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Chapter 1

Introduction

During the last decade, the automated storage and processing of multimedia data,

such as images, sound, video, and multimedia presentations, has become widely used

in many aspects of human life. Whether you are preparing a speech for a business

meeting, or searching the Internet for Christmas presents, or identifying a compact

disk with Gracenote, it always comes down to computers having to work with media

that is richer than the “traditional” numbers and text, i.e. with the multimedia.

Multimedia data processing can be roughly classified by purpose into (i) storage

and delivery of data, (ii) indexing and search, (iii) data composition, and (iv) data sum-

marization. Research in some of these areas has been more successful than others, and

some work has even resulted in commercial tools (such as various multimedia search

engines and authoring tools). In others, such as data summarization, the research still

hasn’t led to any widely commercialized tools.

Less work has been done on formalization of multimedia data models in the way

relational algebra formalizes the tabular data model. Having formal models for mul-

timedia data would help better integration between multimedia applications (i-iv) and

allow for tools working across multiple media types.
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Abstracting multimedia data is difficult mainly because of its variety. The data

can be organized spatially (graphics), temporally (voice), or both (video). It may con-

tain attributes as diverse as color distributions, motion vectors, frequency spectrums,

phonemes, musical score, or plain text annotations. Even the same type of media

(such as “graphics” or “video”) can be represented in different ways with various file

formats. Each format has its own merits and weaknesses, sometimes making conver-

sion to other formats difficult or undesirable. For example, TrueColor images stored

in bitmap files retain all of their pixel properties, but are often too large to archive,

while more compact JPEG images lose individual pixel properties. Vector images

(e.g. SVG) can be converted to bitmaps, but all the vector data will be lost in the pro-

cess, making infeasible further geometrical transformations of the image. PowerPoint

presentations, stored in the PPT format, can also be converted to sequences of vector

or bitmap images, at the cost of losing their internal hierarchy of objects on slides.

Essentially, every multimedia file contains partially structured data. It is often

useful to query these structures directly, as they get modified or lost during conversion

to a more generic file format. The result of such a query will naturally appear in the

same format as the input. For example, a query that selects all frames with a certain

kind of motion from an MPEG source would produce an MPEG “summary” of that

source.

In addition to the data contained in a file, there is sometimes other information

that describes this data. This information may either come separately from the file,

or be implied from the data in the file and stored for later usage. An MPEG video,

for example, may have textual annotations that describe the video by the second. An

audio file may be passed through a speech recognition program to produce a separate

text transcript. Obtaining such information and using it in queries would be very
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useful.

Finally, indexing can be applied both to the data stored in the file and the infor-

mation that accompanies it. Finding the right index structures would facilitate query

execution.

The purpose of this work is to devise algebras that abstract operations performed

on some multimedia data, namely, PowerPoint presentations, video streams, and audio

streams. The work generally involves proposing a formal model for the data, defining

the algebra, finding and proving equivalences in the algebra, creating a reference im-

plementation of the database engine and a query optimizer and, finally, evaluating the

performance of this implementation.

The multimedia query languages developed in this work can be used as a part of

bigger heterogeneous database and agent systems, such as TSIMMIS [14], HERMES

[77], or IMPACT [68]. They can also be employed by the end users to create, search,

transform, merge, split, and summarize multimedia documents.

For example, a university student may search a database of lecture presentations

for slides containing a description of binary trees. He can issue a query to find these

slides and combine them with slides on hashing to create a single personalized pre-

sentation.

Similarly, a business analyst may want to scan all PowerPoint presentations made

by the department in the last year to find annual budget projections and attach the

relevant slides to his own presentation comparing the projected and the actual budget

use.

In a different example, a policeman looking at a surveillance video may request

all fragments of this video where motion occurs and a certain object (such as a gun)

is present. The result will be a video summary.
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In yet another example of video summarization, a sports news editor can take an

annotated video of a soccer play and create a video summary of all goals by one of

the teams.

This thesis consists of seven chapters. Chapter 2 describes the pptA algebra that

operates on PowerPoint presentations. This chapter (i) provides a formal model of

a PPT presentation, (ii) defines basic pptA operators, both new and those similar

to well known relational operators, (iii) shows algebraic equivalences, (iv) describes

the pptA implementation and the cost model for this implementation, (v) describes

the implementation of a query optimizer based on the cost model and shown equiv-

alences, and (vi) covers experiments conducted to estimate the merits of the query

optimization.

Chapter 3 covers the ADA algebra for audio recordings. The audio algebra model

is based on the concept of streams that carry various representations of the same au-

dio recording, such as waveforms, frequency spectrum, musical score, and text tran-

scripts. Similarly to pptA , Chapter 3 (i) provides a formal model of audio files

and databases, (ii) defines basic ADA operators, both new and similar to well known

relational operators, (iii) shows algebraic equivalences, (iv) proposes and discusses

several data structures facilitating the execution of some basic algebraic operators (v)

describes a reference ADA implementation, and (vi) covers experiments conducted to

assess the effect of data structures on the query execution.

Chapter 4 describes the VDA algebra for processing video data. The video al-

gebra model is based on grouping video frames into blocks containing spatially lo-

calized features, such as certain colors, movement, objects, actions, or events. This

model is closely related to the one used for video summarization in Chapter 5. Chap-

ter 4 (i) defines the model formally, (ii) defines basic VDA operators, both new and
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similar to well known relational operators, (iii) shows algebraic equivalences, (iv) dis-

cusses methods and data structures to accelerate operator execution and experimen-

tally shows their benefits, (v) describes and experimentally verifies the cost model and

the query optimizer, and finally (vi) describes the implementation of a reference VDA

system.

Chapter 5 deals with video summarization, i.e. creation of shortened videos based

on user defined constraints. The CPR summarization model proposed in this chapter

rates summaries in terms of priority, continuity, and repetition. Chapter 5 (i) defines

the concept of a video summary and its components, (ii) describes the language to

specify constraints on a summary, (iii) shows ways to measure continuity, priority, and

repetition of a summary, (iv) provides several algorithms to compute good summaries

with respect to these three criteria, and (iv) describes experiments assessing the quality

of summaries produced by different algorithms.

Chapter 6 presents a more general approach to document summarization using the

same basic CPR model introduced in Chapter 5. The STORY system described in

Chapter 6 allows to extract information about a given subject from multiple web doc-

uments, text documents, relational and XML data sources and create a text narrative

(story) conveying this information to the user. Chapter 6 (i) defines basic concepts

of entities, attributes, and stories, (ii) introduces generalization and conflict resolu-

tion in stories, (iii) provides ways to measure continuity, priority, and repetition of

stories, (iv) discusses several algorithms to produce good stories with respect to these

three criteria, and (v) describes our prototype STORY system implementation and the

process for creating STORY applications.

The final Chapter 7 provides some concluding remarks.
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Chapter 2

An Algebra For PowerPoint Presentations

2.1 Introduction

There are now millions of PowerPoint presentations on the web as well as on corporate

intranets. There is a growing need to query large collections of such presentations.

Corporate officials may want to find slides containing budget forecasts. Scientists

may wish to find relevant slides of a colleague’s technical presentations. University

students studying Quattro may examine presentations on the web to get explanations

that are more intuitive to them than their instructor’s explanation. In short, the need

to query such data sources cuts across a wide spectrum of end users.

Despite all this interest, there have been just two efforts (Ozsoyoglu et. al. [49, 46]

and Adali et. al. [3]) to come up with formal models of general multimedia presen-

tations — neither of these frameworks takes advantage of the specific features of

PowerPoint. Both models query a presentation based on the playout of the presenta-

tion rather than the way the presentation is structured. Ozsoyoglu et. al. [49] use a

graph representation of multimedia presentations and present a graph-based algebra.

Adali et. al. [3] present a difference constraint based model and algebra for modeling
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interactive presentations and querying them.

In contrast, PowerPoint presentations have a logical hierarchical representation

consisting of three components — presentations, slides, and objects within a slide.

In order to have an algebra that is specific to PowerPoint, one must take into ac-

count the specific representation of PowerPoint data which uses this logical structure.

The work presented in this chapter [25] uses this hierarchy and thus captures Power-

Point presentations more accurately than previous models do. In contrast to [3], we

have developed a prototype implementation of the PPT database and shown extensive

equivalence results which may be used as rewrite rules for query optimization (which

[46] does not). We have also developed a cost model for such databases (which to my

knowledge is the first such cost model) and obtained experimental results assessing

the use of these equivalences from an efficiency point of view (again a first to my

knowledge).

The organization of this chapter is as follows. In the first section, I start by present-

ing a formal model of a PPT presentation. The second section describes the algebraic

operators includes both analogs of traditional relational operators, and the new oper-

ators such as APPLY . This section also shows a host of query equivalence results

that will be useful for optimizing queries. The implementation and the cost model

are covered in the third section, together with the experimental validation of the cost

model. The fourth section contains experimental results related to equivalences and

the optimization. The final, fifth section compares the proposed framework with the

existing body of work.
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2.2 A Formal Description of PowerPoint Databases

A PPT presentation consists of a sequence of slides. Each slide contains a set of ob-

jects. Such objects can include text boxes, images, animations, embedded data views

(e.g. charts and tables) amongst others. Each object has attributes — different objects

may have different attributes and different attribute values. In order to formalize the

definition of a PPT document, let us start “bottom up” by defining objects first, then

slides, then presentations, and finally PPT databases.

Let us start with the assumption that there is some arbitrary but fixed universeA of

strings called attributes and each attribute A ∈ A has an associated domain dom(A).

Assume the existence of a special set Mand ⊆ A of attributes called mandatory at-

tributes. Each domain dom(A) may have zero or more associated binary relations in

it. We will use the notation BR(A) to denote the set of all binary relations associ-

ated with attribute A. For example, dom(Type) = N and BR(Type) = {=, 6=}.

Similarly, if dom(Data) is an arbitrary string, then BR(Data) = {=, 6=, <,≤, >,≥

, contains}.

Note: Throughout this chapter, I assume that Mand contains at least the following

attributes: Type, Data (arbitrary strings), and Loc (two coordinate pairs representing

top left and bottom right corners of a rectangle).

Definition 2.2.1 (Attribute Value Pair) If A ∈ A is an attribute, and v ∈ dom(A),

then 〈A, v〉 is an attribute value pair. A is the name of this pair and v is the value of

the pair. For example, 〈Loc, (2, 3, 4, 5)〉 is an attribute value pair.

Example 2.2.1 Color and Picture are possible attributes in A. dom(Color) may

be an enumerated type consisting of strings that denote colors, and dom(Picture)

may be the set of strings denoting valid image names with extensions such as JPG,
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GIF, TIFF and BMP. Then 〈Color, “red”〉 and 〈Picture, “aster.jpg”〉 are attribute

value pairs. Another possible attribute is ColorSet whose domain is the superset of

dom(Color).

The following definition says that for a set of attribute value pairs to be considered

valid, it must contain a pair for each mandatory attribute.

Definition 2.2.2 (Valid Attribute Value Pairs) A finite set AVP of attribute value pairs

is said to be valid iff for every attribute A ∈ Mand there is exactly one pair in AVP of

the form 〈A,−〉. We will use the “− ” symbol to denote “any value”.

Example 2.2.2 {〈Type, P ICTURE〉, 〈Data, “aster.bmp”〉, 〈Loc, (5, 25, 55, 75)〉}

is valid. However, {〈Data, “Directions”〉, 〈Color, “blue”〉, 〈Font, “Arial”〉} is not

valid as it contains no pairs of the form 〈Type,−〉 and 〈Loc,−〉.

Throughout the rest of this chapter, I assume the existence of a special set valued

domain, dom(IDs), i.e. every member of dom(IDs) is a set.

Definition 2.2.3 (Object) An object o is a pair o = 〈id, AVP〉 where id is a member

of dom(IDs), and AVP is a valid set of attribute value pairs.

Slide s11 Slide s12 Slide s13

Figure 2.1: Presentation p1.
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Slide s21 Slide s22

Figure 2.2: Presentation p2.

Figures 2.1 and 2.2 show two very small PowerPoint presentations, “Falls.ppt”

and “Flowers.ppt”. We will use these presentations to illustrate the definitions and

concepts introduced in this chapter.

Example 2.2.3 For example, the first slide of the “Flowers” presentation has such

objects as 〈{o111}, {〈Type, TEXT 〉, 〈Data, “F lowers of the Mountains”〉, 〈Loc,

(20, 10, 620, 40)〉, 〈FontSize, 30〉, 〈Color, GREEN〉}〉, 〈{o112}, 〈Type, TEXT 〉,

〈Data, “Presentation by John Smith”〉, 〈Loc, (220, 45, 420, 60)〉}〉, and 〈{o113},

{〈Type, P ICTURE〉, 〈Data, “flowers.bmp”〉, 〈Loc, (20, 80, 320, 470)〉}〉.

Definition 2.2.4 (Slide) A slide is a triple 〈id, T itles, Objects〉where id ∈ dom(IDs),

T itles is a finite set of strings, and Objects is a finite set of objects such that if

〈o, AVP1〉, 〈o, AVP2〉 ∈ Objects then AVP1 = AVP2.

The above definition requires that the same object id cannot occur twice in the set

of objects comprising a slide. In addition, it is important to note that T itles may be

viewed as an attribute whose domain is the powerset of the set of all strings.

Example 2.2.4 The first slide in the “Flowers.ppt” may be described as

〈{s11}, {“T itle Slide”}, {objects}〉.
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Definition 2.2.5 (PPT Presentation) A PPT presentation is a 4-tuple

(T itles, Authors, Slides, succ) where:

1. Slides is a finite set of slides such that: (∀s1, s2 ∈ Slides) s1 6= s2 → s1.id 6=

s2.id

2. T itles and Authors are finite sets of strings, and

3. succ : Slides→ Slides is an injective partial function that satisfies the follow-

ing axioms:

(a) there is exactly one member of Slides, denoted Slidesend for which

succ(Slidesend) is undefined.

(b) (∀s1, s2 ∈ S)succ(s1) = succ(s2)→ s1 = s2.

Note that as succ is injective, it implicitly induces a total ordering on the slides

in a presentation. When s2 = succ(s1), we will often refer to s2 as the successor

of s1 and s1 as the predecessor of s2. As in the case of slides, T itles and Authors

may be viewed as attributes whose domain is the powerset of the set of all strings.

Throughout the chapter, I will proceed with this assumption. Let us further assume

that all set valued attributes A have set inclusion as a special binary relation in BR(A).

Furthermore, for any attribute A whose domain dom(A) is a powerset type, instead

of writing {x} ⊆ X , we will often write x ∈ X .

Definition 2.2.6 (PPT Database) A PPT database is a finite set of PPT presenta-

tions.

2.3 The PowerPoint Algebra pptA

In this section, I define the operators associated with the PowerPoint algebra, pptA . In

addition to operators that resemble the classical relational algebra operators (selection,
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projection, cartesian product, join, and set operators), pptA also has a number of

operators that are unique to PowerPoint presentations. Many operators in pptA are

parametrized by special functions that transform objects/slides/presentations into new

objects/slides/presentations respectively.

Definition 2.3.1 (Transformation Functions) An object (resp. slide, presentation)

transformation function is a mapping from objects to objects (resp. slides to slides,

presentations to presentations).

The following examples present some sample transformation functions.

Example 2.3.1 Function fred(o) = 〈o.id, o.AV P−{x ∈ o.AV P |x = 〈Color,−〉} ∪

{〈Color, “red′′〉}〉 changes the color of an object to “red”, while the fincfont(o) =

〈o.id, o.AV P − {x ∈ o.AV P | x = 〈Fsize,−〉} ∪ {〈Fsize, x + 4〉 | 〈Fsize, x〉 ∈

o.AV P}〉 increases an object’s font size by 4. Note that fincfont will not cause any

change within an object that has no font properties.

Example 2.3.2 The slide transformation function fremsmall(s) = 〈s.id, s.T itles, {o ∈

s.Objects | ∀x ∈ o.AV P x.name = FontSize → x.val ≥ 12}〉 removes all ob-

jects that have a font size of less than 12. Function fgrback(s) = 〈s.id, s.T itles,

(s.Objects− {x | x.name = Background})∪ {〈Background, green〉}〉 changes

backgrounds of all slide objects to green.

Example 2.3.3 An example of a presentation transformation function is one that adds

a new author a to a presentation:

faddauth(p) = 〈p.T itles, p.Authors ∪ {a}, p.Slides, p.succ〉.
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Throughout the rest of this chapter, I will often use f(X) to denote the applica-

tion of a transformation function to X . By looking at the type of X , one can infer

whether f is an object (resp. slide, presentation) transformation function. Thu it is

not necessary to explicitly state what kind of transformation function f is.

Definition 2.3.2 (A-invariant Transformation Function) An object transformation

function f is said to be A-invariant if for all objects o, 〈A, v〉 ∈ o.AV P iff 〈A, v〉 ∈

f(o).AV P.

Definition 2.3.3 (Commuting Transformation Functions) Two object transforma-

tion functions f, g commute iff for all objects o, f(g(o)) = g(f(o)). Commuting slide

and presentation transformation functions may be defined analogously.

Definition 2.3.4 (Idempotent Transformation Functions) A transformation function

f is idempotent iff f(X) = f(f(X)).

Definition 2.3.5 (Sensible Object Transformation Functions) An object transforma-

tion function f is sensible iff for each attribute A, there is a bijection fA : dom(A)→

dom(A) such that for all objects o, 〈A, v〉 ∈ f(o).AVP iff there exists an 〈A, v ′〉 ∈

o.AVP and fA(v) = v′.

The definition of sensible transformations may be extended to slides and pre-

sentations in the obvious way. Object transformation functions map objects to ob-

jects. Consider two objects o1, o2 with attribute value pairs {〈A1, v1〉, 〈A1, v2〉} and

{〈A1, v1〉, 〈A2, v2〉}. These two objects are indistinguishable (they have the same at-

tributes and the same values for those attributes). However, theoretically, an object

transformation function could map these two objects to two completely different ob-

jects (with varying attributes and different attribute values). The definition of sensi-

bility says that this cannot happen - if two objects have the same pair 〈A, v〉 in their
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set of attribute value pairs, the output (after the object transformation) must change

this pair in the same way for both objects.

Throughout the rest of this chapter, unless specified otherwise, all transformation

functions are assumed to be sensible. The example transformation functions above

are all sensible.

2.3.1 The APPLY Operator

The first algebraic operator is the APPLY operator α which applies a transformation

function to presentation entities.

Definition 2.3.6 (APPLY Operator) Suppose f is a transformation function. The

APPLY operator α is defined as follows.

• Suppose f is an object transformation function. Then the application of f to a

an object o (resp. slide s, presentation p, presentation database pDB) is defined

as:

α(f, o).id = o.id

α(f, o).AV P = f(o).AV P

α(f, s).id = s.id

α(f, s).T itles = s.T itles

α(f, s).Objects = {α(f, o) | o ∈ s.Objects}

α(f, p).T itles = p.T itles

α(f, p).Authors = p.Authors

α(f, p).Slides = {α(f, s) | s ∈ p.Slides}

α(f, p).succ(α(f, s)) = α(f, s′) iff p.succ(s) = s′
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α(f, pDB) = {α(f, p) | p ∈ pDB}

• Suppose f is a slide transformation function. Then the application of f to a

slide s (resp. presentation p, presentation database pDB) is defined as:

α(f, s).id = s.id

α(f, s).T itles = f(s).T itles

α(f, s).Objects = f(s).Objects

α(f, p).T itles = p.T itles

α(f, p).Authors = p.Authors

α(f, p).Slides = {α(f, s) | s ∈ p.Slides}

α(f, p).succ(α(f, s)) = α(f, s′) iff p.succ(s) = s′

α(f, pDB) = {α(f, p) | p ∈ pDB}

• Suppose f is a presentation transformation function. Then the application of f

to a presentation p (resp. presentation database pDB is defined as:

α(f, p) = f(p)

α(f, pDB) = {α(f, p) | p ∈ pDB}

Example 2.3.4 α(fred, s11) highlights all objects on slide s11 of “Flowers.ppt” in

red.

The following theorem states that APPLY commutes as long as the transformation

functions commute and are sensible.
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Theorem 2.3.1 Suppose f, g are sensible object (resp. slide, presentation) transfor-

mation functions and suppose X ∈ {o, s, p} where o is an object, s is a slide, p is a

presentation. If f, g commute, then so does the APPLY operator, i.e. α(f, α(g, X)) =

α(g, α(f, X)).

Proof of Theorem 2.3.1. We show the case where f is an object transformation

function (the cases when its a slide/presentation transformation function are similar).

We need to show that each of the components of the object returned by α(f, α(g, X))

and α(g, α(f, X)) are identical where X is an object.

1. α(f, α(g, X)).id = X.id = α(g, α(f, X)).id.

2. Suppose 〈A, v〉 ∈ α(f, α(g, X)).AV P . Then 〈A, v〉 ∈ f(g(X)).AV P As f, g

commute, 〈A, v〉 ∈ g(f(X)).AV P and hence 〈A, v〉 ∈ α(g, α(f, X)).AV P .

The reverse inclusion is similar.

The following theorem states that the APPLY operator is idempotent as long as the

transformation functions are themselves idempotent.

Theorem 2.3.2 Suppose f is an idempotent object (resp. slide, presentation) trans-

formation functions and suppose X ∈ {o, s, p}. Then α(f, α(f, X)) = α(f, X).

Proof of Theorem 2.3.2. We show the case where f is an object transformation func-

tion (the cases when its a slide/presentation transformation function are similar). We

need to show that each of the components of the object returned by α(f, α(f, X)) =

α(f, X) coincide.

1. α(f, α(f, X)).id = X.id = α(f, X).id
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2. Suppose 〈A, v〉 ∈ α(f, α(f, X)). Then 〈A, v〉 ∈ f(f(X)).AV P - as f is idem-

potent, 〈A, v〉 ∈ f(X).AV P which means it is also in α(f, X).AV P . The

reverse inclusion is similar.

2.3.2 The SELECT Operator

The most important operation is selection. Let us first define the syntax of a selection

condition, and then define selection.

Selection Conditions

Let us assume the existence of special disjoint sets Vo, Vs, Vp whose members are

called root object/slide/presentation variables, respectively.

Definition 2.3.7 (Object Variables) (i) Every root object variable is an object vari-

able of type “all.” (ii) If X is an object variable and A ∈ A is an attribute, then X.A

is an object variable of type dom(A) 1.

Slide variables and presentation variables may be defined in exactly the same way

as object variables, by replacing all occurrences of the word “object” in the above def-

inition by “slide” and “presentation” respectively. Hence, if S is a root slide variable,

then S.T itles is a perfectly good slide variable.

Definition 2.3.8 (Object Term) (i) Every member of dom(A) is an object term of

type dom(A). (ii) Every object variable of type τ is an object term of type τ . Slide

terms and presentation terms are defined in an analogous way.

1Assume that all such variables are well-typed.
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Definition 2.3.9 (Object Atom) If T1, T2 are object terms of type dom(A) for some

A, and if op ∈ BR(A), then T1 op T2 is an object atom. Slide atoms and presentation

atoms are defined in an analogous way.

Example 2.3.5 If dom(FontSize) = N and “≤”∈ BR(FontSize), then

o1.F ontSize ≤ 24 is an object atom. If dom(Data) is the set of all strings and

“contains”is in BR(Data), then contains(o1.Data, o2.Data) is an object atom.

Definition 2.3.10 (Object Condition (OC) and Object Selection Condition (OSC))

(i) Every object atom is an OC. (ii) If oc1, oc2 are OCs, then so are oc1 ∧ oc2, oc1 ∨ oc2

and ¬oc1. An object selection condition (OSC) is a special kind of OC that contains

exactly one root variable, denoted O ∈ Vo.

Slide selection conditions (SSCs) and presentation selection conditions (PSCs) are

defined in an analogous way - the only difference is that the root variable is required

to be in Vs and Vp respectively.

Example 2.3.6 ¬contains(O1.Data, O2.Data) and O1.F ontSize ≤ O2.F ontSize∧

O1.Data = O2.Data are both object conditions. However, neither of them is an OSC

because they contain two root variables. O.FontSize < 20∧contains(O.Data, “the”)

is a valid OSC as it has exactly one root variable O.

Selection

We are now ready to define the selection operator. Given a selection condition C

involving a free variable X , let us use C[X/x] to denote the replacement of all occur-

rences of X in C by x.
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Definition 2.3.11 (SELECT Operator) Suppose C is a selection condition (OSC, SSC,

or PSC) with the single root variable (either O ranging over objects or S ranging over

slides) in it. The SELECT operator σ is defined as follows.

• Suppose C is an OSC. Then:

σC(s).id = s.id

σC(s).T itles = s.T itles

σC(s).Objects = {o | o ∈ s.Objects ∧ C[O/o]}

σC(p).T itles = p.T itles

σC(p).Authors = p.Authors

σC(p).Slides = {σC(s) | s ∈ p.Slides}

σC(p).succ = succ′ as defined below

σC(pDB) = {σC(p) | p ∈ pDB}

• Suppose C is an SSC. Then:

σC(p).T itles = p.T itles

σC(p).Authors = p.Authors

σC(p).Slides = {σC(s) | s ∈ p ∧ C[S/s]}

σC(p).succ = succ′ as defined below

σC(pDB) = {σC(p) | p ∈ pDB}

• Suppose C is a PSC. Then:

σC(pDB) = {σC(p) | p ∈ pDB ∧ C[P/p]}
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In the above, succ′(s1) = s2 where s2 = min{s′ | (∃i > 0)(s′ = succi(s1) ∧ s′ ∈

σC(p).Slides) ∧ (∀0 < j < i)(succj(s1) /∈ σC(p).Slides)}.

Example 2.3.7 The user can select all pictures from slide s13 in the sample presen-

tation p1 (“Flowers”) by writing σO.Type=PICTURE(s13). He can select all pictures in

the presentation by writing σO.Type=PICTURE(p1).

Just like in relational algebra, it is permissible to swap two SELECT operators in

pptA :

Theorem 2.3.3 (Changing Order of SELECT Operators) Suppose C1, C2 are selec-

tion conditions and X is a slide (resp. presentation). Then σC2(σC1(X)) = σC1(σC2(X)).

Proof of Theorem 2.3.3. Similar to the proof of commutativity of a classical rela-

tional selection.

The following result shows that as long as an object (resp. slide) transformation

is A-invariant for all A occurring in a selection condition, the APPLY operator can be

pulled back outside a selection2.

Theorem 2.3.4 (Pullback Theorem: APPLY and SELECT ) Suppose f is an object

(resp. slide) transformation function that is A-invariant for all attribute names A

occurring in an object (resp. slide) selection condition C, and X is a slide (resp.

presentation). Then α(f, σC(X)) = σC(α(f, X)).

Proof of Theorem 2.3.4. We show the case where f is an object transformation

function (the cases when its a slide/presentation transformation function are similar).

2In classical relational algebra, we often like to push a selection inside a join. It will turn out that

pulling back an apply out of various operators is often computationally efficient.
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We need to show that each of the components of the object returned by α(f, σC(X))

and σC(α(f, X)) coincide.

1. α(f, σC(X)).id = X.id = σC(α(f, X)).

2. Suppose o ∈ α(f, σC(X)).Objects. Then o = f(x) for some x that satisfies

condition C. As f is A-invariant for all attributes occurring in C, this means

that f(x) satisfies condition C as well. This in turn means that o = f(x) is

returned by σC(α(f, X)). The reverse inclusion is similar.

3. α(f, σC(X)).T itles = X.T itles = σC(α(f, X)).T itles.

Basically, the theorem says that as long as the selection condition only evaluates

attributes not affected by an APPLY operation, the order in which the two are per-

formed is irrelevant.

Finally, to select slides containing a certain object inside a presentation, let us

introduce the slide select operator.

Definition 2.3.12 (Slide SELECT Operator) Given a presentation p and an object

selection condition C, the slide select operator ζC(p) produces a new presentation

such that

ζC(p).T itles = p.T itles

ζC(p).Authors = p.Authors

ζC(p).Slides = {s | s ∈ p.Slides ∧ (∃o ∈ s.Objects) C[O/o] is true}

ζC(pDB) = {ζC(p) | p ∈ pDB}
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2.3.3 The PROJECT Operator

In this section, I define the pptA analog of projection. Not all attributes may be

projected out. For instance, the object location attribute Loc cannot be projected out

as PowerPoint requires each object to occupy some location on a slide.

Definition 2.3.13 (Projectable Attribute Set) A projectable attribute set is any set

A′ of attributes such that {T itles, Authors} ∪ Mand ⊆ A′ ⊆ A.

Intuitively, projectable attribute sets prevent users from eliminating mandatory

attributes and/or specialized attributes like T itles, Authors.

Definition 2.3.14 (Projection) SupposeA′ is a projectable attribute set. The PROJECT

operator πA′() is defined as follows.

1. If o is an object, then πA′(o) = 〈o.id, {〈A, v〉 | 〈A, v〉 ∈ o.AVP ∧ A ∈ A′}〉.

2. If s is a slide, then πA′(s) = 〈s.id, s.T itles, {πA′(o) | o ∈ s.Objects}〉.

3. If p is a presentation, then πA′(p) = 〈p.T itles, p.Authors, {πA′(s) | s ∈

p.Slides}, p.succ〉.

Example 2.3.8 Suppose the user wants to convert all slides in the sample presenta-

tion p2 (“Falls”) to black and white. To do so, she may execute the projection oper-

ation π{Color}(p2) to remove all Color attributes from all objects in all slides in p2.

Note that as usual {Color} denotes the complement of the set {Color} and hence this

operation only eliminates the color attribute of an object. Such a query may therefore

be used to view a presentation in black and white.

The following theorem tells us that the operations of APPLY and PROJECT com-

mute.
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Theorem 2.3.5 (Pullback Theorem: APPLY and PROJECT ) Suppose f is a sensi-

ble transformation function and X ∈ {o, s, p}. Then α(f, πA′(X)) = πA′(α(f, X)).

Proof of Theorem 2.3.5. We show the case where f is an object transformation

function (the cases when its a slide/presentation transformation function are similar).

We need to show that each of the components of the object returned by α(f, πA′(X))

and πA′(α(f, X)) coincide. We consider the case where X is a slide (the case when

presentations are considered is similar).

1. πA′(σC(X)).id = X.id = σC(πA′(X)).id.

2. πA′(σC(X)).T itles = X.T itles = σC(πA′(X)).T itles.

3. Suppose α(f, πA′(X)).Objects. Then o = f(o′) where o′ = πA′(o′′) for some

o′′ ∈ X . As f is sensible, if 〈A, v′′〉 ∈ o′′.AV P , then there is an 〈A, f(v′′)〉 ∈

o.AV P . It follows immediately that 〈A, f(v ′′)〉 ∈ o ∈ πA′(α(f, X)). The

reverse inclusion is similar.

The above theorem says that one can execute APPLY and PROJECT operations in

any order. The requirement of sensibility of f in the above theorem is important -

without it, the theorem would not hold. The reason is that when we do a PROJECT ,

some attributes of objects might be eliminated. The sensibility requirement ensures

that the transformation function behaves the same way on attributes common to an

object and the projection of that object on the fields in A′. The following theorem

says that PROJECT and SELECT commute as long as all attributes mentioned in the

selection condition also occur in the set of attributes involved in the projection.

Theorem 2.3.6 Suppose C is a selection condition all of whose attributes occur in a

projectable attribute set A′. Then it is true that πA′(σC(X)) = σC(πA′(X)).
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Proof of Theorem 2.3.6. The proof follows immediately from the fact that neither

selection nor projection change the values of any attributes.

2.3.4 The RENAME Operator

A common operator in relational databases is the renaming operator that provides new

names to attributes.

Definition 2.3.15 (Renaming Function) Suppose A,B are disjoint sets of attribute

names. A renaming function r is an injective mapping fromA to B.

We will often use notation such as {A1 → B1, A2 → B2} to indicate that a

renaming function renames attribute A1 by B1 and A2 by B2.

Definition 2.3.16 (RENAME Operator) Suppose r is a renaming function from A to

B. The renaming operator is defined as follows.

• The renaming of an object o, denoted ρr(o) is the object 〈o.id, {〈r(A), v〉 |A ∈

A}〉.

• The renaming of a slide s, denoted ρr(s) is the slide 〈s.id, s.T itles, s.Authors,

{ρr(o) | o ∈ Objects}〉.

• The renaming of a presentation p, denoted ρr(p) is the presentation 〈p.T itles,

p.Authors, {ρr(s) | s ∈ p.Slides}, succ′〉 such that succ′(ρr(s)) = ρr(s′) iff

succ(s) = s′.

• The renaming of a presentation database pDB, denoted ρr(DB) is the presen-

tation database {ρr(p) | p ∈ pDB}.
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2.3.5 The Cartesian Product

In this section, I define the Cartesian Product operation which forms the basis for

JOIN .

Definition 2.3.17 (Attribute Merge Function) An attribute merge function is a map-

ping g that takes as input an attribute name A and a set of values from dom(A), and

returns as output, a value in dom(A). When the second argument of g is a singleton

{v}, then g(A, {v}) = v.

Attribute merge functions are used in the Cartesian Product operation to merge

attributes that have the same name. In classical relational algebra this situation is

avoided by insisting on renaming attributes with the same name, but this is perhaps

more restrictive than we need here.

Example 2.3.9 When merging object locations, we may want to return as output,

a bounding box that bounds the rectangles associated with the two input locations.

This is an attribute merge function gmbr(Loc, {(lx1, ly1, rx1, ry1), (lx2, ly2, rx2,

ry2)}) = (min(lx1, lx2), min(ly1, ly2), max(rx1, rx2), max(ry1, ry2)). Likewise,

when merging object data strings, one may want to use a simple concatenation with

carriage returns (CRs) between the strings. This can be defined as the attribute merge

function gcat(Data, {s1, . . . , sn}) = s1 CR . . . CR sn where CR is the carriage

return character.

Definition 2.3.18 (Object Product) Suppose o1, o2 are objects and g is an attribute

merge function. The Cartesian Product of o1, o2 under attribute merge function g,

denoted o1 ×g o2 is the object o such that:

1. o.id = o1.id ∪ o2.id;
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2. o.AVP = {〈A, v〉 | (〈A, v〉 ∈ o1.AVP and there is no attribute-value pair of

the form 〈A,−〉 ∈ o2.AVP) or (〈A, v〉 ∈ o2.AVP and there is no attribute-

value pair of the form 〈A,−〉 ∈ o1.AVP) or there exists 〈A, v1〉 ∈ o1.AVP and

〈A, v2〉 ∈ o2.AVP and g(A, {v1, v2}) = v}.

Example 2.3.10 Suppose we merge the title (o111) and the subtitle (o112) objects on

slide s11 (“Flowers.ppt”) using gcat and gmbr. The resulting object o111 ×gcat,gmbr

o112 = 〈{o111, o112}, {〈Type, TEXT 〉, 〈Data, x〉, 〈Font, Helvetica〉, 〈FontSize, 26〉,

〈Loc, (20, 10, 620, 60)〉}〉 where x is the string “Flowers of the Mountains CR Pre-

sentation by John Smith”.

Definition 2.3.19 (Slide Product) The CPRODUCT of two slides s1, s2 under the at-

tribute merge function g, denoted s1 ×g s2, is the slide s such that:

1. s.id = s1.id ∪ s2.id.

2. s.T itles = s1.T itles ∪ s2.T itles.

3. s.Objects = {o1 ×
g o2 | o1 ∈ s1.Objects ∧ o2 ∈ s2.Objects}.

For example, when two slides s1, s2 have two attributes A1, A2 in common, then

the single slide s in the slide product assigns to A1, the value g(A1, {v1, v
′
1}) and

g(A2, {v2, v
′
2}) where v1 (resp. v2) is the value of attribute A1 in s1 and v′1 (resp. v′2)

is the value of attribute A2 in s2. An example of CPRODUCT of two slides is given

below.

Example 2.3.11 The Cartesian product of slides s11 and s12 (“Flowers” presenta-

tion) yields the slide given by s11 ×g s12 = 〈{s11, s12}, {“T itle Slide”, “Landscape

Photos”}, {object cross products}〉.
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The CPRODUCT of two presentations p1, p2 is defined in exactly the same way as

slide product except that all occurrences of s1, s2 are replaced by p1, p2 respectively

and all occurrences of o1, o2 are replaced by s1, s2 respectively. In addition, when

defining CPRODUCT of two presentations, we need to specify the succ function. Con-

sider a slide s = s1 ×g s2 ∈ p1 ×g p2.Slides. If succ(s2) exists and equals s′2, then

succ(s) = s1 ×g s′2. If succ(s2) does not exist, then succ(s) = succ(s1)×g p2.Slidesstart

where succ(s1) denotes the successor of s1 according to presentation p1. If succ(s1)

does not exist, then succ(s) = s1 ×g succ(s2) assuming succ(s2) exists. If neither

succ(s1), succ(s2) exist, then s is the last slide in the product.

The relationship between different pptA operators and CPRODUCT is complex

because of attribute merge functions. In general, Cartesian Product is not commutative

as attribute merge functions may not commute.

Definition 2.3.20 (Compatible Functions) Suppose f is an object transformation

function and g is an attribute merge function. f and g are said to be compatible

iff for all objects o, all attributes A, and all sets V of values from dom(A), it is the

case that g(A, {f(v) | v ∈ V }) = v′. where f(o).AVP contains the pair 〈A, v ′〉 and

no other pair of the form 〈A,−〉 is in f(o).AVP.

Theorem 2.3.7 (Pullback Theorem: APPLY and CPRODUCT ) Suppose f is a sen-

sible object transformation function and g is an attribute merge function such that

f, g are compatible. Suppose X1 and X2 are both objects (or both slides, or both

presentations). Then α(f, X1 ×g X2) = α(f, X1)×g α(f, X2).

Proof of Theorem 2.3.7. We show the theorem when X1, X2 are both objects. The

cases when they are both slides/presentations are similar.

1. α(f, X1 ×g X2).id = X1.id ∪X2.id = α(f, X1)×g α(f, X2).id.
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2. Suppose 〈A, v〉 ∈ α(f, X1 ×
g X2).AV P . Then there exists a 〈A, v′〉 ∈ X1 ×

g X2

such that v = f(v′). One of three conditions must now hold:

• 〈A, v′〉 ∈ X1.AV P and no attribute value pair of the form 〈A,−〉 exists

in X2.AV P . In this case, 〈A, f(v′)〉 = 〈A, v〉 ∈ α(f, X1) and there is no

pair of the form 〈A,−〉 ∈ α(f, X2). It follows that

〈A, v〉 ∈ α(f, X1)×g α(f, X2).AV P .

• 〈A, v′〉 ∈ X2.AV P and no attribute value pair of the form 〈A,−〉 exists in

X1.AV P . This case is the mirror image of the previous case.

• In this case, we have 〈A, v1〉 ∈ X1.AV P and 〈A, v2〉 ∈ X2.AV P and

g(A, {v1, v2} = v′. By definition, we know that 〈A, f(v1) ∈ α(f, X1).AV P

and 〈A, f(v2) ∈ α(f, X2).AV P . By definition of CPRODUCT , it follows

that 〈A, g(A, {f(v1, f(v2)})〉 ∈ α(f, X1)×g α(f, X2).AV P . As f, g are

compatible, we know that , g(A, {f(v1, f(v2)}) = g(A, {v1, v2}) which

means that

〈A, v〉 ∈ α(f, X1)×g α(f, X2).

The reverse inclusion may be proved in a similar manner.

Thus, when f is sensible and when certain conditions hold, APPLY may be pushed

inside a CPRODUCT . In ordinary relational databases, we can push selection inside

a Cartesian Product. This is also possible in PowerPoint databases as long as the

selection condition does not involve common attributes.

Theorem 2.3.8 (Pushing SELECT Inside CPRODUCT ) Suppose g is an attribute merge

function, X1 and X2 are both objects (or both slides, or both presentations), and C

is a conjunctive selection condition. Furthermore, suppose C = C1 ∧ C2 ∧ C3
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where C1 only mentions attributes in X1 and C2 only mentions attributes in X2 and

C3 mentions attributes in both. Then σC(X1 ×g X2) = σC3(σC1(X1)×g σC2(X2)).

Proof of Theorem 2.3.8. We show that each of the components of σC(X1 ×g X2)

and σC3(σC1(X1)×
g σC2(X2)) are identical.

1. σC(X1 ×g X2).id = X1.id ∪X2.id = σC3(σC1(X1)×g σC2(X2)).id.

2. Suppose 〈A, v〉 ∈ σC(X1 ×g X2). This means that 〈A, v〉 satisfies condition C.

As 〈A, v〉 ∈ σC(X1 ×g X2), it means that one of three cases arises:

• 〈A, v〉 ∈ X1.AV P and no attribute value pair of the form 〈A,−〉 exists

in X2.AV P . In this case, it is clear that 〈A, v〉 satisfies C1. Furthermore,

there is no attribute value pair of the form 〈A,−〉 in X2.AV P . Hence,

〈A, v〉 ∈ σC3(σC1(X1)×g σC2(X2)).

• 〈A, v〉 ∈ X2.AV P and no attribute value pair of the form 〈A,−〉 exists in

X1.AV P . This case is the mirror image of the preceding case.

• In this case, we have 〈A, v1〉 ∈ X1.AV P and 〈A, v2〉 ∈ X2.AV P and

g(A, {v1, v2} = v. Clearly, 〈A, v1〉 satisfies C1, C3 and 〈A, v2〉 satisfies

C2, C3. It follows immediately that 〈A, v〉 ∈ σC3(σC1(X1)×g σC2(X2)).

The reverse inclusion may be proved in a similar manner.

2.3.6 The JOIN Operator

I define the important concept of a JOIN , generalizing the “conditional join” in rela-

tional databases. Let us first define an object join condition.
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Definition 2.3.21 (Object Join Condition (OJC)) An object condition C is called

an object join condition iff it has two root variables, denoted O1, O2 ∈ Vo respec-

tively, in it.

Without loss of generality, we will always assume that the variables in an OJC are

called O1, O2.

Definition 2.3.22 (JOIN Operator) Suppose C is an OJC and f is an attribute merge

condition.

1. The join of two objects o1, o2 under f, C, denoted o1 ./f
C o2 is defined as

mergef(o1, o2) if C[O1/o1, O2/o2] is true, and undefined otherwise. Here,

mergef(o1, o2) merges the objects o1, o2’s common attributes together in accor-

dance with the attribute merge function f (other attributes are left unchanged).

As usual, C[O1/o1, O2/o2] denotes the condition obtained by replacing all oc-

currences of O1 (resp. O2) in C by o1 (resp. o2).

2. The join of two slides s1, s2 under f, C, denoted s1 ./f
C s2 is the slide s such

that:

• s.id = s1.id ∪ s2.id.

• s.T itles = s1.T itles ∪ s2.T itles.

• s.Objects = {o | o ∈ (s1 ×f s2).Objects ∧ o1 ./f
C o2 is defined }.

3. The join of two presentations p1, p2 under C, denoted p1 ./C p2 is defined simi-

larly:

• p.T itles = p1.T itles ∪ p2.T itles.

• p.Authors = p1.Authors ∪ p2.Authors.

• p.Slides = {s | s ∈ (p1 ×f p2).Slides ∧ s.Objects 6= ∅}.
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Notice that in this case, we must still define succ. If s ∈ p1 ./C p2, then we say

that succ(s) = s′ where s′ ∈ p1 ./C p2.Slides and there is an integer i such that

s′ = succi
prod(s) where succprod denotes the successor relationship in p1 ×f p2

and for all 1 ≤ j < i, succ
j
prod(s) is not in p1 ./C p2.Slides.

Theorem 2.3.9 (Pullback Theorem: APPLY and JOIN ) Suppose f is a sensible ob-

ject transformation function and g is an attribute merge function such that f, g are

compatible. Suppose X1 and X2 are both objects (or both slides, or both presenta-

tions). Then α(f, X1 ./g X2) = α(f, X1) ./g α(f, X2).

Proof of Theorem 2.3.9. Similar to the proof of Theorem 2.3.7.

The following theorem on pushing selection inside join is similar to that for push-

ing selection inside a Cartesian Product.

Theorem 2.3.10 (Pushing SELECT Inside JOIN ) Suppose f is an object transfor-

mation function and g is an attribute merge function. Suppose X1 and X2 are both

objects (or both slides, or both presentations) and suppose C is a conjunctive selec-

tion condition. Furthermore, suppose C = C1 ∧ C2 ∧ C3 where C1 only mentions

attributes in X1 and C2 only mentions attributes in X2 and C3 mentions attributes in

both, and D is an OJC. Then σC(X1 ./g
D X2) = σC3(σC1(X1) ./g

D σC2(X2)).

Proof of Theorem 2.3.10. Similar to the proof of Theorem 2.3.8.

2.3.7 Set Operators

The union of two presentations is (intuitively) the result of combining their slides

together. The intersection of two presentations restricts the result to slides that are

present in both presentations. Finally, the difference of two presentations returns slides

that are present in the first presentation but do not occur in the second one.

31



However, all these operations assume that we have a mechanism for determining

when a slide is “equal” to another slide. In practice, however, we may consider two

slides to be equivalent in many different cases. For example, two slides may visually

look the same but may have different sets of authors - this could arise in the case of

plagiarism for instance. Alternatively, they may have the same content, but may use

different colors or fonts. Should the slides involved be considered the same under

these two conditions?

I allow the user to make this decision. Accordingly, set operations all use a binary

relation ∼ on slides. This binary relation determines when two slides are considered

equivalent. The user can execute a set operation under a given binary relation ∼.

In the system, this would correspond to selecting an option from a given menu of

choices and executing queries under that option. The ∼ operator is not required to

be an equivalence relation at this point - it will be required later for some of the

equivalence theorems to work.

Definition 2.3.23 (Presentation Set Operators) The union of two presentations p1, p2

with respect to “ ∼ ” is a new presentation p1 ∪∼ p2 such that

(p1 ∪∼ p2).id = p1.id ∪ p2.id

(p1 ∪∼ p2).T itles = p1.T itles∪ p2.T itles

(p1 ∪∼ p2).Authors = p1.Authors ∪ p2.Authors

(p1 ∪∼ p2).Slides = p1.Slides ∪ {s | s ∈ p2.Slides ∧ (∀s′ ∈ p1.Slides) s 6∼ s′}

(p1 ∪∼ p2).succ = succ
′

The intersection of p1, p2 with respect to “ ∼ ” is a new presentation p1 ∩∼ p2 such

that

(p1 ∩∼ p2).T itles = p1.T itles∩ p2.T itles

(p1 ∩∼ p2).Authors = p1.Authors ∩ p2.Authors
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(p1 ∩∼ p2).id = p1.id ∩ p2.id

(p1 ∩∼ p2).Slides = {s | s ∈ p1.Slides ∧ (∃s′ ∈ p2.Slides) s ∼ s′}

(p1 ∩∼ p2).succ = succ
′

Finally, the difference of p1, p2 with respect to “ ∼ ” is a new presentation p1 −∼ p2

such that

(p1 −∼ p2).id = p1.id− p2.id

(p1 −∼ p2).T itles = p1.T itles− p2.T itles

(p1 −∼ p2).Authors = p1.Authors− p2.Authors

(p1 −∼ p2).Slides = {s | s ∈ p1.Slides ∧ (∀s′ ∈ p2.Slides) s 6∼ s′}

(p1 −∼ p2).succ = succ
′

In all three cases, succ′ is defined so that the result retains ordering of the slides in

both presentations and slides from p1 occur before slides from p2.

Set operators on slides can be defined in a similar manner.

Definition 2.3.24 (Slide Set Operators) Suppose there is a binary relation “ ∼ ”

defined on objects. The union of two slides s1, s2 with respect to “ ∼ ” is a new slide

s1 ∪∼ s2 such that

(s1 ∪∼ s2).id = s1.id ∪ s2.id

(s1 ∪∼ s2).T itles = s1.T itles∪ s2.T itles

(s1 ∪∼ s2).Objects = s1.Objects ∪ {o | o ∈ s2.Objects ∧ (∀o′ ∈ s1.Objects) o 6∼ o′}

The intersection of s1, s2 with respect to “ ∼ ” is a slide s1 ∩∼ s2 such that

(s1 ∩∼ s2).id = s1.id ∩ s2.id

(s1 ∩∼ s2).T itles = s1.T itles∩ s2.T itles

(s1 ∩∼ s2).Objects = {o | o ∈ s1.Objects ∧ (∃o′ ∈ s2.Objects) o ∼ o′}
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Finally, the difference of s1, s2 with respect to “ ∼ ” is a new slide s1 −∼ s2 such that

(s1 −∼ s2).id = s1.id− s2.id

(s1 −∼ s2).T itles = s1.T itles− s2.T itles

(s1 −∼ s2).Objects = {o | o ∈ s1.Objects ∧ (∀o′ ∈ s2.Objects) o 6∼ o′}

Unlike the classical relational algebra case, pushing selection inside set operators

requires that the binary relation∼ satisfy some additional conditions. Given an object

(resp. slide, presentation) selection condition C, we say that C is∼-compatible iff for

all objects o1, o2 (resp. slides s1, s2, presentations p1, p2) if o1 ∼ o2 (resp. s1 ∼ s2,

p1 ∼ p2) then C[O/o1] holds iff C[O/o2] holds (resp. C[S/s1] holds iff C[S/s2]

holds, C[P/p1] holds iff C[P/p2] holds).

The following theorem says that whenever selection conditions are ∼-compatible,

we may push selection inside set operators.

Theorem 2.3.11 (Pushing SELECT Inside Set Operators) Suppose X1, X2 are both

slides (presentations) and x1, x2 are both objects (slides). Suppose C is a selection

condition that is ∼-compatible. Then:

σC(X1) ∪∼ σC(X2) = σC(X1 ∪∼ X2),

σC(X1) ∩∼ σC(X2) = σC(X1 ∩∼ X2),

σC(X1)−∼ σC(X2) = σC(X1 −∼ X2).

Proof of Theorem 2.3.11. We show that σC(X1) ∪∼ σC(X2) = σC(X1 ∪∼ X2) when

X1, X2 are slides. The other equivalences have similar proofs.

Suppose o ∈ σC(X1) ∪∼ σC(X2). In this case, o satisfies C and either o ∈ σC(X1)

or o ∈ σC(X2) and there is no o′ ∈ σC(X1) such that o′ ∼ o. But then o ∈ X1 ∪∼ X2

and as o satisfies C, it follows that o ∈ σC(X1 ∪∼ X2). The reverse inclusion is

similar.
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Intuitively, ∼-compatibility is necessary for the above theorem because it is pos-

sible for two objects to satisfy o1 ∼ o2 but we may not have both objects satisfy a

given selection condition. Note that the above theorem does not even require ∼ to be

an equivalence relation.

Likewise, we are interested in the possibility of pushing the APPLY operator in-

side a set operation. Again, this can be done only under some conditions that ∼ and

the transformation function need to satisfy. We say an object (resp. slide, presenta-

tion) transformation function f preserves ∼ iff ∀x∀y x ∼ y ↔ f(x) ∼ f(y). The

following theorem says that in this case, we may push the APPLY operation inside a

set operation.

Theorem 2.3.12 (Pushing APPLY Inside Set Operators) Suppose X1, X2 are both

slides (presentations) and x1, x2 are both objects (slides). Suppose f is a transforma-

tion function that is ∼-compatible. Then:

α(X1, f) ∪∼ α(X2, f) = α(X1 ∪∼ X2, f),

α(X1, f) ∩∼ α(X2, f) = α(X1 ∩∼ X2, f),

α(X1, f)−∼ α(X2, f) = α(X1 −∼ X2, f).

Proof of Theorem 2.3.12. We show that α(X1, f) ∩∼ α(X2, f) = α(X1 ∩∼ X2, f)

when X1, X2 are slides. Proofs of the other equivalences are similar.

Suppose o ∈ α(X1, f) ∩∼ α(X2, f). Then o ∈ α(X1, f) and there exists an

o′ ∈ α(X2, f) such that o ∼ o′. As o ∈ α(X1, f), there is an o1 ∈ X such that

o = f(o1). Likewise, there is an o2 ∈ X2 such that o = f(o2). As f is strongly

∼-preserving, o1 ∼ o2. Hence, o1 ∈ X1 ∪∼ X2 and so o = f(o1) ∈ α(X1 ∪∼ X2, f).

The reverse inclusion is similar.
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Again, without the restriction of ∼-preservation, the above theorem would be

false.

Last, but not least, let us consider whether projection can be pushed inside set

operators. A set A′ of attributes is said to be ∼-preserving iff for all objects o1, o2

it is the case that o1 ∼ o2 ↔ o′1 ∼ o′2 where o′1, o
′
2 denote the restriction of o1, o2

respectively to the attributes in A′. The following theorem says that when objects

(resp. slides, presentations) are ∼-preserving w.r.t. A, then we can push projection

into set operations.

Theorem 2.3.13 (Pushing PROJECT Inside Set Operators) Suppose X1, X2 are both

slides (presentations) and x1, x2 are both objects (slides). Further suppose that A′ is

∼-preserving. Then:

πA′(X1) ∪∼ πA′(X2) = πA′(X1 ∪∼ X2),

πA′(X1) ∩∼ πA′(X2) = πA′(X1 ∩∼ X2),

πA′(X1)−∼ πA′(X2) = πA′(X1 −∼ X2).

Proof of Theorem 2.3.13. We show the proof of the equivalence πA′(X1) ∩∼ πA′(X2) =

πA′(X1 ∩∼ X2) in the case when X1, X2 are objects.

Suppose o ∈ πA′(X1) ∩∼ πA′(X2). In this case, there is an object o1 ∈ πA′(X1)

and an object o2 ∈ πA′(X2) such that:

• o1’s restriction, o′1, to the attributes in A′ is o and

• o′1 ∼ o′2 where o′2 is the restriction of some object in X2 to the attributes inA′.

As A′ is ∼-preserving, it follows that o1 ∼ o2. But then o1 ∈ X1 ∩∼ X2 and the

retriction to o1 to the attributes in A′ is o - thus, o ∈ πA′(X1 ∩∼ X2). The reverse

inclusion is similar.
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The above theorem says that as long asA′ is∼-preserving, we can push PROJECT

inside the set operations.

2.4 Implementation and Cost Model

I have implemented the pptA algebra and query optimizer in C++ on top of Oracle.

My implementation, shown in Figure 2.3, also includes a command line interface for

issuing queries and a web-based GUI (shown in Figure 2.4) written in PERL that

helps the user state his query, executes the query, and renders its result to a sequence

of JPEG images on a webpage. The system consists of over 12,500 lines of code.

For converting batches of PPT files into a relatively format-neutral representa-

tion stored in the database, I wrote a Visual Basic for Applications (VBA) program

that accesses PowerPoint via Microsoft’s COM API. Using the raw COM API or the

“native COM support” from Visual C++ proved to be a daunting (and eventually im-

possible) task for us. This VBA program makes it possible to directly read all PPT

files in a given directory and populate the database with essential information about

what objects, slides, and presentations.

Figure 2.3: System Architecture.
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The algebraic engine is implemented as a framework of C++ classes. The most

important classes are Object, Slide, and Show that represent objects, slides, and

presentations respectively. An object3 in these classes can represent either a real entity

present in the database (so called explicit object) or a query (i.e. an implicit object).

A query may also be explicitly materialized and stored in the database. In this case,

the implicit object is said to be materialized. Any implicit object can be materialized

with the Create() function call. Implicit object materializations are deleted from

the database when the corresponding objects are destroyed. To keep the query materi-

alization, the user may want to call the Clone() function on an object. For implicit

objects, this function will execute the query if needed, detach the materialization and

keep it as an independent entity in the database. For explicit objects, the Clone()

call will simply make a copy of the entity.

Figure 2.4: Web-Based GUI.

All algebraic operators are implemented as C++ routines containing embedded

SQL statements. These programs are quite complex and may involve higher order

3In this paragraph, we are talking about C++ objects, not the pptA objects.
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functions (e.g. APPLY is a higher order function), external function calls (e.g. in the

case of cartesian product and JOIN where the operator is parameterized by a merge

strategy, as well as in the case of the set operations where a binary ∼ relation is

invoked). To build a cost model for such queries, we needed to cost these operations.

My cost estimates build upon traditional relational cost models, but account for the

C++ implementations of the pptA operators which are not accounted for in relational

algebra.

Let us associate two estimated quantities with each algebraic operation. I() is

the number of items (objects, slides, or presentations) returned and C() is the cost

estimate (in milliseconds of execution time). Table 2.1 shows the cost model for pptA

operators on slides. The models for object and presentation operators are very similar.

The constants of the form kxxx are dependent on the performance of the Oracle DBMS

performance. Thus, kdel is the average time to delete an object, ks1 is the average time

required to evaluate a selection condition on a single object, and so forth. Constants

of the form nxxx represent the typical selectivity of the set operators on the given data.

Thus, nu is the average percentage of objects copied from the second input by the

union operation, etc.

Values for all these constants were obtained by running multiple pptA queries on

the engine compiled with calibration code that I wrote. After observing the behavior

of about 11,100 queries on the data generated for the experiments, I computed the

values shown in Table 2.2.

To verify reliability of the cost model, I ran a query corresponding to each ele-

mentary operation on 100 random slides while measuring execution times. Several

runs with different selectivities were made for queries that involve selection. I then

compared cumulative execution time for each query type with the estimated time ob-
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I(s) = number of objects in slide s

C(s) = cost to create/copy slide s (milliseconds)

C(f) = cost to execute function f (milliseconds)

sel(C) = selectivity of C ([0; 1])

I(π
A

(s)) = I(s)

C(π
A

(s)) = C(s) + kp0 + kp3 · I(s) · card(A)

I(ρr(s)) = I(s)

C(ρr(s)) = C(s) + kr0 + kr3 · I(s) · C(r)

I(σC(s)) = I(s) · sel(C)

C(σC(s)) = C(s) + ks0 + ks1 · I(s) + kdel · I(s) · (1− sel(C))

I(α(s, f)) = I(s)

C(α(s, f)) = C(s) + ka0 + ka1 · I(s) + I(s) · C(f)

I(s1 ./f
C

s2) = I(s1) · I(s2) · sel(C)

C(s1 ./f
C

s2) = C(s1) + C(s2) + kj0 + kj1 · I(s1) + kj2 · I(s2)

+ +kj3 · I(s1) · I(s2) + I(s1) · I(s2) · sel(C) · C(f)

I(s1 ∪∼ s2) = nu · I(s1) · I(s2)

C(s1 ∪∼ s2) = C(s1) + C(s2) + ku0 + ku1 · I(s1) + ku2 · I(s2) + ku3 · nu · I(s2)

I(s1 ∩∼ s2) = min(I(s1) · (1 − ni), I(s2))

C(s1 ∩∼ s2) = C(s1) + C(s2) + ki0 + ki1 · I(s1) + ki2 · I(s2)

+ +ki3 · I(s2) ·min(I(s1) · (1 − ni), I(s2))kdel ·max(I(s1) · ni, I(s1)− I(s2))

I(s1 −∼ s2) = I(s1)−min(I(s1) · nd, I(s2))

C(s1 −∼ s2) = C(s1) + C(s2) + kd0 + kd1 · I(s1) + kd2 · I(s2)

+ +kd3 · I(s2) · (I(s1)− 0.5 ·min(I(s1) · nd, I(s2)))kdel ·max(I(s1) · nd, I(s1)− I(s2))

Table 2.1: Cost Model for Slide Operations.

tained from the cost model. The results, shown in Figure 2.5, confirm that the cost

model produces estimates sufficiently close to the real execution times

40



kdel 27.6135 nu 0.437376 ni 0.212705 nd 0.787295

ka0 12.2499 ka1 9.19035 ks0 12.5987 ks1 9.69176

kp0 12.5024 kp3 3.57006 kr0 12.5518 kr3 3.66911

kj0 33.02 kj1 2.0733 kj2 0.00133 kj3 22.4299

ku0 30.8862 ku1 12.4178 ku2 0.00486 ku3 90.524

ki0 30.0508 ki1 12.3043 ki2 0.005 ku3 5.60735

kd0 31.1229 kd1 12.3158 kd2 0.00484 kd3 4.92384

Table 2.2: Cost Coefficients.
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Figure 2.5: Cost Estimation Experiments.

2.5 Experimental Results

I conducted three series of experiments to (i) validate the cost model (as described in

the previous section), (ii) identify useful query equivalences, and (iii) assess the value
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of the query optimization. This section describes the last two series of experiments.

To determine how the equivalence results of the preceding sections may be used

to speed up query processing, I measured the performance of queries on simulated

data. I ran the same query on 40 different slides, computing mean execution times,

and plotting them as a function of query selectivity (10-100% of all objects on a

slide). Each slide followed one of 8 widely used templates (shown in Figure 2.6) and

contained 6-11 objects with about 7 attributes each.

Figure 2.6: Simulated Slide Layouts.

Order of Select and Apply. Figure 2.7 shows execution times for σC(α(s, f)) and

α(σC(s), f) queries, where s is a slide, f is an object transformation function, and C

is an object selection condition that selects a given percentage of objects on a slide.

Three pairs of graphs are shown — these correspond to the cases when f takes 50ms,

100ms, and 200ms to execute on each object. As can be seen, pushing SELECT

inside APPLY is beneficial especially for lower C selectivities. This can be explained

by the lower number of objects that get passed to APPLY . The effect becomes more

pronounced as f gets slower: compare the 50ms graphs with the 200ms graphs.

Order of Apply and Join. Figure 2.8 shows execution times for

α(s1, f) ./g
C α(s2, f) and α(s1 ./g

C s2, f) where s1, s2 are slides, f is an object trans-
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Figure 2.7: Select(Apply)

vs. Apply(Select).
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Figure 2.8: Join(Apply) vs.

Apply(Join).
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Figure 2.9: Join(Select) vs.

Select(Join).

formation function, C is an object selection condition that selects a given percentage

of objects from both input slides, and g is an object merge function that just returns

the first of its arguments. Three pairs of graphs are shown corresponding to f taking

50ms, 100ms, or 200ms to execute on each object. The results confirm that pushing

APPLY inside JOIN lowers query complexity from quadratic to linear, as APPLY gets

to run on 2n objects as opposed to n2. Nevertheless, for lower C selectivities, having

APPLY outside is better as JOIN only produces a fraction of n2 objects. Thus, the

choice of a query rewrite must depend on both the estimated selectivity of C and the

expected execution time of f .

Order of Select and Join. Finally, Figure 2.9 shows execution times for

σC2(s1) ./g
C1

σC2(s2), σC2(s1 ./g
C1

s2), and s1 ./g
C1∧C2[O/O1]∧C2[O/O2]

s2 where s1, s2

are slides, C1 is an object join condition, C2 is an object selection condition, and g is

an object merge function that just returns the first of its arguments. The C1 and C2

are chosen so that they select a given percentage of objects from both input slides.

The results confirm that pushing SELECT inside JOIN speeds things up. Even better

results are achieved by pushing SELECT condition into the JOIN condition though -

in other words, if we can take the selection condition and infer a new join condition,
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then we often get even better results.

Benefits of Query Optimization. The next batch of experiments was used to ob-

serve the difference between executing an original query and its optimized equivalent.

A set of 77 different queries were run on 100 random slides and real execution times

of both the original and the optimized queries were measured. The resulting execution

times are shown in Figure 2.11. The times shown in this graph include both the time

required for query optimization and the time taken to execute the optimized query.

The benefits of query optimization are clearly visible from the graph.
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Figure 2.10: Optimization

Times.
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Figure 2.11: Estimated

Query Execution Times.
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Execution Times.

Figure 2.11 shows estimated execution times for both original query sets and their

optimized equivalents. From this figure, it appears that all optimization algorithms

produce close results. Figure 2.10 shows that although their running time is different,

all three optimization algorithms seem to consume negligently small time in compari-

son with the actual query execution. Finally, Figure 2.12 compares the real execution

times of the non-optimized and optimized queries (including the optimization time).

The benefits of optimization can be clearly seen at this figure.
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2.6 Related Work

There have been two major efforts to date on querying multimedia presentations due to

Lee et. al. [49, 46] and Adali et. al.[3]. Both these efforts attempt to model the playout

of a presentation rather than the physical layout of the presentation. In [46], nodes in a

graph are media streams, and edges denote a precedence ordering. PowerPoint stores

data physically using the concepts of presentation, slides, and objects (within a slide)

which is exactly what my model captures. This PowerPoint specific representation is

quite different from that of [46] (who do not claim to query PowerPoint presentations).

Lee et. al. [46] provide an SQL style language (called GVISUAL) and a calculus and

prove that the two are equivalent in expressive power. I have not done this in this work.

However, this work is the first to propose a cost model, and to evaluate equivalence

results on such a cost model.

In [3], each node in a presentation graph is a non-interactive multimedia presenta-

tion, and an edge denotes an interaction that transitions from one node to another. In

contrast, my model accurately captures the physical structure of PPT presentations

whereas [3] manipulates a logical representation of a PPT presentation (which is a

very different thing when building an implementation). As a consequence, I am able

to have a cost model for pptA operations and an implementation that can be used to

evaluate rewrite rules — [3] has neither. In addition, [3] allows playouts to be po-

tentially infinite — of course, PowerPoint presentations are always finite and so by

focusing on the physical layout of the presentations (rather than the possibly playouts

of the presentation as [3] do), I avoid this problem.
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2.7 Conclusions

In this chapter, I have presented a formal model of PowerPoint presentations as well as

a relational algebra style algebra to query such PPT databases. This algebra includes

new and interesting operators (such as the APPLY operator) as well as interesting join

operators (that allow multiple presentations being merged to have common attributes

whose values may be merged using a join function). I have proven a set of equivalence

results within this algebra. I have developed a cost model for PPT presentations and

built a prototype implementation of the system that stores and queries PPT presenta-

tion databases. I have conducted a detailed set of experiments to evaluate the efficacy

of various equivalence results from the point of view of query rewriting.
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Chapter 3

An Algebra for Audio

3.1 Introduction

There is an incredibly rich body of audio data available in the world today. This

data comes from radio broadcasts, musical performances, educational lectures, sonars

used by submarines and ships, and many other sources. Libraries, museums, record-

ing studios, as well as surveillance agencies, have collected large amounts of audio

recordings.

The wealth of available audio data naturally brings up the problem of its sys-

tematic storage and processing. The processing must, of course, include searching

functions, but is not limited to them, as audio data often has to be amplified, attenu-

ated, mixed, cleaned of noise and distortions, and so forth. The storage subsystem has

to accommodate these operations by indexing the data in the best possible way, and

for that we need to know how the data will be accessed. All these requirements can

be addressed by a common theory about audio data processing.

However, to date, there is relatively little work on audio databases, and almost no

theory for them (with the exception of [45]). Commercial support for audio exists
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in Informix (with the MuscleFish datablade) [7, 8] and DB2 (with the audio data

extenders) [76]. In research projects, audio is often used as a means for indexing the

accompanying video [85, 39]

Existing efforts in audio information processing can be roughly divided into the

following topics: (i) data compression (MPEG), (ii) data delivery [29, 31], (iii) speaker

and musical composition recognition (Gracenote,[33, 27]), (iv) speech recognition

[71], and (v) word, or phrase search [71, 85]. To the best of my knowledge, no

attempts were made to develop a framework that would abstract all the different op-

erations people would like to perform on audio data in the same way the relational

algebra abstracts operations on tabular data.

A glance at a standard sound processing package, such as CoolEdit, reveals that

the most basic operations on audio include (i) changing volume and pitch, (ii) filtering,

usually with frequency filters, (iii) mixing sounds, and (iv) adding special effects,

such as fade-ins and fade-outs. When turning to music composition software, such

as Cakewalk or Cubase, we also find a need to synchronize sounds from different

sources (e.g. multiple MIDI channels, or a MIDI score and a waveform recording).

Finally, when maintaining a database of audio recordings, there is an obvious need to

search these recordings by occurance of certain keywords, phrases, tunes, or volume

patterns.

Ideally, an Audio Database Algebra (ADA ) must support all the above-mentioned

operations in an integrated way that would allow, say, to search for a certain audio

fragment and amplify its volume, or mix two instrumental recordings based on the

timing information from their MIDI scores. In this chapter, I propose such an algebra

and show some equivalences useful for the query optimization. Furthermore, I present

several data structures for indexing audio data [26]. The experiments conducted using
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these data structures show that they greatly accelerate such basic algebraic operations

as selection, mixing, and matching of audio fragments. Finally, I describe a reference

ADA system for creating and querying audio databases. The system consists of the

algebraic engine (implemented as a library), the command line query interpreter, and

the GUI.

Section 3.2 of this chapter defines the basic model for representing audio data.

Section 3.3 covers algebraic operators and equivalences. Sections 3.4 and 3.5 deal

with algorithms and data structures for indexing audio. Section 3.6 describes the

ADA system implementation and the GUI. Section 3.7 discusses other works in audio

databases. Finally, Section 3.8 provides some concluding remarks.

3.2 Audio Data Model

Figure 3.1 shows a very simple audio waveform. Though each waveform is played

out continuously, it is typically decomposed into a sequence of discrete quanta. The

example waveform in Figure 3.1 has 38 quanta of 500 microseconds (µs) each. Let

us call the playback time of a single quantum (500µs in our example) the period δt

of a waveform. A waveform also has a length ` (in our example ` = 38) which is the

number of quanta.

An audio recording may contain one or more waveforms similar to the one shown

in Figure 3.1. For example, a stereo recording may have two synchronized waveforms

for the left and right channels. Waveforms may also be accompanied by other data,

such as speech transcript, sequence of phonemes, frequency spectrum, MIDI score,

or karaoke cues, that are tied to the same time quanta. Thus, audio lends itself to be

described as a collection of synchronized data streams. To generalize this concept, let
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Figure 3.1: Simple Waveform.

us introduce an audio stream. Let us assume the existence of some set of types - in

addition each type τ has an associated nonempty set dom(τ) called its domain.

Definition 3.2.1 (Audio Stream) An audio stream f of type τ and length ` is an `-

tuple f = 〈v0, . . . , v`−1〉 where each vi ∈ dom(τ).

Each stream f of type τ has a domain, dom(f) = dom(τ), which is a nonempty set.

A stream f of length ` is a mapping of [0, `) to dom(f). In other words, for each

quantum q, f(q) = f.vq describes the value of stream f at the time quantum q.

For example, consider a stream na called normalized amplitude that maps [0, `)

to [0, 1]. If na(5) = 0.8, then this means that the normalized amplitude of the fifth

quantum of stream na is 0.8. Examples of other streams include amplitude (non-

normalized), phonemes, and text transcript.

The amplitude stream may have dom(amplitude) = N . Similarly, the stream

phonemes may have a domain that consists of characters corresponding to phonemes.

Likewise, the text transcript stream may have the set of all strings as its domain.

If dom(f) has greatest lower and least upper bounds (when f is numeric, or has

a total ordering imposed on it), we will use min(f) and max(f) to represent these

bounds.
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Some audio streams may not be available all the time. For example, the text

transcript is absent if there is no speech in the audio. For such cases, assume that each

stream f ’s domain has a special value dv(f) ∈ dom(f) called the default value of

that stream and used when no actual value is available. In the example with the text

transcript, one may assume that dv(text) = ε (empty string).

To represent an audio recording as a whole, let us now define the concept of an

audio file, that is a collection of several streams with the same length and period:

Definition 3.2.2 (Audio File) An audio file a is a tuple a = 〈`, δt, {f1, . . . , fn}〉

where ` ≥ 0 is the length, δt > 0 is the period, and f1, . . . , fn are audio streams

of length `.

It is important to note that the streams constituting a single audio file may be stored in

different physical files on disk. Throughout this chapter I talk about audio files, unless

explicitly stated otherwise.

From the above discussion, it is clear that each audio stream is characterized by a

set of parameters such as domain, default value, and so forth. Let us formalize these

parameters by defining a schema:

Definition 3.2.3 (Audio Schema) An audio stream schema for a stream f is a tuple

〈dom, dv〉 where dom(f) is the stream type or domain, and dv(f) ∈ dom(f) is the

default value. An audio schema for a file a is a collection of audio stream schemas for

all streams in a.

Later on, we will extend the audio stream schema with more parameters, as they

become relevant.

Example 3.2.1 (Audio Stream Schema) Here are some examples of audio stream

schemas:
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f dom(f) dv(f)

normalized amplitude [0, 1] 0

frequency spectrum 2N×[0,1] 〈0, 0〉

bandwidth N 0

phoneme stream {all phonemes, ε} ε

text transcript {all strings, ε} ε

We are finally ready to define an audio database:

Definition 3.2.4 (Audio Database) An audio database ADB is a collection of audio

files adhering to the same schema.

3.3 Algebraic Operators

Throughout the rest of this chapter, I assume the existence of an arbitrary but fixed

audio schema with respect to which I define all algebraic operators. I will call it the

audio database schema. But before we look at algebraic operators, let us define the

concept of a selection condition.

3.3.1 Selection Conditions

Assume the existence of a set Ca of all possible audio files and a set Va of all variables

ranging over Ca. Let us denote audio constants (members of Ca) with a small a∗ and

audio variables (members of Va) with a capital A∗.

Definition 3.3.1 (Term) (i) Any member of a set τ is a term of type τ . (ii) If X is an

audio constant or variable, and f is an audio stream of type τ , then X.f is a term of

type τ .
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For example, A.na is a term (assuming A is an audio variable).

Definition 3.3.2 (Atom) (i) Given two terms t1, t2 and a binary relation∼, t1 ∼ t2 is

an atom. (ii) TRUE and FALSE are atoms.

For example, A.na > 0.7 is an atom. When applied to a single audio file, this atom is

satisfied by all quanta in the file that have a normalized amplitude over 0.7. A formal

definition of satisfaction will be presented shortly.

Definition 3.3.3 (Selection Condition) (i) Any atom is a selection condition. (ii) If

C is a selection condition and d ∈ [0, length(f)), then before(C, d) and after(C, d)

are selection conditions. (iii) If C1, C2 are selection conditions then C1∧C2, C1∨C2,

and ¬C1 are also selection conditions.

For instance, A.na > 0.7 ∧ A.na < 0.9 is a selection condition. When applied to a

single audio file, this selection condition is satisfied by all quanta in the file that have

a normalized amplitude over 0.7 but less than 0.9.

before(A.na > 0.7, 5) is also a selection condition. When applied to a single

audio file, this selection condition is satisfied by all quanta q in the file such that a

quantum q′ in the file satisfies A.na > 0.7 and q′ occurs at most 5 quanta before q.

I now define the valuation of variable-free terms - this is needed in order to define

satisfaction of selection conditions.

Definition 3.3.4 (Valuation) The valuation λ is a function that takes a variable-free

τ -term, c, and a time quantum q, and returns a value from τ such that

λ(a.f, q) = a.f(q)

λ(c, q) = c
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Definition 3.3.5 (Satisfaction) Let us define a function λ that takes a variable-free

selection condition C, a time quantum q, and returns either 1 (satisfied) or 0 (not

satisfied).

λ(TRUE, q) = 1

λ(FALSE, q) = 0

λ(x ∼ y, q) =







1 if λ(x, q) ∼ λ(y, q)

0 otherwise

λ(before(C, d), q) =







1 if ∃q′ ∈ [q, q + d] λ(C, q′)

0 otherwise

λ(after(C, d), q) =







1 if ∃q′ ∈ [q − d, q] λ(C, q′)

0 otherwise

λ(C1 ∧ C2, q) = min(λ(C1, q), λ(C2, q))

λ(C1 ∨ C2, q) = max(λ(C1, q), λ(C2, q))

λ(¬C, q) = 1− λ(C, q)

A variable-free condition C is called satisfied or true at quantum q iff λ(C, q) = 1.

Otherwise, C is false.

A local condition is a special kind of a selection condition that can be evaluated

at a single instance of time, without knowledge of other instances:

Definition 3.3.6 (Local Selection Condition) A selection condition C is called local

if it does not contain any before() or after() statements.

One important characteristic of a selection condition is its footprint — this is a set

of all stream names appearing in the condition w.r.t. a variable:
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Definition 3.3.7 (Condition Footprint) Given a condition C and a variable A, the

condition footprint of C w.r.t. A is a set of stream names fpA(C) such that:

fpA( ∼ A.f) = {f}

fpA(A.f ∼ ) = {f}

fpA(A.f1 ∼ A.f2) = {f1, f2}

fpA(before(C, d)) = fpA(C)

fpA(after(C, d)) = fpA(C)

fpA(C1 ∧ C2) = fpA(C1) ∪ fpA(C2)

fpA(C1 ∨ C2) = fpA(C1) ∪ fpA(C2)

fpA(¬C) = fpA(C)

3.3.2 The SELECT Operator

Selection is one of the most basic algebraic operations. For instance, given a recording

of a court session, one may want to pick all judge’s statements from it. Alternatively,

consider the “squelch” function used in miniature voice recorders and shortwave re-

ceivers that turns sound on whenever its volume exceeds some threshold. These are

just two of many examples where audio selection is useful. When applied to a single

audio file, selection chooses all parts of this file that satisfy given condition. When ap-

plied to an audio database, it applies the operator to each file and returns the resulting

files.

Definition 3.3.8 (SELECT Operator) Given an audio file a (database ADB) and a

selection condition C with a single free audio variable A, the SELECT operator pro-
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duces a new audio file (database)

σC(a) = 〈a.`, a.δt, {f | f(q) =







a.f(q) if λ(C[A/a], q) = 1

dv(f) otherwise
}〉,

σC(ADB) = {σC(a) | a ∈ ADB}.

Here, C[A/a] denotes the replacement of all occurrences of the audio variable A in

C by a.

Thus, the select operator looks at an audio file f and retains all quanta that satisfy

the selection condition. Stream values for all other quanta are replaced with the default

values. Figure 3.2 shows a simple selection query example σA.na>0.3(a)

0 2 4 6 8 10 12 14 16 time (ms)

0.0

0.3

0.7

na

���������������������������� ��������������������������������������
��������������������������������������

SELECTA.na>0.3

Figure 3.2: SELECT Example.

In a more complex example, consider a court recording a. This file may have

a stream a.speaker that identifies the current speaker. Then we can select judge’s

statements with σA.speaker=judge(a). Alternatively, knowing the base timbre of judge’s

voice, represented with a set of frequencies Fjudge, the same operation can be per-

formed with σFjudge⊆A.freq(a), albeit with lower reliability.

In the instance of a squelch function with threshold k, the selection can be done

with a σA.na>k(a) query. To make things more interesting, let us require the squelch to

stay on for 500 quanta after the volume falls below the threshold: σafter(A.vol>k,500)(a).
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Unlike the relational algebra [80], one cannot arbitrarily change the order of se-

lections in ADA . The order of selection operators can be changed as long as the

selection conditions involved are local selection conditions.

Theorem 3.3.1 (Swapping SELECT Operators) Given two SELECT operators with

local selection conditions C1, C2, it is true that

σC1(σC2(a)) = σC2(σC1(a)).

Proof of Theorem 3.3.1. This proof is similar to the proof of commutativity of

the classical relational SELECT . As the theorem requires both C1 and C2 to be

local selection conditions, one can look at each time quantum independently from

all other quanta. Consider then an arbitrary stream f in a′ = σC2(σC1(a)) and

a′′ = σC1(σC2(a)) at a time quantum q. By the definition of SELECT we can say

that:

1. If λ(C1[A/a], q) = 0 and λ(C2[A/a], q) = 0 then a′.f(q) = dv(f) and a′′.f(q) =

dv(f), i.e. a′.f(q) = a′′.f(q).

2. If λ(C1[A/a], q) = 1 and λ(C2[A/a], q) = 0 then a′.f(q) = σC2(a).f(q) =

dv(f) and a′′.f(q) = dv(f), i.e. a′.f(q) = a′′.f(q).

3. If λ(C1[A/a], q) = 0 and λ(C2[A/a], q) = 1, the reasoning is similar to (2).

4. Finally, if λ(C1[A/a], q) = 1 and λ(C2[A/a], q) = 1 then a′.f(q) = σC2(a).f(q) =

a.f(q) and a′′.f(q) = σC1(a).f(q) = a.f(q), i.e. again a′.f(q) = a′′.f(q).

We have shown that for any arbitrary stream f and time quantum q, a′.f(q) = a′′.f(q).

Therefore, a′ = a′′.
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3.3.3 The BETWEEN Operator

The BETWEEN operator is similar to the SELECT operator, but has two conditions

instead of one, called the start and stop conditions. BETWEEN selects ranges of quanta

starting with the start condition being satisfied (or “triggered”) and ending with the

stop condition being satisfied. For example, one can apply this operator to the text

transcript stream to select all speech starting with a given word and ending with a

pause.

Definition 3.3.9 (BETWEEN Operator) Given an audio file a (database ADB) and

two selection conditions C1, C2 each with a single free audio variable A, the BE-

TWEEN operator produces a new audio file (database)

βC2

C1
(a) = 〈a.`, a.δt, {f | f(q) =







a.f(q) if ∃q′ ∈ [0, q] λ(C1[A/a], q′) = 1 ∧

∀q′′ ∈ [q′, q] λ(C2[A/a], q′′) = 0

dv(f) otherwise

}〉,

βC2

C1
(ADB) = {βC2

C1
(a) | a ∈ ADB}.

Thus, the BETWEEN operator looks at an audio file f and retains ranges of quanta

starting with the first condition becoming true and ending with the second condition

becoming true. Stream values for all other quanta are replaced with the default values.

Figure 3.3 shows a simple example query βA.na<0.2
A.na>0.3(a)

0 2 4 6 8 10 12 14 16 time (ms)

0.0

0.3

0.7

na
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������������������������������������������

BETWEEN
A.na>0.3

A.na<0.2

Figure 3.3: BETWEEN Example.
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Unfortunately, unlike SELECT operators, BETWEEN operators cannot be swapped

in order. Consider two queries: a′ = βC4
C3

(βC2
C1

(a)) and a′′ = βC2
C1

(βC4
C3

(a)) at a quantum

q such that βC2
C1

(a) selects a range [q1, q2) from a, while βC4
C3

(a) selects [q3, q4). Con-

sider a case when q1 < q3 < q4 < q2, and all conditions evaluate to false everywhere

except the range boundaries. In such a case, a′′ contains the [q3, q4) range, while a′

is empty. Thus, a′ 6= a′′, making the general case of swapping BETWEEN operators

impossible.

3.3.4 The APPLY Operator

The APPLY operator allows users to transform audio streams in an arbitrary way. Due

to its generality, the APPLY can be used for many purposes, such as volume and stereo

balance control, fade-ins and fade-outs.

To simplify things, assume that each APPLY operator only changes a single stream.

Several APPLY operators can be used to modify multiple streams. Let us start by

defining a transformation function:

Definition 3.3.10 (Stream Transformation Function) Given an audio stream schema

f , a stream transformation function is a mapping trf : dom(f) → dom(f) such that

trf (dv(f)) = dv(f).

In addition to f , a stream transformation function may use values from other

streams and/or the current quantum number. Depending on the values used, one can

classify transformation functions as follows:

Definition 3.3.11 (Types of Stream Transformation Functions) • A stream trans-

formation function is called local iff its inputs are restricted to audio stream

values from the current time quantum.
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• A stream transformation function is called value-local iff its inputs are restricted

to audio stream values from the current time quantum and the current quantum

number.

• A stream transformation function is called time-local iff its inputs are restricted

to sets of audio stream values over some period around the current time quan-

tum.

As in the case of selection conditions, transformation functions have footprints,

or sets of streams used to compute the transformed stream. I denote the footprint of

a transformation function trf by fp(trf). Due to the requirement that trf (dv(f)) =

dv(f), trf always uses the original value of f to compute the new value, i.e. it is

always true that f ∈ fp(trf).

Definition 3.3.12 (APPLY Operator) Given an audio file a (database ADB) and a

stream transformation function trf , the APPLY operator produces a new audio file

(database)

α(a, trf) = 〈a.`, a.δt, {f ′ | f ′(q) =







trf(a.f ′(q)) if f ′ = f

a.f ′(q) otherwise
}〉,

α(ADB, trf) = {α(a, trf) | a ∈ ADB}.

The following examples show how to control volume, balance, and create fade-in

effects using APPLY .

Example 3.3.1 (Volume and Stereo Balance Control) One can halve the volume of

an audio file a using the following query: α(a, vol(q) = vol(q)/2). Given two streams

volr and voll in a stereo audio file a, one can also change the stereo balance by is-

suing a query α(α(a, volr(q) = volr(q) · bal), voll(q) = voll(q)/bal), where bal con-
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trols the balance. Notice that both volume and stereo balance transformation func-

tions are local.

Example 3.3.2 (Fade-in and Fade-out) To create a five-second fade-in at the begin-

ning of a recording, one can execute a query α(a, vol(q) = vol(q) ·min(1, q · a.δt/5)).

The fade-out is created by a similar query: α(a, vol(q) = vol(q) ·max(0, 1− q · a.δt/5)).

Notice that both fade-in and fade-out transformation functions are value-local, but not

local.

Two APPLY operators can be reordered, under certain assumptions.

Theorem 3.3.2 (Swapping APPLY Operators) Consider two APPLY operators with

transformation functions trf1 , trf2 . If f1 6∈ fp(trf2) and f2 6∈ fp(trf1), then the

following holds:

α(α(a, trf2), trf1) = α(α(a, trf1), trf2).

Proof of Theorem 3.3.2. Consider an arbitrary stream s in a′ = α(α(a, trf), trg) and

a′′ = α(α(a, trg), trf ) at a time quantum q:

1. If s 6= f and s 6= g then a′.s(q) = a.s(q) and a′′.s(q) = a.s(q) by the definition

of APPLY . Thus, a′.s(q) = a′′.s(q).

2. If s = f then the theorem requires that s 6∈ fp(trg). Because g ∈ fp(trg) by the

common property of all transformation functions, we can also say that s 6= g.

Then a′.s(q) = trf (a.s(q)) and a′′.s(q) = trf(a.s(q)), i.e. a′.s(q) = a′′.s(q).

3. If s = q, the reasoning is similar to (2).

We have shown that for any arbitrary stream s and time quantum q, a′.s(q) = a′′.s(q).

Therefore, a′ = a′′.
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APPLY and SELECT can also be reordered, if APPLY does not modify any streams

used by SELECT :

Theorem 3.3.3 (Swapping APPLY and SELECT ) Given an APPLY operator with a

value-local transformation function trf and a SELECT operator with condition C

such that f 6∈ fpA(C), the following holds:

α(σC(a), trf) = σC(α(a, trf)).

Proof of Theorem 3.3.3. As the theorem requires that f 6∈ fpA(C), we can say

that λ(C[A/a], q) = λ(C[A/α(a, trf)], q). Also, because the theorem requires trf

to be value-local, we can look at each time quantum independently from all other

quanta. Let us then consider an arbitrary stream s in a′ = α(σC(a), trf) and a′′ =

σC(α(a, trf)) at a time quantum q:

1. If s 6= f then a′.s(q) = σC(a).s(q) and a′′.s(q) = σC(a).s(q) by the definition

of APPLY . Thus, a′.s(q) = a′′.s(q).

2. If s = f and λ(C[A/a], q) = 1 then a′.s(q) = trf(a.s(q)) and a′′.q(s) =

trf(a.s(q)) by the definitions of APPLY and SELECT . Thus, a′.s(q) = a′′.s(q).

3. If s = f and λ(C[A/a], q) = 0 then, by the common property of all transfor-

mation functions, a′.s(q) = trf (dv(s)) = dv(s). In the same time, a′′.s(q) =

dv(s) by the definition of SELECT . Thus, a′.s(q) = a′′.s(q).

We have shown that for any arbitrary stream s and time quantum q, a′.s(q) = a′′.s(q).

Therefore, a′ = a′′.

Theorem 3.3.4 (Swapping APPLY and BETWEEN ) Given an APPLY operator with

a value-local transformation function trf and a BETWEEN operator with conditions
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C1, C2 such that f 6∈ fpA(C1) ∪ fpA(C2), the following holds:

α(βC2
C1

(a), trf) = βC2
C1

(α(a, trf)).

Proof of Theorem 3.3.4. This proof is similar to the proof of Theorem 3.3.3. As

the theorem requires that f 6∈ fpA(C1) ∩ fpA(C2), we can say that λ(C1[A/a], q) =

λ(C1[A/α(a, trf)], q) and λ(C2[A/a], q) = λ(C2[A/α(a, trf)], q) for any arbitrary

quantum q. Due to the value-locality of trf , we can also say that each quantum can be

considered individually, as it is not affected by the values at other quanta. Consider

then an arbitrary stream s in a′ = α(βC2
C1

(a), trf) and a′′ = βC2
C1

(α(a, trf)) at a time

quantum q:

1. If s 6= f then a′.s(q) = βC2
C1

(a).s(q) and a′′.s(q) = βC2
C1

(a).s(q) by the definition

of APPLY . Thus, a′.s(q) = a′′.s(q).

2. If s = f and ∃q′ ≤ q λ(C1[A/a], q′) = 1 ∧ ∀q′′ ∈ [q′, q] λ(C2[A/a], q′′) = 0 is

true then, by the definition of APPLY and the theorem requirements, a′.s(q) =

trf(a.s(q)) and does not depend on the values of βC2
C1

(a) at any quanta other

than q. At the same time, a′′.q(s) = trf(a.s(q)), by the definition of BETWEEN

. Thus, a′.s(q) = a′′.s(q).

3. If s = f and ∃q′ ≤ q λ(C1[A/a], q′) = 1 ∧ ∀q′′ ∈ [q′, q] λ(C2[A/a], q′′) = 0

is false then a′.s(q) = trf(dv(s)) = dv(s) by the common property of all

transformation functions. At the same time, a′′.s(q) = dv(s) by the definition

of BETWEEN . Thus, a′.s(q) = a′′.s(q).

We have shown that for any arbitrary stream s and time quantum q, a′.s(q) = a′′.s(q).

Therefore, a′ = a′′.
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3.3.5 The PROJECT Operator

Similarly to the relational projection, the PROJECT operator is used to remove certain

streams from an audio file while leaving the other streams unchanged. As in the

case of selection, the removal is done by replacing data with default values from the

schema.

The PROJECT operator is rarely used on its own, but often as a part of a larger

query. For instance, when processing the right channel of a stereo audio recording,

one may want to remove this channel from the original recording and add modified

data later.

Definition 3.3.13 (PROJECT Operator) Given an audio file a (database ADB) and a

set of stream names F , the PROJECT operator produces a new audio file (database)

πF (a) = 〈a.`, a.δt, {f | f(q) =







dv(f) if f ∈ F

a.f(q) otherwise
}〉,

πF(ADB) = {πF(a) | a ∈ ADB}.

Example 3.3.3 Continuing with the stereo recording example, one can remove the

right channel from an audio file a by issuing π{volr}(a) query. Alternatively, if we are

only interested in the phoneme stream and text transcript of an audio file a, we can

restrict a to these streams via the query π{ph,text}(a).

Several theorems apply to the reordering of PROJECT and other operators:

Theorem 3.3.5 (Swapping PROJECT Operators) Given two PROJECT operators, the

following holds:

πF1(πF2(a)) = πF2(πF1(a)).
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Proof of Theorem 3.3.5. Consider an arbitrary stream f in a′ = πF2(πF1(a)) and

a′′ = πF1(πF2(a)) at a time quantum q:

1. If f 6∈ F1 and f 6∈ F2 then a′.f(q) = a.f(q) and a′′.f(q) = a.f(q) by the

definition of PROJECT . Thus, a′.f(q) = a′′.f(q).

2. If f ∈ F1 and f 6∈ F2 then a.f(q) will be replaced with dv(f) in one PROJECT

, and left unchanged in the other. Thus, a′.f(q) = dv(f), a′′.f(q) = dv(f), and

therefore a′.f(q) = a′′.f(q).

3. If f ∈ F2 and f 6∈ F1, the situation is the same as in (2).

4. If f ∈ F1 and f ∈ F2 then a.f(q) will be replaced with dv(f) twice, in both

PROJECT operators. Again, a′.f(q) = dv(f), a′′.f(q) = dv(f), and therefore

a′.f(q) = a′′.f(q).

We have shown that for any arbitrary stream f and time quantum q, a′.f(q) = a′′.f(q).

Therefore, a′ = a′′.

Theorem 3.3.6 (Swapping PROJECT and SELECT ) Given a PROJECT operator that

removes streams listed in F and a SELECT operator with condition C such that F ∩

fpA(C) = ∅, the following holds:

πF(σC(a)) = σC(πF (a)).

Proof of Theorem 3.3.6. Consider an arbitrary stream f in a′ = πF (σC(a)) and

a′′ = σC(πF (a)) at a time quantum q:

1. If f 6∈ F and F ∩ fpA(C) = ∅, as the theorem requires, then a′.f(q) =

σC(a).f(q) and a′′.f(q) = σC(a).f(q) by the definition of PROJECT . Thus,

a′.f(q) = a′′.f(q).

65



2. If f ∈ F then a′.f(q) = dv(f), a′′.f(q) = dv(f), and thus a′.f(q) = a′′.f(q).

We have shown that for any arbitrary stream f and time quantum q, a′.f(q) = a′′.f(q).

Therefore, a′ = a′′.

Theorem 3.3.7 (Swapping PROJECT and BETWEEN ) Given a PROJECT operator that

removes streams listed in F and a BETWEEN operator with conditions C1, C2 such

that F ∩ (fpA(C1) ∪ fpA(C2)) = ∅, the following holds:

πF(βC2
C1

(a)) = βC2
C1

(πF(a)).

Proof of Theorem 3.3.7. This proof is similar to the proof of Theorem 3.3.6. Con-

sider an arbitrary stream f in a′ = πF(βC2
C1

(a)) and a′′ = βC2
C1

(πF (a)) at a time quan-

tum q:

1. If f 6∈ F and F ∩ (fpA(C1) ∪ fpA(C2)) = ∅ (as the theorem requires)

then a′.f(q) = βC2
C1

(a).f(q) and a′′.f(q) = βC2
C1

(a).f(q) by the definition of

PROJECT . Thus, a′.f(q) = a′′.f(q).

2. If f ∈ F then a′.f(q) = dv(f), a′′.f(q) = dv(f), and thus a′.f(q) = a′′.f(q).

We have shown that for any arbitrary stream f and time quantum q, a′.f(q) = a′′.f(q).

Therefore, a′ = a′′.

Theorem 3.3.8 (Swapping PROJECT and APPLY ) Given a PROJECT operator that

removes streams listed in F and an APPLY operator with transformation function trf

such that F ∩ fp(trf) = ∅ or F ∩ fp(trf) = {f}, the following holds:

πF(α(a, trf)) = α(πF(a), trf ).

Proof of Theorem 3.3.8. Consider an arbitrary stream s in a′ = πF (α(a, trf)) and

a′′ = α(πF(a), trf) at a time quantum q:
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1. If s 6∈ F and s 6= f then a′.s(q) = a.s(q) and a′′.s(q) = a.s(q) by the defini-

tions of PROJECT and APPLY operators. Thus, a′.s(q) = a′′.s(q).

2. If s 6∈ F and s = f then the theorem requires that F ∩ fp(trf ) = ∅ i.e. none

of the deleted streams affect the value of trf . Thus a′.s(q) = trf(a.s(q)) and

a′′.s(q) = trf (a.s(q)) by the definitions of PROJECT and APPLY operators, and

a′.s(q) = a′′.s(q).

3. If s ∈ F and s = f then a′.s(q) = dv(s) by the definition of PROJECT and

a′′.s(q) = trf (dv(s)) = dv(s) by the common property of all transformation

functions. Thus, a′.s(q) = a′′.s(q).

4. If s ∈ F and s 6= f then a′.s(q) = dv(s) and a′′.s(q) = dv(s) by the definitions

of PROJECT and APPLY operators. Thus, a′.s(q) = a′′.s(q).

We have shown that for any arbitrary stream s and time quantum q, a′.s(q) = a′′.s(q).

Therefore, a′ = a′′.

3.3.6 The MIX Operator

The mix of two audio files is a conditional merge of all streams constituting the files.

This operator can be used to merge audio recordings from different sources. For

example, when recording a vocal performance, the singer’s voice and the instrumental

sound track are usually picked up by different microphones and mixed in the “right”

proportion by a person in charge of the audio. In the algebra, the same operation is

done with the MIX operator.

However, before proceeding to define the MIX operator, some intermediate def-

initions are needed. In particular, we need to describe what it means to merge two

values (of the same stream from two different audio files).
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Definition 3.3.14 (Merging Policy) A merging policy for a stream f is a function

that takes as input two values v1, v2 ∈ dom(f), and returns as output, a single value

from dom(f) such that mp(v1, dv(f)) = v1 and mp(dv(f), v2) = v2.

It is worth noting that the default merging policy for a stream should be included into

that stream’s schema. Numerous merging policies exist. Some examples are given

below.

Example 3.3.4 (Merging Policies) One simple example of a merging policy would,

given that v1 6= dv(f) and v2 6= dv(f), take an average mpavg(v1, v2) = (v1 + v2)/2.

In some cases, this policy may cause certain unwelcome effects though. For example,

two quiet sounds will become even quieter after mixing their amplitudes with mpavg .

In such cases, one may use the cut-off policy mpcut(v1, v2) = min(fmax, |v1 + v2|) ·

sgn(v1 +v2). Notice that if dv(f) = 0, mpcut will not require any additional checking

for it.

We are now ready to define the MIX operator.

Definition 3.3.15 (MIX Operator) Given two audio files a1, a2 (databases ADB1, ADB2)

such that a1.δt = a2.δt, and a selection condition C with two free audio variables

A1, A2, the MIX operator produces a new audio file (database) such that

a1 ⊗C a2 = 〈max(a1.`, a2.`), a1.δt, F 〉,

ADB1 ⊗C ADB2 = {a1 ⊗C a2 | a1 ∈ ADB1 ∧ a2 ∈ ADB2},

where

F = {f | f(q) =







mpf (a1.f(q), a2.f(q)) if λ(C[A1/a1, A2/a2], q) = 1

a1.f(q) otherwise
}.
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It is assumed that a.f(q) = dv(f) for q ≥ a.`. The mp policies used by the MIX

operator are taken from the database schema and can be parameterized by the imple-

mentation, if needed.

Notice that by definition given above, MIX is not symmetric, i.e. a1 ⊗C a2 6= a2 ⊗C a1.

When the MIX selection condition is TRUE, we will omit it and write a1 ⊗ a2.

One important use of MIX is to merge results of other operators applied to the

same audio file. It is often necessary to transform only those parts of a file that satisfy

a certain condition. For example, one may want to muffle pieces of a musical com-

position where a tuba plays. To facilitate this kind of queries, one can use MIX for

conditional application via the derived conditional APPLY operator.

Example 3.3.5 (Conditional APPLY Operator) Given a transformation function trf

and a selection condition C with a single free audio variable A, and an audio file a

(database ADB), the conditional APPLY operator produces a new audio file (database)

αC
trf

(a) = α(σC(a), trf)⊗ σ¬C(a),

αC
trf

(ADB) = {αC
trf

(a) | a ∈ ADB}.

To continue with our example, given a musical recording a, one can muffle the tuba in

it by issuing the αtuba∈A.midi
vol(q)=vol(q)/2(a) query. There are several useful theorems showing

how MIX can be combined with other operators.

Theorem 3.3.9 (Swapping MIX and APPLY ) Given an APPLY operator with a value-

local transformation function trf and a MIX operator merging audio files on condi-

tion C such that f 6∈ fpA1(C)∪fpA2(C) and trf (mp(v1, v2)) = mp(trf (v1), trf (v2))

for all v1, v2 ∈ dom(f), the following holds:

α(a1 ⊗C a2, trf) = α(a1, trf)⊗C α(a2, trf ).
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Proof of Theorem 3.3.9. As the theorem requires that f 6∈ fpA1(C) ∪ fpA2C,

λ(C[A1/a1, A2/a2], q) does not depend on the value of f . Also, as the theorem re-

quires trf to be local, we can consider each quantum independently from all other

quanta and its location in the stream. Consider then an arbitrary stream s in a′ =

α(a1, trf )⊗C α(a2, trf) and a′′ = α(a1 ⊗C a2, trf) at a time quantum q:

1. If s 6= f then by the definition of APPLY and theorem requirements, we can

say that a′.s(q) = a1 ⊗C a2.s(q) and a′′.s(q) = a1 ⊗C a2.s(q) i.e. a′.s(q) =

a′′.s(q).

2. If s = f and λ(C[A1/a1, A2/a2], q) = 0 then we have a′.s(q) = trf (a1.s(q))

and a′′.s(q) = trf (a1.s(q)) i.e. a′.s(q) = a′′.s(q).

3. If s = f and λ(C[A1/a1, A2/a2], q) = 1 then a′.s(q) = mp(trf (a1.s(q)), trf(a2.s(q))

and a′′.s(q) = trf(mp(a1.s(q), a2.s(q))) by the definitions of APPLY and MIX

operators. As the theorem requires trf (mp(v1, v2)) = mp(trf (v1), trf (v2)), we

again conclude that a′.s(q) = a′′.s(q).

We have shown that for any arbitrary stream s and time quantum q, a′.s(q) = a′′.s(q).

Therefore, a′ = a′′.

Theorem 3.3.10 (Swapping MIX and PROJECT ) Given a PROJECT operator that

removes streams listed in F and a MIX operator merging audio files on condition

C such that F ∩ fpA1(C) = ∅ and F ∩ fpA2(C) = ∅, the following holds:

πF(a1 ⊗C a2) = πF (a1)⊗C πF (a2).

Proof of Theorem 3.3.10. Consider an arbitrary stream f in a′ = πF (a1)⊗C πF(a2)

and a′′ = πF(a1 ⊗C a2) at a time quantum q:
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1. The theorem requires that F ∩ fpA1(C) = ∅ and F ∩ fpA2(C) = ∅ i.e.

any deleted streams do not affect the value of λ(C[A1/a1, A2/a2], q). Then

if f 6∈ F , by the PROJECT definition a′.f(q) = a1 ⊗C a2.f(q) and a′′.f(q) =

a1 ⊗C a2.f(q), and thus a′.f(q) = a′′.f(q).

2. If f ∈ F and λ(C[A1/a1, A2/a2], q) = 0 then we have a′.f(q) = πF (a1).f(q) =

dv(f) and a′′.f(q) = πF(a1).f(q) = dv(f) by the definition of the MIX opera-

tor, and therefore a′.f(q) = a′′.f(q).

3. If f ∈ F and λ(C[A1/a1, A2/a2], q) = 1 then a′.f(q) = mp(dv(f), dv(f)) =

dv(f) by the common property of all merging policies), and a′′.f(q) = dv(f)

by the definition of PROJECT . Once again we conclude that a′.f(q) = a′′.f(q).

We have shown that for any arbitrary stream f and time quantum q, a′.f(q) = a′′.f(q).

Therefore, a′ = a′′.

3.3.7 The Concatenation Operator

A common, albeit simple, audio processing task is the concatenation of audio files.

Hence is the algebraic operator to do it.

Definition 3.3.16 (Concatenation Operator) Given two audio files a1, a2 (databases

ADB1, ADB2) such that a1.δt = a2.δt, the concatenation operator produces a new au-

dio file (database)

a1 ⊕ a2 = 〈a1.` + a2.`, a1.δt, F 〉,

ADB1 ⊕ ADB2 = {a1 ⊕ a2 | a1 ∈ ADB1 ∧ a2 ∈ ADB2},

where F = {f | f(q) =







a1.f(q) if q ∈ [0, a1.`)

a2.f(q − a1.`) otherwise
}.
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I now present some useful equivalences involving concatenation.

Theorem 3.3.11 (Swapping Concatenation Operators) Given two concatenation op-

erators, the following holds:

(a1 ⊕ a2)⊕ a3 = a1 ⊕ (a2 ⊕ a3).

Proof of Theorem 3.3.11. Consider an arbitrary stream f in a′ = (a1 ⊕ a2)⊕ a3 and

a′′ = a1 ⊕ (a2 ⊕ a3) at a time quantum q. Due to the definition of the concatenation

operator, we can write the following correspondence between stream values:

a′.f(q) =







a1.f(q) if q ∈ [0, a1.`)

a2.f(q − a1.`) if q ∈ [a1.`, a2.`)

a3.f(q − a1.`− a2.`) otherwise

a′′.f(q) =







a1.f(q) if q ∈ [0, a1.`)

a2.f(q − a1.`) if q ∈ [a1.`, a2.`)

a3.f(q − a1.`− a2.`) otherwise

As a′.f(q) = a′′.f(q) for every stream f at any quantum q, one can conclude that a′

and a′′ are equivalent.

Theorem 3.3.12 (Swapping Concatenation and SELECT ) Given a SELECT opera-

tor with a local selection condition C, the following holds:

σC(a1 ⊕ a2) = σC(a1)⊕ σC(a2).

Proof of Theorem 3.3.12. Consider an arbitrary stream f in a′ = σC(a1 ⊕ a2) and

a′′ = σC(a1)⊕ σC(a2) at a time quantum q. Due to the definition of the concatenation

operator and locality of C, we can write the following correspondence between stream
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values:

a′.f(q) =







σC(a1).f(q) if q ∈ [0, a1.`)

σC(a2).f(q − a1.`) otherwise

a′′.f(q) =







σC(a1).f(q) if q ∈ [0, a1.`)

σC(a2).f(q − a1.`) otherwise

As a′.f(q) = a′′.f(q) for every stream f at any quantum q, one can conclude that a′

and a′′ are equivalent.

Theorem 3.3.13 (Swapping Concatenation and APPLY ) Given an APPLY opera-

tor with a local transformation function trf and a concatenation of two audio files

a1, a2, the following holds:

α(a1 ⊕ a2, trf) = α(a1, trf)⊕ α(a2, trf).

Proof of Theorem 3.3.13. This proof is similar to the proof of Theorem 3.3.12. Con-

sider an arbitrary stream f in a′ = α(a1 ⊕ a2, trf) and a′′ = α(a1, trf)⊕ α(a2, trf ) at

a time quantum q. Due to the definition of the concatenation operator and the locality

of trf , we can write the following correspondence between stream values:

a′.f(q) =







α(a1, trf).f(q) if q ∈ [0, a1.`)

α(a2, trf).f(q − a1.`) otherwise

a′′.f(q) =







α(a1, trf).f(q) if q ∈ [0, a1.`)

α(a2, trf).f(q − a1.`) otherwise

As a′.f(q) = a′′.f(q) for every stream f at any quantum q, one can conclude that a′

and a′′ are equivalent.
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Theorem 3.3.14 (Swapping Concatenation and PROJECT ) Given a PROJECT op-

erator that removes streams listed in F and a concatenation of two audio files a1, a2,

the following holds:

πF(a1 ⊕ a2) = πF (a1)⊕ πF (a2).

Proof of Theorem 3.3.14. This proof is similar to the proof of Theorem 3.3.12.

Consider an arbitrary stream f in a′ = πF(a1 ⊕ a2) and a′′ = πF (a1)⊕ πF (a2) at a

time quantum q. Due to the definition of the concatenation operator, we can write the

following correspondence between stream values:

a′.f(q) =







πF (a1).f(q) if q ∈ [0, a1.`)

πF (a2).f(q − a1.`) otherwise

a′′.f(q) =







πF (a1).f(q) if q ∈ [0, a1.`)

πF (a2).f(q − a1.`) otherwise

As a′.f(q) = a′′.f(q) for every stream f at any quantum q, one can conclude that a′

and a′′ are equivalent.

3.3.8 The RESAMPLE Operator

Recall that the inputs to such binary operators as MIX and concatenation are required

to have the same δt. However, it is often the case that we wish to perform these

operations (e.g. mixing) on two audio files sampled at different frequencies and thus

having different δt values. This can be achieved by “resampling” one of the files

(usually the one with the larger δt, to preserve fidelity). Resampling has many other

uses, too. For example, when recording an audio CD, it is important to resample all

audio data to 44.1kHz required by the AudioCD standard. On the other hand, when

playing audio through a phone line, or storing it on a limited-capability device (such

74



as a cellular phone) one would have to resample it to the 8kHz frequency. To facilitate

resampling, let us first introduce the interpolation policy:

Definition 3.3.17 (Stream Interpolation Policy) Given a stream f , time t, and a pe-

riod δt, the stream interpolation policy ip(f, t, δt) returns a value from dom(f) such

that ip(f, i · δt, δt) = f(i).

It is worth noting that the default interpolation policy for a stream should be included

into that stream’s schema.

Let us examine what this definition says w.r.t. Figure 3.1. Suppose f.v = 〈 0.1,

0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0.1, 0 〉. Consider any policy ip for this case. Here, δt =

2µs. ip(f, 7, 0.000002) can be any number whatsoever between 0 and 1. However,

ip(f, 6, 2) must equal 0.5 because 6 = 3 · δt and f(3) = 0.5. Examples of some

interpolation policies are given below.

Example 3.3.6 (Interpolation Policies) The simplest interpolation policy would just

return the previous or the next known value of f :

ipprev(f, t, δt) = f(bt/δtc)

ipnext(f, t, δt) = f(bt/δtc+ 1)

If there is a complete ordering on dom(f), one may want to take the smallest or the

largest neighboring value:

ipmin(f, t, δt) = min(f(bt/δtc), f(bt/δtc+ 1))

ipmax(f, t, δt) = max(f(bt/δtc), f(bt/δtc+ 1))

Finally, if f is numeric, it is possible to interpolate it linearly:

iplin(f, t, δt) = f(bt/δtc) +
(f(bt/δtc + 1)− f(bt/δtc)(t− bt/δtcδt)

δt
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More complicated interpolation policies may involve quadratic or spline interpola-

tion. An interpolation policy may not be applicable to some data types. For instance,

iplin can’t be applied to set, character, and string domains.

Armed with stream interpolation policies, we can now introduce the RESAMPLE

operator:

Definition 3.3.18 (RESAMPLE Operator) Given an audio file a (database ADB) and

a time period δt′, the RESAMPLE operator returns a new audio file (database) such

that

γδt′(a) = 〈b
a.` · a.δt

δt′
c, δt′, {f | f(q) = ip(a.f, q · δt′, a.δt)}〉,

γδt′(ADB) = {γδt′(a) | a ∈ ADB}.

The ip policies used by the RESAMPLE operator are taken from the database schema

and can be parameterized by the implementation, if needed.

Under certain conditions, RESAMPLE can be swapped with SELECT , PROJECT ,

and APPLY :

Theorem 3.3.15 (Swapping RESAMPLE and SELECT ) Suppose C is a local selec-

tion condition and either ipnext or ipprev is the stream interpolation policy used for all

streams in the audio schema. Then:

γδt′(σC(a)) = σC(γδt′(a)).

Proof of Theorem 3.3.15. Assume that interpolation policy does not create any new

values, but provides a correspondence w : < → [0, `) between time instances and

audio file quanta. Both ipprev and ipnext are such policies. Let us then consider

an arbitrary stream f in a′ = γδt′(σC(a)) and a′′ = σC(γδt′(a)) at a time quantum
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q. As the theorem requires C to be local, we can look at each quantum separately.

Both a′.f(q) and a′′.f(q) will return the result of σC(a) operator at w(q · δt′). Thus,

a′.f(q) = a′′.f(q) and because it is true for any arbitrary stream f at arbitrary moment

q, a′ = a′′.

Theorem 3.3.16 (Swapping RESAMPLE and PROJECT ) SupposeF is a list of streams

to be removed from an audio file and either ipnext or ipprev is the stream interpolation

policy used for all streams in the audio schema. Then:

γδt′(πF (a)) = πF(γδt′(a)).

Proof of Theorem 3.3.16. This proof is similar to the proof of Theorem 3.3.15.

Assume that interpolation policy does not create any new values, but provides a cor-

respondence w : < → [0, `) between time instances and audio file quanta. Both

ipprev and ipnext are such policies. Let us then consider an arbitrary stream f in

a′ = γδt′(πF(a)) and a′′ = πF(γδt′(a)) at a time quantum q. Both a′.f(q) and a′′.f(q)

will return the result of πF (a) operator at w(q · δt′). Thus, a′.f(q) = a′′.f(q) and

because it is true for any arbitrary stream f at arbitrary moment q, a′ = a′′.

Theorem 3.3.17 (Swapping RESAMPLE and APPLY ) Suppose trf is a local stream

transformation function and either ipnext or ipprev is the stream interpolation policy

used for all streams in the audio schema. Then:

γδt′(α(a, trf)) = α(γδt′(a), trf).

Proof of Theorem 3.3.17. This proof is similar to the proof of Theorem 3.3.15.

Assume that interpolation policy does not create any new values, but provides a cor-

respondence w : < → [0, `) between time instances and audio file quanta. Both ipprev

and ipnext are such policies. Also, the theorem requires trf to be local i.e. we can
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look at each time quantum individually, without taking into account its location or

other quanta. Let us then consider an arbitrary stream f in a′ = γδt′(α(a, trf)) and

a′′ = α(γδt′(a), trf) at time quantum q. Both a′.f(q) and a′′.f(q) will return the result

of α(a, trf) operator at w(q · δt′) Thus, a′.f(q) = a′′.f(q) and because it is true for

any arbitrary stream f at arbitrary moment q, a′ = a′′.

3.3.9 The COMPRESS Operator

In practice, one would often encounter audio files that contain “gaps” where default

stream values are repeated for long periods of time. A typical example of such a

file would be the output of a surveillance system or a recording from an aircraft’s

“black box” recorder with long periods of silence. By its nature, the SELECT operator

also yields audio files that contain gaps. One may often want to compress such files

by removing the gaps. This can be done with the COMPRESS operator, defined as

follows:

Definition 3.3.19 (COMPRESS Operator) Given an audio file a (database ADB) and

a set of stream names F , the COMPRESS operator returns a new audio file (database)

such that

w0 = 0,

wi+1 = q such that q ∈ (wi, a.`) ∧ ∃f ∈ F a.f(q) 6= dv(f) ∧

∀q′ ∈ (wi, q)∀f ∈ F a.f(q′) = dv(f),

` = i such that ∀wj j ≤ i,

ηF(a) = 〈`, a.δt, {f | f(q) = a.f(wq+1)}〉,

ηF(ADB) = {ηF(a) | a ∈ ADB}.
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Two COMPRESS operators can be swapped.

Theorem 3.3.18 (Swapping COMPRESS Operators) SupposeF1,F2 are sets of streams

and a is an audio file. Then:

ηF1(ηF2(a)) = ηF2(ηF1(a)).

Proof of Theorem 3.3.18. Consider an arbitrary quantum q in an audio file a and two

queries: a′ = ηF2(ηF1(a)) and a′′ = ηF1(ηF2(a)). By the definition of the COMPRESS

operator, quantum q may have counterparts q ′ and q′′ in a′ and a′′, such that for any

audio stream f , a′(q′) = a(q) and a′′(q′′) = a(q). It is also true that given two quanta

q1 ≤ q2 in a, their counterparts in a′, a′′ will have the same ordering, i.e. q′1 ≤ q′2

and q′′1 ≤ q′′2 . Thus, to prove the equality a′ = a′′, we need to show that q will either

be present in both a′, a′′ or absent from both of them. Now, consider a set of audio

streams F such that ∀f ∈ F a.f(q) 6= dv(f) and ∀f ′ 6∈ F a.f ′(q) = dv(f ′):

1. If F ∩F1 = ∅ and F ∩F2 = ∅ then the quantum q is not present in both ηF1(a)

and ηF2(a). Therefore, it is absent from both a′ and a′′.

2. If F ∩ F1 6= ∅ and F ∩ F2 = ∅ then the quantum q is included into ηF1(a),

but not into a′, because of the outer ηF2() operator. It is also not included into

ηF2(a) and therefore absent from a′′.

3. If F ∩ F1 = ∅ and F ∩ F2 6= ∅ then the quantum q is included into ηF2(a),

but not into a′′, because of the outer ηF1() operator. It is also not included into

ηF1(a) and therefore absent from a′.

4. Finally, if F ∩F1 6= ∅ and F ∩F2 6= ∅ then the quantum q is included into both

a′ and a′′.
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Thus, we have shown that any arbitrary quantum q in the input audio file a is either

present in both a′ and a′′ or absent from both of them and the original ordering of

quanta is preserved in both a′ and a′′. Therefore, a′ = a′′.

Under certain conditions, COMPRESS can be swapped with PROJECT , APPLY ,

and concatenation operators. COMPRESS can be swapped with PROJECT as long as

the set of streams being compressed does not intersect with the projected streams.

Theorem 3.3.19 (Swapping COMPRESS and PROJECT ) SupposeF1,F2 are disjoint

sets of streams and a is an audio file. Then:

ηF1(πF2(a)) = πF2(ηF1(a)).

Proof of Theorem 3.3.19. The COMPRESS operator defines a w : [0, ηF1(a).`) →

[0, a.`) mapping between time quanta in the compression result ηF1(a) and the quanta

in the input audio file a. As the theorem requiresF1∩F2 = ∅, deletion of a stream f ∈

F2 will not affect w. Thus, let us consider an arbitrary stream f in a′ = ηF2(πF1(a))

and a′′ = πF1(ηF2(a)) at a time quantum q:

1. If f 6∈ F2 then, by the definition of PROJECT , a′.f(q) = a.f(w(q)) and

a′′.f(q) = a.f(w(q)), i.e. a′.f(q) = a′′.f(q).

2. If f ∈ F2 then, by the definition of PROJECT , a′.f(q) = dv(f) and a′′.f(q) =

dv(f), and again a′.f(q) = a′′.f(q).

As a′.f(q) = a′′.f(q) for every stream f at any quantum q, one can conclude that a′

and a′′ are equivalent.

COMPRESS can be swapped with APPLY as long as the stream affected by the

APPLY operator is not a stream being compressed.
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Theorem 3.3.20 (Swapping COMPRESS and APPLY ) Given a COMPRESS operator

based on streams listed inF and an APPLY operator with a local transformation func-

tion trf , such that f 6∈ F or x 6= dv(f) → trf(x) 6= dv(f), the following holds for

any audio file a:

ηF(α(a, trf)) = α(ηF(a), trf).

Proof of Theorem 3.3.20. As the theorem requires trf to be local, the APPLY oper-

ates on each time quantum individually, we can consider each quantum individually,

without taking into account its location or the data at the other quanta. The COM-

PRESS operator defines a w : [0, ηF(a).`) → [0, a.`) mapping between time quanta

in the compression result ηF(a) and the quanta in the input audio file a. Let us then

consider an arbitrary stream s in a′ = ηF(α(a, trf)) and a′′ = α(ηF(a), trf ) at a time

quantum q:

1. If f 6∈ F then for any stream f ′ ∈ F it is true that α(a, trf).f
′(q) = a.f ′(q),

by the definition of APPLY . Then, by the definition of COMPRESS , the COM-

PRESS operators in both a′ and a′′ induce the same mapping w on their inputs.

Therefore, a′.s(q) = α(a, trf).s(w(q)) and a′′.s(q) = α(a, trf).s(w(q)), i.e.

a′.s(q) = a′′.s(q).

2. If f ∈ F then the theorem requires that x 6= dv(f) → trf (x) 6= dv(f). Addi-

tionally, by the common property of all transformation functions, x = dv(f)→

trf(x) = dv(f), i.e. x = dv(f) if and only if trf (x) = dv(f). By definition,

APPLY can only modify a single stream f , therefore for any stream f ′ ∈ F it

is true that a.f ′(q) = dv(f ′) if and only if a.f ′(q) = α(a, trf).f
′(q) = dv(f ′).

Then, by the definition of COMPRESS , the COMPRESS operators in both a′
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and a′′ induce the same mapping w on their inputs. Therefore, a′.s(q) =

α(a, trf).s(w(q)) and a′′.s(q) = α(a, trf).s(w(q)), i.e. a′.s(q) = a′′.s(q).

As a′.s(q) = a′′.s(q) for every stream s at any quantum q, one can conclude that a′

and a′′ are equivalent.

Finally, COMPRESS can be swapped with the concatenation operator.

Theorem 3.3.21 (Swapping COMPRESS and Concatenation) Given a COMPRESS op-

erator and a concatenation of two audio files a1, a2, the following holds:

ηF(a1 ⊕ a2) = ηF(a1)⊕ ηF(a1).

Proof of Theorem 3.3.21. This proof is similar to the proof of Theorem 3.3.12.

Consider an arbitrary stream f in a′ = ηF(a1 ⊕ a2) and a′′ = ηF(a1)⊕ ηF(a2)

at a time quantum q. By the definition of COMPRESS , there are two mappings

w1 : [0, ηF(a1).`) → [0, a1.`) and w2 : [0, ηF(a2).`) → [0, a2.`) that determine

which quanta are selected by the COMPRESS operator. Due to the definition of the

concatenation operator, we can write the following correspondence between stream

values:

a′.f(q) =







a1.f(w1(q)) if q ∈ [0, a1.`)

a2.f(w2(q − a1.`)) otherwise

a′′.f(q) =







a1.f(w1(q)) if q ∈ [0, a1.`)

a2.f(w2(q − a1.`)) otherwise

As a′.f(q) = a′′.f(q) for every stream f at any quantum q, one can conclude that a′

and a′′ are equivalent.
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3.3.10 The MATCH Operator

There are many cases where we have an audio file a and another audio file a′ and

want to find places in a that are most similar to a′, or “match” a′. For instance,

returning to our court recording, one may wish to find the k best matches for judge’s

statements where judge has spoken a certain word. Similar queries can often be useful

for searching surveillance logs, transcripts, musical tunes, and so forth.

In order to support matching, we first need to define what it means for an audio

stream to be similar to another audio stream.

Definition 3.3.20 (Distance Measure) A distance measure dm is a mapping from

pairs of audio streams to [0, 1] such that dm(f, f) = 0 for any audio stream f .

As f and f ′ become less similar, the value of dm(f, f ′) grows. The default distance

measure for two streams following the same schema should be included into that

schema. Some specific distance measures are given below.

Example 3.3.7 (Distance Measures)

1. Distance for numeric streams: Suppose streams f and f ′ are numeric and

` = min(length(f), length(f ′)). We may use the linear distance, the quadratic

distance or the maximal distance to measure similarity between the streams.

dmld(f, f ′) =

∑`−1
i=0 |f(i)− f ′(i)|

` · |max(f)−min(f)|
,

dmqd(f, f ′) =

∑`−1
i=0(f(i)− f ′(i))2

` · (max(f)−min(f))2
,

dmmd(f, f ′) =
max`−1

i=0 |f(i)− f ′(i)|

|max(f)−min(f)|
.

It follows from the definitions of these distance measures that for all f and f ′,

dmqd(f, f ′) ≤ dmld(f, f ′) ≤ dmmd(f, f ′).
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2. Distance for set-valued streams: Suppose f and f ′ are set-valued streams,

such as frequency spectrum or a set of currently playing musical instruments.

We can apply the following distance measure to these streams:

dmsd(f, f ′) =
1

n

`−1∑

i=0

card(f(i) ∩ f ′(i))

card(f(i) ∪ f ′(i)) + 1
.

Other stream types may require different measures such as shortest editing distance

for strings or perceived audio similarity for phonemes. Notice that sizes of two

streams do not have to be equal. In fact, chunks of streams considered by dm may

differ in size, although it is natural that the pattern f ′ is considered in its entirety.

Definition 3.3.21 (Multiple Stream Distance) The distance between two audio files

a, a′ with respect to a set of stream names F can be computed as follows:

dmF(a, a′) =
∑

f∈F

dm(a.f, a′.f).

It is assumed that a and a′ follow the same schema from which appropriate stream

distance measures are taken.

Definition 3.3.22 (Match Ordering) Suppose a, a′ are audio files and F is a set of

stream names. Let SEQ(a) denote the set of all contiguous subsequences of a. Each

x ∈ SEQ(a) is a range of [l, u] such that l ∈ [0, a.`) and u ∈ [l, a.`), and can be

treated as an audio file by itself. Suppose x1, x2 ∈ SEQ(a). We say that x1va′x2 iff

dmF(x1, a
′) ≤ dmF(x2, a

′) and call va′ the match ordering of SEQ(a) w.r.t. a′.

Now, the matching operator can be defined as follows.

Definition 3.3.23 (MATCH Operator) Suppose a, a′ are two audio files, ADB is an

audio database, F is a set of stream names, k is a natural number, and dmax ≥ 0
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is a real number. Let S consist of k smallest members of SEQ(a) w.r.t. va′ such

that ∀x ∈ S dmF (x, a′) ≤ dmax. Then the MATCH operator returns a new audio file

(database) such that

µk
F(a, a′, dmax) = 〈a.`, a.δt, {f | f(q) =







a.f(q) if ∃x ∈ S q ∈ x

dv(f) otherwise
}〉,

µk
F(ADB, a′, dmax) = {x = µk

F(a, a′) | a ∈ ADB ∧ ∃f∃q x.f(q) 6= dv(f)}.

3.4 Optimizing SELECT and MIX

Two basic operators most often executed on audio data are SELECT and MIX . Given

an audio file (database) and a selection condition, SELECT searches for quanta that

satisfy this condition. A more complex operator, MIX , searches two audio files at

once for quanta satisfying a joint selection condition.

In a very naive implementation, both selection and mixing can be performed by

scanning input audio files, quantum by quantum, and writing out the resulting quanta

as they are being computed. Due to the usual smoothness of audio data, its traversal

can be accelerated by compressing audio streams with the run-length encoding (RLE).

To further accelerate search operations though, one has to index audio streams and

audio files. In this section, I will show how numeric audio streams (such as waveform

or amplitude) can be indexed and searched for the purpose of selection and mixing.

To accelerate selection and mixing, one needs an efficient way to decide whether

a range of quanta in an audio file contains any useful data with respect to a selection

condition, and if it does not, skip over this range. For example, if we are looking at a

range of quanta [3 · 106, 7 · 106), it would be nice if we could quickly say that nothing

in this range satisfies our selection condition, thus allowing us to jump over a large
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range of quanta in our search. This operation can be abstracted with the following

two API calls:

1. The q′ = f.SkipNIL(q) call skips stream f to the nearest quantum q ′ ≥ q such

that f(q′) 6= dv(f). Thus, SkipNIL() allows jumping over “empty” ranges of

quanta.

2. The q′ = f.SkipTo(q, dmin, dmax, E) call skips stream f to the nearest quantum

q′ ≥ q such that dmin ≤ f(q′) ≤ dmax when E = false, or f(q′) < dmin ∧

f(q′) > dmax when E = true. Thus, SkipTo() allows jumping directly to

stream ranges containing “interesting” data.

Let us start by dividing a stream into a sequence of segments, as shown in the

Figure 3.4. Each segment s = 〈start, end, min, max〉 is characterized by the start-

ing and ending quanta, minimal, and maximal values. A sequence of such segments

shown in the Figure 3.4 is formally known as a subdivision. It is clear that a stream

can be subdivided in multiple ways that are not equally good. Ideally, we would like

each segment to be homogeneous and maximize the difference between each segment

and its neighbors.
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Figure 3.4: Subdivision.
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To come up with a good segmentation criterion for efficient indexing, let us define

the utilization of a segment to be

ut(s) = 1−
2 ·

∑

i∈[s.start,s.end) min(s.max − s(i), s(i)− s.min)

(s.end− s.start) · (s.max− s.min)
.
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Figure 3.5: Utilization.

Figure 3.4 shows a subdivision of segments with their corresponding ut values,

while Figure 3.5 shows a single segment. The ut function is directly proportional

to the segment length and inversely proportional to the shaded area shown in Fig-

ure 3.5. Intuitively, higher values of ut correspond to segments that have less empty

space above and below the waveform and thus better approximate the data. By set-

ting a lower bound on ut, one can break an audio stream into segments of different

coarseness with the following greedy algorithm:
Algorithm SegmentStream(Data,utmin)

Data is an audio stream
utmin ∈ [0, 1] is a lower limit on utilization

begin
Result := ∅
Start := 0
Max := Data(0)
Min := Data(0)
for j ∈ [1, length(Data)) do

// If upper boundary has changed...
if Data(j) > Max then

// When ut falls below utmin, create a segment
if ut(〈Start, j, Min, Data(j)〉) < utmin then

Result := Result ∪ {〈Start, j, Min, Max〉}
Start := j
Min := Data(j)
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end if
Max := Data(j)

end if
// If lower boundary has changed...
if Data(j) < Min then

// When ut falls below utmin, create a segment
if ut(〈Start, j, Data(j), Max〉) < utmin then

Result := Result ∪ {〈Start, j, Min, Max〉}
Start := j
Max := Data(j)

end if
Min := Data(j)

end if
end for
Result := Result ∪ {〈Start, length(Data), Min, Max〉}
return Result

end

The SegmentStream() algorithm scans the stream and computes a new utiliza-

tion value every time its upper or lower boundary changes. A new segment is created

every time the ut value falls below the given lower bound utmin. This ensures that

all segments created by the algorithm have at least utmin utilization, as shown in the

following example.

Example 3.4.1 (Building a Subdivision) Columns 3-4 of the Table 3.1 show steps

taken by the SegmentStream() algorithm called with utmin = 0.37 on a stream

shown in the Figure 3.4. Column 3 contains the currently scanned segment’s length

and boundaries, while column 4 shows the utilization. As one can see, the ut value

falls below utmin at the quantum 17, causing the algorithm to create a segment

〈0, 17, 4, 13〉 and start on a new segment. In this example, the SegmentStream()

algorithm creates a subdivision of two segments: 〈0, 17, 4, 13〉 and 〈17, 38, 4, 17〉.

The starting quanta of these two segments are marked with asterisks in the table.

When creating a subdivision, one faces a tradeoff between the segment bound-

ary tightness and the number of segments. To have both succinct and precise repre-

sentations of an audio stream, one can use the subdivision tree data structure whose
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ut ≥ 0.37 ut ≥ 0.74

q f(q) ` × [min, max] ut ` × [min, max] ut

0 6 *1 × [6, 6] 1.00 *1 × [6, 6] 1.00

1 8 2 × [6, 8] 1.00 2 × [6, 8] 1.00

2 9 3 × [6, 9] 0.78 3 × [6, 9] 0.78

3 10 4 × [6, 10] 0.63 *1 × [10, 10] 1.00

4 10 5 × [6, 10] 0.70 2 × [10, 10] 1.00

5 10 6 × [6, 10] 0.75 3 × [10, 10] 1.00

6 10 7 × [6, 10] 0.79 4 × [10, 10] 1.00

7 10 8 × [6, 10] 0.81 5 × [10, 10] 1.00

8 10 9 × [6, 10] 0.83 6 × [10, 10] 1.00

9 9 10 × [6, 10] 0.80 7 × [9, 10] 1.00

10 8 11 × [6, 10] 0.73 8 × [8, 10] 0.88

11 6 12 × [6, 10] 0.75 9 × [6, 10] 0.83

12 4 13 × [4, 10] 0.74 10 × [4, 10] 0.83

13 5 14 × [4, 10] 0.74 11 × [4, 10] 0.82

14 8 15 × [4, 10] 0.71 12 × [4, 10] 0.78

15 11 16 × [4, 11] 0.57 *1 × [11, 11] 1.00

16 13 17 × [4, 13] 0.41 2 × [11, 13] 1.00

17 15 *1 × [15, 15] 1.00 *1 × [15, 15] 1.00

18 16 2 × [15, 16] 1.00 2 × [15, 16] 1.00

19 17 5 × [11, 17] 0.67 *1 × [17, 17] 1.00

20 17 6 × [11, 17] 0.72 2 × [17, 17] 1.00

21 17 7 × [11, 17] 0.76 3 × [17, 17] 1.00

22 17 8 × [11, 17] 0.79 4 × [17, 17] 1.00

23 17 9 × [11, 17] 0.82 5 × [17, 17] 1.00

24 17 10 × [11, 17] 0.83 6 × [17, 17] 1.00

25 17 11 × [11, 17] 0.85 7 × [17, 17] 1.00

26 16 12 × [11, 17] 0.83 8 × [16, 17] 1.00

27 16 13 × [11, 17] 0.82 9 × [16, 17] 1.00

28 15 14 × [11, 17] 0.79 10 × [15, 17] 0.80

29 14 15 × [11, 17] 0.73 11 × [14, 17] 0.82

30 12 16 × [11, 17] 0.73 12 × [12, 17] 0.80

31 10 17 × [10, 17] 0.73 13 × [10, 17] 0.80

32 7 18 × [7, 17] 0.71 14 × [7, 17] 0.79

33 4 19 × [4, 17] 0.73 15 × [4, 17] 0.79

34 5 20 × [4, 17] 0.73 16 × [4, 17] 0.79

35 6 21 × [4, 17] 0.73 17 × [4, 17] 0.78

36 6 22 × [4, 17] 0.73 18 × [4, 17] 0.78

37 6 23 × [4, 17] 0.73 19 × [4, 17] 0.77

Table 3.1: SegmentStream() Operation.
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branches correspond to the same audio stream segmented with different degrees of

resolution, as shown in Figure 3.6.

c1 (root)

c2

c3child

child

Tree T = { c1,c2,c3 }

Figure 3.6: Subdivision Tree.

Definition 3.4.1 (Subdivision Tree) Suppose f is an audio stream.

1. Subdivision node. Given an audio stream f , let us define a subdivision node to

be a structure 〈start, end, min, max, prev, next, child〉 where

(a) start and end are node’s starting and ending quanta in f such that start <

end,

(b) min(f) and max(f) are lower and upper bounds on {f(start), . . . , f(end−

1)},

(c) prev and next are pointers to sibling nodes, such that prev.end = start

and next.start = end, and

(d) child is a pointer to the child node containing the starting quantum of the

segment.
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2. Subdivision. A subdivision is a set of subdivision nodes c = {N1, . . . , Nn}

such that N1.prev = NIL, Ni.prev = Ni−1, Nn.next = NIL, and Ni.next =

Ni+1. A subdivision is characterized by its first and last nodes: first(c) = N1

and last(c) = Nn.

3. Subdivision tree. Given a maximal utilization utmax, a subdivision tree is a set

of subdivisions T = {c1, . . . , cn} such that the root

c1 = {〈0, length(f), min(f), max(f), NIL, NIL, first(c1)〉}

and for any subdivision node N it is true that

(a) if ut(N) ≥ utmax then N.child = NIL and

(b) otherwise, there is a subdivision ci ∈ T such that N.child = first(ci)

and ∀N ′ ∈ ci ut(N ′) ≥ 2 · ut(N).

Example 3.4.2 (Building a Subdivision Tree) Columns 5-6 of the Table 3.1 show

steps taken by the SegmentStream() algorithm called with utmin = 2 · 0.37 = 0.64

on each segment of the original subdivision obtained in the previous example. The

table shows that each of the two original segments is further subdivided into segments

〈0, 3, 6, 9〉, 〈3, 15, 4, 10〉, 〈15, 17, 11, 13〉, 〈17, 19, 15, 16〉, and 〈19, 38, 4, 17〉. These

new segments make the second level of a subdivision tree whose first level consists of

the original two segments from columns 3-4. Figure 3.6 shows the resulting subdivi-

sion tree.

One can use the subdivision tree to search for stream values falling into a range

[vmin, vmax] with the following algorithm:
Algorithm FindInRange(Data,N ,q,vmin,vmax)

Data is the audio stream
N is the subdivision node
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q is the starting quantum
[vmin, vmax] is a range of values to search for

begin
while N 6= NIL and q ≥ N.end do N := N.next
while N 6= NIL do

if [N.min, N.max] ∩ [vmin, vmax] 6= ∅ then
if N.child 6= NIL then

q′ := FindInRange(N.child, q, vmin, vmax)
if q′ 6= NotFound then return q′

else
for q′ ∈ [max(q, N.start), N.end) do

if Data(q′) ∈ [vmin, vmax] then return q′

end for
end if

end if
N := N.next

end while
return NotFound

end

Given a stream f , a starting quantum q, a range of interest [vmin, vmax], and a

subdivision tree T , the recursive FindInRange() algorithm is called on the first node

of T ’s root subdivision as

FindInRange(f, first(root(T )), q, vmin, vmax).

The algorithm starts by scanning the subdivision for the first node intersecting the

quantum range [q, +∞), as we are only interested in quanta starting from q. It then

looks for a node whose value range intersects [vmin, vmax]. If that node is subdivided

further, FindInRange() calls itself on this child subdivision. Otherwise, it resorts to

direct scanning the audio stream within node’s boundaries.

By replacing the [N.min, N.max] ∩ [vmin, vmax] 6= ∅ statement with its negation,

one can obtain the algorithm FindOutRange() that searches for data outside of the

range [vmin, vmax].

Together, FindInRange() and FindOutRange() allow to find spans of quanta

where stream values lie inside or outside a given range. One can use these algorithms
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to accelerate the SkipTo() API call. Then the SkipNIL() API call can be imple-

mented by looking for the data outside the [dv(f), dv(f)] range.

3.4.1 Experiments

I have used a database of narrated Chaucer works, opera recordings (rendered from

MIDI files), and other audio files totaling to about 80 million quanta, with individual

recordings varying in length from several thousand to eight million quanta. Most

recordings were two to four million quanta in length.

In the experiments, I assessed the effectiveness of the subdivision tree indexing.

A maximal amplitude stream amp sampled over 10ms periods with the value range

of [0, 32767] has been used for experiments. The size of an index file, shown in

Figure 3.7, has largely been under 5% of the data file size.
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Figure 3.7: Subdivision Tree Size.

First, I ran SELECT queries

σa.amp≥v∧a.amp≤10000(a),
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where v = 0, 2000, 4000, 6000, 8000, five times for each audio file a in the database.

Figure 3.8 shows average execution times for these queries with and without indexing,

as a function of the data size. The first three graphs correspond to queries that select

[0, 10000] (highest selectivity), [4000, 10000] (average selectivity), and [8000, 10000]

(lowest selectivity) amplitude ranges. As expected, index benefits grow as selectivity

falls. The last graph shows the average execution time for all selectivities. It appears

that the index improves SELECT performance by as much as seven times.
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Figure 3.8: SubTree SELECT Performance.

Next, I ran MIX queries

a1 ⊗a1 .amp≤v∧a2 .amp>v a2,

where v = 2000, 4000, 6000, 8000, for all possible combinations of files a1, a2 in

94



the database. Figure 3.9 shows average execution times for these queries with and

without indexing, as a function of the data size. The first three graphs correspond to

queries with the “mixing threshold” of 2000, 4000, and 8000. The last graph shows

the average execution time for all threshold values. While index benefits are less

pronounced in this case, they are still clearly seen in all the graphs.
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Figure 3.9: Mixing Performance.

3.5 Optimizing MATCH

Due to the commonality of pattern searches, the matching operator is probably the

most important in the algebra. It is also most difficult to implement, given the com-

plexity of the task and the huge amount of input data. Therefore, let us spend some
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time looking at the implementation of this operator.

The problem of matching audio data has been tackled by many researchers, such

as [33, 27, 69, 47, 65, 41]. Most of them look exclusively at melodies i.e. musical

scores, represented with character strings, as opposed to waveforms or other audio

representations. There are also works that match audio files based on feature vectors,

returning the whole file if its vector matches, as opposed to finding a matching spot in

that file [27].

I believe that to search audio effectively, one needs to use all available knowl-

edge of an audio recording, such as its waveform, frequency spectrum, MIDI score,

and text transcript, at once. The MATCH operator in ADA provides a formal founda-

tion for such multi-stream matching. As numeric representations (such as waveform,

amplitude, etc.) are most commonly available though, this section specifically con-

centrates on numeric stream matching. Approaches described here can be applied to

a larger domain of audio data than melody-based approaches described above, but

they are also complicated by the inherent irregularity of audio waveforms, their large

size, and large “alphabets” of thousands of values. While lengths of musical scores

rarely exceed a few thousand characters, waveforms easily reach millions of sam-

ples in length. Furthermore, distance metrics used in waveform matching (such as

quadratic distance) require scanning the entire pattern to find its distance to the data

fragment and thus greatly reduce benefits of suffix tries/trees (often used for musical

score matching).

There is a lot of research in matching time series, such as stock quote history

or sensor data [13, 12, 22, 66, 67, 87]. Such time series contain numeric data very

similar to audio waveforms and are matched using quadratic, Manhattan, and maximal

distance metrics, among others. Thus, approaches used to match time series can be
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very useful when matching audio. Unfortunately, none of the above works specifically

consider audio data. Also, time series used in the above works are usually limited to

102 − 106 data points, much shorter than a typical audio file.

The ultimate purpose of matching is to find audio fragments that sound similar to

the human ear. One way to do this would be to match waveform streams. Unfortu-

nately, this approach is very sensitive to noise and phase difference between streams.

To take care of these issues, one may compare compound amplitude streams instead,

where sound amplitude is averaged or maximized over a period of n samples:

ampavg(i) =
Σj∈[−n/2,n/2)|wave(i + j)|

n
,

ampmax(i) = maxj∈[−n/2,n/2)|wave(i + j)|.

An example of the maximum amplitude stream ampmax is shown in Figure 3.10.

amplitude

0 2 4 6 8 10 12 14 16 time (ms)

max amplitude

waveform

amplitude change

Figure 3.10: Maximum Amplitude and Amplitude Change Streams.

In addition, two streams may sound similar but have different volumes. Thus,

we need some audio characteristics that do not change with the volume. One such

characteristic is an amplitude change from one sample to the next relative to the total

amplitude of these two samples:

ach(i) =
amp(i + 1)− amp(i)

amp(i + 1) + amp(i)
.
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Assume ach(i) = 0 when amp(i + 1) + amp(i) = 0. A sketch of the ach stream is

shown in Figure 3.10.

The following algorithm uses the quadratic distance measure to find the best k

pattern matches in an audio stream and returns their positions:
Algorithm NaiveFindPattern(Data,Pattern,k,dmax)

Data is an audio stream
Pattern is an audio stream such that length(Pattern) ≤ length(Data)
k is the number of best matches to return
dmax is the distance threshold
List is a list of 〈i, d〉 pairs sorted by increasing d

begin
List := {〈0, +∞〉}
for i ∈ [0, length(Data)− length(Pattern)] do

d := 0
for j ∈ [0, length(Pattern)) do

d := d + (Data(i + j)− Pattern(j))2

d′ := d
length(Pattern)·(max(Pattern)−min(Pattern))2

if d′ > dmax or (size(List) = k and d ≥ tail(List).d) then break
end for
if d′ ≤ dmax and (size(List) < k or d < tail(List).d) then

add(List, 〈i, d〉)
if size(List) > k then delete(List, tail(List))

end if
end for
return {[i, i + length(Pattern)) | 〈i, 〉 ∈ List}

end

Notice that the NaiveF indPattern() algorithm will terminate any pattern match

as soon as its distance d exceeds the threshold dmax or the kth best distance found

so far. Aside from this optimization, the algorithm is fairly naive and has the time

complexity of O((length(Data)− length(Pattern)) · length(Pattern)).

It is clear that NaiveF indPattern() is very time consuming, making naive match-

ing unfeasible for large audio databases or even large standalone audio files. To ac-

celerate matching, one can consider following approaches:

1. The NaiveF indPattern() algorithm can be modified to operate directly on

RLE compressed stream representations. If cD and cP are compression factors
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for the data and pattern streams respectively, the algorithm complexity will be

reduced by a factor of O(cD · cP ).

2. By its nature, audio data tends to be smooth. It changes slowly with time,

making it very likely that the values at adjacent quanta do not differ much. This

is especially true for compound amplitude streams described in this section.

Therefore, it may be possible to “downsample” streams by picking their values

at every nth quantum with the RESAMPLE operator, as shown in Figure 3.11,

and match these downsampled streams instead of matching full streams. This

reduces the matching complexity by a factor of O(n2), at the cost of reduced

precision and recall, as will be shown in later experiments.

3. One can use a data structure, such as a subdivision or a variation of a suffix trie

to index data and/or pattern and make use of this index to accelerate matching.

This is the approach we are going to consider in a greater detail below.

amplitude

0 2 4 6 8 10 12 14 16 time (ms)

at every fourth quantum
amplitude approximated

amplitude

Figure 3.11: Downsampled Amplitude Stream.

3.5.1 Matching with Subdivisions

Let us start by representing both the audio and the pattern streams with subdivisions.

A subdivision is similar to an RLE encoding but it uses rectangles to represent spans
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of audio data where RLE is limited to line segments. Our problem then becomes

to match rectangles taken from two subdivisions against each other. When using

the quadratic distance to measure similarity between segments, one can make the

following observation:

Proposition 3.5.1 (Bounds on Segment Distance) Suppose we compute the quadratic

distance between two segments s1, s2 of equal length ` as follows:

dist(s1, s2) =
1

`
·

∑

i∈[0,l)

(s1(i)− s2(i))
2.

Then the upper and lower bounds on dist() are

dist(s1, s2) ≥ (max(s2.min− s1.max, 0) + max(s1.min− s2.max, 0))2,

dist(s1, s2) ≤ max(s2.max− s1.min, s1.max− s2.min)2.

A similar proposition holds for linear distance.

The proposition above is used in the following MatchSegments() algorithm

which, given data and pattern subdivisions and a distance limit dmax, returns a set

of quantum ranges where distance between the data and the pattern is less than or

equal to this limit:
Algorithm MatchSegments(Data,Pattern,ND,NP ,qmin,qmax,dmax)

Data is the data stream
Pattern is the pattern stream
ND is the first node of a data subdivision
NP is the first node of a pattern subdivision
[qmin, qmax) is the time range to search
dmax is the maximal allowed distance

begin
Result := ∅
Ncheck := NIL
Ntake := NIL
t := max(qmin, ND.start)
// Find the first data node that intersects [qmin, qmax)
while ND 6= NIL and t ≥ ND.end do ND := ND.next
// Shift pattern across data until we reach the qmax

while ND 6= NIL and t < qmax do
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P1 := ND

P2 := NP

δt := ND.end− t
MIN := 0
MAX := 0
// Traverse pattern subdivision comparing it against data
while P1 6= NIL and P2 6= NIL do

// Compute MIN/MAX for the overlap of P1/P2

` := min(P1.end, P2.end + t)−max(P1.start, P2.start + t)
MIN := MIN + ` · (max(P2.min− P1.max, 0) + max(P1.min− P2.max, 0))2

MAX := MAX + ` · (max(P1.max− P1.min, P1.max− P2.min))2

// Shift to the next combination of P1/P2

if P2.end + t > P1.end then P1 := P1.next
else

if P2.end+ t = P1.end then P1 := P1.next else δt := min(δt, P1.end−P2.end− t)
P2 := P2.next

end if
end while
// If pattern subdivision has been fully traversed...
if P2 = NIL then

MIN := MIN
length(Pattern)·(max(Pattern)−min(Pattern))2

MAX := MAX
length(Pattern)·(max(Pattern)−min(Pattern))2

// If found start of a definite match...
if Ntake = NIL and MAX ≤ dmax then

ttake := tprev + (t− tprev) ·
MAXprev−dmax

MAXprev−MAX

if ttake ≥ ND.start then Ntake := ND else Ntake := ND.prev
if MINprev > dmax then

t′′ := tprev + (t− tprev) ·
MINprev−dmax

MINprev−MIN

Result := Result ∪ FindPattern(Data, Pattern, t′′, ttake, dmax)
end if

end if
// If found end of a definite match...
if Ntake 6= NIL and MAX > dmax then

t′ := tprev + (t− tprev) · MAXprev−dmax

MAXprev−MAX

Result := Result ∪ [ttake, t
′)

Ntake := NIL
if MINprev > dmax then

t′′ := tprev + (t− tprev) ·
MINprev−dmax

MINprev−MIN

Result := Result ∪ FindPattern(Data, Pattern, t′, t′′, dmax)
end if

end if
// If found start of a possible match...
if Ncheck = NIL and dmax ∈ [MIN, MAX) then

if MINprev > dmax then
` :=

MINprev−dmax

MINprev−MIN

else
` :=

MAXprev−dmax

MAXprev−MAX

end if
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tcheck := tprev + ` · (t− tprev)
if tcheck ≥ ND.start then Ncheck := ND else Ncheck := ND.prev

end if
// If found end of a possible match...
if Ncheck 6= NIL and dmax 6∈ [MIN, MAX) then

if MINprev > dmax then
` :=

MINprev−dmax

MINprev−MIN

else
` :=

MAXprev−dmax

MAXprev−MAX

end if
Result := Result∪FindPattern(Data, Pattern, tcheck, tprev +`·(t−tprev), dmax)
Pcheck := NIL

end if
MINprev := MIN
MAXprev := MAX
tprev := t
t := t + δt

end if
end while
if Ntake 6= NIL then

Result := Result ∪ [ttake, min(length(Data), qmax + length(Pattern)))
end if
if Ncheck 6= NIL then

Result := Result ∪ FindPattern(Data, Pattern, tcheck, qmax, dmax)
end if
return Result

end

Given data and pattern streams Data and Pattern with corresponding subdivi-

sions CD and CP , the MatchSegments() algorithm is invoked as

MatchSegments(Data, Pattern, first(CD), first(CP ), 0, length(Data), dmax)

and slides pattern segments along data segments while computing the lower (MIN )

and upper (MAX) bounds on the distance between the data and the pattern. Ranges of

quanta where MAX ≤ dmax are immediately picked as answers, while ranges where

MIN > dmax are ignored. For all other ranges (where MIN ≤ dmax < MAX)

MatchSegments() calls the naive FindPattern() algorithm that scans actual data

in these ranges, while avoiding the complete scan of data.

As shown before, the NaiveF indPattern() performs the pattern matching for

each subset of the data that has the same length as the pattern. The MatchSegments()
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algorithm, on the other hand, only performs matching at quanta where data and pat-

tern segment boundaries coincide, thus reducing the search complexity. For further

efficiency, the MatchSegments() algorithm can also be modified to work on subdi-

vision trees.

3.5.2 Pattern Tree

So far, we have looked at matching pattern stream against a stream in a single audio

file and found it to be a time consuming operation. The task becomes even more

complicated when matching is done in an audio database containing a large number of

audio files. To facilitate such operation, one needs an index that tells which database

files may contain given pattern and which one can be safely omitted from the search.

When comparing audio pattern matching to other problems currently faced by

computer scientists, two similar tasks immediately catch one’s attention: the text sub-

string search and the genetic sequence search. A well known method to cope with

these problems is by using so-called suffix tries and trees [83] to index all substrings

occurring in the data.

Unfortunately, audio pattern matching is somewhat different from both text and

genetic searching. First of all, unlike text (with an alphabet of several dozen different

characters) and genetic code (with an alphabet of just four characters), a typical audio

stream has an “alphabet” of hundreds (8bit audio) or even thousands (16bit audio) of

values. Thus, plain suffix trees tend to branch explosively when storing audio data.

Secondly, there is a difference in the distance measures. When matching sub-

strings in a text or a genetic sequence, we are generally looking for the longest sub-
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string that exactly matches the beginning of the pattern, i.e.

dist(t1, t2) =
1

card({t1(i) | ∀0 ≤ j ≤ i t1(i) = t2(i)})
.

Alternatively, one may be looking for the longest common substring or use the least

editing distance. All these measures are based on equivalence between characters,

allowing matching algorithms to follow a tree path corresponding to these characters.

Once characters from two sequences do not match, the path traversal terminates and

the distance becomes known.

Unlike distance measures used in the text matching, waveform distance measures

require computing the difference between corresponding characters taken from two

sequences. The distance becomes known only after the entire pattern is traversed.

This feature leads to multiple path traversals when looking for the closest match.

Nevertheless, one can compute upper and lower bounds on the distance value while

traversing each path and cut traversal short as soon as it becomes clear that the distance

will be either smaller or larger than the given threshold.

Based on these specific properties of the audio stream matching, let us devise a

structure inspired by the suffix trie that I will call the pattern tree.

Consider a numeric stream f such that dom(f) = [−m, +m). Let us divide this

range into b buckets [l1, u1), . . . , [lb, ub). Here, we can choose equal-sized buckets

[2mi
b
− m, 2m(i+1)

b
− m), or notice that the audio data generally follows a normal

distribution and use exponentially-sized buckets.

Consider now an `-length pattern in f . Each quantum of this pattern belongs to

a certain bucket, and the whole pattern can be indexed with a sequence of ` bucket

numbers. One can compute the minimal and maximal distances from a given pattern

f to all patterns indexed by this sequence:

MIN =
Σ`−1

i=0min((li − f(i))2, (ui − f(i))2)

` · (max(f)−min(f))2
,
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MAX =
Σ`−1

i=0max((li − f(i))2, (ui − f(i))2)

` · (max(f) −min(f))2
.

These bounds can be used to quickly find patterns that satisfy our matching require-

ments. Here is the pattern tree data structure:

Definition 3.5.1 (Pattern Tree) Assume that we match single numeric streams whose

values lie in the [−m, +m) range. Given two positive integers d, b known as the tree

depth and the branching factor respectively, the pattern tree consists of two types of

nodes:

1. A non-leaf node is an array of node pointers 〈p1, . . . , pb〉 where pi corresponds

to data values in the [ 2mi
b
−m, 2m(i+1)

b
−m) range.

2. A leaf node is a set of pointers to audio files that contain one or more occur-

rences of a pattern.

Effectively, the pattern tree indexes d-length patterns occurring in audio files by

providing b buckets for the value at each quanta. A non-leaf node at depth j in the

pattern tree corresponds to the jth sample in a pattern. Depending on the value of this

sample, the next node is chosen among the ones pointed to by the current node. At the

bottom of a tree, there are leaf nodes with the lists of audio files that contain matched

patterns.

One can notice that the maximal number of nodes in a pattern tree can reach bd+2−1
b−1

and grows exponentially with the length of the indexed pattern d. The size of the tree

can be reduced by matching slowly changing amp and ach streams and using the

RESAMPLE operator to lower their sampling frequency from the original 22-44kHz

to 10-500Hz.

Given a path [l1, u1), . . . , [ln, un) in the pattern tree, one can compute the minimal

and maximal distance between f and all patterns rooted at the tree node [ln, un) as
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follows:

MIN =
Σn

i=1min((li − f(i− 1))2, (ui − f(i− 1))2)

length(f) · (max(f)−min(f))2
,

MAX = MIN + 1−
n

length(f)
.

Given a threshold dmax on the distance between f and the data, one starts travers-

ing a pattern tree. Every time the traversal encounters a node where MAX ≤ dmax, all

audio files rooted at this node are taken for examination with NaiveF indPattern()

or MatchSegments() algorithms. Every time the traversal encounters a node where

MIN exceeds dmax, this node and all its descendants are ignored. This search strat-

egy is represented with the following algorithm:
Algorithm MatchPTree(N ,f ,dmax,q,dmin)

N is the node of a pattern tree
f is the pattern stream
dmax is the maximal allowed distance
q is the current quantum
dmin is the current lower bound on distance

begin
Result := ∅
while i ∈ [0, branch(N)) do

if N.childi 6= NIL then
d := dmin + min((f(q)− 2mi

branch(T ) + m)2, 2m(i+1)
branch(T ) −m− f(q)− 1)2)

d′ := d
length(f)·(max(f)−min(f))2

if d′ ≤ dmax then
if d′ + 1− q

length(f) ≤ dmax then
Result := Result ∪ {f | f is an audio file rooted at N.childi}

else
if q < length(f)− 1 then

Result := Result∪MatchPTree(N.childi, f, dmax, q + 1, d)
end if

end if
end if

end if
end while
return Result

end

Given a pattern tree T and a pattern audio stream f , the recursive MatchPTree()
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algorithm is invoked as

MatchPTree(root(T ), f, dmax, 0, 0)

and returns a set of audio files that contain patterns at the dmax distance from f . The

MatchPTree() algorithm can also be modified to find nearest neighbors by using

dmax to keep track of the smallest distance and discarding the last Result every time

dmax decreases.

3.5.3 Audio Range Tree

As the pattern tree classifies all patterns occuring in audio files, it can grow very

large. An alternative data structure, called the audio range tree (AR-tree), can be

used for pattern matching in audio files. Instead of storing entire patterns, the audio

range tree stores ranges of values occuring in each pattern in a tree. Each leaf of this

tree represents a certain value range and contains audio file descriptors and ranges of

quanta where a pattern with this range occurs.

Definition 3.5.2 (Audio Range Tree) • Given a node size n, an non-leaf node is

a collection of n tuples 〈vmin
i , vmax

i , pi, leafi〉 where pi is a pointer to the child

node, leafi = true if pi points to a leaf node, or false if pi points to a non-

leaf node, and [vmin
i , vmax

i ] is a range of pattern values represented by all nodes

rooted at N .

• A leaf node is a set of tuples 〈a, start, end〉 where a is an audio file descriptor,

and [start, end) is a range of quanta in a.

• An audio range tree T is a set of nodes such that for any node N ∈ T , if

1 ≤ i, j ≤ n and N.pi is a non-leaf node then [N.pi.v
min
j , N.pi.v

max
j ] ⊆
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[N.vmin
i , N.vmax

i ]. For all nodes N 6= root(T ), it is also true that there ex-

ists N ′ ∈ T such that N ′ 6= N and there is N ′.pi = N .

Given a maximal allowed distance dmax, one can search the AR-tree for audio files

and ranges of quanta that may contain the given pattern. A sequential search algorithm

can then be applied to these ranges, eliminating the need to search the entire database.
Algorithm ARFind(N ,f ,dmax)

N is the audio range tree node
f is the pattern stream
dmax is the maximal allowed distance

begin
Result := ∅
for all 〈vmin

i , vmax
i , leafi, pi〉 ∈ N such that pi 6= NIL do

MIN := 0
MAX := 0
for j ∈ [0, length(f)− 1] do

MIN := MIN + max(0, max(vmin
i − f(j), f(j)− vmax

i ))2

MAX := MAX + max(f(j)− vmin
i , vmax

i − f(j))2

MIN ′ := MIN
length(f)·(max(f)−min(f))2

MAX ′ := MAX
length(f)·(max(f)−min(f))2

if MIN ′ > dmax then break
end for
if leafi = true then

if MIN ′ ≤ dmax then Result := Result∪ pi

else
if MAX ′ ≤ dmax then

Result := Result ∪ { all ranges rooted at pi}
else

if MIN ′ ≤ dmax then
Result := Result ∪ ARFind(pi, f, dmax)

end if
end if

end if
end for
return Result

end

Given an AR-tree T and a pattern stream f , the recursive ARFind() algorithm,

initially invoked as

ARFind(root(T ), f, dmax),
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returns a set of 〈a, start, end〉 tuples corresponding to the suspected pattern match

ranges. A sequential matching algorithm should then be applied to the data in these

ranges.

The addition of data to the AR-tree faces problems similar to the same operation

in R-trees. While I propose the following heuristic algorithm to add patterns, it leaves

space for improvement:
Algorithm ARAdd(N ,Data,vmin,vmax,start,end)

N is the audio range tree node
Data is the audio stream
[vmin, vmax] is the range of values being added
[start, end) is the range of quanta being added

begin
if N is a leaf then

N := N ∪ {〈Data, start, end〉}
return

end if
Look for a non-leaf 〈vmin

i , vmax
i , leafi, pi〉 ∈ N such that . . .

. . . [vmin, vmax] ⊆ [vmin
i , vmax

i ] and vmax−vmin

vmax
i

−vmin
i

is maximal

if 〈vmin
i , vmax

i , leafi, pi〉 found then
ARAdd(pi, Data, vmin, vmax, start, end)
return

end if
Look for a non-leaf 〈vmin

i , vmax
i , leafi, pi〉 ∈ N such that . . .

. . . max(vmax,vmax
i )−min(vmin,vmin

i )

vmax
i

−vmin
i

is minimal

if 〈vmin
i , vmax

i , leafi, pi〉 found then
ARAdd(pi, Data, vmin, vmax, start, end)
return

end if
Look for a leaf 〈vmin

i , vmax
i , leafi, pi〉 ∈ N such that vmin = vmin

i and vmax = vmax
i

if 〈vmin
i , vmax

i , leafi, pi〉 found then
ARAdd(pi, Data, vmin, vmax, start, end)
return

end if
Look for a slot 〈vmin

i , vmax
i , leafi, pi〉 ∈ N such that pi = NIL

if 〈vmin
i , vmax

i , leafi, pi〉 found then
vmin

i := vmin

vmax
i := vmax

leafi := true
pi := {〈Data, start, end〉}
return

end if
Create a new node N ′

ARAdd(N ′, Data, vmin, vmax, start, end)
Choose {t1, . . . , tn/2} ⊂ N such that . . .
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. . . [min(vmin, min1≤j≤n/2tj .v
min), max(vmax, max1≤j≤n/2tj .v

max)] is minimal
Move {t1, . . . , tn/2} to N ′

Choose slot 〈vmin
i , vmax

i , leafi, pi〉 ∈ N such that pi = NIL
vmin

i := min(vmin, min1≤j≤n/2tj .v
min)

vmax
i := max(vmax, max1≤j≤n/2tj .v

max)
leafi := false
pi := N ′

return
end

Given an AR-tree T , a pattern length `, and an audio stream f , the recursive

ARAdd() algorithm is invoked as

ARAdd(root(T ), f, min1≤j<`f(i + j), max1≤j<`f(i + j), i, i + 1)

for every i ∈ [0, length(f)).

3.5.4 Experiments

The first batch of experiments investigates the performance of approximate matching.

The experiments were conducted on a set of audio files normalized to a uniform 8kHz

frequency. I first matched amp streams of the three shortest files to every file in the

set with the

µk
amp(a, a′, dmax)

query, thus producing 3 · 13 = 39 results in each run. I then ran the “approximated

query”

γ8kHz(µ
k
amp(γfapx

(a), γfapx
(a′), dmax))

(where γfapx
(a) resamples audio file a to frequency fapx) on the same data and com-

puted its precision and recall w.r.t. the original query. The experiment has been per-

formed for approximation frequencies fapx = 10Hz, 50Hz, 100Hz, 200Hz, 500Hz,

best item numbers k = 1, 3, 5, 10, and distance thresholds dmax = 0.25, 0.5, 0.75.
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Figure 3.12: Precision and Recall as fapx Changes.

The graph in Figure 3.12 shows how precision and recall depend on the approxi-

mation frequency. The graph shows that both precision and recall increase sharply as

fapx reaches 100-200Hz and then level off. It is also worth noting that, as the number

of best matches k rises, precision becomes worse while recall becomes better. This

is clearly visible from Figure 3.13 that shows precision and recall as functions of k.

It has also been found that the choice of a distance threshold dmax does not affect the

precision or recall.

Figure 3.14 reflects the benefits of approximated matching. The time to execute

each query is plotted as a function of the audio length, with approximated queries

taking very small time when compared to full queries.

The final result in Figure 3.15 shows approximated queries running on large (mil-

lions of quanta) audio files, averaged for several different patterns of about 13000-

24000 quanta each. As expected, queries take longer to execute as the approximation

frequency fapx rises, but the difference is relatively small and even in the worst case

(fapx = 500Hz) it takes less than 19 seconds to process 80 million quanta of data.
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Figure 3.13: Precision and Recall as k Changes.
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Figure 3.14: Matching Execution Times.

In the next experimental batch I have looked at how pattern trees and audio range

trees improve matching performance. I started by approximating several million audio

quanta in multiple audio files to the 100Hz frequency and indexing resulting patterns

with a pattern tree. I then matched a query pattern against the tree and retrieved a list

of audio files where the query pattern might occur. While the full query performed

naive matching on all files in the database, the accelerated query only tried matching
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Figure 3.15: Approximated Matching on Large Data.

the files returned by the pattern tree search. Both queries ran on non-approximated

files.
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Figure 3.16: Pattern Tree Performance.

Figure 3.16 shows times taken by the full and accelerated queries as a function

of the dmax value, with accelerated query taking 40% less time on the average. As

expected, the benefits of the pattern tree decrease as the dmax grows and more patterns

come under suspicion that they match the query pattern. Figure 3.16 also shows the

113



time taken by the tree search alone (without the following scan of data files), and it is

negligibly small compared to the time taken by the scan.

My next step has been to implement the audio range tree and use it to index the

same data as in the previous experiment, approximated to 500Hz. I then searched the

tree for possible query pattern matches using different values of dmax and measured

the percentage of data returned by this search relative to the full data size. The results,

shown in Figure 3.17, indicate that the audio range tree allows to prune from 10% to

40% of the input data, with results improving as dmax and the data size grow.
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Figure 3.17: AR-Tree Pruning Performance.

In the final experiment of this batch, I compared the time required to perform the

full scan of the database with the time required to search the audio range tree and then

scan only the ranges of quanta returned by this search. The results of this experiment,

shown in Figure 3.18, indicate that the audio range tree allows to save about 15-40%

of the execution time, depending on the value of dmax.

114



0 0.5 1 1.5 2 2.5 3

x 107

0

1

2

3

4

5

6

7

8

9

10

Data Size (quanta)

Ti
m

e 
(s

ec
on

ds
)

Audio Range Tree MATCH Execution Time (Fapx=500Hz)

Full (Dmax=0.001)
Full (Dmax=0.005)
Full (Dmax=0.01)
Full (Dmax=0.05)
Full (Dmax=0.1)
Tree (Dmax=0.001)
Tree (Dmax=0.005)
Tree (Dmax=0.01)
Tree (Dmax=0.05)
Tree (Dmax=0.1)

Figure 3.18: Audio Range Tree Performance.

3.6 System Implementation

The ADA Reference System is built as a collection of C++ classes corresponding

to basic operators and data sources. Operator objects can be combined into query

trees with data source objects at the bottom and executed. Due to potentially large

amounts of intermediate data, the system tries to avoid storing intermediate results

during query execution, although certain operators (such as MATCH ) still require

intermediate storage for efficiency.

Unlike the traditional relational algebra implementations that store all fields in a

record at the same location, the ADA system is optimized to process audio streams

stored in separate files. This allows us to avoid preprocessing the data (original .WAV

or .AU files can be used), compress each stream in the best suitable way, and avoid

accessing data not involved in queries.

The current ADA implementation is aware of the following audio streams:

• WAVE is a stream that contains the actual waveform, obtained from an audio

file. All waveforms are converted to the mono/16bit/signed/linear
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format.

• AMP is a maximum amplitude stream. For each quantum q, the value of this

stream corresponds to the maximal absolute value of the WAVE stream in the

[q, q + δq) range of quanta, where δq usually corresponds to a period of 2 −

100ms.

• FREQ is a set stream that carries the frequency spectrum. For each moment

in time, this stream returns a mask of bits corresponding to different frequency

ranges. Set bits correspond to spectrum components whose amplitudes are at

least 70% of the maximum.

• KARAOKE is a text stream that contains syllables parsed from karaoke cue

files. For each moment in time, this stream returns a syllable being sung at this

moment, or the empty string if nothing is being sung.

3.6.1 The Algebraic Engine

The main C++ classes constituting the ADA algebraic engine are as follows:

• The Stream class describes a single audio stream characterized by the value

at a given quantum, the default value, the length, and the quantum size. Con-

crete stream classes, such as WAVStream, AMPStream, and FRQStream,

are derived from the Stream class.

• The Audio class describes a single audio file that is a collection of streams with

the same length and quantum size.

• The Query class is derived from the Audio class and represents a single node in

a query tree. Each object of this class has a type (SELECT , PROJECT , etc.) and
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links to one or two inputs. The Query class supports such methods as Create()

(to execute query and write resulting streams to physical files) and Clone() (to

copy the entire query tree). Because each Query object is an instance of Audio,

it also gives access to individual stream values in the query result. Very often,

a query does not even need to be completely executed to access these values.

Concrete query classes, such as QSelect, QProject, and QApply, are derived

from the Query class.

• The QData class is derived from the Query class and describes a data source

for a query. The QData nodes are always leaves in a query tree that supply

query with the audio data. The basic implementation of QData reads data

from physical files in a file system. Other implementations may use relational

databases, network connections, or even audio recording hardware as sources.

In the most primitive case, the execution of a query comes down to scanning query

inputs, performing algebraic operations, and creating output audio file(s). In reality

though, one would like to use indices and skip over chunks of input that are of no

interest to the query. The generic mechanism for such skipping is provided by API

functions SkipNIL() and SkipTo(), as described in the Section 3.4 of this chap-

ter. Both these functions are available in the Stream, Audio, and Query classes.

Classes that implement queries (QSelect, etc.) make automatic use of the input skip-

ping functions, while Stream-derived classes optimize skipping if there is an index

available or fall back to scanning otherwise.
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3.6.2 The GUI

In addition to the algebraic engine, I have also created a simple GUI to browse through

audio data, compose, and execute queries. While the ADA core is portable and can

be used under both UNIX and Windows operating systems, the ADA GUI runs under

Microsoft Windows and is written using the VCL toolkit in Borland C++ Builder. The

GUI enables users to browse through audio files (Figure 3.19), match audio patterns

against collections of audio files with varying precision (Figure 3.20) and visually

design queries (Figure 3.21).

Figure 3.19: Data Browser GUI.

Figure 3.19 shows the audio data browser. The user selects a directory to browse

and the length of audio to be displayed. The browser will then scan the directory for

audio data and show found audio files in the window. The browser will also show

graphically the requested length of a waveform from the beginning of each audio file.

Users can left-click on audio files to play them. Right-clicking on an audio file brings
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up a context menu allowing the user to use this file as a query input or a matching

pattern.

Figure 3.20: Pattern Matching GUI.

The matching function of the GUI, shown in the Figure 3.20, lets users select

pattern audio files and search for matching patterns in the collection of audio files

being currently browsed. The resulting files will be written to a separate directory and

shown to the user. Users have control over the distance threshold dmax and the number

k of best matches in each file. They also have an option to perform approximate

matching by downsampling both pattern and data to the approximation frequency

fapx.

Finally, the query composition function, shown in the Figure 3.21, allows users

to compose query trees by visual addition and deletion of operator nodes. Composed

queries can be executed on either single audio files or their collections, or saved for

future use. The WAVE stream that results from the execution of the last single audio

file query is shown at the bottom and can be played with the usual walkman-like
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Figure 3.21: Query Composition GUI.

controls.

3.7 Related Work

There are relatively few works in audio databases. In research projects, audio is often

used as a means for indexing the accompanying video, as exemplified by research

conducted at Microsoft [39] using a database of lecture videos. The voice pitch of

a lecturer was used to detect crucial presentation moments and segment the presen-

tation by these moments. Using the pitch was only one factor though, others being

information on slide changes and user feedback statistics.

As part of M.J. Witbrock and A.G. Hauptmann’s Informedia project [85], an off-

the-shelf speech recognition system called Sphinx-II was used to transcribe a col-

lection of news broadcasts. The authors then evaluated the system performance for

queries applied to (i) speech recognition results, (ii) phoneme recognition results, (iii)
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closed captions converted to text, and (iv) manually prepared transcripts. Unfortu-

nately, the results came out quite dismal for the speech recognition, both because of

the large amount of recognition errors and the shortcomings of the text search mech-

anism.

Peter Schauble describes his work [71] on speech indexing and retrieval using so-

called n-grams, where speech is converted to a sequence of phonemes. A sliding win-

dow is used to break the phoneme sequence into overlapping groups of n phonemes

(where n = 2 . . . 4) called n-grams. Audio documents are then indexed by a vector of

the most characteristic n-grams. The system converts each query into n-grams, com-

putes the corresponding vector and returns the closest matching documents from the

database. This process helps avoiding speech recognition errors observed in [85] be-

cause a sequence of overlapping n-grams is much more tolerant of recognition errors

than a sequence of single phonemes or the speech-recognized text.

Schauble further improves his search method by using n-gram representations of

words instead of single n-grams for indexing. In both cases the index is built as an

inverted file with keys corresponding to features (single n-grams or words) and whole

audio documents are returned to a user. While this approach works for text documents

which the user can evaluate at a glance, the linear nature of the audio makes such

evaluation impossible. Thus, it seems necessary to cut the audio and only return the

relevant parts to the user.

The ADA system attempts to provide a common platform upon which audio database

projects like the ones described above can be built. The ADA is not limited to search-

ing different audio representations though, but also contains operators to mix and

otherwise transform these representations.

The problem of matching audio data has been tackled by many researchers, such
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as [33, 27, 69, 47, 65, 41]. Most of exclusively deal with melodies i.e. musical scores

as opposed to waveforms or other audio representations. For example, Ghias et al [33]

convert MIDI scores to strings over a {U, D, S} alphabet representing pitch changes

(“up”, “down”, or “same”). The query is then literally hummed into a microphone,

converted to a similar (albeit shorter) string using a variety of methods, and matched

against the data string. Haus and Pollastri [65] expand the work done in [33] by

refining the pitch-tracking method of converting hummed queries into MIDI scores.

The MUSIR system [69] uses both pitch and duration of notes by representing

music with an alphabet made of MIDI note numbers and lengths. The query is in-

put using a MIDI keyboard and matched to a database of melodies using n-grams.

Lemström et al [47] also use a two-dimensional representation of musical data with

relative pitch changes and note durations but match resulting strings using suffix-tries

and the Boyer-Moore algorithm [10]. They show that using suffix-tries speeds up the

queries, but the cost of constructing the trie exceeds its benefits. Finally, Hsu et al [41]

provide an overall comparison of different approaches to music information retrieval

based on the note duration and/or pitch and stored in lists or trees.

All works mentioned above attempt to search different representations of music

as opposed to audio in general. This limits the domain of searchable documents to

musical compositions, primarily stored in the MIDI format (although [33, 65] describe

ways to recognize notes from an audio recording, for entering queries only). The only

exception is a work by Foote [27] that extracts vectors of cepstral coefficients and

uses them to classify audio files. The system implemented by Foote will only return

whole audio files though. It is not able to pinpoint locations in these files where the

query pattern occurs.

Unlike above works, ADA includes a generic way to match multiple audio rep-
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resentations using different ways to measure similarity and pinpoint the exact spot

where patterns occur in audio recordings. The choice of the indexing data structure

will of course depend on the data type and the distance measure used.

The waveform matching described in this chapter is a special case of matching

time series, such as stock quote history or sensor data, addressed in [13, 12, 22, 66,

67, 87]. The approach taken in these works requires computing an n-dimensional

vector for each fixed-length subsequence of the data, using DFT coefficients [22, 67],

DWT coefficients [13, 66], or piecewise mean values [12, 87]. The resulting vectors

are then indexed using an R-tree or other data structure. Unfortunately, none of the

above works specifically consider audio data. Also, time series used in the above

works are usually limited to 102 − 106 data points, much shorter than the length of a

typical audio file.

3.8 Conclusions

Though there is a massive amount of audio data available in libraries, specialized

archives, and on the web, there is little or no theory to query audio data. In this chap-

ter, I have described a formal model of audio data and developed a relational model

style algebra to query audio databases. I have proven a large number of equivalence

results in this algebra that may be used for query optimization. I then looked at the

data structures for indexing audio data and conducted experiments to show that pro-

posed data structures significantly benefit query execution. Finally, I implemented a

reference ADA system, complete with implementations of algebraic operators, com-

mand line interface, and the GUI.
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Chapter 4

An Algebra For Video

4.1 Introduction

Video recordings can be found everywhere in the modern world, be it news, entertain-

ment, sports, health care, family affairs, science, legal system, or security services.

Fast accumulation of video data leads to the need to process, organize, search, and ac-

cess this data. In the case of text and numeric data, these tasks have long been handled

by relational database management systems. The goal of this chapter is to develop an

algebra for operating on video data similar to the relational algebra.

The few existing video algebras either operate on objects occuring in frames as

opposed to actual frames or segments of a video [59, 64, 17, 19] or use the hierarchical

segment structure that complicates reasoning about algebraic operators [20]. In this

chapter, I attempt to create a video algebra that supports both object and segment

processing, yet it is sufficiently simple to reason about.

When talking about storing, searching, and processing motion video information,

it is customary to think of it in terms of large continuous videos. In reality though,

large parts of these videos may not contain any information useful to potential users.
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A typical example of such situation is a surveilance video where nothing occurs on

the screen for hours. Commercials in a TV broadcast may serve as another example

of video segments that do not carry any useful data. Generally, each user may be

interested in his or her own selection of video segments.

To avoid storing irrelevant content, one can use video summaries as opposed to the

continuous video [24]. A summary is a set of video blocks (segments) characterized

by their starting and ending times as well as their content. Blocks that carry irrelevant

data can be dropped from the summary while the timing information is preserved in

the remaining blocks. Any selection of blocks from a summary is also a summary.

A continuous video is a special case of a summary that has no “gaps” from dropped

blocks. Thus, while the entire video may be archived somewhere on a slow-access

storage device (e.g. tape), the database system only needs to store a subset of this

video relevant to the domain of system’s operations. Using a database query language,

users would select even smaller subsets reflecting their needs. Of course, to compose,

store, search, and access such video summaries efficiently, it would be very helpful to

have a common model and a video database algebra, much in the same way there is

a relational algebra for operating on the relational data.

The algorithms for video summary creation will be thoroughfully discussed in

Chapter 5. The present chapter describes the video database algebra (VDA ) alge-

bra that operates on videos and summaries made of blocks in a way similar to the

relational algebra operating on tabular data. Section 4.2 defines the basic model for

representing video data. Section 4.3 covers algebraic operators and equivalences. Sec-

tion 4.4 discusses ways to accelerate operator execution by optimizing algorithms and

using indices, followed by the experimental results. The cost model and the optimizer

are discussed in Section 4.5. Section 4.6 describes the VDA system implementation.
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Section 4.7 covers related works in video databases. Finally, Section 4.8 provides

some concluding remarks.

4.2 Video Data Model

A video is a sequence of frames. Each frame can be characterized by a variety of

properties, such as movement in some part of the frame, or the presence of a certain

object or action. Let us call such properties features and define them formally:

Definition 4.2.1 (Feature) A feature of a frame is a certain characteristic (such as

color, text, or occurence of an object or action) pertaining to an area of a frame.

Given a set τ , a feature of type τ is a structure 〈name, val, loc, cov〉 where name is

a string, val is a value from τ , loc is the region of a frame containing this feature,

and cov ∈ [0, 1] is the percentage of pixels in loc having this feature, also known as

coverage.

For any two features f1, f2, it is always true that if f1.name = f2.name then both

f1 and f2 have the same type τ , also known as dom(name).

While loc may describe any connected frame region, for the sake of simplicity

I will assume that loc = 〈xl, yl, xh, yh〉 is a rectangle with the right and bottom

edges considered “open”. Any other region can be approximated with its rectangular

bounding box at the expense of decreasing its cov value.

To simplify the notation, I will often omit the cov member of the feature struc-

ture if cov = 1. The loc member may also be omitted. It is then assumed that loc

corresponds to the entire frame.

For example, 〈Human, true, 〈10, 10, 50, 200〉, 0.7〉 is a feature. So are 〈Motion,

true, 〈60, 20, 90, 50〉〉 and 〈Caption, “NewY ork”〉. The last example carries no
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location and coverage and therefore describes the entire frame with cov = 1.0. Other

features may express annotations, color histograms, or the presence of certain objects,

actions, or events.

Two features with the same name and value can be merged together in many ways

two of which are shown in Figure 4.1 below. The first method, which I will call the

feature merge, produces a single feature at the cost of precision:

Definition 4.2.2 (Feature Merge) Given two features f1, f2 such that f1.name =

f2.name and f1.val = f2.val, the merge of these features is

f1 ⊕ f2 = {〈f1.name, f1.val, cov, bbox(f1.loc ∪ f2.loc)〉},

where

cov =
f1.cov · area(f1.loc) + f2.cov · area(f2.loc)− area(f1.loc ∩ f2.loc) · (f1.cov + f2.cov)/2

area(bbox(f1.loc ∪ f2.loc))
.

The feature merge creates a bounding box around its arguments as shown at Fig-

ure 4.1, reconciles coverages by taking their average, and recomputes this resulting

coverage with respect to the area of the bounding box. Thus, the feature merge leads

to the loss of coverage precision.

Feature Merge

rc

r11 r12

r21

r22

R2

R1

r11 r12r13

r14

R1

Feature Scatter

rc

intersection case subset case

bbox(loc(f1) U loc(f2))

loc(f1)

loc(f2)

loc(f1)

loc(f2)

Figure 4.1: Feature Operations.

The second method, called the feature scatter, creates additional features while

trying to retain coverage precision:
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Definition 4.2.3 (Feature Scatter) Given two features f1, f2 such that f1.name =

f2.name, f1.val = f2.val, and rc = f1.loc ∩ f2.loc, let R1, R2 be sets of disjoint

rectangles such that
⋃

r∈R1
r = f1.loc − rc and

⋃

r∈R2
r = f2.loc − rc. Then the

scatter of f1, f2 w.r.t. R1, R2 is a set of features

f1 ⊗ f2 = {〈f1.name, f1.val, cov, loc〉 | loc ∈ R1 ∪R2 ∪ {rc}}

where

cov =







f1.cov+f2.cov
2 if loc = rc

f1.cov·area(f1.loc)−
f1.cov+f2.cov

2
·area(rc)

area(f1.loc)−area(rc) if loc ∈ R1

f2.cov·area(f2.loc)−
f1.cov+f2.cov

2
·area(rc)

area(f2.loc)−area(rc) if loc ∈ R2

In the case of a feature scatter, we assume that the intersection rectangle rc has

the average of two coverages f1.cov, f2.cov. The remaining pieces of f1.loc, f2.loc

are broken into rectangles as shown at Figure 4.1 and their coverages are recomputed

with respect to the averaged coverage inside rc.

While R1, R2 may contain an arbitrary number of rectangles, it makes practical

sense to minimize their cardinality, bringing it to at most four rectangles total in both

R1 and R2, as shown by two cases at Figure 4.1. This also means that card(f1⊗f2) ≤

5.

Example 4.2.1 (Feature Merge/Scatter) Consider two features:

f1 = 〈Green, 70, 〈50, 50, 100, 100〉, 0.7〉,

f2 = 〈Green, 70, 〈70, 80, 120, 110〉, 0.5〉.

The merge of these two features will be a singleton set f1 ⊕ f2 = {〈Green, 70,

〈50, 50, 120, 110〉, cov〉} with the cov value computed as follows:

area(f1.loc) = (100− 50) · (100− 50) = 2500

area(f2.loc) = (120− 70) · (110− 80) = 1500
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area(f1.loc ∩ f2.loc) = (100− 70) · (100− 80) = 600

area(bbox(f1.loc ∪ f2.loc)) = (120− 50) · (110− 50) = 4200

cov =
0.7 · 2500 + 0.5 · 1500− 600 · (0.5 + 0.7)/2

4200
≈ 0.51

The scatter of f1 and f2 will be a set of at least five features:

f1 ⊗ f2 = {

〈Green, 70, 〈50, 50, 70, 100〉, 0.7〉},

〈Green, 70, 〈70, 50, 100, 80〉, 0.7〉},

〈Green, 70, 〈100, 80, 120, 110〉, 0.5〉},

〈Green, 70, 〈70, 100, 100, 110〉, 0.5〉},

〈Green, 70, 〈70, 80, 100, 100〉, 0.6〉}

}

Sets of features can be merged with respect to a feature operation such as merge

or scatter:

Definition 4.2.4 (Feature Set Merge) Let’s first define an “int” binary relation on

features:

int(f1, f2) ≡ f1.name = f2.name ∧ f1.val = f2.val ∧ f1.loc ∩ f2.loc 6= ∅.

Given two sets of features F1, F2, the merge of these sets with respect to a feature

operation op (such as merge or scatter) is a new feature set

F1 ∪op F2 = {x ∈ F1 | ∀x
′ ∈ F2 : ¬int(x, x′)}

∪ {x ∈ F2 | ∀x
′ ∈ F1 : ¬int(x, x′)}

∪ {x op x′ | x ∈ F1 ∧ x′ ∈ F2 ∧ int(x, x′)}.
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A block is a piece of a video composed of several successful frames. It is char-

acterized by the start and end times, the video data (i.e. the actual sequence of frame

images) and a set of features found in its frames:

Definition 4.2.5 (Block) A video block is a structure b = 〈ts, te, FS, DS〉 where b.ts

is the starting time, b.te > b.ts is the ending time, b.DS is the video data (i.e. actual

sequence of images), and b.FS is a set of features occuring in b, with coverages

computed with respect to the entire block (i.e. a number of frames).

While it is not required by the block definition, I will assume that ts and te rep-

resent frame numbers and therefore are integer. The length of a block length(b) =

b.te − b.ts. Two or more blocks can be merged together, producing a bigger block:

Definition 4.2.6 (Block Merge) The merge of two blocks, b1 and b2, with respect to

a feature operation op (such as merge or scatter), is a new block

b1 ∪op b2 = 〈min(b1.ts, b2.ts), max(b1.te, b2.te), b1.FS ∪op b2.FS, DS〉,

where DS computation is implementation-dependent.

The block merge operator can be applied to more than two blocks. As blocks are

effectively three-dimensional (horizontal, vertical, and time), merge and scatter op-

erations must recompute coverages using all three dimensions when applied to block

feature sets. The DS computation algorithm is left to the system implementor.

Now, when we have all the building blocks, let us define a video:

Definition 4.2.7 (Video) A video is a finite sequence of blocks v = {b1, . . . , bn} such

that ∀1 ≤ i < n : bi+1.ts = bi.te.
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Given the above definition of a video, we can define a total ordering on blocks

in a video as ∀1 ≤ i, j ≤ n : bi ≤ bj ↔ bi.ts ≤ bj.ts. The length of a video

length(v) =
∑

bi∈v length(bi). A video summary is a subset of a video:

Definition 4.2.8 (Summary) A summary of a video v is a sequence of blocks s =

{b1, . . . , bn} such that s ⊆ v and ∀1 ≤ i < n : bi+1.ts ≥ bi.te.

Given the above definitions of videos and summaries, one can easily show that

any video is also a summary of itself and that the total ordering defined for videos

also applies for summaries. The length of a summary length(s) =
∑

bi∈s length(bi).

We are finally ready to define a video database, which is simply a collection of

summaries.

Definition 4.2.9 (Video Database) A video database VDB is a set of video summaries.

4.3 Algebraic Operators

Before moving on to definitions of algebraic operators, let us look at selection con-

ditions and how they are evaluated. Selection conditions are used in many algebraic

operators to choose certain blocks and features from the input.

4.3.1 Selection Conditions

Assume the existance of a set Cf of all possible features and a set Vf of all variables

ranging over Cf . Similarly, there is a set Cb of all possible blocks and a set Vb of all

variables ranging over Cb. For clarity, I will use the small b∗ (f∗) to denote members

of Cb (Cf ) and the capital B∗ (F∗) to denote members of Vb (Vf ).
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Definition 4.3.1 (Term) (i) Any member of a set τ is a term of type τ . (ii) Any block

constant or variable is a block term. (iii) Any feature constant or variable is a feature

term.

Definition 4.3.2 (Feature Atoms) • TRUE and FALSE are feature atoms.

• If f1, f2 are feature terms and “∼” is a binary relation defined on feature values

then f1 ∼ f2 is a feature atom.

• If f is a feature term and str is string then name(f, str) is a feature atom.

• If f1, f2 are feature terms then inside(f1, f2), overlap(f1, f2), above(f1, f2),

below(f1, f2), leftof(f1, f2), and rightof(f1, f2) are all feature atoms.

Definition 4.3.3 (Feature Conditions) Every feature atom is a feature condition. If

C1, C2 are feature conditions then so are C1 ∧ C2, C1 ∨ C2, and ¬C1. A feature

selection condition (FSC) is a feature condition containing a variable F ∈ Vf . A

local FSC is an FSC that contains no variables other than F . A feature join condition

(FJC) is a feature condition containing exactly two variables F1, F2 ∈ Vf .

Definition 4.3.4 (Feature Condition Interpretation) Suppose f1, f2 are ground fea-
ture terms and C1, C2 are ground feature conditions. Let us define a function λ that
takes a ground feature condition and returns a real value in the [0, 1] range. The result
of λ is computed in the following way:

λ(f1 ∼ f2) =

{
f1.cov·f2.cov·area(f1.loc∩f2.loc)
min(area(f1.loc),area(f2.loc))

if f1.name = f2.name ∧ f1.val ∼ f2.val

0 otherwise

λ(name(f1 , str)) =

{

1 if f1.name = str

0 otherwise

λ(inside(f1, f2)) =

{

1 if f1.loc ⊆ f2.loc

0 otherwise

λ(overlap(f1 , f2)) =

{

1 if f1.loc ∩ f2.loc 6= ∅

0 otherwise
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λ(above(f1 , f2)) =

{

1 if f1.loc.yh ≤ f2.loc.yh∧ f1.loc.yl ≤ f2.loc.yl

0 otherwise

λ(below(f1, f2)) =

{

1 if f1.loc.yh ≥ f2.loc.yh∧ f1.loc.yl ≥ f2.loc.yl

0 otherwise

λ(leftof(f1 , f2)) =

{

1 if f1.loc.xh ≤ f2.loc.xh∧ f1.loc.xl ≤ f2.loc.xl

0 otherwise

λ(rightof(f1 , f2)) =

{

1 if f1.loc.xh ≥ f2.loc.xh∧ f1.loc.xl ≥ f2.loc.xl

0 otherwise

λ(C1 ∧ C2) = min(λ(C1), λ(C2))

λ(C1 ∨ C2) = max(λ(C1), λ(C2))

λ(¬C1) = 1− λ(C1)

λ(TRUE) = 1

λ(FALSE) = 0

Block atoms and conditions are similar to feature atoms and conditions but they

operate on blocks.

Definition 4.3.5 (Block Atoms) • TRUE and FALSE are block atoms.

• If b is a block term and C is a feature condition then in(b, C) is a block atom.

• If b1, b2 are block terms and n ∈ [0, +∞) is an integer number, within(b1, b2, n),

before(b1, b2, n), after(b1, b2, n), overlap(b1, b2), and inside(b1, b2) are block

atoms.

Definition 4.3.6 (Block Conditions) Every block atom is a block condition. If C1, C2

are block conditions then so are C1 ∧ C2, C1 ∨ C2, and ¬C1. A block selection

condition (BSC) is a block condition containing a variable B ∈ Vb. A local BSC is

a BSC containing no variables other than B. A block join condition (BJC) is a block

condition with exactly two variables B1, B2 ∈ Vb.

Definition 4.3.7 (Block Condition Interpretation) Suppose b1, b2 are ground block

terms, F is a feature variable, C is a feature selection condition, and C1, C2 are
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ground block conditions. Let us define a function λ that takes a ground block condition

and returns a real value in the [0, 1] range. The result of λ is computed in the following

way:

λ(in(b1, C)) = maxall θ(λ(Cθ))

λ(inside(b1, b2)) =







1 if b1.ts ≥ b2.ts ∧ b1.te ≤ b2.te

0 otherwise

λ(overlap(b1, b2)) =







1 if (b1.ts, b1.te) ∩ (b2.ts, b2.te) 6= ∅

0 otherwise

λ(before(b1, b2, n)) =







(n− b1.ts + b2.te)/n if 0 ≤ b1.ts − b2.te ≤ n

0 otherwise

λ(after(b1, b2, n)) = λ(before(b2, b1, n))

λ(within(b1, b2, n)) = max(λ(before(b1, b2, n)), λ(after(b1, b2, n)))

λ(C1 ∧ C2) = min(λ(C1), λ(C2))

λ(C1 ∨ C2) = max(λ(C1), λ(C2))

λ(¬C1) = 1− λ(C1)

λ(TRUE) = 1

λ(FALSE) = 0

Here, θ represents a variable substitution that grounds all variables in C by replacing

them with distinct features from b1.FS (i.e. no two variables are assigned to the same

feature).

4.3.2 The SELECT Operator

Similarly to the relational selection choosing rows from a table, the SELECT operator

in VDA chooses from its input summary blocks that satisfy the selection condition:
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Definition 4.3.8 (SELECT Operator) Given a video summary v, a block selection

condition C, and a real value pmin ∈ [0, 1], the SELECT operator σC(v, pmin) pro-

duces a new summary

σC(v, pmin) = {b ∈ v |maxall θ(λ(C[B/b]θ)) ≥ pmin},

where θ is a variable substitution that grounds all remaining variables in C[B/b] by

replacing them with distinct blocks from v.

The pmin argument to SELECT allows to control how strictly selected blocks sat-

isfy the condition. In most practical applications, this parameter can be assumed to be

a very small number ε. In such cases, I will omit it from the notation.

Here is a typical example of SELECT being used to find blocks where screen cap-

tions appear: σin(B,name(F,Caption))(v). Here is another SELECT , detecting motion at

two spots of the screen:

σin(B,F=〈Motion,true,〈50,50,100,75〉〉∨F=〈Motion,true,〈500,400,550,450〉〉)(v).

Just like in the relational algebra, the order of SELECT operators can be changed

without affecting the result, but only if their selection conditions are local:

Theorem 4.3.1 (Swapping SELECT Operators) Given a video summary v, two lo-

cal BSCs C1, C2 and two real values p1, p2 ∈ [0, 1], it is true that

σC1(σC2(v, p2), p1) = σC2(σC1(v, p1), p2).

Proof of Theorem 4.3.1. Due to locality of C1, C2 and definition of SELECT , both

SELECT operators consider their inputs one block at a time and either select this block

or drop it, based on a single value of λ. Then let us consider an arbitrary block b ∈ v

and see if it is present in v′ = σC1(σC2(v, p2), p1) and v′′ = σC2(σC1(v, p1), p2), case

by case:
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1. λ(C1[B/b]) < p1 and λ(C2[B/b]) < p2 then b 6∈ σC1(v, p1), b 6∈ σC2(v, p2), and

therefore b 6∈ v′ and b 6∈ v′′.

2. If λ(C2[B/b]) ≥ p2 and λ(C1[B/b]) < p1 then b ∈ σC2(v, p2) but b 6∈ v′, as it

is deleted by the outer SELECT operator. On the other hand, b 6∈ σC1(v, p1) and

therefore b 6∈ v′′.

3. If λ(C1[B/b]) ≥ p1 and λ(C2[B/b]) < p2 then b ∈ σC1(v, p1) but b 6∈ v′′, as it

is deleted by the outer SELECT operator. On the other hand, b 6∈ σC2(v, p2) and

therefore b 6∈ v′.

4. If λ(C1[B/b]) ≥ p1 and λ(C2[B/b]) ≥ p2 then b ∈ σC1(v, p1), b ∈ σC2(v, p2),

and also b ∈ v′ and b ∈ v′′.

Thus, it has been shown that wherever b ∈ v ′, it is also true that b ∈ v′′ and vice versa.

Therefore, v′ = v′′.

4.3.3 The PROJECT Operator

In the traditional relational algebra, the projection is used to select columns from a

table. In VDA , features act as columns, while blocks play the role of rows. Thus, the

PROJECT operator serves to select requested features in all input blocks:

Definition 4.3.9 (PROJECT Operator) Given a video summary v, a feature selection
condition C, and a real value pmin ∈ [0, 1], the PROJECT operator πC(v, pmin) pro-
duces a new summary

πC(v, pmin) = {〈b.ts, b.te, FS, b.DS〉 | ∀b ∈ v FS = {f ∈ b.FS |maxall θ(λ(C[F/f ]θ)) ≥ pmin}},

where θ is a variable substitution that grounds all remaining variables in C[F/f ] by

replacing them with distinct features from b.FS.
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Same as with the SELECT operator, if pmin is omitted, it is assumed that pmin = ε.

Under certain conditions, two PROJECT operators can be swapped:

Theorem 4.3.2 (Swapping PROJECT Operators) Given a video summary v, two lo-

cal FSCs C1, C2 and two real values p1, p2 ∈ [0, 1], it is true that

πC1(πC2(v, p2), p1) = πC2(πC1(v, p1), p2).

Proof of Theorem 4.3.2. Let us consider two queries v ′ = πC1(πC2(v, p2), p1) and

v′′ = πC2(πC1(v, p1), p2). Due to definition of PROJECT , both PROJECT operators

consider their inputs one block at a time and do not delete or add any blocks, i.e. for

every block b ∈ v, there are blocks b′ ∈ v′ and b′′ ∈ v′′. Furthermore, due to locality

of C1, C2, each feature set b.FS isz also considered one feature at a time. Then let us

look at an arbitrary feature f ∈ b.FS and see if it is present in b′.FS and b′′.FS, case

by case:

1. λ(C1[F/f ]) < p1 and λ(C2[F/f ]) < p2 then f is deleted by inner PROJECT

operators in both v′, v′′, and therefore f 6∈ b′.FS and f 6∈ b′′.FS.

2. If λ(C2[F/f ]) ≥ p2 and λ(C1[F/f ]) < p1 then f is deleted by the outer

PROJECT operator in v′ and by the inner PROJECT operator in v ′′. Thus, f 6∈

b′.FS and f 6∈ b′′.FS.

3. If λ(C1[F/f ]) ≥ p1 and λ(C2[F/f ]) < p2 then f is deleted by the inner

PROJECT operator in v′ and by the outer PROJECT operator in v ′′. Thus, f 6∈

b′.FS and f 6∈ b′′.FS.

4. If λ(C1[F/f ]) ≥ p1 and λ(C2[F/f ]) ≥ p2 then f is not deleted at all, and

therefore f ∈ b′.FS and f ∈ b′′.FS.
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Thus, we have shown that wherever f ∈ b′.FS, it is also true that f ∈ b′′.FS and vice

versa. As it is true for any block b ∈ v and any feature f ∈ b.FS, we can say that

v′ = v′′.

PROJECT and SELECT can also be swapped, given that SELECT is not affected by

changing feature content:

Theorem 4.3.3 (Swapping PROJECT and SELECT ) Given a video summary v, two

real values p1, p2 ∈ [0, 1], an FSC C1, and a BSC C2 that contains no in() atoms, it

is true that

πC1(σC2(v, p2), p1) = σC2(πC1(v, p1), p2).

Proof of Theorem 4.3.3. Let us consider two queries v ′ = πC1(σC2(v, p2), p1) and

v′′ = σC2(πC1(v, p1), p2). Our task is to show that for every b ∈ v, if there is a

corresponding block b′ ∈ v′, there is also b′′ ∈ v′′ such that b′ = b′′, and vice versa.

Due to the requirement of the theorem that the block selection condition contain no

in() atoms, the SELECT operator does not consider feature sets of its input blocks.

On the other hand, by the definition, SELECT is only allowed to delete blocks, but

not change their features, while PROJECT can change block features but can’t delete

blocks. Then let us look at an arbitrary block b ∈ v, case by case:

1. If maxθ(λ(C2[B/b]θ)) < p2 then b is deleted by the inner SELECT operator in

v′, and by the outer SELECT operator in v ′′. Thus, b′ 6∈ v′ and b′′ 6∈ v′′.

2. If maxθ(λ(C2[B/b]θ)) ≥ p2 then b is preserved by SELECT operators in both

v′ and v′′ and passed through PROJECT . As it is the same PROJECT operator

applied to the same block b, we can say that b′ = b′′ in this case.

Thus, we have shown that an arbitrary block b ∈ v either does not have corresponding

blocks in v′, v′′, or it has such blocks b′ ∈ v′ and b′′ ∈ v′′ that b′ = b′′. Therefore,
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v′ = v′′.

4.3.4 The APPLY Operators

There are two APPLY operators in VDA . Both serve to modify the content of blocks

as opposed to their features or time information. To define these APPLY operators, we

should first define the transformation function:

Definition 4.3.10 (Block Transformation Function) A block transformation func-

tion tr takes a video block b and a region r, and returns a new block tr(b, r) =

〈b.ts, b.te, b.FS, DS〉, where DS is such that any pixel outside of r is the same as in

b.DS.

The first instance of APPLY is similar to the SELECT operator but it modifies

blocks instead of selecting them:

Definition 4.3.11 (Block APPLY Operator) Given a video summary v, a block se-

lection condition C, a real number pmin ∈ [0, 1], and a block transformation function

tr, the block APPLY operator βtr
C (v, pmin) produces a new summary

βtr
C (v, pmin) = {







tr(b,∇) if maxall θ(λ(C[B/b]θ)) ≥ pmin

b otherwise
| ∀b ∈ v},

where ∇ represents the whole frame and θ is any variable substitution that grounds

all remaining variables in C[B/b] by replacing them with distinct blocks from v.

The second version of APPLY is similar to the PROJECT operator but it modifies

features instead of selecting them:
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Definition 4.3.12 (Feature APPLY Operator) Given a video summary v, a feature

selection condition C, a real number pmin ∈ [0, 1], and a block transformation func-

tion tr, the feature APPLY operator αtr
C (v, pmin) produces a new summary

αtr
C (v, pmin) = {tr(b,

⋃

{f∈b.FS|maxall θ(λ(C[F/f ]θ))≥pmin}

f.loc) | ∀b ∈ v},

where θ is any variable substitution that grounds all remaining variables in C[F/f ]

by replacing them with distinct frames from b.FS.

Notice that neither APPLY operator modifies block feature sets. This may cause a

situation where features no longer reflect block contents correctly. If that is the case,

the user may want to remove invalidated features with the PROJECT operator.

Given certain properties of their transformation functions, APPLY operators can

be swapped:

Theorem 4.3.4 (Swapping APPLY Operators) Given a video summary v, two block

selection conditions C1, C2, two real values p1, p2 ∈ [0, 1], and two block transforma-

tion functions tr1, tr2 such that tr1(tr2(b, r2), r1) = tr2(tr1(b, r1), r2) for any b, r1, r2,

it is true that

βtr1
C1

(βtr2
C2

(v, p2), p1) = βtr2
C2

(βtr1
C1

(v, p1), p2).

Same holds for a pair of feature APPLY operators and a combination of block and

feature APPLY operators.

Proof of Theorem 4.3.4. Let us consider two queries v ′ = βtr1
C1

(βtr2
C2

(v, p2), p1) and

v′′ = βtr2
C2

(βtr1
C1

(v, p1), p2). As APPLY operators do not delete or add blocks, each

block b ∈ v will have two corresponding blocks b′ ∈ v′ and b′′ ∈ v′′. Let us then look

at an arbitrary block b ∈ v, case by case:
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1. If maxall θ(λ(C1[B/b]θ)) < p1 and maxall θ(λ(C2[B/b]θ)) < p2 then b′ = b

and b′′ = b by the definition of block APPLY , and therefore b′ = b′′.

2. If maxall θ(λ(C1[B/b]θ)) < p1 and maxall θ(λ(C2[B/b]θ)) ≥ p2 then b′ =

b′′ = tr2(b,∇).

3. If maxall θ(λ(C1[B/b]θ)) ≥ p1 and maxall θ(λ(C2[B/b]θ)) < p2 then b′ =

b′′ = tr1(b,∇).

4. Finally, if maxall θ(λ(C1[B/b]θ)) ≥ p1 and maxall θ(λ(C2[B/b]θ)) ≥ p2 then

b′ = tr1(tr2(b,∇),∇) and b′′ = tr2(tr1(b,∇),∇). Given the theorem re-

quirement that tr1(tr2(b, r2), r1) = tr2(tr1(b, r1), r2) we can yet again say that

b′ = b′′.

Thus, we have shown that b′ = b′′ for any block b ∈ v and therefore v′ = v′′. Similar

proof can be given for a pair of feature APPLY operators and a combination of feature

and block APPLY operators.

As APPLY only operates on the image data but does not touch features and timing

information, APPLY and SELECT can be swapped:

Theorem 4.3.5 (Swapping APPLY and SELECT ) Given a video summary v, two block

selection conditions C1, C2, two real values p1, p2 ∈ [0, 1], and a block transformation

function tr, if C2 is local then

σC1(β
tr
C2

(v, p2), p1) = βtr
C2

(σC1(v, p1), p2).

Same holds for a feature APPLY operator, but any feature selection condition C2 is

allowed, it does not have to be local.

Proof of Theorem 4.3.5. Let us consider two queries v ′ = σC1(β
tr
C2

(v, p2), p1) and

v′′ = βtr
C2

(σC1(v, p1), p2). By definitions of SELECT and APPLY operators, if a block
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b ∈ v has a corresponding block b′ ∈ v′ then it also has a corresponding block b′′ ∈ v′′

and vice versa. There are no blocks in v ′, v′′ that have no corresponding blocks in v.

Let us then look at an arbitrary block b ∈ v, case by case:

1. If maxall θ(λ(C1[B/b]θ)) < p1 and λ(C2[B/b]) < p2 then b is deleted by the

outer SELECT operator in v′, and by the inner SELECT operator in v ′′. Thus

b′ 6∈ v′ and b′′ 6∈ v′′.

2. If maxall θ(λ(C1[B/b]θ)) < p1 and λ(C2[B/b]) ≥ p2 then tr(b,∇) is deleted

by the outer SELECT operator in v′, while b is deleted by the inner SELECT

operator in v′′. Thus b′ 6∈ v′ and b′′ 6∈ v′′.

3. If maxall θ(λ(C1[B/b]θ)) ≥ p1 then b is preserved by SELECT operators in both

v′ and v′′ and passed through APPLY . Due to C2 being local, the APPLY oper-

ator considers b independently from all other blocks in its input and applies tr

function depending on a single value of λ(C2[B/b]). Thus, it produces identical

results in both v′ and v′′, i.e. b′ = b′′.

We have shown that whenever b′, b′′ exist for an arbitrary b ∈ v, they are equal, and

therefore v′ = v′′. Similar proof can be given for a combination of SELECT and

feature APPLY operators, although C2 is not required to be local in this case.

Swapping APPLY and PROJECT is also possible:

Theorem 4.3.6 (Swapping APPLY and PROJECT ) Given a video summary v, a fea-

ture selection condition C1, a block selection condition C2, two real values p1, p2 ∈

[0, 1], and a block transformation function tr, if C2 has no in() atoms then

πC1(β
tr
C2

(v, p2), p1) = βtr
C2

(πC1(v, p1), p2).

Unfortunately, this theorem does not hold for feature APPLY operators.
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Proof of Theorem 4.3.6. Let us consider two queries v ′ = πC1(β
tr
C2

(v, p2), p1) and

v′′ = βtr
C2

(πC1(v, p1), p2). Due to definitions of APPLY and PROJECT , every block b ∈

v will have corresponding blocks b′ ∈ v′ and b′′ ∈ v′′. As the theorem requires C2 to be

free of in() atoms, neither APPLY operator considers feature sets of its input blocks.

Also, by definition, APPLY only modifies block image data. On the other hand, both

PROJECT operators consider and modify input block features while ignoring the rest

of the block data. In short, we can write

b′ = b′′ =







tr(b∗,∇) if maxall θ(λ(C2[B/b]θ)) ≥ p2

b∗ otherwise
,

where b∗ = 〈b.ts, b.te, {f ∈ b.FS | maxall θ(λ(C1[F/f ]θ)) ≥ p1}, b.DS〉. Thus,

b′ = b′′ for every b ∈ v and therefore v′ = v′′.

4.3.5 The MATCH Operator

When querying a video, users may often want to find video fragments that look similar

to a supplied sample. For example, a security guard who has an image of a suspicious

car approaching the gate may want to find this car in video streams coming from other

cameras installed throughout the guarded area. In other instance of such a search, a

TV broadcaster may want to search through the video archive looking for fragments

similar to the video he has already selected for tonight’s show. To support such sim-

ilarity searches in the algebra, let us first see what it means for two video summaries

to be similar.

In all similarity searches, there are two input videos (or video summaries in our

case): the data that is being searched and the pattern that we are trying to match

against the data. Patterns may be as small as a single frame or as long as several min-

utes of video. To measure similarity between two video summaries, let us introduce

143



the similarity function.

Definition 4.3.13 (Similarity Function) Given any two video summaries v1 and v2,

the similarity function sim(v1, v2) returns a real value in the [0, 1] range such that

sim(v1, v1) = 1.

Intuitively, the similarity function measures how similar its arguments are. Notice

that the definition only requires sim() to be reflexive, but neither commutativity nor

transitivity are required. Notice also that the definition does not state what portions

of v1 and v2 are considered. In practice, the sim() function will often consider entire

v2 (the pattern) but only a portion of v1 (the data), starting from the beginning. The

following example illustrates how a similarity function can be computed with respect

to the VDA data model.

Example 4.3.1 (Similarity Function) For this example, let us ignore block lengths

and compare two video summaries block by block. We will measure similarity between

each two blocks by the spatial placement of corresponding features in these blocks:

simloc(v1, v2) =

∑
{simloc(bi, b

′
i) | i ∈ [1, min(card(v1), card(v2))] ∧ bi ∈ v1 ∧ b′i ∈ v2}

min(card(v1), card(v2))
,

simloc(b1, b2) =

∑
{area(XS(b1,N)∩XS(b2,N))

area(XS(b2,N)) | ∀N ∈ NS(b2)}

card(NS)
,

XS(b, N) =
⋃

{f.loc | ∀f ∈ b.FS 〈f.name, f.val〉 = N},

NS(b) = {〈f.name, f.val〉 | f ∈ b.FS}.

The NS(b2) set contains all distinct name-value pairs from the feature set of the “pat-

tern” block b2. The total regions occupied by each pair N ∈ NS are then computed

as XS(b1, N) (for the “data” block) and XS(b2, N) (for the “pattern” block), and

the total area of their intersection is compared to the total area of XS(b2, N). Thus,

the more similar XS(b1, N) and XS(b2, N) are, the higher area(XS(b1 ,N)∩XS(b2,N))
area(XS(b2 ,N))
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ratio becomes. Finally, these ratios are added together for all name-value pairs and

blocks, and the result is scaled to the [0, 1] range.

Many other similarity functions are possible. For example, one may use the

sim′loc(v1, v2) =
simloc(v1, v2) + simloc(v2, v1)

2

function that has an additional property of commutativity.

Let us now define the MATCH operator that finds in its input k fragments that are

most similar to the supplied pattern.

Definition 4.3.14 (MATCH Operator) Consider the set Σ(v1) of all subsets of a video

summary v1 such that for any v ∈ Σ(v1), if b1, b2 ∈ v and b ∈ v1 then b1 ≤ b ≤ b2 →

b ∈ v. Given the second video summary v2 and an integer k, the MATCH operator

returns a new summary such that

µk(v1, v2) =
⋃

{v ∈ Σ(v1) | card({v′ ∈ Σ(v1) | sim(v′, v2) > sim(v, v2)}) < k}.

Thus, the MATCH operator returns a summary containing the k fragments of the v1

best matching the v2.

4.3.6 The Cartesian Product Operator

While not immediately useful, the cartesian product operator serves as a basis for the

JOIN operator. The idea of CPRODUCT is to take two video summaries and combine

them in a way described by the block combination function:

Definition 4.3.15 (Block Combination Function) Given a single block b and a set

of blocks S = {b1, . . . , bn}, a block combination function g produces a single block

b′ = g(b, S) such that b′.ts = b.ts, b′.te = b.te, and g(b, ∅) = b.
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It is important to note that, while the second argument of g may be a summary,

it does not have to be one. The blocks may come from completely different sources

and overlap one another. A block combination function may use different strategies

to integrate these blocks into its first argument, such as compressing video, “split-

screen”, and “picture-in-picture” effects.

Definition 4.3.16 (Cartesian Product Operator) Given two video summaries v1, v2

and a block combination function g, the cartesian product operator v1×
g v2 produces

a new summary

v1 ×
g v2 = {g(b, v2) | ∀b ∈ v1}.

4.3.7 The JOIN Operator

The JOIN operator is similar to the relational join. What makes it different is the

ability to combine video blocks using a block combination function. The JOIN is

basically a version of CPRODUCT where inputs are filtered before being merged:

Definition 4.3.17 (JOIN Operator) Given two video summaries v1, v2, a block join

condition C, a real value pmin ∈ [0, 1], and a block combination function g, the JOIN

operator v1 ./g
C,pmin

v2 produces a new summary

v1 ./g
C,pmin

v2 = {g(b, v) | ∀b ∈ v1 v = {b′ ∈ v2 | λ(C[B1/b, B2/b
′]) ≥ pmin}}.

For a JOIN example, let us consider two cameras mounted on a toll booth and

directed at the driver (through the windshield) and at the license plate at the back

of his car. To combine feeds from these cameras, assume the existance of a block

combination function gPiP (b, S) that displays members of S in small boxes starting
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from the left upper corner of block b. Then a query that combines videos from two

cameras vfront and vback will look like this:

vfront ./gPiP

B1=〈Car,true〉∧B2=〈LicenseP late,true〉∧overlap(B1 ,B2)
vback.

A special case of the JOIN operator is the selective join defined as follows:

Definition 4.3.18 (Selective JOIN Operator) Given two video summaries v1, v2, a

block join condition C, and a real value pmin ∈ [0, 1], the selective JOIN operator

v1 ./C,pmin
v2 produces a new summary

v1 ./C,pmin
v2 = {b ∈ v1 | ∃b

′ ∈ v2 λ(C[B1/b, B2/b
′]) ≥ pmin}.

The selective JOIN does not require a block combination function and can be used

for selecting video blocks that are somehow related to the blocks in the other video.

For example, to select scenes of celebration following goals in a soccer video v, one

can use the following query:

vpublic ./B1=〈Celebration,true〉∧B2=〈Goal,true〉∧after(B1 ,B2,15) vfield.

In this example, celebration scenes are taken from the camera directed at spectators

(vpublic), while the goal footage comes from another camera “watching” the playfield

(vfield).

Theorem 4.3.7 (Swapping JOIN and SELECT ) Given two video summaries v1, v2, a

block selection condition C1, a block join condition C2, a block combination function

g, and two real values p1, p2 ∈ [0, 1], if g(b, S).FS = b.FS for all b, S then

σC1(v1 ./g
C2,p2

v2, p1) = σC1(v1, p1) ./g
C2,p2

v2.

Same holds for the selective JOIN , although there is no g in this case and C1 has to

be local.

147



Proof of Theorem 4.3.7. Consider two queries v ′ = σC1(v1 ./g
C2,p2

v2, p1) and v′′ =

σC1(v1, p1) ./g
C2,p2

v2. By the block combination function definition, g(b, S).ts = b.ts

and g(b, S).te = b.te for any b, S. Furthermore, the theorem requires that g(b, S).FS =

b.FS, i.e. the only part of b that g can change is the image data b.DS. Thus, applying

g does not affect the evaluation of the block selection condition C1.

Consider now an arbitrary block b ∈ v1. By definitions of JOIN and SELECT , if there

is a corresponding block b′ ∈ v′, there is also a block b′′ ∈ v′′ and vice versa. There

are no blocks in v′, v′′ without corresponding blocks in v1. Let us then use operator

definitions to compute b′, b′′ for an arbitrary block b ∈ v1, case by case:

1. If maxall θ(λ(C1[B/b]θ)) < p1 then g(b, {b∗ ∈ v2 | λ(C2[B1/b, B2/b
∗]) ≥ p2})

is deleted by the outer SELECT operator in v ′ while b is deleted by the inner

SELECT operator in v′′. Therefore, b′ 6∈ v′ and b′′ 6∈ v′′.

2. If maxall θ(λ(C1[B/b]θ)) ≥ p1 then

b′ = b′′ = g(b, {b∗ ∈ v2 | λ(C2[B1/b, B2/b
∗]) ≥ p2}).

We have shown that b′ = b′′ for any b ∈ v1. Therefore v′ = v′′. Similar proof can be

given for a combination of SELECT and selective JOIN , although C1 has to be local

in this case.

Theorem 4.3.8 (Swapping JOIN and PROJECT ) Given two video summaries v1, v2,

a feature selection condition C1, a block join condition C2, a block combination func-

tion g, and two real values p1, p2 ∈ [0, 1], if C2 contains no in(B1,−) atoms and

g(b, S) neither uses nor modifies b.FS for all b, S then

πC1(v1 ./g
C2,p2

v2, p1) = πC1(v1, p1) ./g
C2,p2

v2.

Same holds for the selective JOIN , although there is no g in this case.
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Proof of Theorem 4.3.8. Consider two queries v ′ = πC1(v1 ./g
C2,p2

v2, p1) and v′′ =

πC1(v1, p1) ./g
C2,p2

v2, and an arbitrary block b ∈ v1. Neither JOIN nor PROJECT add

or delete any blocks. Therefore, b always has two corresponding blocks b′ ∈ v′ and

b′′ ∈ v′′ and there are no blocks in v′, v′′ that have no corresponding blocks in v1. By

the block combination function definition, g(b, S).ts = b.ts and g(b, S).te = b.te for

any b, S. Furthermore, the theorem requires that g(b, S).FS = b.FS, i.e. the only

part of b that g can change is the image data b.DS. Thus, applying g does not affect

the evaluation of the feature selection condition C1. On the other hand, the theorem

requires that neither evaluation of C2[B1/b] nor the output of g(b, S) depend on b.FS.

Thus, they are not affected by PROJECT deleting features from b.FS. In other words

b′ = b′′ = g(〈b.ts, b.te, FS, DS〉,

FS = {f ∈ b.FS|maxall θ(λ(C1[F/f ]θ)) ≥ p1},

DS = g(b, {b∗ ∈ v2|λ(C2[B1/b, B2/b
∗]) ≥ p2}).DS.

We have shown that b′ = b′′ for any b ∈ v1. Therefore v′ = v′′. Similar proof can be

given for a combination of PROJECT and selective JOIN .

Theorem 4.3.9 (Swapping JOIN and APPLY ) Given two video summaries v1, v2, a

block selection condition C1, a block join condition C2, a block transformation func-

tion tr, a block combination function g, and two real values p1, p2 ∈ [0, 1],

if g(b, S).FS = b.FS and tr(g(b, S), r) = g(tr(b, r), S) for all b, S, r then

βtr
C1

(v1 ./g
C2,p2

v2, p1) = βtr
C1

(v1, p1) ./g
C2,p2

v2.

Same equivalence holds for the feature APPLY operator. It also holds for the selective

JOIN , although C1 has to be local and there is no g in this case. Finally, it holds for

a combination of feature APPLY and selective JOIN , where there are no restrictions

on C1.
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Proof of Theorem 4.3.9. Consider two queries v ′ = βtr
C1

(v1 ./g
C2,p2

v2, p1) and v′′ =

βtr
C1

(v1, p1) ./g
C2,p2

v2. By the block combination function definition, g(b, S).ts = b.ts
and g(b, S).te = b.te for any b, S. Furthermore, the theorem requires that g(b, S).FS =

b.FS, i.e. the only part of b that g can change is the image data b.DS. Thus, apply-
ing g does not affect the evaluation of C1. On the other hand, APPLY operator only
changes image data of its input blocks and therefore it does not affect the evaluation
of C2.
Consider now an arbitrary block b ∈ v1. As neither JOIN nor APPLY add or delete any
blocks, b always has corresponding blocks b′ ∈ v′ and b′′ ∈ v′′ and there are no blocks
in v′, v′′ that have no corresponding blocks in v1. Let us then use operator definitions
to compute b′, b′′ for an arbitrary block b ∈ v1:

b′ =

{

tr(g(b, {b∗ ∈ v2|λ(C2[B1/b, B2/b∗]) ≥ p2}),∇) if maxall θ(λ(C1 [B/b]θ)) ≥ p1

g(b, {b∗ ∈ v2|λ(C2[B1/b, B2/b∗]) ≥ p2}) otherwise
,

b′′ =

{

g(tr(b,∇), {b∗ ∈ v2|λ(C2[B1/b, B2/b∗]) ≥ p2}) if maxall θ(λ(C1 [B/b]θ)) ≥ p1

g(b, {b∗ ∈ v2|λ(C2[B1/b, B2/b∗]) ≥ p2}) otherwise
.

As the theorem requires that tr(g(b, S), r) = g(tr(b, r), S), we can say that b′ = b′′

for any b ∈ v1. Therefore v′ = v′′. Similar proof can be given for combinations of

feature APPLY and selective JOIN , although in the case of block APPLY combined

with selective JOIN C1 has to be local.

4.3.8 Set Operators

Intuitively, set operators should work similarly to their canonical definitions by treat-

ing video summaries as sets of blocks, but this leads to two questions: (i) What makes

two video blocks equivalent? and (ii) How to combine video blocks that overlap in

time?

Let us first introduce the equivalence relation “∼” defined on blocks. This relation

can be chosen from a variety of possibilities. For example, we can attach IDs to all

the blocks in the database and define b1 ∼ b2 ↔ b1.id = b2.id. Or, one can say

that b1 ∼ b2 ↔ b1.ts = b2.ts ∧ b1.te = b2.te. Let us define the set intersection and

difference operators with respect to the “∼” relation:
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Definition 4.3.19 (Set Intersection and Difference Operators) Given two video sum-

maries v1, v2, and an equivalence relation “∼” on blocks, the set intersection and

difference operators return new summaries such that

v1 ∩∼ v2 = {b ∈ v1 | ∃b
′ ∈ v2 b ∼ b′},

v1 −∼ v2 = {b ∈ v1 | ∀b
′ ∈ v2 b 6∼ b′}.

Unfortunately, the set union operator cannot be defined as easily as the intersection

and difference because it requires merging overlapping video blocks into new blocks.

To deal with this problem, let us define split and merge operators:

Definition 4.3.20 (Split Operator) Given two video summaries v1, v2, the split func-

tion split(v1, v2) returns a new video summary such that

S(v) = {t | ∀b ∈ v t = b.ts ∨ t = b.te},

split(v1, v2) =
⋃

b∈v1

{〈ts, te, b.FS, DS〉 | ∀ts, te ∈ S(v2) ∪ {b.ts, b.te} [ts, te] ⊆ [b.ts, b.te]},

where each DS consists of the [ts, te) range of frames taken from b.DS.

Intuitively, the split(v1, v2) operator splits v1 blocks at boundaries imposed by

blocks from v2, so that each resulting block overlaps with at most one block from v2

and there are no partial overlaps. To merge overlapping blocks together, we will need

one more operator:

Definition 4.3.21 (Merge Operator) Given two video summaries v1, v2 and a block

combination function g, the merge operator mergeg(v1, v2) returns a new video sum-

mary such that

mergeg(v1, v2) = {g(b, v′) | ∀b ∈ v1 v′ = {b′ ∈ v2 | [b.ts, b.te) ∩ [b′.ts, b
′.te) 6= ∅}}

∪ {b ∈ v1 | ∀b
′ ∈ v2 [b.ts, b.te) ∩ [b′.ts, b

′.te) = ∅}

∪ {b ∈ v2 | ∀b
′ ∈ v1 [b.ts, b.te) ∩ [b′.ts, b

′.te) = ∅}.
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By using the split() and merge() operators, one can define the set union in a

following way:

Definition 4.3.22 (Set Union Operator) Given two video summaries v1, v2, an equiv-

alence relation “∼” defined on blocks, and a block combination function g, the set

union operator produces a new summary such that

v′ = {b ∈ v2 | ∀b
′ ∈ v1 b′ 6∼ b},

v1 ∪
g
∼ v2 = mergeg(split(v1, v

′), split(v′, v1)).

The above definition of set operators allows for many useful equivalences. Let us

see some of them.

Theorem 4.3.10 (Swapping Set Operators and SELECT ) Given two video summaries

v1, v2, a block selection condition C, a real value p ∈ [0, 1], and an equivalence rela-

tion “∼”, if C is local then

σC(v1, p) ∩∼ v2 = σC(v1 ∩∼ v2, p),

σC(v1, p)−∼ v2 = σC(v1− ∼ v2, p).

Proof of Theorem 4.3.10. Consider two queries v ′ = σC(v1, p) ∩∼ v2 and v′′ =

σC(v1 ∩∼ v2, p). As the theorem requires C to be local, both SELECT operators con-

sider each input block independently of other blocks. By definitions of SELECT and

set intersection, if a block b ∈ v1 has a corresponding block b′ ∈ v′, it must also have

a corresponding block b′′ ∈ v′′ and vice versa. There are no blocks in v ′, v′′ that have

no corresponding blocks in v1. Let us then consider an arbitrary block b ∈ v1 and use

operator definitions to compute its corresponding blocks b′, b′′, case by case:

1. If λ(C[B/b]) < p then b is deleted by the inner SELECT operator in v ′ and by

the outer SELECT operator in v′′. Thus, b′ 6∈ v′ and b′′ 6∈ v′′.
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2. If λ(C[B/b]) ≥ p then b′ = b′′ = b if and only if there is b∗ ∈ v2 such that

b ∼ b∗. Otherwise, b′ 6∈ v′ and b′′ 6∈ v′′.

We have shown that b′, b′′ either do not exist or b′ = b′′, for any b ∈ v1. Therefore,

v′ = v′′. Similar proof can be given for a combination of SELECT and set difference.

Theorem 4.3.11 (Swapping Set Operators and APPLY ) Given two video summaries

v1, v2, a block selection condition C, a real value p ∈ [0, 1], a transformation function

tr, and an equivalence relation “∼” such that b1 ∼ b2 ↔ tr(b1, r) ∼ b2 for any

b1, b2, r, if C is local then

βtr
C (v1, p) ∩∼ v2 = βtr

C (v1 ∩∼ v2, p),

βtr
C (v1, p)−∼ v2 = βtr

C (v1− ∼ v2, p).

Same holds for a feature APPLY operator, although C does not have to be local in

this case.

Proof of Theorem 4.3.11. Consider two queries v ′ = βtr
C (v1, p) ∩∼ v2 and v′′ =

βtr
C (v1 ∩∼ v2, p). As the theorem requires C to be local, both APPLY operators con-

sider each input block independently of other blocks. By definitions of APPLY and

set intersection, if a block b ∈ v1 has a corresponding block b′ ∈ v′, it also has a

corresponding block b′′ ∈ v′′ and vice versa. There are no blocks in v ′, v′′ that have

no corresponding blocks in v1. Let us then look at an arbitrary block b ∈ v1 and use

operator definitions to compute its corresponding blocks b′, b′′, case by case:

1. If λ(C[B/b]) < p then neither APPLY operator modifies b and therefore b′ =

b′′ = b if and only if there is b∗ ∈ v2 such that b ∼ b∗. Otherwise, b′ 6∈ v′ and

b′′ 6∈ v′′.
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2. If λ(C[B/b]) ≥ p then the set intersection operator in v ′ receives as input a

block tr(b,∇) while the set intersection operator in v ′′ receives b∗ as input. The

theorem requires that b ∼ b∗ ↔ tr(b, r) ∼ b∗ and therefore both input blocks

will either pass set intersection or be deleted by it. Thus, the first query will

generate b′ = tr(b,∇) while the second query applies tr and also generates

b′′ = tr(b,∇), i.e. b′ = b′′.

We have shown that whenever b′, b′′ exist, it is true that b′ = b′′, for any b ∈ v1.

Therefore, v′ = v′′. Similar proof can be given for combinations of feature APPLY

and set difference, although C does not have to be local in feature APPLY .

4.3.9 The Concatenation Operator

A simple but common video processing task is to “glue” two or more summaries

together. Here is an algebraic operator to do it:

Definition 4.3.23 (Concatenation Operator) Given two video summaries v1, v2 the

concatenation operator v1 ⊕ v2 produces a new summary

v1 ⊕ v2 = v1 ∪ {〈b.ts + t0, b.te + t0, b.FS, b.DS〉 | ∀v ∈ v2},

where t0 = maxb∈v1b.te.

Two concatenations can be easily swapped.

Theorem 4.3.12 (Swapping Concatenations) Suppose v1, v2, v3 are summaries. Then

(v1 ⊕ v2)⊕ v3 = v1 ⊕ (v2 ⊕ v3).
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Proof of Theorem 4.3.12. Consider an arbitrary block b from one of v1, v2, v3 sum-

maries and two new summaries v′ = (v1 ⊕ v2)⊕ v3 and v′′ = v1 ⊕ (v2 ⊕ v3). As con-

catenation operator neither deletes nor adds blocks, b will always have counterparts

b′ ∈ v′ and b′′ ∈ v′′, and there are no blocks in v′, v′′ that do not have a corresponding

block b. We can then write the following correspondence between these blocks:

t1 = maxb∈v1b.te

t2 = maxb∈v2b.te

b′.FS = b′′.FS = b.FS

b′.DS = b′′.DS = b.DS

b′.ts =







b.ts if b ∈ v1

b.ts + t1 if b ∈ v2

b.ts + t1 + t2 ifb ∈ v3

b′′.ts =







b.ts if b ∈ v1

b.ts + t1 if b ∈ v2

b.ts + t2 + t1 ifb ∈ v3

b′.te =







b.te if b ∈ v1

b.te + t1 if b ∈ v2

b.te + t1 + t2 ifb ∈ v3

b′′.te =







b.te if b ∈ v1

b.te + t1 if b ∈ v2

b.te + t2 + t1 ifb ∈ v3

Thus, b′ = b′′ for any input block b and therefore v ′ = v′′.

Concatenation can also be swapped with PROJECT and APPLY operators.
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Theorem 4.3.13 (Swapping Concatenation and PROJECT ) Suppose v1 and v2 are

summaries, C is a feature selection condition, and p ∈ [0, 1] is a real number. Then

πC(v1, p)⊕ πC(v2, p) = πC(v1 ⊕ v2, p).

Proof of Theorem 4.3.13. Consider two summaries v ′ = πC(v1, p)⊕ πC(v2, p) and

v′′ = πC(v1 ⊕ v2, p) and an arbitrary block b in v1, v2. As PROJECT and concatenation

operators neither delete nor add any blocks, b will always have two corresponding

blocks b′ ∈ v′ and b′′ ∈ v′′. Furthermore, the PROJECT operator only considers and

modifies feature sets of input blocks, while concatenation operator only considers and

modifies ts, te values of input blocks. In other words:

t1 = maxb∈v1b.te

b′.FS = b′′.FS = {f ∈ b.FS |maxall θ(λ(C[F/f ]θ)) ≥ p}

b′.DS = b′′.DS = b.DS

b′.ts =







b.ts if b ∈ v1

b.ts + t1 if b ∈ v2

b′′.ts =







b.ts if b ∈ v1

b.ts + t1 if b ∈ v2

b′.te =







b.te if b ∈ v1

b.te + t1 if b ∈ v2

b′′.te =







b.te if b ∈ v1

b.te + t1 if b ∈ v2

Thus, b′ = b′′ for any input block b and therefore v ′ = v′′.

Theorem 4.3.14 (Swapping Concatenation and APPLY ) Suppose v1 and v2 are sum-

maries, C is a local block condition, tr is a block transformation function, and
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p ∈ [0, 1] is a real number. Then

βtr
C (v1, p)⊕ βtr

C (v2, p) = βtr
C (v1 ⊕ v2, p).

Same holds for feature APPLY operators, although C does not have to be local in this

case.

Proof of Theorem 4.3.14. Consider two queries v ′ = βtr
C (v1, p)⊕ βtr

C (v2, p) and

v′′ = βtr
C (v1 ⊕ v2, p), and an arbitrary block b in v1, v2. As APPLY and concatenation

operators neither delete nor add any blocks, b will always have two corresponding

blocks b′ ∈ v′ and b′′ ∈ v′′. Furthermore, due to locality of C, the APPLY operator

considers its input one block at a time, ignoring ts, te values and only modifying image

data, while concatenation operator only considers and modifies ts, te values of input

blocks. In other words:

t1 = maxb∈v1b.te,

b∗ = 〈







b.ts + t1 if b ∈ v2

b.ts otherwise
,







b.te + t1 if b ∈ v2

b.te otherwise
, b.FS, b.DS〉,

b′ = b′′ =







tr(b∗,∇) if λ(C[B/b∗]) ≥ p

b∗ otherwise

Thus, b′ = b′′ for any input block b and therefore v ′ = v′′. Similar proof can be given

for a concatenation of feature APPLY operators, although C is not required to be local

in this case.

4.3.10 The COMPRESS Operator

By the definition of the video summary, it may contain “gaps” between blocks, where

content is missing or removed as result of queries. A video browsing and display
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application may choose to hide these gaps from the viewer by skipping directly to the

next block as the current one finishes playing. To permanently remove gaps from a

summary though, one will need an operator to compress summaries:

Definition 4.3.24 (COMPRESS Operator) Given a summary v, the COMPRESS oper-

ator η(v) produces a new summary

η(v) = {〈ts, ts + b.te − b.ts, b.FS, b.DS〉 | ∀b ∈ v ts =
∑

{b′∈v|b′.te≤b.ts}

(b′.te − b′.ts)}.

It is easy to notice that applying compression to a summary effectively turns it into a

video (i.e. summary with no gaps), while applying it again will not change this video.

Thus, two COMPRESS operators can be reduced to one:

Theorem 4.3.15 (Reducing COMPRESS ) Suppose v is a summary. Then

η(η(v)) = η(v).

Proof of Theorem 4.3.15. Proving this theorem by induction:

1. Let us start with an empty summary: η(η(∅)) = ∅ and η(∅) = ∅, i.e. the

theorem holds.

2. Let us denote η(η(v)) with v′, η(v) with v′′, and assume that the theorem holds

for some summary v, i.e. v′ = v′′.

3. If a block b is added to the end of v, we can use the the COMPRESS operator
definition to write that

η(η(v ∪ {b})) = v′ ∪ {〈b.ts + length(v′), b.te + length(v′), b.FS, b.DS〉},

η(v ∪ {b}) = v′′ ∪ {〈b.ts + length(v′′), b.te + length(v′′), b.FS, b.DS〉}.

Given assumption made in (2), we can conclude that the theorem holds for

v ∪ {b}.
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Thus, η(η(v)) = η(v) for any arbitrary summary v, by induction.

COMPRESS operators can be swapped with PROJECT , APPLY , and concatenation

operators:

Theorem 4.3.16 (Swapping COMPRESS and PROJECT ) Suppose v is a summary, C

is a feature selection condition, and p ∈ [0, 1] is a real number. Then

πC(η(v), p) = η(πC(v, p)).

Proof of Theorem 4.3.16. Proving this theorem by induction:

1. Let us start with an empty summary: η(πC(∅, p)) = ∅ and πC(η(∅), p) = ∅, i.e.

the theorem holds.

2. Let us denote πC(η(v), p) with v′, η(πC(v, p)) with v′′, and assume that the

theorem holds for some summary v, i.e. v ′ = v′′.

3. If a block b is added to the end of v, we can use definitions of PROJECT and
COMPRESS operators to write that

πC(η(v ∪ {b}), p) = v′ ∪ {〈b.ts + length(v′), b.te + length(v′), FS, b.DS〉},

η(πC(v ∪ {b}, p)) = v′′ ∪ {〈b.ts + length(v′′), b.te + length(v′′), FS, b.DS〉},

FS = {f ∈ b.FS|maxall θλ(C[F/f ]θ)) ≥ p}.

Given assumption made in (2), we can conclude that the theorem holds for

v ∪ {b}.

Thus, η(πC(v, p)) = πC(η(v), p) for any arbitrary summary v, by induction.

Theorem 4.3.17 (Swapping COMPRESS and APPLY ) Suppose v is a summary, C is

a local block selection condition, tr is a block transformation function, and p ∈ [0, 1]

is a real number. Then

βtr
C (η(v)) = η(βtr

C (v)).

Same holds for a feature APPLY operator, where C is any feature condition.
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Proof of Theorem 4.3.17. Proving this theorem by induction:

1. Let us start with an empty summary: η(β tr
C (∅)) = ∅ and βtr

C (η(∅)) = ∅, i.e. the

theorem holds.

2. Let us denote βtr
C (η(v)) with v′, η(βtr

C (v)) with v′′, and assume that the theorem

holds for some summary v, i.e. v ′ = v′′.

3. If a block b is added to the end of v, we can use definitions of APPLY and
COMPRESS operators and the requirement for C to be local to write that

b′∗ = 〈b.ts + length(v′), b.te + length(v′), b.FS, b.DS〉,

b′′∗ = 〈b.ts + length(v′′), b.te + length(v′′), b.FS, b.DS〉,

βtr
C (η(v ∪ {b})) = v′ ∪ {

{

tr(b′∗,∇) if λ(C[B/b′∗]) ≥ p

b′∗ otherwise
},

η(βtr
C (v ∪ {b})) = v′ ∪ {

{

tr(b′′∗ ,∇) if λ(C[B/b′′∗ ]) ≥ p

b′′∗ otherwise
}.

Given assumption made in (2), we can conclude that the theorem holds for

v ∪ {b}.

Thus, η(βtr
C (v)) = βtr

C (η(v)) for any arbitrary summary v, by induction.

Theorem 4.3.18 (Swapping COMPRESS and concatenation) Suppose v1 and v2 are

summaries. Then

η(v1)⊕ η(v2) = η(v1 ⊕ v2).

Proof of Theorem 4.3.18. Consider two summaries v ′ = η(v1)⊕ η(v2) and v′′ =

η(v1 ⊕ v2). As COMPRESS and concatenation operators neither delete nor add any

blocks, an arbitrary block b from v1, v2 will have two corresponding blocks b′ ∈ v′

and b′′ ∈ v′′, and there are no blocks in v′, v′′ that do not have a corresponding block

b. Let us then consider two possible cases:
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1. If b ∈ v1 then, by the definition, concatenation does not modify b or put any

blocks in front of it, while COMPRESS will change b so that

b′.ts = b′′.ts =
∑

{b∗∈v1|b∗.te≤b.ts}

(b∗.te − b∗.ts)

b′.te = b′′.te = b′.ts + b.te − b.ts

Thus, b′ = b′′.

2. If b ∈ v2 then, by definitions of COMPRESS and concatenation,

b′.ts = b′′.ts = length(v1) +
∑

{b∗∈v2|b∗.te≤b.ts}

(b∗.te − b∗.ts)

b′.te = b′′.te = b′.ts + b.te − b.ts

Again, b′ = b′′.

Thus, b′ = b′′ for any block b from either of query inputs and therefore v ′ = v′′.

4.4 Indexing and Optimization

In this section, we will discuss optimizing such time-consuming operations as SE-

LECT , JOIN , and MATCH , both by closely analyzing selection conditions and by

using indices.

4.4.1 Optimizing SELECT and JOIN

As VDA mostly operates on video descriptions as opposed to the actual video data, it

is quite feasible to execute most of its operations in memory, accessing disk storage

only when a query needs to change the video itself (as result of APPLY or JOIN oper-

ators, for example). Consider, for example, a one-hour video divided into one-second
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blocks. If each block contains an average of 10 features, we would have to keep in

memory 3600 blocks and 36000 features – not a very large amount of data, by any

count.

While the modest memory requirement can be considered good news, there is

also bad news and it is about the way VDA treats selection conditions. Remember

that such operators as SELECT and PROJECT use the maximal value of λ over all

possible variable assignments. This brings the complexity of a SELECT operator with

M variables in its selection condition, processing N input blocks, to O( N !
(N−M)!

). This

value is linear w.r.t. the size of input as long as there is only one variable, but it quickly

mushrooms as the number of variables grows.

Fortunately, there is an extra consideration to make. When performing selection,

a user is unlikely to specify blocks that are completely unrelated. For example, while

the “give me all celebration shots in a soccer video if there are any goals in that video”

request is not sensible, the “give me all celebration shots that occur in 15 second

intervals after goal shots” request makes much more sense. In other words, of

σin(B,name(F,“Celebration”))∧in(B1 ,name(F,“Goal”))(v) (1)

σin(B,name(F,“Celebration”))∧in(B1 ,name(F,“Goal”))∧after(B,B1 ,15)(v) (2)

queries, the second one is more likely to be issued than the first. Thus, most or all

variable assignments will be constrained in time with respect to B. When SELECT

scans its input by sequential assignment of input blocks to B, we can compute possible

time ranges for all the other variables based on the time constraints and only consider

assignments from within these ranges. If each time range contains an average of

K << N blocks, the complexity is reduced to O(N · KM−1), at the cost of time

needed to compute ranges.
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Consider a condition C containing variables B, B1, . . . , Bm. Given the assign-

ment B = b, our task is to compute a set of constraints {〈lli, lui, uli, uui〉| ∀i ∈ [1, m]

∀θ ∀b′ b′.ts 6∈ [lli, lui]∨ b′.te 6∈ [uli, uui] → λ(C[B/b, Bi/b
′]θ) = 0}. This can be

done with the following algorithm:
Algorithm Ranges(C,b)

C is a block selection condition with variables B, B1, . . . , Bm

b is a block to be assigned to B
begin

RR[0] := 〈b.ts, b.ts, b.te, b.te〉
for j ∈ [1, m] do

RR[j] := 〈0,∞, 0,∞〉
end for
do

i := 0
for j ∈ [1, m] do

R := RecRanges(C, j, RR)
if R 6= RR[j] then i := i + 1
RR[j] := R

end for
while i > 0
return RR

end

The Ranges() algorithm starts by assigning longest possible ranges to all vari-

ables except B. It then tries to shrink these ranges one by one, by calling the recursive

RecRange() algorithm given below. The execution of Ranges() stops when ranges

cease changing. The Ranges() algorithm has O((M − 1)2) time complexity.
Algorithm RecRanges(C,j,RR)

C is a block selection condition with variables B, B1, . . . , BM

j is the number of a variable Bj whose range we compute
RR is the current range table

begin
if C = C1 ∧ C2 then

R1 := RecRanges(C1, j, RR)
R2 := RecRanges(C2, j, RR)
return 〈max(R1.ll, R2.ll), min(R1.lu, R2.lu), max(R1, ul, R2, ul), min(R1.uu, R2.uu)〉

else if C = C1 ∨ C2 then
R1 := RecRanges(C1, j, RR)
R2 := RecRanges(C2, j, RR)
return 〈min(R1.ll, R2.ll), max(R1.lu, R2.lu), min(R1, ul, R2, ul), max(R1.uu, R2.uu)〉

else if C = before(Bj , Bi, d) then
return 〈0, RR[i].lu, max(0, RR[i].ll− d), RR[i].lu〉

else if C = before(Bi, Bj , d) then
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return 〈RR[i].ul, min(∞, RR[i] + d), RR[i].ul,∞〉
else if C = after(Bj , Bi, d) then

return 〈RR[i].ul, min(∞, RR[i].uu + d), RR[i].ul,∞〉
else if C = after(Bi, Bj , d) then

return 〈0, RR[i].lu, max(0, RR[i].ll− d), RR[i].lu〉
else if C = within(Bj , Bi, d) or C = within(Bi, Bj , d) then

return 〈0, min(∞, RR[i].uu + d, max(0, RR[i].ll− d),∞〉
else if C = overlap(Bj , Bi) or C = overlap(Bi, Bj) then

return 〈0, RR[i].uu, RR[i].ll,∞〉
else if C = inside(Bj , Bi) then

return 〈RR[i].ll, RR[i].uu, RR[i].ll, RR[i].uu〉
else if C = inside(Bi, Bj) then

return 〈0, RR[i].ll, RR[i].uu,∞〉
end if
return 〈0,∞, 0,∞〉

end

When considering assignment for a variable Bi, the λ computation algorithm finds

the first input block bs, such that bs.ts ≥ lli and bs.te ≥ uli. As a video summary

is an ordered set of blocks, the bs block can be easily found with binary search in

O(log2(N)) time. The algorithm then tries assigning to Bi every block starting with

bs and ending with be, such that be.ts > lui or be.te > uui.

4.4.2 Optimizing MATCH

Another costly algebraic operation is matching. For instance, to match a pattern of

size M against a video summary of size N , using the similarity measure described

in Example 4.3.13, one needs to make O((N − M) · M) block comparisons, and

each block comparison takes quadratic time with respect to the number of features in

compared blocks. For large videos whose blocks contain a lot of features the MATCH

operator can take quite a lot of time to execute.

To determine how to accelerate the matching process, let us first look at a “naive”

matching algorithm using the simloc() similarity function from Example 4.3.13:

Algorithm Match(vd,vp,k)
vd is the data video summary
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vp is the pattern video summary
k is the number of best matches to return

begin
// Priority queue is empty for now
Q := ∅

// Scan vd

for each j ∈ [1, card(vd)− card(vp)] do
d := 0
for each i ∈ [1, card(vp)] do

d := d + MatchBlocks(vd.bj+i, vp.bi)
if card(Q) = k and d + card(vp)− i < worst(Q) then break

end for
if card(Q) < k or d ≥ worst(Q) then add(Q, 〈j, d〉)
if card(Q) > k then delete(Q, last(Q))

end for

// Return blocks corresponding to queued fragments
return {bi ∈ vd | ∃〈j, d〉 ∈ Q i ∈ [j, j + card(vp))}

end

The Match() algorithm scans vd while keeping track of k best pattern matches in

a sorted list Q. The algorithm terminates matching process every time it determines

that the similarity value d is not going to reach the threshold needed for inclusion

into Q. Aside from this trivial optimization, Match() acts naively. To compute block

similarity, Match() uses the following algorithm:
Algorithm MatchBlocks(bd,bp)

bd is the data block
bp is the pattern block

begin
Over := 0
Total := 0
for each fp ∈ bp.FS do

Total := Total + area(fp.loc)
for each fd ∈ bd.FS such that fp.name = fd.name and fp.val = fd.val do

Over := Over + area(fp.loc ∩ fd.loc)
end for

end for
return Over/Total

end

The MatchBlocks() algorithm computes the ratio of the area where bd and bp

have same features to the total area of bp features. It is assumed that features with
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the same names and values do not overlap inside feature sets. As seen above, this

algorithm has time complexity of O(card(bd.FS) · card(bp.FS)). Assuming that

each block contains an average of N features and the pattern is much shorter than the

data, and ignoring the cost of maintaining the list Q, one can say that the total time

complexity of the Match() algorithm is O(card(vd) · card(vp) ·N2).

One way to reduce Match() complexity is by ordering features inside feature sets

by their names and values. Then a binary search can be used in MatchBlocks() to

search for bd features, bringing the total time complexity to O(card(vd) · card(vp) ·

N · log2(N)). Augmenting feature sets with feature name hashes can lower this figure

even further.

So far, we discussed accelerating MatchBlocks() but left Match() algorithm

untouched. To optimize Match(), let us first attach two additional data fields to each

block b:

• b.names is a bit mask whose bits correspond to all known feature names. For

example, bit0 corresponds to feature RGB, bit1 corresponds to feature MO-

TION, and so forth. In practice, the number of different features is relatively

small, so it may be possible to use a single 32bit integer to hold the names

field.

• b.bbox is the smallest rectangular region containing all features in b.FS. In

other words, bbox is the bounding box for all block features.

Both b.names and b.bbox can be computed in time linear to the number of features

in b.FS. Looking back at the Match() algorithm with respect to these new fields, one

can observe the following:

1. if bd.names ∩ bp.names = ∅ then MatchBlocks(bd, bp) = 0,
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2. if bd.bbox ∩ bp.bbox = ∅ then MatchBlocks(bd, bp) = 0,

3. MatchBlocks(bd, bp) ≤
area(bd.bbox∩bp.bbox)
∑

f∈bp.FS
area(f.loc)

.

The Match() algorithm can now be rewritten to use the first two of these observa-

tions and avoid calling MatchBlocks() for pairs of blocks that have non-overlapping

feature sets. I will call the resulting algorithm Match+():
Algorithm Match+(vd,vp,k)

vd is the data video summary
vp is the pattern video summary
k is the number of best matches to return

begin
// Priority queue is empty for now
Q := ∅

// Scan vd

for each j ∈ [1, card(vd)− card(vp)] do
d := 0
for each i ∈ [1, card(vp)] do

if vd.bj+i.bbox ∩ vp.bi.bbox 6= ∅ and vd.bj+i.names ∩ vp.bi.names 6= ∅ then
d := d + MatchBlocks(vd.bj+i, vp.bi)

end if
end for
if card(Q) < k or d ≥ worst(Q) then add(Q, 〈j, d〉)
if card(Q) > k then delete(Q, last(Q))

end for

// Fill the rest of the queue
while card(Q) < k and exists j ∈ [1, card(vd)] such that 〈j,−〉 6∈ Q do add(Q, 〈j, 0〉)

// Return blocks corresponding to queued fragments
return {bi ∈ vd | ∃〈j, d〉 ∈ Q i ∈ [j, j + card(vp))}

end

4.4.3 Indexing

Even with improvements described above, the Match() algorithm still needs to scan

through the entire vd. To avoid this scan, let us consider storing bbox fields of all

video blocks in an R-tree index, augmenting each tree node with a block number and

a names field, as follows.
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Definition 4.4.1 (Augmented R-Tree Node) Given a maximal branching factor m,

an augmented R-tree node is a set of m tuples

{〈names1, bbox1, c1〉, . . . , 〈namesm, bboxm, cm〉}

such that for every leaf 〈namesi, bboxi, ci〉: (i) ci is a corresponding block number, (ii)

namesi = bci
.names, (iii) bboxi = bci

.bbox. For every non-leaf 〈namesi, bboxi, ci〉:

(i) ci points to a child node or NIL, (ii) namesi =
⋃
{ci.namesj|1 ≤ j ≤ m∧ci.cj 6=

NIL}, and (iii) bboxi = bbox({ci.bboxj |j ∈ [1, m] ∧ ci.cj 6= NIL}).

Augmented R-tree nodes can be used to build an R-tree for a video summary vd by

one of traditional methods, taking names fields into account as an additional criterion

when selecting insertion points for new leaves.

Additionally, every block’s feature set can be broken into clusters, each occupying

a distinct spot in a frame. Each such cluster can then be inserted into the tree sepa-

rately, all marked with the same block number but having different names fields.

Let us now rewrite the Match+() algorithm to make use of this tree.
Algorithm TreeMatch(vd,vp,k,Td)

vd is the data video summary
vp is the pattern video summary
k is the number of best matches to return
Td is the R-tree representing vd

begin
// Both priority queue and the set of candidates are empty
Q := ∅
C := ∅

// Use R-tree to find candidate fragments
for each i ∈ [1, card(vp)] do

TreeF ind(root(Td), C, vp.bi.bbox, vp.bi.names, i− 1)
end for

// Scan found vd fragments
for each j ∈ C such that j ∈ [1, card(vd)− card(vp) + 1] do

d := 0
for each i ∈ [1, card(vp)] do

if vd.bj+i−1.bbox ∩ vp.bi.bbox 6= ∅ and vd.bj+i−1.names ∩ vp.bi.names 6= ∅ then
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d := d + MatchBlocks(vd.bj+i−1, vp.bi)
end if
if card(Q) = k and d + card(vp)− i < worst(Q) then break

end for
if card(Q) < k or d ≥ worst(Q) then add(Q, 〈j, d〉)
if card(Q) > k then delete(Q, last(Q))

end for

// Fill the rest of the queue
while card(Q) < k and exists j ∈ [1, card(vd)] such that 〈j,−〉 6∈ Q do add(Q, 〈j, 0〉)

// Return blocks corresponding to queued fragments
return {bi ∈ vd | ∃〈j, d〉 ∈ Q i ∈ [j, j + card(vp))}

end

Instead of scanning through the entire vd summary, TreeMatch() calls the recur-

sive TreeF ind() algorithm (shown below) to find all blocks in vd that have non-zero

similarity to at least one block in vp and restricts matching to vd fragments containing

these blocks. While the TreeMatch() worst-case complexity is higher than that of

Match+() because of the need to search the R-tree, the typical execution time of the

TreeMatch() algorithm is dramatically better due to the greatly reduced number of

fragments to match.
Algorithm TreeFind(N ,C,b,l)

N is the root of the augmented R-tree
C is the set of answers
b is the pattern video block to look for
l is the offset of b inside a pattern video

begin
for each 〈namesi, bboxi, ci〉 ∈ N such that ci 6= NIL do

if namesi ∩ b.names 6= ∅ and bboxi ∩ b.bbox 6= ∅ then
if 〈namesi, bboxi, ci〉 is leaf then add(C, ci − l) else TreeF ind(ci, C, b, l)

end if
end for

end

4.4.4 Experimental Results

To assess how optimization and indexing affect algebraic engine performance, I have

run two batches of experiments. These experiments were conducted on a 2GHz Pen-
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tium4 computer running RedHat Linux using soccer and military aircraft videos pro-

cessed with a simple feature extraction tool. The feature extraction algorithm detected

and classified blobs of uniform color that were later used as features.
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Figure 4.2: Optimized SELECT Performance.

The first experiment compared selection queries running with and without opti-

mizations described in Section 4.4. The test program generated SELECT queries of

the form

σin(B1 ,name(F,n1))∧in(B2 ,name(F,n2))∧before(B,B1 ,d)∧after(B,B2 ,d)(v),

where n1, n2 were randomly chosen feature names and the distance d changed from 1

to 10. I first executed 10 such queries with d = 5 for input video fragments ranging

from 20 to 70 blocks in size. The average execution time of these queries is shown

at the left side of Figure 4.2 as a function of the input size. As seen from the graph,

the execution time of the original query rises sharply as input size grows, while the

optimized query takes almost negligible time in comparison. I then fixed the input size

at 30 blocks and varied d from 1 to 10. The right side of Figure 4.2 shows the result

of this experiment, where the execution time of the original query does not depend on
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d, while the optimized query takes slightly more time as distance constraints become

more lax.

The second experiment compared matching queries running with and without op-

timizations, as well as using the R-tree index. The test program picked random se-

quences of 1 to 5 blocks from the input video, composed a random localized pattern

of 1 to 5 features from each selected block, and matched the resulting mini-summary

against the input video with k ranging from 1 to 5.
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Figure 4.3: Optimized MATCH Performance.

Figure 4.3 shows MATCH execution time as a function of the pattern length and

the number of features in each pattern block (it has been found that changes in k

do not affect results, as long as k is small). As seen from the figure, the optimized

Match+() taking advantage of bbox and names fields performs roughly twice better

than the “naive” Match().

I then ran a greedy algorithm that broke each input video block into clusters of

closely overlapping features and inserted these clusters into an augmented R-tree.

The tree insertion algorithm chooses a node with the the closest fitting names field

and then chooses an insertion point with the closest fitting rectangle underneath that
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node. This is just one of many possible insertion heuristics though.

The result of running an MATCH query using the R-tree, shown in Figure 4.3,

indicates that the query performance can be doubled with respect to Match+() thus

making TreeMatch() about four times faster than the original naive Match().

4.5 The Cost Model

After implementing the basic VDA operators, I came up with the cost model, shown in

Table 4.1, that recursively predicts the running time of each algebraic operator (C()),

the number of blocks in its result (I()), and the average number of featurss in each

block (D()).

All formulas in Table 4.1 correspond to queries with pmin = ε. The JOIN formu-

las correspond to the selective JOIN operator. The set operators used the similarity

function b1 ∼ b2 ↔ b1.ts = b2.ts ∧ b1.te = b2.te.

The vars(C) function returns the number of variables in C, while the sel(C) func-

tion estimates C’s selectivity, as percentage of input blocks b (features f ) for which

C[B/b] (C[F/f ]) evaluates to a non-zero value. The costbc(C, v) and costfc(C, v)

functions estimate costs of evaluating a block or feature condition C on a video v.

Finally, the value of cost(tr) reflects the cost of applying the transformation function

tr.

The k∗ constants in Table 4.1 correspond to execution times of various implemen-

tation parts and depend on the computer hardware and the operating system. For ex-

ample, ks0 is the cost of copying a single feature from the input of a SELECT operator

to its output, and so forth.

The n∗ constants depend on the input data. For example, ni0 is the percentage of
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v1 that is typically retained by the v1 ∩∼ v2 operator.

The VDA implementation uses self-tuning to determine both k∗ and n∗ constants

at runtime. Some typical examples of their values are given in the Table 4.2.

To verify the cost model, I have run nine different queries on a hundred of artifi-

cally generated video summaries of the same size and computed their average execu-

tion times and cost estimates. I then varied input size from 100 to 2000 blocks, each

containing 10 − 25 features and plotted both execution times and cost estimates, as

shown in Figure 4.4.
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Figure 4.4: Cost Model Verification.

Based on the cost model and equivalences shown in the previous sections of this
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chapter, I have implemented a simple query optimizer that uses greedy breadth-first

search to rewrite a query in the most optimal way. To test the optimizer, I have run

a group of 10 queries on artifically generated video summaries varying from 100 to

2000 blocks in size, each block containing 20 − 50 features and measured the total

running time for the group. The results of this experiment, shown in Figure 4.5,

indicate 25− 30% improvement in the performance of optimized queries.
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Figure 4.5: Query Optimizer Performance.

4.6 Implementation

I have implemented the VDA Reference System whose architecture is shown in Fig-

ure 4.6. The system consists of three main parts: (i) the feature extraction component

processes video, segments it into blocks, and extracts some elementary features; (ii)

the algebraic core uses block-feature annotations (both obtained as result of the fea-

ture extraction and made by hand) to execute queries; (iii) the end user interfaces

(CLI and GUI) accept queries from users and present them with the execution results.

Let us look at these components in a greater detail.
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Figure 4.6: VDA Architecture.

4.6.1 Feature Extraction

The feature extraction component of the VDA system can detect two types of fea-

tures: (i) areas of uniform color and (ii) motion of these areas. It will also break

incoming MPEG1 video into blocks based on changes in detected feature combina-

tions and produce a list of blocks with corresponding features. This list, augmented

with human-annotated features, can later be used by the VDA algebraic core to query

video.

To describe the feature extraction algorithm, I will use following notation:

• bnext and bprev are single-frame blocks corresponding to the current and previous

video frames.

• bacc is a multi-frame block that we are currently accumulating. A new bacc is

started every time there is a significant change in the frame layout, signifying a

scene change.

• bstart is a single-frame block corresponding to the first frame of bacc.

The feature extraction proceeds frame by frame in following steps:
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1. An MPEG1 frame is loaded into memory in 24bpp format, using the popular

MPEGLib decoder.

2. A 15bpp color histogram of 32768 entries is built and the peaks in this his-

togram are grown by replacing all colors in their vicinity with the peak colors.

3. The algorithm starts searching the frame for a blob of color cmax corresponding

to the highest peak in the histogram. When such a blob is found, the algorithm

creates an RGB feature corresponding to this blob and removes all cmax-colored

pixels within the blob. If the algorithm fails to find a blob of color cmax, it

removes all cmax-colored pixels from the frame. The algorithm then updates

the histogram to reflect removed pixels count and proceeds looking for a color

corresponding to the next highest peak in the histogram.

4. The search process terminates when most or all pixels have been classified into

features and removed from the frame. The result is a frame-long block bnext

containing a collection of RGB features.

5. The algorithm compares bnext to a block bstart corresponding to the starting

frame of bacc.

6. If bnext is sufficiently similar to bstart in terms of features, it is merged into

bacc. During this process, some features in bacc may grow in area, while their

coverages decrease.

7. If bnext strongly differs from bstart, the algorithm decides that it is time to begin

accumulating a new block. But first, the bacc contents have to be post-processed

and output as result. This is done by converting all RGB features in bacc to

corresponding color features (such as RED, WHITE, or BROWN) and using the
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differences between bstart and bprev blocks to detect and add MOTION features.

The algorithm then prints the contents of bacc to the standard output and resets

both bacc and bstart to bnext.

8. bnext is assigned to bprev and the process is repeated until the algorithm runs out

of frames.

Figure 4.7: Feature Extraction Example.

While the feature extraction algorithm used in the reference VDA implementation

is far from perfect, it works quite well for videos that have relatively simple composi-

tion (such as cartoons, sports events, or military surveillance), as shown in Figure 4.7.

The VDA algebra with also work with any feature extraction system, be it a compli-

cated image segmentation algorithm or a group of humans annotating videos by hand,

as long as it produces feature descriptions in the correct format.

4.6.2 Algebraic Core

The VDA algebraic core is implemented as a library of C++ classes representing fea-

tures, blocks, video summaries, selection conditions, and queries.

Summaries are represented with objects of class Video that may contain one

or more Block objects, ordered by their starting and ending timestamps. Blocks
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inside a Video object do not have to be contigious, but they cannot overlap thus

satisfying the requirement of a video summary definition. Video member functions

allow programmer to add blocks to a summary, enumerate blocks, and query summary

length and block count.

Each Block object may contain one or more Feature objects, characterized

by names, values, coverages, and spatial locations within a frame. Block member

functions allow programmer to add features to a block, enumerate features, and query

block’s starting and ending timestamps, length, and feature count.

The two kinds of VDA selection conditions, feature and block conditions, are

represented with FWFF and BWFF classes accordingly. Each class allows to cre-

ate condition nodes of all possible types and combine these nodes into trees with

logical junctions. Given a set of feature or block variable assignments V , a con-

dition can be evaluated with the Eval(V ) method. As many algebraic operators re-

quire evaluating conditions over multiple variable assignments, there are also methods

FWFF :: Eval(Feature, Block) and BWFF :: Eval(Block, V ideo) that assign

the their first argument to the first variable and go over all possible assignments based

on the second argument. Both functions return the maximal Eval(V ) value found for

all possible assignment sets V .

The virtual class Query serves as a base for all classes representing atomic queries.

Among other things, the Query class defines the method Create() for the query exe-

cution, returning a Video object with the query result. It is important to note that the

Query class is derived from Video. When addressed as a Video, a Query object

gives access to its last execution result.

A family of classes derived from Query, such as QSelect, QProject, QJoin,

and so forth, represents atomic queries and allows programmer to build query trees.
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The leaves of such a tree are always objects of class QData that supply input data

from disk, network, or other software, such as image recognition and object tracking

systems.

4.6.3 User Interfaces

The VDA system currently has two kinds of user interfaces: the command line inter-

face (CLI) and the graphical user interface (GUI).

The CLI has been mainly implemented to experiment with the VDA algebraic

core and assert its performance, It is a simple tool that uses command line to accept a

query, parses and executes this query. Both the query result (a list of blocks) and the

execution time are then shown to the user.

Figure 4.8: Query Composition GUI.

The GUI, shown in Figures 4.8 and 4.9, is a more sophisticated query tool. It
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allows users to design their queries graphically and save these queries for later use, as

shown in Figure 4.8.

Figure 4.9: Pattern Matching GUI.

In addition, the GUI specifically addresses pattern matching tasks by allowing

users to sketch feature patterns they are looking for and find them in the input data, as

shown in Figure 4.9. Query results are shown to users with a set of DVD-like controls

allowing users to play resulting summaries, rewind and fast-forward through blocks,

or jump to an arbitrary block.

4.7 Related Work

There exist relatively few works in video algebras. The most prominent ones are

[17, 19, 20, 59, 64].

In the OVID project [59], E. Oomoto and K. Tanaka came up with the concept of
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a video object as a set of attributes defined for an interval of frames. They also intro-

duced an is-a relation over attributes to maintain a semantic hierarchy of attributes.

To query videos, the authors proposed a language called VideoSQL. Unfortunately,

the proposed algebraic operators, such as interval projection, interval merge, inter-

val overlap, and object overlap cannot be easily equated to the traditional relational

operators.

The video database algebra by A. Picariello, M.L. Sapino, and V.S. Subrahmanian

[64] builds upon the basic notions described in [59] to propose a formal relational-like

video algebra. Similarly to OVID, this algebra operates on objects characterized by

attributes. The attributes may (but do not have to) include the spatial location of the

object and the time interval during which the object appears in a video.

While not directly dealing with the videos, an interval-based model for the tempo-

rally organized data has been proposed by T.D.C. Little and A. Ghafoor [52]. Later,

Y.F. Day, A. Ghafoor et. al. propose an object-based model for video [17] and develop

an algebra specifically dealing with videos [19]. This later algebra describes videos in

terms of spatial and temporal events occurring among objects and provides primitives

that specify relations between events.

The Algebraic Video by A. Duda, R. Weiss, and D.K. Gifford [20] is based upon

annotated video segments as opposed to objects in [59, 64, 17] or events in [19]. The

hierarchical model of a video allows segments to overlap in time as long as they

belong to different hierarchical branches. Each branch corresponds to a different se-

mantic interpretation of the video with parent nodes corresponding to more abstract

interpretations. The proposed algebra provides a rich set of operations to create, an-

notate, combine, query, and display video segments. Unfortunately, the very richness

of the algebraic operators in this algebra makes it difficult to reason about them thus
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limiting algebra’s theoretical importance.

All video algebras described above either operate on objects occuring in frames

as opposed to actual frames or segments of a video [59, 64, 17, 19] or use a hierarchi-

cal segment structure that complicates reasoning about algebraic operators [20]. The

VDA algebra allows queries based on both segments and objects occurring in these

segments, yet it is sufficiently simple to preason about, as has been shown in this

chapter.

4.8 Conclusions

In this chapter, I have presented an algebra that operates on both video summaries

and complete videos. I have formally defined video summaries and basic algebraic

operators, shown some useful algebraic equivalences, and discussed indices and algo-

rithms that facilitate selection, join, and pattern matching operators. Furthermore, I

have developed and described in this chapter a reference implementation for the VDA

algebra, complete with the feature extraction tool, the cost model, the query optimizer,

and both command line and graphical user interfaces.
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costfc(C, v) = kfc · I(v) ·
D(v)!

(D(v) − vars(C))!

costbc(C, v) = kbc ·
I(v)!

(I(v)− vars(C))!

I(v) = card(v)

D(v) =

∑

b∈v card(b.FS)

card(v)

C(v) = kv0 ·
∑

b∈v

card(b.FS)

I(σC(v)) = sel(C) · I(v)

D(σC(v)) = D(v)

C(σC(v)) = C(v) + costbc(C, v) + ks0 · sel(C) · I(v) · D(v)

I(πC(v)) = I(v)

D(πC(v)) = sel(C) · D(v)

C(πC(v)) = C(v) + costfc(C, v) + kp0 · sel(C) · I(v) · D(v)

I(βtr
C (v)) = I(v)

D(βtr
C (v)) = D(v)

C(βtr
C (v)) = C(v) + costbc(C, v) + ka0 · I(v) · D(v) + sel(C) · cost(tr) · I(v)

I(αtr
C (v)) = I(v)

D(αtr
C (v)) = D(v)

C(αtr
C (v)) = C(v) + costfc(C, v) + ka0 · I(v) · D(v) + sel(C) · cost(tr) · I(v) · D(v)

I(µk(v1, v2)) = k · I(v2)

D(µk(v1, v2)) = D(v1)

C(µk(v1, v2)) = C(v1) + C(v2) + km0 · I(v2) · D(v1) · D(v2) ·max(0, I(v1)− I(v2))

+ km1 · D(v1) ·min(I(v1), k · I(v2))

I(v1 ./C v2) = sel(C) · I(v1)

D(v1 ./C v2) = D(v1)

C(v1 ./C v2) = C(v1) + C(v2) + kbc · nj0 · I(v1) · I(v2) + kj0 · sel(C) · I(v1) · D(v1)

I(v1 ∩∼ v2) = ni0 · I(v1)

D(v1 ∩∼ v2) = D(v1)

C(v1 ∩∼ v2) = C(v1) + C(v2) + ki0 · ni0 · I(v1) · D(v1)

I(v1 \∼ v2) = nd0 · I(v1)

D(v1 \∼ v2) = D(v1)

C(v1 \∼ v2) = C(v1) + C(v2) + kd0 · nd0 · I(v1) · D(v1)

I(v1 ∪∼ v2) = I(v1) + nu0 · I(v2)

D(v1 ∪∼ v2) =
D(v1) · I(v1) + nu0 · D(v2)I(v2)

I(v1) + nu0 · I(v2)

C(v1 ∪∼ v2) = C(v1) + C(v2) + ku0 · I(v1) · D(v1) + ku0 · nu0 · I(v2) · D(v2)

I(v1 ⊕ v2) = I(v1) + I(v2)

D(v1 ⊕ v2) =
D(v1) · I(v1) + D(v2) · I(v2)

I(v1) + I(v2)

C(v1 ⊕ v2) = C(v1) + C(v2) + kc0 · (D(v1) · I(v1) + D(v2) · I(v2))

I(η(v)) = I(v)

D(η(v)) = D(v)

C(η(v)) = C(v) + kr0 · D(v) · I(v)

Table 4.1: VDA Cost Model.
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kv0 = 0.000049 ks0 = 0.000379 kp0 = 0.0687801 km0 = 0.000011

km1 = 8.57e− 09 kj0 = 0.000782 ki0 = 0.0000067 kd0 = 0.000302

ku0 = 0.000337 kc0 = 0.000343 kr0 = 0.0004899 ka0 = 0.000574

kr0 = 0.000439 kc0 = 0.000357 km0 = 0.0000178 ks0 = 0.0045847

ni0 = 0.028451 nd0 = 0.971549 nu0 = 0.459769

Table 4.2: VDA Cost Model Constants.
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Chapter 5

Summarizing Video

5.1 Introduction

When querying a video, or a database of videos, it seems natural that the user would

like to receive results of his query as one or more short clips, or summaries, containing

only the information requested in the query. For example, a TV sports commentator

reporting on a soccer game may wish to see all the goals in that game. A student

studying from home would ask for the part of a lecture video where the professor is

talking about a certain topic or assigning homework. A security guard checking on

security videos would request all the parts where movement occured in a doorway.

In all these cases, users would receive a new video, much shorter than the original

one, that is limited to the requested information. In some cases, users may have more

complicated requirements for video summaries. For example, the sports commentator

may not want to see goal replays but would like to see what preceded each goal. The

security guard might need to omit parts of the tape where he himself is on camera.

The work presented in this chapter [4, 24] is based on the continuity-priority-

repetition (CPR) model that rates video summaries, with respect to three characteris-
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tics as follows:

1. Continuity: A summary with a lot of “jumps” between shots is unlikely to be

attractive to users. Thus, it must be as continuous as possible.

2. Priority: For each given application, certain objects or events shown in the

video may be more important than others. For example, when summarizing

soccer videos, a goal is more important than a midfield pass. A summary com-

position must favor high priority features, as defined by the application.

3. Repetition: Even though a feature may have high priority, it may be undesirable

to repeat it over and over again, while ignoring other features. Thus, a summary

has to be non-repetitive.

These three considerations form the core basis for the proposed summarization frame-

work.

The CPR model [24] consists of two key components: (i) use of rules to spec-

ify which features in a video are of interest (i.e. have high priority) for inclusion

in a summary and (ii) an objective function that balances the relative importance of

the content with its continuity and repetition. Once the rules and the objective func-

tion are articulated, any suite of video processing algorithms can be used for feature

extraction.

This chapter starts by introducing concepts of features, frames, blocks, videos, and

summaries, and proceeds to formulate a way to specify, with a set of rules, the desired

summary content. To evaluate summary worth, we define the CPR-based evaluation

function and show several ways in which its components can be computed. Based on

this evaluation function, the problem of creating “optimal” summaries is introduced.
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Next, I go over algorithms to create optimal summaries proposed by the group

of A. Picariello at the University of Naples and then introduce my own approach,

known as the Summary Extension Algorithm (SEA). I present a variety of increas-

ingly complex versions of the SEA algorithm, designed to improve its performance.

The last algorithm presented in this chapter is the Priority Curve Algorithm (PCA).

This algorithm uses implicit assumptions about CPR criteria instead of relying on the

evaluation function.

Following discussion of the algorithms, I present experimental results obtained

at the University of Naples. About 200 students there have tested our algorithms on

50 soccer videos with the goal of determining which algorithm produced the best

subjective summary quality. It has been concluded that the PCA algorithm produces

the best summaries in the shortest time, followed by the SEA algorithm.

The chapter concludes with the discussion of prior works in the video summariza-

tion field and the differences between these works and our work.

5.2 Formal Model of Video Summarization

A video v is a sequence of frames. In many cases, one may want to coalesce groups

of contiguous frames into blocks and then create summaries based on blocks rather

than frames. The advantage of this approach is that the number of blocks in a video is

much smaller than the number of frames. Independently of which approach is used,

the framework described below applies both to frames and blocks. For the sake of

generality, I will proceed using blocks, while pointing out the difference between two

approaches wherever it exists.

Each frame or block can be characterized by a variety of properties, such as move-
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ment in a certain part of the frame, a certain colors, or the presence of certain objects,

events, or actions. Let us call such properties features and define the above concepts

formally:

Definition 5.2.1 (Block) A video block is a structure b = 〈ts, te, F 〉 where b.ts is the

starting frame number, b.te > b.ts is the ending frame number, and b.F is a set of

features occuring in b.

The length of a block length(b) = b.te − b.ts.

Definition 5.2.2 (Video) A video is a finite set of blocks v = {b1, . . . , bn} such that

∀1 ≤ i < n : bi+1.ts = bi.te.

Given the above definition of a video, we can define a total ordering on blocks

in a video as ∀1 ≤ i, j ≤ n : bi ≤ bj ↔ bi.te ≤ bj.ts. The length of a video

length(v) = bn.te − b1.ts, while the number of blocks in a video is simply card(v).

When all blocks have a uniform length, length(v) becomes proportional to card(v)

and thus they can be easily interchanged. Same happens when frames are used instead

of blocks, as we can treat them as blocks of uniform length 1.

Let us now define a video summary as a subset of a video:

Definition 5.2.3 (Summary) A summary of a video v is a set of blocks s = {b1, . . . , bn}

such that s ⊆ v and ∀1 ≤ i < n : bi+1.ts ≥ bi.te.

Given above definitions of videos and summaries, one can easily show that any

video is also a summary of itself and that the total ordering defined for blocks in

videos also applies to blocks in summaries. The length of a summary length(s) =

∑

bi∈s length(bi).
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5.3 Video Summaries

For the user working with the video, a typical task would be to create a video summary

whose blocks contain certain features. For example, the policeman processing an

ATM security video may want to see blocks that contain more than two people at the

same time. The sports commentator may create a summary of a soccer match that

shows all the goals in this match, and so forth.

Below, I will try to come up with the framework allowing to query videos, rate

query results, and create an optimal summary by user’s request. The rest of this

chapter assumes that there is some video v that we want to summarize and all the

video blocks are coming from this video. Let us further assume that all video is stored

in a video database supporting following access methods:

• findblocks(v, f): Given a video v and a feature f , this function returns the set

of all blocks in v that contain f .

• findfeatures(v, b): Given a video v and a block b ∈ v, this function returns the

set of all features in b.

Most existing video databases, such as AVIS[2] and OVID[59], can support such

functions. Note that all the above functions return sets as output.

Let us start on the summary content specification language by defining block-

coverage pairs.

Definition 5.3.1 (Block Coverage Pair) Let b be a video block and p ∈ [0, 1] be a

real value. Then 〈b, p〉 is a block-coverage pair or BCP .

I will also call p the coverage. As shown later, the coverage represents how well

b satisfies conditions imposed on it. A summary can be represented by a set of block-

coverage pairs. I will use the upper case S for this representation of a summary, as
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opposed to the lower case s for a set of blocks. A union of two BCP sets is somewhat

different from the canonical set union.

Definition 5.3.2 (BCP Set Union) Given two sets of block-coverage pairs V1, V2, the

BCP set union

V1 ∪ V2 = {〈b, p〉 | p =







p1 if 〈b, p1〉 ∈ V1∧ 6 ∃〈b, p2〉 ∈ V2

p2 if 〈b, p2〉 ∈ V2∧ 6 ∃〈b, p1〉 ∈ V1

max(p1, p2) if 〈b, p1〉 ∈ V1 ∧ 〈b, p2〉 ∈ V2

}.

For further definitions, let us assume the existance of a set Vb, of all variables rang-

ing over BCP pairs and a set Vf of all variables ranging over features. Members of

Vb are known as block variables while members of Vf are known as feature variables.

Let us now define the video calls and the atoms.

Definition 5.3.3 (Video Call) Suppose vc is a video database API function, and t1, . . . , tn

are either arguments to vc (of the right type) or variables ranging over the values of

the appropriate type. Then vc(t1, . . . , tn) is called a video call.

Definition 5.3.4 (Atoms) 1. Given a block constant or variable X , insum(X) is

a membership atom.

2. Given a video call vc(t1, . . . , tn) and a constant or a variable X of the same

type as members of vc’s output set, X ∈ vc(t1, . . . , tn) is a feature atom.

3. Given two block constants or variables X, Y and an integer value n ∈ [0, +∞),

near(X, Y, n), before(X, Y, n), and after(X, Y, n) are sequence atoms.

Intuitively, membership atoms are used to require the presence of certain blocks

in a summary, or bind a variable to summary blocks. For instance, insum(X) binds
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variable X to all blocks in a summary. Feature atoms are used to require the presence

of a certain feature in a block, or to bind a variable to features in a block. For example,

X ∈ findblocks(v, “Human”) binds X to any block that contains humans. Similarly,

“Red” ∈ findfeatures(v, Y ) requires red color to be present in a block Y . Sequence

atoms are used to ensure continuity by requiring that some blocks occur near each

other and in a certain order. Intuitively, a block X satisfies before(X, Y, d) iff X ends

in the the interval of frames starting at Y.ts − d and ending at Y.ts. after(X, Y, d)

is equivalent to before(Y, X, d) and near(X, Y, d) is equivalent to after(X, Y, d) ∨

before(X, Y, d).

Definition 5.3.5 (Variable Assignment Set) If X is a block variable and 〈b, p〉 is a

BCP then X/〈b, p〉 is an assignment. The assignment set θ is a set of assignments

such that

∀X/〈b, p〉 ∈ θ : ∀Y/〈b′, p′〉 ∈ θ : X = Y → b = b′ ∧ p = p′.

Given an atom a and an assignment set θ, I will use aθ to express the substitution

of variables in a by their values in θ.

Definition 5.3.6 (Interpretation) Given a set D of all possible block-coverage pairs,

a summary S ⊂ D, a feature f , a variable assignment set θ = {X/x, Y/y}, and an

atom a ∈ {insum(X), X ∈ findblocks(v, f), f ∈ findfeatures(v, X), after(X, Y, n),

before(X, Y, n), near(X, Y, n)}, let us define the real-valued function λ(aθ, S) →

[0, 1] such that

λ(insum(x), S) =







x.p if ∃〈b, p〉 ∈ S : x.b = b ∧ x.p = p

0 otherwise

λ(x ∈ findblocks(v, f)) =







x.p if x.b ∈ findblocks(v, f)

0 otherwise
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λ(f ∈ findfeatures(v, x)) =







x.p if f ∈ findfeatures(v, x.b)

0 otherwise

λ(after(x, y, n), S) = min(x.p, y.p) ·







n−x.b.ts+y.b.te

n if x.b.ts − y.b.te ∈ [0, n]

0 otherwise

λ(before(x, y, n), S) = λ(after(y, x, n), S)

λ(near(x, y, n), S) = max(λ(before(x, y, n), S), λ(after(x, y, n), S))

It is also possible to make API functions themselves return coverages and use them to

interpret feature atoms. To simplify things though, I will assume that API functions

return sets of plain blocks or features.

Example 5.3.1 (Feature Atom Interpetation) Consider block b = 〈4, 5, {f1, f2, f3}〉.

λ(f1 ∈ findfeatures(v, 〈b, 0.5〉)) evaluates to 0.5, as b contains f1. On the other hand,

if we replace f1 with some feature f4 6∈ b.F then λ(f4 ∈ findfeatures(v, 〈b, 0.5〉, S)

evaluates to 0. Notice that the S argument is not used to evaluate feature atoms.

block b1 block b2

b2.tsb1.te

<=n

Sequence Atom: before(<b1,1>,<b2,1>,n)

Figure 5.1: Sequence Atom Interpretation.

Example 5.3.2 (Sequence Atom Interpretation) Consider blocks b1 = 〈4, 5, F1〉,

b2 = 〈7, 9, F2〉, and b3 = 〈10, 13, F3〉. Let’s evaluate some sequence atoms on these

blocks:

λ(before(〈b1, 1〉, 〈b2, 1〉, 10), S) = 1 · 1 · (10− 7 + 5)/10 = 0.8
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λ(before(〈b1, 1〉, 〈b3, 1〉, 10), S) = 1 · 1 · (10− 10 + 5)/10 = 0.5

λ(after(〈b1, 1〉, 〈b2, 1〉, 10), S) = 0 as b1.ts − b2.te = 4− 9 = −5 < 0

λ(after(〈b2, 1〉, 〈b3, 1〉, 10), S) = 0 as b2.ts − b3.te = 7− 13 = −6 < 0

Notice that the S argument is not used to evaluate sequence atoms. By looking at the

first two evaluations (also shown at the Figure 5.1) one can see that the value of p

decreases as the distance between blocks grows, until p becomes 0 for distances≥ n.

The last two evaluations show that the order of blocks is also important.

We can now define rules and rule sets:

Definition 5.3.7 (Rule) A block selection rule r is an expression of this form:

[w]
︸︷︷︸

weight(r)

insum(X)
︸ ︷︷ ︸

head(r)

← a1 ∧ . . . ∧ an
︸ ︷︷ ︸

body(r)

where w ∈ [0, 1] is a real value, X is a block variable, and a1, . . . , an are atoms such

that for each block variable Y ∈ r there is a membership atom insum(Y ) ∈ r.

Example 5.3.3 (Rule) The following is an example of a rule:

[0.9] insum(Y ) ← X ∈ findblocks(v, “Red”) ∧ Y ∈ findblocks(v, “Human”) ∧ near(X, Y, 10) ∧ insum(X).

This is not a rule as it misses the insum(Z) atom in the body:

[1] insum(X) ← “Green” ∈ findfeatures(v, X) ∧ “Human” ∈ findfeatures(v, Z) ∧ after(Z,X, 15).

Definition 5.3.8 (Rule Satisfaction) Suppose r is a rule, S is a summary, X is a

block variable occuring in head(r), b is a video block, and θ is a variable assignment

set. Let us define a real-valued function λ(r, b, S)→ [0, 1] such that

λ(r, b, S) = weight(r) ·max{min{λ(aiθ, S)|ai ∈ body(r)} | θ is a variable assignment}

The block-coverage pair 〈b, λ(r, b, S)〉 is said to satisfy r w.r.t. S iff λ(r, b, S) > 0.

193



Intuitively, the satisfaction of a rule by 〈b, λ(r, b, S)〉 means that b can be included

into the summary S. λ(r, b, S) measures how desirable b is w.r.t. to the rule and the

other blocks in the summary. weight(r) measures the importance of the rule relative

to other rules.

Definition 5.3.9 (Rule Set) A rule set is a set of block selection rules.

Definition 5.3.10 (Rule Set Satisfaction) Suppose R is a rule set, b is a video block,

and S is a summary. Let us define a real-valued function λ(R, b, S)→ [0, 1] such that

λ(R, b, S) = max
r∈R

λ(r, b, S).

The block-coverage pair 〈b, λ(R, b, S)〉 is said to satisfy R w.r.t. S iff λ(R, b, S) > 0.

Intuitively, any block that satisfies the rule set with respect to some other blocks in

the summary can be considered for inclusion into the summary. Hence is the definition

of a satisfactory summary:

Definition 5.3.11 (Satisfactory Summary) Given a rule set R, a summary S is called

a satisfactory w.r.t. R iff

∀〈b, p〉 ∈ S : 〈b, p〉 satisfies R w.r.t. S

One can also say that the satisfactory summary is a set of all blocks occuring in S.

Notice that the satisfactory summary definition does not specify what the summary

length should be. In fact, the whole video may well be a satisfactory summary of itself.

Let us now put restrictions on the summary length:

Definition 5.3.12 (k-Summary and l-Summary) Given an integer value k ∈ [0, +∞),

a summary S is called a k-summary iff card(S) ≤ k. Given a real value l ∈ [0, +∞),

a summary S is called an l-summary iff length(S) ≤ l.
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Notice that when using frames or uniform-length blocks to represent a video, l-

summary and k-summary effectively become the same thing. This work focuses on

computing k-summaries. It is clear that the above definition allows for multiple satis-

factory k-summaries. Some of them may be better than others with respect to user’s

needs. Let us then define the optimal k-summary:

Definition 5.3.13 (Optimal k-Summary) Given a set of all satisfactory k-summaries

S and a function eval : S → [0, +∞), the optimal k-summary is a satisfactory k-

summary S ∈ S such that ∀S ′ ∈ S : eval(S ′) ≤ eval(S).

5.4 Summary Evaluation Function

According to the CPR model, the summary evaluation function eval() used to rate

summary quality has to take into account continuity (con()), priority (pri()), and

repetition (rep()) of its input. Hence is the following formula:

eval(S) = wc · con(S) + wp · pri(S) + wr · (1− rep(S)).

It is assumed that the values of individual components are normalized to the [0, 1]

range and wc, wp, wr are weights set according to user’s preferences.

The most important consideration when computing a summary is how appropriate

the summary content is to the user. Given that the p value inside each block-coverage

pair expresses block relevance, it is quite easy to come up with a function that mea-

sures summary’s total relevance, as shown in the following example.

Example 5.4.1 (Rule-Based Priority) This function measures the priority of a sum-

mary S based on coverage values of its individual blocks:

pri(S) =

∑

〈b,p〉∈S p

card(S)
.
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Of course, there are other ways to compute priority, such as a simple assignment

of priorities to all blocks in a video:

Example 5.4.2 (Singular Tabular Priority) In this method, we have a table with the

schema (Block, Priority). An example of such a table may contain tuples 〈b1, 5〉,

〈b2, 3〉, and 〈b3, 4〉. Given a block b, the priority pri(b) of the block is obtained by

consulting the table. For a summary S, we may define

pri(S) =
∑

〈b,p〉∈S

pri(b).

Thus, for instance, pri({〈b1, p1〉, 〈b2, p2〉}) = 5 + 3 = 8.

One can also assign priorities to the groups of blocks, as follows:

Example 5.4.3 (Aggregated Tabular Priority) In this method, we have a table with

the schema (BlockSet, P riority). The first column of this table now contains a set

of blocks. An example of such a table may contain tuples 〈{b1, b2}, 5〉, 〈{b1}, 3〉, and

〈{b2, b3}, 7〉. Given such a table and a summary S, many different priority functions

may be defined, such as the subset average or the maximal subset average, for exam-

ple. The subset average function finds all tuples in the table whose BlockSet field

is a subset of S and returns the average of the priority fields of such tuples. For ex-

ample, with respect to the above table, if B = {b1, b2, b4}, this function would return

4 (average of 5 and 3). The maximal subset average finds all tuples t in the table

whose BlockSet field is a maximal subset of S (i.e. there is no other tuple t′ with

t.BlockSet ⊂ t′.BlockSet such that t′.BlockSet ⊆ S) and takes the average pri-

orities of such tuples. In the above example, if S = {〈b1, p1〉, 〈b2, p2〉, 〈b3, p3〉}, then

this priority function would return 6 (average of 5 and 7). Note that the second tuple

would not be maximal and hence its associated priority would not be involved in the

average computation.
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Computing other two measures is somewhat more difficult as continuity and rep-

etition can be interpreted differently by different people. For example, one may think

of continuity in terms of the uniform distance between consequent blocks.

Example 5.4.4 (Uniform Block Distance Continuity) This measure uses the stan-

dard deviation of the block distance to express continuity:

davg =

∑

〈bi,pi〉,〈bi+1,pi+1〉∈S(bi+1.ts − bi.te)

card(S)− 1
,

con(S) = 1−

∑

〈bi,pi〉,〈bi+1,pi+1〉∈S(bi+1.ts − bi.te − davg)
2

d2
avg(card(S)− 1)

.

Another way to think about continuity may involve the uniformity of selected

block lengths.

Example 5.4.5 (Uniform Block Length Continuity) This measure uses the standard

deviation of the block length to express continuity:

lavg =

∑

〈bi,pi〉∈S(bi.te − bi.ts)

card(S)
,

con(S) = 1−

∑

〈bi,pi〉∈S(bi.te − bi.ts − lavg)
2

l2avgcard(S)
.

In addition to analyzing block distances and lengths, one can also use image pro-

cessing methods to measure continuity, as follows.

Example 5.4.6 (Histogram Distance Continuity) Suppose H(f) = (h1, h2, . . . , hn)

is a function that returns the color histogram for a given frame number f . Each hj

corresponds to the number of pixels in a region of some color space. A good per-

ceptually uniform space is the Hue Saturation Value (HSV) space or alternatively we

may use the Opponent Colors space. Let d be any measure of distance between two
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histograms (e.g. d could be the well known L1 or L2 norms). Now set the continuity

of a summary S = {〈b1, p1〉, . . . , 〈bk, pk〉} to be

con(S) =
card(S)− 1

∑card(S)−1
i=1 d(H(bi.te − 1), H(bi+1.ts))

.
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Figure 5.2: Hue Histogram Distance Function.

Figure 5.2 shows three sample frames with respective hue histograms and the

distance between these histograms. It is clear that the distance between frames 2–3 is

less than the distance between frames 1–2 and frames 1–3. Thus, frame 2 preceding

frame 3 in a summary will lead to a better continuity.

Finally, the repetition can be expressed as the inverse ratio between the number of

different features in the summary and the total number of features. Or, it may depend

on the ratio between the number of features in the summary and the entire video, as

shown in the following example.

Example 5.4.7 (Feature-Based Repetition) This metric measures the variety of fea-

tures included into a summary:

rep(S) = 1−
card({f | f ∈

⋃

〈b,p〉∈S b.F})

card({f | f ∈
⋃

b∈v b.F})
.
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5.5 Creating Summaries

The definition of a satisfactory summary allows for multiple satisfactory summaries

of k blocks and less. But how do we create such summaries? And how do we choose

the best one?

In the discussion of insum-atoms, it was said that λ(insum(b), S) evaluates to a

non-zero value whenever block b is in S. When composing a summary, we can assume

that (i) S contains blocks that are candidates for the final summary or that (ii) S

contains blocks that are already selected for the final summary. The first approach

allows us to obtain a set of all possible summary candidates before combining them

into summaries, in a following way:
Algorithm Der(v,R)

v is a video
R is a rule set

begin
S := ∅
repeat

∆ := ∅
for each block b ∈ v do

for each rule r ∈ R do
if λ(r, b, S) > 0 then ∆ := ∆ ∪ {〈b, λ(r, b, S)〉}

end for
end for
S := S ∪∆

until ∆ = ∅
return S

end

The Der execution time is quadratic w.r.t. the number of blocks in v and the num-

ber of rules in R. The first three algorithms in this section use the first insum interpre-

tation by calling Der once to obtain a set of all candidate blocks. Unfortunately, this

may lead to selecting blocks that have no basis to be in the summary. For example, an

after-goal celebration may be selected in the absence of a goal that has caused it. This

problem can be partially avoided by rating such “inconsistent” summaries down in
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the evaluation function, or fully avoided by using the second approach, where insum-

atoms are evaluated w.r.t. a set of blocks already selected for the summary (as done

in the SEA algorithm).

Let us start by introducing a summarization algorithm called CPRopt which finds

an optimal k-summary without making any assumptions about the priority, continuity,

and repetition functions. However, as the optimal k-summary computation problem

is NP-complete (by reducing knapsack problem to it), this algorithm takes an ex-

ponential amount of time w.r.t. the number of blocks in a video, which is clearly

unacceptable.

5.5.1 The Optimal Summarization Algorithm

The CPRopt algorithm starts by computing the set of all candidate blocks with

Der(v, R). This step can be executed in time quadratic to the number of frames in

v. The algorithm then considers all subsets of Der(v, R) that contain k or less frames.

The eval() function is applied to these subsets and the one with the maximal eval()

value is chosen. As the set of all subsets of size≤ k needs to be enumerated, CPRopt

has exponential time complexity – this is not a surprise as the problem of finding an

optimal summary has been shown to be NP-complete.
Algorithm CPRopt(v,R,k)

v is a video
R is a rule set
k is a desired summary length

begin
V := Der(v, R)
BestS := ∅
for each S ∈ {X |X ⊆ V ∧ card(X) ≤ k} do

if eval(S) > eval(BestS) then BestS := S
end for
return BestS

end.

Although the CPRopt algorithm is guaranteed to find the optimal summary w.r.t.
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the evaluation function, its NP-completeness makes it quite useless for any practical

purposes. A. Picariello’s group has proposed two heuristic algorithms that are much

faster than the CPRopt algorithm, at the cost of producing suboptimal summaries.

These are dynamic programming based CPRdyn and genetic programming based

CPRgen algorithms.

5.5.2 The CPRdyn Algorithm

The CPRdyn algorithm is based on the dynamic programming approach [16]. The

algorithm maintains a variable S describing the best solution found so far. Initially,

S consists of k randomly chosen blocks which are derivable from the rule set. The

algorithm changes S in each iteration by checking to see whether replacing a block in

S by a block which is not in S will lead to a better summary. The space complexity of

CPRdyn is linear in the number of block, while the time complexity is exponential

in k (which is much better than being exponential in the number of blocks).
Algorithm CPRdyn(v,V ,k)

v is a video
R is a rule set
k is a desired summary length

begin
// Fill S with k randomly selected blocks from Der(v, R).
V := Der(v, R)
S := {〈bi, pi〉 | i ∈ [1, k] ∧ 〈bi, pi〉 ∈ V }
// Leave the remaining blocks in V .
V := V \ S
while V 6= ∅

subs := false
r := 1
while r < k and subs = false

// Build a new tentative solution by replacing 〈br, pr〉 with a block from V .
S′ := (S \ {〈br, pr〉}) ∪ {first(V )}
if eval(S) < eval(S ′) then

S := S′

add 〈br, pr〉 to the tail of V
subs := true

else
r := r + 1
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end if
end while
V := V \ {first(V )}

end while
return S

end.

It is important to note that the CPRdyn algorithm will only consider summaries

whose length is exactly k blocks. While this may look like a serious limitation, it is

not, as long as the eval() function used in the algorithm is monotonic. Consider a

summary S and a block b ∈ S. When eval() is monotonic, it will always be true that

eval(S \ {〈b, p〉}) ≤ eval(S).

5.5.3 The CPRgen Algorithm

The CPRgen algorithm uses the genetic programming approach [16] to compute

a k-summary. The algorithm starts by creating a population of randomly generated

summaries and rates population members according to the value of eval(). A mutation

operator is then applied to a randomly chosen population member, and the member

with the smallest eval() value is eliminated. The algorithm stops when the variation

of the eval() values within the population falls below a threshold δ.
Algorithm CPRGen(v,R,k,N ,δ)

v is a video
R is a rule set
k is a desired summary length
N is the desired number of iterations
δ is the desired worth threshold

begin
M := d card(v)

k e
// Compute an initial population of M random solutions
V := {Si ⊆ Der(v, R) | i ∈ [1, M ] ∧ card(Si) = k}
for j ∈ [1, N ]

for i ∈ [1, M ]
S := a solution randomly chosen among the ones in V
Select a random block b ∈ S
Choose another block b′ 6∈ S
S := (S \ {b}) ∪ {b′}
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V := V ∪ {S}
Eliminate from V the solution with the smallest value of eval()
if maxS1,S2∈V |eval(S1)− eval(S2)| ≤ δ then

Return best solution from V
end if

end for
end for
Return the best solution from V

end.

CPRgen has the time complexity of O( card(v)2

k2 · N2), while its space complex-

ity is O( card(v)2

k
). Note that we can exit the loop in CPRgen if either no significant

mutation is possible or if the maximal number of iterations is reached. In all experi-

ments we ran, CPRgen always terminated for the first reason because the maximum

number of iterations selected was quite large.

5.6 Summary Extension Algorithm (SEA)

Both CPRdyn and CPRgen algorithms start with random summaries and try to im-

prove them by making random block substitutions. While this approach produces a

summary that is better than the initial ones, it does not guarantee that this summary

will be optimal. Additionally, both CPRdyn and CPRgen use Der to find candidate

blocks, which may lead to the unfounded inclusion of blocks into the summary. Thus,

the results of these two algorithms may fall far from the optimum.

Let us now consider the Summary Extension Algorithm (SEA) that searches op-

timal k-summaries by enumeration, like the CPRopt algorithm, but restricts the

search space by applying some heuristics. Additionally, the SEA algorithm treats any

insum(b) atom as the requirement for b to be included into the summary (as opposed

to being considered for the summary in Der-based algorithms). Given a summary S,

let us define the valid summary extension, or a set of candidate blocks that can be
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added to this summary:

Definition 5.6.1 (Valid Summary Extension) Let R be a rule set, and S be a satis-

factory summary. Then the valid summary extension is

VSER(S) = {〈b, λ(R, b, S)〉 | λ(R, b, S) > 0}.

In other words, VSER(S) is the set of all block-coverage pairs that satisfy R with

respect to the summary S. Here is an algorithm to compute VSER(S):
Algorithm VSE(R,S)

R is the set of rules
S is the current summary

begin
S′ := ∅
for each video block b

for each rule r ∈ R such that head(r) = insum(X)
// Compute λ(r, b, S) and add b to the result if λ(r, b, S) > 0.
pout := ChooseV ars(r, {X/〈b, 1〉}, S)
if pout > 0 then S′ := S′ ∪ {〈b, pout〉}

end for
end for
return S′

end.

Algorithm ChooseVars(r,θ,S)
r is the rule
θ is the variable assignment set
S is the current summary

begin
if exists variable X ∈ r such that X 6∈ θ then

pout := 0
for each BCP 〈b, p〉 ∈ S

// Assign one more variable and recurse, maximizing pout.
p′ := ChooseV ars(r, θ ∪ {X/〈b, p〉}, S)
if p′ > pout then pout := p′

end for
else

// Substitute variables and compute pout.
pout := mina∈body(r)λ(aθ, S)

end if
// Return λ(r, b, S).
return pout

end.
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The V SE() algorithm iterates over all rules in R and all blocks in a video look-

ing for blocks that satisfy R. V SE() uses the ChooseV ars() algorithm to com-

pute λ(r, b, S) for each block b and rule r, and adds 〈b, λ(r, b, S)〉 to the output if

λ(r, b, S) > 0. As BCP set union is used to add new block-coverage pairs to the

output, pairs with lower coverages are automatically replaced with higher coverage

pairs.

Suppose we start with some rule set R and an empty summary S = ∅ that is

satisfactory w.r.t. R. S ′ = VSER(∅) will contain all assignments satisfying the rules

whose bodies are free of membership atoms. Satisfaction of such “self-supporting”

rules does not require any blocks to be in the summary. Notice that S ′ is always going

to be satisfactory w.r.t. R and it is always true that ∀〈b, p〉 ∈ S : ∃〈b, p′〉 ∈ S ′ : p′ ≥ p.

We can continue applying the VSE() operator to S ′ until it stops growing. At

each stage, the union of S and any subset of S ′ has all the properties of a satisfactory

summary:

∀V ⊆ VSER(S) : S ∪ V is a satisfactory summary.

I now present a recursive algorithm to find the BCP set corresponding to the best

summary.
Algorithm BestSummary(R,S,l,N )

R is the set of rules
S is the initial summary
l is the maximal summary length
Q is a sorted list of up to N summaries

begin
Q := ∅
S′ := VSER(S)
// Remove assignments already present in S.
for each BCP 〈b, p′〉 ∈ S′ such that ∃〈b, p〉 ∈ S

if p′ > p then S := S ∪ {〈b, p′〉}
S′ := S′ − {〈b, p′〉}

end for
// Find N best summaries...
for each BCP set V ⊆ S′ such that length(V ∪ S) ≤ l
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Q.add(V ∪ S, eval(V ∪ S))
if size(Q) > N then Q.delete(tail(Q))

end for
// ...and try to grow them.
if Q = ∅ then BestS := S
else

BestS := head(Q)
for each summary V ∈ Q

V ′ := BestSummary(R, V, l, N)
if eval(V ′) > eval(BestS) then BestS := V ′

end for
end if
return BestS

end.

The BestSummary() is a greedy breadth-first search algorithm with the branch-

ing factor limited to N . The quality of summaries in this algorithm is measured in

terms of the eval() function that can be computed in various different ways, depend-

ing on what the user deems important.

5.6.1 Improving SEA Algorithm

One can easily see by examining the BestSummary() algorithm that it is very time-

consuming. After all, by calling V SE(), it enumerates all the possible variable as-

signments for each rule and then enumerates all the subsets of the VSER(S). Thus,

the next question is: How can these algorithms be improved?

Let us look at how VSER(S) is computed. Suppose we are considering adding

a block b to a summary S that already has 〈b, pmin〉 ∈ S. Given a variable assign-

ment θ, compute the assignment coverage pass = minX/〈b,p〉∈θp. It follows from the

interpretation definition that λ(r, b, S) ≤ pass. Applied to the ChooseV ars() algo-

rithm, it means that pout ≤ pass. On the other hand, by the definition of the BCP set

union, to update b’s membership in the summary, the existing membership must have

pout > pmin. Therefore, the variable assignments under consideration can be limited
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to the ones with pass > pmin:
Algorithm VSE’(R,S)

R is the set of rules
S is the current summary

begin
S′ := ∅
for each video block b

// Compute lower bound on λ(r, b, S).
if 〈b, p〉 ∈ S then pmin := p else pmin := 0
for each rule r ∈ R such that head(r) = insum(X)

// Compute λ(r, b, S) and add b to the result if λ(r, b, S) > pmin.
pout := ChooseV ars′(r, {X/〈b, 1〉}, S, pmin)
if pout > pmin then

S′ := S′ ∪ {〈b, pout〉}
pmin := pout

end if
end for

end for
return S′

end.

Algorithm ChooseVars’(r,θ,S,pmin)
r is the rule
θ is the variable assignment set
S is the current summary
pmin is the lower bound on assignment coverages

begin
if exists variable X ∈ r such that X 6∈ θ then

pout := pmin

for each BCP 〈b, p〉 ∈ S such that p > pout

// Assign one more variable and recurse, maximizing pout.
p′ := ChooseV ars′(r, θ ∪ {X/〈b, p〉}, S, pout)
if p′ > pout then pout := p′

end for
else

// Substitute variables and compute pout.
pout := mina∈body(r)λ(aθ, S)

end if
// Return λ(r, b, S).
return pout

end.

In the V SE ′() algorithm, we compute the lower bound on λ(r, b, S) and pass it

to the ChooseV ars′() algorithm as pmin. As ChooseV ars′() computes λ(r, b, S), it

constantly updates the bound and skips variable assignments falling below the bound.

Finally, ChooseV ars′() returns computed λ(r, b, S) to V SE ′(). If this value is bigger
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than pmin, V SE ′() adds 〈b, λ(r, b, S)〉 to the result.

Furthermore, to avoid extra recursions, each variable can be substituted imme-

diately as its assignment is chosen and the atoms can be evaluated as they become

ground:
Algorithm VSE”(R,S)

R is the set of rules
S is the current summary

begin
S′ := ∅
for each video block b

// Compute lower bound on λ(r, b, S).
if 〈b, p〉 ∈ S then pmin := p else pmin := 0
for each rule r ∈ R such that head(r) = insum(X)

// Evaluate atoms that involve only X .
pcur := 1
for each feature atom a ∈ body(r) such that X ∈ a

p′ := λ(a[X/〈b, 1〉], S)
p′ < pcur then pcur := p′

end for
// Compute λ(r, b, S) and add b to the result if λ(r, b, S) > pmin.
if pcur > pmin then

pout := ChooseV ars′′(r[X/〈b, 1〉], S, pcur, pmin)
if pout > pmin then

S′ := S′ ∪ {〈b, pout〉}
pmin := pout

end if
end if

end for
end for
return S′

end.

Algorithm ChooseVars”(r,S,pcur,pmin)
r is the rule
S is the current summary
pcur is the current coverage
pmin is the lower bound on pcur

begin
if doesn’t exist variable X ∈ r then

return pcur

else pout := pmin

for each BCP 〈b, p〉 ∈ S such that p > pout

// Compute new pcur w.r.t. assignment X/〈b, p〉.
p′cur := pcur

for each atom a ∈ body(r) such that X ∈ a and a[X/〈b, p〉] is ground
p′ := λ(a[X/〈b, p〉], S)
if p′ < p′cur then p′cur := p′
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end for
// Continue substitution until we hit the lower bound or run out of variables.
if p′cur > pout then

p′ := ChooseV ars′′(r[X/〈b, p〉], S, p′cur, pout)
if p′ > pout then pout := p′

end if
end for
// Return λ(r, b, S).
return pout

end if
end.

This version of the algorithm is based on the observation that for any ground atom

a ∈ r, λ(r, b, S) ≤ λ(a, S). Therefore, V SE ′′() starts by evaluating all atoms that

become ground after substituting the head variable. If the resulting pcur value is higher

than the lower bound, V SE ′′() calls ChooseV ars′′() to instantiate and evaluate other

atoms.

5.7 Priority Curve Algorithm (PCA)

All algorithms previously described in this chapter relied on the explicitly defined

objective function eval() whose value determined the quality of each summary. In

this section, I am going to present an alternative summary creation process that does

not use the objective function but relies on some implicit assumptions about CPR

criteria instead. We have called this process the Priority Curve Algorithm (PCA), not

to be mistaken for the Principal Component Analysis (PCA) often used for the data

dimensionality reduction. The PCA algorithm [4], shown in Figure 5.3 consists of the

following main steps.

We first split video into blocks. This can be done ether by assigning to each block

an equal number of frames (let us say 1800 frames, or a minute of 30fps video) or by

using any of the standard video segmentation algorithms [32, 38, 48, 79].
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Figure 5.3: PCA Architecture.

The blocks are then fed to the priority assignment stage where content of each

block is examined and assigned a priority. The priority assignment can be imple-

mented both by human annotation and some image processing algorithms. The pro-

totype system implemented by our team in Naples, for example, uses such algorithms

to detect goal shots and red card events in soccer videos.

The prioritized blocks numbered in the order of increasing timestamps are then

sent to the peak detection stage. To understand how this stage works, let us arrange

all blocks on a graph with time counted along the horizontal axis and block priority

plotted along the vertical axis. The resulting priority curve is going to have peaks, as

shown in Figure 5.4. These peaks corresponding to high-priority blocks are identified

at the peak detection stage.

The priority curve with detected peaks is then shipped to the block merging stage.

Intuitively, peaks that are close to each other correspond to the same or similar events

even though they have been assigned to different blocks by the video segmentation

algorithm. Therefore, we analyze blocks corresponding to nearby peaks for similarity

and merge similar blocks. The merged block’s priority becomes the sum of all original

blocks’ priorities.

Next, merged blocks are passed through the block elimination stage which uses
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some statistical rules to eliminate low-priority blocks. For instance, if the average

priority is µ and the standard deviation is σ, we may want to eliminate all blocks

whose priorities are less than µ− 3σ, as the classical statistical model says that most

objects in a normal distribution must occur within 3 standard deviations of the mean.

Other statistical rules can be used as well.

Finally, the remaining blocks are delivered to the block resizing stage that crops

them to fit the desired summary length. Each block is allocated a number of frames

in the summary proportional to its priority. Blocks that fit their allocations are left un-

touched, while blocks that exceed their allocations are cropped to fit their designated

numbers of frames.

Let us now take a more detailed look at some PCA components.

5.7.1 Peak Identification Module

Let b1, . . . , bn be the blocks in the video (e.g. after the segmentation process). Let pi

denote the priority of block bi.

Definition 5.7.1 ((r, s)-peak) Suppose r ∈ (0, n/2] is an integer and s ∈ [0, 1] is a

real number. Blocks bj, . . . , bj+r are said to be an (r, s)-peak iff
∑

j≤i≤j+r pi
∑

j− r
2
≤i≤j+ 3r

2
pi
≥ s

Suppose we wish to check if a sequence of r blocks S1 = bj, . . . , bj+r, constitutes

a peak. The above definition looks at r
2

blocks before the sequence as well as r
2

blocks after the sequence, i.e. the sequence S2 = bji r
2
, . . . , bj, . . . , bj+r, . . . , bj+ 3r

2
is

considered. This latter sequence S2 is of width 2r. We sum up the priorities of all

blocks in S2 - let us call this sum s2. Likewise, we sum up the priorities of all blocks

in S1 and call this priority s1. Clearly, s1 ≤ s2. If s1

s2
exceeds or equals s, then we
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decide that the contribution of the priorities of the peaks in S1 is much larger than that

in S2 and so S1 constitutes a peak. It is important to note that r and s must be chosen

by the application developer.

Figure 5.4 shows two examples of peaks corresponding to r, s values of (6, 0.65)

and (4, 0.6) respectively. Dotted rectangles signify peaks, with s-values shown for the

most significant peaks. As seen from the figure, peaks often occur in clusters. While

the upper graph corresponds to wide (r = 6) peaks, parameters in the lower graph

allow for narrower (r = 4) and slightly lower (s = 0.6 as opposed to s = 0.65) peaks.

As result, the lower graph contains more peaks and smaller clusters.
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Figure 5.4: Peaks.

Here is a simple algorithm that, given a sequence of video blocks and r, s values,

will find all blocks that belong to (r, s)-peaks:
Algorithm Peaks(v,r,s)

v is a sequence of block-priority pairs
r is the peak width
s is the peak height

begin
Res := ∅
for each j ∈ [r, card(v) − r] do

center := 0
total := 0
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for each 〈bi, pi〉 ∈ v such that i ∈ (j − r, j + r] do
total := total + pi

end for
for each 〈bi, pi〉 ∈ v such that i ∈ (j − r

2 , j + r
2 ] do

center := center + pi

end for
if center

total ≥ s then
Res := Res ∪ {〈bi, pi〉 ∈ v | i ∈ (j − r

2 , j + r
2 ]}

end if
end for
return Res

end

The Peaks() algorithm slides a 2r-wide window along a sequence of blocks, com-

puting the total sum of block priorities in that window (total). It then computes the

sum of block priorities in a narrower r-wide window in the middle of the 2r-wide

window (center), as shown in Figure 5.5. When the ratio of these two sums center
total

exceeds the threshold s, all blocks in the r-wide window are picked as a peak.

jj−r/2 j+r j+3r/2

sum=41sum=5 sum=8

41/(5+41+8)=0.76

Figure 5.5: Peaks() Algorithm Analyzing a Peak.

Example 5.7.1 Consider the very small fragment shown in Figure 5.5. At some time,

the Peaks() algorithm will focus its window of length 2r on the segment from j − r
2

to j + 3r
2

shown in the figure. It will compute the sum of the priorities of the blocks

in the entire window of length 2r (which is 5 + 41 + 8 = 54) as well as the sum of
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the priorities of the window of length r in the center of the window of length 2r - the

priority there is 41. As a consequence, the ratio of these is 41
54

= 0.76. If 0.76 exceeds

the s that the user has picked, then the sequence of blocks from j to j+r is considered

a peak.

Note that the performance of the Peaks() algorithm can be improved by avoiding

computation of center and total iteratively in each iteration of the outer loop. After

the first iteration of the outer loop, these values can be updated in constant time. This

optimization is not included in the above algorithm as it complicates the simplicity of

the algorithm, but it is easy to incorporate. The Peaks() algorithm has complexity of

O(r · card(v)), being linear with respect to the number of input blocks.

5.7.2 Block Merging Module

The peak identification algorithm eliminates all blocks that are not (r, s)-peaks for the

r, s values selected by the application developer. Let Peaks(v, r, s) be the set of all

blocks from the original video that contain peaks. Consider a set {(bi, bi+1) | bi, bi+1 ∈

Peaks(v)} of all pairs of blocks that are adjacent to each other. In general when

adjacent blocks are peaks, they may describe the same event. The main goal of the

block merging module is to merge adjacent blocks that may be very similar, so that

repeating blocks can be treated as a single block in the later processing steps (such as

resizing).

A block similarity function is a function sim that takes two blocks as input and

returns a non negative real number as output. The smaller the number returned, the

more similar the blocks are considered to be. There are many ways in which we could

implement block similarity functions. Here are a few examples:
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1. simdiff : We could use any classical image differencing algorithm idiff [35]

to return the similarity between two frames and we could set the similarity be-

tween the two blocks to be the similarity between the two most similar frames,

drawn from each block.

2. simtext: In the event that the videos in question have an accompanying text tran-

script, we could identify the text blurb associated with each of the two blocks

and set the similarity of the two blocks to be equal to the similarity between the

two text transcripts using any classical method to evaluate similarities between

text documents.

3. simvec: As is often common in image processing, we could associate a color

and/or texture histogram with each block and return the similarities between the

histograms using root mean squared distance or the L1 metric [78].

To simplify the block merging process, let us assume that Peaks(v, r, s) returns a set

of block-priority pairs of the form 〈bi, pi〉, as opposed to a set of blocks, and adjacent

blocks can be concatenated with the ⊕ operator. The block merging algorithm then

takes as input, any block similarity function between blocks, together with a set of

block-priority pairs, and returns a new set of merged blocks-priority pairs, as follows.

Algorithm Merge(v,sim(),d)
v is a sequence of block-priority pairs
sim() is a similarity function on blocks
d is the merging threshold

begin
Res := ∅
B := first block-priority pair 〈b1, p1〉 ∈ v
for each 〈bj , pj〉, 〈bj+1, pj+1〉 ∈ v do

if sim(bj , bj+1) ≥ d then
B := 〈B.b⊕ bj+1, B.p + pj+1〉

else
add B to the tail of Res
B := 〈bj+1, pj+1〉

end
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end for
add B to the tail of Res
return Res

end

The Merge() algorithm considers all pairs of blocks bj, bj+1, concatenating them

together into a bigger block B.b, as long as sim(bj , bj+1) value stays above the thresh-

old d. The priority B.p of the newly merged block is computed as a sum of individual

priorities of its parts. The Merge() algorithm has linear complexity with respect to

the number of blocks in its input.

5.7.3 Block Elimination Module

Suppose S is the set of blocks from the original video after the block merging step has

been applied to the set of blocks in Peaks(v, r, s). In the block elimination module,

we would like to remove from this set all blocks whose priorities are less than a cer-

tain threshold. Let us do it by computing the mean µ and the standard deviation σ for

all priorities in S. Now, given an integer m ≥ 0, let us define a function Drop(S, m)

that drops from S all blocks whose priorities are less than µ − mσ. Drop() can

be easily implemented by iterating over all blocks returned by the Merge() algo-

rithm. Thus, the result of Drop(Merge(Peaks(v, r, s), d), m) will be a set of all

high-priority merged peaks taken from v, with respect to the r, s, d, m parameters.

5.7.4 Block Resizing Module

Even after eliminating some low-priority blocks in the previous step, the total frame

count of the remaining blocks may still exceed the limit k imposed in the beginning

of this paper. In such a case, we have to truncate some blocks to fit the limit. Clearly,

blocks with higher priorities must have more prominence in the summary and thus
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occupy a larger percentage of frames. We then devise an algorithm that allocates to

each block a number of frames proportional to its priority and truncates blocks to fit

the limit of k frames.
Algorithm Resize(v,k)

v is a sequence of block-priority pairs
k is the desired summary length

begin
Res := ∅
ptotal :=

∑

〈b,p〉∈v p

p′ := 0
k′ := 0
for each 〈b, p〉 ∈ v do

if len(b) ≤ p·k
ptotal

then
Res := Res ∪ {〈b, p〉}
v := v \ 〈b, p〉
p′ := p′ + p
k′ := k′ + len(b)

end if
end for
ptotal := ptotal − p′

k := k − k′

for each 〈b, p〉 ∈ v do
alloc := p·k

ptotal

b′ := b truncated to alloc frames
Res := Res ∪ {〈b′, p〉}

end for
return Res

end

5.8 Implementation and Experiments

Our experiments were conducted on a prototype summarization system developed in

Java for the Windows 2000 platform. Oracle8i and MS Access database backends

were used to store and access video data. The system consists of approximately 2500

lines of code.

The experiments used a collection of 50 soccer videos in AVI format captured at

30fps in 640 × 480 resolution. Videos varied in length from 90 to 120 minutes and
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had at least 162000 frames each. The feature extraction was done both manually and

by an image processing algorithm that detected goals, so that each video had about

40 annotated blocks on average. Features described players and actions occuring in a

block, such as “goal”, “cross”, “offside”, “celebration”, or “shot”.

To assess the quality of summaries produced by our summarization algorithms,

we used them to create 2, 4, and 6 minute summaries of all 50 videos. A group

of approximately 200 students at the University of Naples evaluated the quality of

resulting summaries by comparing them to original videos. In order to rate the quality,

students gave each summary a rank from A (excellent) to E (unacceptable). Given the

high subjectivity of this method, the results below have to be taken with a grain of salt,

but it has been shown that they remain consistent when the experimental conditions

(CPR weights, summary length, etc.) are changed.

Figure 5.6: Summary Quality Comparison (without PCA).

Figure 5.6 shows students’ preferences for the summaries produced by the first

three algorithms. SEA algorithm was deemed to produce the best results in 67% of

the cases. Furthermore, 81% of the participants gave the SEA algorithm an A during
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that test run.

Figure 5.7 shows students’ preferences for the summaries produced by all four

algorithms. The PCA algorithm has been deemed to produce best results in 46% of

cases in this run, followed by the SEA algorithm.

Figure 5.7: Summary Quality Comparison (with PCA).

In order to understand how changes in the video content specification affect the de-

gree of user satisfaction, we produced several summaries of the same video using four

different content specifications. Figure 5.8 shows user preferences for each of these

four cases. We have found that, once informed on the objective of the summarization,

i.e. which actions/events in the summary had been considered more important by the

specification, users expressed preferences similar to the previously discussed results.

Finally, we assessed the performance of the four algorithms using a Pentium3

800MHz machine with 128MB SDRAM. Figure 5.9 shows the results, with the PCA

algorithm outperforming the other three algorithms.
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Figure 5.8: Summary Quality Variation.

Figure 5.9: Algorithms’ Performance.

5.9 Related Work

Over the past years, there was a variety of efforts in automatic video skimming and

summarization while searching for certain faces, narrative, or other features. Never-

theless, the idea of creating coherent summaries based on the user specifications has

not received much attention.

A work that specifically targets creation of video summaries has been done by He
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et. al. at Microsoft [39]. The goal of their project was to summarize presentation

videos that were accompanied by the PowerPoint slides being presented. The system

used three main criteria to determine the relative importance of video segments: (i)

the moments when slides were changed, (ii) lecturer’s voice pitch, and (iii) users’ in-

terest in different parts of the presentation as they skipped through it. The researchers

have invested a lot of effort into estimating how relevant and coherent automatically

generated summaries were in comparison to their author-generated counterparts. The

obvious peculiarity of this work is that each video sequence was synchronized to the

actual PowerPoint presentation, which is not the case with most real life videos. The

video content itself has not been analyzed in any way, as it was mainly limited to the

narrator’s talking head. Also, although there is some implicit user feedback present

(user access statistics were used during summary creation), the users have no control

over what will be summarized.

Another project in video summarization was undertaken by DeMenthon, Kobla,

and Doermann at UMD [18] who represented a changing vector of frame features

(such as overall macroblock luminances) with a multi-dimensional curve and applied

a curve simplification algorithm to select “key” frames. The selected frames then

constitute a summary. The algorithm allows to control the size of a summary by

choosing the degree of simplification.

The Informedia project by Kanade and Smith [44] selects frames from documen-

taries and news bulletins by detecting important words in the accompanying audio.

The MoCA project by Lienhart et. al. [50] composes film previews by picking spe-

cial events, such as zooming of actors, explosions, shots, etc. There are many other

systems that use various video characteristics to detect key frames and compose sum-

maries out of these frames [34, 28].
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While the key frame approach has proven to work rather well, it looks at certain

features of a video instead of considering its semantic content. Thus, users have no

direct control over the summary content and quality. The CPR approach used by

our group allows for such control. The idea of creting summaries by maximizing an

objective function has been proposed by Yahiaoui, Merialdo et. al. [86]. Our work,

covered in this chapter, uses the objective function idea but provides a more general

framework that takes into account users’ preferences about the summary content and

quality.

5.10 Conclusion

Our team has developed a theoretical model for the video summarization and shown

several algorithms for creating summaries. The proposed model for video summariza-

tion is the first that takes into account both semantic content and the user preferences.

We have futher implemented algorithms, and conducted experiments to analyze

their performance. The results clearly show benefits of the Priority Curve Algorithm,

followed by the Summary Extension Algorithm.
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Chapter 6

Document Summarization With Stories

6.1 Introduction

On many life occasions, one needs to find exhaustive information about a particular

person, a place, an event, or an artefact. For instance, a tourist wandering through

the archaeological museum at Pompeii and encountering a painting titled “Death of

Pentheus” may want to know who pictured characters are, when and how this painting

has been made, and who the painter is. At the same time, but in a completely different

setting, a soldier guarding a checkpoint would like to know the background of people

who come by his checkpoint, while a military truck driver needs to know the history

of bombings, ambushes, and other accidents that have occurred along his travel route.

While each person in the above examples needs information from a different do-

main, in all instances we are basically interested in a story behind a given subject.

Historically, people referred to encyclopedias, dictionaries, and other reference doc-

uments for such stories. Of course, lookup of printed sources is a time consuming

process, especially when multiple documents have to be consulted. It is also difficult

to update printed information, not to mention the fact that it can’t be easily consulted
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in the field, as our examples require.

In the recent years, the World Wide Web has taken the role of the main reference

source for many people. Traditional encyclopedias and dictionaries, as well as news

outlets, have “migrated” to the Web, providing instant access, up-to-date information,

and search capabilities. Nevertheless, some problems persist:

• Finding and consulting Web sources is faster than a traditional library search

but it still takes time.

• Making sense of multiple sources takes still more time and analytical experi-

ence, just like the analysis of printed documents.

• Information obtained from the Web is often unreliable or inconsistent.

• In many applications (such as military examples given above) there are propri-

etary sources of information, such as databases, intelligence reports, or internal

newsfeeds that also have to be consulted.

Thus, an automated tool that solves the above problems for the user and presents him

with a cohesive narrated story about the subject of his interest would be very helpful

for many people.

Let us now return to our examples. Notice that stories requested in them are

dramatically different. In the case of Pompeii, tourists may be interested in cultural,

historical, mythological, and artistic aspects of subjects. On the other hand, these

aspects are of no interest to soldiers who mainly focus on threat assessment. Thus,

the content of a story depends both on the available facts and the domain of user’s

interests.

There are two other important aspects of stories: they must be succinct and they

must allow the user to explore different facets of the story that are of interest to him or
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her. So, a tourist in the museum example may want to find out more about painting’s

author and then about the place where painter has lived.

In this chapter, I present a framework for creating stories about given subjects

based on the information extracted from heterogenous data sources, such as the Web,

the relational databases, and so forth. Furthermore, this chapter presents several algo-

rithms that generate an optimal story with respect to the priority of information it con-

tains, the continuity of its narrative, and the non-repetition of covered facts. Finally, I

discuss the architecture and the bimplementation of a prototype STORY system that

automatically creates and delivers stories to client devices such as computers, PDAs,

cell phones, and so forth.

The work covered in this chapter is partially based on the work in video summa-

rization [24] covered in Chapter 5.

6.2 The Data Model

According to the Oxford English Dictionary (online edition), a story is “A narrative,

true or presumed to be true, relating to important events and celebrated persons of a

more or less remote past; a historical relation or anecdote.” In the context of com-

puting, a narrative becomes an interactive multimedia presentation. Such an approach

allows a piece of plain text or speech to be treated as a special case of a narrative.

Returning to the painting of Pentheus’ punishment and death at the House of the

Vetti in Pompeii (see Figure 6.1), a visitor to Pompeii may have a number of questions

to ask about this painting:

• Who was Pentheus?

• Who punished him?
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Figure 6.1: Pentheus torn apart by his mother Agave and Maenads (House of the Vetti,

Pompeii).

• Why he was punished?

• Was this event depicted by other artists at the same period or in earlier periods

or in later periods in the same or different geographical region?

• Who is Vetti?

In order to answer the above questions and support further exploration of topics re-

lated to the initial topic of interest, let us introduce the concept of an entity character-

ized with a set of attributes that can be arranged into a story.

Definition 6.2.1 (Entity) We assume the existence of some set E whose elements are

called entities.

Intuitively, entities describe the subjects of interest. In a museum, such subjects

can be all the known people depicted via images or sculptures shown in the museum,

as well as all people related to those people in some way. Additionally, the set of

entities could include all places depicted. In the case of soldiers guarding a check-

point, entities of interest could include all people about whom intelligence agencies
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have any information, as well as various kinds of resistance and terror groups, front

companies, etc. Note that there is no need to explicitly enumerate this set of entities –

they could, for example, be discovered by a simple algorithm seeking proper nouns.

Definition 6.2.2 (Ordinary Attributes) Suppose E is a set of entities. We assume

the existence of a set A whose elements are called ordinary attributes. Each attribute

A has an associated domain dom(A). We say that A is a set of ordinary attributes

associated with the set E of entities if E ⊆
⋃

A∈A dom(A).

The above requirement merely ensures that each entity can be characterized by

the values of ordinary attributes.

The story about Pentheus may have many ordinary attributes. One such attribute

might be mother, with the domain being the set of all alphabetical strings. The

value of this attribute w.r.t. the painting of Pentheus shown in Figure 6.1 could be

the string “Agave”. An attribute persons could have as its domain, the powerset of

the set of people known in Greek mythology. In the Pentheus example, the value of

this attribute could be {Pentheus, Agave, Maenads} – note that Maenads is not one

person, but rather a collective name for a group of people.

Notice that the value of the mother attribute may be an entity by itself. In the

Pentheus example, the entity Agave (his mother) may have its own attributes, so that

a new story could be created about her. However, if Agave is not an entity then there

is definitely no story about her.

Definition 6.2.3 (Generalizing Ordinary Attributes) Suppose A is an ordinary at-

tribute. Then a generalization function for attribute A is a mapping ΓA from 2dom(A)

to dom(A).
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For example, suppose we have an attribute called occupationwhose domain is the

set of all strings. A generalization function Γocc may map a set of strings of the form

“King of . . .” to a single string “king” and “Bishop of . . .” to “bishop”. This is just

one example of a generalization function – many more are possible.

Figure 6.2: Pope Paul III and his nephews Alessandro and Ottavio Farnese (Capodi-

monte Museum, Naples).

In the above discussion, attributes had constant values. However, in many situa-

tions attribute values may change with time. For example, Pope Paul III (shown in

a painting in Figure 6.2) may have an occupation attribute with the value “cardi-

nal” for a time period from 1493 to 1533 and “Pope” from 1534 to 1549. In order to

express such values, let us introduce the concept of a time-varying attributes.

Definition 6.2.4 (Time Varying Attribute) A time-varying attribute is a pair (A, dom(A))

where A is the name of the attribute and dom(A) is the domain of values for the at-

tribute.
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Definition 6.2.5 (Timevalue) A timevalue for a time-varying attribute (A, dom(A))

is a set of triples (vi, Li, Ui) where vi ∈ dom(A) and Li, Ui are either integers or the

special symbol ⊥ (denoting unknown). A timevalue is fully specified iff there is no

triple of either the form (v1,⊥, Ui) or (vi, Li,⊥) or (vi,⊥,⊥) in it.

Intuitively, if an object has a time-varying attribute A with a timevalue of {(v1, 15, 20),

(v2, 25, 30)} then A has value v1 in a time period from 15 to 20 and value v2 in a time

period from 25 to 30. In the case of Pope Paul III, the timevalue of occupation is

given by {(Pope, 1534, 1549), (Cardinal, 1493, 1533)}.

Note 6.2.1 Though one may have allowed timevalues to be more expressive, the reader

will see later (Note 6.3.1) that doing so causes a huge additional burden on the system

implementor.

Definition 6.2.6 (Consistent Timevalue) A timevalue tv for a time-varying attribute

(A, dom(A)) is consistent iff there is no pair (v1, L1, U1), (v2, L2, U2) in tv such that

v1 6= v2 and L1, U1, L2, U2 6= ⊥ and such that the intervals [L1, U1] ∩ [L2, U2] inter-

sect.

The consistency of a timevalue ensures that the attribute does not have two distinct

values at the same time (e.g. Pope Paul III has never been both Pope and a cardinal at

the same time). Thus, the timevalue {(Pope, 1534, 1549), (Cardinal, 1493, 1533)}

for Pope Paul III’s occupation attribute is consistent.

Note, however, that had we wanted to allow a person to have multiple occupations

at the same time, we could simply define the domain of occupation to be the

powerset of all strings rather than the set of all strings.
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Note 6.2.2 Throughout the rest of this chapter, I will abuse notation and use the term

“attribute” to refer to both ordinary and time-varying attributes. The context will

determine the usage.

Just like ordinary attributes, the time-varying attributes can be generalized.

Definition 6.2.7 (Generalizing Time Varying Attributes) Suppose (A, dom(A)) is

a time-varying attribute. A generalization function for A is a mapping ΓA from a

timevalue for attribute (A, dom(A)) to a singleton timevalue for attribute (A, dom(A))

such that if ΓA(X) = {(v, L, U)} then

[L, U ] ⊆ [min(vi,Li,Ui)∈XLi, max(vi,Li,Ui)∈XUi] ∧ ∃(vj , Lj , Uj) ∈ X [L, U ] ∩ [Lj , Uj ] 6= ∅.

For example, a generalization function may map the set of timevalues { (“Bishop of

Massa”, 1538, 1552), (“Bishop of Nice”, 1533, 1535) } to a singleton timevalue {

(“bishop”, 1533, 1552) }.

Note that if the definition of generalization function for time-varying attributes did

not require that ∃(vj, Lj, Uj) ∈ X [L, U ]∩[Lj , Uj] 6= ∅ then we would have a problem.

The generalization function could, for example, return {(“bishop”,1536,1537)} even

though the original input said nothing about the time interval [1536, 1537].

Definition 6.2.8 (Story Schema) A story schema consists of a pair (E ,A) where E

is a set of entities and A is a set of attributes associated with E . I will use Ao (resp.

Atv) to denote the ordinary (resp. time-varying) attributes in A.

Returning to our example of the Pompeii archaeological site, the set of entities of

interest to tourists could be defined as the union of (i) all artefacts in Pompeii that are

of interest (including paintings, sculptures, etc), (ii) all objects and events depicted

by those artefacts, and (iii) any people, places, and events related to entities in the
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previous two categories. While the first two categories can be determined manually,

based on the museum inventory, the last category is very vast and thus asks for an

automatic retrieval.

Definition 6.2.9 (Instance) An instance w.r.t. story schema (E ,A) is a partial map-

ping I which takes an entity e ∈ E and an attribute A ∈ A and returns as output, a

value v ∈ dom(A) when A is an ordinary attribute, and a timevalue {(v, L, U) | v ∈

dom(A)} when A is a time-varying attribute.

Let us use the notation I(e, A) = ⊥ to indicate that I(e, A) is undefined. Here is

a couple of instance examples in the context of paintings shown in Figure 6.1 and

Figure 6.2.

Example 6.2.1 (Pentheus Instance) Pentheus was a Greek king who has made an

enemy of the god Bacchus. Angered by this, the Maenads (who were priestesses wor-

shipping Bacchus) transformed Pentheus into an animal and had his mother, Agave,

kill him. A story instance may express these facts as follows:

1. occupation is a time-varying attribute with the value of {(king,⊥,⊥)}

which says that Pentheus has been king at an unknown time.

2. enemy is a time-varying attribute specifying the enemies of Pentheus, with

the value of {({Bacchus, Maenads},⊥,⊥)}. Notice that Bacchus and the

Maenads are also entities with their own attributes, not shown here but present

in the instance.

3. punishment is a time-varying attribute specifying Pentheus’ punishments,

with the value of {({ “transformed into an animal”, “killed” },⊥,⊥)}.

4. mother is an ordinary attribute with the value Agave.
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The table below shows attributes for other entities returned by the instance.

Entity Attribute Value

Pentheus occupation {(king,⊥,⊥)}

enemy {({Bacchus, Maenads},⊥,⊥)}

punishment {({“transformed into an animal”, “killed”},⊥,⊥)}

mother Agave

Bacchus occupation god

enemy {(Pentheus,⊥,⊥)}

friends {(Maenads,⊥,⊥)}

Maenads occupation {(priestess,⊥,⊥)}

friends {(Bacchus,⊥,⊥)}

Example 6.2.2 (Pope Paul III Instance) The following table lists various entities oc-

curring in Figure 6.2. Note that this example leads to possible confusion. The en-

tity “Alessandro Farnese” shown here is not the same as Pope Paul III (who was

also named Alessandro Farnese). Thus, for every attribute value, we need to specify

whether it also describes an entity. I use the parenthetical comment “(v)” to denote

value when not clear from context.

Entity Attribute Value

Pope Paul III occupation {(Cardinal, 1493, 1533), (Pope, 1534, 1549)}

real name Alessandro Farnese(v)

treaties (Treaty of Crespi, 1544, 1544)

Alessandro Farnese occupation {(Bishop of Massa, 1538, 1552),

(Archbishop of Tours, 1553, 1556)}

Ottavio Farnese occupation {(Duke of Parma and P iacenza, 1547, 1586)}

Titian occupation {(painter, 1485, 1576)}

teacher {gentile, Giovanni Bellini}

Note that this is a very small instance – clearly a lot more is known about the

individuals listed above (e.g. attributes of Titian can be the list of all paintings by

him, his collaborators, etc.).
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6.3 Story Computation Problem

In this section, we will look at the steps that lead to a story creation, discuss what

makes one story better than the others, and finally state the story computation problem.

Let us start by defining the concepts of a valid instance and a full instance based on

a set of data sources. Intuitively, these instances are used to collect all facts reported

by these sources.

6.3.1 Valid and Full Instances

In order to create a story from a story schema, one may need to access a variety of

sources. In the case of Pentheus, we may need to access ancient Greek texts, as well

as modern works in Greek history to find out more about him. Let us assume that our

data sources have an associated application program interface (this is a reasonable

assumption as most commercial programs do have APIs). The source access table

describes how to extract each attribute’s value using source’s API.

Definition 6.3.1 (Source Access Table) A source access tuple is a structure (A, s, fA,s)

where A is an attribute name, s is a data source, and fA,s is a partial function (body

of software code) that maps objects to values in dom(A) when A is an ordinary at-

tribute, and to timevalues over dom(A) when A is a time-varying attribute. A source

access table is a finite set of source access tuples.

Suppose, for instance, that we want to consult the “Bacchae” (a play by Euripides) to

find the value of the mother attribute of Pentheus. In this case, we can execute the

function fmother,Bacchae(Pentheus).

The source access table does not, of course, need to be populated with a func-

tion for each source and each attribute. Some sources may provide some informa-
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tion, while others may not. The functions fA,s are partial functions because some

sources may not have information about Pentheus. For instance, the book “Egypt”

may not have any information on Pentheus, even though it supports the the function

fmother,Egypt.

Note 6.3.1 The application developer is responsible for specifying the functions fA,s

in the source access table. Such a function must return timevalues when A is a time-

varying attribute. This can be quite difficult. For instance, determining when Pentheus

was killed from a text document is a nontrivial task. Had we allowed timevalues to

be more general (e.g. to say Pentheus was killed after some other event, or to say

Pentheus was killed within 5 years of yet another event), then the functions fA,s would

need to infer this even more complex information from textual sources.

Definition 6.3.2 (Valid Instance) Suppose (E ,A) is a story schema, SAT is a source

access table, and I is an instance. I is said to be valid w.r.t. SAT iff for every entity

e ∈ E and every attribute A ∈ A, if I(e, A) is defined, then there is a triple of the

form (A, s, fA,s) in SAT such that fA,s(e) = I(e, A).

Intuitively, the above definition says that an instance is valid w.r.t. some source access

table if every fact (i.e. every assignment of value to an attribute for an entity) is

supported by at least one source. Note that different sources may disagree on the value

of a given attribute for a given entity. For instance, one source may say Pentheus’

mother is Agave, while another may say that it is Hera.

Let us now define the full instance that, for each entity and attribute, collects all

attribute values that are supported by at least one source.

Definition 6.3.3 (Full Instance) Suppose (E ,A) is a story schema and SAT is a source

access table. Suppose I is an instance w.r.t. (E ,A′) where the attributes in A′ are
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the same as the attributes in A with one difference – if an attribute A ∈ A has

dom(A) = 22S , then the corresponding attribute A′ ∈ A′ has dom(A′) = dom(A).

Otherwise, dom(A′) = 2dom(A), i.e. the powerset of the original domain. I is said

to be the full instance w.r.t. (E ,A) and SAT iff for all entities e ∈ E and attributes

A ∈ A,

I(e, A) =







⋃

∀s (A,s,fA,s)∈SAT fA,s(e) if dom(A) = 22S

{fA,s(e) | ∀s (A, s, fA,s) ∈ SAT} otherwise
.

Intuitively, the above definition says that a full instance accumulates all the facts re-

ported by various sources, independently of whether these facts are conflicting or not.

A special treatment is given to set-valued facts, whose values are merged. We will

look at how conflicts between accumulated facts can be resolved later on (Defini-

tion 6.3.6).

6.3.2 Stories

Before, we have noticed that different sources may return different values for the same

attribute of an entity. Some of these values can be generalized to produce new, pre-

sumably more concise versions. Let us then extend the story schema with appropriate

tools to generalize attribute values.

Definition 6.3.4 (Generalized Story Schema) A generalized story schema is a quadru-

ple (E ,A,∼,G) where (E ,A) is a story schema, ∼ is a mapping which associates an

equivalence relation on dom(A) with each attribute A ∈ A and G is a mapping which

assigns, to each attribute A ∈ A, a generalization function ΓA for attribute A.

Thus, a generalized story schema adds to each attribute in the story schema an equiv-

alence relation and a generalization function. Intuitively, an equivalence relation on
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the domain dom(A) of attribute A specifies when certain values in the domain are

considered equivalent. For example, we may consider strings “king” and “monarch”

to be equivalent. Similarly, in a time-varying attribute, we may always consider

(“king”, L, U) and (“monarch”, L′, U ′) to be equivalent independently of whether

L = L′ ∧ U = U ′ is true or not. Likewise, in the example of Pope Paul III, the equiv-

alence relationship may say that the triple (“Bishop of . . .”,–,–) is always equivalent

to other triples of the form (“Bishop of . . .”,–,–) independently of whether the bishops

involved governed different places.

The definition of a closed instance below takes a full instance associated with a

source access table and closes it up by including all the generalized attribute values.

Definition 6.3.5 (Closed Instance) Suppose (E ,A,∼,G) is a generalized story schema

and I is the full instance w.r.t. (E ,A). The closed instance w.r.t. a source access table

SAT and generalized story schema (E ,A,∼,G) is defined as follows.

I ′(e, A) = I(e, A) ∪ {ΓA(X ′) |X ′ is an ∼A −equivalence class of I(e, A)}.

In other words, here is how we find the closed instance associated with a given source

access table and a given generalized story schema. For each entity e and each attribute

A of this entity:

1. We first compute the set I(e, A) where I is the full instance associated with our

source access table.

2. We then split I(e, A) into equivalence classes using the equivalence relation∼A

on dom(A). Suppose the equivalence classes thus generated are X1, . . . , Xn.

3. For each equivalence class Xi, we compute ΓA(Xi) – this is the generalization

of the equivalence class Xi using the generalization function ΓA associated with

attribute A. Suppose ΓA(Xi) = vi.
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4. Finally, we insert the tuple (e, A, vi) into the full instance.

This process is done for all entities e and all attributes A and all tuples of the form

shown above are inserted into the full instance. The result is a closed instance.

A story cannot just be defined as a full instance. In the real world, the “full

story” about any single person or event is likely to be very complex and involve a

large amount of unimportant minutiae. For example, consider the story of Pope Paul

III. Depending on what items about Pope Paul III are considered important, we may

choose to merely say that he served as a bishop from 1538 to 1556 and ignore the

details. However, the full instance associated with Pope Paul III may not explicitly

say this – rather it might state (as in our example) that he was a bishop of this place

for some time, that place for another time period, and so on. Generalization is needed

to reduce these facts to a single concise fact.

Note that so far we have not tried to resolve possible conflicts between attribute

values obtained from different sources. However, for the story to be consistent, these

conflicts have to be resolved. In other words, suppose I ′ is a closed instance. When-

ever I ′(e, A) contains more members than prescribed by dom(A), or represents an

inconsistent timevalue, some mechanism is required to restore consistency by remov-

ing extra values.

Definition 6.3.6 (Conflict Management Policy) Given an attribute A with dom(A) =

22S , the conflict management policy χA is a mapping from dom(A) to dom(A) such

that χ(X) ⊆ X . For any other attribute A, χA is a mapping from 2dom(A) to dom(A)

such that χ(X) ∈ X .

Following are some examples of conflict management policies.
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Example 6.3.1 (Temporal Conflict Resolution) Suppose different data sources pro-

vide different values v1, . . . , vn for I(e, A) with a value vi being inserted into the data

source at time ti. In this case, we pick the value vj that has been inserted the last, i.e.

tj = max(t1, . . . , tn). If multiple such j’s exist then one is selected randomly.

Example 6.3.2 (Source Based Conflict Resolution) The developer of a story may

assign a credibility ci to each source si that provides a value vi for attribute A of

entity e. This strategy picks value vi such that ci = max(c1, . . . , cn). If multiple such

i’s exist then one is selected randomly.

Example 6.3.3 (Voting Based Conflict Resolution) Each distinct value vi returned

by at least one data source has a number vote(vi) which is the number of sources

that return vi. In this case, the conflict resolution strategy returns the value with the

highest vote. If multiple vi’s have the same highest vote then one is selected randomly.

These are just three example strategies. It quite easy to create hybrids of these

strategies as well. For example, we could first find the values for I(e, A) with the

highest votes and then choose the one which is most recent.

Definition 6.3.7 (Deconflicted Instance) Suppose (E ,A,∼,G) is a generalized story

schema and I ′ is the closed instance w.r.t. (E ,A). The deconflicted instance w.r.t. a

source access table SAT, generalized story schema (E ,A,∼,G), and conflict man-

agement policy χ is the instance I ] such that for all entities e ∈ E and all attributes

A ∈ A if I](e, A) 6= ⊥ then I](e, A) = χ(I ′(e, A)).

Note that finding any arbitrary deconflicted instance is not enough. The instance

Inull which is undefined for all Inull(e, A) is free of conflicts – however it is not very
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useful as it has no information in it. I will later show how quality of instances can be

judged.

We now have all concepts necessary to introduce the story concept. While in-

stances are basically collections of facts, a story contains a subset of these facts, ar-

ranged in a certain order.

Definition 6.3.8 (Story) Suppose I is a closed instance w.r.t. a generalized story

schema (E ,A,∼,G) and a source access table SAT, and e ∈ E is an entity. Then

a story σ(e, I) of size k, is a sequence of attribute-value pairs 〈A1, v1〉, . . . , 〈Ak, vk〉

such that for all 1 ≤ i ≤ k, Ai ∈ A and vi = I(ei, Ai).

A deconflicted story w.r.t. a given conflict management policy is a sequence of attribute-

value pairs 〈A1, v1〉, . . . , 〈Ak, vk〉 such that for all 1 ≤ i ≤ k, Ai ∈ A and vi =

I](ei, Ai) where I] is a deconflicted instance w.r.t. χ.

Note 6.3.2 Throughout the rest of this chapter, I will use the word “story” to refer to

both ordinary and deconflicted stories.

Note that the above definition of a story only considers the content of a story and

the order in which this content has to be presented. Actual presentation of a story to

the audience will be discussed later in this chapter.

6.3.3 Optimal Stories

Not all stories are the same, even when they are on the same topic. For example, there

are undoubtedly very boring books about Pentheus, just as there are illuminating and

exciting books about him. While it is unwise to expect a computer to come up with

an exceptional literary work, a user would still like to have a story that is cohesive,

succinct and gets all the important facts across.
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In Chapter 5 I have described the three CPR criteria [24] that affect the quality

of video summaries: the continuity, the priority, and the repetition. As a story is

essentially a kind of a summary, these three criteria apply to stories as well.

Let us see what each of the CPR criteria means when applied to a story. The prior-

ity determines the importance of facts included into a story. The continuity determines

whether these facts are explained in the right logical order. Finally, the repetition de-

termines the redundancy of included facts. Of course, in the last case we actually need

the non-repetition rather than repetition.

As all three CPR criteria are subjective, let us define them in an abstract way. This

will allow the story computation algorithms described later in this chapter to work

with any notions of priority, continuity and non-repetition that fit within the abstract

definitions given below.

Definition 6.3.9 (Story Evaluation Function) Suppose S is the set of all possible

stories about some entity e w.r.t. the same schema and source access table. Let χ,

φ, and ρ be arbitrary functions from S to the set of real numbers [0, 1] that measure

the story’s continuity, priority, and repetition, respectively. Given positive coefficients

α, β, γ, these three functions can be aggregated into a single story evaluation function

eval(s) = α · χ(s) + β · φ(s)− γ · ρ(s).

The evaluation function above consists of three weighted components. The first com-

ponent, captured by the function φ measures the priority of the facts are included in

the story. For example, the fact that Pentheus’ mother was Agave is more important

than the length of Pentheus’ big toe. The second component, expressed through χ,

describes how continuous the story is. Stories that deliver facts in a “conventional”

order are more continuous than ones that jump wildly from one fact to another. The
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third component concerns repetition – clearly, stories that repeat the same facts over

and over again leave much to be desired.

Of course, there are multiple ways to compute the values of χ, φ, and ρ. Let us

look at some possibilities.

Example 6.3.4 (Weight-Based Priority) Assume the existence of a mapping pwt :

E × A → [0, 1] that assigns the degree of importance to each entity-attribute pair.

Then, one can compute the total priority of a story {〈A1, v1〉, . . . , 〈Ak, vk〉} as

φ({〈A1, v1〉, . . . , 〈Ak, vk〉}) =
2

k2
·

∑

1≤i≤k

(pwt(e, Ai) · (k − i + 1)).

Example 6.3.5 (Knowledge-Based Priority) Every attribute value can be an entity

on its own and may therefore have some attributes attached to it. The following pri-

ority function will favor stories that tell the user about well described entities first:

φ({〈A1, v1〉, . . . , 〈Ak, vk〉}) =
2 ·

∑

1≤i≤k((k − i + 1) · card({A ∈ A | I(vi, A) 6= ⊥}))

k2 ·maxe∈Ecard({A ∈ A | I(e, A) 6= ⊥})
.

As I is a partial function, we use the notation I(e, A) 6= ⊥ above to denote that

I(e, A) is defined.

Example 6.3.6 (Reference-Based Priority) An attribute value can be referred to by

attributes of other entities irrespective of whether it is a generic value (such as “36”

or “green”) or an entity on its own (such as “Agave”). In the second case, it can

be beneficial to give often referred entities better placement in a story. This can be

achieved with the following priority function:

φ({〈A1, v1〉, . . . , 〈Ak, vk〉}) =
2 ·

∑

1≤i≤k((k − i + 1) · card({〈e, A〉 | vi ∈ E ∧ I(e, A) = vi}))

k2 ·maxe′∈Ecard({〈e, A〉 | I(e, A) = e′})
.

Example 6.3.7 (Weight-Based Continuity) Assume the existence of a mapping cwt :

A × A → [0, 1] that expresses the degree of connectedness between each two at-

tributes. Such a function can, for example, be specified via a table which shows for
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each pair of attributes, what their degree of connectedness is. Then, one can compute

the total continuity of a story {〈A1, v1〉, . . . , 〈Ak, vk〉} as

χ({〈A1, v1〉, . . . , 〈Ak, vk〉}) =
2

k
·

∑

1≤i<k

∑

i<j≤k

cwt(Ai, Aj)

|j − i|
.

We will additionally require that for any unique A, A1, A2 ∈ A, cwt(A, A) = 1 and

cwt(A1, A2) ≥ cwt(A1, A) + cwt(A, A2)− 1.

Example 6.3.8 (Time-Based Continuity) As attributes may have timevalues, we may
want to arrange them in order of increasing time to achieve continuity. This can be
done with the following conitnuity function:

χ({〈A1, v1〉, . . . , 〈Ak, vk〉}) =
2

k · (k − 1)
·

∑

1≤i<k

∑

i<j≤k

{

0 if vi = (−, ti,−) ∧ vj = (−, tj ,−) ∧ ti > tj

1 otherwise
.

Example 6.3.9 (Weight-Based Repetition) Assume the existence of a mapping rwt :

A×A→ [0, 1] that expresses the degree of similarity between each pair of attributes.

Such a function can, for example, be specified via a table which shows for each pair

of attributes, what their degree of similarity is. Then, one can compute the total

repetition of a story {〈A1, v1〉, . . . , 〈Ak, vk〉} as

ρ({〈A1, v1〉, . . . , 〈Ak, vk〉}) =
2 ·

∑

1≤i<k

∑

i<j≤k(rwt(Ai, Aj) · card(vi) · card(vj))

k · (k − 1) ·max1≤i≤kcard2(vi)
.

We will additionally require that for any unique A, A1, A2 ∈ A, rwt(A, A) = 1,

rwt(A1, A2) = rwt(A2, A1), and rwt(A1, A2) ≥ rwt(A1, A) + rwt(A, A2)− 1.

Armed with a collection of facts in the shape of an instance and a story evaluation

function, we can now define what it means to create an optimal story.

Problem 1 (Optimal Story) Given an instance I, a positive integer k, and an entity

e ∈ E as input, find a story σ(e, I) of size ≤ k that maximizes the value of a given

evaluation function. In this case, σ(e, I) is called an optimal story.

The next section will present algorithms to compute optimal (and suboptimal)

stories.
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6.4 Story Computation Algorithms

This section starts with the algorithms that help produce full, closed, and deconflicted

instances, with respect to a given entity. I will then present a computationally complex

algorithm that produces optimal stories and its faster suboptimal version. Finally,

we will look at a few heuristic based algorithms which, while producing suboptimal

results, may be more practical due to their lower computational complexity.

6.4.1 Building Instances

In order to create a story, one must first collect and generalize all known facts about

story’s subject and remove all possible conflicts between these facts. We have seen

before in this chapter that such collections of facts are abstracted with instances. Let

us then go over algorithms that, given an entity of interest, compute full, closed, and

deconflicted instances with respect to this entity.

The first algorithm, called FullI(), takes an entity e and a source access table

SAT as input and returns as output, the portion of the full instance generated by SAT

which pertains to e.
Algorithm FullI(e,SAT)

e is an entity
SAT is a source access table

begin
Result := ∅
for each 〈A, s, fA,s〉 in SAT do

if fA,s(e) 6= ∅ then
if exists 〈A, V 〉 ∈ Result then

Result := Result \ {〈A, V 〉}
Result := Result ∪ {〈A, V ∪ {fA,s(e)}〉}

else
Result := Result ∪ {〈A, {fA,s(e)}〉}

end if
end if

end for
return Result

end
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It is easy to see that FullI() executes in time proportional to the size of SAT.

Given a full instance I, an equivalence relation ∼, and a generalization mapping G,

on can now compute the closed instance with respect to an entity e by using the

following ClosedI() algorithm.
Algorithm ClosedI(e,I)

e is an entity
I is a full instance

begin
Result := ∅
for each 〈A, V 〉 = I(e, A) do

D := V
while exists v ∈ V do

S := {v′ ∈ V | v′ ∼ v}
D := D ∪ {ΓA(S)}
V := V \ S

end while
Result := Result ∪ {〈A, D〉}

end for
return Result

end

The ClosedI() algorithm executes in time proportional to the number of attributes

in its input multiplied by the average number of values per attribute. Suppose now

that χ is a conflict management policy. The following DeconfI() algorithm takes

an entity of interest e and a closed instance I and applies χ to return the deconflicted

instance with respect to e.
Algorithm DeconfI(e,I)

e is an entity
I is a closed instance

begin
Result := ∅
for each 〈A, V 〉 = I(e, A) do

Result := Result ∪ {〈A, χ(V )〉}
end for
return Result

end

The DeconfI() algorithm executes in time proportional to the number of at-

tributes in its input multiplied by the time taken by the conflict management policy χ.
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We are now ready to create a stories.

6.4.2 Optimal Story Creation

Given an entity e and a source access table SAT, the OptStory() algorithm will find

an optimal story of length k by maximizing the value of the evaluation function.
Algorithm OptStory(e,SAT,k)

e is an entity
SAT is a source access table
k is the requested story size

begin
I := DeconfI(ClosedI(e, FullI(e, SAT)))
return RecStory(∅, I, k)

end

The OptStory() algorithm creates a deconflicted instance I with respect to e and

calls the recursive RecStory() algorithm. The RecStory() enumerates over all possi-

ble stories of k or fewer attributes that can be derived from the given data and returns

the best story with respect to the evaluation function eval().
Algorithm RecStory(Story,I,k)

Story is the story so far
I is a partial instance
k is the remaining story size

begin
〈BestS, BestW 〉 := 〈Story, eval(Story)〉
if k > 0 then

for each 〈A, v〉 ∈ I do
S := Story with 〈A, v〉 attached to the tail
〈S, W 〉 := RecStory(S, I \ {〈A, v〉}, k − 1)
if W > BestW then 〈BestS, BestW 〉 := 〈S, W 〉

end for
end if
return 〈BestS, BestW 〉

end

Given n attributes, the RecStory() algorithm will have to sort through
∑

0≤i≤k
n!

(n−i)!

stories. Even if we restrict the algorithm to the k-length stories, it will still have to

consider n!
(n−k)!

stories. To make story creation more manageable, let us consider the

following algorithm, similar to the SEA algorithm from Chapter 5.
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Algorithm RecStory+(Story,I,k,b)
Story is the story so far
I is a partial instance
k is the remaining story size
b is the branching factor

begin
〈BestS, BestW 〉 := 〈Story, eval(Story)〉
Q is a priority queue
if k > 0 then

for each 〈A, v〉 ∈ I do
S := Story with 〈A, v〉 attached to the tail
Q.add(S, eval(S))
if length(Q) > b then Q.delete(tail(Q))

end for
for each SS ∈ Q do
〈S, W 〉 := RecStory(SS, I \ SS, k − 1)
if W > BestW then 〈BestS, BestW 〉 := 〈S, W 〉

end for
end if
return 〈BestS, BestW 〉

end

The RecStory+() algorithm, essentially limits search at each step to the b best

stories w.r.t. the evaluation function. Given n attributes, this algorithm only considers

1 +
∑

0≤i<k(b
i · (n − i)) stories. We will call OptStory+() the algorithm that calls

RecStory+().

6.4.3 Heuristic Based Algorithms

The GenStory() algorithm given below is similar to the CPRgen algorithm from

Chapter 5. It uses the genetic programming approach to generate suboptimal stories

in a reasonable amount of time.
Algorithm GenStory(e,SAT,k,N ,δ)

e is an entity
SAT is a source access table
k is the requested story size
N is the maximal number of iterations
δ is the desired fitness threshold

begin
I := DeconfI(ClosedI(e, FullI(e, SAT)))

R := d card(I)
k e
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Q := R stories of k attributes randomly chosen from I
for j ∈ [1, N ]

for i ∈ [1, R]
S := a solution randomly chosen among the ones in Q
Choose random 〈A, v〉 ∈ I and 〈A′, v′〉 ∈ S
Replace 〈A′, v′〉 in S with 〈A, v〉
Q := Q ∪ {S}
Q := Q \ {S′} where ∀S ∈ Q eval(S) ≥ eval(S ′)
if maxS1,S2∈Q|eval(S1)− eval(S2)| ≤ δ then

Return best solution from Q
end if

end for
end for
Return best solution from Q

end

The GenStory() algorithm starts by obtaining a deconflicted instance I with re-

spect to e. It then creates an initial population of stories Q and proceeds to replace a

random attribute in a random story taken from Q with another random attribute. The

resulting new story is then added to Q and the worst story (w.r.t. eval()) is deleted

from Q. This process repeats until all stories in Q have approximately the same worth

(w.r.t. the value of δ) or the maximal number of iterations N is reached.

The following DynStory() algorithm is similar to the CPRdyn algorithm from

Chapter 5. It uses the dynamic programming approach to generate suboptimal stories

in a reasonable amount of time.
Algorithm DynStory(e,I,k)

e is an entity
I is the strong instance
k is the requested story size

begin
I := DeconfI(ClosedI(e, FullI(e, SAT)))
S := solution of k attributes randomly chosen from I
I := I \ S
while I 6= ∅

subs := false
r := 1
while r < k and subs = false

S′ := S with 〈Ar, vr〉 replaced with first(I)
if eval(S) < eval(S ′) then

S := S′

Add 〈Ar , vr〉 to the tail of I
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subs := true
else

r := r + 1
end if

end while
remove first(I) from I

end while
return S

end

The DynStory() algorithm also starts by obtaining the deconflicted instance I

and creating a single random solution S. It then treats I as an ordered list of can-

didates (as opposed to a set) and tries to replace each attribute in S with the first

attribute from this list. As soon as a better solution is found, it takes the place of S.

The algorithm terminates when the list of candidates is exhausted.

6.5 Implementation

Our group has developed a scalable story-telling architecture and implemented the

STORY prototype system for automatically extracting facts from heterogeneous data

sources, creating stories based on these facts, and delivering these stories to client

devices, such as computers, PDAs, cell phones, and so forth. Figure 6.3 describes the

architecture of our system. It assumes that there are two classes of users:

• Application developers build story-telling applications such as the Pompeii tour

guide or the military intelligence-on-request application. Application develop-

ers interact with the system using the STORY Developer Interface in Figure 6.3.

• End users use story-telling applications built by the application developers. End

users request and view stories using the STORY Client, as shown in Figure 6.3.

Our system contains all necessary tools for both kinds of users.
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Figure 6.3: System Architecture.

The system consists of the Data Extraction Tools (written in C#) that help ex-

tracting facts about entities from the data sources; the STORY Server (written in C++

and running on an Apache-equipped Solaris machine) that builds stories and delivers

them over HTTP protocol to both generic Web browsers and specialized clients (such

as a custom PocketPC client used in the Pompeii tour guide); and STORY Developer

Interface (again in C#) that gives application developer control over data extraction

and story creation process. When creating a story-telling application, the STORY

application developer typically goes through the following steps:

STEP 1: Extraction of attribute values. The developer needs to specify methods

used to extract attribute values from heterogenous data sources, such as text,

HTML documents, relational databases, and so forth. I will describe existing

extraction methods in detail later in this section.

STEP 2: Description of continuity, priority, and repetition. The developer speci-

fies the kinds of continuity, priority, and repetition functions to be used. He can

either use ones mentioned earlier in this chapter, or add new ones that better fit

his needs. For example, attributes can be grouped into hierarchies and priorities

set for entire hierarchical branches, as well as for individual attributes.
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STEP 3: Description of the conflict management. The developer specifies what kind

of conflict management function he wants to use. He can either select from a

few predefined functions, or add his own function.

STEP 4: Selection of the story creation algorithm. The developer describes which

of the several story creation algorithms should be used. We currently offer a

choice of OptStory+(), GenStory(), or DynStory() algorithms.

STEP 5: Description of the story output. The developer specifies the format in which

stories will be presented to users. Using custom client applications, a story can

be presented in a wide variety of different ways. For example, our client im-

plementationa can present it as a table or a tree of attributes, or a narrative in

English, Spanish, or Italian language. The narrative can be made of sentences

taken from the data sources (in the language of these sources), or generated

using templates. In the latter case, its output language can be changed with a

relative ease, but the application developer has to supply a template for each

attribute. Such a template is a plain text sentence with special tags “%e”, “%a”,

and “%v” specifying how to express the fact that “entity e’s attribute a has a

value v”.

STEP 6: Story prefetching. The developer can supply a map with spatial locations

of all or some entities and specify methods to prefetch stories to user’s device

(e.g. a PDA or the like). In some applications, such as the Pompeii tour guide,

there is an advantage in tracking users’ locations and prefetching stories based

on their proximity to certain objects of interest.
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6.6 Extracting Attribute Values

The attribute value extraction is perhaps the most difficult problem we have faced

when implementing the STORY system. The present implementation extracts data

from the Web (with some minimal human assistance). With the algorithms presented

in the rest of this section, the data can also be extracted from relational tables and

XML files, although the lack of datasets relevant to our sample applications has so far

discouraged us from actively using these two sources.

6.6.1 Relational Sources

Extracting attribute values from relational sources is relatively easy, as the data is

already well organized. Consider a relational table T = {c1, . . . , cm, . . . , cn} where

c1, . . . , cn are columns and c1, . . . , cm are also keys. It is logical to assume that each

column cj corresponds to an attribute with the same name and contains values for this

attribute. Then each row in T corresponds to a set of attributes. As a row is addressed

by its key column values, one can assume that its corresponding entity can be stored in

any of the key fields. Then for each two columns c1≤i≤m, c1≤j≤n we add the following

entry to the SAT table:

〈cj, T : ci, fcj ,T :ci
(e) = πcj

σci=eT 〉.

In other words, given a table T as the source, we obtain an attribute cj for an entity e

by looking for all table rows that can be referred by e and picking their cj values.

6.6.2 XML Sources

Data extraction from XML documents is somewhat more complicated than from the

relational tables, as XML has a flexible hierarchical data structure. Consider an XML
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node N = 〈name, value, {c1, . . . , cn}〉 where c1, . . . , cn are children nodes. Assum-

ing that N is a root node in an XML document, and nodes may act both as entities

and attributes, one can write the following algorithm to return a given attribute A for

a given entity e.
Algorithm GetXMLAttr(N ,e,A)

N is the root XML node
e is the entity
A is the attribute

begin
Result := ∅
if N.value = e or N.name = e then

for each child c of N such that c.name = A do
Result := Result ∪ {c.value}

end for
else

for each child c of N do
Result := Result ∪GetXMLAttr(c, e, A)

end for
end if
return Result

end

The GetXMLAttr() recursively finds all occurences of an entity e in the XML

tree, collects all values for the requested attribute A, and returns the set of collected

values. Notice that the algorithm tries to match e to both node value and node name.

We can now enumerate all node names and values occuring in the XML tree as

A1, . . . , Am, and for each Ai, add a SAT table entry 〈Ai, N, GetXMLAttr(N, e, Ai)〉.

6.6.3 Web Sources

The process of extracting data from Web documents is a complex task. The cur-

rent STORY implementation accomplishes it by looking for relevant documents us-

ing a common Web search engine (Google), performing semantic analysis of found

documents, and extracting facts with the help of logical rules. The results are then

presented to the application developer, who removes any mistakes introduced by the
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extraction engine and uploads the data to the server. Following is a more detailed

explanation of our data extraction process, step by step:

STEP 1: Document search. The extraction engine uses Google to search the Web

for documents related to the entity of interest (e.g. “Pentheus”) in the domain of

interest (e.g. “Greek Mythology”). Returned documents are passed through an

HTML parser that extracts from them significant pieces of text, while discarding

the HTML formatting structure.

STEP 2: Lexical analysis. The extraction engine uses the publicly available Word-

Net lexical database to analyze the text and tags each word with its correspond-

ing part of speech.

STEP 3: Name detection. The extraction engine uses some heuristics to recognize

and classify named entities (such as personal, organizational, corporate, and

geographic names and trademarks). The heuristic algorithm used in this step

can be trained on a large corpora of data to improve its performance.

STEP 4: Disambiguation. The extraction engine uses common pronoun resolution

and word sense disambiguation algorithms to produce an unambiguous version

of the original text.

STEP 5: Semantic parsing. Finally, the rewritten text is analyzed by a semantic

parser which applies a set of semantic rules to deduce the entity-attribute-value

triples. Semantic rules are of the form head→ tail, where head is a pattern to

be matched to a sentence taken from the text. If the pattern matches, the tail

says how to extract one or more entity-attribute-value triples from this pattern.

The system will try to determine the relevant time interval for each triple and
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tag it with the pedigree information, such as the source and the date when the

document has been last updated. This data can be later used for conflict man-

agement, or to give users information on where each fact comes from.

The semantic rules can be either entered into the system manually by the appli-

cation developer or learned semi-automatically from examples.

STEP 6: Data cleanup. The application developer is presented with the entity-attribute-

value triples extracted by the engine. His job is to remove any erroneous triples

that sometimes appear in the extraction results. When developer is satisfied

with the quality of results, he submits the data for upload to the STORY server.

6.7 Conclusion

In this chapter, I have laid out a theoretical foundation for automated story-telling

based on the data culled from heterogenous data sources (RDBMS, XML, Web). I

have shown how story-worthy facts are collected, processed, arranged into stories,

and how resulting stories can be rated with respect to continuity, priority, and non-

repetition criteria. Furthermore, I have presented several algorithms to create stories.

Finally, the chapter describes our prototype STORY system, its architecture and the

process for creating story-telling applications.

The STORY project is an ongoing work. There is still a lot of space for improve-

ment in our data extraction subsystem, in the template-based output mechanism, and

the way system presents stories to users. The goal of the project is to make the system

intelligent enough to perform data extraction on the fly, without human assistance,

and create narrative that is both informative and engaging.
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Chapter 7

Conclusion

Historically, computers were built to manipulate numbers and, later, text documents.

There is a vast body of research related to these two kinds of data, with the relational

algebra providing the common framework for organizing data.

The current abundance of cheap data storage, computing power, and rich presen-

tation capabilities has made it possible to store and process large amounts of images,

sound, and video. As result computers and computer networks gradually replace ra-

dio, television sets, tape and disk players as the primary source of audiovisual infor-

mation and entertainment in today’s homes.

The popularity of the multimedia data has stemmed research in multimedia stor-

age, searching, and delivery in the past years. Unfortunately, while many specific

properties of different media types have been addressed, there still isn’t a common

framework for organizing multimedia data in the same way relational algebra orga-

nizes numeric and text data. As of now, the most common method to “befriend”

multimedia and traditional databases is to store multimedia files as “blobs” inside

relational fields.

In this thesis, I have tried to fill the gap by proposing several relational-like al-
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gebras for operating on PowerPoint, audio, and video data, which are kinds of mul-

timedia most commonly used today. These algebras are devised in a way that ad-

dresses different representations of each media type, while leveraging their common

properties. For example, the ADA audio database algebra represents audio with a

set of time-ordered data sequences, including traditional waveforms, frequency spec-

trum changes, musical scores, or text transcripts. The VDA video database algebra

represents video with a series of segments (blocks) characterized by features. While

these features may come from different sources and represent different things (objects,

events, paths, color distribution, movement), they all share such common properties

as location at the screen and the percentage of this location occupied by the feature.

The relative simplicity of the proposed algebras allows to prove some useful equiv-

alences in them. Coupled with the cost model, these equivalences become the basis

for the query optimization, as has been shown in this thesis. I have also presented

some ways to accelerate query execution by indexing data and close examination of

queries.

In addition to the algebraic approach to multimedia processing presented in the

first chapters of this thesis, in the last chapters I present an alternative logical ap-

proach that uses logical reasoning to create short summaries of large multimedia files

(Chapter 5) or facts obtained from heterogenous data sources (Chapter 6). To esti-

mate the quality of produced summaries, I introduce the three criteria: (i) priority of

the summarized information, (ii) continuity of a summary, (iii) amount of repetition

in a summary. A summary is then composed of the available information by an algo-

rithm maximizing the first two parameters (priority and continuity), while minimizing

the third (repetition). I show several such summary composition algorithms.

It is my hope that concepts presented in this thesis will help other people to design
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and implement large multimedia database systems able to interoperate with each other

and produce “intelligent” answers to user queries.
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