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The Optimal Pace of Product Updates 
 

Abstract 

Some firms (such as Intel and Medtronics) use a time–pacing strategy for new product 

development, introducing new generations at regular intervals.  If the firm adopts a fast pace 

(introducing frequently) then it prematurely cannibalizes its old generation and incurs high 

development costs, while if it waits too long, it fails to capitalize on customer willingness–to–

pay for more advanced technology.  We develop a model to gain insight into which factors drive 

the pace.  We consider the degree to which a new generation stimulates market growth, the rate 

at which it diffuses (its coefficients of innovation and imitation), the rate of decline in its margin 

over time, and the cost of new product development.  The optimization problem is non–concave; 

however we are able to solve it numerically for a wide range of parameters because there is a 

finite number of possible solutions for each case.  Somewhat intuitively, we find that a faster 

pace is associated with a higher market growth rate and faster margin decay.  Not so intuitively, 

we find that relatively minor differences in the new product development cost function can 

significantly impact the optimal pace.  Regarding the Bass coefficients of innovation and 

imitation, we find that a higher sum of these coefficients leads to a faster pace but with 

diminishing effects, and that for relatively higher sums the coefficients are effectively 

substitutes. 

Keywords: new product introduction, diffusion, time–pacing, clockspeed 
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1.   Introduction 

Consider a firm such as Intel that periodically updates its product line with a new 

generation of product.  For example, since the introduction of the early 4004 microprocessor, 

Intel has typically introduced a new generation every three to four years as shown in Figure 1.  

Each new technologically–advanced generation revitalizes the product line, initially 

commanding a relatively higher price.  But then the price begins to decay as the new generation 

diffuses through the market, displacing the previous generation.  As it ages, the new generation 

itself eventually becomes ripe for replacement. 

Figure 1: Intel’s new product development launch history (Intel 2004) 
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Many electronic products are similarly updated at relatively regular intervals, including 

items such as computer components, printers and other peripherals, digital cameras, and cell 

phones.  From a customer’s perspective, these products seem to improve at a somewhat regular 

pace, as new generations of products are repeatedly introduced.  Eisenhardt and Brown (1998) 

refer to this type of product development strategy as time pacing.  A notion similar to that of the 

pace of new product introduction is that of industry clockspeed as discussed by Fine (1998) and 

by Mendelson and Pillai (1999):  a fast pace would contribute to a fast clockspeed.   
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The pace at which a company introduces new product generations is an important but 

complex decision for the firm.  For example, say Intel has just introduced a new generation of 

microprocessor.  It then needs to decide whether to introduce the next generation microprocessor 

next year, in two years, or at some point further down the road.  If it goes for an early 

introduction, it may incur high costs (in product development, for example) and it may 

prematurely cannibalize its previous generation.  If it waits too long, it may fail to capitalize on 

customer willingness–to–pay for more advanced technology, in addition to the possibility that 

competitors may (further) infiltrate the market.  Additionally, as discussed by Kornish (2001) 

and Krishnan and Ramachandran (2004), the pacing decision may impact whether customers 

who would otherwise immediately buy might instead choose to wait for the upgraded product.  

How frequently should it introduce a new generation? 

We develop a model to analyze some of the firm’s trade–offs.  We focus on the 

interaction of seven parameters:  the shape and scale of the product development (PD) cost 

curve, the Bass diffusion coefficients of innovation and imitation (reflecting the impact of 

cannibalization and sales growth within a generation’s life), the rate of growth in potential 

market size, the rate of decline in profit margin after a new product’s introduction, and the 

discount rate.  We examine each of the parameters at three levels in a full–factorial experiment.  

For each of the 2,187 runs we find the profit–maximizing pace through an exhaustive numerical 

search––although the optimization problem is non–concave, it has a finite number of possible 

solutions. 

With regard to the above factors, we make the following assumptions.  First, we assume 

the PD cost is convex (“crashing” is costly while extensively long development times also lead 

to inefficiencies in PD––see Bayus 1997 and Graves 1989).  Second, to model the diffusion 

process we follow the multi–generation model of Norton and Bass (1987), hereafter abbreviated 
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N/B.  Third, similar to N/B we assume the overall market size grows incrementally over time (or 

remains constant).  And fourth, we assume the profit margin for a given generation of product 

declines exponentially over time––see Bayus (1997), Krishnan et al. (1999), Smith and 

Reinertsen (1991) and Carrillo (2004).  

The rates of growth in market size and of decay in profit margin are effectively 

surrogates for several of the factors mentioned earlier, such as the rate of change in customer 

willingness–to–pay and the competitive nature of the market.  For example, the price of each 

subsequent upgrade of an Intel microprocessor decays over time as shown in Figure 2.  To 

formally model the margin decay one would also need to consider the pricing strategy and the 

cost trajectory, which may also be downward due to the learning curve.  However, for simplicity, 

we directly assume an exponential decay in margin. 

Figure 2: Price decay after introduction of an Intel microprocessor (Intel 2004) 
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To the best of our knowledge we are the first to consider how the diffusion coefficients of 

a new generation of product (i.e., the coefficients of innovation and imitation and the market 

growth rate) impact the time–pacing decision.  This is significant in that this diffusion has been 

empirically verified (N/B 1992), and here we find these coefficients are some of the most 

important determinants of the pace.  In particular, we find that a higher sum of the coefficients of 
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innovation and imitation leads to a faster pace but with diminishing effects, and that for 

relatively higher sums the coefficients are effectively substitutes. In other words, if there is a 

sufficient base rate of adoption due to external communication (i.e., a sufficiently high 

coefficient of innovation), then it is only the magnitude of the sum that matters––it doesn’t 

matter whether it is the coefficient of imitation or the coefficient of innovation that contributes to 

the sum.   

Another interesting finding is that seemingly relatively minor differences in the new 

product development cost curve can significantly impact the optimal pace.  Product development 

cost might typically represent less than 5% of the total product revenues over a product’s life 

(Ulrich and Eppinger 2004). Yet, we find that subtle differences in the shape of the PD cost 

curve (which may impact PD cost by only 10% or so) can result in differences of more than 50% 

in the pace of new product introduction.  This may help explain why product life cycles 

apparently have gotten shorter – even a relatively modest improvement in PD cost can 

significantly alter the pace. 

We review additional related literature in § 2.  We present the details of our model in § 3, 

followed by presentation of our numerical studies in § 4.  We discuss implications of our results 

and conclude in § 5. 

 

2. Literature Review 

Time pacing (Eisenhardt and Brown 1998) has been linked to the idea of clockspeed, 

Fine’s (1998) loosely–defined term denoting the rate at which an industry or firm operates.  

Souza et al. (2004) define industry clockspeed as the rate of decay in prices, in a model that 

incorporates competition, demand uncertainty, and inventory.  They conclude that time pacing 

may not be optimal, but generally performs well.  Similarly to us, they find that the pace of new 
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product introductions increases as industry clockspeed increases.  Souza (2004) models a multi–

period game where two profit–maximizing firms compete by introducing new products.  He 

concludes that increased manufacturing learning increases the firm’s pace of product 

introductions.  Both Souza et al. (2004) and Souza (2004), however, assume a fixed cost 

associated with a constant product development time of one period, a single product generation 

in the market at any time, and do not model diffusion.  In contrast, we assume a U–shaped 

product development cost with time, two generations in the market at any time, and model 

diffusion. 

An extant stream of literature examines the trade–off between product development time, 

cost and product quality for a single project.  Cohen et al. (1996) consider a multi–stage 

development process and show that the fast introduction of a low–quality product is usually not 

optimal.  Bayus (1997) finds that fast development of low–quality products is optimal only when 

the market window is short, the competitor is relatively weak, and the development cost curve is 

relatively steep.  In a game–theoretic model, Bayus et al. (1997) find that a profit–maximizing 

firm with a new technology may choose to be the first to market or wait and enter with a better 

product, depending on cost and market parameters.  Klastorin and Tsai (2004) examine the 

choice of product design complexity (fixing development time) and price in a duopoly.  In 

contrast to these models, we explicitly model the impact of diffusion shape on the pace of new 

product introductions in a multi–generation product scenario.     

Morgan et al. (2001) extend the study of the cost–quality–time trade–off in product 

development to multiple generations, but there are key differences with respect to our model.  

Morgan et al. (2001) assume a constant market size and revenue per unit over time; in contrast 

our model explores the key trade–offs between diffusion rate, declining margins over time, and a 

U–shaped product development cost curve.  Morgan et al. (2001) find that a short product 
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development cycle is strongly associated with a faster industry quality improvement rate, while 

we somewhat similarly find that higher market growth potential results in a faster pace.  

Similarly to our model, Carrillo (2004) investigates the optimal pace of new product 

introductions.  However, she models diffusion using the single–generation generalized Bass 

model (Bass et al. 1994), does not study different diffusion curve shapes, and assumes a fixed 

cost for product introduction independent of introduction time.  Conversely, we investigate 

different diffusion curve shapes in a multi–generation scenario, and assume that product 

introduction cost depends on introduction time, as observed empirically.  While Carrillo finds 

that lower product development costs speed introduction, we find that the shape of the curve is 

more significant.  In addition, Carrillo finds that a faster margin decay results in a slower 

introduction pace unless the initial revenue goes up to offset the decay; we instead find that faster 

margin decay always leads to a faster introduction pace, ceteris paribus.   

Wilson and Norton (1989) model a situation where a monopolist offers one product, then 

decides when to introduce a second–generation product in order to maximize profits.  A key 

difference between our models is that we incorporate product development cost into the decision, 

while they assume the new product is “ready to go” at the beginning of the time horizon.  

Consequently, they find situations where it is optimal to introduce both products immediately, 

whereas in our model the firm never introduces the second–generation product immediately due 

to the extremely high cost of short development times.  Furthermore, their planning horizon is 

shorter than the time it takes for the first product to completely diffuse through the market; in 

contrast, we assume that the horizon is long enough such that multiple generations of product are 

generally introduced.  

The sequence and timing of new product introductions for two or more products with 

differing quality levels has been considered as a way to alleviate cannibalism – see Moorthy and 
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Png (1992), Chen and Yu (2002), Bhattacharya et al. (2003), and Krishnan and Zhu (2003).  

Unlike these models, we focus on the optimal time of introduction for the second and subsequent 

products, assume margin decay over time for each generation, and assume that future products 

expand the overall market using a multi–generation diffusion model.  

In sum, although there is significant research on the timing of new product introduction, 

our paper is the first to analyze the key trade–offs between diffusion curves, rate of margin 

decay, and product development cost curve in a multi–generational product scenario.    

 

3. Model 

Our model finds the optimal pace (i.e., rate) of new product introductions, assuming the 

firm follows a time–pacing strategy involving constant time intervals between new product 

generational updates.  Time t takes on only integer values, denoting a time period (for example, t 

= 10 might denote month 10).  We assume the firm can introduce a new generation of product 

only at the end of a period, with the planning horizon involving T periods.  The number of 

periods between introductions is denoted by τ.  We call the inverse of τ  the pace (e.g. if the firm 

introduces every 24 months, then the pace is 0.5 introductions per year).  The optimal pace is 

denoted by 1/τ*.  We assume the firm is a monopolist, or that competition effects can be captured 

in the product price decline over time.  We track our notation in Table 1. 
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Table 1: Notation 

Symbol Description 
t Time period, t = 0, 1, 2, …, T 
T Time horizon, in periods 
τ Number of periods between introduction of successive generations 
1 / τ* Optimal pace of introductions 
ti Time period in which generation i is introduced (at the end of the period);  

ti = (i –1)τ  (thus t1 = 0) 
( )ir t  Profit margin (price – cost) for generation i during period t; t ≥ ti 

0r  Profit margin in the period a generation is introduced 

b Fractional decrease in profit margin per period  
D Scale parameter for PD cost curve 
d Shape parameter for PD cost curve  
α Discount factor  
m1 Gross potential market for generation 1 
mi Incremental gross potential market for generation i relative to generation  

i – 1, i > 1 
( )iS t  Sales for generation i during time period t 

( )iF t  Fraction of generation i’s net potential market that will purchase in period t 

( )iY t  Gross potential market of generation i in period t  

( )iZ t  Fraction of generation i’s gross potential market cannibalized by generation 
i+1 in period t 

p Coefficient of innovation in the N/B model 
q Coefficient of imitation in the N/B model 
g Per-period growth rate in the increase in gross potential market mi (growth 

accrues only when a new generation is introduced) 
( )τΠ  Total discounted profit over all T periods 

We assume without loss of generality that the first–generation product is introduced at 

the end of period t = 0, and denote the introduction of the ith generation as occurring at the end of 

period ( 1)it i τ= − .  We assume the firm only has two generations of product in the market at any 

one time (e.g. the first generation is dropped when the third is introduced).  This assumption is 

supported, for example, by the observation that when Intel introduced the Pentium IV, shipments 

of Pentium II dropped to near zero (Dataquest 2003).  Thus generation i cannibalizes sales from 

generation i – 1, but later has its sales cannibalized by generation i + 1.  Diffusion of the new 

generation progresses either due to communication or because the new product is better in some 
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way.  For example, in fashion goods, the latest color and style may be considered by customers 

to be an improvement over the old version.  Similarly, in microprocessors, the new chip has a 

faster processing speed and more transistors.  See Schmidt and Druehl (2004).  Regardless of 

whether it is communications or changes in attributes that cause the diffusion, we apply the 

multi–generation N/B (1987) model to track the diffusion process (details are given later).  

We assume that unit profit margin ( )ir t  (selling price minus production cost) for each 

generation i is constant over a given period but decreases exponentially from period to period per 

the relationship 0( ) exp( ( ))i ir t r b t t= − − , where b denotes the rate of profit margin decrease per 

period.  Exponential margin decay is considered a reasonable assumption given manufacturing 

learning (Yelle 1979) on the cost side, and considering a complex set of factors, such as the pace 

of technological evolvement, on the price side.  Following Bayus (1997) and Smith and 

Reinertsen (1991), we combine exponential cost and price decay into a single variable for 

parsimony.  Further support, in addition to the available empirical evidence, for our assumption 

of declining margins over time is found in Bass’s (1980) finding that declining prices from the 

learning curve effect result in faster adoption of new technology and in the finding of Krishnan et 

al. (1999) that, under certain conditions, a monotonically decreasing price for a product that 

experiences learning effects is optimal. 

We assume that product development (PD) cost for introducing a product in the market is 

a convex “U–shaped” function of its product development time τ.  That is, for introduction time 

values, τ, that are less than the introduction time where PD cost is minimized, PD cost increases 

as τ  decreases due to increasing crashing costs to reduce PD time.  Conversely, for τ  values 

greater than the introduction time where PD cost is minimized, PD cost increases as τ  increases 

due to decreasing know–how, lack of motivation and high setup costs as people move to other 
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projects.  For a review on the justification for such a shape for the product development cost 

curve, the reader is referred to Bayus (1997) and Graves (1989).  

More specifically, we assume that product development cost is a function of τ  according 

to the functional form [ ]1/ exp( ) 1D d dτ τ⎡ ⎤− +⎣ ⎦ , where D is a scaling parameter, and d is a 

shape parameter that controls both the time of minimum cost, as well as the steepness of the 

curve (but all values of d yield the same PD cost minimum).  Examples are shown in Figure 3.  

Note that we do not include the PD cost for the first generation. 

Figure 3: Product development cost curves  
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We also experimented with a quadratic form for the PD cost curve, and reached the same 

conclusions; we prefer the exponential–linear curve above because a single parameter d defines 

the shape of the curve, and because the PD cost approaches infinity as τ  approaches zero, and as 

τ  approaches infinity.  This formulation eliminates the possibility that two generations are 

introduced at the same time and assumes that the development of the future generation depends 

on the previous generation’s successful development.  For parsimony, we consider that the 

product development cost is incurred once at the time of each introduction.  Finally, a cash flow 

F in period t is worth  tFe α−  at period zero (we do not discount within a period).  The objective is 
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to maximize total discounted profit at period zero, where profit in each period is the sum of the 

net revenues (sales volume for each generation multiplied by its per-unit profit margin) minus 

the product development cost (if there is one).   

The Bass (1969) model has been applied in numerous settings and extended in many 

ways.  See Mahajan et al. (1990) for a review of these extensions.  We use the multi–generation 

Bass model of Norton and Bass (N/B) (1987, 1992), described briefly as follows.   

To find the sales of generation i in period t, first define:  
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( )iF t  can be thought of as the fraction of generation i’s potential market that will 

purchase generation i in period t.  Note that if it t<  then generation i has not yet been introduced 

while if it t=  then it is introduced only at the end of the period so in either case its purchase 

fraction is zero for that period, while if 2it t +>  then its purchase fraction is one, but below we 

show that in this case generation i’s potential market is zero because the next generation has 

cannibalized all its potential. 

There are two factors contributing to generation i’s potential market size.  The first factor, 

denoted by ( )iY t , accounts for the notion that generation i cannibalizes some (or all) of older 

generation ( 1)'si −  potential market.  For 1i >  define:  

 1 1( ) ( ) ( )i i i iY t Y t F t m− −≡ + , (2) 

where the original potential market is 1m  (for i = 1 we define 1 1( )Y t m= ) and the incremental 

potential market each period thereafter is denoted ,  1im i > .  In other words, ( )iY t  represents all 

potential purchases of the previous generation, 1 1( ) ( )i iY t F t− − , plus some incremental growth im .  

We call ( )iY t  the gross potential market for generation i in period t. 
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The other factor contributing to generation i’s potential market size is denoted by ( )iZ t , 

and it accounts for the fact that generation i may itself be partially (or fully) cannibalized by the 

newer generation i + 1.  Note that by (1) and (2) a newer generation 1i +  will cannibalize the 

fraction 1( )iF t+  of generation i’s gross potential market. This leaves un-cannibalized for 

generation i the fraction: 

 1( ) 1 ( )i iZ t F t+= − . (3) 

The product ( ) ( )i iY t Z t  can be thought of as the net potential market.  (Note that as 

claimed earlier, this is zero for 2it t +> .)  The actual market or sales for generation i during time 

period t is thus: 

 ( ) ( ) ( ) ( )i i i iS t F t Y t Z t= . (4) 

We effectively assume that sales progress at the same rate over the duration of each period, with 

the rate given by (4).  Assuming the firm is a monopolist, it will sell ( )iS t  in period t.  If there is 

competition, a possible interpretation of our assumptions is that the firm’s market share is 

constant over the horizon (the total market is scaled up from ( )iS t ).   

To simulate the way in which a new generation of product often expands the market, we 

consider that the potential for a new generation to increase the market size grows at a rate of g ≥ 

0 per period, where g = 0 indicates no growth.  Thus, the incremental gross potential market for 

the second–generation product, which is introduced at the end of period 2t τ= , is 

2 1((1 ) 1)m m g τ= + − .  This growth process continues throughout the planning horizon; in general 

11 [(1 ) 1] i
ki km g mτ

=+ = + − ∑  for i ≥ 1.  Note that the introduction of a new generation is required to 

take advantage of growth in the potential market:  im  does not change during generation i’s 

lifetime.  However, the longer the time between generations, the greater the expansion in the 

potential market (due to pent-up demand for higher performance, for example). 
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We assume that the firm has the necessary production capacity and capabilities to serve 

the resulting market.  Thus we ignore costs such as the costs of capacity expansion, training and 

inventory in our model.  For example, we assume that possible decisions regarding inventory 

will not affect the firm’s new product development decisions.   

Thus in our model the optimal pace 1/τ* depends on a complex set of factors: margin 

decay rate, sales level (which depends on the diffusion process), product development cost, and 

discount factor.  Given the complexity and the fact that profit as a function of τ  is not concave 

(as we show later through an example), we find τ* numerically through a grid–search algorithm 

over all possible integer values of τ, as described in Algorithm 1: 

Algorithm 1 

Let ( )τΠ  denote total discounted profit over all periods.  Let *
introτ  denote the optimal τ given 

that the firm introduces a new product, and let *
intro( )τΠ  denote the profit associated with *

introτ . 

1. Set τ = 1, *
intro 0τ = , and *

intro( )τΠ = −∞ . 

2. The number of generations over T, denoted by M, is /M T τ= ⎡ ⎤⎢ ⎥ . 

3. For i = 2 to M, 
( 1)it i τ= − ; 1  it i τ+ = . 

For t = it  to 1it + , compute 1( )iS t−  and ( )iS t  by (4).  

4. [ ]   

1 0 2
( ) ( ) ( ) 1/(exp(  ) 1)  i

M T M tt
i ii t i

e S t r t D d d e αατ τ τ −−
= = =

Π = − − +∑ ∑ ∑  

5. if *
intro( ) ( )τ τΠ > Π  

*
introτ τ= ; *

intro( ) ( )τ τΠ = Π  

1τ τ= +  
if Tτ =  stop; else Go to Step 2 

else 
1τ τ= +  

if Tτ =  stop; else Go to Step 2 
End 

End of Algorithm 1 
 

The end–result of the above algorithm is *
introτ , the optimal time between product 

introductions if the firm is constrained to introduce a product at least once during the planning 

horizon T.  We note that *
introτ  is not necessarily the solution to our problem, because the firm 
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also has the option of not introducing another product in the market at all (that is, all net 

revenues are derived from sales of the first–generation product until the end of the planning 

horizon T).  Thus, the optimal time between product introductions is  

 
( )* *

* intro intro 1 1 10
  if ( ) ( ),

    otherwise.

T t

t
r t e m F tατ ττ

−
=

⎧ Π >⎪= ⎨
∞⎪⎩

∑  (5) 

 

4. Numerical Analysis 

In this section we describe an extensive numerical analysis to gain insights into the 

solution of (5).  We ran a full–factorial experimental design for seven model parameters.  

Without loss of generality, we maintain the following parameters as fixed: m1 = 10 and 0 1r = .  

Further, we consider a long planning horizon T = 200 periods.  Hereafter, we will assume one 

period to be equal to one month, and thus the planning horizon corresponds to about sixteen 

years. 

4.1. Parameter Levels 

The parameters and levels examined are as shown in Table 2.  All parameters are studied 

at three levels: low, medium and high.  The levels for the discount factor are 0.5% per period (α 

= 0.005), 1% per period, and 1.5% per period; this corresponds to annual discount factors of 

5.8%, 11.3%, and 16.5% respectively.  The levels for the PD cost scaling parameter D are 12.5, 

15, and 19; this corresponds to minimum product development costs of 20, 25, and 30.  To 

understand these numbers, consider that a minimum PD cost of 30 indicates a full quarter of 

earnings if the sales level is kept at its maximum for the first–generation product, without 

cannibalization from the second–generation product.  The levels for the PD cost parameter d are 

0.02, 0.05, and 0.08, which result in the PD cost curves previously shown in Figure 3.   
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Table 2: Experimental design 

Factor Factor Levels 
α 0.005, 0.01, 0.015 
D 12.5, 15, 19 
d 0.02, 0.05, 0.08 
b 0.01, 0.025, 0.05 
p + q 0.1, 0.4, 0.8 
q / p 1, 10, 50 
g 0, 0.005, 0.01 

 

The levels for the decay in profit margin with time are 1% per period (b = 0.01), 2.5% per 

period, and 5% per period (or 11.3%, 25.9% and 45.1% per year).  To justify these values, we 

consider the findings in Blackburn et al. (2004), who report value decay rates to be 1% per 

month for power tools (over a five–year life cycle) and 4–5% per month for personal computers 

(over an 18–month life cycle).   

Regarding the Bass coefficients, rather than using the parameters p and q individually we 

consider the sum p + q to be one parameter and the ratio q / p to be another, due to the way the 

sum and ratio define diffusion as seen by (1).  The levels for p + q and q / p capture a variety of 

diffusion processes encountered in practice and are inspired by the values used in the 

experimental study in Krishnan et al. (1999).  We leave the values fixed over the time horizon as 

N/B (1992) find the values of p and q do not change from generation to generation in an 

empirical study.   

Finally, the levels of market growth g range from a no growth scenario with g = 0 (stable 

market), to g = 0.005 per period (corresponding to 6.2% per year), to g = 0.01 (corresponding to 

12.7% per year).  Negative market growth (i.e., decline) is not considered. In this case, a pacing 

strategy would not be appropriate.  Clearly, negative growth would increase the time between a 

firm’s introductions.  However, the firm would need to assess whether it would be beneficial to 

incur the product development cost to introduce another generation, or just offer the current 

generation until the market declines to zero. 
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In total, there are 37 = 2,187 experimental cells.  We implement Algorithm 1 in 

MATLAB (1996).  We first illustrate the profit function using an example taken from our 

experimental design, followed by an analysis of results from the entire experiment.   

4.2. Example of Profit Maximization 

Consider α = 0.005 (discount factor of 5.8% per year), D = 19 (minimum PD cost equals 

30), d = 0.02, b = 0.01 (1% profit margin decay per month), p + q = 0.4, q / p = 10, and g = 0.005 

(6.2% potential market growth per year).  We subsequently refer to this as Example 1. 

Figure 4 plots Π(τ) for this example; note that the curve is not concave, which 

necessitates our grid–search algorithm for finding the optimal time between product 

introductions τ*, which is τ* = 29 months for Example 1.  Thus, the optimal pace is 1/τ* = (1/29) 

(12) = 0.41 introductions per year, and *( )τΠ  = 1,304.  Figure 5 plots sales and undiscounted net 

revenues (i.e., profits without considering product development cost) as a function of time for all 

seven generations during the planning horizon T.  After each generation is introduced, 

undiscounted net revenue per period increases due to diffusion (and consequently higher sales 

per period), despite the fact that the unit profit margin decreases exponentially with time after 

each generation’s introduction; it then peaks and decreases with time afterward, until a new 

generation is introduced again.  The gross potential market for the first generation is 10, and 

increases in gross potential market for generations two through seven (over the previous 

generation) are 1.56, 1.80, 2.08, 2.40, 2.78, and 3.21, respectively.   
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Figure 4: Plot of total profit Π(τ) for Example 1 
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Figure 5: Sales and undiscounted net revenues per period versus time for Example 1 
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4.3. The Main Effects of the Seven Parameters 

We now focus on the results for the entire experimental design.  The statistics for the 

pace 1/τ* are displayed in Table 3, for the 2113 cells (96.7%) where it is optimal to introduce 

more than the first–generation product in the planning horizon; in 74 cells (3.3%) it is not 

optimal to introduce the second–generation product.  The median value of pace is 0.6 

introductions/year; this number is similar to life cycles of approximately 1.75 years for some 

electronics products (i.e., personal computers).  We note that the minimum value of pace is 0.18 
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introductions/year or a life cycle of 5.6 years, which is considerably lower than the planning 

horizon; we believe that this result reinforces our belief that the choice of planning horizon T is 

not critical to the insights our model generates, as long as T is “large enough”.  The maximum 

pace is 1.5 introductions per year, or 8 months between introductions. 

Table 3: Statistics for the optimal pace (in introductions per year) 

Statistic  Value 
Minimum 0.18 
25th percentile 0.41 
Median 0.60 
75th percentile 0.80 
Maximum 1.50 

 

We first analyze the 74 cells where it is not optimal to introduce a product.  To that end, 

we analyze the proportion in which each factor is observed at each of its three levels in those 

cells.  If a factor does not influence the decision to never introduce a product, then we should 

expect that the factor is observed at each of its three levels (low, medium, high) at roughly 33%; 

this can be tested statistically. The results shown in Table 4 reveal that the factors α  and D do 

not strongly influence the decision to not introduce the second product, since they are observed 

at each of their three levels in proportions not significantly different than 1/3.  All other factors 

influence the decision to not introduce the second product, although the more significant impacts 

are clearly due to the diffusion curve parameters p + q and q / p.  In particular, for 100% of cases 

where it is optimal to not introduce a product, the parameter p + q is observed at its low level, 

and in 84% of cases the parameter q / p is observed at its high level; these are very slow–

diffusion types of scenarios.  In addition, in 62%, 77%, and 66% of cases where it is optimal to 

not introduce a product, the parameters d, b, and g are observed at their high, high, and low 

levels, respectively.  In short, it is not optimal to introduce a product in the planning horizon in 

scenarios where products diffuse very slowly, the profit margin decay is high (such that it is more 

difficult for the firm to finance product development), the potential market growth rate is zero or 
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very low (a relatively mature market), and the PD cost is not “flat” around its minimum (high 

value of d).   

Table 4:  Results of the 74 experiments where it is not optimal to introduce the second product 

Statistic for factor α D d b p+q q/p g 
Number of occurrences at low level 15 16 7 6 74 0 49 
Number of occurrences at medium level 23 21 21 11 0 12 18 
Number of occurrences at high level 36 37 46 57 0 62 7 
        
Percent observed at low level 20 22 9* 8* 100* 0* 66* 
Percent observed at medium level 31 28 28 15* 0* 16* 24 
Percent observed at high level 49 50 62* 77* 0* 84* 9* 

* Significantly different than 33% at the p = 0.001 level. 

We now consider the 96.6% of cells (2,113 cells) where it is optimal to introduce 

products in the planning horizon, that is, τ* < T.  Our main objective is to provide insights as to 

which factors are the most important in the decision regarding the frequency of introductions for 

future generations of products, or the time between product introductions.  To that end, we 

perform a regression analysis where the dependent variable is 1/τ* and the independent variables 

are the experimental factors; consequently there are 2,113 observations for the regression 

analysis.  This approach is also used in Bayus (1997) and Morgan et al. (2001) to summarize 

first–level effects for a complex model.  The regression results are displayed in Table 5.     

Table 5: Regression results for the optimal pace (introductions/year) for the 2,113 cells where it 
is optimal to introduce products 

Importance* Factor  Coefficient t Stat P-value
NA Intercept 0.19 9.77 <0.0001 
7 α -3.25 -4.98 <0.0001
6 D -0.01 -11.42 <0.0001 
2 d 4.87 44.64 <0.0001 
4 b 4.05 24.80 <0.0001 
1 p + q 0.50 53.71 <0.0001
5 q / p -0.002 -15.23 <0.0001 
3 g 20.81 31.75 <0.0001 

     
 F-statistic 1000.63  

  Adj-R2 0.77    
* This is a ranking of the factors based on the absolute value of the t-statistic.  
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We first note that all regression coefficients are significant at the p = 0.0001 level, thus 

all factors influence pace.  The magnitude of this influence can be assessed by comparing the 

absolute value of the t-statistic across factors (Wagner 1995), which is given in the fourth 

column of Table 5; a higher absolute value of the t–statistic implies a more influential factor.  

Moreover, the sign of the t–statistic also provides the direction of the relationship––a positive 

sign indicates that pace increases as the factor increases.  Given the levels in our experimental 

design, the factors that most influence pace are, in order of importance: diffusion curve shape 

parameter p + q (+), shape factor for PD cost curve d (+), potential market growth rate g (+), 

profit margin decay rate b (+), diffusion curve shape parameter q / p (–), and, to a lesser extent, 

the scale factor for the PD cost curve D (–) and the discount factor α (–).   

We now turn to the implications of these same factors on profit, given that we have 

optimized profit by choosing pace.  Regression results are shown in Table 6.  The two most 

significant factors are discount rate and potential market growth rate, as one would expect.  

However, it is interesting that the sum of the diffusion coefficients (p + q) is more significant 

than the margin decay rate b.  Thus the diffusion process is very significant in predicting profits, 

as confirmed by the use of the Bass model for forecasting.   

Table 6: Regression results for profit for the 2,113 cells where it is optimal to introduce products 

Importance* Factor  Coefficient t Stat P-value
 Intercept 1,187.7 30.11 <0.0001
1 α -65,181.5 -48.76 <0.0001
6 D -8.0 -3.92 0.0001
7 d 662.5 2.97 0.0030
4 b -10,983.9 -32.91 <0.0001
3 p + q 752.0 39.15 <0.0001
5 q / p -4.6 -17.54 <0.0001
2 g 62,260.6 46.44 <0.0001
     
 F-statistic 997.5  
 Adj-R2 0.77  

* This is a ranking of the factors based on the absolute value of the t-statistic.  
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To better discuss these results, we provide a visual representation of these relationships.   

To that end, for each factor level (e.g. b = 0.005), we compute the average value of 1/τ*, and the 

average value of total discounted profit over the planning horizon Π(τ*), across all respective 

experimental cells (where it is optimal to introduce).  This shows the average impact of each 

factor level on the two performance measures of interest.  The results are shown in Figure 6 for 

the discount factor α and margin decay parameter b, Figure 7 for the PD cost curve parameters D 

and d, Figure 8 for the diffusion curve parameters p + q and q / p, and Figure 9 for the potential 

market growth parameter g.  The vertical scales for all figures are the same.  As expected, all 

parameters (Figure 6 through Figure 9) have a strong impact on profit, except for the PD cost 

curve parameters d and D (Figure 6); this is due to the fact that PD costs represent in our 

experiments a relatively small fraction of the total profit over the long planning horizon.   

Confirming the regression results, Figure 6 (left) shows that the discount factor α does 

not have a large impact on pace.  Figure 6 (right), however, shows that the higher the margin 

decay parameter b, the faster the pace 1/τ*.  Previous work suggests that fast clockspeed 

industries have shorter product life cycles, equivalently, a faster pace (Mendelson and Pillai 

1999, Souza et al. 2004).  We confirm that as industry clockspeed (as measured by the margin 

decay rate b) increases, the pace 1/τ*  increases.  The impact of the PD cost scale parameter D on 

pace is as expected (Figure 7 left) – as D increases, pace decreases – a higher PD cost implies a 

longer time between product introductions.  Clearly, the impact of D on pace would be more 

significant––a steeper curve––if we had used higher values of D in our experimental design.  Our 

choice of values of D is such that it allows for a wide range of 1/τ* values, which improves the 

quality of the insights.  Similarly, Figure 7 (right) shows that as d increases, pace increases––a 

higher d means that PD cost increases more sharply as pace decreases, thus offering an incentive 

for the firm to not delay a product introduction for long.   
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The diffusion parameters p + q  and q / p (Figure 8) have a very significant impact on 

pace––a higher value of p + q (lower value of q / p) indicates a faster diffusion process, and 

consequently the pace is faster.  This is a very significant result, because it clearly demonstrates 

the importance of a product’s diffusion process in the timing of product introductions.  To the 

best of our knowledge, this is the first paper to show the importance of diffusion pace in the 

frequency of product introductions in a multi–generational product scenario.  

Finally, Figure 9 shows that pace increases with a higher growth rate g.  A faster growing 

market provides incentives for firms to introduce products more frequently.  We assume that a 

firm can capture growth in the market only at the time of a new product introduction.  In other 

words, according to the Bass model, we know the potential market and it is fixed.  When we 

introduce the next generation, we estimate that generation’s potential market, factoring in the 

growth parameter g.  Our result can be interpreted as agreeing with innovation theory; for 

example, Abernathy and Utterback (1978) posit that in the beginning of the industry life cycle, a 

period of high demand growth, the focus is on product innovation, and the pace of new products 

is faster than in the maturity stage of the industry life cycle, a period of much lower growth.  We 

similarly see that in faster growth conditions, i.e., g = 6.2% per year or 12.7% per year, we 

predict a faster pace than a mature product with zero expected growth over time (i.e., g = 0.) 
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Figure 6: Optimal pace and profit vs. discount factor α and margin decay parameter b 
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Figure 7: Optimal pace and profit vs. PD cost parameters D (scale) and d (shape) 
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Figure 8: Optimal pace and profit vs. diffusion coefficients p + q and q / p 
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Figure 9: Optimal pace and profit vs. growth parameter g 
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4.4. Two-Factor Interactions 

Two–factor and higher–level interactions were also investigated using SPSS 12.0 

software (SPSS 2004).  For brevity, we show in Table 7 the two–factor interactions other than 

those involving the discount rate α (as this parameter was the least significant).  The interactions 

are listed in order of their significance.   

Table 7: Statistics for the two–factor interactions 

Factors F Level of Significance 

p + q * q / p 2,027.4 <0.001 
d * g 190.3 <0.001 
b * g 98.2 <0.001 
d * p + q 77.5 <0.001 
D * d 41.2 <0.001 
b * q / p 33.9 <0.001 
b * p + q 33.6 <0.001 
d * b 28.0 <0.001 
D * g 17.7 <0.001 
q / p * g 15.0 <0.001 
p + q * g 5.1 <0.001 
D * b 3.8 0.005 
d * q / p 1.5 0.213 
D * p + q 0.5 0.747 
D * q / p 0.2 0.925 

As indicated, the most significant interaction is that between the sum and the ratio of the 

Bass coefficients, namely, between the factors p + q and q / p.  The nature of this interaction is 

illustrated in Figure 10, where we note that the horizontal axis (q / p) is plotted on a log scale for 
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better visualization.  Note that when the sum of the coefficients is relatively high, at a level of 

0.8, the ratio of the coefficients has relatively little impact on the pace.  However, if the sum is 

relatively low (equal to 0.1), then the pace drops off if the coefficient of innovation drops off 

(i.e., as the ratio q / p increases).  Speaking loosely, a fast pace may be optimal even if the 

customer base is dominated by imitators, but only when there is at least a sufficient base of 

innovators to “ignite” the diffusion process.  Another informal interpretation is that innovators 

and imitators are substitutable, if  there exists a sufficient core of innovators. 

Figure 10: Interaction of the two factors p + q and q / p 
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5. Discussion and Summary 

We have examined how a firm might set its pace of new product introductions, as a 

function of a number of firm– and industry–specific factors.  The intent of our model is to lend 

insight into some of the trade–offs that a firm faces in setting its pace of product generational 

updates.   

The Bass (1969) and multi–generation Bass (N/B 1987, 1992) models have been 

successfully fitted to a variety of product types such as electronics, pharmaceuticals, and 
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consumer goods.  The applicability of the model and the widespread belief that many products 

do diffuse through the market makes this diffusion relevant to the product development decision.  

This is the first paper (to our knowledge) to find a significant link between the diffusion 

parameters and the pace of new product development.   

We find that the other key drivers of pace are the shape of the product development cost 

curve, the market growth rate, and the rate of margin decline.  The shape parameter of the new 

product development curve determines the minimum cost product development time.  One can 

imagine that the nature of the development project might determine this.  However, a firm’s 

capabilities in product development would also play a role in setting this minimum and certainly 

in a firm’s being able to successfully complete the project near the time of the minimum cost.  

Thus a firm’s capabilities in product development are important, as a lower d (i.e., a lower time 

at which the product development cost is minimized) allows a firm to optimally choose a faster 

pace.  A possible implication of our results is that by modestly improving its PD cost curve, a 

firm achieves a significant strategic advantage.  That is, driving the market at a much faster pace 

could have significant negative impacts on competition. 

By considering different levels of potential market growth rates, we represent not only 

different classes of products, but also different stages in the product life cycle.  We find that for 

more mature industries associated with slower growth rates, the optimal pace of new product 

introduction will be slower.  For new, high growth industries, we predict the pace of new product 

introduction will be faster.   

The inclusion of the rate of margin decline allows us to link our results to the idea of 

clockspeed.  Faster clockspeed industries are associated with faster margin decline.  Empirical 

studies have shown that faster clockspeed industries such as televisions and personal computers 

have more frequent product introductions, in other words a faster pace (Mendelson and Pillai 
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1999).  Our results agree with these observations.  Our model leads to a firm’s optimal pace.  

However, this pace may be different than the underlying industry pace.  Previous research has 

shown that operating at or near industry clockspeed is optimal for maximizing profits (Souza et 

al. 2004).  Thus if a firm’s optimal pace is slower than that of the industry, it indicates a need for 

reexamination of the firm’s internal processes that lead to factors in this model such as unit costs 

and product development costs. 

Our model leaves open the possibility for many extensions.  Our model does not 

explicitly consider the game–theoretic nature of the relationship between firms or between the 

firm and its customers.  However, to the extent that these factors might implicitly be built into 

the rate of margin decay or the diffusion parameters, our model could be applied to settings 

where these factors are at play.  Given our finding that the pace increases with faster margin 

decay, we might expect that competition hastens the margin decay and hence quickens the pace.   

Similarly, it would be of interest to formalize customer considerations regarding whether 

to make an immediate purchase or wait for an updated model.  Here we might expect that 

decisions to delay purchase would reduce the diffusion coefficients such that the pace would 

slow, but this might in turn encourage customers not to delay their purchases such that we might 

find an equilibrium outcome.  Such a model would also include product quality as a decision 

variable, while here we limit ourselves to deciding only pace.  We leave these extensions to 

future work.  
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