x − E) and

Bi(−x − E), whose properties are summarized in the Appendix. Since we require

Ψ(x→ −∞) → 0, we have

Ψ(x) = NE

{
Ai(−x−E) x < 0

cAAi(−x− E) + cBBi(−x− E) 0 < x < L

}

. (3.88)

Continuity of the wavefunction at x = 0 requires

cAAi(−E) + cBBi(−E) = Ai(−E), (3.89)

while the presence of the δ-function is handled as in (3.14) (with g → −g) to find

cAAi′(−E) + cBBi′(−E) − Ai′(−E) − gAi(−E) = 0. (3.90)

We solve (3.89) and (3.90) for cA and cB, and using (A.4) from the Appendix we

find

cA = 1 − πgAi(−E)Bi(−E),
cB = πgAi2(−E).

(3.91)

Finally, the wavefunction (3.88) must vanish at x = L, thus we have a quantization

condition

F (E) = cAAi(−E − L) + cBBi(−E − L) = 0. (3.92)

The normalization constant is found using (A.4), (A.18) from the Appendix, and

(3.92):

NE =

(
(cAAi′(−E − L) + cBBi′(−E − L))2

−2gAi(−E)Ai′(−E) − g2Ai2(−E)

)−1/2

. (3.93)
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Figure 3.13: Quantization condition F (E), plotted with g = 3, L = 200. The

arrows discrete resonance levels appear near the minima of the overall modulation,

here indicated by the arrows.

The quantization condition (3.92) can be rewritten in the following form

F (E) = Ai(−E − L) + πgAi(−E)
×{Ai(−E)Bi(−E − L) − Bi(−E)Ai(−E − L)} = 0,

(3.94)

and is shown in Fig. 3.13. Just as in the square-well potential, this function has

two parts. The first term, independent of g, is zero for eigenvalues of the “wedge”

potential formed by the tilt and the wall at x = L. For large g this can usually be

neglected. The second term is the product of two eigenvalue conditions. The first

(Ai(−E)) is zero for the wedge potential with a wall at x = 0. The eigenvalues for

these states are

E(1)
n ' an + g−1 (3.95)

with

Ai(−an) = 0 (3.96)
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and the corresponding states are highly localized in the left well with cA and cB

both proportional to g−1:

cA ' −πg−1Ai′(−an)Bi′(−an),
cB ' πg−1(Ai′(−an))2.

(3.97)

The second eigenvalue condition has zeros for the eigenvalues of the “trape-

zoid” potential with walls at x = 0 and x = L, and the states predominantly in the

region 0 < x < L. The energies are approximately

E(2)
m ' bm − g−1

(
1 − Ai(−bm)2(Ai(−bm − L))−2

)
(3.98)

with

Ai(−bm)Bi(−bm − L) − Bi(−bm)Ai(−bm − L) = 0, (3.99)

and states localized in the right well.

Thus, for large g we find that there are two sets of eigenvalues. By tuning L

one can bring these two sets of levels into near degeneracy, which becomes an avoided

crossing. However, for g > 0, there is an additional eigenvalue that is associated

with the bound state of the delta function with zero tilt. This has the wavefunction

Ψb(x) = e−g|x|/2 (3.100)

and eigenvalue

Eb = −1

4
g2. (3.101)

This energy can be found by consider the eigenvalue equation (3.94) in the limit that

E < 0, |E| � 1, and L� |E|. Under these conditions we have Bi(−E) � Ai(−E),

and our eigenvalue equation reduces to

F (E) ' Ai(−E − L) (1 − gπAi(−E)Bi(−E)) = 0. (3.102)
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Using the asymptotic properties of the Airy functions we have

Ai(−E)Bi(−E) ' 1

2π
(−E)−1/2. (3.103)

Substituting (3.103) into (3.102) we can solve for E:

E = −1

4
g2. (3.104)

Note that this approximate eigenvalue equation yields cA = 0, and the asymptotic

forms of the Airy functions with |x| � |Eb| yields the untilted ground state wave-

function (3.100). These states are illustrated in Fig. 3.14.

The stabilization diagram Fig. 3.15 illustrates all of these properties of the

spectrum. The density of states for the tilted well with g = 0 can be found using the

WKB method, or equivalently, from the asymptotic zeros of the Airy function. That

is, with no δ-function, the roots of the Airy function Ai(−E−L) are approximately

given by (with n ≥ 1).

En = −L+

(
3π(n− 1/4)

2

)2/3

. (3.105)

We can solve this for large n to yield the number of levels less than E:

N(E) =
2

3π
(E + L)3/2. (3.106)

The background density of states is then

ρ0(E) =
dN

dE
=

1

π
(E + L)1/2 (3.107)

Subtracting this, we plot the continuum level density in Fig. 3.16. Clearly seen is

the bound state resonance, and the resonances associated with the wedge potential

for x < 0. Suprisingly, these are not the only resonances in the system; a resonance

which is always under the barrier will be found in the next section.
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of the ground state of the left well. The dashed curve denotes an excited state of
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Figure 3.15: Energy eigenvalues of the tilted δ-function with g = 3. Each curve

represents the corresponding eigenvalue En(L) as the length L is increased. The

plateaus indicate the discrete resonance levels of the left well.
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Figure 3.16: Continuum level density numerically constructed by the stabilization

method, with g = 3.
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3.2.2 Green’s Function and Complex Eigenvalue

The Hamiltonian is sufficiently simple that exact results can be obtained for the

Green’s function. Without the δ-function potential term, the Green’s function sat-

isfies
(

E +
d2

dx2
+ x

)

G(x, x′;E) = δ(x− x′). (3.108)

For x > x′, the Green’s function should represent an outgoing wave formed by the

linear combination Bi(−x−E) + iAi(−x− E), thus we have

G0(x, x
′;E) = −π

{
Ai(−x− E)[Bi(−x′ − E) + iAi(−x′ −E)] x < x′

Ai(−x′ −E)[Bi(−x−E) + iAi(−x− E)] x > x′

}

,

(3.109)

where the normalization (−π) has been fixed by integrating over δ(x−x′) in (3.108).

The presence of the δ-function in H can be treated by solving the operator equation

G = G0 +G0V G (3.110)

with V = −g|v〉〈v| and 〈x|v〉 = δ(x). Acting on (3.110) with 〈v|, we can solve for

〈v|G0, and substituting back yields

G = G0 −
G0|v〉〈v|G0

g−1 + 〈v|G0|v〉
(3.111)

which is

G(x, x′;E) = G0(x, x
′;E) − G0(x, 0;E)G0(0, x

′;E)

g−1 +G0(0, 0;E)
. (3.112)

The poles of this Green’s function are the poles of the denominator of (3.112)

g−1 +G0(0, 0;E) = g−1 − πAi(−E)[Bi(−E) + iAi(−E)]. (3.113)
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These poles correspond to Gamow-Siegert states, which are wavefunctions of

the form

Ψ(x) =

{
Ai(−x− E)[Bi(−E) + iAi(−E)] x < 0

Ai(−E)[Bi(−x−E) + iAi(−x−E)] x > 0

}

. (3.114)

Inserting (3.114) into the Schrödinger equation (3.86), and integrating over the δ-

function yields the complex eigenvalue equation

Ai(−E)[Bi′(−E) + iAi′(−E)] − Ai′(−E)[Bi(−E) + iAi(−E)]
−gAi(−E)[Bi(−E) + iAi(−E)]

= 0, (3.115)

which can be simplified using (A.4) to yield

π−1 − gAi(−E)[Bi(−E) + iAi(−E)] = 0. (3.116)

Comparison shows that the roots of (3.116) are indeed the poles of the Green’s

function in (3.113).

There are three classes of poles. Inspection of (3.116) for large g shows that one

class corresponds to the zeros of Ai(−E), i.e. states bound in the wedge potential.

These poles have the approximate energies:

En ' an + g−1 − ig−2a1/2
n , (3.117)

n = 1, 2, · · · , with

an '
(

3π(n− 1/4)

2

)2/3

. (3.118)

Another pole corresponds to the bound state of the δ-function as in (3.104) with

energy

E0 ' −g
2

4
− i

g2

4
e−g

3/6. (3.119)
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Finally, there are poles at the zeros of Bi(−E) + iAi(−E). Note that we have the

relation (Eq. 10.4.9 in [210])

Bi(z) + iAi(z) =
i

2
eiπ/3Ai(zei2π/3). (3.120)

The zeros of (3.120) are simply those of the first class (3.117) but rotated by an

angle in the complex plane. The physical origin of these poles is quite curious.

They correspond to under-barrier resonances of the tilted potential with a hard wall

at x = 0. That is, they persist in the classically forbidden region, bouncing back

and forth off x = 0 and the turning point at x = E. The resonances are quite broad,

with the real and imaginary parts of similar magnitudes.

Finally, we note that we can compute the continuum level density directly

from the Green’s function. Using the simple form of (3.112) we find (as in (3.49)

with g → −g)

∆(E) = −1

π
Im

( 〈0|∂G0/∂E|0〉
g−1 + 〈0|G0|0〉

)

. (3.121)

Taking the derivative of the free Green’s function (3.109) and using (A.4) we find

∆(E) = − Ai2(−E) + 2g−1Ai(−E)Ai′(−E)

π2Ai4(−E) + (g−1 − πAi(−E)Bi(−E))2
, (3.122)

which we show in Fig. 3.17. The continuum level density ∆(E) is almost indistin-

guishable from the stabilization method results in Fig. 3.16.

3.2.3 Continuum Solutions

The continuum solutions are

ΨE(x) = NE

{
Ai(−x−E) x < 0

cAAi(−x−E) + cBBi(−x− E) x > 0

}

, (3.123)
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Figure 3.17: Exact continuum level density for the tilted δ-function, constructed

from the Green’s function

where the coefficients have been found already in (3.92):

cA = 1 − πgAi(−E)Bi(−E)
cB = πgAi2(−E).

(3.124)

The normalization constant is found using the continuum normalization

∫ ∞

−∞
dxΨE(x)ΨE′(x) = δ(E − E ′). (3.125)

Using (3.123) and the integrals in the Appendix, (A.33)-(A.37), we find after some

remarkable cancellations

∫ ∞

−∞
dxΨE(x)ΨE′(x) = N2

E(c2A + c2B)δ(E − E ′) (3.126)

and thus

NE = (c2A + c2B)−1/2 =
(
π2g2Ai2(−E) + (1 − πgAi(−E)Bi(−E))2

)−1/2
. (3.127)

By the same normalization, we also have the completeness relation

∫ ∞

−∞
dEΨE(x)ΨE(x′) = δ(x− x′). (3.128)
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The continuum states can be written in a way that illustrates their scattering

character. That is, just as for Winter’s model, we can define an internal amplitude

and a scattering phase shift that characterizes the wavefunctions. Here we focus on

the phase shift. Note that the scattering theory for Stark systems is not usually

developed in standard texts, and as such there is no definite convention for the

phase shifts. We choose to define the phase shift such that it closely parallels the

scattering theory for asymptotically free particles (other conventions are introduced

in [207, 211]).

As in the previous section, there is a linear combination of Airy functions that

represent propagating waves. We call these Ψ±(x) = Bi(−x − E) ± iAi(−x − E).

In terms of these the continuum states given by (3.123) are, for x > 0

ΨE(x) = NE

(
1

2
(cB + icA)Ψ−(x) +

1

2
(cB − icA)Ψ+(x)

)

. (3.129)

We define the scattering phase shift by

eiφ =
cA + icB
√

c2A + c2B
(3.130)

or equivalently

tanφ =
cB
cA

=
gπAi2(−E)

1 − gπAi(−E)Bi(−E)
. (3.131)

With this phase shift the continuum states (3.123) are

ΨE(x) = ie−iφ
(
Ψ−(x) − ei2φΨ+(x)

)
. (3.132)

This expression is exactly analogous to Winter’s model, (3.68), and has the

same interpretation. An incoming wave (Ψ−(x)) scatters off of the δ-function, and
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the outgoing wave emerges with a shift in phase. Finally, we note that direct cal-

culation shows that the derivative of the phase shift in (3.131) is directly connected

to the continuum level density (3.122)

∆(E) =
1

π

dφ

dE
. (3.133)

This relation is a general relation in scattering theory [212].

In the limit g → ∞ we see from (3.131) that the phase shift does not go to

zero, but rather

tanφ∞ = −Ai(−E)

Bi(−E)
. (3.134)

In analogy with Winter’s model, we define the resonance phase shift φR = φ− φ∞,

which can be written as

tanφR =
tanφ− tanφ∞
1 + tanφ tanφ∞

. (3.135)

This resonance phase shift is shown in Fig. 3.18. An internal amplitude can also be

defined, and has similar structure to the level density (Fig. 3.17).

3.2.4 Time Evolution

By sending a wavepacket from large x and observing its return, the time delay can

be determined just as for Winter’s model. Here we explain the time delay in a

slightly different way [213]. In particular, using the asymptotic behavior of the Airy

functions, we find that the propagating solutions have the form

Ψ±(x) ' π−1/2(x+ E)−1/4 exp

{

±i2
3
(x+ E)3/2 ± i

π

4

}

. (3.136)
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Figure 3.18: Resonance part of the scattering phase shift φR(E) (divided by π),

with g = 3. At each resonance energy, the phase shift increases by π. This rapid

variation allows a superposition of nearby energies to cancel outside the well.

Except for the factor of π/4 in the exponential, this is precisely the form of a WKB

solution with k(x) = (E + x)1/2:

Ψ±(x) ' π−1/2k(x)−1/2 exp

{

i

∫ x

k(s)ds

}

. (3.137)

Then the outgoing wave components are of the form

Ψout(x, t) = Se−iEtΨ+(x) ≈ π−1/2k(x)−1/2 exp

{

i

∫ x

k(s)ds− iEt+ i2φ(E)

}

.

(3.138)

If we form a wavepacket, its outgoing component will be

Ψout(x, t) ≈
∫

dEc(E)π−1/2k(x)−1/2 exp

{

i

∫ x

k(s)ds− iEt+ i2φ(E)

}

. (3.139)

We want to find the time t when the center of the outgoing wave packet is at a

given position x. This is found by the method of stationary phase, that is we find t
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such that the variation of the phase is zero. At this time and position the outgoing

waves are in phase and constructively interfere, yielding a large amplitude. Taking

the derivative of the exponent we have

∫ x dk

dE
ds− t+ 2

dφ

dE
= 0 (3.140)

or, using dk/dE = 1/v, where v is the velocity

t =

∫ x ds

v(s)
+ 2

dφ

dE
(3.141)

This shows that wave packet emerges at x after the classical transit time (the first

term) plus the time delay (the second):

τ = 2
dφ

dE
, (3.142)

precisely as in (3.10), with ~ = 1.

Note that the time delay is proportional to the continuum level density, and is

sometimes negative. This is not an error, but represents real physics. These negative

values occurred in Winter’s model as well. Our choice of the free Hamiltonian (in

G0) assumes that the particle scatters off of the interior of the δ-function well. If,

however, the particle scatters off of the δ-function before it enters the interior, it

will emerge before its free counterparts, leading to a negative time delay. Thus, for

certain energies there is little amplitude transmitted to the interior and a lack of

energy level density.

The study of the exponential decay of an initially localized state follows the

same procedure as before: one looks at the survival amplitude

A(t) =

∫ ∞

−∞
|c(E)|2e−iEt. (3.143)
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For the tilted potential, there is no lower bound to the energy. Thus, it is pos-

sible that there is no long-time deviation from exponential decay [214]. Short-

time deviations persist, and can be seen in the time-dependent studies found in

[199, 201, 205, 206].

3.3 Washboard

Having illustrated general methods, and their mutual agreement, for resonances in

two model potentials, we now turn to the resonances of the washboard. We use a

typical set of junction parameters: CJ = 6 pF and Ic = 20µA. These correspond

to the well in Fig. 3.1. In Fig. 3.19 we show the results of our general method, the

wavefunctions corresponding to the resonance energies of the washboard.

These wavefunctions are continuum states, and not directly normalizable. In-

deed, the last resonance shown is clearly oscillatory outside the well. However, for

deep wells the resonances are particularly sharp, and thus localized states prepared

near the resonance energies will be very long-lived, and almost discrete. This is

seen in the lower states, whose amplitude outside the well is very small, but still

non-zero. In this section we show how the continuum states can be constructed.

First, however, we look at the results from stabilization and complex scaling.
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Figure 3.19: Washboard potential with Josephson junction parameters CJ = 6pF,

Ic = 20µA, and I = 0.99Ic = 19.8µA. The relevant energy levels in a metastable

well are indicated by the dashed lines. About each energy level, the corresponding

continuum wavefunctions (with arbitrary normalization) are shown as solid curves.

The position and energy scale have been scaled [see text and (3.5)].
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3.3.1 Stabilization Method

As before, we place the system into a finite box of size L. We then explore the

discrete spectrum as L varies. We use the scaled Hamiltonian (3.5)

h =
1

2
p2 + α−2

(
1 − cos(αx) + J(1 − J2)−1/2(sin(αx) − αx)

)
, (3.144)

where for our junction parameters α ' 0.0655 and J = 0.99. As a basis set we choose

the square well states subject to the boundary condition that Ψn(x = −L/2) =

Ψn(x = +L/2) = 0. These discrete states, labelled by n, can be written as

Ψn(x) =
√

2/L sin(nπ(x/L+ 1/2)). (3.145)

The matrix elements needed for the Hamiltonian hn,m are given in the Appendix.

By truncating the matrix at some large value of Nmax, and using a standard numer-

ical matrix diagonalization routine, we calculate the eigenvalues of the discretized

washboard. The stabilization diagram is shown in Fig. 3.20.

At each apparent intersection of energy curves, there is in fact a small avoided

crossing. The energies that correspond to the resonances of the washboard appear

as the L independent horizontal curves. The non-resonance energy levels decrease

with L. This is due to the tilt, since for large L the system explores the negative

portions of the potential. The overall ground state is then very similar to the

ground state of the wedge potential explored in Ludviksson’s model. Its energy goes

as E1 ≈ c0−c1L, where c0 and c1 are constants from the appropriately scaled wedge

potential.

To summarize the energy level density, we use a simple histogram of the energy

levels in each energy range, shown in Fig. 3.21. A direct use of the stabilization
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Figure 3.20: Stabilization diagram for washboard with Josephson junction param-

eters CJ = 6pF, Ic = 20µA, and I = 0.99Ic = 19.8µA. Each curve represents the

corresponding eigenvalue En(L) as the length L is increased. Each apparent inter-

section is actually an avoided crossing. The plateaus near 1/2, 3/2, 5/2 and 7/2

indicate discrete resonance states which are localized in the metastable well.
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Figure 3.21: Continuum level density for washboard with Josephson junction param-

eters CJ = 6pF, Ic = 20µA, and I = 0.99Ic = 19.8µA. The curve is a histogram of

the energy levels in the stabilization diagram. The peaks correspond to the discrete

resonances.

formula (3.25) for the level density is possible, but is no more accurate than the

histogram, due to numerical approximations to dEn/dL.

3.3.2 Complex Scaling

As shown in Winter’s and Ludviksson’s models, and true in general, the complex

poles of the Green’s function can be found by solving Schrödinger’s equation subject

to an outgoing wave boundary condition, as proposed by Gamow and Siegert. Note

that this boundary condition is intimately related to the boundary condition on the

Green’s function, and ultimately due to the choice of the retarded propagator (which
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vanishes for t < 0). However, the Gamow-Siegert states are not normalizable and not

elements of the Hilbert space. The complex scaling transformation was introduced

to rigorously define these states in autoionizing multi-electron atoms [215, 216], and

a later variation was used in the hydrogen Stark effect [217]. In fact, the complex

scaling method can do much more (see the review by Moiseyev [218]). Here we

consider it as merely a numerical method to find Gamow-Siegert states.

First, we recall that Winter’s model had outgoing wave states with energy

E = k2 where k was complex: k = kR − ikI . The Gamow-Siegert wavefunction

(3.38) for x > a has the form

ΨGS(x) = eikx = eikRxekIx. (3.146)

The imaginary part of k leads to the exponential growth of ΨGS(x). This is actually

not terribly surprising. The outgoing wave boundary condition is time-independent,

and hence the Gamow-Siegert wavefunction describes an eternally decaying state.

This is more obviously seen by noting that Γ = 4kRkI , v = 2kR and thus

|ΨGS(x, t)|2 = e−Γte2kIx = e−Γ(t−x/v). (3.147)

Surfaces of constant probability correspond to x = vt = v(tf − ti). Thus, the

exponential growth with x at a fixed time tf = 0 corresponds to the buildup of

probability from decay that occurred in the past starting at ti = −x/v. One can

remove this peculiarity by defining a time-dependent Gamow-Siegert state which is

zero for x > vt [175]. This state is not a solution of the Schrödinger equation, but

is a reasonable approximation that can be systematically improved [186].
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The complex scaling transformation tames the exponential divergence of ΨGS(x).

This involves the new coordinate x̃, defined by

x = x̃eiθ, (3.148)

where x̃ is real , and thus x is complex. Using this transformation, the wavefunction

in (3.146) becomes

ΨGS(x = x̃eiθ) = exp[i(kR cos θ + kI sin θ)x̃] exp[−(kR sin θ − kI cos θ)x̃]. (3.149)

Thus, if tan θ > kI/kR (which for small kI implies a small θ), we have constructed

a normalizable state. A completely equivalent statement is that if we integrate

Schrödinger’s equation in the complex plane, the Gamow-Siegert state is an eigen-

function subject to the boundary condition ΨGS(x) → 0 with x→ Reiθ, R → ∞.

The complex scaling transformation also works for Stark systems [219]. Recall

that the outgoing wave (for x > 0) in Ludviksson’s model, (3.114) was

Ψ(x) = Bi(−x− E) + iAi(−x−E). (3.150)

Using the asymptotic forms of the Airy functions we have

Ψ(x) ∼ exp

{

i
2

3
(x+ E)3/2

}

, (3.151)

where we have ignored all terms in the prefactor to the exponential. If the energy

has a negative imaginary part E = ER − iΓ/2, this state will diverge as

Ψ(x) ∼ exp

{

i
2

3
(x+ ER)3/2 +

3

4
Γ(x+ ER)1/2

}

. (3.152)
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However, performing the same complex scaling transformation as above, we find

that

Ψ(x = x̃eiθ) ∼ exp

{

i
2

3
(x̃ cos θ + ER)3/2 − 3

2
(x̃ cos θ + ER)1/2(x̃ sin θ − Γ/2)

}

.

(3.153)

Thus, for any nonzero θ, the complex scaling transformation will make the Gamow-

Siegert state normalizable (a more careful analysis shows 0 < θ < 2π/3 [219]).

The complex scaling method is particularly useful in numerical work. Since

the Gamow-Siegert state is bounded as a function of x̃, it can be well approximated

by a finite-dimensional basis set. Thus, the calculation reduces to a standard basis

set calculation but now with respect to the non-Hermitian hamiltonian

H =
1

2m
e−i2θp̃2 + V (x̃eiθ). (3.154)

Using the harmonic oscillator basis we can readily calculate the complex eigenvalues

of the washboard, using matrix elements derived in the Appendix. As an example

Fig. 3.22 shows the calculated the transition frequencies between the first few states.

Since the calculated energies are complex, we can also consider the spectral widths

due to tunneling from the final state (contributions from the initial state are gener-

ally much smaller). These are shown in Fig. 3.22 as the dashed curves.

3.3.3 Continuum Solutions

The most complete method to study the spectrum of the washboard is to construct

the continuum scattering states. Unlike the simple models considered in the begin-

ning of this chapter, however, there are no general solutions to use as our standard
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Figure 3.22: Transition frequencies fn,n+1 from states n→ n+ 1 for n = 0, 1, and 2

for the Gamow-Siegert states of the washboard with Josephson junction parameters

CJ = 6pF and Ic = 20µA. The dashed curves are fn,n+1 ± Γn+1/2h, indicating the

widths of the final states.
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basis, and no exact continuum normalization methods. Our proposed solution is an

asymptotic WKB normalization, which we show is appropriate for the washboard

parameters used here. In fact, it should be possible to use it for the more general

Wannier-Stark problem. We note that a similar method was used to study the

spectrum of the hydrogen Stark problem [220, 221].

One might expect that the Airy functions would be the appropriate basis,

since for sufficiently large energy the contributions of the cosine potential should

become negligible. It turns out, however, that for the washboard parameters the

WKB wavefunctions become good approximations before the Airy functions. This

can be seen by the following simple argument.

The effects of the cosine might be neglected once the distance (from the turning

point) has spanned at least two minima of the washboard. Thus, if we count the

approximate number of nodes N of the relevant Airy function over this distance,

and N � 1, then the WKB approximation will be appropriate—with or without

the cosine. Without the cosine, the asymptotics of the Airy functions are precisely

the WKB approximation. Starting from the tilted Hamiltonian (3.1) without the

cosine and J = 1

H = −4Ec
d2

dγ2
−EJγ, (3.155)

we perform the scale transformation γ = αx with α3 = 4Ec/EJ , which yields

H = (4EcE
2
J )

1/3

(

− d2

dx2
− x

)

(3.156)

The tilted eigenfunctions are thus

Ψ(γ) = −Ai(−α−1γ) (3.157)
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and the relevant distance is α−12π. To count the number of nodes we can assume

the WKB form for Ai with little error, and we find that the number of nodes is

N ≈ 2

3π
(α−12π)3/2 =

23/2π1/2

3

(
EJ
Ec

)1/2

. (3.158)

For typical junction parameters EJ/Ec ∼ 106, and thus

N ∼ 1700. (3.159)

Since N � 1, the WKB approximation will be valid before the effects of the cosine

can be neglected.

Numerical integration can yield an un-normalized wavefunction. That is, for

any energy E we can rewrite the general Schrödinger equation as the first order

system

dΨ/dx(x) = Π(x)
dΠ/dx(x) = −G(x)Ψ(x)

(3.160)

with

G(x) =
2m

~2
(E − V (x)). (3.161)

By choosing an initial condition {Ψ(xi), Π(xi)}, it is numerically straightforward to

integrate this system for both x > xi and x < xi. The initial condition should be

chosen such that Ψ(x) → 0 for x → −∞. Since this system is linear, one can set

Π(xi) = p with p arbitrary, and find the appropriate q = Ψ(xi). For large negative

x, Ψ(x) is of WKB type

Ψ(x) ∼ c0(q)e
S(x) + c1(q)e

−S(x) (3.162)

where S is positive, and goes to ∞ for x→ −∞. In principle, we must find the root

q∗ where c0(q∗) = 0, for example by a simple iterative root search.
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In practice, round-off error in the integration routine will cause any Ψ(x)

to eventually diverge for some negative x = xD. This divergence introduces an

error in our root q∗. We can avoid the root search entirely by setting Ψ(xD) =

0, Π(xD) arbitrary, and only integrating to the right. The intrinsic error in this

wavefunction will be exponentially small by (3.162), of order e−2S(xD). For the

following calculations we use a fourth order Runge-Kutta integrator.

After generating a state by this method, we must extract the resonance features

such as an internal amplitude X(E) and the phase shift φ(E). For the former we

must normalize the wavefunction to a continuum, for the latter we must match the

wavefunction to a set of in and out-going standard wavefunctions. We use the WKB

approximation for both, and assume that for large x we have

ΨE(x) = ÃE(2m(E − V (x))/~2)−1/4 sin(SE(x)/~ + φE) (3.163)

with

SE(x) =

∫ x

a

ds(2m(E − V (s))1/2, (3.164)

and a is the appropriate classical turning point.

We first consider the normalization. The constant ÃE that arises from numeri-

cal integration is somewhat arbitrary. In order that the wavefunctions be normalized

to a continuum, however, it must take a particular form, which we now calculate.

We wish to normalize ΨE such that

g(E,E ′) =

∫ ∞

0

ΨE(x)ΨE′(x)dx = δ(E −E ′). (3.165)

We let E ′ = E + ∆E, and insert the WKB form (3.163) into (3.165) for each
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wavefunction. Their product reduces to

ΨE(x)ΨE′(x) ≈ A2
E(2m(E − V (x))/~2)−1/2(1/4)

(
ei∂ESE(x)∆E/~ + e−i∂ESE(x)∆E/~

)

(3.166)

where we have neglected higher order terms in ∆E and also the rapidly oscillating

terms e±i2SE(x)/~. If we define z by

z(x) = ∂ESE(x)/~ =

∫ x

a

m/~2

(2m(E − V (s))/~2)1/2
ds. (3.167)

and substitute (3.166) into (4.13), we find

g(E,E ′) ≈ A2
E(~2/4m)

∫ ∞

0

dz(eiz∆E + e−iz∆E). (3.168)

Setting z → −z in the second integral in (3.168) yields

g(E,E ′) ≈ A2
E(~2/4m)

∫ ∞

−∞
dzeiz∆E = A2

E(~2/4m)2πδ(E −E ′), (3.169)

and thus AE = (2m/π~
2)1/2. We have shown that the appropriately continuum

normalized WKB function is

ΨE(x) = (2m/π~
2)1/2(2m(E − V (x))/~2)−1/4 sin(SE(x)/~ + φE) (3.170)

with SE(x) given by (3.164). Thus, we can normalize an arbitrary state by matching

it to one of this form.

In summary, our procedure, with ~ = m = 1, is to numerically construct a

wavefunction ΦE with the asymptotic form

ΦE(x) ∼ A0k(x)
1/2 sin

{∫ x

a

k(s)ds+ φ

}

(3.171)
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with k = (2(E − V (x)))1/2. We use the WKB identity

(
k1/2ΦE

)2
+

(

k−1 d

dx
(k1/2ΦE)

)2

= A2
0, (3.172)

to both ensure that (3.171) is correct and to find the initial normalization A0.

Then, we construct the normalized wavefunction ΨE(x) = ANΦE(x)/A0, where

AN = (2/π)1/2 is the appropriate continuum normalization factor.

Using this procedure, we first show the normalized wavefunctions near the

third resonance at ER = 2.3151 in Fig. 3.23. The top and bottom wavefunctions

have been offset for clarity. Clearly seen in this figure is the enhancment in amplitude

at the resonance. Also noticeable is the shift in a node of the wavefunction outside

the well (x > 5) as the energy increases. This is the scattering phase shift.

Repeating this procedure for multiple energies, we can construct an internal

amplitude function from each wavefunction

X2(E) =

∫ x1

x0

dxΨ2
E(x), (3.173)

where x0 and x1 are the turning points in the potential well. The internal amplitude

function is shown in Fig. 3.24. We can also construct a phase shift from (3.171):

tanφR(E) =

(
k3/2ΨE

d(k1/2ΨE)/dx

)

x=R

. (3.174)

Note that this phase shift will weakly depend on the position x = R. To determine

resonances, however, this dependence is irrelevant. The phase shift is shown in

Fig. 3.25.

Finally, we can repeat this procedure for various bias currents. A contour plot

of X2(E) is shown in Fig. 3.26. Also shown is the results of the complex scaling
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Figure 3.23: Normalized continuum wavefunctions for the washboard with Joseph-

son junction parameters CJ = 6pF, Ic = 20µA, and I = 0.99Ic = 19.8µA. The wave-

function amplitude is shown for energies near the third resonance at ER = 2.3151.

The energies and position have been scaled [see text and (3.5)].
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Figure 3.24: Internal amplitude (squared) X2(E) for the washboard with Josephson

junction parameters CJ = 6pF, Ic = 20µA, and I = 0.99Ic = 19.8µA. The scaled

energy is plotted on the horizontal axis. Note that the vertical scale is logarithmic.

The resonances are highly localized in energy and have very large amplitudes. These

large amplitudes allow the superposition of nearby energies to be highly localized in

the well.
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Figure 3.25: Scattering phase shift φ(E) (divided by π) for the washboard with

Josephson junction parameters CJ = 6pF, Ic = 20µA, and I = 0.99Ic = 19.8µA. At

each resonance energy, the phase shift increases by π. This rapid variation allows a

superposition of nearby energies to cancel outside the well.
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Table 3.1: The resonance energies E and widths Γ/2 from complex scaling (CS) and

phase shift (PS) analysis.
State ECS EPS ΓCS/2 ΓPS/2

0 0.4911958 0.4911958 1.2409 × 10−9 1.2408 × 10−9

1 1.4389926 1.4389926 1.2194 × 10−6 1.2194 × 10−6

2 2.3150917 2.3150917 3.9784 × 10−4 3.9781 × 10−4

3 3.0620256 3.0621948 2.9638 × 10−2 2.9672 × 10−2

calculation. While the visual agreement between the two is very pleasing, we can

study this at higher accuracy. By taking the derivative of the phase shift, and

fitting to a Lorentzian, we have parametrized the first four resonances. In Table 3.1

we compare these with the complex eigenvalues of the complex scaling calculation.

We find excellent agreement for both the energies and widths, the most significant

deviation occurring in the last resonance. As this resonance is quite broad and

somewhat asymmetric (near the top of the barrier, see Fig. 3.19), this deviation is

to be expected. For the resonances deeper in the well, the agreement is nearly exact.

Thus, we have accurately found the resonances of the washboard.
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Figure 3.26: Internal amplitude (squared) X2(E) for Josephson junction parameters

CJ = 6pF and Ic = 20µA. The vertical scale is the scaled energy, the horizontal is the

bias current in µA. The dark regions correspond to large amplitude, the light to zero

amplitude. The thin solid lines are the results of the complex scaling calculation.

The white dashed line is the barrier height.
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Chapter 4

The Cubic Approximation

In this Chapter we present results for the cubic approximation of the washboard

potential. Near each well of the washboard, the potential can be locally described

by a simple cubic polynomial. For the whole potential, however, the cubic is clearly

inadequate. It is actually more than inadequate. As shown below, the quantum

mechanics of the cubic potential is not uniquely defined because the Hamiltonian is

not essentially self-adjoint. This raises the natural question, if accurate numerical

methods exist for the washboard, such as those described in Chapter 3, why bother

with the cubic?

There are two main motivations. The first is that this polynomial approxi-

mation can be applied to junctions with a wide range of parameters. Conversely,

one can map junctions of different parameters to an equivalent cubic. This is useful

in that no fine-tuning of junction parameters is necessary to design its quantum
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dynamics. Furthermore, numerical calculations for quantum logic operations using

the cubic potential will be valid for all junctions satisfying some natural condition.

As will be shown, this condition is EJ � Ec, which applies to nearly all phase

qubits. Without these methods, calculations must be performed for each possible

set of junction parameters.

The second motivation is that many analytical results can be formally derived

for the cubic due to its relative simplicity. These results demonstrate how the

tunneling rates and energy level spacings change with the potential barrier. These

results are necessary for constructing simple pictures of the physics.

While much of this material has been studied before (such as [176, 177, 178]),

these results are necessary for the subsequent work on coupled junctions. In partic-

ular, many useful formulae, such as the variation of the position of the minimum,

are not to be found in the literature. Neglecting this variation can lead to wildly in-

accurate results. Accurate formulae are derived in Section 2. The curious ambiguity

of the spectrum of the cubic, and possible resolutions, are discussed in Section 3.

This is followed by the perturbative calculation of the energy eigenvalues and wave-

functions in Section 4, while a WKB calculation for the tunneling rate is performed

in Section 5. We consider another method to calculate the tunneling rate in Section

6, the instanton approach. Finally, Section 7 completes this Chapter by presenting

the first (to our knowledge) numerical verification of the cubic approximation to the

washboard potential.
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4.1 Washboard to Cubic

While the methods discussed in Chapter 3 are sufficiently developed for treating the

washboard potential directly, much can be gained by simplifying the dynamics to

a cubic potential. In particular, we will show that up to an energy scale the cubic

approximation parametrizes the washboard by a single parameter, the approximate

number of energy levels in the well.

We recall that the Hamiltonian of a current-biased Josephson junction is

H =
p2
γ

2m
−EJ (cos γ + Jγ). (4.1)

Here γ is the junction’s coordinate (the phase difference), pγ its conjugate momen-

tum, 1/m = 8Ec~
−2 where Ec = e2/(2CJ) is the charging energy of the junction,

EJ = ~Ic/(2e) is the Josephson energy with Ic the junction critical current and

J = I/Ic is the dimensionless bias current. As will be discussed below, typical

experiments have J ' 0.99, i.e. the washboard is strongly tilted. The three fun-

damental properties of the washboard that are important for quantum computing

are the position of the minimum, the curvature at the minimum, and the overall

barrier height. To understand the dynamics in this regime, we first explore these as

a function of the bias current J . The minimum and its curvature are

dU/dγ|min = EJ(sin γmin − J) = 0 ⇒ γmin = arcsin J, (4.2)

d2U/dγ2|min = EJ cos γmin = EJ
√

1 − J2, (4.3)

while the position of the maximum and its curvature are

γmax = π − arcsin J (4.4)
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d2U/dγ2|max = −d2U/dγ2|min = −EJ
√

1 − J2. (4.5)

From (4.3) we can compute the frequency of small oscillations about the minimum

ω =
√

(d2U/dγ2|min)/m
= ~

−1
√

8EcEJ(1 − J2)1/4.
(4.6)

The barrier height can also be calculated

∆U = U(γmax) − U(γmin)

= 2EJ(
√

1 − J2 + J(arcsin J − π/2))

= 2EJ(
√

1 − J2 − J arccos J),

(4.7)

and finally the number Ns of harmonic oscillator states whose energies lie beneath

the barrier is

Ns = ∆U/~ω

= 2−1/2 (EJ/Ec)
1/2 ((1 − J2)1/4 − J(1 − J2)−1/4 arccos J

)
.

(4.8)

The above equations are exact. We now consider the case when J is near unity,

and perform expansions of the above quantities in terms of ∆J = 1 − J . First, we

let γmin = π/2 − ∆γ, and attempt to solve dU/dγ = 0:

dU/dγ = 0 ⇒ sin(π/2 − ∆γ) − 1 + ∆J = 0,

cos ∆γ − 1 + ∆J = 0,

∆J − 1

2
∆γ2 +

1

24
∆γ4 − 1

720
∆γ6 + · · · = 0. (4.9)

Eq. (4.9) shows that, to lowest order, ∆γ =
√

2∆J . Proceeding to higher orders we

find

∆γ =
√

2∆J

(

1 +
1

12
∆J +

3

160
∆J2 + · · ·

)

, (4.10)

in terms of which γmin = π/2 − ∆γ and γmax = π/2 + ∆γ. For the curvature we

find

d2U/dγ2|min = EJ
√

2∆J

(

1 − 1

4
∆J − 1

32
∆J2 + · · ·

)

. (4.11)
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and d2U/dγ2|max = −d2U/dγ2|min. The barrier height is

∆U = EJ
4
√

2

3
∆J3/2

(

1 +
3

16
∆J + · · ·

)

. (4.12)

Finally, the number Ns of harmonic oscillator states has the expansion

Ns ' (23/4/3) (EJ/Ec)
1/2 ∆J5/4 +O(∆J9/4). (4.13)

These preliminary results are completely independent of the cubic approximation.

To proceed to a cubic approximation of the potential, we follow a simple step-

wise approach. For quantum computing applications we need to keep track of the

bias current J at all times. It is the primary experimental knob through which we

manipulate the quantum system. Thus, and for future convenience, we choose a

reference bias current J0, which will be the physical starting point of our quantum

algorithm. We define α by

α =

(
8Ec
EJ

)1/4

(1 − J2
0 )−1/8 (4.14)

and consider the transformation

x = α−1(γ − arcsinJ0)
p = αpγ.

(4.15)

Using (4.14) and (4.15) in (4.1), we find

H = U0 +
1

2mα2
p2 + EJ

(√

1 − J2
0 (1 − cos(αx)) + J0 sin(αx) − Jαx

)

, (4.16)

where U0 is a constant (independent of x and p), which we will subsequently ignore.

Now, if we define the reference frequency ω0 by ~ω0 = m−1α−2, that is

~ω0 =
√

8EcEJ(1 − J2
0 )1/4 (4.17)
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then (4.16) can be written as

H/~ω0 =
1

2
~
−2p2 + α−2

(
1 − cos(αx) + (1 − J2

0 )−1/2(J0 sin(αx) − Jαx)
)
. (4.18)

So far, all of this is exact, and parallel to the transformations used in Chapter

3. We show below that for typical parameters α is small, and thus we expand the

potential in (4.18) in α to find

H/~ω0 '
1

2
p2 +

1

2
x2 + sx− λx3, (4.19)

with

s = α−1(1 − J2
0 )−1/2(J0 − J) (4.20)

and

λ =
1

3!
J0α(1 − J2

0 )−1/2. (4.21)

The next correction to H occurs at order α2. Now, the cubic potential

V (x) =
1

2
x2 + sx− λx3 (4.22)

has for a minimum

x∗ =
1

6λ
(1 −

√
1 + 12sλ), (4.23)

and its curvature there is

d2V/dx2|∗ = ω2 =
√

1 + 12sλ. (4.24)

Using (4.23) and (4.24), we can rewrite (4.22) as

V (x) = V∗ +
1

2
ω2(x− x∗)

2 − λ(x− x∗)
3, (4.25)
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and as before, we drop the constant V∗. Substituting (4.20) and (4.21) into (4.24)

we find ω in terms of J, J0 ∼ 1

ω4 = 1 + 2J0(1 − J2
0 )−1(J0 − J) ' 1 − J

1 − J0

. (4.26)

We also note that the number of harmonic oscillator states Ns whose energies lie

below the barrier of the cubic potential with ω = 1 is given by

Ns = (54λ2)−1 =
2

3
J−2

0 α−2(1 − J2
0 )

' 23/4

3

(
EJ
Ec

)1/2

(1 − J0)
5/4, (4.27)

in agreement with the expansion (4.13). With this identification, we write (4.23) as

x∗ = (3Ns/2)1/2(1 − ω2). (4.28)

Recall that in moving from the washboard to the cubic we have considered

two expansions, one in 1 − J0 and one in α. We now show that both quantities are

small for typical junction operations if EJ � Ec. First, during typical operations

we generally expect that 1 < Ns < 10. Our expansions are therefore consistent

since Ns involves the product of (EJ/Ec)
1/2, which we have assumed is large, and

(1 − J0)
5/4, which must therefore be small. We can invert (4.13) for Ns to find J0

J0 ' 1 −
(

3Ns

23/4

)4/5(
Ec
EJ

)2/5

. (4.29)

Substituting (4.29) for J0 in (4.14), the scaling parameter α becomes

α '
(

213/4

3Ns

)1/10(
Ec
EJ

)1/5

. (4.30)

Thus, for a reasonable Ns, both 1 − J0 and α are proportional to powers of Ec/EJ .

The qubits considered in this thesis have large Josephson junctions such that Ic '
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20µA and CJ ' 6pF. These values yield Ec/EJ ∼ 10−6, and for Ns ' 3 we have J0 '

0.99 and α ' 0.065. We conclude that the formal expansions from the washboard

to the cubic approximation are reasonable.

In summary, we find that a cubic approximation to the washboard is

Hcubic = ~ω0

(
1

2
p2 +

1

2
ω2(x− x∗)

2 − λ(x− x∗)
3

)

. (4.31)

In (4.31), the momentum is the differential operator p = −id/dx, and the energy

scale is

~ω0 =
√

8EcEJ(1 − J2
0 )1/4. (4.32)

The approximate number of harmonic oscillator states for this cubic is

Ns =
23/4

3

(
EJ
Ec

)1/2

(1 − J0)
5/4, (4.33)

in terms of which the cubic parameter in (4.31) can be written as

λ =
1√

54Ns

. (4.34)

Finally, the relative frequency is

ω2 =

(
1 − J

1 − J0

)1/2

, (4.35)

and the position of the minimum is

x∗ = (3Ns/2)1/2(1 − ω2). (4.36)
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4.2 Spectral properties of the Cubic Oscillator

In the remainder of this Chapter we measure all energies in units of ~ω0 and use

J = J0 so that ω = 1 and x∗ = 0 in (4.31). Thus we consider

H =
1

2
p2 +

1

2
x2 − λx3. (4.37)

As touched upon in the Introduction, there is no unique mathematical definition of

the spectrum for the cubic oscillator. This is due to the fact that the asymptotic

solutions of the Schrödinger equation HΨ = EΨ are in fact square-integrable for

any energy. To show this, we consider the WKB, outgoing wave function

Ψ+(x) ' (2E − x2 + 2λx3)−1/4 exp iS(x) (4.38)

For large x and S real, we find

|Ψ+(x)|2 ' (2E − x2 + 2λx3)−1/2 ∼ Ax−3/2. (4.39)

Since |Ψ+(x)|2 is falling off faster than x−1 at large x, its integral is convergent, and

therefore it is square-integrable. Now, the WKB exponent has the form

S =
∫ x

ds(2E − s2 + 2λs3)1/2

' (2λ)1/2
(

2
5
x5/2 − 1

6λ
x3/2 − 1

64λ2x
1/2 + 1

256λ3 (1 − 64λ2E)x−1/2
)
.

(4.40)

Since S is asymptotically independent of E (its contribution goes as x−1/2), any

value of the energy is allowed, real or complex!

This situation is quite different from the washboard, whose asymptotic wave-

functions are Airy-type, which for complex energy diverge for x → ∞ [see 3.152].

For real energy they form a continuum, which while not square-integrable, can be
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normalized to form a delta function in energy. The cubic wavefunctions cannot be

so normalized, and thus the spectrum is discrete rather than continuous, and admits

any energy as a true eigenvalue. The technical statement is that the point spectrum

of the maximal differential operator for H fills the entire complex plane [222]. Thus,

there is no mathematically unique way to make physical sense of H .

Square-integrability (or its continuum extension) is not the only boundary

condition that can be used to determine the spectrum. The relevant alternative

for resonances is to choose the Gamow-Siegert outgoing wave boundary condition

[171, 172]. An equivalent condition is to use complex scaling, that is to find wave-

fuctions such that |Ψ(x)| → 0 along the complex contour x → ∞eiθ (for general

analysis, boundary conditions must specify particular paths in the complex plane

[223]). In principle, use of this boundary condition could yield a unique meaning

to the spectrum. In practice, this has only been shown through the use of some

regularization of the cubic potential [224].

When the Gamow-Siegert boundary condition is used for a regularized poten-

tial, the real parts of the eigenvalues match to the oscillator energies found through

perturbation theory, with imaginary parts that can be found via WKB methods.

Thus, a meaningful perturbation series exists for the Gamow-Siegert boundary con-

dition on this modified potential. Note however, that the standard boundary condi-

tions on this new problem yield a continuous spectrum, and the connection between

the complex resonances and scattering theory hold as for the washboard in Chapter

3.

The above considerations apply for λ real. For complex λ, a great deal more
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can be said about the cubic. In this case, the spectrum of H is unique, discrete,

and, for |λ| sufficiently small, in one to one correspondence with the spectrum of the

harmonic oscillator [225]. Furthermore, these eigenvalues remain pseudoeigenvalues

when λ is continued to the real axis. Thus the spectrum of the complex cubic seems

to uniquely yield some of the spectrum of (any self-adjoint extension of) the real

cubic. Finally, these eigenvalues can be put into correspondence with the resonances

of the regularized potential [224].

A great deal of recent interest has focused on purely imaginary λ = ig. In this

case, the Hamiltonian is invariant under the combined action of parity P(x) = −x

and time-reversal T (λ) = (λ)∗ = −λ, i.e. PT (H) = H . There is strong numerical

evidence [226, 227] and recent theoretical work [228, 229] that for certain λ the

spectrum of the imaginary cubic oscillator is real and discrete. While a complete

physical interpretation of these results is missing, the creation of a PT -symmetric

theory of quantum mechanics holds promise for both mathematical physics and for

applications in field theory and condensed matter systems [226, 230].

This brief discussion of the status of the cubic oscillator serves mainly to show

that the simple formalism derived below can be made mathematically meaningful

only through somewhat complicated arguments. For our purposes, however, the

problem is quite clearcut. Using the Gamow-Siegert picture of resonances, we can

construct wavefunctions and energies of the washboard by applying a combination of

perturbation theory and WKB methods on its cubic approximation. These construc-

tions are unique since the they follow from a well-defined limit of the well-behaved

tilted washboard Hamiltonian. Thus, while there is no unique quantum mechanics
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of the cubic oscillator, there is a unique cubic approximation to the tilted washboard

model.

4.3 Perturbation Theory

4.3.1 Direct Method

Here we collect perturbation theory results for the energy of the cubic oscillator

H =
1

2
p2 +

1

2
x2 − λx3. (4.41)

First, we derive the Rayleigh-Schrödinger perturbation theory (RSPT) series for

H = H0 + λH1, with

H0 =
1

2
p2 +

1

2
x2 (4.42)

and

H1 = −x3. (4.43)

We begin by expanding the n-th energy eigenstate, |Ψn〉, in powers of λ

|Ψn〉 =

∞∑

k=0

λk|n, k〉. (4.44)

In this expansion, |n, 0〉 is the n-th energy eigenstate of H0, and |n, k〉 are the k-th

order perturbative corrections. We also expand the energy eigenvalue in powers of

λ,

En =
∞∑

k=0

λkEn,k, (4.45)
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where H0|n, 0〉 = En,0|n, 0〉. Substituting (4.44) and (4.45) into the eigenvalue

equation

(H0 + λH1)|Ψn〉 = En|Ψn〉 (4.46)

and grouping terms of order λk we find

H0|n, k〉 +H1|n, k − 1〉 =

k∑

j=0

En,j|n, k − j〉. (4.47)

Assuming that both En,j and |n, j〉 are known for 0 ≤ j ≤ k − 1, we can pull

the unknown terms out of the sum on the right hand side of (4.47)

H0|n, k〉 +H1|n, k − 1〉 = En,k|n, 0〉 + En,0|n, k〉 +

k−1∑

j=1

En,j|n, k − j〉. (4.48)

Multiplying (4.48) by 〈m, 0| we get

Em,0〈m, 0|n, k〉 + 〈m, 0|H1|n, k − 1〉 = En,kδn,m + En,0〈m, 0|n, k〉
+
∑k

j=1En,j〈m, 0|n, k − j〉. (4.49)

If m 6= n, we can solve (4.49) for 〈m, 0|n, k〉

〈m, 0|n, k〉 =
〈m, 0|H1|n, k − 1〉 −∑k−1

j=1 En,j〈m, 0|n, k − j〉
En,0 −Em,0

(4.50)

which we can rewrite as

|n, k〉 =
∑

m6=n

〈m, 0|H1|n, k − 1〉 −∑k−1
j=1 En,j〈m, 0|n, k − j〉

En,0 − Em,0
|m, 0〉. (4.51)

If m = n, however, we solve (4.49) for En,k:

En,k = 〈n, 0|H1|n, k − 1〉 (4.52)

Equations (4.51) and (4.52) determine the perturbation theory, yielding En,k and

|n, k〉 in terms of lower order expressions. We now exhibit a few of the explicit

formulae.
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Letting Vn,m = 〈n, 0|H1|m, 0〉, and using (4.51) and (4.52), we find the usual

first order results

En,1 = Vn,n (4.53)

and

|n, 1〉 =
∑

m6=n

Vn,m
En,0 − Em,0

|m, 0〉. (4.54)

In second order we find

En,2 =
∑

m6=n

Vn,mVm,n
En,0 − Em,0

(4.55)

and

|n, 2〉 =
∑

m1,m2 6=n

(Vm1,m2
Vm2,n − Vn,nδm1,m2

Vm1,n)

(En,0 − Em1,0)(En,0 − Em2,0)
|m1, 0〉. (4.56)

For the following we consider the simplification Vn,n = 0, appropriate for our current

problem with H1 = −x3. Proceeding to third order we have

En,3 =
∑

m1,m2 6=n

Vn,m1
Vm1,m2

Vm2,n

(En,0 −Em1,0)(En,0 −Em2,0)
(4.57)

and

|n, 3〉 =
∑

m1,m2,m3 6=n

(Vm1,m2
Vm2,m3

Vm3,n − δm1,m3
Vn,m2

Vm2,nVm3,n)

(En,0 −Em1,0)(En,0 −Em2,0)(En,0 −Em3,0)
|m1, 0〉. (4.58)

In fourth order we find

En,4 =
∑

m1,m2,m3 6=n

Vn,m1
Vm3,n(Vm1,m2

Vm2,m3
− δm1,m3

Vm2,nVn,m2
)

(En,0 − Em1,0)(En,0 − Em2,0)(En,0 − Em3,0)
(4.59)

and

|n, 4〉 =
∑

m1,m2,m3,m4 6=n

G
(4)
n,m1,m2,m3,m4

∏4
i=1(En,0 − Emi,0)

|m1, 0〉 (4.60)

with

G
(4)
n,m1,m2,m3,m4 = Vm1,m2

Vm2,m3
Vm3,m4

Vm4,n

−δm2,m4
Vm1,m2

Vm2,nVn,m3
Vm3,n

−δm1,m2
Vm1,m3

Vm3,nVn,m4
Vm4,n.

(4.61)
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In fifth order we have

En,5 =
∑

m1,m2,m3,m4 6=n

Vn,m1
G

(4)
n,m1,m2,m3,m4

∏4
i=1(En,0 −Emi,0)

(4.62)

and

|n, 5〉 =
∑

m1,m2,m3,m4,m5 6=n

G
(5)
n,m1,m2,m3,m4,m5

∏5
i=1(En,0 −Emi,0)

|m1, 0〉 (4.63)

with

G
(5)
n,m1,m2,m3,m4,m5 = Vm1,m2

Vm2,m3
Vm3,m4

Vm4,m5
Vm5,n

−δm3,m5
Vm1,m2

Vm2,m3
Vm3,nVn,m4

Vm4,n

−δm2,m3
Vm1,m3

Vm3,m4
Vm4,nVn,m5

Vm5,n

−δm1,m2
Vm1,m3

Vm3,m4
Vm4,nVn,m5

Vm5,n

+δm1,m2
δm2,m4

Vm1,nVn,m3
Vm3,nVn,m4

Vm5,n

−δm1,m2
Vm1,nVn,m3

Vm3,m4
Vm4,m5

Vm5,n

+δm1,m2
δm3,m5

Vm1,nVn,m3
Vm3,nVn,m4

Vm4,n.

(4.64)

Finally the sixth order energy is

En,6 =
∑

m1,m2,m3,m4,m5 6=n

Vn,m1
G

(5)
n,m1,m2,m3,m4,m5

∏5
i=1(En,0 − Emi,0)

. (4.65)

Clearly, this series can be extended to ever higher orders, but more efficient proce-

dures exist for the cubic oscillator, to be shown in the next section.

The harmonic oscillator matrix elements for the cubic are

Vn,m = −〈n|x3|m〉 = −8−1/2(
√

m(m− 1)(m− 2)δn,m−3

+3m3/2δn,m−1 + 3(m+ 1)3/2δn,m+1

+
√

(m+ 1)(m+ 2)(m+ 3)δn,m+3).

(4.66)

Using this, we can perform each of the above sums. Actually, we only need to do

half, since by symmetry all energy coefficients En,k with k odd vanish. This is due

to the fact that the parity operator

P =

∫ +∞

−∞
dx|x〉〈−x| (4.67)

is unitary and the Hamiltonian satisfies H(−λ) = PH(λ)P†. Since the spectrum is

invariant under unitary transformations (UHU † has the same spectrum as H), we
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find that En(−λ) = En(λ). This implies En,k = (−1)kEn,k, which therefore vanishes

for k odd.

Thus, we focus on the even terms. En,2 in (4.55) is a sum of only four terms

(m = n± 1, n± 3) and is easy to evaluate:

En,2 = −15

4
(n2 + n + 11/30). (4.68)

The sum En,4 in (4.59) is composed of two sets of terms, the second having sixteen

terms: m1 = n ± 1, n ± 3, m2 = n ± 1, n ± 3 and m3 = m1. The first set has

m1 = n ± 1, n ± 3, m3 = n ± 1, n ± 3, and m2 the union of m1 ± 1, m1 ± 3 and

m3 ± 1, m3 ± 3, a grand total of 84 terms, many of which are zero. Performing this

sum via Mathematica, we find

En,4 = −15

32
(94n3 + 141n2 + 109n+ 31). (4.69)

The sum En,6 in Eq. (4.65) is even longer, with the final result

En,6 = − 1

128
(115755n4 + 231510n3 + 278160n2 + 162405n+ 39709). (4.70)

We show the (un-normalized) wavefunctions for only k = 1 and k = 2:

|n, 1〉 = 1
6
√

2

√

(n+ 1)(n+ 2)(n+ 3)|n+ 3, 0〉
3

2
√

2
(n + 1)3/2|n+ 1, 0〉 + 3

2
√

2
n3/2|n− 1, 0〉

− 1
6
√

2

√

n(n− 1)(n− 2)|n− 3, 0〉,
(4.71)

and

|n, 2〉 = 1
144

√

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)|n+ 6, 0〉
+1

8
(n + 7

4
)
√

(n+ 1)(n+ 2)(n+ 3)(n+ 4)|n+ 4, 0〉
+ 1

16
(7n2 + 33n+ 27)

√

(n + 1)(n+ 2)|n+ 2, 0〉
+ 1

16
(7n2 − 19n+ 1)

√

n(n− 1)|n− 2, 0〉
+1

8
(n− 3

4
)
√

n(n− 1)(n− 2)(n− 3)|n− 4, 0〉
+ 1

144

√

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)|n− 6, 0〉.

(4.72)
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Thus, the first few states are, to second order,

|Ψ0〉 = |0〉+λ
(

+
3

2
√

2
|1〉 +

1

2
√

3
|3〉
)

+λ2

(

27
√

2

16
|2〉 +

7
√

6

16
|4〉 +

2
√

5

24
|6〉
)

, (4.73)

|Ψ1〉 = |1〉 + λ

(

− 3

2
√

2
|0〉 + 3|2〉 +

√
3

3
|4〉
)

+λ2

(

67
√

6

16
|3〉 +

11
√

30

16
|5〉 +

√
35

12
|7〉
)

, (4.74)

and

|Ψ2〉 = |2〉 + λ

(

−3|1〉 +
9
√

3

2
√

2
|3〉 +

√
15

3
√

2
|5〉
)

+λ2

(

−9
√

2

16
|0〉 +

121
√

3

8
|4〉 +

45
√

10

16
|6〉 +

√
35

6
|7〉
)

. (4.75)

Finally, for future reference we compute matrix elements using these second order

expressions and the definition

xn,m =
〈Ψn|x|Ψm〉
|Ψn||Ψm|

(4.76)

with |Ψ|2 = 〈Ψ|Ψ〉:

x0,0 =
3

2
λ+O(λ3), (4.77)

x0,1 =
1√
2

(

1 +
11

4
λ2

)

+O(λ3), (4.78)

x0,2 = − 1√
2
λ+O(λ3), (4.79)

x1,1 =
9

2
λ+O(λ3), (4.80)

x1,2 = 1 +
11

2
λ2 +O(λ3), (4.81)

and

x2,2 =
15

2
λ+O(λ3). (4.82)
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4.3.2 Recursion Method

The perturbation theory results of the previous section become quite tedious at high

order. This is due to formulas such as (4.65), which apply to general perturbations

Vn,m with Vn,n = 0. The matrix elements of the cubic, however have a banded

structure, only connecting state n to terms n±1 and n±3, with the maximum level

encountered at order k being n+3k. This observation suggests that there may be a

more efficient way to group and proceed at each order. Indeed there is, and it was

first explored by Bender and Wu for the quartic oscillator [231]. The cubic was later

studied by Drummond [232], and more recently (with imaginary λ) by Bender and

Dunne [227]. Here we explain the recursion method and show how explicit results

can be generated for all of the energy states.

The first step is to write the wavefunction for level n as

Ψn(x) = e−x
2/2

∞∑

k=0

λkB
(n)
k (x). (4.83)

Taking two derivatives of (4.83) we have

d2Ψn

dx2
(x) = −Ψn(x) + x2Ψn(x) − e−x

2

∞∑

k=0

λk

(

d2B
(n)
k

dx2
(x) − 2x

dB
(n)
k

dx
(x)

)

. (4.84)

Substituting (4.84) into the Schrödinger equation

−1

2

d2Ψn

dx2
(x) +

1

2
x2Ψn(x) − λx3Ψn(x) = EnΨn(x) (4.85)

we find the result

(En −
1

2
)Ψn(x) = −1

2
e−x

2

∞∑

k=0

λk

(

d2B
(n)
k

dx2
(x) − 2x

dB
(n)
k

dx
(x) + 2λx3B

(n)
k (x)

)

.

(4.86)

153



This can be simplified by cancelling the exponential, which yields

(En −
1

2
)

∞∑

k=0

λkB
(n)
k (x) = −1

2

∞∑

k=0

λk

(

d2B
(n)
k

dx2
(x) − 2x

dB
(n)
k

dx
+ 2λx3B

(n)
k (x)

)

.

(4.87)

At lowest order (O(λ0)), using (4.45) in (4.87) we find

(En,0 −
1

2
)B0(x) = x

dB
(n)
0

dx
(x)(x) − 1

2

d2B
(n)
0

dx2
(x), (4.88)

which is Hermite’s equation with En,0 = n + 1/2 and B
(n)
0 (x) = cHn(x), where c is

a constant, which we fix below.

For the higher order terms we first consider the left-hand-side of (4.87) (for

k + k′ > 1)

(∑∞
k=1En,kλ

k
) (∑∞

k=0B
(n)
k (x)

)

=
∑∞

k=1,k′=0En,kB
(n)
k′ (x)λk+k

′

=
∑∞

k′′=1 λ
k′′
(
∑k′′−1

p=0 En,k′′−pB
(n)
p (x)

)

,
(4.89)

and move the k + k′ = 0 term to the right-hand-side of (4.87). Relabeling the last

term on the right-hand-side (k → k − 1) of (4.87) we find that at O(λk)

k−1∑

p=0

En,k−pBp(x) = x
dB

(n)
k

dx
(x) − 1

2

d2B
(n)
k

dx2
(x) − x3B

(n)
k−1(x) − nB

(n)
k (x). (4.90)

The final step is to replace the B
(n)
k (x) by their polynomial coefficients, using

the banded structure of the cubic perturbation to limit the number of terms:

B
(n)
k (x) =

n+3k∑

j=0

B
(n)
k,j x

j . (4.91)

Using (4.91) we find

x
dB

(n)
k

dx
(x) =

n+3k∑

j=0

jB
(n)
k,j x

j , (4.92)

d2B
(n)
k

dx2
(x) =

n+3k∑

j=0

j(j − 1)B
(n)
k,j x

j−2 =

n+3k−2∑

j=0

(j + 1)(j + 2)B
(n)
k,j+2x

j , (4.93)
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and

x3B
(n)
k−1(x) =

n+3k−3∑

j=0

B
(n)
k−1,jx

j+3 =

n+3k∑

j=3

B
(n)
k−1,j−3x

j. (4.94)

Inserting (4.91), (4.92), (4.93), (4.94) into (4.90), we find for O(xj)

(j − n)B
(n)
k,j −

1

2
(j + 1)(j + 2)B

(n)
k,j+2 − B

(n)
k−1,j−3 =

k−1∑

p=0

En,k−pB
(n)
p,j . (4.95)

Equation (4.95) serves as a recursion relation that will allow us to systemati-

cally construct the terms B
(n)
k,j . To do that, we first observe that there are a number

of boundary conditions that must be met. The first obvious ones are that by con-

struction B
(n)
k,j = 0 for the three cases j > n + 3k, k < 0, and j < 0. Secondly, B

(n)
0,j

must be proportional to the coefficients of the Hermite polynomials. In particular,

for n even we choose B
(n)
0,0 = 1 and find

B
(n)
0,k =

{
(−1)l22l(n/2)!
(n/2−l)!(2l)! k = 2l

0 k = 2l + 1

}

, (4.96)

while for n odd we choose B
(n)
0,1 = 1 and find

B
(n)
0,k =

{

0 k = 2l
(−1)k22l+1((n−1)/2)!
((n−1)/2−l)!(2l+1)!

k = 2l + 1

}

. (4.97)

Now, we can actually choose B
(n)
k,0 = δk,0 for n even, which merely amounts to a par-

ticular choice of normalization. Similarly, we choose B
(n)
k,1 = δk,0 for n odd. Finally,

we can simplify Eq. (4.95) for B
(n)
k,n+3k using the boundary condition B

(n)
k,j>n+3k = 0:

3kB
(n)
k,n+3k −B

(n)
k−1,n+3(k−1) = 0, (4.98)

with the solution

B
(n)
k,n+3k =

1

3kk!
B

(n)
0,n (4.99)

This completes the specification of the boundary conditions.
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Before presenting the algorithm to solve the recursion relation, we must relate

the energies to the coefficient matrix. Letting j = 0, k > 0, and using our boundary

conditions, we find

En,k =

{

−B(n)
k,2 n even

−3B
(n)
k,3 n odd

}

. (4.100)

For n even, (4.95) becomes

(j − n)B
(n)
k,j −

1

2
(j + 1)(j + 2)B

(n)
k,j+2 − B

(n)
k−1,j−3 = −

k−1∑

p=0

B
(n)
k−p,2B

(n)
p,j (4.101)

while for n odd (here and below) we must replace B
(n)
k,2 → 3B

(n)
k,3 in the sum on the

right-hand-side. The recursion algorithm depends on whether j is greater or less

than n. That is, for a given k and for j > n we can iterate down from j = n + 3k

(which is fixed by the boundary condition) via

B
(n)
k,j =

1

j − n

(

1

2
(j + 1)(j + 2)B

(n)
k,j+2 +B

(n)
k−1,j−3 −

k−1∑

p=1

B
(n)
k−p,2B

(n)
p,j

)

. (4.102)

We have removed the p = 0 term in the sum in (4.95) due to the boundary condition

B
(n)
0,j = 0 for j > n. Careful inspection of (4.102) shows that all terms on the right-

hand-side are already known from previous steps. This iteration works until j = n

at which point we must include the p = 0 term. We now solve for B
(n)
k,2

B
(n)
k,2 =

1

B
(n)
0,n

(

1

2
(j + 1)(j + 2)B

(n)
k,j+2 +B

(n)
k−1,j−3 −

k−1∑

p=1

B
(n)
k−p,2B

(n)
p,j

)

. (4.103)

Since B
(n)
k,2 is now known, we can iterate upwards

B
(n)
k,j+2 =

2

(j + 1)(j + 2)

(

(j − n)B
(n)
k,j −B

(n)
k−1,j−3 −

k−1∑

p=0

B
(n)
k−p,2B

(n)
p,j

)

, (4.104)

finally stopping at j = n− 2. In this way we have solved for B
(n)
k,j for all j, and can

proceed to order k + 1.
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Practically speaking, this procedure is most easily coded for specific (generally

low) values of n. We can use these specific values to construct the general form of

En,k. Indeed we see that En,k is a power series in n, with the maximum power

∼ (Vn,n′)k/(nk−1) ∼ nk/2+1. Thus, we can write

En,k =

k/2+1
∑

α=0

c
(n)
k,αn

α. (4.105)

To find the coefficients c
(n)
k,α for a given k we evaluate En,k for 0 ≤ n ≤ k/2 + 2

and solve the above set of linear equations. Programming the above procedure in

Mathematica is not terribly hard; an implementation is given in the Appendix.

The final results are for k = 14:

En,0 = n+
1

2
(4.106)

En,2 = −1

8
(11 + 30n+ 30n2), (4.107)

En,4 = −15

32
(31 + 109n+ 141n2 + 94n3), (4.108)

En,6 = − 1

128
(39709 + 162405n+ 278160n2 + 231510n3 + 115755n4), (4.109)

En,8 = − 21
2048

(916705 + 4244573n+ 8374830n2

+9387690n3 + 5706705n4 + 2282682n5),
(4.110)

En,10 = − 147
8192

(20030557 + 101347305n+ 228176070n2 + 292090470n3

+242127585n4 + 115298820n5 + 38432940n6),
(4.111)

En,12 = − 15
65536

(71667471191 + 390365712807n+ 956962033860n2

+1405781660248n3 + 1320554758215n4 + 865910506692n5

+337688603406n6 + 96482458116n7),
(4.112)
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En,14 = − 3
262144

(75633966807431 + 435563687342535n
+1153607094794760n2 + 1838467262444400n3

+1990665987016770n4 + 1469066290398630n5

+795267869208120n6 + 261924947778780n7

+65481236944695n8).

(4.113)

This procedure is much more efficient that the direct summation presented

in the previous section. Note that the rapid growth of this series suggests that it

is diverging. There exist methods such as Borel resummation that can resum the

expansion [233, 234, 227]). The sum is indeed divergent and its divergence is due to

the existence of a non-analytic imaginary part of the energy, which is the tunneling

rate to be presented in the next section. Another method known as variational

perturbation theory [235] also provides a better expansion than the above, and

can also be applied to the imaginary parts. Finally, Alvarez [236] has presented a

systematic WKB method that produces this series, and gives the connection between

the convergence of subterms of this series with the classical normal form perturbation

series for the cubic oscillator (note that there is an error in Alvarez’s table: 4N should

be 42N).

4.4 WKB Tunneling Rate

The perturbation methods introduced above do not adequately handle the wave-

function outside of the potential well (see Fig. 4.1). Classically, a particle of energy

E could be found in regions I or III, but is classically forbidden in region II. Thus,

a classical particle placed in region I would stay there forever. A quantum particle,

however, can tunnel through the classically forbidden region to emerge outside the
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Figure 4.1: Cubic well. The metastable ground state wavefunction is shown, with

classical turning points x0, x1, and x2. The WKB wavefunction tunnels from region

I through the classically forbidden region (region II) to yield an outgoing wave in

region III.
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well, and then escape to infinity. To calculate the rate of this process, we construct

an outgoing WKB wavefunction which satisfies the Gamow-Siegert boundary con-

dition. After matching this wavefunction in regions I, II, and III, we conclude this

section by showing how the tunneling rate (or the imaginary part of the complex

energy) can be found directly from this WKB wavefunction. We note that calcula-

tions similar to this have been sketched before [237, 238, 239], and aspects of the

WKB matching of the harmonic oscillator are first found in [240].

4.4.1 General Potential

In this section we deal with the general Hamiltonian

H =
1

2m
p2 + V (x), (4.114)

with a potential minimum such that V (x) ∼ 1
2
mω2x2, such as that in Fig. 4.1. We

apply our results to the cubic in the next section.

The standard WKB connection formulae [241] for the far turning point (x2)

states that a wavefunction in section II of the form

ΨII(x) =
A
√

|v|
exp

(

−1

~

∫ x2

x

|p|dx′
)

+
B
√

|v|
exp

(
1

~

∫ x2

x

|p|dx′
)

(4.115)

should match onto the exterior wavefunction in region III,

ΨIII(x) =
A+ iB/2√

v
exp

(
i

~

∫ x

x2

pdx′ − iπ/4

)

+
A− iB/2√

v
exp

(

− i

~

∫ x

x2

pdx′ + iπ/4

)

(4.116)

where

p(x) = mv(x) =
√

2m(E − V (x)). (4.117)
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If A = iB/2, this exterior wavefunction (4.116) will have the purely outgoing form

ΨIII(x) =
B√
v

exp

(
i

~

∫ x

x2

pdx′ + iπ/4

)

. (4.118)

We can then rewrite (4.115) as

ΨII(x) =
C
√

|v|
exp

(

−1

~

∫ x

x1

|p|dx′
)

+
i

2

C
√

|v|
exp

(

−2

~

∫ x2

x1

|p|dx′
)

exp

(
1

~

∫ x

x1

|p|dx′
)

(4.119)

and we can choose B and C to be real and related by

B = C exp

(

−1

~

∫ x2

x1

|p|dx′
)

. (4.120)

The wavefunction ΨII(x) in (4.119) has two parts. The first is a real exponentially

decaying wavefunction. The second is a purely imaginary exponentially growing

wavefunction. Its presence is necessary for the outgoing wave boundary condition.

However, near the left turning point (x1) it is exponentially suppressed and can be

neglected. We therefore turn to the matching of the real part of ΨII(x) to region I.

In region I, we expect the wavefunction to be well approximated by a harmonic

oscillator state

ΨI(x) = (2nn!)−1/2
(mω

~π

)1/4

Hn(
√

mω/~x) exp
(

−mω
2~

x2
)

. (4.121)

with energy

En = ~ω

(

n +
1

2

)

. (4.122)

Note that we are neglecting any anharmonic effects, working to the zeroth order of

perturbation theory in region I. Extending this wavefunction into region II, we use
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the leading order behavior of the Hermite polynomials for large z, Hn(z) ' (2z)n,

to find

ΨI(x) ∼ 2n/2(n!)−1/2π−1/4
(mω

~

)n/2+1/4

xn exp
(

−mω
2~

x2
)

. (4.123)

We now match ΨI(x) to ΨII(x) to determine the coefficient C. To do this we

must evaluate the integral

S(x) =

∫ x

x1

|p(x′)|dx′. (4.124)

We approximate the momentum by including only the quadratic term of the poten-

tial

|p(x)| ≈ mω
√

x2 − x2
1 (4.125)

where the turning point is

x1 =

√

2E

mω2
≈
√

~

mω
(2n+ 1)1/2. (4.126)

Introducing the substitution x = x1 cosh z,

S(x) = mωx2
1

∫ z1(x)

0

√

(cosh2 z − 1) sinh zdz (4.127)

with

z1(x) = log

(
x

x1
(1 +

√

1 − x2/x2
1)

)

, (4.128)

(note that z1(x) > 0 and x = x1 cosh z1(x)) we find that the transformed integral

(4.127) can be done exactly to yield

S(x) =
1

2
mωx2

1 (sinh z1(x) cosh z1(x) − z1(x)) . (4.129)

We have thus found

S(x) =
1

2
mωx2

1

(
x2

x2
1

√

1 − x2
1/x

2 − log

(
x

x1

(1 +
√

1 − x2
1/x

2)

))

, (4.130)
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which can be readily expanded in terms of x1/x

S(x) ≈ 1

2
mω

(

x2 − 1

2
x2

1 − x2
1 log(2x/x1)

)

. (4.131)

Note also that in the prefactor for ΨII(x) we can let |v(x)| ≈ ωx. Putting everything

together, substituting (4.131) for S and (4.126) for the turning point x1 in (4.115)

we find

ΨII(x) ≈
C√
ω

(2/x1)
n+1/2e(2n+1)/4xn exp

(

−mω
2~

x2
)

. (4.132)

Comparing this with ΨI(x) in (4.123) yields C

C =
ω1/2(n + 1

2
)(n+1/2)/2

(2π)1/4(n!en+1/2)1/2
. (4.133)

Now that we have determined C, we have fully specified the WKB solution.

From this we can calculate the tunneling rate. Recall that a Gamow-Siegert wave-

function satisfies HΨ = EΨ where E has both a real and imaginary part. In our

case E ≈ ~ω(n+1/2)− i~Γn/2. Under time evolution the state evolves very simply,

Ψ(x, t) = e−iHt/~Ψ(x) = e−iωt(n+1/2)e−Γnt/2Ψ(x), (4.134)

and this probability density obeys the exponential decay law ρ(x, t) = |Ψ(x, t)|2 =

e−Γntρ(x, 0) and thus

∂ρ(x, t)

∂t
+ Γnρ(x, t) = 0. (4.135)

From the Schrödinger equation, however, ρ(x, t) satisfies the continuity equation

∂ρ(x, t)

∂t
+
∂J(x, t)

∂x
= 0 (4.136)

with J(x, t) the probability current density

J(x, t) =
~

2mi

(

Ψ∗∂Ψ

∂x
− Ψ

∂Ψ∗

∂x

)

. (4.137)
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Comparison of (4.136) with (4.135) shows

Γnρ(x, t) =
∂J(x, t)

∂x
. (4.138)

Integrating both sides of (4.138) from xa (which we take to −∞) to xb (some point

beyond x2) at some fixed time yields

Γn =
J(xb) − J(xa)
∫ xb

xa
ρ(x)dx

(4.139)

This expression is a general definition of the tunneling rate for Gamow-Siegert states.

Now, since ΨI(x) is normalized and dominates the denominator of our expression

(for xb not too large), we have

∫ xb

xa

ρ(x)dx ≈
∫ +∞

−∞
Ψ2

I (x)dx = 1. (4.140)

In addition, there is zero probablity current J(xa) = 0 for xa → −∞ since the

imaginary part of ΨI(x) is exponentially suppressed. In the WKB approximation

∂ΨIII(x)/∂x ≈ imv(x)ΨIII(x)/~, and thus

J(xb) ≈
~

2mi

(
2im

~
B2

)

= B2 = C2 exp

(

−2

~

∫ x2

x1

|p|dx
)

. (4.141)

Finally, substituting (4.133) for C, (4.141) for J(xb), and (4.140) in (4.139), we find

the result

Γn =
ω

n!
√

2π

(
n+ 1/2

e

)n+1/2

exp

(

−2

~

∫ x2

x1

|p|dx
)

. (4.142)

This expression is the WKB tunneling rate for the energy states of a metastable

potential well with a barrier of arbitrary shape. Note that if we consider highly

excited states and let n→ ∞, we can use Stirling’s formula in the form

n! →
√

2π

(
n+ 1/2

e

)n+1/2

(4.143)
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for the factorial in (4.142) to recover Gamow’s celebrated formula [171]

Γ = (ω/2π) exp

(

−2

~

∫ x2

x1

|p|dx
)

. (4.144)

4.4.2 Cubic Potential

We now specialize our results to the cubic, and set m = ~ = ω = 1. First we present

the expression for the turning points of the potential, that is, the roots of the cubic

polynomial

1

2
x2 − λx3 − E = 0. (4.145)

Using the standard expression for roots of a cubic (found in the Appendix) we find

x0 = 1
6λ

(1 + 2 cos(θ + 2π/3))
x1 = 1

6λ
(1 + 2 cos(θ + 4π/3))

x2 = 1
6λ

(1 + 2 cos(θ)) ,
(4.146)

where θ is defined by

θ =
1

3
arccos(1 − 108λ2E). (4.147)

For small λ we can expand both (4.147)

θ = (24E)1/2λ+
3

8
(24E)3/2λ3 +O(λ5) (4.148)

and (4.146)

x0 = −(2E)1/2 + 2Eλ− 5
2
(2E)3/2λ2 + 32E2λ3 +O(λ4)

x1 = +(2E)1/2 + 2Eλ+ 5
2
(2E)3/2λ2 + 32E2λ3 +O(λ4)

x2 = (2λ)−1 − 4Eλ− 64E2λ3 +O(λ5).
(4.149)

The WKB integral is

S =
∫ x2

x1
dx

√
x2 − 2λx3 − 2E

= (2λ)1/2
∫ x2

x1
dx(x− x0)

1/2(x− x1)
1/2(x2 − x)1/2.

(4.150)

Defining the variables

t =
x− x1

x2 − x1
(4.151)
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and

z =
x2 − x1

x1 − x0
=

1

4(2E)1/2λ
− 1

2
− 17(2E)1/2λ

8
+O(λ2), (4.152)

and substituting (4.151) and (4.152) in (4.150), we find the result

S = (2λ)1/2(x2 − x1)
2(x1 − x0)

1/2

∫ 1

0

dt t1/2(1 − t)1/2(1 + zt)1/2. (4.153)

The integral in S can be identified with the hypergeometric function ([210],

Eq. 15.3.1)

F (a, b, c;−z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt tb−1(1 − t)c−b−1(1 + zt)−a (4.154)

if a = −1/2, b = 3/2, and c = 3, and the gamma functions are Γ(3/2) =
√
π/2,

Γ(3) = 2!. Thus, we have

S =
π

8
(2λ)1/2(x2 − x1)

2(x1 − x0)
1/2F (−1/2, 3/2, 3,−z). (4.155)

This expression is exact. We use (4.149), (4.152), and the asymptotic form of the

hypergeometric function for large z ([210] 15.3.14)

F (−1/2, 3/2, 3,−z) ' 32

15π
z1/2

(
1 + 5

4
z−1 + 75

64
z−2 − 15

32
z−2 log(16z)

+O(z−3 log z)

)

, (4.156)

to find (after some algebra)

S =
1

15λ2
− 1

2
E +

1

2
E log

(
Eλ2

8

)

+O(λ logλ). (4.157)

Substituting E = (n+ 1/2) and λ−2 = 54Ns in (4.157) yields

S =
18

5
Ns −

1

2
(n+ 1/2) +

1

2
(n+ 1/2) log

(
n + 1/2

432Ns

)

+O(N−1/2
s logNs). (4.158)

Having calculated the WKB integral, we substitute (4.158) into our tunneling

formula (4.142) to find

Γn =
ω√
2πn!

(432Ns)
n+1/2 exp

(

−36

5
Ns

)

. (4.159)
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4.5 Instanton Calculation

In this section we derive the WKB result (4.159) using a path integral method, first

applied by Coleman [242] to tunneling in quantum mechanics and quantum field

theory. The term “instanton” was coined by t’Hooft, while Coleman named the

relevant trajectory considered below the “bounce.” These results are of importance

because Caldeira and Leggett [243, 97] adapted these methods to calculate the effect

of dissipation on tunneling. Schmid [244] proved the equivalence of their instanton

calculation (under suitable conditions) to a multi-dimensional generalization of the

WKB method. While we will not pursue further applications of either the instanton

or multi-dimensional WKB methods in this thesis, we include this discussion both

for completeness and as a guide to the literature.

The starting point of the instanton calculation is to consider the amplitude

D(xf , xi;T ) = 〈xf |e−TH/~|xi〉. (4.160)

This function is the time-evolution amplitude for a particle at point x2 to reach x1

after an imaginary time T ; in statistical mechanics D is a thermal density matrix

with T/~ the inverse temperature. If H has a point spectrum, we can write

D(xf , xi;T ) =
∑

n

e−TEn/~Ψn(xf)Ψ
∗
n(xi). (4.161)

In the “low-temperature limit” we take T → ∞, where only the lowest energy level

is dominant, and thus we have

D(xf , xi;T ) ∼ e−TE0/~Ψ0(xf )Ψ
∗
0(xi) (4.162)
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Looking at evolution in imaginary time allows us to extract information about energy

levels and wavefunctions.

For H = p2/2m+ V , the amplitude D(xf , xi;T ) can be given a path-integral

representation [245]. We first discretize the time (T = Nε), use the identity

e−TH/~ =

N∏

k=1

e−εH/~, (4.163)

split each exponential

e−εH/~ ' e−εp
2/2m~e−εV (x)/~ (4.164)

and insert a complete set of states, one for each term in the product

e−εH/~ '
∫

dpkdxk
2π~

e−εp
2/2m|pk〉〈pk|e−εV (x)|xk〉〈xk|. (4.165)

Expanding each term in (4.163) with (4.164) and (4.165), and using 〈x|p〉 = eipx/~,

we find that

D(xf , xi;T ) =

(
N−1∏

k=0

∫
dpkdxk
2π~

)

δ(x0 − xi)

× exp

(

− ε

~

N−1∑

n=0

p2
n

2m
+ V (xn) + ipn

xn+1 − xn
ε

)

, (4.166)

where the initial δ-function fixes x0 = xi, and we have defined xN = xf .

The Gaussian momentum integrals in (4.166) can be done analytically to yield

an integration over only the x variables

D(xf , xi;T ) =
( m

2π~ε

)N/2
(
N−1∏

k=1

∫

dxk

)

e−SN/~ (4.167)

where S is the discrete action

SN = ε
N−1∑

n=0

1

2
mε−2(xn+1 − xn)

2 + V (xn). (4.168)
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Incorporating the prefactor of (4.167) into the integration measure and taking the

continuum limit N → ∞, ε→ 0, Nε = T , we find

D(x1, x2;T ) =

∫

Dxe−S[x(t)]/~ (4.169)

where S is called the Euclidean action

S[x(t)] =

∫ T/2

−T/2
dt

(
1

2
m(dx/dt)2 + V (x)

)

, (4.170)

and the functional integral runs over all paths such that x(−T/2) = xi and x(T/2) =

xf . In the following we set xi = xf = 0, which we assume is the minimum of V (x).

Note that the integrand in this action can be identified with a Lagrangian

L = T − U , where the potential is U = −V . That is, the classical paths derived

from this new Lagrangian run in an upside down potential. These paths are extremal

paths of the action

δS

δx
= −md

2xcl
dt2

+ V ′(xcl) = 0 (4.171)

with V ′(x) = dV/dx. Now, assuming we have found the path xcl(t) that solves this

equation of motion, we can shift variables in the path integral (4.169) by x(t) =

xcl(t) + y(t), where y(−T/2) = y(T/2) = 0. The Jacobian of this transformation is

unity, and we find the result

D(0, 0;T ) = e−S0/~

∫

Dye−∆S[y,xcl]/~, (4.172)

where S0 = S(xcl(t)) and

∆S[y, xcl] = S[y] − S(xcl) =
δS

δx
|xcl

+
1

2!
y
δ2S

δx2
|xcl
y + · · · . (4.173)

In (4.173) we have employed a type of Einstein summation convention: implied

integrations over the unwritten time variables.
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The first term of ∆S in (4.173) is zero since it is evaluated with the equa-

tion of motion (4.171), the second term is a Gaussian, and in the semi-classical

approximation we drop the higher terms. Thus we have

∆S[y, xcl] =
1

2

∫ T/2

−T/2
dt y(t)

(

−m d2

dt2
+ V ′′(xcl(t))

)

y(t). (4.174)

The differential operator in ∆S can be diagonalized just as a one-dimensional

Schrödinger equation, i.e. there exists un(t) that satify the same boundary condi-

tions as y and the eigenvalue equation

−d
2un
dt2

(t) +m−1V ′′(xcl(t))un(t) = λnun(t), (4.175)

and satisfy the orthogonality relation

∫ T/2

−T/2
dt un(t)um(t) = δn,m. (4.176)

For finite T the boundary conditions on un(t) force the spectrum to be discrete,

while for T → ∞ (which is what we are interested in) there can be both discrete

and continuous eigenvalues. Substituting y(t) = m−1/2
∑

n cnun(t) into (4.174), and

using (4.175) and (4.176) we diagonalize the action

∆S =
1

2

∑

n

λnc
2
n. (4.177)

From the integration measure we extract a normalization factor N (to be determined

shortly) and subsituting (4.177) in (4.172) we have

D(0, 0;T ) = e−S0/~N
∏

n

(∫ ∞

−∞
(2π~)−1/2dcn exp[−λnc2n/2~]

)

. (4.178)
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Assuming that λn > 0, each Gaussian integral in (4.178) is well-behaved and

and their integration leads to

D(0, 0;T ) = e−S0/~N
∏

n

(λn)
−1/2 . (4.179)

We can formally write the product of eigenvalues in (4.179) as a “fluctuation deter-

minant”:

D(0, 0;T ) = e−S0/~N det[−∂2
t +m−1V ′′(xcl(t))]

−1/2. (4.180)

This expression can be exactly computed for a harmonic oscillator [245, 246]

DHO(0, 0;T ) =
( mω

2π~ sinhωT

)1/2

=
√
mωπe−ωT/2(1 − e−2ωT )−1/2. (4.181)

In this case there are only the trivial paths xcl(t) = 0 with S0 = 0, and if we

expand the square root the higher-order terms in e−2ωT correctly include only the

even quantum states of the oscillator (since Ψn(0) = 0 for n odd). Using (4.181) we

can fix the normalization constant in (4.180) to the formal expression

N = DHO(0, 0;T ) det[−∂2
t + ω2]1/2. (4.182)

Recall that the determinant signifies a product of eigenvalues, as in (4.180). In

summary, we have found that the semi-classical approximation to the path integral

(4.172) is

D(0, 0;T ) =
( mω

2π~ sinhωT

)1/2
(

det[−∂2
t + ω2]

det[−∂2
t +m−1V ′′(xcl(t))]

)1/2

exp(−S0/~).

(4.183)

If there are multiple paths which satisfy the classical equation of motion, we must

add each to yield the total amplitude. In the limit T → ∞ we should be able to

find the energy of the ground state.
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For our tunneling system, however, the ground state is only metastable. The

path integral knows this as well. The relevant classical paths are not true minima

of the action but only saddle points. In particular, our assumption that λn > 0 is

false: for the paths considered here there is both one zero eigenvalue and a negative

eigenvalue. This is quite general, for if a nontrivial classical solution xcl(t) exists,

then by taking a time derivative of the equation of motion (4.171) we find the result

−d
3xcl
dt3

+m−1V ′′(xcl(t))
dxcl
dt

= 0. (4.184)

Comparison with (4.175) shows that dxcl/dt is an eigenfunction with eigenvalue

zero. Furthermore, the trajectory begins at xi = 0 at time t = −T/2, departs, turns

around at some time t0, and finally returns to xf = 0 at t = T/2. Since this “bounce”

trajectory turns around at t0, its derivative dxcl/dt has a node there, and cannot be

the lowest eigenfunction. Therefore there is a groundstate with eigenvalue λ0 < 0.

Callan and Coleman studied this problem [247], and found a consistent prescription

to handle these two eigenvalues. Their methods are in fact quite general.

The zero mode is a consequence of time-translation invariance. That is, in the

limit T → ∞, there is a continuous family of bounce solutions, parametrized by

their centers xcl(t; t0) = xcl(t− t0). The generator of this family is precisely the zero

mode eigenvector, i.e.

xcl(t; t0 + dt0) = xcl(t; t0) + dt0(S0/m)1/2u1(t). (4.185)

(The last factor is due to the normalization of u1 in (4.176) and the fact that

the bounce has E = 0). Each of these paths has equal action, thus there is a
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zero eigenvalue associated with u1. Furthermore, we see that dc1 = dt0S
1/2
0 , thus

integration over c1 is equivalent to an integration over the center of the bounce

∫
dc1

(2π~)1/2
=

(
S0

2π~

)1/2 ∫

dt0 =

(
S0

2π~

)1/2

T. (4.186)

This shows that in (4.179) we should make the replacment λ
−1/2
1 → (S0/2π~)1/2T .

The negative eigenvalue yields a Gaussian integral that, at face value, is obvi-

ously divergent
∫

dc0
(2π~)1/2

exp(+|λ0|c20/2~). (4.187)

However, one can define this integral by analytic continuation. This procedure, de-

scribed in detail by Callan and Coleman [247], deforms the c0 integration into the

complex plane to pick up the steepest descent contour. This yields a purely imag-

inary part to the action. The particular direction in the complex plane determines

the sign. Finally, the continuation only picks up half of the Gaussian integral, so

there is a final factor of 1/2 that must be included. Note that by deforming c0

into the complex plane one allows complex coordinate paths in the path integral.

That these complex paths are related to complex scaling and the Gamow-Siegert

boundary condition has been (implicity) proven by Schmid’s demonstration [244] of

the equivalence of the WKB and instanton calculations.

Altogether, if we define the zero bounce amplitude by the harmonic oscillator

expression

D0(0, 0;T ) =
( mω

2π~ sinhωT

)1/2

, (4.188)

and the quantity K by

K = (i/2)(S0/2π~)1/2

(
det[−∂2

t + ω2]

| det′[−∂2
t +m−1V ′′(xcl(t))]|

)1/2

, (4.189)
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where | det′ | indicates that the absolute value of the determinant is taken, but with

the zero eigenvalue removed, then we have the one bounce amplitude

D1(0, 0;T ) = D0(0, 0;T )KT exp(−S0/~). (4.190)

Now, in addition to the zero and 1-bounce amplitudes, there are also n-bounce

trajectories with action nS0. It can be shown [248, 249] that the n-bounce trajectory

yields the amplitude

Dn(0, 0;T ) =
1

n!
D0(0, 0;T )KnT n exp(−nS0/~). (4.191)

Finally, the complete path integral requires the summation over all n-bounce tra-

jectories, thus the total amplitude is

D(0, 0;T ) =
∑

n

Dn(0, 0;T ) = D0(0, 0;T ) exp
(
KTe−S0/~

)
. (4.192)

In the large T limit we then identify the energy

E = ~ω/2 − ~Ke−S0/~, (4.193)

where the first term comes from the 0-bounce (harmonic oscillator) amplitude (4.181).

This gives the shift of the ground state energy due to the bounce. We see from

(4.189) that this shift is imaginary, and can thus be identified with the tunneling

rate as in the Gamow-Siegert WKB wavefunction. The tunneling rates of the ex-

cited states can also be found using path integral methods: the first excited state

was calculated by Affleck and DeLuccia [250], and the higher states by Weiss and

Heffner [251].
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To calculate K, we must compute the ratio of two fluctuation determinants.

This can be done in two ways. Coleman writes (in the Appendix to “Uses of In-

stantons”, Chapter 7 in [248]) each determinant as a differential equation, whose

solution requires only the properties of the bounce. He shows that if the classical

solution has the asymptotic behavior (for t→ ∞)

xcl → (S0/mω)1/2Ae−ωt (4.194)

then the determinant ratio is

(
det[−∂2

t + ω2]

| det′[−∂2
t +m−1V ′′(xcl(t))]|

)1/2

= 21/2ωA. (4.195)

Another method is to find the spectrum of the fluctuation operators and perform

the ratio of determinants directly. For the instantons encountered in the cubic and

quadratic potentials this can be done exactly, and we calculate this below using an

expression due to Kleinert. This result is, of course, in complete agreement with

Coleman’s work. Again, we must first construct the bounce. For simplicity we set

m = ω = ~ = 1 in the following, reintroducing the appropriate units at the end.

The physical potential and the upside-down potential are shown in Fig. 4.2.

The classical paths in the upside-down cubic (which is, of course, still a cubic) are

found from the equations of motion

d2x

dt2
− x+ 3λx2 = 0, (4.196)

which has the conserved energy

E =
1

2

(
dx

dt

)2

− 1

2
x2 + λx3. (4.197)
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Figure 4.2: Cubic well potential V (x) (dotted line), and the upside-down cubic

potential U(x) = −V (x) (solid line). The cubic parameter λ = (54Ns)
−1/2 is chosen

such that Ns = 4.

Inverting (4.197) we can solve for the time t (taking the negative square root)

t = −
∫ x

x2

ds

2E + s2 − 2λs3
. (4.198)

Using (4.146) and (4.147) with E → −E for the roots x0 < x1 < x2 of the cubic we

have

t = −(2λ)−1/2

∫ x

x2

ds(s− x0)
−1/2(s− x1)

−1/2(x2 − s)−1/2. (4.199)

Making the change of variable

s = x2 − (x2 − x1)z
2 (4.200)

in (4.199) we find

αt =

∫ zf (x)

0

dz(1 − z2)−1/2(1 − k2z2)−1/2 = F (φ, k) (4.201)

where F (φ, k) is the incomplete elliptic integral,

α2 =
1

2
λ(x2 − x0), (4.202)
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zf (x) = sinφ =

(
x2 − x

x2 − x1

)1/2

, (4.203)

and

k2 =
x2 − x1

x2 − x0
. (4.204)

Inverting the elliptic integral (4.201) yields x in terms of the elliptic function

sn(αt, k) = sin φ:

x(t) = x2 + (x1 − x2)sn
2(αt, k). (4.205)

(Note that Mathematica uses the convention sn(u, k) = JacobiSN[u, k2]). This is,

of course, a periodic function, where the period τ can be written as

τ =
2

α
F (π/2, k) =

π

α
F (1/2, 1/2, 1, k2) (4.206)

where the first F (with two arguments) is the elliptic integral, the second (with

four arguments) the hypergeometric function. The bounce is the solution to the

classical equations which starts at x = 0 in the infinite past, falls off of the potential

maximum and performs one oscillation (to the right in Fig. 4.2), to return to x = 0

in the infinite future. This infinite period solution corresponds to E = 0 and can be

found by noting that in this case x0 = x1 = 0, x2 = (2λ)−1. The solution parameters

become α = 1/2 and k = 1, in which case the elliptic function takes the special form

sn(u, 1) = tanh(u). Thus, the bounce is

x(t) =
1

2λ
(1 − tanh2(t/2)) =

1

2λ

1

cosh2(t/2)
. (4.207)

This solution is plotted in Fig. 4.3.
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Figure 4.3: The bounce trajectory for the cubic well, with ω = 1 and Ns =

(54λ2)−1 = 4.

Using Coleman’s method [248], we have S0 = 2/15λ2, and A = (30)1/2. Sub-

stituting these into (4.195) we find

(
det[−∂2

t + ω2]

| det′[−∂2
t +m−1V ′′(xcl(t))]|

)1/2

= 21/2ωA = (60)1/2. (4.208)

Then, using this and Ns = (54λ)−2 in (4.189) we find the result

K = (i/2)(2π)−1/2(60)1/2(36Ns/5)1/2 = (i/2)(2π)−1/2(432Ns)
1/2. (4.209)

Altogether, we have for the tunneling rate

Γ = 2|K|e−S0 =
1√
2π

(432Ns)
1/2e−36Ns/5 (4.210)

which, with ω = 1 agrees with the WKB result Eq. (4.159) for the ground state.

Kleinert’s method [246] considers the fluctuation operator eigenvalue equation

−d
2un
dt2

(t) +

(

1 − 3

cosh2(t/2)

)

un(t) = λnun(t). (4.211)
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This equation is equivalent to the Schrödinger equation in the Rosen-Morse po-

tential, which in this case is just Ṽ (t) = 1 − 6λxcl(t). Closed form solutions for

the eigenfunctions can be written in terms of hypergeometric functions. We follow

Kleinert’s presentation, which actually covers the more general potential

Ṽ (t) = 1 − m2s(s+ 1)

cosh2(mt)
(4.212)

(see [246], chapter 17), and thus we have m = 1/2, s = 3 (note that here m is a

parameter, not the mass—the convention is Kleinert’s). We find that there are three

bound states whose eigenvalues are

λn = 1 − 1

4
(3 − n)2 (4.213)

with n = 0, 1, 2. The first bound state has energy λ0 = −5/4, with eigenfunction

u0(t) =
51/2

4

1

cosh3(t/2)
. (4.214)

The second bound state is the zero-mode with λ1 = 0 and

u1(t) =
151/2

4

sinh(t/2)

cosh3(t/2)
, (4.215)

and the last bound state has λ2 = 3/4 with

u2(t) =
31/2

25/2

1

cosh3(t/2)
(4 sinh2(t/2) − 1). (4.216)

The remaining states are in the continuum. By forming an appropriate density of

states, Kleinert finds that for s an integer the ratio of determinants for the continuum

is
(

det[−∂2
t + ω2]

det[−∂2
t + V ′′(xcl(t))]

)1/2

|continuum = ωs
s∏

n=1

(1 +mnω−1) (4.217)
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([246], Eq. 17.127). Letting m = 1/2, s = 3 and z = 4, and including the bound

state eigenvalues λ0 = −5/4 and λ2 = 3/4 we find

(
det[−∂2

t + ω2]

| det′[−∂2
t + V ′′(xcl(t))]|

)1/2

=
15

2

(
16

15

)1/2

= (60)1/2, (4.218)

in complete agreement with (4.208).

Thus, the instanton calculation for the ground state tunneling rate is

Γ =
ω√
2π

(432Ns)
1/2e−36Ns/5 (4.219)

where Ns = ∆U/~ω, in complete agreement with that found using the WKB

method.

4.6 Numerical Comparisons

The analytical approximations presented above can be directly compared with the

results of numerical calculations using the complex scaling method, implemented

as described in the previous Chapter but using the matrix elements of the cubic.

Note that complex scaling was first applied to the cubic in [239], and more recently

by [233, 252, 235]. We first consider the analytic energy levels and tunneling rates

derived in the previous section. We then compare the eigenvalues of the complex

scaled cubic potential with that of the washboard.

4.6.1 Comparison with Analytical Results

Figure 4.4 shows the first four levels of the cubic potential for the range Ns = 6 → 1

computed numerically using complex scaling. The solid lines are the real parts of
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Figure 4.4: Resonances of the cubic well versus the number of levels Ns. The real

parts of the resonance eigenvalues En with n = 0, 1, 2, 3 are shown. The dotted lines

below and above each eigenvalue are Re(En) ± Im(En) used to represent the width

of level n. (Note the reversed scale for Ns)

the resonance eigenvalues En,R = Re(En). The dashed lines are En,R + Γn/2 and

En,R−Γn/2, where Γn = −2Im(En). As expected we see that for decreasing Ns the

energy levels shift from their harmonic values En = (n + 1/2), and broaden due to

tunneling.

We now compare these eigenvalues with the perturbative expressions (4.106)-

(4.110). In Figs. 4.5-4.7 we show the error |En,R−En,pert| for the n = 0, n = 1, and

n = 2 energy levels, with the order of the perturbation theory sums ranging from

Nmax = 0 → 8. We see that for Ns > 2 each sum becomes a progressively better

approximation to the eigenvalue as Nmax increases. Also, note that the error scales
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Figure 4.5: Error of cubic perturbation theory for state n = 0.

are different for each figure: the approximations are best for the ground state, and

less so for each excited state.

For Ns < 2, however, perturbation theory begins to fail. The sharp cusps indi-

cate when the perturbative and numerical values cross, and the error goes through

zero. Finally, for small Ns, the results become worse as Nmax increases (see espe-

cially Fig. 4.7). This is expected for an asymptotic series: after some number of

terms the higher corrections begin to grow in magnitude, eventually diverging. This

divergence occurs for any value of Ns, if Nmax is allowed to be sufficiently large.

The corresponding tunneling rates from complex scaling and WKB are shown

in Fig. 4.8. The agreement here is only of the right order of magnitude, thus we

merely plot the tunneling rates. There have been two independent calculations

that explore higher order corrections (in 1/Ns) to the tunneling rate, the first by
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Figure 4.7: Error of cubic perturbation theory for state n = 2.
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Figure 4.8: Tunneling rates of cubic oscillator for n = 0, 1, 2 as a function of Ns.

The tunneling rate is given in units of ω0. The solid lines are the complex scaling

eigenvalues, the dashed lines are the lowest order WKB calculation.

Alvarez [233], the second by Kleinert and Mustapic [235]. In fact, there is some

disagreement between the two calculations. We will not explore this here, but pause

only to comment that Kleinert and Mustapic produced corrections up to order N−7
s ,

and showed how a particular resummation method called variational perturbation

theory can further improve their results, which they then compared with the complex

scaling eigenvalues.

4.6.2 Comparison with Washboard

To compare the cubic approximation to results from the tilted washboard potential

we consider the junction parameters of the previous chapter, namely C = 6 pF and
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Figure 4.9: Error in the cubic approximation to the washboard using simple match-

ing, real part. The solid lines are the absolute errors in the energy levels calculated

using the simple matching of the barrier heights (see text). The dashed line is the

error in variation of the potential minimum in the cubic approximation.

185



Ic = 20µA. The error in the real part of the scaled eigenvalues E/~ω0 is shown in

Fig. 4.9, where we have used the simple formula

Ns =
23/4

3

(
EJ
Ec

)1/2

(1 − J0)
5/4 (4.220)

and

ω =

(
1 − J

1 − J0

)1/4

(4.221)

to map the washboard onto the cubic, with J0 = 0.985. Also plotted is the error

in washboard minimum ∆x = |x∗ − α(γJ − γ0)| (the dashed lines). As before, the

cusps occur when the errors momentarily go through zero. Note that an error in the

washboard minimum leads to an error in the wavefunction of order ∼ 1− e−∆x2/2 ∼

∆x2, and thus the actual error is of order 10−6, while the error in the energy levels

is of order 10−3. This is the expected quantitative agreement of the simple cubic

approximation.

There are ways to improve the accuracy of the cubic approximation. One

method is to use the exact scaling of the frequencies, i.e. to use the more accurate

formula

ω =

(
1 − J2

1 − J2
0

)1/4

. (4.222)

Alternatively, one can merely set J = J0 (such that ω = 1) for the computation

of the energy levels. Unfortunately, this makes the transformation to the cubic

potential dependent on the bias current, which cannot be used for time-dependent

calculations. The error in the energy levels using this procedure is shown as the

solid lines in Fig. 4.10.
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Another improvement is to use the exact expression for the dimensionless

barrier height

Ns = 2−1/2

(
EJ
Ec

)1/2
(
(1 − J2)1/4 − J(1 − J2)−1/4 arccos J

)
(4.223)

and the standard relation λ = (54Ns)
−1/2. The error is shown by the dashed lines

in Fig. 4.10, which reveals a uniform level of error for each energy level. The im-

provement is more dramatic for the tunneling rates, whose relative error we plot in

Fig. 4.11. Note that the initial fluctuations are due to the very small imaginary

part of the eigenvalues (∼ 10−14) which are near the level of round-off error in the

numerical routines.

We have shown that the cubic approximation has, for parameters of interest

for quantum computing, an accuracy of relative order 10−3 − 10−4. Errors in the

tunneling rate are most sensitive, but can be minimized by matching the barrier

heights of the cubic and the washboard. Errors in the energy levels are significantly

less sensitive. Thus we conclude that the cubic approximation is more than adequate

for energy level calculations. Finally, having examined the effect of the cubic ap-

proximation in the energy levels and states, we have justified its use to approximate

the dynamics of the washboard.
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Figure 4.11: Error in the cubic approximation to the washboard, imaginary part.

The solid lines are the relative errors in the tunneling rates calculated using simple

matching (solid) and exact matching (dashed).
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Chapter 5

Single Qubit Operations

If the current-biased Josephson junction can be used as a qubit, it must be con-

trolled in some way. In particular, we must be able to apply a universal set of

logic operations in order to run quantum algorithms on our device. As discussed in

Chapter 1, the most convenient set of operations consists of single-qubit unitaries

plus an entangling two-qubit gate. This Chapter focuses on single-qubit dynamics;

the two-qubit problem is discussed in Chapter 2.

Our qubit is formed by the lowest two metastable energy states in one well

of the tilted washboard potential. The first control method we consider is the

application of a time-dependent perturbation that is resonant with the energy level

spacing. If the system is initially in the lowest level, it will periodically oscillate

from this lowest level to the next level and back. This phenomenon is called Rabi

oscillation, and was first observed in NMR and atomic systems [253]. Observing
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Rabi oscillations is traditionally one of the first indications of quantum coherence

in simple quantum systems, and have recently been seen in current biased junctions

by multiple groups [92, 93]. In principle, by using Rabi oscillations one can generate

an arbitrary superposition of the two qubit states and thus implement single-qubit

gates. For the Josephson junction phase qubit, however, the presence of additional

levels and tunneling cannot be neglected. We study this problem in Section 2.

The energy levels of the phase qubit are not degenerate. Thus, even during

idle periods there is dynamics—the first two levels will acquire a net phase difference

of (E1 − E0)t. While this phase difference does not change the state probabilities,

it does change the state amplitudes and plays an essential role in subsequent logic

operations. This nondegeneracy problem can be solved in two ways. The first

method is to use Rabi oscillations, by waiting for a delay time td, applying a π-pulse

to achieve a NOT gate X (this will be defined below), waiting again for time td,

and applying a final π-pulse. With this sequence of operations the phase acquired

in the first half of the sequence is cancelled by the second half as can be seen from

the identity XZX = −Z. This is a type of spin-echo technique and can be used for

more general decoupling schemes [48, 49]. A second method is to engineer degenerate

levels, e.g. by encoding a logical qubit in a degenerate subspace of a multi-qubit

system.

In either case, it can be useful to dynamically control the energy levels. Since

the phase qubit’s energy levels are a function of the applied bias current, a pulse of

the bias current will generate a shift of the energy levels. This bias ramp control

technique will also be important for two-qubit operations, and arises in many related
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schemes using current-biased junctions in the literature [254, 255, 256]. We study

this problem in Section 3.

5.1 Rabi Oscillations

The model we consider is the cubic approximation of the previous chapter, and the

application of a microwave drive at frequency ω/2π. Thus we consider

H =
1

2
p2 +

1

2
x2 − λx3 + A(t)x cos(ωt+ φ). (5.1)

We have allowed the amplitude of the drive to be time-dependent so that we can

consider pulse shaping. The key parameters in this model are the nonlinearity λ,

the drive frequency ω, the drive amplitude A(t), and finally the phase of the drive

φ.

We first explore a three-level approximation to H . We find that for small A we

can control the first two levels. For larger A, there are significant off-resonant tran-

sitions to the third level. Three-level models have been studied in atomic physics

for quite some time [257] and there have been recent studies of Rabi oscillations in

phase qubits by multiple authors [258, 259, 260]. We provide a complete derivation

that includes many of their results. We then proceed beyond the three-level ap-

proximation to study the full dynamics of H using split-operator techniques. This

includes the simulation of tunneling at a fundamental level, without using ad hoc

models. Finally, we use our accurate methods to study the effects of pulse-shaping

on Rabi oscillations.
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5.1.1 Three-Level Rotating Wave Approximation

Truncating our model Hamiltonian (5.1) to the first three levels, and ignoring the

effects of tunneling, we have (with φ = 0)

H3 =





E0 0 0
0 E1 0
0 0 E2



 + A cosωt





x00 x01 x02

x01 x00 x12

x02 x12 x00



 . (5.2)

The matrix elements have been calculated in Chapter 4, from which we recall

x00 = 3λ/2,
x01 = x10 = 2−1/2(1 + 11λ2/4),
x02 = x20 = 2−1/2λ,
x11 = 9λ/2,
x12 = x21 = 1 + 11λ2/2,
x22 = 15λ/2.

(5.3)

From the Hamiltonian we define the transition frequencies

ω01 = E1 −E0,
ω12 = E2 −E1.

(5.4)

Rabi oscillations occur when the drive is such that ω ≈ ω01; to describe this in detail

we explore the time-dependent dynamics given by H3. The goal of this section is to

find the time-evolution operator using the rotating wave approximation.

The time-evolution operator satisfies (with ~ = 1)

idU/dt = H(t)U(t), (5.5)

U(0) = I. The formal solution is

U(t) = T exp

(

−i
∫ t

0

H(s)ds

)

(5.6)

where T denotes the time ordering symbol. For our problem, we define an interaction

picture by

Ū(t) = eiH0tU(t), (5.7)
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where H0 is time-independent. By direct substitution of (5.7) in (5.5), we find that

Ū(t) satisfies

idŪ/dt = H̄(t)Ū(t) (5.8)

with

H̄(t) = eiH0tH(t)e−iH0t −H0. (5.9)

Choosing H0 to be

H0 =





0 0 0
0 ω 0
0 0 2ω



 . (5.10)

we find from (5.9) and (5.2)

H̄(t) = H̄0 + H̄1(t) (5.11)

where H̄0 is the time-independent rotating wave Hamiltonian

H̄0 =





E0 0 0
0 E1 − ω 0
0 0 E2 − 2ω



+
A

2





0 x01 0
x01 0 x12

0 x12 0



 , (5.12)

and H̄1(t) has the time-dependent corrections

H̄1(t) =
A

2





2x00 cosωt x01e
−i2ωt 2x02e

−i2ωt cosωt
x01e

i2ωt 2x11 cosωt x12e
−i2ωt

2x02e
i2ωt cosωt x12e

i2ωt 2x22 cosωt



 . (5.13)

In the rotating wave approximation, we ignore H̄1(t), the assumption being that

the high-frequency components will average out. This approximation should hold

for weak fields; for strong fields there are significant corrections to the rotating

wave approximation. These include the Bloch-Siegert shift, which can be included

perturbatively using Floquet theory [134]. The rotating wave approximation has

the advantange that it yields an analytic approximation to the propagator.
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The approximate form for the time-evolution operator is

U(t) = e−iH0te−iH̄0t. (5.14)

Note that H0 is diagonal in our basis; to study Rabi oscillations we need only look

at H̄0 and its eigenstates. If we define K by H̄0 = E0I + (Ax01/2)K, we see that

the eigenstates of H̄0 are also the eigenstates of

K =





0 1 0
1 w y
0 y −z



 (5.15)

with y = x12/x01,

w = 2

(
ω01 − ω

Ax01

)

, (5.16)

and

z = 2

(
2ω − ω02

Ax01

)

. (5.17)

The secular equation for K is

k3 + (z − w)k2 − (wz + 1 + y2)k − z = 0. (5.18)

Using the standard expression for the roots of a cubic, found in the Appendix, we

find that K has the eigenvalues

kn =
1

3
(w − z) + 2p1/2 cos

(

θ +
2nπ

3

)

(5.19)

(n = 0, 1, 2) with

p =
1

9

(
(z − w)2 + 3(wz + y2 + 1)

)
, (5.20)

q =
1

27

(
2(z − w)3 + 9(z − w)(wz + y2 + 1) − 27z

)
, (5.21)

and

cos 3θ = − q

2p3/2
. (5.22)
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The eigenvectors are found by substitution to be

vn = Nn





y
kny

(k2
n − wkn − 1)



 , (5.23)

with

Nn =
(
(k2
n − wkn − 1)2 + y2(k2

n + 1)
)−1/2

. (5.24)

This completely determines the rotating wave propagator through the relation

e−iH̄0t =
2∑

n=0

e−Ēnt|vn〉〈vn|, (5.25)

where the eigenvalues Ēn are

Ēn = E0 +
1

2
Ax01kn. (5.26)

To show how Rabi oscillations emerge in this exact rotating wave solution, we

consider the evolution of a state starting as |0〉. We define the amplitudes an(t) by

e−iH̄0t|0〉 =

2∑

n=0

an(t)|n〉. (5.27)

These amplitudes have the explicit form

an(t) = 〈n|e−i~H0t|0〉 =

2∑

m=0

e−iĒmt〈n|vm〉〈vm|0〉. (5.28)

These amplitudes yield the solution, and the time-dependence yields the charac-

teristic Rabi oscillations. Note that for any probability pn(t) = |an(t)|2, there are

in general three characteristic frequencies: Ē0 − Ē1, Ē0 − Ē2, and Ē1 − Ē2. For

our problem, however, we will find that there is one dominant frequency to the

dynamics, the Rabi frequency: ΩR = Ē0 − Ē2.
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Two-Level Oscillations

The formal solution can be greatly simplified in the limit that z is large—this con-

dition corresponds to either strong anharmonicity or weak fields. We also use the

approximation y = x12/x01 ≈
√

2. The expressions that follow are simply the

power series expansions in z−1 of the exact solutions above. We first consider the

non-resonant case, when w is nonzero, and rederive the two-state Rabi oscillations.

Working to lowest order in z−1, we expand (5.22)

θ =
1

3
π −

√
3(1 + w2/4)1/2z−1, (5.29)

thus
cos θ = 1/2 + (3/2)(1 + w2/4)1/2z−1,
cos(θ + 2π/3) = −1,
cos(θ + 4π/3) = 1/2 − (3/2)(1 + w2/4)1/2z−1,

(5.30)

and
k0 = w/2 + (1 + w2/4)1/2,
k1 = −z + w,
k2 = w/2 − (1 + w2/4)1/2.

(5.31)

Using (5.31) to find the eigenvectors in (5.23), we find that |v1〉 = |2〉 has totally

decoupled from states |0〉 and |1〉. The remaining eigenvectors are

|v0〉 = cos η|0〉 + sin η|1〉,
|v2〉 = sin η|0〉 − cos η|1〉, (5.32)

where we have defined

tan η = w/2 + (1 + w2/4)1/2. (5.33)

Finally, using the eigenvectors (5.32) we can solve (5.28) for the amplitudes

a0(t) = e−iφ (cos(ΩRt/2) − i cos(2η) sin(ΩRt/2)) ,
a1(t) = e−iφ (−i sin(2η) sin(ΩRt/2)) ,
a2(t) = 0,

(5.34)
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where the Rabi frequency is

ΩR = Ē0 − Ē2 =
(
Ω2

0 + (ω01 − ω)2
)1/2

, (5.35)

the “bare” Rabi frequency is Ω0 = Ax01, and the overall phase is φ = (Ē0 + Ē2)t/2.

Using the definition of η in (5.33) we find that the probability for the system to be

in state |1〉 is

p1(t) = |a1(t)|2 =
Ω2

0

Ω2
R

sin2(ΩRt/2). (5.36)

If we drive at ω = ω01, then ΩR = Ω0, η = π/4, and at the time τ = π/Ω0 we

have p1(τ) = 1. As a quantum logic operation, this π-pulse yields the X or NOT

gate, which has the matrix form

X =

(
0 1
1 0

)

. (5.37)

Other single-qubit gates can be constructed by using other pulse times or non-

resonant driving; appropriate combinations of these simple operations can yield an

arbitrary single-qubit gate.

Three-Level Oscillations

The previous section effectively ignored any coupling to state |2〉. This holds only

for vanishing z−1, which for resonant driving at ω = ω01 implies a very small Rabi

frequency since from (5.28)

z−1 =
1

2

(
Ω0

ω01 − ω12

)

=
Ax01

2(ω01 − ω12)
. (5.38)

To achieve larger Rabi frequencies we must consider finite z−1. We now explore

the general analytic solution to evaluate this effect. We consider the resonant case

(w = 0) including higher order terms in z−1.
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Solving (5.22) for θ we now find

θ =
1

3
π −

√
3z−1 +

9
√

3

2
z−3 +O(z−5). (5.39)

We then have

cos(θ) = 1/2 + (3/2)z−1 − (3/4)z−2,
cos(θ + 2π/3) = −1 + (3/2)z−2,
cos(θ + 4π/3) = 1/2 − (3/2)z−1 − (3/4)z−2,

(5.40)

and the eigenvalues
k0 = 1 + z−1 − (1/2)z−2,
k1 = −z − 2z−1,
k2 = −1 + z−1 + (1/2)z−2.

(5.41)

Substituting (5.41) in (5.23) the approximate eigenvectors are given by

v0 =
1√
2





1
1
0



+
z−1

2
√

2





−1
1

2
√

2



− z−2

8
√

2





1
9

4
√

2



 , (5.42)

v1 =





0
0
1



−
√

2z−1





0
1
0



+ z−2





√
2

0
−1



 , (5.43)

v2 =
1√
2





1
−1
0



+
z−1

2
√

2





1
1

−2
√

2



− z−2

8
√

2





1
−9

4
√

2



 . (5.44)

Using (5.41) for the eigenvalues and (5.42)-(5.44) for the eigenvectors of H̄0 in

(5.28), we calculate the matrix elements

a0(t) = e−iφ (cos(ΩRt/2) + iz−1 sin(ΩRt/2)) ,
a1(t) = e−iφ (−i(1 − (3/2)z−2) sin(ΩRt/2)) ,

a2(t) = e−iφ
(
−i

√
2z−1 sin(ΩRt/2)

)
.

(5.45)

In this expression, we have a modified Rabi frequency

ΩR = (Ē0 − Ē2) = Ω0(1 − (1/2)z−2), (5.46)

and the overall phase is φ = (Ē0 + Ē2)t/2. The corresponding probabilities pn(t) =

|an(t)|2 are
p0(t) ≈ cos2(ΩRt/2) + z−2 sin2(ΩRt/2),
p1(t) ≈ (1 − 3z−2) sin2(ΩRt/2),
p2(t) ≈ 2z−2 sin2(ΩRt/2).

(5.47)
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The next higher order corrections are of order z−3; additional frequencies will also

appear at the next order.

From our approximate results we make the following observations. First, we

see from (5.46) that we have a new Rabi frequency

ΩR = Ω0

(

1 − 1

8

Ω2
0

(ω01 − ω12)2

)

. (5.48)

For weak driving, the Rabi frequency varies linearly with the the driving amplitude,

but is shifted (ΩR < Ω0) for larger power (P ∼ A2). Second, we see from (5.47)

that at the lowest order that p2(t) oscillates with the same frequency as p1(t). For

a π-pulse of τ = π/ΩR this introduces the population

p2(τ) = 2z−2 =
1

2

Ω2
0

(ω01 − ω12)2
=
π2

4

1

(ω01 − ω12)2τ 2
. (5.49)

This excited state population is an intrinsic error in the logic gate. To limit

this error, we must use longer pulse times or a more clever manipulation of the

states. We can examine the constraints on the pulse time by using the perturbation

theory from Chapter 4. There we found

E0 = ω0

(
1

2
− 11

8
λ2 − 465

32
λ4 − 39709

128
λ6

)

, (5.50)

E1 = ω0

(
3

2
− 71

8
λ2 − 5625

32
λ4 − 827539

128
λ6

)

, (5.51)

and

E2 = ω0

(
5

2
− 191

8
λ2 − 23475

32
λ4 − 5181319

128
λ6

)

, (5.52)

where λ2 = (54Ns)
−1. We find

ω01 − ω12 = ω0
5

36
N−1
s

(

1 +
47

48
N−1
s +

118865

93312
N−2
s

)

. (5.53)
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Altogether, we use (5.53) in (5.49), letting p2(τ) = pE, and solve for τ :

τ ∼ 18
√

2π

5ω0

Nsp
−1/2
E

(

1 +
47

48
N−1
s +

118865

93312
N−2
s

)−1

. (5.54)

This expression shows that if the system is nearly harmonic (large Ns) or if we

want accurate operations (small error pE) we will need longer gate times if a single

frequency is applied. For example, if we choose junction parameters such that

ω0/2π = 6 GHz and Ns = 4, for an error probability of pE = 10−4 we find τ ∼ 130

ns; for pE = 10−3 we have τ ∼ 40 ns.

These limits only apply to “hard” pulses, where A is constant for the entire

pulse. If one uses pulse shaping techniques much shorter gate times can be achieved.

There will still be transient probability in state |2〉, but it can be driven to zero at

the end of the pulse. This can be understood by the form of the rotating wave

Hamiltonian H̄0. By turning the amplitude A on and off adiabatically with respect

to ω01 − ω12, the system will remain in the subspace spanned by the instantaneous

eigenstates |v0〉 and |v2〉. For A = 0 this subspace is identical to that spanned by

|0〉 and |1〉. Thus an appropriate pulse shape can drive an arbitrary qubit transfor-

mation with negligible final amplitude in state |2〉. We explore this using the full

Hamiltonian in the next section.

There are other methods to drive accurate qubit transformations. The first

proposed method [261] is to alternate the principal microwave drive with pulses at

the frequency ω12, chosen to cancel the transient population. While it succeeds at

undoing the unwanted evolution, it comes at the cost of a drive at a second frequency

whose phase relation to the first pulse is significant. This may not be a fundamental
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objection: controlling the phase relations between microwave pulses may also be

necessary for multi-qubit dynamics. Alternatively, the same effect can be achieved

by using an appropriately timed sequence of pulses at the same frequency [258].

Another possibility is the use of pulses with arbitrary spectral components, perhaps

found through optimal control theory [262].

Finally, we note that we have been studying an instance of the general question

of controllability of quantum systems [263, 264]. For the three-level approximate

Hamiltonian it can be proven that the system is controllable, i.e. an arbitrary

unitary operation can be exactly synthesized by some control sequence. The proof,

however, does not bound either the duration or the complexity of the required control

pulse. Furthermore, this proof does not apply to the full Hamiltonian since the

system is not finite-dimensional and the true spectrum is continuous. In practice, one

would like to explore simple, experimentally relevant pulse shapes, while including

all terms in the ideal Hamiltonian. We consider this in the next section, using more

general split-operator methods to simulate the dynamics.

5.1.2 Numerical Simulation of Pulse Shaping

The approximations introduced in the previous section ignore many features of our

true system. First, they assume a finite-dimensional Hilbert space, truncating the

number of energy levels at the outset. As shown in the previous Chapters, since

the system has a continuous spectrum, the metastable energy levels are a nontrivial

result of the Schrödinger equation, not an assumption. Any simulation method
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should incorporate this—specifically tunneling—at a fundamental level. Second,

the rotating wave approximation ignores any nonresonant effects. These can be

appreciable for large driving. and if the anharmonicity is small.

These deficiencies can be corrected by using direct numerical integration of the

time-dependent Schrödinger equation through split-operator techniques. In this sec-

tion we evaluate the three-level approximations using these more powerful methods.

We then show how pulse shaping can improve the performance of logic operations

on phase qubits.

Simulation of Tunneling

The use of split-operator techniques for simulation of gates is precisely the same

technique described in Chapter 1. The time evolution operator is split and sequenced

to yield a fully unitary small-time propagator, each term of which can be evaluated

efficiently in position and momentum space. The transformation between bases is

accomplished through the Fast-Fourier Transform. For tunneling however, there are

three modifications that must be made.

First, an outgoing wavepacket will eventually hit the boundary of any finite

lattice. Since the use of the FFT is equivalent to periodic boundary conditions, this

outgoing wave will wrap around the lattice. This error can be avoided by introducing

an absorbing boundary near the lattice edge [265]. A typical situation is illustrated

in Fig. 5.1. By incorporating an absorbing boundary into the evolution, the decaying

wavefunction is effectively exponentially damped before it hits the edge of the lattice.

We do this by using the potential VA(x) shown in the figure (formed by hyperbolic
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Figure 5.1: Cubic potential V (x) (solid) with absorbing boundary VA(x) (dashed).

The actual absorbing boundary used in the simulations is fifty times larger. The

real part of the n = 2 resonance state wavefunction for Ns = 2 at t = 100 is shown

as the thin solid line. The dynamics of the wavepacket beyond the boundary is

exponentially damped.
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tangents), and applying the operator exp(−∆tVA(x)) after each propagation step

∆t.

The FFT also uses periodic boundary conditions in momentum space. This

means that a wavepacket that is sufficiently accelerated will eventually have mo-

menta large enough to wrap around the momentum lattice. In position space, this

transforms a right-going wave into a left-going wave. The high momentum compo-

nents of the wavepacket effectively “see” the discrete lattice in position space, and

are perfectly reflected by it. One can eliminate this by using a momentum space ab-

sorber, or by placing the real-space absorber such that the relevant dynamics of the

wavefunction have wavelengths significantly larger that the position lattice spacing.

This is the situation shown in Fig. 5.1, where the boundary has quickly eliminated

the outgoing wave.

Finally, experience has shown that fourth order integrators such as the Forest-

Ruth integrator [57] (1.130) yield significantly more accurate tunneling rates than

second order integrators. Note, however, that we have chosen to implement the

absorbing boundary outside of the unitary integration scheme, assuming that there

is no great advantange in doing so. For higher order schemes with negative timesteps

there are certainly reasons not to do so, since exp(+∆tVA(x)) yields exponential

amplification.

We can study the decay of a wavefunction, such as that shown in Fig. 5.1, by

looking at either the survival amplitude

A(t) = 〈Ψ|e−iHt|Ψ〉 (5.55)
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or the non-decay probability

P (t) =

∫

R

dx|Ψ(x, t)|2, (5.56)

where the integral over the bound region of the potential. Note that for initially

localized states, the two are not independent. To see this, we define P̂R to be the

projection operator onto region R, that is

P̂R =

∫

R

dx|x〉〈x|. (5.57)

For normalized initial states localized in region R we have P̂R|Ψ〉 = |Ψ〉, in which

case P (0) = 1. Defining the un-normalized state |Φ(t)〉 = P̂Re
−iHt|Ψ〉, we have

P (t) = 〈Φ(t)|Φ(t)〉 and A(t) = 〈Ψ|Φ(t)〉. Finally, we can use the Schwarz inequality

to derive the relation

|A(t)|2 = |〈Ψ|Φ(t)〉|2 ≤ 〈Ψ|Ψ〉〈Φ(t)|Φ(t)〉 = P (t). (5.58)

We first study the survival amplitude. Note that if the state were truly a

normalizable eigenstate with complex eigenvalue E = E0 − iΓ/2, then we should

have

A(t) = e−Γt/2 (cos(E0t) − i sin(E0t)) . (5.59)

We test this expectation in Fig. 5.2, where we use our simulation method to compute

A(t) for the state shown in Fig. 5.1. The excellent agreement shows that the state

is indeed metastable. In this case, we have used complex scaling to compute both

the complex eigenvalue and the initial state. The basis set calculation generates an

approximation to the scaled Gamow-Siegert state as a function of x̃:

ΨGS,N(x̃eiθ) =
N∑

n=1

cnφn(x̃), (5.60)
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where cn are the calculated expansion coefficents and φn the basis functions. To

approximate ΨGS(x) we must evaluate the basis functions at x̃ = xe−iθ:

ΨGS,N(x) =

N∑

n=1

cnφn(xe
−iθ). (5.61)

For a finite basis this “back-rotation” can generate subtle errors in the wavefunction

that depend on the form of the basis functions; the sum may in fact fail to converge,

i.e. ΨGS,N→∞(x) 6= ΨGS(x) [266]. Recall, however, that the true Gamow-Siegert

state is not normalizable; any normalizable initial state will have time evolution

that deviates from exponential decay—no choice is unique. Our initial state is the

approximate ΨGS,N(x) normalized to unity on the lattice. The justification for this

choice is precisely Fig. 5.2.

The non-decay probability P (t) is shown in Fig. 5.3. The relative error in the

tunneling rates for these states is generally near 10−4 using a fourth order integrator

with timestep τ = 0.05; the energy can be found more accurately. Note, however,

that there is some dependence of the tunneling rate on the absorbing boundary.

Simulation of Rabi Oscillations

Having demonstrated the split-operator method for free evolution, we now introduce

the microwave drive, with A constant and the phase φ = −π/2, so that cos(φ) = 0.

The characteristic Rabi oscillations are readily found. We show a typical example

in Fig. 5.4. To suppress tunneling effects on this timescale we have chosen Ns = 4,

in which case the resonant frequency is ω01 = E1 −E0 ≈ 0.961. In the figure we set

A = 0.005, and see that the |0〉 and |1〉 states oscillate like a two-level system, but
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Figure 5.2: Real part of the survival amplitude A(t) for the n = 2 resonance state

wavefunction for Ns = 2. The dots indicate the split-operator evaluation, the line

the expected A(t) = e−Γt/2 cos(E0t), with E0 = 2.13157 and Γ = 0.13854. No

difference is discernable on this plot.
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Figure 5.3: The non-decay probability P (t) for the n = 2 resonance state wave-

function for Ns = 2. The dots indicate the split-operator evaluation, the line the

expected exponential decay P (t) = e−Γt. No difference is discernable on this plot.

also shown is the probability to be in state |2〉. This follows the general expression

of (5.47): p2(t) = 2z−2 sin2(Ωt/2), but also includes the much higher frequency

oscillations we had neglected.

Repeating these calculations for multiple drive amplitudes, we find the char-

acteristic linear dependence of the Rabi frequency with amplitude Ω = Axx01 (seen

Fig. 5.5). Corrections to Ω such as (5.48) do not appear on this figure. However,

deviations from two-state oscillations are still apparent. In Fig. 5.6 we show the

probabilty p2(t0), where t0 = π/ΩR. The growing oscillations in p2 are likely due

to the importance of multiple frequencies at large power, evident in Fig. 5.4; the

general trend, however, is well captured by our three-level analysis.

By repeating these calculations at fixed amplitude but at different frequencies,
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Figure 5.4: Rabi oscillation in the cubic potential with Ns = 4. The initial state

is the metastable ground state, and the drive is resonant at E1 − E0 ≈ 0.961 with

amplitude A = 0.005. The state probabilities p0(t) (dashed curve) and p1(t) (solid

curve) are shown. Also shown is p2(t) (multiplied by 150, thick solid curve) and the

analytic approximation 2z−2 sin2(Ωt/2) (dotted curve).
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Figure 5.5: Rabi frequency as function of drive amplitude, in the cubic potential

with Ns = 4. The initial state is the metastable ground state, and the drive is

resonant at E1−E0 ≈ 0.961. The solid curve is the expected result Ω = Ax01, while

the dots are the result of split-operator calculations.
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Figure 5.6: State 2 probability p2(t0) as function of drive amplitude, in the cubic

potential with Ns = 4, t0 = π/ΩR. The initial state is the metastable ground state,

and the drive is resonant at E1 −E0 ≈ 0.961. The solid curve is the expected result

(2z−2) while the dots are the result of split-operator calculations.
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Figure 5.7: Rabi frequency ΩR as function of drive frequency ω, in the cubic potential

with Ns = 4. The initial state is the metastable ground state, and the drive has

amplitude A = 0.005. The solid curve is the expected result ΩR = (Ω2
0 + (ω −

ω01)
2)1/2, while the dots are the result of split-operator calculations. The minimum

Rabi frequency occurs when ω = ω01, near 0.961.

we explore the non-resonant dynamics. In Fig. 5.7 we see the Rabi frequency, and

in Fig. 5.8 we see the maximum probability of state |1〉. Both are well described by

the two-state model described in Section 2.1.1.

Simulation of Pulse Shaping

The above calculations have used a drive of constant amplitude, which are called

hard pulses in the NMR literature. More accurate logic operations are possible

by pulse-shaping, i.e. allowing the amplitude A to be a function of time. We use
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Figure 5.8: State 1 probability p1(t0) as function of drive frequency ω, in the cubic

potential with Ns = 4. The initial state is the metastable ground state, and the

drive has amplitude A = 0.005. The time t0 = π/Ω is when p1(t) achieves its first

maximum. The solid curve is the expected result p1 = Ω2
0/Ω

2
R, while the dots are

the result of split-operator calculations.
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split-operator methods to study the simple Gaussian pulse shape

A(t) =







0 t < 0
A0 exp

(
−2α2(t− tp/2)2/t2p

)
0 < t < tp

0 tp < t






, (5.62)

where the constant A0 takes the form

A0 =
θ

x01

√
2πerf(α/

√
2)

2α

tp
, (5.63)

θ is the desired rotation angle (for a π-pulse θ = π), and the error function is defined

by

erf(x) =
2√
π

∫ x

0

dwe−w
2

. (5.64)

This type of pulse (among others) is considered in [258, 259] and an example of such

a pulse is shown in Fig. 5.9. We use a fixed α = 3 and vary the pulse length tp in

our subsequent simulations.

We simulate this type of pulse in Fig. 5.10. Note that while there is a transient

population in state |2〉, it nearly vanishes at the end of the pulse, with a final value

of p2(tp) = 7.6 × 10−5, nearly two orders of magnitude less than the corresponding

probability for the hard pulse shown in Fig. 5.4 (p2 ∼ 10−3). Notice also the in-

triguing asymmetric shape; there is a delay of the transfer of amplitude into state

|2〉. Finally, we must confess that the effect of the pulse is not a perfect π-pulse:

we find p1(tp) = 0.995. Nevertheless, it is clear that pulse-shaping can offer great

advantages.

Repeating these calculations for multiple pulse times tp, we show the pulse

error pE = 1−p0(tp)−p1(tp) in Fig. 5.11. For the hard pulses, we define tp = π/Ω0.

It can be clearly seen that the Gaussian pulse rapidly outperforms the hard pulse.
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Figure 5.9: Gaussian pulse shape for a resonant π-pulse in cubic potential with

Ns = 4. The solid curve is the product A(t) cos(ωt), with ω = E1 −E0 ≈ 0.961, and

A(t) is given in the text, with parameters α = 3 and tp = 100 The dashed curves

indicate the Gaussian envelope ±A(t).
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Figure 5.10: Resonant Gaussian π-pulse in cubic potential with Ns = 4. The initial

state is the metastable ground state, and the drive is resonant at E1 − E0 ≈ 0.961,

the pulse length is tp = 1000. The state probabilities p0(t) (solid curve) and p1(t)

(dashed curve) are shown. Also shown is p2(t) (multiplied by 50, thin solid curve).
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Figure 5.11: Pulse error pE = 1 − p0(tp) − p1(tp) for hard pulses (squares) and

Gaussian pulses (dots) as function of pulse length tp. The dashed curve is the

theoretical estimate pE = 2z−2, while the solid curve is drawn to guide the eye.

There is an error floor, and in fact the Gaussian pulse error begins to increase

for large tp. This floor is directly due to tunneling of the wavefunction, whereas

the dashed curve shows that the error of hard pulses is due to the non-adiabatic

population of state |v1〉 ∼ |2〉. Finally we note that for a junction with plasma

frequency ω0/2π = 6GHz a π-pulse with pE ∼ 10−4 can be achived with tp ∼

500/ω0 ∼ 13ns, about ten times faster than the corresponding hard pulse.

5.2 Bias Current Ramp

The second control technique we consider is bias current ramping. In a quantum

computer, we might want to have two operation points. The first would be the idle
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position, to store the qubit. This could be with a small bias current such that there

is a large barrier height with a large Ns. In this case the state has little chance

to tunnel. The second operation point would be for Rabi oscillations, which would

require a smaller Ns for fast logic gates. The ramp from one point to the other is

studied in this section.

We recall that the cubic approximation to the washboard is given by

H =
1

2
p2 +

1

2
ω2(x− x∗)

2 − λ(x− x∗)
3 (5.65)

where we have used energy units of ~ω0, the nonlinearity is

λ =
1√

54Ns

, (5.66)

the frequency is

ω2 =

(
1 − J

1 − J0

)1/2

, (5.67)

and the position of the minimum is

x∗ = (3Ns/2)1/2(1 − ω2). (5.68)

Variations of the bias current J about J0 will yield variations in both the frequency

and the minimum of the potential. The frequency variation will yield a dynam-

ical phase shift to the energy levels, and a small variation in the wavefunctions.

The variation of the potential minimum, however, yields a large variation in the

wavefunctions.

Instead of looking directly at the bias current (which will depend on the par-

ticular junction parameters), we consider instead variations of the frequency by
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defining a detuning parameter

ε(t) = ω2(t) − 1 (5.69)

in terms of which the bias current is

J = 1 − (1 − J0)(1 + ε)2. (5.70)

A slightly more accurate mapping of the cubic to the washboard uses the alternative

mapping

J =
(
1 − (1 − J2

0 )(1 + ε)2
)1/2

. (5.71)

In either case, increasing ε decreases the bias current, and for small variations they

are linearly related. The particular bias current ramps we consider are shown in

Fig. 5.12.

These ramps have the following functional forms:

εL(t) =







ε0 t < t0
ε0 + (t− t0)(ε1 − ε0)/(t1 − t0) t0 < t < t1
ε1 t1 < t






, (5.72)

εC(t) =







ε0 t < t0
(ε0 + ε1)/2 − (ε1 − ε0) cos (π(t− t0)/(t1 − t0)) /2 t0 < t < t1
ε1 t1 < t






,

(5.73)

and

εG(t) =
1

2
(ε0 + ε1) +

1

2
(ε1 − ε0)erf (α(t− t0/2 − t1/2)/(t1 − t0)) , (5.74)

where α is a scaling parameter and erf(x) is the error function

erf(x) =
2√
π

∫ x

0

dw e−w
2

. (5.75)
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Figure 5.12: Ramp functions for the detuning ε(t). Each curve is offset for clarity.

The first is linear ramping εL(t) (dashed curve), the second is a cosine ramp εC(t)

(solid curve), and the third is an integrated Gaussian ramp εG(t) (dotted curve).

The ramp time is T = t2 − t1.

.

We use α = 4 in the following.

When the bias is ramped, the curvature and minimum of the cubic potential

shift. This is illustrated in Fig. 5.13. Our goal is to transfer the ground state of the

initial potential to the ground state of the final potential. If we ramp too quickly,

the error which results is surprisingly large. We study this error in the following

sections.

5.2.1 Harmonic Approximation I

We can gain significant insight into this problem by looking at the harmonic ap-

proximation. In fact, in this section we make the further approximation that the

frequency remains fixed. The results of this approximation turn out to be quite
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Figure 5.13: Potential energy functions for the cubic. The solid curve is the potential

energy for ε = 0, Ns = 4. The dashed curve is potential energy for ε = 0.2.

reasonable, since the effects of the displacement of the minimum are far greater

than those of the frequency shift. We consider the full harmonic approximation in

a subsequent section.

The problem we solve is that of a harmonic oscillator with moving minimum

H(t) =
1

2
p2 +

1

2
(x− xc(t))

2 (5.76)

where xc(t) = −(3Ns/2)1/2ε(t) and the pulses are those considered above, with

t0 = 0, t1 = T , ε0 = 0, ε1 = ∆ε. We can simplify the Hamiltonian by using the

displacement operator

D(ν) = eνa
†−ν∗a = eνa

†

e−ν
∗ae−|ν|2/2 (5.77)

where a = 2−1/2(x + ip) is the annihilation operator, and the second expression

follows from [a, a†] = 1 and application of the Baker-Campbell-Haussdorf formula.

Using D(ν) we have

H(t) = a†a+
1

2
− γ(t)(a+ a†) + γ(t)2 = D(γ(t))H(0)D†(γ(t)) (5.78)
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where γ(t) = 2−1/2xc(t) = −(3Ns/4)1/2ε(t), γ(T ) = γ1 = −(3Ns/4)1/2∆ε.

We wish to compute the final state fidelity

F (T ) = |〈0|D†(γ1)U(T )|0〉|2 (5.79)

where U(T ) is the time-evolution operator, |0〉 is the ground state of H(0) and

D(γ1)|0〉 is the ground state of H(T ). Note that if we use a sudden pulse from

xc = 0 to xc = −(3Ns/2)1/2∆ε with T = 0, there is no evolution (U(T ) = I) and we

find

F (0) = |〈0|D†(γ1)|0〉|2 = e−|γ1|2. (5.80)

Thus, the larger the displacement, the smaller the overlap of the initial and final

states. We calculate F (T ) for each of our pulse shapes.

To calculate U(T )|0〉 we adopt a simple argument. The results are, of course,

in complete agreement with an exact analysis of the propagator; aspects of this will

appear in the following sections. We first note that the coherent states

|α〉 = D(α)|0〉 (5.81)

are eigenstates of the annihilation operator

a|α〉 = α|α〉, (5.82)

and the ground state is a coherent state with α = 0. Now, we can exactly solve for

the time-evolved annihilation operator

aH(t) = U †(t)aU(t) (5.83)
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which satisfies the Heisenberg equation of motion

daH
dt

(t) = i[HH(t), aH(t)] = −i (aH(t) − γ(t)) , (5.84)

where HH(t) = U †(t)H(t)U(t). We can solve (5.84) immediately to find

aH(t) = e−ita+ ν(t) (5.85)

where we have used the initial condition aH(0) = a and

ν(t) = ie−it
∫ t

0

dsγ(s)eis. (5.86)

This implies that U(t)|0〉 is eigenstate of a with eigenvalue ν(t), since

aU(t)|0〉 = U(t)U †(t)aU(t)|0〉 = U(t)(e−ita+ ν(t))|0〉 = ν(t)U(t)|0〉. (5.87)

We conclude that

U(T )|0〉 = eiΘD(ν(T ))|0〉 (5.88)

where Θ is an irrelevant but easily calculable phase. Finally, using the identity

D(ν)D(µ) = D(ν + µ) exp

(
1

2
(µ∗ν − µν∗)

)

(5.89)

we calculate the fidelity

F0(T ) = |〈0|D†(γ1)D(ν(T ))|0〉|2 = exp
(
−|γ1 − ν(T )|2

)
. (5.90)

We recall that the ramp parameters are t0 = 0, t1 = T , ε0 = 0, and ε1 = ∆ε.

Using these for each of our pulse shapes, we must calculate the integrals:

ν(T ) = −ie−iT (3Ns/4)1/2

∫ T

0

dsε(s)eis. (5.91)
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For the linear pulse (5.72) we find

νL(T ) = −(3Ns/4)1/2∆ε

(

1 +
i

T
(1 − e−iT )

)

, (5.92)

in which case

FL(T ) = exp
(
−3Ns∆ε

2T−2 sin2(T/2)
)
. (5.93)

Note that the fidelity decreases for large ∆ε and short T , but is exactly 1 whenever

the time satisfies T = 2nπ. These occur when the wavepacket performs a perfectly

timed bounce in the moving potential.

The cosine ramp (5.73) can also be integrated

νC(T ) = −(3Ns/4)1/2∆ε

(

1 + e−iT/2 cos(T/2)
π2

T 2 − π2

)

(5.94)

and the corresponding fidelity is

FC(T ) = exp

(

−3

4
Ns∆ε

2 π4

(T 2 − π2)2
cos2(T/2)

)

. (5.95)

Observe that the exponent in (5.95) is oscillatory. There are times such that the

wavepacket performs a perfect bounce: if T = π + 2nπ we have FC = 1.

Finally, for the Gaussian ramp (5.74) we have

νG(T ) = −1

2
(3Ns/4)1/2∆ε

(

1 − e−iT + e−iT i

∫ T

0

dseiserf(α(s/T − 1/2)

)

. (5.96)

Defining z = α(s/T − 1/2) we find for the integral

I =

∫ T

0

dseiserf(α(s/T − 1/2)) = α−1TeiT/2
∫ α/2

−α/2
dzeiT z/αerf(z) (5.97)

Integrating by parts and using erf(−x) = −erf(x) we have

I = i−1eiT/2

(

erf(α/2)(eiT/2 + e−iT/2) − 2π−1/2

∫ α/2

−α/2
dzeiT z/α−z

2

)

. (5.98)
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At this point we assume that we can make the approximations erf(α) = 1 and

replace the limits on the final integration by ±∞; even for moderate α this incurs

little error. Doing so, and performing the Gaussian integral in (5.98), we find

I ≈ i−1eiT/2
(

eiT/2 + e−iT/2 − 2e−α
−2T 2/4

)

. (5.99)

From (5.99) and (5.96) we find

νG(T ) = −(3Ns/4)1/2∆ε
(

1 − e−iT/2e−α
−2T 2/4

)

. (5.100)

The fidelity is then

FG(T ) = exp

(

−3

4
Ns∆ε

2e−α
−2T 2/2

)

. (5.101)

Note that our assumption of large α ignores some small oscillatory component of

the exponent.

Taking the time average of each exponent, and the limit T � π, we now

summarize the three ramp fidelities in the averaged harmonic approximation. For

the linear ramp (5.93), cosine (5.95) and Gaussian ramp fidelities (5.101) (with

α = 4) we have
FL(T ) ' exp (−(3/2)Ns∆ε

2T−2) ,
FC(T ) ' exp (−(3/8)Ns∆ε

2π4T−4) ,

FG(T ) ' exp
(

−(3/4)Ns∆ε
2e−T

2/32
)

.
(5.102)

Clearly, for a given ∆ε the scaling properties of each with the ramp time T gets

progressively better. The linear ramp is only piecewise continuous and performs

the worst. Both the cosine ramp and its derivative are continuous, and it fares

somewhat better. The Gaussian ramp is smooth, yielding the best fidelity of all.

We now compare these with true numerical results using split operator-methods.
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5.2.2 Numerical Calculations

As with Rabi oscillations, it is straightforward to use split-operator methods to

simulate the dynamics of the bias current ramp. We consider the ramping of the

metastable state from ε0 = 0.2 at time t0 = 0 to ε1 = 0 at time t1 = T (∆ε = −0.2)

where Ns = 4. For each ramp we calculate the final state fidelity

Fn(T ) = |〈Ψ̄n|U(T )|Ψn〉|2, (5.103)

with n = 0, 1, where |Ψn〉 is the n-th metastable state for ε0 = 0.2 and |Ψ̄n〉 is the

n-th metastable state for ε1 = 0.

The results for the linear ramp are shown in Fig. 5.14, where we plot the error

E(T ) = 1 − Fn(T ). There are instants when the error in the ground state becomes

very small. These times correspond to the perfect bouncing wavepacket dynamics

discussed above. Note that there are similar features for the excited state error, but

they occur at different times—in the harmonic approximation these times would be

the same for all of the energy states. Note also that the excited state error is generally

greater than the ground state error. Finally we observe that the averaged harmonic

approximation of (5.102) provides an excellent guide to the overall behavior.

The results for the cosine ramp are shown in Fig. 5.15. Notice that the error

decreases more rapidly than for the linear ramp (the vertical scales are slightly

different) and there are again certain ramp times when the error is very small. The

general behavior is again well described by the averaged harmonic approximation.

Last, we look at the Gaussian ramp in Fig. 5.16, seeing very rapid error de-

crease with ramp time. Here there is excellent agreement between the averaged
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Figure 5.14: Final state fidelity error E(T ) = 1 − F (T ) for the linear ramp as a

function of the ramp time T . The bias ramp has ε0 = −0.2, ε1 = 0, t0 = 0 and

t1 = T . The solid curve is the error in the ground state. The dotted curve is the error

in the first excited state. The dashed curve is the averaged harmonic approximation.
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Figure 5.15: Final state fidelity error E(T ) = 1 − F (T ) for the cosine ramp as

a function of the ramp time T . The bias ramp has ε0 = −0.2, ε1 = 0, t0 = 0

and t1 = T . The solid curve is the error in the ground state. The dotted curve

is the error in the first excited state. The dashed curve is the averaged harmonic

approximation.
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Figure 5.16: Final state fidelity error E(T ) = 1 − F (T ) for the Gaussian ramp as

a function of the ramp time T . The bias ramp has ε0 = −0.2, ε1 = 0, t0 = 0

and t1 = T . The solid curve is the error in the ground state. The dotted curve

is the error in the first excited state. The dashed curve is the averaged harmonic

approximation.

harmonic approximation and the ground state error, until the error falls below 10−6.

The oscillations in the ground state error are likely due to the oscillatory terms we

neglected in the harmonic approximation. Finally, we see that there is an error floor

to the first excited state, and for longer ramp times the error begins to grow, again

due to quantum tunneling.

Thus, we have shown that the error of the bias current ramp, accurately sim-

ulated through split-operator methods, can be well understood using the averaged

harmonic approxation. This approximation has ignored the variation of the fre-

quency. The following section, using the exact harmonic propagator, shows that its
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neglect is essentially harmless.

5.2.3 Harmonic Approximation II

We consider the harmonic approximation to the current-biased Josephson junc-

tion case where both the minimum and the frequency of the oscillator have time-

dependence:

H =
p2

2m
+

1

2
mω(t)2(x− xc(t))

2. (5.104)

We first wish to expand our Hamiltonian in terms of creation and annihila-

tion operators, but do not want the operators a and a† to have any explicit time

dependence. Thus, we consider a reference frequency ω0 and let

x =
x0√

2
(a+ a†), (5.105)

p =
~

i
√

2x0

(a− a†), (5.106)

with

x0 =

√

~

mω0
. (5.107)

We also define the dimensionless functions

ε(t) =
ω(t)2 − ω2

0

ω2
0

(5.108)

and

γ(t) =
xc(t)√

2x0

= −
(

3Ns

4

)1/2

ε(t). (5.109)

With these definitions, the harmonic Hamiltonian is

H = f(t)A+ f ∗(t)A† + h(t)B + d(t)a+ d∗(t)a† + g(t), (5.110)
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with A = a2/2, B = a†a + 1/2, and the coefficients

f(t) = f ∗(t) = ~ω0ε(t)/2,
h(t) = ~ω0(1 + ε(t)/2),

d(t) = d∗(t) = −~ω0(1 + ε(t))γ(t),
g(t) = ~ω0(1 + ε(t))γ(t)2.

(5.111)

In the Appendix we derive the general propagator for a Hamiltonian of the form

(5.110), and find that the propagator is

U = e−iΘS(r, φ)R(θ)D(ν), (5.112)

where the squeezing operator S, rotation operator R and displacement operator D

are defined by

S(r, φ) = exp(r(a2e−i2φ − a†
2
ei2φ)/2),

R(θ) = exp(−iθ(a†a+ 1/2)),
D(ν) = exp(νa† − ν∗a).

(5.113)

The parameters r, θ, and φ are given by the auxiliary variables α and β:

cosh r = |α|
eiθ = α∗|α|−1

e2iφ = −αβ∗|α|−1|β|−1.
(5.114)

The variables α, β, and ν must satisfy the differential equations

~α̇ = −i(f ∗β + hα), (5.115)

~β̇ = i(fα+ hβ), (5.116)

~ν̇ = −i(β∗d+ α∗d∗). (5.117)

The expression for Θ will not be needed.

We now solve the full system of equations (5.115)-(5.117) for the propagator.

In the linear ramp considered here, we can do these analytically in terms of Airy

functions. The equations to be solved are

α̇ = −i~−1(f ∗β + hα) = −iω0(εβ/2 + (1 + ε/2)α),

β̇ = i~−1(fα + hβ) = iω0(εα/2 + (1 + ε/2)β).
(5.118)
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By forming the combinations α+ = α + β and α− = α− β, (5.118) becomes

α̇+ = −iω0α−
α̇− = −iω0(1 + ε)α+

(5.119)

and taking an extra time derivative of α̇+ we find

α̈+ + ω2
0(1 + ε)α+ = 0. (5.120)

The initial conditions α(0) = 1, β(0) = 0 imply α+(0) = 1, α̇+(0) = −iω0. Now, if

we specialize to the linear ramp with ε0 = 0, t0 = 0, and t1 = T , then for 0 < t < T

we find that the detuning is

ε(t) = ∆εt/T. (5.121)

Substituting (5.121) into (5.120) shows that α+ satisfies a variation of the Airy

equation,

α̈+ + ω2
0(1 + ∆εt/T )α+ = 0. (5.122)

If we define the auxiliary variable

z(t) =

(
∆ε

ω0T

)1/3

(ω0t+ ω0T/∆ε) (5.123)

then the general solution of (5.122) is

α+(t) = c1Ai(−z(t)) + c2Bi(−z(t)). (5.124)

From (5.124) α− is

α−(t) = −i
(

∆ε

ω0T

)1/3

(c1Ai′(−z(t)) + c2Bi′(−z(t))). (5.125)

To satisfy the initial conditions we must have

(
Ai(−z0) Bi(−z0)
Ai′(−z0) Bi′(−z0)

)(
c1
c2

)

=

(
1

iz
1/2
0

)

(5.126)
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where z0 = z(0) = (ω0T/∆ε)
2/3. Inverting (5.126) yields

c1 = π(Bi′(−z(0)) − iz0Bi(−z(0))),
c2 = π(−Ai′(−z(0)) + iz0Ai(−z(0)).

(5.127)

This completely specifies α+ and α− through (5.124) and (5.125), and thus α and

β.

Turning to (5.117) for ν, we see that since d = d∗

~ν̇ = −i(β∗d+ α∗d) = −idα∗
+. (5.128)

Using (5.111) for d and its time-dependence with ε we find

ν̇ = −iω0

(
3Ns

4

)1/2(
∆εt

T

)(

1 +
∆εt

T

)

α∗
+. (5.129)

We can rewrite (5.129) using z from (5.123)

ν̇ = −iω0

(
3Ns

4

)1/2
(
(z/z0)

2 − z/z0
)
α∗

+. (5.130)

Integrating ν we find

ν(T ) =

(
3Ns

4

)1/2 (

−∆εα∗
−(T ) − iz

−3/2
0 (α∗

+(T ) − 1)
)

. (5.131)

Our final task is to compute the fidelity

F = |〈Ψ̄0|U(T )|Ψ0〉|2, (5.132)

where |Ψ0〉 = |0〉 is the ground state of the initial Hamiltonian H(0) and |Ψ̄0〉 is the

ground state of the final Hamiltonian H(T ). Using properties of the squeezing and

displacement operators (given in the Appendix) we can write

H(T ) = (1 + ε1)
1/2S(r1, 0)D(ν1)H(0)D†(ν1)S

†(r1, 0), (5.133)
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where

r1 = arccosh
(
(1 + ∆ε/2)(1 + ∆ε)−1/2

)

ν1 = −(3Ns/4)1/2∆ε(1 + ∆ε)1/2e−r0.
(5.134)

The relation between the initial and final ground states is

|Ψ̄0〉 = S(r1, 0)D(ν1)|Ψ0〉. (5.135)

Thus, the fidelity is, using our propagator U(T )

F = |〈0|D†(ν1)S
†(r1, 0)S(r, φ)R(θ)D(ν)|0〉|2. (5.136)

This can be simplified by using R(θ)D(ν)R†(θ) = D(ν ′), ν ′ = νe−iθ and R(θ)|0〉 =

e−iθ/2|0〉:

F = |〈0|D†(ν1)S
†(r1, 0)S(r, φ)D(ν ′)|0〉|2. (5.137)

The full expression for this matrix element, derived in [267] (Eq. (3.25), with µ =

cosh r and ν = sinh re2iφ), is

〈0|D†(β2)S
†(r2, φ2)S(r1, φ1)D(β1)|0〉 = N1/2 exp

(

−1

2
|β1|2 −

1

2
|β2|2

)

× exp
(
Nβ∗

2β1 −NKβ∗
2
2 +NK∗β2

1

)
, (5.138)

where

N =
(
cosh r1 cosh r2 − sinh r1 sinh r2e

i2(φ1−φ2)
)−1

(5.139)

and

K =
1

2

(
sinh r1 cosh r2e

i2φ1 − cosh r1 sinh r2e
i2φ2
)
. (5.140)

In Fig. 5.17 we plot the error E(T ) = 1−F (T ) for the linear ramp with ε0 = 0,

ε1 = 0.2, t0 = 0 and t1 = T , and Ns = 4. This situation is essentially the reverse
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Figure 5.17: Final state fidelity error E(T ) = 1 − F (T ) for the linear ramp as a

function of the ramp time T . The solid curve is the error in the ground state calcu-

lated using the harmonic propagator, including the shift in frequency and potential

minimum. The dashed curve is the averaged harmonic approximation, which only

includes the shift in the potential minimum.

of that considered before, but now including the frequency shift. Also shown is the

averaged harmonic approximation we derived previously, with ∆ε = ε1 − ε0 = 0.2.

From this plot we conclude that it is the movement of the minimum, not the effect

of the frequency shift, which is the dominant feature in the fidelity. The oscillations

in E(T ), however, are now due to Airy instead of trigonometric functions.
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Chapter 6

Two Qubit Operations

In Chapter 5 we showed how a single qubit can be constructed from a current-biased

Josephson junction, and how microwave pulses and bias current ramps can be used

to control the system. In this Chapter, we examine a simple capacitive coupling

scheme, and show that bias current pulses can produce two types of two-qubit

quantum logic operations, a controlled-phase gate and a swap gate.

As discussed in Chapter 1, by combining single-qubit and two-qubit operations

an arbitrary n-qubit unitary operation can be performed. The controlled dynamics

discussed here are therefore one of the most important issues for quantum compu-

tation using phase qubits. The central results on gates were first published in [37].

An analysis of the physical coupling scheme and its spectroscopic features was first

reported in [268], while the first experimental realization was tested in [269]. More

details on the experiments can be found in the Ph.D. theses of A. J. Berkley [270]
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Figure 6.1: (a) Circuit diagram for capacitively coupled Josephson junctions; (b)

Time-dependent ramp of bias current ramp, specified through the detuning ε.

and H. Xu [11].

There have been several important prior studies of the capacitive coupling

of superconducting qubits. The capacitive coupling of two charge qubits was con-

sidered in [271, 272], and has been experimentally realized in two important time-

domain experiments [90, 91]. The coupling of charge qubits to an LC oscillator or

current-biased Josephson junction for quantum information processing has also been

considered [273, 274, 275, 276]. The use of a current-biased junction to distribute

entanglement has also been proposed [254]. We note that the fundamental physics of

the MIT three-junction qubit [277, 278] also includes capacitive coupling, although

without current bias. There have also been classical studies of capacitively coupled

Josephson junctions [279, 280].

In Section 2 we consider the physical circuit shown in Fig. 6.1(a). We derive the

Hamiltonian and perform an analysis of the relevant energy levels and entanglement.

In Section 3 we use this analysis to show how two fundamental logic gates can be
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constructed by using the bias current ramp illustrated in Fig. 6.1(b). We control

the dynamics by using the detuning parameter ε as in Chapter 5. Key to the

construction is the use of quantum interference between the two-qubit state |11〉

and an auxiliary level. This takes the form of a simple two-state oscillation, such

that the population of our two-qubit state is

p11(t) = |〈11|e−iHt|11〉|2 = a + b cos2(Ωt). (6.1)

The quantity Ω is given by a difference in energy levels, and a and b are related to

the eigenstates and satisfy a+b = 1. By allowing this interaction to occur for a time

τI = kπ/Ω, we achieve p11(τI) = 1. This allows the system to momentarily leave

and return to the two-qubit subspace, and enables useful quantum logic operations

in the presence of auxiliary levels.

These methods are in fact quite general, and have been proposed for quantum

information processing in ion traps [281, 282], neutral atoms in optical lattices [283],

and in fixed interaction architectures [284, 285], where the respective auxiliary levels

are the center of mass motion in the ion trap, weakly bound states of two atoms, and

barrier qubits used to mediate interactions. Such schemes are clearly advantageous

for multi-qubit dynamics; we will study one such instance in the next Chapter.

Finally, in Section 4, we explore the dynamical optimization of these operations.
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6.1 Capacitively coupled phase qubits

6.1.1 Hamiltonian

As described in Chapter 2, the dynamics of an ideal current-biased Josephson junc-

tion [100] is determined by the gauge-invariant phase difference γ between the junc-

tion electrodes. The supercurrent through the junction and the voltage drop across

the junction are given by the Josephson relations I = Ic sin γ and V = (Φ0/2π)γ̇.

Here Ic is the critical current of the junction, and Φ0 = h/2e is the flux quantum.

The Hamiltonian for this system can be written as

H =
1

2CJ

(
2π

Φ0

)2

p2
γ −

(
IcΦ0

2π

)

(cos γ + Jγ), (6.2)

where pγ = (Φ0/2π)QJ , the momentum canonically conjugate to γ, is proportional to

the charge QJ = CJV on the junction, CJ is the intrinsic junction capacitance, and

J = I/Ic is the normalized bias current. For J < 1, there exist local minima of the

“washboard” potential, about which the phase can oscillate with the characteristic

plasma frequency ωp(J) = (2πIc/Φ0CJ)
1/2(1 − J2)1/4.

The circuit diagram for two capacitively coupled junctions is shown in Fig. 6.1.

The two junctions have the characteristic capacitances C1 and C2, with critical

currents Ic1 and Ic2; the applied bias currents are I1 and I2, while the coupling

capacitance is C12. The equations of motion for this coupled system can be directly

by extending the equations of motion for two uncoupled current biased junctions.

This is done by adding and subtracting a current Q̇ to each bias line, to represent
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the charging of the coupling capacitor. Thus we have

C1

(
Φ0

2π

)

γ̈1 + Ic1 sin γ1 = I1 − Q̇,

C2

(
Φ0

2π

)

γ̈2 + Ic2 sin γ2 = I2 + Q̇. (6.3)

To close this system of equations, we relate the charge Q to the two phase variables

via

Q = C12(V1 − V2) = C12

(
Φ0

2π

)

(γ̇1 − γ̇2). (6.4)

The equations of motion (6.3) with (6.4) follow from the Lagrangian

L =
1

2

(
Φ0

2π

)2∑

jk

γ̇jAjkγ̇k −
∑

j

Uj(γj), (6.5)

where the potential is the sum of the washboard potentials for each junction

Uj(γ) = −
(

Φ0

2π

)

(Icj cos γ + Ijγ), (6.6)

and the capacitance matrix is defined by

A =

(
C1 + C12 −C12

−C12 C2 + C12

)

. (6.7)

Physically, the kinetic energy terms represent the charging of the various capacitors.

That is, if we let L = T − U and use the Josephson voltage relations, we find

T =
1

2
C1V

2
1 +

1

2
C2V

2
2 +

1

2
C12(V1 − V2)

2 (6.8)

which is precisely the electrostatic energy stored by the three capacitors.

Constructing the canonical momenta and Hamiltonian in the usual way, we

find

pj =
∂L
∂γ̇ j

=

(
Φ0

2π

)2∑

k

Ajkγ̇k, (6.9)
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and

H =
∑

j

pj γ̇j − L =
1

2

(
2π

Φ0

)2∑

ij

pi(A
−1)ijpj +

∑

i

Ui(γi), (6.10)

where A−1 is the inverse of the capacitance matrix A. It has the explicit form

A−1 =
1

(C1 + C12)(C2 + C12) − C2
12

(
C2 + C12 C12

C12 C1 + C12

)

. (6.11)

In fact, the Hamiltonian in (6.10) can be trivially extended to an array of capacitively

coupled junctions given a suitable definition of the capacitance matrix.

The capacitance matrix simplifies if both junctions have equal capacitance. In

this case, we let C1 = C2 = CJ , C12 = C and define the coupling parameter ζ

ζ =
C

CJ + C
. (6.12)

For this case, the two-junction capacitance matrix Eq. (6.7) takes the form

A2 = CJ(1 − ζ)−1

(
1 −ζ
−ζ 1

)

(6.13)

with the inverse

A−1
2 = C−1

J (1 + ζ)−1

(
1 ζ
ζ 1

)

. (6.14)

Using (6.14) in (6.10) yields the result

H =
1

2CJ(1 + ζ)

(
2π

Φ0

)2

(p2
1+p

2
2+2ζp1p2)−

(
Φ0

2π

)

(Ic1 cos γ1+I1γ1+Ic2 cos γ2+I2γ2).

(6.15)

For multiple junctions, determining the capacitance matrices can become quite

tedious. For example, with three identical junctions with C1 = C2 = C3 = CJ with

coupling capacitances C12 = C23 = C the capacitance matrix is

A3 = CJ(1 − ζ)−1





1 −ζ 0
−ζ 1 + ζ −ζ
0 −ζ 1



 (6.16)
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with inverse

A−1
3 = C−1

J (1 + 2ζ)−1





1 + ζ − ζ2 ζ ζ2

ζ 1 ζ
ζ2 ζ 1 + ζ − ζ2



 . (6.17)

In general, if we let A = CJ(1 − ζ)−1(I + ζB), then the inverse matrix has the

expansion A−1 = C−1
J (1− ζ)(I − ζB + ζ2B2 + . . . ). The coupling matrix B couples

neighboring junctions, such that the nearest neighbor velocity coupling of strength

ζ in A will lead to momentum coupling of strength ζk between junctions j and j+k.

To reduce coupling to the next-nearest junctions, ζ needs to be small compared to

1.

As with a single tilted washboard potential, a cubic approximation to the

Hamiltonian allows us to see the dominant physics without specific junction param-

eters. The relevant approximation to (6.15) is

H = 1
2
(1 + ζ)−1 (p2

1 + p2
2 + 2ζp1p2)

+1
2
ω2

1(x1 − xc1)
2 − λ1(x1 − xc1)

3 + 1
2
ω2

2(x2 − xc2)
2 − λ2(x2 − xc2)

3 (6.18)

where the energy scale is

~ω0 =
√

8EcEJ1(1 − J2
0,1)

1/4 =
√

8EcEJ2(1 − J2
0,2)

1/4 (6.19)

with J0,1 the reference bias current for junction 1, and J0,2 the reference bias cur-

rent for junction 2. At this reference bias, the number of states in the uncoupled

metastable wells can be different

Ns1 = 2−1/2 (EJ1/Ec)
1/2 ((1 − J2

0,1)
1/4 − J0,1(1 − J2

0,1)
−1/4 arccos J0,1

)

Ns2 = 2−1/2 (EJ2/Ec)
1/2 ((1 − J2

0,2)
1/4 − J0,2(1 − J2

0,2)
−1/4 arccos J0,2

) (6.20)
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and the remaining parameters in the cubic are

ω1 = (1 − J2
1 )1/4(1 − J2

0,1)
−1/4

ω2 = (1 − J2
2 )1/4(1 − J2

0,2)
−1/4

λ1 = (54Ns1)
−1/2

λ2 = (54Ns2)
−1/2

xc1 = (3Ns1/2)1/2(1 − ω2
1)

xc2 = (3Ns2/2)1/2(1 − ω2
2).

(6.21)

In the following, we consider the simple case EJ1 = EJ2, in which case J0,1 = J0,2 =

J0 and Ns1 = Ns2.

6.1.2 Energy Levels and Entanglement

The complex scaling method used to find the resonances for the one-dimensional

washboard is equally applicable to the two-dimensional Hamiltonians (6.15) or

(6.18). As in Chapter 5 we consider the variation of the bias currents such that

the frequencies are given by a detuning parameter ε:

ω2
1 = 1 + ε,
ω2

2 = 1 − ε,
(6.22)

which implies the following variation of the bias currents

J2
1 = 1 − (1 − J2

0 )(1 + ε)2

J2
2 = 1 − (1 − J2

0 )(1 − ε)2.
(6.23)

The slightly less accurate mapping with J2
1 → J1, J

2
2 → J2 and J2

0 → J0 was quoted

in [37]; for typical phase qubits the difference is small, and in no way affects our

argument.

Since the washboard minimum varies with the detuning, we explicitly keep

track of this by labeling the eigenstates |n; ε), where n = 0, 1, · · · represents the

energy level with eigenvalue En(ε). The round brackets are used to distinguish
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these coupled states from the uncoupled energy levels, which are the product states

|jk; ε〉 = |j; ε〉 ⊗ |k;−ε〉, where |j; ε〉 are energy states of an isolated junction with

normalized bias current J1 and |k;−ε〉 are those for bias current J2. When needed,

we denote the corresponding uncoupled energy levels by Ējk(ε).

There are two relevant regimes for the energy levels, the harmonic case when

Ns is large, and the anharmonic case with Ns is small (∼ 3). Recall from (6.20)

that this is determined by the value of J0. About this bias, we can bring the two

junctions into resonance by setting ε ∼ 0. For certain values of the bias the effect

of the coupling is maximal. This is revealed by avoided level crossings of the energy

levels and in the entanglement of the wavefunctions. We explore these effects for

the harmonic and anharmonic cases in this Section.

The energy levels of the first five excited states for the harmonic case Ns = 20

are shown in Fig. 6.2, with coupling ζ = 0.01. We see avoided crossings with energy

splitting given by ∆E ∼ ζ . The entanglement of the corresponding states are

shown in Fig. 6.3. As discussed in Chapter 1, the entropy of entanglement is given

in ebits [27]: a state with one ebit entanglement is a maximally entangled two-qubit

state. The ground state is not shown, but is nearly independent of ε in both energy

(E0(ε) ∼ 0.992) and entanglement (E0(ε) ∼ 10−4). We observe that the avoided level

crossings for the various energy levels all occur near ε = 0. The entanglement of the

first two states E1(ε) ' E2(ε) goes from zero to a maximal two-qubit value E = 1

as ε passes through zero (in Fig. 6.3(a)). As seen in Fig. 6.3(b)-(d), and as will be

explained shortly, this measure of the entanglement can be greater than unity.

The energy and entanglement for Ns = 20 can be understood by looking at
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Figure 6.2: Energy Levels versus detuning ε for Ns = 20. (a) The energy levels E1(ε)

and E2(ε), with an avoided crossing at ε = 0. (b) The energy levels E3(ε), E4(ε), and

E5(ε), with a three-state avoided crossing at ε = 0. The ground state E0(ε) ∼ 0.992

has little variation with ε.
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E0(ε) ∼ 10−4 and E2(ε) ' E1(ε).
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the harmonic approximation to the Hamiltonian, i.e. the limit λ1, λ2 → 0. In this

case, we can exactly diagonalize the Hamiltonian using the normal modes of the

system, which are

x+ = 2−1/2(cosφ− s sinφ)x1 + 2−1/2(cosφ+ s sinφ)x2,
x− = 2−1/2(−s cosφ− sinφ)x1 + 2−1/2(s cosφ− s sinφ)x2,

(6.24)

with s = (1 + ζ)1/2(1 − ζ)−1/2 and

tanφ =
ζ −

√

ζ2 + ε2(1 − ζ2)

ε
√

1 − ζ2
. (6.25)

The Hamiltonian becomes

H =
1

2
ω+(p2

+ + x2
+) +

1

2
ω−(p2

− + x2
−), (6.26)

with

ω2
± = (1 + ζ)−1[1 ±

√

ζ2 + ε2(1 − ζ2)]. (6.27)

For ε = 0, we find from (6.25) φ = 0, while (6.27) yields ω2
+ = 1, ω2

− = (1−ζ)/(1+ζ).

The normal modes (6.24) become

x± ' 2−1/2(±x1 + x2) +O(ζ). (6.28)

Using the creation operators for each mode

a†± = 2−1/2(±a†1 + a†2), (6.29)

we find the eigenstates and energy levels are

|Ψn+,m−
〉 = (n!m!)−1/2a†+

n
a†−

m|00〉,
En+,m−

= ω+(n+ + 1/2) + ω−(n− + 1/2).
(6.30)
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The first few states |n, 0) are, for small ζ

|0, 0) = |Ψ0+,0−〉 = |00, 0〉,
|1, 0) = |Ψ0+,1−〉 = 2−1/2(|01, 0〉 − |10, 0〉),
|2, 0) = |Ψ1+,0−〉 = 2−1/2(|01, 0〉 + |10, 0〉),
|3, 0) = |Ψ0+,2−〉 = 2−1(|02, 0〉+ |20, 0〉 − 21/2|11, 0〉),
|4, 0) = |Ψ1+,1−〉 = 2−1(|02, 0〉 − |20, 0〉),
|5, 0) = |Ψ2+,0−〉 = 2−1(|02, 0〉+ |20, 0〉 + 21/2|11, 0〉).

(6.31)

All of these states are in Schmidt form, so we can easily calculate their entanglement

using (1.41): E0 = 0, E1 = E2 = 1, E3 = E5 = 3/2, and E4 = 1. Entanglement greater

than one occurs when there are more than two terms in the Schmidt decomposition,

as in the states |3, 0) and |5, 0). While there are significant deviations from these

results in Fig. 6.3, the general picture is clear: the coupling of the normal modes

leads to highly entangled eigenstates at ε ∼ 0.

However, for |ε| > 0.1, the energy states are essentially unentangled and well

approximated by the product states, which we have used to label the corresponding

energy levels in Fig. 6.2 and Fig. 6.3. Thus for εA = −0.1 we find that the eigenstates

satisfy the relations |1; εA) ∼= |10; εA〉, |2; εA) ∼= |01; εA〉, and |4; εA) ∼= |11; εA〉.

The ground state |0; ε) ∼= |00; ε〉, not shown, remains essentially unentangled for

all ε. These four states will be our two-qubit basis. In addition, there are the

auxiliary states |3; εA) ∼= |20; εA〉 and |5; εA) ∼= |02; εA〉. These auxiliary states will

be important for our logic gates.

The energy levels in the anharmonic case with Ns = 3 are shown in Fig. 6.4,

with the entanglement shown in Fig. 6.5. We see that for the first two energy levels

the avoided level crossing and entanglement are quite similar to the harmonic case,

and the energy splitting is E2(0) − E1(0) ' ζ . The higher energy levels, however,

are significantly different. We now see two avoided level crossings that occur for
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Figure 6.4: Energy Levels versus detuning ε for Ns = 3. (a) The energy levels E1(ε)

and E2(ε), with an avoided crossing at ε = 0. (b) The energy levels E3(ε), E4(ε),

and E5(ε), with two-state avoided crossings of 4 and 5 at ε = ±0.05, and 3 and 4 at

ε = 0. The ground state E0(ε) ∼ 0.976 has little variation with ε.

ε± ∼ ±0.05. These are due to the anharmonic energy levels of each junction. The

entanglement of each of the higher energy levels exhibits clear signatures at these

detunings as well. Each splitting is characteristic of a two-state system, and the

relevant states at these positions are approximately

|4, ε−) = 2−1/2(|02, ε−〉 − |11, ε−〉)
|5, ε−) = 2−1/2(|02, ε−〉 + |11, ε−〉) (6.32)

and

|4, ε+) = 2−1/2(|20, ε+〉 − |11, ε+〉)
|5, ε+) = 2−1/2(|20, ε+〉 + |11, ε+〉) (6.33)

with E5(ε±) − E4(ε±) ' 21/2ζ .

The remaining avoided level crossing at ε = 0 is very small (of order ζ2)

and is not visible on this figure. It is accompanied by a very sharp variation of

the entanglement in states 3 and 4. To understand this, we consider a simplified
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Figure 6.5: Entanglement versus detuning ε for Ns = 3. The entanglement of

the energy states: (a) E1(ε), (b) E3(ε), (c) E4(ε), and (d) E5(ε). Not shown are

E0(ε) ∼ 10−4 and E2(ε) ' E1(ε).
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three-state model for the states |02, 0〉, |20, 0〉 and |11, 0〉:

H3 =





Ē02 0 2−1/2ζ
0 Ē20 2−1/2ζ

2−1/2ζ 2−1/2ζ Ē11



 . (6.34)

where we have use the harmonic oscillator matrix element 〈02|p1p2|11〉 = 2−1/2. At

ε = 0, we have Ē20 = Ē02, and we can write H3 = Ē02I + 2−1/2ζK, with

K =





0 0 1
0 0 1
1 1 z



 (6.35)

and

z = 21/2

(
Ē11 − Ē02

ζ

)

. (6.36)

The eigenvalues of K can be directly computed:

k0 = (z −
√
z2 + 8)/2,

k1 = 0,

k2 = (z +
√
z2 + 8)/2,

(6.37)

and the eigenvectors are the energy states

|3, 0) = 2−1/2 cos θ(|02, 0〉 + |20, 0〉)− sin θ|11, 0〉,
|4, 0) = 2−1/2(|02, 0〉 − |20, 0〉),
|5, 0) = 2−1/2 sin θ(|02, 0〉 + |20, 0〉) + cos θ|11, 0〉,

(6.38)

with

tan θ =
1

2
√

2

(√
z2 + 8 − z

)

. (6.39)

The character of the eigenstates is controlled by z. For general θ the two-

qubit state |11, 0〉 is always coupled to the auxiliary levels. Using the sixth order

perturbation theory from Chapter 4 for Ē02 and Ē11, we can show

z =
5
√

2

36
(Nsζ)

−1

(

1 +
47

48
N−1
s +

118865

93312
N−2
s

)

. (6.40)

If we take the harmonic limit Ns → ∞ or the strong coupling limit, then z → 0 and

θ = π/4, and the eigenstates reduce to the harmonic oscillator approximations given
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above. In the weak coupling limit or the limit of very small Ns, we have z → ∞

and θ = π/2, and only in this case does |11, 0〉 decouple from the other states. For

ζ = 0.01 and Ns = 3, we find θ ∼ 0.14 (in radians); for Ns = 5 we have θ ∼ 0.26.

This implies that if we were to assume no coupling to the auxiliary levels, this would

introduce an error of order 10−2 to 10−1 which would be considerable. A method

that uses this coupling to construct a quantum logic gate is introduced in the next

section.

6.2 Quantum Logic Gates

To construct useful quantum logic operations we must choose some natural encoding

of the quantum information, and a ramp sequence for the bias currents. Since the

eigenstates are essentially unentangled for |ε| ≥ 0.1, we can can use the states at

εA = −0.1 as our two-qubit basis. While there is residual entanglement at this

operation point, it can be reduced by using either a larger |εA| or by multi-junction

encoding schemes. These procedures are easy to implement (in principle), and have

been generally studied as a “dressed qubit” formalism [286].

To implement quantum logic gates, we vary ε with time as shown in Fig. 6.1(b).

The idea is to ramp the bias currents, moving the system smoothly (with ramp time

τR) from εA, where the eigenstates are essentially unentangled, to εB, where the

eigenstates are maximally entangled. Entangling evolution is then allowed to occur

for an interaction time τI , after which the system is ramped back to εA. The natural

choices for εB are either εB = ε− or εB = 0. The first choice can be made to generate
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a controlled phase gate, while the second can be used to implement a swap between

states |01, εA〉 and |10, εA〉. We study these in detail in the sections below.

6.2.1 Controlled Phase Gate

We first consider the case εB = ε−. As shown in Fig. 6.4 the dominant feature in

the energy levels and the eigenstates at ε = ε− is the avoided level crossing between

states 4 and 5; the other relevant two-qubit states can be taken as |0, ε−) ' |00, ε−〉,

|1, ε−) ' |10, ε−〉, and |2, ε−) ' |01, ε−〉. The remaining two-qubit state, however is

a superposition of the energy states (6.32)

|11, ε−〉 = 2−1/2[|5, ε−) − |4, ε−)]. (6.41)

If we prepare this state and evolve it in time, it will perform a simple two-state

oscillation

e−iH(ε−)t|11, ε−〉 = 2−1/2[e−iE5(ε−)t|5, ε−) − e−iE4(ε−)t|4, ε−)]
= e−iφ11 [cos(Ωt)|11, ε−〉 − i sin(Ωt)|02, ε−〉], (6.42)

with

φ11 = (E5(ε−) + E4(ε−))t/2,
Ω = (E5(ε−) −E4(ε−))/2.

(6.43)

Now, for this evolution to be a two-qubit gate, we must minimize the amplitude

in |02, ε−〉. This can be done by using the interaction time

τI =
πk

Ω
=

2πk

E5(ε−) −E4(ε−)
, (6.44)

where k is an integer. The choice k = 1 is particularly interesting, for it yields

e−iH(ε−)τI |11, ε−〉 = (−1) × e−iφ11 |11, ε−〉. (6.45)
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The phase factor φ11 is approximately the phase advance of state |11, ε−〉 if there

were no interaction between the qubits; the interaction has produced the overall

factor of −1. It is this controlled phase that can be used for quantum logic.

In the complete two-qubit basis {|00〉, |01〉, |10〉, |11〉} the evolution operator

is

e−iH(ε−)τI =







e−iφ00 0 0 0
0 e−iφ01 0 0
0 0 e−iφ10 0
0 0 0 −e−iφ11






, (6.46)

where the phases are

φ00 = E0(ε−)τI ' Ē00(ε−)τI
φ01 = E2(ε−)τI ' Ē01(ε−)τI
φ10 = E1(ε−)τI ' Ē10(ε−)τI
φ11 = (E4(ε−) + E5(ε−))τI/2 ' Ē11(ε−)τI

(6.47)

The two-qubit gate is composed of an essential two-qubit interaction, and

remaining single-qubit gates. These are particularly simple, being the z-rotations

Rz(α) = e−iαZ/2 =

(
e−iα/2 0

0 eiα/2

)

. (6.48)

Taking the tensor product of two of these single-qubit gates and an overall phase

we have

eiα1Rz(α2) ⊗ Rz(α3) = eiα1







e−i(α2+α3)/2 0 0 0
0 e−i(α2−α3)/2 0 0
0 0 ei(α2−α3)/2 0
0 0 0 ei(α2+α3)/2






.

(6.49)

Multiplying our evolution operator (6.46) by (6.49)

U1 = eiα1 (Rz(α2) ⊗ Rz(α3)) e
−iH(ε−)τI , (6.50)

and setting
α1 = (φ01 + φ10)/2
α2 = (φ10 − φ00)
α3 = (φ01 − φ00)

(6.51)
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we find the result

U1(φ) =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iφ






, (6.52)

with the controlled phase

φ = ±π + φ11 − φ01 − φ10 + φ00

= (E5(ε−) + E0(ε−) − E1(ε−) −E2(ε−))τI
= (E4(ε−) + E0(ε−) − E1(ε−) −E2(ε−))τI .

(6.53)

Here we have used +π in the second line and −π in the third. While a general

controlled phase is sufficient for universal quantum computation, in our case we

expect φ ∼ ±π, which yields the controlled-Z gate U1(π) = UCZ [7]. The single-qubit

gates in (6.49) can be implemented by small bias ramps or short delays (< 1ns). In

principle, by combining the the phase gate with the single-qubit Rabi oscillations of

the Chapter 5 we have all the ingredients for quantum logic algorithms.

This discussion has assume we can prepare the superposition states instanta-

neously. In fact, we must ramp from εA to εB = ε− in a finite ramp time τR. To

include this ramp and simulate the full dynamics, we have numerically computed

the eigenfunctions through complex scaling, and evolved each of the corresponding

eigenfunctions using the ramp function. We choose ζ = 0.01, Ns = 4, and for the

ramp we use εA = −0.1, εB = −0.036, τR = 20π and τI = 434. To summarize our

results, we consider the state populations (transition probabilities) defined by

pn;m = |(n; εA|U(t)|m; εA)|2 (6.54)

where U(t) is the full time-evolution operator. The results are displayed in Fig. 6.6.

In Fig. 6.6(a), we show the populations p0;0(t), p1;1(t) and p2;2(t) as a function of

time, each evolved using split-operator methods. Also shown is the ramp func-
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Figure 6.6: Phase Gate with Ns = 4, ζ = 0.01, εA = −0.036, εB = 0, τR = 20π, and

τI = 434. (a) The state populations p0;0(t) (upper solid), p1;1(t) (dashed), p2;2(t)

(dotted). Also shown is the displaced ramp function ε(t) + 0.93 (lower solid). (b)

The state populations p4;4(t) (solid) and p5;4(t) (dashed).

tion which implements a cosine ramp from εA to εB and back. This ramp has the

functional form

εC(t) =







εA t < t0
(εA + εB)/2 − (εB − εA) cos (π(t− t0)/(t1 − t0)) /2 t0 < t < t1
εB t1 < t < t2
(εA + εB)/2 − (εB − εA) cos (π(t− t2)/(t3 − t2)) /2 t2 < t < t3
εA t3 < t







,

(6.55)

where τR = t1 − t0 = t3 − t2 and τI = t2 − t1.

From Fig. 6.6 we observe some oscillations in the |1, εA) and |2, εB) states,

which can be accounted for in logic design. In Fig. 6.6(b), the populations of states

|4, εA) and |5, εA) are shown, when the initial condition is |4, εA). The two-state

oscillation seems imperfect, since p5;4(t) < 0.9 for the entire evolution. This is due

to the displacement of the eigenstates, which leads to a reduction in the wavefunction

overlap, i.e. |〈02, εB|02, εA〉| < 1. The wavefunctions corresponding to this evolution

are shown in Fig. 6.7.
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Figure 6.7: Wave function (modulus squared) evolving from |4, εA) ' |11, εA〉 to

|02, εB〉 and back.

6.2.2 Swap Gate

The swap gate involves ramping the system to εB = 0 instead of εB = ε−. When

ramping the system to εB = 0, we encounter two simultaneous evolutions. The first

is two-state dynamics of |11, 0〉 with the auxiliary state 2−1/2(|02, 0〉 + |20, 0〉), the

second is the swapping of state |01, 0〉 with |10, 0〉. The first evolution is handled as

with the phase gate, while for the second we allow an arbitrary swap of the states.

We recall that the full swap gate is

USWAP =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






. (6.56)

A gate very similar to USWAP will be constructed in this section.

Note that USWAP is a particularly useful interaction, as it allows information

to be passed through the quantum computer without moving the physical qubits.

That is, suppose we have prepared the superposition state a|0〉 + b|1〉 in qubit 1,
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and qubit 2 is in state |0〉. Applying the swap gate we find

USWAP(a|0〉 + b|1〉)|0〉 = |0〉(a|0〉+ b|1〉). (6.57)

The information in qubit 1 is now in qubit 2. Unfortunately, when swapping infor-

mation over large distances any errors in the swap gates will inevitably build up.

More sophisticated information transfer techniques must then be considered. One

method is to simply have a dedicated set of “bus” qubits, used only to propagate

information, and equiped with an error correction mechanism. Another method is

to use a sequence of two-qubit measurements to prepare entanglement between dis-

tant qubits [287]. This entanglement can then be purified [288] and used to teleport

states across the computer [26]. For small computers, however, the use of swap gates

will probably be more practical.

We first consider the evolution of the state |11, 0〉, which is the superposition

of the fifth and third energy eigenstates (6.38)

|11, 0〉 = cos θ|5, 0) − sin θ|3, 0) (6.58)

with θ defined in (6.39). If this state is prepared and subsequently evolved with

ε = 0 held fixed, we have

e−iH(0)t|11; 0〉 = cos θe−iE5(0)t|5; 0) − sin θe−iE3(0)t|3; 0)
= e−iφ11 [cos(Ωt) − i cos(2θ) sin(Ωt)]|11; 0〉

−ie−iφ11 sin(2θ) sin(Ωt)2−1/2(|02; 0〉 + |20; 0〉),
(6.59)

where

φ11 = (E5(0) + E3(0))t/2,
Ω = (E5(0) −E3(0))/2.

(6.60)

As with the phase gate, we can minimize the auxiliary state amplitude by choosing
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an appropriate interaction time

τI =
πk

Ω
=

2πk

E5(0) −E3(0)
, (6.61)

with k an integer.

Along with this dynamics is the swap of states |01; 0〉 and |10; 0〉. Using their

decomposition in (6.31)

|01; 0〉 = 2−1/2(|1; 0) + |2; 0)),
|10; 0〉 = 2−1/2(|2; 0) − |1; 0)),

(6.62)

we find

e−iH(0)τI |01; 0〉 = e−iφ01(cos θ1|01; 0〉 − i sin θ1|10; 0〉),
e−iH(0)τI |10; 0〉 = e−iφ10(cos θ1|10; 0〉 − i sin θ1|01; 0〉), (6.63)

with

φ01 = φ10 = (E1(0) + E2(0))τI/2,
θ1 = (E2(0) − E1(0))τI/2.

(6.64)

Altogether, with the ground state phase φ00 = E0(0)τI , we find the following for the

two-qubit evolution operator

e−iH(0)τI =







e−iφ00 0 0 0
0 e−iφ01 cos θ1 −ie−iφ01 sin θ1 0
0 −ie−iφ10 sin θ1 e−iφ10 cos θ1 0
0 0 0 (−1)ke−iφ11






. (6.65)

This gate has both two-qubit and single-qubit components, which we can again

separate using (6.49) by defining

U2 = eiα1 (Rz(α2) ⊗ Rz(α3)) e
−iH(ε−)τI , (6.66)

with
α1 = (φ01 + φ10)/2,
α2 = (φ10 − φ00),
α3 = (φ01 − φ00).

(6.67)
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We find

U2(θ1, θ2) =







1 0 0 0
0 cos θ1 −i sin θ1 0
0 −i sin θ1 cos θ1 0
0 0 0 e−iθ2







(6.68)

where θ2 is a remaining controlled phase,

θ2 = ±kπ + φ11 − φ01 − φ10 + φ00. (6.69)

For a general swap angle θ1 and controlled phase θ2 this gate is universal [18]. For

θ1 = π/4 we can use this gate to dynamically prepare the maximally entangled

states 2−1/2(|01; 0〉 ± i|10; 0〉). By tuning the dynamics such that θ1 = π/2, we can

construct a swap-like gate.

To perform such fine-tuning, we observe that the condition θ1 = π/2 actually

places a condition on the energy levels

θ1 =
π

2
= πk

(
E2(0) − E1(0)

E5(0) − E3(0)

)

. (6.70)

Thus, only if the energy ratio RE

RE =
E5(0) −E3(0)

E2(0) −E1(0)
(6.71)

is equal to an even integer (RE = 2k) can the swap dynamics be synchronized with

the two-state oscillations of |11, 0〉. The only remaining freedom in the energy levels

is through Ns. Therefore we plot R as a function of Ns in Fig. 6.8. As shown in the

figure, we have RE = 4 when Ns = 5.1592.

We simulate the full dynamics using split-operator methods and the numer-

ically computed complex scaling eigenfunctions. We use ζ = 0.01, Ns = 5.1592,

εA = −0.1, εB = 0, τR = 20π and τI = 278. The results are displayed in Fig. 6.9. In
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Figure 6.8: Energy ratio R as function of Ns. For Ns = 5.1592, we have RE = 4.

Fig. 6.9(a), we show the time-dependence of the ground state population p0;0(t) of

state |0, εA) and the cosine ramp from εA to εB and back. In Fig. 6.9(b) we show the

population of |1, εA) and |2, εA) as a function of time, when the initial condition is

|1, εA) ' |10, εA). We observe a nearly complete swap to |01, εA). Similarly, we see

in Fig. 6.9(c), the populations of |1, εA) and |2, εA) as a function of time when the

initial condition is |2, εA) ' |01, εA), and that no swap occurs in the other states.

Finally, the populations of states |4, εA) and |5, εA) are shown in Fig. 6.9(d),

when the initial condition is |4, εA) ' |11, εA). There are two oscillations since we

have k = 2 for the full swap. The wave function for the swap of |10; εA) to |01; εA)

is shown in Fig. 6.10.

6.2.3 Gate Fidelity

To evaluate the success of these two-qubit operations, we consider the following

scenario. We are given a two-qubit gate V meant to approximate the ideal two-

qubit gate W , and allow V to act on an input state |Ψ〉. We then perform a test to
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Figure 6.9: Swap Gate with Ns = 5.1592, ζ = 0.01, εA = −0.1, εB = 0, τR = 20π,

and τI = 278. (a) The state populations p0;0(t) (upper solid) and the displaced

ramp function ε(t) + 0.9 (lower solid). (b) The state populations p1;1(t) (solid) and

p2;1(t) (dashed). (c) The state populations p2;2(t) (solid) and p1;2(t) (dashed). (d)

The state populations p4;4(t) (solid) and p5;4(t) (dashed).
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Figure 6.10: Wave function (modulus squared) evolving from |1, εA) ' |10, εA〉 to

|2, εA) ' |01, εA〉.
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determine if the final state V |Ψ〉 is the intended state W |Ψ〉. The probability that

V |Ψ〉 passes the test is the fidelity

FΨ(V,W ) = |〈Ψ|W †V |Ψ〉|2. (6.72)

This fidelity depends on both the gates V and W and the input state |Ψ〉. We can

remove this state dependence by averaging over a large number N of input states,

which defines the average gate fidelity

F̄ (V,W ) =
1

N

N∑

k=1

|〈Ψk|W †V |Ψk〉|2. (6.73)

This measure will accurately reflect the success of our quantum logic operations.

A simple formula for this fidelity was found by Nielsen [289]. He showed that the

average over the input states (using the Haar measure) can be expressed as a sum

over a unitary operator basis. That is, choose a set of d2 unitary operators Uj for

the general d-dimensional Hilbert space, which are orthogonal in the sense

tr(U †
jUk) = dδjk (6.74)

Using such a basis the average gate fidelity can be written

F̄ (V,W ) =

∑

j tr
(

WU †
jW

†V UjV
†
)

+ d2

d2(d+ 1)
. (6.75)

For the two-qubit system d = 4 and the unitary operator basis set can be

taken as
{I ⊗ I, I ⊗X, I ⊗ Y, I ⊗ Z,
X ⊗ I, X ⊗X, X ⊗ Y, X ⊗ Z,
Y ⊗ I, Y ⊗X, Y ⊗ Y, Y ⊗ Z,
Z ⊗ I, Z ⊗X, Z ⊗ Y, Z ⊗ Z},

(6.76)

where I, X, Y , and Z are the Pauli operators

I =

(
1 0
0 1

)

, (6.77)
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X =

(
0 1
1 0

)

, (6.78)

Y =

(
0 −i
i 0

)

, (6.79)

Z =

(
1 0
0 −1

)

. (6.80)

The numerical calculations for our phase and swap gates necessarily include

states outside of the two-qubit basis. We define the evolution matrix V by

Vjk = 〈Ψj|U |Ψk〉 (6.81)

where U is the time-evolution operator

U(t, 0) = T exp

(

−i
∫ t

0

dsH(s)/~

)

, (6.82)

and the indices in (6.81) refer to the four two-qubit states, e.g. |00〉, |01〉, |10〉, and

|11〉. Since the system may evolve outside of the two-qubit basis, the matrix V is not

necessarily unitary. The leakage probability L [290] quantifies this non-unitarity:

L = max
Ψ

(1 − 〈Ψ|V †V |Ψ〉). (6.83)

We observe that L is the maximum eigenvalue of I − V †V .

Before calculating the gate fidelity, we remove the single-qubit phases with

(6.49), and set W = U1(π) for the phase gate, and W = U2(π/2, π/4) for the swap

gate. Using the basis (6.76) in (6.75) we calculate the average gate fidelity F̄ and

the leakage L in Table 6.1. Also shown is the total gate time τG = τI + 2τR in

dimensionless units (ω−1
0 ), and in physical units with ω0/2π = 6 GHz. Note that

gate times are of order 10 ns, which is similar to what we found for the single-qubit

π-pulse using the Gaussian pulse shape in Chapter 5. Remarkably, this indicates
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Table 6.1: Fidelity Measures of Phase and Swap Gates
Gate F L τG tG = τG/ω0

U1 0.996 0.003 560 14.9 ns
U2 0.972 0.006 404 10.7 ns

that even for the weak coupling considered here (ζ = 0.01), the two-qubit coupled

logic gates are as fast if not faster than the single qubit operations.

6.3 Optimized Results

The ramps used to generate the above results have not been optimized to produce the

best fidelity, minimal leakage, or speed. To optimize the above quantum logic gates,

we first identify the relevant errors. We recall that there is residual entanglement

in the eigenstates. We have in fact ignored this by using as the two-qubit basis the

eigenstates at εA = −0.1. These errors will only be important during measurement

since the dynamical evolution can be considered with respect to any basis. As

previously mentioned, the “dressed qubit” protocols of [286] can correct for these

errors.

The most important remaining errors are the leakage from the two-qubit basis

to the auxiliary levels. Although the general ramp sequence cannot be adjusted, our

schematic interference method can still be optimized by adjusting the ramp profile.

Another source of error is that the higher energy levels have higher tunneling rates.

For the phase gate, we can estimate the error due to tunneling by pT ∼ Γ2τG/2.

Since the gate time is of order 21/2πζ−1, and Γ2 = 2−3/2π−1/2(432Ns)
5/2e−36Ns/5, we
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have

pT ∼
√
π

4
ζ−1(432Ns)

5/2e−36Ns/5. (6.84)

With Ns = 4 and ζ = 0.01 we find pT ∼ 10−3; for Ns = 5 we find pT ∼ 10−6. By

choosing a large enough Ns the error due to tunneling can be made sufficiently small

for quantum error correction [291].

6.3.1 Phase Gate Optimization

To explore these optimizations we first consider the phase gate with Ns = 5. We

look at the final state probability pF = p4;4(τF ) in state |4; εA) ' |11; εA〉. We evolve

this state using the split-operator methods and a linear ramp for various ramp and

interaction times τR and τI . The linear ramp has the functional form

εC(t) =







εA t < t0
εA + (εB − εA)(t− t0)/(t1 − t0) t0 < t < t1
εB t1 < t < t2
εB + (εA − εB)(t− t2)/(t3 − t2) t2 < t < t3
εA t3 < t







, (6.85)

where τR = t1 − t0 = t3 − t2 and τI = t2 − t1.

The results are shown in the contour plot of Fig. 6.11. The dark regions

indicate large pF , while the light regions have small pF . We see that the ramp

and interaction times are correlated. This is expected, since a longer ramp allows

the two-state dynamics to begin before the ramp has completed, in which case a

smaller interaction time is necessary. The optimized total gate time τI+2τR remains

nearly constant. We find that the maximum state probability for the linear ramp is

pF,max = 0.9995.
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Figure 6.11: Phase gate optimization with linear ramp and ζ = 0.01 and Ns = 5.

The final state probability pF is shown in the contour plot, with dark indicating large

pF (near unity). The maximum pF = 0.9995 is found for a ramp time τR = 12π and

an interaction time τI = 141π.
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Results for cosine and Gaussian ramps are shown in Figs. 6.12 and 6.13, re-

spectively. The cosine ramp has been introduced before (6.55), while the Gaussian

ramp has the functional form

εG(t) = εA +
1

2
(εB − εA) (erf(α(t− t1)/τR) + erf(α(t2 − t)/τR)) , (6.86)

where t2 − t1 = τI + τR, and we have used α = 4. These ramps perform slightly

better than the linear ramp, each having a maximal probability pF,max = 0.9999.

A plot of the final probability with fixed interaction time τI = 142π for the cosine

ramp is shown in Fig. 6.14. Observe that using the optimal ramp time will make

the gate relatively insensitive to errors in the ramp time.

6.3.2 Swap Gate Optimization

A similar analysis applies to the swap gate. Note however, that there are two time

scales, one for the swap of |01; 0〉 and |10; 0〉, and one for the evolution of |11; 0〉

with the auxiliary states. While we heuristically argued that these time scales will

synchronize for Ns ' 5.16, our numerical results show that for real ramp profiles

this condition fails. Therefore, we focus on the swap operation alone.

Using the Gaussian ramp we evolve the state |1; εA) ' |10; εA〉, and consider

the final swap probability pS to be in state |2; εA) ' |01; εA〉, for various ramp and

interaction times τR and τI . The results are shown, with Ns = 5, in the contour plot

of Fig. 6.15. The dark regions indicate large pS, while the light regions have small

pS. Surprisingly, there is a much more asymmetric shape than the phase gate. This

is clearly seen in Fig. 6.16, where the final probability is shown with τI = 99π. For
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Figure 6.12: Phase gate optimization with cosine ramp and ζ = 0.01 and Ns = 5.

The final state probability pF is shown in the contour plot, with dark indicating large

pF (near unity). The maximum pF = 0.9999 is found for a ramp time τR = 10π and

an interaction time τI = 142π.
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Figure 6.13: Phase gate optimization with Gaussian ramp and ζ = 0.01 and Ns = 5.

The final state probability pF is shown in the contour plot, with dark indicating large

pF (near unity). The maximum pF = 0.9999 is found for a ramp time τR = 11π and

an interaction time τI = 141π.
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Figure 6.14: Phase gate optimization with cosine ramp and ζ = 0.01, Ns = 5, and

τI = 142π. The final state probability pF is shown; the maximum pF = 0.9999

occurs for the ramp time τR = 10π.
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Figure 6.15: Swap gate optimization with Gaussian ramp and ζ = 0.01 and Ns = 5.

The final swap probability pS is shown in the contour plot, with dark indicating

large pS (near unity). The maximum pS = 0.992 is found for a ramp time τR = 6π

and an interaction time τI = 99π.

these parameters the maximal swap probability is pS,max = 0.992.

There does not seem to be a simple explanation for the differences between

Fig. 6.16 and Fig. 6.14. Nevertheless, we see that we can enhance the accuracy of

both the phase and swap gates by increasing Ns and optimizing the ramp profile.

Further gains in accuracy should be possible by decreasing the coupling strength

[255], but at the cost of longer gate times. Finally, by combining microwave-pulse

Rabi oscillations with the bias current ramps used here we may be able to further
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Figure 6.16: Swap gate optimization with Gaussian ramp and ζ = 0.01, Ns = 5,

and τI = 99π. The final swap probability pS is shown; the maximum pS = 0.992

occurs for the ramp time τR = 6π.
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increase the gate fidelities.
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Chapter 7

Resonant Coupling of Phase Qubits

The quantum logic gates presented in Chapter 6 use a fixed capacitive interaction

between the qubits. As a consequence, the qubits must have either widely sepa-

rated energy levels or small coupling to remain decoupled during idle periods in the

computer. It is therefore desirable to consider coupling schemes that can switch the

coupling of distant qubits on and off. More sophisticated coupling schemes would

also make it easier to scale up from one or two qubits to the large number of qubits

ultimately required for key applications such as factorization [4], quantum simula-

tion [40], and database search [292]. Finally, the next key experimental challenge

for the scaling of superconducting qubits is to produce the multiparticle entangled

states needed for error correction [293] and teleportation [26], preferably in a device

that controllably couples distant qubits.

A number of coupling schemes have been considered for superconducting qubits.
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One important class is that based on inductor-capacitor (LC) oscillators. The first

such proposal [294] used the ground state dynamics of the oscillator to mediate in-

teractions between charge qubits; this design was refined in [295]. This second-order

interaction only produces virtual excitations of the LC degree of freedom. The di-

rect excitation of the oscillator was first discussed in [6], and yields an architecture

that is very similar to the ion-trap quantum computer [282], where the oscillator

is the center of mass mode of the linear ion chain. The qubit’s quantum state

can be transferred to the oscillator, which then interacts with other qubits, and is

finally transferred back. This type of resonant coupling method for superconduct-

ing qubits has now been considered for coupling charge qubits [276] and flux qubits

[296] with an LC oscillator, charge qubits coupled by a current-biased junction [254],

and phase qubits coupled by nanomechanical [255] oscillators. For superconduct-

ing phase qubits, the relevant dynamical operations are precisely those considered

previously in Chapter 6 [37].

A new approach to the scaling of superconducting qubits [297] utilizes an anal-

ogy to the strong-coupling regime of atomic cavity-QED experiments [298]. This

analogy was recently realized in an elegant experiment [299], in which a single

Cooper-pair box qubit (the atom) was capacitively coupled to a superconducting

transmission line (the cavity). The sub-µm sized charge qubit was first character-

ized by measurements of the resonator in the dispersive regime. This was followed

by the observation of the resonant vacuum Rabi splitting, a spectroscopic indication

of entanglement between the charge qubit and a single photon in the resonator. In a

related experiment, the coherent dynamics of a flux qubit coupled to an associated
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SQUID detector has been observed [300].

In this Chapter, we present the theory for experimental results that extend

this new field of superconducting cavity-QED to three macroscopic qubits—two

Josephson junctions and a resonator, the analog of two atoms and a cavity. Figure

1 shows a circuit schematic of our system, which consists of two large (10µm×10µm)

Josephson-junction phase qubits connected together by a series inductor-capacitor

(LC) resonator. This system is distinct from atomic cavity-QED systems in that

our “atoms” are distinguishable and independently tunable. This experiment is the

first to demonstrate the method of resonant coupling.

In Section 2, we analyze the circuit in Fig. 1 and its Hamiltonian. In Sec-

tion 3, we describe the spectroscopic measurements used to study the coupling of

each junction to the LC oscillator, and the coupling of all three degrees of freedom

together. The spectroscopic evidence is found to be in clear agreement with the

quantum mechanical model. These measurements were performed by Huizhong Xu

[11], and have been reported in [301]. We performed the theoretical calculations

using the complex scaling methods described in Chapter 3. In Section 4, we derive

the harmonic approximation used to understand the quantum states. In Section

5, we show how this resonant coupling reduces to capacitive coupling for certain

junction frequencies. This important result explains how our original “two-qubit”

spectroscopic measurements [269] can be reconciled with our new, more complete,

model of the circuit that has three degrees of freedom.
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J1J1 J2

LCLC

Figure 7.1: Schematic of a macroscopic superconducting three-body system which

consists of two Josephson junctions and an LC resonator. The two junctions J1 and

J2 (in the left and right dashed boxes) have anharmonic potentials with unequal

energy level spacings (shown below). The horizontal arrows represent quantum

tunneling and the vertical arrows denote microwave-induced transitions. The LC

oscillator (in the center dashed box) has a harmonic well with equal energy level

spacings.
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7.1 Hamiltonian

The three degrees of freedom for the circuit in Fig. 7.1 are the macroscopic quantum

variables γ1 and γ2 (the gauge-invariant phase differences across junctions J1 and

J2, respectively), and γ3 = 2πLI/Φ0 corresponding to the current I flowing through

the total inductance L = L1 + L2. Each degree of freedom corresponds to distinct

coherent motions of billions of electron pairs, and is therefore macroscopic both in

size and number [79].

The equations of motion for this system can be found directly by applying

Kirchoff’s circuit laws. First, we demand the conservation of current at each node:

Ib1 = Ic1 sin γ1 + C1V̇1 + I,

Ib2 = Ic2 sin γ2 + C2V̇2 − I,

I = C3V̇3,

(7.1)

where we have used Josephson’s current law in the first two lines. Second, we apply

the voltage loop equation

V3 = V1 − V2 − Lİ. (7.2)

In the above, Ib1 and Ib2 are the bias currents, Ic1 and Ic2 the critical currents of the

junctions, with capacitances C1 and C2 and voltages V1 and V2. The coupling mode

has capacitance C3 and total inductance L = L1 + L2, with the voltage across the

capacitor V3 and current I. Finally, we have the Josephson voltage relations

V1 = (Φ0/2π)γ̇1,
V2 = (Φ0/2π)γ̇2.

(7.3)

Equations (7.1)-(7.3) determine the dynamics of the system.

When constructing the Hamiltonian, we have the freedom to choose either the

voltage V3 or the current I as the “coordinate” of the LC-resonator. The resulting
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Hamiltonians may look different, but are simply related by a canonical transforma-

tion. We present both derivations, first taking the voltage V3 as the coordinate to

construct Hamiltonian H1. We then use the coordinate γ3 = 2πLI/Φ0 to construct

H2, and finally show their equivalence. This freedom of representation is well known,

and leads to some subtlety when one attempts to introduce dissipation [302].

Combining (7.1)-(7.3) we have the system of second order equations

C1(Φ0/2π)γ̈1 + C3V̇3 + Ic1 sin γ1 − Ib1 = 0,

C2(Φ0/2π)γ̈2 − C3V̇3 + Ic2 sin γ2 − Ib2 = 0,

LC3V̈3 + V3 − (Φ0/2π)(γ̈1 − γ̈2) = 0.

(7.4)

These equations can be derived from the following Lagrangian

L1 = 1
2
(Φ0/2π)2(C1γ̇

2
1 + C2γ̇

2
2) + 1

2
LC2

3 V̇
2
3

+C3V3(Φ0/2π)(γ̇1 − γ̇2) − 1
2
CcV

2
c − U1(γ1) − U2(γ2)

(7.5)

where

U1(γ1) = −(Φ0/2π)(Ic1 cos γ1 + Ib1γ1),
U2(γ2) = −(Φ0/2π)(Ic2 cos γ2 + Ib2γ2).

(7.6)

We proceed to construct the Hamiltonian, first defining the canonical momenta

p1 = ∂L1/∂γ̇1 = (Φ0/2π)2C1γ̇1 + (Φ0/2π)C3V3,
p2 = ∂L1/∂γ̇2 = (Φ0/2π)2C2γ̇2 − (Φ0/2π)C3V3,

p̄3 = ∂L1/∂V̇3 = LC2
3 V̇3.

(7.7)

We have used the symbol p̄3 instead of p3 for future convenience. Inverting (7.7),

we find the velocities as functions of the coordinates and momenta

γ̇1 = (Φ0/2π)−2C−1
1 (p1 − (Φ0/2π)C3V3),

γ̇2 = (Φ0/2π)−2C−1
2 (p2 + (Φ0/2π)C3V3),

V̇3 = L−1C−2
3 p̄3.

(7.8)

The Hamiltonian is defined by

H1 = p1γ̇1 + p2γ̇2 + p̄3V̇3 − L1. (7.9)

Substituting (7.8) and (7.5) into (7.9), we find

H1 = 1
2
C−1

1 (Φ0/2π)−2(p1 − (Φ0/2π)C3V3)
2

+1
2
C−1

2 (Φ0/2π)−2(p2 + (Φ0/2π)C3V3)
2

+1
2
L−1C−2

3 p̄2
3 + 1

2
C3V

2
3 + U1(γ1) + U2(γ2).

(7.10)
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To recover the physical interpretation of this Hamiltonian as a conserved en-

ergy of the system, we rewrite H1 in terms of the voltages and currents. Using (7.7),

(7.3) and (7.1) in (7.10), we find

E =
1

2
C1V

2
1 +

1

2
C2V

2
2 +

1

2
C3V

2
3 +

1

2
LI2 + U1(γ1) + U2(γ2). (7.11)

This shows how the electrostatic energy is stored in each capacitor, and the magnetic

field energy in each inductor (including the Josephson junctions acting as nonlinear

inductors).

Our second derivation uses the coordinate γ3 = 2πLI/Φ0, in terms of which

the equations of motion (7.1)-(7.3) can be written

C1(Φ0/2π)γ̈1 − C3(Φ0/2π)(γ̈3 + γ̈2 − γ̈1) + Ic1 sin γ1 − I1 = 0,
C2(Φ0/2π)γ̈2 + C3(Φ0/2π)(γ̈3 + γ̈2 − γ̈1) + Ic2 sin γ2 − I2 = 0,
C3(Φ0/2π)(γ̈3 + γ̈2 − γ̈1) + (Φ0/2π)L−1γ3 = 0.

(7.12)

These equations of motion follow from the Lagrangian

L2 = 1
2
(Φ0/2π)2(C1γ̇

2
1 + C2γ̇

2
2) + 1

2
(Φ0/2π)2C3(γ̇3 + γ̇2 − γ̇1)

2

−1
2
(Φ0/2π)2L−1γ2

3 − U1(γ1) − U2(γ2)
(7.13)

where U1 and U2 are again given by (7.6). Forming the canonical momenta of L2,

we find

p1 = ∂L2/∂γ̇1 = C1(Φ0/2π)2γ̇1 − C3(Φ0/2π)2(γ̇3 + γ̇2 − γ̇1),
p2 = ∂L2/∂γ̇2 = C2(Φ0/2π)2γ̇2 + C3(Φ0/2π)2(γ̇3 + γ̇2 − γ̇1),
p3 = ∂L2/∂γ̇3 = C3(Φ0/2π)2(γ̇3 + γ̇2 − γ̇1).

(7.14)

Observe that while these momenta seem quite different, by (7.2) the momenta p1

and p2 of (7.14) and (7.7) are in fact numerically the same. The momenta p3 and p̄3,

however, are not (hence the choice of notation). In general, the momenta are only

defined dynamically by the corresponding Lagrangian or Hamiltonian. Inverting

(7.14) we find

γ̇1 = C−1
1 (Φ0/2π)−2(p1 + p3),

γ̇2 = C−1
2 (Φ0/2π)−2(p2 − p3),

γ̇3 = (Φ0/2π)−2(C−1
1 p1 − C−1

2 p2 + (C−1
3 + C−1

2 + C−1
1 )p3).

(7.15)
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Using (7.13) and (7.15) and the definition

H2 = p1γ̇1 + p2γ̇2 + p3γ̇3 −L2 (7.16)

we find the result

H2 = 1
2
C−1

1 (Φ0/2π)−2(p1 + p3)
2 + 1

2
C−1

2 (Φ0/2π)−2(p2 − p3)
2

+1
2
C−1

3 (Φ0/2π)−2p2
3 + 1

2
(Φ0/2π)2L−1γ2

3 + U1(γ1) + U2(γ2).
(7.17)

How are the two Hamiltonians (7.10) and (7.17) related? They differ only in

their treatment of the third degree of freedom: (V3, p̄3) or (γ3, p3). In fact, the two

sets of coordinates are related by the simple canonical transformation

γ3 = C−1
3 (Φ0/2π)−1p̄3

p3 = −(Φ0/2π)C3V3.
(7.18)

Performing the transformation (7.18) in (7.17) yields (7.10), as expected.

In the following, we consider C1 = C2 = C, and rewrite (7.17) in the form:

H =

HJ1
︷ ︸︸ ︷

p2
1

2m
− Φ0

2π
(Ic1 cos γ1 + Ib1γ1) +

HJ2
︷ ︸︸ ︷

p2
2

2m
− Φ0

2π
(Ic2 cos γ2 + Ib2γ2)

+
p2

3

2m3
+

1

2
m3ω

2
3γ

2
3

︸ ︷︷ ︸

HLC

+ ξ
p1p3√
mm3

− ξ
p2p3√
mm3

︸ ︷︷ ︸

Hcoupling

(7.19)

where pi (i = 1, 2, 3) are the canonical momenta of the three degrees of freedom

with corresponding effective masses of m1 = m2 = m = C(Φ0/2π)2 and m3 =

(Φ0/2π)2C3C/(C + 2C3). The quantity Φ0 = h/2e is the flux quantum, C is the

junction capacitance for J1 and J2, C3 is the capacitance of the LC resonator, Ic1

and Ic2 are the junctions’ critical currents, Ib1 and Ib2 are two steady bias currents,

ω3 = 1/
√

LC3C/(C + 2C3) is the angular frequency of the LC resonator, and ξ =

√

C3/(C + 2C3) is a dimensionless coupling coefficient.
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The first term in H , HJ1, is the Hamiltonian for J1 alone. It has dynamics

analogous to that of a particle moving in a tilted washboard potential (see Fig. 7.1).

Metastable energy states [85, 146] are present in the well and can be observed if the

qubit is well isolated. The potential and the level spacings can be controlled by the

bias current Ib1. The metastable states have zero dc voltage, but can tunnel [81] to

continuum states that exhibit a finite dc voltage across the junction. We can probe

the states by applying a microwave current Im that can drive transitions from the

ground state to the excited states. These excited states have much higher tunneling

rates and thus are easily detected.

The second term, HJ2, describes J2, which has dynamics similar to J1 but

is independently controlled by its bias current Ib2. HLC describes the harmonic

oscillator dynamics of the LC resonator (see Fig. 7.1). Finally, Hcoupling represents

the capacitive coupling of each junction to the resonator. Note that the momenta

pi are proportional to the charges stored on each capacitor in the circuit [268], and

thus the coupling is electrostatic.

7.2 Experiment

The Josephson junctions used in the experiment are thin-film 10µm × 10µm Nb

/AlOx/ Nb junctions made by Hypres, Inc. on a 5mm×5mm silicon chip. The crit-

ical currents of the junctions are ∼ 120µA in zero magnetic field, but can be adjusted

by applying an external magnetic field. The coupling inductor is a 780µm × 90µm

thin-film niobium loop connecting the two junctions, and the coupling capacitance
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consists of two capacitors in series, each formed by 60µm × 60µm parallel niobium

films separated by a 200 nm layer of SiO2. With this geometry we estimate the

inductance L ≈ 1.5 nH and the capacitance C3 ≈ 0.37 pF; with C ≈ 4.8 pF these

values give ω3/2π ≈ 7 GHz. The chip is mounted inside a Cu box that is attached

to the mixing chamber of a dilution refrigerator with a base temperature of about

25 mK. More details on the experimental technique can be found in the Ph.D. of

H. Xu [11]. We note that this same chip was previously examined [269] at junction

frequencies near 5 GHz, less than ω3/2π (with Ic1 ∼ Ic2 ∼ 15µA), where the effect of

the LC resonator reduced to purely capacitive coupling. For the higher frequencies

considered here (6 − 10 GHz with Ic1 ∼ Ic2 ∼ 22µA), however, its effect should be

described by the Hamiltonian in (7.19).

Figure 7.2 shows the spectrum of the system when the bias current Ib1 for

junction J1 is ramped and that for junction J2 is held at Ib2 = 0. The circles denote

measured resonance peak positions when microwaves are continuously applied to

induce transitions from the ground state to excited states. The dashed lines are

from quantum mechanical calculations using the Hamiltonian in (7.19) with the

parameters in Fig. 7.1 (obtained by fitting) and Ib2 = 0. The zero-biased junction

J2 is effectively decoupled from the rest of the system since it has a much larger

energy scale (∼ 19 GHz) than both junction J1 and the LC resonator (∼ 7 GHz).

Therefore, we observe a spectrum essentially due to junction J1 and the LC resonator

only. The avoided crossing between the first and second excited states occurs at

Ib1 ≈ 21.12µA. As shown in the next section, states of the form (|001〉 ± |100〉)/
√

2

are predicted here, where the first, second, and third positions in the ket denote

284



20.8 20.9 21 21.1 21.2
4 

 

6 

 

8 

 

10

12

14

16

I
b1

 ( A)

F
re

q
u
e
n
c
y
 (

G
H

z
)

|101> 

|002> 

|100> 

|001> 

|200> 

µ

LCLC
J1J1

J2

Figure 7.2: Spectrum of the system when the bias current Ib1 for junction J1 is

ramped and Ib2 = 0 for junction J2. Circles are measured microwave resonance

positions, dashed black lines are from quantum mechanical calculations using (7.19)

with parameters given in Table 7.1 and Ib2 = 0. The solid curves denote uncoupled

|0〉 to |1〉 level spacings for J1 (black) and the resonator (gray), while that for J2

(∼ 19 GHz) is not shown in the plot. At the degeneracy point Ib1 ≈ 21.12µA

(shown in the lower box), the first two excited states are (|001〉 ± |100〉)/
√

2, where

the state notation is |J1, J2, LC〉. The deviation of the fit for the third excited state

is probably due to its large tunnelling rates at high bias currents.

285



22 22.1 22.2 22.3 22.4
4 

 

6 

 

8 

 

10

12

14

16

I
b2

 ( A)

F
re

q
u
e
n
c
y
 (

G
H

z
)

|010> 

|001> 

|002> 

|011> 

|020> 

J2

LCJ1J1

µ

Figure 7.3: Spectrum of the system when the bias current Ib2 for junction J2 is

ramped and Ib1 = 0 for junction J1. Circles are measured microwave resonance

positions, dashed black lines are from quantum mechanical calculations using (7.19)

with parameters given in Table 7.1 and Ib1 = 0. The solid curves denote uncoupled

|0〉 to |1〉 level spacings for J2 (black) and the resonator (gray), while that for J1

(∼ 19 GHz) is not shown in the plot. At the degeneracy point Ib2 = 22.27µA

(shown in the lower box) the first two excited states are (|001〉 ± |010〉)/
√

2, where

the state notation is |J1, J2, LC〉. The deviation of the fit for the third excited state

is probably due to its large tunnelling rates at high bias currents.
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Table 7.1: Fitting Parameters from Spectroscopic Data

C (pF) C3 (pF) Ic1 (µA) Ic2 (µA) L (nH)
4.85 ± 0.05 0.33 ± 0.01 21.388 ± 0.003 22.536 ± 0.003 1.70 ± 0.05

the states of J1, J2, and the LC oscillator, respectively. The next three excited

states at the degeneracy point are (|002〉+ |200〉−
√

2|101〉)/2 , (|002〉− |200〉)/
√

2,

and (|002〉 + |200〉 +
√

2|101〉)/2. We note these states are entangled only between

junction J1 and the LC resonator, since junction J2 is frozen in its ground state.

Figure 7.3 shows the measured spectrum for the case of Ib1 = 0 while ramping

the bias current for J2. Similarly, comparison with theory reveals the states here

describe entanglement between junction J2 and the LC resonator. We find good

agreement between data and theoretical calculations using the same parameters as

listed in Fig. 7.1 and Ib1 = 0.

The observation of higher order transitions in Figs. 7.2 and 7.3, such as transi-

tions from |000〉 to states involving |002〉 (analogous to a two-photon state in cavity-

QED) provides strong evidence for the quantum nature of the system. Coupling the

LC oscillator to the anharmonic junctions has introduced nonlinearity that allows us

to distinguish these quantum transitions from the resonances of a classical harmonic

oscillator. We also note that a single set of five parameters, shown in Table 7.1, has

been used to fit the ten curves in Figs. 7.2-7.3. The good agreement between data

and theory obtained here cannot be achieved by any classical model that includes

only three degrees of freedom. Thus by tuning one junction into resonance with the

LC resonator, we have observed evidence of entanglement between a single junction
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qubit and an LC resonator, analogous to the recent coherent coupling of a single

Cooper-pair box to a superconducting transmission line [299].

We next show spectroscopic evidence for entangled states between two junc-

tion qubits and an LC resonator. Figure 7.4 shows the measured spectrum when J2

is biased at a constant current and the bias current for J1 is ramped. Using the pre-

viously determined parameters, we compute the energy levels by adjusting the only

remaining parameter Ib2 = 22.330µA. That is, all six curves shown in Fig. 7.4 have

been fit using just one parameter. The measured Ib2 is 22.110µA; the discrepancy

between this and the fitted value appears to come from the calibration of the current

ramp which has overestimated the critical current of junction J2 by 1%. This error

is in addition to any systematic error in the assumption C1 = C2 = C. Nevertheless,

Fig. 7.4 shows excellent agreement between theory and experiment and we conclude

that the multi-level spectroscopic measurements are clearly well explained by the

quantum mechanics of the Hamiltonian given in (7.19).

The lowest three excited states of (7.19) are formed from the subspace spanned

by |100〉, |010〉 and |001〉. In our case, ~ω2 ≈ ~ω3, where ~ω2 is the |0〉 to |1〉 level

spacing for J2. Therefore, for J1 at low bias we expect the first two excited states

to be (|010〉 ± |001〉)/
√

2 with a splitting of ξ~ω3 (see Fig. 7.4 for Ib1 < 21µA). We

also note the presence of a triple degeneracy point at Ib1 ≈ 21.15µA, where the first

three excited states make their closest approach. At this bias, the predicted states

are (|100〉−|010〉−
√

2|001〉)/2, (|100〉+ |010〉)/
√

2, and (|100〉−|010〉+
√

2|001〉)/2,

with corresponding energies of ~ω3(1 − ξ/
√

2), ~ω3 and ~ω3(1 + ξ/
√

2). The first

and third excited states are entangled states involving the two junctions and the

288



I
b1

 ( A)

F
re

q
u
e
n
c
y
 (

G
H

z
)

20.7 20.8 20.9 21 21.1 21.2
4 

 

6 

 

8 

 

10

12

14

µ

LCLC
J1J1

J2

Figure 7.4: Enhancement in escape rate when the bias current Ib1 for junction

J1 is ramped and junction J2 is biased at a constant current of Ib2 = 22.330µA.

Black corresponds to highest enhancement and light gray to zero enhancement.

The white dashed lines are from quantum mechanical calculations using (7.19) with

parameters given in Fig. 1 and Ib2 = 22.330µA. The solid black lines indicate the

uncoupled |0〉 to |1〉 level spacings for J1 (curved) and J2 (horizontal), while that

for the LC resonator (≈ 7.1 GHz) is not shown in the plot. At the triple degeneracy

point Ib1 ≈ 21.15µA (shown in the lower box), the three lowest excited states are

(|100〉 − |010〉 −
√

2|001〉)/2, (|100〉 + |010〉)/
√

2, and (|100〉 − |010〉 +
√

2|001〉)/2.

The higher energy states are superpositions of the multiply excited states |200〉,

|020〉, |002〉, |110〉, |101〉 and |011〉.
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LC resonator, while the second excited state corresponds to an in-phase oscillation

of the two junctions that does not couple to the resonator. The higher levels shown

in Fig. 3 also agree well with our calculations, and correspond to entangled states

with multiple excitations in all three degrees of freedom.

7.3 Harmonic Approximation

As previously noted, the Hamiltonian (7.19) describes three coupled degrees of free-

dom. We wish to show how, in certain regimes, the dynamics can be reduced to

two degrees of freedom. We accomplish this in the next section. As a first step we

approximate the dynamics by only the harmonic terms in the Hamiltonian. We can

then diagonalize this Hamiltonian into its normal modes.

The harmonic oscillator approximation follows by expanding the washboards

of HJ1 and HJ2 in (7.19) about their minima, keeping only the quadratic terms. We

also perform a scaling transformation

x1 = m1/2ω1(γ1 − arcsin(I1/Ic1)),
p1 = m−1/2ω−1

1 p1;old,
x2 = m1/2ω2(γ2 − arcsin(I2/Ic2)),
p2 = m−1/2ω−1

2 p2;old,

x3 = m
1/2
3 ω3γ3,

p3 = m
−1/2
3 ω−1

3 p3;old,

(7.20)

with

ω1 =

(
2πIc1
Φ0C

)1/2(

1 − I2
1

I2
c1

)1/4

,

ω2 =

(
2πIc2
Φ0C

)1/2(

1 − I2
2

I2
c2

)1/4

. (7.21)
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Substituting (7.20) and (7.21) in (7.19), we find

H =
1

2
ω2

1p
2
1 +

1

2
x2

1 +
1

2
p2

2 +
1

2
x2

2 +
1

2
ω2

3p
2
3 +

1

2
x2

3 + ξω1ω3p1p3 − ξω2ω3p2p3. (7.22)

Note that we can rewrite (7.22) in matrix notation

H =
1

2
pTM−1p+

1

2
xTKx, (7.23)

where

M−1 =





ω2
1 0 ξω1ω3

0 ω2
2 −ξω2ω3

ξω1ω3 −ξω2ω3 ω2
3



 (7.24)

and

K =





1 0 0
0 1 0
0 0 1



 . (7.25)

For a Hamiltonian of the form (7.23), the normal mode coordinates can be

conveniently defined by

x̄ = OM1/2x,
p̄ = OM−1/2p,

(7.26)

where O is an orthogonal matrix. In this case the Hamiltonian is transformed to

H =
1

2
p̄T p̄ +

1

2
x̄TΩ2x̄ (7.27)

with

Ω2 = OM−1/2KM−1/2OT . (7.28)

Thus, if we choose the orthogonal matrix O to diagonalize M−1/2KM−1/2, then H

will be in diagonal form. The normal mode frequencies are given by the square-roots

of the eigenvalues of Ω2. In our particular case above, K = I (the identity), and

thus Ω2 = OM−1OT . The eigenvalues of Ω2 are simply the eigenvalues of M−1.
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Finding the eigenvalues of a three-by-three matrix can be performed analyt-

ically, but here we focus on the specific case when ω1 = ω2 = ω0. In this case the

inverse mass matrix is

M−1 =





ω2
0 0 ξω0ω3

0 ω2
0 −ξω0ω3

ξω0ω3 −ξω0ω3 ω2
3



 . (7.29)

This can be simplified by first making the transformation p̄ = O1p, with

O1 =





1/
√

2 1/
√

2 0

−1
√

2 1/
√

2 0
0 0 1



 , (7.30)

such that

M̄−1 = O1M
−1OT

1 =





ω2
0 0 0

0 ω2
0 −

√
2ξω0ω3

0 −
√

2ξω0ω3 ω2
3



 . (7.31)

The remaining sub-matrix can be diagonalized exactly, with frequencies

ω2
± =

1

2

(
ω2

0 + ω2
3 ± [(ω2

0 − ω2
3)

2 + 8ξ2ω2
0ω

2
3]

1/2
)
. (7.32)

The full normal modes are given by

p̄0 = 2−1/2p1 + 2−1/2p2,
p̄+ = −2−1/2 cos θp1 + 2−1/2 cos θp2 − sin θp3,
p̄− = −2−1/2 sin θp1 + 2−1/2 sin θp2 + cos θp3,

(7.33)

with frequencies ω0, ω+ and ω−, respectively, and

tan θ =
ω2

+ − ω2
0√

2ξω0ω3

. (7.34)

If ω3 = ω0, we have

ω2
+ = ω2

0(1 +
√

2ξ), (7.35)

ω2
− = ω2

0(1 −
√

2ξ), (7.36)
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and θ = π/4. Thus the modes are

p̄0 = 2−1/2p1 + 2−1/2p2,
p̄+ = −2−1p1 + 2−1p2 − 2−1/2p3,
p̄− = −2−1p1 + 2−1p2 + 2−1/2p3.

(7.37)

Using the creation operators

ā†0 = 2−1/2a†1 + 2−1/2a†2,

ā†+ = −2−1a†1 + 2−1a†2 − 2−1/2a†3,

ā†− = −2−1a†1 + 2−1a†2 + 2−1/2a†3,

(7.38)

and the definition

|Ψj,k,l〉 = (j!k!l!)−1/2a†+
j
a†0
k
a†−

l|000〉, (7.39)

we construct the first few quantum states:

|1) = |Ψ0,0,1〉 = −2−1|100〉 + 2−1|010〉 + 2−1/2|001〉,
|2) = |Ψ0,1,0〉 = 2−1/2|100〉 + 2−1/2|010〉,
|3) = |Ψ1,0,0〉 = −2−1|100〉 + 2−1|010〉 − 2−1/2|001〉.

(7.40)

These approximately correspond to the three lowest states probed in Fig. 7.4 at the

point of the avoided triple crossing.

7.4 Effective Coupling in the Two Junction Model

If the loop inductance L is set to zero, then the Hamiltonian (7.19) should reduce

to the capacitive-coupling Hamiltonian

H =
1

2m
(1+ ζ)−1(p2

1 +p2
2 +2ζp1p2)−

Φ0

2π
(Ic1 cos γ1 + I1γ1 + Ic2 cos γ2 + I2γ2). (7.41)

In this section we show how this arises, using three methods. Each is a type of

perturbation theory in the limit ω3 � ω1, ω2.

First, if we perform the harmonic approximation to (7.41) as in the previous

section, we find

H2 =
1

2
pTM−1

2 p+
1

2
xTK2x (7.42)
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where now there are only two degrees of freedom and M2 and K2 are

M−1
2 = (1 + ζ)−1

(
ω2

1 ζω1ω2

ζω1ω2 ω2
2

)

(7.43)

and

K2 =

(
1 0
0 1

)

. (7.44)

The eigenfrequencies are

ω2
2,± =

1

2
(1 + ζ)−1(ω2

1 + ω2
2 ± [(ω1 − ω2)

2 + 4ζ2ω1ω2]
1/2). (7.45)

In particular, if ω1 = ω2 = ω0, then we find

ω2
2,+ = ω2

0,
ω2

2,− = ω2
0(1 − ζ)(1 + ζ)−1.

(7.46)

We wish to compare these frequencies to those found from the three degree of

freedom analysis presented above, for ω1 = ω2 = ω0 and ω3 � ω0. This comparison

will give us an approximate frequency dependent coupling to incorporate into a two-

mode model. Comparison of the two models shows that we should equate ω2
2,− of

(7.46) with ω2
− of (7.32). Expanding (7.32) to lowest order in ξ we find

ω2
− = ω2

0

(

1 − 2ξ2

1 − ω2
0/ω

2
3

)

, (7.47)

and setting this equal to ω2
2,− of (7.46) yields:

1 − ζ(ω0)

1 + ζ(ω0)
= 1 − 2ξ2

1 − ω2
0E

−2
z

. (7.48)

Solving (7.48) for ζ we find

ζ(ω0) =
ξ2

(1 − ξ2) − ω2
0/ω

2
3

. (7.49)
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We see that the effect of the LC mode, through ω3, is to provide an effective fre-

quency dependent coupling between the two junctions. We also see that ζ(ω0) >

ζ(0). Thus, measurements made at junction plasma frequencies approaching the

resonance frequency of the LC mode will see a larger effective coupling than mea-

surements made at zero frequency.

We can rederive (7.49) directly from the equations of motion, by using the

Fourier transforms of x1,x2, and x3, denoted by x̃1, x̃2 , and x̃3. First we consider

the equations of motion of H2 in (7.42):

ẍ1 = −(1 + ζ)−1ω2
1x1 − ζ(1 + ζ)−1ω1ω2x2,

ẍ2 = −(1 + ζ)−1ω2
2x2 − ζ(1 + ζ)−1ω1ω2x1,

(7.50)

or the Fourier space version

((1 + ζ)−1ω2
1 − ω2)x̃1 = −ζ(1 + ζ)−1ω1ω2x̃2,

((1 + ζ)−1ω2
2 − ω2)x̃2 = −ζ(1 + ζ)−1ω1ω2x̃1.

(7.51)

By comparison, for the three-mode model of (7.21) we find

ẍ1 = −ω2
1x1 − ξω1ω3x3,

ẍ2 = −ω2
2x2 + ξω2ω3x3,

ẍ3 = −ω2
3x3 − ξω1ω3x1 + ξω2ω3x3.

(7.52)

In Fourier space, we can rewrite (7.52) as

(ω2
1 − ω2)x̃1 = −ξω1ω3x̃3,

(ω2
2 − ω2)x̃2 = ξω2ω3x̃3,

(ω2
3 − ω2)x̃3 = −ξω1ω3x̃1 − ξω2ω3x̃2.

(7.53)

From (7.53) we can write x̃3 in terms of x̃1 and x̃2:

x̃3 =
ξω3

ω2
3 − ω2

(−ω1x̃1 + ω2x̃2). (7.54)

Substituting (7.54) back into (7.53) we find

(

ω2
1 −

ξ2ω2
1

1 − ω2/ω2
3

− ω2

)

x̃1 = − ξ2ω1ω2

1 − ω2/ω2
3

x̃2,

(

ω2
2 −

ξ2ω2
2

1 − ω2/ω2
3

− ω2

)

x̃2 = − ξ2ω1ω2

1 − ω2/ω2
3

x̃1. (7.55)
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Comparing (7.55) to our two-mode model (7.51) we find

1

1 + ζ(ω)
= 1 − ξ2

1 − ω2/ω2
3

, (7.56)

which leads to the same final frequency dependent coupling as (7.49)

ζ(ω) =
ξ2

(1 − ξ2) − ω2/ω2
3

. (7.57)

A final derivation uses the electrical engineering notion of impedance. Recall

that the impedance of a capacitor is ZC(ω) = (iωC)−1 and that of an inductor

is ZL(ω) = iωL. We can now define the impedance of the series LC line to be a

frequency-dependent effective capacitance:

ZLC(ω) = (iωC3)
−1 + iωL = (iωCeff(ω))−1 (7.58)

Solving (7.58) for Ceff(ω) we find the result

Ceff(ω) =
C3

1 − ω2LC3
. (7.59)

Treating this as the coupling capacitance we have

ζ(ω) =
Ceff(ω)

C + Ceff(ω)
=

C3/C

1 − ω2LC3 + C3/C
. (7.60)

Recalling that ξ2 = C3/(C+2C3) and ω2
3 = (C +2C3)/(LCC3), we note that (7.60)

is equal to

ζ(ω) =
ξ2

(1 − ξ2) − ω2/ω2
3

. (7.61)

This analysis explains how the same chip can exhibit both resonant and capac-

itive coupling. The observed avoided crossings in Fig. 7.4 at the triple degeneracy
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point Ib1 ≈ 21.15µA exhibit strong coupling with a dimensionless coupling coeffi-

cient of ξ/
√

2 =
√

C3/(2C + 4C3) ≈ 0.18 because ω1 ≈ ω2 ≈ ω3. However, if the

LC frequency ω3 is much greater than either junction frequency, the LC mode can

be set to its ground state. Our analysis of this regime shows that the LC mediated

interaction arises as a second order perturbation, and can be modeled by a frequency

dependent capacitive coupling. This agrees with the previous measurements [269],

which with ω/2π ≈ 5 GHz and ω3/2π ≈ 7 GHz found ζ ≈ 0.13, very close to the

expected value of ζ(ω) = 0.14 found from (7.49).

The effective coupling increases from ξ2 to ξ when the junctions are in res-

onance with the LC mode. Thus if ξ2 were 0.01, then ξ would be 0.1 thereby

boosting the coupling strength on resonance by one order of magnitude. Further-

more the off-resonance coupling is proportional to ξ4 when the junction frequencies

are detuned from each other and ω3 is much greater than either junction frequency,

hence allowing the dynamic decoupling of each degree of freedom.

We note that the two junction qubits here are separated by almost 1 mm,

yet a strong coupling strength between the two can be achieved by tuning them

into resonance with a resonator. Based on this resonant coupling method, logic

gates can be constructed, similar to those designed [37] for capacitive coupling, but

with a larger ratio of coupling to decoupling. While the experimentally observed

spectroscopic coherence time [146] for the present device is too short (∼ 2 ns) for

logic gates, it should be possible to increase the coherence time using improved qubit

isolation, such as an inductive broadband impedance transforming scheme [93].
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Chapter 8

Conclusion

In this dissertation we have explored the fundamental physics and dynamical oper-

ation of a quantum computer using current-biased Josephson junctions or “phase

qubits”.

The first part of this thesis reviewed the fundamental physics of the current-

biased Josephson junction. In Chapter 2 we showed how the phase difference

of a Josephson junction becomes a quantum variable, obeying a one-dimensional

Schrödinger equation. In Chapters 3 and 4 the relevant quantum mechanical fea-

tures of the current-biased junction were derived. This resulted in a set of quasi-

stable resonance states, with the energy levels and tunneling rates controlled by the

bias current. The lowest two states can be used as a phase qubit.

The second part of this thesis developed the theory of quantum computation

using phase qubits. In Chapter 5, we showed how simple experimental modulations
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of the bias current produce unitary transformations of the quantum states that

can be used for single-qubit operations. In Chapter 6 we considered the capacitive

coupling of phase qubits, and how coupled two-qubit operations could be performed.

In Chapter 7 we studied a resonant coupling scheme using three degrees of freedom.

In particular we showed theoretical calculations for the quantum mechanical energy

levels and compared the spectra to those observed in the laboratory.

In this Chapter we conclude by looking at what remains to be demonstrated for

quantum computation with phase qubits. DiVincenzo has framed five fundamental

requirements for a physical implementation of a quantum computer. A quantum

computer must have (i) qubits that can be (ii) initialized to some known state.

The computer must have (iii) qubits with long decoherence times, (iv) a universal

set of logic gates, and (v) a qubit-specific measurement capability. The results of

this thesis have shown that requirement (iv) can be met in a Josephson junction

phase qubit implementation. Moreover, requirements (i), (ii), and (v) have been

demonstrated experimentally. Requirement (iii) is the most challenging, and has

not been addressed in this thesis. Thus, we comment on the important topics

of decoherence, scaling, and quantum error correction, and how our work can be

extended.

8.1 Decoherence

The calculations performed in the previous Chapters have assumed ideal dynamics

governed by the appropriate Schrödinger equation. In a real device, there is an

299



inevitable coupling to the environment which induces decoherence (decay of super-

position states) and dissipation (loss of energy associated with decay to the ground

state). These effects must be treated by a more general method, such as path-

integral influence-functional techniques [140, 303] or Bloch-Redfield equations [304].

We have chosen not to model these effects for three reasons. First, at this

stage of theoretical analysis, while some sources of decoherence have been identified

[146, 305, 306], each depends on the particular design of the junction and its control

circuit. As the development of isolation schemes progresses, careful modeling will

be necessary for each circuit, especially as we approach truly coherent quantum

information devices, or find that such development cannot proceed. Currently, there

is no known fundamental limit to the coherence times of superconducting qubits with

sufficient isolation, thus we have chosen to look at the system Hamiltonian without

the enviroment. Second, prior to our work [37], it was not known if quantum

logic operations existed for coupled phase qubits. The work presented here was

a necessary first step, before a detailed study of decoherence in single or coupled

qubits. Finally, most decoherence modeling is ultimately phenomenological, and

introduces significant approximations to both the environment and the system. For

quantum computation, however, we wish to treat the system dynamics as accurately

as possible. One option, outside the scope of this thesis, is the stochastic Schrödinger

equation method using split-operator techniques with quantum trajectories [307].
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8.2 Scaling

The general issue of scaling is how one can proceed from a small number of qubits—

such as the systems of one, two and three degrees of freedom we have studied in

Chapters 5, 6, and 7—to the many qubits needed for truly interesting applications

of quantum computation. This issue is in fact related to all aspects of quantum

computation—state preparation, control, and measurement. It is unknown at this

point whether truly scalable architectures for quantum computation can be realized

in the laboratory.

The clear analysis of Blume-Kohout, Caves, and Deutsch [308] emphasizes

that the fundamental issue is how the resource requirements of the system grow as

the number of elements increases. These resources include energy, the complexity of

control fields, and the precision of state measurements. The most abstract resource,

and in their argument the most important, is Hilbert space dimension.

For concrete analysis, we imagine a set of N phase qubits, weakly coupled

such that we can ignore the interaction energy. Assuming that no auxiliary states

are used, the maximal energy N -qubit state occurs when each junction is in state

n = 1, i.e.

|Ψ〉 = |1〉 ⊗ |1〉 ⊗ · · · |1〉
︸ ︷︷ ︸

Ntimes

, (8.1)

with total energy (above the ground state) EN ' N~ω01. Note that by encoding

the information in a set of qubits described by a tensor product of individual states,

the energy resource is linear in the number of qubits. Since each qubit can be in
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either state |0〉 or |1〉, the Hilbert space dimension DN satisfies

DN ≥ 2N . (8.2)

This dimension has the expected exponential dependence on the number of elements.

Finally, to control each qubit using the operations developed in Chapters 5 and 6, we

merely need to tune each bias current, a linear number of control fields. For a linear

array of qubits, any two can be brought into interaction by a number of swap gates

which scales linearly in the number of qubits. These characteristic dependences

indicate that, at this level of analysis, phase qubits are scalable: they produce a

Hilbert space dimension exponential in N using a linear number of resources.

A more careful analysis shows that (8.2) is too conservative. As shown in

Chapter 3, each phase qubit has in fact a continuum of energy states. In the

approximation that the resonances are discrete, they have energy differences which

decrease for increasing quantum number. This is demonstrated by the perturbation

theory in Chapter 4. Thus, if we actually count the number of levels less than EN ,

we will find a much larger number. We can numerically calculate the number of

levels for any given set of single-junction energy levels by using recursion relations

[309]. For simplicity, however, we can use the harmonic oscillator approximation

which should again underestimate the number of levels. For N harmonic oscillators

the number of states with energy less than M~ω is [310]

SM,N =
(N +M)!

N !M !
. (8.3)

Thus, we find

DN = SN,N =
(2N)!

(N !)2
' 4N , (8.4)
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the last equation following from Stirling’s approximation. Thus, for N phase qubits

the number of states DN is much greater than the simple bound (8.2).

We see that the existence of extra levels in the phase qubit is an issue not only

for the single and two-qubit operations but also for the general N -qubit system.

However, if we restrict our operations to those developed in Chapters 5 and 6, the

relevant energy levels can still be controlled scalably, i.e. using a linear number of

controls.

However, we have unrealistically assumed weak coupling for both the energy

levels and state measurement. In general, the measurement of one qubit will sub-

sequently disturb other qubits, even beyond the “standard” quantum state projec-

tion. This can occur because of current fluctuations through the coupling capacitors,

quasi-particle production, and other interactions [11]. A careful design should re-

move qubits from interaction before measurements occur. One possible design is

shown in Fig. 8.1. Each “information qubit” is coupled to a “measurement qubit”;

the information qubits are also coupled to each other through a “coupling qubit.”

If the coupling and information qubits are set to a significantly high energy, one

expects that the measurement will not disturb their quantum states appreciably.

Since this requires about 3N junctions to store N actual qubits, this design is—at

first glance—scalable. However, this type of design has yet to studied theoretically

or experimentally in any detail.

303



C-QubitQubit 1 Qubit 2

M-Qubit 1 M-Qubit 2

Figure 8.1: Schematic multi-qubit device. The information qubits are labelled Qubit

1 and Qubit 2, and each have a M(easurement)-qubit, M-Qubit 1 and M-Qubit 2.

They are coupled through another C(oupling) qubit.

8.3 Quantum Error Correction

The quantum logic operations developed in Chapters 5 and 6 have an intrinsic error

probability of order 10−4. For a small quantum algorithm this level of error is

probably acceptable, but for large-scale computation one would like to correct it

before it grows. This can be done using the methods of quantum error correction,

first discovered by Shor [293] and Steane [311].

In error correction, one uses multiple qubits for redundancy in the qubit en-

coding to protect against errors. In the simplest scheme one can use a replacement

rule such as

|0〉 → |000〉, |1〉 → |111〉. (8.5)

If a bit-flip error occurs on the first qubit (i.e. |0〉 → |1〉 with some probability pE),

its value can still be determined from the other qubits, and a correction made. This

correction removes all single bit-flip errors, leaving an error term proportional to p2
E

if the errors are independent.

By more ingenious encoding techniques [7], this simple example can be ex-
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tended to all types of errors on a single qubit, such as phase-flips (i.e. |1〉 → −|1〉).

The fundamental error correction step should transform the error probability by

pE,C ' Kp2
E . (8.6)

K is some constant that depends on the number of possible two-qubit errors that

remain after the error correction step; p0 = 1/K is called the threshold probability. If

pE < p0, the transformed error probability pE,C has decreased, and further encoding

(called concatenation) will continue to decrease the error probability. This threshold

probability p0 is hard to calculate, requiring many assumptions about the quantum

computer, but is now believed to be on the order of 10−4, or perhaps as high as 10−2

for certain error models [312]. It is significant to note that the single and two-qubit

operations constructed in Chapters 5 and 6 have errors just within the 10−4 error

threshold.

Finally, we note that the fundamental techniques of error correction involve

standard quantum logic gates, as well as measurement and feedback. These last two

operations remain to be studied in phase qubits (and many other types of qubits),

in both theory and experiment.

8.4 The Superposition Principle, Entanglement,

and Beyond

The results of this thesis—mostly technical results on one possible design for a

quantum computer—have been motivated by another goal. The two-qubit logic
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gates developed in this thesis can be used in experiments to test the time-evolution

of entangled states such as those described in Chapter 7. If these states display

the appropriate dynamics, this implies that we can create and verify superposition

states such as the Bell state

2−1/2 (|00〉 + |11〉) (8.7)

or the Greenberger-Horne-Zeilinger (GHZ) state [313]

2−1/2 (|000〉 + |111〉) . (8.8)

These states are entangled, and have properties not shared by classical systems [314].

For the current-biased Josephson junction, these are entangled states of macro-

scopic variables—solid-state examples of Schrödinger’s cat. If future experimenters

successfully demonstrate their predicted properties, they will have shown that Na-

ture obeys the superposition principle at the macroscopic level,a question posed by

Leggett more than 20 years ago [79, 80].

If our world is truly quantum, at all scales of size and complexity, then surely

we can dream of what lies beyond?
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Appendix A

Mathematical Appendix

A.1 Properties of the Airy Functions

The Airy functions Ai and Bi are the two independent solutions to the differential

equation

d2w(x)

dx2
− xw(x) = 0. (A.1)

Many properties of these functions can be found in [210]. These functions have the

following integral representations

Ai(x) =
1

π

∫ ∞

0

cos(t3/3 + xt)dt, (A.2)

Bi(x) =
1

π

∫ ∞

0

(
sin(t3/3 + xt) + exp(−t3/3 + xt)

)
dt. (A.3)

307



The Wronskian of Ai and Bi is constant and given by

W [Ai,Bi](x) = Ai(x)Bi′(x) − Ai′(x)Bi(x) = π−1. (A.4)

It is convenient to define two auxiliary functions Gi and Hi such that Bi(x) =

Gi(x) + Hi(x), with the integral representations

Gi(x) =
1

π

∫ ∞

0

sin(t3/3 + xt)dt, (A.5)

Hi(x) =
1

π

∫ ∞

0

exp(−t3/3 + xt)dt. (A.6)

These functions −Gi(x) and Hi(x) are known as Scorer functions, and satisfy the

inhomogenous differential equation

d2w(x)

dx2
− xw(x) = π−1. (A.7)

The functions Ai, Gi, and Hi have the following asymptotic forms:

Ai(x) →
{

1
2
π−1/2x−1/4 exp(−2

3
x3/2) x→ +∞

π−1/2|x|−1/4 cos(2
3
|x|3/2 − π/4) x→ −∞

}

, (A.8)

Gi(x) →
{

π−1x−1 x→ +∞
−π−1/2|x|−1/4 sin(2

3
|x|3/2 − π/4) x→ −∞

}

, (A.9)

Hi(x) →
{
π−1/2x−1/4 exp(+2

3
x3/2) x→ +∞

−π−1x−1 x→ −∞

}

. (A.10)

From the asymptotic form (A.8), we find that the zeros of the Airy function, the

quantities −an with an > 0 such that Ai(−an) = 0, satisfy the approximate relation

2

3
a3/2
n − π/4 ' (n− 1/2)π, (A.11)

or

an '
[
3π(n− 1/4)

2

]2/3

, (A.12)
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where we have chosen the range of n to be the positive integers 1, 2, · · · .

Starting from the fundamental differential equation, many definite integrals

can be calculated solely in terms of Ai and Bi and their derivatives. The strategy

to determine these integrals is to insert unity in the form 1 = d(x)/dx, integrate

by parts, and use the fundamental differential equation in the form xw(x) = w′′(x),

with w any linear combination of Ai and Bi. The simplest example is

∫ b

a
w(x)2dx =

∫ b

a
w(x)2(d(x)/dx)dx

= xw(x)2|ba − 2
∫ b

a
xw(x)w′(x)dx

= xw(x)2|ba − 2
∫ b

a
w′′(x)w′(x)dx

= xw(x)2|ba −
∫ b

a
d(w′(x)2)/dxdx

= (xw(x)2 − w′(x)2)|ba.

(A.13)

A more complicated example is an integral of the form

f(y; a, b) =

∫ b

a

w1(x)w2(x+ y)dx, (A.14)

with w1,2(x) = a1,2Ai(x) + b1,2Bi(x). Using a similar strategy to that shown above,

we compute

f(y; a, b) =
∫ b

a
w1(x)w2(x+ y)d(x+ y)/dxdx

= (x+ y)w1(x)w2(x+ y)|ba
−
∫ b

a
(w′

1(x)(x+ y)w2(x+ y) + (x+ y)w1(x)w
′
2(x+ y))dx

= w1(x)w
′′
2(x+ y)|ba

−
∫ b

a
(w′

1(x)w
′′
2(x+ y) + w′′

1(x)w
′
2(x+ y)) − y

∫ b

a
w1(x)w

′
2(x+ y)

= w1(x)w
′′
2(x+ y)|ba

−
∫ b

a
d(w′

1(x)w
′
2(x+ y))/dxdx− yd/dy

∫ b

a
w1(x)w2(x+ y)

= (w1(x)w
′′
2(x+ y) − w′

1(x)w
′
2(x+ y))|ba − ydf(y; a, b)/dy

(A.15)

Rearranging (A.15) we see that

d(yf(y; a, b))/dy = (w1(x)w
′′
2(x+ y) − w′

1(x)w
′
2(x+ y))|ba. (A.16)

If we now integrate (A.16) with respect to y, (the integration constant can be set
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to zero) we find

∫ b

a

w1(x)w2(x+ y)dx =
(w1(x)w

′
2(x+ y) − w′

1(x)w2(x+ y))|ba
y

. (A.17)

This expression was found by Gordon [315]. Taking the limit of y → 0 and noting

that the Wronskian of w1 and w2 is constant, (A.17) becomes a generalized version

of (A.13),
∫ b

a

w1(x)w2(x)dx = [w1(x)w
′′
2(x) − w′

1(x)w
′
2(x)]|ba, (A.18)

an equation (along with many others) found by Albright [316].

Applying this procedure to Scorer functions, however, introduces extra terms

because of the inhomogenous differential equation (A.7). We find

∫ b

a

Hi(x)Hi(x+ y)dx =
(Hi(x)Hi′(x+ y) − Hi′(x)Hi(x+ y))|ba

y

+
1

π

∫ y

0

Hi(x+ y′)|bady′, (A.19)

∫ b

a

Gi(x)Gi(x+ y)dx =
(Gi(x)Gi′(x+ y) − Gi′(x)Gi(x+ y))|ba

y

−1

π

∫ y

0

Gi(x+ y′)|bady′, (A.20)

∫ b

a

Gi(x)Hi(x+ y)dx =
(Gi(x)Hi′(x+ y) − Gi′(x)Hi(x+ y))|ba

y

−1

π

∫ y

0

Hi(x+ y′)|bady′, (A.21)

∫ b

a

Hi(x)Gi(x+ y)dx =
(Hi(x)Gi′(x+ y) − Hi′(x)Gi(x+ y))|ba

y

+
1

π

∫ y

0

Gi(x+ y′)|bady′. (A.22)
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A particular class of integrals which requires special treatment is that with a

or b set to ±∞. In these cases, use of the integral representations is often necessary.

For example, consider

IG(y, z) =
∫ +∞
−∞ Gi(x+ y)Gi(x+ z)dx

= 1
π2

∫ +∞
0

dt
∫ +∞
0

dt′
∫ +∞
−∞ dx sin(t3/3 + (x+ y)t) sin(t′3/3 + (x+ z)t′).

(A.23)

If we expand the sines in the integrand can as complex exponentials

sin(t3/3 + (x+ y)t) × sin(t′3/3 + (x+ z)t′) =

− exp(i(t3/3 + t′3/3 + yt+ zt′ + x(t+ t′))/4

+ exp(i(t3/3 − t′3/3 + yt− zt′ + x(t− t′))/4

+ exp(i(t′3/3 − t3/3 + zt′ − yt+ x(t′ − t))/4

− exp(−i(t3/3 + t′3/3 + yt+ zt′ + x(t+ t′))/4, (A.24)

the integrations over x can now be performed in terms of the δ-function

δ(k) =
1

2π

∫ +∞

−∞
dxeikx, (A.25)

with the result

IG(y, z) = − 1

2π

∫ +∞

0

dt

∫ +∞

0

dt′[2i sin(t(y − z))δ(t+ t′) − 2 cos(t(y − z))δ(t− t′)].

(A.26)

Since the first δ-function is nonzero only on the limits of the integration [at (t, t′) =

(0, 0)], only the second term in (A.26) contributes, leading to

IG(y, z) =
1

π

∫ +∞

0

dt cos(t(y − z)) =
1

2π

∫ ∞

−∞
eit(y−z)dt = δ(y − z). (A.27)
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Thus
∫ ∞

−∞
Gi(−(x+ E))Gi(−(x+ E ′))dx = δ(E − E ′). (A.28)

More easily, one can show

IA(y, z) =
∫ +∞
−∞ Ai(x+ y)Ai(x+ z)dx

= 1
π2

∫ +∞
−∞ dx

∫ +∞
0

dt
∫ +∞
0

dt′ cos(t3/3 + (x+ y)t) cos(t′3/3 + (x+ z)t′)

= 1
4π2

∫ +∞
−∞ dx

∫ +∞
−∞ dt

∫ +∞
−∞ dt exp(i(t3/3 + yt+ t′3/3 + zt′ + x(t+ t′))

= 1
2π

∫ +∞
−∞ dt

∫ +∞
−∞ dt′δ(t+ t′) exp(i(t3/3 + yt+ t′3/3 + zt′)

= 1
2π

∫ +∞
−∞ exp(it(y − z))

= δ(y − z).
(A.29)

The final integral to consider is

IAG(y, z) =
∫ +∞
−∞ Ai(x+ y)Gi(x+ z)dx

= π−2
∫ +∞
−∞ dx

∫ +∞
0

dt
∫ +∞
0

dt′ cos(t3/3 + (x+ y)t) sin(t′3/3 + (x+ z)t′).

(A.30)

Expanding the product of cosine and sine as above we find

cos(t3/3 + (x+ y)t) × sin(t′3/3 + (x+ z)t′) =

(4i)−1[exp(i(t3/3 + t′3/3 + yt+ zt′ + x(t+ t′))

− exp(i(t3/3 − t′3/3 + yt− zt′ + x(t− t′))

+ exp(i(t′3/3 − t3/3 + zt′ − yt+ x(t′ − t))

− exp(−i(t3/3 + t′3/3 + yt+ zt′ + x(t+ t′))], (A.31)

and performing the x-integral in (A.30) yields

IAG(y, z) = π−1int+∞
0 dt

∫ +∞
0

dt′[δ(t+ t′) sin(t(y − z) − δ(t− t′) sin(t(y − z))]

= −π−1
∫ +∞
0

sin(t(y − z))
= −π−1(y − z)−1.

(A.32)
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Using the above results, the following relevant integrals are readily computed:

∫ 0

−∞
Ai(−(x+ E))Ai(−(x+ E ′))dx = −Ai(−E)Ai′(−E ′) − Ai′(−E)Ai(−E ′)

E − E ′ ,

(A.33)

∫ +∞

0

Ai(−(x+ E))Ai(−(x+ E ′))dx =
Ai(−E)Ai′(−E ′) − Ai′(−E)Ai(−E ′)

E − E ′

+δ(E −E ′),

(A.34)

∫ +∞

0

Bi(−(x+ E))Bi(−(x+ E ′))dx =
Bi(−E)Bi′(−E ′) − Bi′(−E)Bi(−E ′)

E − E ′

+δ(E − E ′),

(A.35)

∫ +∞

0

Ai(−(x+ E))Bi(−(x+ E ′))dx =
Ai(−E)Bi′(−E ′) − Ai′(−E)Bi(−E ′)

E − E ′

+
1

π(E −E ′)
,

(A.36)

∫ +∞

0

Bi(−(x+ E))Ai(−(x+ E ′))dx =
Bi(−E)Ai′(−E ′) − Bi′(−E)Ai(−E ′)

E − E ′

+
1

π(E −E ′)
.

(A.37)

The most difficult integral is (A.35), which we sketch here:

IBB(E,E ′) =
∫ +∞
0

Bi(−(x+ E))Bi(−(x+ E ′))dx

=
∫ +∞
−∞ Gi(−(x+ E))Gi(−(x+ E ′))dx

−
∫ 0

−∞ Gi(−(x+ E))Gi(−(x+ E ′))dx

+
∫ +∞
0

Gi(−(x+ E))Hi(−(x+ E ′))dx

+
∫ +∞
0

Hi(−(x+ E))Gi(−(x+ E ′))dx

+
∫ +∞
0

Hi(−(x+ E))Hi(−(x+ E ′))dx.

(A.38)
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Using (A.28) and (A.19)-(A.22) and noting that terms at infinity are zero according

to the the asymptotic forms (A.8)-(A.10), we find the result

IBB(E,E ′) = δ(E − E ′)

+(E − E ′)−1[Gi(−E)Gi′(−E ′) − Gi′(−E)Gi(−E ′) − π−1
∫ −E′

−E Gi(s)ds]

+(E − E ′)−1[Gi(−E)Hi′(−E ′) − Gi′(−E)Hi(−E ′) − π−1
∫ −E′

−E Hi(s)ds]

+(E − E ′)−1[Hi(−E)Gi′(−E ′) − Hi′(−E)Gi(−E ′) + π−1
∫ −E′

−E Gi(s)ds]

+(E − E ′)−1[Hi(−E)Hi′(−E ′) − Hi′(−E)Hi(−E ′) + π−1
∫ −E′

−E Hi(s)ds].

(A.39)

The integrals over Gi and Hi thankfully cancel in pairs, leaving the promised form

IBB(E,E ′) = δ(E − E ′) +
Bi(−E)Bi′(−E ′) − Bi′(−E)Bi(−E ′)

E − E ′ . (A.40)

A.2 Matrix Elements of the Washboard

A.2.1 Square Well Basis

The square well basis consists of the eigenfunctions of the free-particle Hamiltonian

H =
p2

2m
(A.41)

subject to the boundary condition that Ψn(x = −L/2) = Ψn(x = +L/2) = 0. These

states can be written as

Ψn(x) =
√

2/L sin(nπ(x/L+ 1/2)). (A.42)

Now, we wish to compute the square-well matrix elements

〈n|xk|m〉 =

∫ +L/2

−L/2
dxΨn(x)x

kΨm(x), (A.43)

〈n|pk|m〉 =

∫ +L/2

−L/2
dxΨn(x)(−i~d/dx)kΨm(x), (A.44)
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〈n| sin(zx)|m〉 =

∫ +L/2

−L/2
dxΨn(x) sin(zx)Ψm(x), (A.45)

〈n| cos(zx)|m〉 =

∫ +L/2

−L/2
dxΨn(x) cos(zx)Ψm(x). (A.46)

These integrals are all essentially elementary; we list the relevant results, omitting

the tedious algebra

〈n|p2|m〉 =
~

2n2π2

L2
δn,m, (A.47)

〈n|x|m〉 =

(
0 n = m
4nm(−1 + (−1)m+n)Lπ−2(n2 −m2)−2 n 6= m

)

, (A.48)

〈n|x2|m〉 =

(
1
12
L2(1 − 6

n2π2 ) n = m
4nm(1 + (−1)m+n)L2π−2(n2 −m2)−2 n 6= m

)

, (A.49)

〈n|x3|m〉 =





0 n = m
3nm(−1 + (−1)m+n)L3(π2(n2 −m2)2

−16(n2 +m2))π−4(n2 −m2)−4 n 6= m



 , (A.50)

〈n| cos(zx)|m〉 = − 4mn(1 + (−1)m+n)zL sin(zL/2)

(n2 −m2)2π4 + (zL)4 − 2(n2 +m2)π2(zL)2
, (A.51)

〈n| sin(zx)|m〉 = − 4mn(1 − (−1)m+n)zL cos(zL/2)

(n2 −m2)2π4 + (zL)4 − 2(n2 +m2)π2(zL)2
. (A.52)

A.2.2 Harmonic Oscillator Basis

The harmonic oscillator Hamiltonian

H =
p2

2m
+

1

2
mω2

0x
2 (A.53)

has wavefunctions

Ψn(x) = cnHn(x/x0) exp

(

− x2

2x2
0

)

, (A.54)

where Hn(x) is the n-th Hermite polynomial and we have defined

x0 =

√

~

mω0
(A.55)
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and

cn = (πx2
0)

−1/4(2nn!)−1/2. (A.56)

These wavefunctions satisfy the differential equation

− ~
2

2m

d2Ψn(x)

dx2
+

1

2
mω2

0x
2Ψn(x) = ~ω0

(

n +
1

2

)

Ψn(x) (A.57)

The Hermite polynomials are most easily defined by their generating function

e−x
2+2tx =

∞∑

n=0

tn

n!
Hn(x). (A.58)

Now, one would like to compute the following matrix elements:

〈n|xk|m〉 =

∫ +∞

−∞
dxΨn(x)x

kΨm(x), (A.59)

〈n|pk|m〉 =

∫ +∞

−∞
dxΨn(x)(−i~d/dx)kΨm(x), (A.60)

〈n| sin(zx)|m〉 =

∫ +∞

−∞
dxΨn(x) sin(zx)Ψm(x), (A.61)

〈n| cos(zx)|m〉 =

∫ +∞

−∞
dxΨn(x) cos(zx)Ψm(x). (A.62)

To evaluate these integrals we use the following algebraic approach. We define the

ladder operators a and a†,

a = 2−1/2(x/x0 + ip/p0),
a† = 2−1/2(x/x0 − ip/p0),

(A.63)

where p0 = ~/x0. These operators have the commutation relation

[a, a†] = 1 (A.64)

and they simplify the Hamiltonian to the following form:

H = ~ω0(a
†a+ 1/2). (A.65)
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On the eigenstates of H they act as

a|n〉 =
√
n|n− 1〉,

a†|n〉 =
√
n+ 1|n+ 1〉, (A.66)

and

a†a|n〉 = n|n〉. (A.67)

Reversing and iterating (A.66) we find that the eigenstates can be written as

|n〉 =
a†
n

√
n!
|0〉. (A.68)

Using these creation and annihilation operators, we first expand our operators

x, x2, x3 and p, p2 in terms of a and a†:

x = 2−1/2x0(a+ a†),

x2 = 2−1x2
0(a

2 + aa† + a†a+ a†
2
),

x3 = 2−3/2x3
0(a

3 + a2a† + aa†a+ aa†
2
+ a†aa† + a†

2
a+ a†

3
),

p = −i2−1/2p0(a− a†),

p2 = −2−1p2
0(a

2 − aa† − a†a+ a†
2
).

(A.69)

Using (A.66), (A.69) and the orthogonality relation 〈n|m〉 = δn,m, we find

〈n|x|m〉 = 2−1/2x0(
√
mδn,m−1 +

√
m+ 1δn,m+1), (A.70)

〈n|x2|m〉 = 2−1x2
0(
√

m(m− 1)δn,m−2 + (2m+ 1)δn,m
+
√

(m+ 1)(m+ 2)δn,m+2),
(A.71)

〈n|x3|m〉 = 2−3/2x3
0(
√

m(m− 1)(m− 2)δn,m−3 + 3
√
m3δn,m−1

+3
√

(m+ 1)3δn,m+1 +
√

(m+ 1)(m+ 2)(m+ 3)δn,m+3),
(A.72)

〈n|p|m〉 = −i2−1/2p0(
√
mδn,m−1 −

√
m+ 1δn,m+1), (A.73)

〈n|p2|m〉 = 2−1p2
0(−
√

m(m− 1)δn,m−2 + (2m+ 1)δn,m
−
√

(m+ 1)(m+ 2)δn,m+2).
(A.74)

Slightly more complicated is the evaluation of the sin(zx) and cos(zx) matrix

elements. We first consider the more fundamental matrix element

unm(z) = 〈n|eizx|m〉, (A.75)
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in terms of which we have

〈n| cos(zx)|m〉 = 1
2
(unm(z) + unm(−z))

〈n| sin(zx)|m〉 = 1
2i

(unm(z) − unm(−z)) (A.76)

Using (A.68) and letting z̄ = zx0/
√

2, we find that

un,m(z) =
1√
n!m!

〈0|aneiz̄(a+a†)a†m|0〉. (A.77)

We can now use the Zassenhaus formula

eA+B = eAeBe−[A,B]/2eC (A.78)

with C given by higher-order multiple commutators of A and B. If [A, [A,B]] =

[B, [A,B]] = 0, then C = 0. In our case, since [a, a†] = 1 we have [a, [a, a†]] =

[a†, [a, a†]] = 0. Thus we can simplify

eiz̄(a+a
†) = eiz̄aeiz̄a

†

ez̄
2/2. (A.79)

Substituting (A.79) into (A.77) we have

un,m(z) =
ez̄

2/2

√
n!m!

〈0|aneiz̄aa†meiz̄a† |0〉, (A.80)

which we rewrite as

un,m(z) =
ez̄

2/2

√
n!m!

[∂nv ∂
m
w 〈0|evaewa

† |0〉]|v=w=iz̄. (A.81)

The term in brackets in (A.81) can be explicitly evaluated by reversing the Zassen-

haus formula (A.78), that is

evaewa
†

= evw/2eva+wa
†

= evwewa
†

eva. (A.82)
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Using (A.82) in (A.81), and a|0〉 = 0 and 〈0|a† = 0 which follows from (A.66), we

have

un,m(z) =
ez̄

2/2

√
n!m!

[∂nv ∂
m
w e

vw]|v=w=iz̄. (A.83)

We can evaluate (A.83) directly for n > m, in which case we first perform the

derivatives with respect to v:

un,m(z) =
ez̄

2/2

√
n!m!

[∂mw w
nevw]|v=w=iz̄. (A.84)

Now, focusing on the term in brackets in (A.84), we use the Leibniz formula for the

derivatives to find

∂mw w
nevw =

∑m
k=0

m!
(k!)(m−k)!(∂

m−k
w wn)(∂kwe

vw)

=
∑m

k=0
m!

(k!)(m−k)!
n!

(n−m+k)!
wn−m+kvkevw.

(A.85)

Substituting (A.85) into (A.84), we find

un,m(z) =
m!e−z̄

2/2

√
n!m!

(iz̄)n−m
m∑

k=0

n!

k!(m− k)!(n−m+ k)!
(−1)k(z̄2)k. (A.86)

Finally, this can be simplified by noting that the associated Laguerre polynomial is

defined by ([210], Eq. 22.3.9)

Lrm(x) =

m∑

k=0

(r +m)!

k!(m− k)!(r + k)!
(−1)kxk. (A.87)

Thus, for n > m, we have

un,m(z) = 〈n|eizx|m〉 =

√

m!

n!

(
izx0√

2

)n−m
e−z

2x2
0
/4Ln−mm (z2x2

0/2). (A.88)

Our derivation can be repeated for n < m and leads to essentially the same results

(with n and m switched). Letting n+ = max(n,m) and n− = min(n,m), we find

the result

〈n|eizx|m〉 =

√

n−!

n+!

(
izx0√

2

)n+−n−

e−z
2x2

0
/4Ln+−n−

n−
(z2x2

0/2). (A.89)
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A.3 Mathematica Perturbation Theory Code

Ex[n_,g_,No_]:=

Module[{nlevel,norder,Bmat,A1,A2,A3,A4,Ax,hitnlevel},nlevel=n;

norder=No;

neven = If[EvenQ[nlevel],1,0];

Bmat = Table[0,{m,0,norder},{j,0,nlevel+3*m}];

Do[Bmat = ReplacePart[Bmat, (-1)^((k-1+neven)/2)

2^(k-1+neven) ((nlevel-1+neven)/2)!

/ (((nlevel-k)/2)! k!),{1,k+1}],

{k,1-neven,nlevel,2}];

Do[Bmat = ReplacePart[Bmat, Bmat[[1]][[nlevel+1]]

3^{-k}/(k!),\{k+1,nlevel+3*k+1\}],

{k,1,norder}];

Do[hitnlevel = 0;

Do[j=nlevel+3*kx-jk;

A1 = If[j>nlevel+3*kx-2,0,Bmat[[kx+1]][[j+2+1]]];

A2 = If[j<3,0,Bmat[[kx-1+1]][[j-3+1]]];

A4 = Sum[Bmat[[kx-p+1]][[3-neven+1]]

If[j>nlevel+3*p,0,Bmat[[p+1]][[j+1]]],

{p,1,kx-1}];

A3 = A4 + Bmat[[kx+1]][[3-neven+1]]

If[j>nlevel,0,Bmat[[1]][[j+1]]];
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Ax = If[j==nlevel, ((nlevel+1)(nlevel+2)A1/2

+ A2 - (3-2neven)A4)

/ ((3-2 neven) Bmat[[1]][[nlevel+1]],

((j+1)(j+2)A1/2 + A2

- (3-2neven)A3)/(j-nlevel)];

jx = If[j==nlevel,3-neven,j];

jx = If[(j<nlevel)&&(hitnlevel==1),nlevel-j+3-neven,jx];

Ax = If[(j<nlevel)&&(hitnlevel==1),

(2/(jx(jx-1)) ((jx-nlevel-2) Bmat[[kx+1]][[jx-2+1]]

- If[jx<5,0,Bmat[[kx-1+1]][[jx-5+1]] + (3-2neven)

Sum[Bmat[[kx-p+1]][[3-neven+1]]

If[jx>nlevel+3*p+2,0,Bmat[[p+1]][[jx-2+1]]],

{p,0,kx-1}]), Ax];

Bmat = ReplacePart[Bmat,Ax,{kx+1,jx+1}];

hitnlevel = hitnlevel + If[j==nlevel,1,0];

{jk,2,nlevel+3*kx-neven,2}],{kx,1,norder}];

(nlevel+1/2)

- Sum[(3-2neven)Bmat[[k+1]][[3-neven+1]] g^k,{k,1,norder}]];

}
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A.4 Roots of a Cubic Polynomial

The roots of the general cubic polynomial

ax3 + bx2 + cx+ d, (A.90)

if real, can be written in terms of trigonometric functions. First define

p =
b2 − 3ac

9a2
(A.91)

and

q =
2b3 − 9abc + 27a2d

27a3
. (A.92)

Then the roots will be real if q2 − 4p3 ≤ 0; if this is the case we define θ by

cos 3θ = − q

2p3/2
. (A.93)

The three roots are

xn = − b

3a
+ 2p1/2 cos

(

θ +
2nπ

3

)

(A.94)

with n = 0, 1, 2.

A.5 General Propagator for a Quadratic Hamil-

tonian

Here we construct the general propagator for an arbitrary time-dependent quadratic

Hamiltonian

H = f(t)A+ f ∗(t)A† + h(t)B + d(t)a+ d∗(t)a† + g(t), (A.95)
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where a and a† are annihilation and creation operators, and

A = 1
2
a2,

A† = 1
2
a†

2
,

B = a†a+ 1
2
.

(A.96)

Our derivation is essentially that due to [317]; an alternative derivation can be found

in [267]. We first list the relevant commutators between these operators:

[a, a†] = 1, (A.97)

[a, A] = 0, (A.98)

[a, A†] = a†, (A.99)

[a,B] = a, (A.100)

[a†, A] = −a, (A.101)

[a†, A†] = 0, (A.102)

[a†, B] = −a†, (A.103)

[A,A†] = B, (A.104)

[A,B] = 2A, (A.105)

[A†, B] = −2A†. (A.106)

Anticipating our final result, we define the following unitary operators: the rotation

operator R(θ):

R(θ) = exp(−iθB), (A.107)

the squeezing operator S(r, φ):

S(r, φ) = exp(r(Ae−i2φ − A†ei2φ)), (A.108)
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and finally the displacement operator D(ν):

D(ν) = exp(νa† − ν∗a). (A.109)

Properties of these operators, and their generalization to two coupled harmonic

oscillators, are found in [318]. Using the commutation relations derived above, we

can show that these operators have the following effect on a:

R(θ)aR†(θ) = eiθa, (A.110)

S(r, φ)aS†(r, φ) = a cosh r + a†e2iφ sinh r, (A.111)

D(ν)aD†(ν) = a− ν. (A.112)

Finally we note that S(r, φ) can be decomposed as

S(r, φ) = R(−φ)S(r, 0)R(φ). (A.113)

Now, our ansatz for the general propagator U is

U = e−iΘS(r, φ)R(θ)D(ν). (A.114)

To verify this, we substitute into the Schrödinger equation for the propagator,

i~U̇ = HU, (A.115)

(where U̇ = dU/dt) and match terms. Now, using our factorization of U in (A.114)

we find for H = i~U̇U † the result

H = ~Θ̇U + i~Ṡ(r, φ)S†(r, φ)

+i~S(r, φ)Ṙ(θ)R†(θ)S†(r, φ)

+i~S(r, φ)R(θ)Ḋ(ν)D†(ν)R†(θ)S†(r, φ).

(A.116)
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We proceed to simplify this expression. First, we look at Ṡ(r, φ):

Ṡ(r, φ) = Ṙ(−φ)S(r, 0)R(φ) +R(−φ)Ṡ(r, 0)R(φ) +R(−φ)S(r, 0)Ṙ(φ)

= iφ̇BS(r, φ) +R(−φ)(ṙ(A− A†)R(φ)S(r, φ)

+R(−φ)S(r, 0)(−iφ̇B)S†(r, 0)R(φ)S(r, φ).
(A.117)

Thus, we find that

Ṡ(r, φ)S†(r, φ) = iφ̇B + ṙ(Ae−i2φ − A†ei2φ) − iφ̇S(r, φ)BS†(r, φ). (A.118)

The last term in (A.118) can be further simplified:

S(r, φ)BS†(r, φ) = (a† cosh r + ae−2iφ sinh r)(a cosh r + a†e2iφ sinh r) + 1
2

= B(cosh2 r + sinh2 r) + 2 sinh r cosh r(Ae−2iφ + A†e2iφ).

(A.119)

So finally,

Ṡ(r, φ)S†(r, φ) = iφ̇(B(1 − cosh2 r − sinh2 r) − 2 sinh r cosh r(Ae−2iφ + A†e2iφ))
+ṙ(Ae−2iφ − e2iφA†).

(A.120)

We now look at the second term of H in (A.116):

S(r, φ)Ṙ(θ)R†(θ)S†(r, φ) = −iθ̇S(r, φ)BS†(r, φ)

= −iθ̇(B(cosh2 r + sinh2 r)
+2 sinh r cosh r(Ae−2iφ + A†e2iφ)).

(A.121)

Finally, we look at the last term of (A.116). Using the Zassenhaus formula (A.78)

with C = 0,

eA+B = eAeBe−[A,B]/2, (A.122)

we see that D(ν) can be factored

D(ν) = eνa
†−ν∗a = eνa

†

e−ν
∗ae|ν|

2[a†,a]/2

= eνa
†

e−ν
∗ae−|ν|2/2.

(A.123)

Taking the derivative of (A.123) we find

Ḋ(ν) = ν̇a†D − ν̇∗eνa
†

ae−νa
†

D − 1

2
˙|ν|2D. (A.124)
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Using the relation in (A.112), we find

Ḋ(ν)D†(ν) = ν̇a† − ν̇∗a+
1

2
(νν̇∗ − ν̇ν∗). (A.125)

Then we find from (A.111):

R(θ)Ḋ(ν)D†(ν)R†(θ) = ν̇e−iθa† − ν̇∗eiθa +
1

2
(νν̇∗ − ν̇ν∗), (A.126)

and finally

S(r, φ)R(θ)Ḋ(ν)D†(ν)R†(θ)S†(r, φ) = ν̇e−iθ(a† cosh r + ae−2iφ sinh r)
−ν̇∗eiθ(a cosh r + a†e2iφ sinh r)
+1

2
(νν̇∗ − ν̇ν∗).

(A.127)

We have now completed the calculation of all terms in H = i~U̇U †. Substi-

tuting (A.120), (A.121), and (A.127) into (A.116) and comparing with our model

Hamiltonian (A.95), we see that r, φ, θ, ν, and Θ must satisfy the following differ-

ential equations:

f(t) = ~(φ̇+ θ̇)2 sinh r cosh re−2iφ + i~ṙe−2iφ, (A.128)

f ∗(t) = ~(φ̇+ θ̇)2 sinh r cosh re2iφ + i~ṙe2iφ, (A.129)

h(t) = −~φ̇+ ~(φ̇+ θ̇)(cosh2 r + sinh2 r), (A.130)

d(t) = i~ν̇e−i(θ+2φ) sinh r − i~ν̇∗eiθ cosh r, (A.131)

d∗(t) = i~ν̇e−iθ cosh r − i~ν̇∗ei(θ+2φ) sinh r, (A.132)

g(t) = ~Θ̇ + ~
i

2
(νν̇∗ − ν̇ν∗). (A.133)

While the above equations are exact, they are not in the most convenient form. To

simplify them we define the following auxiliary variables

α = e−iθ cosh r,
β = −e−i(θ+2φ) sinh r.

(A.134)
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These variables satisfy the following constraint |α|2 − |β|2 = 1, and thus

αα̇∗ + α̇α∗ = ββ̇∗ + β̇β∗. (A.135)

By direct substitution of (A.134) it can be verified that (A.128)-(A.131) can be

written in terms of α and β:

f(t) = −i~(β̇α∗ − βα̇∗), (A.136)

f ∗(t) = i~(αβ̇∗ − α̇β∗), (A.137)

h(t) = i~(α̇α∗ − ββ̇∗)

= i~(β̇β∗ − αα̇∗),
(A.138)

d(t) = −i~(ν̇β + ν̇∗α∗), (A.139)

d∗(t) = i~(ν̇∗β∗ + ν̇α). (A.140)

Equations (A.136)-(A.140) can in fact be inverted to yield

~α̇ = −i(f ∗β + hα), (A.141)

~β̇ = i(fα+ hβ), (A.142)

~ν̇ = −i(β∗d+ α∗d∗), (A.143)

and their complex conjugates, and finally

~Θ̇ = g − ~
i

2
(νν̇∗ − ν̇ν∗). (A.144)

These equations must be supplemented by the initial condition that U(0) = I, where

I is the identity operator. This is satisfied by putting r(0) = 0, φ(0) = 0, θ(0) = 0,

327



ν(0) = 0, and Θ(0) = 0, and thus α(0) = 1, β(0) = 0. The solution of these

(A.141)-(A.144) and the relations

cosh r = |α|, (A.145)

eiθ =
α∗

|α| , (A.146)

e2iφ = − αβ∗

|α||β| , (A.147)

fully determine the propagator

U = e−iΘS(r, φ)R(θ)D(ν). (A.148)
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