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Generalized Linear Models extends classical regression models to non-normal response vari-

ables and allows a non-linear relation between the mean of the responses and the predictors. In

addition, when the responses are correlated or show overdispersion, one can add a linear combina-

tion of random components to the linear predictor. The resulting models are known as Generalized

Linear Mixed Models. Traditional estimation methods in these classes of models rely on distrib-

utional assumptions about the random components, as well as the implicit assumption that the

explanatory variables are uncorrelated with the error term. In Chapters 2 and 3 we investigate,

using the Change-of-Variance Function, the behavior of the asymptotic variance-covariance matrix

of the class of M -estimators when the distribution of the random components is slightly contam-

inated. In Chapter 4 we study a different concept of robustness for classical models that contain

explanatory variables correlated with the error term. For these models we propose an instrumental

variables estimator and study its robustness by means of its Influence Function.

We extend the definitions of Change-of-Variance Function to Generalized Linear Models

and Generalized Linear Mixed Models. We use them to analyze in detail the sensitivity of the

asymptotic variance of the maximum likelihood estimator. For the first class of models, we found



that, in general, a contamination of the distribution can seriously affect the asymptotic variance of

the estimators. For the second class, we focus on the Poisson-Gamma model and two mixed-effects

Binomial models. We found that the effect of a contamination in the mixing distribution on the

asymptotic variance of the maximum likelihood estimator remain bounded for both models. A

simulation study was performed in all cases to illustrate the relevance of our results.

Finally, we propose a robust instrumental variables estimator based on high breakdown point

S-estimators of location and scatter. The resulting estimator has bounded Influence Function and

satisfies the usual asymptotic properties for suitable choices of the S-estimator used. We also

derive an estimate for the asymptotic covariance matrix of our estimator which is robust against

outliers and leverage points. We illustrate our results using a real data example.
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Chapter 1

Literature review

1.1 Introduction

This thesis is focused on the theory of robust estimation in Generalized Linear Models (GLMs),

Generalized Linear Mixed Models (GLMMs) and Linear Models with endogeneity. Traditional

estimation methods in GLMs and GLMMs rely on distributional assumptions about the random

components, as well as the implicit assumption that the explanatory variables are uncorrelated

with the error term. In most real world applications these distributional assumptions are only

approximately valid, and some covariates may be endogenous. During the past decades researchers

have become increasingly aware that some statistical procedures can be extremely sensitive to small

deviations from the model assumptions, hence questioning their empirical usefulness. Although

there is extensive work on robust inference in the context of linear regression models, its extension

to GLMs, GLMMs and linear models with endogeneity remains limited. In the following paragraphs

I briefly describe these models and address the main focus of this thesis.

Many regression problems involve response variables that have a distribution other than the

Normal distribution. There are a variety of models commonly used in these cases. Logistic and

Probit regressions are used to model binary response variables. Poisson regression is often used

to model count data, and proportional hazard and accelerated failure time models are well known

models for survival times. Nelder and Wedderburn (1972) demonstrate the unity of these and

other methods using the idea of Generalized Linear Models (GLMs). Generalized Linear Models

extend classical linear regressions in two main directions. First, GLMs accommodate non-normally

distributed responses. Second, they allow a non-linear relation (the link function) between the

mean of the response variable and a linear function of the predictors. These models are described

in detail in Section 1.2.
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A natural extension of GLMs is to add a linear combination of random components to the

linear predictor. The resulting models are known as Generalized Linear Mixed Models (GLMMs).

These new models are widely used when the responses are correlated, such as those coming from

longitudinal data studies, or when the data show overdispersion, such as the Poisson-Gamma

model. A description of them is given in Section 1.3.

Most of the methods of estimation considered for both GLMs and GLMMs rely on strong

distributional assumptions (e.g., Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989;

McGilchrist and Yau, 1995; Lee and Nelder, 1996). However, their sensitivity to small deviations

from these assumptions has not been extensively studied. By the 1960’s statisticians were concerned

by the fact that the performance of some estimators was very unstable under small deviations

from idealized distributional assumptions. Various measures of robustness were introduced for the

location estimation problem, such as the Influence Function (Hampel, 1968, 1974) and the Change-

of-Variance Function (Rousseeuw, 1981). Section 1.5 will briefly describe these concepts. Their

extensions to estimators of multiple linear regression parameters have been developed (Hampel,

1973; Huber, 1973 ; Ronchetti and Rousseeuw, 1985). However, there are still many concepts

that have not been explored for GLMs and GLMMs, for example the Change-of-Variance Function

(CVF).

In Chapters 2 and 3 we investigate, using the CVF, the behavior of the asymptotic variance-

covariance matrix of the class of M -estimators of GLMs and GLMMs respectively, when the

distribution of the random components is slightly contaminated. Given that the notion of CVF

had not been extended to these models before, we extend its definition and analyze its behavior

for some existing M -estimators in the literature.

Another generally implicit assumption in GLMs is that the covariates are uncorrelated with

the error term. In practice, however, this may not be true. That is, some explanatory variables may

be endogenous. Neglecting this endogeneity may cause a severe bias in the parameter estimates.

In particular, linear models with endogeneity problems have been widely studied. Section 1.4

includes a brief review of these models. However, most of the existing estimation methods for

2



these models are extremely sensitive to outliers and influential points. In Chapter 4, we propose

robust instrumental variables estimators for linear models with endogenous covariates. These

estimators are constructed using high breakdown point S-estimators of multivariate location and

scatter matrix. Their robustness is investigated by means of the Influence Function (IF). Moreover,

diagnostic techniques to identify outliers and influential points in the sample are developed.

The remaining of this Chapter consists of a brief survey of the literature on GLMs (Section

1.2), GLMMs (Section 1.3) and Linear Models with endogeneity (Section 1.4) together with a

description of some elements of robustness theory that are going to be used throughout this thesis

(Section 1.5).

1.2 Generalized Linear Models

Nelder and Wedderburn (1972) introduced Generalized Linear Models (GLMs) as a unified frame-

work for models that had previously been studied in the literature such as linear regression, in-

troduced over two hundred years ago by Gauss and Legendre (e.g., Stigler, 1981), logit (e.g.,

Berkson, 1944) and probit models (e.g., Bliss, 1934). Even though all pieces had already existed,

these authors were the first to show the similarities between seemingly disparate methods. Us-

ing a methodology analogous to that developed for linear models, GLMs can be used to model

response variables having a distribution belonging to an exponential family of distributions. Fur-

thermore, the relationship between the response and the explanatory variables does not need to

be linear. Section 1.2.1 presents the general setup of GLMs and Section 1.2.2 some of its methods

of estimation.

1.2.1 The model

GLMs are built under the following set of assumptions:

• Consider an n-dimensional vector of independent random responses Y . Conditionally, given

that the vector of explanatory variablesXi = xi, each response variable Yi has a distribution

3



in the exponential family, taking the form

fYi|Xi
(yi|xi, θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ h(yi, φ)

}
, i = 1, . . . , n, (1.1)

for some specific functions a(.), b(.) and h(.). If the dispersion parameter φ is known, this

density belongs to an exponential family with canonical parameter θi.

• An arbitrary function of the conditional mean of the response is modelled as linear in the

predictors, i.e.,

g(E[Yi|xi]) = ηi = xiβ (1.2)

where β is the vector of unknown parameters that we want to estimate. The function g(.)

is called the link function and ηi is called the linear predictor. If ηi = θi, g(.) is called the

canonical link.

• Assume that X1,X2, . . . ,Xn are iid random vectors with a marginal density given by u(x)

which does not depend on the unknown vector of parameters β.

It can be easily shown that

E[Yi|xi] = µi = b′(θi) and V [Yi|xi] = b′′(θi)a(φ) (1.3)

where primes denote differentiation with respect to θi. Thus the variance of Yi is the product of

two functions: the variance function, b′′(.), depending only on θi (and hence on the mean, µi), and

another function depending on the dispersion parameter φ.

Moreover, from (1.1), (1.2) and (1.3) one can derive the score statistic

Sj =
n∑
i=1

[
∂l(θi; yi)
∂θi

dθi
dµi

dµi
dηi

∂ηi
∂βj

]
=

n∑
i=1

[
(yi − µi)
a(φ)

1
V

dµi
dηi

xij

]
(1.4)

where l(θi; yi) is the log-likelihood function of each component of Y .

1.2.2 Estimation

Estimates of parameters for GLMs can be obtained using methods based on maximum likelihood

(Nelder and Wedderburn, 1972). These estimates are generally computed not as global maximizers

4



of the log-likelihood function, but as the roots of the score statistics (1.4) which correspond to local

maxima. For many important models, however, global and local maxima coincide. Explicit math-

ematical expressions for estimators can be found only in some special cases (such as the Normal

or the exponential distribution), but in general, numerical methods such as Newton-Raphson or

Fisher’s scoring method will be needed. It can be shown that the latter is equivalent to an iterative

weighted least squares algorithm. GLMs were incorporated in the GENSTAT statistics package

and in the GLIM software. Now, most major statistical packages, such as SAS, S-Plus and R, have

facilities for GLMs.

Conditions for uniqueness and existence of MLE have been studied for various models based

on concavity of the log-likelihood (Haberman, 1974; Wedderburn, 1976; Silvapulle, 1981; Kauf-

mann, 1988). However, these conditions are difficult to check in practice. Moreover, under regu-

larity conditions, asymptotic existence and uniqueness, consistency and asymptotic normality of

the MLE have been proved (e.g., Haberman, 1977; Fahrmeir and Kaufmann, 1985).

An important extension of GLMs is the approach known as Quasi-likelihood models intro-

duced by Wedderburn (1974). Noting that the score function defined in (1.4) depends on the

parameters only through the mean, µi and the variance, b(θi)a(φ), the full distributional assump-

tion about the random component was replaced by a weaker assumption in which only the first

and the second moments have to be specified. The estimators derived from the score equations in

this manner are called maximum quasi-likelihood estimators (MQLE). When the distribution of

Yi belongs to an exponential family, the MQLE are the MLE. Under general conditions, Fahrmeir

(1990) proved the consistency and asymptotic normality of the MQLE.

In the past decade, Bayesian methods have been developed for analyzing GLMs (Dey et al.,

1999; Fahrmeir and Kaufmann, 1985). Bayesian models assume that β is a random vector with

prior density p(β). It is well known that an optimal estimator for β under quadratic loss is the

posterior mean. However, its computation requires solving integrals having the dimension of β,

which in general is not feasible. Some methods based on numerical or Monte Carlo integration have

been proposed (e.g., Naylor and Smith, 1982; Smith et al., 1985). In general, application of these
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methods is limited to models having a low dimensional parameter vector β. For higher dimensions,

MCMC simulation techniques are commonly used (e.g., Dellaportas and Smith, 1993; Clayton,

1996). Based on samples drawn from the posterior density, posterior means and variances can be

approximated using their sample analog. Moreover, posterior mode estimation is an alternative to

full posterior mean estimation (e.g., Laird, 1978; Duffy and Santner, 1989). As the posterior mode

estimator maximizes the posterior density, it is not required to solve any problem of integration.

Kedem and Fokianos (2001) extends the generalized linear models methodology to time

series where the data and the covariates are time dependent. For more details on a GLM and its

extensions see McCullagh and Nelder (1989), Fahrmeir and Tutz (1997) and Dobson (2002).

1.3 Generalized Linear Mixed Models

If the linear predictor of a Generalized Linear Model includes one or more random components

in addition to the usual fixed effects, the resulting model is known as the Generalized Linear

Mixed Model (GLMM). Examples include the Poisson-Gamma model used to account for the

overdispersion often observed in count data or the Binomial-Beta model for binary data with

correlated responses inherent in longitudinal or repeated measures designs (Lee and Nelder, 1996;

Breslow and Clayton, 1993). In Section 1.3.1 we present the general setup of GLMMs and in

Section 1.3.2 we describe some methods of estimations proposed for these models.

1.3.1 The model

Let Y be the vector of n observations and U a vector of random effects. Assume that

• Conditionally, given the vector of random effects, U = u and X = x, the variables

Y1, Y2, ..., Yn are independent and each one has a distribution belonging to the exponential

family, talking the form

fYi|Xi,u(yi|Xi,u, θi, φ) = exp
{
yiθi − b(θi)

a(φ)
+ h(yi, φ)

}

for some specific functions a(.), b(.) and h(.).
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• Let E[Yi|Xi,u] = µi = b′(θi) and g(µi) = ηi = Xiβ + Ziu, where β ∈ Rp is a vector of

unknown parameters, u ∈ Rq is a vector of random effects, Xi is a row vector of explanatory

variables and Zi is the model vector for the random effects.

• U ∼ Fu(u|D), where D is the covariance matrix. We may assume later that D = D(τ ),

for some unknown vector τ . The mixing distribution Fu is often assumed to be normal

(McGilchrist, 1994; Breslow and Clayton, 1993) but we are not going to make that assumption

in this thesis.

• Let γ = (βT , τT )T ∈ R(p+q) be the vector of unknown parameters that we want to estimate.

1.3.2 Estimation

A major difficulty in making inference about GLMMs is computational. Provided that the model

is correctly specified and that the usual regularity conditions hold, the (marginal) maximum like-

lihood estimator of γ is consistent and asymptotically normal (White, 1982). However, this esti-

mator requires the evaluation of high-dimensional integrals as the likelihood function of the model

is given by:

L(β, φ,D|Y ) =
∫ ∏

fYi|u(yi|u,Xi,β, φ)dFu(u).

The integral has dimension equal to q, which makes the problem practically intractable, except for

some particular cases (Anderson and Aitkin, 1985; Crouch and Siegelman, 1990).

To overcome this difficulty, alternative methods of estimation have been proposed. One such

method was developed by McCulloch (1997) who used EM-like algorithms to obtain full maximum

likelihood estimators. Three algorithms were proposed. First, he constructed a Monte Carlo

version of the EM algorithm, called MCEM. Second, he proposed a new procedure, called Monte

Carlo Newton-Raphson (MCNR). Finally, he adapted simulated maximum likelihood (SML) to

this class of models. Some simulation studies were performed to investigate the convergence of

these procedures.

Other methods of estimation that avoid integration of the random effects have been proposed

(Schall, 1991; McGilchrist, 1994; Kuk, 1995; Lee and Nelder, 1996). Instead of using the marginal
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density to construct the likelihood function, the idea is to maximize the joint density to obtain

approximate maximum likelihood estimates (or REMLE) of the fixed effects and the dispersion

components.

Breslow and Clayton (1993) used maximum quasi-likelihood estimation, introduced by Wed-

derburn (1974) in GLMs (see Section 1.2.2), for GLMs with random effects. They proposed two

different methods of estimation for GLMMs: the penalized quasi-likelihood (PQL) method and

the marginal quasi-likelihood (MQL). The essential difference between the PQL and the MQL

estimating equations is that the former incorporates the random effect terms Ziu in the linear

predictor while the other specifies the model in terms of the marginal mean h(E[Yi|Xi]) = Xiβ.

An alternative method of estimation in GLMMs is based on the maximization of the joint

distribution of the observed data and the random effects with respect to the parameters and the

random effects (Lee and Nelder, 1996; McGilchrist et al., 1995). The idea is to extend the mixed-

models equations of Henderson (1950) to models with more general distributional assumptions.

This method is of particular interest when the estimation (or prediction) of the random effects is

desired. In plant variety trials, for example, it is sometimes realistic to consider the variety as a

random effect. The objective of variety trials is generally to find the best variety or to estimate

the yield of each variety.

Other methods have recently been proposed by Jiang (1998, 1999, 2001) for estimating

the fixed effect and variance components in a GLMM. Jiang (1998) used simulated moments in

a method of moments approach to avoid the evaluation of high dimensional integrals. He called

it the “method of simulated moments” (MSM). Under suitable conditions the MSM estimators

are consistent as the total number of observations and the number of simulated random vectors

go to infinity. However, simulation shows that these estimators can be inefficient. Jiang (2001)

developed a new method that improves the efficiency of previous estimators as well as weakens

some assumptions about the model. In addition, Jiang (1999) proposed a method of inference for

GLMMs which relies on weak distributional assumptions about the random effects. He generalized

the well-known method of weighted least squares (WLS) and proposed the penalized generalized
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WLS (PGWLS) estimate of both the fixed and the random effects. In practice, one may not have

sufficient information to estimate the random effects adequately. In those cases we may have to

integrate out the random effects and estimate only the fixed effects and the variance components.

The author remarked that it might be possible to estimate a subset of the random effects. This

requires distributional assumptions only about the random effects that can not be estimated with

adequacy, and only those are integrated out. He derived the likelihood function conditional on

a subset of the random effects and maximized it to obtain the maximum conditional likelihood

(MCL) estimates.

1.4 Endogenous covariates

A key condition for the ordinary least squares (OLS) estimator to be consistent is that the error

term is uncorrelated with each of the regressors. However, there are many situations in which

this assumption is not satisfied, i.e., the model contains “endogenous” covariates. In such a sit-

uation, the OLS estimator yields biased and inconsistent parameter estimates, even when not all

the covariates are endogenous. Moreover, when some covariates are endogenous, other covariates

with theoretical coefficient zero in the regression may appear as significant in an ordinary estima-

tion. The “endogeneity” problem arises very often due to three main reasons: omitted variables,

measurement error, and simultaneity.

Omitted variables appear when we would like to control for one or more additional variables

but, usually because of data unavailability, we cannot include them in the regression model. In such

a case the omitted covariate becomes part of the disturbance term. If such covariate is correlated

with any of the covariates included in the regression, then the correlation between the regressors

and the error term is different from zero.

Measurement errors appear when instead of observing the true explanatory variables x∗i ,

one observes Xi = x∗i +νi. Then, the measurement error νi becomes part of the disturbance term

inducing a correlation between the observed covariates and the error term.

Simultaneity arises when at least one of the explanatory variables is determined simultane-
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ously along with the response. If one covariate is determined partly as a function of the response,

then that covariate and the error term are generally correlated.

An equation can have more than one source of endogeneity. For example, in looking at the

effect of alcohol consumption on worker productivity measured by wages, we usually think that

alcohol usage is correlated with unobserved factors such us family background, that also affect

wage. In addition, alcohol demand would generally depend on income, which is largely determined

by wage. Finally, measurement error in alcohol usage is always a possibility. For a discussion

of the three kinds of endogeneity as they arise in a particular field, see Deaton’s (1995) survey

chapter on econometric issues in development economics. For a classical reference on measurement

error models see Fuller (1987). Endogeneity problems are clearly explained in Amemiya (1985). A

complete survey on endogeneity can be found in Anderson (1984).

A common approach to address this problem is to use additional information contained

in instrumental variables, which are variables that do not belong to the original equation, are

correlated with the existing explanatory variables but uncorrelated with the error term. These

new variables can be used to construct ordinary instrumental variables (OIV) estimators that

yield consistent parameter estimates. Although the use of instrumental variables dated to the

late twenties, Sargan (1958) provided a general treatment to the IV method and established its

asymptotic properties. For a review of Sargan’s work see Arellano (2002).

1.4.1 Linear model with endogeneity

Consider the following model where some covariates are correlated with the error term, i.e., the

model contains endogenous covariates.

Y = β0 +Xβ1 + ε (1.5)

with E(ε) = 0 and Cov(X, ε) 6= 0

where Y is the n-dimensional column vector of observations of the response, β0 is the regression

intercept, β1 is a p-dimensional column vector of parameters, X is an n× p matrix of observable

random covariates, and ε is the n-dimensional column vector of i.i.d. unobserved disturbances
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with zero mean. We can also write this model as

Yi = β0 +Xiβ1 + εi

with E(εi) = 0 and Cov(Xi, εi) 6= 0

for i = 1, . . . , n, where Yi, and εi are the ith elements of Y and ε, respectively, and Xi is the ith

row of X.

If the covariates are uncorrelated with the disturbances, then β0 and β1 can be estimated

consistently by ordinary least squares (OLS). However, when Cov(X, ε) 6= 0, OLS produces in-

consistent estimates. For example, assuming normality in a classical error-in-variables model with

only one explanatory variable and uncorrelated error terms, it can be shown using the properties

of the bivariate normal distribution that

E[β̂1] = β1(σx∗x∗ + σuu)−1σx∗x∗ . (1.6)

where σuu and σx∗x∗ are the variances of the measurement error and the true covariates, respec-

tively. Dropping the normality assumption, the RHS of (1.6) represents the probability limit of β̂1

as n tends to infinity. In both cases, the OLS is inconsistent and it is usually said that it has been

attenuated by the measurement error in X.

1.4.2 Estimation

The method of ordinary instrumental variables provides a general solution to the problem of

endogenous covariates. To use this approach, we need a q-dimensional row vector of instrumental

variables W i, such that q > p. In this thesis, however, we focus on the case where the model is

exactly identified, i.e., p = q. For the instruments to be valid, W i needs to be correlated with

the endogenous covariates, but uncorrelated with the disturbance term. More formally, W i must

satisfy the following two conditions

E(W T
i εi) = 0 (1.7)

rank E(W T
i Xi) = p. (1.8)

11



Note that the rank condition (1.8) means that W i is sufficiently linearly related to Xi so that

E(W T
i Xi) has full rank.

If all covariates are endogenous, then W i is a list of p variables not contained in the original

equation. When the model contains s exogenous and r endogenous variables (with s + r = p),

each exogenous variable is already uncorrelated with the disturbance term and thus serves as an

instrument for itself. In this case the vector W i = (X1, . . . , Xs, I1, . . . , Ir), where I1, . . . , Ir are

also uncorrelated with the disturbance but are not included in the original equation.

The ordinary instrumental variables (OIV) estimator is defined as

β̂OIV = (β̂0, β̂1) = (Ȳ − X̄β̂1, (W
TX)−1W TY ) (1.9)

where Ȳ = n−1
∑n
i=1 Yi, X̄ = n−1

∑n
i=1Xi, and W is the (n× p) matrix of observations on the p

instruments. This estimator is consistent provided that the data contains no extreme observations.

However, it is well known that it has an unbounded Influence Function (Krasker and Welsch, 1985)

and that a single aberrant observation can break it down (i.e., it has zero breakdown point). Thus,

in Chapter 4 we present a robust version of this estimator.

1.5 Robustness

The problem of robustness was addressed by a number of eminent statisticians many years be-

fore a mathematical theory of robust estimation was developed. By the 1960’s statisticians were

concerned by the fact that the performance of some estimators was very unstable under small

deviations from idealized distributional assumptions. This motivated the search of “robust” pro-

cedures which still behave fairly well under deviations from the assumed model. There have been

several approaches to robust estimation of population parameters, including minimax asymptotic

variance (Huber 1964), qualitative robustness (Hampel 1971), Influence Function (Hampel 1974),

and Change-of-Variance Function (Hampel et al. 1981), among others.

In this Section we review the definitions of M -estimates, Influence Function and Change-

of-Variance Function of one-dimensional estimators and its extensions to classical linear models.
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1.5.1 M -estimates

Let X1, ..., Xn be a set of independent and identically distributed observations belonging to some

sample space X. Consider the parametric model Fθ, where the unknown parameter θ belongs to

some parameter space Θ.

Huber (1964) proposed to estimate the parameter θ using Tn, defined by solving

∑
ρ(Xi;Tn) = min

Tn

! (1.10)

When ρ(x; θ) = ln f(x; θ), the estimator Tn is the maximum likelihood estimator. Thus, estimators

satisfying equation (1.10) are called “M -estimator”, which comes from “generalized maximum

likelihood estimator”. When ρ has derivative ψ(x, θ) = ∂ρ(x, θ)/∂θ, the estimate Tn satisfies the

implicit equation ∑
ψ(Xi;Tn) = 0.

We will often identify ψ with the M -estimator it defines. If Fn is the empirical distribution function

of X, the M -estimator is also defined as Tn = T (Fn), where T is the functional given by

∫
ψ(x;T (F ))F (dx) = 0. (1.11)

1.5.2 Influence Function

The Influence Function (IF) was first introduced by Hampel (1974) in order to investigate the

behavior of the asymptotic value of a one-dimensional estimator under small perturbations of the

underlying distribution. More precisely, let Fε = (1 − ε)F + ε∆x denote a neighborhood of the

nominal distribution of the observations, F , contaminated by ∆x, the point mass at x. Then,

Definition 1.5.1. The Influence Function of the estimator defined by the functional T at a dis-

tribution F is given by

IF (x;T, F ) = lim
ε↓0

T (Fε)− T (F )
ε

.

for those x where the limit exists.
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Remark 1.5.1. Note that if the limit exists, then IF (x;T, F ) = (∂/∂ε)T (Fε)|ε=0, which is the

directional (Gâteaux) derivative of T at F , in the direction of ∆x. See Hampel et al. (1986) for

further discussion.

Heuristically, the IF describes the effect of an infinitesimal contamination at the point x on the

estimate, standardized by the mass of the contamination.

Replacing F by Fε in equation (1.11), differentiating with respect to ε and assuming that

integration and differentiation may be interchanged, one can derive the IF of the M -estimator

defined by ψ; that is,

IF (x;ψ, F ) =
∂

∂ε
T (Fε)|ε=0 =

ψ(x;T (F ))
−
∫

(∂/∂θ)[ψ(y; θ)]T (F )dF (y)
. (1.12)

An important summary of the IF is the gross-error sensitivity of T at F , which can be thought as

a measure of the worst influence that an infinitesimal contamination can have on the estimate.

Definition 1.5.2. The gross-error sensitivity of T at F is given by

γ∗ = sup
x
|IF (x;T, F )|,

where the supremum is taken over all x where the IF (x;T, F ) exists. Moreover, we say that T is

B-robust at F if γ∗ is finite.

Therefore, an M -estimator defined by a function ψ in (1.11), is B-robust at F if and only if

ψ(., T (F )) is bounded.

The IF in Linear Models

Huber (1973) extended his results on robust estimation of a location parameter to the case of linear

regression. In the framework of M -estimation, he proposed using Tn defined by

Tn = min
θ∈Θ

n∑
i=1

ρ((yi − xiθ)/σ), (1.13)

for some function ρ : R → R+ and for a fixed σ. If ρ has derivative ψ, then Tn satisfies the system

of equations
n∑
i=1

ψ((yi − xiTn)/σ)xi = 0. (1.14)
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The functional T (F ) corresponding to the M -estimator defined by 1.14 is the solution of∫
ψ((y − xT (F ))/σ)xdF (y,x) = 0.

Using (1.12) it can be shown that IF ((x, y);T, F ) is unbounded in the x-space. Thus, these

estimators are sensitive to high leverage points. Other estimators addressing this problem have

been proposed.

Definition 1.5.3. (Maronna and Yohai, 1981) A GM -estimator Tn for linear models is defined

implicitly by
n∑
i=1

δ(xi, (yi − xiTn)/σ)xi = 0. (1.15)

where the function δ : Rp × R → R is continuous up to a finite set C(x; δ), odd in the second

argument and positive. Moreover, it is assumed that the set of points where it is continuous but

(∂/∂r)δ(x, r) is not defined or not continuous, denoted by D(x; δ), is finite for all x.

All known proposals for δ may be written in the form

δ(x, r) = w(x)ψ(rν(x)).

Note that Huber’s proposal, defined in (1.13), uses w(x) = ν(x) = 1. Mallows’ and Schweppe’s

proposals use ν(x) = 1 and ν(x) = 1/w(x), respectively (see Hill, 1977 and Merrill and Schweppe,

1971).

Writing (1.15) as a functional equation, replacing the joint distribution H of the responses

and the carriers by Hε = (1− ε)H + ε∆(x,y), and following Definition 1.5.1, it is easy to show that

the IF of T at H is a p× 1 vector given by

IF ((x, y);T,H) = δ(xi, (yi − xiT (H)/σ)M−1(δ,H)x

where M(δ,H) =
∫

(∂/∂r)δ(xi, (yi − xiT (H)/σ)xxT dH(x, y) (Hampel et al., 1986).

Two different measures of sensitivity were introduced to describe the worst possible influence

of contamination by outliers on the asymptotic value of T .

Definition 1.5.4. The unstandardized gross-error sensitivity of T is defined as

γ∗u(T,H) = sup{‖IF ((x, y);T,H)‖;x ∈ Rp, y ∈ R \ C(x, δ)},
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and the (self-)standardized gross-error sensitivity is defined as

γ∗s (T,H) = sup{[IFT ((x, y);T,H)V −1(T,H)IF ((x, y);T,H)];x ∈ Rp, y ∈ R \ C(x, δ)},

where V (T,H) is the asymptotic variance of T under model H. Moreover, an estimator T is

Bu-(Bs-)robust when γ∗u(γ
∗
s ) is finite.

Krasker and Welsch (1982) noted that the unstandardized gross-error sensitivity is not invariant

with respect to linear parameter transforms. Thus they introduced the (self-)standardized gross-

error sensitivity to overcome this lack of invariance. For appropriate choices of functions δ(.), the

GM -estimators are Bu-(Bs-)robust (Hampel et al., 1986).

Other estimators, not covered in this review, have been proposed for classical linear mod-

els such as MM -estimators, τ -estimators and S-estimators. For a survey on robust regression

estimation see Maronna et al. (1993) and Rousseeuw and Leroy (1987).

1.5.3 Change-of-variance function

Other important asymptotic concepts that are also interesting to study include the asymptotic

variance and the asymptotic efficiency. Rousseeuw (1981) first defined the Change-of-Variance

Function (CVF) of an M -estimator of a location parameter to investigate the infinitesimal stability

of its asymptotic variance in the presence of contamination of the nominal distribution, assumed to

be symmetric. In this Section we briefly describe the CVF of an M -estimator of a one-dimensional

location parameter, together with its extensions to linear regression models.

Let Fε = (1− ε)F + ε( 1
2∆x + 1

2∆−x). Consider the M -estimator defined by

n∑
i=1

ψ(xi − Tn) = 0

which corresponds to the functional T defined by∫
ψ(x− T (F ))dF (x) = 0.

Assume that ψ is a continuous, odd and positive function, with continuous derivative, ψ′, up to a

finite set D(ψ). Let

0 < A(ψ) =
∫
ψ2dF <∞ and 0 < B(ψ) =

∫
ψ′dF <∞
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Definition 1.5.5. The Change-of-Variance Function (CVF) of ψ at F is defined as

CV F (x;ψ, F ) =
∂

∂ε
[V (ψ, Fε)]ε=0,

for all x ∈ R \D(ψ) and where V (ψ, Fε) is the asymptotic variance of the M -estimator defined by

ψ under model Fε.

Definition 1.5.6. The Change-of-Variance Sensitivity (CVS) of the M -estimator ψ is defined as

k∗(ψ, F ) = sup{CV F (x;ψ, F );x ∈ R \D(ψ)}.

Moreover, an estimator is V -robust when its CVS, k∗, is finite.

It follows that the CVF is well-defined and continuous in R \D(ψ), where it equals

CV F (x;ψ, F ) =
A(ψ)
B(ψ)2

[
1 +

ψ2(x)
A(ψ)

− 2
ψ′(x)
B(ψ)

]
.

These definitions were later extended to piecewise continuous ψ-functions (Rousseeuw, 1982) and

to linear regression problems (Ronchetti and Rousseeuw, 1985). We summarize the latter below.

The CVF in Linear Models

Ronchetti and Rousseeuw (1985) extended the notion of Change-of-Variance Function to regression

problems. Working in the framework of GM -estimators, presented in Definition 1.5.3, they defined

Definition 1.5.7. The Change-of-Variance Function (CVF) of the GM -estimator corresponding

to the functional T at H is defined as the p× p matrix

CV F ((x, y);T,H) =
∂

∂ε
[V (T,Hε)]ε=0

for all (x, y) where it exists and where V (T,Hε) is the asymptotic variance of T under model Hε.

In analogy to the gross-error-sensitivity, two different measures of sensitivity were intro-

duced.

Definition 1.5.8. The unstandardized Change-of-Variance Sensitivity of T is defined as

k∗u(T,H) = sup{tr CV F ((x, y);T,H)/tr V (T,H);x ∈ Rp, y ∈ R \D(x, δ)}.
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and the (self-)standardized Change-of-Variance Sensitivity is defined as

k∗s(T,H) = sup{tr(CV F ((x, y);T,H)V −1(T,H));x ∈ Rp, y ∈ R \D(x, δ)}. (1.16)

Moreover, an estimator is V -robust when k∗ is finite.

Maronna and Yohai (1981) showed that under certain conditions, the GM estimators are

consistent and asymptotically normal with asymptotic variance covariance matrix

V (T,H) =
∫
IF ((x, y);T,H)IFT ((x, y);T,H)dH(x, y)

= M−1(δ,H)Q(δ,H)M−1(δ,H),

where Q(δ,H) =
∫
δ2(xi, (yi − xiT (H)/σ)xxT dH(x, y). Replacing H with Hε in (1.17) and

following Definition 1.5.7, the CVF in regression is given by

CV F ((x, y);T,H) = M−1QM−1 + δ2(x, y)M−1xxTM−1

−δ′(x, y)
[
M−1xxTM−1QM−1 +M−1QM−1xxTM−1

]
,

where M = M(δ,H) and Q = Q(δ,H) (Ronchetti and Rousseeuw, 1985).

The CVF and the IF have many characteristics in common (Hampel et al., 1986). However,

these curves are not interpreted in the same way. Both large positive and negative values of the

IF are unfavorable, meaning a large asymptotic bias caused by the contamination. Unlike the case

of the IF, one does not have to worry about large negative values of the CVF as much as about

large positive values.

1.5.4 Extensions to more general models

The robustness of parameter estimates has been considered by several authors for more general

models. Cantoni and Ronchetti (2001) derived robust estimates for GLMs based on estimating

equations that are natural generalizations of quasi-likelihood functions. Fellner (1986) suggested

robust estimation methods in linear mixed models. Yau and Kuk (2002) borrowed Fellner’s ideas

to obtain robust estimators in GLMMs. Neuhaus et al. (1992) examined mixing distribution

misspecification in logistic mixed models. Gustafson (1996) investigated the magnitude of the
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asymptotic bias using an approximation based on infinitesimal contamination of the mixing dis-

tribution for some conjugate GLMMs. Smith and Weems (2004) showed that the MLEs of the

Poisson-lognormal models, an important class of GLMMs, are B-robust under perturbations of the

mixing distribution. However, none of them examines the Change-of-Variance Function in these

more general scenarios.

In Chapters 2 and 3 we extend the notion of CVF to GLMs and GLMMs respectively and

use it to study the infinitesimal behavior of the asymptotic variance of some well known estimators

under contamination. Chapter 4 introduces a Robust Instrumental Variables Estimator for linear

models with endogeneity and analyzes its robustness properties by means of its IF. The IF is also

used to estimate the variance of the coefficient estimates and to develop some diagnostic techniques.

1.5.5 Robust Multivariate Location and Scatter Matrix Estimation

In Chapter 4 we propose an estimator for Measurement Error Models based on robust multivariate

location and scatter matrix estimators. It is well known that the usual sample mean (X̄), and sam-

ple variance covariance matrix (S2), are extremely sensitive to outliers. In this section we review

some robust location and scatter matrix estimators that have been proposed in the literature.

Multivariate M -estimators

Maronna (1976) extended the univariate definition on M -estimators to the multivariate scenario.

An M -estimate θ̂ = (t,C) of multivariate location and covariance θ = (µ,Σ) is defined as the

solution to the equations

1
n

n∑
i=1

v1 (d(xi, t;C)) (xi − t) = 0

1
n

n∑
i=1

v2
(
d(xi, t;C)2

)
(xi − t)(xi − t)T = C.

where v1 and v2 are weighting functions which control the influence of outliers on the location and

covariance estimates, and, for ease of notation, we define d(x, t;C) = [(x− t)TC−1(x− t)]1/2.

Note that if we let v1(s) = v2(s2) = 1, we obtain the sample mean and covariance as our

estimates. Bounded choices of v1 and v2 lead to robust multivariate estimates.
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The M -estimate is then the solution of a system of nonlinear equations of the weighted

sample moments. Maronna (1976) shows several important properties of the M -estimate under

certain conditions on the weighting functions and distribution, including existence, uniqueness and

convergence. A serious drawback of the M -estimators is that, as in the case of regression problems,

they have a low breakdown point which decreases with increasing dimensionality of the data. This

led to a search for multivariate affine equivariant estimates which possess a high breakdown inde-

pendently of the dimension of the data. The following estimators are some alternative multivariate

estimators with these properties.

Minimum Volume Ellipsoid (MVE)

Rousseeuw (1985) introduced an affine equivariant estimator with maximal breakdown point known

as the Minimum Volume Ellipsoid estimator. The idea is to find an ellipsoid containing h points

which is of minimum volume. The location estimator is then given by the center of the ellipsoid and

the covariance estimator is defined as the shape matrix of the ellipsoid (multiplied by a suitable

factor to obtain consistency). Davies (1987) and Lopuhaä and Rousseeuw (1991) proved that

h = [(n − p + 1)/2] leads to maximal robustness (maximal breakdown point). However, it was

shown that the MVE estimator is not
√
n consistent (Davies, 1992). Its low convergence rate

reduces the relative efficiency of the estimator.

In most applications, it is not feasible to consider all sets of h points of the data and compute

the volume of the smallest ellisoid containing them. Instead, one can obtain an approximate

solution using a resampling algorithm (Rousseeuw and Leroy, 1987).

Minimum Covariance Determinant (MCD)

Another multivariate location and covariance estimator which is affine equivariant and has max-

imum breakdown point is the Minimum Covariance Determinant estimator (Rousseeuw 1983,

1984). This estimator corresponds to the sample mean and covariance from the set of h points

whose sample covariance has the minimum determinant or what is the same, for which the classical

confidence ellipsoid has minimum volume. Moreover, this robust estimator has the normal rate of
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convergence,
√
n, making it more attractive than the MVE estimator.

The computational complexity is a major issue regarding the MCD. To find an exact so-

lution requires searching the entire space of all possible subsets of h out of n data points. Thus,

the computational burden grows combinatorially with the sample size. However, there are fast

approximations to the MCD, the most prevalent of which is proposed by Rousseeuw and Van

Driessen (2002).

Multivariate S-estimators

Davies (1987) and Lopuhaä (1989) extended regression S-estimates for multivariate location and

covariance estimators. Lopuhaä defines the S-estimate θ̂ = (t,C) as the solution to the optimiza-

tion problem

min
(t,C)∈(Rd, PDS(d))

{|C|}

such that

1
n

n∑
i=1

ρ (d(xi, t;C)) = b0

where PDS(d) is the set of all positive definite symmetric matrices of order d and both b0 and ρ

have to be chosen.

Note that as in the regression case, choosing ρ(s) = s2 yields to the least squares solution

for the location-covariance problem. Choosing b0 = d for appropriate scaling of the covariance

matrix, the S-estimate reduces to the sample mean and covariance matrix as the unique solution

(Grübel, 1988). The MVE and the MCD described in previous sections are also particular cases

of S-estimators. For example, the MVE estimator can be obtained by using the discontinuous

ρ-function

ρ(u) =


0 if | u |< (χ2

d,0.5)
1/2

1 otherwise

and setting b0 = 1/2.

Lopuhaä and Davies proved many of the same results such as existence, convergence, Fisher

consistency, and asymptotic normality but under different conditions on the ρ function and the
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underling distribution. Moreover, Davies demonstrated an even more significant attribute of S-

estimates, which is the ability to achieve the maximal breakdown point (asymptotically 1/2) re-

gardless of dimension for an appropriate choice of ρ.

We create an algorithm to compute this estimator in S-Plus/R which is available under

request.

Coordinatewise and pairwise estimators

Much faster estimates can be computed if one drops the requirements of positive definiteness and

affine equivariance. A straightforward approach for multivariate location is to simply calculate a

robust location estimate for each individual variable in the dataset. In the case of the multivariate

covariance matrix, one can similarly apply a robust covariance estimate to each pair of variables.

Estimates of this type are called coordinatewise and pairwise, respectively. The pair and coordi-

natewise approach is appealing in that the resulting estimators inherit the robustness (breakdown

point) of those estimators applied to each variable or pair of variables respectively and it reduces

the computational complexity. However, the estimators obtained are not affine equivariant and

the scatter matrix is not guaranteed to be positive definite.

Recently, Alqallaf et al. (2002) and Maronna and Zamar (2002) proposed new pairwise

methods that preserve positive definiteness and are computationally inexpensive. With sequen-

tial algorithms these methods can be applied to problems with up to a few hundreds variables.

Moreover, parallel algorithms can be used to scale these estimators to problems with thousands of

variables (see Chilson et al., 2003).
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Chapter 2

Change-of-variance function in GLMs

2.1 Introduction

In this Chapter we derive the Change-of-Variance function (CVF) and the Change-of-Variance

sensitivity (CVS) of M -estimators of GLM parameters in order to examine the sensitivity of

the asymptotic variance-covariance matrix of the estimates under a slight contamination of the

distribution of the random components. Although there exists some previous work on robust

inference in GLMs, the CVF was studied only for classical linear models. The following paragraphs

contain a brief survey of the estimation methods commonly used for GLMs and some robust

procedures suggested in the literature.

Generalized Linear Models have been introduced by Nelder and Wedderburn (1972) as a

unifying family of models with not necessarily normal responses, which allow a nonlinear link

between the mean of the response variable and the predictors. This family includes a variety of

commonly used models such as Poisson regressions to model count data, proportional hazard mod-

els and accelerated failure time models to model survival times, and logistic and probit regressions

to model binary response variables. A detailed description of GLMs was presented in Section 1.2.

In general, inference about these models is based on maximum likelihood procedures assum-

ing that the model is completely and correctly specified (Nelder and Wedderburn, 1972; Fahrmeir

and Kaufmann, 1985). However, slight violations of these assumptions can have a potentially large

influence on the estimator. Pregibon (1982) studied the sensitivity of the MLE to outlying and

influential points in logistic regression models. He proposed a resistant fitting method of estima-

tion consisting of minimizing a modified deviance function which limits the effect of observations

poorly explained by the model. Other work on robustness in GLMs includes Stefanski et al. (1986)

and Künsch et al. (1989). Following Hampel’s problem (1968, 1974) in the single parameter case,

23



they proposed optimal bounded-influence estimators. Imposing a bound on the Influence Function,

they found an estimator which minimizes the asymptotic variance matrix in the strong sense of

positive-definiteness. Furthermore, Cantoni and Ronchetti (2001) considered a class of Mallows-

type robust estimators, where the influence on the estimators of deviations in the y-space and in

the explanatory variables are bounded separately. They discuss robust estimators of a general-

ized linear model based on quasi-likelihood methods (see 1.2.2 for a definition of quasi-likelihood

estimators.)

Most of the research on the nonrobustness of estimators in GLMs is focused on the sen-

sitivity of the estimator to outlying and influential data points. However, a perturbation of the

model assumptions may also drastically affect the asymptotic variance of the estimator, leading to

decreased precision and wider confidence intervals. Ronchetti and Rousseeuw (1985) introduced

the notion of Change-of-Variance Function to investigate the influence of contamination at a sin-

gle data point (x, y) on the asymptotic variance of the regression parameters of a linear model.

However, extensions to GLMs have not been studied.

This Chapter is organized as follows. In Section 2.2 we extend the notion of CVF and CVS

of M -estimators to GLMs. In particular, the MLE is analyzed in detail in Section 2.2.1. In Section

2.3 we study the CVF of a subclass of bounded influenced M -estimators commonly used in the

robustness literature. Finally, a simulation is performed for a Logistic model and the results are

summarized in Section 2.4. We end this Chapter with some conclusions.

2.2 CVF of the M -estimators

In this Section we derive the CVF for GLMs to study the effect of an ε-contamination of the

nominal distribution on the asymptotic variance of the M -estimators. Although Definitions 1.5.5

and 1.5.6 were made in the framework of M -estimation of a one-dimensional parameter, they can

be extended to the case of multivariate parameters. In particular, Ronchetti et al. (1985) defined

the CVF and the CVS for estimators of the regression coefficients of classical linear models. In this

Section we extend these definitions for M -estimators of GLM parameters under a contamination
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in the nominal distribution. We first introduce some notation that is going to be used throughout

this Chapter.

Consider the model introduced in Section 1.2.1. Let H0 the true distribution of the in-

dependent pairs (X, Y ). Suppose that the nominal distribution H0 is slightly contaminated by

a distribution G, so that the random pairs (X, Y ) are actually generated from Hε which is an

ε-contamination of the distribution H0. That is,

Hε = (1− ε)H0 + εG. (2.1)

Using G(u, v) = ∆(x,y)(u, v), the probability measure which puts all its mass at (x,y), the distri-

bution given in (2.1) may describe a mixture which contains a fraction of ε of outliers at (u,v).

Notation 2.2.1. Let Eε be the expected value with respect to Hε. Similarly define EH0 .

Consider the class of M -estimators, β̂ψ, defined implicitly as the solution of

1
n

n∑
i=1

ψ(xi, yi;β) = 0. (2.2)

for suitably chosen functions ψ from Rp × R× Rp to Rp such that

EH [ψ(X, Y ;β)] = 0.

Under regularity conditions (Huber, 1967; Stefanski et al., 1986), β̂ψ is consistent and asymptoti-

cally normal with asymptotic variance given by

V (ψ,H0) = M−1
0 Q0

{
M−1

0

}T
, (2.3)

where

M0 = −EH0

[
∇βψ(X, Y ;β)

∣∣
β=β0

]
, (2.4)

Q0 = EH0

[
(ψ(X, Y ;β))(ψ(X, Y ;β))T

∣∣
β=β0

]
. (2.5)

Finally let βε the solution of the equation

Eε[ψ(X, Y ;β)] = 0, (2.6)
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and let Mε and Qε be the matrices defined in (2.4) and (2.5) replacing H0 and β0 by Hε and βε,

respectively.

We extend Definition 1.5.5 for GLMs by

CV F (x, y;ψ,H) =
dV (ψ,Hε)

dε

∣∣∣∣
ε=0

where V (ψ,Hε) = M−1
ε Qε

{
M−1
ε

}T . Assuming that interchange of expectation and differentiation

is allowed, we obtain

CV F (x, y;ψ,H) =
dM−1

ε

dε

∣∣∣∣
ε=0

Q0

{
M−1

0

}T
+M−1

0

dQε
dε

∣∣∣∣
ε=0

{
M−1

0

}T
+M−1

0 Q0

d
{
M−1
ε

}T
dε

∣∣∣∣
ε=0

,

(2.7)

Following natural calculations we derive the CVF:

(
dMε

dε

∣∣∣∣
ε=0

)
ij

=
p∑
s=1

(Kij)sψs(x, y;β0)− ψ′ij(x, y;β0)− (M0)ij , (2.8)

where (Kij)s is the sth element of the p-dimensional vector given by

Kij = −EH
[
∇βTψ′ij(X, Y ;β)

∣∣
β=β0

]
M−1

0 ,

and ψ′ij is the (ij)th element of the (p× p)-matrix ψ′ given by

ψ′(X, Y ;β) = ∇βψ(X, Y ;β).

We can express (2.8) in matrix notation as

dMε

dε

∣∣∣∣
ε=0

= W (x, y;β0)−ψ
′(x, y;β0)−M, (2.9)

where (W (x, y;β0))ij =
∑p
s=1(Kij)sψs(x, y;β0).

Similarly,

dQε
dε

∣∣∣∣
ε=0

= EH0 [ψ
′(X, Y ;β0)M

−1
0 ψ(x, y;β0)ψ

T (X, Y ;β0)]

+EH0 [ψ(X, Y ;β0)ψ
T (x, y;β0)

{
M−1

0

}T {
ψ′(X, Y ;β0)

}T ]

+ψ(x, y;β0)ψ
T (x, y;β0)−Q0. (2.10)

26



Thus, substituting (2.9) and (2.10) into (2.7) we obtain

CV F (x, y;ψ,H0) =
[
−M−1

0 W (x, y;β0)M
−1
0 +M−1

0 ψ′(x, y;β0)M
−1
0

]
Q0

{
M−1

0

}T
+M−1

0 Q0

[
−M−1

0 W (x, y;β0)M
−1
0 +M−1

0 ψ′(x, y;β0)M
−1
0

]T
+M−1

0

[
L(x, y;β0) +LT (x, y;β0)

] {
M−1

0

}T
+M−1

0

[
ψ(x, y;β0)ψ

T (x, y;β0)
] {
M−1

0

}T
+M−1

0 Q0

{
M−1

0

}T
, (2.11)

where L(x, y;β0) is the first expectation in the RHS of (2.10).

Finally, the following definition generalizes the Change-of-Variance Sensitivity (CVS) of the

one-dimensional location case defined in (1.16).

Definition 2.2.1. The self-standardized Change-of-Variance Sensitivity of an M -estimators de-

fined by a function ψ is given by

k∗s(ψ,H) = sup
(x,y)

{tr[CV F ((x, y);ψ,H)V −1]}. (2.12)

where V is the asymptotic variance defined in (2.3). We say that an estimator is V-robust when

k∗ is finite.

Substituting (2.11) and (2.3) into (2.12) we derive the CVS of the M -estimators defined in (2.2):

k∗(ψ,H) = p+ sup
(x,y)

{2tr[ψ′(x, y)M−1] + 2
p∑
i=1

(ci − ai)ψi(x, y)

+ψT (x, y)Q−1ψ(x, y)}, (2.13)

where ci is the ith component of the p-dimensional row vector c = EH
[
ψT (X, Y )Q−1ψ′(X, Y )M−1

]
and ai =

∑p
r=1

∑p
k=1(M

−1)kr(Krk)i.

Ronchetti and Rousseeuw (1985) proved that V -robustness implies B-robustness (bounded

IF) for classical linear models. Unfortunately, this does not hold in general for GLMs. Note that

the last term in the RHS of the supremum in (2.13) is the argument of the gross error sensitivity
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of an M -estimator in GLMs (Stefanski et al., 1986; Künsch et al., 1989). However, the signs of

the other two terms are not known to establish any further implication.

2.2.1 Examples

In this Section we analyzed the CVS of the MLE for GLMs and the M -estimators for linear models

in detail.

1) Maximum Likelihood Estimator

As the MLE is a particular M -estimator when

ψ(x, y;β) = ∇β log(fH(x, y;β)), (2.14)

following Definition (2.13) one can derive its CVS and study the V -robustness of the MLE in

GLMs. For simplicity, in this Section we omit the subindex for each observation.

As the distribution of X does not depend on the unknown parameter β, using (1.1) the

function ψ defined in (2.14) reduces to

ψ(x, y;β) = [y − h(η)]
h′(η)
V (µ)

xT , (2.15)

where V (µ) = V [Y |x] = b′′(θ) and h(·) is the inverse of the link function g(·) defined in (1.2). For

simplicity in the notation, let

s(η) =
h′(η)
V (µ)

(2.16)

Thus, differentiating (2.14) with respect to β, we obtain

ψ′(x, y;β) =
[
− h′(η)s(η) + (y − h(η))s′(η)

]
xTx.

Then,

k∗(ψ,H) = p+ sup
(x,y)

{2[−h′(η)s(η) + (y − h(η))s′(η)
]
(xM−1xT )

+(y − h(η))s(η)(c− a)xT + [(y − h(η))s(η)]2(xQ−1xT )}.

Note that when the canonical link function g(·) is used, the function s(·) in (2.16) reduces to unity
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and the CVS is given by

k∗(ψ,H) = p+ sup
(x,y)

{−2h′(η)(xM−1xT )

−(y − h(η))axT + [y − h(η)]2(xQ−1xT )}. (2.17)

As the first term is linear in [y − h(η)]x, we need to analyze only the last two terms of (2.17).

Thus, we need to study the following quantity:

sup
(x,y)

{−2h′(η)(xM−1xT ) + [y − h(η)]2(xQ−1xT )}. (2.18)

We can rewrite (2.18) as

sup
(x,y)

{xA(x, y)xT }, (2.19)

where A(x, y) = −2h′(η)M−1 +[y−h(η)]2Q−1. In this case, the (p×p) matrix M defined in (2.4)

is the Fisher information matrix. Then, both Q and M are positive definite.

Note that if the support of Y is not bounded, the CVS defined in (2.17) is infinity and the

MLE is not V -robust. When the support of Y is bounded, the value of the CVS depends on h(·),

the inverse of the link function. Thus, in general, we can not say whether the MLE is V -robust

or not in this case. We now study the CVS of the MLE in three commonly used GLMs using the

canonical link function.

a) Logit models: the canonical link function and its derivative are given by:

h(η) =
eη

1 + eη
, and h′(η) =

eη

(1 + eη)2

It is easy to see that the limits of these functions are equal to 1 and 0, respectively, as η tends to

+∞. Let y = 0 be fixed. Then

lim
η→+∞

A(x, y) = Q−1.

Thus,

lim
η→+∞

xTA(x, y)x = +∞

Then both the supremum in (2.19) and the CVS, k∗(ψ,H), equal +∞. Hence, the MLE is not

V -robust. However, it is important to note that in an experimental study, where the support of
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X is bounded, the MLE is V -robust.

b) Poisson models: the canonical link function and its derivative are given by:

h(η) = h′(η) = eη

Then, for any value of y fixed,

lim
η→+∞

A(x, y) = +∞,

Thus,

lim
η→+∞

xTA(x, y)x = +∞,

so k∗(ψ,H) equals +∞.

c) Gamma models: the canonical link function and its derivative are given by:

h(η) =
1
η
, and h′(η) = − 1

η2
.

In this case, the argument of (2.18) is bounded in x. However, for any fixed value of x,

lim
y→+∞

A(x, y) = +∞, (2.20)

Using (2.20), we prove that the supremum defined in (2.19) equals +∞. Thus k∗(ψ,H) equals

+∞.

Thus, despite of the widespread use of the MLE for GLMs, in general, this estimator is not

V -robust.

2) M-estimators for linear models

As the normal distribution belongs to the exponential family defined in (1.1), linear regres-

sion models are a particular case of GLMs. In this example, we show that k∗(ψ,H) reduces to

equation (3.11) in Ronchetti and Rousseeuw (1985) when ψ defines an M -estimator. That is,

ψ(x, y;β) = δ(x, (y − xβ))xT , (2.21)

30



where the function δ(x, ·) is continuous except on a finite set, odd and δ(x, v) ≥ 0 when v ≥ 0 for

all x (see Hampel et al., 1986, for detailed regularity conditions on this function).

Let δ′(u, v) = ∂δ(u, v)/∂v. Then,

ψ′(x, y;β) =
[
− δ′(u, v)

∣∣
(x,(y−xβ))

]
xTx, (2.22)

and, using the fact that δ(x, ·) is odd, we obtain

c = EH
[
ψT (X, Y )Q−1ψ′(X, Y )M−1

]
= −E

[
δ(X, (Y −Xβ))δ′(X, (Y −Xβ))XTQ−1XTXM−1

]
= 0, (2.23)

(Kij)s =
∑
k

EH

[
∂2ψi(X, Y ;β)

∂βj∂βk

]
(M−1)ks

=
∑
s

E
[
δ′′(X, (Y −Xβ))XiXjXk

]
(M−1)ks = 0. (2.24)

Thus, substituting (2.21)-(2.24) into (2.13), we obtain

k∗(T,H) = p+ sup
(x,y)

{−2δ′(x, (y − xβ))xM−1xT

+δ2(x, (y − xβ))xQ−1xT ]}.

Ronchetti and Rousseeuw (1985) proved that V -robustness implies B-robustness and that if δ(x, ·)

is nondecreasing and QM−1 is nonnegative definite, then V -robustness and B-robustness are equiv-

alent.

2.3 Robust M -estimators

In previous Section we proved the nonrobustness of the MLE in linear models. There have been

several proposals for choosing the function δ in (2.21) for linear regression problems so that the

resulting estimator is both B- and V -robust (eg. Krasker and Welsch, 1982; Hampel et al., 1986).

In general they are of the form

δ(x, r) = w(x)ψ(rv(x)), where r =
y − xβ
σ

. (2.25)

Mallows- and Schweppe-type estimators are those for which v(x) = 1 and v(x) = 1/w(x) respec-

tively.
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Extensions to GLMs of both types of estimators have been proposed by Stefanski et al.

(1986), Pregibon (1981), Künsch (1989), and Cantoni and Ronchetti (2001), among others. All

these authors focused on the B-robustness of the proposed estimators but none of them analyzed

their V -robustness. In this Section we study the V -robustness of a class of Mallows-type estimators

that are B-robust. Cantoni and Ronchetti (2001) proposed these estimators as a natural extension

of some robust estimators of linear models for GLMs.

2.3.1 A Class of robust M -estimators

In this Section we analyze a class of estimators defined as the solution of (2.2) when

ψ(x, y;β) = ν(ri)ω(xi)µ′i − d(β), (2.26)

where r = (y − µ)/V 1/2 are the Pearson residuals, µ′ = ∇βµ = h′(η)x, d(β) = EH [ν(r)ω(x)µ′]

and ν(.), ω(.) are weight functions.

These estimators are a natural extension of (2.25) and a robust version of (2.15) for GLMs.

As in general the responses are not symmetrically distributed around their means, replacing r with

(y − µ)/V 1/2(µ) in (2.25) does not lead to consistent estimators. Thus, a correcting term, d(·),

has to be added in the estimating function, which requires full knowledge of the underling distri-

bution of (X, Y ) (Stefanski et al., 1986 and Pregibon, 1981). Künsch et al. (1989) and Cantoni

and Ronchetti (2001) defined a class of conditionally unbiased bounded influence estimators that

assumed only the conditional distribution of Y given X known.

As the influence function of M -estimators is given by IF (x, y;ψ,H) = M−1ψ(x, y), a

bounded function ψ ensures their B-robustness. Thus, for a bounded function ν and a down-

weighting function ω in (2.26), the corresponding estimators are B-robust (Cantoni and Ronchetti,

2001). To study their V -robustness, we derive the CVS.
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2.3.2 CVS

We start differentiating the function ψ defined in (2.26) with respect to β to derive the CVS of

this class of estimators. We have

ψ′(x, y;β) = ω(x)t(x, y;µ)xTx−∇βd(β),

where the scalar function t is given by

t(x, y;µ) =
{
ν′(r)

[
rV ′(µ)
2V (µ)

− 1
V 1/2(µ)

]
(h′(η))2 + ν(r)h′′(η)

}
. (2.27)

Then

tr(ψ′M−1) = ω(x)t(x, y;µ)xM−1xT − tr(∇βd(β)M−1). (2.28)

Plugging (2.26) and (2.28) into (2.13) we obtain the CVS given by

k∗(ψ,H) = p− 2tr(∇βd(β)M−1 + d(β)TQ−1d(β)) + sup
(x,y)

{2ω(x)t(x, y;µ)xM−1xT

+2[ν(r)ω(x)h′(η)x− d(β)](c− a)T + [ν(r)ω(x)h′(η)]2xQ−1xT }, (2.29)

where the constant vectors c and a were defined in (2.13).

It is interesting to see that in general, for GLMs, V -robustness does not imply B-robustness

as it was proved in particular for classical linear models (Ronchetti and Rousseeuw, 1985). The

function ω(x) may downweight leverage points so that ψ is bounded and still may not suffice to

control the scalar function t(X, Y ;µ) defined in (2.27). As an example, consider a Poisson model

with a canonical link (see Example 1-b in Section 2.2.1). In this case,

h(η) = h′(η) = h′′(η) = V (µ) = eη

The following choices of ω(x) and ν(.) ensure the B-robustness of the estimators.

ω(x) =
1

‖ eηx ‖
and hc(r) =


r |r| ≤ c

c sign(r) |r| > c

(2.30)

where c is a tuning constant. For this particular case, the last two terms of (2.29) are bounded as ψ

is bounded. However, the function t(X, Y ;µ) defined in (2.27) contains a quadratic term e2η which

is not downweighted by ω(x). Then, the first term in the supremum in (2.29) is still unbounded
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with respect to x. Thus, for these choices of weighting functions, the resulting estimators are not

V -robust.

2.4 Simulation

We carried out a set of simulations to compare the sensitivity of the estimated variance of the MLE

with the estimated variance of a robust estimator (ROB) under different levels of contamination

in a Logistic model with one covariate. For each level of contamination, we generated 500 Monte

Carlo replications of the response variable using S-Plus Version 6.2.1. The values of the covariate

are fixed in all the simulations and range from 1.52 to 2.36 in an equally spaced grid. The MLE

of the regression coefficients and the estimates of its variance matrix were obtained using the glm

function available in S-Plus. The robust estimator is in the class of M -estimators defined in (2.26)

using the Huber function defined in (2.30) for ν(·) and w(x) = 1. For the Huber function we used

two different values for the tuning constant, c = 1.2 and c = .8. The estimates of the coefficients

and the variance matrix were obtain using an algorithm written by Cantoni and Ronchetti (2001).

We also report the asymptotic efficiency of the robust estimator relative to the MLE. This quantity

corresponds to the ratio of the traces of the variance matrices.

2.4.1 The Logistic model

We generated clustered binary data according to the following model

P (Yij = 1) =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
, for i = 1, . . . , 29; and j = 1, . . . , 20, (2.31)

with regression coefficients given by β0 = 2 and β1 = −2. The binary data were grouped by

covariate class so that the responses represent the number of successes in each cluster.

Table 2.1 summarizes the results of the parameter estimates obtained by the MLE and the

robust estimator (ROB) for the generated data. The last two rows correspond to the Monte Carlo

standard errors and the mean of the standard errors obtained using the algorithms, respectively.

When there is no contamination, the biases of both the MLE and the ROB estimators of the beta

coefficients are not significantly different from zero. The bias of the robust estimator is reduced
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when its tuning constant c is smaller. However, the efficiency of the estimator relative to the MLE

decreases as well from .9467 to .8656. The estimated standard errors are slightly overestimated

using the glm and Cantoni and Ronchetti’s algorithms.

Table 2.1: Summary of maximum likelihood (MLE) and robust (ROB) estimation for un-

contaminated data in a Logistic Model.

c = 1.2 c = .8

MLE ROB MLE ROB

β0 β1 β0 β1 β0 β1 β0 β1

Min. -0.7548 -3.3021 -1.1359 -3.3392 -0.8777 -3.3640 -0.7365 -3.7034

1st Qu. 1.3687 -2.3304 1.3228 -2.3717 1.2806 -2.3166 1.2526 -2.3580

Median 2.0231 -2.0128 2.0788 -2.0332 2.0154 -2.0234 2.0320 -2.0108

Mean 2.0195 -2.0121 2.0126 -2.0078 1.9753 -1.9898 1.9841 -1.9936

3rd Qu. 2.6667 -1.6652 2.6686 -1.6166 2.5894 -1.5970 2.7161 -1.6099

Max. 4.4567 -0.6145 4.6807 -0.4784 4.4945 -0.5340 5.0911 -0.6397

MC.sd 0.9266 0.4974 0.9519 0.5112 0.9196 0.4915 0.9615 0.5130

est.sd 0.9467 0.5068 0.9824 0.5262 0.9466 0.5065 1.0174 0.5445

2.4.2 The contaminated model

In this Section we examine the effect of different levels of contamination on the maximum likelihood

and the robust estimation. In each generated dataset, one cluster i is randomly chosen and with

probability (1− ε) the observations yij in the cluster that are 0 are turned into 1. The responses

are again grouped by covariate class and we fit the Logistic model described in (2.31).

Tables 2.2-2.4 present the results of the simulation for the data generated under a conta-

minated model, using a tuning constant c = 1.2 and c = .8 to construct the robust estimator.

Figure 2.1 and Figure 2.2 show that the bias of the MLE increases as the level of contamination

increases, while that of the robust estimator (ROB) remains almost constant for both values of

c. However, the bias of these estimators is not significantly different from zero considering the
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estimated standard errors presented in last row of these tables.

Table 2.2: Summary of maximum likelihood (MLE) and robust (ROB) estimation using

c = 1.2, for various levels of contaminated data in a Logistic Model.

MLE ROB MLE ROB

β0 β1 β0 β1 β0 β1 β0 β1

5% contamination 10% contamination

Min. -1.7595 -3.5773 -1.8903 -3.6289 -1.1987 -3.6296 -1.1567 -3.8509

1st Qu. 1.3807 -2.3772 1.3773 -2.3863 1.3098 -2.3147 1.2777 -2.3691

Median 2.0590 -2.0280 2.0892 -2.0247 1.9862 -1.9673 2.0122 -1.9989

Mean 2.0466 -2.0254 2.0290 -2.0148 1.9453 -1.9673 1.9806 -1.9875

3rd Qu. 2.6799 -1.6664 2.7376 -1.6564 2.6289 -1.6297 2.6854 -1.6202

Max. 4.9967 -0.1254 5.1118 -0.0503 4.8443 -0.2771 5.1597 -0.2814

20% contamination 30% contamination

Min. -0.8327 -3.6770 -0.8941 -3.4581 -0.9000 -3.5435 -0.5828 -3.4148

1st Qu. 1.2577 -2.3001 1.2968 -2.3304 1.0483 -2.3046 1.3224 -2.3494

Median 1.8884 -1.9313 1.9647 -1.9666 1.8508 -1.8810 1.9884 -1.9789

Mean 1.9190 -1.9366 1.9634 -1.9690 1.8661 -1.8954 2.0171 -1.9951

3rd Qu. 2.5661 -1.5923 2.6672 -1.5954 2.6417 -1.4769 2.6916 -1.6227

Max. 5.1027 -0.4582 4.6842 -0.4088 4.8628 -0.4323 4.7456 -0.6242

40% contamination 50% contamination

Min. -1.4049 -3.6251 -0.9642 -3.5806 -1.9302 -3.6233 -1.2113 -3.5559

1st Qu. 0.9911 -2.2364 1.2731 -2.3223 0.9138 -2.2813 1.2958 -2.4215

Median 1.9086 -1.8786 2.0225 -1.9736 1.7519 -1.7966 1.9846 -1.9757

Mean 1.7828 -1.8389 1.9740 -1.9722 1.7683 -1.8164 1.9957 -1.9805

3rd Qu. 2.5389 -1.4124 2.6264 -1.6031 2.6694 -1.3668 2.8081 -1.5955

Max. 5.1939 -0.1428 5.0892 -0.5024 5.1219 0.0796 4.9889 -0.3342
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Table 2.3: Summary of maximum likelihood (MLE) and robust (ROB) estimation using

c = .8, for various levels of contaminated data in a Logistic Model.

MLE ROB MLE ROB

β0 β1 β0 β1 β0 β1 β0 β1

5% contamination 10% contamination

Min -0.6247 -3.5177 -1.1913 -3.5637 -1.0991 -3.5059 -1.2039 -3.6807

1st Qu 1.3611 -2.3937 1.3877 -2.3985 1.2671 -2.2925 1.2936 -2.3186

Median 2.0484 -2.0152 2.0777 -2.0305 1.9197 -1.9419 1.9657 -1.9531

Mean 2.0594 -2.0334 2.0590 -2.0328 1.9232 -1.9507 1.9839 -1.9836

3rd Qu. 2.7384 -1.6762 2.7768 -1.6682 2.5642 -1.5879 2.6048 -1.5993

Max 4.7088 -0.6826 4.8789 -0.5246 4.9747 -0.3288 4.9895 -0.2965

20% contamination 30% contamination

Min -0.9245 -3.8372 -1.3915 -3.9301 -0.8242 -3.9357 -1.0934 -3.7273

1st Qu. 1.2288 -2.2896 1.3691 -2.3765 1.1221 -2.2363 1.3032 -2.3186

Median 1.9212 -1.8963 2.0182 -1.9693 1.8223 -1.8636 2.0180 -1.9884

Mean 1.9135 -1.9306 2.0646 -2.0188 1.8454 -1.8855 2.0010 -1.9898

3rd Qu. 2.5893 -1.5614 2.8056 -1.6373 2.4620 -1.5201 2.6552 -1.6164

Max. 5.3126 -0.4582 5.5562 -0.2790 5.5506 -0.5593 5.1225 -0.4277

40% contamination 50% contamination

Min. -1.2236 -4.1892 -0.7640 -3.8083 -1.6370 -4.3537 -0.9848 -4.0250

1st Qu. 1.0760 -2.2464 1.3246 -2.3371 0.8108 -2.3223 1.1498 -2.3348

Median 1.8088 -1.8266 2.0358 -1.9940 1.7012 -1.7711 1.9199 -1.9424

Mean 1.8166 -1.8535 2.0224 -1.9970 1.7622 -1.8147 1.9511 -1.9591

3rd Qu. 2.6091 -1.4548 2.6604 -1.6330 2.7166 -1.3026 2.6534 -1.5339

Max. 6.2623 -0.2642 5.5913 -0.6453 6.1654 0.0290 5.7108 -0.4373
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Table 2.4: Monte Carlo and estimated standard errors of the maximum likelihood (MLE)

and the robust (ROB) estimators for various levels of contaminated data in a Logistic Model.

c = 1.2

MLE ROB MLE ROB

β0 β1 β0 β1 β0 β1 β0 β1

5% contamination 10% contamination

MC.sd 0.9788 0.5233 0.9932 0.5307 0.9969 0.5325 1.0276 0.5495

est.sd 0.9465 0.5068 0.9816 0.5258 0.9425 0.5040 0.9801 0.5246

20% contamination 30% contamination

MC.sd 1.0044 0.5436 1.0052 0.5412 1.0844 0.5819 1.0010 0.5349

est.sd 0.9318 0.4978 0.9735 0.5207 0.9233 0.4926 0.9726 0.5205

40% contamination 50% contamination

MC.sd 1.1692 0.6240 1.0343 0.5531 1.3121 0.7014 1.0621 0.5657

est.sd 0.9151 0.4874 0.9719 0.5198 0.9070 0.4826 0.9703 0.5190

c = .8

5% contamination 10% contamination

MC.sd 0.9421 0.5075 1.0084 0.5418 0.9636 0.5157 1.0008 0.5379

est.sd 0.9474 0.5074 1.0187 0.5457 0.9390 0.5019 1.0113 0.5410

20% contamination 30% contamination

MC.sd 0.9813 0.5282 1.0366 0.5584 1.0334 0.5499 1.0231 0.5447

est.sd 0.9296 0.4964 1.0076 0.5393 0.9236 0.4926 1.0097 0.5401

40% contamination 50% contamination

MC.sd 1.1270 0.6027 1.0440 0.5534 1.3252 0.7108 1.1097 0.5999

est.sd 0.9136 0.4867 1.0074 0.5389 0.9081 0.4833 1.0071 0.5384

Figure 2.3 and Figure 2.4 illustrate that the standard errors of the MLE slightly increase
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with the level of contamination while those of the ROB estimator are almost constant. Moreover,

Figure 2.5 and Figure 2.6 present the estimated bias of the standard errors of both estimators for

the two values of c, respectively. Again, the difference between the MC and the estimated standard

errors of the MLE becomes more important with more contamination. However, for both values

of c, bias of the estimated standard error of the ROB estimator remains almost unchanged.
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Figure 2.1: Bias of the MLE and the robust (ROB) estimator using c = 1.2.
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Figure 2.2: Bias of the MLE and the robust (ROB) estimator using c = .8.
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Figure 2.3: Estimated standard errors of the MLE and the robust (ROB) estimator

using c = 1.2.
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Figure 2.4: Estimated standard errors of the MLE and the robust (ROB) estimator

using c = .8.
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Figure 2.5: Bias of the estimated standard errors of the MLE and the robust (ROB)

estimator using c = 1.2.
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Figure 2.6: Bias of the estimated standard errors of the MLE and the robust (ROB)

estimator using c = .8.
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2.5 Conclusions

In this Chapter we extend the definitions of CVF and CVS to GLMs and study how an ε-

contamination in the distribution perturbs the asymptotic variance of the estimators. We derive

the CVF and the CVS for the class of M -estimators and we analyze in detail the MLE of GLMs

with canonical links. In particular we derive the CVS for three commonly used GLMs: Logistic,

Poisson and Gamma models. We found that, in general, the MLE is not V -robust, thus a conta-

mination of the distribution can seriously affect its asymptotic variance. Moreover, we obtain the

CVF for the class of M -estimators in the subclass of linear models, which was previously analyzed

by Ronchetti and Rousseeuw (1985). We also study the CVS of a class of Mallows-type estimators

and conclude that in general, for GLMs, V -robustness does not imply B-robustness as was proved

for linear models (Ronchetti and Rousseeuw, 1985).

We perform a simulation study to compare the performance of the MLE with that of a

robust estimator in a Logistic model. In all simulated cases, the variance of the robust estimator

remains almost constant and unbiased under different levels of contamination. However, that of

the MLE increases with the level of contamination as well as its bias. The bias of the MLE is also

increasing while that of the robust estimators does not change significantly.
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Chapter 3

Change-of-variance function in GLMMs

3.1 Introduction

This Chapter investigates how the asymptotic variance of the estimators of Generalized Linear

Mixed Models (GLMMs) is affected when the conditional distribution of the responses is correctly

specified, but the mixing distribution of the random effects is slightly contaminated. To study

the infinitesimal stability of the asymptotic variance of the estimators, we extend the notion of

Change-of-Variance Function (CVF) and the Change-of-Variance Sensitivity (CVS) to GLMMs.

Generalized Linear Mixed Models are used to model the relationship between a function

of the mean of the responses and a linear predictor that include a linear combination of random

components. In addition GLMMs can accommodate nonnormally distributed responses such as

Gamma or Poisson random variables. The random effects included in the linear predictor allow

us to account for correlation between observations and overdispersion or to make subject-specific

inference. A commonly used estimator for these models is the marginal MLE. Provided that the

model is correctly specified and that the usual regularity conditions hold, this estimator is consis-

tent and asymptotically normal (White, 1982). Some authors derive the joint maximum likelihood

estimator to overcome computational difficulties (see Section 1.3.2). However, a contamination in

the mixing distribution does not affect the estimation of the model coefficients. Thus we are not

examining this estimator here. For further details see Section 1.3.

In most practical applications, one rarely knows the true model. A natural question is

what happens to the estimation if one does not assume the correct model. In particular, in this

Chapter we will examine the case where the conditional distribution of the responses is correctly

specified, but the mixing distribution of the random effects U is not. Gustafson (1996) studied

the inconsistency of maximum likelihood estimators for certain conjugate mixture models under
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misspecifications of the mixing distribution. He investigated the magnitude of the asymptotic bias

using an influence function approach. Smith and Weems (2004) extended Gustafson’s approach to

include a regression structure in the mean. They proved that the maximum likelihood estimators

are robust under perturbations of the mixing distribution for Poisson-lognormal models. Neuhaus

et al. (1992) examine the performance of the mixed-effects logistic regression MLE when the

mixing distribution is misspecified. By a simulation experiment, they also studied the effect of

the misspecification over the estimated standard errors of the estimators. However, to the best

of my knowledge, there is no previous analytical work on the local effect of a mixing distribution

misspecification in the asymptotic variance of the estimators for GLMMs.

The remainder of the Chapter is organized as follows. In Section 3.2 we extend the notions

of CVF and CVS for GLMMs. In particular, we derive the CVF of the (marginal) MLE. The CVS

of this estimator is analyzed in detail for the Poisson-Gamma model in Section 3.3 and for two

mixed-effects Binomial models in Section 3.4. A simulation study is performed for the Poisson-

Gamma model and the results are summarized in Section 3.5. We end with some conclusions and

some future research directions in Section 3.6.

3.2 The CVF of the M -estimators

A misspecification of the mixing distribution may affect not only the behavior of the estimator

itself but also its asymptotic variance. One can investigate the infinitesimal effects of a contami-

nation of the type (3.1) on the asymptotic variance of the estimator by studying the CVF and the

CVS. Although Definitions 1.5.5 and 1.5.6 were made in the framework of M -estimation of a one-

dimensional parameter, they can be extended to the case of multivariate parameters. Ronchetti

et al. (1985) defined the CVF and the CVS for estimators of classical linear regression coeffi-

cients. In this Section we extend these definitions for M -estimators of GLMMs parameters under

a contamination in the mixing distribution.

Consider the model introduced in Section 1.3.1. Let fF be the marginal density of Yi given
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Xi = xi when the random effects are distributed according to the mixing distribution F . That is,

fF (yi) = fYi|xi
(yi) =

∫
exp

{
yiθi − b(θi)

a(φ)
+ h(yi, φ)

}
f(u)du, i = 1, . . . , n.

We are interested in estimating the vector of unknown parameters γ = (βT , τT ) ∈ R(p+q), where

β ∈ Rp is the vector of regression coefficients and τ ∈ Rq is the vector of unknown parameters of

the mixing distribution.

Suppose that the mixing distribution F is slightly contaminated by a distribution G, so that

the random variables U are actually generated from a distribution which is an ε-contamination of

the nominal distribution, denoted

Fε = (1− ε)F + εG. (3.1)

We will assume that G is any distribution having the same first two moments as F . This restriction

on G ensures that γ is interpretable as the true parameter vector, no matter how much the

true model deviates from the nominal model (Gustafson, 1996). Let Λ be the class of all such

distributions G.

Notation 3.2.1. Let EF be the expected value taken with respect to the density fF . Similarly

define EG and Eε.

Let HF be the joint distribution of the response, the random effects and the covariates

assuming the correct distribution F for the random effects and HG be the corresponding one

when the contaminating distribution G is assumed. Note that a contamination of type (3.1)

in the mixing distribution induces the same kind of contamination in the joint distribution, i.e.

Hε = (1− ε)HF + εHG.

The M -estimator γ̂ is the solution of

n∑
i=1

ψ(xi, yi;γ) = 0 (3.2)

for suitably chosen functions ψ from Rp × R× R(p+q) to R(p+q) such that

EH [ψ(X, Y ;β)] = 0.
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Note that γ̂ can be also defined as γ̂ = T (Hn), where the functional T is implicitly defined by

∫
ψ(x, y;T (H))dH(x, y) = 0. (3.3)

Under regularity conditions, by the law of large numbers,

1
n

n∑
i=1

ψ(xi, yi;γ) → Eε[ψ(Xi, Yi;γ)],

where the expected value is taken under the true model (3.1). Let γε be the solution of the

equation

Eε[ψ(Xi, Yi;γ)] = 0. (3.4)

Then the zeros of (3.2) and those of (3.4) should also become close as n goes to infinity. In other

words, under regularity conditions (Huber, 1967) we expect γ̂ to converge to γε. In particular,

note that when ψ(x, y;γ) = ∇γ log(fF (y;x,γ)), then γ̂ is the MLE.

Definition 3.2.1. The Change-of-Variance Function (CVF) of T at HF under a contamination

G in the mixing distribution is defined as

CV F (T ,HF , G) =
∂

∂ε
[V (T ,Hε)]ε=0.

Definition 3.2.2. The unstandardized Change-of-Variance Sensitivity of T at HF is

k∗(T ,HF ) = sup
G∈Λ

{tr CV F (T ,HF , G)/tr V (T ,HF )}.

The estimator is called V -robust when its CVS, k∗, is finite.

In order to derive the CVF presented in Definition (3.2.1), we need the asymptotic variance

of the M -estimates of GLMMs parameters. Huber (1967) proved asymptotic normality of M -

estimators under weaker conditions than usual for a general class of models. Using a Taylor

expansion approach, one can derive the asymptotic variance presented in next theorem.

Theorem 3.2.1. Under regularity conditions, the asymptotic variance of the M -estimator γ̂ de-

fined by the functional T in (3.3) is given by

V (T ,Hε) = M−1
ε Qε

{
M−1
ε

}T
, (3.5)
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where

Mε = Eε

[
−∇γψ(X, Y ;γ)

∣∣
γ=γε

]
, (3.6)

Qε = Eε

[
(∇γψ(X, Y ;γ)) (∇γψ(X, Y ;γ))T ∣∣

γ=γε

]
. (3.7)

Applying Definition 3.2.1 to the asymptotic variance defined in (3.5), we can derive the CVF

of the M -estimators of GLMMs. As the MLE is a commonly used estimator in GLMMs (Anderson

and Aitkin, 1985; Crouch and Siegelman, 1990; McCulloch, 1997), in this Section we will derive

its CVF instead. In particular, in Sections 3.3 and 3.4 we will examine the CVF and the CVS of

the Poisson-Gamma models and two mixed effects Binomial models respectively.

3.2.1 The MLE

We introduce some notation that will be used throughout this Chapter. For simplicity, the subindex

i corresponding to the ith observation is omitted in the following results.

Notation 3.2.2. Let l = log fF (y;x,γ) be the log-likelihood function of Y given x under the

nominal model.

Notation 3.2.3. Let lr = (∂/∂γr) log fF (y;x,γ)
∣∣
γ=γ0

; lrj = (∂2/∂γr∂γj) log fF (y;x,γ)
∣∣
γ=γ0

;

and lrjk = (∂3/∂γr∂γj∂γk) log fF (y;x,γ)
∣∣
γ=γ0

, where γr = βr for r = 1, . . . , p, and γr =

τr for r = p+ 1, ..., p+ q.

Notation 3.2.4. Let Iks = [I−1(γ)]ks, where I(γ) is the Fisher information matrix.

Notation 3.2.5. EG−F (·) = EG(·)− EF (·).

Notation 3.2.6. Define Jrjk = EF [lrjk], and let Jrj be the vector obtained by fixing the first two

indices of the three-way array.

We start by evaluating (3.6) and (3.7) at ε = 0:

Mε|ε=0 = EF

[
−∇2

γγT log(fF (Y ;x,γ))
∣∣
γ=γ0

]
= I(γ0),

Qε|ε=0 = EF

[
(∇γ log(fF (Y ;x,γ))) (∇γ log(fF (Y ;x,γ)))T ∣∣

γ=γ0

]
= I(γ0).
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Assuming that interchange of expectation and differentiation is allowed, and after some

straightforward calculations, one obtains:

CV F (MLE,HF , G) =
∂V (ε)
∂ε

∣∣∣∣
ε=0

= I−1(γ0)
[
− 2

∂M(ε)
∂ε

∣∣∣∣
ε=0

+
∂Q(ε)
∂ε

∣∣∣∣
ε=0

]
I−1(γ0), (3.8)

where (
∂M(ε)
∂ε

∣∣∣∣
ε=0

)
ij

=
∑
k

[∑
s

(
IksEG(ls)

)]
EF (lijk) + EG−F (lij), (3.9)

(
∂Q(ε)
∂ε

∣∣∣∣
ε=0

)
ij

=
∑
k

[∑
s

(
IksEG(ls)

)]
EF (liklj + lrljk) + EG−F (lrlj). (3.10)

Therefore, the V -robustness of the MLE depends on the contaminating function G through

the first two order derivatives of the log-likelihood function.

3.3 The Poisson-Gamma Model

Poisson models are widely used in various areas of application such as biology, reliability and

environmental statistics, where the observed responses consist of the number of times an event

occurs. Examples include the Gaver and O’Muircheartaigh (1987) data, which consists of the

number of failures of 10 pumps (Lee and Nelder, 1996), or the number of colonies produced in the

spleen of a recipient animal (Frome et al., 1973).

A common practical complication of these models is overdispersion. In most cases, count

data display substantial extra variation relative to the Poisson, which is completely determined by

its mean. Some authors studied the effect of overdispersion on inferences made under the Poisson

model (Paul and Plackett, 1978; Cox 1983). Many models have been proposed to accommodate

overdispersion in statistical analysis, including the use of GLM with random effects (Lee and

Nelder, 1996).

If the distribution of multiplicative random effects applied to the mean of a Poisson model is

assumed to be Gamma, then the marginal distribution of the response is Negative Binomial. This

mixture of Poisson distributions is called Poisson-Gamma. In this Section we will derive the CVF

when the Gamma mixing distribution is contaminated by another distribution G. For simplicity,

we will examine the model with only one fixed and one random effect. That is,
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• Let Yi|xi, ui be a Poisson random variable with mean uiαi, where αi = exp(β0 + β1xi).

• Let Xi and Ui be independent random variables.

• Assume further that Ui ∼ Γ(1/τ, τ). Then E(Ui) = 1, and V (Ui) = τ

Therefore the conditional distribution of Yi|xi is Negative Binomial, so that the log-likelihood

function is given by

l = K + log Γ
(
yi +

1
τ

)
− log Γ

(
1
τ

)
−
(
yi +

1
τ

)
log(1 + αiτ) + yi log(αi) + yi log(τ), (3.11)

E[Yi|xi] = αi, E[Y 2
i |xi] = α2

i (1 + τ) + αi. (3.12)

For simplicity, the subindex i is omitted in the following results.

Notation 3.3.1. Let ρ = α/(1 + τ α).

Notation 3.3.2. Let Ψ(n)(u) = (dn+1/dun+1)(log(Γ(u)). These functions are known as polygamma

functions. For example: the Digamma function is the function Ψ(u) = (d/du)(log(Γ(u)) and the

Trigamma function is Ψ′(u) = (d2/(du2) log(Γ(u)).

Notation 3.3.3. For any z > 0, let ∆Ψ(y; z) = Ψ(y + z)−Ψ(z), and similarly define ∆Ψ′(y; z)

and ∆Ψ′′(y; z).

It is easy to show that for any positive integer n

0 ≤ ∆Ψ(n; z) =
n−1∑
j=0

1
(z + j)

≤ n

z
(3.13)

and

− n

z2
≤ ∆Ψ′(n; z) = −

n−1∑
j=0

1
(z + j)2

≤ 0 (3.14)

3.3.1 The CVF

Using (3.8)-(3.11), we can derive the CVF for γ̂, the (marginal) MLE of γ = (β0, β1, τ)T , when

the mixing distribution F is contaminated by a distribution G. For simplicity in the notation we
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will write ∆Ψ(Y ) instead of ∆Ψ(Y ; 1/τ) throughout this Chapter. Similarly we will write ∆Ψ′(Y )

and ∆Ψ′′(Y ). Tedious calculations give

I(γ0) =

 B 0

0 −eF33

 ,

where B =

 EX(ρ) EX(ρX)

EX(ρX) EX(ρX2)

 and eF33 = EF (l33) = τ−2EX(ρ) + τ−4EF [∆Ψ′(Y )]. More-

over,

∂M(ε)
∂ε

∣∣∣∣
ε=0

=
−1
eF33

 eG3 A 0

0 eG3 e
F
333 − aG33e

F
33

 , (3.15)

where

A =

 EX(ρ2) EX(ρ2X)

EX(ρ2X) EX(ρ2X2)

 ,

eG3 = EG(l3) =
1
τ2
EX [log(1 + τα)]− 1

τ2
EG[∆Ψ(Y )],

aG33 = EG−F (l33) = − 2
τ3
EX [log(1 + τα)] +

2
τ3
EG[∆Ψ(Y )] +

1
τ4
EG−F [∆Ψ′(Y )],

eF333 = EF (l333) =
1
τ3
EX

[
− α(4 + 5ατ)

(1 + τα)2

]
− 6
τ5
EF [∆Ψ′(Y )]− 1

τ6
EF [∆Ψ′′(Y )].

Similarly,

∂Q(ε)
∂ε

∣∣∣∣
ε=0

=
1
eF33

 2eG3 A w

wt bG3,3e
F
33 − eG3 c

F
33

 ,

where

w =

 bG1,3e
F
33 − eG3 c

F
13

bG2,3e
F
33 − eG3 c

F
23

 ,

bG1,3 = − 1
τ2
EG−F

[
(Y − α)
(1 + τα)

∆Ψ(Y )
]
,

bG2,3 = − 1
τ2
EG−F

[
X(Y − α)
(1 + τα)

∆Ψ(Y )
]
,

bG3,3 = EG−F

[
− 2Y
τ3(1 + τα)

∆Ψ(Y ) +
(

2α
τ3(1 + τα)

− 2 log(1 + τα)
τ4

)
∆Ψ(Y ) +

1
τ4

∆Ψ(Y )2
]
.

and cFk3 = EF [lk3l3 + lkl33], for i = 1, 2, 3. As the expectations cFk3 depend only on the nominal

distribution F , which is fixed in our analyzes, we will not present their detailed forms. Finally,
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following (3.8) we get the CVF for the Poisson-Gamma model:

CV F =
∂V (ε)
∂ε

∣∣∣
ε=0

=
1

(eF33)3

 4eG3 (eF33)
2B−1AB−1 −eF33B

−1w

−eF33wTB−1 eG3 (2eF333 − cF33) + (bG3,3 − 2aG33)e
F
33

 .

(3.16)

3.3.2 V -Robustness of Parameter Estimates

According to Definition 3.2.2, an estimator is V -robust if its Change-of-Variance Sensitivity (CVS)

is finite. In this Section we show that the diagonal entries of the CVF in (3.16) are bounded, which

suffices to prove that the MLE of the Poisson-Gamma models are V -robust.

Lemma 3.3.1. For any G ∈ Λ, the quantities

(i) eG3 ,

(ii) aG33, and

(iii) bG3,3

are all bounded in G ∈ Λ.

Proof.

(i) Recall from (3.15) that

eG3 =
1
τ2
EX [log(1 + τα)]− 1

τ2
EG[∆Ψ(Y )]

Using z = 1/τ in (3.13), the law of iterated expectations and (3.12), we get

0 ≤ EG[∆Ψ(Y )] ≤ τEG(Y ) = τEX(α), for all G ∈ Λ. (3.17)

Then

1
τ2
EX [log(1 + τα)− τα] ≤ eG3 ≤ 1

τ2
EX [log(1 + τα)].

51



(ii) From (3.15)

aG33 = − 2
τ3
EX [log(1 + τα)] +

2
τ3
EG[∆Ψ(Y )] +

1
τ4
EG−F [∆Ψ′(Y )]. (3.18)

Again, using z = 1/τ in (3.14), the law of iterative expectations and (3.12), we get

−τ2EG[Y ] ≤ EG[∆Ψ′(Y )] ≤ 0. (3.19)

Thus, using inequalities (3.17) and (3.19) in (3.18) we obtain

aG33 ≤ − 2
τ3
EX [log(1 + τα)] +

2
τ2
EX(α)− 1

τ4
EF [∆Ψ′(Y )], for all G ∈ Λ,

aG33 ≥ − 2
τ3
EX [log(1 + τα)]− 1

τ4
(τEX(α) + EF [∆Ψ′(Y )]) , for all G ∈ Λ.

(iii) Finally,

bG3,3 = EG−F

[
− 2Y
τ3(1 + τα)

∆Ψ(Y ) +
(

2ατ − 2(1 + τα) log(1 + τα)
τ4(1 + τα)

)
∆Ψ(Y ) +

1
τ4

∆Ψ(Y )2
]
.

If (1 + τα) log(1 + τα) ≤ ατ , using (3.12), (3.13) and (3.17) we can show that

bG3,3 ≤ EF

[
2Y∆Ψ(Y )
τ3(1 + τα)

−
(

2α
τ3(1 + τα)

− 2 log(1 + τα)
τ4

)
∆Ψ(Y )− 1

τ4
∆Ψ(Y )2

]
+EX

[
2α2

τ2(1 + τα)
− 2α log(1 + τα)

τ3

]
+

1
τ2
EX [α2(1 + τ) + α],

bG3,3 ≥ EF

[
2Y∆Ψ(Y )
τ3(1 + τα)

−
(

2α
τ3(1 + τα)

− 2 log(1 + τα)
τ4

)
∆Ψ(Y )− 1

τ4
∆Ψ(Y )2

]
− 2
τ2(1 + τα)

[α+ (1 + τ)α2].

Similarly, if ατ < (1 + τα) log(1 + τα), then

bG3,3 < EF

[
2Y∆Ψ(Y )
τ3(1 + τα)

−
(

2α
τ3(1 + τα)

− 2 log(1 + τα)
τ4

)
∆Ψ(Y )− 1

τ4
∆Ψ(Y )2

]
+

1
τ2
EX [α2(1 + τ) + α],

bG3,3 > EF

[
2Y∆Ψ(Y )
τ3(1 + τα)

−
(

2α
τ3(1 + τα)

− 2 log(1 + τα)
τ4

)
∆Ψ(Y )− 1

τ4
∆Ψ(Y )2

]
EX

[
2α2

τ2(1 + τα)
− 2α log(1 + τα)

τ3

]
− 2
τ2(1 + τα)

[α+ (1 + τ)α2].

Proposition 3.3.1. The MLE of γ = (β0, β1, τ)T for the Poisson-Gamma Model is V -robust.
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Proof. Note that the diagonal entries of the CVF (3.16) depend on the contaminating distribution

G only through the quantities of the previous Corollary. Moreover, V (ψ, F ) is the asymptotic

variance under the nominal model and therefore it does not depend on G. Thus, using the results

of Corollary 3.3.1 and according to Definition 3.2.2, we prove that the MLE of the Poisson-Gamma

parameters is V -robust.

3.4 Mixed-Effects Binomial Models

In many applications, one needs to study the relationship between binomial responses and several

explanatory variables. The response may also be a vector of binary responses per experimental

unit or cluster. If the data are grouped as frequencies for each cluster, the response variable

can be modelled by the binomial distribution. For example, in teratologic applications, pregnant

animals are exposed to a pharmaceutical substance and they are sacrificed prior to the birth of

the litter (Heagerty and Zeger, 2000). The fetuses of each litter are then examine to determine the

presence or absence of a malformation. The response variable records this information for each

fetus per litter (binary responses) or the number of fetuses per litter affected by the drug (binomial

response).

As in the case of the Poisson models, binary or binomial data often exhibit overdispersion

with respect to the nominal variance. One possible explanation for the overdispersion is that in

general, there exists intracluster dependence. In other words, observations from the same individual

or cluster tend to be more similar than observations from different subjects. Many models have

been proposed to model clustered binary data, including the use of GLM with random effects

(e.g., Stiratelli et al., 1984; Neuhaus et al., 1992; Prentice, 1988; Heagerty and Zeger, 2000). The

Beta-Binomial distribution is sometimes used to model binomial data with extra variation (e.g.,

Crowder, 1978; Williams, 1982; McCullagh and Nelder, 1989).

In this Section we review alternative models that have been proposed in the literature to

study binomial data. In particular, we examine two simple models that have an attractive marginal

closed form density and hence maximum likelihood procedures are used to estimate the model
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parameters. Finally, the effect of a contamination in the mixing distribution on the asymptotic

variance-covariance matrix is investigated using the CVF.

3.4.1 General Mixed-Effect Binomial Models

• For i = 1, . . . , n, let Xi be a p-dimensional vector of covariates independent of Ui, a random

intercept.

• Assume further that Xi are independent and identically distributed for i = 1, . . . , n.

• Similarly, the random effects Ui, i = 1, . . . , n are independent and identically distributed.

• Conditionally, given that Xi = xi and Ui = ui, for each cluster i, we observe ni binary

responses Yij , j = 1, . . . , ni. Let Yi =
∑ni

j=1 Yij . Then, Yi|xi, ui is a binomial random

variable with mean nipi, where g(pi) = νi + xiβ and νi = ν(ui).

There are several link functions g commonly used in the literature:

• The logit link function g(µ) = log(µ/(1− µ)).

• The identity link function g(µ) = µ.

• The probit link function g(µ) = Φ−1(µ), where Φ is the cumulative distribution function of

a standard normal random variable.

A common approach to estimate the parameters of a mixed-effects binomial model is using

maximum likelihood methods (Neuhaus et al., 1992; Heagerty and Zeger, 2000; Neuhaus, 2001).

The main difficulty of this method is that to obtain the likelihood, one must solve a set of integrals

that are typically intractable. The marginal likelihood function is given by

n∏
i=1

∫
f(yi|xi, ui)dG(ui) =

n∏
i=1

∫  ni

yi

 pyi

i (1− pi)ni−yidG(ui). (3.20)

In general, there is no closed form for the marginal likelihood (3.20). Approaches to overcome this

difficulty include numerical integration (Neuhaus, 2001), approximate solutions (Stiratelli et al.,
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1984; Neuhaus et al. 1992) and Monte Carlo EM algorithms (McCulloch, 1997). Two exceptions

that we are going to examine later are:

(1) A model with ni = 1, for i = 1, . . . , n, g the identity link function and a random intercept

Ui ∼ Beta(α1, α2).

(2) A model with only a random intercept having Beta distribution, i.e. Ui ∼ Beta(α1, α2) and

β = 0.

The model described in item (2) is known as the Beta-Binomial model and was extensively

used to model overdispersion of binomial data (e.g., Crowder, 1978; Williams, 1982; McCullagh

and Nelder, 1989). A disadvantage of this model is that it does not include the relation with other

explanatory variables or fixed effects. Lee and Nelder (1996) consider an alternative approach to

incorporate fixed effects in this model. They maximize the hierarchical likelihood (logarithm of the

joint density function) to obtain the Maximum Hierarchical Likelihood Estimates (MHLEs). Note

however, that a contamination in the mixing distribution will not affect these estimators. Therefore,

we are not going to study this approach. Another commonly used model consists of assuming that

conditionally on the random effects Ui = ui, the response variable Yi has a binomial distribution

with mean niui and the random effects have a Beta distribution. Moreover, a p-dimensional vector

of covariates Xi is incorporated to the model using the relation g(E(Ui)) = Xiβ (Williams, 1982;

Kuppert et al., 1986). However, this is not a mixed-effects model so we are not going to cover its

analysis in this Chapter.

A major disadvantage of maximum likelihood estimation is that it requires full specification

of the mixing distribution. Neuhaus et al. studied the effect of a misspecification of the mixing

distribution on the parameter estimates. The effects on the estimated standard errors were ex-

amined by a simulation study. We derive the CVF of MLE for Models (1) and (2) to study the

stability of the estimated standard errors under a slight contamination of the mixing distribution.
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3.4.2 V -Robustness of Parameter Estimates

Model (1)

Let’s consider first a linear probability model with one observation per cluster, i.e., ni = 1 and

g(µ) = µ. The main disadvantage of this model is that µ is restricted to the interval [0, 1], thus

imposing a restriction on the parameters β.

It is easy to show that this model has marginal density given by

f(yi|xi) =
(

α1

α1 + α2
+ xiβ

)yi

+
(

α2

α1 + α2
− xiβ

)1−yi

, for yi = 0, 1.

Then the log-likelihood is a linear function of the responses yi:

l = l(γ;xi, yi) = log
(

α2

α1 + α2
− xiβ

)
+ yilog

(
α1 + (α1 + α2)xiβ
α2 − (α1 + α2)xiβ

)
,

where γ = (α1, α2,β
T )T ∈ Rp+2.

Remark 3.4.1. Note that for any quadratic function q(.), EF [q(Y )] = EG[q(Y )] for any G ∈ Λ.

Thus, EG−F [lj ] = EG−F [lj lk] = EG−F [ljk] = 0, where lj = ∂l/∂γj, ljk = ∂2l/∂γj∂γk and j, k =

1, . . . , p+ 2.

Gustafson (1996) defined the local effect of the mixing distribution misspecification on the

estimators γ̂ by

γ′j(0) =
∫
{I−1(γ0)sj(γ0;u)}d(G− F )(u)

where I−1(γ0) is the inverse of the Fisher information matrix and sj(γ0;u) = E[lj |u] is the

conditional score for j = 1, . . . , p+2. An immediate consequence of Remark 3.4.1 is that γ′j(0) = 0,

for all G ∈ Λ. Gustafson (1996) called these estimators first-order consistent.

The results of Remark 3.4.1 can also be used to analyze the CVF of the MLE for Model (1).

Following (3.8)-(3.10) we can derive the CVF and note that the CVF(MLE,G) does not depend

on G, for any G ∈ Λ. Therefore, the (marginal) maximum likelihood estimators are V -robust

according to Definition 3.2.2.
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Model (2)

The Beta-Binomial Model is more useful from a practical point of view. Its marginal density is

given by

f(yi) =

 ni

yi

 Γ(α1 + α2)Γ(yi + α1)Γ(ni + α2 − yi)
Γ(α1)Γ(α2)Γ(α1 + α2 + ni)

,

the conditional first two moments of the response are given by

E[Yi|ui] = niui, V [Yi|ui] = niui(1− ui),

and the unconditional moments are

E[Yi] = niπ, V [Yi] = niπ(1− π)[1 + δ(ni − 1)]. (3.21)

where π = α1/(α1 +α2), and δ = 1/(α1 +α2 +1). From equation (3.21), we can see how the extra

variation is added to the model.

For simplicity, we assume that ni = m for i = 1, . . . , n and the subindex i is omitted in the

following results.

Notation 3.4.1. For k = 1, 2, let ∆Ψk(u) = ∆Ψ(u;αk) defined in Notation (3.3.2). Similarly

define ∆Ψ′
k(u).

The log-likelihood function, except for a constant that does not depend on the unknown

parameters, is given by

l = logΓ(α1+α2)+logΓ(y+α1)+logΓ(m+α2−y)−logΓ(α1)−logΓ(α2)−logΓ(α1+α2+m). (3.22)

Using (3.8)-(3.11), we can derive the CVF for γ̂, the (marginal) MLE of γ = (α1, α2), when the

mixing distribution F is contaminated by a distribution G. Note that this matrix depends on the

contaminating function G only through EG[lr], EG[lrj ], EG[lrlj ], for r, j = 1, 2. Moreover, the

partial derivatives lr and lrj are up to a constant equal to ∆Ψk(y) and ∆Ψ′
k(m− y), respectively.

Thus, the CVF depends on G only through the expectations analyzed in the following Lemma:

Lemma 3.4.1. Let U be a random variable having a beta distribution with parameters (α1, α2).

Given U = u, let Y be a binomial random variable with mean m times u. Let Ψk(.) and Ψ′
k(.) be

the polygamma functions defined in Notation (3.4.1). Then, for any G ∈ Λ, the expectations

57



(i) EG[∆Ψ1(Y )],

(ii) EG[∆Ψ2(m− Y )],

(iii) EG[(∆Ψ1(Y ))2],

(iv) EG[(∆Ψ2(m− Y ))2],

(v) EG[(∆Ψ1(Y ))(∆Ψ2(m− Y ))],

(vi) EG[∆Ψ′
1(Y )] and

(vii) EG[∆Ψ′
2(m− Y )]

are all bounded.

Proof. We first compute the first two absolute moments of Y that are going to be used throughout

this proof. Using conditional expectations,

EG[Y ] = EG[E[Y |U ]] = EG[mU ] = m
α1

α1 + α2
, and

EG[Y 2] = EG[E[Y 2|U ]] = EG[mU(1− U) +m2U2] = m(m− 1)EG[U2] +mEG[U ]

=
m(m− 1)α1(α1 + 1)

(α1 + α2)(α1 + α2 + 1)
+

mα1

α1 + α2
. (3.23)

(i) Replacing z = α1 in (3.13), taking iterated expectations and using (3.23) we obtain

0 ≤ EG[∆Ψ1(Y )] ≤ 1
α1
EG[Y ] =

m

α1 + α2
. (3.24)

Hence, EG[∆Ψ1(Y )] is bounded for all G ∈ Λ.

(ii) The proof is almost identical to that in (i) once we note that conditionally, given that U = u,

the random variable W = m − Y is a binomial random variable with mean m(1 − u). Then,

replacing α1 with α2 and Y with W in (3.24) we get

0 ≤ EG[∆Ψ2(W )] ≤ m

α1 + α2
, for all G ∈ Λ.
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(iii) From (3.13) we can prove that

0 ≤ EG[∆Ψ2
1(Y )] ≤ 1

α2
1

EG[Y 2]. (3.25)

for all G ∈ Λ. Then, using (3.23) we obtain

0 ≤ EG[∆Ψ2
1(Y )] ≤ m

α1

[
(m− 1)(α1 + 1)

(α1 + α2)(α1 + α2 + 1)
+

1
(α1 + α2)

]
.

(iv) Again replacing Y with W = m− Y in (3.25) and α1 with α2, we obtain

0 ≤ EG[∆Ψ2
1(W )] ≤ m

α2
2

[
(m− 1)α1(α1 + 1)

(α1 + α2)(α1 + α2 + 1)
+

(1− 2m)α1

(α1 + α2)
+m

]

for all G ∈ Λ.

(v) As ∆Ψ1(Y ) and ∆Ψ2(m − Y ) are both nonnegative functions, and using the Cauchy-Schwarz

inequality, we get

0 ≤ EG[∆Ψ1(Y )∆Ψ2(m− Y )] ≤ E
1/2
G [∆Ψ1(Y )]E1/2

G [∆Ψ2(m− Y )]

Then, by (iii) and (iv), EG[∆Ψ1(Y )∆Ψ2(m− Y )] is also bounded for all G ∈ Λ.

(vi) Replacing z with α1 in (3.14), taking iterated expectations and using (3.23) we can show that

0 ≥ EG[∆Ψ′
1(Y )] ≥ − 1

α2
1

EG[Y ] = − m

α1(α1 + α2)
(3.26)

Hence, EG[∆Ψ′
1(Y )] is bounded for all G ∈ Λ.

(vii) Similarly, replacing α1 with α2 and Y with W = m− Y in (3.26) we obtain

0 ≥ EG[∆Ψ′
2(W )] ≥ − m

α2(α1 + α2)

for all G ∈ Λ.
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Proposition 3.4.1. The MLE of γ = (α1, α2)T for the Beta-Binomial Model is V -robust.

Proof. Note that the entries of the CVF (3.8) depend on the contaminating distribution G only

through the expectations analyzed in Lemma 3.4.1. Thus, using the results of this lemma and

according to Definition 3.2.2, we prove that the (marginal) MLE of the Poisson-Gamma parameters

is V -robust.

Remark 3.4.2. Gustafson (1996) found the exact minimum and maximum first order bias of the

estimators but only for m ≤ 5. Using results (i) and (ii) in Lemma 3.4.1, we can get bounds for

any value of m. As these bounds are finite, we can conclude that the estimators are B-robust for

any value of m.

3.5 Simulation

A simulation study was performed in order to assess the magnitude of the change in the variance of

the estimators when the mixing distribution is contaminated in the Poisson-Gamma Model. The

performance of the estimators was investigated in samples generated by S-Plus Version 6.2.1 for

different choices of population parameters and different types of contaminations. The MLE of these

parameters was obtained using a modified version of the glm.nb function available in the MASS

library (Venables and Ripley, 1999). The modification of the glm.nb function corresponds to a

reparametrization of the log-likelihood in order to estimate the variance of the gamma distribution.

3.5.1 The Poisson-Gamma model

We start examining the Poisson-Gamma model without any contamination in the mixing distribu-

tion. More precisely, we generate 1000 covariates Xi from a standard normal distribution and 1000

random effects Ui from a gamma distribution with E(Ui) = 1 and V (Ui) = τ , for i = 1, . . . , 1000.

Conditionally on (xi, ui), a sample of 1000 random variables Yi is generated from a Poisson distri-

bution with E(Yi|xi, ui) = ui exp{β0 + β1xi} (see Section (3.3.1) for details of the model).

Different choices of γ = (β0, β1, τ)T are considered in order to analyze later the effect

of the contamination on distributions with different characteristics. The vector of parameters
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(β0, β1)T determines the shape and location of α = exp(β0 + β1x). Three different choices are

used in the simulation study for this vector that describe three general positions of the curve α:

{(0, 1), (−2, 1), (2, 1)}. The Gamma distribution depends on τ . For 0 < τ < 1, the density has a

mode at y = 1− τ and is positively skewed. For τ > 1, it decreases monotonically. For τ = 1 the

exponential distribution is obtained as a special case. Therefore, we consider the following set of

parameter values for τ : {.25, .5, 1, 1.5, 2}.

For each choice of parameters, 1000 Monte Carlo replications of the random effects {Ui}

and the responses {Yi} were generated. The same sample of {Xi} was used in all replications. The

MLE of γ was computed for each of these random samples and the results were used to obtain

estimates of the mean and variance of the estimators, which are summarized in Table 3.1 below.

When the model is correctly specified there is a small bias in the estimates of the population

parameters. In almost all cases the bias is of the order of 10−3, with the exception of the bias of τ

when the true population parameter is γ = (2, 1, τ)T , where the bias is of order 10−2 for all choices

of τ . The estimated variance of the estimate of τ increases in all cases as the true parameter τ

increases.
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Table 3.1: Means and variances of MLE of Poisson-Gamma model.

True parameters MC mean MC variance

β0 = 0, β1 = 1 β0 β1 τ β0 β1 τ

tau=.25 -0.001778 1.000549 0.249692 0.001527 0.001263 0.001769

τ=.5 -0.003705 1.001110 0.500010 0.001915 0.001785 0.003416

τ=1 -0.003886 0.997852 0.997655 0.002604 0.002574 0.008107

τ=1.5 -0.002655 0.998346 1.491551 0.003081 0.003264 0.015580

τ=2 -0.003281 1.000541 1.999453 0.003572 0.003799 0.028664

β0 = 2, β1 = 1 β0 β1 τ β0 β1 τ

τ=.25 1.998179 1.000251 0.249354 0.000427 0.000449 0.000301

τ=.5 1.999330 0.998404 0.499168 0.000709 0.000784 0.000839

τ=1 1.997411 1.001111 0.998728 0.001295 0.001311 0.002738

τ=1.5 1.996011 0.999635 1.496918 0.001638 0.001849 0.006091

τ=2 1.998376 1.001075 1.993784 0.002238 0.002227 0.010421

β0 = −2, β1 = 1 β0 β1 τ β0 β1 τ

τ=.25 -2.005116 0.999984 0.239731 0.009631 0.005439 0.026945

τ=.5 -1.999489 0.996300 0.477674 0.010382 0.006407 0.047147

τ=1 -2.015171 1.005591 0.988291 0.010992 0.008519 0.083042

τ=1.5 -2.005543 0.998886 1.480759 0.012495 0.009616 0.133988

τ=2 -2.008588 0.999845 1.973542 0.013128 0.009952 0.198262

3.5.2 The contaminated model

In this Section we examine the behavior of the estimators and their estimated variances under

two contaminated models with different tail behaviors. The contaminating distribution considered

are the lognormal and the scaled F -distribution (cF , where c is a positive constant and F is a

random variable having an F -distribution). The random effects are now generated from a mixed
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distribution given by

Fε = (1− ε)G+ εL

where G represents the Gamma distribution and L the contaminating distribution, both with

expectation equal to 1 and and variance equal to τ .

Various choices of the τ parameter are considered for the lognormal contaminating distri-

bution and results are illustrated in Figures 3.1-3.18. In the case of scaled F , the restriction on

the first two moments imposes a constraint on the degrees of freedom and the constant c. Because

smaller degrees of freedom of the denominator means heavier tails of the resulting distribution,

we choose this parameter to be 6. Both c and the degrees of freedom of the numerator are now

completely determined by τ . As we want the degrees of freedom to be an integer, this restricts

the choices of τ . For this reason only one set of parameters is used in the simulation for this

contaminating distribution.

For the case of a lognormal contamination, Figures 3.1, 3.3 and 3.5 show that the bias of

τ̂ increases as the level of contamination increases. For true parameters β0 = 0 and β0 = 2, this

bias also increases at each level of contamination, with the value of the true variance (see Figures

3.3 and 3.5). Figures 3.2, 3.4 and 3.6 show that the estimated variance of this estimate remains

almost constant throughout all levels of contamination for all choices of the true γ. Moreover, for

all levels of contamination, the magnitude of the estimated variance is larger for larger values of

the true variance.

A similar behavior is found in the estimated bias and variance of the parameter β0 as can

be seen in Figures 3.7-3.12. However, note that the values of the bias of the estimate of β0 are

much smaller than those of τ .

The behavior of the bias of β̂1 is not monotonic as can be seen in Figures 3.13, 3.15 and

3.17. Considering that the values of this bias are of the order of 10−3, we interpret these as pure

noise from the simulation. The estimated variance follows the same pattern as that of previous

parameters (see Figures 3.14, 3.16 and 3.18).
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Figure 3.1: Bias in the estimation of τ for β0 = −2, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.2: Variance of estimate of τ for β0 = −2, β1 = 1, and different values of τ

under different levels of a lognormal contamination.
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Figure 3.3: Bias in the estimation of τ for β0 = 0, β1 = 1, and different values of τ

under different levels of a lognormal contamination.
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Figure 3.4: Variance of estimate of τ for β0 = 0, β1 = 1, and different values of τ

under different levels of a lognormal contamination.
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Figure 3.5: Bias in the estimation of τ for β0 = 2, β1 = 1, and different values of τ

under different levels of a lognormal contamination.
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Figure 3.6: Variance of estimate of τ for β0 = 2, β1 = 1, and different values of τ

under different levels of a lognormal contamination.
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It is also interesting to note that for each choice of τ , the variances of all estimates decrease

as β0 moves from −2 (for which the curve α is flatter around 0) to 2 (for which the curve α is

steeper around 0).

Similar results are found in the estimates of the parameters and its variances under a scaled

F contamination. Figures 3.19, 3.21 and 3.23 show the bias of the estimates under different levels

of contamination. As before, the bias of β̂0 and τ̂ increases with ε while that of β̂1 does not follow

a monotonic behavior. Moreover, under this contamination, the magnitude of the bias of β̂0 and

τ̂ is larger than for the lognormal contamination.

It is important to note that the variances of all the estimators, under different parameter

choices and under both contaminated functions, remain bounded as it was proved theoretically in

Section 3.3.1.
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Figure 3.7: Bias in the estimation of β0 for β0 = −2, β1 = 1, and different values

of τ under different levels of a lognormal contamination.
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Figure 3.8: Variance of estimate of β0 for β0 = −2, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.9: Bias in the estimation of β0 for β0 = 0, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.10: Variance of estimate of β0 for β0 = 0, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.11: Bias in the estimation of β0 for β0 = 2, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.12: Variance of estimate of β0 for β0 = 2, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.13: Bias in the estimation of β1 for β0 = −2, β1 = 1, and different values

of τ under different levels of a lognormal contamination.
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Figure 3.14: Variance of estimate of β1 for β0 = −2, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.15: Bias in the estimation of β1 for β0 = 0, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.16: Variance of estimate of β1 for β0 = 0, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.17: Bias in the estimation of β1 for β0 = 2, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.18: Variance of estimate of β1 for β0 = 2, β1 = 1, and different values of

τ under different levels of a lognormal contamination.
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Figure 3.19: Bias in the estimation of τ for β0 = 0, β1 = 1, and τ = 2 under

different levels of a scaled F6,6 contamination.
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Figure 3.20: Variance of estimate of τ for β0 = 0, β1 = 1, and τ = 2 under different

levels of a scaled F6,6 contamination.
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Figure 3.21: Bias in the estimation of β0 for β0 = 0, β1 = 1, and τ = 2 under

different levels of a scaled F6,6 contamination.
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Figure 3.22: Variance of estimate of β0 for β0 = 0, β1 = 1, and τ = 2 under different

levels of a scaled F6,6 contamination.
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Figure 3.23: Bias in the estimation of β1 for β0 = 0, β1 = 1, and τ = 2 under

different levels of a scaled F6,6 contamination.
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Figure 3.24: Variance of estimate of β1 for β0 = 0, β1 = 1, and τ = 2 under different

levels of a scaled F6,6 contamination.
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3.6 Conclusions and future research

In this Chapter we analyze the sensitivity of the asymptotic variance of the M -estimators for

GLMMs under a slight contamination of the mixing distribution. This article adds to previous

work by presenting the CVF for this general class of estimators in GLMMs and analyzing the CVS

in detail for the MLE of the Poisson-Gamma model and two mixed-effects Binomial models. In all

cases, it was found that the MLE is V-robust when the distribution of the random effects is con-

taminated by any other distribution sharing the first two moments with the nominal distribution.

A simulation study was performed to illustrate the relevance of this result for the Poisson-Gamma

model. In all simulated cases, the variance of the estimators remain almost constant under different

levels of contamination.

While the Poisson-Gamma model is attractive for its distributional closed form and its

applicability, it might be interesting to examine other Poisson mixed models, as the Poisson-inverse

Gaussian or the Poisson-lognormal. Moreover, other estimators suggested in the literature can be

also studied. For example, we can derive the CVF of quasi-likelihood estimators for GLMMs or in

particular, for Poisson-mixed models.

The simulation study was performed to see the relevance of our theoretical result. It would

be interesting to repeat this study for small samples to see if the asymptotic results still hold in

the case of finite samples.
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Chapter 4

Robust Instrumental Variables Estimator

4.1 Introduction

A classical problem in linear regression arises when some of the covariates are “endogenous”, that

is, correlated with the error term in the equation to be estimated. In such a situation the ordinary

least squares (OLS) estimator yields biased and inconsistent parameter estimates. A common

approach to address this problem is to use additional information contained in variables that do

not belong to the original equation but are correlated with the endogenous covariates. Under

certain conditions, such “instruments” can be used to construct ordinary instrumental variables

(OIV) estimators that yield consistent parameter estimates. However, despite its widespread use,

the OIV estimator is highly sensitive to outliers in the response, the covariates, and even the

instruments.

In this Chapter we propose a robust instrumental variables (RIV) estimator based on a

robust multivariate location and scatter matrix estimator. Instead of estimating the regression

parameters directly as a solution to a robust estimating equation, we robustify the solution of

the ordinary estimating equations using high breakdown point S-estimators. We show that, when

an appropriate S-estimator is chosen, our RIV estimator is bounded influence (i.e., resistant to

extreme observations), consistent, and asymptotically normal.

Since the ordinary instrumental variables estimator (OIV) and its most efficient version

known as two-stage least squares estimator (2SLS) are extremely sensitive to aberrant observations,

some robust instrumental variables estimators have been developed. Amemiya (1982) extended the

least absolute deviation (LAD) estimator as an alternative to the 2SLS estimator. Powell (1983)

shows the asymtotic normality of Amemiya’s estimator under weak conditions. However, like LAD,

this estimator is not bounded-influence. Krasker and Welsch (1985) proposed an instrumental vari-
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ables version of the earlier Krasker-Welsch estimator (Krasker and Welsch, 1982). Their estimator

is a bounded-influence weighted instrumental variables estimator that downweights an observation

only if its influence would otherwise exceed the maximum allowable influence. However, the esti-

mator is complex and hard to implement. More recently, Flavin (1999) derived an instrumental

variables version of the Huber (1973) estimator. Although the author claims that his estimator is

easier to implement than the Krasker-Welsch instrumental variables estimator, such an estimator

is not bounded-influence. Wagenvoort and Waldmann (2002) developed two bounded-influence

instrumental variables estimators which are robust versions of 2SLS and generalized method of

moments (GMM) estimators, respectively. These estimators are also complicated to implement

and compute.

We add to previous work by providing a robust instrumental variables estimator which is less

computational expensive than those currently available. As our estimator is a natural extension

of the ordinary instrumental variables estimator, it is also easy to implement and interpret. In

addition, it is in the class of weighted instrumental variables estimators, which gives a simple way

to flag outliers and influential points. These properties are extremely useful, specially when using

high-dimensional datasets such as those used in data mining, where it is unfeasible to identify

one aberrant point at a time or to use computationally demanding algorithms. We also provide

an S-Plus/R algorithm to compute both the regression coefficients and the asymptotic covariance

matrix estimates (available from the author).

We also propose a diagnostic technique based on our robust covariance-based estimator.

Our RIV estimator is a weighted instrumental variables estimator which downweights those points

with high Mahalanobis distances. Thus, we propose to detect outliers in any of the variables

by comparing the Mahalanobis distances of each data point to the quantiles of the chi-squared

distribution with degrees of freedom given by the number of variables in the dataset. Equivalently,

we can also look at the weights to flag outliers and leverage points.

The remainder of this Chapter is organized as follows. In Section 4.2, we introduce our

RIV estimator. In Section 4.3, we discuss some of its properties. In Section 4.4, we compute
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the corresponding Influence Function and show that it is bounded, and we use it to derive a

covariance matrix estimator of our RIV estimator. In Section 4.5, we use a real data example

with measurement errors and we artificially contaminate it to compare the performance of our

RIV estimator with that of the OIV estimator. In addition, we illustrate the use of our diagnostic

techniques. Section 4.6 concludes.

4.2 Robust Instrumental Variables Estimator

In this Section we propose a robust instrumental variables estimator. Instead of estimating the

regression parameters directly as solutions to robust estimating equations, we robustify the solution

of the ordinary estimating equations. We note that the OIV estimator, defined in (1.9), is a function

of the sample mean and the sample covariance matrix. However, the sample mean and the sample

covariance matrix are not robust estimators of the multivariate location and scatter matrix. Hence,

the OIV estimator is extremely sensitive to outliers and influential points. Thus, we propose using

a robust multivariate location and scatter estimator to construct a robust instrumental variables

estimator (RIV) analogous to the OIV estimator.

Let Zi = (Xi,W i, Yi)T , for i = 1, . . . , n, be the (2p+1)-dimensional vector of observations.

Let (M ,S) ∈ R(2p+1)×PDS(2p+1) be a robust multivariate location and scatter matrix estimator,

where PDS(2p + 1) is the set of all positive definite symmetric matrices of order 2p + 1. We can

split up the vector M and the matrix S accordingly. That is,

M =
(
MX ,MW ,MY

)T and S =


SXX SXW SXY

SW X SW W SWY

SYX SYW SY Y

 . (4.1)

Consider the model described in Section 1.4.1. We define the RIV estimator of the regression

coefficients β as

β̂RIV = (β̂0, β̂1) = g(M ,S) = (MY −MX β̂1,S
−1
W XSWY ). (4.2)

Note that the RIV estimator defined in (4.2) reduces to the OIV estimator defined in (1.9) when
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(M ,S) is the sample location and scatter estimator. Maronna and Morgenthaler (1986) and Croux

et al. (2003) proposed analogous estimators for classical regression models without endogeneity.

We need a robust location and covariance matrix estimator to replace the sample ones.

Many of these multivariate estimators are available, such as M -estimators (Maronna, 1976),

Stahel-Donoho estimators (Stahel, 1981; Donoho, 1982), the Minimum Volume Ellipsoid and Min-

imum Covariance Determinant estimators (Rousseeuw, 1984), S-estimators (Davies, 1987; Lop-

uhaä, 1989) and componentwise and pairwise estimators (Gnanadesikan and Kettenring, 1972;

Maronna and Zamar, 2002). It can be proved that the S-estimators are consistent and asymptoti-

cally normal, affine equivariant, positive definite, bounded-influence and they achieve the maximal

breakdown point (asymptotically 1/2) regardless of dimension of the data for an appropriate choice

of ρ (Davies, 1987; Lopuhaä, 1989). Thus, we use this family of estimators to summarize the data

and construct our estimator. However, our estimator can be constructed using any other choice

of multivariate location and scatter matrix estimator (see Section 1.5.5 for a further description of

these estimators).

For a finite sample Z1, . . . ,Zn ∈ R(2p+1) the S-estimator is defined as the solution (M ,S)

to the problem of minimizing det(S) subject to

1
n

n∑
i=1

ρ
(√

(Zi −M)TS−1(Zi −M)
)

= b0 (4.3)

among all (M ,S) ∈ R(2p+1) × PDS(2p+ 1) (Lopuhaä, 1989). In order to obtain robust estimates

and preserve asymptotic normality the function ρ must satisfy the following conditions:

(R1) ρ is symmetric, has a continuous derivative ψ and ρ(0) = 0.

(R2) There exists a finite constant c0 > 0 such that ρ is strictly increasing on [0, c0] and constant

on [c0,+∞).

(R3) ψ′(y) and u(y) = ψ(y)/y are bounded and continuous.

The constant 0 < b0 < sup{ρ} is generally chosen to be E0,I [ρ(‖ U ‖)], where U has an elliptical

distribution. If ρ satisfies these conditions, the resulting S-estimator is consistent, asymptotically
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normal and has bounded Influence Function (Lopuhaä, 1989). If b0 = 2p + 1, using ρ(y) = y2

in (4.3) yields the sample mean and covariance matrix as a unique solution to previous problem.

However, this function does not satisfy the previous conditions. In Section 4.3 we show that using

S-estimators to construct our RIV estimator yields a weighted instrumental variables estimator

with weights depending on ρ. Then, we add the following condition so that the weights downweight

extreme points:

(R4) ρ is such that u(y) = ψ(y)/y is non-increasing in [0,+∞), where ψ(y) = ρ′(y).

In Section 4.5 we choose to compute our RIV estimator using the Tukey’s biweight function as

the ρ function in (4.3). However, our estimator can be computed using any ρ function satisfying

conditions (R1)-(R4).

4.3 Properties of the RIV estimator

In this Section, we discuss some properties of our estimator.

Proposition 4.3.1. The estimator β̂RIV , defined in (4.2) using multivariate location and scatter

S-estimators, is a weighted instrumental variables estimator.

Proof. The S-estimator (M ,S) satisfies the following first-order conditions (Lopuhaä, 1989):

1
n

n∑
i=1

u(di)(Zi −M) = 0 (4.4)

1
n

n∑
i=1

pu(di)(Zi −M)(Zi −M)T =
1
n

n∑
i=1

v(di)S, (4.5)

where u(y) = ψ(y)/y and v(y) = ψ(y)y − ρ(y) + b0, for ψ(y) = ρ′(y). Let di be the Mahalanobis

distances of the data points to (M ,S). That is, d2
i = (Zi −M)TS−1(Zi −M).

If
∑n
i=1 v(di) 6= 0, equation (4.5) can be written as

n∑
i=1

(
pu(di)∑n
j=1 v(dj)

)
(Zi −M)(Zi −M)T = S. (4.6)

Partitioning equation (4.6) according to the blocks of S (see equation (4.1)), we obtain

n∑
i=1

(
pu(di)∑n
j=1 v(dj)

)
(W i −MW )T (Yi −MY ) = SWY . (4.7)
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Using the definition of β̂1 given in (4.2), we can replace SWY by SW X β̂1 in equation (4.7).

Furthermore, using the block of (4.6) corresponding to SW X we have

n∑
i=1

(
pu(di)∑n
j=1 v(dj)

)
(W i −MW )T

[
(Yi −MY )− (Xi −MX)β̂1

]
= 0. (4.8)

Multiplying the previous equation by
∑n
j=1 v(dj)/(p

∑n
i=1 u(di)) we obtain

n∑
i=1

ωi(W i −MW )T
[
(Yi −MY )− (Xi −MX)β̂1

]
= 0,

where ωi = u(di)/
∑n
i=1 u(di) and

∑n
i=1 ωi = 1.

Similarly, we can rewrite equation (4.4) as

n∑
i=1

ωi(Zi −M) = 0. (4.9)

Combining equation (4.9) with the definition of β̂0 given in (4.2), we obtain

β̂0 = MY −MX β̂1 =
n∑
i=1

ωi
[
Yi −Xiβ̂1

]
. (4.10)

Note that (4.8) and (4.10) can be rewritten as
0 = 1

n

∑n
i=1 ωi

[
Yi − β̂0 −Xiβ̂1

]
0 = 1

n

∑n
i=1 ωiW

T
i

[
Yi − β̂0 −Xiβ̂1

]
.

Thus, our estimator belongs to the class of weighted instrumental variables estimators of the form

β̂RIV = (W̃
T
ΩX̃)−1W̃

T
ΩY

where X̃ = [1X], W̃ = [1W ], 1 is an n-dimensional column vector of ones, and Ω is a diagonal

weighting matrix with ith diagonal element

ωi = ω(Xi,W i, Yi,M ,S).

Under conditions (R1)-(R4), ω is such that 0 ≤ ω ≤ 1 and is non-increasing in [0,+∞). Thus, our

estimator downweights points that are far from the bulk of the data. In Section 4.5 we discuss some

diagnostic techniques based on the weights that the estimator assigns to each observation. Note
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that our estimator reduces to the OIV estimator when the sample mean and sample covariance

matrix is used to construct the estimator, i.e., ωi = 1, for i = 1, . . . , n. However, its corresponding

ρ does not satisfy condition (R2). Finally, we present two properties that our RIV estimator

inherits from the S-estimators.

Proposition 4.3.2. The estimator β̂RIV , defined in (4.2) using a multivariate location and scatter

S-estimator, is consistent and asymptotic normally distributed if conditions (1.7) and (1.8) hold

and the S-estimator is appropriately chosen.

Proof. Davies (1987) and Lopuhaä (1989) proved consistency and asymptotic normality of the

multivariate S-estimator of location and scatter matrix. Assuming that this estimator is consistent

and asymptotically normal, using the continuous mapping theorem, it is trivial to prove that the

regression parameter estimator defined in (4.2) is also consistent and asymptotically normal.

Proposition 4.3.3. Let z and z̃ be the matrices of the original and the transformed observations

with rows given by zi = (xi,wi, yi)T and z̃i = (x̃i, w̃i, ỹi)T = (xiQ,wiP , ηyi + xiγ + δ)T respec-

tively, for i = 1, . . . , n. Let β̂(z) be the estimator based on the original data points, and similarly

β̂(z̃) be the one based on the transformed data. The estimator β̂RIV , defined in (4.2), is regression

and carrier equivariant. That is,

β̂0(z̃) = ηβ̂0(z) + δ

β̂1(z̃) = (Q−1)(ηβ̂1(z) + γ),

for all γ ∈ Rp, η, δ ∈ R and nonsingular (p× p) matrices Q and P .

Proof. We can write z̃i = (x̃i, w̃i, ỹi)T = Azi + b, where

A =


QT 0 0

0 P T 0

γT 0 η

 , and b =


0

0

δ


Let (M(z),S(z)) be the multivariate location and scatter estimator based on the observations z.

Similarly, define (M(z̃),S(z̃)) for the transformed observations z̃. As the S-estimators are affine
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equivariant,

(M(z̃),S(z̃)) = (AM(z) + b,AS(z)AT ). (4.11)

Furthermore, by (4.2), the RIV estimator based on the transformed observations is given by

β̂0(z̃) = MỸ (z̃)−M X̃(z̃)β̂1(z̃)

β̂1(z̃) = S−1

W̃ X̃
(z̃)SW̃ Ỹ (z̃),

Using (4.11), it is easy to show that

MỸ (z̃) = ηMY (z) +MX(z)γ + δ

M X̃(z̃) = MX(z)Q

SW̃ Ỹ (z̃) = P T (ηSWY (z) + SW X(z)γ)

SW̃ X̃(z̃) = P TSW X(z)Q.

Plugging (4.12) into (4.12) we obtain (4.11).

Then, we can add a linear function of the explanatory variables to the response and the estimator

will change accordingly. Moreover, if the coordinate system in the space of the explanatory is

linearly transformed, so is our estimator. These equivariance properties enable us to use a single

combination of parameters in a simulation study without loss of generality.

4.4 Influence Function and Asymptotic Variance

Hampel (1968, 1974) introduced the Influence Function (IF) in order to investigate the behavior of

the asymptotic value of a one-dimensional estimator under small perturbations of the underlying

distribution. This concept was later extended to classical linear models estimation (Huber, 1973).

In this section we show that the IF of our RIV estimator is bounded. In other words, β̂RIV is in

the class of bounded-influence instrumental variables estimators. Thus, this is a reliable estimator

even if small perturbations in the central model occur.

Let Fε = (1 − ε)F + ε∆z denote a neighborhood of the nominal distribution of the obser-

vations, F , where ∆z is the point mass at z. For an estimator T representable as a functional of
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the empirical distribution, its IF is defined as

IF (z;T, F ) =
∂

∂ε
T (Fε)|ε=0 = lim

ε↓0

T (Fε)− T (F )
ε

.

for those z where the limit exists.

To derive the IF of β̂RIV , we need to extend the definition of our estimator to a func-

tional formulation. Let (M(H),S(H)) be the functional form of the S-estimator of multivari-

ate location and scatter (Lopuhaä, 1989), where H is the joint distribution of the observations

Zi = (Xi,W i, Yi)T , i = 1, . . . , n. Similarly to equation (4.1), we can split these functionals ac-

cordingly to the components of the observations. Then, the functional corresponding to β̂RIV is

defined as b(H) = (b0(H), b1(H)T )T , where

b1(H) = S−1
W X(H)SWY (H) (4.12)

and

b0(H) = MY (H)−MX(H)b1(H). (4.13)

Theorem 4.4.1. Let H be the distribution of the (2p + 1)-dimensional vector Z = (X,W , Y )T

and H0 be the distribution of Z0 = (X,W , ε)T . Then, if assumptions (1.7) and (1.8) hold, the

Influence Function of the functional b at H is given by

IF (z; b,H) =

 IF (z0;MY ,H0)−MX(H0)S−1
W X(H0)IF (z0;SWY ,H0)

S−1
W X(H0)IF (z0;SWY ,H0)

 . (4.14)

Moreover, using a bounded influence S-estimator (Lopuhaä, 1989), the Influence Function defined

above is bounded.

Proof. From Proposition 4.3.3, we can assume that β0 = 0 and β1 = 0 in model (1.5). Then,

b(H) =

 b0(H)

b1(H)

 =

 b0(H0)

b1(H0)

+

 β0

β1

 .

Therefore,

IF (z; b,H) = IF (z0; b,H0) =

 IF (z0; b0,H0)

IF (z0; b1,H0)

 . (4.15)
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Consider the contaminated distribution Hε = (1 − ε)H0 + ε∆z. Lopuhaä (1989) showed that

under certain conditions, the multivariate S-estimator (M ,S) is uniquely defined and consistent.

Then MY (H0) = 0 and SWY (H0) = 0 by (A1). Moreover, by Proposition 4.3.2, b0(H0) = 0 and

b1(H0) = 0. Then,

IF (z0; b0,H0) =
d

dε
[MY (Hε)−MX(Hε)b1(Hε)]|ε=0

= IF (z0;MY ,H0)−MX(H0)IF (z0; b1,H0)

and

IF (z0; b1,H0) =
d

dε
[S−1

W X(Hε)SWY (Hε)]|ε=0

= S−1
W X(H0)IF (z0;SWY ,H0)

Then, from (4.15), (4.16) and (4.16) we obtain equation (4.14). Moreover, as for an appropriate

choice of the function ρ, the S-estimator has bounded Influence Function (Lopuhaä, 1989), then

(4.14) and (1.8) imply that β̂RIV is B-robust (i.e., it has bounded Influence Function).

Lopuhaä (1989) showed that, under regularity conditions, the asymptotic variance of the

S-estimator (M ,S) is given by

∫
IF (z; (M ,S),H)IFT (z; (M ,S),H)dH(z).

As our estimator can be written as a continuous function of (M ,S) (see equation (4.2)), then the

asymptotic variance of β̂RIV is given by

AV (b,H) =
∫
IF (z; b,H)IFT (z; b,H)dH(z), (4.16)

where b is the functional defined at (4.12) and (4.13). Given the complexity of the calculations,

we are not presenting a closed form formula for (4.16). However, replacing expectations with

average and parameters with estimates we can estimate the asymptotic variance of the regression

estimators by

Σ̂ =
1
n

n∑
i=1

[IF (zi; b,Hn)IFT (zi; b,Hn)], (4.17)

where Hn is the empirical joint distribution of Z, b(Hn) = β̂RIV and the IF is defined in (4.14).
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4.5 Example

We use the Alaskan earthquake data in Fuller (1987) to examine the performance of the RIV

estimator. The dataset contains information about 62 earthquakes occurring between 1969 and

1978. Specifically, we want to see how the earthquake strength, measured in terms of the true value

of the body waves, xt, impacts on the amplitude of the surface waves of the earthquake. However,

instead of observing xt, we observe Xt, which is the logarithm of the seismogram amplitude of

longitudinal body waves measured at some observation stations. In addition, we observe Yt, the

logarithm of the seismogram amplitude on 20 second surface waves and an instrumental variable

Wt, which is the logarithm of maximum seismogram trace amplitude at short distance (See Table

4.1).

To compute the RIV, we use an S-estimator based on Tukey’s biweight function

ρc(t) = min(
t2

2
− t4

2c2
+

t6

6c4
,
c2

6
) (4.18)

where the constant b is set to ensure maximum breakdown point of the S-estimator and the tuning

constant c is selected such that EH [ρ(d(z))] = b for H = N(0, I). The S-estimator is computed

using an adapted version for S-Plus of the fast and accurate algorithm of Ruppert (1992). A

program to compute the RIV estimate and its asymptotic variance covariance matrix, defined in

(4.17), was written in S-Plus and it is available from the author. The estimate of the asymptotic

covariance matrix of the OIV estimator is computed using formula (1.4.15) in Fuller (1987).

Figure 4.1 shows the observations of the response variable and the covariate of the original

dataset, together with the OIV (dashed line) and the RIV (solid line) fit. The discrepancy between

both lines reflects the presence of outlying observations in the original dataset.

Thus, we examine the Mahalanobis distances of each point to a robust S-estimator and

the weights that our estimator gives to each observation. Figure 4.2 contains these distances

and, as described in Section (4.1), they are compared with the 95% quantiles of the chi-squared

distribution. Observations 16, 25, 28, 45, 54 and 60 exceed this cutoff point. Figure 4.3 shows that

the RIV estimator downweights these points. We identify these observations with filled circles in
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Figure 4.1: Measures of strength for 62 Alaskan earthquakes with the OIV (dashed

line) and the RIV (solid line) fit.

Figure 4.1. It is also important to see that observations {28, 54, 60} have a Mahalanobis distance

larger than the tunning constant c of equation (4.18). Figure 4.3 shows that the RIV estimator

completely downweightes these three observations.

It is interesting to note that Fuller (1987) identified only observation 54 using residual plots

based on the OIV estimator. However, using our robust estimator and diagnostic techniques enables

us to detect additional outlying observations such as observation 28, which has also zero weight

in the robust method. It may result strange that observation 60 appears as an outlier according

to our diagnostic techniques, while this point lies very close to the robust line and has exact fit

for the other. This can be explained analyzing the distribution of the instrumental variable. The

value of the instrument corresponding to this observation is the maximum one and differs from

that of the other observations.

In addition, we create a clean dataset deleting those points which are identified as outliers

or leverage points by our estimator (see Figure 4.1-4.3).
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Figure 4.2: Mahalanobis Distances for the original dataset.
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Figure 4.3: Weights assigned by the RIV estimator to each point of the original

dataset.
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The first graph of Figure 4.4 contains the remaining observations and the robust (RIV)

and non-robust (OIV) regression lines. We can see that when there are no extreme points in the

data, the lines are almost identical. Finally, we artificially contaminate the original data set in the

different subspaces of the data to compare the performance of the RIV estimator with the OIV

estimator. We illustrate the results of the both estimations in Figure 4.4. The last seven graphs

of Figure 4.4 correspond to the contaminated datasets. We emphasize the effect that an extreme

observation in the instrumental variables have on the OIV using the third graph of Figure 4.4.

In this dataset, the instrument of an observation over the line has been highly contaminated. In

all cases, the classical solution, represented by the dashed line (OIV estimator), is pulled away by

the extreme observations. Graphs 1, 2, 3, 5 and 7 show that the effect of these observations may

even change the sign of the slope. Note that a negative slope does not make any sense in this

problem. On the contrary, our robust estimator remains almost unchanged in all cases. Tables

4.1 and 4.2 report the original and the created datasets, respectively. Table 4.3 summarizes the

estimates found using both estimators for all the datasets together with its estimated covariance

matrices.

We see that both the estimate and the estimated asymptotic covariance matrix of the OIV

estimator are highly influenced by the outliers and leverage points, while those of the RIV estimator

appear to be very stable throughout all the datasets.
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Figure 4.4: Clean and Contaminated Datasets with the OIV (dashed line) and the

RIV (solid line) fit. Solid points identify those that have been artificially contami-

nated.
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Table 4.1: Three measures of strength for 62 Alaskan earthquake (from Fuller, 1987; source

Meyers and von Hake, 1976).

t Yt Xt Wt t Yt Xt Wt t Yt Xt Wt

1 5.5 5.1 5.6 22 3.6 4.7 4.3 43 4.8 5.1 5.5

2 5.7 5.5 6 23 3.9 4.5 4.6 44 6.2 5.2 5.8

3 6 6 6.4 24 4 4.8 4.6 45 6.8 5.5 6.2

4 5.3 5.2 5.2 25 5.5 5.7 4.9 46 6 5.8 5.8

5 5.2 5.5 5.7 26 5.6 5.7 5.5 47 4.6 4.9 4.7

6 4.7 5 5.1 27 5.1 4.7 4.7 48 4.1 4.7 4.5

7 4.2 5 5 28 5.5 4.9 4.1 49 4.4 4.9 4.6

8 5.2 5.7 5.5 29 4.4 4.8 4.9 50 4 5.3 5.2

9 5.3 4.9 5 30 7 6.2 6.5 51 5 5 5.6

10 5.1 5 5.2 31 6.6 6 6.3 52 5.9 5.6 5.9

11 5.6 5.5 5.8 32 5.4 5.7 5.1 53 5.7 5.5 5.9

12 4.8 4.6 4.9 33 5.3 5.7 5.7 54 5 4.1 5.3

13 5.4 5.6 5.9 34 5.7 5.9 5.8 55 5.3 5.5 5.5

14 4.3 5.2 4.7 35 4.8 5.8 5.7 56 5.7 5.5 5.4

15 4.4 5.1 4.9 36 6.4 5.8 5.7 57 4.7 4.8 4.7

16 4.8 5.5 4.6 37 4.2 4.9 4.9 58 4.6 4.8 4.6

17 3.6 4.7 4.3 38 5.8 5.7 5.9 59 4.2 4.5 4.6

18 4.6 5 4.8 39 4.6 4.8 4.3 60 6.5 6 7.1

19 4.5 5.1 4.5 40 4.7 5 5.2 61 4.9 4.8 4.6

20 4.2 4.9 4.6 41 5.8 5.7 5.9 62 4.4 5 5.3

21 4.4 4.7 4.6 42 5.6 5 5.4
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Table 4.2: Contaminated Datasets.

t Yt Xt Wt t Yt Xt Wt

Contamination in XWY Contamination in XW

17 9.7 11.3 0.6 60 16 17.1 6.5

23 9.5 11.6 0.9 61 9.8 9.6 4.9

59 9.5 11.6 1.2 62 15 15.3 4.4

Contamination in Y Contamination in XY

17 4.7 4.3 23.6 17 16.7 4.3 0.6

23 4.5 4.6 23.9 23 16.5 4.6 0.9

59 4.5 4.6 24.2 59 16.5 4.6 1.2

Contamination in X Contamination in WY

30 0 6.5 7 17 4.7 16.3 0.6

31 0 6.3 6.6 23 4.5 16.6 0.9

36 0 5.7 6.4 59 4.5 16.6 1.2

Contamination in W

23 4.5 24.6 3.9
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Table 4.3: Estimates of the regression coefficients, standard errors (in parentheses) and

variance-covariance matrix of each estimator.

RIV V̂ RIV OIV V̂ OIV

β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

Original Dataset

-3.954 1.724 β̂0 0.943 -4.283 1.796 β̂0 1.240

(.971) (.184) β̂1 -0.179 0.034 (1.113) (.212) β̂1 -0.237 0.045

Clean Dataset

-3.811 1.695 β̂0 1.059 -3.966 1.725 β̂0 0.848

(1.029) (.195) β̂1 -0.201 0.038 (.921) (.176) β̂1 -0.162 0.031

Contamination in X

-3.722 1.678 β̂0 1.045 45.937 -8.297 β̂0 6552.581

(1.022) (.197) β̂1 -0.201 0.039 (80.948) (16.437) β̂1 -1330.372 270.171

Contamination in W

-4.00 1.733 β̂0 1.016 16.803 -2.248 β̂0 125806.90

(1.008) (.197) β̂1 -0.193 0.037 (354.69) (68.02) β̂1 -24126.28 4626.753

Contamination in Y

-3.902 1.715 β̂0 0.993 13.554 -1.439 β̂0 59.138

(.996) (.189) β̂1 -0.188 0.036 (7.69) (1.47) β̂1 -11.289 2.165
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Table 4.4: Estimates of the regression coefficients, standard errors (in parentheses) and

variance-covariance matrix of each estimator.

RIV V̂ RIV OIV V̂ OIV

β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

Contamination in XW

-4.235 1.778 β̂0 0.876 4.376 0.126 β̂0 0.092

(.936) (.179) β̂1 -0.167 0.032 (.303) (.054) β̂1 -0.015 0.003

Contamination in XY

-3.902 1.715 β̂0 0.993 18.986 -2.424 β̂0 140.541

(.996) (.189) β̂1 -0.188 0.036 (11.85) (2.042) β̂1 -24.172 4.172

Contamination in WY

-3.902 1.715 β̂0 0.993 -57.360 11.947 β̂0 2674.348

(.996) (.189) β̂1 -0.188 0.036 (51.714) (9.916) β̂1 -512.794 98.334

Contamination in XWY

-3.902 1.715 β̂0 0.993 8.208 -0.599 β̂0 0.535

(.996) (.189) β̂1 -0.188 0.036 (.731) (.131) β̂1 -0.095 0.017

4.6 Conclusions

In this Chapter we propose a robust instrumental variables estimator based on high breakdown

point S-estimators of location and scatter. The resulting estimator has bounded Influence Function

and satisfies the usual asymptotic properties for suitable choices of the S-estimator used. Moreover,

it is a weighted instrumental variables estimator with weights depending on the Mahalanobis

distances of the data points. In particular, when these weights are one, the estimator reduces

to the ordinary instrumental variables estimator. We also derive an estimate for the asymptotic

covariance matrix of our estimator which is robust against outliers and leverage points.
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In addition, we build a diagnostic technique using the RIV estimator and we use it in an

example to flag outliers in all the dimensions of the data. We compare the RIV estimator with

the OIV estimator in many datasets. Both the estimate and the estimated covariance matrix of

the RIV estimator remains almost unchanged, while those of the OIV are highly affected by the

introduced contamination.
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