ABSTRACT

of Dissertation: ALGEBRAIC MULTIMEDIA: THEORY AND IMPLEMENTATION

Marat Fayzullin, Doctor of Philosophy, 2004

Dissertation directed by: Professor V. S. Subrahmanian Computer Science

Storage, processing, and presentation of multimedia data, such as images, video, audio, or multimedia presentations, has become an important area of computer science. The goal of this dissertation is to formalize access methods to multimedia data by developing algebras that operate on PowerPoint presentations, video, and audio as in the case of relational algebra operating on tabular data. This dissertation also proposes ways to create summaries of multimedia data.

ALGEBRAIC MULTIMEDIA: THEORY AND IMPLEMENTATION

by
Marat Fayzullin
Dissertation submitted to the Faculty of the Graduate School of the University of Maryland at College Park in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
2004

Advisory Committee:

Professor V. S. Subrahmanian, Chairman/Advisor
Professor Dana Nau,
Professor Lise Getoor,
Professor Stephen Kudla,
Professor Hanan Samet

Table of Contents

List of Tables iii
List of Figures iv
1 Introduction 1
2 An Algebra For PowerPoint Presentations 6
2.1 Introduction 6
2.2 A Formal Description of PowerPoint Databases 8
2.3 The PowerPoint Algebra pptA 11
2.3.1 The Apply Operator 14
2.3.2 The Select Operator 17
2.3.3 The Project Operator 22
2.3.4 The Rename Operator 24
2.3.5 The Cartesian Product 25
2.3.6 The Join Operator 29
2.3.7 Set Operators 31
2.4 Implementation and Cost Model 37
2.5 Experimental Results 41
2.6 Related Work 45
2.7 Conclusions 46
3 An Algebra for Audio 47
3.1 Introduction 47
3.2 Audio Data Model 49
3.3 Algebraic Operators 52
3.3.1 Selection Conditions 52
3.3.2 The Select Operator 55
3.3.3 The BETWEEN Operator 58
3.3.4 The ApPLY Operator 59
3.3.5 The Project Operator 64
3.3.6 The Mix Operator 67
3.3.7 The Concatenation Operator 71
3.3.8 The Resample Operator 74
3.3.9 The Compress Operator 78
3.3.10 The Match Operator 82
3.4 Optimizing Select and MIX 85
3.4.1 Experiments 93
3.5 Optimizing Match 95
3.5.1 Matching with Subdivisions 99
3.5.2 Pattern Tree 103
3.5.3 Audio Range Tree 107
3.5.4 Experiments 110
3.6 System Implementation 115
3.6.1 The Algebraic Engine 116
3.6.2 The GUI 118
3.7 Related Work 120
3.8 Conclusions 123
4 An Algebra For Video 124
4.1 Introduction 124
4.2 Video Data Model 126
4.3 Algebraic Operators 131
4.3.1 Selection Conditions 131
4.3.2 The Select Operator 134
4.3.3 The Project Operator 136
4.3.4 The Apply Operators 139
4.3.5 The Match Operator 143
4.3.6 The Cartesian Product Operator 145
4.3.7 The Join Operator 146
4.3.8 Set Operators 150
4.3.9 The Concatenation Operator 154
4.3.10 The Compress Operator 157
4.4 Indexing and Optimization 161
4.4.1 Optimizing Select and Join 161
4.4.2 Optimizing Match 164
4.4.3 Indexing 167
4.4.4 Experimental Results 169
4.5 The Cost Model 172
4.6 Implementation 174
4.6.1 Feature Extraction 175
4.6.2 Algebraic Core 177
4.6.3 User Interfaces 179
4.7 Related Work 180
4.8 Conclusions 182
5 Summarizing Video 185
5.1 Introduction 185
5.2 Formal Model of Video Summarization 187
5.3 Video Summaries 189
5.4 Summary Evaluation Function 195
5.5 Creating Summaries 199
5.5.1 The Optimal Summarization Algorithm 200
5.5.2 The CPRdyn Algorithm 201
5.5.3 The CPRgen Algorithm 202
5.6 Summary Extension Algorithm (SEA) 203
5.6.1 Improving SEA Algorithm 206
5.7 Priority Curve Algorithm (PCA) 209
5.7.1 Peak Identification Module 211
5.7.2 Block Merging Module 214
5.7.3 Block Elimination Module 216
5.7.4 Block Resizing Module 216
5.8 Implementation and Experiments 217
5.9 Related Work 220
5.10 Conclusion 222
6 Document Summarization With Stories 223
6.1 Introduction 223
6.2 The Data Model 225
6.3 Story Computation Problem 233
6.3.1 Valid and Full Instances 233
6.3.2 Stories 235
6.3.3 Optimal Stories 239
6.4 Story Computation Algorithms 243
6.4.1 Building Instances 243
6.4.2 Optimal Story Creation 245
6.4.3 Heuristic Based Algorithms 246
6.5 Implementation 248
6.6 Extracting Attribute Values 251
6.6.1 Relational Sources 251
6.6.2 XML Sources 251
6.6.3 Web Sources 252
6.7 Conclusion 254
7 Conclusion 255

List of Tables

2.1 Cost Model for Slide Operations 40
2.2 Cost Coefficients. 41
3.1 SegmentStream() Operation. 89
4.1 VDA Cost Model. 183
4.2 VDA Cost Model Constants. 184

List of Figures

2.1 Presentation p_{1}. 9
2.2 Presentation p_{2}. 10
2.3 System Architecture. 37
2.4 Web-Based GUI. 38
2.5 Cost Estimation Experiments. 41
2.6 Simulated Slide Layouts. 42
2.7 Select(Apply) vs. Apply(Select). 43
2.8 Join(Apply) vs. Apply(Join). 43
2.9 Join(Select) vs. Select(Join). 43
2.10 Optimization Times. 44
2.11 Estimated Query Execution Times. 44
2.12 Real Query Execution Times. 44
3.1 Simple Waveform. 50
3.2 Select Example. 56
3.3 Between Example. 58
3.4 Subdivision. 86
3.5 Utilization. 87
3.6 Subdivision Tree. 90
3.7 Subdivision Tree Size. 93
3.8 SubTree Select Performance. 94
3.9 Mixing Performance. 95
3.10 Maximum Amplitude and Amplitude Change Streams. 97
3.11 Downsampled Amplitude Stream. 99
3.12 Precision and Recall as $f_{a p x}$ Changes. 111
3.13 Precision and Recall as k Changes. 112
3.14 Matching Execution Times. 112
3.15 Approximated Matching on Large Data. 113
3.16 Pattern Tree Performance. 113
3.17 AR-Tree Pruning Performance. 114
3.18 Audio Range Tree Performance. 115
3.19 Data Browser GUI. 118
3.20 Pattern Matching GUI. 119
3.21 Query Composition GUI. 120
4.1 Feature Operations. 127
4.2 Optimized Select Performance 170
4.3 Optimized Match Performance 171
4.4 Cost Model Verification. 173
4.5 Query Optimizer Performance. 174
4.6 VDA Architecture. 175
4.7 Feature Extraction Example. 177
4.8 Query Composition GUI. 179
4.9 Pattern Matching GUI. 180
5.1 Sequence Atom Interpretation. 192
5.2 Hue Histogram Distance Function. 198
5.3 PCA Architecture. 210
5.4 Peaks. 212
5.5 Peaks() Algorithm Analyzing a Peak. 213
5.6 Summary Quality Comparison (without PCA). 218
5.7 Summary Quality Comparison (with PCA). 219
5.8 Summary Quality Variation. 220
5.9 Algorithms' Performance. 220
6.1 Pentheus torn apart by his mother Agave and Maenads (House of the Vetti, Pompeii). 226
6.2 Pope Paul III and his nephews Alessandro and Ottavio Farnese (Capodi- monte Museum, Naples) 228
6.3 System Architecture. 249

Chapter 1

Introduction

During the last decade, the automated storage and processing of multimedia data, such as images, sound, video, and multimedia presentations, has become widely used in many aspects of human life. Whether you are preparing a speech for a business meeting, or searching the Internet for Christmas presents, or identifying a compact disk with Gracenote, it always comes down to computers having to work with media that is richer than the "traditional" numbers and text, i.e. with the multimedia.

Multimedia data processing can be roughly classified by purpose into (i) storage and delivery of data, (ii) indexing and search, (iii) data composition, and (iv) data summarization. Research in some of these areas has been more successful than others, and some work has even resulted in commercial tools (such as various multimedia search engines and authoring tools). In others, such as data summarization, the research still hasn't led to any widely commercialized tools.

Less work has been done on formalization of multimedia data models in the way relational algebra formalizes the tabular data model. Having formal models for multimedia data would help better integration between multimedia applications (i-iv) and allow for tools working across multiple media types.

Abstracting multimedia data is difficult mainly because of its variety. The data can be organized spatially (graphics), temporally (voice), or both (video). It may contain attributes as diverse as color distributions, motion vectors, frequency spectrums, phonemes, musical score, or plain text annotations. Even the same type of media (such as "graphics" or "video") can be represented in different ways with various file formats. Each format has its own merits and weaknesses, sometimes making conversion to other formats difficult or undesirable. For example, TrueColor images stored in bitmap files retain all of their pixel properties, but are often too large to archive, while more compact JPEG images lose individual pixel properties. Vector images (e.g. $S V G$) can be converted to bitmaps, but all the vector data will be lost in the process, making infeasible further geometrical transformations of the image. PowerPoint presentations, stored in the $P P T$ format, can also be converted to sequences of vector or bitmap images, at the cost of losing their internal hierarchy of objects on slides.

Essentially, every multimedia file contains partially structured data. It is often useful to query these structures directly, as they get modified or lost during conversion to a more generic file format. The result of such a query will naturally appear in the same format as the input. For example, a query that selects all frames with a certain kind of motion from an MPEG source would produce an MPEG "summary" of that source.

In addition to the data contained in a file, there is sometimes other information that describes this data. This information may either come separately from the file, or be implied from the data in the file and stored for later usage. An MPEG video, for example, may have textual annotations that describe the video by the second. An audio file may be passed through a speech recognition program to produce a separate text transcript. Obtaining such information and using it in queries would be very
useful.
Finally, indexing can be applied both to the data stored in the file and the information that accompanies it. Finding the right index structures would facilitate query execution.

The purpose of this work is to devise algebras that abstract operations performed on some multimedia data, namely, PowerPoint presentations, video streams, and audio streams. The work generally involves proposing a formal model for the data, defining the algebra, finding and proving equivalences in the algebra, creating a reference implementation of the database engine and a query optimizer and, finally, evaluating the performance of this implementation.

The multimedia query languages developed in this work can be used as a part of bigger heterogeneous database and agent systems, such as TSIMMIS [14], HERMES [77], or IMPACT [68]. They can also be employed by the end users to create, search, transform, merge, split, and summarize multimedia documents.

For example, a university student may search a database of lecture presentations for slides containing a description of binary trees. He can issue a query to find these slides and combine them with slides on hashing to create a single personalized presentation.

Similarly, a business analyst may want to scan all PowerPoint presentations made by the department in the last year to find annual budget projections and attach the relevant slides to his own presentation comparing the projected and the actual budget use.

In a different example, a policeman looking at a surveillance video may request all fragments of this video where motion occurs and a certain object (such as a gun) is present. The result will be a video summary.

In yet another example of video summarization, a sports news editor can take an annotated video of a soccer play and create a video summary of all goals by one of the teams.

This thesis consists of seven chapters. Chapter 2 describes the pptA algebra that operates on PowerPoint presentations. This chapter (i) provides a formal model of a PPT presentation, (ii) defines basic pptA operators, both new and those similar to well known relational operators, (iii) shows algebraic equivalences, (iv) describes the pptA implementation and the cost model for this implementation, (v) describes the implementation of a query optimizer based on the cost model and shown equivalences, and (vi) covers experiments conducted to estimate the merits of the query optimization.

Chapter 3 covers the ADA algebra for audio recordings. The audio algebra model is based on the concept of streams that carry various representations of the same audio recording, such as waveforms, frequency spectrum, musical score, and text transcripts. Similarly to pptA , Chapter 3 (i) provides a formal model of audio files and databases, (ii) defines basic ADA operators, both new and similar to well known relational operators, (iii) shows algebraic equivalences, (iv) proposes and discusses several data structures facilitating the execution of some basic algebraic operators (v) describes a reference ADA implementation, and (vi) covers experiments conducted to assess the effect of data structures on the query execution.

Chapter 4 describes the VDA algebra for processing video data. The video algebra model is based on grouping video frames into blocks containing spatially localized features, such as certain colors, movement, objects, actions, or events. This model is closely related to the one used for video summarization in Chapter 5. Chapter 4 (i) defines the model formally, (ii) defines basic VDA operators, both new and
similar to well known relational operators, (iii) shows algebraic equivalences, (iv) discusses methods and data structures to accelerate operator execution and experimentally shows their benefits, (v) describes and experimentally verifies the cost model and the query optimizer, and finally (vi) describes the implementation of a reference VDA system.

Chapter 5 deals with video summarization, i.e. creation of shortened videos based on user defined constraints. The CPR summarization model proposed in this chapter rates summaries in terms of priority, continuity, and repetition. Chapter 5 (i) defines the concept of a video summary and its components, (ii) describes the language to specify constraints on a summary, (iii) shows ways to measure continuity, priority, and repetition of a summary, (iv) provides several algorithms to compute good summaries with respect to these three criteria, and (iv) describes experiments assessing the quality of summaries produced by different algorithms.

Chapter 6 presents a more general approach to document summarization using the same basic CPR model introduced in Chapter 5. The STORY system described in Chapter 6 allows to extract information about a given subject from multiple web documents, text documents, relational and XML data sources and create a text narrative (story) conveying this information to the user. Chapter 6 (i) defines basic concepts of entities, attributes, and stories, (ii) introduces generalization and conflict resolution in stories, (iii) provides ways to measure continuity, priority, and repetition of stories, (iv) discusses several algorithms to produce good stories with respect to these three criteria, and (v) describes our prototype STORY system implementation and the process for creating STORY applications.

The final Chapter 7 provides some concluding remarks.

Chapter 2

An Algebra For PowerPoint Presentations

2.1 Introduction

There are now millions of PowerPoint presentations on the web as well as on corporate intranets. There is a growing need to query large collections of such presentations. Corporate officials may want to find slides containing budget forecasts. Scientists may wish to find relevant slides of a colleague's technical presentations. University students studying Quattro may examine presentations on the web to get explanations that are more intuitive to them than their instructor's explanation. In short, the need to query such data sources cuts across a wide spectrum of end users.

Despite all this interest, there have been just two efforts (Ozsoyoglu et. al. [49, 46] and Adali et. al. [3]) to come up with formal models of general multimedia presentations - neither of these frameworks takes advantage of the specific features of PowerPoint. Both models query a presentation based on the playout of the presentation rather than the way the presentation is structured. Ozsoyoglu et. al. [49] use a graph representation of multimedia presentations and present a graph-based algebra. Adali et. al. [3] present a difference constraint based model and algebra for modeling
interactive presentations and querying them.
In contrast, PowerPoint presentations have a logical hierarchical representation consisting of three components - presentations, slides, and objects within a slide. In order to have an algebra that is specific to PowerPoint, one must take into account the specific representation of PowerPoint data which uses this logical structure. The work presented in this chapter [25] uses this hierarchy and thus captures PowerPoint presentations more accurately than previous models do. In contrast to [3], we have developed a prototype implementation of the PPT database and shown extensive equivalence results which may be used as rewrite rules for query optimization (which [46] does not). We have also developed a cost model for such databases (which to my knowledge is the first such cost model) and obtained experimental results assessing the use of these equivalences from an efficiency point of view (again a first to my knowledge).

The organization of this chapter is as follows. In the first section, I start by presenting a formal model of a PPT presentation. The second section describes the algebraic operators includes both analogs of traditional relational operators, and the new operators such as Apply . This section also shows a host of query equivalence results that will be useful for optimizing queries. The implementation and the cost model are covered in the third section, together with the experimental validation of the cost model. The fourth section contains experimental results related to equivalences and the optimization. The final, fifth section compares the proposed framework with the existing body of work.

2.2 A Formal Description of PowerPoint Databases

A PPT presentation consists of a sequence of slides. Each slide contains a set of objects. Such objects can include text boxes, images, animations, embedded data views (e.g. charts and tables) amongst others. Each object has attributes - different objects may have different attributes and different attribute values. In order to formalize the definition of a PPT document, let us start "bottom up" by defining objects first, then slides, then presentations, and finally PPT databases.

Let us start with the assumption that there is some arbitrary but fixed universe \mathcal{A} of strings called attributes and each attribute $A \in \mathcal{A}$ has an associated domain $\operatorname{dom}(A)$. Assume the existence of a special set Mand $\subseteq \mathcal{A}$ of attributes called mandatory attributes. Each domain $\operatorname{dom}(A)$ may have zero or more associated binary relations in it. We will use the notation $B R(A)$ to denote the set of all binary relations associated with attribute A. For example, $\operatorname{dom}($ Type $)=\mathbf{N}$ and $B R($ Type $)=\{=, \neq\}$. Similarly, if $\operatorname{dom}($ Data $)$ is an arbitrary string, then $B R($ Data $)=\{=, \neq,<, \leq,>, \geq$, contains $\}$.

Note: Throughout this chapter, I assume that Mand contains at least the following attributes: Type, Data (arbitrary strings), and Loc (two coordinate pairs representing top left and bottom right corners of a rectangle).

Definition 2.2.1 (Attribute Value Pair) If $A \in \mathcal{A}$ is an attribute, and $v \in \operatorname{dom}(A)$, then $\langle A, v\rangle$ is an attribute value pair. A is the name of this pair and v is the value of the pair. For example, \langle Loc, $(2,3,4,5)\rangle$ is an attribute value pair.

Example 2.2.1 Color and Picture are possible attributes in \mathcal{A}. $\operatorname{dom}($ Color $)$ may be an enumerated type consisting of strings that denote colors, and dom(Picture) may be the set of strings denoting valid image names with extensions such as JPG,

GIF, TIFF and BMP. Then \langle Color, "red" \rangle and \langle Picture, "aster.jpg" \rangle are attribute value pairs. Another possible attribute is ColorSet whose domain is the superset of dom(Color).

The following definition says that for a set of attribute value pairs to be considered valid, it must contain a pair for each mandatory attribute.

Definition 2.2.2 (Valid Attribute Value Pairs) A finite set AVP of attribute value pairs is said to be valid iff for every attribute $A \in$ Mand there is exactly one pair in AVP of the form $\langle A,-\rangle$. We will use the " - " symbol to denote "any value".

Example 2.2.2 $\{\langle$ Type, PICTU RE \rangle, \langle Data, "aster.bmp" $\rangle,\langle L o c,(5,25,55,75)\rangle\}$ is valid. However, $\{\langle$ Data, "Directions" \rangle,\langle Color, "blue" \rangle,\langle Font, "Arial" $\rangle\}$ is not valid as it contains no pairs of the form \langle Type,-\rangle and \langle Loc,,-\rangle.

Throughout the rest of this chapter, I assume the existence of a special set valued domain, $\operatorname{dom}(\mathrm{IDs})$, i.e. every member of $\operatorname{dom}(\mathrm{IDs})$ is a set.

Definition 2.2.3 (Object) An object o is a pair $o=\langle i d, \mathrm{AVP}\rangle$ where id is a member of dom(IDs), and AVP is a valid set of attribute value pairs.

Slide s_{11}

Slide s_{12}

Slide s_{13}

Figure 2.1: Presentation p_{1}.

Figure 2.2: Presentation p_{2}.

Figures 2.1 and 2.2 show two very small PowerPoint presentations, "Falls.ppt" and "Flowers.ppt". We will use these presentations to illustrate the definitions and concepts introduced in this chapter.

Example 2.2.3 For example, the first slide of the "Flowers" presentation has such objects as $\left\langle\left\{o_{111}\right\},\{\langle\right.$ Type, TEXT \rangle,\langle Data, "Flowers of the Mountains" \rangle,\langle Loc, $(20,10,620,40)\rangle,\langle$ FontSize, 30\rangle,\langle Color, GREEN $\rangle\}\rangle,\left\langle\left\{o_{112}\right\},\langle\right.$ Type, TEXT \rangle, \langle Data, "Presentation by John Smith" $\rangle,\langle\operatorname{Loc},(220,45,420,60)\rangle\}\rangle$, and $\left\langle\left\{o_{113}\right\}\right.$, $\{\langle$ Type, PICTURE \rangle,\langle Data, "flowers.bmp" \rangle,\langle Loc, $(20,80,320,470)\rangle\}\rangle$.

Definition 2.2.4 (Slide) A slide is a triple $\langle i d$, Titles, Objects \rangle where $i d \in d o m(I D s)$, Titles is a finite set of strings, and Objects is a finite set of objects such that if $\left\langle o, \mathrm{AVP}_{1}\right\rangle,\left\langle o, \mathrm{AVP}_{2}\right\rangle \in$ Objects then $\mathrm{AVP}_{1}=\mathrm{AVP}_{2}$.

The above definition requires that the same object $i d$ cannot occur twice in the set of objects comprising a slide. In addition, it is important to note that Titles may be viewed as an attribute whose domain is the powerset of the set of all strings.

Example 2.2.4 The first slide in the "Flowers.ppt" may be described as $\left\langle\left\{s_{11}\right\},\{\right.$ "Title Slide" $\},\{$ objects $\left.\}\right\rangle$.

Definition 2.2.5 (PPT Presentation) A PPT presentation is a 4-tuple
(Titles, Authors, Slides, succ) where:

1. Slides is a finite set of slides such that: $\left(\forall s_{1}, s_{2} \in\right.$ Slides $) s_{1} \neq s_{2} \rightarrow s_{1}$.id \neq $s_{2} . i d$
2. Titles and Authors are finite sets of strings, and
3. succ : Slides \rightarrow Slides is an injective partial function that satisfies the following axioms:
(a) there is exactly one member of Slides, denoted Slides $_{\text {end }}$ for which $\operatorname{succ}\left(\right.$ Slides $\left._{\text {end }}\right)$ is undefined.
(b) $\left(\forall s_{1}, s_{2} \in S\right) \operatorname{succ}\left(s_{1}\right)=\operatorname{succ}\left(s_{2}\right) \rightarrow s_{1}=s_{2}$.

Note that as succ is injective, it implicitly induces a total ordering on the slides in a presentation. When $s_{2}=\operatorname{succ}\left(s_{1}\right)$, we will often refer to s_{2} as the successor of s_{1} and s_{1} as the predecessor of s_{2}. As in the case of slides, Titles and Authors may be viewed as attributes whose domain is the powerset of the set of all strings. Throughout the chapter, I will proceed with this assumption. Let us further assume that all set valued attributes A have set inclusion as a special binary relation in $B R(A)$. Furthermore, for any attribute A whose domain $\operatorname{dom}(A)$ is a powerset type, instead of writing $\{x\} \subseteq X$, we will often write $x \in X$.

Definition 2.2.6 (PPT Database) A PPT database is a finite set of PPT presentations.

2.3 The PowerPoint Algebra pptA

In this section, I define the operators associated with the PowerPoint algebra, pptA . In addition to operators that resemble the classical relational algebra operators (selection,
projection, cartesian product, join, and set operators), pptA also has a number of operators that are unique to PowerPoint presentations. Many operators in pptA are parametrized by special functions that transform objects/slides/presentations into new objects/slides/presentations respectively.

Definition 2.3.1 (Transformation Functions) An object (resp. slide, presentation) transformation function is a mapping from objects to objects (resp. slides to slides, presentations to presentations).

The following examples present some sample transformation functions.

Example 2.3.1 Function $f_{\text {red }}(o)=\langle o . i d, o . A V P-\{x \in o . A V P \mid x=\langle$ Color,,$\rangle\} \cup$ $\{\langle$ Color, "red" $\rangle\}\rangle$ changes the color of an object to "red", while the $f_{\text {incfont }}(o)=$ \langle o.id, o.AVP $-\{x \in$ o.AVP $\mid x=\langle$ Fsize,-$\rangle\} \cup\{\langle$ Fsize,$x+4\rangle \mid\langle$ Fsize,$x\rangle \in$ o.AVP\}> increases an object's font size by 4. Note that $f_{\text {incfont }}$ will not cause any change within an object that has no font properties.

Example 2.3.2 The slide transformationfunction $f_{\text {remsmall }}(s)=\langle$ s.id, s.Titles, $\{o \in$ s.Objects $\mid \forall x \in$ o.AVP x.name $=$ FontSize \rightarrow x.val $\geq 12\}\rangle$ removes all objects that have a font size of less than 12. Function $f_{\text {grback }}(s)=\langle$ s.id, s.Titles, $($ s.Objects $-\{x \mid$ x.name $=$ Background $\}) \cup\{\langle$ Background, green $\rangle\}\rangle$ changes backgrounds of all slide objects to green.

Example 2.3.3 An example of a presentation transformation function is one that adds a new author a to a presentation:

$$
f_{\text {addauth }}(p)=\langle p . \text { Titles, } p . \text { Authors } \cup\{\mathrm{a}\}, p . \text { Slides }, p . s u c c\rangle .
$$

Throughout the rest of this chapter, I will often use $f(X)$ to denote the application of a transformation function to X. By looking at the type of X, one can infer whether f is an object (resp. slide, presentation) transformation function. Thu it is not necessary to explicitly state what kind of transformation function f is.

Definition 2.3.2 (A-invariant Transformation Function) An object transformation function f is said to be A-invariant if for all objects $o,\langle A, v\rangle \in o . A V P$ iff $\langle A, v\rangle \in$ $f(o) . A V P$.

Definition 2.3.3 (Commuting Transformation Functions) Two object transformation functions f, g commute iff for all objects $o, f(g(o))=g(f(o))$. Commuting slide and presentation transformation functions may be defined analogously.

Definition 2.3.4 (Idempotent Transformation Functions) A transformation function f is idempotent iff $f(X)=f(f(X))$.

Definition 2.3.5 (Sensible Object Transformation Functions) An object transformation function f is sensible ifffor each attribute A, there is a bijection $f_{A}: \operatorname{dom}(A) \rightarrow$ $\operatorname{dom}(A)$ such that for all objects $o,\langle A, v\rangle \in f(o)$.AVP iff there exists an $\left\langle A, v^{\prime}\right\rangle \in$ $o . \operatorname{AVP}$ and $f_{A}(v)=v^{\prime}$.

The definition of sensible transformations may be extended to slides and presentations in the obvious way. Object transformation functions map objects to objects. Consider two objects o_{1}, o_{2} with attribute value pairs $\left\{\left\langle A_{1}, v_{1}\right\rangle,\left\langle A_{1}, v_{2}\right\rangle\right\}$ and $\left\{\left\langle A_{1}, v_{1}\right\rangle,\left\langle A_{2}, v_{2}\right\rangle\right\}$. These two objects are indistinguishable (they have the same attributes and the same values for those attributes). However, theoretically, an object transformation function could map these two objects to two completely different objects (with varying attributes and different attribute values). The definition of sensibility says that this cannot happen - if two objects have the same pair $\langle A, v\rangle$ in their
set of attribute value pairs, the output (after the object transformation) must change this pair in the same way for both objects.

Throughout the rest of this chapter, unless specified otherwise, all transformation functions are assumed to be sensible. The example transformation functions above are all sensible.

2.3.1 The Apply Operator

The first algebraic operator is the APPLY operator α which applies a transformation function to presentation entities.

Definition 2.3.6 (ApPLY Operator) Suppose f is a transformation function. The APPLY operator α is defined as follows.

- Suppose f is an object transformation function. Then the application of f to a an object o (resp. slide s, presentation p, presentation database $p D B$) is defined as:

$$
\begin{aligned}
\alpha(f, o) \cdot i d & =\text { o.id } \\
\alpha(f, o) \cdot A V P & =f(o) \cdot A V P \\
\alpha(f, s) \cdot i d & =\text { s.id } \\
\alpha(f, s) \cdot \text { Titles } & =\text { s.Titles } \\
\alpha(f, s) \cdot \text { Objects } & =\{\alpha(f, o) \mid o \in \text { s.Objects }\} \\
\alpha(f, p) \cdot \text { Titles } & =p \cdot \text { Titles } \\
\alpha(f, p) . \text { Authors } & =p . \text { Authors } \\
\alpha(f, p) \cdot \text { Slides } & =\{\alpha(f, s) \mid s \in p \cdot \text { Slides }\} \\
\alpha(f, p) \cdot \operatorname{succ}(\alpha(f, s)) & =\alpha\left(f, s^{\prime}\right) \text { iff } p \cdot s u c c(s)=s^{\prime}
\end{aligned}
$$

$$
\alpha(f, p D B)=\{\alpha(f, p) \mid p \in p D B\}
$$

- Suppose f is a slide transformation function. Then the application of f to a slide s (resp. presentation p, presentation database $p D B$) is defined as:

$$
\begin{aligned}
\alpha(f, s) \cdot i d & =\text { s.id } \\
\alpha(f, s) \cdot \text { Titles } & =f(s) \cdot \text { Titles } \\
\alpha(f, s) \cdot \text { Objects } & =f(s) \cdot \text { Objects } \\
\alpha(f, p) \cdot \text { Titles } & =p \cdot \text { Titles } \\
\alpha(f, p) \cdot \text { Authors } & =p \cdot \text { Authors } \\
\alpha(f, p) \cdot \text { Slides } & =\{\alpha(f, s) \mid s \in p \cdot \text { Slides }\} \\
\alpha(f, p) \cdot \operatorname{succ}(\alpha(f, s)) & =\alpha\left(f, s^{\prime}\right) \text { iff } p \cdot \operatorname{succ}(s)=s^{\prime} \\
\alpha(f, p D B) & =\{\alpha(f, p) \mid p \in p D B\}
\end{aligned}
$$

- Suppose f is a presentation transformation function. Then the application of f to a presentation p (resp. presentation database $p D B$ is defined as:

$$
\begin{aligned}
\alpha(f, p) & =f(p) \\
\alpha(f, p D B) & =\{\alpha(f, p) \mid p \in p D B\}
\end{aligned}
$$

Example 2.3.4 $\alpha\left(f_{\text {red }}, s_{11}\right)$ highlights all objects on slide s_{11} of "Flowers.ppt" in red.

The following theorem states that APPLY commutes as long as the transformation functions commute and are sensible.

Theorem 2.3.1 Suppose f, g are sensible object (resp. slide, presentation) transformation functions and suppose $X \in\{o, s, p\}$ where o is an object, s is a slide, p is a presentation. If f, g commute, then so does the APPLY operator, i.e. $\alpha(f, \alpha(g, X))=$ $\alpha(g, \alpha(f, X))$.

Proof of Theorem 2.3.1. We show the case where f is an object transformation function (the cases when its a slide/presentation transformation function are similar). We need to show that each of the components of the object returned by $\alpha(f, \alpha(g, X))$ and $\alpha(g, \alpha(f, X))$ are identical where X is an object.

1. $\alpha(f, \alpha(g, X)) . i d=X . i d=\alpha(g, \alpha(f, X)) . i d$.
2. Suppose $\langle A, v\rangle \in \alpha(f, \alpha(g, X)) . A V P$. Then $\langle A, v\rangle \in f(g(X)) . A V P$ As f, g commute, $\langle A, v\rangle \in g(f(X)) . A V P$ and hence $\langle A, v\rangle \in \alpha(g, \alpha(f, X)) . A V P$. The reverse inclusion is similar.

The following theorem states that the APPLY operator is idempotent as long as the transformation functions are themselves idempotent.

Theorem 2.3.2 Suppose f is an idempotent object (resp. slide, presentation) transformation functions and suppose $X \in\{o, s, p\}$. Then $\alpha(f, \alpha(f, X))=\alpha(f, X)$.

Proof of Theorem 2.3.2. We show the case where f is an object transformation function (the cases when its a slide/presentation transformation function are similar). We need to show that each of the components of the object returned by $\alpha(f, \alpha(f, X))=$ $\alpha(f, X)$ coincide .

1. $\alpha(f, \alpha(f, X)) . i d=X . i d=\alpha(f, X) . i d$
2. Suppose $\langle A, v\rangle \in \alpha(f, \alpha(f, X))$. Then $\langle A, v\rangle \in f(f(X)) . A V P$ - as f is idempotent, $\langle A, v\rangle \in f(X) . A V P$ which means it is also in $\alpha(f, X) . A V P$. The reverse inclusion is similar.

2.3.2 The Select Operator

The most important operation is selection. Let us first define the syntax of a selection condition, and then define selection.

Selection Conditions

Let us assume the existence of special disjoint sets V_{o}, V_{s}, V_{p} whose members are called root object/slide/presentation variables, respectively.

Definition 2.3.7 (Object Variables) (i) Every root object variable is an object variable of type "all." (ii) If X is an object variable and $A \in \mathcal{A}$ is an attribute, then $X . A$ is an object variable of type $\operatorname{dom}(A)^{1}$.

Slide variables and presentation variables may be defined in exactly the same way as object variables, by replacing all occurrences of the word "object" in the above definition by "slide" and "presentation" respectively. Hence, if S is a root slide variable, then S.Titles is a perfectly good slide variable.

Definition 2.3.8 (Object Term) (i) Every member of $\operatorname{dom}(A)$ is an object term of type $\operatorname{dom}(A)$. (ii) Every object variable of type τ is an object term of type τ. Slide terms and presentation terms are defined in an analogous way.

[^0]Definition 2.3.9 (Object Atom) If T_{1}, T_{2} are object terms of type dom (A) for some A, and if $\mathrm{op} \in B R(A)$, then T_{1} op T_{2} is an object atom. Slide atoms and presentation atoms are defined in an analogous way.

Example 2.3.5 If dom(FontSize) $=\mathbf{N}$ and " $\leq " \in B R($ FontSize $)$, then o_{1}.FontSize ≤ 24 is an object atom. If dom(Data) is the set of all strings and "contains" is in BR(Data), then contains(o_{1}. Data, o o .Data) is an object atom.

Definition 2.3.10 (Object Condition (OC) and Object Selection Condition (OSC))

(i) Every object atom is an $O C$. (ii) If oc $c_{1}, o c_{2}$ are $O C s$, then so are $o c_{1} \wedge o c_{2}, o c_{1} \vee o c_{2}$ and $\neg o c_{1}$. An object selection condition (OSC) is a special kind of OC that contains exactly one root variable, denoted $O \in V_{o}$.

Slide selection conditions (SSCs) and presentation selection conditions (PSCs) are defined in an analogous way - the only difference is that the root variable is required to be in V_{s} and V_{p} respectively.

Example 2.3.6 $\neg \operatorname{contains}\left(O_{1}\right.$.Data, O_{2}.Data) and O_{1}.FontSize $\leq O_{2}$.FontSize \wedge O_{1}. Data $=O_{2}$.Data are both object conditions. However, neither of them is an OSC because they contain two root variables. O.FontSize $<20 \wedge$ contains(O.Data, "the") is a valid OSC as it has exactly one root variable O.

Selection

We are now ready to define the selection operator. Given a selection condition C involving a free variable X, let us use $C[X / x]$ to denote the replacement of all occurrences of X in C by x.

Definition 2.3.11 (Select Operator) Suppose C is a selection condition (OSC, SSC, or PSC) with the single root variable (either O ranging over objects or S ranging over slides) in it. The Select operator σ is defined as follows.

- Suppose C is an OSC. Then:

$$
\begin{aligned}
\sigma_{C}(s) \cdot i d & =\text { s.id } \\
\sigma_{C}(s) . \text { Titles } & =\text { s.Titles } \\
\sigma_{C}(s) . \text { Objects } & =\{o \mid o \in \text { s.Objects } \wedge C[O / o]\} \\
\sigma_{C}(p) . \text { Titles } & =p . \text { Titles } \\
\sigma_{C}(p) . \text { Authors } & =p \cdot \text { Authors } \\
\sigma_{C}(p) . \text { Slides } & =\left\{\sigma_{C}(s) \mid s \in p \cdot \text { Slides }\right\} \\
\sigma_{C}(p) . s u c c & =\operatorname{succ}^{\prime} \text { as defined below } \\
\sigma_{C}(p D B) & =\left\{\sigma_{C}(p) \mid p \in p D B\right\}
\end{aligned}
$$

- Suppose C is an SSC. Then:

$$
\begin{aligned}
\sigma_{C}(p) . \text { Titles } & =p . \text { Titles } \\
\sigma_{C}(p) . \text { Authors } & =p . \text { Authors } \\
\sigma_{C}(p) . \text { Slides } & =\left\{\sigma_{C}(s) \mid s \in p \wedge C[S / s]\right\} \\
\sigma_{C}(p) . \text { succ } & =\operatorname{succ}^{\prime} \text { as defined below } \\
\sigma_{C}(p D B) & =\left\{\sigma_{C}(p) \mid p \in p D B\right\}
\end{aligned}
$$

- Suppose C is a PSC. Then:

$$
\sigma_{C}(p D B)=\left\{\sigma_{C}(p) \mid p \in p D B \wedge C[P / p]\right\}
$$

In the above, $\operatorname{succ}^{\prime}\left(s_{1}\right)=s_{2}$ where $s_{2}=\min \left\{s^{\prime} \mid(\exists i>0)\left(s^{\prime}=\operatorname{succ}^{i}\left(s_{1}\right) \wedge s^{\prime} \in\right.\right.$ $\sigma_{C}(p)$. Slides $\left.) \wedge(\forall 0<j<i)\left(\operatorname{succ}^{j}\left(s_{1}\right) \notin \sigma_{C}(p) . S l i d e s\right)\right\}$.

Example 2.3.7 The user can select all pictures from slide s_{13} in the sample presentation p_{1} ("Flowers") by writing $\sigma_{\text {O.Type }=\operatorname{PICTU} \operatorname{RE}}\left(s_{13}\right)$. He can select all pictures in the presentation by writing $\sigma_{\text {O.Type }=\text { PICTU RE }}\left(p_{1}\right)$.

Just like in relational algebra, it is permissible to swap two SELECT operators in pptA :

Theorem 2.3.3 (Changing Order of SELECT Operators) Suppose C_{1}, C_{2} are selection conditions and X is a slide (resp. presentation). Then $\sigma_{C_{2}}\left(\sigma_{C_{1}}(X)\right)=\sigma_{C_{1}}\left(\sigma_{C_{2}}(X)\right)$.

Proof of Theorem 2.3.3. Similar to the proof of commutativity of a classical relational selection.

The following result shows that as long as an object (resp. slide) transformation is A-invariant for all A occurring in a selection condition, the APPLY operator can be pulled back outside a selection ${ }^{2}$.

Theorem 2.3.4 (Pullback Theorem: Apply and Select) Suppose f is an object (resp. slide) transformation function that is A-invariant for all attribute names A occurring in an object (resp. slide) selection condition C, and X is a slide (resp. presentation). Then $\alpha\left(f, \sigma_{C}(X)\right)=\sigma_{C}(\alpha(f, X))$.

Proof of Theorem 2.3.4. We show the case where f is an object transformation function (the cases when its a slide/presentation transformation function are similar).

[^1]We need to show that each of the components of the object returned by $\alpha\left(f, \sigma_{C}(X)\right)$ and $\sigma_{C}(\alpha(f, X))$ coincide.

1. $\alpha\left(f, \sigma_{C}(X)\right) \cdot i d=X . i d=\sigma_{C}(\alpha(f, X))$.
2. Suppose $o \in \alpha\left(f, \sigma_{C}(X)\right)$.Objects. Then $o=f(x)$ for some x that satisfies condition C. As f is A-invariant for all attributes occurring in C, this means that $f(x)$ satisfies condition C as well. This in turn means that $o=f(x)$ is returned by $\sigma_{C}(\alpha(f, X))$. The reverse inclusion is similar.
3. $\alpha\left(f, \sigma_{C}(X)\right)$.Titles $=$. .Titles $=\sigma_{C}(\alpha(f, X))$.Titles.

Basically, the theorem says that as long as the selection condition only evaluates attributes not affected by an Apply operation, the order in which the two are performed is irrelevant.

Finally, to select slides containing a certain object inside a presentation, let us introduce the slide select operator.

Definition 2.3.12 (Slide Select Operator) Given a presentation p and an object selection condition C, the slide select operator $\zeta_{C}(p)$ produces a new presentation such that

$$
\begin{aligned}
\zeta_{C}(p) . \text { Titles } & =p . \text { Titles } \\
\zeta_{C}(p) . \text { Authors } & =p . \text { Authors } \\
\zeta_{C}(p) . \text { Slides } & =\{s \mid s \in p . \text { Slides } \wedge(\exists o \in \text { s.Objects }) C[O / o] \text { is true }\} \\
\zeta_{C}(p D B) & =\left\{\zeta_{C}(p) \mid p \in p D B\right\}
\end{aligned}
$$

2.3.3 The Project Operator

In this section, I define the pptA analog of projection. Not all attributes may be projected out. For instance, the object location attribute Loc cannot be projected out as PowerPoint requires each object to occupy some location on a slide.

Definition 2.3.13 (Projectable Attribute Set) A projectable attribute set is any set \mathcal{A}^{\prime} of attributes such that $\{$ Titles, Authors $\} \cup \operatorname{Mand} \subseteq \mathcal{A}^{\prime} \subseteq \mathcal{A}$.

Intuitively, projectable attribute sets prevent users from eliminating mandatory attributes and/or specialized attributes like Titles, Authors.

Definition 2.3.14 (Projection) Suppose \mathcal{A}^{\prime} is a projectable attribute set. The Project operator $\pi_{\mathcal{A}^{\prime}}()$ is defined as follows.

1. If o is an object, then $\pi_{\mathcal{A}^{\prime}}(o)=\left\langle o . i d,\left\{\langle A, v\rangle \mid\langle A, v\rangle \in o . \mathrm{AVP} \wedge A \in \mathcal{A}^{\prime}\right\}\right\rangle$.
2. If s is a slide, then $\pi_{\mathcal{A}^{\prime}}(s)=\left\langle\right.$ s.id, s.Titles, $\left\{\pi_{\mathcal{A}^{\prime}}(o) \mid o \in\right.$ s.Objects $\left.\}\right\rangle$.
3. If p is a presentation, then $\pi_{\mathcal{A}^{\prime}}(p)=\left\langle\right.$ p.Titles, p.Authors, $\left\{\pi_{\mathcal{A}^{\prime}}(s) \mid s \in\right.$ p.Slides\}, p.succ>.

Example 2.3.8 Suppose the user wants to convert all slides in the sample presentation p_{2} ("Falls") to black and white. To do so, she may execute the projection operation $\pi_{\{\overline{\text { Color }\}}}\left(p_{2}\right)$ to remove all Color attributes from all objects in all slides in p_{2}. Note that as usual $\overline{\{C o l o r\}}$ denotes the complement of the set $\{$ Color $\}$ and hence this operation only eliminates the color attribute of an object. Such a query may therefore be used to view a presentation in black and white.

The following theorem tells us that the operations of Apply and Project commute.

Theorem 2.3.5 (Pullback Theorem: Apply and Project) Suppose f is a sensible transformation function and $X \in\{o, s, p\}$. Then $\alpha\left(f, \pi_{\mathcal{A}^{\prime}}(X)\right)=\pi_{\mathcal{A}^{\prime}}(\alpha(f, X))$.

Proof of Theorem 2.3.5. We show the case where f is an object transformation function (the cases when its a slide/presentation transformation function are similar). We need to show that each of the components of the object returned by $\alpha\left(f, \pi_{\mathcal{A}^{\prime}}(X)\right)$ and $\pi_{\mathcal{A}^{\prime}}(\alpha(f, X))$ coincide. We consider the case where X is a slide (the case when presentations are considered is similar).

1. $\pi_{\mathcal{A}^{\prime}}\left(\sigma_{C}(X)\right) . i d=X . i d=\sigma_{C}\left(\pi_{\mathcal{A}^{\prime}}(X)\right) . i d$.
2. $\pi_{\mathcal{A}^{\prime}}\left(\sigma_{C}(X)\right)$.Titles $=$. .Titles $=\sigma_{C}\left(\pi_{\mathcal{A}^{\prime}}(X)\right)$.Titles.
3. Suppose $\alpha\left(f, \pi_{\mathcal{A}^{\prime}}(X)\right)$.Objects. Then $o=f\left(o^{\prime}\right)$ where $o^{\prime}=\pi_{\mathcal{A}^{\prime}}\left(o^{\prime \prime}\right)$ for some $o^{\prime \prime} \in X$. As f is sensible, if $\left\langle A, v^{\prime \prime}\right\rangle \in o^{\prime \prime} . A V P$, then there is an $\left\langle A, f\left(v^{\prime \prime}\right)\right\rangle \in$ $o . A V P$. It follows immediately that $\left\langle A, f\left(v^{\prime \prime}\right)\right\rangle \in o \in \pi_{\mathcal{A}^{\prime}}(\alpha(f, X))$. The reverse inclusion is similar.

The above theorem says that one can execute Apply and Project operations in any order. The requirement of sensibility of f in the above theorem is important without it, the theorem would not hold. The reason is that when we do a Project , some attributes of objects might be eliminated. The sensibility requirement ensures that the transformation function behaves the same way on attributes common to an object and the projection of that object on the fields in \mathcal{A}^{\prime}. The following theorem says that Project and Select commute as long as all attributes mentioned in the selection condition also occur in the set of attributes involved in the projection.

Theorem 2.3.6 Suppose C is a selection condition all of whose attributes occur in a projectable attribute set \mathcal{A}^{\prime}. Then it is true that $\pi_{\mathcal{A}^{\prime}}\left(\sigma_{C}(X)\right)=\sigma_{C}\left(\pi_{\mathcal{A}^{\prime}}(X)\right)$.

Proof of Theorem 2.3.6. The proof follows immediately from the fact that neither selection nor projection change the values of any attributes.

2.3.4 The Rename Operator

A common operator in relational databases is the renaming operator that provides new names to attributes.

Definition 2.3.15 (Renaming Function) Suppose \mathcal{A}, \mathcal{B} are disjoint sets of attribute names. A renaming function r is an injective mapping from \mathcal{A} to \mathcal{B}.

We will often use notation such as $\left\{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}\right\}$ to indicate that a renaming function renames attribute A_{1} by B_{1} and A_{2} by B_{2}.

Definition 2.3.16 (Rename Operator) Suppose r is a renaming function from \mathcal{A} to \mathcal{B}. The renaming operator is defined as follows.

- The renaming of an object o, denoted $\rho^{r}(o)$ is the object $\langle o . i d,\{\langle r(A), v\rangle \mid A \in$ $\mathcal{A}\}\rangle$.
- The renaming of a slide s, denoted $\rho^{r}(s)$ is the slide $\langle s . i d$, s.Titles, s.Authors, $\left\{\rho^{r}(o) \mid o \in\right.$ Objects $\left.\}\right\rangle$.
- The renaming of a presentation p, denoted $\rho^{r}(p)$ is the presentation $\langle p$.Titles, p.Authors, $\left.\left\{\rho^{r}(s) \mid s \in p . S l i d e s\right\}, \operatorname{succ}^{\prime}\right\rangle$ such that $\operatorname{succ}^{\prime}\left(\rho^{r}(s)\right)=\rho^{r}\left(s^{\prime}\right)$ iff $\operatorname{succ}(s)=s^{\prime}$.
- The renaming of a presentation database $p D B$, denoted $\rho^{r}(D B)$ is the presentation database $\left\{\rho^{r}(p) \mid p \in p D B\right\}$.

2.3.5 The Cartesian Product

In this section, I define the Cartesian Product operation which forms the basis for Join .

Definition 2.3.17 (Attribute Merge Function) An attribute merge function is a mapping g that takes as input an attribute name A and a set of values from $\operatorname{dom}(A)$, and returns as output, a value in dom (A). When the second argument of g is a singleton $\{v\}$, then $g(A,\{v\})=v$.

Attribute merge functions are used in the Cartesian Product operation to merge attributes that have the same name. In classical relational algebra this situation is avoided by insisting on renaming attributes with the same name, but this is perhaps more restrictive than we need here.

Example 2.3.9 When merging object locations, we may want to return as output, a bounding box that bounds the rectangles associated with the two input locations. This is an attribute merge function $g_{m b r}\left(L o c,\left\{\left(l x_{1}, l y_{1}, r x_{1}, r y_{1}\right),\left(l x_{2}, l y_{2}, r x_{2}\right.\right.\right.$, $\left.\left.\left.r y_{2}\right)\right\}\right)=\left(\min \left(l x_{1}, l x_{2}\right), \min \left(l y_{1}, l y_{2}\right), \max \left(r x_{1}, r x_{2}\right), \max \left(r y_{1}, r y_{2}\right)\right)$. Likewise, when merging object data strings, one may want to use a simple concatenation with carriage returns (CRs) between the strings. This can be defined as the attribute merge function $g_{\text {cat }}\left(\right.$ Data, $\left.\left\{s_{1}, \ldots, s_{n}\right\}\right)=s_{1} C R \ldots C R s_{n}$ where $C R$ is the carriage return character.

Definition 2.3.18 (Object Product) Suppose o_{1}, o_{2} are objects and g is an attribute merge function. The Cartesian Product of o_{1}, o_{2} under attribute merge function g, denoted $o_{1} \times{ }^{g} o_{2}$ is the object o such that:

1. o. $i d=o_{1} . i d \cup o_{2} . i d$;
2. o. $\mathrm{AVP}=\left\{\langle A, v\rangle \mid\left(\langle A, v\rangle \in o_{1} . \mathrm{AVP}\right.\right.$ and there is no attribute-value pair of the form $\left.\langle A,-\rangle \in o_{2} . \mathrm{AVP}\right)$ or $\left(\langle A, v\rangle \in o_{2} . \mathrm{AVP}\right.$ and there is no attributevalue pair of the form $\langle A,-\rangle \in o_{1}$. AVP) or there exists $\left\langle A, v_{1}\right\rangle \in o_{1}$. AVP and $\left\langle A, v_{2}\right\rangle \in o_{2}$. AVP and $\left.g\left(A,\left\{v_{1}, v_{2}\right\}\right)=v\right\}$.

Example 2.3.10 Suppose we merge the title $\left(o_{111}\right)$ and the subtitle $\left(o_{112}\right)$ objects on slide s_{11} ("Flowers.ppt") using $g_{\text {cat }}$ and $g_{m b r}$. The resulting object $o_{111} \times{ }^{g_{c a t}, g_{m b r}}$ $o_{112}=\left\langle\left\{o_{111}, o_{112}\right\},\{\langle\right.$ Type, TEXT \rangle,\langle Data, $x\rangle,\langle$ Font, Helvetica \rangle,\langle FontSize, 26 \rangle, \langle Loc, $(20,10,620,60)\rangle\}\rangle$ where x is the string "Flowers of the Mountains CR Presentation by John Smith".

Definition 2.3.19 (Slide Product) The CProduct of two slides s_{1}, s_{2} under the attribute merge function g, denoted $s_{1} \times{ }^{g} s_{2}$, is the slide s such that:

1. s. $i d=s_{1} . i d \cup s_{2} . i d$.
2. s.Titles $=s_{1}$.Titles $\cup s_{2}$.Titles.
3. s.Objects $=\left\{o_{1} \times{ }^{g} o_{2} \mid o_{1} \in s_{1}\right.$.Objects $\wedge o_{2} \in s_{2}$.Objects $\}$.

For example, when two slides s_{1}, s_{2} have two attributes A_{1}, A_{2} in common, then the single slide s in the slide product assigns to A_{1}, the value $g\left(A_{1},\left\{v_{1}, v_{1}^{\prime}\right\}\right)$ and $g\left(A_{2},\left\{v_{2}, v_{2}^{\prime}\right\}\right)$ where $v_{1}\left(\right.$ resp. $\left.v_{2}\right)$ is the value of attribute A_{1} in s_{1} and v_{1}^{\prime} (resp. v_{2}^{\prime}) is the value of attribute A_{2} in s_{2}. An example of CPRODUCT of two slides is given below.

Example 2.3.11 The Cartesian product of slides s_{11} and s_{12} ("Flowers" presentation) yields the slide given by $s_{11} \times^{g} s_{12}=\left\langle\left\{s_{11}, s_{12}\right\}\right.$, $\{$ "Title Slide", "Landscape Photos" $\}$, \{object cross products $\}\rangle$.

The CPRoduct of two presentations p_{1}, p_{2} is defined in exactly the same way as slide product except that all occurrences of s_{1}, s_{2} are replaced by p_{1}, p_{2} respectively and all occurrences of o_{1}, o_{2} are replaced by s_{1}, s_{2} respectively. In addition, when defining CPRODUCT of two presentations, we need to specify the succ function. Consider a slide $s=s_{1} \times{ }^{g} s_{2} \in p_{1} \times{ }^{g} p_{2}$.Slides. If $\operatorname{succ}\left(s_{2}\right)$ exists and equals s_{2}^{\prime}, then $\operatorname{succ}(s)=s_{1} \times{ }^{g} s_{2}^{\prime}$. If $\operatorname{succ}\left(s_{2}\right)$ does not exist, then $\operatorname{succ}(s)=\operatorname{succ}\left(s_{1}\right) \times{ }^{g} p_{2} \cdot$ Slides $_{\text {start }}$ where $\operatorname{succ}\left(s_{1}\right)$ denotes the successor of s_{1} according to presentation p_{1}. If $\operatorname{succ}\left(s_{1}\right)$ does not exist, then $\operatorname{succ}(s)=s_{1} \times{ }^{g} \operatorname{succ}\left(s_{2}\right)$ assuming $\operatorname{succ}\left(s_{2}\right)$ exists. If neither $\operatorname{succ}\left(s_{1}\right), \operatorname{succ}\left(s_{2}\right)$ exist, then s is the last slide in the product.

The relationship between different pptA operators and CPRODUCT is complex because of attribute merge functions. In general, Cartesian Product is not commutative as attribute merge functions may not commute.

Definition 2.3.20 (Compatible Functions) Suppose f is an object transformation function and g is an attribute merge function. f and g are said to be compatible iff for all objects o, all attributes A, and all sets V of values from $\operatorname{dom}(A)$, it is the case that $g(A,\{f(v) \mid v \in V\})=v^{\prime}$. where $f(o)$.AVP contains the pair $\left\langle A, v^{\prime}\right\rangle$ and no other pair of the form $\langle A,-\rangle$ is in $f(o)$.AVP.

Theorem 2.3.7 (Pullback Theorem: Apply and CProduct) Suppose f is a sensible object transformation function and g is an attribute merge function such that f, g are compatible. Suppose X_{1} and X_{2} are both objects (or both slides, or both presentations $)$. Then $\alpha\left(f, X_{1} \times{ }^{g} X_{2}\right)=\alpha\left(f, X_{1}\right) \times{ }^{g} \alpha\left(f, X_{2}\right)$.

Proof of Theorem 2.3.7. We show the theorem when X_{1}, X_{2} are both objects. The cases when they are both slides/presentations are similar.

1. $\alpha\left(f, X_{1} \times{ }^{g} X_{2}\right) . i d=X_{1} . i d \cup X_{2} . i d=\alpha\left(f, X_{1}\right) \times{ }^{g} \alpha\left(f, X_{2}\right) . i d$.
2. Suppose $\langle A, v\rangle \in \alpha\left(f, X_{1} \times{ }^{g} X_{2}\right) . A V P$. Then there exists a $\left\langle A, v^{\prime}\right\rangle \in X_{1} \times{ }^{g} X_{2}$ such that $v=f\left(v^{\prime}\right)$. One of three conditions must now hold:

- $\left\langle A, v^{\prime}\right\rangle \in X_{1} . A V P$ and no attribute value pair of the form $\langle A,-\rangle$ exists in $X_{2} . A V P$. In this case, $\left\langle A, f\left(v^{\prime}\right)\right\rangle=\langle A, v\rangle \in \alpha\left(f, X_{1}\right)$ and there is no pair of the form $\langle A,-\rangle \in \alpha\left(f, X_{2}\right)$. It follows that $\langle A, v\rangle \in \alpha\left(f, X_{1}\right) \times{ }^{g} \alpha\left(f, X_{2}\right) . A V P$.
- $\left\langle A, v^{\prime}\right\rangle \in X_{2} . A V P$ and no attribute value pair of the form $\langle A,-\rangle$ exists in $X_{1} . A V P$. This case is the mirror image of the previous case.
- In this case, we have $\left\langle A, v_{1}\right\rangle \in X_{1} . A V P$ and $\left\langle A, v_{2}\right\rangle \in X_{2} . A V P$ and $g\left(A,\left\{v_{1}, v_{2}\right\}=v^{\prime}\right.$. By definition, we know that $\left\langle A, f\left(v_{1}\right) \in \alpha\left(f, X_{1}\right) . A V P\right.$ and $\left\langle A, f\left(v_{2}\right) \in \alpha\left(f, X_{2}\right) . A V P\right.$. By definition of CPRODUCT , it follows that $\left\langle A, g\left(A,\left\{f\left(v_{1}, f\left(v_{2}\right)\right\}\right)\right\rangle \in \alpha\left(f, X_{1}\right) \times{ }^{g} \alpha\left(f, X_{2}\right) . A V P\right.$. As f, g are compatible, we know that, $g\left(A,\left\{f\left(v_{1}, f\left(v_{2}\right)\right\}\right)=g\left(A,\left\{v_{1}, v_{2}\right\}\right)\right.$ which means that

$$
\langle A, v\rangle \in \alpha\left(f, X_{1}\right) \times^{g} \alpha\left(f, X_{2}\right) .
$$

The reverse inclusion may be proved in a similar manner.

Thus, when f is sensible and when certain conditions hold, APPLY may be pushed inside a CProduct . In ordinary relational databases, we can push selection inside a Cartesian Product. This is also possible in PowerPoint databases as long as the selection condition does not involve common attributes.

Theorem 2.3.8 (Pushing Select Inside CProduct) Suppose g is an attribute merge function, X_{1} and X_{2} are both objects (or both slides, or both presentations), and C is a conjunctive selection condition. Furthermore, suppose $C=C_{1} \wedge C_{2} \wedge C_{3}$
where C_{1} only mentions attributes in X_{1} and C_{2} only mentions attributes in X_{2} and C_{3} mentions attributes in both. Then $\sigma_{C}\left(X_{1} \times{ }^{g} X_{2}\right)=\sigma_{C_{3}}\left(\sigma_{C_{1}}\left(X_{1}\right) \times{ }^{g} \sigma_{C_{2}}\left(X_{2}\right)\right)$.

Proof of Theorem 2.3.8. We show that each of the components of $\sigma_{C}\left(X_{1} \times{ }^{g} X_{2}\right)$ and $\sigma_{C_{3}}\left(\sigma_{C_{1}}\left(X_{1}\right) \times{ }^{g} \sigma_{C_{2}}\left(X_{2}\right)\right)$ are identical.

1. $\sigma_{C}\left(X_{1} \times{ }^{g} X_{2}\right) . i d=X_{1} . i d \cup X_{2} . i d=\sigma_{C_{3}}\left(\sigma_{C_{1}}\left(X_{1}\right) \times{ }^{g} \sigma_{C_{2}}\left(X_{2}\right)\right) . i d$.
2. Suppose $\langle A, v\rangle \in \sigma_{C}\left(X_{1} \times{ }^{g} X_{2}\right)$. This means that $\langle A, v\rangle$ satisfies condition C. As $\langle A, v\rangle \in \sigma_{C}\left(X_{1} \times{ }^{g} X_{2}\right)$, it means that one of three cases arises:

- $\langle A, v\rangle \in X_{1} . A V P$ and no attribute value pair of the form $\langle A,-\rangle$ exists in $X_{2} . A V P$. In this case, it is clear that $\langle A, v\rangle$ satisfies C_{1}. Furthermore, there is no attribute value pair of the form $\langle A,-\rangle$ in $X_{2} . A V P$. Hence, $\langle A, v\rangle \in \sigma_{C_{3}}\left(\sigma_{C_{1}}\left(X_{1}\right) \times{ }^{g} \sigma_{C_{2}}\left(X_{2}\right)\right)$.
- $\langle A, v\rangle \in X_{2} . A V P$ and no attribute value pair of the form $\langle A,-\rangle$ exists in $X_{1} . A V P$. This case is the mirror image of the preceding case.
- In this case, we have $\left\langle A, v_{1}\right\rangle \in X_{1} . A V P$ and $\left\langle A, v_{2}\right\rangle \in X_{2} . A V P$ and $g\left(A,\left\{v_{1}, v_{2}\right\}=v\right.$. Clearly, $\left\langle A, v_{1}\right\rangle$ satisfies C_{1}, C_{3} and $\left\langle A, v_{2}\right\rangle$ satisfies C_{2}, C_{3}. It follows immediately that $\langle A, v\rangle \in \sigma_{C_{3}}\left(\sigma_{C_{1}}\left(X_{1}\right) \times{ }^{g} \sigma_{C_{2}}\left(X_{2}\right)\right)$.

The reverse inclusion may be proved in a similar manner.

2.3.6 The Join Operator

I define the important concept of a JOIN, generalizing the "conditional join" in relational databases. Let us first define an object join condition.

Definition 2.3.21 (Object Join Condition (OJC)) An object condition C is called an object join condition iff it has two root variables, denoted $O_{1}, O_{2} \in V_{o}$ respectively, in it.

Without loss of generality, we will always assume that the variables in an OJC are called O_{1}, O_{2}.

Definition 2.3.22 (Join Operator) Suppose C is an OJC and f is an attribute merge condition.

1. The join of two objects o_{1}, o_{2} under f, C, denoted $o_{1} \bowtie_{C}^{f} o_{2}$ is defined as $\operatorname{merge}_{f}\left(o_{1}, o_{2}\right)$ if $C\left[O_{1} / o_{1}, O_{2} / o_{2}\right]$ is true, and undefined otherwise. Here, merge $_{f}\left(o_{1}, o_{2}\right)$ merges the objects o_{1}, o_{2} 's common attributes together in accordance with the attribute merge function f (other attributes are left unchanged). As usual, $C\left[O_{1} / o_{1}, O_{2} / o_{2}\right]$ denotes the condition obtained by replacing all occurrences of $O_{1}\left(\right.$ resp. $\left.O_{2}\right)$ in C by o_{1} (resp. o_{2}).
2. The join of two slides s_{1}, s_{2} under f, C, denoted $s_{1} \bowtie_{C}^{f} s_{2}$ is the slide s such that:

- $s . i d=s_{1} . i d \cup s_{2} . i d$.
- s.Titles $=s_{1}$.Titles $\cup s_{2}$.Titles.
- s.Objects $=\left\{o \mid o \in\left(s_{1} \times{ }^{f} s_{2}\right)\right.$.Objects $\wedge o_{1} \bowtie_{C}^{f} o_{2}$ is defined $\}$.

3. The join of two presentations p_{1}, p_{2} under C, denoted $p_{1} \bowtie_{C} p_{2}$ is defined similarly:

- p. Titles $=p_{1}$.Titles $\cup p_{2}$.Titles.
- p.Authors $=p_{1}$.Authors $\cup p_{2}$.Authors.
- p.Slides $=\left\{s \mid s \in\left(p_{1} \times{ }^{f} p_{2}\right)\right.$.Slides \wedge s.Objects $\left.\neq \emptyset\right\}$.

Notice that in this case, we must still define succ. If $s \in p_{1} \bowtie_{C} p_{2}$, then we say that $\operatorname{succ}(s)=s^{\prime}$ where $s^{\prime} \in p_{1} \bowtie_{C} p_{2}$.Slides and there is an integer i such that $s^{\prime}=\operatorname{succ}_{\text {prod }}^{i}(s)$ where succ $_{\text {prod }}$ denotes the successor relationship in $p_{1} \times{ }^{f} p_{2}$ and for all $1 \leq j<i$, $\operatorname{succ}_{p r o d}^{j}(s)$ is not in $p_{1} \bowtie_{C} p_{2}$.Slides.

Theorem 2.3.9 (Pullback Theorem: Apply and Join) Suppose f is a sensible object transformation function and g is an attribute merge function such that f, g are compatible. Suppose X_{1} and X_{2} are both objects (or both slides, or both presentations). Then $\alpha\left(f, X_{1} \bowtie^{g} X_{2}\right)=\alpha\left(f, X_{1}\right) \bowtie^{g} \alpha\left(f, X_{2}\right)$.

Proof of Theorem 2.3.9. Similar to the proof of Theorem 2.3.7.
The following theorem on pushing selection inside join is similar to that for pushing selection inside a Cartesian Product.

Theorem 2.3.10 (Pushing Select Inside Join) Suppose f is an object transformation function and g is an attribute merge function. Suppose X_{1} and X_{2} are both objects (or both slides, or both presentations) and suppose C is a conjunctive selection condition. Furthermore, suppose $C=C_{1} \wedge C_{2} \wedge C_{3}$ where C_{1} only mentions attributes in X_{1} and C_{2} only mentions attributes in X_{2} and C_{3} mentions attributes in both, and D is an OJC. Then $\sigma_{C}\left(X_{1} \bowtie_{D}^{g} X_{2}\right)=\sigma_{C_{3}}\left(\sigma_{C_{1}}\left(X_{1}\right) \bowtie_{D}^{g} \sigma_{C_{2}}\left(X_{2}\right)\right)$.

Proof of Theorem 2.3.10. Similar to the proof of Theorem 2.3.8.

2.3.7 Set Operators

The union of two presentations is (intuitively) the result of combining their slides together. The intersection of two presentations restricts the result to slides that are present in both presentations. Finally, the difference of two presentations returns slides that are present in the first presentation but do not occur in the second one.

However, all these operations assume that we have a mechanism for determining when a slide is "equal" to another slide. In practice, however, we may consider two slides to be equivalent in many different cases. For example, two slides may visually look the same but may have different sets of authors - this could arise in the case of plagiarism for instance. Alternatively, they may have the same content, but may use different colors or fonts. Should the slides involved be considered the same under these two conditions?

I allow the user to make this decision. Accordingly, set operations all use a binary relation \sim on slides. This binary relation determines when two slides are considered equivalent. The user can execute a set operation under a given binary relation \sim. In the system, this would correspond to selecting an option from a given menu of choices and executing queries under that option. The \sim operator is not required to be an equivalence relation at this point - it will be required later for some of the equivalence theorems to work.

Definition 2.3.23 (Presentation Set Operators) The union of two presentations p_{1}, p_{2} with respect to " \sim " is a new presentation $p_{1} \cup \sim p_{2}$ such that

$$
\begin{aligned}
\left(p_{1} \cup \sim p_{2}\right) . i d & =p_{1} \cdot i d \cup p_{2} . i d \\
\left(p_{1} \cup \sim p_{2}\right) . \text { Titles } & =p_{1} \text {.Titles } \cup p_{2} \text {. Titles } \\
\left(p_{1} \cup \sim p_{2}\right) . \text { Authors } & =p_{1} \text {.Authors } \cup p_{2} \text {.Authors } \\
\left(p_{1} \cup \sim p_{2}\right) . \text { Slides } & =p_{1} . \text { Slides } \cup\left\{s \mid s \in p_{2} . \text { Slides } \wedge\left(\forall s^{\prime} \in p_{1} \text {.Slides }\right) s \nsim s^{\prime}\right\} \\
\left(p_{1} \cup \sim p_{2}\right) . \text { succ } & =\text { succ }^{\prime}
\end{aligned}
$$

The intersection of p_{1}, p_{2} with respect to " \sim " is a new presentation $p_{1} \cap \sim p_{2}$ such that

$$
\begin{aligned}
\left(p_{1} \cap \sim p_{2}\right) . \text { Titles } & =p_{1} \text {.Titles } \cap p_{2} \text {. Titles } \\
\left(p_{1} \cap \sim p_{2}\right) . \text { Authors } & =p_{1} \text {.Authors } \cap p_{2} \text {.Authors }
\end{aligned}
$$

$$
\begin{aligned}
\left(p_{1} \cap \sim p_{2}\right) \cdot i d & =p_{1} \cdot i d \cap p_{2} \cdot i d \\
\left(p_{1} \cap \sim p_{2}\right) . \text { Slides } & =\left\{s \mid s \in p_{1} . \text { Slides } \wedge\left(\exists s^{\prime} \in p_{2} . \text { Slides }\right) s \sim s^{\prime}\right\} \\
\left(p_{1} \cap \sim p_{2}\right) . s u c c & =\text { succ }^{\prime}
\end{aligned}
$$

Finally, the difference of p_{1}, p_{2} with respect to " \sim " is a new presentation $p_{1}-\sim p_{2}$ such that

$$
\begin{aligned}
\left(p_{1}-\sim p_{2}\right) \cdot i d & =p_{1} \cdot i d-p_{2} \cdot i d \\
\left(p_{1}-\sim p_{2}\right) \cdot \text { Titles } & =p_{1} \cdot \text { Titles }-p_{2} \cdot \text { Titles } \\
\left(p_{1}-\sim p_{2}\right) \cdot \text { Authors } & =p_{1} \cdot \text { Authors }-p_{2} \cdot \text { Authors } \\
\left(p_{1}-\sim p_{2}\right) \cdot \text { Slides } & =\left\{s \mid s \in p_{1} \cdot \text { Slides } \wedge\left(\forall s^{\prime} \in p_{2} \cdot \text { Slides }\right) s \nsim s^{\prime}\right\} \\
\left(p_{1}-\sim p_{2}\right) \cdot s u c c & =\text { succ }^{\prime}
\end{aligned}
$$

In all three cases, succ' is defined so that the result retains ordering of the slides in both presentations and slides from p_{1} occur before slides from p_{2}.

Set operators on slides can be defined in a similar manner.

Definition 2.3.24 (Slide Set Operators) Suppose there is a binary relation " ~" defined on objects. The union of two slides s_{1}, s_{2} with respect to " \sim " is a new slide $s_{1} \cup_{\sim} s_{2}$ such that

$$
\begin{aligned}
\left(s_{1} \cup_{\sim} s_{2}\right) \cdot i d & =s_{1} \cdot i d \cup s_{2} \cdot i d \\
\left(s_{1} \cup s_{2}\right) \cdot \text { Titles } & =s_{1} \cdot \text { Titles } \cup s_{2} \cdot \text { Titles } \\
\left(s_{1} \cup_{\sim} s_{2}\right) \cdot \text { Objects } & =s_{1} \cdot \text { Objects } \cup\left\{o \mid o \in s_{2} \cdot \text { Objects } \wedge\left(\forall o^{\prime} \in s_{1} \cdot \text { Objects }\right) o \nsim o^{\prime}\right\}
\end{aligned}
$$

The intersection of s_{1}, s_{2} with respect to " \sim " is a slide $s_{1} \cap_{\sim} s_{2}$ such that

$$
\begin{aligned}
\left(s_{1} \cap \sim s_{2}\right) \cdot i d & =s_{1} \cdot i d \cap s_{2} \cdot i d \\
\left(s_{1} \cap \sim s_{2}\right) . \text { Titles } & =s_{1} \cdot \text { Titles } \cap s_{2} . \text { Titles } \\
\left(s_{1} \cap \sim s_{2}\right) . \text { Objects } & =\left\{o \mid o \in s_{1} \cdot \text { Objects } \wedge\left(\exists o^{\prime} \in s_{2} \cdot \text { Objects }\right) o \sim o^{\prime}\right\}
\end{aligned}
$$

Finally, the difference of s_{1}, s_{2} with respect to " \sim " is a new slide $s_{1}-\sim s_{2}$ such that

$$
\begin{aligned}
\left(s_{1}-\sim s_{2}\right) \cdot i d & =s_{1} \cdot i d-s_{2} \cdot \text { id } \\
\left(s_{1}-\sim s_{2}\right) \cdot \text { Titles } & =s_{1} \cdot \text { Titles }-s_{2} \cdot \text { Titles } \\
\left(s_{1}-\sim s_{2}\right) \cdot \text { Objects } & =\left\{o \mid o \in s_{1} \cdot \text { Objects } \wedge\left(\forall o^{\prime} \in s_{2} . \text { Objects }\right) o \nsim o^{\prime}\right\}
\end{aligned}
$$

Unlike the classical relational algebra case, pushing selection inside set operators requires that the binary relation \sim satisfy some additional conditions. Given an object (resp. slide, presentation) selection condition C, we say that C is \sim-compatible iff for all objects o_{1}, o_{2} (resp. slides s_{1}, s_{2}, presentations p_{1}, p_{2}) if $o_{1} \sim o_{2}$ (resp. $s_{1} \sim s_{2}$, $p_{1} \sim p_{2}$) then $C\left[O / o_{1}\right]$ holds iff $C\left[O / o_{2}\right]$ holds (resp. $C\left[S / s_{1}\right]$ holds iff $C\left[S / s_{2}\right]$ holds, $C\left[P / p_{1}\right]$ holds iff $C\left[P / p_{2}\right]$ holds).

The following theorem says that whenever selection conditions are \sim-compatible, we may push selection inside set operators.

Theorem 2.3.11 (Pushing Select Inside Set Operators) Suppose X_{1}, X_{2} are both slides (presentations) and x_{1}, x_{2} are both objects (slides). Suppose C is a selection condition that is \sim-compatible. Then:

$$
\begin{aligned}
\sigma_{C}\left(X_{1}\right) \cup_{\sim} \sigma_{C}\left(X_{2}\right) & =\sigma_{C}\left(X_{1} \cup_{\sim} X_{2}\right) \\
\sigma_{C}\left(X_{1}\right) \cap_{\sim} \sigma_{C}\left(X_{2}\right) & =\sigma_{C}\left(X_{1} \cap_{\sim} X_{2}\right) \\
\sigma_{C}\left(X_{1}\right)-\sim \sigma_{C}\left(X_{2}\right) & =\sigma_{C}\left(X_{1}-\sim X_{2}\right)
\end{aligned}
$$

Proof of Theorem 2.3.11. We show that $\sigma_{C}\left(X_{1}\right) \cup_{\sim} \sigma_{C}\left(X_{2}\right)=\sigma_{C}\left(X_{1} \cup_{\sim} X_{2}\right)$ when X_{1}, X_{2} are slides. The other equivalences have similar proofs.

Suppose $o \in \sigma_{C}\left(X_{1}\right) \cup_{\sim} \sigma_{C}\left(X_{2}\right)$. In this case, o satisfies C and either $o \in \sigma_{C}\left(X_{1}\right)$ or $o \in \sigma_{C}\left(X_{2}\right)$ and there is no $o^{\prime} \in \sigma_{C}\left(X_{1}\right)$ such that $o^{\prime} \sim o$. But then $o \in X_{1} \cup_{\sim} X_{2}$ and as o satisfies C, it follows that $o \in \sigma_{C}\left(X_{1} \cup_{\sim} X_{2}\right)$. The reverse inclusion is similar.

Intuitively, \sim-compatibility is necessary for the above theorem because it is possible for two objects to satisfy $o_{1} \sim o_{2}$ but we may not have both objects satisfy a given selection condition. Note that the above theorem does not even require \sim to be an equivalence relation.

Likewise, we are interested in the possibility of pushing the Apply operator inside a set operation. Again, this can be done only under some conditions that \sim and the transformation function need to satisfy. We say an object (resp. slide, presentation) transformation function f preserves \sim iff $\forall x \forall y x \sim y \leftrightarrow f(x) \sim f(y)$. The following theorem says that in this case, we may push the APPLY operation inside a set operation.

Theorem 2.3.12 (Pushing Apply Inside Set Operators) Suppose X_{1}, X_{2} are both slides (presentations) and x_{1}, x_{2} are both objects (slides). Suppose f is a transformation function that is \sim-compatible. Then:

$$
\begin{aligned}
& \alpha\left(X_{1}, f\right) \cup_{\sim} \alpha\left(X_{2}, f\right)=\alpha\left(X_{1} \cup_{\sim} X_{2}, f\right), \\
& \alpha\left(X_{1}, f\right) \cap_{\sim} \alpha\left(X_{2}, f\right)=\alpha\left(X_{1} \cap_{\sim} X_{2}, f\right), \\
& \alpha\left(X_{1}, f\right)-_{\sim} \alpha\left(X_{2}, f\right)=\alpha\left(X_{1}-_{\sim} X_{2}, f\right) .
\end{aligned}
$$

Proof of Theorem 2.3.12. We show that $\alpha\left(X_{1}, f\right) \cap_{\sim} \alpha\left(X_{2}, f\right)=\alpha\left(X_{1} \cap \sim X_{2}, f\right)$ when X_{1}, X_{2} are slides. Proofs of the other equivalences are similar.

Suppose $o \in \alpha\left(X_{1}, f\right) \cap_{\sim} \alpha\left(X_{2}, f\right)$. Then $o \in \alpha\left(X_{1}, f\right)$ and there exists an $o^{\prime} \in \alpha\left(X_{2}, f\right)$ such that $o \sim o^{\prime}$. As $o \in \alpha\left(X_{1}, f\right)$, there is an $o_{1} \in X$ such that $o=f\left(o_{1}\right)$. Likewise, there is an $o_{2} \in X_{2}$ such that $o=f\left(o_{2}\right)$. As f is strongly \sim-preserving, $o_{1} \sim o_{2}$. Hence, $o_{1} \in X_{1} \cup X_{2}$ and so $o=f\left(o_{1}\right) \in \alpha\left(X_{1} \cup_{\sim} X_{2}, f\right)$. The reverse inclusion is similar.

Again, without the restriction of \sim-preservation, the above theorem would be false.

Last, but not least, let us consider whether projection can be pushed inside set operators. A set \mathcal{A}^{\prime} of attributes is said to be \sim-preserving iff for all objects o_{1}, o_{2} it is the case that $o_{1} \sim o_{2} \leftrightarrow o_{1}^{\prime} \sim o_{2}^{\prime}$ where $o_{1}^{\prime}, o_{2}^{\prime}$ denote the restriction of o_{1}, o_{2} respectively to the attributes in \mathcal{A}^{\prime}. The following theorem says that when objects (resp. slides, presentations) are \sim-preserving w.r.t. \mathcal{A}, then we can push projection into set operations.

Theorem 2.3.13 (Pushing Project Inside Set Operators) Suppose X_{1}, X_{2} are both slides (presentations) and x_{1}, x_{2} are both objects (slides). Further suppose that \mathcal{A}^{\prime} is \sim-preserving. Then:

$$
\begin{aligned}
& \pi_{\mathcal{A}^{\prime}}\left(X_{1}\right) \cup_{\sim} \pi_{\mathcal{A}^{\prime}}\left(X_{2}\right)=\pi_{\mathcal{A}^{\prime}}\left(X_{1} \cup X_{2}\right), \\
& \pi_{\mathcal{A}^{\prime}}\left(X_{1}\right) \cap_{\sim} \pi_{\mathcal{A}^{\prime}}\left(X_{2}\right)=\pi_{\mathcal{A}^{\prime}}\left(X_{1} \cap \sim X_{2}\right), \\
& \pi_{\mathcal{A}^{\prime}}\left(X_{1}\right)-\sim \pi_{\mathcal{A}^{\prime}}\left(X_{2}\right)=\pi_{\mathcal{A}^{\prime}}\left(X_{1}-\sim X_{2}\right) .
\end{aligned}
$$

Proof of Theorem 2.3.13. We show the proof of the equivalence $\pi_{\mathcal{A}^{\prime}}\left(X_{1}\right) \cap_{\sim} \pi_{\mathcal{A}^{\prime}}\left(X_{2}\right)=$ $\pi_{\mathcal{A}^{\prime}}\left(X_{1} \cap_{\sim} X_{2}\right)$ in the case when X_{1}, X_{2} are objects.

Suppose $o \in \pi_{\mathcal{A}^{\prime}}\left(X_{1}\right) \cap_{\sim} \pi_{\mathcal{A}^{\prime}}\left(X_{2}\right)$. In this case, there is an object $o_{1} \in \pi_{\mathcal{A}^{\prime}}\left(X_{1}\right)$ and an object $o_{2} \in \pi_{\mathcal{A}^{\prime}}\left(X_{2}\right)$ such that:

- o_{1} 's restriction, o_{1}^{\prime}, to the attributes in \mathcal{A}^{\prime} is o and
- $o_{1}^{\prime} \sim o_{2}^{\prime}$ where o_{2}^{\prime} is the restriction of some object in X_{2} to the attributes in \mathcal{A}^{\prime}.

As \mathcal{A}^{\prime} is \sim-preserving, it follows that $o_{1} \sim o_{2}$. But then $o_{1} \in X_{1} \cap_{\sim} X_{2}$ and the retriction to o_{1} to the attributes in \mathcal{A}^{\prime} is o - thus, $o \in \pi_{\mathcal{A}^{\prime}}\left(X_{1} \cap X_{2}\right)$. The reverse inclusion is similar.

The above theorem says that as long as \mathcal{A}^{\prime} is \sim-preserving, we can push Project inside the set operations.

2.4 Implementation and Cost Model

I have implemented the pptA algebra and query optimizer in $\mathrm{C}++$ on top of Oracle. My implementation, shown in Figure 2.3, also includes a command line interface for issuing queries and a web-based GUI (shown in Figure 2.4) written in PERL that helps the user state his query, executes the query, and renders its result to a sequence of JPEG images on a webpage. The system consists of over 12,500 lines of code.

For converting batches of PPT files into a relatively format-neutral representation stored in the database, I wrote a Visual Basic for Applications (VBA) program that accesses PowerPoint via Microsoft's COM API. Using the raw COM API or the "native COM support" from Visual C++ proved to be a daunting (and eventually impossible) task for us. This VBA program makes it possible to directly read all PPT files in a given directory and populate the database with essential information about what objects, slides, and presentations.

Figure 2.3: System Architecture.

The algebraic engine is implemented as a framework of $\mathrm{C}++$ classes. The most important classes are Object, Slide, and Show that represent objects, slides, and presentations respectively. An object ${ }^{3}$ in these classes can represent either a real entity present in the database (so called explicit object) or a query (i.e. an implicit object). A query may also be explicitly materialized and stored in the database. In this case, the implicit object is said to be materialized. Any implicit object can be materialized with the Create () function call. Implicit object materializations are deleted from the database when the corresponding objects are destroyed. To keep the query materialization, the user may want to call the Clone () function on an object. For implicit objects, this function will execute the query if needed, detach the materialization and keep it as an independent entity in the database. For explicit objects, the Clone () call will simply make a copy of the entity.

Figure 2.4: Web-Based GUI.

All algebraic operators are implemented as C++ routines containing embedded SQL statements. These programs are quite complex and may involve higher order

[^2]functions (e.g. APPLY is a higher order function), external function calls (e.g. in the case of cartesian product and Join where the operator is parameterized by a merge strategy, as well as in the case of the set operations where a binary \sim relation is invoked). To build a cost model for such queries, we needed to cost these operations. My cost estimates build upon traditional relational cost models, but account for the C++ implementations of the pptA operators which are not accounted for in relational algebra.

Let us associate two estimated quantities with each algebraic operation. $I()$ is the number of items (objects, slides, or presentations) returned and $C()$ is the cost estimate (in milliseconds of execution time). Table 2.1 shows the cost model for pptA operators on slides. The models for object and presentation operators are very similar. The constants of the form $k_{x x x}$ are dependent on the performance of the Oracle DBMS performance. Thus, $k_{d e l}$ is the average time to delete an object, $k_{s 1}$ is the average time required to evaluate a selection condition on a single object, and so forth. Constants of the form $n_{x x x}$ represent the typical selectivity of the set operators on the given data. Thus, n_{u} is the average percentage of objects copied from the second input by the union operation, etc.

Values for all these constants were obtained by running multiple pptA queries on the engine compiled with calibration code that I wrote. After observing the behavior of about 11,100 queries on the data generated for the experiments, I computed the values shown in Table 2.2.

To verify reliability of the cost model, I ran a query corresponding to each elementary operation on 100 random slides while measuring execution times. Several runs with different selectivities were made for queries that involve selection. I then compared cumulative execution time for each query type with the estimated time ob-

Table 2.1: Cost Model for Slide Operations.
tained from the cost model. The results, shown in Figure 2.5, confirm that the cost model produces estimates sufficiently close to the real execution times

$k_{\text {del }}$	27.6135	n_{u}	0.437376	n_{i}	0.212705	n_{d}	0.787295
$k_{a 0}$	12.2499	$k_{a 1}$	9.19035	$k_{s 0}$	12.5987	$k_{s 1}$	9.69176
$k_{p 0}$	12.5024	$k_{p 3}$	3.57006	$k_{r 0}$	12.5518	$k_{r 3}$	3.66911
$k_{j 0}$	33.02	$k_{j 1}$	2.0733	$k_{j 2}$	0.00133	$k_{j 3}$	22.4299
$k_{u 0}$	30.8862	$k_{u 1}$	12.4178	$k_{u 2}$	0.00486	$k_{u 3}$	90.524
$k_{i 0}$	30.0508	$k_{i 1}$	12.3043	$k_{i 2}$	0.005	$k_{u 3}$	5.60735
$k_{d 0}$	31.1229	$k_{d 1}$	12.3158	$k_{d 2}$	0.00484	$k_{d 3}$	4.92384

Table 2.2: Cost Coefficients.

Figure 2.5: Cost Estimation Experiments.

2.5 Experimental Results

I conducted three series of experiments to (i) validate the cost model (as described in the previous section), (ii) identify useful query equivalences, and (iii) assess the value
of the query optimization. This section describes the last two series of experiments.
To determine how the equivalence results of the preceding sections may be used to speed up query processing, I measured the performance of queries on simulated data. I ran the same query on 40 different slides, computing mean execution times, and plotting them as a function of query selectivity (10-100\% of all objects on a slide). Each slide followed one of 8 widely used templates (shown in Figure 2.6) and contained 6-11 objects with about 7 attributes each.

Figure 2.6: Simulated Slide Layouts.

Order of Select and Apply. Figure 2.7 shows execution times for $\sigma_{C}(\alpha(s, f))$ and $\alpha\left(\sigma_{C}(s), f\right)$ queries, where s is a slide, f is an object transformation function, and C is an object selection condition that selects a given percentage of objects on a slide. Three pairs of graphs are shown - these correspond to the cases when f takes 50 ms , 100 ms , and 200 ms to execute on each object. As can be seen, pushing Select inside APPLY is beneficial especially for lower C selectivities. This can be explained by the lower number of objects that get passed to APPLY. The effect becomes more pronounced as f gets slower: compare the 50 ms graphs with the 200 ms graphs.

Order of Apply and Join. Figure 2.8 shows execution times for $\alpha\left(s_{1}, f\right) \bowtie_{C}^{g} \alpha\left(s_{2}, f\right)$ and $\alpha\left(s_{1} \bowtie_{C}^{g} s_{2}, f\right)$ where s_{1}, s_{2} are slides, f is an object trans-

Figure 2.7: Select(Apply) Figure 2.8: Join(Apply) vs vs. Apply(Select). Apply(Join).

Figure 2.9: Join(Select) vs. Select(Join).
formation function, C is an object selection condition that selects a given percentage of objects from both input slides, and g is an object merge function that just returns the first of its arguments. Three pairs of graphs are shown corresponding to f taking $50 \mathrm{~ms}, 100 \mathrm{~ms}$, or 200 ms to execute on each object. The results confirm that pushing Apply inside Join lowers query complexity from quadratic to linear, as Apply gets to run on $2 n$ objects as opposed to n^{2}. Nevertheless, for lower C selectivities, having Apply outside is better as JoIn only produces a fraction of n^{2} objects. Thus, the choice of a query rewrite must depend on both the estimated selectivity of C and the expected execution time of f.

Order of Select and Join. Finally, Figure 2.9 shows execution times for $\sigma_{C_{2}}\left(s_{1}\right) \bowtie_{C_{1}}^{g} \sigma_{C_{2}}\left(s_{2}\right), \sigma_{C_{2}}\left(s_{1} \bowtie_{C_{1}}^{g} s_{2}\right)$, and $s_{1} \bowtie_{C_{1} \wedge C_{2}\left[O / O_{1}\right] \wedge C_{2}\left[O / O_{2}\right]}^{g} s_{2}$ where s_{1}, s_{2} are slides, C_{1} is an object join condition, C_{2} is an object selection condition, and g is an object merge function that just returns the first of its arguments. The C_{1} and C_{2} are chosen so that they select a given percentage of objects from both input slides. The results confirm that pushing Select inside Join speeds things up. Even better results are achieved by pushing Select condition into the Join condition though in other words, if we can take the selection condition and infer a new join condition,
then we often get even better results.
Benefits of Query Optimization. The next batch of experiments was used to observe the difference between executing an original query and its optimized equivalent. A set of 77 different queries were run on 100 random slides and real execution times of both the original and the optimized queries were measured. The resulting execution times are shown in Figure 2.11. The times shown in this graph include both the time required for query optimization and the time taken to execute the optimized query. The benefits of query optimization are clearly visible from the graph.

Figure 2.10: Optimization Times.

Figure 2.11: Estimated Query Execution Times. Execution Times.

Figure 2.11 shows estimated execution times for both original query sets and their optimized equivalents. From this figure, it appears that all optimization algorithms produce close results. Figure 2.10 shows that although their running time is different, all three optimization algorithms seem to consume negligently small time in comparison with the actual query execution. Finally, Figure 2.12 compares the real execution times of the non-optimized and optimized queries (including the optimization time). The benefits of optimization can be clearly seen at this figure.

2.6 Related Work

There have been two major efforts to date on querying multimedia presentations due to Lee et. al. [49, 46] and Adali et. al.[3]. Both these efforts attempt to model the playout of a presentation rather than the physical layout of the presentation. In [46], nodes in a graph are media streams, and edges denote a precedence ordering. PowerPoint stores data physically using the concepts of presentation, slides, and objects (within a slide) which is exactly what my model captures. This PowerPoint specific representation is quite different from that of [46] (who do not claim to query PowerPoint presentations). Lee et. al. [46] provide an SQL style language (called GVISUAL) and a calculus and prove that the two are equivalent in expressive power. I have not done this in this work. However, this work is the first to propose a cost model, and to evaluate equivalence results on such a cost model.

In [3], each node in a presentation graph is a non-interactive multimedia presentation, and an edge denotes an interaction that transitions from one node to another. In contrast, my model accurately captures the physical structure of PPT presentations whereas [3] manipulates a logical representation of a PPT presentation (which is a very different thing when building an implementation). As a consequence, I am able to have a cost model for pptA operations and an implementation that can be used to evaluate rewrite rules - [3] has neither. In addition, [3] allows playouts to be potentially infinite - of course, PowerPoint presentations are always finite and so by focusing on the physical layout of the presentations (rather than the possibly playouts of the presentation as [3] do), I avoid this problem.

2.7 Conclusions

In this chapter, I have presented a formal model of PowerPoint presentations as well as a relational algebra style algebra to query such PPT databases. This algebra includes new and interesting operators (such as the APPLY operator) as well as interesting join operators (that allow multiple presentations being merged to have common attributes whose values may be merged using a join function). I have proven a set of equivalence results within this algebra. I have developed a cost model for PPT presentations and built a prototype implementation of the system that stores and queries PPT presentation databases. I have conducted a detailed set of experiments to evaluate the efficacy of various equivalence results from the point of view of query rewriting.

Chapter 3

An Algebra for Audio

3.1 Introduction

There is an incredibly rich body of audio data available in the world today. This data comes from radio broadcasts, musical performances, educational lectures, sonars used by submarines and ships, and many other sources. Libraries, museums, recording studios, as well as surveillance agencies, have collected large amounts of audio recordings.

The wealth of available audio data naturally brings up the problem of its systematic storage and processing. The processing must, of course, include searching functions, but is not limited to them, as audio data often has to be amplified, attenuated, mixed, cleaned of noise and distortions, and so forth. The storage subsystem has to accommodate these operations by indexing the data in the best possible way, and for that we need to know how the data will be accessed. All these requirements can be addressed by a common theory about audio data processing.

However, to date, there is relatively little work on audio databases, and almost no theory for them (with the exception of [45]). Commercial support for audio exists
in Informix (with the MuscleFish datablade) [7, 8] and DB2 (with the audio data extenders) [76]. In research projects, audio is often used as a means for indexing the accompanying video $[85,39]$

Existing efforts in audio information processing can be roughly divided into the following topics: (i) data compression (MPEG), (ii) data delivery [29, 31], (iii) speaker and musical composition recognition (Gracenote,[33, 27]), (iv) speech recognition [71], and (v) word, or phrase search [71, 85]. To the best of my knowledge, no attempts were made to develop a framework that would abstract all the different operations people would like to perform on audio data in the same way the relational algebra abstracts operations on tabular data.

A glance at a standard sound processing package, such as CoolEdit, reveals that the most basic operations on audio include (i) changing volume and pitch, (ii) filtering, usually with frequency filters, (iii) mixing sounds, and (iv) adding special effects, such as fade-ins and fade-outs. When turning to music composition software, such as Cakewalk or Cubase, we also find a need to synchronize sounds from different sources (e.g. multiple MIDI channels, or a MIDI score and a waveform recording). Finally, when maintaining a database of audio recordings, there is an obvious need to search these recordings by occurance of certain keywords, phrases, tunes, or volume patterns.

Ideally, an Audio Database Algebra (ADA) must support all the above-mentioned operations in an integrated way that would allow, say, to search for a certain audio fragment and amplify its volume, or mix two instrumental recordings based on the timing information from their MIDI scores. In this chapter, I propose such an algebra and show some equivalences useful for the query optimization. Furthermore, I present several data structures for indexing audio data [26]. The experiments conducted using
these data structures show that they greatly accelerate such basic algebraic operations as selection, mixing, and matching of audio fragments. Finally, I describe a reference ADA system for creating and querying audio databases. The system consists of the algebraic engine (implemented as a library), the command line query interpreter, and the GUI.

Section 3.2 of this chapter defines the basic model for representing audio data. Section 3.3 covers algebraic operators and equivalences. Sections 3.4 and 3.5 deal with algorithms and data structures for indexing audio. Section 3.6 describes the ADA system implementation and the GUI. Section 3.7 discusses other works in audio databases. Finally, Section 3.8 provides some concluding remarks.

3.2 Audio Data Model

Figure 3.1 shows a very simple audio waveform. Though each waveform is played out continuously, it is typically decomposed into a sequence of discrete quanta. The example waveform in Figure 3.1 has 38 quanta of 500 microseconds (μs) each. Let us call the playback time of a single quantum ($500 \mu \mathrm{~s}$ in our example) the period δt of a waveform. A waveform also has a length ℓ (in our example $\ell=38$) which is the number of quanta.

An audio recording may contain one or more waveforms similar to the one shown in Figure 3.1. For example, a stereo recording may have two synchronized waveforms for the left and right channels. Waveforms may also be accompanied by other data, such as speech transcript, sequence of phonemes, frequency spectrum, MIDI score, or karaoke cues, that are tied to the same time quanta. Thus, audio lends itself to be described as a collection of synchronized data streams. To generalize this concept, let

Figure 3.1: Simple Waveform.
us introduce an audio stream. Let us assume the existence of some set of types - in addition each type τ has an associated nonempty set $\operatorname{dom}(\tau)$ called its domain.

Definition 3.2.1 (Audio Stream) An audio stream f of type τ and length ℓ is an ℓ tuple $f=\left\langle v_{0}, \ldots, v_{\ell-1}\right\rangle$ where each $v_{i} \in \operatorname{dom}(\tau)$.

Each stream f of type τ has a domain, $\operatorname{dom}(f)=\operatorname{dom}(\tau)$, which is a nonempty set. A stream f of length ℓ is a mapping of $[0, \ell)$ to $\operatorname{dom}(f)$. In other words, for each quantum $q, f(q)=f . v_{q}$ describes the value of stream f at the time quantum q.

For example, consider a stream na called normalized amplitude that maps $[0, \ell)$ to $[0,1]$. If $n a(5)=0.8$, then this means that the normalized amplitude of the fifth quantum of stream $n a$ is 0.8 . Examples of other streams include amplitude (nonnormalized), phonemes, and text transcript.

The amplitude stream may have dom(amplitude) $=\mathcal{N}$. Similarly, the stream phonemes may have a domain that consists of characters corresponding to phonemes. Likewise, the text transcript stream may have the set of all strings as its domain.

If $\operatorname{dom}(f)$ has greatest lower and least upper bounds (when f is numeric, or has a total ordering imposed on it), we will use $\min (f)$ and $\max (f)$ to represent these bounds.

Some audio streams may not be available all the time. For example, the text transcript is absent if there is no speech in the audio. For such cases, assume that each stream f 's domain has a special value $d v(f) \in \operatorname{dom}(f)$ called the default value of that stream and used when no actual value is available. In the example with the text transcript, one may assume that $d v(t e x t)=\epsilon$ (empty string).

To represent an audio recording as a whole, let us now define the concept of an audio file, that is a collection of several streams with the same length and period:

Definition 3.2.2 (Audio File) An audio file a is a tuple $a=\left\langle\ell, \delta t,\left\{f_{1}, \ldots, f_{n}\right\}\right\rangle$ where $\ell \geq 0$ is the length, $\delta t>0$ is the period, and f_{1}, \ldots, f_{n} are audio streams of length ℓ.

It is important to note that the streams constituting a single audio file may be stored in different physical files on disk. Throughout this chapter I talk about audio files, unless explicitly stated otherwise.

From the above discussion, it is clear that each audio stream is characterized by a set of parameters such as domain, default value, and so forth. Let us formalize these parameters by defining a schema:

Definition 3.2.3 (Audio Schema) An audio stream schema for a stream f is a tuple $\langle d o m, d v\rangle$ where $\operatorname{dom}(f)$ is the stream type or domain, and $d v(f) \in \operatorname{dom}(f)$ is the default value. An audio schema for a file a is a collection of audio stream schemas for all streams in a.

Later on, we will extend the audio stream schema with more parameters, as they become relevant.

Example 3.2.1 (Audio Stream Schema) Here are some examples of audio stream schemas:

f	$\operatorname{dom}(f)$	$d v(f)$
normalized amplitude	$[0,1]$	0
frequency spectrum	$2^{\mathcal{N} \times[0,1]}$	$\langle 0,0\rangle$
bandwidth	\mathcal{N}	0
phoneme stream	\{all phonemes, $\epsilon\}$	ϵ
text transcript	$\{$ all strings, $\epsilon\}$	ϵ

We are finally ready to define an audio database:

Definition 3.2.4 (Audio Database) An audio database ADB is a collection of audio files adhering to the same schema.

3.3 Algebraic Operators

Throughout the rest of this chapter, I assume the existence of an arbitrary but fixed audio schema with respect to which I define all algebraic operators. I will call it the audio database schema. But before we look at algebraic operators, let us define the concept of a selection condition.

3.3.1 Selection Conditions

Assume the existence of a set C_{a} of all possible audio files and a set V_{a} of all variables ranging over C_{a}. Let us denote audio constants (members of C_{a}) with a small a_{*} and audio variables (members of V_{a}) with a capital A_{*}.

Definition 3.3.1 (Term) (i) Any member of a set τ is a term of type τ. (ii) If X is an audio constant or variable, and f is an audio stream of type τ, then $X . f$ is a term of type τ.

For example, $A . n a$ is a term (assuming A is an audio variable).

Definition 3.3.2 (Atom) (i) Given two terms t_{1}, t_{2} and a binary relation \sim, $t_{1} \sim t_{2}$ is an atom. (ii) TRUE and FALSE are atoms.

For example, A.na >0.7 is an atom. When applied to a single audio file, this atom is satisfied by all quanta in the file that have a normalized amplitude over 0.7. A formal definition of satisfaction will be presented shortly.

Definition 3.3.3 (Selection Condition) (i) Any atom is a selection condition. (ii) If C is a selection condition and $d \in[0$, length $(f))$, then before (C, d) and $\operatorname{after}(C, d)$ are selection conditions. (iii) If C_{1}, C_{2} are selection conditions then $C_{1} \wedge C_{2}, C_{1} \vee C_{2}$, and $\neg C_{1}$ are also selection conditions.

For instance, A.na $>0.7 \wedge$ A.na <0.9 is a selection condition. When applied to a single audio file, this selection condition is satisfied by all quanta in the file that have a normalized amplitude over 0.7 but less than 0.9 .
before $(A . n a>0.7,5)$ is also a selection condition. When applied to a single audio file, this selection condition is satisfied by all quanta q in the file such that a quantum q^{\prime} in the file satisfies $A . n a>0.7$ and q^{\prime} occurs at most 5 quanta before q.

I now define the valuation of variable-free terms - this is needed in order to define satisfaction of selection conditions.

Definition 3.3.4 (Valuation) The valuation λ is a function that takes a variable-free τ-term, c, and a time quantum q, and returns a value from τ such that

$$
\begin{aligned}
\lambda(a \cdot f, q) & =a \cdot f(q) \\
\lambda(c, q) & =c
\end{aligned}
$$

Definition 3.3.5 (Satisfaction) Let us define a function λ that takes a variable-free selection condition C, a time quantum q, and returns either 1 (satisfied) or 0 (not satisfied).

$$
\begin{aligned}
\lambda(T R U E, q) & =1 \\
\lambda(F A L S E, q) & =0 \\
\lambda(x \sim y, q) & = \begin{cases}1 & \text { if } \lambda(x, q) \sim \lambda(y, q) \\
0 & \text { otherwise }\end{cases} \\
\lambda(\text { before }(C, d), q) & = \begin{cases}1 & \text { if } \exists q^{\prime} \in[q, q+d] \lambda\left(C, q^{\prime}\right) \\
0 & \text { otherwise }\end{cases} \\
\lambda(\operatorname{after}(C, d), q) & = \begin{cases}1 & \text { if } \exists q^{\prime} \in[q-d, q] \lambda\left(C, q^{\prime}\right) \\
0 & \text { otherwise }\end{cases} \\
\lambda\left(C_{1} \wedge C_{2}, q\right) & =\min \left(\lambda\left(C_{1}, q\right), \lambda\left(C_{2}, q\right)\right) \\
\lambda\left(C_{1} \vee C_{2}, q\right) & =\max \left(\lambda\left(C_{1}, q\right), \lambda\left(C_{2}, q\right)\right) \\
\lambda(\neg C, q) & =1-\lambda(C, q)
\end{aligned}
$$

A variable-free condition C is called satisfied or true at quantum q iff $\lambda(C, q)=1$. Otherwise, C is false.

A local condition is a special kind of a selection condition that can be evaluated at a single instance of time, without knowledge of other instances:

Definition 3.3.6 (Local Selection Condition) A selection condition C is called local if it does not contain any before() or after() statements.

One important characteristic of a selection condition is its footprint - this is a set of all stream names appearing in the condition w.r.t. a variable:

Definition 3.3.7 (Condition Footprint) Given a condition C and a variable A, the condition footprint of C w.r.t. A is a set of stream names $f p_{A}(C)$ such that:

$$
\begin{aligned}
f p_{A}(-\sim A \cdot f) & =\{f\} \\
f p_{A}\left(A \cdot f \sim{ }_{-}\right) & =\{f\} \\
f p_{A}\left(A \cdot f_{1} \sim A \cdot f_{2}\right) & =\left\{f_{1}, f_{2}\right\} \\
f p_{A}(\text { before }(C, d)) & =f p_{A}(C) \\
f p_{A}(\operatorname{after}(C, d)) & =f p_{A}(C) \\
f p_{A}\left(C_{1} \wedge C_{2}\right) & =f p_{A}\left(C_{1}\right) \cup f p_{A}\left(C_{2}\right) \\
f p_{A}\left(C_{1} \vee C_{2}\right) & =f p_{A}\left(C_{1}\right) \cup f p_{A}\left(C_{2}\right) \\
f p_{A}(\neg C) & =f p_{A}(C)
\end{aligned}
$$

3.3.2 The Select Operator

Selection is one of the most basic algebraic operations. For instance, given a recording of a court session, one may want to pick all judge's statements from it. Alternatively, consider the "squelch" function used in miniature voice recorders and shortwave receivers that turns sound on whenever its volume exceeds some threshold. These are just two of many examples where audio selection is useful. When applied to a single audio file, selection chooses all parts of this file that satisfy given condition. When applied to an audio database, it applies the operator to each file and returns the resulting files.

Definition 3.3.8 (Select Operator) Given an audio file a (database ADB) and a selection condition C with a single free audio variable A, the SELECT operator pro-
duces a new audio file (database)

$$
\begin{aligned}
\sigma_{C}(a) & =\left\langle a \cdot \ell, a . \delta t,\left\{f\left|f(q)=\left\{\begin{array}{ll}
a . f(q) & \text { if } \lambda(C[A / a], q)=1 \\
d v(f) & \text { otherwise }
\end{array}\right\}\right\rangle,\right.\right. \\
\sigma_{C}(\mathrm{ADB}) & =\left\{\sigma_{C}(a) \mid a \in \mathrm{ADB}\right\} .
\end{aligned}
$$

Here, $C[A / a]$ denotes the replacement of all occurrences of the audio variable A in C by a.

Thus, the select operator looks at an audio file f and retains all quanta that satisfy the selection condition. Stream values for all other quanta are replaced with the default values. Figure 3.2 shows a simple selection query example $\sigma_{A . n a>0.3}(a)$

Figure 3.2: Select Example.

In a more complex example, consider a court recording a. This file may have a stream a.speaker that identifies the current speaker. Then we can select judge's statements with $\sigma_{\text {A.speaker }=j u d g e}(a)$. Alternatively, knowing the base timbre of judge's voice, represented with a set of frequencies $F_{j u d g e}$, the same operation can be performed with $\sigma_{F_{j u d g e} \subseteq A . f r e q}(a)$, albeit with lower reliability.

In the instance of a squelch function with threshold k, the selection can be done with a $\sigma_{A . n a>k}(a)$ query. To make things more interesting, let us require the squelch to stay on for 500 quanta after the volume falls below the threshold: $\sigma_{\text {after }(A \cdot v o l>k, 500)}(a)$.

Unlike the relational algebra [80], one cannot arbitrarily change the order of selections in ADA. The order of selection operators can be changed as long as the selection conditions involved are local selection conditions.

Theorem 3.3.1 (Swapping Select Operators) Given two Select operators with local selection conditions C_{1}, C_{2}, it is true that

$$
\sigma_{C_{1}}\left(\sigma_{C_{2}}(a)\right)=\sigma_{C_{2}}\left(\sigma_{C_{1}}(a)\right) .
$$

Proof of Theorem 3.3.1. This proof is similar to the proof of commutativity of the classical relational Select . As the theorem requires both C_{1} and C_{2} to be local selection conditions, one can look at each time quantum independently from all other quanta. Consider then an arbitrary stream f in $a^{\prime}=\sigma_{C_{2}}\left(\sigma_{C_{1}}(a)\right)$ and $a^{\prime \prime}=\sigma_{C_{1}}\left(\sigma_{C_{2}}(a)\right)$ at a time quantum q. By the definition of SELECT we can say that:

1. If $\lambda\left(C_{1}[A / a], q\right)=0$ and $\lambda\left(C_{2}[A / a], q\right)=0$ then $a^{\prime} . f(q)=d v(f)$ and $a^{\prime \prime} . f(q)=$ $d v(f)$, i.e. $a^{\prime} \cdot f(q)=a^{\prime \prime} \cdot f(q)$.
2. If $\lambda\left(C_{1}[A / a], q\right)=1$ and $\lambda\left(C_{2}[A / a], q\right)=0$ then $a^{\prime} \cdot f(q)=\sigma_{C_{2}}(a) \cdot f(q)=$ $d v(f)$ and $a^{\prime \prime} . f(q)=d v(f)$, i.e. $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$.
3. If $\lambda\left(C_{1}[A / a], q\right)=0$ and $\lambda\left(C_{2}[A / a], q\right)=1$, the reasoning is similar to (2).
4. Finally, if $\lambda\left(C_{1}[A / a], q\right)=1$ and $\lambda\left(C_{2}[A / a], q\right)=1$ then $a^{\prime} \cdot f(q)=\sigma_{C_{2}}(a) \cdot f(q)=$ $a \cdot f(q)$ and $a^{\prime \prime} \cdot f(q)=\sigma_{C_{1}}(a) \cdot f(q)=a \cdot f(q)$, i.e. again $a^{\prime} \cdot f(q)=a^{\prime \prime} \cdot f(q)$.

We have shown that for any arbitrary stream f and time quantum $q, a^{\prime} . f(q)=a^{\prime \prime} . f(q)$. Therefore, $a^{\prime}=a^{\prime \prime}$.

3.3.3 The Between Operator

The Between operator is similar to the Select operator, but has two conditions instead of one, called the start and stop conditions. BETWEEN selects ranges of quanta starting with the start condition being satisfied (or "triggered") and ending with the stop condition being satisfied. For example, one can apply this operator to the text transcript stream to select all speech starting with a given word and ending with a pause.

Definition 3.3.9 (Between Operator) Given an audio file a (database ADB) and two selection conditions C_{1}, C_{2} each with a single free audio variable A, the BETWEEN operator produces a new audio file (database)

$$
\begin{aligned}
& \beta_{C_{1}}^{C_{2}}(a)=\left\langle a . \ell, a . \delta t,\left\{f \left\lvert\, f(q)= \begin{cases}a . f(q) & \text { if } \exists q^{\prime} \in[0, q] \lambda\left(C_{1}[A / a], q^{\prime}\right)=1 \wedge \\
& \left.\left.\forall q^{\prime \prime} \in\left[q^{\prime}, q\right] \lambda\left(C_{2}[A / a], q^{\prime \prime}\right)=0 \quad\right\}\right\rangle, \\
d v(f) & \text { otherwise }\end{cases} \right.\right.\right. \\
& \beta_{C_{1}}^{C_{2}}(\mathrm{ADB})=\left\{\beta_{C_{1}}^{C_{2}}(a) \mid a \in \mathrm{ADB}\right\} .
\end{aligned}
$$

Thus, the BETWEEN operator looks at an audio file f and retains ranges of quanta starting with the first condition becoming true and ending with the second condition becoming true. Stream values for all other quanta are replaced with the default values.

Figure 3.3 shows a simple example query $\beta_{A \cdot n a>0.3}^{A . n a<0.2}(a)$

Figure 3.3: Between Example.

Unfortunately, unlike SELECT operators, BETwEEN operators cannot be swapped in order. Consider two queries: $a^{\prime}=\beta_{C_{3}}^{C_{4}}\left(\beta_{C_{1}}^{C_{2}}(a)\right)$ and $a^{\prime \prime}=\beta_{C_{1}}^{C_{2}}\left(\beta_{C_{3}}^{C_{4}}(a)\right)$ at a quantum q such that $\beta_{C_{1}}^{C_{2}}(a)$ selects a range $\left[q_{1}, q_{2}\right)$ from a, while $\beta_{C_{3}}^{C_{4}}(a)$ selects $\left[q_{3}, q_{4}\right)$. Consider a case when $q_{1}<q_{3}<q_{4}<q_{2}$, and all conditions evaluate to false everywhere except the range boundaries. In such a case, $a^{\prime \prime}$ contains the $\left[q_{3}, q_{4}\right)$ range, while a^{\prime} is empty. Thus, $a^{\prime} \neq a^{\prime \prime}$, making the general case of swapping BETWEEN operators impossible.

3.3.4 The APPLY Operator

The APPLY operator allows users to transform audio streams in an arbitrary way. Due to its generality, the APPLY can be used for many purposes, such as volume and stereo balance control, fade-ins and fade-outs.

To simplify things, assume that each ApPLY operator only changes a single stream. Several APPLY operators can be used to modify multiple streams. Let us start by defining a transformation function:

Definition 3.3.10 (Stream Transformation Function) Given an audio stream schema f, a stream transformation function is a mapping $\operatorname{tr}_{f}: \operatorname{dom}(f) \rightarrow \operatorname{dom}(f)$ such that $\operatorname{tr}_{f}(d v(f))=d v(f)$.

In addition to f, a stream transformation function may use values from other streams and/or the current quantum number. Depending on the values used, one can classify transformation functions as follows:

Definition 3.3.11 (Types of Stream Transformation Functions) - A stream transformation function is called local iff its inputs are restricted to audio stream values from the current time quantum.

- A stream transformation function is called value-local iff its inputs are restricted to audio stream values from the current time quantum and the current quantum number.
- A stream transformation function is called time-local iff its inputs are restricted to sets of audio stream values over some period around the current time quantum.

As in the case of selection conditions, transformation functions have footprints, or sets of streams used to compute the transformed stream. I denote the footprint of a transformation function $t r_{f}$ by $f p\left(t r_{f}\right)$. Due to the requirement that $t_{f}(d v(f))=$ $d v(f), t r_{f}$ always uses the original value of f to compute the new value, i.e. it is always true that $f \in f p\left(t r_{f}\right)$.

Definition 3.3.12 (ApPLY Operator) Given an audio file a (database ADB) and a stream transformation function tr $_{f}$, the APPLY operator produces a new audio file (database)

$$
\begin{aligned}
\alpha\left(a, t r_{f}\right) & =\left\langle a \cdot \ell, a \cdot \delta t,\left\{f^{\prime}\left|f^{\prime}(q)=\left\{\begin{array}{ll}
t r_{f}\left(a \cdot f^{\prime}(q)\right) & \text { if } f^{\prime}=f \\
a \cdot f^{\prime}(q) & \text { otherwise }
\end{array}\right\}\right\rangle,\right.\right. \\
\alpha\left(\mathrm{ADB}, t r_{f}\right) & =\left\{\alpha\left(a, t r_{f}\right) \mid a \in \mathrm{ADB}\right\} .
\end{aligned}
$$

The following examples show how to control volume, balance, and create fade-in effects using Apply .

Example 3.3.1 (Volume and Stereo Balance Control) One can halve the volume of an audio file a using the following query: $\alpha(a, \operatorname{vol}(q)=\operatorname{vol}(q) / 2)$. Given two streams $v o l_{r}$ and vol l_{l} in a stereo audio file a, one can also change the stereo balance by issuing a query $\alpha\left(\alpha\left(a, \operatorname{vol}_{r}(q)=\operatorname{vol}_{r}(q) \cdot b a l\right), \operatorname{vol}_{l}(q)=\operatorname{vol}_{l}(q) / b a l\right)$, where bal con-
trols the balance. Notice that both volume and stereo balance transformation functions are local.

Example 3.3.2 (Fade-in and Fade-out) To create a five-second fade-in at the beginning of a recording, one can execute a query $\alpha(a, \operatorname{vol}(q)=\operatorname{vol}(q) \cdot \min (1, q \cdot a \cdot \delta t / 5))$. The fade-out is created by a similar query: $\alpha(a, \operatorname{vol}(q)=\operatorname{vol}(q) \cdot \max (0,1-q \cdot a . \delta t / 5))$. Notice that both fade-in and fade-out transformation functions are value-local, but not local.

Two Apply operators can be reordered, under certain assumptions.

Theorem 3.3.2 (Swapping Apply Operators) Consider two Apply operators with transformation functions $\operatorname{tr}_{f_{1}}, \operatorname{tr}_{f_{2}}$. If $f_{1} \notin f p\left(\operatorname{tr}_{f_{2}}\right)$ and $f_{2} \notin f p\left(\operatorname{tr}_{f_{1}}\right)$, then the following holds:

$$
\alpha\left(\alpha\left(a, t r_{f_{2}}\right), t r_{f_{1}}\right)=\alpha\left(\alpha\left(a, t r_{f_{1}}\right), t r_{f_{2}}\right) .
$$

Proof of Theorem 3.3.2. Consider an arbitrary stream s in $a^{\prime}=\alpha\left(\alpha\left(a, t r_{f}\right), t r_{g}\right)$ and $a^{\prime \prime}=\alpha\left(\alpha\left(a, t r_{g}\right), t r_{f}\right)$ at a time quantum $q:$

1. If $s \neq f$ and $s \neq g$ then $a^{\prime} . s(q)=a . s(q)$ and $a^{\prime \prime} . s(q)=a . s(q)$ by the definition of Apply. Thus, $a^{\prime} \cdot s(q)=a^{\prime \prime} \cdot s(q)$.
2. If $s=f$ then the theorem requires that $s \notin f p\left(t r_{g}\right)$. Because $g \in f p\left(t r_{g}\right)$ by the common property of all transformation functions, we can also say that $s \neq g$. Then $a^{\prime} . s(q)=\operatorname{tr}_{f}(a . s(q))$ and $a^{\prime \prime} . s(q)=\operatorname{tr}_{f}(a . s(q))$, i.e. $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$.
3. If $s=q$, the reasoning is similar to (2).

We have shown that for any arbitrary stream s and time quantum $q, a^{\prime} . s(q)=a^{\prime \prime} . s(q)$. Therefore, $a^{\prime}=a^{\prime \prime}$.

Apply and Select can also be reordered, if Apply does not modify any streams used by Select :

Theorem 3.3.3 (Swapping Apply and Select) Given an Apply operator with a value-local transformation function tr_{f} and a SELECT operator with condition C such that $f \notin f p_{A}(C)$, the following holds:

$$
\alpha\left(\sigma_{C}(a), t r_{f}\right)=\sigma_{C}\left(\alpha\left(a, t r_{f}\right)\right)
$$

Proof of Theorem 3.3.3. As the theorem requires that $f \notin f p_{A}(C)$, we can say that $\lambda(C[A / a], q)=\lambda\left(C\left[A / \alpha\left(a, t r_{f}\right)\right], q\right)$. Also, because the theorem requires $t r_{f}$ to be value-local, we can look at each time quantum independently from all other quanta. Let us then consider an arbitrary stream s in $a^{\prime}=\alpha\left(\sigma_{C}(a), t r_{f}\right)$ and $a^{\prime \prime}=$ $\sigma_{C}\left(\alpha\left(a, t r_{f}\right)\right)$ at a time quantum q :

1. If $s \neq f$ then $a^{\prime} . s(q)=\sigma_{C}(a) . s(q)$ and $a^{\prime \prime} . s(q)=\sigma_{C}(a) . s(q)$ by the definition of Apply. Thus, $a^{\prime} \cdot s(q)=a^{\prime \prime} . s(q)$.
2. If $s=f$ and $\lambda(C[A / a], q)=1$ then $a^{\prime} . s(q)=\operatorname{tr}_{f}(a . s(q))$ and $a^{\prime \prime} \cdot q(s)=$ $\operatorname{tr}_{f}(a . s(q))$ by the definitions of Apply and Select . Thus, $a^{\prime} \cdot s(q)=a^{\prime \prime} . s(q)$.
3. If $s=f$ and $\lambda(C[A / a], q)=0$ then, by the common property of all transformation functions, $a^{\prime} . s(q)=t r_{f}(d v(s))=d v(s)$. In the same time, $a^{\prime \prime} . s(q)=$ $d v(s)$ by the definition of SELECT. Thus, $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$.

We have shown that for any arbitrary stream s and time quantum $q, a^{\prime} . s(q)=a^{\prime \prime} . s(q)$. Therefore, $a^{\prime}=a^{\prime \prime}$.

Theorem 3.3.4 (Swapping Apply and Between) Given an Apply operator with a value-local transformation function tr_{f} and a BETWEEN operator with conditions
C_{1}, C_{2} such that $f \notin f p_{A}\left(C_{1}\right) \cup f p_{A}\left(C_{2}\right)$, the following holds:

$$
\alpha\left(\beta_{C_{1}}^{C_{2}}(a), t r_{f}\right)=\beta_{C_{1}}^{C_{2}}\left(\alpha\left(a, t r_{f}\right)\right) .
$$

Proof of Theorem 3.3.4. This proof is similar to the proof of Theorem 3.3.3. As the theorem requires that $f \notin f p_{A}\left(C_{1}\right) \cap f p_{A}\left(C_{2}\right)$, we can say that $\lambda\left(C_{1}[A / a], q\right)=$ $\lambda\left(C_{1}\left[A / \alpha\left(a, t r_{f}\right)\right], q\right)$ and $\lambda\left(C_{2}[A / a], q\right)=\lambda\left(C_{2}\left[A / \alpha\left(a, t r_{f}\right)\right], q\right)$ for any arbitrary quantum q. Due to the value-locality of $t r_{f}$, we can also say that each quantum can be considered individually, as it is not affected by the values at other quanta. Consider then an arbitrary stream s in $a^{\prime}=\alpha\left(\beta_{C_{1}}^{C_{2}}(a), t r_{f}\right)$ and $a^{\prime \prime}=\beta_{C_{1}}^{C_{2}}\left(\alpha\left(a, t r_{f}\right)\right)$ at a time quantum q :

1. If $s \neq f$ then $a^{\prime} . s(q)=\beta_{C_{1}}^{C_{2}}(a) . s(q)$ and $a^{\prime \prime} . s(q)=\beta_{C_{1}}^{C_{2}}(a) \cdot s(q)$ by the definition of APPLY. Thus, $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$.
2. If $s=f$ and $\exists q^{\prime} \leq q \lambda\left(C_{1}[A / a], q^{\prime}\right)=1 \wedge \forall q^{\prime \prime} \in\left[q^{\prime}, q\right] \lambda\left(C_{2}[A / a], q^{\prime \prime}\right)=0$ is true then, by the definition of APPLY and the theorem requirements, $a^{\prime} . s(q)=$ $\operatorname{tr}_{f}(a . s(q))$ and does not depend on the values of $\beta_{C_{1}}^{C_{2}}(a)$ at any quanta other than q. At the same time, $a^{\prime \prime} . q(s)=\operatorname{tr}_{f}(a . s(q))$, by the definition of BETWEEN . Thus, $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$.
3. If $s=f$ and $\exists q^{\prime} \leq q \lambda\left(C_{1}[A / a], q^{\prime}\right)=1 \wedge \forall q^{\prime \prime} \in\left[q^{\prime}, q\right] \lambda\left(C_{2}[A / a], q^{\prime \prime}\right)=0$ is false then $a^{\prime} . s(q)=\operatorname{tr}_{f}(d v(s))=d v(s)$ by the common property of all transformation functions. At the same time, $a^{\prime \prime} \cdot s(q)=d v(s)$ by the definition of BETwEEN. Thus, $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$.

We have shown that for any arbitrary stream s and time quantum $q, a^{\prime} . s(q)=a^{\prime \prime} . s(q)$. Therefore, $a^{\prime}=a^{\prime \prime}$.

3.3.5 The Project Operator

Similarly to the relational projection, the Project operator is used to remove certain streams from an audio file while leaving the other streams unchanged. As in the case of selection, the removal is done by replacing data with default values from the schema.

The Project operator is rarely used on its own, but often as a part of a larger query. For instance, when processing the right channel of a stereo audio recording, one may want to remove this channel from the original recording and add modified data later.

Definition 3.3.13 (PRoject Operator) Given an audio file a (database ADB) and a set of stream names \mathcal{F}, the PROJECT operator produces a new audio file (database)

$$
\begin{aligned}
\pi_{\mathcal{F}}(a) & =\left\langle a \cdot \ell, a . \delta t,\left\{f\left|f(q)=\left\{\begin{array}{ll}
d v(f) & \text { if } f \in \mathcal{F} \\
a . f(q) & \text { otherwise }
\end{array}\right\}\right\rangle,\right.\right. \\
\pi_{\mathcal{F}}(\mathrm{ADB}) & =\left\{\pi_{\mathcal{F}}(a) \mid a \in \mathrm{ADB}\right\} .
\end{aligned}
$$

Example 3.3.3 Continuing with the stereo recording example, one can remove the right channel from an audio file a by issuing $\pi_{\left\{v o l_{r}\right\}}(a)$ query. Alternatively, if we are only interested in the phoneme stream and text transcript of an audio file a, we can restrict a to these streams via the query $\pi_{\{p h, t e x t\}}(a)$.

Several theorems apply to the reordering of PRoJect and other operators:

Theorem 3.3.5 (Swapping Project Operators) Given two Project operators, the following holds:

$$
\pi_{\mathcal{F}_{1}}\left(\pi_{\mathcal{F}_{2}}(a)\right)=\pi_{\mathcal{F}_{2}}\left(\pi_{\mathcal{F}_{1}}(a)\right)
$$

Proof of Theorem 3.3.5. Consider an arbitrary stream f in $a^{\prime}=\pi_{\mathcal{F}_{2}}\left(\pi_{\mathcal{F}_{1}}(a)\right)$ and $a^{\prime \prime}=\pi_{\mathcal{F}_{1}}\left(\pi_{\mathcal{F}_{2}}(a)\right)$ at a time quantum q :

1. If $f \notin \mathcal{F}_{1}$ and $f \notin \mathcal{F}_{2}$ then $a^{\prime} . f(q)=a . f(q)$ and $a^{\prime \prime} . f(q)=a . f(q)$ by the definition of PROJECT . Thus, $a^{\prime} \cdot f(q)=a^{\prime \prime} \cdot f(q)$.
2. If $f \in \mathcal{F}_{1}$ and $f \notin \mathcal{F}_{2}$ then $a . f(q)$ will be replaced with $d v(f)$ in one Project , and left unchanged in the other. Thus, $a^{\prime} \cdot f(q)=d v(f), a^{\prime \prime} \cdot f(q)=d v(f)$, and therefore $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$.
3. If $f \in \mathcal{F}_{2}$ and $f \notin \mathcal{F}_{1}$, the situation is the same as in (2).
4. If $f \in \mathcal{F}_{1}$ and $f \in \mathcal{F}_{2}$ then $a . f(q)$ will be replaced with $d v(f)$ twice, in both Project operators. Again, $a^{\prime} . f(q)=d v(f), a^{\prime \prime} . f(q)=d v(f)$, and therefore $a^{\prime} \cdot f(q)=a^{\prime \prime} . f(q)$.

We have shown that for any arbitrary stream f and time quantum $q, a^{\prime} . f(q)=a^{\prime \prime} . f(q)$. Therefore, $a^{\prime}=a^{\prime \prime}$.

Theorem 3.3.6 (Swapping Project and Select) Given a Project operator that removes streams listed in \mathcal{F} and a SELECT operator with condition C such that $\mathcal{F} \cap$ $f p_{A}(C)=\emptyset$, the following holds:

$$
\pi_{\mathcal{F}}\left(\sigma_{C}(a)\right)=\sigma_{C}\left(\pi_{\mathcal{F}}(a)\right)
$$

Proof of Theorem 3.3.6. Consider an arbitrary stream f in $a^{\prime}=\pi_{\mathcal{F}}\left(\sigma_{C}(a)\right)$ and $a^{\prime \prime}=\sigma_{C}\left(\pi_{\mathcal{F}}(a)\right)$ at a time quantum q :

1. If $f \notin \mathcal{F}$ and $\mathcal{F} \cap f p_{A}(C)=\emptyset$, as the theorem requires, then $a^{\prime} \cdot f(q)=$ $\sigma_{C}(a) \cdot f(q)$ and $a^{\prime \prime} \cdot f(q)=\sigma_{C}(a) \cdot f(q)$ by the definition of PROJECT . Thus, $a^{\prime} \cdot f(q)=a^{\prime \prime} . f(q)$.
2. If $f \in \mathcal{F}$ then $a^{\prime} . f(q)=d v(f), a^{\prime \prime} . f(q)=d v(f)$, and thus $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$.

We have shown that for any arbitrary stream f and time quantum $q, a^{\prime} . f(q)=a^{\prime \prime} . f(q)$. Therefore, $a^{\prime}=a^{\prime \prime}$.

Theorem 3.3.7 (Swapping Project and Between) Given a Project operator that removes streams listed in \mathcal{F} and a BETWEEN operator with conditions C_{1}, C_{2} such that $\mathcal{F} \cap\left(f p_{A}\left(C_{1}\right) \cup f p_{A}\left(C_{2}\right)\right)=\emptyset$, the following holds:

$$
\pi_{\mathcal{F}}\left(\beta_{C_{1}}^{C_{2}}(a)\right)=\beta_{C_{1}}^{C_{2}}\left(\pi_{\mathcal{F}}(a)\right) .
$$

Proof of Theorem 3.3.7. This proof is similar to the proof of Theorem 3.3.6. Consider an arbitrary stream f in $a^{\prime}=\pi_{\mathcal{F}}\left(\beta_{C_{1}}^{C_{2}}(a)\right)$ and $a^{\prime \prime}=\beta_{C_{1}}^{C_{2}}\left(\pi_{\mathcal{F}}(a)\right)$ at a time quantum q :

1. If $f \notin \mathcal{F}$ and $\mathcal{F} \cap\left(f p_{A}\left(C_{1}\right) \cup f p_{A}\left(C_{2}\right)\right)=\emptyset$ (as the theorem requires) then $a^{\prime} . f(q)=\beta_{C_{1}}^{C_{2}}(a) . f(q)$ and $a^{\prime \prime} . f(q)=\beta_{C_{1}}^{C_{2}}(a) . f(q)$ by the definition of Project . Thus, $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$.
2. If $f \in \mathcal{F}$ then $a^{\prime} . f(q)=d v(f), a^{\prime \prime} . f(q)=d v(f)$, and thus $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$.

We have shown that for any arbitrary stream f and time quantum $q, a^{\prime} . f(q)=a^{\prime \prime} . f(q)$. Therefore, $a^{\prime}=a^{\prime \prime}$.

Theorem 3.3.8 (Swapping Project and Apply) Given a Project operator that removes streams listed in \mathcal{F} and an Apply operator with transformation function $t r_{f}$ such that $\mathcal{F} \cap f p\left(t r_{f}\right)=\emptyset$ or $\mathcal{F} \cap f p\left(t r_{f}\right)=\{f\}$, the following holds:

$$
\pi_{\mathcal{F}}\left(\alpha\left(a, t r_{f}\right)\right)=\alpha\left(\pi_{\mathcal{F}}(a), t r_{f}\right)
$$

Proof of Theorem 3.3.8. Consider an arbitrary stream s in $a^{\prime}=\pi_{\mathcal{F}}\left(\alpha\left(a, t r_{f}\right)\right)$ and $a^{\prime \prime}=\alpha\left(\pi_{\mathcal{F}}(a), t r_{f}\right)$ at a time quantum $q:$

1. If $s \notin \mathcal{F}$ and $s \neq f$ then $a^{\prime} . s(q)=a . s(q)$ and $a^{\prime \prime} . s(q)=a . s(q)$ by the definitions of Project and Apply operators. Thus, $a^{\prime} \cdot s(q)=a^{\prime \prime} \cdot s(q)$.
2. If $s \notin \mathcal{F}$ and $s=f$ then the theorem requires that $\mathcal{F} \cap f p\left(\operatorname{tr}_{f}\right)=\emptyset$ i.e. none of the deleted streams affect the value of $t r_{f}$. Thus $a^{\prime} . s(q)=\operatorname{tr}_{f}(a . s(q))$ and $a^{\prime \prime} . s(q)=\operatorname{tr}_{f}(a . s(q))$ by the definitions of PROJECT and Apply operators, and $a^{\prime} \cdot s(q)=a^{\prime \prime} . s(q)$.
3. If $s \in \mathcal{F}$ and $s=f$ then $a^{\prime} . s(q)=d v(s)$ by the definition of Project and $a^{\prime \prime} . s(q)=\operatorname{tr}_{f}(d v(s))=d v(s)$ by the common property of all transformation functions. Thus, $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$.
4. If $s \in \mathcal{F}$ and $s \neq f$ then $a^{\prime} . s(q)=d v(s)$ and $a^{\prime \prime} . s(q)=d v(s)$ by the definitions of Project and Apply operators. Thus, $a^{\prime} \cdot s(q)=a^{\prime \prime} . s(q)$.

We have shown that for any arbitrary stream s and time quantum $q, a^{\prime} . s(q)=a^{\prime \prime} . s(q)$. Therefore, $a^{\prime}=a^{\prime \prime}$.

3.3.6 The MIX Operator

The mix of two audio files is a conditional merge of all streams constituting the files. This operator can be used to merge audio recordings from different sources. For example, when recording a vocal performance, the singer's voice and the instrumental sound track are usually picked up by different microphones and mixed in the "right" proportion by a person in charge of the audio. In the algebra, the same operation is done with the MIX operator.

However, before proceeding to define the Mix operator, some intermediate definitions are needed. In particular, we need to describe what it means to merge two values (of the same stream from two different audio files).

Definition 3.3.14 (Merging Policy) A merging policy for a stream f is a function that takes as input two values $v_{1}, v_{2} \in \operatorname{dom}(f)$, and returns as output, a single value from $\operatorname{dom}(f)$ such that $m p\left(v_{1}, d v(f)\right)=v_{1}$ and $m p\left(d v(f), v_{2}\right)=v_{2}$.

It is worth noting that the default merging policy for a stream should be included into that stream's schema. Numerous merging policies exist. Some examples are given below.

Example 3.3.4 (Merging Policies) One simple example of a merging policy would, given that $v_{1} \neq d v(f)$ and $v_{2} \neq d v(f)$, take an average $m p_{\text {avg }}\left(v_{1}, v_{2}\right)=\left(v_{1}+v_{2}\right) / 2$. In some cases, this policy may cause certain unwelcome effects though. For example, two quiet sounds will become even quieter after mixing their amplitudes with $m p_{\text {avg }}$. In such cases, one may use the cut-off policy $m p_{c u t}\left(v_{1}, v_{2}\right)=\min \left(f_{\max },\left|v_{1}+v_{2}\right|\right)$. $\operatorname{sgn}\left(v_{1}+v_{2}\right)$. Notice that if $d v(f)=0, m p_{\text {cut }}$ will not require any additional checking for it.

We are now ready to define the MIX operator.

Definition 3.3.15 (Mix Operator) Given two audio files a_{1}, a_{2} (databases $\mathrm{ADB}_{1}, \mathrm{ADB}_{2}$) such that $a_{1} \cdot \delta t=a_{2} \cdot \delta t$, and a selection condition C with two free audio variables A_{1}, A_{2}, the MiX operator produces a new audio file (database) such that

$$
\begin{aligned}
a_{1} \otimes_{C} a_{2} & =\left\langle\max \left(a_{1} \cdot \ell, a_{2} \cdot \ell\right), a_{1} \cdot \delta t, F\right\rangle \\
\mathrm{ADB}_{1} \otimes_{C} \mathrm{ADB}_{2} & =\left\{a_{1} \otimes_{C} a_{2} \mid a_{1} \in \mathrm{ADB}_{1} \wedge a_{2} \in \mathrm{ADB}_{2}\right\},
\end{aligned}
$$

where

$$
F=\left\{f \left\lvert\, f(q)=\left\{\begin{array}{ll}
m p_{f}\left(a_{1} \cdot f(q), a_{2} \cdot f(q)\right) & \text { if } \lambda\left(C\left[A_{1} / a_{1}, A_{2} / a_{2}\right], q\right)=1 \\
a_{1} \cdot f(q) & \text { otherwise }
\end{array}\right\} .\right.\right.
$$

It is assumed that $a . f(q)=d v(f)$ for $q \geq$ a.l. The $m p$ policies used by the MIX operator are taken from the database schema and can be parameterized by the implementation, if needed.

Notice that by definition given above, MIX is not symmetric, i.e. $a_{1} \otimes_{C} a_{2} \neq a_{2} \otimes_{C} a_{1}$. When the MIX selection condition is $T R U E$, we will omit it and write $a_{1} \otimes a_{2}$.

One important use of MIX is to merge results of other operators applied to the same audio file. It is often necessary to transform only those parts of a file that satisfy a certain condition. For example, one may want to muffle pieces of a musical composition where a tuba plays. To facilitate this kind of queries, one can use MIX for conditional application via the derived conditional ApPLY operator.

Example 3.3.5 (Conditional APPLY Operator) Given a transformation function tr $_{f}$

 and a selection condition C with a single free audio variable A, and an audio file a (database ADB), the conditional ApPLY operator produces a new audio file (database)$$
\begin{aligned}
\alpha_{t r_{f}}^{C}(a) & =\alpha\left(\sigma_{C}(a), t r_{f}\right) \otimes \sigma_{\neg C}(a), \\
\alpha_{t r_{f}}^{C}(\mathrm{ADB}) & =\left\{\alpha_{t r_{f}}^{C}(a) \mid a \in \mathrm{ADB}\right\} .
\end{aligned}
$$

To continue with our example, given a musical recording a, one can muffle the tuba in it by issuing the $\alpha_{\text {vol }(q)=v o l(q) / 2}^{t u b a \in \operatorname{midi}}(a)$ query. There are several useful theorems showing how Mix can be combined with other operators.

Theorem 3.3.9 (Swapping MIX and Apply) Given an Apply operator with a valuelocal transformation function tr_{f} and a MIX operator merging audio files on condition C such that $f \notin f p_{A_{1}}(C) \cup f p_{A_{2}}(C)$ and $\operatorname{tr}_{f}\left(m p\left(v_{1}, v_{2}\right)\right)=m p\left(\operatorname{tr}_{f}\left(v_{1}\right), \operatorname{tr}_{f}\left(v_{2}\right)\right)$ for all $v_{1}, v_{2} \in \operatorname{dom}(f)$, the following holds:

$$
\alpha\left(a_{1} \otimes_{C} a_{2}, t r_{f}\right)=\alpha\left(a_{1}, t r_{f}\right) \otimes_{C} \alpha\left(a_{2}, t r_{f}\right)
$$

Proof of Theorem 3.3.9. As the theorem requires that $f \notin f p_{A_{1}}(C) \cup f p_{A_{2}} C$, $\lambda\left(C\left[A_{1} / a_{1}, A_{2} / a_{2}\right], q\right)$ does not depend on the value of f. Also, as the theorem requires $t r_{f}$ to be local, we can consider each quantum independently from all other quanta and its location in the stream. Consider then an arbitrary stream s in $a^{\prime}=$ $\alpha\left(a_{1}, t r_{f}\right) \otimes_{C} \alpha\left(a_{2}, t r_{f}\right)$ and $a^{\prime \prime}=\alpha\left(a_{1} \otimes_{C} a_{2}, t r_{f}\right)$ at a time quantum $q:$

1. If $s \neq f$ then by the definition of APPLY and theorem requirements, we can say that $a^{\prime} . s(q)=a_{1} \otimes_{C} a_{2} . s(q)$ and $a^{\prime \prime} . s(q)=a_{1} \otimes_{C} a_{2} . s(q)$ i.e. $a^{\prime} . s(q)=$ $a^{\prime \prime} . s(q)$.
2. If $s=f$ and $\lambda\left(C\left[A_{1} / a_{1}, A_{2} / a_{2}\right], q\right)=0$ then we have $a^{\prime} . s(q)=\operatorname{tr}_{f}\left(a_{1} . s(q)\right)$ and $a^{\prime \prime} . s(q)=\operatorname{tr}_{f}\left(a_{1} . s(q)\right)$ i.e. $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$.
3. If $s=f$ and $\lambda\left(C\left[A_{1} / a_{1}, A_{2} / a_{2}\right], q\right)=1$ then $a^{\prime} . s(q)=m p\left(\operatorname{tr}_{f}\left(a_{1} . s(q)\right), \operatorname{tr}_{f}\left(a_{2} . s(q)\right)\right.$ and $a^{\prime \prime} . s(q)=\operatorname{tr}_{f}\left(m p\left(a_{1} . s(q), a_{2} . s(q)\right)\right)$ by the definitions of APPLY and MIX operators. As the theorem requires $\operatorname{tr}_{f}\left(m p\left(v_{1}, v_{2}\right)\right)=m p\left(\operatorname{tr}_{f}\left(v_{1}\right), t r_{f}\left(v_{2}\right)\right)$, we again conclude that $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$.

We have shown that for any arbitrary stream s and time quantum $q, a^{\prime} . s(q)=a^{\prime \prime} . s(q)$. Therefore, $a^{\prime}=a^{\prime \prime}$.

Theorem 3.3.10 (Swapping Mix and Project) Given a Project operator that removes streams listed in \mathcal{F} and a Mix operator merging audio files on condition C such that $\mathcal{F} \cap f p_{A_{1}}(C)=\emptyset$ and $\mathcal{F} \cap f p_{A_{2}}(C)=\emptyset$, the following holds:

$$
\pi_{\mathcal{F}}\left(a_{1} \otimes_{C} a_{2}\right)=\pi_{\mathcal{F}}\left(a_{1}\right) \otimes_{C} \pi_{\mathcal{F}}\left(a_{2}\right)
$$

Proof of Theorem 3.3.10. Consider an arbitrary stream f in $a^{\prime}=\pi_{\mathcal{F}}\left(a_{1}\right) \otimes_{C} \pi_{\mathcal{F}}\left(a_{2}\right)$ and $a^{\prime \prime}=\pi_{\mathcal{F}}\left(a_{1} \otimes_{C} a_{2}\right)$ at a time quantum q :

1. The theorem requires that $\mathcal{F} \cap f p_{A_{1}}(C)=\emptyset$ and $\mathcal{F} \cap f p_{A_{2}}(C)=\emptyset$ i.e. any deleted streams do not affect the value of $\lambda\left(C\left[A_{1} / a_{1}, A_{2} / a_{2}\right], q\right)$. Then if $f \notin \mathcal{F}$, by the Project definition $a^{\prime} . f(q)=a_{1} \otimes_{C} a_{2} . f(q)$ and $a^{\prime \prime} . f(q)=$ $a_{1} \otimes_{C} a_{2} . f(q)$, and thus $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$.
2. If $f \in \mathcal{F}$ and $\lambda\left(C\left[A_{1} / a_{1}, A_{2} / a_{2}\right], q\right)=0$ then we have $a^{\prime} \cdot f(q)=\pi_{\mathcal{F}}\left(a_{1}\right) \cdot f(q)=$ $d v(f)$ and $a^{\prime \prime} \cdot f(q)=\pi_{\mathcal{F}}\left(a_{1}\right) \cdot f(q)=d v(f)$ by the definition of the MIX operator, and therefore $a^{\prime} \cdot f(q)=a^{\prime \prime} . f(q)$.
3. If $f \in \mathcal{F}$ and $\lambda\left(C\left[A_{1} / a_{1}, A_{2} / a_{2}\right], q\right)=1$ then $a^{\prime} . f(q)=m p(d v(f), d v(f))=$ $d v(f)$ by the common property of all merging policies), and $a^{\prime \prime} . f(q)=d v(f)$ by the definition of PROJECT . Once again we conclude that $a^{\prime} . f(q)=a^{\prime \prime} \cdot f(q)$.

We have shown that for any arbitrary stream f and time quantum $q, a^{\prime} \cdot f(q)=a^{\prime \prime} . f(q)$. Therefore, $a^{\prime}=a^{\prime \prime}$.

3.3.7 The Concatenation Operator

A common, albeit simple, audio processing task is the concatenation of audio files. Hence is the algebraic operator to do it.

Definition 3.3.16 (Concatenation Operator) Given two audio files a_{1}, a_{2} (databases $\left.\mathrm{ADB}_{1}, \mathrm{ADB}_{2}\right)$ such that $a_{1} . \delta t=a_{2} . \delta t$, the concatenation operator produces a new audio file (database)

$$
\begin{aligned}
a_{1} \oplus a_{2} & =\left\langle a_{1} \cdot \ell+a_{2} \cdot \ell, a_{1} \cdot \delta t, F\right\rangle, \\
\mathrm{ADB}_{1} \oplus \mathrm{ADB}_{2} & =\left\{a_{1} \oplus a_{2} \mid a_{1} \in \mathrm{ADB}_{1} \wedge a_{2} \in \mathrm{ADB}_{2}\right\}, \\
\text { where } F & =\left\{f \left\lvert\, f(q)=\left\{\begin{array}{ll}
a_{1} \cdot f(q) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
a_{2} \cdot f\left(q-a_{1} \cdot \ell\right) & \text { otherwise }
\end{array}\right\} .\right.\right.
\end{aligned}
$$

I now present some useful equivalences involving concatenation.

Theorem 3.3.11 (Swapping Concatenation Operators) Given two concatenation operators, the following holds:

$$
\left(a_{1} \oplus a_{2}\right) \oplus a_{3}=a_{1} \oplus\left(a_{2} \oplus a_{3}\right)
$$

Proof of Theorem 3.3.11. Consider an arbitrary stream f in $a^{\prime}=\left(a_{1} \oplus a_{2}\right) \oplus a_{3}$ and $a^{\prime \prime}=a_{1} \oplus\left(a_{2} \oplus a_{3}\right)$ at a time quantum q. Due to the definition of the concatenation operator, we can write the following correspondence between stream values:

$$
\begin{aligned}
& a^{\prime} \cdot f(q)= \begin{cases}a_{1} \cdot f(q) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
a_{2} \cdot f\left(q-a_{1} \cdot \ell\right) & \text { if } q \in\left[a_{1} \cdot \ell, a_{2} \cdot \ell\right) \\
a_{3} \cdot f\left(q-a_{1} \cdot \ell-a_{2} \cdot \ell\right) & \text { otherwise }\end{cases} \\
& a^{\prime \prime} \cdot f(q)= \begin{cases}a_{1} \cdot f(q) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
a_{2} \cdot f\left(q-a_{1} \cdot \ell\right) & \text { if } q \in\left[a_{1} \cdot \ell, a_{2} \cdot \ell\right) \\
a_{3} \cdot f\left(q-a_{1} \cdot \ell-a_{2} \cdot \ell\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

As $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$ for every stream f at any quantum q, one can conclude that a^{\prime} and $a^{\prime \prime}$ are equivalent.

Theorem 3.3.12 (Swapping Concatenation and Select) Given a Select operator with a local selection condition C, the following holds:

$$
\sigma_{C}\left(a_{1} \oplus a_{2}\right)=\sigma_{C}\left(a_{1}\right) \oplus \sigma_{C}\left(a_{2}\right)
$$

Proof of Theorem 3.3.12. Consider an arbitrary stream f in $a^{\prime}=\sigma_{C}\left(a_{1} \oplus a_{2}\right)$ and $a^{\prime \prime}=\sigma_{C}\left(a_{1}\right) \oplus \sigma_{C}\left(a_{2}\right)$ at a time quantum q. Due to the definition of the concatenation operator and locality of C, we can write the following correspondence between stream
values:

$$
\begin{aligned}
a^{\prime} \cdot f(q) & = \begin{cases}\sigma_{C}\left(a_{1}\right) \cdot f(q) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
\sigma_{C}\left(a_{2}\right) \cdot f\left(q-a_{1} \cdot \ell\right) & \text { otherwise }\end{cases} \\
a^{\prime \prime} \cdot f(q) & = \begin{cases}\sigma_{C}\left(a_{1}\right) \cdot f(q) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
\sigma_{C}\left(a_{2}\right) \cdot f\left(q-a_{1} \cdot \ell\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

As $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$ for every stream f at any quantum q, one can conclude that a^{\prime} and $a^{\prime \prime}$ are equivalent.

Theorem 3.3.13 (Swapping Concatenation and ApPly) Given an APPLY operator with a local transformation function $t r_{f}$ and a concatenation of two audio files a_{1}, a_{2}, the following holds:

$$
\alpha\left(a_{1} \oplus a_{2}, t r_{f}\right)=\alpha\left(a_{1}, t r_{f}\right) \oplus \alpha\left(a_{2}, t r_{f}\right)
$$

Proof of Theorem 3.3.13. This proof is similar to the proof of Theorem 3.3.12. Consider an arbitrary stream f in $a^{\prime}=\alpha\left(a_{1} \oplus a_{2}, t r_{f}\right)$ and $a^{\prime \prime}=\alpha\left(a_{1}, t r_{f}\right) \oplus \alpha\left(a_{2}, t r_{f}\right)$ at a time quantum q. Due to the definition of the concatenation operator and the locality of $t r_{f}$, we can write the following correspondence between stream values:

$$
\begin{aligned}
a^{\prime} \cdot f(q) & = \begin{cases}\alpha\left(a_{1}, t r_{f}\right) \cdot f(q) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
\alpha\left(a_{2}, t r_{f}\right) \cdot f\left(q-a_{1} \cdot \ell\right) & \text { otherwise }\end{cases} \\
a^{\prime \prime} \cdot f(q) & = \begin{cases}\alpha\left(a_{1}, t r_{f}\right) \cdot f(q) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
\alpha\left(a_{2}, t r_{f}\right) \cdot f\left(q-a_{1} \cdot \ell\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

As $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$ for every stream f at any quantum q, one can conclude that a^{\prime} and $a^{\prime \prime}$ are equivalent.

Theorem 3.3.14 (Swapping Concatenation and Project) Given a Project operator that removes streams listed in \mathcal{F} and a concatenation of two audio files a_{1}, a_{2}, the following holds:

$$
\pi_{\mathcal{F}}\left(a_{1} \oplus a_{2}\right)=\pi_{\mathcal{F}}\left(a_{1}\right) \oplus \pi_{\mathcal{F}}\left(a_{2}\right) .
$$

Proof of Theorem 3.3.14. This proof is similar to the proof of Theorem 3.3.12. Consider an arbitrary stream f in $a^{\prime}=\pi_{\mathcal{F}}\left(a_{1} \oplus a_{2}\right)$ and $a^{\prime \prime}=\pi_{\mathcal{F}}\left(a_{1}\right) \oplus \pi_{\mathcal{F}}\left(a_{2}\right)$ at a time quantum q. Due to the definition of the concatenation operator, we can write the following correspondence between stream values:

$$
\begin{aligned}
a^{\prime} \cdot f(q) & = \begin{cases}\pi_{\mathcal{F}}\left(a_{1}\right) \cdot f(q) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
\pi_{\mathcal{F}}\left(a_{2}\right) \cdot f\left(q-a_{1} \cdot \ell\right) & \text { otherwise }\end{cases} \\
a^{\prime \prime} \cdot f(q) & = \begin{cases}\pi_{\mathcal{F}}\left(a_{1}\right) \cdot f(q) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
\pi_{\mathcal{F}}\left(a_{2}\right) \cdot f\left(q-a_{1} \cdot \ell\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

As $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$ for every stream f at any quantum q, one can conclude that a^{\prime} and $a^{\prime \prime}$ are equivalent.

3.3.8 The Resample Operator

Recall that the inputs to such binary operators as MIX and concatenation are required to have the same δt. However, it is often the case that we wish to perform these operations (e.g. mixing) on two audio files sampled at different frequencies and thus having different δt values. This can be achieved by "resampling" one of the files (usually the one with the larger δt, to preserve fidelity). Resampling has many other uses, too. For example, when recording an audio CD, it is important to resample all audio data to 44.1 kHz required by the AudioCD standard. On the other hand, when playing audio through a phone line, or storing it on a limited-capability device (such
as a cellular phone) one would have to resample it to the 8 kHz frequency. To facilitate resampling, let us first introduce the interpolation policy:

Definition 3.3.17 (Stream Interpolation Policy) Given a stream f, time t, and a period δt, the stream interpolation policy $i p(f, t, \delta t)$ returns a value from $\operatorname{dom}(f)$ such that $i p(f, i \cdot \delta t, \delta t)=f(i)$.

It is worth noting that the default interpolation policy for a stream should be included into that stream's schema.

Let us examine what this definition says w.r.t. Figure 3.1. Suppose $f . v=\langle 0.1$, $0.3,0.4,0.5,0.4,0.3,0.2,0.1,0\rangle$. Consider any policy $i p$ for this case. Here, $\delta t=$ 2μ s. ip $(f, 7,0.000002)$ can be any number whatsoever between 0 and 1 . However, $i p(f, 6,2)$ must equal 0.5 because $6=3 \cdot \delta t$ and $f(3)=0.5$. Examples of some interpolation policies are given below.

Example 3.3.6 (Interpolation Policies) The simplest interpolation policy would just return the previous or the next known value of f :

$$
\begin{aligned}
i p_{\text {prev }}(f, t, \delta t) & =f(\lfloor t / \delta t\rfloor) \\
i p_{\text {next }}(f, t, \delta t) & =f(\lfloor t / \delta t\rfloor+1)
\end{aligned}
$$

If there is a complete ordering on dom (f), one may want to take the smallest or the largest neighboring value:

$$
\begin{aligned}
i p_{\min }(f, t, \delta t) & =\min (f(\lfloor t / \delta t\rfloor), f(\lfloor t / \delta t\rfloor+1)) \\
i p_{\max }(f, t, \delta t) & =\max (f(\lfloor t / \delta t\rfloor), f(\lfloor t / \delta t\rfloor+1))
\end{aligned}
$$

Finally, if f is numeric, it is possible to interpolate it linearly:

$$
i p_{l i n}(f, t, \delta t)=f(\lfloor t / \delta t\rfloor)+\frac{(f(\lfloor t / \delta t\rfloor+1)-f(\lfloor t / \delta t\rfloor)(t-\lfloor t / \delta t\rfloor \delta t)}{\delta t}
$$

More complicated interpolation policies may involve quadratic or spline interpolation. An interpolation policy may not be applicable to some data types. For instance, $i p_{l i n}$ can't be applied to set, character, and string domains.

Armed with stream interpolation policies, we can now introduce the Resample operator:

Definition 3.3.18 (RESAMPLE Operator) Given an audio file a (database ADB) and a time period δt^{\prime}, the RESAMPLE operator returns a new audio file (database) such that

$$
\begin{aligned}
\gamma_{\delta t^{\prime}}(a) & =\left\langle\left\lfloor\frac{a \cdot \ell \cdot a \cdot \delta t}{\delta t^{\prime}}\right\rfloor, \delta t^{\prime},\left\{f \mid f(q)=i p\left(a \cdot f, q \cdot \delta t^{\prime}, a \cdot \delta t\right)\right\}\right\rangle, \\
\gamma_{\delta t^{\prime}}(\mathrm{ADB}) & =\left\{\gamma_{\delta t^{\prime}}(a) \mid a \in \mathrm{ADB}\right\} .
\end{aligned}
$$

The ip policies used by the RESAMPLE operator are taken from the database schema and can be parameterized by the implementation, if needed.

Under certain conditions, Resample can be swapped with Select , Project , and Apply :

Theorem 3.3.15 (Swapping Resample and Select) Suppose C is a local selection condition and either $i p_{\text {next }}$ or $i p_{\text {prev }}$ is the stream interpolation policy used for all streams in the audio schema. Then:

$$
\gamma_{\delta t^{\prime}}\left(\sigma_{C}(a)\right)=\sigma_{C}\left(\gamma_{\delta t^{\prime}}(a)\right)
$$

Proof of Theorem 3.3.15. Assume that interpolation policy does not create any new values, but provides a correspondence $w: \Re \rightarrow[0, \ell)$ between time instances and audio file quanta. Both $i p_{\text {prev }}$ and $i p_{\text {next }}$ are such policies. Let us then consider an arbitrary stream f in $a^{\prime}=\gamma_{\delta t^{\prime}}\left(\sigma_{C}(a)\right)$ and $a^{\prime \prime}=\sigma_{C}\left(\gamma_{\delta t^{\prime}}(a)\right)$ at a time quantum
q. As the theorem requires C to be local, we can look at each quantum separately. Both $a^{\prime} . f(q)$ and $a^{\prime \prime} . f(q)$ will return the result of $\sigma_{C}(a)$ operator at $w\left(q \cdot \delta t^{\prime}\right)$. Thus, $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$ and because it is true for any arbitrary stream f at arbitrary moment $q, a^{\prime}=a^{\prime \prime}$.

Theorem 3.3.16 (Swapping Resample and Project) Suppose \mathcal{F} is a list of streams to be removed from an audio file and either $i p_{\text {next }}$ or $i p_{\text {prev }}$ is the stream interpolation policy used for all streams in the audio schema. Then:

$$
\gamma_{\delta t^{\prime}}\left(\pi_{\mathcal{F}}(a)\right)=\pi_{\mathcal{F}}\left(\gamma_{\delta t^{\prime}}(a)\right)
$$

Proof of Theorem 3.3.16. This proof is similar to the proof of Theorem 3.3.15. Assume that interpolation policy does not create any new values, but provides a correspondence $w: \Re \rightarrow[0, \ell)$ between time instances and audio file quanta. Both $i p_{\text {prev }}$ and $i p_{\text {next }}$ are such policies. Let us then consider an arbitrary stream f in $a^{\prime}=\gamma_{\delta t^{\prime}}\left(\pi_{\mathcal{F}}(a)\right)$ and $a^{\prime \prime}=\pi_{\mathcal{F}}\left(\gamma_{\delta t^{\prime}}(a)\right)$ at a time quantum q. Both $a^{\prime} \cdot f(q)$ and $a^{\prime \prime} . f(q)$ will return the result of $\pi_{\mathcal{F}}(a)$ operator at $w\left(q \cdot \delta t^{\prime}\right)$. Thus, $a^{\prime} \cdot f(q)=a^{\prime \prime} \cdot f(q)$ and because it is true for any arbitrary stream f at arbitrary moment $q, a^{\prime}=a^{\prime \prime}$.

Theorem 3.3.17 (Swapping Resample and Apply) Suppose tr_{f} is a local stream transformation function and either $i p_{\text {next }}$ or $i p_{\text {prev }}$ is the stream interpolation policy used for all streams in the audio schema. Then:

$$
\gamma_{\delta t^{\prime}}\left(\alpha\left(a, t r_{f}\right)\right)=\alpha\left(\gamma_{\delta t^{\prime}}(a), t r_{f}\right)
$$

Proof of Theorem 3.3.17. This proof is similar to the proof of Theorem 3.3.15. Assume that interpolation policy does not create any new values, but provides a correspondence $w: \Re \rightarrow[0, \ell)$ between time instances and audio file quanta. Both $i p_{\text {prev }}$ and $i p_{n e x t}$ are such policies. Also, the theorem requires $t r_{f}$ to be local i.e. we can
look at each time quantum individually, without taking into account its location or other quanta. Let us then consider an arbitrary stream f in $a^{\prime}=\gamma_{\delta t^{\prime}}\left(\alpha\left(a, t r_{f}\right)\right)$ and $a^{\prime \prime}=\alpha\left(\gamma_{\delta t^{\prime}}(a), t r_{f}\right)$ at time quantum q. Both $a^{\prime} . f(q)$ and $a^{\prime \prime} . f(q)$ will return the result of $\alpha\left(a, t r_{f}\right)$ operator at $w\left(q \cdot \delta t^{\prime}\right)$ Thus, $a^{\prime} \cdot f(q)=a^{\prime \prime} \cdot f(q)$ and because it is true for any arbitrary stream f at arbitrary moment $q, a^{\prime}=a^{\prime \prime}$.

3.3.9 The Compress Operator

In practice, one would often encounter audio files that contain "gaps" where default stream values are repeated for long periods of time. A typical example of such a file would be the output of a surveillance system or a recording from an aircraft's "black box" recorder with long periods of silence. By its nature, the SeLect operator also yields audio files that contain gaps. One may often want to compress such files by removing the gaps. This can be done with the Compress operator, defined as follows:

Definition 3.3.19 (Compress Operator) Given an audio file a (database ADB) and a set of stream names \mathcal{F}, the COMPRESS operator returns a new audio file (database) such that

$$
\begin{aligned}
w_{0}= & 0, \\
w_{i+1}= & q \text { such that } q \in\left(w_{i}, a . \ell\right) \wedge \exists f \in \mathcal{F} a \cdot f(q) \neq d v(f) \wedge \\
& \forall q^{\prime} \in\left(w_{i}, q\right) \forall f \in \mathcal{F} a \cdot f\left(q^{\prime}\right)=d v(f), \\
\ell= & i \text { such that } \forall w_{j} j \leq i, \\
\eta_{\mathcal{F}}(a)= & \left\langle\ell, a \cdot \delta t,\left\{f \mid f(q)=a \cdot f\left(w_{q+1}\right)\right\}\right\rangle, \\
\eta_{\mathcal{F}}(\mathrm{ADB})= & \left\{\eta_{\mathcal{F}}(a) \mid a \in \mathrm{ADB}\right\} .
\end{aligned}
$$

Two Compress operators can be swapped.

Theorem 3.3.18 (Swapping Compress Operators) Suppose $\mathcal{F}_{1}, \mathcal{F}_{2}$ are sets of streams and a is an audio file. Then:

$$
\eta_{\mathcal{F}_{1}}\left(\eta_{\mathcal{F}_{2}}(a)\right)=\eta_{\mathcal{F}_{2}}\left(\eta_{\mathcal{F}_{1}}(a)\right) .
$$

Proof of Theorem 3.3.18. Consider an arbitrary quantum q in an audio file a and two queries: $a^{\prime}=\eta_{\mathcal{F}_{2}}\left(\eta_{\mathcal{F}_{1}}(a)\right)$ and $a^{\prime \prime}=\eta_{\mathcal{F}_{1}}\left(\eta_{\mathcal{F}_{2}}(a)\right)$. By the definition of the COMPRESS operator, quantum q may have counterparts q^{\prime} and $q^{\prime \prime}$ in a^{\prime} and $a^{\prime \prime}$, such that for any audio stream $f, a^{\prime}\left(q^{\prime}\right)=a(q)$ and $a^{\prime \prime}\left(q^{\prime \prime}\right)=a(q)$. It is also true that given two quanta $q_{1} \leq q_{2}$ in a, their counterparts in a^{\prime}, $a^{\prime \prime}$ will have the same ordering, i.e. $q_{1}^{\prime} \leq q_{2}^{\prime}$ and $q_{1}^{\prime \prime} \leq q_{2}^{\prime \prime}$. Thus, to prove the equality $a^{\prime}=a^{\prime \prime}$, we need to show that q will either be present in both $a^{\prime}, a^{\prime \prime}$ or absent from both of them. Now, consider a set of audio streams \mathcal{F} such that $\forall f \in \mathcal{F} a . f(q) \neq d v(f)$ and $\forall f^{\prime} \notin \mathcal{F} a . f^{\prime}(q)=d v\left(f^{\prime}\right)$:

1. If $\mathcal{F} \cap \mathcal{F}_{1}=\emptyset$ and $\mathcal{F} \cap \mathcal{F}_{2}=\emptyset$ then the quantum q is not present in both $\eta_{\mathcal{F}_{1}}(a)$ and $\eta_{\mathcal{F}_{2}}(a)$. Therefore, it is absent from both a^{\prime} and $a^{\prime \prime}$.
2. If $\mathcal{F} \cap \mathcal{F}_{1} \neq \emptyset$ and $\mathcal{F} \cap \mathcal{F}_{2}=\emptyset$ then the quantum q is included into $\eta_{\mathcal{F}_{1}}(a)$, but not into a^{\prime}, because of the outer $\eta_{\mathcal{F}_{2}}()$ operator. It is also not included into $\eta_{\mathcal{F}_{2}}(a)$ and therefore absent from $a^{\prime \prime}$.
3. If $\mathcal{F} \cap \mathcal{F}_{1}=\emptyset$ and $\mathcal{F} \cap \mathcal{F}_{2} \neq \emptyset$ then the quantum q is included into $\eta_{\mathcal{F}_{2}}(a)$, but not into $a^{\prime \prime}$, because of the outer $\eta_{\mathcal{F}_{1}}()$ operator. It is also not included into $\eta_{\mathcal{F}_{1}}(a)$ and therefore absent from a^{\prime}.
4. Finally, if $\mathcal{F} \cap \mathcal{F}_{1} \neq \emptyset$ and $\mathcal{F} \cap \mathcal{F}_{2} \neq \emptyset$ then the quantum q is included into both a^{\prime} and $a^{\prime \prime}$.

Thus, we have shown that any arbitrary quantum q in the input audio file a is either present in both a^{\prime} and $a^{\prime \prime}$ or absent from both of them and the original ordering of quanta is preserved in both a^{\prime} and $a^{\prime \prime}$. Therefore, $a^{\prime}=a^{\prime \prime}$.

Under certain conditions, Compress can be swapped with Project , Apply, and concatenation operators. Compress can be swapped with Project as long as the set of streams being compressed does not intersect with the projected streams.

Theorem 3.3.19 (Swapping Compress and Project) Suppose $\mathcal{F}_{1}, \mathcal{F}_{2}$ are disjoint sets of streams and a is an audio file. Then:

$$
\eta_{\mathcal{F}_{1}}\left(\pi_{\mathcal{F}_{2}}(a)\right)=\pi_{\mathcal{F}_{2}}\left(\eta_{\mathcal{F}_{1}}(a)\right)
$$

Proof of Theorem 3.3.19. The Compress operator defines a $w:\left[0, \eta_{\mathcal{F}_{1}}(a) . \ell\right) \rightarrow$ [0, a.l) mapping between time quanta in the compression result $\eta_{\mathcal{F}_{1}}(a)$ and the quanta in the input audio file a. As the theorem requires $\mathcal{F}_{1} \cap \mathcal{F}_{2}=\emptyset$, deletion of a stream $f \in$ \mathcal{F}_{2} will not affect w. Thus, let us consider an arbitrary stream f in $a^{\prime}=\eta_{\mathcal{F}_{2}}\left(\pi_{\mathcal{F}_{1}}(a)\right)$ and $a^{\prime \prime}=\pi_{\mathcal{F}_{1}}\left(\eta_{\mathcal{F}_{2}}(a)\right)$ at a time quantum q :

1. If $f \notin \mathcal{F}_{2}$ then, by the definition of Project , $a^{\prime} . f(q)=a . f(w(q))$ and $a^{\prime \prime} \cdot f(q)=a \cdot f(w(q))$, i.e. $a^{\prime} \cdot f(q)=a^{\prime \prime} \cdot f(q)$.
2. If $f \in \mathcal{F}_{2}$ then, by the definition of PROJECT , $a^{\prime} \cdot f(q)=d v(f)$ and $a^{\prime \prime} \cdot f(q)=$ $d v(f)$, and again $a^{\prime} \cdot f(q)=a^{\prime \prime} . f(q)$.

As $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$ for every stream f at any quantum q, one can conclude that a^{\prime} and $a^{\prime \prime}$ are equivalent.

Compress can be swapped with Apply as long as the stream affected by the APPLY operator is not a stream being compressed.

Theorem 3.3.20 (Swapping Compress and Apply) Given a Compress operator based on streams listed in \mathcal{F} and an AppLY operator with a local transformationfunction tr_{f}, such that $f \notin \mathcal{F}$ or $x \neq d v(f) \rightarrow \operatorname{tr}_{f}(x) \neq d v(f)$, the following holds for any audio file a :

$$
\eta_{\mathcal{F}}\left(\alpha\left(a, t r_{f}\right)\right)=\alpha\left(\eta_{\mathcal{F}}(a), t r_{f}\right) .
$$

Proof of Theorem 3.3.20. As the theorem requires $t r_{f}$ to be local, the Apply operates on each time quantum individually, we can consider each quantum individually, without taking into account its location or the data at the other quanta. The ComPRESS operator defines a $w:\left[0, \eta_{\mathcal{F}}(a) . \ell\right) \rightarrow[0, a . \ell)$ mapping between time quanta in the compression result $\eta_{\mathcal{F}}(a)$ and the quanta in the input audio file a. Let us then consider an arbitrary stream s in $a^{\prime}=\eta_{\mathcal{F}}\left(\alpha\left(a, t r_{f}\right)\right)$ and $a^{\prime \prime}=\alpha\left(\eta_{\mathcal{F}}(a), t r_{f}\right)$ at a time quantum q :

1. If $f \notin \mathcal{F}$ then for any stream $f^{\prime} \in \mathcal{F}$ it is true that $\alpha\left(a, t r_{f}\right) \cdot f^{\prime}(q)=a . f^{\prime}(q)$, by the definition of APPLY. Then, by the definition of Compress, the ComPRESS operators in both a^{\prime} and $a^{\prime \prime}$ induce the same mapping w on their inputs. Therefore, $a^{\prime} . s(q)=\alpha\left(a, t r_{f}\right) \cdot s(w(q))$ and $a^{\prime \prime} . s(q)=\alpha\left(a, t r_{f}\right) \cdot s(w(q))$, i.e. $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$.
2. If $f \in \mathcal{F}$ then the theorem requires that $x \neq d v(f) \rightarrow \operatorname{tr}_{f}(x) \neq d v(f)$. Additionally, by the common property of all transformation functions, $x=d v(f) \rightarrow$ $\operatorname{tr}_{f}(x)=d v(f)$, i.e. $x=d v(f)$ if and only if $\operatorname{tr}_{f}(x)=d v(f)$. By definition, Apply can only modify a single stream f, therefore for any stream $f^{\prime} \in \mathcal{F}$ it is true that $a \cdot f^{\prime}(q)=d v\left(f^{\prime}\right)$ if and only if $a \cdot f^{\prime}(q)=\alpha\left(a, t r_{f}\right) \cdot f^{\prime}(q)=d v\left(f^{\prime}\right)$. Then, by the definition of COMPRESS, the COMPRESS operators in both a^{\prime}
and $a^{\prime \prime}$ induce the same mapping w on their inputs. Therefore, $a^{\prime} \cdot s(q)=$ $\alpha\left(a, t r_{f}\right) . s(w(q))$ and $a^{\prime \prime} . s(q)=\alpha\left(a, t r_{f}\right) . s(w(q))$, i.e. $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$.

As $a^{\prime} . s(q)=a^{\prime \prime} . s(q)$ for every stream s at any quantum q, one can conclude that a^{\prime} and $a^{\prime \prime}$ are equivalent.

Finally, Compress can be swapped with the concatenation operator.

Theorem 3.3.21 (Swapping Compress and Concatenation) Given a Compress op-

 erator and a concatenation of two audio files a_{1}, a_{2}, the following holds:$$
\eta_{\mathcal{F}}\left(a_{1} \oplus a_{2}\right)=\eta_{\mathcal{F}}\left(a_{1}\right) \oplus \eta_{\mathcal{F}}\left(a_{1}\right) .
$$

Proof of Theorem 3.3.21. This proof is similar to the proof of Theorem 3.3.12. Consider an arbitrary stream f in $a^{\prime}=\eta_{\mathcal{F}}\left(a_{1} \oplus a_{2}\right)$ and $a^{\prime \prime}=\eta_{\mathcal{F}}\left(a_{1}\right) \oplus \eta_{\mathcal{F}}\left(a_{2}\right)$ at a time quantum q. By the definition of Compress, there are two mappings $w_{1}:\left[0, \eta_{\mathcal{F}}\left(a_{1}\right) \cdot \ell\right) \rightarrow\left[0, a_{1} \cdot \ell\right)$ and $w_{2}:\left[0, \eta_{\mathcal{F}}\left(a_{2}\right) \cdot \ell\right) \rightarrow\left[0, a_{2} \cdot \ell\right)$ that determine which quanta are selected by the Compress operator. Due to the definition of the concatenation operator, we can write the following correspondence between stream values:

$$
\begin{aligned}
& a^{\prime} \cdot f(q)= \begin{cases}a_{1} \cdot f\left(w_{1}(q)\right) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
a_{2} \cdot f\left(w_{2}\left(q-a_{1} \cdot \ell\right)\right) & \text { otherwise }\end{cases} \\
& a^{\prime \prime} \cdot f(q)= \begin{cases}a_{1} \cdot f\left(w_{1}(q)\right) & \text { if } q \in\left[0, a_{1} \cdot \ell\right) \\
a_{2} \cdot f\left(w_{2}\left(q-a_{1} \cdot \ell\right)\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

As $a^{\prime} . f(q)=a^{\prime \prime} . f(q)$ for every stream f at any quantum q, one can conclude that a^{\prime} and $a^{\prime \prime}$ are equivalent.

3.3.10 The Match Operator

There are many cases where we have an audio file a and another audio file a^{\prime} and want to find places in a that are most similar to a^{\prime}, or "match" a '. For instance, returning to our court recording, one may wish to find the k best matches for judge's statements where judge has spoken a certain word. Similar queries can often be useful for searching surveillance logs, transcripts, musical tunes, and so forth.

In order to support matching, we first need to define what it means for an audio stream to be similar to another audio stream.

Definition 3.3.20 (Distance Measure) A distance measure dm is a mapping from pairs of audio streams to $[0,1]$ such that $d m(f, f)=0$ for any audio stream f.

As f and f^{\prime} become less similar, the value of $d m\left(f, f^{\prime}\right)$ grows. The default distance measure for two streams following the same schema should be included into that schema. Some specific distance measures are given below.

Example 3.3.7 (Distance Measures)

1. Distance for numeric streams: Suppose streams f and f^{\prime} are numeric and $\ell=\min \left(l e n g t h(f)\right.$, length $\left.\left(f^{\prime}\right)\right)$. We may use the linear distance, the quadratic distance or the maximal distance to measure similarity between the streams.

$$
\begin{aligned}
d m_{l d}\left(f, f^{\prime}\right) & =\frac{\sum_{i=0}^{\ell-1}\left|f(i)-f^{\prime}(i)\right|}{\ell \cdot|\max (f)-\min (f)|}, \\
d m_{q d}\left(f, f^{\prime}\right) & =\frac{\sum_{i=0}^{\ell-1}\left(f(i)-f^{\prime}(i)\right)^{2}}{\ell \cdot(\max (f)-\min (f))^{2}}, \\
d m_{m d}\left(f, f^{\prime}\right) & =\frac{\max x_{i=0}^{\ell-1}\left|f(i)-f^{\prime}(i)\right|}{|\max (f)-\min (f)|}
\end{aligned}
$$

It follows from the definitions of these distance measures that for all f and f^{\prime}, $d m_{q d}\left(f, f^{\prime}\right) \leq d m_{l d}\left(f, f^{\prime}\right) \leq d m_{m d}\left(f, f^{\prime}\right)$.
2. Distance for set-valued streams: Suppose f and f^{\prime} are set-valued streams, such as frequency spectrum or a set of currently playing musical instruments. We can apply the following distance measure to these streams:

$$
d m_{s d}\left(f, f^{\prime}\right)=\frac{1}{n} \sum_{i=0}^{\ell-1} \frac{\operatorname{card}\left(f(i) \cap f^{\prime}(i)\right)}{\operatorname{card}\left(f(i) \cup f^{\prime}(i)\right)+1}
$$

Other stream types may require different measures such as shortest editing distance for strings or perceived audio similarity for phonemes. Notice that sizes of two streams do not have to be equal. In fact, chunks of streams considered by dm may differ in size, although it is natural that the pattern f^{\prime} is considered in its entirety.

Definition 3.3.21 (Multiple Stream Distance) The distance between two audio files a, a^{\prime} with respect to a set of stream names \mathcal{F} can be computed as follows:

$$
d m_{\mathcal{F}}\left(a, a^{\prime}\right)=\sum_{f \in \mathcal{F}} d m\left(a . f, a^{\prime} . f\right)
$$

It is assumed that a and a^{\prime} follow the same schema from which appropriate stream distance measures are taken.

Definition 3.3.22 (Match Ordering) Suppose a, a^{\prime} are audio files and \mathcal{F} is a set of stream names. Let $S E Q(a)$ denote the set of all contiguous subsequences of a. Each $x \in S E Q(a)$ is a range of $[l, u]$ such that $l \in[0, a . \ell)$ and $u \in[l, a . \ell)$, and can be treated as an audio file by itself. Suppose $x_{1}, x_{2} \in S E Q(a)$. We say that $x_{1} \sqsubseteq_{a^{\prime}} x_{2}$ iff $d m_{\mathcal{F}}\left(x_{1}, a^{\prime}\right) \leq d m_{\mathcal{F}}\left(x_{2}, a^{\prime}\right)$ and call $\sqsubseteq_{a^{\prime}}$ the match ordering of SEQ(a) w.r.t. a^{\prime}.

Now, the matching operator can be defined as follows.

Definition 3.3.23 (MATCH Operator) Suppose a, a^{\prime} are two audio files, ADB is an audio database, \mathcal{F} is a set of stream names, k is a natural number, and $d_{\max } \geq 0$
is a real number. Let S consist of k smallest members of $S E Q(a)$ w.r.t. $\sqsubseteq_{a^{\prime}}$ such that $\forall x \in S d m_{\mathcal{F}}\left(x, a^{\prime}\right) \leq d_{\text {max }}$. Then the MATCH operator returns a new audio file (database) such that

$$
\begin{aligned}
\mu_{\mathcal{F}}^{k}\left(a, a^{\prime}, d_{\max }\right) & =\left\langle a . \ell, a \cdot \delta t,\left\{f\left|f(q)=\left\{\begin{array}{ll}
a . f(q) & \text { if } \exists x \in S q \in x \\
d v(f) & \text { otherwise }
\end{array}\right\}\right\rangle,\right.\right. \\
\mu_{\mathcal{F}}^{k}\left(\mathrm{ADB}, a^{\prime}, d_{\max }\right) & =\left\{x=\mu_{\mathcal{F}}^{k}\left(a, a^{\prime}\right) \mid a \in \mathrm{ADB} \wedge \exists f \exists q x \cdot f(q) \neq d v(f)\right\} .
\end{aligned}
$$

3.4 Optimizing Select and Mix

Two basic operators most often executed on audio data are Select and Mix . Given an audio file (database) and a selection condition, SELECT searches for quanta that satisfy this condition. A more complex operator, Mix, searches two audio files at once for quanta satisfying a joint selection condition.

In a very naive implementation, both selection and mixing can be performed by scanning input audio files, quantum by quantum, and writing out the resulting quanta as they are being computed. Due to the usual smoothness of audio data, its traversal can be accelerated by compressing audio streams with the run-length encoding (RLE). To further accelerate search operations though, one has to index audio streams and audio files. In this section, I will show how numeric audio streams (such as waveform or amplitude) can be indexed and searched for the purpose of selection and mixing.

To accelerate selection and mixing, one needs an efficient way to decide whether a range of quanta in an audio file contains any useful data with respect to a selection condition, and if it does not, skip over this range. For example, if we are looking at a range of quanta $\left[3 \cdot 10^{6}, 7 \cdot 10^{6}\right)$, it would be nice if we could quickly say that nothing in this range satisfies our selection condition, thus allowing us to jump over a large
range of quanta in our search. This operation can be abstracted with the following two API calls:

1. The $q^{\prime}=f . S k i p N I L(q)$ call skips stream f to the nearest quantum $q^{\prime} \geq q$ such that $f\left(q^{\prime}\right) \neq d v(f)$. Thus, SkipNIL() allows jumping over "empty" ranges of quanta.
2. The $q^{\prime}=f . \operatorname{SkipTo}\left(q, d_{\min }, d_{\max }, E\right)$ call skips stream f to the nearest quantum $q^{\prime} \geq q$ such that $d_{\min } \leq f\left(q^{\prime}\right) \leq d_{\max }$ when $E=$ false, or $f\left(q^{\prime}\right)<d_{\min } \wedge$ $f\left(q^{\prime}\right)>d_{\max }$ when $E=$ true. Thus, SkipTo() allows jumping directly to stream ranges containing "interesting" data.

Let us start by dividing a stream into a sequence of segments, as shown in the Figure 3.4. Each segment $s=\langle$ start, end, $\min , \max \rangle$ is characterized by the starting and ending quanta, minimal, and maximal values. A sequence of such segments shown in the Figure 3.4 is formally known as a subdivision. It is clear that a stream can be subdivided in multiple ways that are not equally good. Ideally, we would like each segment to be homogeneous and maximize the difference between each segment and its neighbors.

Figure 3.4: Subdivision.

To come up with a good segmentation criterion for efficient indexing, let us define the utilization of a segment to be

$$
u t(s)=1-\frac{2 \cdot \sum_{i \in[s . s t a r t, s . e n d)} \min (s . \max -s(i), s(i)-s . \min)}{(s . e n d-s . s t a r t) \cdot(s . \max -s . \min)} .
$$

Figure 3.5: Utilization.
Figure 3.4 shows a subdivision of segments with their corresponding $u t$ values, while Figure 3.5 shows a single segment. The ut function is directly proportional to the segment length and inversely proportional to the shaded area shown in Figure 3.5. Intuitively, higher values of $u t$ correspond to segments that have less empty space above and below the waveform and thus better approximate the data. By setting a lower bound on $u t$, one can break an audio stream into segments of different coarseness with the following greedy algorithm:

```
Algorithm SegmentStream(Data,ut min )
    Data is an audio stream
    \(u t_{\text {min }} \in[0,1]\) is a lower limit on utilization
begin
    Result \(:=\emptyset\)
    Start \(:=0\)
    Max := Data(0)
    Min := Data(0)
    for \(j \in[1\), length(Data)) do
            // If upper boundary has changed...
            if \(\operatorname{Data}(j)>M a x\) then
                // When \(u t\) falls below \(u t_{\text {min }}\), create a segment
                if \(u t(\langle S t a r t, j, \operatorname{Min}, \operatorname{Data}(j)\rangle)<u t_{\text {min }}\) then
                    Result \(:=\) Result \(\cup\{\langle\) Start, \(j\), Min, Max \(\rangle\}\)
                    Start \(:=j\)
                    Min \(:=\operatorname{Data}(j)\)
```

```
            end if
            Max := \(\operatorname{Data}(j)\)
        end if
        // If lower boundary has changed...
        if \(\operatorname{Data}(j)<\operatorname{Min}\) then
            // When \(u t\) falls below \(u t_{\text {min }}\), create a segment
            if \(u t(\langle S t a r t, j, \operatorname{Data}(j), M a x\rangle)<u t_{\text {min }}\) then
            Result \(:=\operatorname{Result} \cup\{\langle\) Start, \(j\), Min, Max \(\rangle\}\)
            Start \(:=j\)
            Max := \(\operatorname{Data}(j)\)
            end if
            \(\operatorname{Min}:=\operatorname{Data}(j)\)
        end if
    end for
    Result \(:=\) Result \(\cup\{\langle\) Start, length(Data), Min, Max \(\rangle\}\)
    return Result
end
```

The SegmentStream () algorithm scans the stream and computes a new utilization value every time its upper or lower boundary changes. A new segment is created every time the $u t$ value falls below the given lower bound $u t_{\text {min }}$. This ensures that all segments created by the algorithm have at least $u t_{\min }$ utilization, as shown in the following example.

Example 3.4.1 (Building a Subdivision) Columns 3-4 of the Table 3.1 show steps taken by the SegmentStream () algorithm called with $u t_{\text {min }}=0.37$ on a stream shown in the Figure 3.4. Column 3 contains the currently scanned segment's length and boundaries, while column 4 shows the utilization. As one can see, the ut value falls below $u t_{\min }$ at the quantum 17, causing the algorithm to create a segment $\langle 0,17,4,13\rangle$ and start on a new segment. In this example, the SegmentStream() algorithm creates a subdivision of two segments: $\langle 0,17,4,13\rangle$ and $\langle 17,38,4,17\rangle$. The starting quanta of these two segments are marked with asterisks in the table.

When creating a subdivision, one faces a tradeoff between the segment boundary tightness and the number of segments. To have both succinct and precise representations of an audio stream, one can use the subdivision tree data structure whose

		$u t \geq 0.37$		$u t \geq 0.74$	
q	f(q)	$\ell \times[\min , \max]$	$u t$	$\ell \times[\min , \max]$	$u t$
0	6	* $1 \times[6,6]$	1.00	* $1 \times[6,6]$	1.00
1	8	$2 \times[6,8]$	1.00	$2 \times[6,8]$	1.00
2	9	$3 \times[6,9]$	0.78	$3 \times[6,9]$	0.78
3	10	$4 \times[6,10]$	0.63	* $1 \times[10,10]$	1.00
4	10	$5 \times[6,10]$	0.70	$2 \times[10,10]$	1.00
5	10	$6 \times[6,10]$	0.75	$3 \times[10,10]$	1.00
6	10	$7 \times[6,10]$	0.79	$4 \times[10,10]$	1.00
7	10	$8 \times[6,10]$	0.81	$5 \times[10,10]$	1.00
8	10	$9 \times[6,10]$	0.83	$6 \times[10,10]$	1.00
9	9	$10 \times[6,10]$	0.80	$7 \times[9,10]$	1.00
10	8	$11 \times[6,10]$	0.73	$8 \times[8,10]$	0.88
11	6	$12 \times[6,10]$	0.75	$9 \times[6,10]$	0.83
12	4	$13 \times[4,10]$	0.74	$10 \times[4,10]$	0.83
13	5	$14 \times[4,10]$	0.74	$11 \times[4,10]$	0.82
14	8	$15 \times[4,10]$	0.71	$12 \times[4,10]$	0.78
15	11	$16 \times[4,11]$	0.57	* $1 \times[11,11]$	1.00
16	13	$17 \times[4,13]$	0.41	$2 \times[11,13]$	1.00
17	15	* $1 \times[15,15]$	1.00	* $1 \times[15,15]$	1.00
18	16	$2 \times[15,16]$	1.00	$2 \times[15,16]$	1.00
19	17	$5 \times[11,17]$	0.67	* $1 \times[17,17]$	1.00
20	17	$6 \times[11,17]$	0.72	$2 \times[17,17]$	1.00
21	17	$7 \times[11,17]$	0.76	$3 \times[17,17]$	1.00
22	17	$8 \times[11,17]$	0.79	$4 \times[17,17]$	1.00
23	17	$9 \times[11,17]$	0.82	$5 \times[17,17]$	1.00
24	17	$10 \times[11,17]$	0.83	$6 \times[17,17]$	1.00
25	17	$11 \times[11,17]$	0.85	$7 \times[17,17]$	1.00
26	16	$12 \times[11,17]$	0.83	$8 \times[16,17]$	1.00
27	16	$13 \times[11,17]$	0.82	$9 \times[16,17]$	1.00
28	15	$14 \times[11,17]$	0.79	$10 \times[15,17]$	0.80
29	14	$15 \times[11,17]$	0.73	$11 \times[14,17]$	0.82
30	12	$16 \times[11,17]$	0.73	$12 \times[12,17]$	0.80
31	10	$17 \times[10,17]$	0.73	$13 \times[10,17]$	0.80
32	7	$18 \times[7,17]$	0.71	$14 \times[7,17]$	0.79
33	4	$19 \times[4,17]$	0.73	$15 \times[4,17]$	0.79
34	5	$20 \times[4,17]$	0.73	$16 \times[4,17]$	0.79
35	6	$21 \times[4,17]$	0.73	$17 \times[4,17]$	0.78
36	6	$22 \times[4,17]$	0.73	$18 \times[4,17]$	0.78
37	6	$23 \times[4,17]$	0.73	$19 \times[4,17]$	0.77

Table 3.1: SegmentStream() Operation.
branches correspond to the same audio stream segmented with different degrees of resolution, as shown in Figure 3.6.

Figure 3.6: Subdivision Tree.

Definition 3.4.1 (Subdivision Tree) Suppose f is an audio stream.

1. Subdivision node. Given an audio stream f, let us define a subdivision node to be a structure \langle start, end, min, max, prev, next, child \rangle where
(a) start and end are node's starting and ending quanta in f such that start $<$ end,
(b) $\min (f)$ and $\max (f)$ are lower and upper bounds on $\{f($ start $), \ldots, f($ end1) \},
(c) prev and next are pointers to sibling nodes, such that prev.end $=$ start and next.start $=$ end, and
(d) child is a pointer to the child node containing the starting quantum of the segment.
2. Subdivision. A subdivision is a set of subdivision nodes $c=\left\{N_{1}, \ldots, N_{n}\right\}$ such that $N_{1} \cdot$ prev $=N I L, N_{i} \cdot$ prev $=N_{i-1}, N_{n} \cdot n e x t=N I L$, and $N_{i} \cdot n e x t=$ N_{i+1}. A subdivision is characterized by its first and last nodes: $\operatorname{first}(c)=N_{1}$ and last $(c)=N_{n}$.
3. Subdivision tree. Given a maximal utilization $u t_{\text {max }}, a$ subdivision tree is a set of subdivisions $T=\left\{c_{1}, \ldots, c_{n}\right\}$ such that the root

$$
c_{1}=\left\{\left\langle 0, \operatorname{length}(f), \min (f), \max (f), N I L, N I L, f i r s t\left(c_{1}\right)\right\rangle\right\}
$$

and for any subdivision node N it is true that
(a) if $u t(N) \geq u t_{\max }$ then N.child $=$ NIL and
(b) otherwise, there is a subdivision $c_{i} \in T$ such that $N . c h i l d=\operatorname{first}\left(c_{i}\right)$ and $\forall N^{\prime} \in c_{i} u t\left(N^{\prime}\right) \geq 2 \cdot u t(N)$.

Example 3.4.2 (Building a Subdivision Tree) Columns 5-6 of the Table 3.1 show steps taken by the SegmentStream() algorithm called with $u t_{\text {min }}=2 \cdot 0.37=0.64$ on each segment of the original subdivision obtained in the previous example. The table shows that each of the two original segments is further subdivided into segments $\langle 0,3,6,9\rangle,\langle 3,15,4,10\rangle,\langle 15,17,11,13\rangle,\langle 17,19,15,16\rangle$, and $\langle 19,38,4,17\rangle$. These new segments make the second level of a subdivision tree whose first level consists of the original two segments from columns 3-4. Figure 3.6 shows the resulting subdivision tree.

One can use the subdivision tree to search for stream values falling into a range [$v_{\text {min }}, v_{\text {max }}$] with the following algorithm:
Algorithm FindInRange(Data, $N, q, v_{\min }, v_{\max }$)
Data is the audio stream
N is the subdivision node

```
    q}\mathrm{ is the starting quantum
    [ }\mp@subsup{v}{\operatorname{min}}{},\mp@subsup{v}{\operatorname{max}}{}]\mathrm{ is a range of values to search for
begin
    while N\not=NIL and q\geqN.end do N:= N.next
    while N\not=NIL do
        if [N.min,N.max] \cap[v min},\mp@subsup{v}{\operatorname{max}}{}]\not=\emptyset\mathrm{ then
            if N.child }=\mathrm{ NIL then
                        q
                            if q
                else
                        for q}\mp@subsup{q}{}{\prime}\in[\operatorname{max}(q,N.start),N.end) do
                        if Data(q')}\in[\mp@subsup{v}{\mathrm{ min }}{\prime},\mp@subsup{v}{\mathrm{ max }}{}]\mathrm{ then return }\mp@subsup{q}{}{\prime
            end for
                end if
        end if
        N:= N.next
    end while
    return NotFound
end
```

Given a stream f, a starting quantum q, a range of interest $\left[v_{\min }, v_{\text {max }}\right]$, and a subdivision tree T, the recursive FindInRange() algorithm is called on the first node of T 's root subdivision as

$$
\operatorname{FindInRange}\left(f, \operatorname{first}(\operatorname{root}(T)), q, v_{\min }, v_{\max }\right) .
$$

The algorithm starts by scanning the subdivision for the first node intersecting the quantum range $[q,+\infty)$, as we are only interested in quanta starting from q. It then looks for a node whose value range intersects $\left[v_{\min }, v_{\max }\right]$. If that node is subdivided further, FindInRange() calls itself on this child subdivision. Otherwise, it resorts to direct scanning the audio stream within node's boundaries.

By replacing the $[N . \min , N . \max] \cap\left[v_{\min }, v_{\max }\right] \neq \emptyset$ statement with its negation, one can obtain the algorithm FindOutRange() that searches for data outside of the range $\left[v_{\text {min }}, v_{\max }\right]$.

Together, FindInRange() and FindOutRange() allow to find spans of quanta where stream values lie inside or outside a given range. One can use these algorithms
to accelerate the $\operatorname{Skip} T o()$ API call. Then the $\operatorname{SkipNIL}()$ API call can be implemented by looking for the data outside the $[d v(f), d v(f)]$ range.

3.4.1 Experiments

I have used a database of narrated Chaucer works, opera recordings (rendered from MIDI files), and other audio files totaling to about 80 million quanta, with individual recordings varying in length from several thousand to eight million quanta. Most recordings were two to four million quanta in length.

In the experiments, I assessed the effectiveness of the subdivision tree indexing. A maximal amplitude stream amp sampled over 10 ms periods with the value range of $[0,32767]$ has been used for experiments. The size of an index file, shown in Figure 3.7, has largely been under 5\% of the data file size.

Figure 3.7: Subdivision Tree Size.

First, I ran Select queries

$$
\sigma_{a . a m p \geq v \wedge a . a m p \leq 10000}(a)
$$

where $v=0,2000,4000,6000,8000$, five times for each audio file a in the database. Figure 3.8 shows average execution times for these queries with and without indexing, as a function of the data size. The first three graphs correspond to queries that select [0,10000] (highest selectivity), [4000, 10000] (average selectivity), and [8000, 10000] (lowest selectivity) amplitude ranges. As expected, index benefits grow as selectivity falls. The last graph shows the average execution time for all selectivities. It appears that the index improves Select performance by as much as seven times.

Figure 3.8: SubTree Select Performance.

Next, I ran MiX queries

$$
a_{1} \otimes_{a_{1} . a m p \leq v \wedge a_{2} . a m p>v} a_{2},
$$

where $v=2000,4000,6000,8000$, for all possible combinations of files a_{1}, a_{2} in
the database. Figure 3.9 shows average execution times for these queries with and without indexing, as a function of the data size. The first three graphs correspond to queries with the "mixing threshold" of 2000, 4000, and 8000. The last graph shows the average execution time for all threshold values. While index benefits are less pronounced in this case, they are still clearly seen in all the graphs.

Figure 3.9: Mixing Performance.

3.5 Optimizing MATCH

Due to the commonality of pattern searches, the matching operator is probably the most important in the algebra. It is also most difficult to implement, given the complexity of the task and the huge amount of input data. Therefore, let us spend some
time looking at the implementation of this operator.
The problem of matching audio data has been tackled by many researchers, such as $[33,27,69,47,65,41]$. Most of them look exclusively at melodies i.e. musical scores, represented with character strings, as opposed to waveforms or other audio representations. There are also works that match audio files based on feature vectors, returning the whole file if its vector matches, as opposed to finding a matching spot in that file [27].

I believe that to search audio effectively, one needs to use all available knowledge of an audio recording, such as its waveform, frequency spectrum, MIDI score, and text transcript, at once. The MATCH operator in ADA provides a formal foundation for such multi-stream matching. As numeric representations (such as waveform, amplitude, etc.) are most commonly available though, this section specifically concentrates on numeric stream matching. Approaches described here can be applied to a larger domain of audio data than melody-based approaches described above, but they are also complicated by the inherent irregularity of audio waveforms, their large size, and large "alphabets" of thousands of values. While lengths of musical scores rarely exceed a few thousand characters, waveforms easily reach millions of samples in length. Furthermore, distance metrics used in waveform matching (such as quadratic distance) require scanning the entire pattern to find its distance to the data fragment and thus greatly reduce benefits of suffix tries/trees (often used for musical score matching).

There is a lot of research in matching time series, such as stock quote history or sensor data $[13,12,22,66,67,87]$. Such time series contain numeric data very similar to audio waveforms and are matched using quadratic, Manhattan, and maximal distance metrics, among others. Thus, approaches used to match time series can be
very useful when matching audio. Unfortunately, none of the above works specifically consider audio data. Also, time series used in the above works are usually limited to $10^{2}-10^{6}$ data points, much shorter than a typical audio file.

The ultimate purpose of matching is to find audio fragments that sound similar to the human ear. One way to do this would be to match waveform streams. Unfortunately, this approach is very sensitive to noise and phase difference between streams. To take care of these issues, one may compare compound amplitude streams instead, where sound amplitude is averaged or maximized over a period of n samples:

$$
\begin{aligned}
\operatorname{amp}_{\text {avg }}(i) & =\frac{\Sigma_{j \in[-n / 2, n / 2)} \mid \text { wave }(i+j) \mid}{n} \\
\operatorname{amp}_{\max }(i) & =\max _{j \in[-n / 2, n / 2)} \mid \text { wave }(i+j) \mid
\end{aligned}
$$

An example of the maximum amplitude stream $a m p_{\max }$ is shown in Figure 3.10.

Figure 3.10: Maximum Amplitude and Amplitude Change Streams.

In addition, two streams may sound similar but have different volumes. Thus, we need some audio characteristics that do not change with the volume. One such characteristic is an amplitude change from one sample to the next relative to the total amplitude of these two samples:

$$
\operatorname{ach}(i)=\frac{\operatorname{amp}(i+1)-a m p(i)}{\operatorname{amp}(i+1)+a m p(i)} .
$$

Assume $\operatorname{ach}(i)=0$ when $\operatorname{amp}(i+1)+\operatorname{amp}(i)=0$. A sketch of the $a c h$ stream is shown in Figure 3.10.

The following algorithm uses the quadratic distance measure to find the best k pattern matches in an audio stream and returns their positions:

```
Algorithm NaiveFindPattern(Data,Pattern, \(k, d_{\max }\) )
    Data is an audio stream
    Pattern is an audio stream such that length(Pattern) \(\leq\) length (Data)
    \(k\) is the number of best matches to return
    \(d_{\max }\) is the distance threshold
    List is a list of \(\langle i, d\rangle\) pairs sorted by increasing \(d\)
begin
    List \(:=\{\langle 0,+\infty\rangle\}\)
    for \(i \in[0\), length \((\) Data \()-\) length \((\) Pattern \()]\) do
        \(d:=0\)
        for \(j \in[0\), length(Pattern) \()\) do
            \(d:=d+(\operatorname{Data}(i+j)-\operatorname{Pattern}(j))^{2}\)
            \(d^{\prime}:=\frac{d}{\text { length }(\text { Pattern }) \cdot(\max (\text { Pattern })-\min (\text { Pattern }))^{2}}\)
            if \(d^{\prime}>d_{\text {max }}\) or \((\operatorname{size}(\) List \()=k\) and \(d \geq \operatorname{tail}(\) List \() . d)\) then break
        end for
        if \(d^{\prime} \leq d_{\text {max }}\) and \((\operatorname{size}(\) List \()<k\) or \(d<\operatorname{tail}(\) List).d) then
            \(\operatorname{add}(\) List, \(\langle i, d\rangle)\)
            if \(\operatorname{size}(L i s t)>k\) then \(\operatorname{delete}(L i s t, \operatorname{tail}(\) List \())\)
        end if
    end for
    return \(\{[i, i+\) length \((\) Pattern \()) \mid\langle i,-\rangle \in\) List \(\}\)
end
```

Notice that the NaiveFindPattern() algorithm will terminate any pattern match as soon as its distance d exceeds the threshold $d_{\max }$ or the $k^{t h}$ best distance found so far. Aside from this optimization, the algorithm is fairly naive and has the time complexity of $O(($ length $($ Data $)$ - length $($ Pattern $)) \cdot$ length $($ Pattern $))$.

It is clear that NaiveFindPattern() is very time consuming, making naive matching unfeasible for large audio databases or even large standalone audio files. To accelerate matching, one can consider following approaches:

1. The NaiveFindPattern() algorithm can be modified to operate directly on RLE compressed stream representations. If c_{D} and c_{P} are compression factors
for the data and pattern streams respectively, the algorithm complexity will be reduced by a factor of $O\left(c_{D} \cdot c_{P}\right)$.
2. By its nature, audio data tends to be smooth. It changes slowly with time, making it very likely that the values at adjacent quanta do not differ much. This is especially true for compound amplitude streams described in this section. Therefore, it may be possible to "downsample" streams by picking their values at every $n^{\text {th }}$ quantum with the Resample operator, as shown in Figure 3.11, and match these downsampled streams instead of matching full streams. This reduces the matching complexity by a factor of $O\left(n^{2}\right)$, at the cost of reduced precision and recall, as will be shown in later experiments.
3. One can use a data structure, such as a subdivision or a variation of a suffix trie to index data and/or pattern and make use of this index to accelerate matching. This is the approach we are going to consider in a greater detail below.

Figure 3.11: Downsampled Amplitude Stream.

3.5.1 Matching with Subdivisions

Let us start by representing both the audio and the pattern streams with subdivisions. A subdivision is similar to an RLE encoding but it uses rectangles to represent spans
of audio data where RLE is limited to line segments. Our problem then becomes to match rectangles taken from two subdivisions against each other. When using the quadratic distance to measure similarity between segments, one can make the following observation:

Proposition 3.5.1 (Bounds on Segment Distance) Suppose we compute the quadratic distance between two segments s_{1}, s_{2} of equal length ℓ as follows:

$$
\operatorname{dist}\left(s_{1}, s_{2}\right)=\frac{1}{\ell} \cdot \sum_{i \in[0, l)}\left(s_{1}(i)-s_{2}(i)\right)^{2}
$$

Then the upper and lower bounds on dist() are

$$
\begin{aligned}
\operatorname{dist}\left(s_{1}, s_{2}\right) & \geq\left(\max \left(s_{2} \cdot \min -s_{1} \cdot \max , 0\right)+\max \left(s_{1} \cdot \min -s_{2} \cdot \max , 0\right)\right)^{2} \\
\operatorname{dist}\left(s_{1}, s_{2}\right) & \leq \max \left(s_{2} \cdot \max -s_{1} \cdot \min , s_{1} \cdot \max -s_{2} \cdot \min \right)^{2}
\end{aligned}
$$

A similar proposition holds for linear distance.

The proposition above is used in the following MatchSegments() algorithm which, given data and pattern subdivisions and a distance limit $d_{\text {max }}$, returns a set of quantum ranges where distance between the data and the pattern is less than or equal to this limit:
Algorithm MatchSegments(Data,Pattern, $N_{D}, N_{P}, q_{\min }, q_{\max }, d_{\max }$)
Data is the data stream
Pattern is the pattern stream
N_{D} is the first node of a data subdivision
N_{P} is the first node of a pattern subdivision
[$q_{\min }, q_{\max }$) is the time range to search
$d_{\max }$ is the maximal allowed distance begin

Result : $=\emptyset$
$N_{\text {check }}:=N I L$
$N_{\text {take }}:=N I L$
$t:=\max \left(q_{\min }, N_{D} . s t a r t\right)$
$/ /$ Find the first data node that intersects $\left[q_{\text {min }}, q_{\text {max }}\right.$)
while $N_{D} \neq N I L$ and $t \geq N_{D}$.end do $N_{D}:=N_{D}$.next
$/ /$ Shift pattern across data until we reach the $q_{\max }$
while $N_{D} \neq N I L$ and $t<q_{\max }$ do

```
\(P_{1}:=N_{D}\)
\(P_{2}:=N_{P}\)
\(\delta t:=N_{D} . e n d-t\)
\(M I N:=0\)
\(M A X:=0\)
// Traverse pattern subdivision comparing it against data
while \(P_{1} \neq N I L\) and \(P_{2} \neq N I L\) do
    // Compute \(M I N / M A X\) for the overlap of \(P_{1} / P_{2}\)
    \(\ell:=\min \left(P_{1} . e n d, P_{2}\right.\). end \(\left.+t\right)-\max \left(P_{1}\right.\). start,\(P_{2}\). start \(\left.+t\right)\)
    \(M I N:=M I N+\ell \cdot\left(\max \left(P_{2} \cdot \min -P_{1} \cdot \max , 0\right)+\max \left(P_{1} \cdot \min -P_{2} \cdot \max , 0\right)\right)^{2}\)
    \(M A X:=M A X+\ell \cdot\left(\max \left(P_{1} \cdot \max -P_{1} \cdot \min , P_{1} \cdot \max -P_{2} \cdot \min \right)\right)^{2}\)
    // Shift to the next combination of \(P_{1} / P_{2}\)
    if \(P_{2}\).end \(+t>P_{1}\).end then \(P_{1}:=P_{1}\).next
    else
        if \(P_{2}\). end \(+t=P_{1}\). end then \(P_{1}:=P_{1} . n e x t\) else \(\delta t:=\min \left(\delta t, P_{1}\right.\). end \(\left.-P_{2} . e n d-t\right)\)
        \(P_{2}:=P_{2} . n e x t\)
    end if
end while
// If pattern subdivision has been fully traversed...
if \(P_{2}=N I L\) then
        \(M I N:=\frac{\text { MIN }}{\text { length(Pattern }) \cdot(\max (\text { Pattern })-\min (\text { Pattern }))^{2}}\)
    \(M A X:=\frac{M A X}{\text { length }(\text { Pattern }) \cdot(\max (\text { Pattern })-\min (\text { Pattern }))^{2}}\)
    // If found start of a definite match...
    if \(N_{\text {take }}=N I L\) and \(M A X \leq d_{\max }\) then
        \(t_{\text {take }}:=t_{\text {prev }}+\left(t-t_{\text {prev }}\right) \cdot \frac{M A X_{\text {prev }}-d_{\text {max }}}{M A X_{\text {prev }}-M A X}\)
        if \(t_{\text {take }} \geq N_{D}\).start then \(N_{\text {take }}:=N_{D}\) else \(N_{\text {take }}:=N_{D}\).prev
        if \(M I N_{\text {prev }}>d_{\text {max }}\) then
            \(t^{\prime \prime}:=t_{\text {prev }}+\left(t-t_{\text {prev }}\right) \cdot \frac{M I N_{\text {prev }}-d_{\text {max }}}{M I N_{\text {prev }}-M I N}\)
            Result \(:=\) Result \(\cup\) FindPattern(Data, Pattern \(\left., t^{\prime \prime}, t_{\text {take }}, d_{\text {max }}\right)\)
        end if
    end if
    // If found end of a definite match...
    if \(N_{\text {take }} \neq N I L\) and \(M A X>d_{\text {max }}\) then
        \(t^{\prime}:=t_{\text {prev }}+\left(t-t_{\text {prev }}\right) \cdot \frac{M A X_{\text {prev }}-d_{\text {max }}}{M A X_{\text {prev }}-M A X}\)
        Result \(:=\) Result \(\cup\left[t_{\text {take }}, t^{\prime}\right)\)
        \(N_{\text {take }}:=N I L\)
        if \(M I N_{\text {prev }}>d_{\max }\) then
            \(t^{\prime \prime}:=t_{\text {prev }}+\left(t-t_{\text {prev }}\right) \cdot \frac{M I N_{\text {prev }}-d_{\text {max }}}{M I N_{\text {prev }}-M I N}\)
            Result \(:=\) Result \(\cup\) FindPattern(Data, Pattern \(\left., t^{\prime}, t^{\prime \prime}, d_{\max }\right)\)
        end if
    end if
    // If found start of a possible match...
    if \(N_{\text {check }}=N I L\) and \(d_{\text {max }} \in[M I N, M A X)\) then
        if \(M I N_{\text {prev }}>d_{\text {max }}\) then
        \(\ell:=\frac{M I N_{\text {prev }}-d_{\text {max }}}{\text { MINprev }- \text { MIN }}\)
    else
        \(\ell:=\frac{M A X_{\text {prev }}-d_{\text {max }}}{M A X}\)
    end if
```

```
                \(t_{\text {check }}:=t_{\text {prev }}+\ell \cdot\left(t-t_{\text {prev }}\right)\)
                if \(t_{\text {check }} \geq N_{D}\).start then \(N_{\text {check }}:=N_{D}\) else \(N_{\text {check }}:=N_{D}\).prev
            end if
            // If found end of a possible match...
            if \(N_{\text {check }} \neq N I L\) and \(d_{\max } \notin[M I N, M A X)\) then
                if \(M I N_{\text {prev }}>d_{\max }\) then
                \(\ell:=\frac{M I N_{\text {prev }}-d_{\text {max }}}{M I N_{\text {prev }}-M I N}\)
            else
                        \(\ell:=\frac{M A X_{\text {prev }}-d_{\text {max }}}{M A X_{\text {prev }}-M A X}\)
            end if
            Result \(:=\) Result \(\cup\) FindPattern(Data, Pattern \(\left., t_{\text {check }}, t_{\text {prev }}+\ell \cdot\left(t-t_{\text {prev }}\right), d_{\text {max }}\right)\)
                \(P_{\text {check }}:=N I L\)
            end if
            \(M I N_{\text {prev }}:=M I N\)
            \(M A X_{\text {prev }}:=M A X\)
            \(t_{\text {prev }}:=t\)
            \(t:=t+\delta t\)
        end if
    end while
    if \(N_{\text {take }} \neq N I L\) then
    Result \(:=\) Result \(\cup\left[t_{\text {take }}, \min \left(\right.\right.\) length \((\) Data \(), q_{\max }+\) length \((\) Pattern \(\left.\left.)\right)\right)\)
    end if
    if \(N_{\text {check }} \neq N I L\) then
    Result \(:=\) Result \(\cup\) FindPattern(Data, Pattern \(\left., t_{\text {check }}, q_{\max }, d_{\max }\right)\)
    end if
    return Result
end
```

Given data and pattern streams Data and Pattern with corresponding subdivisions C_{D} and C_{P}, the MatchSegments () algorithm is invoked as

$$
\text { MatchSegments(Data, Pattern, } \left.\operatorname{first}\left(C_{D}\right), \text { first }\left(C_{P}\right), 0, \text { length }(\text { Data }), d_{m a x}\right)
$$

and slides pattern segments along data segments while computing the lower (MIN) and upper ($M A X$) bounds on the distance between the data and the pattern. Ranges of quanta where $M A X \leq d_{\max }$ are immediately picked as answers, while ranges where $M I N>d_{\max }$ are ignored. For all other ranges (where $M I N \leq d_{\max }<M A X$) MatchSegments() calls the naive FindPattern() algorithm that scans actual data in these ranges, while avoiding the complete scan of data.

As shown before, the NaiveFindPattern() performs the pattern matching for each subset of the data that has the same length as the pattern. The MatchSegments()
algorithm, on the other hand, only performs matching at quanta where data and pattern segment boundaries coincide, thus reducing the search complexity. For further efficiency, the MatchSegments () algorithm can also be modified to work on subdivision trees.

3.5.2 Pattern Tree

So far, we have looked at matching pattern stream against a stream in a single audio file and found it to be a time consuming operation. The task becomes even more complicated when matching is done in an audio database containing a large number of audio files. To facilitate such operation, one needs an index that tells which database files may contain given pattern and which one can be safely omitted from the search.

When comparing audio pattern matching to other problems currently faced by computer scientists, two similar tasks immediately catch one's attention: the text substring search and the genetic sequence search. A well known method to cope with these problems is by using so-called suffix tries and trees [83] to index all substrings occurring in the data.

Unfortunately, audio pattern matching is somewhat different from both text and genetic searching. First of all, unlike text (with an alphabet of several dozen different characters) and genetic code (with an alphabet of just four characters), a typical audio stream has an "alphabet" of hundreds (8bit audio) or even thousands (16bit audio) of values. Thus, plain suffix trees tend to branch explosively when storing audio data.

Secondly, there is a difference in the distance measures. When matching substrings in a text or a genetic sequence, we are generally looking for the longest sub-
string that exactly matches the beginning of the pattern, i.e.

$$
\operatorname{dist}\left(t_{1}, t_{2}\right)=\frac{1}{\operatorname{card}\left(\left\{t_{1}(i) \mid \forall 0 \leq j \leq i t_{1}(i)=t_{2}(i)\right\}\right)} .
$$

Alternatively, one may be looking for the longest common substring or use the least editing distance. All these measures are based on equivalence between characters, allowing matching algorithms to follow a tree path corresponding to these characters. Once characters from two sequences do not match, the path traversal terminates and the distance becomes known.

Unlike distance measures used in the text matching, waveform distance measures require computing the difference between corresponding characters taken from two sequences. The distance becomes known only after the entire pattern is traversed. This feature leads to multiple path traversals when looking for the closest match. Nevertheless, one can compute upper and lower bounds on the distance value while traversing each path and cut traversal short as soon as it becomes clear that the distance will be either smaller or larger than the given threshold.

Based on these specific properties of the audio stream matching, let us devise a structure inspired by the suffix trie that I will call the pattern tree.

Consider a numeric stream f such that $\operatorname{dom}(f)=[-m,+m)$. Let us divide this range into b buckets $\left[l_{1}, u_{1}\right), \ldots,\left[l_{b}, u_{b}\right)$. Here, we can choose equal-sized buckets $\left[\frac{2 m i}{b}-m, \frac{2 m(i+1)}{b}-m\right)$, or notice that the audio data generally follows a normal distribution and use exponentially-sized buckets.

Consider now an ℓ-length pattern in f. Each quantum of this pattern belongs to a certain bucket, and the whole pattern can be indexed with a sequence of ℓ bucket numbers. One can compute the minimal and maximal distances from a given pattern f to all patterns indexed by this sequence:

$$
M I N=\frac{\sum_{i=0}^{\ell-1} \min \left(\left(l_{i}-f(i)\right)^{2},\left(u_{i}-f(i)\right)^{2}\right)}{\ell \cdot(\max (f)-\min (f))^{2}},
$$

$$
M A X=\frac{\sum_{i=0}^{\ell-1} \max \left(\left(l_{i}-f(i)\right)^{2},\left(u_{i}-f(i)\right)^{2}\right)}{\ell \cdot(\max (f)-\min (f))^{2}} .
$$

These bounds can be used to quickly find patterns that satisfy our matching requirements. Here is the pattern tree data structure:

Definition 3.5.1 (Pattern Tree) Assume that we match single numeric streams whose values lie in the $[-m,+m)$ range. Given two positive integers d, b known as the tree depth and the branching factor respectively, the pattern tree consists of two types of nodes:

1. A non-leaf node is an array of node pointers $\left\langle p_{1}, \ldots, p_{b}\right\rangle$ where p_{i} corresponds to data values in the $\left[\frac{2 m i}{b}-m, \frac{2 m(i+1)}{b}-m\right)$ range.
2. A leaf node is a set of pointers to audio files that contain one or more occurrences of a pattern.

Effectively, the pattern tree indexes d-length patterns occurring in audio files by providing b buckets for the value at each quanta. A non-leaf node at depth j in the pattern tree corresponds to the j th sample in a pattern. Depending on the value of this sample, the next node is chosen among the ones pointed to by the current node. At the bottom of a tree, there are leaf nodes with the lists of audio files that contain matched patterns.

One can notice that the maximal number of nodes in a pattern tree can reach $\frac{b^{d+2}-1}{b-1}$ and grows exponentially with the length of the indexed pattern d. The size of the tree can be reduced by matching slowly changing amp and ach streams and using the RESAMPLE operator to lower their sampling frequency from the original $22-44 \mathrm{kHz}$ to $10-500 \mathrm{~Hz}$.

Given a path $\left[l_{1}, u_{1}\right), \ldots,\left[l_{n}, u_{n}\right)$ in the pattern tree, one can compute the minimal and maximal distance between f and all patterns rooted at the tree node $\left[l_{n}, u_{n}\right)$ as
follows:

$$
\begin{aligned}
M I N & =\frac{\sum_{i=1}^{n} \min \left(\left(l_{i}-f(i-1)\right)^{2},\left(u_{i}-f(i-1)\right)^{2}\right)}{\operatorname{length}(f) \cdot(\max (f)-\min (f))^{2}}, \\
M A X & =M I N+1-\frac{n}{\operatorname{length}(f)} .
\end{aligned}
$$

Given a threshold $d_{\max }$ on the distance between f and the data, one starts traversing a pattern tree. Every time the traversal encounters a node where $M A X \leq d_{\text {max }}$, all audio files rooted at this node are taken for examination with NaiveFindPattern() or MatchSegments () algorithms. Every time the traversal encounters a node where $M I N$ exceeds $d_{\text {max }}$, this node and all its descendants are ignored. This search strategy is represented with the following algorithm:

```
Algorithm MatchPTree \(\left(N, f, d_{\text {max }}, q, d_{\text {min }}\right)\)
    \(N\) is the node of a pattern tree
    \(f\) is the pattern stream
    \(d_{\text {max }}\) is the maximal allowed distance
    \(q\) is the current quantum
    \(d_{\text {min }}\) is the current lower bound on distance
begin
    Result \(:=\emptyset\)
    while \(i \in[0, \operatorname{branch}(N))\) do
        if N.child \(_{i} \neq\) NIL then
            \(\left.d:=d_{\text {min }}+\min \left(\left(f(q)-\frac{2 \operatorname{mi}}{\operatorname{branch}(T)}+m\right)^{2}, \frac{2 m(i+1)}{\operatorname{branch}(T)}-m-f(q)-1\right)^{2}\right)\)
            \(d^{\prime}:=\frac{d}{\text { length }(f) \cdot(\max (f)-\min (f))^{2}}\)
            if \(d^{\prime} \leq d_{\text {max }}\) then
                    if \(d^{\prime}+1-\frac{q}{\text { length }(f)} \leq d_{\text {max }}\) then
                        Result \(:=\) Result \(\cup\left\{f \mid f\right.\) is an audio file rooted at \(\left.N_{\text {.child }}^{i}\right\}\)
                    else
                        if \(q<\operatorname{length}(f)-1\) then
                        Result \(:=\) Result \(\cup\) MatchPTree \(\left(\right.\) N.child \(\left._{i}, f, d_{\text {max }}, q+1, d\right)\)
                        end if
                    end if
                end if
            end if
    end while
    return Result
end
```

Given a pattern tree T and a pattern audio stream f, the recursive MatchPTree()
algorithm is invoked as

$$
\operatorname{MatchPTree}\left(\operatorname{root}(T), f, d_{\max }, 0,0\right)
$$

and returns a set of audio files that contain patterns at the $d_{\max }$ distance from f. The MatchPTree() algorithm can also be modified to find nearest neighbors by using $d_{\text {max }}$ to keep track of the smallest distance and discarding the last Result every time $d_{\max }$ decreases.

3.5.3 Audio Range Tree

As the pattern tree classifies all patterns occuring in audio files, it can grow very large. An alternative data structure, called the audio range tree (AR-tree), can be used for pattern matching in audio files. Instead of storing entire patterns, the audio range tree stores ranges of values occuring in each pattern in a tree. Each leaf of this tree represents a certain value range and contains audio file descriptors and ranges of quanta where a pattern with this range occurs.

Definition 3.5.2 (Audio Range Tree) - Given a node size n, an non-leaf node is a collection of n tuples $\left\langle v_{i}^{\min }, v_{i}^{\max }, p_{i}\right.$, lea $\left.f_{i}\right\rangle$ where p_{i} is a pointer to the child node, leaf $f_{i}=$ true if p_{i} points to a leaf node, or false if p_{i} points to a nonleaf node, and $\left[v_{i}^{\min }, v_{i}^{\max }\right]$ is a range of pattern values represented by all nodes rooted at N.

- A leaf node is a set of tuples $\langle a$, start, end \rangle where a is an audio file descriptor, and $[$ start, end) is a range of quanta in a.
- An audio range tree T is a set of nodes such that for any node $N \in T$, if $1 \leq i, j \leq n$ and $N . p_{i}$ is a non-leaf node then $\left[N . p_{i} \cdot v_{j}^{\min }, N . p_{i} \cdot v_{j}^{\max }\right] \subseteq$
$\left[N . v_{i}^{\min }, N . v_{i}^{\max }\right]$. For all nodes $N \neq \operatorname{root}(T)$, it is also true that there exists $N^{\prime} \in T$ such that $N^{\prime} \neq N$ and there is $N^{\prime} . p_{i}=N$.

Given a maximal allowed distance $d_{\text {max }}$, one can search the AR-tree for audio files and ranges of quanta that may contain the given pattern. A sequential search algorithm can then be applied to these ranges, eliminating the need to search the entire database.

```
Algorithm ARFind(N,f, dmax}
    N is the audio range tree node
    f is the pattern stream
    dmax is the maximal allowed distance
begin
    Result := \emptyset
    for all }\langle\mp@subsup{v}{i}{\operatorname{min}},\mp@subsup{v}{i}{\operatorname{max}},lea\mp@subsup{f}{i}{},\mp@subsup{p}{i}{}\rangle\inN\mathrm{ such that }\mp@subsup{p}{i}{}\not=NIL d
        MIN := 0
        MAX := 0
        for }j\in[0,length(f)-1] do
            MIN:= MIN + max (0, max (vim
            MAX := MAX + max (f(j)-v vi
            MIN ':=
            MAX' := = Mength(f)\cdot(\operatorname{max}(f)-\operatorname{min}(f)\mp@subsup{)}{}{2}
            if MIN'>
        end for
        if leaf f}=\mathrm{ true then
            if MIN' }\leq\mp@subsup{d}{\operatorname{max}}{}\mathrm{ then Result :=Result }\cup\mp@subsup{p}{i}{
        else
            if MAX'
                            Result := Result }\cup{\mathrm{ all ranges rooted at }\mp@subsup{p}{i}{}
            else
                            if MINN}\leq\mp@subsup{d}{\mathrm{ max }}{}\mathrm{ then
                        Result := Result }\cup\mathrm{ ARFind ( }\mp@subsup{p}{i}{},f,\mp@subsup{d}{\mathrm{ max }}{}
                    end if
            end if
        end if
    end for
    return Result
end
```

Given an AR-tree T and a pattern stream f, the recursive $A R F i n d()$ algorithm, initially invoked as

$$
\operatorname{ARFind}\left(\operatorname{root}(T), f, d_{\max }\right),
$$

returns a set of $\langle a$, start, end \rangle tuples corresponding to the suspected pattern match ranges. A sequential matching algorithm should then be applied to the data in these ranges.

The addition of data to the AR-tree faces problems similar to the same operation in R-trees. While I propose the following heuristic algorithm to add patterns, it leaves space for improvement:
Algorithm ARAdd(N, Data $, v_{\text {min }}, v_{\max }$, start,end)
N is the audio range tree node
Data is the audio stream
[$v_{\min }, v_{\max }$] is the range of values being added
[start, end) is the range of quanta being added
begin
if N is a leaf then
$N:=N \cup\{\langle$ Data, start, end $\rangle\}$
return
end if
Look for a non-leaf $\left\langle v_{i}^{\min }, v_{i}^{\max }\right.$, lea $\left.f_{i}, p_{i}\right\rangle \in N$ such that ...
$\ldots\left[v_{\text {min }}, v_{\text {max }}\right] \subseteq\left[v_{i}^{\text {min }}, v_{i}^{\text {max }}\right]$ and $\frac{v_{\max }-v_{\min }}{v_{i}^{\text {max }}-v_{i}^{\text {min }}}$ is maximal
if $\left\langle v_{i}^{\min }, v_{i}^{\max }, l e a f_{i}, p_{i}\right\rangle$ found then
ARAdd(p_{i}, Data $, v_{\min }, v_{\max }$, start, end)
return
end if
Look for a non-leaf $\left\langle v_{i}^{\min }, v_{i}^{\max }, l e a f_{i}, p_{i}\right\rangle \in N$ such that ...
$\ldots \frac{\max \left(v_{\max }, v_{i}^{\max }\right)-\min \left(v_{\min }, v_{i}^{\min }\right)}{v_{i}^{\max }-v_{i}^{\min }}$ is minimal
if $\left\langle v_{i}^{\text {min }}, v_{i}^{\text {max }}\right.$, lea $\left.f_{i}, p_{i}\right\rangle$ found then
ARAdd $\left(p_{i}\right.$, Data $, v_{\min }, v_{\max }$, start, end $)$
return
end if
Look for a leaf $\left\langle v_{i}^{\min }, v_{i}^{\max }\right.$, lea $\left.f_{i}, p_{i}\right\rangle \in N$ such that $v_{\min }=v_{i}^{\min }$ and $v_{\max }=v_{i}^{\max }$
if $\left\langle v_{i}^{\min }, v_{i}^{\max }, l e a f_{i}, p_{i}\right\rangle$ found then
ARAdd (p_{i}, Data $, v_{\min }, v_{\max }$, start, end $)$
return
end if
Look for a slot $\left\langle v_{i}^{\min }, v_{i}^{\max }, l e a f_{i}, p_{i}\right\rangle \in N$ such that $p_{i}=N I L$
if $\left\langle v_{i}^{\min }, v_{i}^{\max }, l e a f_{i}, p_{i}\right\rangle$ found then
$v_{i}^{\text {min }}:=v_{\text {min }}$
$v_{i}^{\max }:=v_{\max }$
leaf $f_{i}:=$ true
$p_{i}:=\{\langle$ Data, start, end $\rangle\}$
return
end if
Create a new node N^{\prime}
ARAdd (N^{\prime}, Data $, v_{\min }, v_{\max }$, start, end $)$
Choose $\left\{t_{1}, \ldots, t_{n / 2}\right\} \subset N$ such that \ldots

```
    \(\ldots\left[\min \left(v_{\min }, \min _{1 \leq j \leq n / 2} t_{j} \cdot v^{\min }\right), \max \left(v_{\max }, \max _{1 \leq j \leq n / 2} t_{j} \cdot v^{\max }\right)\right]\) is minimal
    Move \(\left\{t_{1}, \ldots, t_{n / 2}\right\}\) to \(N^{\prime}\)
    Choose slot \(\left\langle v_{i}^{\text {min }}, v_{i}^{\text {max }}\right.\), leaf \(\left.f_{i}, p_{i}\right\rangle \in N\) such that \(p_{i}=N I L\)
    \(v_{i}^{\text {min }}:=\min \left(v_{\min }, \min _{1 \leq j \leq n / 2} t_{j} . v^{\min }\right)\)
    \(v_{i}^{\max }:=\max \left(v_{\max }, \max _{1 \leq j \leq n / 2} t_{j} \cdot v^{\max }\right)\)
    leaf \(_{i}:=\) false
    \(p_{i}:=N^{\prime}\)
    return
end
```

Given an AR-tree T, a pattern length ℓ, and an audio stream f, the recursive $A R A d d()$ algorithm is invoked as

$$
\operatorname{ARAdd}\left(\operatorname{root}(T), f, \min _{1 \leq j<\ell} f(i+j), \max _{1 \leq j<\ell} f(i+j), i, i+1\right)
$$

for every $i \in[0$, length $(f))$.

3.5.4 Experiments

The first batch of experiments investigates the performance of approximate matching. The experiments were conducted on a set of audio files normalized to a uniform 8 kHz frequency. I first matched amp streams of the three shortest files to every file in the set with the

$$
\mu_{a m p}^{k}\left(a, a^{\prime}, d_{\max }\right)
$$

query, thus producing $3 \cdot 13=39$ results in each run. I then ran the "approximated query"

$$
\gamma_{8 k H z}\left(\mu_{a m p}^{k}\left(\gamma_{f_{\text {apx }}}(a), \gamma_{f_{a p x}}\left(a^{\prime}\right), d_{\max }\right)\right)
$$

(where $\gamma_{f_{a p x}}(a)$ resamples audio file a to frequency $f_{a p x}$) on the same data and computed its precision and recall w.r.t. the original query. The experiment has been performed for approximation frequencies $f_{\text {apx }}=10 \mathrm{~Hz}, 50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 200 \mathrm{~Hz}, 500 \mathrm{~Hz}$, best item numbers $k=1,3,5,10$, and distance thresholds $d_{\max }=0.25,0.5,0.75$.

Figure 3.12: Precision and Recall as $f_{a p x}$ Changes.

The graph in Figure 3.12 shows how precision and recall depend on the approximation frequency. The graph shows that both precision and recall increase sharply as $f_{\text {apx }}$ reaches $100-200 \mathrm{~Hz}$ and then level off. It is also worth noting that, as the number of best matches k rises, precision becomes worse while recall becomes better. This is clearly visible from Figure 3.13 that shows precision and recall as functions of k. It has also been found that the choice of a distance threshold $d_{\max }$ does not affect the precision or recall.

Figure 3.14 reflects the benefits of approximated matching. The time to execute each query is plotted as a function of the audio length, with approximated queries taking very small time when compared to full queries.

The final result in Figure 3.15 shows approximated queries running on large (millions of quanta) audio files, averaged for several different patterns of about 1300024000 quanta each. As expected, queries take longer to execute as the approximation frequency $f_{\text {apx }}$ rises, but the difference is relatively small and even in the worst case $\left(f_{a p x}=500 H z\right)$ it takes less than 19 seconds to process 80 million quanta of data.

Figure 3.13: Precision and Recall as k Changes.

Figure 3.14: Matching Execution Times.

In the next experimental batch I have looked at how pattern trees and audio range trees improve matching performance. I started by approximating several million audio quanta in multiple audio files to the 100 Hz frequency and indexing resulting patterns with a pattern tree. I then matched a query pattern against the tree and retrieved a list of audio files where the query pattern might occur. While the full query performed naive matching on all files in the database, the accelerated query only tried matching

Figure 3.15: Approximated Matching on Large Data.
the files returned by the pattern tree search. Both queries ran on non-approximated files.

Figure 3.16: Pattern Tree Performance.

Figure 3.16 shows times taken by the full and accelerated queries as a function of the $d_{\max }$ value, with accelerated query taking 40% less time on the average. As expected, the benefits of the pattern tree decrease as the $d_{\max }$ grows and more patterns come under suspicion that they match the query pattern. Figure 3.16 also shows the
time taken by the tree search alone (without the following scan of data files), and it is negligibly small compared to the time taken by the scan.

My next step has been to implement the audio range tree and use it to index the same data as in the previous experiment, approximated to 500 Hz . I then searched the tree for possible query pattern matches using different values of $d_{\max }$ and measured the percentage of data returned by this search relative to the full data size. The results, shown in Figure 3.17, indicate that the audio range tree allows to prune from 10% to 40% of the input data, with results improving as $d_{\max }$ and the data size grow.

Figure 3.17: AR-Tree Pruning Performance.

In the final experiment of this batch, I compared the time required to perform the full scan of the database with the time required to search the audio range tree and then scan only the ranges of quanta returned by this search. The results of this experiment, shown in Figure 3.18, indicate that the audio range tree allows to save about 15-40\% of the execution time, depending on the value of $d_{\text {max }}$.

Figure 3.18: Audio Range Tree Performance.

3.6 System Implementation

The ADA Reference System is built as a collection of C++ classes corresponding to basic operators and data sources. Operator objects can be combined into query trees with data source objects at the bottom and executed. Due to potentially large amounts of intermediate data, the system tries to avoid storing intermediate results during query execution, although certain operators (such as MATCH) still require intermediate storage for efficiency.

Unlike the traditional relational algebra implementations that store all fields in a record at the same location, the ADA system is optimized to process audio streams stored in separate files. This allows us to avoid preprocessing the data (original .WAV or .AU files can be used), compress each stream in the best suitable way, and avoid accessing data not involved in queries.

The current ADA implementation is aware of the following audio streams:

- WAVE is a stream that contains the actual waveform, obtained from an audio file. All waveforms are converted to the mono/16bit/signed/linear
format.
- AMP is a maximum amplitude stream. For each quantum q, the value of this stream corresponds to the maximal absolute value of the WAVE stream in the $[q, q+\delta q)$ range of quanta, where δq usually corresponds to a period of $2-$ 100 ms .
- FREQ is a set stream that carries the frequency spectrum. For each moment in time, this stream returns a mask of bits corresponding to different frequency ranges. Set bits correspond to spectrum components whose amplitudes are at least 70% of the maximum.
- KARAOKE is a text stream that contains syllables parsed from karaoke cue files. For each moment in time, this stream returns a syllable being sung at this moment, or the empty string if nothing is being sung.

3.6.1 The Algebraic Engine

The main $\mathrm{C}++$ classes constituting the ADA algebraic engine are as follows:

- The Stream class describes a single audio stream characterized by the value at a given quantum, the default value, the length, and the quantum size. Concrete stream classes, such as WAVStream, AMPStream, and FRQStream, are derived from the Stream class.
- The Audio class describes a single audio file that is a collection of streams with the same length and quantum size.
- The Query class is derived from the Audio class and represents a single node in a query tree. Each object of this class has a type (Select , Project , etc.) and
links to one or two inputs. The Query class supports such methods as Create() (to execute query and write resulting streams to physical files) and Clone() (to copy the entire query tree). Because each Query object is an instance of Audio, it also gives access to individual stream values in the query result. Very often, a query does not even need to be completely executed to access these values. Concrete query classes, such as QSelect, QProject, and QApply, are derived from the Query class.
- The QData class is derived from the Query class and describes a data source for a query. The QData nodes are always leaves in a query tree that supply query with the audio data. The basic implementation of QData reads data from physical files in a file system. Other implementations may use relational databases, network connections, or even audio recording hardware as sources.

In the most primitive case, the execution of a query comes down to scanning query inputs, performing algebraic operations, and creating output audio file(s). In reality though, one would like to use indices and skip over chunks of input that are of no interest to the query. The generic mechanism for such skipping is provided by API functions $\operatorname{Skip} N I L()$ and $\operatorname{Skip} T o()$, as described in the Section 3.4 of this chapter. Both these functions are available in the Stream, Audio, and Query classes. Classes that implement queries (QSelect, etc.) make automatic use of the input skipping functions, while Stream-derived classes optimize skipping if there is an index available or fall back to scanning otherwise.

3.6.2 The GUI

In addition to the algebraic engine, I have also created a simple GUI to browse through audio data, compose, and execute queries. While the ADA core is portable and can be used under both UNIX and Windows operating systems, the ADA GUI runs under Microsoft Windows and is written using the VCL toolkit in Borland C++ Builder. The GUI enables users to browse through audio files (Figure 3.19), match audio patterns against collections of audio files with varying precision (Figure 3.20) and visually design queries (Figure 3.21).

Figure 3.19: Data Browser GUI.

Figure 3.19 shows the audio data browser. The user selects a directory to browse and the length of audio to be displayed. The browser will then scan the directory for audio data and show found audio files in the window. The browser will also show graphically the requested length of a waveform from the beginning of each audio file. Users can left-click on audio files to play them. Right-clicking on an audio file brings
up a context menu allowing the user to use this file as a query input or a matching pattern.

Figure 3.20: Pattern Matching GUI.

The matching function of the GUI, shown in the Figure 3.20, lets users select pattern audio files and search for matching patterns in the collection of audio files being currently browsed. The resulting files will be written to a separate directory and shown to the user. Users have control over the distance threshold $d_{\max }$ and the number k of best matches in each file. They also have an option to perform approximate matching by downsampling both pattern and data to the approximation frequency $f_{\text {apx }}$.

Finally, the query composition function, shown in the Figure 3.21, allows users to compose query trees by visual addition and deletion of operator nodes. Composed queries can be executed on either single audio files or their collections, or saved for future use. The WAVE stream that results from the execution of the last single audio file query is shown at the bottom and can be played with the usual walkman-like

Figure 3.21: Query Composition GUI.
controls.

3.7 Related Work

There are relatively few works in audio databases. In research projects, audio is often used as a means for indexing the accompanying video, as exemplified by research conducted at Microsoft [39] using a database of lecture videos. The voice pitch of a lecturer was used to detect crucial presentation moments and segment the presentation by these moments. Using the pitch was only one factor though, others being information on slide changes and user feedback statistics.

As part of M.J. Witbrock and A.G. Hauptmann's Informedia project [85], an off-the-shelf speech recognition system called Sphinx-II was used to transcribe a collection of news broadcasts. The authors then evaluated the system performance for queries applied to (i) speech recognition results, (ii) phoneme recognition results, (iii)
closed captions converted to text, and (iv) manually prepared transcripts. Unfortunately, the results came out quite dismal for the speech recognition, both because of the large amount of recognition errors and the shortcomings of the text search mechanism.

Peter Schauble describes his work [71] on speech indexing and retrieval using socalled n-grams, where speech is converted to a sequence of phonemes. A sliding window is used to break the phoneme sequence into overlapping groups of n phonemes (where $n=2 \ldots 4$) called n-grams. Audio documents are then indexed by a vector of the most characteristic n-grams. The system converts each query into n-grams, computes the corresponding vector and returns the closest matching documents from the database. This process helps avoiding speech recognition errors observed in [85] because a sequence of overlapping n-grams is much more tolerant of recognition errors than a sequence of single phonemes or the speech-recognized text.

Schauble further improves his search method by using n-gram representations of words instead of single n-grams for indexing. In both cases the index is built as an inverted file with keys corresponding to features (single n-grams or words) and whole audio documents are returned to a user. While this approach works for text documents which the user can evaluate at a glance, the linear nature of the audio makes such evaluation impossible. Thus, it seems necessary to cut the audio and only return the relevant parts to the user.

The ADA system attempts to provide a common platform upon which audio database projects like the ones described above can be built. The ADA is not limited to searching different audio representations though, but also contains operators to mix and otherwise transform these representations.

The problem of matching audio data has been tackled by many researchers, such
as $[33,27,69,47,65,41]$. Most of exclusively deal with melodies i.e. musical scores as opposed to waveforms or other audio representations. For example, Ghias et al [33] convert MIDI scores to strings over a $\{U, D, S\}$ alphabet representing pitch changes ("up", "down", or "same"). The query is then literally hummed into a microphone, converted to a similar (albeit shorter) string using a variety of methods, and matched against the data string. Haus and Pollastri [65] expand the work done in [33] by refining the pitch-tracking method of converting hummed queries into MIDI scores.

The MUSIR system [69] uses both pitch and duration of notes by representing music with an alphabet made of MIDI note numbers and lengths. The query is input using a MIDI keyboard and matched to a database of melodies using n-grams. Lemström et al [47] also use a two-dimensional representation of musical data with relative pitch changes and note durations but match resulting strings using suffix-tries and the Boyer-Moore algorithm [10]. They show that using suffix-tries speeds up the queries, but the cost of constructing the trie exceeds its benefits. Finally, Hsu et al [41] provide an overall comparison of different approaches to music information retrieval based on the note duration and/or pitch and stored in lists or trees.

All works mentioned above attempt to search different representations of music as opposed to audio in general. This limits the domain of searchable documents to musical compositions, primarily stored in the MIDI format (although [33, 65] describe ways to recognize notes from an audio recording, for entering queries only). The only exception is a work by Foote [27] that extracts vectors of cepstral coefficients and uses them to classify audio files. The system implemented by Foote will only return whole audio files though. It is not able to pinpoint locations in these files where the query pattern occurs.

Unlike above works, ADA includes a generic way to match multiple audio rep-
resentations using different ways to measure similarity and pinpoint the exact spot where patterns occur in audio recordings. The choice of the indexing data structure will of course depend on the data type and the distance measure used.

The waveform matching described in this chapter is a special case of matching time series, such as stock quote history or sensor data, addressed in [13, 12, 22, 66, 67, 87]. The approach taken in these works requires computing an n-dimensional vector for each fixed-length subsequence of the data, using DFT coefficients [22, 67], DWT coefficients [13, 66], or piecewise mean values [12, 87]. The resulting vectors are then indexed using an R-tree or other data structure. Unfortunately, none of the above works specifically consider audio data. Also, time series used in the above works are usually limited to $10^{2}-10^{6}$ data points, much shorter than the length of a typical audio file.

3.8 Conclusions

Though there is a massive amount of audio data available in libraries, specialized archives, and on the web, there is little or no theory to query audio data. In this chapter, I have described a formal model of audio data and developed a relational model style algebra to query audio databases. I have proven a large number of equivalence results in this algebra that may be used for query optimization. I then looked at the data structures for indexing audio data and conducted experiments to show that proposed data structures significantly benefit query execution. Finally, I implemented a reference ADA system, complete with implementations of algebraic operators, command line interface, and the GUI.

Chapter 4

An Algebra For Video

4.1 Introduction

Video recordings can be found everywhere in the modern world, be it news, entertainment, sports, health care, family affairs, science, legal system, or security services. Fast accumulation of video data leads to the need to process, organize, search, and access this data. In the case of text and numeric data, these tasks have long been handled by relational database management systems. The goal of this chapter is to develop an algebra for operating on video data similar to the relational algebra.

The few existing video algebras either operate on objects occuring in frames as opposed to actual frames or segments of a video [59, 64, 17, 19] or use the hierarchical segment structure that complicates reasoning about algebraic operators [20]. In this chapter, I attempt to create a video algebra that supports both object and segment processing, yet it is sufficiently simple to reason about.

When talking about storing, searching, and processing motion video information, it is customary to think of it in terms of large continuous videos. In reality though, large parts of these videos may not contain any information useful to potential users.

A typical example of such situation is a surveilance video where nothing occurs on the screen for hours. Commercials in a TV broadcast may serve as another example of video segments that do not carry any useful data. Generally, each user may be interested in his or her own selection of video segments.

To avoid storing irrelevant content, one can use video summaries as opposed to the continuous video [24]. A summary is a set of video blocks (segments) characterized by their starting and ending times as well as their content. Blocks that carry irrelevant data can be dropped from the summary while the timing information is preserved in the remaining blocks. Any selection of blocks from a summary is also a summary. A continuous video is a special case of a summary that has no "gaps" from dropped blocks. Thus, while the entire video may be archived somewhere on a slow-access storage device (e.g. tape), the database system only needs to store a subset of this video relevant to the domain of system's operations. Using a database query language, users would select even smaller subsets reflecting their needs. Of course, to compose, store, search, and access such video summaries efficiently, it would be very helpful to have a common model and a video database algebra, much in the same way there is a relational algebra for operating on the relational data.

The algorithms for video summary creation will be thoroughfully discussed in Chapter 5. The present chapter describes the video database algebra (VDA) algebra that operates on videos and summaries made of blocks in a way similar to the relational algebra operating on tabular data. Section 4.2 defines the basic model for representing video data. Section 4.3 covers algebraic operators and equivalences. Section 4.4 discusses ways to accelerate operator execution by optimizing algorithms and using indices, followed by the experimental results. The cost model and the optimizer are discussed in Section 4.5. Section 4.6 describes the VDA system implementation.

Section 4.7 covers related works in video databases. Finally, Section 4.8 provides some concluding remarks.

4.2 Video Data Model

A video is a sequence of frames. Each frame can be characterized by a variety of properties, such as movement in some part of the frame, or the presence of a certain object or action. Let us call such properties features and define them formally:

Definition 4.2.1 (Feature) A feature of a frame is a certain characteristic (such as color, text, or occurence of an object or action) pertaining to an area of a frame. Given a set τ, a feature of type τ is a structure \langle name, val, loc, cov〉 where name is a string, val is a value from τ, loc is the region of a frame containing this feature, and $\operatorname{cov} \in[0,1]$ is the percentage of pixels in loc having this feature, also known as coverage.

For any two features f_{1}, f_{2}, it is always true that if f_{1}.name $=f_{2}$.name then both f_{1} and f_{2} have the same type τ, also known as dom (name).

While loc may describe any connected frame region, for the sake of simplicity I will assume that loc $=\langle x l, y l, x h, y h\rangle$ is a rectangle with the right and bottom edges considered "open". Any other region can be approximated with its rectangular bounding box at the expense of decreasing its $c o v$ value.

To simplify the notation, I will often omit the cov member of the feature structure if $\operatorname{cov}=1$. The loc member may also be omitted. It is then assumed that loc corresponds to the entire frame.

For example, \langle Human, true, $\langle 10,10,50,200\rangle, 0.7\rangle$ is a feature. So are \langle Motion, true, $\langle 60,20,90,50\rangle\rangle$ and \langle Caption, "NewYork" \rangle. The last example carries no
location and coverage and therefore describes the entire frame with $\operatorname{cov}=1.0$. Other features may express annotations, color histograms, or the presence of certain objects, actions, or events.

Two features with the same name and value can be merged together in many ways two of which are shown in Figure 4.1 below. The first method, which I will call the feature merge, produces a single feature at the cost of precision:

Definition 4.2.2 (Feature Merge) Given two features f_{1}, f_{2} such that f_{1}.name $=$ f_{2}.name and $f_{1} \cdot v a l=f_{2}$.val, the merge of these features is

$$
f_{1} \oplus f_{2}=\left\{\left\langle f_{1} \cdot n a m e, f_{1} \cdot v a l, \operatorname{cov}, \operatorname{bbox}\left(f_{1} \cdot l o c \cup f_{2} \cdot l o c\right)\right\rangle\right\}
$$

where
$\operatorname{cov}=\frac{f_{1} \cdot \operatorname{cov} \cdot \operatorname{area}\left(f_{1} \cdot l o c\right)+f_{2} \cdot \operatorname{cov} \cdot \operatorname{area}\left(f_{2} \cdot l o c\right)-\operatorname{area}\left(f_{1} \cdot l o c \cap f_{2} \cdot l o c\right) \cdot\left(f_{1} \cdot \operatorname{cov}+f_{2} \cdot \operatorname{cov}\right) / 2}{\operatorname{area}\left(b b o x\left(f_{1} \cdot l o c \cup f_{2} \cdot l o c\right)\right)}$.
The feature merge creates a bounding box around its arguments as shown at Figure 4.1 , reconciles coverages by taking their average, and recomputes this resulting coverage with respect to the area of the bounding box. Thus, the feature merge leads to the loss of coverage precision.

Figure 4.1: Feature Operations.

The second method, called the feature scatter, creates additional features while trying to retain coverage precision:

Definition 4.2.3 (Feature Scatter) Given two features f_{1}, f_{2} such that f_{1}.name $=$ f_{2}.name, $f_{1} . v a l=f_{2} . v a l$, and $r c=f_{1} . l o c \cap f_{2} . l o c$, let R_{1}, R_{2} be sets of disjoint rectangles such that $\bigcup_{r \in R_{1}} r=f_{1}$.loc $-r c$ and $\bigcup_{r \in R_{2}} r=f_{2}$.loc $-r c$. Then the scatter of f_{1}, f_{2} w.r.t. R_{1}, R_{2} is a set of features

$$
f_{1} \otimes f_{2}=\left\{\left\langle f_{1} . \text { name }, f_{1} . v a l, \text { cov }, l o c\right\rangle \mid l o c \in R_{1} \cup R_{2} \cup\{r c\}\right\}
$$

where

$$
\operatorname{cov}= \begin{cases}\frac{f_{1} \cdot \operatorname{cov}+f_{2} \cdot \operatorname{cov}}{2} & \text { if } l o c=r c \\ \frac{f_{1} \cdot \operatorname{cov} \cdot \operatorname{area}\left(f_{1} \cdot l o c\right)-\frac{f_{1} \cdot \operatorname{cov}+f_{2} \cdot \operatorname{cov}}{2} \cdot \operatorname{area}(r c)}{\operatorname{area}\left(f_{1} \cdot l o c\right)-a r e a(r c)} & \text { if } l o c \in R_{1} \\ \frac{f_{2} \cdot \operatorname{cov} \cdot \operatorname{area}\left(f_{2} \cdot l o c\right)-\frac{f_{1} \cdot \operatorname{cov}+f_{2} \cdot \operatorname{cov}}{2} \cdot \operatorname{area}(r c)}{\operatorname{area}\left(f_{2} \cdot l o c\right)-\operatorname{area}(r c)} & \text { if } l o c \in R_{2}\end{cases}
$$

In the case of a feature scatter, we assume that the intersection rectangle $r c$ has the average of two coverages f_{1}.cov, f_{2}.cov. The remaining pieces of f_{1}.loc, f_{2}.loc are broken into rectangles as shown at Figure 4.1 and their coverages are recomputed with respect to the averaged coverage inside $r c$.

While R_{1}, R_{2} may contain an arbitrary number of rectangles, it makes practical sense to minimize their cardinality, bringing it to at most four rectangles total in both R_{1} and R_{2}, as shown by two cases at Figure 4.1. This also means that $\operatorname{card}\left(f_{1} \otimes f_{2}\right) \leq$ 5.

Example 4.2.1 (Feature Merge/Scatter) Consider two features:

$$
\begin{aligned}
f_{1} & =\langle\text { Green, } 70,\langle 50,50,100,100\rangle, 0.7\rangle \\
f_{2} & =\langle\text { Green, } 70,\langle 70,80,120,110\rangle, 0.5\rangle
\end{aligned}
$$

The merge of these two features will be a singleton set $f_{1} \oplus f_{2}=\{\langle G r e e n, 70$, $\langle 50,50,120,110\rangle$, cov $\rangle\}$ with the cov value computed as follows:

$$
\begin{aligned}
& \operatorname{area}\left(f_{1} \cdot l o c\right)=(100-50) \cdot(100-50)=2500 \\
& \operatorname{area}\left(f_{2} \cdot l o c\right)=(120-70) \cdot(110-80)=1500
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{area}\left(f_{1} \cdot l o c \cap f_{2} \cdot l o c\right) & =(100-70) \cdot(100-80)=600 \\
\operatorname{area}\left(\operatorname{bbox}\left(f_{1} \cdot l o c \cup f_{2} \cdot l o c\right)\right) & =(120-50) \cdot(110-50)=4200 \\
\operatorname{cov} & =\frac{0.7 \cdot 2500+0.5 \cdot 1500-600 \cdot(0.5+0.7) / 2}{4200} \approx 0.51
\end{aligned}
$$

The scatter of f_{1} and f_{2} will be a set of at least five features:

$$
\begin{aligned}
& f_{1} \otimes f_{2}=\{ \\
&\langle\text { Green, } 70,\langle 50,50,70,100\rangle, 0.7\rangle\}, \\
&\langle\text { Green, } 70,\langle 70,50,100,80\rangle, 0.7\rangle\} \\
&\langle\text { Green, } 70,\langle 100,80,120,110\rangle, 0.5\rangle\}, \\
&\langle\text { Green, } 70,\langle 70,100,100,110\rangle, 0.5\rangle\}, \\
&\langle\text { Green, } 70,\langle 70,80,100,100\rangle, 0.6\rangle\} \\
&\}
\end{aligned}
$$

Sets of features can be merged with respect to a feature operation such as merge or scatter:

Definition 4.2.4 (Feature Set Merge) Let's first define an "int" binary relation on features:

$$
\operatorname{int}\left(f_{1}, f_{2}\right) \equiv f_{1} \cdot n a m e=f_{2} . n a m e \wedge f_{1} \cdot v a l=f_{2} \cdot v a l \wedge f_{1} \cdot l o c \cap f_{2} \cdot l o c \neq \emptyset
$$

Given two sets of features F_{1}, F_{2}, the merge of these sets with respect to a feature operation op (such as merge or scatter) is a new feature set

$$
\begin{aligned}
F_{1} \cup_{o p} F_{2} & =\left\{x \in F_{1} \mid \forall x^{\prime} \in F_{2}: \neg i n t\left(x, x^{\prime}\right)\right\} \\
& \cup\left\{x \in F_{2} \mid \forall x^{\prime} \in F_{1}: \neg \operatorname{int}\left(x, x^{\prime}\right)\right\} \\
& \cup\left\{x \text { op } x^{\prime} \mid x \in F_{1} \wedge x^{\prime} \in F_{2} \wedge \operatorname{int}\left(x, x^{\prime}\right)\right\} .
\end{aligned}
$$

A block is a piece of a video composed of several successful frames. It is characterized by the start and end times, the video data (i.e. the actual sequence of frame images) and a set of features found in its frames:

Definition 4.2.5 (Block) A video block is a structure $b=\left\langle t_{s}, t_{e}, F S, D S\right\rangle$ where b. t_{s} is the starting time, b. $t_{e}>b . t_{s}$ is the ending time, b.DS is the video data (i.e. actual sequence of images), and b.FS is a set of features occuring in b, with coverages computed with respect to the entire block (i.e. a number of frames).

While it is not required by the block definition, I will assume that t_{s} and t_{e} represent frame numbers and therefore are integer. The length of a block length $(b)=$ $b . t_{e}-b . t_{s}$. Two or more blocks can be merged together, producing a bigger block:

Definition 4.2.6 (Block Merge) The merge of two blocks, b_{1} and b_{2}, with respect to a feature operation op (such as merge or scatter), is a new block

$$
b_{1} \cup_{o p} b_{2}=\left\langle\min \left(b_{1} \cdot t_{s}, b_{2} \cdot t_{s}\right), \max \left(b_{1} \cdot t_{e}, b_{2} \cdot t_{e}\right), b_{1} \cdot F S \cup_{o p} b_{2} \cdot F S, D S\right\rangle,
$$

where $D S$ computation is implementation-dependent.

The block merge operator can be applied to more than two blocks. As blocks are effectively three-dimensional (horizontal, vertical, and time), merge and scatter operations must recompute coverages using all three dimensions when applied to block feature sets. The $D S$ computation algorithm is left to the system implementor.

Now, when we have all the building blocks, let us define a video:

Definition 4.2.7 (Video) A video is a finite sequence of blocks $v=\left\{b_{1}, \ldots, b_{n}\right\}$ such that $\forall 1 \leq i<n: b_{i+1} . t_{s}=b_{i} . t_{e}$.

Given the above definition of a video, we can define a total ordering on blocks in a video as $\forall 1 \leq i, j \leq n: b_{i} \leq b_{j} \leftrightarrow b_{i} \cdot t_{s} \leq b_{j} \cdot t_{s}$. The length of a video length $(v)=\sum_{b_{i} \in v}$ length $\left(b_{i}\right)$. A video summary is a subset of a video:

Definition 4.2.8 (Summary) A summary of a video v is a sequence of blocks $s=$ $\left\{b_{1}, \ldots, b_{n}\right\}$ such that $s \subseteq v$ and $\forall 1 \leq i<n: b_{i+1} \cdot t_{s} \geq b_{i} . t_{e}$.

Given the above definitions of videos and summaries, one can easily show that any video is also a summary of itself and that the total ordering defined for videos also applies for summaries. The length of a summary length $(s)=\sum_{b_{i} \in s}$ length $\left(b_{i}\right)$.

We are finally ready to define a video database, which is simply a collection of summaries.

Definition 4.2.9 (Video Database) A video database VDB is a set of video summaries.

4.3 Algebraic Operators

Before moving on to definitions of algebraic operators, let us look at selection conditions and how they are evaluated. Selection conditions are used in many algebraic operators to choose certain blocks and features from the input.

4.3.1 Selection Conditions

Assume the existance of a set C_{f} of all possible features and a set V_{f} of all variables ranging over C_{f}. Similarly, there is a set C_{b} of all possible blocks and a set V_{b} of all variables ranging over C_{b}. For clarity, I will use the small $b_{*}\left(f_{*}\right)$ to denote members of $C_{b}\left(C_{f}\right)$ and the capital $B_{*}\left(F_{*}\right)$ to denote members of $V_{b}\left(V_{f}\right)$.

Definition 4.3.1 (Term) (i) Any member of a set τ is a term of type τ. (ii) Any block constant or variable is a block term. (iii) Any feature constant or variable is a feature term.

Definition 4.3.2 (Feature Atoms) - TRUE and $F A L S E$ are feature atoms.

- If f_{1}, f_{2} are feature terms and " \sim " is a binary relation defined on feature values then $f_{1} \sim f_{2}$ is a feature atom.
- If f is a feature term and str is string then name $(f$, str $)$ is a feature atom.
- If f_{1}, f_{2} are feature terms then inside $\left(f_{1}, f_{2}\right)$, overlap $\left(f_{1}, f_{2}\right)$, above $\left(f_{1}, f_{2}\right)$, below $\left(f_{1}, f_{2}\right)$, leftof $\left(f_{1}, f_{2}\right)$, and righto $\left(f_{1}, f_{2}\right)$ are all feature atoms.

Definition 4.3.3 (Feature Conditions) Every feature atom is a feature condition. If C_{1}, C_{2} are feature conditions then so are $C_{1} \wedge C_{2}, C_{1} \vee C_{2}$, and $\neg C_{1}$. A feature selection condition (FSC) is a feature condition containing a variable $F \in V_{f}$. A local FSC is an FSC that contains no variables other than F. A feature join condition $(F J C)$ is a feature condition containing exactly two variables $F_{1}, F_{2} \in V_{f}$.

Definition 4.3.4 (Feature Condition Interpretation) Suppose f_{1}, f_{2} are groundfeature terms and C_{1}, C_{2} are ground feature conditions. Let us define a function λ that takes a ground feature condition and returns a real value in the $[0,1]$ range. The result of λ is computed in the following way:

$$
\begin{aligned}
\lambda\left(f_{1} \sim f_{2}\right) & = \begin{cases}\frac{f_{1} \cdot \operatorname{cov} \cdot f_{2} \cdot \operatorname{cov} \cdot \operatorname{area}\left(f_{1} \cdot l o c \cap f_{2} \cdot l o c\right)}{\min \left(\text { area }\left(f_{1} \cdot l o c\right), \text { area }\left(f_{2} \cdot l o c\right)\right)} & \text { if } f_{1} \cdot n a m e=f_{2} \cdot n a m e ~ \\
0 & \text { otherwise } f_{1} \cdot v a l \sim f_{2} \cdot v a l\end{cases} \\
\lambda\left(\text { name }\left(f_{1}, \text { str }\right)\right) & = \begin{cases}1 & \text { if } f_{1} \cdot \text { name }=\text { str } \\
0 & \text { otherwise }\end{cases} \\
\lambda\left(\text { inside }\left(f_{1}, f_{2}\right)\right) & = \begin{cases}1 & \text { if } f_{1} \cdot l o c \subseteq f_{2} \cdot l o c \\
0 & \text { otherwise }\end{cases} \\
\lambda\left(\operatorname{overlap}\left(f_{1}, f_{2}\right)\right) & = \begin{cases}1 & \text { if } f_{1} \cdot l o c \cap f_{2} \cdot l o c \neq \emptyset \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda\left(\text { above }\left(f_{1}, f_{2}\right)\right)= \begin{cases}1 & \text { if } f_{1} . l o c . y h \leq f_{2} . l o c . y h \wedge f_{1} . l o c . y l \leq f_{2} . l o c . y l \\
0 & \text { otherwise }\end{cases} \\
& \lambda\left(\operatorname{below}\left(f_{1}, f_{2}\right)\right)= \begin{cases}1 & \text { if } f_{1} . l o c . y h \\
0 & \text { otherwise }\end{cases} \\
& \lambda\left(\operatorname{leftof}\left(f_{1}, f_{2}\right)\right)= \begin{cases}1 & \text { if } f_{1} . l o c . x h \leq f_{2} . l o c . x h \wedge f_{1} . l o c . x l \leq f_{2} . l o c . x l \\
0 & \text { otherwise }\end{cases} \\
& \lambda\left(\text { rightof }\left(f_{1}, f_{2}\right)\right)= \begin{cases}1 & \text { if } f_{1} . l o c . x h \geq f_{2} . l o c . x h \wedge f_{1} . l o c . x l \geq f_{2} . l o c . x l \\
0 & \text { otherwise }\end{cases} \\
& \lambda\left(C_{1} \wedge C_{2}\right)=\min \left(\lambda\left(C_{1}\right), \lambda\left(C_{2}\right)\right) \\
& \lambda\left(C_{1} \vee C_{2}\right)=\max \left(\lambda\left(C_{1}\right), \lambda\left(C_{2}\right)\right) \\
& \lambda\left(\neg C_{1}\right)=1-\lambda\left(C_{1}\right) \\
& \lambda(T R U E)=1 \\
& \lambda(F A L S E)=0
\end{aligned}
$$

Block atoms and conditions are similar to feature atoms and conditions but they operate on blocks.

Definition 4.3.5 (Block Atoms) - TRUE and FALSE are block atoms.

- If b is a block term and C is a feature condition then $i n(b, C)$ is a block atom.
- If b_{1}, b_{2} are block terms and $n \in[0,+\infty)$ is an integer number, within $\left(b_{1}, b_{2}, n\right)$, before $\left(b_{1}, b_{2}, n\right)$, after $\left(b_{1}, b_{2}, n\right)$, overlap $\left(b_{1}, b_{2}\right)$, and inside $\left(b_{1}, b_{2}\right)$ are block atoms.

Definition 4.3.6 (Block Conditions) Every block atom is a block condition. If C_{1}, C_{2} are block conditions then so are $C_{1} \wedge C_{2}, C_{1} \vee C_{2}$, and $\neg C_{1}$. A block selection condition (BSC) is a block condition containing a variable $B \in V_{b}$. A local BSC is a BSC containing no variables other than B. A block join condition (BJC) is a block condition with exactly two variables $B_{1}, B_{2} \in V_{b}$.

Definition 4.3.7 (Block Condition Interpretation) Suppose b_{1}, b_{2} are ground block terms, F is a feature variable, C is a feature selection condition, and C_{1}, C_{2} are
ground block conditions. Let us define a function λ that takes a ground block condition and returns a real value in the $[0,1]$ range. The result of λ is computed in the following way:

$$
\begin{aligned}
\lambda\left(\text { in }\left(b_{1}, C\right)\right) & =\max _{\text {all } \theta(\lambda(C \theta))} \\
\lambda\left(\text { inside }\left(b_{1}, b_{2}\right)\right) & = \begin{cases}1 & \text { if } b_{1} \cdot t_{s} \geq b_{2} \cdot t_{s} \wedge b_{1} \cdot t_{e} \leq b_{2} \cdot t_{e} \\
0 & \text { otherwise }\end{cases} \\
\lambda\left(\text { overlap }\left(b_{1}, b_{2}\right)\right) & = \begin{cases}1 & \text { if }\left(b_{1} \cdot t_{s}, b_{1} \cdot t_{e}\right) \cap\left(b_{2} \cdot t_{s}, b_{2} \cdot t_{e}\right) \neq \emptyset \\
0 & \text { otherwise }\end{cases} \\
\lambda\left(\text { before }\left(b_{1}, b_{2}, n\right)\right) & = \begin{cases}\left(n-b_{1} \cdot t_{s}+b_{2} \cdot t_{e}\right) / n & \text { if } 0 \leq b_{1} \cdot t_{s}-b_{2} \cdot t_{e} \leq n \\
0 & \text { otherwise }\end{cases} \\
\lambda\left(\text { after }\left(b_{1}, b_{2}, n\right)\right) & =\lambda\left(\text { before }\left(b_{2}, b_{1}, n\right)\right) \\
\lambda\left(\text { within }\left(b_{1}, b_{2}, n\right)\right) & =\max \left(\lambda\left(\text { before }\left(b_{1}, b_{2}, n\right)\right), \lambda\left(\text { after }\left(b_{1}, b_{2}, n\right)\right)\right) \\
\lambda\left(C_{1} \wedge C_{2}\right) & =\min \left(\lambda\left(C_{1}\right), \lambda\left(C_{2}\right)\right) \\
\lambda\left(C_{1} \vee C_{2}\right) & =\max \left(\lambda\left(C_{1}\right), \lambda\left(C_{2}\right)\right) \\
\lambda\left(\neg C_{1}\right) & =1-\lambda\left(C_{1}\right) \\
\lambda(T R U E) & =1 \\
\lambda(F A L S E) & =0
\end{aligned}
$$

Here, θ represents a variable substitution that grounds all variables in C by replacing them with distinct features from $b_{1} . F S$ (i.e. no two variables are assigned to the same feature).

4.3.2 The Select Operator

Similarly to the relational selection choosing rows from a table, the Select operator in VDA chooses from its input summary blocks that satisfy the selection condition:

Definition 4.3.8 (Select Operator) Given a video summary v, a block selection condition C, and a real value $p_{\min } \in[0,1]$, the SELECT operator $\sigma_{C}\left(v, p_{\min }\right)$ produces a new summary

$$
\sigma_{C}\left(v, p_{\min }\right)=\left\{b \in v \mid \max _{\text {all } \theta}(\lambda(C[B / b] \theta)) \geq p_{\min }\right\}
$$

where θ is a variable substitution that grounds all remaining variables in $C[B / b]$ by replacing them with distinct blocks from v.

The $p_{\text {min }}$ argument to SELECT allows to control how strictly selected blocks satisfy the condition. In most practical applications, this parameter can be assumed to be a very small number ϵ. In such cases, I will omit it from the notation.

Here is a typical example of Select being used to find blocks where screen captions appear: $\sigma_{\text {in(B,name }(F, \text { Caption }))}(v)$. Here is another SELECT , detecting motion at two spots of the screen:

$$
\sigma_{\text {in }(B, F=\langle\text { Motion }, \text { true },\langle 50,50,100,75\rangle\rangle \vee F=\langle\text { Motion }, \text { true },\langle 500,400,550,450\rangle\rangle)}(v)
$$

Just like in the relational algebra, the order of Select operators can be changed without affecting the result, but only if their selection conditions are local:

Theorem 4.3.1 (Swapping Select Operators) Given a video summary v, two local BSCs C_{1}, C_{2} and two real values $p_{1}, p_{2} \in[0,1]$, it is true that

$$
\sigma_{C_{1}}\left(\sigma_{C_{2}}\left(v, p_{2}\right), p_{1}\right)=\sigma_{C_{2}}\left(\sigma_{C_{1}}\left(v, p_{1}\right), p_{2}\right)
$$

Proof of Theorem 4.3.1. Due to locality of C_{1}, C_{2} and definition of SELECT, both SELECT operators consider their inputs one block at a time and either select this block or drop it, based on a single value of λ. Then let us consider an arbitrary block $b \in v$ and see if it is present in $v^{\prime}=\sigma_{C_{1}}\left(\sigma_{C_{2}}\left(v, p_{2}\right), p_{1}\right)$ and $v^{\prime \prime}=\sigma_{C_{2}}\left(\sigma_{C_{1}}\left(v, p_{1}\right), p_{2}\right)$, case by case:

1. $\lambda\left(C_{1}[B / b]\right)<p_{1}$ and $\lambda\left(C_{2}[B / b]\right)<p_{2}$ then $b \notin \sigma_{C_{1}}\left(v, p_{1}\right), b \notin \sigma_{C_{2}}\left(v, p_{2}\right)$, and therefore $b \notin v^{\prime}$ and $b \notin v^{\prime \prime}$.
2. If $\lambda\left(C_{2}[B / b]\right) \geq p_{2}$ and $\lambda\left(C_{1}[B / b]\right)<p_{1}$ then $b \in \sigma_{C_{2}}\left(v, p_{2}\right)$ but $b \notin v^{\prime}$, as it is deleted by the outer Select operator. On the other hand, $b \notin \sigma_{C_{1}}\left(v, p_{1}\right)$ and therefore $b \notin v^{\prime \prime}$.
3. If $\lambda\left(C_{1}[B / b]\right) \geq p_{1}$ and $\lambda\left(C_{2}[B / b]\right)<p_{2}$ then $b \in \sigma_{C_{1}}\left(v, p_{1}\right)$ but $b \notin v^{\prime \prime}$, as it is deleted by the outer SELECT operator. On the other hand, $b \notin \sigma_{C_{2}}\left(v, p_{2}\right)$ and therefore $b \notin v^{\prime}$.
4. If $\lambda\left(C_{1}[B / b]\right) \geq p_{1}$ and $\lambda\left(C_{2}[B / b]\right) \geq p_{2}$ then $b \in \sigma_{C_{1}}\left(v, p_{1}\right), b \in \sigma_{C_{2}}\left(v, p_{2}\right)$, and also $b \in v^{\prime}$ and $b \in v^{\prime \prime}$.

Thus, it has been shown that wherever $b \in v^{\prime}$, it is also true that $b \in v^{\prime \prime}$ and vice versa. Therefore, $v^{\prime}=v^{\prime \prime}$.

4.3.3 The Project Operator

In the traditional relational algebra, the projection is used to select columns from a table. In VDA, features act as columns, while blocks play the role of rows. Thus, the Project operator serves to select requested features in all input blocks:

Definition 4.3.9 (Project Operator) Given a video summary v, a feature selection condition C, and a real value $p_{\text {min }} \in[0,1]$, the PROJECT operator $\pi_{C}\left(v, p_{\text {min }}\right)$ produces a new summary

$$
\pi_{C}\left(v, p_{\text {min }}\right)=\left\{\left\langle b . t_{s}, b . t_{e}, F S, b . D S\right\rangle \mid \forall b \in v F S=\left\{f \in b . F S \mid \max _{\text {all } \theta}(\lambda(C[F / f] \theta)) \geq p_{\text {min }}\right\}\right\}
$$

where θ is a variable substitution that grounds all remaining variables in $C[F / f]$ by replacing them with distinct features from b.FS.

Same as with the SELECT operator, if $p_{\min }$ is omitted, it is assumed that $p_{\text {min }}=\epsilon$. Under certain conditions, two Project operators can be swapped:

Theorem 4.3.2 (Swapping Project Operators) Given a video summary v, two local FSCs C_{1}, C_{2} and two real values $p_{1}, p_{2} \in[0,1]$, it is true that

$$
\pi_{C_{1}}\left(\pi_{C_{2}}\left(v, p_{2}\right), p_{1}\right)=\pi_{C_{2}}\left(\pi_{C_{1}}\left(v, p_{1}\right), p_{2}\right)
$$

Proof of Theorem 4.3.2. Let us consider two queries $v^{\prime}=\pi_{C_{1}}\left(\pi_{C_{2}}\left(v, p_{2}\right), p_{1}\right)$ and $v^{\prime \prime}=\pi_{C_{2}}\left(\pi_{C_{1}}\left(v, p_{1}\right), p_{2}\right)$. Due to definition of Project , both Project operators consider their inputs one block at a time and do not delete or add any blocks, i.e. for every block $b \in v$, there are blocks $b^{\prime} \in v^{\prime}$ and $b^{\prime \prime} \in v^{\prime \prime}$. Furthermore, due to locality of C_{1}, C_{2}, each feature set $b . F S$ isz also considered one feature at a time. Then let us look at an arbitrary feature $f \in b . F S$ and see if it is present in $b^{\prime} . F S$ and $b^{\prime \prime} . F S$, case by case:

1. $\lambda\left(C_{1}[F / f]\right)<p_{1}$ and $\lambda\left(C_{2}[F / f]\right)<p_{2}$ then f is deleted by inner Project operators in both $v^{\prime}, v^{\prime \prime}$, and therefore $f \notin b^{\prime} . F S$ and $f \notin b^{\prime \prime} . F S$.
2. If $\lambda\left(C_{2}[F / f]\right) \geq p_{2}$ and $\lambda\left(C_{1}[F / f]\right)<p_{1}$ then f is deleted by the outer Project operator in v^{\prime} and by the inner Project operator in $v^{\prime \prime}$. Thus, $f \notin$ $b^{\prime} . F S$ and $f \notin b^{\prime \prime} . F S$.
3. If $\lambda\left(C_{1}[F / f]\right) \geq p_{1}$ and $\lambda\left(C_{2}[F / f]\right)<p_{2}$ then f is deleted by the inner Project operator in v^{\prime} and by the outer Project operator in $v^{\prime \prime}$. Thus, $f \notin$ $b^{\prime} . F S$ and $f \notin b^{\prime \prime} . F S$.
4. If $\lambda\left(C_{1}[F / f]\right) \geq p_{1}$ and $\lambda\left(C_{2}[F / f]\right) \geq p_{2}$ then f is not deleted at all, and therefore $f \in b^{\prime} . F S$ and $f \in b^{\prime \prime} . F S$.

Thus, we have shown that wherever $f \in b^{\prime} . F S$, it is also true that $f \in b^{\prime \prime} . F S$ and vice versa. As it is true for any block $b \in v$ and any feature $f \in b$.FS, we can say that $v^{\prime}=v^{\prime \prime}$.

Project and Select can also be swapped, given that Select is not affected by changing feature content:

Theorem 4.3.3 (Swapping Project and Select) Given a video summary v, two real values $p_{1}, p_{2} \in[0,1]$, an FSC C_{1}, and a BSC C_{2} that contains no in () atoms, it is true that

$$
\pi_{C_{1}}\left(\sigma_{C_{2}}\left(v, p_{2}\right), p_{1}\right)=\sigma_{C_{2}}\left(\pi_{C_{1}}\left(v, p_{1}\right), p_{2}\right)
$$

Proof of Theorem 4.3.3. Let us consider two queries $v^{\prime}=\pi_{C_{1}}\left(\sigma_{C_{2}}\left(v, p_{2}\right), p_{1}\right)$ and $v^{\prime \prime}=\sigma_{C_{2}}\left(\pi_{C_{1}}\left(v, p_{1}\right), p_{2}\right)$. Our task is to show that for every $b \in v$, if there is a corresponding block $b^{\prime} \in v^{\prime}$, there is also $b^{\prime \prime} \in v^{\prime \prime}$ such that $b^{\prime}=b^{\prime \prime}$, and vice versa. Due to the requirement of the theorem that the block selection condition contain no in() atoms, the SELECT operator does not consider feature sets of its input blocks. On the other hand, by the definition, Select is only allowed to delete blocks, but not change their features, while PROJECT can change block features but can't delete blocks. Then let us look at an arbitrary block $b \in v$, case by case:

1. If $\max _{\theta}\left(\lambda\left(C_{2}[B / b] \theta\right)\right)<p_{2}$ then b is deleted by the inner SELECT operator in v^{\prime}, and by the outer Select operator in $v^{\prime \prime}$. Thus, $b^{\prime} \notin v^{\prime}$ and $b^{\prime \prime} \notin v^{\prime \prime}$.
2. If $\max _{\theta}\left(\lambda\left(C_{2}[B / b] \theta\right)\right) \geq p_{2}$ then b is preserved by SELECT operators in both v^{\prime} and $v^{\prime \prime}$ and passed through Project . As it is the same Project operator applied to the same block b, we can say that $b^{\prime}=b^{\prime \prime}$ in this case.

Thus, we have shown that an arbitrary block $b \in v$ either does not have corresponding blocks in $v^{\prime}, v^{\prime \prime}$, or it has such blocks $b^{\prime} \in v^{\prime}$ and $b^{\prime \prime} \in v^{\prime \prime}$ that $b^{\prime}=b^{\prime \prime}$. Therefore,

$$
v^{\prime}=v^{\prime \prime}
$$

4.3.4 The Apply Operators

There are two Apply operators in VDA . Both serve to modify the content of blocks as opposed to their features or time information. To define these APPLY operators, we should first define the transformation function:

Definition 4.3.10 (Block Transformation Function) A block transformation function tr takes a video block b and a region r, and returns a new block $\operatorname{tr}(b, r)=$ $\left\langle b . t_{s}\right.$, b.t, b.FS, $\left.D S\right\rangle$, where $D S$ is such that any pixel outside of r is the same as in b.DS.

The first instance of Apply is similar to the Select operator but it modifies blocks instead of selecting them:

Definition 4.3.11 (Block Apply Operator) Given a video summary v, a block selection condition C, a real number $p_{\min } \in[0,1]$, and a block transformation function tr, the block APPLY operator $\beta_{C}^{\text {tr }}\left(v, p_{\text {min }}\right)$ produces a new summary

$$
\beta_{C}^{t r}\left(v, p_{\min }\right)= \begin{cases}\operatorname{tr}(b, \nabla) & \text { if } \left.\max _{\text {all } \theta}(\lambda(C[B / b] \theta)) \geq p_{\min } \quad \mid \forall b \in v\right\}, \\ b & \text { otherwise }\end{cases}
$$

where ∇ represents the whole frame and θ is any variable substitution that grounds all remaining variables in $C[B / b]$ by replacing them with distinct blocks from v.

The second version of Apply is similar to the Project operator but it modifies features instead of selecting them:

Definition 4.3.12 (Feature Apply Operator) Given a video summary v, a feature selection condition C, a real number $p_{\min } \in[0,1]$, and a block transformation function tr, the feature Apply operator $\alpha_{C}^{t r}\left(v, p_{\min }\right)$ produces a new summary

$$
\alpha_{C}^{t r}\left(v, p_{\text {min }}\right)=\left\{\operatorname{tr}\left(b, \bigcup_{\left\{f \in b . F S \mid \max _{\text {all }}\right.} \bigcup_{\left.\theta(\lambda(C[F / f] \theta)) \geq p_{\text {min }}\right\}} f . l o c\right) \mid \forall b \in v\right\},
$$

where θ is any variable substitution that grounds all remaining variables in $C[F / f]$ by replacing them with distinct frames from b.FS.

Notice that neither ApPLY operator modifies block feature sets. This may cause a situation where features no longer reflect block contents correctly. If that is the case, the user may want to remove invalidated features with the Project operator.

Given certain properties of their transformation functions, APPLY operators can be swapped:

Theorem 4.3.4 (Swapping Apply Operators) Given a video summary v, two block selection conditions C_{1}, C_{2}, two real values $p_{1}, p_{2} \in[0,1]$, and two block transformation functions $t r_{1}, t r_{2}$ such that $\operatorname{tr}_{1}\left(\operatorname{tr}_{2}\left(b, r_{2}\right), r_{1}\right)=\operatorname{tr}_{2}\left(\operatorname{tr}_{1}\left(b, r_{1}\right), r_{2}\right)$ for any b, r_{1}, r_{2}, it is true that

$$
\beta_{C_{1}}^{t r_{1}}\left(\beta_{C_{2}}^{t r_{2}}\left(v, p_{2}\right), p_{1}\right)=\beta_{C_{2}}^{t r_{2}}\left(\beta_{C_{1}}^{t r_{1}}\left(v, p_{1}\right), p_{2}\right)
$$

Same holds for a pair of feature APPLY operators and a combination of block and feature APPLY operators.

Proof of Theorem 4.3.4. Let us consider two queries $v^{\prime}=\beta_{C_{1}}^{t r_{1}}\left(\beta_{C_{2}}^{t r_{2}}\left(v, p_{2}\right), p_{1}\right)$ and $v^{\prime \prime}=\beta_{C_{2}}^{t r_{2}}\left(\beta_{C_{1}}^{t r_{1}}\left(v, p_{1}\right), p_{2}\right)$. As ApPLY operators do not delete or add blocks, each block $b \in v$ will have two corresponding blocks $b^{\prime} \in v^{\prime}$ and $b^{\prime \prime} \in v^{\prime \prime}$. Let us then look at an arbitrary block $b \in v$, case by case:

1. If $\max _{\text {all } \theta}\left(\lambda\left(C_{1}[B / b] \theta\right)\right)<p_{1}$ and $\max _{\text {all } \theta}\left(\lambda\left(C_{2}[B / b] \theta\right)\right)<p_{2}$ then $b^{\prime}=b$ and $b^{\prime \prime}=b$ by the definition of block APPLY, and therefore $b^{\prime}=b^{\prime \prime}$.
2. If $\max _{\text {all } \theta}\left(\lambda\left(C_{1}[B / b] \theta\right)\right)<p_{1}$ and $\max _{\text {all } \theta}\left(\lambda\left(C_{2}[B / b] \theta\right)\right) \geq p_{2}$ then $b^{\prime}=$ $b^{\prime \prime}=t r_{2}(b, \nabla)$.
3. If $\max _{\text {all } \theta}\left(\lambda\left(C_{1}[B / b] \theta\right)\right) \geq p_{1}$ and $\max _{\text {all } \theta}\left(\lambda\left(C_{2}[B / b] \theta\right)\right)<p_{2}$ then $b^{\prime}=$ $b^{\prime \prime}=t r_{1}(b, \nabla)$.
4. Finally, if $\max _{\text {all } \theta}\left(\lambda\left(C_{1}[B / b] \theta\right)\right) \geq p_{1}$ and $\max _{\text {all } \theta}\left(\lambda\left(C_{2}[B / b] \theta\right)\right) \geq p_{2}$ then $b^{\prime}=\operatorname{tr}_{1}\left(\operatorname{tr}_{2}(b, \nabla), \nabla\right)$ and $b^{\prime \prime}=\operatorname{tr}_{2}\left(\operatorname{tr}_{1}(b, \nabla), \nabla\right)$. Given the theorem requirement that $\operatorname{tr}_{1}\left(\operatorname{tr}_{2}\left(b, r_{2}\right), r_{1}\right)=\operatorname{tr}_{2}\left(\operatorname{tr}_{1}\left(b, r_{1}\right), r_{2}\right)$ we can yet again say that $b^{\prime}=b^{\prime \prime}$.

Thus, we have shown that $b^{\prime}=b^{\prime \prime}$ for any block $b \in v$ and therefore $v^{\prime}=v^{\prime \prime}$. Similar proof can be given for a pair of feature APPLY operators and a combination of feature and block Apply operators.

As Apply only operates on the image data but does not touch features and timing information, Apply and Select can be swapped:

Theorem 4.3.5 (Swapping Apply and Select) Given a video summary v, two block selection conditions C_{1}, C_{2}, two real values $p_{1}, p_{2} \in[0,1]$, and a block transformation function tr, if C_{2} is local then

$$
\sigma_{C_{1}}\left(\beta_{C_{2}}^{t r}\left(v, p_{2}\right), p_{1}\right)=\beta_{C_{2}}^{t r}\left(\sigma_{C_{1}}\left(v, p_{1}\right), p_{2}\right)
$$

Same holds for a feature APPLY operator, but any feature selection condition C_{2} is allowed, it does not have to be local.

Proof of Theorem 4.3.5. Let us consider two queries $v^{\prime}=\sigma_{C_{1}}\left(\beta_{C_{2}}^{t r}\left(v, p_{2}\right), p_{1}\right)$ and $v^{\prime \prime}=\beta_{C_{2}}^{t r}\left(\sigma_{C_{1}}\left(v, p_{1}\right), p_{2}\right)$. By definitions of SELECT and APPLY operators, if a block
$b \in v$ has a corresponding block $b^{\prime} \in v^{\prime}$ then it also has a corresponding block $b^{\prime \prime} \in v^{\prime \prime}$ and vice versa. There are no blocks in $v^{\prime}, v^{\prime \prime}$ that have no corresponding blocks in v. Let us then look at an arbitrary block $b \in v$, case by case:

1. If $\max _{\text {all } \theta}\left(\lambda\left(C_{1}[B / b] \theta\right)\right)<p_{1}$ and $\lambda\left(C_{2}[B / b]\right)<p_{2}$ then b is deleted by the outer Select operator in v^{\prime}, and by the inner Select operator in $v^{\prime \prime}$. Thus $b^{\prime} \notin v^{\prime}$ and $b^{\prime \prime} \notin v^{\prime \prime}$.
2. If $\max _{\text {all } \theta}\left(\lambda\left(C_{1}[B / b] \theta\right)\right)<p_{1}$ and $\lambda\left(C_{2}[B / b]\right) \geq p_{2}$ then $\operatorname{tr}(b, \nabla)$ is deleted by the outer Select operator in v^{\prime}, while b is deleted by the inner Select operator in $v^{\prime \prime}$. Thus $b^{\prime} \notin v^{\prime}$ and $b^{\prime \prime} \notin v^{\prime \prime}$.
3. If $\max _{\text {all } \theta}\left(\lambda\left(C_{1}[B / b] \theta\right)\right) \geq p_{1}$ then b is preserved by SELECT operators in both v^{\prime} and $v^{\prime \prime}$ and passed through Apply . Due to C_{2} being local, the APPLY operator considers b independently from all other blocks in its input and applies $t r$ function depending on a single value of $\lambda\left(C_{2}[B / b]\right)$. Thus, it produces identical results in both v^{\prime} and $v^{\prime \prime}$, i.e. $b^{\prime}=b^{\prime \prime}$.

We have shown that whenever $b^{\prime}, b^{\prime \prime}$ exist for an arbitrary $b \in v$, they are equal, and therefore $v^{\prime}=v^{\prime \prime}$. Similar proof can be given for a combination of Select and feature Apply operators, although C_{2} is not required to be local in this case.

Swapping Apply and Project is also possible:

Theorem 4.3.6 (Swapping Apply and Project) Given a video summary v, a feature selection condition C_{1}, a block selection condition C_{2}, two real values $p_{1}, p_{2} \in$ $[0,1]$, and a block transformation function tr, if C_{2} has no in () atoms then

$$
\pi_{C_{1}}\left(\beta_{C_{2}}^{t r}\left(v, p_{2}\right), p_{1}\right)=\beta_{C_{2}}^{t r}\left(\pi_{C_{1}}\left(v, p_{1}\right), p_{2}\right) .
$$

Unfortunately, this theorem does not hold for feature APPLY operators.

Proof of Theorem 4.3.6. Let us consider two queries $v^{\prime}=\pi_{C_{1}}\left(\beta_{C_{2}}^{t r}\left(v, p_{2}\right), p_{1}\right)$ and $v^{\prime \prime}=\beta_{C_{2}}^{t r}\left(\pi_{C_{1}}\left(v, p_{1}\right), p_{2}\right)$. Due to definitions of APPLY and PROJECT , every block $b \in$ v will have corresponding blocks $b^{\prime} \in v^{\prime}$ and $b^{\prime \prime} \in v^{\prime \prime}$. As the theorem requires C_{2} to be free of $i n()$ atoms, neither Apply operator considers feature sets of its input blocks. Also, by definition, Apply only modifies block image data. On the other hand, both Project operators consider and modify input block features while ignoring the rest of the block data. In short, we can write

$$
b^{\prime}=b^{\prime \prime}=\left\{\begin{array}{ll}
\operatorname{tr}\left(b^{*}, \nabla\right) & \text { if } \max _{\text {all } \theta}\left(\lambda\left(C_{2}[B / b] \theta\right)\right) \geq p_{2} \\
b^{*} & \text { otherwise }
\end{array},\right.
$$

where $b^{*}=\left\langle b . t_{s}\right.$, b.t $t_{e},\left\{f \in b . F S \mid \max _{\text {all } \theta}\left(\lambda\left(C_{1}[F / f] \theta\right)\right) \geq p_{1}\right\}$, b.DS \rangle. Thus, $b^{\prime}=b^{\prime \prime}$ for every $b \in v$ and therefore $v^{\prime}=v^{\prime \prime}$.

4.3.5 The Match Operator

When querying a video, users may often want to find video fragments that look similar to a supplied sample. For example, a security guard who has an image of a suspicious car approaching the gate may want to find this car in video streams coming from other cameras installed throughout the guarded area. In other instance of such a search, a TV broadcaster may want to search through the video archive looking for fragments similar to the video he has already selected for tonight's show. To support such similarity searches in the algebra, let us first see what it means for two video summaries to be similar.

In all similarity searches, there are two input videos (or video summaries in our case): the data that is being searched and the pattern that we are trying to match against the data. Patterns may be as small as a single frame or as long as several minutes of video. To measure similarity between two video summaries, let us introduce
the similarity function.

Definition 4.3.13 (Similarity Function) Given any two video summaries v_{1} and v_{2}, the similarity function $\operatorname{sim}\left(v_{1}, v_{2}\right)$ returns a real value in the $[0,1]$ range such that $\operatorname{sim}\left(v_{1}, v_{1}\right)=1$.

Intuitively, the similarity function measures how similar its arguments are. Notice that the definition only requires $\operatorname{sim}()$ to be reflexive, but neither commutativity nor transitivity are required. Notice also that the definition does not state what portions of v_{1} and v_{2} are considered. In practice, the $\operatorname{sim}()$ function will often consider entire v_{2} (the pattern) but only a portion of v_{1} (the data), starting from the beginning. The following example illustrates how a similarity function can be computed with respect to the VDA data model.

Example 4.3.1 (Similarity Function) For this example, let us ignore block lengths and compare two video summaries block by block. We will measure similarity between each two blocks by the spatial placement of corresponding features in these blocks:

$$
\begin{aligned}
\operatorname{sim}_{l o c}\left(v_{1}, v_{2}\right) & =\frac{\sum\left\{\operatorname{sim}_{l o c}\left(b_{i}, b_{i}^{\prime}\right) \mid i \in\left[1, \min \left(\operatorname{card}\left(v_{1}\right), \operatorname{card}\left(v_{2}\right)\right)\right] \wedge b_{i} \in v_{1} \wedge b_{i}^{\prime} \in v_{2}\right\}}{\min \left(\operatorname{card}\left(v_{1}\right), \operatorname{card}\left(v_{2}\right)\right)}, \\
\operatorname{sim}_{l o c}\left(b_{1}, b_{2}\right) & =\frac{\sum\left\{\left.\frac{\operatorname{area}\left(X S\left(b_{1}, N\right) \cap X S\left(b_{2}, N\right)\right)}{\operatorname{area}\left(X S\left(b_{2}, N\right)\right)} \right\rvert\, \forall N \in N S\left(b_{2}\right)\right\}}{\operatorname{card}(N S)}, \\
X S(b, N) & =\bigcup\{\text { f.loc } \mid \forall f \in b . F S\langle\text { f.name, f.val }\rangle=N\}, \\
N S(b) & =\{\langle\text { f.name, f.val }\rangle \mid f \in b . F S\} .
\end{aligned}
$$

The $N S\left(b_{2}\right)$ set contains all distinct name-value pairs from the feature set of the "pattern" block b_{2}. The total regions occupied by each pair $N \in N S$ are then computed as $X S\left(b_{1}, N\right)$ (for the "data" block) and $X S\left(b_{2}, N\right)$ (for the "pattern" block), and the total area of their intersection is compared to the total area of $X S\left(b_{2}, N\right)$. Thus, the more similar $X S\left(b_{1}, N\right)$ and $X S\left(b_{2}, N\right)$ are, the higher $\frac{\operatorname{area}\left(X S\left(b_{1}, N\right) \cap X S\left(b_{2}, N\right)\right)}{\operatorname{area}\left(X S\left(b_{2}, N\right)\right)}$
ratio becomes. Finally, these ratios are added together for all name-value pairs and blocks, and the result is scaled to the $[0,1]$ range.

Many other similarity functions are possible. For example, one may use the

$$
\operatorname{sim}_{l o c}^{\prime}\left(v_{1}, v_{2}\right)=\frac{\operatorname{sim}_{l o c}\left(v_{1}, v_{2}\right)+\operatorname{sim}_{l o c}\left(v_{2}, v_{1}\right)}{2}
$$

function that has an additional property of commutativity.
Let us now define the MATCH operator that finds in its input k fragments that are most similar to the supplied pattern.

Definition 4.3.14 (MATCH Operator) Consider the set $\Sigma\left(v_{1}\right)$ of all subsets of a video summary v_{1} such that for any $v \in \Sigma\left(v_{1}\right)$, if $b_{1}, b_{2} \in v$ and $b \in v_{1}$ then $b_{1} \leq b \leq b_{2} \rightarrow$ $b \in v$. Given the second video summary v_{2} and an integer k, the MATCH operator returns a new summary such that

$$
\mu_{k}\left(v_{1}, v_{2}\right)=\bigcup\left\{v \in \Sigma\left(v_{1}\right) \mid \operatorname{card}\left(\left\{v^{\prime} \in \Sigma\left(v_{1}\right) \mid \operatorname{sim}\left(v^{\prime}, v_{2}\right)>\operatorname{sim}\left(v, v_{2}\right)\right\}\right)<k\right\} .
$$

Thus, the Match operator returns a summary containing the k fragments of the v_{1} best matching the v_{2}.

4.3.6 The Cartesian Product Operator

While not immediately useful, the cartesian product operator serves as a basis for the Join operator. The idea of CProduct is to take two video summaries and combine them in a way described by the block combination function:

Definition 4.3.15 (Block Combination Function) Given a single block b and a set of blocks $S=\left\{b_{1}, \ldots, b_{n}\right\}$, a block combination function g produces a single block $b^{\prime}=g(b, S)$ such that $b^{\prime} . t_{s}=b . t_{s}, b^{\prime} . t_{e}=b . t_{e}$, and $g(b, \emptyset)=b$.

It is important to note that, while the second argument of g may be a summary, it does not have to be one. The blocks may come from completely different sources and overlap one another. A block combination function may use different strategies to integrate these blocks into its first argument, such as compressing video, "splitscreen", and "picture-in-picture" effects.

Definition 4.3.16 (Cartesian Product Operator) Given two video summaries v_{1}, v_{2} and a block combination function g, the cartesian product operator $v_{1} \times{ }^{g} v_{2}$ produces a new summary

$$
v_{1} \times^{g} v_{2}=\left\{g\left(b, v_{2}\right) \mid \forall b \in v_{1}\right\}
$$

4.3.7 The Join Operator

The Join operator is similar to the relational join. What makes it different is the ability to combine video blocks using a block combination function. The Join is basically a version of CPRODUCT where inputs are filtered before being merged:

Definition 4.3.17 (Join Operator) Given two video summaries v_{1}, v_{2}, a block join condition C, a real value $p_{\min } \in[0,1]$, and a block combination function g, the JOIN operator $v_{1} \bowtie_{C, p_{\text {min }}}^{g} v_{2}$ produces a new summary

$$
v_{1} \bowtie_{C, p_{\text {min }}}^{g} v_{2}=\left\{g(b, v) \mid \forall b \in v_{1} v=\left\{b^{\prime} \in v_{2} \mid \lambda\left(C\left[B_{1} / b, B_{2} / b^{\prime}\right]\right) \geq p_{\text {min }}\right\}\right\} .
$$

For a Join example, let us consider two cameras mounted on a toll booth and directed at the driver (through the windshield) and at the license plate at the back of his car. To combine feeds from these cameras, assume the existance of a block combination function $g_{P i P}(b, S)$ that displays members of S in small boxes starting
from the left upper corner of block b. Then a query that combines videos from two cameras $v_{\text {front }}$ and $v_{\text {back }}$ will look like this:

$$
v_{\text {front }} \bowtie_{B_{1}=\langle\text { Car }, \text { true }\rangle \wedge B_{2}=\langle\text { LicensePlate,true }\rangle \wedge \text { overlap }\left(B_{1}, B_{2}\right)}^{g_{P i P}} v_{\text {back }}
$$

A special case of the JOIN operator is the selective join defined as follows:

Definition 4.3.18 (Selective Join Operator) Given two video summaries v_{1}, v_{2}, a block join condition C, and a real value $p_{\min } \in[0,1]$, the selective JoIn operator $v_{1} \bowtie_{C, p_{\text {min }}} v_{2}$ produces a new summary

$$
v_{1} \bowtie_{C, p_{\text {min }}} v_{2}=\left\{b \in v_{1} \mid \exists b^{\prime} \in v_{2} \lambda\left(C\left[B_{1} / b, B_{2} / b^{\prime}\right]\right) \geq p_{\text {min }}\right\} .
$$

The selective JOIN does not require a block combination function and can be used for selecting video blocks that are somehow related to the blocks in the other video. For example, to select scenes of celebration following goals in a soccer video v, one can use the following query:

$$
v_{\text {public }} \bowtie_{B_{1}=\langle\text { Celebration,true }\rangle \wedge B_{2}=\langle\text { Goal }, \text { true }\rangle \wedge \operatorname{after}\left(B_{1}, B_{2}, 15\right)} v_{\text {field }}
$$

In this example, celebration scenes are taken from the camera directed at spectators ($v_{\text {public }}$), while the goal footage comes from another camera "watching" the playfield $\left(v_{\text {field }}\right)$.

Theorem 4.3.7 (Swapping Join and Select) Given two video summaries v_{1}, v_{2}, a block selection condition C_{1}, a block join condition C_{2}, a block combination function g, and two real values $p_{1}, p_{2} \in[0,1]$, if $g(b, S) . F S=b . F S$ for all b, S then

$$
\sigma_{C_{1}}\left(v_{1} \bowtie_{C_{2}, p_{2}}^{g} v_{2}, p_{1}\right)=\sigma_{C_{1}}\left(v_{1}, p_{1}\right) \bowtie_{C_{2}, p_{2}}^{g} v_{2} .
$$

Same holds for the selective JOIN, although there is no g in this case and C_{1} has to be local.

Proof of Theorem 4.3.7. Consider two queries $v^{\prime}=\sigma_{C_{1}}\left(v_{1} \bowtie_{C_{2}, p_{2}}^{g} v_{2}, p_{1}\right)$ and $v^{\prime \prime}=$ $\sigma_{C_{1}}\left(v_{1}, p_{1}\right) \bowtie_{C_{2}, p_{2}}^{g} v_{2}$. By the block combination function definition, $g(b, S) \cdot t_{s}=b \cdot t_{s}$ and $g(b, S) \cdot t_{e}=b \cdot t_{e}$ for any b, S. Furthermore, the theorem requires that $g(b, S) \cdot F S=$ $b . F S$, i.e. the only part of b that g can change is the image data $b . D S$. Thus, applying g does not affect the evaluation of the block selection condition C_{1}.

Consider now an arbitrary block $b \in v_{1}$. By definitions of Join and Select , if there is a corresponding block $b^{\prime} \in v^{\prime}$, there is also a block $b^{\prime \prime} \in v^{\prime \prime}$ and vice versa. There are no blocks in $v^{\prime}, v^{\prime \prime}$ without corresponding blocks in v_{1}. Let us then use operator definitions to compute $b^{\prime}, b^{\prime \prime}$ for an arbitrary block $b \in v_{1}$, case by case:

1. If $\max _{\text {all } \theta}\left(\lambda\left(C_{1}[B / b] \theta\right)\right)<p_{1}$ then $g\left(b,\left\{b^{*} \in v_{2} \mid \lambda\left(C_{2}\left[B_{1} / b, B_{2} / b^{*}\right]\right) \geq p_{2}\right\}\right)$ is deleted by the outer Select operator in v^{\prime} while b is deleted by the inner Select operator in $v^{\prime \prime}$. Therefore, $b^{\prime} \notin v^{\prime}$ and $b^{\prime \prime} \notin v^{\prime \prime}$.
2. If $\max _{\text {all } \theta}\left(\lambda\left(C_{1}[B / b] \theta\right)\right) \geq p_{1}$ then

$$
b^{\prime}=b^{\prime \prime}=g\left(b,\left\{b^{*} \in v_{2} \mid \lambda\left(C_{2}\left[B_{1} / b, B_{2} / b^{*}\right]\right) \geq p_{2}\right\}\right) .
$$

We have shown that $b^{\prime}=b^{\prime \prime}$ for any $b \in v_{1}$. Therefore $v^{\prime}=v^{\prime \prime}$. Similar proof can be given for a combination of SELECT and selective Join, although C_{1} has to be local in this case.

Theorem 4.3.8 (Swapping Join and Project) Given two video summaries v_{1}, v_{2}, a feature selection condition C_{1}, a block join condition C_{2}, a block combination function g, and two real values $p_{1}, p_{2} \in[0,1]$, if C_{2} contains no in $\left(B_{1},-\right)$ atoms and $g(b, S)$ neither uses nor modifies b.FS for all b, S then

$$
\pi_{C_{1}}\left(v_{1} \bowtie_{C_{2}, p_{2}}^{g} v_{2}, p_{1}\right)=\pi_{C_{1}}\left(v_{1}, p_{1}\right) \bowtie_{C_{2}, p_{2}}^{g} v_{2} .
$$

Same holds for the selective JOIN , although there is no g in this case.

Proof of Theorem 4.3.8. Consider two queries $v^{\prime}=\pi_{C_{1}}\left(v_{1} \bowtie_{C_{2}, p_{2}}^{g} v_{2}, p_{1}\right)$ and $v^{\prime \prime}=$ $\pi_{C_{1}}\left(v_{1}, p_{1}\right) \bowtie_{C_{2}, p_{2}}^{g} v_{2}$, and an arbitrary block $b \in v_{1}$. Neither Join nor Project add or delete any blocks. Therefore, b always has two corresponding blocks $b^{\prime} \in v^{\prime}$ and $b^{\prime \prime} \in v^{\prime \prime}$ and there are no blocks in $v^{\prime}, v^{\prime \prime}$ that have no corresponding blocks in v_{1}. By the block combination function definition, $g(b, S) \cdot t_{s}=b . t_{s}$ and $g(b, S) \cdot t_{e}=b . t_{e}$ for any b, S. Furthermore, the theorem requires that $g(b, S) \cdot F S=b . F S$, i.e. the only part of b that g can change is the image data b. $D S$. Thus, applying g does not affect the evaluation of the feature selection condition C_{1}. On the other hand, the theorem requires that neither evaluation of $C_{2}\left[B_{1} / b\right]$ nor the output of $g(b, S)$ depend on b.FS. Thus, they are not affected by Project deleting features from b.FS. In other words

$$
\begin{aligned}
b^{\prime} & =b^{\prime \prime}=g\left(\left\langle b . t_{s}, b \cdot t_{e}, F S, D S\right\rangle\right. \\
F S & =\left\{f \in b . F S \mid \max _{\text {all } \theta}\left(\lambda\left(C_{1}[F / f] \theta\right)\right) \geq p_{1}\right\} \\
D S & =g\left(b,\left\{b^{*} \in v_{2} \mid \lambda\left(C_{2}\left[B_{1} / b, B_{2} / b^{*}\right]\right) \geq p_{2}\right\}\right) . D S .
\end{aligned}
$$

We have shown that $b^{\prime}=b^{\prime \prime}$ for any $b \in v_{1}$. Therefore $v^{\prime}=v^{\prime \prime}$. Similar proof can be given for a combination of PROJECT and selective Join .

Theorem 4.3.9 (Swapping Join and Apply) Given two video summaries v_{1}, v_{2}, a block selection condition C_{1}, a block join condition C_{2}, a block transformation function tr, a block combination function g, and two real values $p_{1}, p_{2} \in[0,1]$, if $g(b, S) \cdot F S=b \cdot F S$ and $\operatorname{tr}(g(b, S), r)=g(\operatorname{tr}(b, r), S)$ for all b, S, r then

$$
\beta_{C_{1}}^{t r}\left(v_{1} \bowtie_{C_{2}, p_{2}}^{g} v_{2}, p_{1}\right)=\beta_{C_{1}}^{t r}\left(v_{1}, p_{1}\right) \bowtie_{C_{2}, p_{2}}^{g} v_{2} .
$$

Same equivalence holds for the feature APPLY operator. It also holds for the selective JOIN, although C_{1} has to be local and there is no g in this case. Finally, it holds for a combination of feature APPLY and selective JOIN, where there are no restrictions on C_{1}.

Proof of Theorem 4.3.9. Consider two queries $v^{\prime}=\beta_{C_{1}}^{t r}\left(v_{1} \bowtie_{C_{2}, p_{2}}^{g} v_{2}, p_{1}\right)$ and $v^{\prime \prime}=$ $\beta_{C_{1}}^{t r}\left(v_{1}, p_{1}\right) \bowtie_{C_{2}, p_{2}}^{g} v_{2}$. By the block combination function definition, $g(b, S) . t_{s}=b . t_{s}$ and $g(b, S) \cdot t_{e}=b \cdot t_{e}$ for any b, S. Furthermore, the theorem requires that $g(b, S) \cdot F S=$ $b . F S$, i.e. the only part of b that g can change is the image data $b . D S$. Thus, applying g does not affect the evaluation of C_{1}. On the other hand, Apply operator only changes image data of its input blocks and therefore it does not affect the evaluation of C_{2}.
Consider now an arbitrary block $b \in v_{1}$. As neither Join nor Apply add or delete any blocks, b always has corresponding blocks $b^{\prime} \in v^{\prime}$ and $b^{\prime \prime} \in v^{\prime \prime}$ and there are no blocks in $v^{\prime}, v^{\prime \prime}$ that have no corresponding blocks in v_{1}. Let us then use operator definitions to compute $b^{\prime}, b^{\prime \prime}$ for an arbitrary block $b \in v_{1}$:

$$
\begin{aligned}
b^{\prime} & =\left\{\begin{array}{ll}
\operatorname{tr}\left(g\left(b,\left\{b^{*} \in v_{2} \mid \lambda\left(C_{2}\left[B_{1} / b, B_{2} / b^{*}\right]\right) \geq p_{2}\right\}\right), \nabla\right) & \text { if } \max _{\text {all }}\left(\lambda\left(C_{1}[B / b] \theta\right)\right) \geq p_{1} \\
g\left(b,\left\{b^{*} \in v_{2} \mid \lambda\left(C_{2}\left[B_{1} / b, B_{2} / b^{*}\right]\right) \geq p_{2}\right\}\right) & \text { otherwise }
\end{array},\right. \\
b^{\prime \prime} & =\left\{\begin{array}{ll}
g\left(\operatorname{tr}(b, \nabla),\left\{b^{*} \in v_{2} \mid \lambda\left(C_{2}\left[B_{1} / b, B_{2} / b^{*}\right]\right) \geq p_{2}\right\}\right) & \text { if maxall } \theta\left(\lambda\left(C_{1}[B / b] \theta\right)\right) \geq p_{1} \\
g\left(b,\left\{b^{*} \in v_{2} \mid \lambda\left(C_{2}\left[B_{1} / b, B_{2} / b^{*}\right]\right) \geq p_{2}\right\}\right) & \text { otherwise }
\end{array} .\right.
\end{aligned}
$$

As the theorem requires that $\operatorname{tr}(g(b, S), r)=g(\operatorname{tr}(b, r), S)$, we can say that $b^{\prime}=b^{\prime \prime}$ for any $b \in v_{1}$. Therefore $v^{\prime}=v^{\prime \prime}$. Similar proof can be given for combinations of feature APPLY and selective Join, although in the case of block ApPLY combined with selective Join C_{1} has to be local.

4.3.8 Set Operators

Intuitively, set operators should work similarly to their canonical definitions by treating video summaries as sets of blocks, but this leads to two questions: (i) What makes two video blocks equivalent? and (ii) How to combine video blocks that overlap in time?

Let us first introduce the equivalence relation " \sim " defined on blocks. This relation can be chosen from a variety of possibilities. For example, we can attach IDs to all the blocks in the database and define $b_{1} \sim b_{2} \leftrightarrow b_{1}$.id $=b_{2}$.id. Or, one can say that $b_{1} \sim b_{2} \leftrightarrow b_{1} \cdot t_{s}=b_{2} . t_{s} \wedge b_{1} . t_{e}=b_{2} . t_{e}$. Let us define the set intersection and difference operators with respect to the " \sim " relation:

Definition 4.3.19 (Set Intersection and Difference Operators) Given two video summaries v_{1}, v_{2}, and an equivalence relation " \sim " on blocks, the set intersection and difference operators return new summaries such that

$$
\begin{aligned}
& v_{1} \cap \sim v_{2}=\left\{b \in v_{1} \mid \exists b^{\prime} \in v_{2} b \sim b^{\prime}\right\}, \\
& v_{1}-\sim v_{2}=\left\{b \in v_{1} \mid \forall b^{\prime} \in v_{2} b \nsim b^{\prime}\right\} .
\end{aligned}
$$

Unfortunately, the set union operator cannot be defined as easily as the intersection and difference because it requires merging overlapping video blocks into new blocks. To deal with this problem, let us define split and merge operators:

Definition 4.3.20 (Split Operator) Given two video summaries v_{1}, v_{2}, the split function split $\left(v_{1}, v_{2}\right)$ returns a new video summary such that

$$
\begin{aligned}
S(v) & =\left\{t \mid \forall b \in v t=b . t_{s} \vee t=b . t_{e}\right\} \\
\operatorname{split}\left(v_{1}, v_{2}\right) & =\bigcup_{b \in v_{1}}\left\{\left\langle t_{s}, t_{e}, b . F S, D S\right\rangle \mid \forall t_{s}, t_{e} \in S\left(v_{2}\right) \cup\left\{b . t_{s}, b . t_{e}\right\}\left[t_{s}, t_{e}\right] \subseteq\left[b . t_{s}, b . t_{e}\right]\right\},
\end{aligned}
$$

where each $D S$ consists of the $\left[t_{s}, t_{e}\right)$ range of frames taken from b.DS.

Intuitively, the $\operatorname{split}\left(v_{1}, v_{2}\right)$ operator splits v_{1} blocks at boundaries imposed by blocks from v_{2}, so that each resulting block overlaps with at most one block from v_{2} and there are no partial overlaps. To merge overlapping blocks together, we will need one more operator:

Definition 4.3.21 (Merge Operator) Given two video summaries v_{1}, v_{2} and a block combination function g, the merge operator merge ${ }^{g}\left(v_{1}, v_{2}\right)$ returns a new video summary such that

$$
\begin{aligned}
\operatorname{merge}^{g}\left(v_{1}, v_{2}\right)= & \left\{g\left(b, v^{\prime}\right) \mid \forall b \in v_{1} v^{\prime}=\left\{b^{\prime} \in v_{2} \mid\left[b . t_{s}, b . t_{e}\right) \cap\left[b^{\prime} \cdot t_{s}, b^{\prime} . t_{e}\right) \neq \emptyset\right\}\right\} \\
\cup & \left\{b \in v_{1} \mid \forall b^{\prime} \in v_{2}\left[b . t_{s}, b . t_{e}\right) \cap\left[b^{\prime} . t_{s}, b^{\prime} . t_{e}\right)=\emptyset\right\} \\
\cup & \left\{b \in v_{2} \mid \forall b^{\prime} \in v_{1}\left[b . t_{s}, b . t_{e}\right) \cap\left[b^{\prime} . t_{s}, b^{\prime} . t_{e}\right)=\emptyset\right\} .
\end{aligned}
$$

By using the split() and merge() operators, one can define the set union in a following way:

Definition 4.3.22 (Set Union Operator) Given two video summaries v_{1}, v_{2}, an equivalence relation " \sim " defined on blocks, and a block combination function g, the set union operator produces a new summary such that

$$
\begin{aligned}
v^{\prime} & =\left\{b \in v_{2} \mid \forall b^{\prime} \in v_{1} b^{\prime} \nsucc b\right\}, \\
v_{1} \cup_{\sim}^{g} v_{2} & =\operatorname{merge}^{g}\left(\operatorname{split}\left(v_{1}, v^{\prime}\right), \operatorname{split}\left(v^{\prime}, v_{1}\right)\right) .
\end{aligned}
$$

The above definition of set operators allows for many useful equivalences. Let us see some of them.

Theorem 4.3.10 (Swapping Set Operators and Select) Given two video summaries v_{1}, v_{2}, a block selection condition C, a real value $p \in[0,1]$, and an equivalence relation " \sim ", if C is local then

$$
\begin{aligned}
\sigma_{C}\left(v_{1}, p\right) \cap_{\sim} v_{2} & =\sigma_{C}\left(v_{1} \cap \sim v_{2}, p\right) \\
\sigma_{C}\left(v_{1}, p\right)-_{\sim} v_{2} & =\sigma_{C}\left(v_{1}-\sim v_{2}, p\right)
\end{aligned}
$$

Proof of Theorem 4.3.10. Consider two queries $v^{\prime}=\sigma_{C}\left(v_{1}, p\right) \cap_{\sim} v_{2}$ and $v^{\prime \prime}=$ $\sigma_{C}\left(v_{1} \cap_{\sim} v_{2}, p\right)$. As the theorem requires C to be local, both SELECT operators consider each input block independently of other blocks. By definitions of Select and set intersection, if a block $b \in v_{1}$ has a corresponding block $b^{\prime} \in v^{\prime}$, it must also have a corresponding block $b^{\prime \prime} \in v^{\prime \prime}$ and vice versa. There are no blocks in $v^{\prime}, v^{\prime \prime}$ that have no corresponding blocks in v_{1}. Let us then consider an arbitrary block $b \in v_{1}$ and use operator definitions to compute its corresponding blocks $b^{\prime}, b^{\prime \prime}$, case by case:

1. If $\lambda(C[B / b])<p$ then b is deleted by the inner Select operator in v^{\prime} and by the outer Select operator in $v^{\prime \prime}$. Thus, $b^{\prime} \notin v^{\prime}$ and $b^{\prime \prime} \notin v^{\prime \prime}$.
2. If $\lambda(C[B / b]) \geq p$ then $b^{\prime}=b^{\prime \prime}=b$ if and only if there is $b^{*} \in v_{2}$ such that $b \sim b^{*}$. Otherwise, $b^{\prime} \notin v^{\prime}$ and $b^{\prime \prime} \notin v^{\prime \prime}$.

We have shown that $b^{\prime}, b^{\prime \prime}$ either do not exist or $b^{\prime}=b^{\prime \prime}$, for any $b \in v_{1}$. Therefore, $v^{\prime}=v^{\prime \prime}$. Similar proof can be given for a combination of SELECT and set difference.

Theorem 4.3.11 (Swapping Set Operators and Apply) Given two video summaries v_{1}, v_{2}, a block selection condition C, a real value $p \in[0,1]$, a transformation function tr, and an equivalence relation " \sim " such that $b_{1} \sim b_{2} \leftrightarrow \operatorname{tr}\left(b_{1}, r\right) \sim b_{2}$ for any b_{1}, b_{2}, r, if C is local then

$$
\begin{aligned}
& \beta_{C}^{t r}\left(v_{1}, p\right) \cap \sim v_{2}=\beta_{C}^{t r}\left(v_{1} \cap \sim v_{2}, p\right) \\
& \beta_{C}^{t r}\left(v_{1}, p\right)-\sim v_{2}=\beta_{C}^{t r}\left(v_{1}-\sim v_{2}, p\right) .
\end{aligned}
$$

Same holds for a feature AppLY operator, although C does not have to be local in this case.

Proof of Theorem 4.3.11. Consider two queries $v^{\prime}=\beta_{C}^{t r}\left(v_{1}, p\right) \cap \sim v_{2}$ and $v^{\prime \prime}=$ $\beta_{C}^{t r}\left(v_{1} \cap \sim v_{2}, p\right)$. As the theorem requires C to be local, both Apply operators consider each input block independently of other blocks. By definitions of Apply and set intersection, if a block $b \in v_{1}$ has a corresponding block $b^{\prime} \in v^{\prime}$, it also has a corresponding block $b^{\prime \prime} \in v^{\prime \prime}$ and vice versa. There are no blocks in $v^{\prime}, v^{\prime \prime}$ that have no corresponding blocks in v_{1}. Let us then look at an arbitrary block $b \in v_{1}$ and use operator definitions to compute its corresponding blocks $b^{\prime}, b^{\prime \prime}$, case by case:

1. If $\lambda(C[B / b])<p$ then neither Apply operator modifies b and therefore $b^{\prime}=$ $b^{\prime \prime}=b$ if and only if there is $b^{*} \in v_{2}$ such that $b \sim b^{*}$. Otherwise, $b^{\prime} \notin v^{\prime}$ and $b^{\prime \prime} \notin v^{\prime \prime}$.
2. If $\lambda(C[B / b]) \geq p$ then the set intersection operator in v^{\prime} receives as input a block $\operatorname{tr}(b, \nabla)$ while the set intersection operator in $v^{\prime \prime}$ receives b^{*} as input. The theorem requires that $b \sim b^{*} \leftrightarrow \operatorname{tr}(b, r) \sim b^{*}$ and therefore both input blocks will either pass set intersection or be deleted by it. Thus, the first query will generate $b^{\prime}=\operatorname{tr}(b, \nabla)$ while the second query applies $t r$ and also generates $b^{\prime \prime}=\operatorname{tr}(b, \nabla)$, i.e. $b^{\prime}=b^{\prime \prime}$.

We have shown that whenever $b^{\prime}, b^{\prime \prime}$ exist, it is true that $b^{\prime}=b^{\prime \prime}$, for any $b \in v_{1}$. Therefore, $v^{\prime}=v^{\prime \prime}$. Similar proof can be given for combinations of feature APPLY and set difference, although C does not have to be local in feature Apply .

4.3.9 The Concatenation Operator

A simple but common video processing task is to "glue" two or more summaries together. Here is an algebraic operator to do it:

Definition 4.3.23 (Concatenation Operator) Given two video summaries v_{1}, v_{2} the concatenation operator $v_{1} \oplus v_{2}$ produces a new summary

$$
v_{1} \oplus v_{2}=v_{1} \cup\left\{\left\langle b . t_{s}+t_{0}, b . t_{e}+t_{0}, b . F S, b . D S\right\rangle \mid \forall v \in v_{2}\right\},
$$

where $t_{0}=\max _{b \in v_{1}}$ b.t t_{e}.

Two concatenations can be easily swapped.

Theorem 4.3.12 (Swapping Concatenations) Suppose v_{1}, v_{2}, v_{3} are summaries. Then

$$
\left(v_{1} \oplus v_{2}\right) \oplus v_{3}=v_{1} \oplus\left(v_{2} \oplus v_{3}\right)
$$

Proof of Theorem 4.3.12. Consider an arbitrary block b from one of v_{1}, v_{2}, v_{3} summaries and two new summaries $v^{\prime}=\left(v_{1} \oplus v_{2}\right) \oplus v_{3}$ and $v^{\prime \prime}=v_{1} \oplus\left(v_{2} \oplus v_{3}\right)$. As concatenation operator neither deletes nor adds blocks, b will always have counterparts $b^{\prime} \in v^{\prime}$ and $b^{\prime \prime} \in v^{\prime \prime}$, and there are no blocks in $v^{\prime}, v^{\prime \prime}$ that do not have a corresponding block b. We can then write the following correspondence between these blocks:

$$
\begin{aligned}
t_{1} & =\text { max }_{b \in v_{1}} b \cdot t_{e} \\
t_{2} & =\text { max }_{b \in v_{2}} b \cdot t_{e} \\
b^{\prime} . F S & =b^{\prime \prime} \cdot F S=b \cdot F S \\
b^{\prime} . D S & =b^{\prime \prime} \cdot D S=b . D S \\
b^{\prime} . t_{s} & = \begin{cases}b \cdot t_{s} & \text { if } b \in v_{1} \\
b \cdot t_{s}+t_{1} & \text { if } b \in v_{2} \\
b \cdot t_{s}+t_{1}+t_{2} & \text { ifb } \in v_{3}\end{cases} \\
b^{\prime \prime} \cdot t_{s} & = \begin{cases}b \cdot t_{s} & \text { if } b \in v_{1} \\
b \cdot t_{s}+t_{1} & \text { if } b \in v_{2} \\
b \cdot t_{s}+t_{2}+t_{1} & \text { ifb } \in v_{3}\end{cases} \\
b^{\prime} . t_{e} & = \begin{cases}b \cdot t_{e} & \text { if } b \in v_{2} \\
b \cdot t_{e}+t_{1} \\
b \cdot t_{e}+t_{1}+t_{2} & \text { ifb } b v_{3}\end{cases} \\
b^{\prime \prime} . t_{e} & = \begin{cases}b \cdot v_{e} \\
b \cdot t_{e}+t_{1} & \text { if } b \in v_{2} \\
b \cdot t_{e}+t_{2}+t_{1} & \text { ifb } b v_{3}\end{cases}
\end{aligned}
$$

Thus, $b^{\prime}=b^{\prime \prime}$ for any input block b and therefore $v^{\prime}=v^{\prime \prime}$.
Concatenation can also be swapped with Project and Apply operators.

Theorem 4.3.13 (Swapping Concatenation and Project) Suppose v_{1} and v_{2} are summaries, C is a feature selection condition, and $p \in[0,1]$ is a real number. Then

$$
\pi_{C}\left(v_{1}, p\right) \oplus \pi_{C}\left(v_{2}, p\right)=\pi_{C}\left(v_{1} \oplus v_{2}, p\right)
$$

Proof of Theorem 4.3.13. Consider two summaries $v^{\prime}=\pi_{C}\left(v_{1}, p\right) \oplus \pi_{C}\left(v_{2}, p\right)$ and $v^{\prime \prime}=\pi_{C}\left(v_{1} \oplus v_{2}, p\right)$ and an arbitrary block b in v_{1}, v_{2}. As PRoJECT and concatenation operators neither delete nor add any blocks, b will always have two corresponding blocks $b^{\prime} \in v^{\prime}$ and $b^{\prime \prime} \in v^{\prime \prime}$. Furthermore, the Project operator only considers and modifies feature sets of input blocks, while concatenation operator only considers and modifies t_{s}, t_{e} values of input blocks. In other words:

$$
\begin{aligned}
t_{1} & =\text { max }_{b \in v_{1}} b \cdot t_{e} \\
b^{\prime} . F S & =b^{\prime \prime} \cdot F S=\left\{f \in b \cdot F S \mid \max _{\text {all }}(\lambda(C[F / f] \theta)) \geq p\right\} \\
b^{\prime} . D S & =b^{\prime \prime} \cdot D S=b \cdot D S \\
b^{\prime} \cdot t_{s} & = \begin{cases}b \cdot t_{s} & \text { if } b \in v_{1} \\
b \cdot t_{s}+t_{1} & \text { if } b \in v_{2}\end{cases} \\
b^{\prime \prime} \cdot t_{s} & = \begin{cases}b \cdot t_{s} & \text { if } b \in v_{1} \\
b \cdot t_{s}+t_{1} & \text { if } b \in v_{2}\end{cases} \\
b^{\prime} \cdot t_{e} & = \begin{cases}b \cdot t_{e} & \text { if } b \in v_{1} \\
b \cdot t_{e}+t_{1} & \text { if } b \in v_{2}\end{cases} \\
b^{\prime \prime} \cdot t_{e} & = \begin{cases}b \cdot t_{e} & \text { if } b \in v_{1} \\
b \cdot t_{e}+t_{1} & \text { if } b \in v_{2}\end{cases}
\end{aligned}
$$

Thus, $b^{\prime}=b^{\prime \prime}$ for any input block b and therefore $v^{\prime}=v^{\prime \prime}$.

Theorem 4.3.14 (Swapping Concatenation and APPLY) Suppose v_{1} and v_{2} are summaries, C is a local block condition, tr is a block transformation function, and
$p \in[0,1]$ is a real number. Then

$$
\beta_{C}^{t r}\left(v_{1}, p\right) \oplus \beta_{C}^{t r}\left(v_{2}, p\right)=\beta_{C}^{t r}\left(v_{1} \oplus v_{2}, p\right)
$$

Same holds for feature APPLY operators, although C does not have to be local in this case.

Proof of Theorem 4.3.14. Consider two queries $v^{\prime}=\beta_{C}^{t r}\left(v_{1}, p\right) \oplus \beta_{C}^{t r}\left(v_{2}, p\right)$ and $v^{\prime \prime}=\beta_{C}^{t r}\left(v_{1} \oplus v_{2}, p\right)$, and an arbitrary block b in v_{1}, v_{2}. As ApPLY and concatenation operators neither delete nor add any blocks, b will always have two corresponding blocks $b^{\prime} \in v^{\prime}$ and $b^{\prime \prime} \in v^{\prime \prime}$. Furthermore, due to locality of C, the Apply operator considers its input one block at a time, ignoring t_{s}, t_{e} values and only modifying image data, while concatenation operator only considers and modifies t_{s}, t_{e} values of input blocks. In other words:

$$
\begin{aligned}
& t_{1}=\max _{b \in v_{1}} b \cdot t_{e}, \\
& b^{*}=\left\langle\left\{\begin{array}{ll}
b \cdot t_{s}+t_{1} & \text { if } b \in v_{2} \\
b \cdot t_{s} & \text { otherwise }
\end{array},\left\{\begin{array}{ll}
b . t_{e}+t_{1} & \text { if } b \in v_{2} \\
b . t_{e} & \text { otherwise }
\end{array}, b . F S, b . D S\right\rangle,\right.\right. \\
& b^{\prime}
\end{aligned}=b^{\prime \prime}= \begin{cases}\operatorname{tr}\left(b^{*}, \nabla\right) & \text { if } \lambda\left(C\left[B / b^{*}\right]\right) \geq p \\
b^{*} & \text { otherwise }\end{cases}
$$

Thus, $b^{\prime}=b^{\prime \prime}$ for any input block b and therefore $v^{\prime}=v^{\prime \prime}$. Similar proof can be given for a concatenation of feature Apply operators, although C is not required to be local in this case.

4.3.10 The Compress Operator

By the definition of the video summary, it may contain "gaps" between blocks, where content is missing or removed as result of queries. A video browsing and display
application may choose to hide these gaps from the viewer by skipping directly to the next block as the current one finishes playing. To permanently remove gaps from a summary though, one will need an operator to compress summaries:

Definition 4.3.24 (Compress Operator) Given a summary v, the Compress oper-

 ator $\eta(v)$ produces a new summary$$
\eta(v)=\left\{\left\langle t_{s}, t_{s}+b . t_{e}-b . t_{s}, b . F S, b . D S\right\rangle \mid \forall b \in v t_{s}=\sum_{\left\{b^{\prime} \in v \mid b^{\prime} . t_{e} \leq b . t_{s}\right\}}\left(b^{\prime} . t_{e}-b^{\prime} . t_{s}\right)\right\} .
$$

It is easy to notice that applying compression to a summary effectively turns it into a video (i.e. summary with no gaps), while applying it again will not change this video. Thus, two Compress operators can be reduced to one:

Theorem 4.3.15 (Reducing Compress) Suppose v is a summary. Then

$$
\eta(\eta(v))=\eta(v) .
$$

Proof of Theorem 4.3.15. Proving this theorem by induction:

1. Let us start with an empty summary: $\eta(\eta(\emptyset))=\emptyset$ and $\eta(\emptyset)=\emptyset$, i.e. the theorem holds.
2. Let us denote $\eta(\eta(v))$ with $v^{\prime}, \eta(v)$ with $v^{\prime \prime}$, and assume that the theorem holds for some summary v, i.e. $v^{\prime}=v^{\prime \prime}$.
3. If a block b is added to the end of v, we can use the the Compress operator definition to write that

$$
\begin{aligned}
\eta(\eta(v \cup\{b\})) & =v^{\prime} \cup\left\{\left\langle b . t_{s}+\text { length }\left(v^{\prime}\right), \text { b.t } t_{e}+\text { length }\left(v^{\prime}\right), b . F S, b . D S\right\rangle\right\}, \\
\eta(v \cup\{b\}) & =v^{\prime \prime} \cup\left\{\left\langle b . t_{s}+\text { length }\left(v^{\prime \prime}\right), b . t_{e}+\text { length }\left(v^{\prime \prime}\right), b . F S, b . D S\right\rangle\right\} .
\end{aligned}
$$

Given assumption made in (2), we can conclude that the theorem holds for $v \cup\{b\}$.

Thus, $\eta(\eta(v))=\eta(v)$ for any arbitrary summary v, by induction.
Compress operators can be swapped with Project, Apply, and concatenation operators:

Theorem 4.3.16 (Swapping Compress and Project) Suppose vis a summary, C is a feature selection condition, and $p \in[0,1]$ is a real number. Then

$$
\pi_{C}(\eta(v), p)=\eta\left(\pi_{C}(v, p)\right)
$$

Proof of Theorem 4.3.16. Proving this theorem by induction:

1. Let us start with an empty summary: $\eta\left(\pi_{C}(\emptyset, p)\right)=\emptyset$ and $\pi_{C}(\eta(\emptyset), p)=\emptyset$, i.e. the theorem holds.
2. Let us denote $\pi_{C}(\eta(v), p)$ with $v^{\prime}, \eta\left(\pi_{C}(v, p)\right)$ with $v^{\prime \prime}$, and assume that the theorem holds for some summary v, i.e. $v^{\prime}=v^{\prime \prime}$.
3. If a block b is added to the end of v, we can use definitions of Project and Compress operators to write that

$$
\begin{aligned}
\pi_{C}(\eta(v \cup\{b\}), p) & =v^{\prime} \cup\left\{\left\langle b . t_{s}+\text { length }\left(v^{\prime}\right), b . t_{e}+\text { length }\left(v^{\prime}\right), F S, b . D S\right\rangle\right\}, \\
\eta\left(\pi_{C}(v \cup\{b\}, p)\right) & =v^{\prime \prime} \cup\left\{\left\langle b . t_{s}+\text { length }\left(v^{\prime \prime}\right), b . t_{e}+\text { length }\left(v^{\prime \prime}\right), F S, b . D S\right\rangle\right\}, \\
F S & \left.=\left\{f \in b . F S \mid \max _{\text {all } \theta} \lambda(C[F / f] \theta)\right) \geq p\right\} .
\end{aligned}
$$

Given assumption made in (2), we can conclude that the theorem holds for $v \cup\{b\}$.

Thus, $\eta\left(\pi_{C}(v, p)\right)=\pi_{C}(\eta(v), p)$ for any arbitrary summary v, by induction.

Theorem 4.3.17 (Swapping Compress and Apply) Suppose v is a summary, C is a local block selection condition, tr is a block transformation function, and $p \in[0,1]$ is a real number. Then

$$
\beta_{C}^{t r}(\eta(v))=\eta\left(\beta_{C}^{t r}(v)\right)
$$

Same holds for a feature APPLY operator, where C is any feature condition.

Proof of Theorem 4.3.17. Proving this theorem by induction:

1. Let us start with an empty summary: $\eta\left(\beta_{C}^{\operatorname{tr}}(\emptyset)\right)=\emptyset$ and $\beta_{C}^{\operatorname{tr}}(\eta(\emptyset))=\emptyset$, i.e. the theorem holds.
2. Let us denote $\beta_{C}^{\text {tr }}(\eta(v))$ with $v^{\prime}, \eta\left(\beta_{C}^{\text {tr }}(v)\right)$ with $v^{\prime \prime}$, and assume that the theorem holds for some summary v, i.e. $v^{\prime}=v^{\prime \prime}$.
3. If a block b is added to the end of v, we can use definitions of Apply and Compress operators and the requirement for C to be local to write that

$$
\begin{aligned}
b_{*}^{\prime} & =\left\langle b . t_{s}+\text { length }\left(v^{\prime}\right), \text { b.te }+ \text { length }\left(v^{\prime}\right), b . F S, b . D S\right\rangle, \\
b_{*}^{\prime \prime} & =\left\langle b . t_{s}+\text { length }\left(v^{\prime \prime}\right), \text { b.t } t_{e}+\text { length }\left(v^{\prime \prime}\right), b . F S, b . D S\right\rangle, \\
\beta_{C}^{t r}(\eta(v \cup\{b\})) & =v^{\prime} \cup\left\{\left\{\begin{array}{ll}
\operatorname{tr}\left(b_{*}^{\prime}, \nabla\right) & \text { if } \lambda\left(C\left[B / b_{*}^{\prime}\right]\right) \geq p \\
b_{*}^{\prime} & \text { otherwise }
\end{array}\right\},\right. \\
\eta\left(\beta_{C}^{t r}(v \cup\{b\})\right) & =v^{\prime} \cup\left\{\left\{\begin{array}{ll}
\operatorname{tr}\left(b_{*}^{\prime \prime}, \nabla\right) & \text { if } \lambda\left(C\left[B / b_{*}^{\prime \prime}\right]\right) \geq p \\
b_{*}^{\prime \prime} & \text { otherwise }
\end{array}\right\} .\right.
\end{aligned}
$$

Given assumption made in (2), we can conclude that the theorem holds for $v \cup\{b\}$.

Thus, $\eta\left(\beta_{C}^{\text {tr }}(v)\right)=\beta_{C}^{\operatorname{tr}}(\eta(v))$ for any arbitrary summary v, by induction.

Theorem 4.3.18 (Swapping COMPRESS and concatenation) Suppose v_{1} and v_{2} are summaries. Then

$$
\eta\left(v_{1}\right) \oplus \eta\left(v_{2}\right)=\eta\left(v_{1} \oplus v_{2}\right)
$$

Proof of Theorem 4.3.18. Consider two summaries $v^{\prime}=\eta\left(v_{1}\right) \oplus \eta\left(v_{2}\right)$ and $v^{\prime \prime}=$ $\eta\left(v_{1} \oplus v_{2}\right)$. As COMPRESS and concatenation operators neither delete nor add any blocks, an arbitrary block b from v_{1}, v_{2} will have two corresponding blocks $b^{\prime} \in v^{\prime}$ and $b^{\prime \prime} \in v^{\prime \prime}$, and there are no blocks in $v^{\prime}, v^{\prime \prime}$ that do not have a corresponding block b. Let us then consider two possible cases:

1. If $b \in v_{1}$ then, by the definition, concatenation does not modify b or put any blocks in front of it, while COMPRESS will change b so that

$$
\begin{aligned}
b^{\prime} . t_{s} & =b^{\prime \prime} . t_{s}=\sum_{\left\{b^{*} \in v_{1} \mid b^{*} \cdot t_{e} \leq b \cdot t_{s}\right\}}\left(b^{*} \cdot t_{e}-b^{*} . t_{s}\right) \\
b^{\prime} \cdot t_{e} & =b^{\prime \prime} \cdot t_{e}=b^{\prime} \cdot t_{s}+b \cdot t_{e}-b \cdot t_{s}
\end{aligned}
$$

Thus, $b^{\prime}=b^{\prime \prime}$.
2. If $b \in v_{2}$ then, by definitions of COMPRESS and concatenation,

$$
\begin{aligned}
b^{\prime} . t_{s} & =b^{\prime \prime} . t_{s}=l e n g t h\left(v_{1}\right)+\sum_{\left\{b^{*} \in v_{2} \mid b^{*} . t_{e} \leq b \cdot t_{s}\right\}}\left(b^{*} . t_{e}-b^{*} . t_{s}\right) \\
b^{\prime} . t_{e} & =b^{\prime \prime} . t_{e}=b^{\prime} . t_{s}+b . t_{e}-b . t_{s}
\end{aligned}
$$

Again, $b^{\prime}=b^{\prime \prime}$.

Thus, $b^{\prime}=b^{\prime \prime}$ for any block b from either of query inputs and therefore $v^{\prime}=v^{\prime \prime}$.

4.4 Indexing and Optimization

In this section, we will discuss optimizing such time-consuming operations as SeLECT, JOIN, and MATCH, both by closely analyzing selection conditions and by using indices.

4.4.1 Optimizing Select and Join

As VDA mostly operates on video descriptions as opposed to the actual video data, it is quite feasible to execute most of its operations in memory, accessing disk storage only when a query needs to change the video itself (as result of APPLY or Join operators, for example). Consider, for example, a one-hour video divided into one-second
blocks. If each block contains an average of 10 features, we would have to keep in memory 3600 blocks and 36000 features - not a very large amount of data, by any count.

While the modest memory requirement can be considered good news, there is also bad news and it is about the way VDA treats selection conditions. Remember that such operators as Select and Project use the maximal value of λ over all possible variable assignments. This brings the complexity of a SELECT operator with M variables in its selection condition, processing N input blocks, to $O\left(\frac{N!}{(N-M)!}\right)$. This value is linear w.r.t. the size of input as long as there is only one variable, but it quickly mushrooms as the number of variables grows.

Fortunately, there is an extra consideration to make. When performing selection, a user is unlikely to specify blocks that are completely unrelated. For example, while the "give me all celebration shots in a soccer video if there are any goals in that video" request is not sensible, the "give me all celebration shots that occur in 15 second intervals after goal shots" request makes much more sense. In other words, of

$$
\begin{array}{r}
\left.\sigma_{\text {in }(B, \operatorname{name}(F,, " C e l e b r a t i o n ")}\right) \wedge \operatorname{in}\left(B_{1}, \operatorname{name}(F,, " G o a l ")\right)(v) \\
\left.\sigma_{\text {in }(B, \operatorname{name}(F, " C e l e b r a t i o n ")}\right) \wedge \operatorname{in}\left(B_{1}, \operatorname{name}(F, " \operatorname{Goal"})\right) \wedge \operatorname{after}\left(B, B_{1}, 15\right)(v) \tag{2}
\end{array}
$$

queries, the second one is more likely to be issued than the first. Thus, most or all variable assignments will be constrained in time with respect to B. When Select scans its input by sequential assignment of input blocks to B, we can compute possible time ranges for all the other variables based on the time constraints and only consider assignments from within these ranges. If each time range contains an average of $K \ll N$ blocks, the complexity is reduced to $O\left(N \cdot K^{M-1}\right)$, at the cost of time needed to compute ranges.

Consider a condition C containing variables B, B_{1}, \ldots, B_{m}. Given the assignment $B=b$, our task is to compute a set of constraints $\left\{\left\langle l l_{i}, l u_{i}, u l_{i}, u u_{i}\right\rangle \mid \forall i \in[1, m]\right.$ $\left.\forall \theta \forall b^{\prime} \quad b^{\prime} . t_{s} \notin\left[l l_{i}, l u_{i}\right] \vee b^{\prime} . t_{e} \notin\left[u l_{i}, u u_{i}\right] \rightarrow \lambda\left(C\left[B / b, B_{i} / b^{\prime}\right] \theta\right)=0\right\}$. This can be done with the following algorithm:

```
Algorithm Ranges(C,b)
    C is a block selection condition with variables B, B1,\ldots,\mp@subsup{B}{m}{}
    bis a block to be assigned to }
begin
    RR[0]:= \langleb.t\mp@subsup{t}{s}{},b.\mp@subsup{t}{s}{},b.\mp@subsup{t}{e}{},b.\mp@subsup{t}{e}{}\rangle
    for j\in[1,m] do
        RR[j]:= <0, \infty,0,\infty}
    end for
    do
        i:= 0
        for j\in[1,m] do
            R:= RecRanges(C,j,RR)
            if R\not=RR[j] then i:= i+1
            RR[j]:= R
        end for
    while i>0
    return RR
end
```

The Ranges() algorithm starts by assigning longest possible ranges to all variables except B. It then tries to shrink these ranges one by one, by calling the recursive RecRange () algorithm given below. The execution of Ranges() stops when ranges cease changing. The Ranges () algorithm has $O\left((M-1)^{2}\right)$ time complexity. Algorithm RecRanges($C, j, R R$)
C is a block selection condition with variables B, B_{1}, \ldots, B_{M}
j is the number of a variable B_{j} whose range we compute
$R R$ is the current range table begin
if $C=C_{1} \wedge C_{2}$ then
$R_{1}:=\operatorname{RecRanges}\left(C_{1}, j, R R\right)$
$R_{2}:=\operatorname{RecRanges}\left(C_{2}, j, R R\right)$
return $\left\langle\max \left(R_{1} . l l, R_{2} . l l\right), \min \left(R_{1} . l u, R_{2} . l u\right), \max \left(R_{1}, u l, R_{2}, u l\right), \min \left(R_{1} \cdot u u, R_{2} \cdot u u\right)\right\rangle$
else if $C=C_{1} \vee C_{2}$ then
$R_{1}:=\operatorname{RecRanges}\left(C_{1}, j, R R\right)$
$R_{2}:=\operatorname{RecRanges}\left(C_{2}, j, R R\right)$
return $\left\langle\min \left(R_{1} . l l, R_{2} . l l\right), \max \left(R_{1} . l u, R_{2} . l u\right), \min \left(R_{1}, u l, R_{2}, u l\right), \max \left(R_{1} . u u, R_{2} . u u\right)\right\rangle$
else if $C=\operatorname{before}\left(B_{j}, B_{i}, d\right)$ then
return $\langle 0, R R[i] . l u, \max (0, R R[i] . l l-d), R R[i] . l u\rangle$
else if $C=\operatorname{before}\left(B_{i}, B_{j}, d\right)$ then

```
        return \(\langle R R[i] . u l, \min (\infty, R R[i]+d), R R[i] . u l, \infty\rangle\)
    else if \(C=\operatorname{after}\left(B_{j}, B_{i}, d\right)\) then
        return \(\langle R R[i] \cdot u l, \min (\infty, R R[i] \cdot u u+d), R R[i] \cdot u l, \infty\rangle\)
    else if \(C=\operatorname{after}\left(B_{i}, B_{j}, d\right)\) then
        return \(\langle 0, R R[i] . l u, \max (0, R R[i] . l l-d), R R[i] . l u\rangle\)
    else if \(C=\operatorname{within}\left(B_{j}, B_{i}, d\right)\) or \(C=\operatorname{within}\left(B_{i}, B_{j}, d\right)\) then
    return \(\langle 0, \min (\infty, R R[i] \cdot u u+d, \max (0, R R[i] \cdot l l-d), \infty\rangle\)
    else if \(C=\operatorname{overlap}\left(B_{j}, B_{i}\right)\) or \(C=\operatorname{overlap}\left(B_{i}, B_{j}\right)\) then
    return \(\langle 0, R R[i] \cdot u u, R R[i] \cdot l l, \infty\rangle\)
    else if \(C=\operatorname{inside}\left(B_{j}, B_{i}\right)\) then
    return \(\langle R R[i] . l l, R R[i] \cdot u u, R R[i] \cdot l l, R R[i] \cdot u u\rangle\)
    else if \(C=\operatorname{inside}\left(B_{i}, B_{j}\right)\) then
    return \(\langle 0, R R[i] . l l, R R[i] \cdot u u, \infty\rangle\)
    end if
    return \(\langle 0, \infty, 0, \infty\rangle\)
end
```

When considering assignment for a variable B_{i}, the λ computation algorithm finds the first input block b_{s}, such that $b_{s} \cdot t_{s} \geq l l_{i}$ and $b_{s} \cdot t_{e} \geq u l_{i}$. As a video summary is an ordered set of blocks, the b_{s} block can be easily found with binary search in $O\left(\log _{2}(N)\right)$ time. The algorithm then tries assigning to B_{i} every block starting with b_{s} and ending with b_{e}, such that $b_{e} \cdot t_{s}>l u_{i}$ or $b_{e} \cdot t_{e}>u u_{i}$.

4.4.2 Optimizing MATCH

Another costly algebraic operation is matching. For instance, to match a pattern of size M against a video summary of size N, using the similarity measure described in Example 4.3.13, one needs to make $O((N-M) \cdot M)$ block comparisons, and each block comparison takes quadratic time with respect to the number of features in compared blocks. For large videos whose blocks contain a lot of features the Match operator can take quite a lot of time to execute.

To determine how to accelerate the matching process, let us first look at a "naive" matching algorithm using the $\operatorname{sim}_{l o c}()$ similarity function from Example 4.3.13:

```
    vp}\mathrm{ is the pattern video summary
    k is the number of best matches to return
begin
    // Priority queue is empty for now
    Q :=\emptyset
    // Scan v
    for each j\in[1,\operatorname{card}(\mp@subsup{v}{d}{})-\operatorname{card}(\mp@subsup{v}{p}{})]\mathrm{ do}
        d:= 0
        for each i\in[1,\operatorname{card}(\mp@subsup{v}{p}{})] do
            d:=d+MatchBlocks(vod.b}\mp@subsup{b}{j+i}{},\mp@subsup{v}{p}{}.\mp@subsup{b}{i}{}
            if }\operatorname{card}(Q)=k\mathrm{ and }d+\operatorname{card}(\mp@subsup{v}{p}{})-i<worst(Q) then brea
        end for
        if }\operatorname{card}(Q)<k\mathrm{ or }d\geqworst(Q) then add (Q, \langlej,d\rangle
        if }\operatorname{card}(Q)>k\mathrm{ then delete( }Q,\operatorname{last}(Q)
    end for
    // Return blocks corresponding to queued fragments
    return {\mp@subsup{b}{i}{}\in\mp@subsup{v}{d}{}|\exists\langlej,d\rangle\inQi\in[j,j+\operatorname{card}(\mp@subsup{v}{p}{}))}
end
```

The Match () algorithm scans v_{d} while keeping track of k best pattern matches in a sorted list Q. The algorithm terminates matching process every time it determines that the similarity value d is not going to reach the threshold needed for inclusion into Q. Aside from this trivial optimization, Match() acts naively. To compute block similarity, Match() uses the following algorithm:

```
Algorithm MatchBlocks \(\left(b_{d}, b_{p}\right)\)
    \(b_{d}\) is the data block
    \(b_{p}\) is the pattern block
begin
    Over := 0
    Total \(:=0\)
    for each \(f_{p} \in b_{p}\).FS do
            Total \(:=\) Total + area \(\left(f_{p} . l o c\right)\)
            for each \(f_{d} \in b_{d} . F S\) such that \(f_{p}\).name \(=f_{d}\).name and \(f_{p}\). val \(=f_{d}\).val do
                Over \(:=\) Over \(+\operatorname{area}\left(f_{p} . l o c \cap f_{d} . l o c\right)\)
            end for
    end for
    return Over/Total
end
```

The MatchBlocks() algorithm computes the ratio of the area where b_{d} and b_{p} have same features to the total area of b_{p} features. It is assumed that features with
the same names and values do not overlap inside feature sets. As seen above, this algorithm has time complexity of $O\left(\operatorname{card}\left(b_{d} \cdot F S\right) \cdot \operatorname{card}\left(b_{p} . F S\right)\right)$. Assuming that each block contains an average of N features and the pattern is much shorter than the data, and ignoring the cost of maintaining the list Q, one can say that the total time complexity of the $\operatorname{Match}()$ algorithm is $O\left(\operatorname{card}\left(v_{d}\right) \cdot \operatorname{card}\left(v_{p}\right) \cdot N^{2}\right)$.

One way to reduce $\operatorname{Match}()$ complexity is by ordering features inside feature sets by their names and values. Then a binary search can be used in MatchBlocks() to search for b_{d} features, bringing the total time complexity to $O\left(\operatorname{card}\left(v_{d}\right) \cdot \operatorname{card}\left(v_{p}\right) \cdot\right.$ $\left.N \cdot \log _{2}(N)\right)$. Augmenting feature sets with feature name hashes can lower this figure even further.

So far, we discussed accelerating MatchBlocks() but left Match() algorithm untouched. To optimize $\operatorname{Match}()$, let us first attach two additional data fields to each block b :

- b.names is a bit mask whose bits correspond to all known feature names. For example, bit0 corresponds to feature RGB, bit 1 corresponds to feature MOTION, and so forth. In practice, the number of different features is relatively small, so it may be possible to use a single 32bit integer to hold the names field.
- b.bbox is the smallest rectangular region containing all features in b.FS. In other words, bbox is the bounding box for all block features.

Both b.names and b.bbox can be computed in time linear to the number of features in b.FS. Looking back at the Match() algorithm with respect to these new fields, one can observe the following:

1. if b_{d}.names $\cap b_{p}$.names $=\emptyset$ then $\operatorname{MatchBlocks}\left(b_{d}, b_{p}\right)=0$,
2. if $b_{d} . b b o x \cap b_{p} . b b o x=\emptyset$ then $\operatorname{MatchBlocks}\left(b_{d}, b_{p}\right)=0$,
3. MatchBlocks $\left(b_{d}, b_{p}\right) \leq \frac{\operatorname{area}\left(b_{d} . b b o x \cap b_{p} . b b o x\right)}{\sum_{f \in b_{p} . F S} \text { area }(\text { f.loc })}$.

The $\operatorname{Match}()$ algorithm can now be rewritten to use the first two of these observations and avoid calling MatchBlocks() for pairs of blocks that have non-overlapping feature sets. I will call the resulting algorithm $\mathrm{Match}^{+}()$:

```
Algorithm Match+}(\mp@subsup{v}{d}{},\mp@subsup{v}{p}{},k
    vd
    vp}\mathrm{ is the pattern video summary
    k is the number of best matches to return
begin
    // Priority queue is empty for now
    Q :=\emptyset
    // Scan vo
    for each j\in[1,\operatorname{card}(\mp@subsup{v}{d}{})-\operatorname{card}(\mp@subsup{v}{p}{})]\mathrm{ do}
        d:= 0
        for each i\in[1, card(vp)] do
            if }\mp@subsup{v}{d}{}\cdot\mp@subsup{b}{j+i}{}.bbox \cap\mp@subsup{v}{p}{}.\mp@subsup{b}{i}{}.bbox \not=\emptyset and \mp@subsup{v}{d}{}.\mp@subsup{b}{j+i}{}.\mathrm{ .names }\cap\mp@subsup{v}{p}{}.\mp@subsup{b}{i}{}.\mathrm{ .names }\not=\emptyset\mathrm{ then
                d:=d+MatchBlocks(vd}.\mp@subsup{b}{j+i}{},\mp@subsup{v}{p}{}.\mp@subsup{b}{i}{}
            end if
        end for
        if }\operatorname{card}(Q)<k\mathrm{ or }d\geq\operatorname{worst}(Q)\mathrm{ then }\operatorname{add}(Q,\langlej,d\rangle
        if }\operatorname{card}(Q)>k\mathrm{ then delete(Q,last (Q))
    end for
    // Fill the rest of the queue
    while }\operatorname{card}(Q)<k\mathrm{ and exists j [1, card(vd})]\mathrm{ such that }\langlej,-\rangle\not\inQ do add(Q,\langlej,0\rangle
    // Return blocks corresponding to queued fragments
    return {\mp@subsup{b}{i}{}\in\mp@subsup{v}{d}{}|\exists\langlej,d\rangle\inQi\in[j,j+\operatorname{card}(\mp@subsup{v}{p}{}))}
end
```


4.4.3 Indexing

Even with improvements described above, the Match() algorithm still needs to scan through the entire v_{d}. To avoid this scan, let us consider storing bbox fields of all video blocks in an R-tree index, augmenting each tree node with a block number and a names field, as follows.

Definition 4.4.1 (Augmented R-Tree Node) Given a maximal branching factor m, an augmented R-tree node is a set of m tuples

$$
\left\{\left\langle\text { names }_{1}, \text { bbox }_{1}, c_{1}\right\rangle, \ldots,\left\langle\text { names }_{m}, \text { bbox }_{m}, c_{m}\right\rangle\right\}
$$

such that for every leaf $\left\langle\right.$ names $_{i}$, bbox $\left._{i}, c_{i}\right\rangle$: (i) c_{i} is a corresponding block number, (ii) names $_{i}=b_{c_{i}}$.names, (iii) bbox $x_{i}=b_{c_{i}}$.bbox. For every non-leaf $\left\langle\right.$ names $_{i}$, bbo $\left._{i}, c_{i}\right\rangle$: (i) c_{i} points to a child node or NIL, (ii) names ${ }_{i}=\bigcup\left\{c_{i}\right.$. names $_{j} \mid 1 \leq j \leq m \wedge c_{i} . c_{j} \neq$ $N I L\}$, and (iii) bbox $x_{i}=\operatorname{bbox}\left(\left\{c_{i} . b b o x_{j} \mid j \in[1, m] \wedge c_{i} \cdot c_{j} \neq N I L\right\}\right)$.

Augmented R-tree nodes can be used to build an R-tree for a video summary v_{d} by one of traditional methods, taking names fields into account as an additional criterion when selecting insertion points for new leaves.

Additionally, every block's feature set can be broken into clusters, each occupying a distinct spot in a frame. Each such cluster can then be inserted into the tree separately, all marked with the same block number but having different names fields.

Let us now rewrite the $\operatorname{Match}^{+}()$algorithm to make use of this tree.

```
Algorithm TreeMatch(v, (v, v, ,k,T}\mp@subsup{T}{d}{}
    v _ { d } \text { is the data video summary}
    v _ { p } \text { is the pattern video summary}
    k}\mathrm{ is the number of best matches to return
    T}\mp@subsup{T}{d}{}\mathrm{ is the R-tree representing v
begin
    // Both priority queue and the set of candidates are empty
    Q:=\emptyset
    C:=\emptyset
    // Use R-tree to find candidate fragments
    for each i\in[1,\operatorname{card}(\mp@subsup{v}{p}{})] do
        TreeFind(root(T}\mp@subsup{T}{d}{}),C,\mp@subsup{v}{p}{}.\mp@subsup{b}{i}{}.bbox,\mp@subsup{v}{p}{}.\mp@subsup{b}{i}{}.\mathrm{ .names,i - 1)
    end for
    // Scan found v}\mp@subsup{v}{d}{}\mathrm{ fragments
    for each j\inC such that j\in[1,\operatorname{card}(\mp@subsup{v}{d}{})-\operatorname{card}(\mp@subsup{v}{p}{})+1] do
        d:= 0
        for each i\in[1, card(vp})] do
            if }\mp@subsup{v}{d}{}.\mp@subsup{b}{j+i-1}{}.bbox \cap\mp@subsup{v}{p}{}.\mp@subsup{b}{i}{}.bbox \not=\emptyset and \mp@subsup{v}{d}{}.\mp@subsup{b}{j+i-1}{}.\mathrm{ names }\cap\mp@subsup{v}{p}{}.\mp@subsup{b}{i}{}.\mathrm{ names }\not=\emptyset\mathrm{ then
```

```
                        d:= d+MatchBlocks (vd. . . . j+i-1},\mp@subsup{v}{p}{}.\mp@subsup{b}{i}{}
            end if
            if card(Q)=k and d + card(vp) -i< worst (Q) then break
        end for
        if }\operatorname{card}(Q)<k\mathrm{ or }d\geqworst(Q) then add(Q,\langlej,d\rangle
        if }\operatorname{card}(Q)>k\mathrm{ then delete(Q,last (Q))
    end for
    // Fill the rest of the queue
    while }\operatorname{card}(Q)<k\mathrm{ and exists }j\in[1,\operatorname{card}(\mp@subsup{v}{d}{})]\mathrm{ such that }\langlej,-\rangle\not\inQ do add(Q,\langlej,0\rangle
    // Return blocks corresponding to queued fragments
    return {\mp@subsup{b}{i}{}\in\mp@subsup{v}{d}{}|\exists\langlej,d\rangle\inQi\in[j,j+\operatorname{card}(\mp@subsup{v}{p}{}))}
end
```

Instead of scanning through the entire v_{d} summary, TreeMatch() calls the recursive TreeFind() algorithm (shown below) to find all blocks in v_{d} that have non-zero similarity to at least one block in v_{p} and restricts matching to v_{d} fragments containing these blocks. While the TreeMatch() worst-case complexity is higher than that of Match $^{+}()$because of the need to search the R-tree, the typical execution time of the TreeMatch() algorithm is dramatically better due to the greatly reduced number of fragments to match.

Algorithm TreeFind(N, C, b, l)
N is the root of the augmented R -tree
C is the set of answers
b is the pattern video block to look for
l is the offset of b inside a pattern video
begin
for each $\left\langle\right.$ names $_{i}$, bbox $\left._{i}, c_{i}\right\rangle \in N$ such that $c_{i} \neq N I L$ do
if names $_{i} \cap b$.names $\neq \emptyset$ and $b b o x_{i} \cap b . b b o x \neq \emptyset$ then
if $\left\langle\right.$ names $\left._{i}, b b o x_{i}, c_{i}\right\rangle$ is leaf then $\operatorname{add}\left(C, c_{i}-l\right)$ else $\operatorname{TreeFind}\left(c_{i}, C, b, l\right)$
end if
end for
end

4.4.4 Experimental Results

To assess how optimization and indexing affect algebraic engine performance, I have run two batches of experiments. These experiments were conducted on a 2 GHz Pen-
tium 4 computer running RedHat Linux using soccer and military aircraft videos processed with a simple feature extraction tool. The feature extraction algorithm detected and classified blobs of uniform color that were later used as features.

Figure 4.2: Optimized Select Performance.

The first experiment compared selection queries running with and without optimizations described in Section 4.4. The test program generated Select queries of the form

$$
\sigma_{i n\left(B_{1}, \operatorname{name}\left(F, n_{1}\right)\right) \wedge i n\left(B_{2}, \operatorname{name}\left(F, n_{2}\right)\right) \wedge \operatorname{before}\left(B, B_{1}, d\right) \wedge \operatorname{after}\left(B, B_{2}, d\right)}(v)
$$

where n_{1}, n_{2} were randomly chosen feature names and the distance d changed from 1 to 10 . I first executed 10 such queries with $d=5$ for input video fragments ranging from 20 to 70 blocks in size. The average execution time of these queries is shown at the left side of Figure 4.2 as a function of the input size. As seen from the graph, the execution time of the original query rises sharply as input size grows, while the optimized query takes almost negligible time in comparison. I then fixed the input size at 30 blocks and varied d from 1 to 10 . The right side of Figure 4.2 shows the result of this experiment, where the execution time of the original query does not depend on
d, while the optimized query takes slightly more time as distance constraints become more lax.

The second experiment compared matching queries running with and without optimizations, as well as using the R-tree index. The test program picked random sequences of 1 to 5 blocks from the input video, composed a random localized pattern of 1 to 5 features from each selected block, and matched the resulting mini-summary against the input video with k ranging from 1 to 5 .

Figure 4.3: Optimized MATCH Performance.

Figure 4.3 shows Match execution time as a function of the pattern length and the number of features in each pattern block (it has been found that changes in k do not affect results, as long as k is small). As seen from the figure, the optimized Match $^{+}()$taking advantage of bbox and names fields performs roughly twice better than the "naive" Match().

I then ran a greedy algorithm that broke each input video block into clusters of closely overlapping features and inserted these clusters into an augmented R-tree. The tree insertion algorithm chooses a node with the the closest fitting names field and then chooses an insertion point with the closest fitting rectangle underneath that
node. This is just one of many possible insertion heuristics though.
The result of running an Match query using the R-tree, shown in Figure 4.3, indicates that the query performance can be doubled with respect to Match $^{+}()$thus making TreeMatch() about four times faster than the original naive Match().

4.5 The Cost Model

After implementing the basic VDA operators, I came up with the cost model, shown in Table 4.1, that recursively predicts the running time of each algebraic operator $(\mathrm{C}())$, the number of blocks in its result $(\mathrm{l}())$, and the average number of featurss in each block (D()$)$.

All formulas in Table 4.1 correspond to queries with $p_{\min }=\epsilon$. The Join formulas correspond to the selective JoIn operator. The set operators used the similarity function $b_{1} \sim b_{2} \leftrightarrow b_{1} . t_{s}=b_{2} . t_{s} \wedge b_{1} . t_{e}=b_{2} . t_{e}$.

The $\operatorname{vars}(C)$ function returns the number of variables in C, while the $\operatorname{sel}(C)$ function estimates C 's selectivity, as percentage of input blocks b (features f) for which $C[B / b](C[F / f])$ evaluates to a non-zero value. The $\operatorname{cost}_{b c}(C, v)$ and $\operatorname{cost}_{f c}(C, v)$ functions estimate costs of evaluating a block or feature condition C on a video v. Finally, the value of $\operatorname{cost}(\operatorname{tr})$ reflects the cost of applying the transformation function $t r$.

The k_{*} constants in Table 4.1 correspond to execution times of various implementation parts and depend on the computer hardware and the operating system. For example, $k_{s 0}$ is the cost of copying a single feature from the input of a SELECT operator to its output, and so forth.

The n_{*} constants depend on the input data. For example, $n_{i 0}$ is the percentage of
v_{1} that is typically retained by the $v_{1} \cap \sim v_{2}$ operator.
The VDA implementation uses self-tuning to determine both k_{*} and n_{*} constants at runtime. Some typical examples of their values are given in the Table 4.2.

To verify the cost model, I have run nine different queries on a hundred of artifically generated video summaries of the same size and computed their average execution times and cost estimates. I then varied input size from 100 to 2000 blocks, each containing $10-25$ features and plotted both execution times and cost estimates, as shown in Figure 4.4.

Figure 4.4: Cost Model Verification.

Based on the cost model and equivalences shown in the previous sections of this
chapter, I have implemented a simple query optimizer that uses greedy breadth-first search to rewrite a query in the most optimal way. To test the optimizer, I have run a group of 10 queries on artifically generated video summaries varying from 100 to 2000 blocks in size, each block containing $20-50$ features and measured the total running time for the group. The results of this experiment, shown in Figure 4.5, indicate $25-30 \%$ improvement in the performance of optimized queries.

Figure 4.5: Query Optimizer Performance.

4.6 Implementation

I have implemented the VDA Reference System whose architecture is shown in Figure 4.6. The system consists of three main parts: (i) the feature extraction component processes video, segments it into blocks, and extracts some elementary features; (ii) the algebraic core uses block-feature annotations (both obtained as result of the feature extraction and made by hand) to execute queries; (iii) the end user interfaces (CLI and GUI) accept queries from users and present them with the execution results. Let us look at these components in a greater detail.

Figure 4.6: VDA Architecture.

4.6.1 Feature Extraction

The feature extraction component of the VDA system can detect two types of features: (i) areas of uniform color and (ii) motion of these areas. It will also break incoming MPEG1 video into blocks based on changes in detected feature combinations and produce a list of blocks with corresponding features. This list, augmented with human-annotated features, can later be used by the VDA algebraic core to query video.

To describe the feature extraction algorithm, I will use following notation:

- $b_{\text {next }}$ and $b_{\text {prev }}$ are single-frame blocks corresponding to the current and previous video frames.
- $b_{a c c}$ is a multi-frame block that we are currently accumulating. A new $b_{a c c}$ is started every time there is a significant change in the frame layout, signifying a scene change.
- $b_{\text {start }}$ is a single-frame block corresponding to the first frame of $b_{a c c}$.

The feature extraction proceeds frame by frame in following steps:

1. An MPEG1 frame is loaded into memory in 24 bpp format, using the popular MPEGLib decoder.
2. A 15 bpp color histogram of 32768 entries is built and the peaks in this histogram are grown by replacing all colors in their vicinity with the peak colors.
3. The algorithm starts searching the frame for a blob of color $c_{\max }$ corresponding to the highest peak in the histogram. When such a blob is found, the algorithm creates an RGB feature corresponding to this blob and removes all $c_{\max }$-colored pixels within the blob. If the algorithm fails to find a blob of color $c_{\max }$, it removes all $c_{\text {max }}$-colored pixels from the frame. The algorithm then updates the histogram to reflect removed pixels count and proceeds looking for a color corresponding to the next highest peak in the histogram.
4. The search process terminates when most or all pixels have been classified into features and removed from the frame. The result is a frame-long block $b_{\text {next }}$ containing a collection of RGB features.
5. The algorithm compares $b_{\text {next }}$ to a block $b_{\text {start }}$ corresponding to the starting frame of $b_{a c c}$.
6. If $b_{\text {next }}$ is sufficiently similar to $b_{\text {start }}$ in terms of features, it is merged into $b_{a c c}$. During this process, some features in $b_{a c c}$ may grow in area, while their coverages decrease.
7. If $b_{\text {next }}$ strongly differs from $b_{\text {start }}$, the algorithm decides that it is time to begin accumulating a new block. But first, the $b_{\text {acc }}$ contents have to be post-processed and output as result. This is done by converting all RGB features in $b_{\text {acc }}$ to corresponding color features (such as RED, WHITE, or BROWN) and using the
differences between $b_{\text {start }}$ and $b_{\text {prev }}$ blocks to detect and add MOTION features. The algorithm then prints the contents of $b_{a c c}$ to the standard output and resets both $b_{a c c}$ and $b_{s t a r t}$ to $b_{\text {next }}$.
8. $b_{\text {next }}$ is assigned to $b_{\text {prev }}$ and the process is repeated until the algorithm runs out of frames.

Figure 4.7: Feature Extraction Example.

While the feature extraction algorithm used in the reference VDA implementation is far from perfect, it works quite well for videos that have relatively simple composition (such as cartoons, sports events, or military surveillance), as shown in Figure 4.7. The VDA algebra with also work with any feature extraction system, be it a complicated image segmentation algorithm or a group of humans annotating videos by hand, as long as it produces feature descriptions in the correct format.

4.6.2 Algebraic Core

The VDA algebraic core is implemented as a library of $\mathrm{C}++$ classes representing features, blocks, video summaries, selection conditions, and queries.

Summaries are represented with objects of class Video that may contain one or more Block objects, ordered by their starting and ending timestamps. Blocks
inside a Video object do not have to be contigious, but they cannot overlap thus satisfying the requirement of a video summary definition. Video member functions allow programmer to add blocks to a summary, enumerate blocks, and query summary length and block count.

Each Block object may contain one or more Feature objects, characterized by names, values, coverages, and spatial locations within a frame. Block member functions allow programmer to add features to a block, enumerate features, and query block's starting and ending timestamps, length, and feature count.

The two kinds of VDA selection conditions, feature and block conditions, are represented with FWFF and BWFF classes accordingly. Each class allows to create condition nodes of all possible types and combine these nodes into trees with logical junctions. Given a set of feature or block variable assignments V, a condition can be evaluated with the $\operatorname{Eval}(V)$ method. As many algebraic operators require evaluating conditions over multiple variable assignments, there are also methods $F W F F:: E v a l(F e a t u r e, B l o c k)$ and $B W F F::$ Eval(Block,Video) that assign the their first argument to the first variable and go over all possible assignments based on the second argument. Both functions return the maximal $\operatorname{Eval}(V)$ value found for all possible assignment sets V.

The virtual class Query serves as a base for all classes representing atomic queries. Among other things, the Query class defines the method Create() for the query execution, returning a Video object with the query result. It is important to note that the Query class is derived from Video. When addressed as a Video, a Query object gives access to its last execution result.

A family of classes derived from Query, such as QSelect, QProject, QJoin, and so forth, represents atomic queries and allows programmer to build query trees.

The leaves of such a tree are always objects of class QData that supply input data from disk, network, or other software, such as image recognition and object tracking systems.

4.6.3 User Interfaces

The VDA system currently has two kinds of user interfaces: the command line interface (CLI) and the graphical user interface (GUI).

The CLI has been mainly implemented to experiment with the VDA algebraic core and assert its performance, It is a simple tool that uses command line to accept a query, parses and executes this query. Both the query result (a list of blocks) and the execution time are then shown to the user.

Figure 4.8: Query Composition GUI.

The GUI, shown in Figures 4.8 and 4.9, is a more sophisticated query tool. It
allows users to design their queries graphically and save these queries for later use, as shown in Figure 4.8.

Figure 4.9: Pattern Matching GUI.

In addition, the GUI specifically addresses pattern matching tasks by allowing users to sketch feature patterns they are looking for and find them in the input data, as shown in Figure 4.9. Query results are shown to users with a set of DVD-like controls allowing users to play resulting summaries, rewind and fast-forward through blocks, or jump to an arbitrary block.

4.7 Related Work

There exist relatively few works in video algebras. The most prominent ones are [17, 19, 20, 59, 64].

In the OVID project [59], E. Oomoto and K. Tanaka came up with the concept of
a video object as a set of attributes defined for an interval of frames. They also introduced an is-a relation over attributes to maintain a semantic hierarchy of attributes. To query videos, the authors proposed a language called VideoSQL. Unfortunately, the proposed algebraic operators, such as interval projection, interval merge, interval overlap, and object overlap cannot be easily equated to the traditional relational operators.

The video database algebra by A. Picariello, M.L. Sapino, and V.S. Subrahmanian [64] builds upon the basic notions described in [59] to propose a formal relational-like video algebra. Similarly to OVID, this algebra operates on objects characterized by attributes. The attributes may (but do not have to) include the spatial location of the object and the time interval during which the object appears in a video.

While not directly dealing with the videos, an interval-based model for the temporally organized data has been proposed by T.D.C. Little and A. Ghafoor [52]. Later, Y.F. Day, A. Ghafoor et. al. propose an object-based model for video [17] and develop an algebra specifically dealing with videos [19]. This later algebra describes videos in terms of spatial and temporal events occurring among objects and provides primitives that specify relations between events.

The Algebraic Video by A. Duda, R. Weiss, and D.K. Gifford [20] is based upon annotated video segments as opposed to objects in [59, 64, 17] or events in [19]. The hierarchical model of a video allows segments to overlap in time as long as they belong to different hierarchical branches. Each branch corresponds to a different semantic interpretation of the video with parent nodes corresponding to more abstract interpretations. The proposed algebra provides a rich set of operations to create, annotate, combine, query, and display video segments. Unfortunately, the very richness of the algebraic operators in this algebra makes it difficult to reason about them thus
limiting algebra's theoretical importance.
All video algebras described above either operate on objects occuring in frames as opposed to actual frames or segments of a video $[59,64,17,19]$ or use a hierarchical segment structure that complicates reasoning about algebraic operators [20]. The VDA algebra allows queries based on both segments and objects occurring in these segments, yet it is sufficiently simple to preason about, as has been shown in this chapter.

4.8 Conclusions

In this chapter, I have presented an algebra that operates on both video summaries and complete videos. I have formally defined video summaries and basic algebraic operators, shown some useful algebraic equivalences, and discussed indices and algorithms that facilitate selection, join, and pattern matching operators. Furthermore, I have developed and described in this chapter a reference implementation for the VDA algebra, complete with the feature extraction tool, the cost model, the query optimizer, and both command line and graphical user interfaces.

$$
\begin{aligned}
& \operatorname{cost}_{f c}(C, v)=k_{f c} \cdot \mathrm{l}(v) \cdot \frac{\mathrm{D}(v)!}{(\mathrm{D}(v)-\operatorname{vars}(C))!} \\
& \operatorname{cost}_{b c}(C, v)=k_{b c} \cdot \frac{\mathrm{I}(v)!}{(\mathrm{I}(v)-\operatorname{vars}(C))!} \\
& \mathbf{I}(v)=\operatorname{card}(v) \\
& \mathrm{D}(v)=\frac{\sum_{b \in v} \operatorname{card}(b . F S)}{\operatorname{card}(v)} \\
& C(v)=k_{v 0} \cdot \sum_{b \in v} \operatorname{card}(b . F S) \\
& \mathbf{I}\left(\sigma_{C}(v)\right)=\operatorname{sel}(C) \cdot \mathbf{I}(v) \\
& \mathrm{D}\left(\sigma_{C}(v)\right)=\mathrm{D}(v) \\
& \mathrm{C}\left(\sigma_{C}(v)\right)=\mathrm{C}(v)+\operatorname{cost}_{b c}(C, v)+k_{s 0} \cdot \operatorname{sel}(C) \cdot \mathrm{I}(v) \cdot \mathrm{D}(v) \\
& \mathbf{I}\left(\pi_{C}(v)\right)=\mathbf{I}(v) \\
& \mathrm{D}\left(\pi_{C}(v)\right)=\operatorname{sel}(C) \cdot \mathrm{D}(v) \\
& \mathrm{C}\left(\pi_{C}(v)\right)=\mathrm{C}(v)+\operatorname{cost}_{f c}(C, v)+k_{p 0} \cdot \operatorname{sel}(C) \cdot \mathrm{I}(v) \cdot \mathrm{D}(v) \\
& \mathbf{I}\left(\beta_{C}^{t r}(v)\right)=\mathbf{I}(v) \\
& \mathrm{D}\left(\beta_{C}^{\text {tr }}(v)\right)=\mathrm{D}(v) \\
& \mathrm{C}\left(\beta_{C}^{\operatorname{tr}}(v)\right)=\mathrm{C}(v)+\operatorname{cost}_{b c}(C, v)+k_{a 0} \cdot \mathrm{I}(v) \cdot \mathrm{D}(v)+\operatorname{sel}(C) \cdot \operatorname{cost}(\operatorname{tr}) \cdot \mathrm{I}(v) \\
& \mathrm{I}\left(\alpha_{C}^{t r}(v)\right)=\mathrm{I}(v) \\
& \mathrm{D}\left(\alpha_{C}^{t r}(v)\right)=\mathrm{D}(v) \\
& \mathrm{C}\left(\alpha_{C}^{t r}(v)\right)=\mathrm{C}(v)+\operatorname{cost}_{f c}(C, v)+k_{a 0} \cdot \mathrm{I}(v) \cdot \mathrm{D}(v)+\operatorname{sel}(C) \cdot \operatorname{cost}(t r) \cdot \mathrm{I}(v) \cdot \mathrm{D}(v) \\
& \mathbf{I}\left(\mu_{k}\left(v_{1}, v_{2}\right)\right)=k \cdot \mathbf{I}\left(v_{2}\right) \\
& \mathrm{D}\left(\mu_{k}\left(v_{1}, v_{2}\right)\right)=\mathrm{D}\left(v_{1}\right) \\
& \mathrm{C}\left(\mu_{k}\left(v_{1}, v_{2}\right)\right)=\mathrm{C}\left(v_{1}\right)+\mathrm{C}\left(v_{2}\right)+k_{m 0} \cdot \mathbf{I}\left(v_{2}\right) \cdot \mathrm{D}\left(v_{1}\right) \cdot \mathrm{D}\left(v_{2}\right) \cdot \max \left(0, \mathrm{I}\left(v_{1}\right)-\mathbf{I}\left(v_{2}\right)\right) \\
& +\quad k_{m 1} \cdot \mathrm{D}\left(v_{1}\right) \cdot \min \left(\mathrm{I}\left(v_{1}\right), k \cdot \mathrm{I}\left(v_{2}\right)\right) \\
& \mathbf{I}\left(v_{1} \bowtie_{C} v_{2}\right)=\operatorname{sel}(C) \cdot \mathbf{I}\left(v_{1}\right) \\
& \mathrm{D}\left(v_{1} \bowtie_{C} v_{2}\right)=\mathrm{D}\left(v_{1}\right) \\
& \mathrm{C}\left(v_{1} \bowtie_{C} v_{2}\right)=\mathrm{C}\left(v_{1}\right)+\mathrm{C}\left(v_{2}\right)+k_{b c} \cdot n_{j 0} \cdot \mathbf{I}\left(v_{1}\right) \cdot \mathbf{I}\left(v_{2}\right)+k_{j 0} \cdot \operatorname{sel}(C) \cdot \mathbf{I}\left(v_{1}\right) \cdot \mathrm{D}\left(v_{1}\right) \\
& \mathbf{I}\left(v_{1} \cap \sim v_{2}\right)=n_{i 0} \cdot \mathbf{I}\left(v_{1}\right) \\
& \mathrm{D}\left(v_{1} \cap \sim v_{2}\right)=\mathrm{D}\left(v_{1}\right) \\
& \mathrm{C}\left(v_{1} \cap \sim v_{2}\right)=\mathrm{C}\left(v_{1}\right)+\mathrm{C}\left(v_{2}\right)+k_{i 0} \cdot n_{i 0} \cdot \mathrm{I}\left(v_{1}\right) \cdot \mathrm{D}\left(v_{1}\right) \\
& \mathbf{I}\left(v_{1} \backslash \sim v_{2}\right)=n_{d 0} \cdot \mathbf{I}\left(v_{1}\right) \\
& 183 \\
& \mathrm{D}\left(v_{1} \backslash \sim v_{2}\right)=\mathrm{D}\left(v_{1}\right) \\
& \mathrm{C}\left(v_{1} \backslash \sim v_{2}\right)=\mathrm{C}\left(v_{1}\right)+\mathrm{C}\left(v_{2}\right)+k_{d 0} \cdot n_{d 0} \cdot \mathrm{I}\left(v_{1}\right) \cdot \mathrm{D}\left(v_{1}\right)
\end{aligned}
$$

$k_{v 0}=0.000049$	$k_{s 0}=0.000379$	$k_{p 0}=0.0687801$	$k_{m 0}=0.000011$
$k_{m 1}=8.57 e-09$	$k_{j 0}=0.000782$	$k_{i 0}=0.0000067$	$k_{d 0}=0.000302$
$k_{u 0}=0.000337$	$k_{c 0}=0.000343$	$k_{r 0}=0.0004899$	$k_{a 0}=0.000574$
$k_{r 0}=0.000439$	$k_{c 0}=0.000357$	$k_{m 0}=0.0000178$	$k_{s 0}=0.0045847$
$n_{i 0}=0.028451$	$n_{d 0}=0.971549$	$n_{u 0}=0.459769$	

Table 4.2: VDA Cost Model Constants.

Chapter 5

Summarizing Video

5.1 Introduction

When querying a video, or a database of videos, it seems natural that the user would like to receive results of his query as one or more short clips, or summaries, containing only the information requested in the query. For example, a TV sports commentator reporting on a soccer game may wish to see all the goals in that game. A student studying from home would ask for the part of a lecture video where the professor is talking about a certain topic or assigning homework. A security guard checking on security videos would request all the parts where movement occured in a doorway. In all these cases, users would receive a new video, much shorter than the original one, that is limited to the requested information. In some cases, users may have more complicated requirements for video summaries. For example, the sports commentator may not want to see goal replays but would like to see what preceded each goal. The security guard might need to omit parts of the tape where he himself is on camera.

The work presented in this chapter [4,24] is based on the continuity-priorityrepetition (CPR) model that rates video summaries, with respect to three characteris-
tics as follows:

1. Continuity: A summary with a lot of "jumps" between shots is unlikely to be attractive to users. Thus, it must be as continuous as possible.
2. Priority: For each given application, certain objects or events shown in the video may be more important than others. For example, when summarizing soccer videos, a goal is more important than a midfield pass. A summary composition must favor high priority features, as defined by the application.
3. Repetition: Even though a feature may have high priority, it may be undesirable to repeat it over and over again, while ignoring other features. Thus, a summary has to be non-repetitive.

These three considerations form the core basis for the proposed summarization framework.

The CPR model [24] consists of two key components: (i) use of rules to specify which features in a video are of interest (i.e. have high priority) for inclusion in a summary and (ii) an objective function that balances the relative importance of the content with its continuity and repetition. Once the rules and the objective function are articulated, any suite of video processing algorithms can be used for feature extraction.

This chapter starts by introducing concepts of features, frames, blocks, videos, and summaries, and proceeds to formulate a way to specify, with a set of rules, the desired summary content. To evaluate summary worth, we define the CPR-based evaluation function and show several ways in which its components can be computed. Based on this evaluation function, the problem of creating "optimal" summaries is introduced.

Next, I go over algorithms to create optimal summaries proposed by the group of A. Picariello at the University of Naples and then introduce my own approach, known as the Summary Extension Algorithm (SEA). I present a variety of increasingly complex versions of the SEA algorithm, designed to improve its performance. The last algorithm presented in this chapter is the Priority Curve Algorithm (PCA). This algorithm uses implicit assumptions about CPR criteria instead of relying on the evaluation function.

Following discussion of the algorithms, I present experimental results obtained at the University of Naples. About 200 students there have tested our algorithms on 50 soccer videos with the goal of determining which algorithm produced the best subjective summary quality. It has been concluded that the PCA algorithm produces the best summaries in the shortest time, followed by the SEA algorithm.

The chapter concludes with the discussion of prior works in the video summarization field and the differences between these works and our work.

5.2 Formal Model of Video Summarization

A video v is a sequence of frames. In many cases, one may want to coalesce groups of contiguous frames into blocks and then create summaries based on blocks rather than frames. The advantage of this approach is that the number of blocks in a video is much smaller than the number of frames. Independently of which approach is used, the framework described below applies both to frames and blocks. For the sake of generality, I will proceed using blocks, while pointing out the difference between two approaches wherever it exists.

Each frame or block can be characterized by a variety of properties, such as move-
ment in a certain part of the frame, a certain colors, or the presence of certain objects, events, or actions. Let us call such properties features and define the above concepts formally:

Definition 5.2.1 (Block) A video block is a structure $b=\left\langle t_{s}, t_{e}, F\right\rangle$ where $b . t_{s}$ is the starting frame number, b. $t_{e}>b . t_{s}$ is the ending frame number, and b.F is a set of features occuring in b.

The length of a block length $(b)=b . t_{e}-b . t_{s}$.

Definition 5.2.2 (Video) A video is a finite set of blocks $v=\left\{b_{1}, \ldots, b_{n}\right\}$ such that $\forall 1 \leq i<n: b_{i+1} \cdot t_{s}=b_{i} \cdot t_{e}$.

Given the above definition of a video, we can define a total ordering on blocks in a video as $\forall 1 \leq i, j \leq n: b_{i} \leq b_{j} \leftrightarrow b_{i} \cdot t_{e} \leq b_{j} \cdot t_{s}$. The length of a video length $(v)=b_{n} \cdot t_{e}-b_{1} \cdot t_{s}$, while the number of blocks in a video is simply $\operatorname{card}(v)$. When all blocks have a uniform length, length (v) becomes proportional to $\operatorname{card}(v)$ and thus they can be easily interchanged. Same happens when frames are used instead of blocks, as we can treat them as blocks of uniform length 1 .

Let us now define a video summary as a subset of a video:

Definition 5.2.3 (Summary) A summary of a video v is a set of blocks $s=\left\{b_{1}, \ldots, b_{n}\right\}$ such that $s \subseteq v$ and $\forall 1 \leq i<n: b_{i+1} . t_{s} \geq b_{i} . t_{e}$.

Given above definitions of videos and summaries, one can easily show that any video is also a summary of itself and that the total ordering defined for blocks in videos also applies to blocks in summaries. The length of a summary length $(s)=$ $\sum_{b_{i} \in s}$ length $\left(b_{i}\right)$.

5.3 Video Summaries

For the user working with the video, a typical task would be to create a video summary whose blocks contain certain features. For example, the policeman processing an ATM security video may want to see blocks that contain more than two people at the same time. The sports commentator may create a summary of a soccer match that shows all the goals in this match, and so forth.

Below, I will try to come up with the framework allowing to query videos, rate query results, and create an optimal summary by user's request. The rest of this chapter assumes that there is some video v that we want to summarize and all the video blocks are coming from this video. Let us further assume that all video is stored in a video database supporting following access methods:

- findblocks (v, f) : Given a video v and a feature f, this function returns the set of all blocks in v that contain f.
- findfeatures (v, b) : Given a video v and a block $b \in v$, this function returns the set of all features in b.

Most existing video databases, such as AVIS[2] and OVID[59], can support such functions. Note that all the above functions return sets as output.

Let us start on the summary content specification language by defining blockcoverage pairs.

Definition 5.3.1 (Block Coverage Pair) Let b be a video block and $p \in[0,1]$ be a real value. Then $\langle b, p\rangle$ is a block-coverage pair or BCP .

I will also call p the coverage. As shown later, the coverage represents how well b satisfies conditions imposed on it. A summary can be represented by a set of blockcoverage pairs. I will use the upper case S for this representation of a summary, as
opposed to the lower case s for a set of blocks. A union of two BCP sets is somewhat different from the canonical set union.

Definition 5.3.2 (BCP Set Union) Given two sets of block-coverage pairs V_{1}, V_{2}, the BCP set union

$$
V_{1} \cup V_{2}=\left\{\langle b, p\rangle \left\lvert\, p= \begin{cases}p_{1} & \text { if }\left\langle b, p_{1}\right\rangle \in V_{1} \wedge \nexists\left\langle b, p_{2}\right\rangle \in V_{2} \\ p_{2} & \text { if } \left.\left\langle b, p_{2}\right\rangle \in V_{2} \wedge \nexists\left\langle b, p_{1}\right\rangle \in V_{1}\right\} . \\ \max \left(p_{1}, p_{2}\right) & \text { if }\left\langle b, p_{1}\right\rangle \in V_{1} \wedge\left\langle b, p_{2}\right\rangle \in V_{2}\end{cases}\right.\right.
$$

For further definitions, let us assume the existance of a set V_{b}, of all variables ranging over BCP pairs and a set V_{f} of all variables ranging over features. Members of V_{b} are known as block variables while members of V_{f} are known as feature variables. Let us now define the video calls and the atoms.

Definition 5.3.3 (Video Call) Suppose vc is a video database API function, and t_{1}, \ldots, t_{n} are either arguments to vc (of the right type) or variables ranging over the values of the appropriate type. Then $v c\left(t_{1}, \ldots, t_{n}\right)$ is called a video call.

Definition 5.3.4 (Atoms) 1. Given a block constant or variable X, insum (X) is a membership atom.
2. Given a video call vc $\left(t_{1}, \ldots, t_{n}\right)$ and a constant or a variable X of the same type as members of vc's output set, $X \in v c\left(t_{1}, \ldots, t_{n}\right)$ is a feature atom.
3. Given two block constants or variables X, Y and an integer value $n \in[0,+\infty)$, near (X, Y, n), before (X, Y, n), and $\operatorname{after}(X, Y, n)$ are sequence atoms.

Intuitively, membership atoms are used to require the presence of certain blocks in a summary, or bind a variable to summary blocks. For instance, insum (X) binds
variable X to all blocks in a summary. Feature atoms are used to require the presence of a certain feature in a block, or to bind a variable to features in a block. For example, $X \in$ findblocks(v, "Human") binds X to any block that contains humans. Similarly, "Red" \in findfeatures (v, Y) requires red color to be present in a block Y. Sequence atoms are used to ensure continuity by requiring that some blocks occur near each other and in a certain order. Intuitively, a block X satisfies before (X, Y, d) iff X ends in the the interval of frames starting at $Y . t_{s}-d$ and ending at $Y . t_{s}$. after (X, Y, d) is equivalent to $\operatorname{before}(Y, X, d)$ and near (X, Y, d) is equivalent to $\operatorname{after}(X, Y, d) \vee$ before (X, Y, d).

Definition 5.3.5 (Variable Assignment Set) If X is a block variable and $\langle b, p\rangle$ is a BCP then $X /\langle b, p\rangle$ is an assignment. The assignment set θ is a set of assignments such that

$$
\forall X /\langle b, p\rangle \in \theta: \forall Y /\left\langle b^{\prime}, p^{\prime}\right\rangle \in \theta: X=Y \rightarrow b=b^{\prime} \wedge p=p^{\prime}
$$

Given an atom a and an assignment set θ, I will use $a \theta$ to express the substitution of variables in a by their values in θ.

Definition 5.3.6 (Interpretation) Given a set D of all possible block-coverage pairs, a summary $S \subset D$, a feature f, a variable assignment set $\theta=\{X / x, Y / y\}$, and an atom $a \in\{\operatorname{insum}(X), X \in \operatorname{findblocks}(v, f), f \in \operatorname{findfeatures}(v, X), \operatorname{after}(X, Y, n)$, before (X, Y, n), near $(X, Y, n)\}$, let us define the real-valued function $\lambda(a \theta, S) \rightarrow$ $[0,1]$ such that

$$
\begin{aligned}
\lambda(\operatorname{insum}(x), S) & = \begin{cases}x . p & \text { if } \exists\langle b, p\rangle \in S: x . b=b \wedge x . p=p \\
0 & \text { otherwise }\end{cases} \\
\lambda(x \in \text { findblocks }(v, f)) & = \begin{cases}x . p & \text { if } x . b \in \text { findblocks }(v, f) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\lambda(f \in \text { findfeatures }(v, x)) & = \begin{cases}x \cdot p & \text { if } f \in \text { findfeatures }(v, x . b) \\
0 & \text { otherwise }\end{cases} \\
\lambda(\operatorname{after}(x, y, n), S) & =\min (x \cdot p, y \cdot p) \cdot \begin{cases}\frac{n-x . b . t_{s}+y . b . t_{e}}{n} & \text { if x.b.t } t_{s}-y . b . t_{e} \in[0, n] \\
0 & \text { otherwise }\end{cases} \\
\lambda(\operatorname{before}(x, y, n), S) & =\lambda(\operatorname{after}(y, x, n), S) \\
\lambda(\text { near }(x, y, n), S) & =\max (\lambda(\operatorname{before}(x, y, n), S), \lambda(\operatorname{after}(x, y, n), S))
\end{aligned}
$$

It is also possible to make API functions themselves return coverages and use them to interpret feature atoms. To simplify things though, I will assume that API functions return sets of plain blocks or features.

Example 5.3.1 (Feature Atom Interpetation) Consider block $b=\left\langle 4,5,\left\{f_{1}, f_{2}, f_{3}\right\}\right\rangle$. $\lambda\left(f_{1} \in\right.$ findfeatures $\left.(v,\langle b, 0.5\rangle)\right)$ evaluates to 0.5 , as b contains f_{1}. On the other hand, if we replace f_{1} with some feature $f_{4} \notin b$.F then $\lambda\left(f_{4} \in\right.$ findfeatures $(v,\langle b, 0.5\rangle, S)$ evaluates to 0 . Notice that the S argument is not used to evaluate feature atoms.

Figure 5.1: Sequence Atom Interpretation.

Example 5.3.2 (Sequence Atom Interpretation) Consider blocks $b_{1}=\left\langle 4,5, F_{1}\right\rangle$, $b_{2}=\left\langle 7,9, F_{2}\right\rangle$, and $b_{3}=\left\langle 10,13, F_{3}\right\rangle$. Let's evaluate some sequence atoms on these blocks:

$$
\lambda\left(\text { before }\left(\left\langle b_{1}, 1\right\rangle,\left\langle b_{2}, 1\right\rangle, 10\right), S\right)=1 \cdot 1 \cdot(10-7+5) / 10=0.8
$$

$$
\begin{aligned}
\lambda\left(\text { before }\left(\left\langle b_{1}, 1\right\rangle,\left\langle b_{3}, 1\right\rangle, 10\right), S\right) & =1 \cdot 1 \cdot(10-10+5) / 10=0.5 \\
\lambda\left(\operatorname{after}\left(\left\langle b_{1}, 1\right\rangle,\left\langle b_{2}, 1\right\rangle, 10\right), S\right) & =0 \text { as } b_{1} \cdot t_{s}-b_{2} \cdot t_{e}=4-9=-5<0 \\
\lambda\left(\operatorname{after}\left(\left\langle b_{2}, 1\right\rangle,\left\langle b_{3}, 1\right\rangle, 10\right), S\right) & =0 \text { as } b_{2} \cdot t_{s}-b_{3} \cdot t_{e}=7-13=-6<0
\end{aligned}
$$

Notice that the S argument is not used to evaluate sequence atoms. By looking at the first two evaluations (also shown at the Figure 5.1) one can see that the value of p decreases as the distance between blocks grows, until p becomes 0 for distances $\geq n$. The last two evaluations show that the order of blocks is also important.

We can now define rules and rule sets:

Definition 5.3.7 (Rule) A block selection rule r is an expression of this form:

$$
\underbrace{[w]}_{\text {weight }(r)} \underbrace{\operatorname{insum}(X)}_{\text {head }(r)} \leftarrow \underbrace{a_{1} \wedge \ldots \wedge a_{n}}_{\text {body }(r)}
$$

where $w \in[0,1]$ is a real value, X is a block variable, and a_{1}, \ldots, a_{n} are atoms such that for each block variable $Y \in r$ there is a membership atom insum $(Y) \in r$.

Example 5.3.3 (Rule) The following is an example of a rule:
$[0.9] \operatorname{insum}(Y) \leftarrow X \in \operatorname{findblocks}(v$, "Red" $) \wedge Y \in \operatorname{findblocks}(v$, "Human" $) \wedge \operatorname{near}(X, Y, 10) \wedge$ insum (X).
This is not a rule as it misses the insum (Z) atom in the body:
$[1]$ insum $(X) \leftarrow " G r e e n " \in$ findfeatures $(v, X) \wedge " H u m a n " \in \operatorname{findfeatures~}(v, Z) \wedge \operatorname{after}(Z, X, 15)$.

Definition 5.3.8 (Rule Satisfaction) Suppose r is a rule, S is a summary, X is a block variable occuring in head (r), b is a video block, and θ is a variable assignment set. Let us define a real-valued function $\lambda(r, b, S) \rightarrow[0,1]$ such that

$$
\lambda(r, b, S)=\text { weight }(r) \cdot \max \left\{\min \left\{\lambda\left(a_{i} \theta, S\right) \mid a_{i} \in \text { body }(r)\right\} \mid \theta \text { is a variable assignment }\right\}
$$

The block-coverage pair $\langle b, \lambda(r, b, S)\rangle$ is said to satisfy r w.r.t. S iff $\lambda(r, b, S)>0$.

Intuitively, the satisfaction of a rule by $\langle b, \lambda(r, b, S)\rangle$ means that b can be included into the summary $S . \lambda(r, b, S)$ measures how desirable b is w.r.t. to the rule and the other blocks in the summary. weight (r) measures the importance of the rule relative to other rules.

Definition 5.3.9 (Rule Set) A rule set is a set of block selection rules.

Definition 5.3.10 (Rule Set Satisfaction) Suppose R is a rule set, b is a video block, and S is a summary. Let us define a real-valued function $\lambda(R, b, S) \rightarrow[0,1]$ such that

$$
\lambda(R, b, S)=\max _{r \in R} \lambda(r, b, S) .
$$

The block-coverage pair $\langle b, \lambda(R, b, S)\rangle$ is said to satisfy R w.r.t. S iff $\lambda(R, b, S)>0$.

Intuitively, any block that satisfies the rule set with respect to some other blocks in the summary can be considered for inclusion into the summary. Hence is the definition of a satisfactory summary:

Definition 5.3.11 (Satisfactory Summary) Given a rule set R, a summary S is called a satisfactory w.r.t. R iff

$$
\forall\langle b, p\rangle \in S:\langle b, p\rangle \text { satisfies } R \text { w.r.t. } S
$$

One can also say that the satisfactory summary is a set of all blocks occuring in S.

Notice that the satisfactory summary definition does not specify what the summary length should be. In fact, the whole video may well be a satisfactory summary of itself. Let us now put restrictions on the summary length:

Definition 5.3.12 (k-Summary and l-Summary) Given an integer value $k \in[0,+\infty$), a summary S is called a k-summary iff $\operatorname{card}(S) \leq k$. Given a real value $l \in[0,+\infty)$, a summary S is called an l-summary iff length $(S) \leq l$.

Notice that when using frames or uniform-length blocks to represent a video, l summary and k-summary effectively become the same thing. This work focuses on computing k-summaries. It is clear that the above definition allows for multiple satisfactory k-summaries. Some of them may be better than others with respect to user's needs. Let us then define the optimal k-summary:

Definition 5.3.13 (Optimal k-Summary) Given a set of all satisfactory k-summaries \mathcal{S} and a function eval : $\mathcal{S} \rightarrow[0,+\infty)$, the optimal k-summary is a satisfactory k summary $S \in \mathcal{S}$ such that $\forall S^{\prime} \in \mathcal{S}: \operatorname{eval}\left(S^{\prime}\right) \leq \operatorname{eval}(S)$.

5.4 Summary Evaluation Function

According to the CPR model, the summary evaluation function eval() used to rate summary quality has to take into account continuity $(\operatorname{con}())$, priority $(\operatorname{pri}())$, and repetition $(r e p())$ of its input. Hence is the following formula:

$$
\operatorname{eval}(S)=w_{c} \cdot \operatorname{con}(S)+w_{p} \cdot \operatorname{pri}(S)+w_{r} \cdot(1-\operatorname{rep}(S))
$$

It is assumed that the values of individual components are normalized to the $[0,1]$ range and w_{c}, w_{p}, w_{r} are weights set according to user's preferences.

The most important consideration when computing a summary is how appropriate the summary content is to the user. Given that the p value inside each block-coverage pair expresses block relevance, it is quite easy to come up with a function that measures summary's total relevance, as shown in the following example.

Example 5.4.1 (Rule-Based Priority) This function measures the priority of a summary S based on coverage values of its individual blocks:

$$
\operatorname{pri}(S)=\frac{\sum_{\langle b, p\rangle \in S} p}{\operatorname{card}(S)} .
$$

Of course, there are other ways to compute priority, such as a simple assignment of priorities to all blocks in a video:

Example 5.4.2 (Singular Tabular Priority) In this method, we have a table with the schema (Block, Priority). An example of such a table may contain tuples $\left\langle b_{1}, 5\right\rangle$, $\left\langle b_{2}, 3\right\rangle$, and $\left\langle b_{3}, 4\right\rangle$. Given a block b, the priority pri (b) of the block is obtained by consulting the table. For a summary S, we may define

$$
\operatorname{pri}(S)=\sum_{\langle b, p\rangle \in S} \operatorname{pri}(b) .
$$

Thus, for instance, $\operatorname{pri}\left(\left\{\left\langle b_{1}, p_{1}\right\rangle,\left\langle b_{2}, p_{2}\right\rangle\right\}\right)=5+3=8$.

One can also assign priorities to the groups of blocks, as follows:

Example 5.4.3 (Aggregated Tabular Priority) In this method, we have a table with the schema (BlockSet, Priority). The first column of this table now contains a set of blocks. An example of such a table may contain tuples $\left\langle\left\{b_{1}, b_{2}\right\}, 5\right\rangle,\left\langle\left\{b_{1}\right\}, 3\right\rangle$, and $\left\langle\left\{b_{2}, b_{3}\right\}, 7\right\rangle$. Given such a table and a summary S, many different priority functions may be defined, such as the subset average or the maximal subset average, for example. The subset average function finds all tuples in the table whose BlockSet field is a subset of S and returns the average of the priority fields of such tuples. For example, with respect to the above table, if $B=\left\{b_{1}, b_{2}, b_{4}\right\}$, this function would return 4 (average of 5 and 3). The maximal subset average finds all tuples t in the table whose BlockSet field is a maximal subset of S (i.e. there is no other tuple t^{\prime} with t. BlockSet $\subset t^{\prime}$. BlockSet such that t^{\prime}. BlockSet $\left.\subseteq S\right)$ and takes the average priorities of such tuples. In the above example, if $S=\left\{\left\langle b_{1}, p_{1}\right\rangle,\left\langle b_{2}, p_{2}\right\rangle,\left\langle b_{3}, p_{3}\right\rangle\right\}$, then this priority function would return 6 (average of 5 and 7). Note that the second tuple would not be maximal and hence its associated priority would not be involved in the average computation.

Computing other two measures is somewhat more difficult as continuity and repetition can be interpreted differently by different people. For example, one may think of continuity in terms of the uniform distance between consequent blocks.

Example 5.4.4 (Uniform Block Distance Continuity) This measure uses the standard deviation of the block distance to express continuity:

$$
\begin{aligned}
d_{\text {avg }} & =\frac{\sum_{\left\langle b_{i}, p_{i}\right\rangle,\left\langle b_{i+1}, p_{i+1}\right\rangle \in S}\left(b_{i+1} \cdot t_{s}-b_{i} \cdot t_{e}\right)}{\operatorname{card}(S)-1}, \\
\operatorname{con}(S) & =1-\frac{\sum_{\left\langle b_{i}, p_{i}\right\rangle,\left\langle b_{i+1}, p_{i+1}\right\rangle \in S}\left(b_{i+1} \cdot t_{s}-b_{i} \cdot t_{e}-d_{\text {avg }}\right)^{2}}{d_{\text {avg }}^{2}(\operatorname{card}(S)-1)} .
\end{aligned}
$$

Another way to think about continuity may involve the uniformity of selected block lengths.

Example 5.4.5 (Uniform Block Length Continuity) This measure uses the standard deviation of the block length to express continuity:

$$
\begin{aligned}
l_{\text {avg }} & =\frac{\sum_{\left\langle b_{i}, p_{i}\right\rangle \in S}\left(b_{i} \cdot t_{e}-b_{i} \cdot t_{s}\right)}{\operatorname{card}(S)}, \\
\operatorname{con}(S) & =1-\frac{\sum_{\left\langle b_{i}, p_{i}\right\rangle \in S}\left(b_{i} \cdot t_{e}-b_{i} \cdot t_{s}-l_{\text {avg }}\right)^{2}}{l_{\text {avg }}^{2} \operatorname{card}(S)} .
\end{aligned}
$$

In addition to analyzing block distances and lengths, one can also use image processing methods to measure continuity, as follows.

Example 5.4.6 (Histogram Distance Continuity) Suppose $H(f)=\left(h_{1}, h_{2}, \ldots, h_{n}\right)$ is a function that returns the color histogram for a given frame number f. Each h_{j} corresponds to the number of pixels in a region of some color space. A good perceptually uniform space is the Hue Saturation Value (HSV) space or alternatively we may use the Opponent Colors space. Let d be any measure of distance between two
histograms (e.g. d could be the well known L_{1} or L_{2} norms). Now set the continuity of a summary $S=\left\{\left\langle b_{1}, p_{1}\right\rangle, \ldots,\left\langle b_{k}, p_{k}\right\rangle\right\}$ to be

$$
\operatorname{con}(S)=\frac{\operatorname{card}(S)-1}{\sum_{i=1}^{\operatorname{card}(S)-1} d\left(H\left(b_{i} \cdot t_{e}-1\right), H\left(b_{i+1} \cdot t_{s}\right)\right)}
$$

Figure 5.2: Hue Histogram Distance Function.
Figure 5.2 shows three sample frames with respective hue histograms and the distance between these histograms. It is clear that the distance between frames $2-3$ is less than the distance between frames $1-2$ and frames $1-3$. Thus, frame 2 preceding frame 3 in a summary will lead to a better continuity.

Finally, the repetition can be expressed as the inverse ratio between the number of different features in the summary and the total number of features. Or, it may depend on the ratio between the number of features in the summary and the entire video, as shown in the following example.

Example 5.4.7 (Feature-Based Repetition) This metric measures the variety of features included into a summary:

$$
\operatorname{rep}(S)=1-\frac{\operatorname{card}\left(\left\{f \mid f \in \bigcup_{\langle b, p\rangle \in S} b . F\right\}\right)}{\operatorname{card}\left(\left\{f \mid f \in \bigcup_{b \in v} b . F\right\}\right)}
$$

5.5 Creating Summaries

The definition of a satisfactory summary allows for multiple satisfactory summaries of k blocks and less. But how do we create such summaries? And how do we choose the best one?

In the discussion of insum-atoms, it was said that λ (insum $(b), S)$ evaluates to a non-zero value whenever block b is in S. When composing a summary, we can assume that (i) S contains blocks that are candidates for the final summary or that (ii) S contains blocks that are already selected for the final summary. The first approach allows us to obtain a set of all possible summary candidates before combining them into summaries, in a following way:

```
Algorithm \(\operatorname{Der}(v, R)\)
    \(v\) is a video
    \(R\) is a rule set
begin
    \(S:=\emptyset\)
    repeat
        \(\Delta:=\emptyset\)
            for each block \(b \in v\) do
                        for each rule \(r \in R\) do
                        if \(\lambda(r, b, S)>0\) then \(\Delta:=\Delta \cup\{\langle b, \lambda(r, b, S)\rangle\}\)
                    end for
            end for
            \(S:=S \cup \Delta\)
    until \(\Delta=\emptyset\)
    return \(S\)
end
```

The Der execution time is quadratic w.r.t. the number of blocks in v and the number of rules in R. The first three algorithms in this section use the first insum interpretation by calling Der once to obtain a set of all candidate blocks. Unfortunately, this may lead to selecting blocks that have no basis to be in the summary. For example, an after-goal celebration may be selected in the absence of a goal that has caused it. This problem can be partially avoided by rating such "inconsistent" summaries down in
the evaluation function, or fully avoided by using the second approach, where insumatoms are evaluated w.r.t. a set of blocks already selected for the summary (as done in the SEA algorithm).

Let us start by introducing a summarization algorithm called CPRopt which finds an optimal k-summary without making any assumptions about the priority, continuity, and repetition functions. However, as the optimal k-summary computation problem is NP-complete (by reducing knapsack problem to it), this algorithm takes an exponential amount of time w.r.t. the number of blocks in a video, which is clearly unacceptable.

5.5.1 The Optimal Summarization Algorithm

The CPRopt algorithm starts by computing the set of all candidate blocks with $\operatorname{Der}(v, R)$. This step can be executed in time quadratic to the number of frames in v. The algorithm then considers all subsets of $\operatorname{Der}(v, R)$ that contain k or less frames. The $\operatorname{eval}()$ function is applied to these subsets and the one with the maximal eval() value is chosen. As the set of all subsets of size $\leq k$ needs to be enumerated, CPRopt has exponential time complexity - this is not a surprise as the problem of finding an optimal summary has been shown to be NP-complete.

```
Algorithm CPRopt(v,R,k)
    v}\mathrm{ is a video
    R is a rule set
    k is a desired summary length
begin
    V:= Der (v,R)
    BestS := \emptyset
    for each S\in{X|X\subseteqV ^ card(X)\leqk} do
            if eval(S)>\operatorname{eval}(BestS) then BestS:=S
    end for
    return BestS
end.
```

Although the CPRopt algorithm is guaranteed to find the optimal summary w.r.t.
the evaluation function, its NP-completeness makes it quite useless for any practical purposes. A. Picariello's group has proposed two heuristic algorithms that are much faster than the CPRopt algorithm, at the cost of producing suboptimal summaries. These are dynamic programming based CPRdyn and genetic programming based CPRgen algorithms.

5.5.2 The CPRdyn Algorithm

The CPRdyn algorithm is based on the dynamic programming approach [16]. The algorithm maintains a variable S describing the best solution found so far. Initially, S consists of k randomly chosen blocks which are derivable from the rule set. The algorithm changes S in each iteration by checking to see whether replacing a block in S by a block which is not in S will lead to a better summary. The space complexity of CPRdyn is linear in the number of block, while the time complexity is exponential in k (which is much better than being exponential in the number of blocks).

```
Algorithm CPRdyn(v,\mathcal{V},k)
    v \mp@code { i s ~ a ~ v i d e o }
    R is a rule set
    k is a desired summary length
begin
    // Fill S with k randomly selected blocks from Der (v,R).
    V := Der(v,R)
    S:= {\langle\mp@subsup{b}{i}{},\mp@subsup{p}{i}{}\rangle|i\in[1,k]^\langle\mp@subsup{b}{i}{},\mp@subsup{p}{i}{}\rangle\inV}
    // Leave the remaining blocks in V}\mathrm{ .
    V:=V\S
    while V\not=\emptyset
        subs := false
        r:= 1
        while r<k and subs = false
            // Build a new tentative solution by replacing }\langle\mp@subsup{b}{r}{},\mp@subsup{p}{r}{}\rangle\mathrm{ with a block from V}\mathrm{ .
            S'}:=(S\{\langle\mp@subsup{b}{r}{},\mp@subsup{p}{r}{}\rangle})\cup{first(V)
            if eval(S)<eval(S') then
                        S:= S'
                        add }\langle\mp@subsup{b}{r}{},\mp@subsup{p}{r}{}\rangle\mathrm{ to the tail of V
                        subs:= true
            else
                        r:=r+1
```

end if
end while
$V:=V \backslash\{\operatorname{first}(V)\}$
end while
return S
end.
It is important to note that the CPRdyn algorithm will only consider summaries whose length is exactly k blocks. While this may look like a serious limitation, it is not, as long as the eval() function used in the algorithm is monotonic. Consider a summary S and a block $b \in S$. When $\operatorname{eval}()$ is monotonic, it will always be true that $\operatorname{eval}(S \backslash\{\langle b, p\rangle\}) \leq \operatorname{eval}(S)$.

5.5.3 The CPRgen Algorithm

The CPRgen algorithm uses the genetic programming approach [16] to compute a k-summary. The algorithm starts by creating a population of randomly generated summaries and rates population members according to the value of eval(). A mutation operator is then applied to a randomly chosen population member, and the member with the smallest $\operatorname{eval}()$ value is eliminated. The algorithm stops when the variation of the $\operatorname{eval}()$ values within the population falls below a threshold δ.

```
Algorithm CPRGen \((v, R, k, N, \delta)\)
    \(v\) is a video
    \(R\) is a rule set
    \(k\) is a desired summary length
    \(N\) is the desired number of iterations
    \(\delta\) is the desired worth threshold
begin
    \(M:=\left\lceil\frac{\operatorname{card}(v)}{k}\right\rceil\)
    // Compute an initial population of \(M\) random solutions
    \(V:=\left\{S_{i} \subseteq \operatorname{Der}(v, R) \mid i \in[1, M] \wedge \operatorname{card}\left(S_{i}\right)=k\right\}\)
    for \(j \in[1, N]\)
        for \(i \in[1, M]\)
            \(S:=\) a solution randomly chosen among the ones in \(V\)
            Select a random block \(b \in S\)
            Choose another block \(b^{\prime} \notin S\)
            \(S:=(S \backslash\{b\}) \cup\left\{b^{\prime}\right\}\)
```

```
        V:= V\cup{S}
        Eliminate from V the solution with the smallest value of eval()
```



```
            Return best solution from }
        end if
        end for
    end for
    Return the best solution from V
end.
```

CPRgen has the time complexity of $O\left(\frac{\operatorname{card}(v)^{2}}{k^{2}} \cdot N^{2}\right)$, while its space complexity is $O\left(\frac{\operatorname{card}(v)^{2}}{k}\right)$. Note that we can exit the loop in CPRgen if either no significant mutation is possible or if the maximal number of iterations is reached. In all experiments we ran, CPRgen always terminated for the first reason because the maximum number of iterations selected was quite large.

5.6 Summary Extension Algorithm (SEA)

Both CPRdyn and CPRgen algorithms start with random summaries and try to improve them by making random block substitutions. While this approach produces a summary that is better than the initial ones, it does not guarantee that this summary will be optimal. Additionally, both CPRdyn and CPRgen use Der to find candidate blocks, which may lead to the unfounded inclusion of blocks into the summary. Thus, the results of these two algorithms may fall far from the optimum.

Let us now consider the Summary Extension Algorithm (SEA) that searches optimal k-summaries by enumeration, like the CPRopt algorithm, but restricts the search space by applying some heuristics. Additionally, the SEA algorithm treats any insum (b) atom as the requirement for b to be included into the summary (as opposed to being considered for the summary in Der-based algorithms). Given a summary S, let us define the valid summary extension, or a set of candidate blocks that can be
added to this summary:

Definition 5.6.1 (Valid Summary Extension) Let R be a rule set, and S be a satisfactory summary. Then the valid summary extension is

$$
\operatorname{VSE}_{R}(S)=\{\langle b, \lambda(R, b, S)\rangle \mid \lambda(R, b, S)>0\}
$$

In other words, $\mathrm{VSE}_{R}(S)$ is the set of all block-coverage pairs that satisfy R with respect to the summary S. Here is an algorithm to compute $\mathrm{VSE}_{R}(S)$:

```
Algorithm VSE(R,S)
    R is the set of rules
    S is the current summary
begin
    S':=\emptyset
    for each video block b
        for each rule r 
            // Compute \lambda(r,b,S) and add b to the result if }\lambda(r,b,S)>0
            pout :=ChooseVars(r,{X/\langleb,1\rangle},S)
            if pout }>0\mathrm{ then }\mp@subsup{S}{}{\prime}:=\mp@subsup{S}{}{\prime}\cup{\langleb,\mp@subsup{p}{\mathrm{ out }}{}\rangle
        end for
    end for
    return }\mp@subsup{S}{}{\prime
end.
    Algorithm ChooseVars(r,0,S)
    r \mp@code { i s ~ t h e ~ r u l e }
    0 is the variable assignment set
    S is the current summary
begin
    if exists variable }X\inr\mathrm{ such that }X\not\in0\mathrm{ then
        pout :=0
        for each BCP }\langleb,p\rangle\in
            // Assign one more variable and recurse, maximizing pout.
            p
            if }\mp@subsup{p}{}{\prime}>\mp@subsup{p}{\mathrm{ out }}{}\mathrm{ then }\mp@subsup{p}{\mathrm{ out }}{}:=\mp@subsup{p}{}{\prime
        end for
    else
            // Substitute variables and compute pout .
            pout := min 
    end if
    // Return \lambda(r,b,S).
    return }\mp@subsup{p}{\mathrm{ out }}{
end.
```

The $\operatorname{VSE}()$ algorithm iterates over all rules in R and all blocks in a video looking for blocks that satisfy R. VSE() uses the ChooseVars() algorithm to compute $\lambda(r, b, S)$ for each block b and rule r, and adds $\langle b, \lambda(r, b, S)\rangle$ to the output if $\lambda(r, b, S)>0$. As BCP set union is used to add new block-coverage pairs to the output, pairs with lower coverages are automatically replaced with higher coverage pairs.

Suppose we start with some rule set R and an empty summary $S=\emptyset$ that is satisfactory w.r.t. $R . S^{\prime}=\operatorname{VSE}_{R}(\emptyset)$ will contain all assignments satisfying the rules whose bodies are free of membership atoms. Satisfaction of such "self-supporting" rules does not require any blocks to be in the summary. Notice that S^{\prime} is always going to be satisfactory w.r.t. R and it is always true that $\forall\langle b, p\rangle \in S: \exists\left\langle b, p^{\prime}\right\rangle \in S^{\prime}: p^{\prime} \geq p$.

We can continue applying the $\operatorname{VSE}()$ operator to S^{\prime} until it stops growing. At each stage, the union of S and any subset of S^{\prime} has all the properties of a satisfactory summary:

$$
\forall V \subseteq \operatorname{VSE}_{R}(S): S \cup V \text { is a satisfactory summary. }
$$

I now present a recursive algorithm to find the BCP set corresponding to the best summary.

```
Algorithm BestSummary \((R, S, l, N)\)
    \(R\) is the set of rules
    \(S\) is the initial summary
    \(l\) is the maximal summary length
    \(Q\) is a sorted list of up to \(N\) summaries
begin
    \(Q:=\emptyset\)
    \(S^{\prime}:=\operatorname{VSE}_{R}(S)\)
    // Remove assignments already present in \(S\).
    for each BCP \(\left\langle b, p^{\prime}\right\rangle \in S^{\prime}\) such that \(\exists\langle b, p\rangle \in S\)
        if \(p^{\prime}>p\) then \(S:=S \cup\left\{\left\langle b, p^{\prime}\right\rangle\right\}\)
        \(S^{\prime}:=S^{\prime}-\left\{\left\langle b, p^{\prime}\right\rangle\right\}\)
    end for
    // Find \(N\) best summaries...
    for each BCP set \(V \subseteq S^{\prime}\) such that length \((V \cup S) \leq l\)
```

```
    Q.add (V\cupS,eval (V\cupS))
    if size (Q)>N then Q.delete (tail(Q))
    end for
    // ...and try to grow them.
    if Q=\emptyset then BestS :=S
    else
    BestS:= head(Q)
    for each summary V GQ
        V':= BestSummary(R,V,l,N)
        if eval(}(\mp@subsup{V}{}{\prime})>\operatorname{eval}(BestS) then BestS := V V
        end for
    end if
    return BestS
end.
```

The BestSummary () is a greedy breadth-first search algorithm with the branching factor limited to N. The quality of summaries in this algorithm is measured in terms of the $\operatorname{eval}()$ function that can be computed in various different ways, depending on what the user deems important.

5.6.1 Improving SEA Algorithm

One can easily see by examining the BestSummary () algorithm that it is very timeconsuming. After all, by calling $\operatorname{VSE}()$, it enumerates all the possible variable assignments for each rule and then enumerates all the subsets of the $\operatorname{VSE}_{R}(S)$. Thus, the next question is: How can these algorithms be improved?

Let us look at how $\operatorname{VSE}_{R}(S)$ is computed. Suppose we are considering adding a block b to a summary S that already has $\left\langle b, p_{\min }\right\rangle \in S$. Given a variable assignment θ, compute the assignment coverage $p_{\text {ass }}=\min _{X /\langle b, p\rangle \in \theta} p$. It follows from the interpretation definition that $\lambda(r, b, S) \leq p_{\text {ass. }}$. Applied to the ChooseVars () algorithm, it means that $p_{\text {out }} \leq p_{\text {ass }}$. On the other hand, by the definition of the BCP set union, to update b 's membership in the summary, the existing membership must have $p_{\text {out }}>p_{\text {min }}$. Therefore, the variable assignments under consideration can be limited
to the ones with $p_{a s s}>p_{m i n}$:

```
Algorithm \(\mathrm{VSE}^{\prime}(R, S)\)
    \(R\) is the set of rules
    \(S\) is the current summary
begin
    \(S^{\prime}:=\emptyset\)
    for each video block \(b\)
        // Compute lower bound on \(\lambda(r, b, S)\).
        if \(\langle b, p\rangle \in S\) then \(p_{\text {min }}:=p\) else \(p_{\text {min }}:=0\)
        for each rule \(r \in R\) such that \(\operatorname{head}(r)=\operatorname{insum}(X)\)
            // Compute \(\lambda(r, b, S)\) and add \(b\) to the result if \(\lambda(r, b, S)>p_{\text {min }}\).
            \(p_{\text {out }}:=\) ChooseVars \(^{\prime}\left(r,\{X /\langle b, 1\rangle\}, S, p_{\text {min }}\right)\)
            if \(p_{\text {out }}>p_{\text {min }}\) then
                    \(S^{\prime}:=S^{\prime} \cup\left\{\left\langle b, p_{\text {out }}\right\rangle\right\}\)
                \(p_{\text {min }}:=p_{\text {out }}\)
            end if
        end for
    end for
    return \(S^{\prime}\)
end.
Algorithm ChooseVars'( \(\left.r, \theta, S, p_{\text {min }}\right)\)
    \(r\) is the rule
    \(\theta\) is the variable assignment set
    \(S\) is the current summary
    \(p_{\text {min }}\) is the lower bound on assignment coverages
begin
    if exists variable \(X \in r\) such that \(X \notin \theta\) then
        \(p_{\text {out }}:=p_{\text {min }}\)
            for each BCP \(\langle b, p\rangle \in S\) such that \(p>p_{\text {out }}\)
                // Assign one more variable and recurse, maximizing \(p_{\text {out }}\).
                \(p^{\prime}:=\) ChooseVars \({ }^{\prime}\left(r, \theta \cup\{X /\langle b, p\rangle\}, S, p_{\text {out }}\right)\)
                if \(p^{\prime}>p_{\text {out }}\) then \(p_{\text {out }}:=p^{\prime}\)
            end for
    else
            // Substitute variables and compute \(p_{\text {out }}\).
            \(p_{\text {out }}:=\min _{a \in b o d y(r)} \lambda(a \theta, S)\)
    end if
    // Return \(\lambda(r, b, S)\).
    return \(p_{\text {out }}\)
end.
```

In the $V S E^{\prime}()$ algorithm, we compute the lower bound on $\lambda(r, b, S)$ and pass it to the ChooseVars ${ }^{\prime}()$ algorithm as $p_{\text {min }}$. As ChooseVars ${ }^{\prime}()$ computes $\lambda(r, b, S)$, it constantly updates the bound and skips variable assignments falling below the bound.

Finally, ChooseVars ${ }^{\prime}()$ returns computed $\lambda(r, b, S)$ to $V S E^{\prime}()$. If this value is bigger
than $p_{\text {min }}, V S E^{\prime}()$ adds $\langle b, \lambda(r, b, S)\rangle$ to the result.
Furthermore, to avoid extra recursions, each variable can be substituted immediately as its assignment is chosen and the atoms can be evaluated as they become
ground:
Algorithm VSE" (R, S)
R is the set of rules
S is the current summary
begin
$S^{\prime}:=\emptyset$
for each video block b
// Compute lower bound on $\lambda(r, b, S)$.
if $\langle b, p\rangle \in S$ then $p_{\text {min }}:=p$ else $p_{\text {min }}:=0$
for each rule $r \in R$ such that $\operatorname{head}(r)=\operatorname{insum}(X)$
// Evaluate atoms that involve only X.
$p_{\text {cur }}:=1$
for each feature atom $a \in \operatorname{body}(r)$ such that $X \in a$
$p^{\prime}:=\lambda(a[X /\langle b, 1\rangle], S)$
$p^{\prime}<p_{\text {cur }}$ then $p_{\text {cur }}:=p^{\prime}$
end for
// Compute $\lambda(r, b, S)$ and add b to the result if $\lambda(r, b, S)>p_{\text {min }}$.
if $p_{\text {cur }}>p_{\text {min }}$ then
$p_{\text {out }}:=$ ChooseVars ${ }^{\prime \prime}\left(r[X /\langle b, 1\rangle], S, p_{\text {cur }}, p_{\text {min }}\right)$
if $p_{\text {out }}>p_{\text {min }}$ then
$S^{\prime}:=S^{\prime} \cup\left\{\left\langle b, p_{\text {out }}\right\rangle\right\}$
$p_{\text {min }}:=p_{\text {out }}$
end if
end if
end for
end for
return S^{\prime}
end.

```
Algorithm ChooseVars" \(\left(r, S, p_{c u r}, p_{\text {min }}\right)\)
    \(r\) is the rule
    \(S\) is the current summary
    \(p_{\text {cur }}\) is the current coverage
    \(p_{\text {min }}\) is the lower bound on \(p_{\text {cur }}\)
begin
    if doesn't exist variable \(X \in r\) then
            return \(p_{\text {cur }}\)
    else \(\quad p_{\text {out }}:=p_{\text {min }}\)
        for each BCP \(\langle b, p\rangle \in S\) such that \(p>p_{\text {out }}\)
            \(/ /\) Compute new \(p_{\text {cur }}\) w.r.t. assignment \(X /\langle b, p\rangle\).
            \(p_{\text {cur }}^{\prime}:=p_{\text {cur }}\)
            for each atom \(a \in \operatorname{body}(r)\) such that \(X \in a\) and \(a[X /\langle b, p\rangle]\) is ground
                    \(p^{\prime}:=\lambda(a[X /\langle b, p\rangle], S)\)
                    if \(p^{\prime}<p_{\text {cur }}^{\prime}\) then \(p_{\text {cur }}^{\prime}:=p^{\prime}\)
```

```
            end for
            // Continue substitution until we hit the lower bound or run out of variables.
            if p}\mp@subsup{p}{cur}{\prime}>\mp@subsup{p}{\mathrm{ out }}{}\mathrm{ then
                    p
            if }\mp@subsup{p}{}{\prime}>\mp@subsup{p}{\mathrm{ out }}{\mathrm{ then }}\mp@subsup{p}{\mathrm{ out }}{}:=\mp@subsup{p}{}{\prime
            end if
            end for
            // Return \lambda(r,b,S).
            return pout
    end if
end.
```

This version of the algorithm is based on the observation that for any ground atom $a \in r, \lambda(r, b, S) \leq \lambda(a, S)$. Therefore, $V S E^{\prime \prime}()$ starts by evaluating all atoms that become ground after substituting the head variable. If the resulting $p_{\text {cur }}$ value is higher than the lower bound, $\operatorname{VSE} E^{\prime \prime}()$ calls $C h o o s e V a r s^{\prime \prime}()$ to instantiate and evaluate other atoms.

5.7 Priority Curve Algorithm (PCA)

All algorithms previously described in this chapter relied on the explicitly defined objective function $\operatorname{eval}()$ whose value determined the quality of each summary. In this section, I am going to present an alternative summary creation process that does not use the objective function but relies on some implicit assumptions about CPR criteria instead. We have called this process the Priority Curve Algorithm (PCA), not to be mistaken for the Principal Component Analysis (PCA) often used for the data dimensionality reduction. The PCA algorithm [4], shown in Figure 5.3 consists of the following main steps.

We first split video into blocks. This can be done ether by assigning to each block an equal number of frames (let us say 1800 frames, or a minute of 30 fps video) or by using any of the standard video segmentation algorithms [32, 38, 48, 79].

Figure 5.3: PCA Architecture.

The blocks are then fed to the priority assignment stage where content of each block is examined and assigned a priority. The priority assignment can be implemented both by human annotation and some image processing algorithms. The prototype system implemented by our team in Naples, for example, uses such algorithms to detect goal shots and red card events in soccer videos.

The prioritized blocks numbered in the order of increasing timestamps are then sent to the peak detection stage. To understand how this stage works, let us arrange all blocks on a graph with time counted along the horizontal axis and block priority plotted along the vertical axis. The resulting priority curve is going to have peaks, as shown in Figure 5.4. These peaks corresponding to high-priority blocks are identified at the peak detection stage.

The priority curve with detected peaks is then shipped to the block merging stage. Intuitively, peaks that are close to each other correspond to the same or similar events even though they have been assigned to different blocks by the video segmentation algorithm. Therefore, we analyze blocks corresponding to nearby peaks for similarity and merge similar blocks. The merged block's priority becomes the sum of all original blocks' priorities.

Next, merged blocks are passed through the block elimination stage which uses
some statistical rules to eliminate low-priority blocks. For instance, if the average priority is μ and the standard deviation is σ, we may want to eliminate all blocks whose priorities are less than $\mu-3 \sigma$, as the classical statistical model says that most objects in a normal distribution must occur within 3 standard deviations of the mean. Other statistical rules can be used as well.

Finally, the remaining blocks are delivered to the block resizing stage that crops them to fit the desired summary length. Each block is allocated a number of frames in the summary proportional to its priority. Blocks that fit their allocations are left untouched, while blocks that exceed their allocations are cropped to fit their designated numbers of frames.

Let us now take a more detailed look at some PCA components.

5.7.1 Peak Identification Module

Let b_{1}, \ldots, b_{n} be the blocks in the video (e.g. after the segmentation process). Let p_{i} denote the priority of block b_{i}.

Definition 5.7.1 ((r, s)-peak) Suppose $r \in(0, n / 2]$ is an integer and $s \in[0,1]$ is a real number. Blocks b_{j}, \ldots, b_{j+r} are said to be an (r, s)-peak iff

$$
\frac{\sum_{j \leq i \leq j+r} p_{i}}{\sum_{j-\frac{r}{2} \leq i \leq j+\frac{3 r}{2}} p_{i}} \geq s
$$

Suppose we wish to check if a sequence of r blocks $S_{1}=b_{j}, \ldots, b_{j+r}$, constitutes a peak. The above definition looks at $\frac{r}{2}$ blocks before the sequence as well as $\frac{r}{2}$ blocks after the sequence, i.e. the sequence $S_{2}=b_{j i \frac{r}{2}}, \ldots, b_{j}, \ldots, b_{j+r}, \ldots, b_{j+\frac{3 r}{2}}$ is considered. This latter sequence S_{2} is of width $2 r$. We sum up the priorities of all blocks in S_{2} - let us call this sum s_{2}. Likewise, we sum up the priorities of all blocks in S_{1} and call this priority s_{1}. Clearly, $s_{1} \leq s_{2}$. If $\frac{s_{1}}{s_{2}}$ exceeds or equals s, then we
decide that the contribution of the priorities of the peaks in S_{1} is much larger than that in S_{2} and so S_{1} constitutes a peak. It is important to note that r and s must be chosen by the application developer.

Figure 5.4 shows two examples of peaks corresponding to r, s values of $(6,0.65)$ and $(4,0.6)$ respectively. Dotted rectangles signify peaks, with s-values shown for the most significant peaks. As seen from the figure, peaks often occur in clusters. While the upper graph corresponds to wide $(r=6)$ peaks, parameters in the lower graph allow for narrower $(r=4)$ and slightly lower $(s=0.6$ as opposed to $s=0.65)$ peaks. As result, the lower graph contains more peaks and smaller clusters.

Figure 5.4: Peaks.

Here is a simple algorithm that, given a sequence of video blocks and r, s values, will find all blocks that belong to (r, s)-peaks:

```
Algorithm Peaks(v,r,s)
    v \mp@code { i s ~ a ~ s e q u e n c e ~ o f ~ b l o c k - p r i o r i t y ~ p a i r s }
    r \mp@code { i s ~ t h e ~ p e a k ~ w i d t h }
    s is the peak height
begin
    Res :=\emptyset
    for each j\in[r, card(v)-r] do
        center := 0
        total:= 0
```

```
        for each }\langle\mp@subsup{b}{i}{},\mp@subsup{p}{i}{}\rangle\inv\mathrm{ such that i 
                        total:= total + pi
        end for
        for each }\langle\mp@subsup{b}{i}{},\mp@subsup{p}{i}{}\rangle\inv\mathrm{ such that i 
        center := center + pi
        end for
        if \frac{center }{\mathrm{ total }}\geqs\mathrm{ then}
        Res := Res \cup{\langle\mp@subsup{b}{i}{},\mp@subsup{p}{i}{}\rangle\inv|i\in(j-\frac{r}{2},j+\frac{r}{2}]}
        end if
    end for
    return Res
end
```

The $\operatorname{Peaks}()$ algorithm slides a $2 r$-wide window along a sequence of blocks, computing the total sum of block priorities in that window (total). It then computes the sum of block priorities in a narrower r-wide window in the middle of the $2 r$-wide window (center), as shown in Figure 5.5. When the ratio of these two sums $\frac{c e n t e r}{\text { total }}$ exceeds the threshold s, all blocks in the r-wide window are picked as a peak.

Figure 5.5: Peaks() Algorithm Analyzing a Peak.

Example 5.7.1 Consider the very small fragment shown in Figure 5.5. At some time, the Peaks () algorithm will focus its window of length $2 r$ on the segment from $j-\frac{r}{2}$ to $j+\frac{3 r}{2}$ shown in the figure. It will compute the sum of the priorities of the blocks in the entire window of length $2 r$ (which is $5+41+8=54$) as well as the sum of
the priorities of the window of length r in the center of the window of length $2 r$ - the priority there is 41 . As a consequence, the ratio of these is $\frac{41}{54}=0.76$. If 0.76 exceeds the s that the user has picked, then the sequence of blocks from j to $j+r$ is considered a peak.

Note that the performance of the $\operatorname{Peaks}()$ algorithm can be improved by avoiding computation of center and total iteratively in each iteration of the outer loop. After the first iteration of the outer loop, these values can be updated in constant time. This optimization is not included in the above algorithm as it complicates the simplicity of the algorithm, but it is easy to incorporate. The Peaks() algorithm has complexity of $O(r \cdot \operatorname{card}(v))$, being linear with respect to the number of input blocks.

5.7.2 Block Merging Module

The peak identification algorithm eliminates all blocks that are not (r, s)-peaks for the r, s values selected by the application developer. Let $\operatorname{Peaks}(v, r, s)$ be the set of all blocks from the original video that contain peaks. Consider a set $\left\{\left(b_{i}, b_{i+1}\right) \mid b_{i}, b_{i+1} \in\right.$ $\operatorname{Peaks}(v)\}$ of all pairs of blocks that are adjacent to each other. In general when adjacent blocks are peaks, they may describe the same event. The main goal of the block merging module is to merge adjacent blocks that may be very similar, so that repeating blocks can be treated as a single block in the later processing steps (such as resizing).

A block similarity function is a function sim that takes two blocks as input and returns a non negative real number as output. The smaller the number returned, the more similar the blocks are considered to be. There are many ways in which we could implement block similarity functions. Here are a few examples:

1. $\operatorname{sim}_{\text {diff }}$: We could use any classical image differencing algorithm idiff [35] to return the similarity between two frames and we could set the similarity between the two blocks to be the similarity between the two most similar frames, drawn from each block.
2. $\operatorname{sim}_{\text {text }}$: In the event that the videos in question have an accompanying text transcript, we could identify the text blurb associated with each of the two blocks and set the similarity of the two blocks to be equal to the similarity between the two text transcripts using any classical method to evaluate similarities between text documents.
3. $s i m_{v e c}$: As is often common in image processing, we could associate a color and/or texture histogram with each block and return the similarities between the histograms using root mean squared distance or the L_{1} metric [78].

To simplify the block merging process, let us assume that $\operatorname{Peaks}(v, r, s)$ returns a set of block-priority pairs of the form $\left\langle b_{i}, p_{i}\right\rangle$, as opposed to a set of blocks, and adjacent blocks can be concatenated with the \oplus operator. The block merging algorithm then takes as input, any block similarity function between blocks, together with a set of block-priority pairs, and returns a new set of merged blocks-priority pairs, as follows.
Algorithm Merge $(v, \operatorname{sim}(), d)$
v is a sequence of block-priority pairs
$\operatorname{sim}()$ is a similarity function on blocks
d is the merging threshold
begin
Res $:=\emptyset$
$B:=$ first block-priority pair $\left\langle b_{1}, p_{1}\right\rangle \in v$
for each $\left\langle b_{j}, p_{j}\right\rangle,\left\langle b_{j+1}, p_{j+1}\right\rangle \in v$ do
if $\operatorname{sim}\left(b_{j}, b_{j+1}\right) \geq d$ then
$B:=\left\langle B . b \oplus b_{j+1}, B . p+p_{j+1}\right\rangle$
else
add B to the tail of Res
$B:=\left\langle b_{j+1}, p_{j+1}\right\rangle$
end
end for
add B to the tail of Res
return Res
end

The $\operatorname{Merge}()$ algorithm considers all pairs of blocks b_{j}, b_{j+1}, concatenating them together into a bigger block $B . b$, as long as $\operatorname{sim}\left(b_{j}, b_{j+1}\right)$ value stays above the threshold d. The priority B.p of the newly merged block is computed as a sum of individual priorities of its parts. The $\operatorname{Merge}()$ algorithm has linear complexity with respect to the number of blocks in its input.

5.7.3 Block Elimination Module

Suppose S is the set of blocks from the original video after the block merging step has been applied to the set of blocks in $\operatorname{Peaks}(v, r, s)$. In the block elimination module, we would like to remove from this set all blocks whose priorities are less than a certain threshold. Let us do it by computing the mean μ and the standard deviation σ for all priorities in S. Now, given an integer $m \geq 0$, let us define a function $\operatorname{Drop}(S, m)$ that drops from S all blocks whose priorities are less than $\mu-m \sigma$. Drop() can be easily implemented by iterating over all blocks returned by the Merge() algorithm. Thus, the result of $\operatorname{Drop}(\operatorname{Merge}(\operatorname{Peaks}(v, r, s), d), m)$ will be a set of all high-priority merged peaks taken from v, with respect to the r, s, d, m parameters.

5.7.4 Block Resizing Module

Even after eliminating some low-priority blocks in the previous step, the total frame count of the remaining blocks may still exceed the limit k imposed in the beginning of this paper. In such a case, we have to truncate some blocks to fit the limit. Clearly, blocks with higher priorities must have more prominence in the summary and thus
occupy a larger percentage of frames. We then devise an algorithm that allocates to each block a number of frames proportional to its priority and truncates blocks to fit the limit of k frames.

```
Algorithm Resize \((v, k)\)
    \(v\) is a sequence of block-priority pairs
    \(k\) is the desired summary length
begin
    Res \(:=\emptyset\)
    \(p_{t o t a l}:=\sum_{\langle b, p\rangle \in v} p\)
    \(p^{\prime}:=0\)
    \(k^{\prime}:=0\)
    for each \(\langle b, p\rangle \in v\) do
        if \(\operatorname{len}(b) \leq \frac{p \cdot k}{p_{\text {total }}}\) then
            Res \(:=\) Res \(\cup\{\langle b, p\rangle\}\)
            \(v:=v \backslash\langle b, p\rangle\)
            \(p^{\prime}:=p^{\prime}+p\)
            \(k^{\prime}:=k^{\prime}+\operatorname{len}(b)\)
        end if
    end for
    \(p_{\text {total }}:=p_{\text {total }}-p^{\prime}\)
    \(k:=k-k^{\prime}\)
    for each \(\langle b, p\rangle \in v\) do
        alloc \(:=\frac{p \cdot k}{p_{\text {total }}}\)
        \(b^{\prime}:=b\) truncated to alloc frames
        Res \(:=R e s \cup\left\{\left\langle b^{\prime}, p\right\rangle\right\}\)
    end for
    return Res
end
```


5.8 Implementation and Experiments

Our experiments were conducted on a prototype summarization system developed in Java for the Windows 2000 platform. Oracle8i and MS Access database backends were used to store and access video data. The system consists of approximately 2500 lines of code.

The experiments used a collection of 50 soccer videos in AVI format captured at 30 fps in 640×480 resolution. Videos varied in length from 90 to 120 minutes and
had at least 162000 frames each. The feature extraction was done both manually and by an image processing algorithm that detected goals, so that each video had about 40 annotated blocks on average. Features described players and actions occuring in a block, such as "goal", "cross", "offside", "celebration", or "shot".

To assess the quality of summaries produced by our summarization algorithms, we used them to create 2,4 , and 6 minute summaries of all 50 videos. A group of approximately 200 students at the University of Naples evaluated the quality of resulting summaries by comparing them to original videos. In order to rate the quality, students gave each summary a rank from A (excellent) to E (unacceptable). Given the high subjectivity of this method, the results below have to be taken with a grain of salt, but it has been shown that they remain consistent when the experimental conditions (CPR weights, summary length, etc.) are changed.

Figure 5.6: Summary Quality Comparison (without PCA).

Figure 5.6 shows students' preferences for the summaries produced by the first three algorithms. SEA algorithm was deemed to produce the best results in 67% of the cases. Furthermore, 81% of the participants gave the SEA algorithm an A during
that test run.
Figure 5.7 shows students' preferences for the summaries produced by all four algorithms. The PCA algorithm has been deemed to produce best results in 46% of cases in this run, followed by the SEA algorithm.

Figure 5.7: Summary Quality Comparison (with PCA).

In order to understand how changes in the video content specification affect the degree of user satisfaction, we produced several summaries of the same video using four different content specifications. Figure 5.8 shows user preferences for each of these four cases. We have found that, once informed on the objective of the summarization, i.e. which actions/events in the summary had been considered more important by the specification, users expressed preferences similar to the previously discussed results.

Finally, we assessed the performance of the four algorithms using a Pentium3 800 MHz machine with 128 MB SDRAM. Figure 5.9 shows the results, with the PCA algorithm outperforming the other three algorithms.

Figure 5.8: Summary Quality Variation.

Figure 5.9: Algorithms' Performance.

5.9 Related Work

Over the past years, there was a variety of efforts in automatic video skimming and summarization while searching for certain faces, narrative, or other features. Nevertheless, the idea of creating coherent summaries based on the user specifications has not received much attention.

A work that specifically targets creation of video summaries has been done by He
et. al. at Microsoft [39]. The goal of their project was to summarize presentation videos that were accompanied by the PowerPoint slides being presented. The system used three main criteria to determine the relative importance of video segments: (i) the moments when slides were changed, (ii) lecturer's voice pitch, and (iii) users' interest in different parts of the presentation as they skipped through it. The researchers have invested a lot of effort into estimating how relevant and coherent automatically generated summaries were in comparison to their author-generated counterparts. The obvious peculiarity of this work is that each video sequence was synchronized to the actual PowerPoint presentation, which is not the case with most real life videos. The video content itself has not been analyzed in any way, as it was mainly limited to the narrator's talking head. Also, although there is some implicit user feedback present (user access statistics were used during summary creation), the users have no control over what will be summarized.

Another project in video summarization was undertaken by DeMenthon, Kobla, and Doermann at UMD [18] who represented a changing vector of frame features (such as overall macroblock luminances) with a multi-dimensional curve and applied a curve simplification algorithm to select "key" frames. The selected frames then constitute a summary. The algorithm allows to control the size of a summary by choosing the degree of simplification.

The Informedia project by Kanade and Smith [44] selects frames from documentaries and news bulletins by detecting important words in the accompanying audio. The MoCA project by Lienhart et. al. [50] composes film previews by picking special events, such as zooming of actors, explosions, shots, etc. There are many other systems that use various video characteristics to detect key frames and compose summaries out of these frames [34, 28].

While the key frame approach has proven to work rather well, it looks at certain features of a video instead of considering its semantic content. Thus, users have no direct control over the summary content and quality. The CPR approach used by our group allows for such control. The idea of creting summaries by maximizing an objective function has been proposed by Yahiaoui, Merialdo et. al. [86]. Our work, covered in this chapter, uses the objective function idea but provides a more general framework that takes into account users' preferences about the summary content and quality.

5.10 Conclusion

Our team has developed a theoretical model for the video summarization and shown several algorithms for creating summaries. The proposed model for video summarization is the first that takes into account both semantic content and the user preferences.

We have futher implemented algorithms, and conducted experiments to analyze their performance. The results clearly show benefits of the Priority Curve Algorithm, followed by the Summary Extension Algorithm.

Chapter 6

Document Summarization With Stories

6.1 Introduction

On many life occasions, one needs to find exhaustive information about a particular person, a place, an event, or an artefact. For instance, a tourist wandering through the archaeological museum at Pompeii and encountering a painting titled "Death of Pentheus" may want to know who pictured characters are, when and how this painting has been made, and who the painter is. At the same time, but in a completely different setting, a soldier guarding a checkpoint would like to know the background of people who come by his checkpoint, while a military truck driver needs to know the history of bombings, ambushes, and other accidents that have occurred along his travel route.

While each person in the above examples needs information from a different domain, in all instances we are basically interested in a story behind a given subject. Historically, people referred to encyclopedias, dictionaries, and other reference documents for such stories. Of course, lookup of printed sources is a time consuming process, especially when multiple documents have to be consulted. It is also difficult to update printed information, not to mention the fact that it can't be easily consulted
in the field, as our examples require.
In the recent years, the World Wide Web has taken the role of the main reference source for many people. Traditional encyclopedias and dictionaries, as well as news outlets, have "migrated" to the Web, providing instant access, up-to-date information, and search capabilities. Nevertheless, some problems persist:

- Finding and consulting Web sources is faster than a traditional library search but it still takes time.
- Making sense of multiple sources takes still more time and analytical experience, just like the analysis of printed documents.
- Information obtained from the Web is often unreliable or inconsistent.
- In many applications (such as military examples given above) there are proprietary sources of information, such as databases, intelligence reports, or internal newsfeeds that also have to be consulted.

Thus, an automated tool that solves the above problems for the user and presents him with a cohesive narrated story about the subject of his interest would be very helpful for many people.

Let us now return to our examples. Notice that stories requested in them are dramatically different. In the case of Pompeii, tourists may be interested in cultural, historical, mythological, and artistic aspects of subjects. On the other hand, these aspects are of no interest to soldiers who mainly focus on threat assessment. Thus, the content of a story depends both on the available facts and the domain of user's interests.

There are two other important aspects of stories: they must be succinct and they must allow the user to explore different facets of the story that are of interest to him or
her. So, a tourist in the museum example may want to find out more about painting's author and then about the place where painter has lived.

In this chapter, I present a framework for creating stories about given subjects based on the information extracted from heterogenous data sources, such as the Web, the relational databases, and so forth. Furthermore, this chapter presents several algorithms that generate an optimal story with respect to the priority of information it contains, the continuity of its narrative, and the non-repetition of covered facts. Finally, I discuss the architecture and the bimplementation of a prototype STORY system that automatically creates and delivers stories to client devices such as computers, PDAs, cell phones, and so forth.

The work covered in this chapter is partially based on the work in video summarization [24] covered in Chapter 5.

6.2 The Data Model

According to the Oxford English Dictionary (online edition), a story is "A narrative, true or presumed to be true, relating to important events and celebrated persons of a more or less remote past; a historical relation or anecdote." In the context of computing, a narrative becomes an interactive multimedia presentation. Such an approach allows a piece of plain text or speech to be treated as a special case of a narrative.

Returning to the painting of Pentheus' punishment and death at the House of the Vetti in Pompeii (see Figure 6.1), a visitor to Pompeii may have a number of questions to ask about this painting:

- Who was Pentheus?
- Who punished him?

Figure 6.1: Pentheus torn apart by his mother Agave and Maenads (House of the Vetti, Pompeii).

- Why he was punished?
- Was this event depicted by other artists at the same period or in earlier periods or in later periods in the same or different geographical region?
- Who is Vetti?

In order to answer the above questions and support further exploration of topics related to the initial topic of interest, let us introduce the concept of an entity characterized with a set of attributes that can be arranged into a story.

Definition 6.2.1 (Entity) We assume the existence of some set \mathcal{E} whose elements are called entities.

Intuitively, entities describe the subjects of interest. In a museum, such subjects can be all the known people depicted via images or sculptures shown in the museum, as well as all people related to those people in some way. Additionally, the set of entities could include all places depicted. In the case of soldiers guarding a checkpoint, entities of interest could include all people about whom intelligence agencies
have any information, as well as various kinds of resistance and terror groups, front companies, etc. Note that there is no need to explicitly enumerate this set of entities they could, for example, be discovered by a simple algorithm seeking proper nouns.

Definition 6.2.2 (Ordinary Attributes) Suppose \mathcal{E} is a set of entities. We assume the existence of a set \mathcal{A} whose elements are called ordinary attributes. Each attribute A has an associated domain $\operatorname{dom}(A)$. We say that \mathcal{A} is a set of ordinary attributes associated with the set \mathcal{E} of entities if $\mathcal{E} \subseteq \cup_{A \in \mathcal{A}} \operatorname{dom}(A)$.

The above requirement merely ensures that each entity can be characterized by the values of ordinary attributes.

The story about Pentheus may have many ordinary attributes. One such attribute might be mother, with the domain being the set of all alphabetical strings. The value of this attribute w.r.t. the painting of Pentheus shown in Figure 6.1 could be the string "Agave". An attribute persons could have as its domain, the powerset of the set of people known in Greek mythology. In the Pentheus example, the value of this attribute could be $\{$ Pentheus, Agave, Maenads $\}$ - note that Maenads is not one person, but rather a collective name for a group of people.

Notice that the value of the mother attribute may be an entity by itself. In the Pentheus example, the entity Agave (his mother) may have its own attributes, so that a new story could be created about her. However, if Agave is not an entity then there is definitely no story about her.

Definition 6.2.3 (Generalizing Ordinary Attributes) Suppose A is an ordinary attribute. Then a generalization function for attribute A is a mapping Γ_{A} from $2^{\operatorname{dom}(A)}$ to $\operatorname{dom}(A)$.

For example, suppose we have an attribute called occupation whose domain is the set of all strings. A generalization function $\Gamma_{o c c}$ may map a set of strings of the form "King of . . ." to a single string "king" and "Bishop of . . ." to "bishop". This is just one example of a generalization function - many more are possible.

Figure 6.2: Pope Paul III and his nephews Alessandro and Ottavio Farnese (Capodimonte Museum, Naples).

In the above discussion, attributes had constant values. However, in many situations attribute values may change with time. For example, Pope Paul III (shown in a painting in Figure 6.2) may have an occupation attribute with the value "cardinal" for a time period from 1493 to 1533 and "Pope" from 1534 to 1549 . In order to express such values, let us introduce the concept of a time-varying attributes.

Definition 6.2.4 (Time Varying Attribute) A time-varying attribute is a pair $(A, \operatorname{dom}(A))$ where A is the name of the attribute and $\operatorname{dom}(A)$ is the domain of values for the attribute.

Definition 6.2.5 (Timevalue) A timevalue for a time-varying attribute $(A, \operatorname{dom}(A))$ is a set of triples $\left(v_{i}, L_{i}, U_{i}\right)$ where $v_{i} \in \operatorname{dom}(A)$ and L_{i}, U_{i} are either integers or the special symbol \perp (denoting unknown). A timevalue is fully specified iff there is no triple of either the form $\left(v_{1}, \perp, U_{i}\right)$ or $\left(v_{i}, L_{i}, \perp\right)$ or $\left(v_{i}, \perp, \perp\right)$ in it.

Intuitively, if an object has a time-varying attribute A with a timevalue of $\left\{\left(v_{1}, 15,20\right)\right.$, $\left.\left(v_{2}, 25,30\right)\right\}$ then A has value v_{1} in a time period from 15 to 20 and value v_{2} in a time period from 25 to 30. In the case of Pope Paul III, the timevalue of occupation is given by $\{($ Pope $, 1534,1549),($ Cardinal, 1493, 1533 $)\}$.

Note 6.2.1 Though one may have allowed timevalues to be more expressive, the reader will see later (Note 6.3.1) that doing so causes a huge additional burden on the system implementor.

Definition 6.2.6 (Consistent Timevalue) A timevalue tv for a time-varying attribute $(A, \operatorname{dom}(A))$ is consistent iff there is no pair $\left(v_{1}, L_{1}, U_{1}\right),\left(v_{2}, L_{2}, U_{2}\right)$ in tv such that $v_{1} \neq v_{2}$ and $L_{1}, U_{1}, L_{2}, U_{2} \neq \perp$ and such that the intervals $\left[L_{1}, U_{1}\right] \cap\left[L_{2}, U_{2}\right]$ intersect.

The consistency of a timevalue ensures that the attribute does not have two distinct values at the same time (e.g. Pope Paul III has never been both Pope and a cardinal at the same time). Thus, the timevalue $\{($ Pope $, 1534,1549)$, (Cardinal, 1493, 1533) $\}$ for Pope Paul III's occupation attribute is consistent.

Note, however, that had we wanted to allow a person to have multiple occupations at the same time, we could simply define the domain of occupation to be the powerset of all strings rather than the set of all strings.

Note 6.2.2 Throughout the rest of this chapter, I will abuse notation and use the term "attribute" to refer to both ordinary and time-varying attributes. The context will determine the usage.

Just like ordinary attributes, the time-varying attributes can be generalized.

Definition 6.2.7 (Generalizing Time Varying Attributes) Suppose $(A, \operatorname{dom}(A))$ is a time-varying attribute. A generalization function for A is a mapping Γ_{A} from a timevalue for attribute $(A, \operatorname{dom}(A))$ to a singleton timevalue for attribute $(A, \operatorname{dom}(A))$ such that if $\Gamma_{A}(X)=\{(v, L, U)\}$ then

$$
[L, U] \subseteq\left[\min _{\left(v_{i}, L_{i}, U_{i}\right) \in X} L_{i}, \max _{\left(v_{i}, L_{i}, U_{i}\right) \in X} U_{i}\right] \wedge \exists\left(v_{j}, L_{j}, U_{j}\right) \in X[L, U] \cap\left[L_{j}, U_{j}\right] \neq \emptyset
$$

For example, a generalization function may map the set of timevalues \{ ("Bishop of Massa", 1538, 1552), ("Bishop of Nice", 1533, 1535) \} to a singleton timevalue $\{$ ("bishop", 1533, 1552) \}.

Note that if the definition of generalization function for time-varying attributes did not require that $\exists\left(v_{j}, L_{j}, U_{j}\right) \in X[L, U] \cap\left[L_{j}, U_{j}\right] \neq \emptyset$ then we would have a problem. The generalization function could, for example, return $\{($ "bishop", 1536,1537) $\}$ even though the original input said nothing about the time interval [1536, 1537].

Definition 6.2.8 (Story Schema) A story schema consists of a pair $(\mathcal{E}, \mathcal{A})$ where \mathcal{E} is a set of entities and \mathcal{A} is a set of attributes associated with \mathcal{E}. I will use \mathcal{A}^{o} (resp. $\mathcal{A}^{\text {tv }}$) to denote the ordinary (resp. time-varying) attributes in \mathcal{A}.

Returning to our example of the Pompeii archaeological site, the set of entities of interest to tourists could be defined as the union of (i) all artefacts in Pompeii that are of interest (including paintings, sculptures, etc), (ii) all objects and events depicted by those artefacts, and (iii) any people, places, and events related to entities in the
previous two categories. While the first two categories can be determined manually, based on the museum inventory, the last category is very vast and thus asks for an automatic retrieval.

Definition 6.2.9 (Instance) An instance w.r.t. story schema $(\mathcal{E}, \mathcal{A})$ is a partial mapping \mathcal{I} which takes an entity $e \in \mathcal{E}$ and an attribute $A \in \mathcal{A}$ and returns as output, a value $v \in \operatorname{dom}(A)$ when A is an ordinary attribute, and a timevalue $\{(v, L, U) \mid v \in$ $\operatorname{dom}(A)\}$ when A is a time-varying attribute.

Let us use the notation $\mathcal{I}(e, A)=\perp$ to indicate that $\mathcal{I}(e, A)$ is undefined. Here is a couple of instance examples in the context of paintings shown in Figure 6.1 and Figure 6.2.

Example 6.2.1 (Pentheus Instance) Pentheus was a Greek king who has made an enemy of the god Bacchus. Angered by this, the Maenads (who were priestesses worshipping Bacchus) transformed Pentheus into an animal and had his mother, Agave, kill him. A story instance may express these facts as follows:

1. occupation is a time-varying attribute with the value of $\{($ king $, \perp, \perp)\}$ which says that Pentheus has been king at an unknown time.
2. enemy is a time-varying attribute specifying the enemies of Pentheus, with the value of $\{(\{$ Bacchus, Maenads $\}, \perp, \perp)\}$. Notice that Bacchus and the Maenads are also entities with their own attributes, not shown here but present in the instance.
3. punishment is a time-varying attribute specifying Pentheus' punishments, with the value of $\{(\{$ "transformed into an animal", "killed" $\}, \perp, \perp)\}$.
4. mother is an ordinary attribute with the value Agave.

The table below shows attributes for other entities returned by the instance.

Entity	Attribute	Value					
Pentheus	occupation	$\{($ king $, \perp, \perp)\}$					
	enemy	$\{(\{$ Bacchus, Maenads $\}, \perp, \perp)\}$					
	punishment						
mother	$\{(\{$ "transformed into an animal", "killed" $\}, \perp, \perp)\}$						
Agave			$	$	Bacchus	occupation	god
:---	:---	:---					
	enemy						
friends	$\{($ Pentheus $, \perp, \perp)\}$						
$\{($ Maenads $, \perp, \perp)\}$							

Example 6.2.2 (Pope Paul III Instance) The following table lists various entities occurring in Figure 6.2. Note that this example leads to possible confusion. The entity "Alessandro Farnese" shown here is not the same as Pope Paul III (who was also named Alessandro Farnese). Thus, for every attribute value, we need to specify whether it also describes an entity. I use the parenthetical comment "(v)" to denote value when not clear from context.

Entity	Attribute	Value
Pope Paul III	occupation real_name treaties	$\begin{aligned} & \{(\text { Cardinal }, 1493,1533),(\text { Pope }, 1534,1549)\} \\ & \text { Alessandro Farnese }_{(v)} \\ & (\text { Treaty of Crespi, } 1544,1544) \end{aligned}$
Alessandro Farnese	occupation	$\{($ Bishop of Massa, 1538, 1552), (Archbishop of Tours, 1553, 1556) \}
Ottavio Farnese	occupation	$\{($ Duke of Parma and Piacenza, 1547, 1586) $\}$
Titian	occupation teacher	$\begin{aligned} & \{(\text { painter }, 1485,1576)\} \\ & \{\text { gentile }, \text { Giovanni Bellini }\} \end{aligned}$

Note that this is a very small instance - clearly a lot more is known about the individuals listed above (e.g. attributes of Titian can be the list of all paintings by him, his collaborators, etc.).

6.3 Story Computation Problem

In this section, we will look at the steps that lead to a story creation, discuss what makes one story better than the others, and finally state the story computation problem.

Let us start by defining the concepts of a valid instance and a full instance based on a set of data sources. Intuitively, these instances are used to collect all facts reported by these sources.

6.3.1 Valid and Full Instances

In order to create a story from a story schema, one may need to access a variety of sources. In the case of Pentheus, we may need to access ancient Greek texts, as well as modern works in Greek history to find out more about him. Let us assume that our data sources have an associated application program interface (this is a reasonable assumption as most commercial programs do have APIs). The source access table describes how to extract each attribute's value using source's API.

Definition 6.3.1 (Source Access Table) A source access tuple is a structure ($A, s, f_{A, s}$) where A is an attribute name, s is a data source, and $f_{A, s}$ is a partial function (body of software code) that maps objects to values in $\operatorname{dom}(A)$ when A is an ordinary attribute, and to timevalues over $\operatorname{dom}(A)$ when A is a time-varying attribute. A source access table is a finite set of source access tuples.

Suppose, for instance, that we want to consult the "Bacchae" (a play by Euripides) to find the value of the mother attribute of Pentheus. In this case, we can execute the function $f_{\text {mother, Bacchae }}$ (Pentheus).

The source access table does not, of course, need to be populated with a function for each source and each attribute. Some sources may provide some informa-
tion, while others may not. The functions $f_{A, s}$ are partial functions because some sources may not have information about Pentheus. For instance, the book "Egypt" may not have any information on Pentheus, even though it supports the the function $f_{\text {mother, } \text { Egypt }}$.

Note 6.3.1 The application developer is responsible for specifying the functions $f_{A, s}$ in the source access table. Such a function must return timevalues when A is a timevarying attribute. This can be quite difficult. For instance, determining when Pentheus was killed from a text document is a nontrivial task. Had we allowed timevalues to be more general (e.g. to say Pentheus was killed after some other event, or to say Pentheus was killed within 5 years of yet another event), then the functions $f_{A, s}$ would need to infer this even more complex information from textual sources.

Definition 6.3.2 (Valid Instance) Suppose $(\mathcal{E}, \mathcal{A})$ is a story schema, SAT is a source access table, and \mathcal{I} is an instance. \mathcal{I} is said to be valid w.r.t. SAT iff for every entity $e \in \mathcal{E}$ and every attribute $A \in \mathcal{A}$, if $\mathcal{I}(e, A)$ is defined, then there is a triple of the form $\left(A, s, f_{A, s}\right)$ in SAT such that $f_{A, s}(e)=\mathcal{I}(e, A)$.

Intuitively, the above definition says that an instance is valid w.r.t. some source access table if every fact (i.e. every assignment of value to an attribute for an entity) is supported by at least one source. Note that different sources may disagree on the value of a given attribute for a given entity. For instance, one source may say Pentheus' mother is Agave, while another may say that it is Hera.

Let us now define the full instance that, for each entity and attribute, collects all attribute values that are supported by at least one source.

Definition 6.3.3 (Full Instance) Suppose $(\mathcal{E}, \mathcal{A})$ is a story schema and SAT is a source access table. Suppose \mathcal{I} is an instance w.r.t. $\left(\mathcal{E}, \mathcal{A}^{\prime}\right)$ where the attributes in \mathcal{A}^{\prime} are
the same as the attributes in \mathcal{A} with one difference - if an attribute $A \in \mathcal{A}$ has $\operatorname{dom}(A)=2^{2^{S}}$, then the corresponding attribute $A^{\prime} \in \mathcal{A}^{\prime}$ has $\operatorname{dom}\left(A^{\prime}\right)=\operatorname{dom}(A)$. Otherwise, $\operatorname{dom}\left(A^{\prime}\right)=2^{\operatorname{dom}(A)}$, i.e. the powerset of the original domain. \mathcal{I} is said to be the full instance w.r.t. $(\mathcal{E}, \mathcal{A})$ and $S A T$ iff for all entities $e \in \mathcal{E}$ and attributes $A \in \mathcal{A}$,

$$
\mathcal{I}(e, A)=\left\{\begin{array}{ll}
\bigcup_{\forall s\left(A, s, f_{A, s}\right) \in S A T} f_{A, s}(e) & \text { if } \operatorname{dom}(A)=2^{2^{S}} \\
\left\{f_{A, s}(e) \mid \forall s\left(A, s, f_{A, s}\right) \in S A T\right\} & \text { otherwise }
\end{array} .\right.
$$

Intuitively, the above definition says that a full instance accumulates all the facts reported by various sources, independently of whether these facts are conflicting or not. A special treatment is given to set-valued facts, whose values are merged. We will look at how conflicts between accumulated facts can be resolved later on (Definition 6.3.6).

6.3.2 Stories

Before, we have noticed that different sources may return different values for the same attribute of an entity. Some of these values can be generalized to produce new, presumably more concise versions. Let us then extend the story schema with appropriate tools to generalize attribute values.

Definition 6.3.4 (Generalized Story Schema) A generalized story schema is a quadruple $(\mathcal{E}, \mathcal{A}, \sim, \mathcal{G})$ where $(\mathcal{E}, \mathcal{A})$ is a story schema, \sim is a mapping which associates an equivalence relation on $\operatorname{dom}(A)$ with each attribute $A \in \mathcal{A}$ and \mathcal{G} is a mapping which assigns, to each attribute $A \in \mathcal{A}$, a generalization function Γ_{A} for attribute A.

Thus, a generalized story schema adds to each attribute in the story schema an equivalence relation and a generalization function. Intuitively, an equivalence relation on
the domain $\operatorname{dom}(A)$ of attribute A specifies when certain values in the domain are considered equivalent. For example, we may consider strings "king" and "monarch" to be equivalent. Similarly, in a time-varying attribute, we may always consider ("king", L, U) and ("monarch", L^{\prime}, U^{\prime}) to be equivalent independently of whether $L=L^{\prime} \wedge U=U^{\prime}$ is true or not. Likewise, in the example of Pope Paul III, the equivalence relationship may say that the triple ("Bishop of ...",-,-) is always equivalent to other triples of the form ("Bishop of . ..",-,-) independently of whether the bishops involved governed different places.

The definition of a closed instance below takes a full instance associated with a source access table and closes it up by including all the generalized attribute values.

Definition 6.3.5 (Closed Instance) Suppose $(\mathcal{E}, \mathcal{A}, \sim, \mathcal{G})$ is a generalized story schema and \mathcal{I} is the full instance w.r.t. $(\mathcal{E}, \mathcal{A})$. The closed instance w.r.t. a source access table SAT and generalized story schema $(\mathcal{E}, \mathcal{A}, \sim, \mathcal{G})$ is defined as follows.

$$
\mathcal{I}^{\prime}(e, A)=\mathcal{I}(e, A) \cup\left\{\Gamma_{A}\left(X^{\prime}\right) \mid X^{\prime} \text { is an } \sim_{A} \text {-equivalence class of } \mathcal{I}(e, A)\right\} .
$$

In other words, here is how we find the closed instance associated with a given source access table and a given generalized story schema. For each entity e and each attribute A of this entity:

1. We first compute the set $\mathcal{I}(e, A)$ where \mathcal{I} is the full instance associated with our source access table.
2. We then split $\mathcal{I}(e, A)$ into equivalence classes using the equivalence relation \sim_{A} on $\operatorname{dom}(A)$. Suppose the equivalence classes thus generated are X_{1}, \ldots, X_{n}.
3. For each equivalence class X_{i}, we compute $\Gamma_{A}\left(X_{i}\right)$ - this is the generalization of the equivalence class X_{i} using the generalization function Γ_{A} associated with attribute A. Suppose $\Gamma_{A}\left(X_{i}\right)=v_{i}$.
4. Finally, we insert the tuple $\left(e, A, v_{i}\right)$ into the full instance.

This process is done for all entities e and all attributes A and all tuples of the form shown above are inserted into the full instance. The result is a closed instance.

A story cannot just be defined as a full instance. In the real world, the "full story" about any single person or event is likely to be very complex and involve a large amount of unimportant minutiae. For example, consider the story of Pope Paul III. Depending on what items about Pope Paul III are considered important, we may choose to merely say that he served as a bishop from 1538 to 1556 and ignore the details. However, the full instance associated with Pope Paul III may not explicitly say this - rather it might state (as in our example) that he was a bishop of this place for some time, that place for another time period, and so on. Generalization is needed to reduce these facts to a single concise fact.

Note that so far we have not tried to resolve possible conflicts between attribute values obtained from different sources. However, for the story to be consistent, these conflicts have to be resolved. In other words, suppose \mathcal{I}^{\prime} is a closed instance. Whenever $\mathcal{I}^{\prime}(e, A)$ contains more members than prescribed by $\operatorname{dom}(A)$, or represents an inconsistent timevalue, some mechanism is required to restore consistency by removing extra values.

Definition 6.3.6 (Conflict Management Policy) Given an attribute A with $\operatorname{dom}(A)=$ $2^{2^{S}}$, the conflict management policy χ_{A} is a mapping from $\operatorname{dom}(A)$ to $\operatorname{dom}(A)$ such that $\chi(X) \subseteq X$. For any other attribute A, χ_{A} is a mapping from $2^{\operatorname{dom}(A)}$ to $\operatorname{dom}(A)$ such that $\chi(X) \in X$.

Following are some examples of conflict management policies.

Example 6.3.1 (Temporal Conflict Resolution) Suppose different data sources provide different values v_{1}, \ldots, v_{n} for $\mathcal{I}(e, A)$ with a value v_{i} being inserted into the data source at time t_{i}. In this case, we pick the value v_{j} that has been inserted the last, i.e. $t_{j}=\max \left(t_{1}, \ldots, t_{n}\right)$. If multiple such j 's exist then one is selected randomly.

Example 6.3.2 (Source Based Conflict Resolution) The developer of a story may assign a credibility c_{i} to each source s_{i} that provides a value v_{i} for attribute A of entity e. This strategy picks value v_{i} such that $c_{i}=\max \left(c_{1}, \ldots, c_{n}\right)$. If multiple such i 's exist then one is selected randomly.

Example 6.3.3 (Voting Based Conflict Resolution) Each distinct value v_{i} returned by at least one data source has a number vote $\left(v_{i}\right)$ which is the number of sources that return v_{i}. In this case, the conflict resolution strategy returns the value with the highest vote. If multiple v_{i} 's have the same highest vote then one is selected randomly.

These are just three example strategies. It quite easy to create hybrids of these strategies as well. For example, we could first find the values for $\mathcal{I}(e, A)$ with the highest votes and then choose the one which is most recent.

Definition 6.3.7 (Deconflicted Instance) Suppose $(\mathcal{E}, \mathcal{A}, \sim, \mathcal{G})$ is a generalized story schema and \mathcal{I}^{\prime} is the closed instance w.r.t. $(\mathcal{E}, \mathcal{A})$. The deconflicted instance w.r.t. a source access table $S A T$, generalized story schema $(\mathcal{E}, \mathcal{A}, \sim, \mathcal{G})$, and conflict management policy χ is the instance \mathcal{I}^{\sharp} such that for all entities $e \in \mathcal{E}$ and all attributes $A \in \mathcal{A}$ if $\mathcal{I}^{\sharp}(e, A) \neq \perp$ then $\mathcal{I}^{\sharp}(e, A)=\chi\left(\mathcal{I}^{\prime}(e, A)\right)$.

Note that finding any arbitrary deconflicted instance is not enough. The instance $\mathcal{I}_{\text {null }}$ which is undefined for all $\mathcal{I}_{\text {null }}(e, A)$ is free of conflicts - however it is not very
useful as it has no information in it. I will later show how quality of instances can be judged.

We now have all concepts necessary to introduce the story concept. While instances are basically collections of facts, a story contains a subset of these facts, arranged in a certain order.

Definition 6.3.8 (Story) Suppose \mathcal{I} is a closed instance w.r.t. a generalized story schema $(\mathcal{E}, \mathcal{A}, \sim, \mathcal{G})$ and a source access table SAT, and $e \in \mathcal{E}$ is an entity. Then a story $\sigma(e, \mathcal{I})$ of size k, is a sequence of attribute-value pairs $\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle$ such that for all $1 \leq i \leq k, A_{i} \in \mathcal{A}$ and $v_{i}=\mathcal{I}\left(e_{i}, A_{i}\right)$. A deconflicted story w.r.t. a given conflict management policy is a sequence of attributevalue pairs $\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle$ such that for all $1 \leq i \leq k, A_{i} \in \mathcal{A}$ and $v_{i}=$ $\mathcal{I}^{\sharp}\left(e_{i}, A_{i}\right)$ where \mathcal{I}^{\sharp} is a deconflicted instance w.r.t. χ.

Note 6.3.2 Throughout the rest of this chapter, I will use the word "story" to refer to both ordinary and deconflicted stories.

Note that the above definition of a story only considers the content of a story and the order in which this content has to be presented. Actual presentation of a story to the audience will be discussed later in this chapter.

6.3.3 Optimal Stories

Not all stories are the same, even when they are on the same topic. For example, there are undoubtedly very boring books about Pentheus, just as there are illuminating and exciting books about him. While it is unwise to expect a computer to come up with an exceptional literary work, a user would still like to have a story that is cohesive, succinct and gets all the important facts across.

In Chapter 5 I have described the three CPR criteria [24] that affect the quality of video summaries: the continuity, the priority, and the repetition. As a story is essentially a kind of a summary, these three criteria apply to stories as well.

Let us see what each of the CPR criteria means when applied to a story. The priority determines the importance of facts included into a story. The continuity determines whether these facts are explained in the right logical order. Finally, the repetition determines the redundancy of included facts. Of course, in the last case we actually need the non-repetition rather than repetition.

As all three CPR criteria are subjective, let us define them in an abstract way. This will allow the story computation algorithms described later in this chapter to work with any notions of priority, continuity and non-repetition that fit within the abstract definitions given below.

Definition 6.3.9 (Story Evaluation Function) Suppose \mathcal{S} is the set of all possible stories about some entity e w.r.t. the same schema and source access table. Let χ, ϕ, and ρ be arbitrary functions from \mathcal{S} to the set of real numbers $[0,1]$ that measure the story's continuity, priority, and repetition, respectively. Given positive coefficients α, β, γ, these three functions can be aggregated into a single story evaluation function

$$
\operatorname{eval}(s)=\alpha \cdot \chi(s)+\beta \cdot \phi(s)-\gamma \cdot \rho(s)
$$

The evaluation function above consists of three weighted components. The first component, captured by the function ϕ measures the priority of the facts are included in the story. For example, the fact that Pentheus' mother was Agave is more important than the length of Pentheus' big toe. The second component, expressed through χ, describes how continuous the story is. Stories that deliver facts in a "conventional" order are more continuous than ones that jump wildly from one fact to another. The
third component concerns repetition - clearly, stories that repeat the same facts over and over again leave much to be desired.

Of course, there are multiple ways to compute the values of χ, ϕ, and ρ. Let us look at some possibilities.

Example 6.3.4 (Weight-Based Priority) Assume the existence of a mapping pwt : $\mathcal{E} \times \mathcal{A} \rightarrow[0,1]$ that assigns the degree of importance to each entity-attribute pair. Then, one can compute the total priority of a story $\left\{\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle\right\}$ as

$$
\phi\left(\left\{\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle\right\}\right)=\frac{2}{k^{2}} \cdot \sum_{1 \leq i \leq k}\left(p w t\left(e, A_{i}\right) \cdot(k-i+1)\right) .
$$

Example 6.3.5 (Knowledge-Based Priority) Every attribute value can be an entity on its own and may therefore have some attributes attached to it. The following priority function will favor stories that tell the user about well described entities first:

$$
\phi\left(\left\{\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle\right\}\right)=\frac{2 \cdot \sum_{1 \leq i \leq k}\left((k-i+1) \cdot \operatorname{card}\left(\left\{A \in \mathcal{A} \mid \mathcal{I}\left(v_{i}, A\right) \neq \perp\right\}\right)\right)}{k^{2} \cdot \max _{e \in \mathcal{E}} \operatorname{card}(\{A \in \mathcal{A} \mid \mathcal{I}(e, A) \neq \perp\})} .
$$

As \mathcal{I} is a partial function, we use the notation $\mathcal{I}(e, A) \neq \perp$ above to denote that $\mathcal{I}(e, A)$ is defined.

Example 6.3.6 (Reference-Based Priority) An attribute value can be referred to by attributes of other entities irrespective of whether it is a generic value (such as "36" or "green") or an entity on its own (such as "Agave"). In the second case, it can be beneficial to give often referred entities better placement in a story. This can be achieved with the following priority function:

$$
\phi\left(\left\{\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle\right\}\right)=\frac{2 \cdot \sum_{1 \leq i \leq k}\left((k-i+1) \cdot \operatorname{card}\left(\left\{\langle e, A\rangle \mid v_{i} \in \mathcal{E} \wedge \mathcal{I}(e, A)=v_{i}\right\}\right)\right)}{k^{2} \cdot \max _{e^{\prime} \in \mathcal{E}} \operatorname{card}\left(\left\{\langle e, A\rangle \mid \mathcal{I}(e, A)=e^{\prime}\right\}\right)} .
$$

Example 6.3.7 (Weight-Based Continuity) Assume the existence of a mapping cwt :

 $\mathcal{A} \times \mathcal{A} \rightarrow[0,1]$ that expresses the degree of connectedness between each two attributes. Such a function can, for example, be specified via a table which shows foreach pair of attributes, what their degree of connectedness is. Then, one can compute the total continuity of a story $\left\{\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle\right\}$ as

$$
\chi\left(\left\{\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle\right\}\right)=\frac{2}{k} \cdot \sum_{1 \leq i<k} \sum_{i<j \leq k} \frac{\operatorname{cwt}\left(A_{i}, A_{j}\right)}{|j-i|} .
$$

We will additionally require that for any unique $A, A_{1}, A_{2} \in \mathcal{A}, \operatorname{cwt}(A, A)=1$ and $\operatorname{cwt}\left(A_{1}, A_{2}\right) \geq \operatorname{cwt}\left(A_{1}, A\right)+\operatorname{cwt}\left(A, A_{2}\right)-1$.

Example 6.3.8 (Time-Based Continuity) As attributes may have timevalues, we may want to arrange them in order of increasing time to achieve continuity. This can be done with the following conitnuity function:

$$
\chi\left(\left\{\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle\right\}\right)=\frac{2}{k \cdot(k-1)} \cdot \sum_{1 \leq i<k} \sum_{i<j \leq k}\left\{\begin{array}{ll}
0 & \text { if } v_{i}=\left(-, t_{i},-\right) \wedge v_{j}=\left(-, t_{j},-\right) \wedge t_{i}>t_{j} \\
1 & \text { otherwise }
\end{array},\right.
$$

Example 6.3.9 (Weight-Based Repetition) Assume the existence of a mapping rwt :
$\mathcal{A} \times \mathcal{A} \rightarrow[0,1]$ that expresses the degree of similarity between each pair of attributes. Such a function can, for example, be specified via a table which shows for each pair of attributes, what their degree of similarity is. Then, one can compute the total repetition of a story $\left\{\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle\right\}$ as
$\rho\left(\left\{\left\langle A_{1}, v_{1}\right\rangle, \ldots,\left\langle A_{k}, v_{k}\right\rangle\right\}\right)=\frac{2 \cdot \sum_{1 \leq i<k} \sum_{i<j \leq k}\left(r w t\left(A_{i}, A_{j}\right) \cdot \operatorname{card}\left(v_{i}\right) \cdot \operatorname{card}\left(v_{j}\right)\right)}{k \cdot(k-1) \cdot \max _{1 \leq i \leq k} \operatorname{card}^{2}\left(v_{i}\right)}$.
We will additionally require that for any unique $A, A_{1}, A_{2} \in \mathcal{A}, \operatorname{rwt}(A, A)=1$, $\operatorname{rwt}\left(A_{1}, A_{2}\right)=\operatorname{rwt}\left(A_{2}, A_{1}\right)$, and $\operatorname{rwt}\left(A_{1}, A_{2}\right) \geq \operatorname{rwt}\left(A_{1}, A\right)+\operatorname{rwt}\left(A, A_{2}\right)-1$.

Armed with a collection of facts in the shape of an instance and a story evaluation function, we can now define what it means to create an optimal story.

Problem 1 (Optimal Story) Given an instance \mathcal{I}, a positive integer k, and an entity $e \in \mathcal{E}$ as input, find a story $\sigma(e, \mathcal{I})$ of size $\leq k$ that maximizes the value of a given evaluation function. In this case, $\sigma(e, \mathcal{I})$ is called an optimal story.

The next section will present algorithms to compute optimal (and suboptimal) stories.

6.4 Story Computation Algorithms

This section starts with the algorithms that help produce full, closed, and deconflicted instances, with respect to a given entity. I will then present a computationally complex algorithm that produces optimal stories and its faster suboptimal version. Finally, we will look at a few heuristic based algorithms which, while producing suboptimal results, may be more practical due to their lower computational complexity.

6.4.1 Building Instances

In order to create a story, one must first collect and generalize all known facts about story's subject and remove all possible conflicts between these facts. We have seen before in this chapter that such collections of facts are abstracted with instances. Let us then go over algorithms that, given an entity of interest, compute full, closed, and deconflicted instances with respect to this entity.

The first algorithm, called $\operatorname{Full\mathcal {I}}()$, takes an entity e and a source access table SAT as input and returns as output, the portion of the full instance generated by SAT which pertains to e.

```
Algorithm FullI(e,SAT)
    e is an entity
    SAT is a source access table
begin
    Result:= \emptyset
    for each }\langleA,s,\mp@subsup{f}{A,s}{}\rangle\mathrm{ in SAT do
        if fA,s}(e)\not=\emptyset\mathrm{ then
                if exists }\langleA,V\rangle\in\mathrm{ Result then
                    Result := Result \{\langleA,V\rangle}
                            Result := Result \cup{\langleA,V\cup{\mp@subsup{f}{A,s}{}(e)}\rangle}
                    else
                            Result := Result }\cup{\langleA,{\mp@subsup{f}{A,s}{}(e)}\rangle
            end if
        end if
    end for
    return Result
end
```

It is easy to see that $\operatorname{Full\mathcal {I}}()$ executes in time proportional to the size of SAT. Given a full instance \mathcal{I}, an equivalence relation \sim, and a generalization mapping \mathcal{G}, on can now compute the closed instance with respect to an entity e by using the following $\operatorname{Closed} \mathcal{I}()$ algorithm.

```
Algorithm ClosedI (e,\mathcal{I})
    e is an entity
    I}\mathrm{ is a full instance
begin
    Result :=\emptyset
    for each }\langleA,V\rangle=\mathcal{I}(e,A)\mathrm{ do
        D:=V
        while exists v\inV do
                        S : = \{ v ^ { \prime } \in V \| v ^ { \prime } \sim v \}
                        D:=D\cup{\mp@subsup{\Gamma}{A}{}(S)}
            V:=V\S
        end while
        Result := Result }\cup{\langleA,D\rangle
    end for
    return Result
end
```

The ClosedI () algorithm executes in time proportional to the number of attributes in its input multiplied by the average number of values per attribute. Suppose now that χ is a conflict management policy. The following $\operatorname{Deconf\mathcal {I}}()$ algorithm takes an entity of interest e and a closed instance \mathcal{I} and applies χ to return the deconflicted instance with respect to e.

```
Algorithm Deconf\mathcal{I}(e,\mathcal{I})
```

 \(e\) is an entity
 \(\mathcal{I}\) is a closed instance
 begin
Result $:=\emptyset$
for each $\langle A, V\rangle=\mathcal{I}(e, A)$ do
Result $:=$ Result $\cup\{\langle A, \chi(V)\rangle\}$
end for
return Result
end

The $\operatorname{Deconf\mathcal {I}}()$ algorithm executes in time proportional to the number of attributes in its input multiplied by the time taken by the conflict management policy χ.

We are now ready to create a stories.

6.4.2 Optimal Story Creation

Given an entity e and a source access table SAT, the $\operatorname{OptStory}()$ algorithm will find an optimal story of length k by maximizing the value of the evaluation function.

```
Algorithm OptStory(e,SAT,k)
    e is an entity
    SAT is a source access table
    k is the requested story size
begin
    I := DeconfI(ClosedII(e,FullI (e,SAT)))
    return RecStory(\emptyset,\mathcal{I},k)
end
```

The OptStory () algorithm creates a deconflicted instance \mathcal{I} with respect to e and calls the recursive RecStory () algorithm. The RecStory () enumerates over all possible stories of k or fewer attributes that can be derived from the given data and returns the best story with respect to the evaluation function $\operatorname{eval}()$.

```
Algorithm RecStory(Story, I, k)
    Story is the story so far
    \(\mathcal{I}\) is a partial instance
    \(k\) is the remaining story size
begin
    \(\langle\) BestS, BestW \(\rangle:=\langle\) Story, eval(Story) \(\rangle\)
    if \(k>0\) then
        for each \(\langle A, v\rangle \in \mathcal{I}\) do
            \(S:=\) Story with \(\langle A, v\rangle\) attached to the tail
            \(\langle S, W\rangle:=\operatorname{RecStory}(S, \mathcal{I} \backslash\{\langle A, v\rangle\}, k-1)\)
            if \(W>\) Best \(W\) then \(\langle\) Best \(S\), Best \(W\rangle:=\langle S, W\rangle\)
        end for
    end if
    return \(\langle B e s t S, B e s t W\rangle\)
end
```

Given n attributes, the $\operatorname{RecStory}()$ algorithm will have to sort through $\sum_{0 \leq i \leq k} \frac{n!}{(n-i)!}$ stories. Even if we restrict the algorithm to the k-length stories, it will still have to consider $\frac{n!}{(n-k)!}$ stories. To make story creation more manageable, let us consider the following algorithm, similar to the SEA algorithm from Chapter 5.

```
Algorithm RecStory+(Story,\mathcal{I},k,b)
    Story is the story so far
    I}\mathrm{ is a partial instance
    k}\mathrm{ is the remaining story size
    bis the branching factor
begin
    \langleBestS, BestW\rangle:= \langleStory,eval(Story)\rangle
    Q is a priority queue
    if }k>0\mathrm{ then
        for each }\langleA,v\rangle\in\mathcal{I}\mathrm{ do
            S:= Story with }\langleA,v\rangle\mathrm{ attached to the tail
            Q.add(S,eval(S))
            if length (Q)>b then Q.delete(tail(Q))
            end for
            for each SS\inQ do
                \langleS,W\rangle:= RecStory(SS,\mathcal{I}\SS,k-1)
                if W>BestW then \langleBestS,BestW\rangle:= \langleS,W\rangle
            end for
    end if
    return \langleBestS, BestW\rangle
end
```

The RecStory ${ }^{+}()$algorithm, essentially limits search at each step to the b best stories w.r.t. the evaluation function. Given n attributes, this algorithm only considers $1+\sum_{0 \leq i<k}\left(b^{i} \cdot(n-i)\right)$ stories. We will call OptStory $^{+}()$the algorithm that calls RecStory ${ }^{+}()$.

6.4.3 Heuristic Based Algorithms

The GenStory () algorithm given below is similar to the CPRgen algorithm from
Chapter 5. It uses the genetic programming approach to generate suboptimal stories in a reasonable amount of time.

```
Algorithm GenStory(e,SAT, \(k, N, \delta)\)
    \(e\) is an entity
    SAT is a source access table
    \(k\) is the requested story size
    \(N\) is the maximal number of iterations
    \(\delta\) is the desired fitness threshold
begin
    \(\mathcal{I}:=\operatorname{DeconfI}(\operatorname{Closed} \mathcal{I}(e, \operatorname{FullI}(e\), SAT \()))\)
    \(R:=\left\lceil\frac{\operatorname{card}(\mathcal{I})}{k}\right\rceil\)
```

```
    Q:=R stories of k}\mathrm{ attributes randomly chosen from }\mathcal{I
    for j}\in[1,N
        for i\in[1,R]
            S:= a solution randomly chosen among the ones in Q
            Choose random }\langleA,v\rangle\in\mathcal{I}\mathrm{ and }\langle\mp@subsup{A}{}{\prime},\mp@subsup{v}{}{\prime}\rangle\in
            Replace }\langle\mp@subsup{A}{}{\prime},\mp@subsup{v}{}{\prime}\rangle\mathrm{ in S with }\langleA,v
            Q:=Q\cup{S}
            Q:=Q\{S'} where }\forallS\inQ\operatorname{eval}(S)\geq\operatorname{eval}(\mp@subsup{S}{}{\prime}
```



```
                    Return best solution from Q
            end if
        end for
    end for
    Return best solution from Q
end
```

The GenStory () algorithm starts by obtaining a deconflicted instance \mathcal{I} with respect to e. It then creates an initial population of stories Q and proceeds to replace a random attribute in a random story taken from Q with another random attribute. The resulting new story is then added to Q and the worst story (w.r.t. eval()) is deleted from Q. This process repeats until all stories in Q have approximately the same worth (w.r.t. the value of δ) or the maximal number of iterations N is reached.

The following DynStory () algorithm is similar to the CPRdyn algorithm from Chapter 5. It uses the dynamic programming approach to generate suboptimal stories in a reasonable amount of time.

```
Algorithm DynStory (e, \(\mathcal{I}, k)\)
    \(e\) is an entity
    \(\mathcal{I}\) is the strong instance
    \(k\) is the requested story size
begin
    \(\mathcal{I}:=\operatorname{DeconfI}(\operatorname{Closed} \mathcal{I}(e, F u l l \mathcal{I}(e, \mathrm{SAT})))\)
    \(S:=\) solution of \(k\) attributes randomly chosen from \(\mathcal{I}\)
    \(\mathcal{I}:=\mathcal{I} \backslash S\)
    while \(\mathcal{I} \neq \emptyset\)
        subs \(:=\) false
        \(r:=1\)
        while \(r<k\) and subs \(=\) false
            \(S^{\prime}:=S\) with \(\left\langle A_{r}, v_{r}\right\rangle\) replaced with \(\operatorname{first}(\mathcal{I})\)
            if \(\operatorname{eval}(S)<\operatorname{eval}\left(S^{\prime}\right)\) then
                \(S:=S^{\prime}\)
                    Add \(\left\langle A_{r}, v_{r}\right\rangle\) to the tail of \(\mathcal{I}\)
```

```
                subs:= true
            else
                r:=r+1
            end if
        end while
        remove first(\mathcal{I}) from I
    end while
    return S
end
```

The DynStory () algorithm also starts by obtaining the deconflicted instance \mathcal{I} and creating a single random solution S. It then treats \mathcal{I} as an ordered list of candidates (as opposed to a set) and tries to replace each attribute in S with the first attribute from this list. As soon as a better solution is found, it takes the place of S. The algorithm terminates when the list of candidates is exhausted.

6.5 Implementation

Our group has developed a scalable story-telling architecture and implemented the STORY prototype system for automatically extracting facts from heterogeneous data sources, creating stories based on these facts, and delivering these stories to client devices, such as computers, PDAs, cell phones, and so forth. Figure 6.3 describes the architecture of our system. It assumes that there are two classes of users:

- Application developers build story-telling applications such as the Pompeii tour guide or the military intelligence-on-request application. Application developers interact with the system using the STORY Developer Interface in Figure 6.3.
- End users use story-telling applications built by the application developers. End users request and view stories using the STORY Client, as shown in Figure 6.3.

Our system contains all necessary tools for both kinds of users.

Figure 6.3: System Architecture.

The system consists of the Data Extraction Tools (written in C\#) that help extracting facts about entities from the data sources; the STORY Server (written in C++ and running on an Apache-equipped Solaris machine) that builds stories and delivers them over HTTP protocol to both generic Web browsers and specialized clients (such as a custom PocketPC client used in the Pompeii tour guide); and STORY Developer Interface (again in C\#) that gives application developer control over data extraction and story creation process. When creating a story-telling application, the STORY application developer typically goes through the following steps:

STEP 1: Extraction of attribute values. The developer needs to specify methods used to extract attribute values from heterogenous data sources, such as text, HTML documents, relational databases, and so forth. I will describe existing extraction methods in detail later in this section.

STEP 2: Description of continuity, priority, and repetition. The developer specifies the kinds of continuity, priority, and repetition functions to be used. He can either use ones mentioned earlier in this chapter, or add new ones that better fit his needs. For example, attributes can be grouped into hierarchies and priorities set for entire hierarchical branches, as well as for individual attributes.

STEP 3: Description of the conflict management. The developer specifies what kind of conflict management function he wants to use. He can either select from a few predefined functions, or add his own function.

STEP 4: Selection of the story creation algorithm. The developer describes which of the several story creation algorithms should be used. We currently offer a choice of OptStory $^{+}(), \operatorname{GenStory}()$, or DynStory () algorithms.

STEP 5: Description of the story output. The developer specifies the format in which stories will be presented to users. Using custom client applications, a story can be presented in a wide variety of different ways. For example, our client implementationa can present it as a table or a tree of attributes, or a narrative in English, Spanish, or Italian language. The narrative can be made of sentences taken from the data sources (in the language of these sources), or generated using templates. In the latter case, its output language can be changed with a relative ease, but the application developer has to supply a template for each attribute. Such a template is a plain text sentence with special tags "\%e", "\%a", and "\%v" specifying how to express the fact that "entity e 's attribute a has a value v ".

STEP 6: Story prefetching. The developer can supply a map with spatial locations of all or some entities and specify methods to prefetch stories to user's device (e.g. a PDA or the like). In some applications, such as the Pompeii tour guide, there is an advantage in tracking users' locations and prefetching stories based on their proximity to certain objects of interest.

6.6 Extracting Attribute Values

The attribute value extraction is perhaps the most difficult problem we have faced when implementing the STORY system. The present implementation extracts data from the Web (with some minimal human assistance). With the algorithms presented in the rest of this section, the data can also be extracted from relational tables and XML files, although the lack of datasets relevant to our sample applications has so far discouraged us from actively using these two sources.

6.6.1 Relational Sources

Extracting attribute values from relational sources is relatively easy, as the data is already well organized. Consider a relational table $T=\left\{c_{1}, \ldots, c_{m}, \ldots, c_{n}\right\}$ where c_{1}, \ldots, c_{n} are columns and c_{1}, \ldots, c_{m} are also keys. It is logical to assume that each column c_{j} corresponds to an attribute with the same name and contains values for this attribute. Then each row in T corresponds to a set of attributes. As a row is addressed by its key column values, one can assume that its corresponding entity can be stored in any of the key fields. Then for each two columns $c_{1 \leq i \leq m}, c_{1 \leq j \leq n}$ we add the following entry to the SAT table:

$$
\left\langle c_{j}, T: c_{i}, f_{c_{j}, T: c_{i}}(e)=\pi_{c_{j}} \sigma_{c_{i}=e} T\right\rangle .
$$

In other words, given a table T as the source, we obtain an attribute c_{j} for an entity e by looking for all table rows that can be referred by e and picking their c_{j} values.

6.6.2 XML Sources

Data extraction from XML documents is somewhat more complicated than from the relational tables, as XML has a flexible hierarchical data structure. Consider an XML
node $N=\left\langle\right.$ name, value,$\left.\left\{c_{1}, \ldots, c_{n}\right\}\right\rangle$ where c_{1}, \ldots, c_{n} are children nodes. Assuming that N is a root node in an XML document, and nodes may act both as entities and attributes, one can write the following algorithm to return a given attribute A for a given entity e.

```
Algorithm GetXMLAttr(N,e,A)
    N is the root XML node
    e is the entity
    A is the attribute
begin
    Result:=\emptyset
    if N.value = e or N.name = e then
        for each child c of N such that c.name = A do
                        Result := Result }\cup{\mathrm{ c.value }
            end for
    else
            for each child c of N do
                    Result := Result \cupGetXMLAttr (c,e,A)
        end for
    end if
    return Result
end
```

The Get X MLAttr () recursively finds all occurences of an entity e in the XML tree, collects all values for the requested attribute A, and returns the set of collected values. Notice that the algorithm tries to match e to both node value and node name. We can now enumerate all node names and values occuring in the XML tree as A_{1}, \ldots, A_{m}, and for each A_{i}, add a SAT table entry $\left\langle A_{i}, N, \operatorname{Get} X M L \operatorname{Attr}\left(N, e, A_{i}\right)\right\rangle$.

6.6.3 Web Sources

The process of extracting data from Web documents is a complex task. The current STORY implementation accomplishes it by looking for relevant documents using a common Web search engine (Google), performing semantic analysis of found documents, and extracting facts with the help of logical rules. The results are then presented to the application developer, who removes any mistakes introduced by the
extraction engine and uploads the data to the server. Following is a more detailed explanation of our data extraction process, step by step:

STEP 1: Document search. The extraction engine uses Google to search the Web for documents related to the entity of interest (e.g. "Pentheus") in the domain of interest (e.g. "Greek Mythology"). Returned documents are passed through an HTML parser that extracts from them significant pieces of text, while discarding the HTML formatting structure.

STEP 2: Lexical analysis. The extraction engine uses the publicly available WordNet lexical database to analyze the text and tags each word with its corresponding part of speech.

STEP 3: Name detection. The extraction engine uses some heuristics to recognize and classify named entities (such as personal, organizational, corporate, and geographic names and trademarks). The heuristic algorithm used in this step can be trained on a large corpora of data to improve its performance.

STEP 4: Disambiguation. The extraction engine uses common pronoun resolution and word sense disambiguation algorithms to produce an unambiguous version of the original text.

STEP 5: Semantic parsing. Finally, the rewritten text is analyzed by a semantic parser which applies a set of semantic rules to deduce the entity-attribute-value triples. Semantic rules are of the form head \rightarrow tail, where head is a pattern to be matched to a sentence taken from the text. If the pattern matches, the tail says how to extract one or more entity-attribute-value triples from this pattern. The system will try to determine the relevant time interval for each triple and
tag it with the pedigree information, such as the source and the date when the document has been last updated. This data can be later used for conflict management, or to give users information on where each fact comes from.

The semantic rules can be either entered into the system manually by the application developer or learned semi-automatically from examples.

STEP 6: Data cleanup. The application developer is presented with the entity-attributevalue triples extracted by the engine. His job is to remove any erroneous triples that sometimes appear in the extraction results. When developer is satisfied with the quality of results, he submits the data for upload to the STORY server.

6.7 Conclusion

In this chapter, I have laid out a theoretical foundation for automated story-telling based on the data culled from heterogenous data sources (RDBMS, XML, Web). I have shown how story-worthy facts are collected, processed, arranged into stories, and how resulting stories can be rated with respect to continuity, priority, and nonrepetition criteria. Furthermore, I have presented several algorithms to create stories. Finally, the chapter describes our prototype STORY system, its architecture and the process for creating story-telling applications.

The STORY project is an ongoing work. There is still a lot of space for improvement in our data extraction subsystem, in the template-based output mechanism, and the way system presents stories to users. The goal of the project is to make the system intelligent enough to perform data extraction on the fly, without human assistance, and create narrative that is both informative and engaging.

Chapter 7

Conclusion

Historically, computers were built to manipulate numbers and, later, text documents. There is a vast body of research related to these two kinds of data, with the relational algebra providing the common framework for organizing data.

The current abundance of cheap data storage, computing power, and rich presentation capabilities has made it possible to store and process large amounts of images, sound, and video. As result computers and computer networks gradually replace radio, television sets, tape and disk players as the primary source of audiovisual information and entertainment in today's homes.

The popularity of the multimedia data has stemmed research in multimedia storage, searching, and delivery in the past years. Unfortunately, while many specific properties of different media types have been addressed, there still isn't a common framework for organizing multimedia data in the same way relational algebra organizes numeric and text data. As of now, the most common method to "befriend" multimedia and traditional databases is to store multimedia files as "blobs" inside relational fields.

In this thesis, I have tried to fill the gap by proposing several relational-like al-
gebras for operating on PowerPoint, audio, and video data, which are kinds of multimedia most commonly used today. These algebras are devised in a way that addresses different representations of each media type, while leveraging their common properties. For example, the ADA audio database algebra represents audio with a set of time-ordered data sequences, including traditional waveforms, frequency spectrum changes, musical scores, or text transcripts. The VDA video database algebra represents video with a series of segments (blocks) characterized by features. While these features may come from different sources and represent different things (objects, events, paths, color distribution, movement), they all share such common properties as location at the screen and the percentage of this location occupied by the feature. The relative simplicity of the proposed algebras allows to prove some useful equivalences in them. Coupled with the cost model, these equivalences become the basis for the query optimization, as has been shown in this thesis. I have also presented some ways to accelerate query execution by indexing data and close examination of queries.

In addition to the algebraic approach to multimedia processing presented in the first chapters of this thesis, in the last chapters I present an alternative logical approach that uses logical reasoning to create short summaries of large multimedia files (Chapter 5) or facts obtained from heterogenous data sources (Chapter 6). To estimate the quality of produced summaries, I introduce the three criteria: (i) priority of the summarized information, (ii) continuity of a summary, (iii) amount of repetition in a summary. A summary is then composed of the available information by an algorithm maximizing the first two parameters (priority and continuity), while minimizing the third (repetition). I show several such summary composition algorithms.

It is my hope that concepts presented in this thesis will help other people to design
and implement large multimedia database systems able to interoperate with each other and produce "intelligent" answers to user queries.

Bibliography

[1] S. Adali, P. Bonatti, M.L. Sapino, and V.S. Subrahmanian. A Multi-Similarity Algebra. Proc. of ACM SIGMOD Conference on Management of Data, 1998, pp. 402-413.
[2] S. Adali, K.S. Candan, S.S. Chen, K. Erol, and V.S.Subrahmanian. Advanced Video Information Systems. ACM Multimedia Systems Journal, Vol. 4, 1996, pp. 172-186.
[3] S. Adali, M.L. Sapino, and V.S.Subrahmanian. Interactive Multimedia Presentation Databases, I: Algebra and Query Equivalences. ACM/Springer Multimedia Systems Journal, Vol. 8, Nr. 3, 2000, pp. 212-230.
[4] M. Albanese, M. Fayzullin, A. Picariello, and V.S. Subrahmanian. The Priority Curve Algorithm for Video Summarization. Proc. of 2nd ACM Intl. Workshop in Multimedia Databases, Arlington, Virginia, 2004.
[5] C. Baral, G. Gonzalez, and T.C. Som. Design and Implementation of Display Specifications for Multimedia Answers. Intl. Conference on Data Engineering, Orlando, Florida, 1998, pp. 558-565.
[6] R. Barzilay and M. Elhadad. Using Lexical Chains for Text Summarization. Proc. Intelligent Scalable Text Summarization Workshop, Madrid, Spain, 1997.
[7] T. Blum, D. Keislar, J. Wheaton and E. Wold. Audio Databases with Content-Based Retrieval. Proc. IJCAI Workshop on Intelligent Multimedia Information Retrieval, Montreal, Canada, 1995.
[8] T. Blum, D. Keislar, J. Wheaton and E. Wold. Content-Based Classification, Search, and Retrieval of Audio. IEEE Multimedia Magazine, Vol. 3(3), 1996, pp. 27-36.
[9] C. Bohm, S. Berchtold, and D.A. Keim. Searching in High-Dimensional Spaces: Index Structures for Improving The Performance of Multimedia Databases ACM Computing Surveys, Vol. 33(3), 2001, pp. 322-373.
[10] R.S. Boyer and J.S. Moore. A Fast String Searching Algorithm. Communications of the ACM, Vol. 20, 1977, pp. 762-772.
[11] M.C. Buchanan and P.T. Zellweger. Automatically Generating Consistent Schedules for Multimedia Documents. ACM/Springer Multimedia Systems Journal, Vol. 1(2), 1993.
[12] K. Chakrabarti, E. J. Keogh, S. Mehrotra, and M. J. Pazzani. Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases. ACM Transactions on Database Systems, Vol. 27(2), 2002, pp. 188-228.
[13] K. Chan and W. Fu. Efficient Time Series Matching by Wavelets. Intl. Conference on Data Engineering, Sydney, 1999, pp. 126-133.
[14] S. Chawathe, H. Garcia-Molina, J. Hammer, Y. Papakonstantinou, J. Ullman, and J. Widom. The Tsimmis Project: Integration of Heterogeneous Information Sources. Proc. 100th Anniversary Meeting of the Information Processing Society of Japan, Tokyo, Japan, 1994, pp. 7-18.
[15] S. Chang, J.R. Smith, M. Beigi, and A. Benitez. Visual Information Retrieval from Large Distributed Online Repositories. Communications of the ACM, December 1997, pp. 63-71.
[16] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. "Introduction to Algorithms, 2nd Edition" MIT Press, 2001.
[17] Y.F. Day, S. Dagtas, M. Iino, and A. Ghafoor. Object-Oriented Conceptual Modeling of Video Data. Proc. 11th International Conference on Data Engineering, Taipei, Taiwan, 1995, pp. 401-408.
[18] D. DeMenthon, D.S. Doermann, and V. Kobla. Video Summarization by Curve Simplification. Proc. ACM - Multimedia, Bristol, England, 1998, pp. 211-218.
[19] Y.F. Day, A. Khokhar, S. Dagtas, and A. Ghafoor. A Multi-Level Abstraction and Modeling in Video Databases. ACM/Springer Multimedia Systems Journal, Vol. 7(5), 1999, pp. 409-423.
[20] A. Duda, R. Weiss, and D.K. Gifford. Content-Based Access to Algebraic Video. 1994.
[21] C. Faloutsos. "Searching Multimedia Databases by Content" Kluwer, 1996.
[22] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast Subsequence Matching in Time-Series Databases. ACM SIGMOD Intl. Conference, Minneapolis, Minnesota, 1994, pp. 419-429.
[23] M. Farach. Optimal Suffix Tree Construction with Large Alphabets. Proc. 38th Annual Symposium on the Foundations of Computer Science, New York, 1997.
[24] M. Fayzullin, A. Picariello, M.L. Sapino, and V.S. Subrahmanian. The CPR Model for Summarizing Video. Proc. of 1st ACM Intl. Workshop in Multimedia Databases, New Orleans, Louisiana, 2003, pp. 2-9.
[25] M. Fayzullin and V.S. Subrahmanian. An Algebra for PowerPoint Sources. Multimedia Tools and Applications, Vol. 2(3), 2004, pp. 273-301.
[26] M. Fayzullin and V.S. Subrahmanian. Optimizing Selection and Mixing in Audio Databases. Workshop on Multimedia Information Systems, College Park, Maryland, 2004.
[27] J.T. Foote. Content-Based Retrieval of Music and Audio. Multimedia Storage and Archiving Systems II, Proc. of SPIE, Vol. 3229, 1997, pp. 138-147.
[28] J. Foote and S. Uchihashi. Summarizing Video Using a Shot Importance Measure and a Frame-Packing Algorithm. Proc. of the Int. Conf. on Acoustics, Speech, and Signal Processing, Phoenix, 1999, Vol. 6, pp. 3041-3044.
[29] M. Furini and D. Towsley. Real-Time Traffic Transmission Over the Internet. IEEE Transactions on Multimedia, Vol. 3(1), 2001, pp. 33-40.
[30] L. Gao, J. Kurose, and D. Towsley. Efficient Schemes for Broadcasting Popular Videos. ACM/Springer Multimedia Systems Journal, Vol. 8(4), 2002, pp. 284-294.
[31] L. Gao and D. Towsley. Threshold-Based Multicast for Continuous Media Delivery. IEEE Transactions on Multimedia, Vol. 3(4), 2001, pp. 405-414.
[32] U. Gargi, R. Kasturi, and S.H. Strayer. Performance Characterization of Video-Shot Change Detection Methods. IEEE Trans. on Circuits Systems Video Technology, Vol. 10(1), 2000, pp. 1-13.
[33] A. Ghias, J. Logan, D. Chamberlin and B. Smith. Query by Humming: Musical Information Retrieval in an Audio Database. ACM Multimedia, 1995, pp. 231-236.
[34] Y. Gong and X. Liu. Video Summarization Using Singular Value Decomposition. Proc. of Computer Vision and Pattern Recognition, 2000, pp. 174-180.
[35] R. C. Gonzales and P. Winz. "Digital Image Processing" Addison-Wesley Publishing Company, Knoxville, Tennesee, 1987.
[36] B. Gunsel and A.M. Tekalp. Content-Based Video Abstraction. IEEE Proc. Int'l Conf. on Image Processing, Chicago, Illinois, 1998.
[37] V. Hakkoymaz, J. Kraft, and G. Ozsoyoglu. Constraint Based Automation of Multimedia Presentation Assembly. ACM/Springer Multimedia Systems Journal, Vol. 7(6), 1999.
[38] A. Hanjalic. Shot-Boundary Detection: Unraveled and Resolved? IEEE Trans. Circuits Systems Video Technology, Vol. 12, 2002, pp. 90-105.
[39] L. He, E. Sanocki, A. Gupta and J. Grudin. Auto-Summarization of Audio-Video Presentations. ACM Proc. on Multimedia, 1999, pp. 489-498.
[40] E. Hovy and C.Y. Lin. Automated Text Summarization in SUMMARIST. In Mani and Maybury, 1998, pp. 18-24.
[41] J.L. Hsu, A.L.P. Chen, H.C. Chen, N.H. Liu. The Effectiveness Study of Various Music Information Retrieval Approaches. Proc. ACM Int. Conf. on Information and Knowledge Management, McLean, 2002, pp. 422-429.
[42] M.Y. Kim and J. Song. Multimedia Documents with Elastic Time. ACM Multimedia Conference, 1995.
[43] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast Nearest Neighbor Search in Medical Image Databases. Proc. 22nd International Conference on Very Large Data Bases, Mumbai, India, 1996, pp. 215-226.
[44] T. Kanade, M. Smith, S. Stevens, and H. Wactlar. Intelligent Access to Digital Video: The Informedia Project. IEEE Computer, Vol. 29(5), 1996, pp. 46-52.
[45] J. Korst and V. Pronk. Storing Continuous Media Data on a Compact Disc. ACM/Springer Multimedia Systems Journal, Vol. 4, 1996, pp. 187-196.
[46] T. Lee, L. Sheng, T. Bozkaya, N.H. Balkir, Z.M. Ozsoyoglu, and G. Ozsoyoglu. Querying Multimedia Presentations Based on Content. IEEE Trans. on Knowledge and Data Engineering, Vol. 11(3), 1999.
[47] K. Lemström, A. Haapaniemi and E. Ukkonen. Retrieving Music - To Index or not to Index. ACM Multimedia, September 1998, Bristol, UK.
[48] D. Li and H. Lu. Model Based Video Segmentation. IEEE Trans. Circuits Systems Video Technology, Vol. 5, 1995, pp. 533-544.
[49] J. Lin and Z.M. Ozsoyoglu. (1997) Processing OODB Queries by O-Algebra. Proc. 8th International Conference on Information and Knowledge Management, Rockville, Maryland, 1996, pp. 134-142.
[50] R. Lienhart, S. Pfeiffer, and W. Effelsberg. The MoCA Workbench: Support for Creativity in Movie Content Analysis. Proc. IEEE Conf. on Multimedia Computing and Systems, Hiroshima, Japan, 1995, pp. 314-321.
[51] T.D.C. Little and A. Ghafoor. Synchronization and Storage Models for Multimedia Objects. IEEE J. on Selected Areas of Communications, Vol. 8(3), 1990, pp. 413-427.
[52] T.D.C. Little and A. Ghafoor. Interval-Based Conceptual Models for Time-Dependent Multimedia Data. IEEE TKDE (Multimedia Information Systems), Vol. 5(4), 1993, pp. 551-563.
[53] W.Y. Ma and B.S. Manjunath. NETRA: A Toolbox For Navigating Large Image Databases. IEEE Multimedia Systems Journal, Vol. 7(3), 1999, pp. 184-198.
[54] D. Marcu. From Discourse Structures to Text Summaries. Proc. Intelligent Scalable Text Summarization Workshop, Madrid, Spain, 1997, pp. 82-88.
[55] H.Martin and R.Lozano. Dynamic Generation of Video Abstracts Using an Object Oriented Video DBMS. Networking and Information Systems Journal, Vol. 3(1), 2000, pp. 53-75.
[56] R.J. McNab, L.A. Smith, D. Bainbridge and I.H. Witten. The New Zealand Digital Library MELody inDEX. Digital Libraries Magazine, May 1997.
[57] S.B. Moon, J. Kurose, and D. Towsley. Packet Audio Playout Delay Adjustment: Performance Bounds and Algorithms. ACM/Springer Multimedia Systems Journal, Vol. 6(1), 1998, pp. 17-28.
[58] H.R. Naphide and T.S. Huang. A Probabilistic Framework for Semantic Video Indexing, Filtering, and Retrieval. IEEE Transactions on Multimedia, Vol. 3(1), 2001, pp. 141-151.
[59] E. Oomoto and K. Tanaka. OVID: Design and Implementation of a Video-Object Database System. IEEE TKDE (Multimedia Information Systems), Vol. 5(4), 1993, pp. 629-643.
[60] I.B. Ozer and W.H. Wolf. A Hierarchical Human Detection System in (Un)Compressed Domains. IEEE Transactions on Multimedia, Vol. 4(2), 2002, pp. 283-300.
[61] M.T. Ozsu, D. Szafron, G. El-Medani, and C. Vittal. An Object-Oriented Multimedia Database System for a News-on-Demand Application. ACM/Springer Multimedia Systems Journal, Vol. 3(5-6), 1995, pp. 182-203.
[62] S.C. Pei and Y.Z. Chou. Efficient MPEG Compressed Video Analysis Using Macroblock Type Information. IEEE Transactions on Multimedia, Vol. 1(4), 1999, pp. 321333.
[63] E. Petrakis and C. Faloutsos. Similarity Searching in Medical Image Databases. IEEE TKDE, Vol. 9(3), 1997, pp. 435-447.
[64] A. Picariello, M.L. Sapino, and V.S. Subrahmanian. A Video Database Algebra. 2003
[65] E. Pollastri and G. Haus. An Audio Front End for Query-by-Humming Systems. Music Information Retrieval, 2001.
[66] I. Popivanov and R. J. Miller. Similarity Search Over Time Series Data Using Wavelets. Intl. Conference on Data Engineering, San Jose, California, 2002, pp. 802-813.
[67] D. Rafiei. On Similarity-Based Queries for Time Series Data. Intl. Conference on Data Engineering, Sydney, Australia, 1999.
[68] T.J. Rogers, R. Ross, and V.S. Subrahmanian. IMPACT: A System for Building Agent Applications. Journal of Intelligent Information Systems, Vol. 14(2-3), 2000, pp. 95113.
[69] P. Salosaari and K. Jarvelin. MUSIR - A Retrieval Model for Music. Technical Report RN-1998-1, University of Tampere, Department of Information Studies, July 1998.
[70] H. Samet. "The Design and Analysis of Spatial Data Structures" Addison-Wesley, 1990.
[71] P. Schauble. "Content-Based Information Retrieval from Large Text and Audio Databases" Kluwer, 1997.
[72] Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara and S. Arikawa. A Boyer-Moore Type Algorithm for Compressed Pattern Matching. Proc. 11th Annual Symposium on Combinatorial Pattern Matching, Springer Verlag, 2000, pp. 181-194.
[73] A. Silberschatz, H. Korth, and S. Sudarshan. "Database System Concepts" McGrawHill, 1999.
[74] A. Soffer. Image Categorization Using Texture Features. Proc. 4th International Conference on Document Analysis and Recognition, Ulm, Germany, 1997, pp. 233-237.
[75] M.A. Stricker and M. Orengo. Similarity of Color Images. SPIE Proceedings, Vol. 2420, 1995, pp. 381-392.
[76] V.S. Subrahmanian. "Principles of Multimedia Database Systems" Morgan Kaufmann, 1998.
[77] V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, J.J. Lu, A. Rajput, T.J. Rogers, R. Ross, and C. Ward. HERMES: Heterogeneous Reasoning and Mediator System.
[78] M.J. Swain and D.H. Ballard. Color Indexing. Int. Journal of Computer Vision, Vol. 7(1), 1991, pp. 11-32.
[79] B.T. Truong, C. Dorai, and S. Venkatesk. New Enhancements to Cut, Fade, and Dissolve Detection Processing Video Segmentation. ACM Multimedia, 2000, pp. 219-227.
[80] J.D. Ullman. "Principles of Database Systems, 2nd Edition" W.H. Freeman \& Co, 1982.
[81] N. Vasconcelos and A. Lippman. Bayesian Modeling of Video Editing and Structure: Semantic Features for Video Summarization and Browsing. IEEE Proc. Int'l Conf. on Image Processing, Chicago, Illinois, 1996, pp. 153-157.
[82] J.Z. Wang, G. Wiederhold, O. Firschein, and S.X. Wei. Content-Based Image Indexing and Searching Using Daubechies' Wavelets. International Journal of Digital Libraries, Vol. 1(4), 1998, pp. 311-328.
[83] P. Weiner. Linear Pattern Matching Algorithms. Proc. 14th IEEE Annual Symp. on Switching and Automata Theory, 1973, pp. 1-11.
[84] D.A. White and R. Jain. Similarity Indexing: Algorithms and Performance. SPIE Proceedings, Vol. 2670, San Diego, 1996, pp. 62-73.
[85] M.J. Witbrock and A.G. Hauptmann. Speech Recognition in a Digital Video Library. J. of the American Society for Information Science (JASIS), Vol. 49(7), 1998, pp. 619632.
[86] I. Yahiaoui, B. Merialdo, and B. Huet. Generating Summaries of Multi-Episode Video. IEEE Int. Conf. on Multimedia and Expo, 2001, pp. 22-25.
[87] B. Yi and C. Faloutsos. Fast Time Sequence Indexing for Arbitrary LP-Norms. VLDB Intl. Conference, Cairo, Egypt, 2000, pp. 385-394.

[^0]: ${ }^{1}$ Assume that all such variables are well-typed.

[^1]: ${ }^{2}$ In classical relational algebra, we often like to push a selection inside a join. It will turn out that pulling back an apply out of various operators is often computationally efficient.

[^2]: ${ }^{3}$ In this paragraph, we are talking about $\mathrm{C}++$ objects, not the pptA objects.

