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Data collected through Web surveys, in general, do not adopt traditional 

probability-based sample designs.  Therefore, the inferential techniques used for 

probability samples may not be guaranteed to be correct for Web surveys without 

adjustment, and estimates from these surveys are likely to be biased.  However, 

research on the statistical aspect of Web surveys is lacking relative to other aspects of 

Web surveys. 

Propensity score adjustment (PSA) has been suggested as an alternative for 

statistically surmounting inherent problems, namely nonrandomized sample selection, 

in volunteer Web surveys.  However, there has been a minimal amount of evidence 

for its applicability and performance, and the implications are not conclusive.  

Moreover, PSA does not take into account problems occurring from uncertain 

coverage of sampling frames in volunteer panel Web surveys. 

This study attempted to develop alternative statistical estimation methods for 

volunteer Web surveys and evaluate their effectiveness in adjusting biases arising 

from nonrandomized selection and unequal coverage in volunteer Web surveys.  



  

Specifically, the proposed adjustment used a two-step approach.  First, PSA was 

utilized as a method to correct for nonrandomized sample selection, and secondly 

calibration adjustment was used for uncertain coverage of the sampling frames.   

The investigation found that the proposed estimation methods showed a 

potential for reducing the selection and coverage bias in estimates from volunteer 

panel Web surveys.  The combined two-step adjustment not only reduced bias but 

also mean square errors to a greater degree than each individual adjustment.  While 

the findings from this study may shed some light on Web survey data utilization, 

there are additional areas to be considered and explored.  First, the proposed 

adjustment decreased bias but did not completely remove it.  The adjusted estimates 

showed a larger variability than the unadjusted ones.  The adjusted estimator was no 

longer in the linear form, but an appropriate variance estimator has not been 

developed yet.  Finally, naively applying the variance estimator for linear statistics 

highly overestimated the variance, resulting in understating the efficiency of the 

survey estimates.   
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Chapter 1:   Introduction 
 

Survey methodology has a relatively short history as an academic field.  It was 

not until the infamous debacle of the 1936 presidential election polling by the Literary 

Digest that the needs for scientific data collection were recognized.  Since then, the 

survey methodology field has evolved dynamically along with the cultural and 

technological changes in the society.   

Among the evolutions the most notable is the telephone interview (Groves and 

Kahn, 1979; Dillman, 1998; and Dillman, 2002).  When the idea of conducting surveys 

over telephone was first introduced, researchers were not fully convinced about its utility, 

because the failed Literary Digest poll used a telephone list and because the prevailing 

belief was that surveys should involve face-to-face interactions.  Since the Health Survey 

Methods Conference in 1972 where telephone interviewing first received attention as a 

serious data collection mode (Dillman, 1998), there has been a great effort to build and 

improve telephone survey methodology (e.g., Groves and Kahn, 1979).  Meanwhile, an 

innovative concept of balancing survey costs and errors to the maximum degree has 

influenced researchers to design surveys within some fixed amount of budget (e.g., 

Groves, 1989).  A well-defined probability sampling procedure by random digit dialing 

has also been developed for telephone surveys (e.g., Mitofsky, 1970; Waksberg, 1978; 

Lepkowski, 1988; Casady and Lepkowski, 1993).  Practical considerations and societal 

changes have also boosted the legitimacy of telephone interviews.  For example, 

increased telephone usage and a lowered household contactability for face-to-face 

interviews due to an increase in female workforce and a decrease in household size have 
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made surveys by telephone more feasible and cost-effective.  Now, telephone surveys are 

a standard data collection method in most developed countries. 

The survey research field is experiencing another challenging breakthrough – 

Internet surveys.  The origin of the Internet dates as early as 1962 when J.C.R. Licklider 

raised the ‘Galactic Network’ concept which depicted a set of computers globally 

interconnected through which everyone could quickly access data and programs from any 

site (Leiner et al., 2000).  This was initiated by the military during the Cold War (Slevin, 

2000), which set up the Advanced Research Projects Agency (ARPA) within the US 

Department of Defense in order to develop technologies for interlinking computer 

networks and facilitating computer-mediated communication.  In 1969, ARPANET, the 

first packet switching network of four host computers at universities in the southwestern 

US, was launched and is the origin from which the Internet has grown.  The Internet 

embodies a key underlying technical idea – open architecture networking (Leiner et al., 

2000).  Under this networking, the choice of individual network technology is not 

dictated by one particular network architecture which enables coexistence of multiple 

independent networks of rather arbitrary design.   

Widespread development of Local Area Networking (LAN) and personal 

computers in the 1980’s sped up the usage of the Internet by the public.  In 1992, CERN 

(the European Laboratory for Particle Physics) released the World Wide Web (WWW), 

graphics-based software.  At the similar time, HyperText Markup Language (HTML) was 

invented at CERN.  These two components later led to Web browsers, such as Netscape® 

and Microsoft Explorer® (Gattiker, 2001).   
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Now, utilization of the Internet is heavily dependent on graphics-based 

interaction, as more and more sites adopt this technology and graphical browsers are used 

to access the Internet.  According to Leiner et al. (2000), the Internet is a world-wide 

broadcasting capability, a mechanism for information dissemination, and a medium for 

collaboration and interaction between individuals and their computers regardless of 

geographic locations.   

There are various forms of the Internet – e-mail, newsgroups (Usenet), Multi-User 

Domains (MUDs), Internet Relay Chat (IRC), File Transferring Program (FTP), 

electronic mailing lists (listserv) and WWW (Web, hereafter) are some of the examples.  

Compared to other applications, the Web is user friendly as it does not require a high 

level of computing knowledge.  The contents on the Web are displayed on browsers that 

enable an intuitive graphic-based interface between the contents and the web users.  

Sorting, retrieving, and sharing information based on a web of hyperlinks and hypertext 

are not complicated.  Thanks to hypertext and hyperlinks, Web users may move from one 

webpage to another without a glitch, while deciding which information they wish to have 

transferred to their browser and which links they want to skip.  Moreover, unlike 

conventional communication media relying on nonhuman channels, the Web carries 

information expressed in a multi-media format including text, sound, and still and 

moving graphics.  Due to its prominence, the term “Web” will be used interchangeably 

with “Internet” throughout this study, although it is one device to employ the Internet.   

The popularity of personal computers and the convenience of the Web have made 

it the fastest growing communication medium in developed countries.  It is not a radical 
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idea any more to have a flower shop deliver a bouquet to parents in another country or to 

pay bills over the Web.  Technology changes; so does the society.   

‘Our survey methods are more a dependent variable of society than an 

independent variable,’ according to Dillman (2002).  The ideal survey methodology is 

likely to reflect the society and its culture.  Just as telephone surveys began to be adopted 

extensively a few decades ago mirroring the societal and technological trends, the survey 

methodology field is currently witnessing a widespread growth in the use of Web surveys 

(Taylor and Terhanian, 2003).  All these changes in survey modes occur because survey 

methods inevitably manifest societal trends.   

Nevertheless, there are mixed views about Web surveys.  While many researchers 

think that Web surveys have a great potential as an addition to the existing methods and 

for the measurement improvement (e.g., Taylor, 2000; Couper, 2001a, 2001b; Dillman, 

2002), others express pessimistic conjectures towards Web surveys (e.g., Mitofsky, 

1999).  The negative views seem due to the fact that there does not exist a well-accepted 

Web survey methodology for selecting probability sample surveys targeting the general 

population, as Web surveys are new to the field and the rapid increase in their use has far 

surpassed that of the methodological development.  No matter how strongly survey 

methodologists warn about limitations of Web survey quality, it is unlikely that the field 

will give up on Web surveys.  Thus, it is necessary to acknowledge the importance of 

Web surveys, instead of neglecting their potentials by regarding them as a cheap and 

dirty method.  It becomes the methodologists’ responsibility to devise ways to improve 

Web survey statistical methods (e.g., sample selection and estimation) and measurement 

techniques (e.g., questionnaire design and interface usability). 
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Luckily, there have been a number of substantial attempts by social scientists in 

the design aspect of Web surveys particularly in questionnaire design and usability 

issues.  However, findings in these studies do not cover the full picture of Web survey 

methodology, as they are limited to improving the quality of data collected from persons 

who do participate in the surveys.  Less attention has been given to statistical inference 

based on Web surveys.  A basic statistical question is whether the data collected from a 

set of Web survey respondents can be used to make inferences about a desired target 

population.  However, statistical properties of Web survey outcomes deviate from those 

in traditional surveys.  Survey organizations may hope that their Web surveys represent 

the general population of households or persons.  But, it is unrealistic to assume that Web 

surveys targeting the general population are based on randomization, because the frame 

coverage is uncertain, which means that drawing a probability sample from the target 

population is impossible.  Moreover, response rates on Web surveys are low.  Therefore, 

it is highly likely that Web surveys inherently carry errors related to coverage, sampling, 

and nonresponse.   

There are post-survey statistical approaches to compensate for these errors in 

traditional surveys, such as face-to-face and telephone surveys.  Their performance on 

Web survey errors is open to discussion, as the underlying mechanism of these errors 

may be unique for Web surveys.  To explore this possibility, this study will focus on the 

statistical aspect of Web surveys, more specifically post-survey adjustment.  It will 

examine the existing survey adjustment methods and expand the possibilities by 

proposing and examining propensity score adjustment and calibration methods 

specifically devised for Web surveys.  
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The remainder of this study is comprised of the following eight chapters.  The 

classification of the current Web survey practice and the structure of Web survey errors 

related to the cyber culture and Web usage will be introduced in Chapter 2.  Chapter 3 

will state the purposes of this dissertation and summarize of the work in the subsequent 

chapters.  The extent to which traditional post-survey adjustment methods correct for 

coverage and nonresponse error will be evaluated in Chapter 4.  The core of this study is 

Chapter 5, 6, and 7 where the propensity score adjustment and calibration will be 

examined as alternatives to more traditional post-stratification adjustment.  Chapter 5 will 

start by documenting the propensity score adjustment as a bias reduction method in 

observational studies and will review the literature on propensity score adjustment.  

Chapter 6 will identify how this method along with calibration adjustment can improve 

estimation using Web survey data by relating to the characteristics of the Web sample 

discussed in Chapter 2.  It will provide mathematical notation for the propensity score 

adjustment as well as the calibration adjustment.  Chapter 7 will consist of two case 

studies where proposed adjustment methods are applied to the survey data and will 

appraise the magnitude of error reduction in simulations.  Propensity score model 

building strategies and variance estimation issues will be also examined.  This study will 

conclude with Chapter 8 with a summary of the implications and limitations of this 

research and suggestions for future research in order to advance this work. 
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Chapter 2:  Web Survey Practice and Its Errors 
 

Surveys can be conducted on the Web at any time in any place with many types of 

colors and multi-media features literally at no cost.  The facts that an increasing number 

of people use the Internet is an ordinary tool of communication, a channel for 

information, and a place for various daily activities have attracted an enormous amount of 

attention from survey researchers.  The growth of Web survey practice is rapid, 

considering that the possibility of conducting surveys on the Web was first discussed less 

than a decade ago.  There is an apparent gap between statistical and measurement 

features of Web survey practice and methodological research.  Despite the facts that Web 

surveys have not been thoroughly studied and survey professionals express suspicions 

about their quality, the Internet seems to be somewhat overloaded with these dubious data 

collections.1  This, however, should not discourage survey methodologists from seeing 

the Web as a potential data collection tool.  Understanding Web surveys from different 

disciplinary and methodological perspectives should improve the quality of Web-based 

surveys.   

 

2.1  Types of Web Surveys 
 

Web surveys are not the same as Internet surveys, as Internet surveys include both 

Web and e-mail surveys, whereas Web surveys include only those presented via WWW 

                                                 
1 The existence of websites, which claim that Internet users can make money by taking 
surveys, could be evidence of this concern (e.g. http://www.surveys4money.com) 
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browsers.  Due to limitations with storage and software compatibility, e-mail surveys are 

less popular than Web surveys; thus, this research mainly focuses on Web surveys. 

Web surveys can be first classified into three categories as in Figure 1.  This 

classification is based on the availability and the construction method of a sampling 

frame (Couper, 2001a; Manfreda, 2001; Couper, 2002; Couper and Tourangeau, 2002).  

When sampling frames are not available, the open invitation type of Web survey is 

conducted.  Examples of this are entertainment polls, like QUICKVOTE on 

http://www.cnn.com, and unrestricted self-selection surveys.  This survey is virtually 

open to anyone with Web access, and if they want to take the survey, they can respond as 

many times as they wish.  Open invitation Web surveys are not suitable for scientific 

research, because researchers do not have any control over the participation mechanism. 

 

 
Source:  Manfreda (2001); Couper (2001a); Couper (2002) 

Figure 2.1.  Classification of Web Surveys 
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The second type of Web surveys constructs a list of participants during data 

collection, and this list may be used as a frame.  Survey participants are recruited as they 

are intercepted to designated survey sites or encounter pop-up surveys or banner ads, 

when they log onto certain websites for other purposes.  Depending on the intercept 

implementation methods, these surveys may accommodate probability sampling.  

However, their response rates are typically very low (far less than 10%), making this type 

of Web surveys unsuitable for scientific research.   

The third category of Web surveys has a sampling frame prior to data collection, 

which allows individual invitation of sample units.  Researchers may have full control 

over respondents’ participation by restricting the survey access.  The quality of this Web 

survey method is considered better than the previous ones.  This Web survey is further 

dichotomized depending on the probabilistic nature of the sample.  The first uses 

nonprobability samples drawn from volunteer panels or commercially available e-mail 

lists.  One example for this type would be the method currently used by Harris 

Interactive.  Panel members in volunteer Web surveys self-select to join the panel, and 

commercial e-mail lists include Internet users who register for some other services on the 

Web.  Such frames may have duplicate listings and there can be problems in identifying 

multiple listings on the sampling frame as well as in the sample and, thus, in obtaining 

the probability of inclusion.   

The second type of the Web surveys with sample frames constructed prior to data 

collection uses probability sampling.  Under this method, there are currently four 

different ways to conduct Web surveys: (1) Web surveys using a list of some unique 

population whose members all have Web access, (2) Web surveys recruiting Internet 
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users via traditional survey modes with probabilistic mechanism, (3) Web surveys 

providing Web access to a set of recruited panel members who were probabilistically 

sampled from the general population, and (4) Web survey option in mixed-mode 

probability sample surveys2.  The probability of inclusion is obtainable in these Web 

surveys and may be used in estimation.  Strictly speaking, design-based statistical 

inferences can be drawn only under these last four Web survey methods. 

 

2.2  Cyber Culture and Web Surveys 
 

One way of gaining fundamental knowledge about Web surveys is to understand 

cyber culture.  This is because the relationship between survey methods and the cultural 

phenomena is substantial as discussed in Chapter 1.  This section will examine the culture 

in cyberspace in order to provide integrative views on the Web survey, its respondents 

and its errors. 

The Internet is a special medium, for it enables both reciprocal and non-reciprocal 

communication.  On the one hand, the Internet forms some types of solidarity among its 

users by deconstructing physical and social boundaries (Reid, 1991) and connecting all 

users who are willing to participate.  On the other hand, the concept of ‘community’ does 

not appear to exist in the cyber world, because the culture in the cyber community is 

distinctive from that in the everyday community.  

                                                 
2 Web options in mixed-mode surveys differ by the control method of participation 
assignment.  While some mixed-mode surveys use a random assignment, enabling 
researchers to know which units are answering on the Web prior to survey recipients’ 
participation, others make respondents choose a preferred mode.   
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Cyber culture tends to have been treated negatively, as it is viewed to bring a 

destructive effect on both personal identity and social culture (Turkle, 1995).  Turkle 

(1995) argues that ‘in the real-time communities of cyberspace, we are dwellers on the 

threshold between the real and the virtual, unsure of our footing, inventing ourselves as 

we go along.’  Cyber world connives at personal identities being de-centered, dispersed 

and multiplied.  This fluctuating identity may be best portrayed by one term – anonymity.  

Anonymity, indeed, is one of the highlights in identity formation on the Internet 

(Slevin, 2000; Burnett and Marshall, 2003).  While scarce in real life, anonymity is 

omnipresent in cyber space.  The idea that the physical or lawful being of users is not 

always verifiable on the Internet seems to have led people to counterfeit their identities or 

appear under many different identities.  Nonetheless, the reality is that our Web activities 

leave remnants that can be traced and identified.  While anonymity or identity invention 

is an elusive idea, Internet users misperceive that others are not able to obtain their true 

identity, unless they reveal it.  ‘Anonymity continues to operate as the boundary that one 

traverses as a Web user – whether as a lurker in chatgroups or as a multiple personality in 

usegroups and chatgroups (Burnett and Marshall, 2003)’.   

The possibility of locating one’s true identity in cyberspace does not stop Internet 

users from enjoying their anonymity.  Ironically, this possibility triggers another issue – 

threats to the real-life privacy.  Internet users are aware that it is easy to obtain personal 

information with the development of the Internet and that it is possible for some strangers 

to access and use their identity.   Privacy has become a luxury item in the cyber world 

(Moore, 2002), and this has increased the privacy concerns.   
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The Internet has been found by some authors to cause a negative effect on 

interpersonal relationships (Kraut et al., 1998; Nie and Erbring, 2000).  Internet usage 

weakens traditional relationships, lessens total social involvement, increases loneliness 

and depression.  These authors argue that the quality of the Internet social relationships is 

poorer than those of the face-to-face relationships and that the time spent only to create a 

weak tie in the cyberspace takes away opportunities to form strong face-to-face ties with 

real human beings.  Heavy Internet usage somehow makes its users lose touch with the 

social environment.  In sum, Internet society does not require as much coherence in 

interpersonal relationships as real society does.   

The ‘fluctuating identity’ and ‘social incoherence’ (Burnett and Marshall, 2003) 

in cyberspace may affect response behavior in Web surveys in three ways.  First, people 

may perceive a lower degree of social obligation, when they are online.  E-mail 

addresses, the common route to sample and contact survey recipients, may not convey as 

much importance as needed for survey participation and completion.  Moreover, the 

recipients know that their individual identity is not easy to verify through e-mail 

addresses.  This may provide a safe feeling, when they discard the survey invitations or 

even when they behave as if they are someone else and forge the responses accordingly.  

The weak interpersonal ties and less-structured culture in the Internet society add more 

reasons for lowered social obligation.   Social exchange theory, once used to explain how 

to stimulate survey cooperation in other surveys (e.g., Groves and Couper, 1998; Groves, 

1989; Dillman, 2000), may not hold in Web surveys. 

Second, the heightened privacy concern on the Internet may make online behavior 

more vigilant, even when there is a slight chance of exposing the true identity.  Two 



 

 21

survey errors may arise from the respondent behavior caused by the privacy concern.  

First, when an Internet user receives survey invitation e-mail from some organization that 

the user is not familiar with, the person is unlikely to pay attention to the invitation.  

Second, the user may want to provide desirable responses if some well-known 

organization, which the user believes to have a capability to track him or her down, 

conducts the survey.  In this case, the respondent may want to depict himself or herself in 

a socially acceptable way.  The second error may be completely opposite of Web survey 

pioneers’ prediction that Web surveys, as a type of self-administered data collection, will 

obtain information free from the self-presentation pressure. 

Third, Web survey respondents’ behavior may be affected by their Web usage 

behavior.  Internet users are used to switching from one task to another by clicking and 

closing windows or moving to other websites, whenever they encounter something other 

than what they expect or something that they are not necessarily interested in.  There are 

countless distracting features on the Web, from pop-up ads to instant messengers.  This 

environment itself makes it difficult for Web user to focus their attention on one task.  

Accordingly, survey recipients may not open the invitation e-mail, if it appears 

uninteresting.  Even when survey recipients open the survey, there is a great chance to 

depart from the survey at any time, if they find the survey is not as interesting or urgent 

as they first think.  Their return to the survey is not guaranteed.  There is likely to be 

more than one stimulus on the recipients’ computer monitor, although survey researchers 

wish that the survey questionnaire is the only feature.  In this case, the level of cognitive 

capacity consumed solely for the Web survey may be low.  Computer viruses may be 

another factor of the Internet environment. Since they are spread widely via the Internet, 
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one recommendation for computer protection is to delete any suspicious e-mails.  

Imagine a Web survey fielded unfortunately during a virus epidemic – why would people 

keep the invitation e-mail in their mailbox?  

 

2.3  Web Usage by Demographic Characteristics and Web Surveys 
 

The demographic characteristics of Web users are another source of 

understanding Web survey respondents and may reveal information on their behaviors 

and subsequent survey errors.  As in the previous section, we will examine who is on the 

Web and who Web surveys are likely to attract. 

Existing Web survey literature seems to take the possibility of conducting useful 

surveys on the Web for granted.  This can be deceptive, because only a selected portion 

of the general population is privileged to have Internet access.  Futurologist Toffler 

(1970; 1980; 1991), even before the Internet was introduced to the public, predicted that 

the technological changes would endanger people by leaving them behind in the 

postindustrial economy, if they do not heed and act on the changes.  As predicted in his 

book Powershift (1991), an unconventional economic power paradigm is emerging – the 

power is shifting from the people with more material resources to those with more 

information.  The Internet is a critical medium to acquire bountiful and opportune 

information in a short time.  However, the Internet usage is not evenly distributed with 

respect to the socio-economic status and demographic characteristics, which leads to an 

unequal chance to obtain the power predicted by Toffler, especially for less-privileged 

people.   
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Internet access rates differ considerably among countries, implying that the target 

population that can be covered by Web surveys will be much different as well.  

According to the 2003 International Telecommunication Union report (available at 

http://www.itu.int/ITU-D/ict/statistics/), there are only ten countries where more than  

half the population uses the Internet.3  Some countries, like Myanmar, Tajikistan and 

Democratic Republic of the Congo, less than 10 out of 10,000 people use the Internet.  

The divergent Internet usage level across countries seems closely related to their 

economic status and telecommunication infrastructure, which is, in turn, related to 

education.   

Let us assume that there is a survey conducted in the U.S. including U.S. 

territories and outlying areas via Web.  Given the facts that Web users may be different 

from nonusers and that people from each state, for instance, may be disproportionately 

represented, results from this survey may not be generalized to any degree.  Until there 

are substantial proportions of Internet users around the world, the possibility of 

conducting Web surveys free from the physical and geographical boundaries may remain 

as a daydream.   

In the U.S., there is a broad range of information about Web usage by different 

demographic groups.  There is a great concern about digital divide, the difference 

between online and offline population.  A Nation Online (2002) indicated uneven Internet 

usage by age, income level, educational attainment, employment status, race/ethnicity, 

household composition, urbanicity, and health status.  Not surprisingly, young people are 

                                                 
3 These countries are: Iceland: 67.5%, Republic of Korea: 60.3%, Sweden: 57.3%, US: 
55.1%, New Zealand: 52.6%, Netherlands: 52.2%, Canada: 51.3%, Finland: 50.9%, 
Singapore: 50.4%, Norway: 50.3%.  
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leading the Internet usage, as 75% of youth between the ages of 5 and 17 years old use 

the Internet.  In addition, the following groups of people are less likely to use the Internet 

than their respective counterparts: people with lower income, without employment, with 

lower education, or with disabilities; people living in the central city, or in non-family 

household or family household without children; or Blacks and Hispanics.  Although 

there is evidence that the gaps in those characteristics between online and offline 

population are decreasing (US Department of Commerce, 2002), the uneven levels of 

Web usage with respect to these background characteristics are likely to remain.  

Moreover, there will remain certain groups of people who are unable to go online for 

financial, technical, or health reasons.   

This digital divide may affect the quality of Web surveys.  Unless the people on 

the Internet are the population of interest, Web surveys are likely to include people with 

higher socioeconomic status and more socially engaged and younger people at 

disproportionately higher rates than traditional surveys.  Depending on the target 

population of a survey, this can result in unequal coverage, as Internet nonusers may be 

systematically under-represented.  Internet users may also have distinctive survey 

response behaviors – for example, higher noncontact or nonresponse rates or lower 

compliance in completing the survey task.  This will also cause different combinations 

and levels of survey errors than traditional surveys. 

 

2.4 Web Survey Errors 
 

The best way to understand Web surveys is a systematic comparison between 

Web surveys and traditional surveys, such as telephone and face-to-face surveys, with 
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respect to total survey errors (Deming, 1944; Groves, 1989).  Following the traditional 

approach illustrated in Groves (1989), this section will examine all components of the 

total survey errors: coverage error, sampling error, nonresponse error, and measurement 

error in Web surveys (also refer to Couper, 2002; Couper and Tourangeau, 2002). 

2.4.1  Coverage error 
 
Coverage error arises when the survey frame does not cover the population of 

interest.  Although Web surveys can be subject to either undercoverage or overcoverage, 

the former is the most serious problem in Web surveys.  The Internet users in US are 

estimated by A Nation Online (2002) at 143 million, and about two million additional 

Americans go online annually.  It is likely that the world shall see an increase in the 

number of Internet users and the continuation of this trend.  While these numbers and the 

growth in the numbers are impressive, Internet users account for 54% of the American 

population.  Consequently, even though the Internet population is large and growing, a 

huge portion of the general population would be omitted from a Web survey.  Although 

some may claim that their large sample sizes would protect their surveys from systematic 

exclusion of large segment of the population, this is fallacious as sample sizes are not 

related to coverage error at all – coverage error is a function of coverage rate and 

differences between covered and omitted units.   

It is true that there are certain populations whose members all have Web access, 

for example, faculty or students at colleges or universities and employees at government 

agencies or large corporations.  In Web surveys targeting these populations, the frame 

may achieve full coverage, and their coverage errors may not be serious.  Once the Web 

survey target population departs from these special groups, the coverage properties 
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become jeopardized.  A possible solution for this problem may be providing Internet 

access to the offline population.  This idea is currently practiced by Knowledge Networks 

(Huggins and Eyerman, 2001) – pre-recruited panel Web survey examined in Section 2.1.  

In order to construct a controlled panel, first eligible telephone numbers are called via 

random digit dialing, and eligible people who answer the phone are invited to join a Web 

survey panel.  If the call recipients agree to be panel members, they receive a Web TV4, 

regardless of their Web usage status prior to the recruitment.5   

Overcoverage of Web surveys is related to the possibility of multiple Internet 

identities which Section 2.2 introduced as an attribute of the cyber culture.  In effect, any 

Internet users encounter many chances to set up multiple e-mail addresses, whether they 

intend to or not.  For instance, a college freshman has an e-mail address which he has 

used since high school and is using it to communicate with his high school friends and his 

family.  His college automatically assigned him another e-mail address, and he mainly 

uses it for school-related matters.  Imagine his part-time job involves some computing 

and he sets up his third e-mail address for better work delivery within the company.  This 

student already has three e-mail addresses.  It is a matter of time for him to get assigned 

additional e-mail addresses that he may or may not be aware of.  This possibility implies 

existence of overcoverage in volunteer panel Web surveys and commercially available e-

mail list-based Web surveys.  There is a potential threat that Web survey volunteers may 
                                                 
4 In principle, this may solve coverage problems, but its operation has shown some 
limitations: there are areas where the Web TV service is not available.  This may be 
viewed as nonresponse error.  However, it is not clear whether people who do not 
respond to the RDD invitation or who decline to join the panel affect coverage properties 
systematically. 
5 KN is now allowing panel members who already have a computer and an Internet 
access to use their own system.  For these members, KN provides different monetary 
incentives. 
 



 

 27

join the panel multiple times with different identities in order to increase the odds of 

receiving incentives.  For commercial e-mail lists, it is impossible to distinguish to whom 

each e-mail address belongs.  One approach to identify the duplicate units and adjust for 

them in these frames is to ask a sample person whether he/she has other email addresses 

and, if so and if possible, what they are.  The selection probability for each person could 

then be adjusted in the same way that a household selection probability is adjusted in a 

random digit dialing telephone survey where the household has more than one telephone 

line.  

2.4.2  Sampling Error 
 
Sampling error occurs due to the fact that not every unit in the target population is 

in the survey.  The concept is usually considered in the context of probability sampling.  

In Web survey practice, nonprobability sampling is dominant because of its convenience 

and inexpensiveness.  Researchers should bear in mind that nonprobability sampling can 

give biased estimates, as in the Literary Digest incident, and requires that strong 

structural assumptions hold in order for inferences to be valid.    

There is an effort by Harris Interactive as previously introduced to compensate for 

the coverage and sampling errors by sophisticated weighting.  This technique adopts 

propensity score adjustment originally proposed by Rubin and Rosenbaum (1983) for 

causal inferences using observational data.  Propensity score adjustment balances out the 

covariate differences between the treatment and control groups whose assignment 

mechanism is not random.  Harris Interactive collects reference survey data through RDD 

telephone surveys as if they come from a control group and Web survey data as a 

treatment group.  Through the use of weights, the estimated distribution from the Web 
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survey is adjusted to match that of the reference survey on certain variables that are 

collected in both.  Although Harris Interactive has been advocating the effectiveness of 

propensity score adjustment, there have not been well-documented technical procedures 

for this application.  Moreover, the amount of evaluation on the adjustment performance 

is very limited (e.g., Terhanian et al., 2000a; Taylor et al., 2001; Schonlau et al., 2003; 

Varedian and Forsman, 2003), which leads to inconclusive implications.  This method 

will be elaborated in Chapter 5 and 6 and examined in Chapter 7. 

2.4.3 Nonresponse Error 
 
Nonresponse error arises when not all survey recipients respond.  This error is a 

multiplicative function of two components: the response rate and the difference between 

respondents and nonrespondents.  One substantial problem of Web survey nonresponse is 

that response rates are not always measurable.  For volunteer panel Web surveys or open-

invitation Web surveys, it is impossible to measure the number of potential respondents 

who are actually exposed to the survey invitation.  Web surveys using commercial e-mail 

lists may potentially allow response rates to be measured, but confront difficulties 

identifying whether the e-mail addresses are still being used.  Thus, the nonresponse rate 

among eligibles is entangled with the rate of ineligibility on the frame. 

Web surveys whose response rates are measurable have achieved relatively poor 

results.  Response rates for the intercept or pop-up surveys do not exceed 10%; around 20 

to 30% for volunteer panel Web surveys (e.g., Harris Interactive); and around 50% for 

surveys on panel members who are given Web access (e.g., Knowledge Networks).   

When the use of Web surveys started to increase, many researchers noted the 

problems associated with coverage and sampling errors.  Interestingly, few were 
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concerned about the nonresponse in Web surveys.  Some pioneers were even optimistic 

about the response rates by arguing that respondents could take surveys on the Internet at 

their convenience and this gives more chances to respond.  In reality, response rates in 

Web surveys are low relative to other survey modes.  After adjusting for the cumulative 

nature of Web panel recruitment and survey participation, the final response rates may 

dip far below the nominal response rates noted above.   

What are the possible causes of Web survey nonresponse?  First of all, compared 

to traditional surveys, it is difficult in a Web survey to provide tangible financial 

incentives and is impossible to build rapport between the survey conductor and takers.  

This is because an interviewer who plays a role as a motivator and a mediator is 

eliminated.  It is also related to the laxity of the Internet society – Web survey recipients 

may not feel obligated to abide by the survey request.  

A second source of nonresponse error may be found in limited computer literacy 

among some groups.  While it is true that browsing websites does not require a high level 

of computer literacy thanks to the adoption of Graphic User Interfaces, there are people, 

especially older and less educated people, who may still feel uncomfortable with using 

computers and the Internet.  Although the Web survey design quality is most likely to 

influence the measurement error which will be examined shortly, the lack of computer 

literacy may not permit them to access or operate Web surveys.  When considering the 

frequency of encountering badly designed Web questionnaires, the cognitive challenges 

that these people may perceive on top of the burden caused by low computer literacy, 

may elicit a high level of nonresponse.   
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The level of system accessibility may be another reason.  Depending on the 

popularity and the age of computer platforms and/or Internet browsers, Web 

questionnaires may appear in various ways.  Some survey recipients with an older 

platform or a less popular browser, for instance, may not even have a chance to view the 

questionnaire as implemented.  Those with slower modems or processors may experience 

a lengthy delay in questionnaire loading and give up carrying out survey task.  These 

recipients become nonrespondents or partial respondents, not because they avoid surveys, 

but because their system restricts them from accessing survey instruments. 

The most critical cause for nonresponse in Web surveys seems related to the 

cyber culture examined in Section 2.2.  The guaranteed anonymity and relaxed social ties 

add more reasons for respondents to neglect the survey requests.  Heightened concerns 

about the personal privacy may weaken the legitimacy of the survey organizations in the 

minds of potential respondents, while the authority of survey organizations has been 

found to have positive effect on the completion of other surveys (Presser et al., 1992; 

Groves and Couper, 1998).  Quick and easy navigation from one location to another or 

one task to another and distracting features on the Web may produce higher levels of 

nonresponse and break-offs.  

2.4.4 Measurement Error 
 
Unlike the previous three types of survey errors, measurement error exists within 

collected data.  Among four survey error components, measurement is the area where 

Web surveys may have distinctive advantages over other data collection modes.  

Accordingly, it has been studied more rigorously than other error components.   
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What are the measurement advantages of conducting surveys on the Web?  First, 

interviewers are eliminated, which can be a key source of response error and variance.  

Ideally, this nullifies interviewer effect on survey statistics and helps to minimize 

respondents’ fear of exposing sensitive answers.  This advantage, however, is common to 

all self-administered surveys. 

Second, Web surveys with a minimal addition in programming make it feasible to 

automate and customize the questionnaires: skip patterns, item branching, randomization 

on question and response-option order, answer range checks, and tailoring of question 

wording may be built into the questionnaire.  Feedback or error messages may be pre-

programmed so that the survey instrument could point the respondents in the right 

direction whenever mistakes occur.  Note that the automation and customization are not 

unique only for Web surveys – they are attainable in all computer assisted survey modes. 

The greatest advantage of using the Web is its richness of visual presentation.  

There is an unlimited range of colors and images one can choose for Web surveys, which 

would cause a substantial cost increase in other modes.  Even multi-media features, such 

as video clips, which are not always possible to implement in other modes, can be freely 

employed in Web surveys, if the respondents have the appropriate equipment.  These 

unique characteristics of Web surveys may not only make survey instruments look more 

appealing but also reduce the cognitive and operational burden of respondents.   

These advantageous attributes of Web surveys, unfortunately, may turn into 

disadvantages, because it is easy to overuse or misuse them.  If colors, images and multi-

media features do not match to the respondents’ cognitive map, they may confuse 

respondents.  This is because respondents may try to make inferences from those 
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features, which are not intended by the survey designers.  Question wording 

customization could backfire with sensitive topics, as personalized questions may trigger 

respondents’ privacy concerns.  With feedbacks, help menus and instructions, Web 

surveys attempt to facilitate respondents’ question comprehension and minimize 

questionnaire operation errors.  However, it is uncertain whether respondents use these 

features and whether they find them informative and useful.  Absence of interviewers 

may result in a greater chance of satisficing response behavior, as respondents may sense 

a lower degree of motivation.   

Unlike other surveys, Web surveys demand a higher degree of cognitive 

capability and computer knowledge.  In addition to the cognitive processes solely for 

survey tasks, respondents need to allocate their remaining cognitive capability to manage 

the questionnaire design components and distracting Web features and to understand the 

operation of the questionnaire.  Unequal technological competence among respondents 

may cause a problem – novice and expert Internet users may encounter different burdens, 

therefore, produce different measurement errors.  If a Web survey targets a population of 

novice Internet users, the measurement error may be detrimental.   

We have examined types of Web surveys and integrated errors in Web surveys 

with the cyber culture and webographics.  To recapitulate, first, it is important not to 

lump all types of Web surveys into one.  Burnett and Marshall (2003) documented that 

“Unifying the Web into a simple medium is fraught with inconsistencies and exceptions 

to a degree that is unparalleled in past media.  Researchers have been more successful at 

laying claim to the idea of ‘television’, where its intrinsic modality was evident.”  The 

same argument made by Burnett and Marshal (2003) seems to hold for Web surveys.  
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There are few variations of telephone surveys one can carryout.  The error mechanism for 

each of these telephone surveys is rather simple and predictable.  However, the story 

changes completely for Web surveys – there are a number of different Web surveys, at 

least nine types were identified in this chapter based on the method used for sampling.  

These surveys are all idiosyncratic with respect to survey errors – they differ from one 

another with respect to the most critical error components, the sources of errors, and the 

absolute and relative magnitude of each error.  This may be clear in a comparison 

between open invitation and pre-recruited Web user Web surveys.  While the latter is 

capable in covering the target population and drawing probability samples, the former is 

unlikely to achieve these.  In addition, there is a dramatic difference in response rates 

between the two.  The properties of measurement error, however, may be comparable.  

Therefore, it is necessary to understand and evaluate particular Web surveys at one time, 

not Web surveys as one unity. 

Second, there is a need for systematic investigation of Web survey errors.  Studies 

of Web survey error to date have made a laundry list of errors and are limited in 

providing a meaningful foundation of mechanisms for those errors.  This chapter 

described a number of sources of Web survey errors in the cyber culture and digital 

divide.  It may be necessary to incorporate findings from other fields in order to broaden 

the understanding of the error mechanism in Web surveys.   
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Chapter 3:  Statement of Purpose and Work 
 

The proposed research is intended to find innovative statistical approaches for 

adjusting errors caused by unrepresentativeness of Web surveys.  Based on the 

implications in Chapter 2, among various types of Web surveys, this study will focus on 

one – volunteer panel Web surveys.  The foremost problem is that, unlike in traditional 

surveys, the samples in this Web survey type are not guaranteed to be randomly selected.    

Units in those samples are comprised of either probabilistically or nonprobabilistically 

drawn units from a set of nonrandom volunteers.  Because of nonresponse, the 

responding units generally cannot be considered as a probability sample even from the 

frame of volunteers.  They are likely to systematically differ from the scope of survey 

target populations, reflecting the unequal ownership of a Web access and the 

impossibility to place a control on the frame population.   

The occurrence of nonrandomization in Web surveys inevitably increases biases 

in survey estimates.  Bias reduction becomes crucial to make use of results from these 

Web surveys.  As the biases are difficult to control in the survey preparation phase, some 

post-survey adjustments may reduce bias more efficiently.  There is one approach that 

has been discussed as a potential method of compensating for the nonrandomness in 

causal studies – propensity score adjustment.  Harris Interactive first introduced 

propensity score adjustment for their Web survey data, which are collected from 

volunteer panels (e.g., Taylor, 2000; Terhanian and Bremer, 2000).  Propensity score 

adjustment uses covariates collected in surveys and provides additional layer of weights 

in order to produce post-survey weights that ideally remedy selection bias in Web 
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surveys.  Harris Interactive claims that the results from their volunteer panel Web surveys 

are generalizable to the U.S. population, according to their report which can be accessed 

from http://www.harrisinteractive.com/tech/HI_Methodology_Overview.pdf.  

Although there have been a few studies examining the application of PSA for 

volunteer panel Web surveys (e.g., Schonlau et al. 2004, Danielssen, 2002, Varedian and 

Forsman, 2002, Taylor et al., 2001, Taylor, 2000, Terhanian et al., 2000), more in-depth 

evaluation is needed for a number of reasons.  First, the resemblance between Web 

surveys and the situations where propensity score adjustment originated needs to be 

scrutinized, before adopting it for Web survey data.  Second, the technical procedure of 

the propensity score adjustment is not well documented.  This makes the adjustment 

method more a mystery than a well-proved scientific method.  The mathematics behind 

the propensity score adjustment for Web survey data needs to be clearly presented.  

Third, adjusted Web estimates in those studies have often been compared to estimates 

from other surveys, typically telephone surveys which were conducted in parallel to the 

Web surveys.  Since both estimates are subject to sampling, coverage, nonresponse, and 

measurement error, the implication of any observed differences is unclear.  Fourth, 

existing studies have focused only on bias properties of the estimates.  The other 

component of survey errors, variance, has not been examined, although propensity score 

adjustment is likely to increase variability.  Weights, in general, add an extra component 

to the variability of the estimates and, thus, decrease the precision.  Therefore, it is 

important to examine both aspects of errors in evaluating the performance of the 

propensity score adjustment.  Fifth, some of the existing studies favored Web surveys by 

comparing the Web polling estimates and the election outcomes.  These findings may not 
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be indicative of the quality of Web surveys on other subjects; these conclusions may be 

flawed, if Web survey respondents are more likely to vote than others.  This fact alone 

may make Web surveys favorable, because, in this case, the likelihood of voting may 

determine the election outcomes. The last issue is that propensity score adjustment needs 

to be used in conjunction with another adjustment that compensates for the coverage 

errors.  As we will show in later chapters, coverage adjustments are needed, because the 

propensity score adjustment can correct imbalances between the Web sample and some 

reference sample from the target population.  It is worthwhile to examine the 

performance of the propensity score adjustment when interacting with other adjustments.   

This research attempts to overcome the shortcomings in the existing literature of 

propensity score adjustment described above.  It will examine the validity of modifying 

propensity score adjustments for studies other than causal inferences, exploit the 

adjustment as a candidate for improving Web survey data, present the mathematical 

procedure for its application, and evaluate its performance.  The evaluation will be 

extensive, as it includes several study variables measuring different characteristics, the 

choice of covariates for building propensity score models, the inclusion of additional 

adjustments for coverage errors and its interaction with the propensity score adjustment, 

and the effect of adjustment on three aspects of errors: mean square error, bias and 

variance.  

In order to accomplish the stated purposes, this research will carry out the 

following activities in subsequent chapters: 



 

 37

Chapter 4.  Review and apply traditional adjustment methods, which are currently used to 

correct for nonresponse and coverage errors in Web surveys.  Evaluate the performance 

of these adjustments. 

Chapter 5.  Introduce propensity score adjustments, and review the ways it can be 

applied: pair matching, subclassification, and covariance adjustment.  Identify pertinence 

of employing propensity score adjustment for correcting estimates from Web survey data. 

Chapter 6.  Present the mathematical procedure for deriving weights using propensity 

score adjustment for the lack of randomness in the Web survey data.  Introduce 

calibration as an additional adjustment method for compensating for coverage problems 

in Web survey data.   

Chapter 7.  Apply the identified propensity score adjustment method and calibration 

adjustment in two case studies.  Simulation using the 2002 General Social Survey and 

2002 Behavioral Risk Factor Surveillance Survey will be used for the application.  The 

effectiveness of different types of adjustments will be discussed in relation to all error 

components. 

Chapter 8.  Conclude the research with its implications and limitations.  Suggest 

directions that future research may take to address the limitations in this research. 
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Chapter 4: Application of Traditional Adjustments for 
Web Survey Data 
 

4.1 Introduction 
 

Possible sources of errors in Web surveys are examined in Chapter 2.  The good 

news is that it may be possible to control those errors, especially nonresponse and 

coverage errors, using traditional post-survey statistical adjustments.  This is feasible 

because Web survey companies create a panel pool whose members provide a range of 

background information before taking actual surveys.  How effectively this can be done 

depends on the population to which inferences are to be made. 

Pre-recruited probability panel Web surveys invented by Knowledge Networks 

(KN) described in Huggins and Eyerman (2001) use one of the distinctive survey 

protocols (See Figure 4.1 for the illustration).  KN recruits a controlled panel via random 

digit dialing (RDD) and equips the entire panel with a Web accessing medium regardless 

of their prior Web usage status.  At the first Web survey, the panel members take a 

profile survey collecting a range of background information.  Therefore, it is the idea that 

for any given subsequent survey, the profile data are available for both respondents and 

nonrespondents that participate in the initial panel.  In addition, reliable population 

estimates for many of the profile characteristics may be obtained from large-scale 

government surveys.  The abundance of covariates may shed light on how different 

weighting approaches to Web surveys could improve data quality.   

Ideally, the recruited Web panel described above represents the population of 

households or persons that have telephones as the panel members have a known 
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probability of selection into the panel and the samples drawn from the panel also have a 

known probability.  This protocol may diminish unequal coverage and nonprobabilistic 

sampling problems, which are inherent to other Web surveys.  It may be viewed as the 

most scientific method among Web surveys.  However, there are significant 

complications.  Partly shown in Figure 4.1 and partly discussed above, potential 

respondents go through roughly four stages before any survey that they participate: initial 

RDD panel recruitment, Web device installation, profile survey completion, and post 

profile panel retention.  All these stages as well as actual survey participation are 

susceptible to some type of loss in the potential respondent pool.  The coverage and 

nonresponse errors are intertwined in this protocol. 
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Figure 4.1.  Protocol of Pre-recruited Probability Panel Web Surveys 
 

Traditional post-survey adjustments, such as post-stratification, are used as a one-

shot remedy for both errors in practice.  The application of these adjustments implicitly 

assumes that the error mechanism is ignorable in the sense of Little and Rubin (1987).  

Since the Web survey in this chapter employs a multi-step protocol not found in other 

surveys, it may not be reasonable to assume ignorability.  Therefore, traditional 
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adjustments may not be effective enough to compensate for coverage and nonresponse 

errors in Web surveys of this type.  Moreover, the fact that these two errors are corrected 

simultaneously makes the respective error evaluation especially difficult to disentangle.  

One study (Vehovar and Manfreda, 1999) examined the effect of post-stratification for a 

Web survey, but its findings are somewhat limited.  The sample was considered self-

selected due to ambiguity of the eligibility of the units in the frame.  The standard of 

comparison came from a telephone survey, which may not be a reliable source for 

adjustment as it is also subject to coverage and nonresponse errors. 

This chapter attempts to evaluate the magnitude of nonresponse and coverage 

errors in a particular type of Web survey which aims to form and maintain a panel of 

respondents obtained through probability-based samples.  There are statistics known for 

the Web survey respondents, the Web survey full sample, and the target population.  This 

enables one to carry out a separate examination of the two errors.  Section 4.2 will 

provide a detailed description about the data sources and the variables used in the 

analysis.  Nonresponse properties will be evaluated in Section 4.3.  The full sample 

which includes both respondents and nonrespondents will be assumed to provide the true 

values.  Two adjustment approaches, ratio-raking and multiple imputation, will be 

applied.  Unadjusted and two types of adjusted respondent estimates will be compared to 

the true values.  Section 4.4 will examine the coverage error.  Population estimates from a 

large government survey will be assumed to be true.  Ratio-raking will be used to 

compensate for coverage error.  The deviation of unadjusted and adjusted full sample 

estimates from the true values will be examined.  The last section will summarize 

findings and raise considerations for future research. 
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4.2 Data Source 
 

The analysis involves a two-stage adjustment and requires three types of data sets, 

one for the respondents, one for the full sample, and one for the population.  The first two 

data sets will come from a Web survey and the last from the Current Population Survey 

(CPS).  

4.2.1  Web Survey Data 
 

The Web survey data come from the 2002 Survey Practicum class at the Joint 

Program in Survey Methodology (JPSM).  Data collection was funded jointly by the 

Bureau of Labor Statistics (BLS) and JPSM for the practicum class at JPSM.  The data 

were collected through a Web panel survey conducted by KN from August 23, 2002 to 

November 4, 2002.  KN employs the special protocol introduced in Section I for its Web 

surveys.  Note that the profile data are available for both Web survey respondents and its 

nonrespondents, as the KN web surveys are conducted solely among the panel members.   

KN drew a sample of 2,501 households containing at least one parental figure 

with at least one child between the ages of 14 and 19 from its enrolled panel.  Because 

later comparisons will be made between the Web survey and the CPS data, households 

with 18 and 19 year olds are dropped from the analysis to make the two stages of error 

compensation comparable.6  This decreases the full sample to 1,700. Among the sampled 

units, 978 households completed the Web survey.  The response rate to the Web survey 

was 57.4%.  In order to qualify as a responding household, both parental figure and teen 

                                                 
6 The closest possible teen age category identifiable in the CPS was 14 to 17 
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were expected to complete the survey.  This might have played a negative role in the 

response rate.  After incorporating nonresponse from the four pre-survey stages examined 

previously as well as two additional layers particular for this Web survey due to teen’s 

involvement in the survey, the cumulative response rate became 5.5%. This final 

response rate is calculated with the nominal response rate within the survey (57.4%) in 

conjunction with other stages in the overall survey operation: panel recruitment rate 

(36%), Web TV connectability rate (67%), profile completion rate (98%), post-profile 

survey retention rate (47%), and parent’s consent rate for teen’s participation (86%). 

Two data sets are created by combining the Web survey data and the profile data.  

The respondent data ( 978)n =  are constructed by applying the response status in the 

Web survey to the profile data.  The KN full sample data ( 1,700)n =  are the entire 

profile data for the eligible sample units.  The existence of profile data allows one to 

examine differences between survey responders and nonresponders and to examine 

various kinds of survey adjustments.  The teen profiles are subject to a large amount of 

item missing data because parental consent was required for the profile survey.  Thus, the 

target population for this analysis focuses only on parents living with at least one teen 

member between 14 and 17 in the same household.   

4.2.2 Current Population Survey Data 
 

The population estimates come from the 2001 September Current Population 

Survey (CPS).7 This particular wave of CPS contained the Computer and Internet Use 

                                                 
7 When considering the temporal equivalency, the 2002 September CPS seems more 
appealing, since the Web survey was conducted around that time.  Nevertheless, this 
paper will use the data from 2001, as the 2002 data do not include computer and Internet 
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Supplement which collected information about Internet and computer usage of the 

eligible members of the sampled households (for methodological documents about this 

CPS supplement, refer to http://www.bls.census.gov/cps/computer/2001/smethdocz.htm).  

When restricting the 2001 September CPS sample to the scope of the target population 

defined above, the eligible sample size decreases from 143,300 to 11,290.   

The CPS target population and its samples do include persons living in 

households that do not have telephones, whereas this type of Web survey starts from the 

telephone population.  This is a source of noncomparibility between the coverage of our 

data set and the CPS, despite that only 3.5% of persons in the U.S. fall under 

nontelephone category.8  However, Web survey organizations often claim that their 

surveys represent the full population including telephone as well as nontelephone.  To 

evaluate this claim, we have used estimates based on the full CPS for comparison. 

4.2.3 Variables of Interest and Covariates 
 
All variables used in the analysis are available from both data sources.  There are 

four dependent variables whose means will be estimated: number of owned computers in 

the household (none, one or more); prior Web usage experience (no, yes); employment 

status (unemployed, employed); and household size (number of household members), 

denoted as 1y , 2y , 3y  and 4y .  Estimates based on these variables will be adjusted with 

respect to the following covariates: age level (20-40, 41-45, 46-50, 51 or older); 

education level (less than high school, high school, some college, college or above); 

ethnicity (White Non-Hispanics, Black Non-Hispanics, other Non-Hispanics, Hispanics); 
                                                                                                                                                 
usage and the distributions of covariates described in the following section are very close 
between the 2001 and the 2002 September CPS.   
8 The estimate is based on the 2001 CPS data. 
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region (Northeast, Midwest, South, West); and gender (male, female), denoted as 

1 5,...,x x  in ratio-raking adjustment or 1 9,...,x x  in multiple imputation.9  These covariates 

are selected as they are currently used in KN’s existing ratio-raking procedure.10  

The covariates will serve another function: all categories in all covariates will be 

the units of subgroup estimation.  The reasons for estimating at the subgroup level are 

two-fold.  First, studies make comparisons between Web surveys and traditional surveys 

typically at the total population level.  Post-survey adjustments may correct the errors in 

the total population estimates, but not necessarily in the subgroup estimates.  The second 

reason reflects the more realistic analytical interests – analyses are often done at the 

subgroup level to obtain more insightful conclusions than simply at the population level.  

For these reasons, this chapter expands the scope of estimation to the subgroup level. 

 

4.3 Nonresponse Error Adjustment 
 

Nonresponse error examined in this section focuses on the nonresponse on this 

particular Web survey among the full sample units (not the cumulative nonresponse for 

the entire panel).  In this section, the full sample will be treated as a simple random 

sample of the target population and the weights will not be included in deriving estimates 

                                                 
9 In multiple imputation, 1x , 2x , and 9x  are assigned to age, education, and gender, as the 
first two are considered as continuous and the last dichotomous. Ethnicity and region are 
polytomous variables with 4 (=k) categories, which require 3 (=k-1) binary response 
variables.  Thus, 3 4 5, ,x x x  are assigned to ethnicity and 6 7 8, ,x x x  to region. 
10 KN’s original adjustment includes one additional covariate, household income.  
However, there are many missing cases for the household income in the CPS.  This item 
will be excluded from the analysis.   
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of means.  The sample-level response rate, 57.5%, indicates the potential for the presence 

of nonresponse errors.   

Table 4.1.  Full Sample and Unadjusted Respondent Estimates of Percentages 
and Means 

 Full Sample Unadjusted Respondents 
  Estimate SE Estimate SE Deviation a. 
Computer Ownership (%) 79.6 0.98 81.4 1.25      1.8* 
Prior Web Experience (%) 72.0 1.09 71.2 1.45     -0.8 
Unemployment (%)   3.9 0.47   4.1 0.63      0.2 
Household Size   4.2 0.03   4.1 0.04     -0.1**  
*p<.05      **p<.01      ***p<.001   

                       a. 
  

ˆ
Unadjusted Respondent Full SampleDeviation y y= −       

 

Table 4.1 compares the distribution of total population level estimates for the 

unadjusted respondents to those of the full sample and includes the initial deviations, 

  
ˆ

Unadjusted Respondent Full Sampley y− .  Contrary to the initial speculation, the deviations of 

unadjusted statistics are surprisingly small.  Since the estimates for the full sample and 

the respondents are not independent, variances of the deviations are calculated as follows: 

(  ) (  ) (  )
ˆ ˆ

F Full Sample R Unadjusted Respondent N Unadjusted Nonrespondent
r n ry y y
n n

−
= + ,  

and, therefore, 

( ) ( ) ( ) ( )
2

ˆ ˆ ˆ ˆ ˆvar var var varR F R N R N
n r n ry y y y y y

n n
− −⎡ ⎤ ⎛ ⎞ ⎡ ⎤− = − = +⎜ ⎟⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎝ ⎠

,         (4.1) 

where there are n units in the full sample and r respondents and ( )ˆ ˆcov , 0R Ny y =  is 

assumed.  This is possible because information on nonrespondents is available from the 

profile data set.  The deviations for computer ownership and household size, although 

statistically significant, do not appear meaningful. 
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Figure 4.2.  Distributions of Covariates for Full Sample and Unadjusted 
Respondents  

 

The distributions of the five covariates are shown in Figure 4.2.  The two 

comparison groups are fairly identically distributed.  Based on the Chi-square test for 

equality of distributions, only ethnicity is differently distributed.  There are more Whites 

but fewer Blacks and Hispanics in the respondents than in the full sample, but these gaps 

are not large.  Almost perfect comparability of the unadjusted estimates examined in 

Table 4.1 and Figure 4.2 may suggest that the respondents represent the full sample, i.e., 

the nonresponse occurs completely at random.  One important implication from the 

identical covariate distributions is that the statistical adjustments using these covariates 

will not correct for any biases that may exist in variables that are not examined in this 

chapter, because the benchmark distributions are the same as the initial ones.  

4.3.1 Sample-level Ratio-raking Adjustment 
 
Ratio-raking adjustment is a popular modification of post-stratification which 

follows the iterative steps described in Deming and Stephan (1940).  Unlike cell 
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weighting, ratio-raking controls the marginal distributions of covariates.  This decreases 

difficulties that arise with unknown benchmarks or zero observation in cross-classified 

cells.  The marginal counts of the five covariates from the full sample are used as 

benchmarks.  For this study, ratio-raking was performed using WesVar™ 4.0 (Westat, 

2000).  Post-survey weights that adjust for sample-level nonresponse are generated and 

used in the estimation.  

4.3.2 Multiple Imputation 
 
Multiple imputation was first suggested by Rubin (1978) for item nonresponse.  

Although this chapter does not examine item nonresponse, unit nonresponse in this Web 

survey may be regarded as item nonresponse in some sense – there is enough background 

information for survey respondents and nonrespondents.  Multiple imputation 

incorporates the frequentist concept of estimate variability evaluation into a Bayesian 

imputation approach.   

Values for the missing observations are imputed by specifying an explicit model 

that produces posterior predictive distributions of the missing data, conditional on the 

distribution of the observed data.  The models for the three dichotomous variables, 1y , 

2y , 3y  are specified in the following way:  

~ ( )i iy Bernoulli θ ,  
9

1
logit( )i i ij j i

j
xθ α β ε

=

= + +∑ , 

where , ~ (0,1)i ij Normalα β  and iε ’s are random errors with a mean of zero for 

1,...,9j =  and 1,2,3i = .  Note that the same covariates are adopted here as in the ratio-

raking procedure above.  Since the iy ’s are categorical, they are modeled as having 
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Bernoulli distributions determined by the parameters, iθ .  The iθ ’s are predicted by the 

covariates known for both respondents and nonrespondents.  The model parameters, iα ’s 

and ijβ ’s, have normal prior distributions – with mean 0 and variance 1.   Similarly, the 

continuous variable, 4y , is modeled as follows; 

4 4~ ( , )y Normal θ υ , 
9

4 4 4 4
1

j j
j

xθ α β ε
=

= + +∑ , 

where 4θ  is the prior of 4y  predicted in a linear function of the same series of covariates, 

using prior information, ~ (0.5,  1)Gammaυ , 4 4, ~ (0,1)j Normalα β  for 1,...,9j = , and 

4ε  a random error. Note that the model fit and modification are not considered here, 

because the purpose of this chapter is to compare sample-level ratio-raking adjustment 

and multiple imputation, given the same auxiliary information. 

Winbugs 1.4 (Spiegelhalter, et al., 1999) is used for the multiple imputation.  The 

prior distributions of the model parameters are updated by the profile data.  Missing 

values are predicted by the updated values of model parameters.  Each missing value for 

each nonrespondent is imputed using five different initial values, which result in five 

different predicted values.  Each model stated above is run in 10,000 iterations using the 

Markov Chain Monte Carlo method (details in Gelman, et al., 1995, Ch.1).  In order to 

use samples that produce convergent statistics among different initial values, the first 

2,999 iterations were regarded as burn-in.  For each chain, imputed values for 

nonrespondents are combined with observed values from respondents.  The estimation 

and inference follows the procedure in Rubin (1987, Ch.3).   
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U: Unadjusted Respondents R: Ratio-raking Adjusted Respondents, M: Multiply Imputed Respondents 

Figure 4.3.  95% Confidence Intervals of Deviations of Respondent Estimates 
from Full Sample Estimates 

 

 

Figure 4.3 displays the 95% confidence intervals for the deviation of unadjusted 

(U), ratio-raking adjusted (R), and multiply imputed (M) estimates from the true values.  

Estimation for standard errors follows expression (4.1).  More specifically, ( )ˆvar Ny  and 
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( )ˆvar Ry  for the unadjusted ˆ
Ry  are calculated based on the variance formula for simple 

random samples.  For the ratio-raking adjusted ˆ
Ry , ( )ˆvar Ry  are obtained from 

WesVar™ 4.0.  Variance estimation for the multiple-imputation adjusted ˆ
Ry  uses 

procedure described in Rubin (1987).  If the intervals contain zero, the deviations are not 

statistically significant, leading to the conclusion that the nonresponse error is negligible.   

Figure 4.3 shows that most deviations are not significant both at the total 

population and the subgroup level.  The deviation in household size appears to be 

statistically significant but not so much meaningful. When examined by subgroup, 

estimates for different racial/ethnic groups are likely to diverge the most from the true 

values.  It is interesting to note that U, R, and M estimates are not very different from 

each other, especially given a sample nonresponse rate of 42.5%.  In terms of deviation 

and variance, performance of ratio-raking and that of multiple imputation are almost 

equivalent.  Recall that the preliminary analysis showed that the unadjusted estimates for 

all variables match the full sample values well.  Nonresponse adjustments on these 

variables might have been unnecessary after all.   

 

4.4  Coverage Error Adjustment 
 

Coverage error in this analysis is not due solely to problems with the frame 

coverage per se.  It also includes the combined response status from the four pre-survey 

stages.  Unlike traditional surveys where full samples represent the target populations 

through sampling frames, this Web survey may not have a reliable sampling frame, 
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because there are multiple chances to systematically lose potentially eligible people.  In 

other words, the frames built only on the active panel members may be biased to begin 

with.  The population values used for comparison are calculated by applying the final 

weights provided in the CPS public use data and will be assumed as true values.  The full 

sample Web survey estimates are calculated by applying the base design weights to the 

1,700 cases in the full sample dataset.   

Since the sample design variables are not provided in the CPS public use data and 

the CPS data analyzed for this study are truncated, direct calculation of the standard error 

for the CPS estimates is impossible.  Instead, the following ad-hoc formula is used for 

calculating the standard error of the biases:  

   

( ) var( ) var( )

                         var( ) var( )

                         1 ( ),

CPS Sample CPS Sample

Sample Sample

Sample

se y y y y

k y y

k se y

− = +

= +

= + ×

                           (4.2)    

where ( )Samplese y  is the standard error of the full sample estimate and k is some constant 

based on the ratio of the Web survey sample size to the CPS size.  It should be noted that 

(4.2) is a crude approach to derive variance estimates because it assumes that the 

variability of an estimate is a function of the sample sizes.   

Table 4.2.  Population and Unadjusted Full Sample Estimate 
 CPS Unadjusted Full Sample a. 
  Estimate SE Estimate SE Deviation b. 
Computer Ownership (%) 80.85 0.57 77.45 1.29    -3.40** 
Prior Web Experience (%) 65.81 0.62 70.91 1.39 5.10*** 
Unemployment (%) 2.59 0.19 4.11 0.59      1.52** 
Household Size 4.34 0.02 4.19 0.04    -0.15*** 

                 a. Design weighted full sample.     *p<.05      **p<.01     ***p<.001  
             b. 

  
ˆ

Unadjsuted Full Sample CPSDeviation y y= −   
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Unlike the previous section, the comparison between the true values and the 

unadjusted full sample estimates suggests potential coverage problems as shown in Table 

4.2.  The weighted full sample estimates, when not adjusted, significantly stray from the 

population.   This is more obvious for the computer ownership and prior Web experience.  

People in the frame are less likely to own computers but more likely to have Web 

experience.  Moreover, remarkable inconsistencies in covariates can be found in Figure 

4.4, especially for education and ethnicity.  It becomes imperative to remedy these 

discrepancies. 
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Figure 4.4.  Distributions of Covariates for CPS and Unadjusted Full Sample  
 

The coverage properties are examined by replicating the same ratio-raking 

procedure used in the previous section at the population level.  The final adjustment 

weights are computed by ratio-raking the Web survey base weights to covariate marginal 
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counts from the CPS.  The base weights are provided by KN.  Both base weights and 

ratio-raking weights are simultaneously included in the estimation, using WesVar™ 4.0.   

Imputation is not used for the evaluation of coverage error.  This is because 

imputation is developed for data with item nonresponse.  More specifically, we need to 

have some information about the units whose values are to be imputed.  In this case, we 

do not have any information about the units in the target population other than ones in the 

full sample.  Therefore, it is impossible to impute any values for the nonsampled units in 

the target population.   

The 95% confidence intervals of the deviations of the unadjusted (U) and ratio-

raking adjusted (R) estimates from the population values are shown in Figure 4.5.  If the 

ratio-raking procedure is effective in reducing bias in estimates due to coverage error, 

Figure 4.5 would show confidence intervals of the deviations more likely to contain zero 

for the R estimates than for the U estimates.  Roughly speaking, the adjustment seems to 

make a trivial improvement.  The adjusted values are still closer to the unadjusted ones 

than to the population figures.  Significant deviations still exist and they become more 

conspicuous for the subgroup estimates.  Discrepancies are most prevalent for the 

education and ethnicity subgroups.  This coincides with the divergence found in Figure 

4.4.  Although this divergence is supposed to be corrected by ratio-raking, estimates for 

subgroups formed by these covariates are still distant from the true values. 
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Figure 4.5.  95% Confidence Intervals of Deviations of Full Sample Estimates 
from CPS Comparison Estimates 

 

Persons with less than a high school education report having prior Web 

experience at a far higher rate in the Web survey than in the CPS.  In fact, its percentage 

in the Web sample is about 20 percentage points higher than in the CPS.  One 

explanation may be a misunderstanding by persons in the Web sample what “Web” 

experience means.  Another explanation may be that people with lower education in the 
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Web sample, before they join the KN panel, tend to own fewer computers and are more 

likely to be unemployed, but have had experience with the Internet at a higher rate than 

their counterpart in the population.  These people are likely to have more time, thus, more 

potential opportunities to access the Internet, but are less able to afford computers 

because they are unemployed.  This may make their reaction to obtaining free access to 

the Web more positively than persons with higher education, inducing them to stay active 

on the panel to maintain the access.   

The discrepancies in computer ownership and Web usage by ethnicity warrant 

attention.  The Web sample seems to include higher proportions of technology-savvy 

Blacks and Hispanics at a higher level than the CPS does.  Both unadjusted and adjusted 

sample estimates of the computer ownership for Blacks and Hispanics are 10 percentage 

points higher than the population values.  Equivalent racial/ethnic groups in the Web 

sample have higher levels of Web experience than their counterpart in the population – 

the full sample overestimates the Web experience by far over 20 percentage points.  

Interestingly, Whites in the Web sample are somehow less technologically experienced 

than those in the population as measured by computer ownership and Web experience.  

This suggests that the Web sampling frame coverage is systematically different from the 

population with respect to ethnicity.  Ratio-raking does not seem a sufficient solution. 

 

4.5  Discussion 
 

This chapter is one of the first examinations of statistical adjustment approaches 

for Web surveys.  The respondents in the particular survey studied seemed to represent 
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the full sample well, although the completion rate was fairly low.  Consequently, the 

sample-level nonresponse adjustment was not even necessary for at least the variables 

examined in this chapter.  This is similar to the recent findings about nonresponse (e.g. 

Curtin et al., 2000; Keeter et al., 2000; Merkle and Edelman, 2002).  Additionally, the 

covariate distributions for the respondents and the full sample were very close.  This 

implies that adjustments based on these characteristics may not improve the estimates 

based on respondents much. 

However, it does not seem safe to conclude the Web sample frame adequately 

covers the population.  Estimates for the subgroups whose population and sample 

covariate distributions showed inconsistencies tended to deviate significantly from the 

population values.  Traditional adjustments like raking had a limited effect in correcting 

for this deviation.  Thus, this result failed to support the assumption of ignorability of the 

coverage mechanism inherent in the ratio-raking procedure. 

Three points should be made about the implications of this chapter.  First, they 

apply only to this particular type of Web survey and this particular topic.  Other Web 

survey protocols targeting the general population are considered less scientific, as they 

often rely on convenience or volunteer samples, and, thus, may have completely different 

error structures.  Second, coverage and nonresponse errors are properties of a statistic, not 

of a survey.  Other statistics may show different nonresponse and coverage properties.  

Statistics in this chapter were selected because they are available at the respondent, the 

full sample, and the population level.  Third, the target population of this chapter is very 

specific, parent figures with at least one teen household member.  This population may 

have different nonresponse and coverage properties in this Web panel sample from other 



 

 57

populations.  Findings in this chapter can serve as a window behind those error 

mechanisms, but cannot be generalized. 

This chapter found that the coverage errors of this Web panel survey were more 

severe than nonresponse errors conditional on the RDD survey response.  However, the 

full sample already includes multiple stages of nonresponse prior to the survey, which 

were captured under the coverage error examination in this chapter.  Coverage errors 

from nonresponse or non-cooperation in the procedures of recruiting and maintaining 

panel members may be more serious than ones in the actual survey.  Further 

investigations to statistically disentangle the coverage and nonresponse mechanisms at 

each stage would be informative.  If consistent evidence against ignorability of the error 

mechanism is found, more innovative adjustment methods will be needed for sound 

inferences from Web survey data.  
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Chapter 5: Propensity Score Adjustment 
 

5.1 Introduction 
 

One of common methods for presenting scientific research results is group 

comparison.  Especially in medical research reporting, it is not unusual to encounter such 

comparisons.   For example, a report may claim that a health survey found people who 

consume a recommended amount of vegetables have a lower risk of cancer than people 

who do not.  One notable fact about the comparison is that it tacitly implies a causal 

relationship.  This report may seem reasonable prima facie, although the study design, an 

observational survey, does not necessarily accommodate grounds for such a finding.   A 

closer examination may reveal that the claim relies on an assumption that sufficient 

vegetable consumption alone may decrease the cancer risk, whereas the control on other 

factors is not assured in the study. 

A fundamental problem of the comparison above is that the two groups, high and 

low vegetable consumers, may be different with respect to not only the diet pattern but 

also other characteristics, such as age, gender, race, education, health status, etc.  This 

occurs because this study uses observational data in which the assignment of the study 

subjects to the two groups to be compared is not guaranteed to be random.  Unless the 

study sufficiently controls for conditions other than the experimental factor under study 

so that study subjects are balanced with respect to those other conditions, the difference 

in cancer prevalence between the groups may not be any more than an artifact.   
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Randomization, although desirable, is impractical, unethical or impossible in 

many cases.  In a controlled lab experiment for the effect of vegetable consumption, 

randomization may be possible, but the generalization of such experimental findings may 

be problematic.  The experiment may be unethical, when considering the study outcome 

may have a direct link with the cancer risk.  Observational studies are the only alternative 

in this example, and it becomes impossible for the researcher to make one randomly 

assigned group of people eat more vegetables and the other eat less.  The control is out of 

the researcher’s hand, and those unrandomized conditions may lead to confounding the 

effect of interest with other uncontrolled effects.  Now, the researcher is confined to what 

is available.  In order to solve this problem, the researcher may use a statistical approach 

to control for the undesirable confounding effects.   

In the context of Web surveys, the experimental treatment is translated into ‘being 

in a Web survey’ or ‘having Web access.’  The selection of people under this condition is 

assumed to be nonrandom.  The control treatment is the complement but persons 

receiving the controls are assumed to be randomly selected from the target population.  

By the same statistical approach used to remedy the confounder described above, the 

experimental group may be adjusted to resemble the control group so that the randomness 

in the control group is borrowed for the Web survey group. 
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5.2  Treatment Effect in Observational Studies 
 

5.2.1  Theoretical Treatment Effect 
 

In this section, we summarize some of the considerations in estimating treatment 

effects based on Rosenbaum and Rubin (1983).  Let the theoretical underlying treatment 

effect in the superpopulation, U , be denoted as 1 0τ τ τ= − .  The outcome under the 

experimental condition is 1τ , which is the mean of 1iτ , the outcome of all individuals in 

U , where i∈U  and U  has N  units.  The control group outcome is 0τ , the mean of 0iτ .  

Theoretically, the treatment effect is obtainable for each unit i in U  as 1 0i i iτ τ τ= − .  The 

overall treatment effect is calculated over all units in U  as 1
i

i
τ τ

∈

= ∑
UN

.   

In the finite population approach, the treatment effect is realized as t , the mean of 

the individual treatment effect, it , where the unit i belongs to the population, U , as 

1,...,i N= .  Therefore, ( )1 0 1 0
1 1

i i i
i U i U

t t t t t t
N N∈ ∈

= − = − =∑ ∑ .  Theoretically, the treatment 

effect, t , is obtained when all units in the population are exposed to both control and 

experimental condition so that the realization of treatment effect for the ith unit alone, 

1 0i i it t t= − , is computable.  In reality, whether the study is experimental or observational, 

only a set of sampled units from the population is examined and the study subjects are 

exposed to only one condition.  We observe either 1it  or 0it  for the ith unit, but not both.  

Assume that study units in an experiment come from two separate simple random 

samples, one under the experimental condition ( 1s ) with 1n  units, the other under the 

controlled condition ( 0s ) with 0n  units.  From such a study, we obtain an estimate of the 
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treatment effect such that 
1 0

1 0 1 0
1 0

1 1ˆ ˆ ˆ
i i

i s i s
t t t t t

n n∈ ∈

= − = −∑ ∑ .  Therefore, the computation of 

treatment effect always involves some degree of speculation about the unobserved 

components and unexamined population units.  

Let M  be a mechanism that all experimental/control treatments are repeatedly 

assigned to all units an infinite number of times.  Under this mechanism, we may expect 

( )1 1ME t τ= , ( )0 0ME t τ= , and ( )1 0ME t t τ− = , where ( )ME ⋅  is the expected value over 

M .  The mechanism M  is assumed to be satisfied as N →∞ .  What we need is to link 

our sample estimates, 1̂t  and 0̂t , to the finite population quantities, 1t  and 0t , that 

approximate the underlying superpopulation figures, 1τ  and 0τ , through M .  This 

linkage may be guaranteed under randomization of the treatment assignment distribution, 

denoted as π , such that ( )1 1
ˆE t tπ = , ( )0 0

ˆE t tπ = , and ( )1 0
ˆ ˆE t t tπ − = .  As long as the 

condition of the ith unit is not dependent on that of the jth unit in the same sample, 

implying that there is non-interference between subjects, the average treatment effect 

becomes 

( )1 0
ˆ ˆ

ME E t tπ τ− = ,                                               (5.1) 

where ( )Eπ ⋅  is the expected value over the randomized assignment mechanism, π .  The 

requirement for (5.1) is that we must be able to estimate ( )1̂ME E tπ  and ( )0̂ME E tπ  from 

the observed data, 1s  and 0s .  Note that τ  is the intended effect – not the actual effect.  

The actual effect may have an unintended effect arising from the imperfect or incomplete 
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randomization, as study units may opt to drop out from the study, cross over the assigned 

groups, or affect one another.   

In order to estimate the average treatment effect from observed data, a stable unit 

treatment value assumption (SUTVA) must hold.  Under SUTVA, 1i it t= , if 1ig =  

(treatment group) for all units, and 0i it t= , if 0ig =  (control group).  Thus, the outcome 

for the ith unit can be expressed as ( )1 0 1i i i i it t g t g= + − , where ig  is 0 or 1.  SUTVA 

implies that there is no interference among study subjects, meaning that potential 

outcomes for each unit are not related to the treatment status of other units.  In addition to 

SUTVA, independence between the outcome and the treatment assignment is needed.  

When two random variables, x  and y , are independent, we symbolize this by x y⊥ .  If 

( )1 0,t t g⊥ , ( ) ( ) ( )1 1
ˆ ˆ ˆ| 1 | 1M M ME E t g E E t g E E tπ π π= = = =  and ( )ˆ | 0ME E t gπ = =  

( ) ( )0 0
ˆ ˆ| 0M ME E t g E E tπ π= = .  Thus, the estimated average treatment effect is equal to 

τ : 

( ) ( ) ( ) ( )1 0
ˆ ˆ ˆ ˆ| 1 | 0M M M ME E t g E E t g E E t E E tπ π π π τ= − = = − = .            (5.2) 

The unbiasedness in the estimation of treatment effect in (5.2) is guaranteed only under 

randomization with large samples.   

5.2.2 Inherent Problems of Treatment Effect Estimation in Observational 
Studies 

 
The unbiasedness in (5.2) does not hold in observational studies, because factors 

affecting the group assignment, g , are beyond researchers’ control, as examined in 

Section 5.1.  The resulting treatment effect estimates may inherently have discrepancies 
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between the treatment and the control group with respect to some demographic 

characteristics, behaviors, and/or attitudes.  These attributes may confound the true 

treatment effect, τ .   

Let us return to the example in Section 5.1 – the study on the effect of vegetable 

consumption on cancer risk.  Suppose the researcher finds that high vegetable 

consumption decreases cancer risk.  But he also finds that there are more females in the 

high vegetable consumption group and that females show a lower level of cancer than 

males.  The question becomes whether the differentiation in cancer risk level is 

attributable to the amount of vegetables eaten or the gender.  A sensible step to solve this 

dilemma is to compare the cancer risk between the groups within the same gender. 

Generally speaking, lab experiments or cross-national surveys do not collect data 

for only one study variable.  Often times, the data are analyzed for underlying 

relationships among variables.  This means that the collected data readily contain 

variables that are related to the study variables – namely covariates.  When the covariate 

means are different in two comparison groups, standard practice is to adjust for such 

differences when comparing means of outcome variables.  Analogous to controlling for 

the gender effect in the example above, one can imagine adjustments on the treatment 

effect using auxiliary information in most studies.   
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5.3  Bias Adjustment Using Auxiliary Information 
 

5.3.1  Covariates for Bias Adjustment 
 

If the study subjects differ systematically with respect to a set of some covariates, 

x , other than the assigned group characteristics, g , the realized outcome of the ith unit in 

the treatment group and that of the jth unit in the control group can be modeled as follows: 

( )
( )

1 1 1 1

0 0 0 0

i i i

j j j

t u e

t u e

τ

τ

= + +

= + +

x

x
,                                           (5.3) 

where ( )u x  is a function of x , a matrix of auxiliary variables; and 1 je  and 0 je  are 

random residuals with zero means.  This implies that 1it , the outcome of the ith unit in the 

experimental treatment group, may deviate from 1τ , the true study outcome of the same 

group, by ( )1iu x , its own distinctive characteristics, and 1ie , some random effect.  The 

same is true for the individual unit outcome in the control group.  The comparison of the 

outcomes should reflect the grouping characteristics only.  Otherwise, the imbalance in 

the distribution of 1x  and 0x  confounds the comparison. 

When this confounding effect of covariates is not adjusted out, the expected 

treatment effect becomes biased: 

( ) ( ) ( ) ( )1 0 1 0 1 0 1 0M ME t E t u u u uτ τ τ− = − + − = + − ,                          (5.4) 

where ( ) ( )1 1u u dφ= ∫ x x x  and ( ) ( )0 0u u dφ= ∫ x x x ; and ( )1φ x  and ( )0φ x  are the 

frequency functions of the covariates in the comparison groups.  The expected value in 

(5.4) is over repeated applications of the treatments to units.  Note that the expected 
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effect in (5.4) assumes that there is no interaction between the treatment effect and the 

covariates.  By comparing (5.1) and (5.4), it is clear that the treatment effect is biased by 

1 0u u− .   

This bias may be removed or reduced by balancing the covariates between the 

two groups.  The problem of achieving the balance in estimating τ  arises when x  takes a 

high dimension.  It is not practical to obtain equivalent distribution on many covariates, 

although theoretically desirable.  An alternative is to summarize all covariates into one 

quantity and either balance or adjust based on this summary measure.  Propensity score 

adjustment is the effective and intuitive method that serves this purpose, as it uses 

available covariate information and provides a scalar quantity for each unit, while 

requiring a minimal set of assumptions.  

5.3.2  Balancing Score 
 

For treatment effect estimation, covariates may be balanced on a function, ( )b x .  

An appropriately constructed balancing score ( )b x  has the property that the treatment 

assignment is conditionally independent of the covariates given ( )b x .  That is, the 

distribution of x  conditional on ( )b x  is the same for both treatment groups.  It can be 

mathematically expressed as 

( )|g b⊥x x ,                                                      (5.5) 

where ( )b x  is called a balancing score as it balances out the distributional imbalance in  

covariates between the comparing groups.  The finest balancing score is x , the covariates 

themselves, but this is not practical as discussed above.  While many functions of x  can 
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serve as balancing scores, the propensity score, ( ) ( ){ }e f b=x x , is frequently used.  The 

propensity score takes the coarsest form of the balancing score.  We discuss these scores 

in the next section. 

5.3.3  Propensity Score 
 

5.3.3.1 Bias Reduction by Propensity Scores 
 

A propensity score is simply the probability of a unit being assigned to the 

treatment group ( 1g = ) given a set of covariates and is denoted as 

( ) ( )Pr 1|i i ie g= =x x ,                                              (5.6) 

where ( ) ( ) ( ){ }( )1
1 1

1

Pr ,..., | ,..., 1 ii
n gg

n n i i
i

g g e e
−

=

= −∏x x x x  is assumed and ( )ie x  is a 

scalar with a value between 0 and 1.  Since the propensity score is a type of balancing 

score, the conditional independence holds as (5.5); ( )|g e⊥x x  .   

Returning to the earlier model in (5.3), if ( ) ( )u e=x x  and if the unit i from the 

treatment group and the unit j from the control group have the same propensity scores, 

the difference between these two units becomes confounder-free because  

( ) ( ) ( )1 0 1 1 1 0 0 0 1 0 1 0i j i i j j i jt t e e e e e eτ τ τ τ⎡ ⎤− = + + − + + = − + −⎣ ⎦x x .            (5.7) 

Omitting the subscripts, i  and j , the expected value over model (5.3) is then  

( )1 0 1 0ME t t τ τ τ− = − = , because ( ) ( )1 0 0M ME e E e= = .  More formally, following 

Rosenbaum and Rubin (1983, Sec. 2.2), when a treatment and control unit have the same 
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propensity score, ( )e x , and the treatment assignment is strongly ignorable (see Section 

5.3.3.2),  

( )( ) ( )( )
( )( ) ( )( )

( )( )

1 0

1 0

1 0

| , 1 | , 0

       | |

       | .

M M

M M

M

E t e g E t e g

E t e E t e

E t t e

= − =

= −

= −

x x

x x

x

                                 (5.8) 

That is, the expected difference in observed responses for two units with the same ( )e x  

is equal to the average treatment effect at the propensity score, ( )e x .  When averaged 

over the distribution of the propensity score in the population, we have 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 0

1 0

1 0

| , 1 | , 0

            |

            
            ,

M Me e

Me

E E t e g E E t e g

E E t t e

τ τ
τ

= − =

= −

= −
=

x x

x

x x

x                        (5.9) 

since, by definition, the effect of the treatment is the average of the effects for the 

individuals in the population.  As long as ( )e x  contains all potential confounders, the 

adjustment based on propensity score will lead to an unbiased estimate of treatment effect 

in expectation. 

In words, strong ignorability means that given a score,  ( )e x , the assignment of a 

unit  to the treatment or control group ( 1g =  or 0) and the outcome for the unit ( 1it  or 0it ) 

are independent.  If a group of units with the same propensity score were randomly 

divided between the treatment and control group, (5.8) implies that we will get an 

unbiased estimate of the treatment effect for units that all have the same propensity score. 
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As discussed earlier, treatment means ‘being in a Web survey’ in the Web survey 

context.  In Chapter 6, we will apply the propensity score adjustment to create groups of 

units with approximately the same propensity of being in a Web survey within each 

group.  The aim is to create groups so that 1τ  for the Web sample persons equals 0τ  for 

the non-Web sample within each propensity score group, thus, allowing the Web sample 

to be used to make inference for the target population. 

5.3.3.2 Assumptions in Propensity Score Adjustment 
 

When propensity score is used to adjust for biases in observational studies, bias 

reduction is attainable as long as five assumptions hold.  First, any propensity score 

should meet the strong ignorability assumption:  

( ) ( )1 0, |t t g e⊥ x ,                                                (5.10) 

and ( )( )0 Pr 1 1g e< = <x  (Rosenbaum and Rubin, 1983; Rosenbaum, 1984a).  

Expression (5.10) indicates that the study outcomes, ( )0 1,t t , and the assigned condition, 

g , are conditionally independent given the covariates in ( )e x .  It should be emphasized 

that (5.10) will hold only when the treatment assignment is ignorable.  It is certain that 

this ignorability holds in randomized trials, while not necessarily in nonrandomized trials.  

This is why the strongly ignorable assumption is needed to develop the propensity score 

adjustments for nonrandomized experiments.  Only under this assumption, the difference 

between outcomes ( )0 1,t t  is unbiased for the average treatment effect, given a propensity 

score.  Related to the strong ignorability, propensity score adjustment requires another 

assumption – no contamination among study units.  A treatment assigned to one unit does 
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not affect the outcome for any other unit.  Third, there should be nonzero probabilities of 

units being assigned to either experimental or control condition for any configuration of 

x .  Fourth, the observed covariates included in propensity score models represent the 

unobserved covariates (Rosenbaum and Rubin, 1983b), because balance is not achieved 

on unobserved covariates.  The last assumption is that the assigned treatment does not 

affect covariates (Rosenbaum, 1984b).   

 The meanings of these assumptions must be adapted to apply to Web surveys.  

For example, the first assumption (strong ignorability) says that, given a propensity score, 

the persons in the Web survey and the persons who are not have the same means on the 

variables measured in the survey.  This would be true on average if the persons in the 

Web survey with a particular propensity score were a random selection from all persons 

with that score.  If the means are the same, then the Web sample can be used to make 

inferences that include the non-Web cases.  In a volunteer panel, the equality of means 

could be violated if some important covariates used in modeling ( )e x  are omitted, 

implying that the propensity score was not modeled correctly.  The third assumption 

(non-zero probability of assignment) would be violated if there were certain groups of 

people who did not have Web access.  If an important covariate, e.g., education, were 

omitted from the model for ( )e x  and the Web sample persons and non-Web persons had 

different distributions of number of years of education, then assumption four would be 

violated. 

5.3.3.3 Modeling Propensity Scores 
 
Propensity scores have to be specified in a model and estimated from the 

observed data.  In principle, the model for propensity score should be derived from data 
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for the whole population, which is not possible.  However, Rubin and Thomas (1992, 

1996) showed that the estimated propensity scores from sample data perform more 

efficiently than the true population propensity scores.  A range of parametric models can 

be used to estimate propensity scores: logistic regression, probit model, generalized linear 

model, generalized additive model and classification tree model.  Among them the most 

commonly used is logistic regression.  In that case, the propensity score is modeled as: 

( )
( ) ( )log

1
e

f
e

α
⎡ ⎤

′= +⎢ ⎥−⎣ ⎦

x
B x

x
,                                       (5.11) 

where ( )f x  is some function of covariates.  There has to be enough overlap between the 

distributions of the propensity scores of the two comparison groups to estimate the 

parameters of (5.11).  Otherwise, statistically reliable comparisons cannot be carried out.  

Whenever covariates are used for estimation, the variable selection becomes an 

issue, because the predictability of the covariates in the model matters.  According to 

Rosenbaum and Rubin (1984, p.522), x  is required to be related to both the response and 

treatment assignment in order to satisfy the assumption of ignorability.  Rubin and 

Thomas (1996) argued that there is no distinction between highly predictive covariates 

and weakly predictive ones in the performance of propensity score adjustment.  The 

authors’ recommendation is to include all covariates, even if they are not statistically 

significant, unless they are unrelated to the treatment outcomes or inappropriate for the 

model.  In practice, however, some procedures are usually used for covariate selection.  

For example, a number of papers adopted stepwise regression (e.g., Rosenbaum and 

Rubin, 1983; Rosenbaum and Rubin, 1984; Berk and Newton, 1985; Lieberman et al., 

1996).  Some choose one-step covariate selection based on theoretical and/or logical 
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relevance (e.g., Stone, et al. 1995; Duncan and Stasny, 2001).  There are no clear-cut 

criteria for selecting variables for propensity score model building.   

Drake (1993) in her simulation study showed misspecifying the model for 

propensity score adjustment, such as mistakenly adding a quadratic term or dropping a 

covariate, is not very serious.  In fact, the misspecification on the propensity score model 

leads to only a small bias compared to the misspecification of the response model which 

was used to simulate the response distribution.   

5.3.4  Other Adjustment Methods for Bias Reduction 
 

So far, propensity score adjustment has been discussed as the main method for 

reducing selection bias in observational studies.  There are other methods using 

covariates, and it is worthwhile to briefly examine these in comparison to propensity 

score adjustment (see Obenchain and Melfi, 1998 and Crown, 2001 for details).   

In econometrics, Heckman (1979) proposed parametric selection bias models for 

bias reduction.  This method has been used to evaluate the effectiveness of educational 

training programs in the labor market (Heckman, 1976; Heckman and Smith, 1995)  

Unlike a discrete variable with two levels in the propensity score adjustment, that is, 

1g =  or 0, Heckman’s selection model requires an underlying normally distributed 

variable, *g , that determines treatment selection mechanism, such that, 1g =  when 

*g threshold> , and 0g =  when *g threshold< .  Suppose g here defines the eligibility 

to a certain job training program; *g  is working hours per week; and the threshold for 

eligibility is 10.  If a person is working more than 10 hours per week, he is automatically 

entitled to enroll in the program.   
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Another bias reduction method in econometrics incorporates instrumental 

variables and is known as the Rubin Causal Model.  This was first outlined by Angrist, 

Imbens and Rubin (1996) for situations where the treatment is randomly assigned to the 

units, but study units comply with the assignment imperfectly, resulting in nonignorable 

reception of the treatment.  The initial assignment here is used as an instrumental 

variable.  The influence of the instrumental variable on the fundamental treatment 

outcome is assumed to go only through the actual compliance.  In other words, the 

instrumental variable is highly correlated with the treatment receipt but not with the 

treatment outcome.  The example for such a case is the military lottery example of the 

authors’ article.  Under a set of assumptions listed in Angrist, Imbens and Rubin (1996), 

the treatment effect incorporating both treatment assignment and reception identifies the 

average causal effect without selection bias.   

Both econometric methods have not been applied extensively due to their 

shortcomings compared to the propensity score adjustment.  More specifically, 

Heckman’s approach uses a two-step approach to construct a variable that controls for the 

bias due to unobserved sources associated with treatment selection, and its sample 

selection models account for unobserved factors of bias only if distributional assumptions 

are valid.  The variable that controls for selection bias should be correlated with the 

selected treatment but not with the treatment outcomes (Crown, 2001).  The instrumental 

variable estimation has been criticized for strong behavioral assumptions that may not 

hold in reality (Heckman, 1997).  Another limitation is that this method derives the causal 

effect only for the compliers, hence, ignores the other nonignorable components in the 

treatment receipt.  As in Heckman’s method, the instrumental variable method also 
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requires variables that control for selection bias should be correlated with the study 

variable but uncorrelated with the treatment outcomes (Crown, 2001).  It is not easy to 

find such variables.  Moreover, the two econometric model methods require less realistic 

distributional assumptions, are very sensitive to model specification details, and quickly 

become complex (see Obenchain and Melfi, 1998).  These limitations lower the 

applicability of econometric selection methods.  Thus, these are excluded from further 

discussion. 

Outside of econometrics, Cook and Goldman (1989) compared analyses based on 

propensity score method to a multivariate confounder score method in epidemiological 

unrandomized research.  The authors found that propensity score method is less affected 

by the high correlation between the treatment (or exposure) level and the confounders 

than the multivariate confounder score. 

 

5.4 Methods for Applying Propensity Score Adjustment 
 

Three application methods of propensity score adjustment are identified from the 

literature.  The first approach matches two units based on the propensity score – one from 

the treatment group and the other from the control group, and forms a pair.  The group 

comparison is done within a given propensity score, and the average treatment effect is 

calculated over all matching propensity scores.  Subclassification is the second 

application method.  From a combined pool of subjects from both conditions, units are 

stratified based on the propensity score so that ( )e x  are approximately constant for all 

units in each stratum.  The expected difference between the two assignments at a given 
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propensity score is equal to the average treatment effect.  In the third application method, 

propensity scores are applied by adjusting covariance in a linear response model.  The 

detailed operationalization of the three methods will be discussed below (see Rosenbaum 

and Rubin, 1983, 1984 and D’Agostino, 1998 for a review). 

5.4.1  Matching by Propensity Scores 
 

Matching is a natural approach to bias reduction when the cost of experimentation 

is high and when a large reservoir of units under control condition is available.  In fact, 

most methodological studies of propensity scores application are concentrated on 

matching, especially pair matching.  This may be because the propensity score 

adjustment is originated from causal inference studies, where only a small portion of the 

population is exposed to the experimental condition, which makes the size of the control 

group much larger than that of the treatment group.  The basic idea in matching is 

compare all experiment treated units only with controlled units whose covariates show 

similar distributions. 

The illustration of matching is first carried out in terms of univariate covariate x  

as in Rubin (1973).  Suppose that there is a random sample of size n  from some 

population of a treatment group ( 1g = ) 1P  and denote the sample as 1S ; and a larger 

random sample of size m kn=  with 1k ≥  from a control group ( 0g = )population 0P , 

denoted as 0S .  It is further assumed that x  is recorded for all subjects in 1S  and 0S .  All 

subjects in 1S  are to be matched to their counterparts selected from 0S .  Based on x , a 

subsample of size n is drawn from 0S , denoted by 0S ′  such that each unit in 0S ′  has an 

equivalent value of x  to a certain unit in 1S .  The treatment effect is estimated from 1S  
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and 0S ′ .  If 1k = , a purposeful matching is not attainable, as 0S ′  is in essence a random 

sample of 0P .  In this case, the bias due to imbalanced x  is retained.  If k →∞ , a perfect 

matching between 1S  and 0S ′  is highly feasible – the bias may be reduced, if not 

removed.   

Rubin (1973) documented three simple approaches of constructing 0S ′  for pair 

matching.  They all assign { }1 1is S∈  with 1,...,i n=  the closest match from the 

unmatched units of  { }0 0js S∈  with 1,......,j m=  with m kn=  and 1k ≥  base on x .  The 

selection mechanism of 0S ′  is completely defined by how the order of { }0 js  is specified: 

1) random ordering (units are randomly ordered); 2) low-high ordering (a unit not yet 

matched with the lowest x score is matched next); and 3) high-low ordering (a unit not 

yet matched with the highest x score is matched next).  All three methods show similar 

bias reduction patterns.   Unless the ratio of the treatment group variance to that of the 

control group for the matching variable is larger than 1, all three ordering methods attain 

sizable bias reduction (Rubin, 1973).   

So far, matching has been examined in terms of a univariate x .  In practice, 

matching is done in a multivariate fashion, because the exact matching on all covariates 

is impossible.  Instead, matching is carried out by using propensity score ( )ê x  from (5.6) 

in order to equalize all covariate distributions between the treatment and the control 

group.  The matching methods and bias reduction patterns examined for univariate x  

should apply similarly when using ( )ê x .   
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Rosenbaum and Rubin (1985) compared three multivariate matching methods 

using propensity scores.  Each of these methods has similarities to the nearest neighbor 

hot-deck method used for imputation in sample surveys (Little and Rubin, 2002, p.69).  

They differ by the level of importance given to the estimated propensity score relative to 

the other auxiliary variables in x .  Under the first method, nearest available matching, 

the first subject in randomly ordered 1S  is matched with the subject in 0S  having the 

nearest ( )ê x .  Both subjects are removed from the lists and the same matching procedure 

continues for the remaining unmatched subjects in 1S .  The remaining two matching 

methods rely on the Mahalanobis metric quantity using all auxiliary variables and 

propensity scores, calculated from the Mahalanobis distance function: 

( ) ( ) ( )
0

1, Sd C−′= − −u v u v u v , where u  and v  are values of { }ˆ, ( )e′ ′x x ; and 
0

1
SC−  is the 

sample covariance matrix of { }ˆ, ( )e′ ′x x  in 0S .  The second method uses nearest available 

Mahalanobis metric matching.  Units are matched as in the first method but with respect 

to Mahalanobis distance quantity.  The third approach is nearest available Mahalanobis 

metric matching within calipers.  For a unit in the randomly ordered 1S , create a subset of 

0S  with all available subjects whose ( )ê x  is within the range of a specified constant.  

This specified range is the caliper.  Then, find the subject in the subset of 0S  that has the 

closest match to the unit in 1S  with respect to the Mahalanobis distance.  Rosenbaum and 

Rubin (1985) demonstrated that the third method is superior to the other two with respect 

to the balance in covariates and in propensity scores.  This is a reasonable finding, since 

nearest available Mahalanobis metric matching within calipers uses all covariates and 

propensity scores and takes advantage of the first two matching methods.  
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There is an issue with the degree of closeness of a matched pair.  Rosenbaum and 

Rubin (1985b) compared inexact matching (failure to match on the exact covariate score) 

with incomplete matching (failure to match all units in the treatment group).  The study 

showed that incomplete matching has a higher likelihood of retaining severe bias in the 

treatment effect than inexact matching.  The authors recommended using an appropriate 

nearest multivariate matching to complete the matching, even if this may leave some 

residual due to inexact matching. 

Pair marching of a Web sample to the nonsampled part of a population has limited 

relevance to finite population estimation.  While matching of Web respondents to 

nonresponding or nonsampled cases from a larger pool constructed based on 

randomization might be feasible, the interest is in estimating population means, totals, 

and other population quantities.  No data, other than covariates, are available for the 

nonsampled units.  Also, estimating the difference between the Web sample and 

nonsample quantities is not possible nor is it of interest. 

5.4.2  Subclassification by Propensity Scores 
 

All units in the treatment and control groups may be combined into one and 

partitioned into a number of subclasses based on the covariate distributions such that each 

subclass has a restricted range of covariate values.  This idea was first presented in 

Cochran (1968) with the underlying rationale that the units within one subclass become 

comparable with respect to the covariates.  The major advantage of subclassification is 

that the treatment effect can be adjusted by restructuring subclass weights based on the 

covariate distribution without assumptions about response surface modeling.  Propensity 

score adjustment using the subclassification method appears frequently in clinical trials 
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(e.g., Rubin and Rosenbaum, 1984; Hoffer et al., 1985; Lavori and Keller, 1988; Cook 

and Goldman, 1989; Czajka et al., 1992; Stone et al., 1995; Lieberman et al., 1996; 

Rubin, 1997; Benjamin, 2001).  Its popularity is not surprising, when considering (1) that 

subclassification allows easier operation than matching, (2) that the number of the control 

group units need not be larger than that of the treatment group, and (3) that 

subclassification uses all study subjects, unlike matching where unmatched units in the 

control group are discarded.    

Returning to the initial demonstration of (5.2), suppose that there is a univariate x  

available in the data.  All units from both conditions first need to be sorted by x  in order 

to use subclassification.  Let the boundaries of x  be 1cx −  and cx  for the cth subclass; and 

the sample means of study outcome of the cth subclass for the two conditions be 1ct  and 

0ct .  The expected outcomes from the experimental and control groups are  

( )
( )

1 1 1

0 0 0

M c c

M c c

E E t u

E E t u
π

π

τ

τ

= +

= +
,                                             (5.12) 

where 
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1
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u x x dx
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−
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∫
∫
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( )
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c

c

c
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u x x dx
u
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φ

φ
−

−
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∫
∫

, and ( )u x  is a function of the 

covariates; and c is an indicator of the subclass with  1,...,c C= .  It becomes clear from 

(5.12) that the initial bias of the average treatment effect is ( )0 1 1 0
1

C

c c
c

u u u u
=

− = −∑ , i.e., 

the cumulative difference in the covariate means. 

All units within one subclass are comparable with respect to the covariates 

included in the propensity score model. By allocating appropriate weights, the overall 
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treatment effect can be adjusted.  The treatment effect is the weighted mean of the 

differences between the experimental and control group units given a subclass.  The 

weight for each subclass is derived, for example, based on the proportion of each subclass 

in the experimental or control group.  After adjusting for the distributional differences in 

x , the remaining bias is  

( )1 0
1

C

c c c
c

w u u
=

−∑ ,                                                (5.13)  

where cw  is a weight assigned to the cth subclass.   The proportion of the initial bias 

reduced by the adjustment is, therefore, 

( )

( )
1 0

1

1 0

100 1

C

c c c
c

w u u

u u
θ =

⎛ ⎞−⎜ ⎟
⎜ ⎟= × −

−⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
.                                     (5.14) 

Five implications may be drawn from (5.12) and (5.14) – the bias reduction in 

subclassification adjustment depends on (1) the function of the covariate, ( )u x ; (2) the 

shape of frequency functions, 0 ( )xφ  and 1( )xφ ; (3) the number of subclasses, c; (4) the 

division points, ix ; and (5) the choice of weights.   

In practice, more than one covariate is likely to be used for reducing bias.  

Subclassification based on multiple collateral variables is not easy to carry out, because 

the number of subclasses increases exponentially with an increase in the number of 

covariates and/or their categories.  This may lead to a number of subclasses with zero 

observation.  Using propensity scores instead of multiple covariates becomes a sensible 

choice as they represent all covariates included in the model approximately.   
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The same procedure in subclassification on a univariate x  holds for the 

subclassification using estimated propensity scores (see Rosenbaum and Rubin, 1984, for 

the full illustration).  It is possible to create numerous subclasses so as to refine units in 

each subclass to have almost identical propensity scores.  Cochran (1968) found that five 

subclasses are often sufficient to remove over 90% of the bias and that having more than 

five subclasses does not add much bias reduction.  It seems to be a norm to adopt five 

subclasses, more specifically quintiles of the propensity scores, in existing literature (e.g., 

Rosenbaum and Rubin, 1984; Terhanian et al. 2000a).  This seems more reasonable as 

one would want to create subclasses of approximately the same size.  Each subclass 

needs to have at least one unit from both conditions to meet the assumption of assignment 

ignorability.  In addition, there should be enough observations from both conditions 

within each subclass in order to derive less volatile weights.  

Propensity score adjustment by subclassification examined above resembles post-

stratification.  According to Kish (1965, p.92), the initial error in any sample survey 

estimate is 
1 1

H H

h h h h
h h

w y W Y
= =

−∑ ∑ , where there are H  strata in the population; hy  and hY   are 

the sample estimate and the population quantity for the hth stratum; and hw  and hW  are 

proportion of the hth stratum in the sample and population.  What post-stratification aims 

to achieve is to obtain hw  that is close to hW , i.e., h hw W≈ , so that the error becomes  

( )
1

H

h h h
h

W y Y
=

−∑ .                                               (5.15) 

From (5.15), it is clear that the magnitude of error is related not only to the choice 

of the weight, hw  , but also to the difference between the sample estimate and the 
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population quantity.  When the sample selection is random, ( )h hy Y−  is free from bias.  

However, when not, much bias is retained (Kish, 1965).  That is, even if h hw W= , the 

error can be sizable because hy  is not guaranteed to approximate hY  .  Relating this to 

propensity score subclassification, we are trying to derive weights in (5.13), cw , that 

minimize the quantity ( )1 0
1

C

c c c
c

w u u
=

−∑ .  However, if the covariate included in the 

function, ( )u x , is different for the treatment and control group, we may not expect a 

substantial reduction in the overall bias.  The only difference from post-stratification is 

that the weights are calculated by adopting explicit models.   

Therefore, subclassification based on propensity scores may be regarded as 

model-based post-stratification.  The former is more efficient than the latter, as it 

incorporates multi-dimensional covariates without concerns about the convergence and 

allows explicit modeling for adjustment. 

In sample surveys, classes constructed based on propensity scores may be 

included in the post-survey adjustment, such as calibration adjustment.  The requirements 

in this case are that the population or reference data must be available, unlike the 

marginal or cell counts in the traditional adjustments, and contain all variables included 

in the propensity model.  While this may serve as an alternative, applying this strategy 

may be limited due to the requirements in the reference data. 
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5.4.3  Covariance/Regression Adjustment by Propensity Scores 
 

The bias in treatment effect may be reduced by regression adjustment using 

propensity scores.  Under this method, the expected value of the responses are modeled 

as  

( )
( )

1 1 1 1

0 0 0 0

M

M

E E t x

E E t x
π

π

τ β

τ β

= +

= +
,                                            (5.16) 

and the expected treatment effect is  

( ) ( )1 0 1 0 1 1 0 0 1 0E r r x x x xτ τ β β τ β− = − + − = + − ,                       (5.17) 

when the response surfaces in both conditions are parallel ( 1 0β β= ).  The bias in 

treatment effect is ( )1 0x xβ − , which may be removed when 1 0x x= .   

When multiple covariates are used, propensity scores provide a convenient 

alternative.  It only requires finding the regression of the responses on the propensity 

scores in the treatment and control groups and uses the regression for treatment effect 

estimation.  If propensity scores are used in (5.16) instead of x , the expected treatment 

effect (5.17) becomes bias-free given a propensity score as  

( )( ) ( ) ( )1 0 1 0 1 0|E r r e x e x e xτ τ β β τ− = − + − = ,                        (5.18) 

where the response surfaces of the two groups are parallel, i.e.,  1 0β β= . 

What is the difference between removing bias using propensity scores in the 

regression and performing regression adjustment directly on the responses using all 

covariates?  Rosenbaum and Rubin (1984) illustrated that the ‘point estimate of treatment 

effect from an analysis of covariance adjustment for x … is equal to the estimate 
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obtained from a univariate covariance adjustment for the sample linear discriminant 

based on x , whenever the same sample covariance matrix is used for both the covariance 

adjustment and the discriminant analysis.’  D’Agostino (1998) noted that the propensity 

adjustment is more convenient.  Fitting complicated propensity score models is not as 

difficult as fitting complicated response surface models, because the goal of propensity 

score modeling is to get good estimates of the probability of receiving a certain treatment, 

not to obtain parsimony.  

The covariance adjustment using propensity scores is not as widely applied in the 

literature as subclassification or matching due to two reasons.  First, there is a restriction 

imposed on the response surfaces.  As in (5.17) and (5.18), the response surfaces in the 

two group assignments should be parallel, which may be difficult to verify.  Second, 

there are many cases where a regression adjustment performs poorly and increases biases.  

When the linear discriminant in response surfaces is not a monotone function of the 

propensity score (i.e. the covariance matrices in the experimental and control groups are 

unequal), the covariance adjustment may seriously increase the expected squared bias, 

because it implicitly adjusts for a poor approximation to the propensity score (Rubin, 

1979).  For the nonlinear response surfaces, univariate covariance adjustment can either 

increase the bias or overcorrect bias if the variances of x  in the two conditions differ 

(Rubin, 1973).  Therefore, unless the requirements are well met and the linear 

discriminant is highly correlated with the propensity score, matching or subclassification 

may serve the bias reduction better.  

The theoretical underpinnings of propensity score adjustment and its application 

methods have been examined in this chapter.  Propensity score adjustment may serve as a 
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potential post-hoc adjustment method for bias reduction, when the sample selection 

mechanism is not guaranteed to follow a random fashion.  In order to utilize propensity 

score adjustment legitimately, the five assumptions examined previously need to hold.  

They are strong ignorability, no contamination among study units, nonzero probability of 

being assigned to both experimental and control conditions, the observed covariates’ 

representativeness of the unobserved covariates, and no effect of assigned treatment on 

the covariates.  It should be noted that propensity score adjustment achieves the balance 

on covariates averaging over repeated studies.  This implies that not all studies using 

propensity score adjustment necessarily achieve the balance. 
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Chapter 6:   Alternative Adjustments for Volunteer Panel 
Web Survey Data 

 

The focus in this and later chapters will be on the estimation of population means 

and totals.  To do this, we will determine alternative sets of weights, { } 1

n
i i

w
=

, that (1) 

adjust for imbalance in the distribution of covariates between the Web survey sample and 

a reference survey data set and (2) use auxiliary data to produce weights that are properly 

scaled for estimating totals in addition to means.  The first purpose will be served by the 

use of adjustment subclasses formed on the basis of propensity scores as described in 

Section 6.1 and 6.2.  Auxiliary or covariate data will be used to further adjust weights in 

calibration estimation, discussed in Section 6.3.  Both the propensity score and 

calibration adjustments are mainly intended to reduce biases caused by nonrandom 

sample selection and deficient coverage in Web surveys. 

 

6.1  Problems in Volunteer Panel Web Surveys 
 

Volunteer panel Web surveys are conducted among a set of people who have Web 

access and self-select to join the panel.  The overall survey protocol is described in 

Section 2.1 and is depicted in Figure 6.1.  As the colors in this figure suggest, people 

under each step are not guaranteed to resemble one another.  Therefore, the relationships 

between steps are not necessarily known.  The greatest threat to a Web survey is the 

uncertain and incomplete coverage of the frame, because one must have Web access and 

voluntarily join the panel in order to be eligible for the survey participation.  Unless the 

population of interest is the volunteer panel itself, the protocol in Figure 6.1 does not 
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allow construction of frames with known coverage of the population of interest.  This 

problem with coverage yields the next problem that it is impossible to draw samples from 

the full population with known probabilities and to assign selection weights to the sample 

units in the ways normally done in sample surveys.  Moreover, poor response rates of this 

type of Web survey leave more room for survey errors.   

 

 

Figure 6.1.  Volunteer Panel Web Survey Protocol  
 

 

Estimates from this type of Web survey may suffer from a combination of 

noncoverage, nonprobability sampling, and nonresponse.  Chapter 4 examined whether 

some parts of these errors may be corrected by traditional adjustment methods.  The 

finding indicated the limitations of the traditional methods and the needs for more 

innovative adjustments.  When integrating the causal inference views in Chapter 5, these 

problems may be summarized into one simple term – selection bias.  The respondents’ 

self-selection mechanism from one step to the next in Figure 6.1 is not guaranteed to be 

random, which causes biased survey estimates.  As in Chapter 5, propensity score 

adjustment may be adopted as a post-hoc remedy to diminish the bias.  In this case, we 

will model the propensity of being in the responding Web sample. 
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Ideally, propensity score adjustment is not necessary in survey data analysis to 

correct initial selection bias, as most surveys rely on randomized sample selection.  

Samples are assumed to represent the characteristics of the desired population.  In theory, 

survey estimates are expected to be design unbiased or consistent estimates of the 

population quantities.  On the other hand, propensity score adjustment is not novel in 

survey statistics, especially in post-survey adjustment.  It has been used to derive 

adjustment weights for reducing biases in survey estimates arising from coverage 

problems (e.g., Duncan and Stasny, 2001), late response (e.g., Czajka et al., 1992) and 

nonresponse (e.g., Smith et al., 2000; Vartivarian and Little, 2003).  

Focusing on volunteer panel Web surveys, this chapter will propose a two-stage 

adjustment method in combination with the survey protocols in Figure 6.1.  The first 

stage adjustment will be examined in Section 6.2, which will provide a detailed 

mathematical presentation of how to use propensity score adjustment for the volunteer 

panel Web surveys.  The adjustment will require a reference survey that is conducted 

parallel to the Web survey (Terhanian and Bremer, 2000).  The reference survey is 

required to have more desirable coverage and sampling properties and higher response 

rates than the Web survey. For instance, the reference survey may be conducted using 

traditional survey modes, such as random digit dialing telephone method in Harris 

Interactive’s case.  As Figure 6.2, the reference survey data are used as a source for 

benchmarks for the first-stage adjustment.  This benchmarking is carried out via 

propensity score adjustment as it balances the covariate distribution between the Web and 

reference survey samples.  A reference survey needs to collect only the covariate 

information needed to compute propensity scores.  Through this method described in 
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detail in Section 6.2, it is hoped to use the strength of the reference survey and reduce 

biases in the Web survey estimates.  However, it should be noted that the employment of 

the reference survey implicitly disregards the dissimilar measurement properties due to 

mode difference between the Web and reference surveys. 

 

 

Figure 6.2.  Proposed Adjustment Procedure for Volunteer Panel Web Surveys  
 

 

Section 3 will introduce calibration adjustment as the second stage adjustment.  

The remaining disparities in covariates between the population and propensity-score-

adjusted Web sample are expected to be tuned by adding another layer of weights by 

calibration adjustment. 

Section 4 will summarize the combination of the propensity score and calibration 

adjustments and provide a theoretical illustration on how the bias properties are modified 

through the course of adjustment application. 
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6.2  Adjustment to the Reference Survey Sample: Propensity Score 
Adjustment 

 
Subclassification is most applicable and practical for Web survey situations 

among the three application methods of the propensity score adjustment examined in 

Chapter 5.  Although pair matching is a possibility when comparing treatment and control 

groups, how to apply the method to estimate finite population quantities is unclear, as 

discussed in Section 5.4.1.  Therefore, we do not regard pair matching method as 

feasible.  As noted earlier, a larger reservoir of control units is needed for pair matching 

in the analysis of quasi-experimental designs.  If a larger reference survey is conducted in 

a traditional mode parallel to a Web survey only to acquire covariate information, it will 

be more logical to discard the Web survey and collect information on all variables in the 

reference survey.  However, a large reference survey, like the Current Population Survey, 

conducted by an established survey organization with high coverage and response rates, 

can be quite useful.  Regression adjustment using propensity scores is possible, but the 

restrictions associated with building response models make this approach less appealing.  

The requirements for the response surface examined in Section 5.4.3 are difficult to be 

achieved.  Therefore, the subsequent discussion on the application of propensity score 

adjustment will be focused on subclassification.  

Suppose that there are two samples – a volunteer panel Web survey sample ( Ws ) 

with Wn  units each with a base weight of W
jd , where 1,..., Wj n= ; and a reference survey 

sample ( Rs ) with Rn  units each with a base weight of R
kd , where 1,..., Rk n= .  Note that 

these base weights will not be inverses of selection probabilities, since the volunteers are 

not obtained by probability sampling.  First, the two samples are combined into one, 
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( )W Rs s s= ∪  with W Rn n n= +  units.  We need to calculate the propensity score from the 

combined sample, s .  The propensity score of the ith unit, where 1,...,i n= , is the 

likelihood of the unit participating in the volunteer panel Web survey rather than the 

reference survey and is defined as ( ) ( )Pr | , 1,...,W
i ie i s i n= ∈ =x x .   The propensity 

score is estimated in a logistic regression as in (5.11) using covariates collected in both 

the Web and reference surveys ( obsx ).  If all relevant covariates are included in both 

surveys, then ,i obs i=x x  for each unit i.  A critical assumption in doing this is that the 

combined sample can legitimately be used to estimate the probability of being in the 

volunteer panel.  Given a set of covariate values, a person must have some nonzero 

probability of being in the Web survey or not, and that probability must be estimable 

from the combined sample, s . 

Based on the predicted propensity score, ˆ( )e x , the distribution of the Web sample 

units is rearranged so that Ws  resembles Rs  in terms of obsx  included in the propensity 

model.  Mechanically, this is first done by sorting the combined data ( s ) by the predicted 

propensity score of each unit and partitioning s  into C subclasses, where each subclass 

has about the same number of units.  Based on Cochran (1968), the conventional choice 

in practice is to use five subclasses based on quintile points.  Ideally, all units in a given 

subclass will have about the same propensity score or, at least, the range of scores in each 

class is fairly narrow.  This is so that (5.8) and (5.9) will apply approximately.  In the cth 

subclass in the merged data denoted as cs , there are W R
c c cn n n= +  units, where W

cn  is the 

number of units from the Web survey data, and R
cn  from the reference survey.  The total 

number of units in the merged data remains the same because 
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( )
1 1

C C
W R
c c c

c c
n n n n

= =

+ = =∑ ∑ . 

Second, we compute the following adjustment weights to all units in W
cn , the cth 

subclass of the Web survey data: 

 ( ) ( )

( ) ( )

R R
c

W W
c

R R
k k

k s k s

c W W
j j

j s j s

d d

f
d d

∈ ∈

∈ ∈

=

∑ ∑

∑ ∑
,  (6.1) 

where R
cs  and W

cs  are the sets of units in the reference sample and Web sample of the cth 

subclass.  If the weights in (6.1) are the inverse of selection probability, it can be 

expanded to: 

( ) ( )

( ) ( )

ˆ ˆ
ˆ ˆ

R R
c

W W
c

R R
k k

R Rk s k s c
c W W W W

j j c
j s j s

d d
N Nf

d d N N
∈ ∈

∈ ∈

= ≡

∑ ∑

∑ ∑
. 

The adjusted weight for unit j  in class c  in the Web sample is  

 .
ˆ ˆ
ˆ ˆ= =

R R
W PSA W Wc
j c j jW W

c

N Nd f d d
N N

.  (6.2)   

When the base weights are equal for all units or are not available, one may use an 

alternative adjustment weight as follows: 

  
R R
c

c W W
c

n nf
n n

= . (6.3) 

The adjustment using (6.3) does not allow populations totals to be estimated since the 

weights are not appropriately scaled, unless the population sizes for both the reference 

survey and Web survey are known. 
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From (6.2), we can see that 
( )W

c

R
W W c

c c c R
j s

nf n f n
n∈

= =∑ .  The weights from (6.1) or (6.3) may 

make the distribution of the Web survey sample equal to the reference survey sample in 

terms of propensity scores.  For example, the estimated number of units in class c  from 

the Web sample using the adjusted weights is 

( )
. .ˆ

ˆˆ           .ˆ

W
c

W PSA W PSA
c j

j s

R
W c

R

N d

NN
N

∈

=

=

∑
 

In words, the estimated number of units from the Web survey, ˆ WN , is distributed among 

the classes according to the distribution from the reference survey, ˆ ˆR R
cN N . 

The estimator for the mean of a study variable, y, for the Web survey sample ( Ws ) 

becomes 

( )

( )

.

.
.

ˆ
W
c

W
c

W PSA
j j

c j sW PSA
W PSA
j

c j s

d y

y
d

∈

∈

=

∑ ∑

∑ ∑
. 

Note that the reference sample units are not used in deriving .ˆW PSAy  after 

adjustment weights, .W PSA
jd , are assigned.  Therefore, the reference sample is required to 

have only the covariate data, not necessarily the variables of interest.  The algorithm for 

propensity score adjustment is computationally implemented in psa.fcn using R© 

(Venables et al., 2003) shown in Appendix 1.1 (part of the code comes from Obenchain, 

1999). 
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The set of covariates typically includes similar kinds of demographic variables to 

those used in post-stratification.  Harris Interactive includes both demographic and 

nondemographic variables in the propensity models (e.g., Terhanian et al., 2000; Taylor 

et al., 2001).  The importance of covariates in propensity score adjustment should be 

understood in relation to the substantive study variable, y , and the group assignment 

variable, g  (Rosenbaum and Rubin, 1984).  How important it is to include 

nondemographic variables in propensity score adjustment for Web surveys is unclear due 

to two facts: (1) the inclusion of more variables automatically increases the predictive 

power of the model and (2) the nondemographic, e.g., attitudinal, covariates can often be 

explained by demographic variables.   

 

6.3  Adjustment to the Target Population: Calibration Adjustment 
 

The second stage adjustment makes the adjusted Web survey sample resemble the 

target population.  More specifically, this section will examine calibration using 

generalized regression estimators (GREG) in Deville and Särndal (1992) and Deville et 

al. (1993) as a method of deriving the second stage weights.   

Suppose that an initial set of weights, { } ( )
0

Wj j s
w

∈
, is available and that a population 

total, yt , of the variable of interest, y, is estimated as  

( )
0ˆ

W

W
y j j

j s

t w y
∈

= ∑ , 
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By using calibration with GREG, we may modify the set of initial weights, { } ( )
0

Wj j s
w

∈
, in 

order to find a new set of calibration weights, { } ( )Wj j s
w

∈
, that produces 

( )W

W
y j j

j s

t w y
∈

= ∑ , 

while respecting  

 =z zt t , (6.4) 

where  

 { }1 2, ,..., ,...,j j j jp jPz z z z ′=z   (6.5)  

is a vector of values for P auxiliary variables for the unit j in the Web survey; 

( )1 2
, ,..., ,...,

∈

= =∑ p Pi z z z z
i U

t t t tzt z , is the set of the population (U) marginal totals of all P 

covariates with { }1, 2,....,U N= ; and 
( )∈

= ∑
W

j j
j s

wzt z , estimates of zt  adjusted by the 

calibration weights, jw .  If these population total for the pth auxiliary variable is known 

and fixed, such as the number of males in the U.S., then the total for that variable 

becomes 
1

p p

N

z z ip
i

t T z
=

≡ =∑ .   When the population totals are not readily available, such as 

the number of persons with some disability, 
pzt  may be replaced with estimates from a 

larger independent survey where the estimates may be more reliable than the survey on 

hand (Deville et al., 1993, p.1015).  The initial weights ( 0
jw ), in our case, will be .W PSA

jd  

( ( )∈ Wj s ) in (6.1), (6.3), when propensity score adjustment is applied initially, or sample 

design weights, where the simplest form may be W W
jw N n= , when no adjustment is 

applied beforehand.    
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 The GREG algorithm minimizes the measures of distance between 0
jw  and jw , 

that is, 

 ( )
( )

* 0 ,
∈
∑

w
j j

i s

G w w , (6.6)  

subject to the constraint (6.4), where *G  is a distance function associated with 

generalized least squares (GLS), such that  

 ( )
20

* 0 0
0 0, 1

2
⎛ ⎞ ⎛ ⎞

= = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

j j j
j j j

j j

w w w
G w w w G

w w
.  (6.7)  

We seek to find { }jw  by minimizing (6.6) with (6.7), while respecting (6.4).  This 

operation is equivalent to minimizing the quantity ( ) ( )
( )

0 * 0 ,
∈

′− −∑
W

j j j
j s

w G w w z zλ t t , 

where ( )1 2, ,..., ,...,p Pλ λ λ λ ′=λ  is a P vector of Lagrange multipliers.  This 

minimization leads to the desired calibration weights, ( )0
j j jw w F ′= z λ , where 

( )jF ′z λ  is the inverse function of  ( ) ( )* 0 * 0, ,j j j j jg w w dG w w dw= .  For the GLS 

distance function in (6.7), ( ) 1*( ) 1F u g u u−= = + .   

In order to compute jw , λ  must be determined by solving the calibration 

equation  

 
( )

( )
( )

0

∈ ∈

′= =∑ ∑
W W

j j j j j
j s j s

w w F zz z λ z t , (6.8) 

where the vector λ  is the only unknown component.  Following Deville and Särndal 

(1992), we rearrange (6.8) and define 
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 ( ) ( ){ }
( )

0 ˆ1φ
∈

′= − = −∑W
W

j j js
j s

w F z zλ z λ z t t . (6.9) 

Based on the iterative procedure, such as Newton’s method, λ  is solved for as follows.  

First, expand ( )1
W

t
s
φ +λ  around tλ , where tλ  is the value at the tth iteration and 1t+λ  at the 

( )1t + st, such that 

 ( ) ( ) ( )( )1 1
W W W

t t t t t
s s s
φ φ φ+ +′= + −λ λ λ λ λ , (6.10)  

where 

 ( ) ( ) ( )
( )

0
φ

φ
∈

=

′ ′′ ′= = ∑
W

W
W

t

t
t s t

j j j js
j s

d
w F

d
λ λ

λ
λ z λ z z

λ
 (6.11)  

is the P P×  matrix of partial derivatives and ( )jF ′′ z λ  is the derivative with respect to 

the argument j
′z λ .  Using (6.9), (6.10) and (6.11), we obtain 

( ) ( )11 ˆφ φ
−

+ ⎡ ⎤ ⎡ ⎤′= + − −⎣ ⎦ ⎣ ⎦W W
t t t t

s sz zλ λ λ t t λ  

as in the equation (3.5) in Deville and Särndal (1992).  For an unrestricted GLS distance 

function, a closed form solution for the Lagrange multiplier can be obtained as 

( )
( )

1

0 ˆ
−

∈

⎡ ⎤
′⎢ ⎥= −

⎢ ⎥⎣ ⎦
∑

W
j j j

j s

w z zλ z z t t . 

One problem associated with the GLS distance function is that the final weight 

may be negative or extremely large (see Deville and Särndal, 1992 for detail).  In order to 

avoid such situations, this study uses the truncated linear (L, U) distance function 

presented in Deville et al. (1993) and Jayasuriya and Valliant (1996): 
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( )21 2 1 ,    if  ( )
,                 otherwise  

⎧ − < <⎪= ⎨
∞⎪⎩

x L x UG x , 

using two fixed constants L and U.  The corresponding F function becomes 

, if  1       
( ) 1 , if  1 1

, if  1       

L u L
F u u L u U

U u U

< −⎧
⎪= + − ≤ ≤ −⎨
⎪ > −⎩

. 

Define three subsets of the sample as  

( ){ }: 1W W
A js j s L′= ∈ < −z λ , 

( ){ }: 1 1W W
B js j s L U′= ∈ − ≤ ≤ −z λ ,  and 

( ){ }: 1W W
C js j s U′= ∈ > −z λ . 

Expression (6.9) can be decomposed as  

 
( ) ( ) ( ) ( )

( )
( )

( ) ( )
0 0 0            ( 1) ( 1) ,

φ φ φ φ

∈ ∈ ∈

= + +

′= − + + −∑ ∑ ∑
W W W W

A B C

W W W
A B C

t t t t
s s s s

j j j j j j j
j s j s j s

L w w U w

λ λ λ λ

z z λ z z  (6.12) 

              .  

Since ( ) 0F u′ =  for W
As  and W

Cs , and ( ) 1F u′ =  for W
Bs , (6.11) becomes 

 ( )
( )

0φ
∈

′′ = ∑W
W
B

t
j j js

j s

wλ z z .  (6.13) 

The computational algorithm is implemented in cal.fcn using R© shown in 

Appendix 1.2 as: 

(1) Assign starting value 0
1P×=λ 0 . 

(2) Evaluate (6.10), substituting (6.12) and (6.13) to compute the components. 
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(3) Check whether the convergence criterion is achieved by using 

( )1max t t t ε+⎡ ⎤− ≤⎣ ⎦λ λ λ , where ε  is some small constant, say 210ε −= . 

(4) If convergence is obtained, go to step (5), otherwise repeat (2) and (3). 

(5) Evaluate the final weights as ( )0 *
j j jw w F ′= z λ , where *λ  is the converged 

value. 

Because jw  satisfies (6.4) and (6.9), all population constraints are satisfied even with the 

restriction placed on the range of weights. 

The resulting restricted regression estimator of yt  for the Web survey is then  

( )
.

W

W Cal
y j j

j s

t w y
∈

= ∑ . 

If the L and U restrictions have no effect, then the estimator reduces to the GREG defined 

as  

 ( ). ˆˆˆW Cal W W
y y wst t ′= + −z zt t B . (6.14) 

The regression coefficient, when there are no weight restrictions, can be estimated 

directly, using weighted least squares, as  

 
( ) ( )

1

0 0ˆ
w w

ws j j j j j j
j s j s

w w y

−

∈ ∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′=
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑B z z z .  (6.15) 

In terms of matrices and vectors, (6.15) becomes 

 ( ) ( ) ( ) ( )1 1ˆ
− −′ ′ ′= =W W W W W W W W W W

ws s s s s s s s s s sB Z W Z Z W Y A Z W Y , (6.16) 

where W
sZ is a ×Wn P  matrix of covariates for the Wn  cases in the Web sample;  

( )=s jdiag wW ; W
sY  a 1×Wn  vector of the study variable in the Web sample; and 
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′=W W W W
s s s sA Z W Z .  In the general case with calibration and weight restriction, the 

estimator of the mean becomes  

( )

( )

.
W

W

j j
j sW Cal

j
j s

w y

y
w

∈

∈

=

∑

∑
, 

where the calibration weight is  

( )0 *′=j j jw w F z λ . 

 

6.4  Theory for Propensity Score Adjustment and Calibration 
Adjustment  

 
The bias properties of Web survey estimates will be examined in this section with 

respect to population total estimates.  Two structural models are considered:  one in 

which the population follows a stratified model with strata defined by propensity score 

subclasses and the other in which covariates are used.  The unadjusted Web survey 

estimate, ˆW
yt , will generally be biased under either of these models. 

6.4.1 Stratification Model 
 

Suppose that there is an underlying structural model M that produces  

( ) µ=M i cE y , 

where ∈ ci U ; and cU  is subclass c in the universe, U .  Under this model, the expected 

value of the population total is  

( )
1

.µ
=

=∑
C

M y c c
c

E t N  
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Because this model uses subclasses formed based on the quintiles of ( )e x , we interpret 

cN  to be the count that would be obtained if the propensity score adjustment were 

applied to the entire population.   

 The Web survey estimate without adjustment is 
( )1

ˆ
= ∈

=∑ ∑
W
c

C
W W
y j j

c j s

t d y and its 

expectation over the model is   

 
( )

( )1

1

ˆ

ˆ            .    

µ

µ

= ∈

=

=

=

∑ ∑

∑

W
c

C
W W

M y c j
c j s

C
W
c c

c

E t d

N

 (6.17) 

The bias in (6.17) with respect to M is  

 ( ) ( )
1

ˆˆ .µ
=

− = −∑
C

W W
M y y c c c

c
E t t N N   (6.18) 

Suppose that there is a mechanism π  that describes how persons voluntarily become part 

of the Web sample.  In particular, suppose that 
1, if unit  in Web sample
0,  otherwise                    

δ
⎧

= ⎨
⎩

i

i
, and that 

( )π δ π= W
i iE .  The π  may be difficult or impossible to model, although the propensity 

score modeling is an attempt to do this.  If ( )ˆ
π =W

c cE N N , the model bias (6.18) averages 

to zero over the voluntary mechanism: 

( ) ( )
1

ˆˆ =0.π π µ
=

⎧ ⎫− = −⎨ ⎬
⎩ ⎭
∑

C
W W

M y y c c c
c

E E t t E N N  

Only under both the model M and the volunteering mechanism π , the unadjusted Web 

sample estimate ˆW
yt  becomes unbiased.  Note that it is quite likely that 0π =W

i  for some 

persons, because they would never volunteer to participate in a Web survey.  Generally, 
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( )
( )

ˆ
π π

∈

= ∑
c

W W W
c i i

i U

E N d .  If 1 π=W W
i id , then ( )ˆ

π =W
c cE N N , but if 0W

iπ =  for any 

persons, this cannot hold.  As a result, we expect ˆW
yt  to be biased. 

 By applying propensity score adjustment weights, we obtain a new Web survey 

estimate,  

( )
. .

1

ˆ
= ∈

=∑ ∑
W
c

C
W PSA W PSA
y j j

c j s

t d y ,                                        (6.19) 

where .W PSA
jd  is from (6.2).  The M-expected value of this estimate is  

( )
( )

.

1

1

ˆ ˆ
ˆ

ˆ ˆ

ˆ ˆ                  ,ˆ

µ

µ

= ∈

=

=

=

∑ ∑

∑

W
c

R RC
W PSA Wc

M y j cW W
c j s c

W C
R
c cR

c

N NE t d
N N

N N
N

 

and its model bias is ( ).

1

ˆ ˆˆ .ˆµ
=

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
∑

WC
W PSA R

M y y c c cR
c

NE t t N N
N

  If the weights in the 

reference sample and the Web sample are scaled so that  ˆ ˆ=W RN N , and if the application 

of the π  distribution, appropriate to the reference sample, produces ( )ˆ
π =R

c cE N N , .ˆW PSA
yt  

will be an unbiased estimator of the population total in the sense that 

( ).ˆ 0π − =W PSA
M y yE E t t .  Therefore, the role of the reference survey sample is as important 

as the propensity score model that attempts to describe π . 

Another approach to analyzing the propensity score adjustment estimator is to 

consider the correction factor, cf , described earlier to be a response propensity 

adjustment factor.  That is, ( ) ( )1 1. .π
− −

= =W PSA W W PSA
j c j jf d d  is the estimated propensity of 
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being in the Web sample.  Since all ∈ W
cj s  get the same weight adjustment factor, cf , we 

could use  

( )1
∈

= ∑
W
c

c j
j sc

e e
n

x  

as an alternative to 1 cf , although this option is not pursued in this study.  If .1 W PSA
jd  can 

be interpreted as an inverse inclusion probability, then (6.19) becomes analogous to a 

Horvitz-Thompson estimator and is unbiased with respect to the volunteering mechanism 

because 

 ( ) .
π δ πW PSA

j jE .   

Consequently, the propensity score adjustment estimator is M-π  unbiased, if ˆ R
cN  is a π -

unbiased estimator and is unbiased with respect to the volunteering mechanism, and if 

.1 W PSA
jd  is an inclusion probability. 

6.4.2 Regression Model 
 
 A more elaborate model would be one that accounts for covariates which are good 

predictors of y.  To that end, suppose that there are covariates that affect the study 

variable in the following way: 

 ( ) ′=M i iE y β z ,  (6.20)  

where ∈ ci U  and { }1 2, ,..., ,..., ′=i i i ip iPz z z zz  similarly defined as in (6.5).  Here, the 

model bias of an unadjusted Web sample estimate for the population total is  
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( )
( )

( ) ( )

( )

( )

1 1

1 1

ˆ

                   

ˆ                   
ˆ                   ,

W
cc

W
cc

C C
W W

M y y M j j M i
c c i Uj s

C C
W
j j i

c c i Uj s

W

W

E t t E d y E y

d

= = ∈∈

= = ∈∈

− = −

⎛ ⎞ ⎛ ⎞⎜ ⎟′ ′= − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
′ ′= −

′= −

∑ ∑ ∑∑

∑ ∑ ∑∑

z z

z z

β z β z

β t β t

β t t

              (6.21) 

where 
1= ∈

=∑∑
c

C

i
c i U

zt z  and 
( )1

ˆ
W
c

C
W W

j j
c j s

d
= ∈

=∑ ∑zt z .  If volunteering, i.e., the π  mechanism, 

satisfies  ( )ˆ 0π − =WE z zt t , ˆW
yt  becomes M-π  unbiased.  However, as noted in the 

previous section, this assumption is unrealistic.  Consequently, we can expect the 

unadjusted estimator, ˆW
yt , to be biased. 

The combination of calibration adjustment using GREG without the weight 

constraints and propensity score adjustment produces the following estimator from 

(6.14): 

 ( ). . .ˆ ˆˆ ′= + −W Cal W PSA W PSA
y y wst t z zB t t .  (6.22) 

Based on the model (6.20), its model expectation is  

 ( ) ( ) ( )( ). . .ˆ ˆˆ ′= + −W Cal W PSA W PSA
M y M y M wsE t E t E z zB t t .  (6.23) 

The expectation of this regression coefficient is 

( ) ( ) ( )
( )

1

1

ˆ

               

               ,

−

−

′=

′=

=

W W W W
M ws s s s M s

W W W W
s s s s

E EB A Z W Y

A Z W Z β

β

                                (6.24) 

i.e., ˆ
wsB  is M-unbiased of β .  Using (6.24), (6.23) becomes 
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( ) ( ) ( )( )
( )

( )

( )

. . .

. .

. .

ˆ ˆˆ

ˆ                 

ˆ ˆ                 
                 

                 .

W
c

W Cal W PSA W PSA
M y M y M ws

W PSA W PSA
j j

j s

W PSA W PSA

M y

E t E t E

d

E t

∈

′= + −

′ ′= + −

′ ′ ′= + −
′=

=

∑
z z

z z

z z z

z

B t t

β z β t t

β t β t β t
β t

                       (6.25) 

Important facts from above are (1) that (6.25) holds even if  .ˆW PSA
zt  has a π -bias, because 

they cancel out each other in the M expectation but (2) that zt  does have to be correct.  If  

zt  contains estimates from some other survey, the model bias will have the form 

( )*
, ,

′ −sub sub subz zβ t t , where the subscript “sub” denotes the part of the  z -vector whose 

totals come from that survey, and *
,subzt  is the vector of covariate estimates from that 

survey.  If ( )*
*

, , 0
π

− =sub subE z zt t , where, in this case, *π
E  is the expectation over the 

selection mechanism for the other survey, then .W Cal
yt  is M- *π  unbiased.  Therefore, the 

calibration adjustment will produce M-unbiased estimates (or possibly, M- *π  unbiased 

estimates), when the model (6.20) holds.   

In a case where the propensity score adjustment successfully adjusts for the 

probability of being in the Web survey sample, under the assumption of 

( ) . .1π δ π= =W PSA W PSA
j jjE d , we obtain ( ).ˆ

π =W PSA
y yE t t , ( ).ˆ

π =W PSAE z zt t , and 

( ) ( ) 1
ˆ

π

−
′ ′=ws N N N NE B B Z Z Z Y , which is the finite population version of the regression 

slope (6.23).  These three expectations lead to ( ).
π

W Cal
y yE t t , when the population total 

zt  is used in deriving .W Cal
yt .  Therefore, (1) if the propensity score adjustment correctly 
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accounts for the volunteering mechanism π , .W Cal
yt  is π -unbiased, and (2) if the model M 

is correct, .W Cal
yt  is M-unbiased.  If unbiased estimates from another survey are used, then 

the calibration estimator will be M- *π  unbiased. 

Suppose that the propensity score adjustment does not fully adjust for π -bias.  

Then ( ).ˆ
π = +W PSA

y y yE t t b  and ( ).ˆ
π = +W PSAE z z zt t b , where yb  is the bias which can take a 

positive or negative direction and ( )1
,... ,...,=

p Pz z zb b bzb  whose components can also be 

positive or negative.  The π  expectation of the calibration adjusted estimate is then 

 
( ) ( )( )( )

( )
. ˆ

ˆ                .

π π

π

′+ + − +

′= + −

W Cal
y y y ws

y y ws

E t t b E

t b E

z z z

z

B t t b

B b
                         (6.26) 

Expression (6.26) is not equal to yt , unless ( )ˆ
π

′=y wsb E zB b , which is not true in general. 

When propensity score adjustment is not correct, .W Cal
yt  will not generally be π -unbiased, 

meaning that the estimate is not unbiased with respect to the volunteering mechanism.  

However, it can be model unbiased as long as iy  follows a linear model M in (6.20) 

which we specify correctly.  
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Chapter 7: Application of the Alternative Adjustments for 
Volunteer Panel Web Surveys 

 

7.1 Introduction 
 

This chapter will document the performance of the proposed adjustment in 

Chapter 6 for volunteer panel Web surveys.  The role of the adjustment is to decrease the 

bias occurring from the possibly nonrandom mechanism in the selection of panel Web 

survey respondents.  In order to examine the degree of bias reduction, it is necessary to 

apply the adjustment for more than one sample realization.  A logical approach for this 

purpose is to adopt simulation studies that use pseudo-populations whose population 

values are known.   

This chapter will employ two survey data sets: the 2002 General Social Survey 

(GSS) and the 2003 Michigan Behavioral Risk Factor Surveillance System (BRFSS).  

Each of these will be used as a pseudo-population data set.  The reasons for using these 

data are two-fold.  First, one interesting feature of both surveys is that they contain an 

Internet supplement which provides information about whether respondents have Internet 

access or not.  Since the volunteer panels in Web surveys are required to have their own 

Web access, information on Web access ownership becomes essential for constructing a 

pool of units potentially eligible to be included the Web surveys.  The full sample of GSS 

and BRFSS themselves are capable of serving as populations as well as potential pools of 

reference survey sample units.  Second, unlike existing research where the focus of 

adjustment is placed on polling and election outcomes, having two data sets will expand 

the scope of the examination to a wide range of different substantive study variables.  
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More specifically, GSS provides attitudinal information toward general social issues, and 

BRFSS gives factual information about health-related behaviors.   

Two case studies comprise this chapter, where one study utilizes GSS data and the 

other utilizes BRFSS data.  While both case studies will examine the performance of 

propensity score adjustment and calibration adjustment as bias reduction techniques, the 

emphasis of each study will differ.  Section 7.2 will present the first study using GSS 

data, where the focus will be on the effectiveness of adjustment.  Propensity-score-

adjusted Web survey sample estimates will be compared to the reference survey sample 

estimates, and calibration-adjusted estimates will be compared to the population values.  

The second case study is presented in Section 7.3.  It will use BRFSS data and expand the 

examination to multiple dimensions: the impact of covariate selection both in propensity 

score adjustment and calibration adjustment, the effectiveness of combining calibration 

adjustment with propensity score adjustment, and the calculation of variance estimates 

when multiple adjustment weights are applied.  

 

7.2 Case Study 1: Application of Propensity Score Adjustment 
and Calibration Adjustment to 2002 General Social Survey Data  

7.2.1 Construction of Pseudo-population and Sample Selection for 
Simulation 

 
In order to assess the performance of bias reduction as described above, three 

different data sets are required: a population, a reference survey and a Web survey data 

set.   

Samples mimicking the respondents in the Harris Interactive volunteer panel Web 

survey will be drawn based on subclass proportions from a real Harris Interactive Web 
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survey data set (obtained via a personal communication with Matthias Schonlau, see 

Schonlau et al., 2004).  The cells are formed by four demographic variables: age, gender, 

education and race.  These proportions of Harris Interactive data are displayed in Table 

7.1 along with the same cross-classified cell proportions of all respondents and 

respondents who use the Internet in the 2002 General Social Survey (GSS) data. 

 

Table 7.1. Distribution of Age, Gender, Education and Race of GSS Full Sample, 
GSS Web User and Harris Interactive Survey Respondents 

  High School or Less  Some College or Above 
  White Nonwhite  White Nonwhite 
A. GSS Full Sample (n=2,746) a 
     ≤ 40 yrs Female 9.76% 6.61%  5.51% 1.79% 
 Male 9.65% 4.18%  4.41% 1.37% 
     41 yrs + Female 16.75% 4.75%  8.39% 1.44% 
 Male 13.14% 3.15%  7.75% 1.37% 

   Sum   100.00%  
       

B. GSS Web Users (n=1,692)b 
     ≤ 40 yrs Female 11.68% 6.08%  7.97% 2.62% 
 Male 10.52% 3.22%  6.69% 2.01% 
     41 yrs + Female 11.50% 2.31%  11.01% 1.64% 
 Male 9.49% 1.46%  10.16% 1.64% 

   Sum   100.00%  
       

C. Harris Interactive Respondents (n=8,195) 
     ≤ 40 yrs Female 2.03% 1.64%  13.28% 13.37% 
 Male 0.85% 0.61%  7.58% 9.09% 
     41 yrs + Female 2.45% 0.48%  15.58% 4.58% 
 Male 1.70% 0.24%  20.82% 5.71% 

   Sum   100.00%  
a. This sample size reflects the exclusion of 19 cases where some of the four covariates is 

missing. 
b. This is the subset of Web users from the original 2002 GSS sample. 
 

The 2002 GSS is a part of on-going biennial survey conducted by National 

Opinion Research Center with core funding from the National Science Foundation.  The 

data were gathered in order to measure contemporary American society targeting 
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noninstitutionalized adults 18 years old and older.  A representative national sample was 

drawn using multi-stage area probability sampling.  Respondents were surveyed in a 90-

minute in-person interview.  The reported response rate for the 2002 GSS is 70%.11  The 

protocol for the Harris Interactive Web surveys was discussed in Section 2.1 and 6.1. 

From Table 7.1, we can examine the distributions of the 2002 GSS sample, its 

Web user subgroup and the Harris Interactive respondents.  There is a noteworthy gap not 

only between the GSS sample and the two Web samples but, surprisingly, also between 

the two Web samples.  The GSS full sample includes fewer young people and those with 

higher education than the two Web samples.  The most notable disparity between the 

Harris Interactive data and the two GSS data is in the educational attainment level.  While 

less than a half of the GSS and its Web users have some college or higher education, the 

same group of people makes up 90% of the Harris Interactive respondent data.  Also, 

Harris Interactive respondents include more minorities, especially educated minorities, 

than the GSS samples.  If a sample distributed like the Harris Interactive respondents is to 

provide unbiased estimates for the general population or even the population with Web 

access, some major weighting adjustment will be required. 

The creation of the full pseudo-population starts from the GSS data set (U) which 

contains 2,746 cases with complete information on four stratifying variables in Table 7.1 

and the Web usage variable.12  The propensity score adjustment is feasible when all cases 

in the merged data have information on covariates included in the propensity score 

models.  Otherwise, propensity scores for the units where some of the covariates are 

                                                 
11 Information about the GSS is available at http://webapp.icpsr.umich.edu/GSS/ and 
http://norc.org/projects/gensoc3.asp. 
12 19 units where the information on these five variables is missing are excluded from the 
original GSS data with 2,765 units. 
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missing cannot be computed, which hinders the adjustment.  For this problem, missing 

values on the 14 covariates described in Table 7.2 that are used to build the propensity 

score models are imputed within the cell defined in Table 7.1 using hot-deck method.  A 

larger population will facilitate testing of methods by simulation.  By bootstrapping U  

with simple random sampling with replacement, the full pseudo-population ( FP ) is 

created with a size of 20,000 persons.  

As discussed earlier the 2002 GSS collected information about e-mail13 and 

Internet usage.14  Based on this information, people who are classified as Web users from 

FP  are retained for the pseudo-Web population ( WP ), which results in the size of 

12,306.15  This pseudo-Web population will allow us to draw different types of Web 

samples, especially the one resembling Harris Interactive Web survey respondents, since 

Web usage is the prerequisite for the panel members in those surveys. 

Using the two pseudo-populations, a reference sample and two types of Web 

sample are drawn in each simulation.  The reference survey sample ( Rs ) is drawn from 

FP  by simple random sampling for the size of 200Rn =  using ref.sam function 

created in R (see Appendix 1.3).  Since the 2002 GSS was conducted in the face-to-face 

mode, these reference samples will serve as face-to-face reference samples with known 

probabilities of selection. 

Two types of Web samples are drawn from WP  by Poisson sampling with 

selection probabilities equal to cell proportions in Table 7.1.B and 7.1.C.  For example, 
                                                 
13 Question wording: “About how many minutes or hours per week do you spend sending 
and answering electronic mail or e-mail?” 
14 Question wording: “Other than e-mail, do you ever use the Internet or World Wide 
Web?” 
15 The proportion of the Web users in the full pseudo-population is the same as that in the 
original GSS data at 61%.   
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for the first Web sample, White female with high school education or less who were 40 

years old or less were selected with a probability of 0.1168.  Thus, the two samples were 

allocated according to the covariate distributions from Table 7.1.B and 7.1.C, where each 

cell serves as a stratum.  The first Web sample, .W STs , is assumed to resemble the pseudo-

Web population (Table 7.1.B), and the second, .W HIs , the Harris Interactive respondents 

(Table 7.1.C).  Both Web samples are drawn using pois.sam in Appendix 1.4 for the 

desired size of . . 800W ST W HIn n= = .16  This procedure of selecting the three samples ( Rs , 

.W STs  and .W HIs ) is repeated 2,000 times. 

 7.2.2  Propensity Score Adjustment 
 
 This study examines two variables: (1) blksy : the proportion of people indicating 

warm feelings towards Blacks; and (2) votey : the proportion of people who voted in the 

2000 presidential election.  The estimates of blksy  and votey  from the simulated Web 

samples, .W STs  and .W HIs , are corrected by applying propensity score adjustment 

described in Section 6.2.  There are 14 covariates used for adjusting blksy  and 13 for votey , 

where nine of each set of all covariates are demographic and the remainder are 

nondemographic characteristics.17  As shown in Table 7.2, the significance of these 

covariates on blksy  and votey  differs greatly.  Some of the variables are continuous, while 

others are categorical with different numbers of categories. 

 

                                                 
16 The actual Web sample sizes vary around 800, as Poisson sampling is used. 
17 The demographic/nondemographic nature of a given covariate is tentatively determined 
based on whether the variable is typically used in post-stratification or not. 
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Table 7.2. P-values of the Auxiliary Variables in Logit Models Predicting blksy  
(Warm Feelings towards Blacks) and votey  (Voting Participation in 
2000 Presidential Election)a  

p-value 

Covariate     Description Type blksy  votey  

Demographic     
   age Age in years Continuous <.0001 <.0001 
   educ Education in years Continuous <.0001 <.0001 
   newsize Size of the residential area Continuous .2006 .1804 
   hhldsize Household size Continuous .8318 .3496 
   income Family income Continuous .4548 .0002 
   race Race 4 categories <.0001 .0002 
   gender Gender 2 categories <.0001 .1568 
   married Marital Status 2 categories .0616 .0280 
   region Region of the residential area 4 categories .0391 .2017 
Nondemographic    
   class Self-rated social class Continuous .1435 <.0001 
   work Employment status 2 categories .6502 .1680 
   party Political party affiliation 3 categories .2174 <.0001 
   religion Having a religion 2 categories .1197 .8480 
   ethnofit Opinion towards ethnic minorities Continuous <.0001 - 

a. These analyses were done using the original GSS sample (n=2,746) 

 

Based on the significance level (p-value) and the characteristics of the covariates 

(demographic or nondemographic) listed in Table 7.2, propensity score models are 

developed.  The first model which serves as the base propensity model, D1, includes all 

demographic variables as main effects in a logistic regression as in (5.11)18, such that  

1 2 3 4 5

6 7 8 9

Pr( 1):  ln
1 Pr( 1)

                                       ,

gD1 age educ newsize hhldsize income
g

race gender married region

α β β β β β

β β β β

⎛ ⎞=
= + + + + +⎜ ⎟− =⎝ ⎠
+ + + +

 

where 1g =  for Web sample units and 0g =  for reference sample units.  The subsequent 

models are shown in Table 7.3, and their detailed specifications in R© are shown in 

                                                 
18  This study focuses on the relationship between the substantive study variables and the 
covariates than on the relationship between the treatment variables and the covariates in 
constructing propensity score models.  
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Appendix 2.  The respective effectiveness of different models will be compared in the 

following section.  This will allow us to detect the importance of including highly 

predictive and/or nondemographic covariates in the propensity model.   

 

Table 7.3. Propensity Score Models and Their Covariates by Variable a. 

Covariate Propensity Score Models 

D1 D2 D3 
All (1) Significant (2) Nonsignificant (3) 

Demographic (D) blksy  votey  blksy  votey  blksy  votey  
   age √ √ √ √   
   educ √ √ √ √   
   newsize √ √   √ √ 
   hhldsize √ √   √ √ 
   income √ √  √ √  
   race √ √ √ √   
   gender √ √ √   √ 
   Married √ √  √ √  
   Region √ √ √   √ 

N1 N2 N3 
All (1) Significant (2) Nonsignificant (3) 

Nondemographic (N) blksy  votey  blksy  votey  blksy  votey  
   class √ √  √ √  
   Work √ √   √ √ 
   party √ √  √ √  
   Religion √ √   √ √ 
   ethnofit √ - √ - √ - 

A1 A2 A3 
All (1) Significant (2) Nonsignificant (3) Demographics &  

Nondemographics (A) blksy  votey  blksy  votey  blksy  votey  
 D1+N1 D1+N1 D2+N2 D2+N2 D3+N3 D3+N3 

a. Included covariates are indicated by check marks 
Note:  Propensity model 4 not shown in the table is the combination of D1 and N2. 
  

 The general steps for each simulation are: 

(1) to combine the reference sample ( Rs ) and the Web sample ( .W STs  or .W HIs ), 

(2) to estimate the propensity ( )ie x  of being in the Web sample rather than the reference 

sample for the ith person in the combined sample,  
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(3) to divide the combined sample into five groups based on quintiles of the propensity 

scores, and 

(4) to compute the weight .W PSA
jd  defined in (6.2) for each person j in the Web sample. 

 7.2.3  Results Propensity Score Adjustment 
 

Reference and Web samples are drawn using ref.sam and pois.sam. The 

adjustment and estimation described are carried out by psa.fcn function.  The 

propensity score adjustment function includes the adjustment weight in (6.2).  This is 

because the reference sample units have an equal probability of selection and the Web 

sample units are supposed to have unknown selection probabilities.  The simulation is 

done over 2,000 times using psa.sim function in Appendix 1.5 which includes all 

functions introduced previously.  Since the estimation benchmarks in this adjustment 

stage (propensity score adjustment) are from the reference sample ( Rs ) estimates, 

population values are not included in the discussion.  However, for convenience, we will 

refer to the difference between the average of a Web sample estimate and the means of 

the reference sample estimates as a “bias.” 

 

Table 7.4.   Simulation Means of Estimates by Different Samples before 
Adjustment  

 Rs  .W STs  .W HIs  

blksy : Proportion of warm feelings towards blacks (M=2000) 0.612 0.636 0.675 

votey : Proportion of voters in 2000 election (M=1971) a 0.650 0.715 0.817 
a. In simulations for votey , 29 simulations were not completed due to zero cases in subclasses in R

cs  
defined by propensity scores, which resulted in inability to derive weights in (6.2).   
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Table 7.4 shows the respective unadjusted means of blksy  and votey  from the three 

samples, Rs  , .W STs , and .W HIs  over all simulations.  They are calculated as  

 
1

M

m
m

y y M
=

= ∑ , (7.1) 

where M is the total number of simulated samples and my  is an estimate from the mth 

simulation.  Web estimates deviate from the reference sample estimates, indicating that 

people in the Web samples are more likely to express warm feelings towards Blacks and 

more likely to have participated in the election than people in the reference sample.  This 

result seems plausible when considering the cell proportions in Table 7.1 which were 

used to create .W STs  and .W HIs .  There is likely to be a higher proportion of people with 

higher levels of education and minorities in the Web samples than in Rs .  The biases are 

even larger between .W HIs  and Rs .  For the voting behavior, the estimate from .W HIs  is 

off by 16.7% from the reference sample estimate.  Therefore, it becomes necessary to 

decrease the bias. 

7.2.3.1 Performance of Propensity Score Adjustment 
 

Correction for the deviations of Web sample estimates is carried out by applying 

propensity score adjustment.  First the base propensity model (D1) which includes all 

demographic covariates was applied.  Table 7.5 compares unadjusted and D1 adjusted 

estimates in the relation to reference sample estimates.  For example, the D1 propensity 

score adjusted mean (y.D1) for blksy  is 0.623 based on .W STs  samples, which is closer to 

the reference sample mean (y.R: 0.615) than the unadjusted mean (y.U: 0.636).  By 

incorporating adjustment weights, the Web estimates are closer to the reference sample 

values than the unadjusted estimates.  
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Throughout this section, the performance of propensity score adjustment can be 

evaluated with respect to three criteria: bias and its reduction, root mean square deviation 

and its reduction, and standard error. 

7.2.3.1.A Bias and Percent Bias Reduction 
 

As discussed above, the “bias” measure of the Web survey estimates compared to 

the reference survey estimates takes the following form: 

( )
1 1= =

= −∑ ∑
M M

W W R
m m

m m

bias y y y , 

where R
my  and W

my  are the reference and Web estimates from the mth simulation with 

1,...,m M= . 

Additionally, percent bias reduction ( .p bias ) is calculated using an adapted form 

of (5.14) as 

 ( ) ( ) ( )
( )

. .
.

.
. 100

⎡ ⎤−
⎢ ⎥= ×
⎢ ⎥
⎣ ⎦

W U W PSA
W PSA

W U

bias y bias y
p bias y

bias y
, (7.2) 

where .W Uy  is the simulation mean of the unadjusted Web estimate and .W PSAy  is the 

simulation mean by propensity score adjustment (PSA is substituted by model names 

hereafter).  It is expected that the unadjusted estimates have larger bias  than the adjusted 

ones.  The larger the .p bias , the more effective the propensity score adjustment in 

reducing bias.  A negative .p bias  indicates that the adjustment actually makes the 

estimates worse. 
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7.2.3.1.B Root Mean Square Deviation and Percent Root Mean Square 
Deviation Reduction 

 
The second evaluation criterion is related to the root mean square deviation 

( rmsd ) summarizes the deviation of Web estimates from the reference estimate over all 

simulations.  This statistic is calculated as 

( ) ( )2

1=

= −∑
M

W W R
m m

m

rmsd y y y M . 

From this statistic, we may compare rmsd ’s of the Web sample estimates derived from 

adjustments using different propensity models.  Estimates with smaller rmsd  may be 

considered less-deviated from the reference estimates than others. 

Just like (7.2), the percent deviation reduction ( .p rmsd ) is also computed in order 

to provide the relative size of rmsd  of the adjusted estimates to the unadjusted estimates 

as:   

( ) ( ) ( )
( )

. .
.

.
. 100

W U W PSA
W PSA

W U

rmsd y rmsd y
p rmsd y

rmsd y

⎡ ⎤−
⎢ ⎥= ×
⎢ ⎥⎣ ⎦

. 

This will provide the reduction of deviation in Web survey estimates achieved by 

propensity score adjustment. 

7.2.3.1.C Standard Error 
 

While applying adjustment in the estimation may reduce biases in the estimates, 

the variability introduced by the weights may increase the variability of the estimates.  It 

is important to understand the trade-off between bias reduction and variance increase.  

The variability in estimates is calculated in the form of a standard error ( se ) of  the 

simulation mean as: 
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( ) ( )2

1=

≈ −∑
M

W W W
m

m

se y y y M , 

where W
my  is the Web sample estimate from the mth simulation and Wy  is the average of 

W
my  defined in (7.1).  This statistic allows us to examine the magnitude of added 

variability on the estimates due to the propensity score adjustment. 

 

Table 7.5. Reference Sample and Unadjusted and Propensity Score Adjusted  
  Web Sample Estimates for blksy  and votey  

   
.W STs       

.W HIs     
 estimate bias p.bias rmsd p.rmsd se estimate bias p.bias rmsd p.rmsd se 

blksy   
 (M=2,000)           
 y.R 0.612     0.0339 0.612     0.034 
 y.U 0.636 0.024  0.045  0.0160 0.675 0.064  0.074  0.016 
 y.D1 0.623 0.012 52.4% 0.040 9.6% 0.0221 0.638 0.026 58.6% 0.052 29.4% 0.032 

votey   
 (M=1,971)           
 y.R 0.650     0.034 0.650     0.034 
 y.U 0.715 0.065  0.075  0.015 0.817 0.167  0.171  0.013 
 y.D1 0.709 0.059 9.7% 0.069 8.3% 0.022 0.724 0.074 55.7% 0.086 50.0% 0.031 
Note:  y.R: Reference sample estimate. 
 y.U: Unadjusted Web sample estimate. 
 y.D1: Web sample estimate after propensity score adjustment using model D1. 

 

Table 7.5 exhibits simulation estimates of blksy  and votey  and their evaluation 

statistics when no adjustment and adjustment by D1 model are applied for both  .W STs   

and .W HIs   (see Appendix 3 for the same information for all adjusted estimates based on 

all propensity models).  When D1 adjustment is applied, biases and deviations in Web 

estimates from the reference sample estimates are decreased dramatically.  The greatest 

advantage of using propensity score adjustment is in the samples mimicking Harris 

Interactive respondents – the larger bias reduction is in .W HIs   than in .W STs  for both study 



 

 119

variables.  This echoes the statement in Cochran et al. (1954, pp.246) that “adjustment 

will only be seriously helpful when the sampling procedure is not random….”  The 

reductions in the bias of estimates from .W HIs  are 58.6% and 55.7%.  Their .p rmsd ’s  are 

also large at 29.4% and 50%.  Nonetheless, the adjusted estimates have larger standard 

error, showing that the reduction in the bias and deviation comes at the cost of increased 

variability.  The trade-off between the decrease in deviation and the increase in standard 

error will be discussed in detail shortly. 

7.2.3.2 Effect of Covariates in Propensity Score Models 
 

The choice of covariates can be on important factors in the performance of 

propensity score adjustment.  Assessment of the role of covariates is carried out 

exclusively using .W HIs  for several different sets of covariates.  First, different propensity 

models are developed by the significance of the covariates predicting  blksy  and votey .  

Using a cut-point of .05p = , covariates in Table 7.2 are classified by whether they are 

highly ( .05p < ) or weakly predictive ( .05p ≥ ).  As a result, there are three models 

related only to demographic variables as shown in Table 7.3: all demographic covariates 

are included in the base propensity model (D1); highly predictive covariates only (D2); 

and weakly predictive covariates only (D3).  
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Figure 7.1. Relationship between the Distributions of the Different Web Sample 
Estimates and the Reference Sample Estimates for blksy  (Warm 
Feelings towards Blacks)  

 

The unadjusted ( .y U ) and the adjusted Web estimates using D1, D2, and D3 

( .y D1 , .y D2 , and .y D3 , respectively) are plotted against the reference sample estimate 

( .y R ) for blksy  in Figure 7.1 and for votey  in Figure 7.2 for all simulated samples (see 

Appendix 4 for all scatter plots of the estimates using all propensity models for both 

study variables in both .W STs  and .W HIs ).  Underneath each scatter plot is displayed the 

corresponding rmsd  for each adjustment.  A diagonal y x=  reference line is drawn in 

each panel in Figure 7.1 and Figure 7.2.  If the propensity score adjusted Web sample 

estimates were always equal to the reference sample estimates, then all points would fall 

on the reference line.  Therefore, in the scatter plots, as the cluster of dots is approaching 

the reference line, the disparity of Web estimates is diminished.  The scatter plot with the 

dots closest to the identity line indicates the best adjustment method in terms of 

deviation.  Widely dispersed clusters are the evidence of increased variability. 
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Figure 7.2.  Relationship between the Distributions of the Different Web Sample 
Estimates and the Reference Sample Estimates for votey  (Voting 
Participation)  

 
 

Figure 7.1 and 7.2 convey the same messages.  Among the three adjustments, D1 

and D2 outperform D3.  When the propensity score model is composed of only highly 

predictive covariates (D2), the level of adjustment is comparable to the base model that 

includes all variables (D1).  The propensity score adjustment based on weakly predictive 

covariates (D3) does not improve the point estimates to any degree.  The figures also 

illustrate the increased variability of estimates when using propensity score adjustment 

weights.  Once the weights are incorporated, the scatter plots in the panel 2 and 3 show 

higher variability.  In particular, estimates from the better performing models show 

widely scattered distributions.  In the case of the propensity model D3 for blksy , the 

adjustment increases variability without decreasing the deviation to any degree, which 

ultimately worsens the quality of estimates in an absolute sense. 

Next, we examine the importance of including nondemographic (or attitudinal) 

variables in the propensity score model by comparing four different models:  all 

demographic covariates (D1), all nondemographic covariate (N1), all covariates (A1=D1+ 
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N1), and all demographic and important nondemographic covariates (4). Again, Table 7.3 

shows the variables included in each model.  The distributions of the adjusted estimates 

using these models are displayed in Figure 7.3 along with those of the reference sample 

estimates ( .y R ) and the unadjusted estimates ( .yU ) (see Appendix 5 for all box plots of 

the estimates using all propensity models for both study variables in both .W STs  and 

.W HIs ).   

 

 

Figure 7.3. Distributions of the Web Estimates by Different Propensity Score 
  Adjustments 
 

 

For both study variables, the reference sample estimates ( .y R ) are more widely 

distributed than the unadjusted Web sample estimates ( .yU ).  This is not surprising since 

the size of the Web samples is four times larger than the reference samples.  However, 

the distributions of .yU  do not contain the simulation means of .y R .  For votey ,  the 

distribution of .yU  and .y R  are almost non-overlapping.  Among the four adjustment 

models, ones including demographic variables (D1, A1 and 4) produce less biased Web 

estimates than ones only with nondemographics (N1).  The marginal effect of including 
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nondemographic variables in addition to demographic ones can be seen by comparing the 

box plots for A1 with D1.  Figure 7.3 shows that this effect is minimal, since the 

performance of A1 and D1 are comparable.  Although the distributions of the adjusted 

estimates differ noticeably, none of the methods successfully removes the deviation. 

As in Figure 7.1 and 7.2, the variance of the Web sample estimates increases 

when adjustment weights are applied and when the adjustments are more effective in 

reducing deviation.  The increase in variance is primarily due to including the 

demographic covariates in the propensity models.  This may be translated into the 

significance of these covariates in predicting the propensity score, 

( )( ) Pr | , 1,...,We i s i n= ∈ =x x .  However, it should be noted that the variability of 

effective model estimates can be as large as that of the reference sample estimates, 

meaning that the precision obtained from the larger sample size in Web surveys may be 

completely lost.   

7.2.3.3 Discussion 
 

This section illustrates the exclusive application of propensity score adjustment 

for volunteer panel Web surveys.  The adjustment decreases but does not eliminate the 

difference between the benchmark sample estimates and the Web sample estimates.  This 

reduction comes at the cost of increased variance.  The relationship between the 

covariates and the study variables is found to be important in forming propensity models, 

since the propensity models with weakly predictive covariates do not decrease the 

deviation but add to the variability.  It seems to be a reasonable practice to include all 

available covariates from the given data set, as Rubin and Thomas (1996) suggest.  The 

assertion that including nondemographic variables in the propensity models is useful is 
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not verified, as the value of including nondemographic variables appears limited in 

comparison to demographic ones.  This may be due to the nature of the two study 

variables, warm feelings towards Blacks and voting behavior, which are highly correlated 

to demographic variables, such as race and education.  Web sample estimates are 

compared to reference sample estimates, which may also be contaminated by sampling 

and nonresponse error.  It seems to be a logical approach to combine the propensity score 

adjustment weights with additional weights that project the adjusted Web samples to the 

general population.  For example, calibration adjustment using general regression 

estimation proposed in the previous chapter may be an alternative.  The combination of 

the two weights may reduce selection bias in Web surveys to a greater degree.  This will 

be examined in the following section.   

7.2.4  Calibration Adjustment 
 
 In this section, we apply calibration adjustment as described in Section 6.3 using 

the propensity score adjusted weights as the starting point.  More specifically, the weight 

in (6.16) is applied as in (6.15) in order to correct for remaining discrepancies between 

the propensity score adjusted Web sample estimates and the population values.  This 

procedure makes the Web sample covariates that are already balanced to the 

probabilistically drawn reference sample further balanced to the target population.  While 

the propensity score adjustment is on the reference sample level to attempt to correct for 

the nonprobability nature of Web samples, the calibration adjustment is on the population 

level for noncoverage and nonresponse problems in survey samples (refer to Figure 6.2).   

 Two different sets of covariates are respectively used in calibrating adjustment 

weights for each of blksy  and votey .  For blksy , the first calibration (Calibration 1) uses age, 
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educ, race, gender, region, and ethnofit listed in Table 7.2, and the second (Calibration 2) 

uses all but ethnofit.  For votey , the first (Calibration 1) includes age, educ, race, gender, 

region, and party, whereas the second (Calibration 2) excludes party.  The adoption of 

different sets of covariates in the adjustment is to assess the advantage of calibration – 

that is, including estimated population totals in addition to the known population values 

as the benchmarks in the adjustment.  The first models will show the marginal effect of 

incorporating rather unconventional variables (ethnofit and party) in the adjustment.  The 

R code for the calibration using linear distance function with trimmed upper and lower 

bounds is cal.fcn and the simulation is done over 2,000 iterations using cal.sim in 

Appendix 1.6.   

7.2.5 Results of Calibration Adjustment 
 

Adjustments are focused on .W HIs  from this section on.  For brevity, four different 

propensity models (A1, A2, A3, 4) will be combined with the two calibration adjustments 

(Calibration 1 and 2) – resulting in 15 combinations of adjustment (= 5 (4 propensity 

score models + no propensity score adjustment) x 3 (2 calibrations + no calibration)).  As 

a notational convention, we will denote an estimator of the mean by y.(propensity score 

adjustment type).(calibration type).  The unadjusted estimator is denoted by y.U and the 

reference sample estimator by y.R.  For instance, the Web estimate using the A1 

propensity score model and no calibration will be denoted as . .y A1 n .  As in the 

simulation in Section 7.2.1, each Rs  was selected by simple random sampling without 

replacement with 200Rn =  and .W HIs  was a Poisson sample of size . 800W HIn = .  Table 



 

 126

7.6 presents the population values and the summary statistics for estimates from the 

reference samples, and the unadjusted and adjusted Web samples.   

7.2.5.1 Performance of Calibration Adjustment 
 

The benchmarks of calibration adjustment are the population values.  Therefore, 

we need different evaluation criteria than when propensity score adjustment alone is used 

7.2.5.1.A Root Mean Square Error and Percent Root Mean Square 
Error Reduction 

 
Since we have a fixed known value from the population, the first evaluation 

criterion is root mean square error (rmse) calculated as follows: 

 ( ) ( )2

1

M

m
m

rmse y y Y M
=

= −∑ ,  (7.3) 

where my  is the sample estimate from the mth simulation in (7.1) and Y  is the full 

pseudo-population mean.  The magnitude of rmse reduction achieved in adjustment, 

compared to no adjustment can be compared across different adjustment methods and 

sets of covariates by percent root mean square error reduction ( .p rmse ): 

 ( ) ( ) ( )
( )

. .
.

.
. 100

W U W A
W A

W U

rmse y rmse y
p rmse y

rmse y

⎡ ⎤−
⎢ ⎥= ×
⎢ ⎥⎣ ⎦

,  (7.4) 

where .W Ay  and .W Uy  are the adjusted and unadjusted Web survey estimates, 

respectively.  The larger the .p rmse , the smaller the error in .W Ay .  A negative .p rmse  

indicates that the error is increased by the adjustment. 
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 7.2.5.1.B Bias and Percent Bias Reduction  
 
 The error component that the propensity score and calibration adjustments attempt 

to decrease is the bias, which is the difference between the expected value of the sample 

estimate and the population value, that is, 

 ( ) ( )bias y E y Y= − . (7.5) 

From one realization of samples, biases cannot be estimated from (7.5) because the 

expected sample estimate, ( )E y , is not available.  However, simulation makes (7.1) 

approximate the expected Web sample estimate. As usual, the square of the rmse can be 

decomposed into two components: bias squared and variance (var),  

( ) ( ) ( ) 2
rmse y var y bias y= + ⎡ ⎤⎣ ⎦  

and produces 

 ( ) ( ) ( )( )2bias y rmse y var y= − . (7.6) 

The standardized measure of bias reduction achieved by the adjustment is percent bias 

reduction ( .p bias ).  This is computed like (7.2) as  

 ( ) ( ) ( )
( )

. .
.

.
. 100

W U W A
W A

W U

bias y bias y
p bias y

bias y

⎡ ⎤−
⎢ ⎥= ×
⎢ ⎥⎣ ⎦

.  (7.7) 

Just like .p rmse , a larger .p bias  indicates that the adjustment performed accomplishes 

bias reduction to a greater degree, and a negative .p bias  indicates that the adjustment 

increases the bias. 
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7.2.5.1.C Standard Error and Percent Root Standard Error Reduction 
 

The variability of estimates is measured by standard error ( se ) calculated as the 

following: 

 ( ) ( )se y var y= . (7.8) 

The adjusted estimates are expected to have larger standard errors than the unadjusted 

ones as the weights in the adjustment are likely to introduce extra variability in the 

estimates.  The impact of adjustment on the variability can be measured with percent 

standard error increase ( .p se ): 

 ( ) ( ) ( )
( )

. .
.

.
. 100

W A W U
W A

W U

se y se y
p se y

se y

⎡ ⎤−
⎢ ⎥= ×
⎢ ⎥⎣ ⎦

.  (7.9) 

Since the estimates with a smaller variability are considered better, the estimates with 

smaller .p se  are preferred.  A negative .p se  indicates that the variance is decreased by 

the adjustment. 

 From Table 7.6, it is observed that calibration adjustment applied to the 

propensity score adjusted estimates improves the accuracy of the Web estimates, as the 

bias reduction is larger than when propensity score adjustment alone is used.  The 

effectiveness of combining calibration is striking when the propensity score adjustment 

alone is not successful.  For example, in A3, the improvement by adding calibration is 

more apparent.  Among the two calibration methods, Calibration 1 that includes a 

substantive variable shows better bias reduction than Calibration 2.   
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Table 7.6. Comparison of Population Values, Reference Sample Estimates and 
Web Sample Estimates for blksy  and votey  

 estimate rmse bias se p.rmse p.bias p.se 

blksy         
    y.pop 0.614 - - - - - - 
    y.R 0.612 0.034 -0.002 0.034 - - - 
    y.U 0.675 0.064 0.062 0.016 0.0% 0.0% 0.0% 
    y.A1.n 0.629 0.036 0.016 0.032 44.2% 74.7% 103.5% 
    y.A1.1 0.621 0.033 0.008 0.032 47.5% 87.1% 107.0% 
    y.A1.2 0.625 0.035 0.012 0.033 45.3% 81.0% 109.1% 
    y.A2.n 0.642 0.043 0.029 0.032 33.1% 53.7% 101.4% 
    y.A2.1 0.632 0.036 0.018 0.032 42.8% 70.5% 101.2% 
    y.A2.2  0.636 0.039 0.022 0.032 39.2% 64.2% 102.8% 
    y.A3.n 0.669 0.059 0.055 0.021 6.9% 10.3% 35.7% 
    y.A3.1 0.638 0.037 0.024 0.028 41.7% 60.6% 79.2% 
    y.A3.2 0.647 0.043 0.033 0.028 32.0% 45.9% 76.2% 
    y.4.n 0.635 0.038 0.021 0.032 39.7% 65.6% 104.0% 
    y.4.1 0.626 0.035 0.012 0.032 45.5% 79.9% 106.7% 
    y.4.2 0.630 0.037 0.016 0.033 42.7% 73.7% 108.6% 

votey         
    y.pop 0.648 - - - - - - 
    y.R 0.650 0.034 0.002 0.034 - - - 
    y.U 0.817 0.169 0.169 0.013 0.0% 0.0% 0.0% 
    y.A1.n 0.718 0.078 0.070 0.032 54.3% 58.3% 151.2% 
    y.A1.1 0.713 0.072 0.066 0.030 57.6% 61.2% 130.8% 
    y.A1.2 0.715 0.074 0.067 0.031 56.6% 60.6% 142.3% 
    y.A2.n 0.716 0.075 0.068 0.032 55.7% 59.8% 148.9% 
    y.A2.1 0.711 0.069 0.063 0.030 59.0% 62.8% 130.0% 
    y.A2.2 0.712 0.071 0.064 0.031 58.1% 62.1% 140.0% 
    y.A3.n 0.818 0.171 0.170 0.014 -0.7% -0.7% 10.2% 
    y.A3.1 0.755 0.109 0.107 0.022 35.7% 36.9% 74.7% 
    y.A3.2 0.766 0.120 0.118 0.022 29.0% 30.0% 74.9% 
    y.4.n 0.718 0.077 0.070 0.032 54.6% 58.7% 150.4% 
    y.4.1 0.712 0.071 0.064 0.030 58.2% 61.9% 129.6% 
    y.4.2 0.714 0.073 0.066 0.031 57.2% 61.2% 141.5% 

Note:  The figure for the best estimate (excluding y.R and y.U ) is highlighted in bold/Italic in each 
column. 
 

 

However, calibration does tend to increase the standard errors compared to the 

unadjusted estimates. Figure 7.4 plots .p bias  against .p se  from all Web sample 

estimates and depicts the trade-off between two – a surprisingly clear positive 
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relationship.  The fitted linear regression shows a high capability of explaining the 

variability.  This again confirms the earlier finding that the increased accuracy from the 

adjustment comes at the cost of increased variability. 

 
   A. blksy                                                            B. votey  

y = 0.7258x - 0.0583
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Figure 7.4. Relationship between Percent Bias Reduction and Percent Standard 
Error Increase in Unadjusted and Adjusted Web Sample Estimates    

 

7.2.5.2 Discussion  
 

The combination of propensity score adjustment and calibration adjustment seems 

to serve the aim of adjustment better than using only propensity score adjustment.  Three 

things can be improved in the subsequent case study.  First, the degrees of bias decrease 

and variability increase due to the adjustments are only speculated in this section.  A 

statistical test is needed to verify the extent to which the inference of this argument holds.  

Second, the significance of the covariates in this section is examined only in relation to 

the substantive study variables, y, not to the treatment variable, g.  Covariate and model 

selection may be modified by incorporating both y and g.  It will allow us to examine the 

role of covariates more extensively.  Lastly, the subclassification based on the propensity 

scores for voting behavior was not completed in 29 out of 2,000 simulations due to 
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subclasses having zero counts of units from the reference sample.  Suppose that the 

reference sample data were originally collected for the general population and that only a 

subset (like veterans of the military) were to be used because the Web survey target 

population was a subgroup of the general population.  In this case, one may have a small 

number of cases in the reference sample for that particular Web survey.  Therefore, the 

reference survey should have a large enough size so that the reference samples for any 

Web survey target populations will have sufficient number of observations for forming 

the quintile subclassification.   

 

7.3 Case Study 2: Application of Propensity Score Adjustment and 
Calibration Adjustment to 2003 Michigan Behavioral Risk Factor 
Surveillance Survey Data 

7.3.1 Construction of Pseudo-population and Sample Selection for 
Simulation 

 
More elaborate examination of the adjustment is carried out in this case study 

with the data from the 2003 Michigan Behavioral Risk Factor Surveillance System 

(BRFSS).  The BRFSS is a collaborative project of the Centers for Disease Control and 

Prevention and U.S. states, Washington, D.C., and territories and is designed to measure 

behavioral risk factors in the adult population (18 years of age or older) living in 

households (CDC, 1998).  The 2003 Michigan BRFSS data consist of four quarterly data 

sets collected by the Institute for Public Policy and Social Research at Michigan State 

University.  The respondents were selected by random digit dialing method with 

disproportionate allocation for strata defined by geographic area, phone bank density, and 

probability of each phone number being listed (Michigan Department of Community 
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Health, 2003).  The original 2003 Michigan BRFSS data contain 3,551 units.  Among 

them, 3,410 cases without item nonresponse on Web access ownership and the four 

stratifying variables (age, gender, race and education) are retained for the study to form 

the pseudo-population data.  

 

Table 7.7. Distribution of Age, Gender, Education and Race of BRFSS Full 
Sample, BRFSS Web User and Harris Interactive Survey 
Respondents    

  High School or Less  Some College or above 
  White NonWhite  White NonWhite 
A. BRFSS Full Sample (n=3,410)     
≤ 40 yrs Female 5.01% 1.35%  10.32% 2.35% 
 Male 3.58% 1.09%  6.48% 1.23% 
41 yrs  + Female 16.57% 2.49%  20.29% 2.23% 
 Male 10.29% 1.17%  14.13% 1.41% 

   Sum    100%  
B.  BRFSS Web Users (n=1,250)     
≤ 40 yrs Female 5.28% 0.83%  13.98% 2.22% 
 Male 3.29% 0.83%  8.70% 1.44% 
41 yrs  + Female 10.56% 0.97%  23.29% 2.08% 
 Male 7.18% 0.65%  17.18% 1.53% 
   Sum    100%  
C. Harris Interactive Respondents (n=8,195)    
≤ 40 yrs Female 2.03% 1.64%  13.28% 13.37% 
 Male 0.85% 0.61%  7.58% 9.09% 
41 yrs  + Female 2.45% 0.48%  15.58% 4.58% 
 Male 1.70% 0.24%  20.82% 5.71% 

   Sum    100%  
 

Table 7.7 compares the distribution of the four stratifying variables among all 

respondents in BRFSS, Web users in BRFSS and Harris Interactive survey respondents 

(the same as in Case Study 1).  The results from the comparison echo what has been 

observed previously.  Harris Interactive survey respondents over-represent Nonwhites 

and more educated and younger people compared to BRFSS respondents.  This tendency 

remains even when the Web access owners in BRFSS are compared to the Harris 
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Interactive survey respondents.  When interpreting Table 7.7, one should bear in mind 

that the target population of BRFSS represents Michigan residents, while the Harris 

Interactive survey targets the general U.S. population.  Even so, since the purpose of this 

study is not to show the discrepancy between the two data sets but to investigate whether 

this discrepancy can be reduced by the proposed statistical adjustment, this should not 

degrade the value of the study.   The table shows that there are still considerable gaps in 

the distributions of education and race between the two sets of BRFSS respondents and 

the HI respondents.  

As in Case Study 1, a BRFSS pseudo-population is created by bootstrapping the 

3,410 BRFSS respondents with replacement for the size of 20,000.  Among the pseudo-

population, 12,674 people indicated that they have Web access at home19 and these will 

be considered as the Web pseudo-population.  This results in 63.4% of Web access 

owners in the pseudo-population, which is very close to 63.3% (=2,160/3,410) Web 

owners in the original BRFSS data.   

The aims of Case Study 2 are slightly different than those of the previous case 

study.  First, the emphases are placed on the propensity score model development in a 

more practical situation.  Second, variance estimation methods are examined for 

estimates calculated with propensity score adjustment weights and/or calibration weights.  

Third, the effectiveness of different propensity score models and calibration methods is 

assessed with significance tests.  Therefore, Case Study 2 uses slightly different 

simulation functions than the first case study. 

                                                 
19 Question Wording: “Do you have access to the Internet at home?” 
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Using the full pseudo-population data, a reference sample of size 500 is drawn 

from the full pseudo-population using ref.sam.  For the Web samples, instead of 

drawing different types of Web samples, samples resembling Harris Interactive survey 

respondents, i.e. .W HIs , are examined.  Web samples of size 1,500 are drawn from the 

Web pseudo-population with an allocation proportional to the stratum distribution for 

Harris Interactive respondents in Table 7.7 using pois.sam.  The sample sizes here are 

larger than the ones used in the first case study in order to avoid situations where 

weighting based on propensity score adjustment becomes impossible due to zero 

observations in subclasses in (6.1).  These samples are drawn in 3,200 simulations.20 

7.3.2 Adjustments 
 
 7.3.2.1 Propensity Score Adjustment 
 

Case study 1 used different PSA models for different variables.  However, this 

type of modeling is unlikely to be exercised in a real setting, because it requires different 

weights for each study variable when estimating more than one variable.  In practice, one 

propensity model is likely to be applied to derive weights for all study variables.  In order 

to implement propensity score adjustment, the following modeling method is used in this 

study.  First, one reference sample of size 500 and one Web sample of size 1,500 are 

drawn as described previously.  Then, these two samples are merged into one data set of 

2,000.  The base propensity score model is constructed from this merged data based on 

the relationship between g and x , not between y  and x  as in Case Study 1.  Five 

different logistic models are used for propensity score adjustment as in (7.10).  For the 

                                                 
20 The number of simulation is increased in this case study in order to compute the 
variance and the confidence interval more reliably.   
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base model (Model 2), the vector of ix  for person i includes all 30 covariates listed in 

Table 7.8, such that  

 ( )
( )

Pr 1
ln

1 Pr 1
i

i
i

g
g

α
⎡ ⎤=

′= +⎢ ⎥− =⎣ ⎦
B x ,  (7.10) 

where 1,...,i n= , B  and ix  are 30 1×  vectors, and n is the total number of cases in the 

merged data set.  Model 1, 3, 4, and 5 use subset of the covariates in Table 7.8.  Model 3 

retains marginally significant covariates with 0.2p ≤  in Model 2 and, thus, tests the role 

of significant covariates in predicting g in propensity score models.  In order to detect the 

marginal effect of stratifying variables used in the sampling stage, Model 1, 4 and 5 are 

constructed.  Model 1 includes stratifying variables only; Model 4 excludes variables in 

Model 1 from Model 2 (i.e., Model 4 uses all variables except the stratifiers); and Model 

5 excludes variables in Model 1 from Model 3 (i.e., Model 5 includes covariates 

significant at 20% but excludes the stratifiers).  Details of these models are shown in 

Table 7.9. 

 

Table 7.8. List of Covariates Used for Propensity Modeling 
Covariate Type Description 

Ghealth Continuous General Health (1: excellent, 2: very good, 3: good, 4: fair, 5: poor) 

Coverage 2 categories Having health care coverage (1: yes, 2: no) 

Doctor 2 categories Having personal doctor/health care provider (1: yes, 2: no) 

cprevent 2 categories Cost prevented from doctor's visit in the past 12 months (1: yes, 2: no) 

phyact 2 categories Participate in any physical activities other than regular job durin the 
past month (1: yes, 2: no) 

diabete 2 categories Ever told to have diabetes by a doctor (1: yes, 2: no) 

cholest 2 categories Ever checked blood cholesterol (1: yes, 2: no) 

losewgt 2 categories Trying to lose weight (1: yes, 2: no) 

wgtadv 2 categories Weight advice given by health professional in the past 12 months  
(1: yes, 2: no) 
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Table 7.8 (continued) 

Covariate Type Description 

asthma 2 categories Ever told to have asthma by a doctor (1: yes, 2: no) 

flushot 2 categories Had a flu shot in the past 12 months (1: yes, 2: no) 

pneumon 2 categories Ever had a pneumonia shot (1: yes, 2: no) 

sunburn 2 categories Had a sunburn in the past 12 months (1: yes, 2: no) 

age Continuous Age in years 

educ Continuous Education 

income Continuous Household income 

weight Continuous Current weight 

numphone Continuous Number of residential phone lines 

gender 2 categories Gender (1: male, 2: female) 

jointsym 2 categories Had any symptoms of pain, aching, or stiffness around joint in the past  
30 days (1: yes, 2: no) 

limitact 2 categories Limited in any activities because of physical, mental or emotional 
problems (1: yes, 2: no) 

modact 2 categories Moderate activities for at least 10 minutes in a usual week when not 
working (1: yes, 2: no) 

army  2 categories Ever served on active duty in the United States Armed Forces  
(1: yes, 2: no) 

cellphon 2 categories Have a cell or mobile phone (1: yes, 2: no) 

alcohol Continuous Amount of alcohol consumption 

hhsize Continuous Household size 

work 2 categories Work full time (1: yes, 2: no) 

marry 2 categories Marital status (1: married, 2: others) 

race    2 categories Race (1: Whites, 2: others) 

veggie Continuous Amount of vegetable consumption 
 

 Propensity score Models 1 through 5 are applied in deriving five sets of weights 

that are used for the three study variables, 1y : whether respondents have high blood 

pressure (HBP), 2y : whether respondents have smoked 100 or more cigarettes 

(SMOKE), and 3y : whether respondents do vigorous physical activities (ACT).21  In 

                                                 
21 Question wording for the three variables are as follows. 

1y  (HBP): “Have you ever been told by a doctor, nurse or other health professional that 
you have high blood pressure?” 

2y  (SMOKE): “Have you smoked at least 100 cigarettes in your entire life?” 
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order to examine the relationship between the covariates in propensity models and the 

study variables, the same sets of covariates in Model 1 through 5 are fitted to predict 1y , 

2y , 3y , and g (whether the unit is from the Web survey sample or the reference survey 

sample) in the original BRFSS data (n=3,410).  The p-value of each covariate in all 

models is shown in Table 7.9.   

The performance of the model predictability is detected using Akaike Information 

Criteria (AIC).  AIC is computed as ( )ˆ2log 2AIC L K= − + , where L̂  is the likelihood 

statistic and K  is the number of parameters in the model.  The smaller the AIC, the better 

fitting the propensity score model.  The AIC penalizes model complexity by increasing as 

the number of parameters increase.  Not surprisingly, propensity score Model 2 and 3 fit 

better across four dependent variables than the other models, as Model 2 contains more 

covariates and Model 3 contains only significant ones.  Model 4, which includes all 

covariates except stratifying variables, is also competitive based on the AIC. 

 

  

                                                                                                                                                 
3y  (ACT): “Now thinking about the vigorous physical activities you [fill in] in a usual 

week, do you do vigorous activities for at least 10 minutes at a time, such as running 
aerobics, heavy yard work, or anything else that causes large increase in breathing or hear 
rate?” 
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Table 7.9. Propensity Score Models and P-values of Covariates for Different 
Dependent Variables  

  Dependent Variable 

  g : WEB 1y : HBP 2y : SMOKE 3y : ACT 

     
MODEL 1     
   age 0.3218 <0.0001 0.1042 <0.0001 
   educ 0.0000 0.0065 <0.0001 <0.0001 
   gender 0.0726 0.6029 <0.0001 <0.0001 
   race 0.0000 0.0001 0.0160 <0.0001 

AIC 2008.8 3757.6 4552.4 4278.3 
     
MODEL 2     
   ghealth 0.1806 <0.0001 0.0004 <0.0001 
   coverage 0.4073 0.4904 0.0164 0.1199 
   doctor 0.1045 0.1435 0.5436 0.5270 
   cprevent 0.0221 0.3360 0.0013 0.3121 
   phyact 0.3604 0.3266 0.4718 <0.0001 
   diabete 0.0480 0.0001 0.1825 0.5117 
   cholest 0.4914 <0.0001 0.9139 0.0063 
   losewgt 0.0350 0.1837 0.5822 0.0296 
   wgtadv 0.2986 0.0008 0.8317 0.1817 
   asthma 0.4106 0.2167 0.9845 0.2333 
   flushot 0.8168 0.0021 0.0449 0.9012 
   pneumon 0.3888 0.8610 0.0660 0.1647 
   sunburn 0.1466 0.2629 0.0117 0.0215 
   age 0.6221 <0.0001 0.8366 <0.0001 
   educ <0.0001 0.6441 <0.0001 0.2376 
   income 0.0097 0.1335 0.9379 0.1250 
   weight 0.5240 <0.0001 0.0557 0.1128 
   numphone 0.4489 0.5027 0.7071 0.4085 
   gender 0.1632 0.2615 0.0738 <0.0001 
   jointsym 0.8323 0.3379 0.0012 0.3371 
   limitact 0.0342 0.3663 0.0508 0.0048 
   modact 0.4473 0.8883 0.2546 <0.0001 
   army  0.1326 0.6561 <0.0001 0.6325 
   cellphon 0.0039 0.0786 0.2519 0.0972 
   alcohol 0.7995 0.2469 <0.0001 0.0096 
   hhsize 0.7981 0.0235 0.1913 0.0405 
   work 0.6905 0.1298 0.7322 0.0339 
   marry 0.2720 0.3171 0.4568 0.0220 
   race    <0.0001 0.1219 0.0083 0.1930 
   veggie 0.7797 0.1457 0.0448 <0.0001 

AIC 2004.1 2729.8 3486.2 3139.2 
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Table 7.9 (continued) 
  Dependent Variable 

  g : WEB 1y : HBP 2y : SMOKE 3y : ACT 

     
MODEL 3     
   ghealth 0.0880 <0.0001 <0.0001 <0.0001 
   doctor 0.1940 <0.0001 0.8831 0.4741 
   cprevent 0.0116 0.2333 <0.0001 0.0052 
   diabete 0.1087 <0.0001 0.2517 0.0471 
   losewgt 0.0559 <0.0001 0.3762 0.0006 
   sunburn 0.3119 <0.0001 0.0085 <0.0001 
   educ <0.0001 0.9828 <0.0001 0.0297 
   income 0.0006 0.0002 0.8408 0.0004 
   gender 0.1173 0.5012 0.0090 <0.0001 
   limitact 0.1297 0.0002 0.0219 <0.0001 
   army 0.1959 <0.0001 <0.0001 0.0009 
   cellphon 0.0016 0.4797 0.6566 0.0424 
   race <0.0001 0.3687 0.0045 0.4833 

AIC 1981.1 3312.6 3914.9 3777.2 
     
MODEL 4     
   ghealth 0.0152 <0.0001 <0.0001 <0.0001 
   coverage 0.1835 0.8748 0.0059 0.0229 
   doctor 0.3021 0.0526 0.4018 0.7992 
   cprevent 0.0501 0.8298 0.0031 0.3112 
   phyact 0.0174 0.4261 0.1576 <0.0001 
   diabete 0.6122 <0.0001 0.1343 0.3520 
   cholest 0.8262 <0.0001 0.4369 0.2597 
   losewgt 0.0540 0.1638 0.3007 0.5248 
   wgtadv 0.4037 0.0022 0.8598 0.0730 
   asthma 0.5499 0.0532 0.9058 0.5355 
   flushot 0.9521 <0.0001 0.0514 0.2514 
   pneumon 0.2047 0.1082 0.0147 0.0193 
   sunburn 0.9247 0.0016 0.0009 <0.0001 
   income <0.0001 0.0259 0.0783 0.0662 
   weight 0.6802 <0.0001 0.2382 0.1460 
   numphone 0.6040 0.2946 0.8867 0.2045 
   jointsym 0.2648 0.0508 0.0016 0.8521 
   limitact 0.0031 0.6016 0.1116 0.0079 
   modact 0.7416 0.4107 0.2555 <0.0001 
   army  0.0289 0.6521 <0.0001 0.3924 
   cellphon 0.0001 0.2652 0.0446 0.0875 
   alcohol 0.1280 0.2824 <0.0001 0.0003 
   hhsize 0.1190 <0.0001 0.2480 0.0009 
   work 0.2855 <0.0001 0.7928 <0.0001 
   marry 0.0879 0.0311 0.9053 0.0014 
   race    0.3698 0.5276 0.0020 <0.0001 

AIC 2147.1 2786.0 3546.2 3198.9 
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Table 7.9 (continued) 
  Dependent Variable 

  g : WEB 1y : HBP 2y : SMOKE 3y : ACT 

MODEL 5     
   ghealth 0.0005 <0.0001 <0.0001 <0.0001 
   doctor 0.4131 <0.0001 0.7442 0.0725 
   cprevent 0.0154 0.2023 <0.0001 0.0140 
   diabete 0.7052 <0.0001 0.1861 0.0319 
   losewgt 0.0466 <0.0001 0.1201 0.0082 
   sunburn 0.8364 <0.0001 0.0004 <0.0001 
   income <0.0001 0.0002 0.0173 <0.0001 
   limitact 0.0122 0.0001 0.0513 <0.0001 
   army 0.0088 <0.0001 <0.0001 0.5847 
   cellphon 0.0001 0.5391 0.1275 0.0840 

AIC 2136.4 3307.9 3897.2 3819.1 
 

 

 7.3.2.2 Calibration Adjustment 
 

Two different sets of calibration variables are employed to test the effect of 

including population estimates of substantive variables.  The first calibration adjustment 

projects the weighted Web sample to the pseudo-population with respect to age, gender, 

educ and race (Calibration 1).  This resembles generalized ratio-raking using known 

population figures.  Calibration 2 expands the first one by adding a key health variable, 

ghealth: “Would you say that in general your health is excellent, very good, good, fair or 

poor?”  Although ghealth is a rather less traditional variable to be included in calibration, 

our three study variables are all highly health-related.  Therefore, inclusion of ghealth in 

the calibration adjustment is expected to improve the adjustment.  The propensity score 

adjustment weights are calculated in psa.fcn.  These propensity score adjusted weights 

and base weights are modified in calibrating the sample covariate estimates to the 

pseudo-population benchmarks using newcal.fcn (see Appendix 1.7 for the R© code).  
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Applying calibration weights, Web sample estimates on 1y , 2y , and 3y  are calculated in 

each simulation.  The whole simulation is done similarly to cal.sim in Appendix 1.6. 

7.3.3 Results of Adjustments 
 
 7.3.3.1 Comparison of Adjusted Estimates 
 

For each study variable, there are population values, reference sample estimates 

and Web sample estimates.  Since reference samples do not require propensity score 

adjustment, there are three types of estimates reflecting calibration adjustment status: No 

Calibration, Calibration 1, and Calibration 2.  For Web samples, there are 18 different 

combinations of adjustments: (No propensity score adjustment, propensity score Model 1, 

2, 3, 4, and 5) x (No Calibration, Calibration 1, and Calibration 2).  The type of 

adjustment will be denoted after the name of variable.  For instance, the unadjusted 

reference sample estimate of HBP will be denoted as y1.R.n; the Web sample estimate of 

SMOKE using no propensity score adjustment but Calibration 1 as y2.n.1; and the 

estimate of ACT using propensity score Model 5 and Calibration 2 as y3.5.2.   

 Table 7.10 presents the simulation means of the Web sample estimates using all 

adjustments and the reference sample estimates and the population values.  The 

distribution of the reference sample and Web sample estimates over all simulations are 

shown in Figure 7.5 using box plots. While the reference sample estimates are distributed 

around the population values, the Web sample estimates are not necessary so.  The 

unadjusted estimates (y1.n.n, y2.n.n and y3.n.n) are the most biased of all the alternatives.  

In fact, none of the ranges of unadjusted estimates from 3,200 simulations contains the 

true values.  On average, when no adjustment is applied, people in the Web samples are 

less likely to have high blood pressure, less likely to have smoked 100 cigarettes and 
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more likely to do vigorous physical activities than the population.  Once the adjustment is 

incorporated, the discrepancies between the Web estimates and the population figures 

tend to decrease.  Some of the adjusted Web sample estimates are almost unbiased, since 

estimates, such as y1.1.n, y1.1.2, y2.n.2, y2.1.1, y2.2.1, y2.2.2, y2.3.1, y2.3.2, y2.4.1, 

y2.4.2, y2.5.1, y2.5.2, y3.5.1, and y3.5.2 show almost symmetric distributions around the 

population values.  The most striking bias reduction can be observed for SMOKE.  When 

any combinations of propensity score and calibration adjustment are applied, the means 

of the Web sample estimates for the proportion of people who smoked 100 or more 

cigarettes are almost right on the population value.  However, the introduction of 

adjustments causes estimates to be more variable, as evidence by larger interquartile 

ranges.  The reduction in variance due to having large sample sizes in Web surveys is 

offset by the bias corrections. 

 

Table 7.10. Population Values, Reference Sample Estimates and Web Sample 
Estimates for HBP, SMOKE and ACT 

estimate    Adjustment     
   Combination 

1y : HBP 2y : SMOKE 3y : ACT 

 Pop 0.3201 0.5276 0.4349 
 R.n 0.3197 0.5278 0.4352 
 R.1 0.3197 0.5279 0.4351 
 R.2 0.3197 0.5278 0.4352 
 n.n 0.2766 0.4722 0.5117 
 n.1 0.2864 0.5194 0.4758 
 n.2 0.3022 0.5330 0.4653 
 1.n 0.3205 0.4985 0.4738 
 1.1 0.3114 0.5295 0.4660 
 1.2 0.3197 0.5356 0.4583 
 2.n 0.3042 0.4998 0.4604 
 2.1 0.3029 0.5319 0.4525 
 2.2 0.3050 0.5333 0.4502 
 3.n 0.2882 0.5012 0.4612 
 3.1 0.2934 0.5330 0.4524 
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Table 7.10 (continued) 
estimate    Adjustment     

   Combination 
1y : HBP 2y : SMOKE 3y : ACT 

 3.2 0.2945 0.5337 0.4513 
 4.n 0.2898 0.4820 0.4575 
 4.1 0.3079 0.5320 0.4221 
 4.2 0.2996 0.5260 0.4251 
 5.n 0.2955 0.4831 0.4733 
 5.1 0.3102 0.5325 0.4402 
 5.2 0.3020 0.5269 0.4419 

  

  

7.3.3.2 Performance of Adjustments on Error Reduction 
 

The mechanisms of error reduction are examined to a greater depth in this section.  

Table 7.10 summarizes the error properties of all Web sample estimates calculated as in 

(7.3), (7.4), (7.6), (7.7), (7.8) and (7.9).   It also includes standardized error properties, 

such as standardized rmse ( .s rmse ), standardized bias  ( .s bias ), and standardized 

se ( .s se ).  These are defined as rmse , bias , and se  divided by the simulation mean in 

(7.1).  These standardized error and the percentage figures allow unit-free comparisons 

on the magnitude of error reduction across all variables.   

As discussed in the previous section, there is a notable reduction in bias by using 

propensity score and calibration adjustment.  The reduction in bias is achieved at 68.2% 

on average, ranging from 17.7% for y.4.n of SMOKE to 99.2% for y.1.n for HBP.  When 

both propensity score and calibration adjustment are employed, the average bias 

reduction is realized at 78.8%.  Propensity score adjustment or calibration adjustment 

alone does not seem to remove bias as much as when the two are combined.   
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Figure 7.5. Simulation Means of All Web Sample Estimates and Reference Sample Estimates and Population Values 
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Although we utilize the adjustments to reduce bias, it is worthwhile to 

examine how they change the overall error structure.  This is done by comparing 

rmse, s.rmse and p.rmse among different adjustment methods presented in Table 

7.11.A, Table 7.11.B and Table 7.11.C.  The magnitude of rmse reduction is smaller 

than that of bias reduction.  While the adjustment on SMOKE decreases the bias as 

much as by 98.8%, the reduction in rmse is only half of that, although still substantial 

compared to no adjustment. 

 

Table 7.11.A. Error Properties of Reference Sample and Web Sample Estimates 
for Proportion of People with High Blood Pressure 

Adjustment 
Combina-
tion rmse s.rmse p.rmse bias s.bias p.bias se s.se p.se 

1y : HBP         
     R.n 0.0204   -0.0004   0.0204   
     R.1 0.0192   -0.0004   0.0192   
     R.2 0.0188   -0.0004   0.0188   
     n.n 0.0448 0.1618   - -0.0435 -0.1574   - 0.0104 0.0376   - 
     n.1 0.0404 0.1412   9.7% -0.0337 -0.1178   22.5% 0.0223 0.0778 114.4% 
     n.2 0.0286 0.0946   36.1% -0.0179 -0.0591   59.0% 0.0223 0.0739 114.8% 
     1.n 0.0247 0.0770   44.9% 0.0004 0.0012   99.2% 0.0247 0.0770 137.3% 
     1.1 0.0259 0.0832   42.1% -0.0087 -0.0279   80.1% 0.0244 0.0784 134.8% 
     1.2 0.0232 0.0727   48.1% -0.0004 -0.0012   99.1% 0.0232 0.0727 123.6% 
     2.n 0.0267 0.0878   40.3% -0.0159 -0.0523   63.5% 0.0215 0.0705 106.4% 
     2.1 0.0302 0.0998   32.4% -0.0172 -0.0570   60.4% 0.0248 0.0820 139.0% 
     2.2 0.0284 0.0930   36.7% -0.0151 -0.0496   65.2% 0.0240 0.0786 130.6% 
     3.n 0.0380 0.1319   15.1% -0.0319 -0.1107   26.7% 0.0206 0.0716   98.6% 
     3.1 0.0362 0.1233   19.2% -0.0267 -0.0909   38.7% 0.0244 0.0833 135.1% 
     3.2 0.0347 0.1180   22.4% -0.0256 -0.0869   41.2% 0.0235 0.0798 126.1% 
     4.n 0.0339 0.1169   24.3% -0.0303 -0.1045   30.5% 0.0152 0.0524   46.1% 
     4.1 0.0294 0.0955   34.3% -0.0122 -0.0395   72.0% 0.0268 0.0870 157.7% 
     4.2 0.0326 0.1087   27.2% -0.0205 -0.0685   52.9% 0.0253 0.0845 143.5% 
     5.n 0.0283 0.0956   36.8% -0.0246 -0.0831   43.6% 0.0140 0.0473   34.6% 
     5.1 0.0284 0.0915   36.6% -0.0099 -0.0320   77.2% 0.0266 0.0858 155.9% 
     5.2 0.0310 0.1025   30.8% -0.0181 -0.0600   58.4% 0.0251 0.0832 141.7% 

Note:  The figure for the best estimate (excluding y.R and y.U ) is highlighted in bold/Italic in each 
column. 
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Table 7.11.B. Error Properties of Reference Sample and Web Sample Estimates 
for Proportion of People Who Smoked 100 Cigarettes or More  

Adjustment 
Combina-
tion rmse s.rmse p.rmse bias s.bias p.bias se s.se p.se 

2y : SMOKE         
     R.n 0.0222   0.0003   0.0222   
     R.1 0.0218   0.0003   0.0218   
     R.2 0.0217   0.0003   0.0217   
     n.n 0.0566 0.1199   - -0.0554 -0.1172 - 0.0119 0.0251 - 
     n.1 0.0265 0.0510   53.2% -0.0082 -0.0158   85.2% 0.0252 0.0485 112.4% 
     n.2 0.0256 0.0479   54.9% 0.0055 0.0103   90.1% 0.0250 0.0468 110.4% 
     1.n 0.0368 0.0738   35.0% -0.0290 -0.0582   47.6% 0.0226 0.0454   90.7% 
     1.1 0.0267 0.0504   52.9% 0.0020 0.0037   96.4% 0.0266 0.0502 124.1% 
     1.2 0.0272 0.0509   51.9% 0.0081 0.0151   85.4% 0.0260 0.0486 119.3% 
     2.n 0.0356 0.0712   37.2% -0.0278 -0.0556   49.8% 0.0222 0.0444   87.0% 
     2.1 0.0278 0.0523   50.9% 0.0044 0.0082   92.1% 0.0275 0.0517 131.6% 
     2.2 0.0279 0.0522   50.8% 0.0058 0.0108   89.6% 0.0273 0.0511 129.7% 
     3.n 0.0341 0.0681   39.7% -0.0264 -0.0526   52.4% 0.0217 0.0433   82.8% 
     3.1 0.0273 0.0512   51.8% 0.0054 0.0102   90.2% 0.0267 0.0502 125.3% 
     3.2 0.0270 0.0506   52.3% 0.0061 0.0115   88.9% 0.0263 0.0493 121.9% 
     4.n 0.0481 0.0997   15.1% -0.0455 -0.0945   17.7% 0.0154 0.0320   29.9% 
     4.1 0.0291 0.0547   48.6% 0.0045 0.0084   91.9% 0.0288 0.0541 142.6% 
     4.2 0.0285 0.0541   49.7% -0.0015 -0.0029   97.2% 0.0284 0.0541 139.7% 
     5.n 0.0468 0.0969   17.3% -0.0444 -0.0919   19.8% 0.0148 0.0305   24.4% 
     5.1 0.0289 0.0543   48.9% 0.0049 0.0093   91.1% 0.0285 0.0535 140.2% 
     5.2 0.0280 0.0531   50.6% -0.0007 -0.0013   98.8% 0.0279 0.0530 135.6% 

Note:  The figure for the best estimate (excluding y.R and y.U ) is highlighted in bold/Italic in each 
column. 
 

 

Table 7.11.C. Error Properties of Reference Sample and Web Sample Estimates 
for Proportion of People Who Do Vigorous Physical Activities 

Adjustment 
Combina-
tion rmse s.rmse p.rmse bias s.bias p.bias se s.se p.se 

3y : ACT          
     R.n 0.0220   0.0003   0.0220   
     R.1 0.0211   0.0002   0.0211   
     R.2 0.0207   0.0003   0.0207   
     n.n 0.0777 0.1518 - 0.0768 0.1501 - 0.0116 0.0227 - 
     n.1 0.0478 0.1005   38.5% 0.0409 0.0859   46.8% 0.0248 0.0522 113.5% 
     n.2 0.0394 0.0846   49.3% 0.0304 0.0654   60.4% 0.0250 0.0537 114.8% 
     1.n 0.0443 0.0935   43.0% 0.0389 0.0821   49.3% 0.0211 0.0446   81.9% 
     1.1 0.0407 0.0872   47.7% 0.0311 0.0668   59.5% 0.0261 0.0561 124.8% 
     1.2 0.0348 0.0759   55.2% 0.0234 0.0510   69.6% 0.0258 0.0562 121.6% 
     2.n 0.0340 0.0738   56.3% 0.0255 0.0554   66.8% 0.0225 0.0488   93.1% 
     2.1 0.0326 0.0721   58.0% 0.0176 0.0389   77.1% 0.0275 0.0607 136.3% 
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Table 7.11.C (continued) 

Adjustment 
Combina-
tion rmse s.rmse p.rmse bias s.bias p.bias se s.se p.se 
     2.2 0.0310 0.0689   60.1% 0.0153 0.0341   80.0% 0.0270 0.0599 131.9% 
     3.n 0.0337 0.0731   56.6% 0.0263 0.0570   65.8% 0.0211 0.0458   81.7% 
     3.1 0.0315 0.0697   59.4% 0.0175 0.0386   77.2% 0.0263 0.0580 125.9% 
     3.2 0.0306 0.0678   60.6% 0.0164 0.0363   78.7% 0.0259 0.0573 122.3% 
     4.n 0.0278 0.0608   64.2% 0.0226 0.0494   70.6% 0.0163 0.0356   39.9% 
     4.1 0.0314 0.0744   59.6% -0.0128 -0.0304   83.3% 0.0286 0.0678 146.3% 
     4.2 0.0301 0.0708   61.2% -0.0098 -0.0229   87.3% 0.0285 0.0670 145.1% 
     5.n 0.0411 0.0868   47.1% 0.0384 0.0811   50.0% 0.0147 0.0310   26.3% 
     5.1 0.0285 0.0649   63.3% 0.0053 0.0120   93.1% 0.0281 0.0637 141.3% 
     5.2 0.0286 0.0647   63.2% 0.0070 0.0158   90.9% 0.0277 0.0627 138.4% 

Note:  The figure for the best estimate (excluding y.R and y.U ) is highlighted in bold/Italic in each 
column. 

 

The smaller degree of the rmse reduction than bias reduction occurs because 

adjustment weights add variability in the estimates as they attempt to decrease 

discrepancies between the Web sample covariate distributions and their desired 

population distributions.  The base weight, when no adjustment is made, is the same 

for every unit in the Web sample.  As adjustments are made, weights diverge from the 

base weight.  The divergence becomes even larger when the adjustments correct for 

large discrepancies.  Recall Table 7.7 which showed a sizable discrepancy in some of 

the covariates between the population and volunteer panel Web survey respondents.  

Therefore, it would not be surprising to see the variation in weights after applying the 

adjustments as shown in Table 7.12.  The base weight starts at 13.34.  Once the 

adjustment is applied, the upper and lower boundaries diverge from the base weight 

radically.  The ratio of the largest and the smallest weight from the same adjustment 

ranges from 1 to 89.7. 
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Table 7.12. Distribution of Weights for All Adjustments over All Simulations   
Adjustment 
Combinations 

Lower 
Bound 

Upper 
Bound 

Ratio 
(Upper/Lower) 

    n.n 13.34 13.34 1.00 
    n.1 6.68 144.46 21.62 
    n.2 6.67 178.23 26.72 
    1.n 6.13 63.47 10.35 
    1.1 3.91 133.78 34.21 
    1.2 3.35 160.60 47.94 
    2.n 5.41 62.76 11.60 
    2.1 3.15 147.26 46.77 
    2.2 2.78 159.62 57.49 
    3.n 5.85 62.24 10.64 
    3.1 3.48 135.55 38.93 
    3.2 3.04 147.12 48.38 
    4.n 6.29 34.53 5.49 
    4.1 3.15 260.52 82.72 
    4.2 3.14 282.13 89.73 
    5.n 7.24 31.56 4.36 
    5.1 3.63 250.35 69.05 
    5.2 3.62 273.28 75.53 

 

 Figure 7.6 shows the relationship between the decrease in bias and the 

increase in variability when adjustment is applied to the Web survey estimates.  As 

was true in simulation in Section 7.2.4, this figure shows that the bias reduction is 

generally achieved at the cost of the standard error increase.  The correlation between 

the two is .61 (not shown in the figure).  The linear regression also indicates a fairly 

strong relationship between the two statistics. 
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Figure 7.6. Relationship between Percent Bias Reduction and Percent 
Standard Error Increase in Adjusted Web Sample Estimates 

  

 We examine the effectiveness of propensity score adjustment and calibration 

adjustment using analyses of variance (ANOVA).  ANOVA models are used to 

predict p.rmse, p.bias, and p.se as functions of two main effects (PSTATUS: 

propensity score adjustment status – whether or not propensity score adjustment is 

used; and CSTATUS: calibration adjustment status – whether or not calibration 

adjustment is used) and their interaction.  All three ANOVA models are significant 

with 11.89F = , 20.66 and 65.34 ( 3 / 50df = ; 0.0001p < ).  Both propensity score 

adjustment status and calibration adjustment status have significant effects on p.rmse, 

p.bias and p.se with 0.0001p < .  Their interactions are also significant in explaining 

the variances of all three error properties with p-values of 0.0045, 0.0317 and 0.0021, 

respectively. 
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Table 7.13. Least Square Mean of Percent Root Mean Square Error 
Reduction, Percent Bias Reduction and Percent Standard Error 
Increase by Propensity Score Adjustment Status, Calibration 
Adjustment Status and Their Interactions 

  LS Mean 
Effect p.rmse  p.bias  p.se 
Propensity Score Adjustment 
(PSTATUS)  

 
 

 
 

     PSA (P1) 42.9% P2  64.5% P2  102.5% P2 
     No PSA (P2) 20.1% P1  30.3% P1    56.7% P1 
Calibration Adjustment  
(CSTATUS)  

 
 

 
 

     CAL (C1) 43.9% C2  69.7% C2  123.9% C2 
     No CAL (C2) 19.1% C1  25.1% C1    35.4% C1 
Interaction 
(PSTATUS*CSTATUS)  

 
 

 
 

     P1*C1 (1) 47.5% 4  78.8% 2,4  134.4% 2,4 
     P1*C2 (2) 38.2% 4  50.2% 1,4      70.7% 1,3,4 
     P2*C1 (3) 40.3% 4         60.7% 4  113.4% 2,4 
     P2*C2 (4)       0.0% 1,2,3      0.0% 1,2,3        0.0% 1,2,3 
Note: Superscripts indicate statistically different means at 0.05p = . 

 

 Next, least-squares means (LS Means), shown in Table 7.13, are computed for 

p.rmse, p.bias and p.se by each effect in the previous ANOVA.  LS Means are 

predicted population margins – they estimate the marginal means over a balanced 

population (SAS Institute, 1999).  For example, the ANOVA model for p.rmse is 

( )i j ij
µ α β αβ+ + +  , where iα   is the effect for level i of PSTATUS, jβ   is the effect 

for level j of CSTATUS, and ( )ij
αβ  is the interaction.  The LS mean for the 

combination (PSTATUS/CSTATUS) for p.rmse is 47.5%, i.e. the use of both 

propensity score adjustment and calibration is predicted to reduce the rmse by 47.5% 

(averaged over the five propensity score adjustment models and two calibration 

methods).  Pair differences are calculated using pairwise Tukey-Kramer adjusted 

differences.  The results shown in Table 7.13 reveal that all three error statistics 

become large when either or both of the adjustments are applied.  Among the four 
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possible combinations of the two adjustment status, using both adjustments is 

superior to any other adjustments.  Its bias reduction (p.bias) can be as large as 

78.8%.  Although the standard error becomes 1.3 times larger, the root mean square 

error (p.rmse) size is smaller by 47.5% than that of the unadjusted estimate.  Overall, 

one can say that the adjustment reduces the error in estimates. 

7.3.4 Performance of Different Propensity Score Models and 
Calibration Models 

 
 How each propensity score model and calibration method affects all three 

error properties is examined in this section.  As in the previous ANOVA, p.rmse, 

p.bias and p.se are fitted by the different types of propensity score models 

(PMODEL) and calibration adjustment methods (CMODEL).  Note that the focus of 

examination here is on different models instead of adjustment application status.  

There are six different methods under PMODEL: no propensity score adjustment and 

propensity score Models 1 through 5; and three CMODEL: no calibration and 

Calibration 1 and Calibration 2.   

 All ANOVA models are significant in explaining the variance in the percent 

error statistics (See Table 7.14).  In case of se, the model accounts for 97% of the 

variance in the percent se increase.   Six different types of propensity score modeling 

and three calibration types have significantly different effects on the errors.  

However, their interactions are significant in explaining only p.se.   
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Table 7.14. Results of Analysis of Variance on Percent Root Mean Square 
Error Reduction, Percent Bias Reduction and Percent Standard 
Error Increase by Propensity Score Adjustment Models, 
Calibration Adjustment Models and Their Interactions 

  p.rmse  p.bias  p.se 

Effect df SS F Value  SS F Value  SS F Value 
Model 17 0.7084 1.79*  2.5017 3.71**  9.3600  69.43** 
Error 36 0.8363   1.4288   0.2855  
Total 53 1.5447   3.9304   9.6455  

  (R2=0.4586)  (R2=0.6365)  (R2=0.9704) 
 df Type 3 SS F Value  Type 3 SS F Value  Type 3 SS F Value 
Propensity Score 
Model   
(PMODEL) 5 0.2513 2.16* 

 

0.7210   3.63** 

 

1.2060  30.41** 
Calibration 
Model 
(CMODEL) 2 0.2603   5.60** 

 

1.3899 17.51** 

 

6.2374 393.25** 
Interaction 
(PMODEL* 
 CMODEL) 10 0.1969    0.85 

 

0.3908    0.98 

 

1.9166   24.17** 
Note:  * 0.1p < , ** 0.05p <  

 

 Table 7.15 provides more detailed information on the performance of different 

propensity score models and calibration methods.  It displays least square means of 

p.rmse, p.bias and p.se by effects of PMODEL and CMODEL included in ANOVA 

in the previous table.  Contrary to expectations, the table does not convey clear-cut 

messages about the superiority of particular propensity score models and calibration 

methods.  In general, propensity score Model 1 and 2 are preferable – although their 

statistical significance does not always hold, the direction is obvious.  Propensity 

score Model 1 includes four stratifying variables (age, educ, gender, race); and model 

2 includes all 30 covariates in Table 7.9.  This importance of Model 1 is logical 

because Web samples are drawn based on the stratification on those variables but 

using the extremely imbalanced distributions of the Harris Interactive respondents.  

Model 2 ought to perform well, since it uses the full matrix of covariates in the 
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adjustment.  There is no clear association between the AIC of the propensity models 

and their error properties.  The role of AIC in model building discussed earlier cannot 

be verified from this result.   

 

Table 7.15. Least Square Mean of Percent Root Mean Square Error 
Reduction, Percent Bias Reduction and Percent Standard Error 
Increase by Propensity Score Adjustment Models and Calibration 
Adjustment Models a 

   LS Mean   
Effect p.rmse  p.bias  p.se 
Propensity Score  
Model  
(PMODEL)  

 

 

 

 
      No  Adjustment (P0)       26.8% P1, P2      40.4% P1, P2, P4, P5        75.6% P1, P2, P3, P4, P5 
      Model 1 (P1)       46.7% P0      76.2% P0      117.6% P0, P5 
      Model 2 (P2)       47.0% P0      71.6% P0      120.6% P0, P5 
      Model 3 (P3)       41.9%      62.2%      113.3% P0 
      Model 4 (P4)       42.7%      67.0% P0      110.1% P0 
      Model 5 (P5)       43.8%      69.2% P0      104.3% P0 
Calibration Models 
(CMODEL)  

 
 

 
 

      No  Adjustment (C0)       31.8% C1, C2      41.8% C1, C2        58.9% C1, C2 
      Calibration 1 (C1)       44.8% C0      74.2% C0      133.4% C0 
      Calibration 2 (C2)       47.8% C0      77.4% C0      128.4% C0 

a. LS Means by interactions are excluded from the table, since there is little difference across    
       18 different combinations. 

       Note: Superscripts indicate statistically different means at 0.1p = . 
 

 Among the two calibration methods, the second one using estimated 

population general health status as well as known population demographic 

characteristics seems to benefit the error structure to a larger degree than using only 

known values.  One notable finding with calibration from the table above is that the 

Calibration 2 shows a larger decrease in bias and a smaller increase in standard error 

than Calibration 1, although not statistically significant.  This implies that a good 

calibration method may achieve bias reduction at a smaller level of variability 

increase. 
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7.3.5 Variance Estimation  
 

7.3.5.1 Variance Estimation for Propensity Score Adjustment 
 

There is no clear approach for deriving variance estimates when propensity 

score adjustment weights are applied.  One method that commercial statistical 

software, such as SAS, may use would be the following estimator: 

 ( ) ( )
( )( )

2

. . .

1 1

11
1 W W

W C C
W PSA W PSA W PSA

naive j j j jWW
c cj s j s

nv y f d y d y N
nn = =∈ ∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − −
⎜ ⎟− ⎢ ⎥
⎝ ⎠⎣ ⎦

∑ ∑ ∑ ∑ , (7.11) 

where .W PSA
jd  is the weight derived from propensity score adjustment in (6.2).  

However, this is a naïve approach, since the estimator does not account for the 

complexity of multiple weights in .W PSA W
j c jd f d= , where cf  is the PSA factor and W

jd  

is the base design weight for unit j.  If the weights reflect a nonresponse adjustment 

which has not beeen incorporated in this study, they will be even more complicated.  

Thus, naïvely applying (7.11) may give poor results.   

 Table 7.16 shows estimated and empirical standard errors for the estimators 

with propensity score adjustment but without calibration adjustment.  It allows a 

comparison between the se estimates from (7.11) (v.naive) and the simulation se from 

(7.8) (v.sim) by the ratio of the two.  The naïve estimator tends to overestimate the 

actual variability, although the degree of overestimation is not too extreme.  This 

tendency is worse for 2y , where the naïve se estimates are at least 12% larger than 

the actual se.   This echoes the finding in Valliant (2004) which showed an 

understatement of efficiency of employing the naïve estimator when calculating 

variances of estimates adjusted by multiple weights.  



 

 155 
 

Table 7.16. Estimated Standard Error and Simulation Standard Error of 
Propensity Score Adjusted Web Sample Estimates 

1y : HBP 2y : SMOKE 3y : ACT Propensity 
Score 
Model v.naive v.sim 

Ratio 
(naive/sim) v.naive v.sim 

Ratio 
(naive/sim) v.naive v.sim 

Ratio 
(naive/sim) 

   Model 1 0.0231 0.0247   93.8% 0.0264 0.0226 116.8% 0.0239 0.0211 113.1% 
   Model 2 0.0219 0.0215 101.9% 0.0262 0.0222 118.2% 0.0232 0.0225 103.5% 
   Model 3 0.0207 0.0206 100.1% 0.0262 0.0217 120.7% 0.0230 0.0211 109.0% 
   Model 4 0.0151 0.0152   99.3% 0.0176 0.0154 114.0% 0.0154 0.0163   94.7% 
   Model 5 0.0146 0.0140 104.6% 0.0166 0.0148 112.5% 0.0150 0.0147 102.2% 
 

7.3.5.2 Variance Estimation for Calibration Adjustment 
 

Two variance estimation approaches are examined for cases when the 

calibration adjustment is added to the propensity score adjustment.  The first follows 

the naïve approach in (7.11), where .W PSA
jd  is replaced with the calibration weight jw  

from Section 6.3, such that 

 ( ) ( )
( )( )

2

. 11
1 W W

W
W A

naive j j j jWW
j s j s

nv y f w y w y N
nn ∈ ∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − −
⎜ ⎟− ⎢ ⎥
⎝ ⎠⎣ ⎦

∑ ∑ .  (7.12) 

As mentioned above, this squared residual method is the same as what commercially 

available software packages typically utilize for variance estimation.  The second 

method which originates from Deville and Särndal (1992) uses the following variance 

estimator modified from the asymptotic variance estimator for the GREG for the 

population total, yt : 

 ( ) ( )( )( )ds y ij ij i i j j
s

v t w e w eπ= ∆∑∑ , (7.13) 

where i and j denote units in the sample; π π π∆ = −ij ij i j ; π i  and π j  are inclusion 

probabilities for unit i and j into the sample; π ij  is a joint inclusion probability of the 

two units; and ie  is the sample-based residual defined as ˆ
i i i wse y ′= − z B .  ˆ

wsB  is the 
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regression slope estimate computed as in (6.15) and (6.16).  Since we use Poisson 

sampling to draw Web samples, the variance estimator (7.13) becomes simplified as 

 ( ) ( )
( )

( ) ( )2

W
ds y i i i i j j

i ji s

v t w e w e w e
≠∈

= +∑ ∑ ,  (7.14) 

As we are estimating the population mean and the samples are drawn with 

replacement, (7.14) is changed to obtain 

 ( ) ( ) ( )
( )

2. 1
1 W

W
W A

ds j jW
j s

nv y f w e N
n ∈

⎡ ⎤= − ⎣ ⎦− ∑ .  (7.15) 
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Figure 7.7.  Standard Error of Adjusted Web Sample Estimates by Different 
Adjustment Method Combinations   

 
 
 Standard errors estimates using (7.12) and (7.15) are computed in simulations 

using v.naive and v.ds in newcal.fcn shown in Appendix 1.7.  The resultant 

statistics are compared to the simulation standard error for the estimators using both 

propensity score and calibration adjustment in Figure 7.7.  As shown in Valliant 
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(2004) and in the previous discussion, the naïve approach overestimates the 

variability of survey estimates, presenting the survey estimates as if they are far less 

efficient.  The estimator suggested by Deville and Särndal (1992) appears to estimate 

the actual variance reasonably well.  Although it tends to underestimate the 

variability, the degree of its underestimation is much smaller than the degree of the 

overestimation in the naïve approach.   

 The standard errors of adjusted Web sample estimates are plotted against the 

respective bias reduction in the estimated mean achieved in adjustments in Figure 7.8.  

Over the range of bias reductions shown, v.naive is always a substantial overestimate 

while v.ds is somewhat too small. 

  

 

Figure 7.8. Relationship between Standard Error and Percent Bias Reduction 
of Adjusted Web Sample Estimates 

 
 

 The respective coverage rates for 95% confidence intervals in the simulation 

when v.ds and v.naive are used are presented in Table 7.17.  It is striking that 

underestimation by v.ds leads to consistent undercoverage by its confidence intervals.  
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In contrast, the confidence intervals using v.naive have coverage rates that can be 

more or less than 95%.  The cases with the poorest coverage tend to be ones where 

the estimated mean is biased so that the confidence intervals are not properly 

centered.  For example, the standardized biases of the 3.1 and 3.2 estimates for HBP 

are about -9% from Table 7.11, and the coverage for v.ds are 75.2% and 74.4%, 

respectively.   

 
 

Table 7.17. Coverage Rates of 95% Confidence Interval by Standard Error 
Estimated with v.ds and v.naive 

1y : HBP  
2y : SMOKE  

3y : ACT Adjustment 
Combination v.ds v.naive  v.ds v.naive  v.ds v.naive 
     1.1 90.7% 95.6%  92.5% 99.5%  74.5% 91.7% 
     1.2 92.7% 98.4%  90.8% 99.5%  81.6% 95.9% 
     2.1 85.8% 92.2%  92.4% 99.4%  88.3% 97.3% 
     2.2 86.3% 94.0%  91.6% 99.4%  88.6% 97.8% 
     3.1 75.2% 84.7%  92.4% 99.5%  88.7% 97.3% 
     3.2 74.4% 86.9%  91.7% 99.4%  88.7% 97.9% 
     4.1 89.5% 94.8%  92.1% 99.6%  88.5% 92.0% 
     4.2 81.8% 91.5%   91.8%  99.3%    89.1% 93.8% 
     5.1 89.8% 95.3%  92.3% 99.6%  92.6% 97.2% 
     5.2 83.8% 92.4%  92.1% 99.3%  91.5% 97.8% 

 

 One may argue that it is safe to use v.naive for calculating variance when 

calibration weights are applied, because it is conservative in stating the estimation 

efficiency.  However, the degree of variance overestimation tends to be too large, 

especially for 2y .  Confidence intervals obtained by standard errors using v.naive 

cover the population value over 99% of the time in Table 7.17.  Recall that the bias 

reduction is achieved at the greatest degree for adjustments applied to 2y .  For this 

variable, the coverage rates of v.ds are not as poor as for other variables.  Therefore, it 
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seems sensible to examine the relationship between the bias reductions and the 

confidence interval coverage rates.   

 

 

Figure 7.9. Relationship between 95% Confidence Interval Coverage and 
Percent Bias Reduction of Adjusted Web Sample Estimates 

 

 The relationship between the bias reductions and the confidence interval 

coverage rates is depicted in Figure 7.9.  Although not remarkable, there is a 

noticeable relationship between the degree of bias reduction and that of confidence 

interval coverage.  When the adjustment is poor in reducing the bias, the coverage 

rates of confidence intervals computed with variances from both (7.11) and (7.14) are 

far lower than the nominal rate, 95%.  In contrast, the coverage rates tend to converge 

to 95%, as the biases are reduced to a larger degree.  V.naive is not as good as v.ds 

where more than 85% biases are reduced. 

7.3.6 Discussion 
 
 This case study examines the combination of propensity score adjustment and 

calibration adjustment for volunteer panel Web survey estimates.  The results from 
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simulation show that using any of the two adjustments improves the accuracy of the 

sample estimates.  The interaction of the two also has a significant effect on bias and 

rmse reduction.  This confirms the effectiveness of each adjustment separately and 

the combined adjustment.  At the same time, these adjustments increase the standard 

errors of estimates significantly.  This reaffirms the trade-off between the bias 

reduction and the variability increase.  Nonetheless, the adjustments decrease the 

magnitude of overall error substantially.   

 The examination of the separate propensity score models does not reveal clear 

implications.  Models that include variables used in the sample selection and all 

auxiliary variables perform better.  However, this does not bring in substantive 

understandings about the propensity score modeling strategies.  As recommended by 

Rubin and Thomas (1996), it may be a sound approach to include all available 

covariates even if some are only remotely related to the study variables.  The 

simulation on calibration adjustment suggests benefits from the inclusion of 

substantive variables whose population figures are estimated from another larger and 

more reliable survey.  When the general health item is added in the calibration, the 

percent bias reduction and rmse reductions are larger but the percent se is smaller 

than when excluded.  This item is asked in large-scale national health surveys, such as 

National Health Interview Survey, from which reliable population estimates are 

available.  Therefore, the utilization of more substantive covariates is practical and 

effective in calibration adjustment.   

 The variance estimation methods tested in this study, unfortunately, do not 

provide conclusive guidelines.  The naïve variance estimator that uses the multiply 
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adjusted weight as a simple single weight produces highly inflated figures.  The 

estimator suggested by Deville and Särndal is a better approximation but tends to be 

too small.  However, confidence intervals based on Deville and Särndal’s standard 

errors cover the population values at lower rates than the targeted rate.  This will 

deceptively portray the estimates as if they are more efficient than they actually are.  

The naïve approach, on one hand, can be better for some estimates since it is 

conservative.  On the other hand, confidence intervals based on the naïve estimators 

can cover the population value close to 100% of the time, when the nominal rate is 

95%.  On a positive note, when the applied adjustment results in larger bias reduction, 

the Deville-Särndal estimator provides near nominal coverage.  Replication is another 

variance estimation option that has the potential to be quite effective when 

complicated weighting methods are used like propensity score and calibration 

adjustment.  Variations of the jackknife or bootstrap could be good choices for future 

investigation. 
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Chapter 8: Conclusion 
  

With the advance in communication technology and the accompanying 

societal and cultural changes, Web surveys are here to stay.  This research is carried 

out not to assert the scientific significance of Web surveys or to advocate the 

embracing of Web surveys, but to supplement what is lacking in current Web survey 

practice.  Web surveys are popular but without any proven methodological value.  In 

order to make potentially biased Web survey estimates usable, statistical adjustments 

may be employed in the estimation process.  However, traditional adjustment 

techniques are found to be limited in compensating for the biases in Web survey 

estimates.   

Based on that finding, this study attempts to adopt existing adjustment 

methods from the causal inference and survey statistics literature to volunteer panel 

Web survey data.  First, protocols for recruiting volunteers for Web surveys are not 

guaranteed to produce random samples.  This is viewed as a selection bias in this 

study.  Propensity score adjustment in causal inference using observational data is a 

method that can remove or reduce the selection bias.  We applied this to Web survey 

settings to derive an adjustment weight for selection bias.  A second calibration 

adjustment is made to decrease the bias arising from the differences between the 

adjusted Web sample and the population.  The study provides a mathematical 

presentation of processes in these adjustments which are absent in the existing 

research. 



 

 163 
 

The performance of the adjustments is diagnosed in simulations.  The two 

case studies carried out in this research convey the same clear implications about the 

adjustments: the propensity score adjustment and the calibration adjustment decrease 

bias and root mean square error in volunteer Web panel survey estimates; however, 

these reductions are realized with an increase in variance of estimates.  It is also 

found that the error reduction becomes larger when the propensity score adjustment is 

used in conjunction with the calibration adjustment.  The contention that 

nondemographic covariates are needed in propensity score models made by some 

survey organizations is not supported.  The best method of covariate selection for 

propensity modeling appears to be the inclusion of all available variables in the 

adjustment.  For calibration adjustment, utilization of substantive variables whose 

population estimates are obtainable from larger surveys does improve the quality of 

the adjustments.   

The application scope of these adjustments may exceed volunteer panel Web 

surveys.  When the quality of data collection is doubtful, one may adopt the 

adjustments examined in this research to make a better use out of the data.  Imagine 

that one has a survey data set but fear that respondents’ self-selection may have 

introduced bias but that there is a more reliable survey which has variables in 

common with one’s survey.  Propensity score adjustment can take advantage of the 

power of those overlapping covariates between the two surveys.  This adjustment 

may be tuned to a finer degree by calibration using a smaller set of variables whose 

population figures are known or estimable from larger surveys.  The survey estimates 

may become more usable after these adjustments. 
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When applying these adjustments to survey data, one should bear in mind the 

following.  First, the adjustments are post-hoc in their nature.  If feasible given the 

survey budget, it is important is to improve the survey procedures to collect better 

data.  It would be unwise to intentionally collect suboptimal data, assuming that the 

adjustments will remove all biases.  While the biases are reduced, they are not 

eliminated.  It may not work under all circumstances, and as shown bias reduction 

depends on the model used.  Second, when the covariates used in adjustments have 

missing data, propensity score adjustment becomes more difficult, because propensity 

scores cannot be assigned to the units in the merged data set with missing covariate 

information.  This research uses hot-deck imputation to avoid this problem.  One may 

consider following a recommendation of D’Agostino and Rubin (2000) to condition 

the propensity score on both observed values of covariates and the observed missing-

data indicators.  Third, this research uses the main effects of covariates in propensity 

models.  One of the advantages of using propensity score adjustment weighting over 

the traditional weighting is the flexibility of the model formation.  Propensity model 

refinement including higher order interactions among the covariates and using more 

covariates may provide a clearer insight about the variable selection.  Fourth, the 

effectiveness of nondemographic covariates may not have been confirmed in this 

study, because the Web samples are drawn based on the distribution of demographic 

variables and these variables are also included in the adjustment.  One may consider 

another way of drawing Web samples or conducting a series of Web surveys on 

substantive variables whose true values are either known or obtainable.  Fifth, the 

sample size of the reference survey matters.  When the size is small, the 
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subclassification based on propensity scores may not be possible.  Instead of 

conducting a small reference survey for each Web survey, one possibility is to adopt a 

large-scale national survey as a reference survey.  Lastly, the two variance estimation 

methods examined in this research did not perform well enough to be recommended 

for general use.  Alternative variance estimators are needed as the final weights from 

the adjustments account for multiple steps of adjustment.  Variance estimation 

methods with replication are alternatives.  These remarks are hoped to provide 

directions for future research.  
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Appendices 
1.  R© Code Used in the Study 
 
 
1.1 psa.fcn 

 
function (dframe, form, pfit, prnk, qbin, bin, trmt)  
    #   Propensity Score Adjustment Weight Calculation 
    #   - Calcultates adjustment weights and throws 
out  

 the reference sample 
    #  
    #   dframe: data frame 
    #   form: propesnity score model which needs to be  

defined beforehand 
    #   pfit: fitted propensity scores 
    #   prnk: propensity score rank 
    #   qbin: propensity score bin number factor 
created  

by PSdefine 
#   bins: number of bins to be formed  
#   trmt: treatment/control group variable 

 
{ 

if(missing(dframe)||!inherits(dframe,"data.fram
e")) 

stop("First argument to PSdefine must be a 
Data Frame name.") 

if(missing(form)||class(form)!="formula") 
stop("Second argument to PSdefine must be 
a formula.") 

      trtm <- deparse(form[[2]]) 
 
      if(!is.element(trtm,dimnames(dframe)[[2]])) 

stop("Response variable in the PSdefine 
formula must be an existing treatment 
factor.") 

      dframe[,trtm] <- as.factor(dframe[,trtm]) 
 

last.glm <- glm(form, family = binomial (link =  
 logit), data = dframe,        

   na.action = na.omit) 
 
 
      df3 <- as.data.frame(fitted.values(last.glm)) 
      pfit <- deparse(substitute(pfit)) 
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      dimnames(df3)[[2]] <- "pfit" 
      prnk <- deparse(substitute(prnk)) 
      df3[,"prnk"] <- rank(df3[,"pfit"], na.last = T) 
      qbin <- deparse(substitute(qbin)) 

     df3[,"qbin"] <-  
factor(1+floor((bins*df3[,"prnk"

]) 
/(1+length(df3[,"prnk"])))) 

 
      newdframe <- merge(dframe, df3, 
by.x="row.names",  

by.y="row.names", all.x=T) 
 
  if (any(ftable(newframe 
   [,c("depend","qbin")])[]==0)==T)  
     (newframe.c<-1) 
  else {newframe.c<-0} 
 
  if ((newframe.c >= 1)  
  (skip<-TRUE) 
 
      if (!skip) 
  { 
  nwc <- table(newdframe[newdframe[,var]==1, 
bins])  
      nrc <- table(newdframe[newdframe[,var]==0, 
bins]) 
      nw <- length(newdframe[newdframe[,var]==1, 
bins]) 
      nr <- length(newdframe[newdframe[,var]==0, 
bins]) 
 
      wgt <- (nrc*nw)/(nwc*nr) 
      wgt <- as.vector(wgt[newdframe[,bins]]) 
      allwgt <- data.matrix(cbind(newdframe, wgt)) 
 
        pwgt <- allwgt[,"basewgt"]*allwgt[,"wgt"] 
      pwgt <- as.vector(pwgt) 
      allwgt <- data.matrix(cbind(allwgt, pwgt)) 
 
      PSdframe <- 
data.frame(allwgt[allwgt[,var]==2,])  
    #bc data.matrix makes trmt+1 
  }    
} 
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1.2 cal.fcn 
 
function (pop, sam, sampx, knownx, estimx, L, U,  
  
   conv.crit=0.01, max.steps=10., min.B=5) 
{ 
 

# Calculation - GLS wgts using restricted linear  
distance function 

# 
# pop: population 
# sam: sample 
# X: matrix of auxiliary vars; n x p 
# X.pop: matrix of pop controls; p x 1 
# X.hat: vector of HY estimates of X.pop 
# a: vector of base wgts (1/pi); n x 1 
# c: vector of model vars (usually set to 1); p x 1 
# L: lower bound on wgt ratio w/a 
# U: upper bound on wgt ratio w/a 
 

 X <- sampx(sam) 
 X.pop <- knownx(pop) 
 X.hat <- estimx(sam, "pwgt") 
 a <- as.matrix(sam[,"pwgt"]) 
 p <- ncol(X) 
 c.vec <- rep(1., length(X[,1.])) 
     
     
# convergence check on lambda 
        lambda.old <- # 
        rep(0.,p) 
 
# iteration 
        converged <- function(old, new, conv.crit) 
        { 
            check <- F 
            D <- max(abs((old - new)/old)) 
            if (D < conv.crit) { 
              check <- T 
            } 
            check 

} 
        step.num <- 0. 
 
 
# compute weights 
repeat{ 
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    step.num <- step.num + 1 
    max.steps.reached <- step.num > max.steps 
    lambda.x <- lambda.old %*% t(X)/c.vec 
    sA <- (lambda.x < (L - 1.)) 
    sB <- (lambda.x >= (L - 1.)) & (lambda.x <= (U - 
1.)) 
    # 
    sC <- (lambda.x > (U - 1.)) 
    
    if(sum(sB)< min.B) 
         
         stop("Set sB too small, no. cases = ", 
sum(sB),  

"No. of iteration steps used: ",  
step.num, "where:  ", sam, sampx, 

"\n") 
         
 
    phi.sA <- phi.sB <- phi.sC <- 0. 
    
    lambda.xsB <- lambda.old %*% t(X[sB, ])/c.vec[sB] 
 
    Z.sB <- (a/c.vec)[sB] * X[sB, ] 
 
    phi.prime <- t(Z.sB) %*% X[sB, ] 
 
    if(sum(sA) != 0.) { 
        if(length(a[sA])==1.) 
            phi.sA <- (L - 1.) * a[sA] * X[sA, ] 
        else phi.sA <- (L - 1.) * a[sA] %*% X[sA,] 
    } 
 
    phi.sB <- lambda.old %*% t(Z.sB) %*% X[sB, ] 
    if(sum(sC) != 0.) { 
        if(length(a[sC])==1.) 
            phi.sC <- (U - 1.) * a[sC] * X[sC, ] 
        else phi.sC <- (U - 1.) * a[sC] %*% X[sC,] 
    } 
 
    phi.sA <- as.vector(phi.sA) 
    phi.sB <- as.vector(phi.sB) 
    phi.sC <- as.vector(phi.sC) 
 
    phi.s1 <- phi.sA + phi.sB + phi.sC 
    phi.s2 <- as.matrix(phi.s1) 
    phi.s3 <- t(phi.s2) 
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    lambda.new <- lambda.old - ginv(phi.prime) %*%  

(t(phi.s3) +X.hat - X.pop) 
    if(converged(lambda.old, lambda.new, conv.crit) |  

max.steps.reached) { 
        cat("No. of iteration steps used:", step.num, 
   "\n") 
        break 
    } 
 
    lambda.old <- as.vector(lambda.new) 
} 
 
        g.fcn <- rep(0., length(X[, 1.])) 
        lambda.x <- as.vector(lambda.new) %*% 
t(X)/c.vec 
 
        sA <- (lambda.x < (L - 1.)) 
        sB <- (lambda.x >= (L - 1.)) & (lambda.x <= 
(U- 
    1.)) 
        sC <- (lambda.x > (U - 1.)) 
 
        g.fcn[sA] <- L 
        g.fcn[sB] <- 1. + lambda.x[sB] 
        g.fcn[sC] <- U 
 
        calwgt <- a * g.fcn 
        cwgt <- as.vector(calwgt) 
        calwgt <- data.matrix(cbind(sam, cwgt)) 
         
        caldframe <- data.frame(calwgt) 
 
         
}  
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1.3 ref.sam 
 
function (pop, n)  
{ 

#   Select an srs as a reference sample 
#   pop: population 
#   n: sample size 

 
    N <- nrow(pop) 

   sam <- sample(1:N, n, replace = F) 
   dat <- pop[sam, ] 
   basewgt<-dim(pop)[[1]]/dim(dat)[[1]]  
   dat<-cbind(dat, basewgt) 

} 
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1.4 pois.sam 
 
function(subpop, pop, ph, str, n) 
{ 

#   Select stratified Poisson sample from pop of 
size  

Nh 
#   subpop: subpopulation, e.g., web population 
      #   pop: population, e.g., Entire GSS 
population  
#   ph: vector of proportions in strata that define  

rates of web usage 
#   str: column of pop for stratum (can be name or  

number) 
#   n: desired expected total sample size 

 
        h <- subpop[,str] 
        N <- nrow(subpop) 
        Nh <- table(subpop[, str]) 
        H <- length(Nh) 
        u <- runif(N, min=0, max=1) 
 
        if (any(is.na(h))){ 

stop("stratum vat str missing for some  
cases. Processing stopped.\n") 

        } 
        if (sum(ph)!=1){ 
         stop("sum(ph) != 1. Processing 
stopped.\n") 
        } 
 
        if(H != length(ph)) { 

stop("\H != length(ph). Processing 
stopped.\n") 

        } 
 
        adjh <- n/ sum(Nh * ph) 
        ph <- ph*adjh 
 
        ph.pop <-ph[h] 
 
        sam <- (u < ph.pop) 
        sam <- subpop[sam,] 
 
        basewgt<-dim(pop)[[1]]/dim(sam)[[1]]  
 
        dat <- cbind(sam, basewgt) 
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}  
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1.5 psa.sim 
 
function(pop, wpop, nr, nw, y, bw, pw,  
         form1, form2, trmt, bin, 
         seed, NoSams) 
{ 
 
################################################# 
# Propensity Score Adjustment Only 
################################################# 
# Estimation for "y" 
# pop:  population data set 
# wpop: web subpopulation 
# nr:   reference sample size 
# nw:   web sample size 
# y:    variable of interest, e.g.,"vote" 
# bw:   base weight 
# pw:   PSA weight 
# form1: PSA model 1 defined previously 
# form2: PSA model 2 defined previously 
# trmt: treatment variable for PSA, "depend" 
# bin:  variable name for bins in PSA    
# NoSams: Number of Simluated Samples 
################################################# 
 
 
set.seed(seed) 
out.est <- array (0, dim=c(2,6,NoSams)) 
        cat ("Begin", date(), "\n") 
 
for(s in 1:NoSams)  
 { 
 skip <- FALSE 
 #skip_ct <- 0 
 
 if (s%%1==0) 
        cat("s=", s, date(), "\n") 
 
################################################# 
# sample draw 
 
        ref<-ref.sam(pop, nr) 
        strat<-pois.sam(wpop, pop, ph = 
                        c(0.11441573, 0.06110840,  
       0.10417682, 
0.03347960,  
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      0.12099789, 0.02267187,  
       0.09393792, 
0.01227044,  
      0.07346010, 0.02754754,  
                         0.06663416, 0.02007151,  
       0.11173411, 
0.01649602,  
      0.10498944, 0.01600845), 
                         "str", nw) 
        harris<-pois.sam(wpop, pop, ph = 
                        c(0.0203, 0.0164, 0.0085,  
      0.0060, 0.0245, 0.0048,  
       0.0170, 0.0024, 
0.1328,         0.1337, 
0.0758, 0.0909,           
 0.1558, 0.0458, 0.2082, 
      0.0571), "str", nw)              
 
  
 # basic estimates 
 
        y.pop <- est(pop, y) 
        y.pop <- rbind(y.pop, y.pop, y.pop) 
        colnames(y.pop) <- "y.pop" 
 
        y.wpop <- est(wpop, y) 
        y.wpop <- rbind(y.wpop, y.wpop, y.wpop) 
        colnames(y.wpop) <- "y.wpop" 
 
        bp.wpop <- y.pop-y.wpop 
        colnames(bp.wpop) <- "bp.wpop" 
 
        y.R <- w.est(ref, y, bw) 
        y.R <- rbind(y.R, y.R, y.R) 
        colnames(y.R) <- "y.R" 
 
        y.U.t <- w.est(strat, y, bw) 
        y.U.h <- w.est(harris, y, bw) 
        y.U <- rbind(y.U.t, y.U.h) 
        colnames(y.U) <- "y.U" 
 
 
################################################## 
# merge reference and web samples  
 
 
        rt<-rbind(ref, strat) 
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        rh<-rbind(ref, harris)           
    
 
################################################## 
# propensity score adjustment 
 
 psaform1.t <- psa.fcn(rt, form1, pfit, prnk, qbin,  
      bin, trmt)    
 psaform1.h <- psa.fcn(rh, form1, pfit, prnk, qbin, 
       bin, trmt)    
 psaform2.t <- psa.fcn(rt, form2, pfit, prnk, qbin, 
       bin, trmt)    
 psaform2.h <- psa.fcn(rh, form2, pfit, prnk, qbin, 
       bin, trmt)    
 
   
   # adjusted estimates 
 
        y.pform1.t <- w.est(psaform1.t, y, pw) 
        y.pform1.h <- w.est(psaform1.h, y, pw) 
  y.pform1 <- rbind(y.pform1.t, y.pform1.h)  
        colnames(y.pform1) <- "y.pform1 " 
 
        y.pfporm2.t <- w.est(psa.form2.t, y, pw) 
        y.pform2.h <- w.est(psa.form2.h, y, pw) 
        y.pform2 <- rbind(y.pform2.t, y.pform2. h)  
        colnames(y.pform2) <- "y.pform2" 
 
######################################################
### 
#  bind all estimates into y.est  
 
        y.est <- cbind (y.pop,  
                        y.wpop, 
                        y.R,  
                        y.U,  
                        y.pform1, 
                        y.pform2) 
   
        dimnames(y.est)[[1]][1]<-"strat" 
        dimnames(y.est)[[1]][2]<-"harris" 
 
out.est[ , , s] <- y.est 
dimnames(out.est) <- list(dimnames(y.est)[[1]], 
dimnames(y.est)[[2]], NULL) 
 
 }   # end of s loop 
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cat("end", date(),"\n")  
list("estimates"=out.est) 
       
} 



 

 178 
 

1.6 cal.sim 
 

function(pop, wpop, nr, nw, y, bw, pw, cw,  
         form1, form2, 
         samp1, known1, estim1, samp2, known2, estim2,  
         trmt, bin, 
         seed, NoSams) 
{ 
 
################################################# 
# Estimation for "y" 
# pop:  population data set 
# wpop: web subpopulation 
# nr:   reference sample size 
# nw:   web sample size 
# y:    variable of interest, e.g.,"vote" 
# bw:   base weight 
# pw:   PSA weight 
# cw:   calibration weight 
# form: PSA forms defined previously 
# samp1: function for obtaining only calibration  
   covariate matrix from Sample for 
calibration 1 
# known1: function for obtaining population figures of 
   calibration covariates for calibration 1 
# estim1: function for ontaining sample estimates of 
   calibration covariates for calibration 1 
# samp2: function for obtaining only calibration  
   covariate matrix from Sample for 
calibration 2 
# known2: function for obtaining population figures of 
   calibration covariates for calibration 2 
# estim2: function for ontaining sample estimates of 
   calibration covariates for calibration 2 
# trmt: treatment variable for PSA, "depend" 
# bin:  variable name for bins in PSA  
# NoSams: Number of Simluated Samples   
################################################# 
 
set.seed(seed) 
out.est <- array (0, dim=c(2,14,NoSams)) 
 
        cat ("Begin", date(), "\n") 
 
for(s in 1:NoSams)  
 { 
 skip<-FALSE 
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 if (s%%1==0) 
         cat("s=", s, date(), "\n") 
 
################################################# 
# sample draw 
 
        ref<-ref.sam(pop, nr) 
                strat<-pois.sam(wpop, pop, ph = 
                        c(0.11441573, 0.06110840,  
       0.10417682, 
0.03347960,  
      0.12099789, 0.02267187,  
       0.09393792, 
0.01227044,  
      0.07346010, 0.02754754,  
                         0.06663416, 0.02007151,  
       0.11173411, 
0.01649602,  
      0.10498944, 0.01600845), 
                         "str", nw) 
        harris<-pois.sam(wpop, pop, ph = 
                        c(0.0203, 0.0164, 0.0085,  
      0.0060, 0.0245, 0.0048,  
       0.0170, 0.0024, 
0.1328,         0.1337, 
0.0758, 0.0909,           
 0.1558, 0.0458, 0.2082, 
      0.0571), "str", nw)              
 
    # basic estimates 
 
        y.pop <- est(pop, y) 
        y.pop <- rbind(y.pop, y.pop, y.pop) 
        colnames(y.pop) <- "y.pop" 
 
        y.wpop <- est(wpop, y) 
        y.wpop <- rbind(y.wpop, y.wpop, y.wpop) 
        colnames(y.wpop) <- "y.wpop" 
 
        y.R.n <- w.est(ref, y, bw) 
        y.R.n <- rbind(y.R.n, y.R.n, y.R.n) 
        colnames(y.R.n) <- "y.R.n" 
    
        y.U.n.t <- w.est(strat, y, bw) 
        y.U.n.h <- w.est(harris, y, bw) 
        y.U.n <- rbind(y.U.n.t, y.U.n.h) 
        colnames(y.U.n) <- "y.U.n" 
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################################################## 
# merge reference and web sample  
 
        rt<-rbind(ref, strat) 
        rh<-rbind(ref, harris)           
 
    
 
################################################## 
# propensity score adjustment only 
 
 
 psaform1.t <- psa.fcn(rt, form1, pfit, prnk, qbin,  
     bin, trmt)    
 psaform1.h <- psa.fcn(rh, form1, pfit, prnk, qbin, 
       bin, trmt)    
 
 psaform2.t <- psa.fcn(rt, form2, pfit, prnk, qbin, 
       bin, trmt)    
 psaform2.h <- psa.fcn(rh, form2, pfit, prnk, qbin, 
       bin, trmt)    
 
 
   
   # adjusted estimates 
 
        y.pform1.n.t <- w.est(psaform1.t, y, pw) 
        y.pform1.n.h <- w.est(psaform1.h, y, pw) 
  y.p1.n <- rbind(y.pform1.n.t, y.pform1.n.h)  
        colnames(y.p1.n) <- "y.p1.n" 
 
        y.pform2.n.t <- w.est(psa.form2.t, y, pw) 
        y.pform2.n.h <- w.est(psa.form2.h, y, pw) 
        y.p2.n <- rbind(y.pform2.n.t, y.pform2.n.h)  
        colnames(y.p2.n) <- "y.p2.n" 
 
 
 
#################################################### 
# calibration adjustment 
 
         
        psaform1.cal1.t <- cal.fcn(pop, psaform1.t,  
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      samp1, known1, estim1, L, 
U) 
  psaform1.cal1.h <- cal.fcn(pop, psaform1.h,  
      samp1, known1, estim1, L, 
U) 
 
      psaform1.cal2.t <- cal.fcn(pop, psaform1.t,   
      samp2, known2, estim2, L, 
U) 
  psaform1.cal2.h <- cal.fcn(pop, psaform1.h,  
      samp2, known2, estim2, L, 
U) 
       psaform2.cal1.t <- cal.fcn(pop, psaform2.t,  
      samp1, known1, estim1, L, 
U) 
  psaform2.cal1.h <- cal.fcn(pop, psaform2.h,  
      samp1, known1, estim1, L, 
U) 
 
    psaform2.cal2.t <- cal.fcn(pop, psaform2.t,  
      samp2, known2, estim2, L, 
U) 
  psaform2.cal2.h <- cal.fcn(pop, psaform2.h,  
      samp2, known2, estim2, L, 
U) 
 
    psano.cal1.t <- cal.fcn(pop, strat, samp1,  
      known1, estim1, L, U) 
   psano.cal1.h <- cal.fcn(pop, harris, samp1,  
      known1, estim1, L, U) 
 
  psano.cal2.t <- cal.fcn(pop, strat, samp2,  
       known2, estim2, L, U) 
  psano.cal2.h <- cal.fcn(pop, harris, samp2,  
       known2, estim2, L, U) 
 
        psano.cal1.R <- cal.fcn(pop, ref, samp1, 
known1,  
      estim1, L, U) 
        psano.cal2.R <- cal.fcn(pop, ref, samp2, 
known2,  
      estim2, L, U) 
 
 
   # adjusted estimates 
 
        y.p1.c1.t <- w.est(psaform1.cal1.t, y, cw) 
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        y.p1.c1.h <- w.est(psaform1.cal1.h, y, cw) 
 
        y.p1.c2.t <- w.est(psaform1.cal2.t, y, cw) 
        y.p1.c2.h <- w.est(psaform1.cal2.h, y, cw) 
 
        y.p2.c1.t <- w.est(psaform2.cal1.t, y, cw) 
        y.p2.c1.h <- w.est(psaform2.cal1.h, y, cw) 
 
        y.p2.c2.t <- w.est(psaform2.cal2.t, y, cw) 
        y.p2.c2.h <- w.est(psaform2.cal2.h, y, cw) 
 
        y.n.c1.t <- w.est(psano.cal1.t, y, cw) 
        y.n.c1.h <- w.est(psano.cal1.h, y, cw) 
 
        y.n.c2.t <- w.est(psano.cal2.t, y, cw) 
        y.n.c2.h <- w.est(psano.cal2.h, y, cw) 
 
        y.R.c1 <- w.est(psano.cal2.R, y, cw) 
        y.R.c2 <- w.est(psano.cal2.R, y, cw) 
 
        y.p1.c1 <- rbind(y.p1.c1.t, y.p1.c1.h) 
        y.p1.c2 <- rbind(y.p1.c2.t, y.p1.c2.h) 
 
        y.p2.c1 <- rbind(y.p2.c1.t, y.p2.c1.h) 
        y.p2.c2 <- rbind(y.p2.c2.t, y.p2.c2.h) 
 
       y.U.c1 <- rbind(y.n.c1.t, y.n.c1.h) 
      y.U.c2 <- rbind(y.n.c2.t, y.n.c2.h) 
 
        y.R.c1 <- rbind(y.R.c1, y.R.c1) 
        y.R.c2 <- rbind(y.R.c2, y.R.c2) 
 
 
        colnames(y.p1.c1) <- "y.p1.c1" 
        colnames(y.p1.c2) <- "y.p1.c2" 
 
        colnames(y.p2.c1) <- "y.p2.c1" 
        colnames(y.p2.c2) <- "y.p2.c2" 
  
      colnames(y.U.c1) <- "y.U.c1" 
        colnames(y.U.c2) <- "y.U.c2" 
 
        colnames(y.R.c1) <- "y.R.c1" 
        colnames(y.R.c2) <- "y.R.c2" 
 
 



 

 183 
 

######################################################
### 
#  bind all estimates into y.est  
 
 
        y.est <- cbind (y.pop,  
                        y.wpop, 
                        y.R.n, 
                        y.R.c1, 
                        y.R.c2, 
                        y.U.n,  
                        y.U.c1,  
                        y.U.c2,  
                        y.p1.n,  
                        y.p1.c1, 
                        y.p1.c2, 
                        y.p2.n,  
                        y.p2.c1, 
                        y.p2.c2) 
 
 
        dimnames(y.est)[[1]][1]<-"strat" 
        dimnames(y.est)[[1]][2]<-"harris" 
 
 
out.est[ , , s] <- y.est 
 
dimnames(out.est) <- list(dimnames(y.est)[[1]], 
dimnames(y.est)[[2]], NULL) 
 
 
  }   # end of s loop 
 
  cat("end", date(),"\n")  
  list("estimates"=out.est) 
 
} 
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1.7 newcal.fcn 
 
function (pop, sam, sampx, knownx, estimx, L, U,  
    conv.crit, max.steps, min.B, y) 
{ 
#################################################### 
# Calibration and Variance estimation 
#################################################### 
# pop: population 
# sam: sample 
# X: matrix of auxiliary vars; n x p 
# X.pop: matrix of pop controls; p x 1 
# X.hat: vector of HY estimates of X.pop 
# a: vector of base wgts (1/pi); n x 1 
# c: vector of model vars (usually set to 1); p x 1 
# L: lower bound on wgt ratio w/a 
# U: upper bound on wgt ratio w/a 
# conv.crit: convergence criterion 
# max.steps: maximum number of calibration iteration 
# y: variable of interest, e.g. “HBP” 
#################################################### 
 
    X <- sampx(sam) 
    X.pop <- knownx(pop) 
    X.hat <- estimx(sam, "pwgt") 
    a <- as.matrix(sam[,"pwgt"]) 
    p <- ncol(X) 
    c.vec <- rep(1., length(X[,1.])) 
     
# convergence check on lambda 
 lambda.old <- # 
 rep(0.,p) 
 
# iteration 
 converged <- function(old, new, conv.crit) 
 { 
     check <- F 
     D <- max(abs((old - new)/old)) 
     if (D < conv.crit) { 
             check <- T 
     } 
     check 
 } 
 step.num <- 0. 
 
 
# compute weights 
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repeat{ 
    step.num <- step.num + 1 
    max.steps.reached <- step.num > max.steps 
    lambda.x <- lambda.old %*% t(X)/c.vec 
 
    sA <- (lambda.x < (L - 1.)) 
    sB <- (lambda.x >= (L - 1.)) & (lambda.x <= (U - 
1.)) 
    # 
    sC <- (lambda.x > (U - 1.)) 
 
    if(sum(sB)< min.B) 
   
  stop("Set sB too small, no. cases = ", sum(sB),  
   " No. of iteration steps used: ", 
step.num,  
   "where:  ", sam, sampx, "\n") 
         
    phi.sA <- phi.sB <- phi.sC <- 0. 
  
    lambda.xsB <- lambda.old %*% t(X[sB, ])/c.vec[sB] 
 
    Z.sB <- (a/c.vec)[sB] * X[sB, ] 
 
    phi.prime <- t(Z.sB) %*% X[sB, ] 
   
    if(sum(sA) != 0.) { 
        if(length(a[sA])==1.) 
            phi.sA <- (L - 1.) * a[sA] * X[sA, ] 
        else phi.sA <- (L - 1.) * a[sA] %*% X[sA,] 
    } 
 
    phi.sB <- lambda.old %*% t(Z.sB) %*% X[sB, ] 
    if(sum(sC) != 0.) { 
        if(length(a[sC])==1.) 
            phi.sC <- (U - 1.) * a[sC] * X[sC, ] 
        else phi.sC <- (U - 1.) * a[sC] %*% X[sC,] 
    } 
 
    phi.sA <- as.vector(phi.sA) 
    phi.sB <- as.vector(phi.sB) 
    phi.sC <- as.vector(phi.sC) 
    phi.s1 <- phi.sA + phi.sB + phi.sC 
    phi.s2 <- as.matrix(phi.s1) 
    phi.s3 <- t(phi.s2) 
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    lambda.new <- lambda.old - ginv(phi.prime) %*%  
    (t(phi.s3) +X.hat - X.pop) 
 
    if(converged(lambda.old, lambda.new, conv.crit) |  
  max.steps.reached) { 
        cat("No. of iteration steps used:", step.num, 
   "\n") 
        break 
    } 
    lambda.old <- as.vector(lambda.new) 
} 
 
 cat("Max relative change in lambda at last step: ",# 
 max(abs((lambda.old - lambda.new)/lambda.old)), 
"\n") 
 g.fcn <- rep(0., length(X[, 1.])) 
 lambda.x <- as.vector(lambda.new) %*% t(X)/c.vec 
 
 sA <- (lambda.x < (L - 1.)) 
 sB <- (lambda.x >= (L - 1.)) & (lambda.x <= (U-1.)) 
 sC <- (lambda.x > (U - 1.)) 
 
 g.fcn[sA] <- L 
 g.fcn[sB] <- 1. + lambda.x[sB] 
 g.fcn[sC] <- U 
 
 calwgt <- a * g.fcn 
 
 cwgt <- as.vector(calwgt) 
 calwgt <- data.matrix(cbind(sam, cwgt)) 
 calwgt <- data.frame(calwgt) 
 
################################################## 
# Variance estimation 
################################################## 
 
 # Deville-Sarndal variance 
 
 Y <- as.matrix(sam[, y]) 
 sampsize <- dim(sam)[[1]] 
 popsize <- dim(pop)[[1]] 
 
 A <- t(X*cwgt) %*% X  
 B <- ginv(A) %*% t(X*cwgt) %*% Y 
 e <- Y - X %*% B 
 nwgt <- cwgt/sum(cwgt) 
 



 

 187 
 

 v.ds <- (1-sampsize/popsize)*(sampsize/(sampsize- 
   1))*sum((nwgt*e)^2) 
 v.ds <- rbind(v.ds.y1, v.ds.y2, v.ds.y3) 
 
 
 
 # Naive variance 
 
 m.y <- mean (nwgt*Y) 
 
 v.naive <- (1-sampsize/popsize)*(sampsize/(sampsize- 
    1))*sum((nwgt*Y-m.y)^2) 
 
 newcaldframe<- list("calwgt"=calwgt, "v.ds"=v.ds,  
    "v.naive"=v.naive) 
  
} 
 
 
 
 
  

 



 

 188 
 

2. GSS Propensity Score Model Specification in R© 
 
2.1 blksy : Warm Feelings towards Blacks 
 
D1 
depend ~  age+educ+newsize+hhldsize+income+ 
  as.factor(race)+as.factor(gender)+ 
  as.factor(married)+as.factor(region)+  
D2 
depend ~  age+educ+as.factor(race)+as.factor(gender)+ 
  as.factor(region) 
D3 
depend ~  newsize+hhldsize+income+as.factor(married) 
 
A1  
depend ~  age+educ+newsize+hhldsize+income+ 
  as.factor(race)+as.factor(gender)+ 
  as.factor(married)+ as.factor(region)+  
   class+as.factor(work)+as.factor(party)+ 
  as.factor(religion)+ethnofit 
A2  
depend ~  age+educ+as.factor(race)+as.factor(gender)+   
  as.factor(region)+ethnofit 
A3 
depend ~  newsize+hhldsize+income+as.factor(married)+ 
  class+as.factor(work)+as.factor(party)+ 
  as.factor(religion) 
 
N1 
depend ~  class+as.factor(work)+as.factor(party)+ 
      as.factor(religion)+ethnofit 
N2 
depend ~  ethnofit 
N3 
depend ~  class+as.factor(work)+as.factor(party)+  
  as.factor(religion) 
 
4 
depend ~  age+educ+newsize+hhldsize+income98+ 
  as.factor(race)+as.factor(gender)+ 
  as.factor(married)+as.factor(region)+ethnofit 
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2.2 blksy : Voting Participation in 2000 Presidential Election 
 
A1 
depend22 ~  age+educ+newsize+hhldsize+income+ 
  as.factor(race)+as.factor(gender)+ 
  as.factor(married)+ as.factor(region)+  
   class+as.factor(work)+as.factor(party)+ 
  as.factor(religion) 
A2 
depend ~  age+educ+income+as.factor(race)+ 
  as.factor(married)+class+as.factor(party)   
A3 
depend ~  newsize+hhldsize+as.factor(gender)+ 
  as.factor(region)+as.factor(work)+ 
  as.factor(religion) 
 
D1 
depend ~  age+educ+newsize+hhldsize+income+ 
  as.factor(race)+as.factor(gender)+ 
  as.factor(married)+as.factor(region)+  
  
D2 
depend ~  age+educ+income+as.factor(race)+ 
  as.factor(married) 
D3 
depend ~  newsize+hhldsize+as.factor(gender)+ 
  as.factor(region)+    
 
 
N1 
depend ~  class+as.factor(work)+as.factor(party)+  
  as.factor(religion) 
N2 
depend ~  class+as.factor(party)  
N3 
depend ~  as.factor(work)+as.factor(religion) 
 
4 
depend ~  age+educ+newsize+hhldsize+income+ 
  as.factor(race)+as.factor(gender)+ 
  as.factor(married)+ as.factor(region)+  
   class+as.factor(party) 

                                                 
22 depend: An indicator for the status of each unit whether included in the Web or 
reference sample; the same as g in Chapter 6. 
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3. Reference Sample and Unadjusted and Propensity Score Adjusted Web 
Sample Estimates for blksy  and votey  
 
   

.W STs        
.W HIs     

 estimate bias p.bias rmsd p.rmsd se  estimate bias p.bias rmsd p.rmsd se 

blksy               
 y.R 0.612     0.034  0.612     0.034 
 y.U 0.636 0.024  0.0448 0.0% 0.016  0.675 0.064  0.074 0.0% 0.016 
 y.D1 0.623 0.012 52.4% 0.0405 9.6% 0.022  0.638 0.026 58.6% 0.052 29.4% 0.032 
 y.D2 0.622 0.010 57.1% 0.0398 11.2% 0.021  0.645 0.034 47.0% 0.056 24.6% 0.031 
 y.D3 0.637 0.025 -4.7% 0.0457 -2.0% 0.018  0.675 0.063 0.4% 0.074 -0.8% 0.021 
 y.N1 0.620 0.008 65.7% 0.0388 13.5% 0.020  0.657 0.046 28.3% 0.060 18.5% 0.022 
 y.N2 0.622 0.010 58.6% 0.0386 13.9% 0.018  0.658 0.046 27.3% 0.059 19.5% 0.017 
 y.N3 0.632 0.020 17.5% 0.0430 4.1% 0.018  0.672 0.061 4.8% 0.072 2.3% 0.021 
 y.A1 0.616 0.004 82.0% 0.0390 13.1% 0.023  0.629 0.017 72.6% 0.048 35.5% 0.032 
 y.A2 0.617 0.005 79.4% 0.0387 13.6% 0.022  0.642 0.030 52.2% 0.054 27.5% 0.032 
 y.A3 0.636 0.024 1.7% 0.0451 -0.5% 0.019  0.669 0.057 10.0% 0.070 5.8% 0.021 
 y.4 0.619 0.007 71.3% 0.0392 12.5% 0.023  0.635 0.023 63.9% 0.050 31.8% 0.032 

   
.W STs        

.W HIs     
 estimate bias p.bias rmsd p.rmsd se  estimate bias p.bias rmsd p.rmsd se 

votey               
 y.R 0.650     0.034  0.650     0.034 
 y.U 0.715 0.065  0.075 0.0% 0.015  0.817 0.167  0.171 0.0% 0.013 
 y.D1 0.709 0.059 9.7% 0.069 8.3% 0.022  0.724 0.074 55.7% 0.086 50.0% 0.031 
 y.D2 0.711 0.062 5.4% 0.071 5.2% 0.021  0.721 0.072 57.2% 0.084 51.2% 0.032 
 y.D3 0.720 0.070 -7.1% 0.079 -5.7% 0.016  0.814 0.164 1.7% 0.169 1.6% 0.014 
 y.N1 0.695 0.045 30.5% 0.057 23.4% 0.019  0.771 0.121 27.5% 0.127 26.1% 0.020 
 y.N2 0.694 0.044 32.0% 0.057 24.4% 0.019  0.764 0.115 31.4% 0.121 29.6% 0.019 
 y.N3 0.719 0.069 -5.6% 0.078 -4.3% 0.016  0.821 0.172 -2.6% 0.175 -2.4% 0.013 
 y.A1 0.702 0.052 19.9% 0.063 16.2% 0.024  0.718 0.069 58.9% 0.081 52.7% 0.032 
 y.A2 0.706 0.057 13.5% 0.066 11.9% 0.023  0.716 0.066 60.4% 0.079 54.1% 0.032 
 y.A3 0.724 0.074 -13.4% 0.083 -10.5% 0.017  0.818 0.169 -0.7% 0.172 -0.6% 0.014 
 y.4 0.703 0.053 18.8% 0.063 15.5% 0.024  0.718 0.068 59.2% 0.080 53.1% 0.032 
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4. Relationship between the Distributions of the Different Web Sample Estimates 
and the Reference Sample Estimates for  blksy  and votey  
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5. Distributions of the Web Estimates by Different Propensity Score 
Adjustments 
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6. BRFSS Propensity Score Model Specification in R© 
 
 
Model 1 
depend ~  age+educ+as.factor(gender)+as.factor(race) 
 
Model 2 
depend ~  ghealth+as.factor(coverage)+as.factor(doctor)+  
  as.factor(cprevent)+as.factor(phyact)+ 
  as.factor(diabete)+as.factor(cholest)+ 
  as.factor(losewgt)+ as.factor(wgtadv)+   
  
  as.factor(asthma)+as.factor(flushot)+  
  as.factor(pneumon)+as.factor(sunburn)+  
  age+educ+income+weight+numphone+ 
  as.factor(gender)+as.factor(jointsym)+   
  
  as.factor(limitact)+as.factor(modact)+ 
  as.factor(army)+as.factor(cellphon)+  
 
 alcohol+hhsize+as.factor(work)+as.factor(marry)+  
      as.factor(race)+veggie 
 
Model 3 
depend ~  ghealth+as.factor(doctor)+as.factor(cprevent)+
   as.factor(diabete)+as.factor(losewgt)+  
   
 as.factor(sunburn)+educ+income+as.factor(gender)+ 
  as.factor(limitact)+as.factor(army)+ 
  as.factor(cellphon)+as.factor(race) 
 
 
Model 4 
depend ~  ghealth+as.factor(coverage)+as.factor(doctor)+  
  as.factor(cprevent)+as.factor(phyact)+ 
  as.factor(diabete)+as.factor(cholest)+ 
  as.factor(losewgt)+ as.factor(wgtadv)+   
  
  as.factor(asthma)+as.factor(flushot)+  
  as.factor(pneumon)+as.factor(sunburn)+  
  income+weight+numphone+as.factor(jointsym)+  
   as.factor(limitact)+as.factor(modact)+ 
  as.factor(army)+as.factor(cellphon)+alcohol+ 
  hhsize+as.factor(work)+as.factor(marry)+veggie 
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Model 5 
depend ~  ghealth+as.factor(doctor)+as.factor(cprevent)+
   as.factor(diabete)+as.factor(losewgt)+ 
  as.factor(sunburn)+ income+as.factor(limitact)+
   as.factor(army)+as.factor(cellphon) 
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