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Regress to Reveal

Suppose you have just done a regression and you know that the conditions for the t-values
shown on your printout to be validly interpreted at Student t-statistics are not satisfied.  In this case,
what can you learn from these t-values?  

I have posed this question to dozens of  graduate students who had just completed the
econometric training at various respectable universities.  Many had some difficulty understanding
so stupid a question, but once they understood it, they all replied emphatically, “Nothing.”  They
thereby confessed that their instruction had been so one-sided that they were missing more than half
of the descriptive information about their sample which the regression gave them..  If you would
have agreed with them, then you may be interested in the alternative, richer way of looking at
regression presented here.  This paper will show how those t-values could be converted to statistics
which would present nearly the same information in an intuitively easily grasped measure, valid as
a description of the sample despite the fact that the t-values could not be validly used for testing.
Similar, descriptive replacements will also be offered for the standard errors of regression
coefficients and  F-statistics. 

The emphasis on testing has led to the availability of a large battery of test statistics, most
of them valid only under very special conditions.  By contrast, descriptive statistics — statistics that
speak to us with easily understood pictorial meaning — are an underdeveloped area. These statistics
make no claim to inform us about a world beyond the sample, but they do reveal relations which
exist in the sample. The notion, however, that “science” consists only of formulating hypotheses and
testing them on data not consulted in their formulation has been thoroughly exploded by historians
of science (Kuhn, 1962).  It is just as “scientific” to explore data and look for relationships as it is
to test hypotheses. Indeed, revolutionary science seems to have followed the exploratory path.  In
fact, it is exactly in this way that researchers generally use regression but do so with feelings of guilt.
It is the purpose of this paper both to set aside the guilt and to offer several measures designed, not
to test, but to reveal in a an intuitively comprehensible way what is happening in the data.   I am sure
that there are numerous further such measures, and I hope this paper stimulates further developments
in this line. 

Before turning to this alternative view of regression, however, it is worth reviewing the
conventional view just to remind ourselves of how far it is from what we really do.  In order not to
bore you with a list of assumptions which you know perfectly well, let me put the review in the form
of a fable.  In spinning it, I had in mind more work with time-series data than with cross-section
data, but it is not without relevance there also. 

The Datamaker Fable 

We econometricians face a body of data.  Where did it come from?  It was made, according
our fable, by the Great Datamaker.  Though we never see Datamaker, we know a lot about how he
works.  We know that, to make the data we are looking at, he took a matrix, X, and a vector, β, and
then generated many, many vectors, y, by picking vectors of random numbers, e, and calculating 
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y ' Xβ % e. (1)
He then bundled each y with X into a packet, (X,y), and threw it out into the universe.  One of these
packets struck the Earth, burst open, and created the economy which we are studying.  We have had
the great good fortune to find the primordial (X,y).  There is no doubt about that.  Our problem is
to find out what β is.  We know exactly what X is and we are perfectly sure that there was some real,
true β. Though there is absolutely no chance that we will ever catch a second one of these packets,
the infinitely many others are all caught elsewhere in the universe.   Everyone who catches one must
compute

b ' (X )X)&1X )y (2)
and send the result to the Cosmic Information Center (CIC).  The folks there -- ordinary mortals like
ourselves with no direct knowledge of Datamaker's β -- will take the average of all the b and that
average will be β.  Unfortunately, confidentiality requirements preclude them from any
communication back to us.  So we will never know β, only our one and only b.  Nevertheless, it is
gratifying to know that we are part of their effort which will reveal to them the true β.  We express
our pleasure in that fact by saying that our b is unbiased.

Although Datamaker generally plays by the rules, he is known to sometimes play a little trick
on us and include in X one or more variables which in fact were not used in making up y  -- or which
had a 0 coefficient in β.  One of our particular tasks is to detect such jokes on the part of Datamaker.

Within this general fable, many details may be added.  We may perhaps assume that the
elements of e are all independent and identically distributed.  That assumption allows us to compute
easily the variances and covariances of all the elements of b.  If all data catchers send along these
estimates to the CIC, the average taken there will again be the true variances and covariances of b.
We may believe further that the elements of e are drawn from a normal distribution.  That belief
allows us to deduce that the b's arriving at the CIC have a multinomial normal distribution and that
the ratio of an element of our b to our estimate of its standard error will be distributed as a Student
t variable.  That conclusion is very nice because it can be used to detect jokers which Datamaker
may have thrown into the X packet.  In some cases, we may believe that the elements of e are not
independent and that we know something about the structure of the relations among them.  If that
knowledge is correct, it can be used to cut down on the variance of the b's flying into the CIC.
Though it is quite respectable to suppose that we know something about how e was generated, it
would endanger our reputation as scientists to imagine that we know anything about β, for that
would imply some economic understanding on our part.  

Recently, some have supposed that Datamaker has a new trick.  He makes up the elements
of y one at a time, starting from the top, and one of the elements of the X matrix is just the element
of y from the row above.  Those who take this notion seriously say that they, and presumably only
they, are doing "time series analysis." (Anyone working with time series data without this
assumption is left homeless.)  These self-styled time-series analysts devote great energy and
ingenuity to determining whether or not the coefficient in β on this variable is equal to 1.0.  We will
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not pursue this school further save to note that its results seem to depend very heavily on knowing
exactly how Datamaker works.

Seeds of Doubt

I have the greatest possible admiration of the ingenuity and beauty of the mathematical
derivations based on the Datamaker fable.  The derivations of the distributions of the regression
coefficients, of  t- and F-statistics are marvelous.  Von Neumann's derivation of the distribution of
his δ (on which the Durbin-Watson statistic is based) is, for me, miraculous.  I am awed by the
thoroughness of theoretical econometricians in working out the consequences of various
assumptions.  For years, the sheer beauty of the derivations blinded me to the basic fact that the
Datamaker fable has little connection with what I am doing as an applied econometrician working
with time series data.  That is not to say that there may not be cases where the Datamaker fable may
be entirely appropriate, as in the analysis of repeatable, controlled experiments, where one knows
exactly what has changed from one experiment to another.  

But that is not what I am doing as a builder of econometric models.  I have one set of data
on the American economy in the 1990's and there is no chance that I will ever get a second set with
only certain known policy changes.  Furthermore, the process generating the data is vastly more
complex than any equation I can write down, though I may have some insight into it, and I may try
to capture that insight in the equation.  I do not, however, believe for one second that I know the full
X matrix nor, indeed, that there is any true β.  As a builder of economic models, I am just looking
for rough but workable approximations of a vastly complicated reality.  I model consumption of ice
cream with income and relative prices.  But you buy ice cream; you know that how much you
consume depends on how hot the weather is, on whether or not you or your children have milk
allergies or philosophical positions about animal-derived food, on what kind of diet you may be on,
and on how loudly the children are howling in the back seat.  Price? Income?  Hardly.  The one thing
I am relatively sure of is that there is no true equation of the form I am fitting.  All claims about the
b's that I calculate being "unbiased" or "consistent" "estimates" of your true parameters seem pretty
meaningless.  Most econometric theory seems, in the end, to be about how to make unbiased,
consistent, efficient estimates of non-existent parameters.

I am surely not alone in doubting the appropriateness of the fable to what we are doing.
Poirier (1988, p. 132) notes "Such parameters need not 'exist' in the external world, but only in the
minds of researchers."  He finds them regarded as anything from metaphysical mental constructs to
"waste products" of prediction.  Leamer (1983),  Sims (1996) and others have expressed various
doubts on this point.  McCloskey and Ziliak (1996), in their criticism of the profession for all too
often forgetting the difference between  “statistical significance” and “economic significance,”
rightly observe “Essentially no one believes a finding of statistical significance or insignificance.”
Keuzenkamp and Magnus (1995) have offered a handsome reward to anyone who can produce one
point on which the opinion of the profession has been changed by a significance test.  If significance
tests have, rightly, lost all persuasive power, perhaps we should look for other, less presumptuous
ways of presenting the information about the sample that the test statistics do, actually, contain.
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These arguments certainly do not mean that I have no use for regression.  Quite the contrary.
I find it an indispensable tool in economic modeling, which, despite the criticism of recent years,
remains the only way that I know to test my understanding of the economy and to put together
pieces of understanding into a coherent whole.  In modeling, I am looking for a workable summary
of extraordinarily complicated economic behavior.  I find it helpful to admit that complexity, not to
gloss over it by the Datamaker assumption.  I do not regard, however, the regression coefficients as
estimates of anything.  They are just a sort of summary statistic of the data. My concern is not to
reject regression but to make it speak in terms that are easily understood without invoking
Datamaker.

I will use the word “metaphysical” to describe a statement which relies on the Datamaker
fable for its meaning.  In doing so, I intend no offense to the science of metaphysics, nor indeed, to
say that the statement is vague or unreal.  In  reading Aristotle’s Metaphysics,  however,  it struck
me that his unmoved mover and  Datamaker might be of similar substance.  I only wish to say that
these statements rely for their validity on the existence of a reality beyond anything we can observe
— that they go “beyond nature.”   They may assume, fore example, the existence of a true β, a
transcendent reality beyond our powers of observation. I will use the word “factual” to describe a
statement that does not invoke the unobservable; its meaning is intuitively clear without the fable.
If I say that I have regressed y on X with ordinary least squares and the result was b, that is a
“factual” statement.  If I say that b is an unbiased estimate of β, that is a “metaphysical” one.  If I
say that the standard deviation of the residuals is 16, that is a factual statement.  If I add that the 16
is an unbiased estimate of the standard deviation of the normal distribution from which the elements
of e were drawn, that is a metaphysical statement.

"That was easy," you may say, "but what about the standard errors of the regression
coefficients, the t-statistics and the F-statistics.  Aren't they all inextricably bound up with the
fable?" Indeed, the names we give these measures are justified only by the fable. Without the fable,
these particular measures are virtually incomprehensible; they make no intuitive, pictorial sense. In
this sense, I will call them also “metaphysical” statistics.  In other words, if a particular measure can
be used to make a meaningful factual statement, I call it a “factual statistic”; if is well adapted only
for making metaphysical statements,  I will call it a “metaphysical statistic.”  

How to replace the metaphysical statistics to which we are all accustomed with factual statistics
which convey essentially the same information but in an form meaningful without Datamaker is the
subject of the rest of this note.

Factual Loss Limits and Metaphysical Standard Errors

Let us begin with "standard error of the regression coefficient." There must be conceivably
more than one of something for the concept of standard error to make sense. The very idea that the
regression coefficients have standard errors depends upon there being, at least potentially, many b
vectors.  When we are working with economic time series and trying to estimate equations for, say,
the U.S. economy in the 1970 - 1998 period, only the Datamaker assumption that many (X,y)
packets are cast off into the universe can supply the multiplicity of b's,  for we shall certainly not
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see these years re-run with just the “errors” changed. We are essentially working with the whole
population; and, without, Datamaker, there is no meaningful standard deviation of the regression
coefficients.  If you ask me, “What was the average value of the Treasury bill rate in the 1980's?”
you expect an answer like, “8.8 percent.”  If I add, “and the standard deviation of that mean is .44
on the assumption that our 1980's were a random sample from all possible 1980's,” you are likely
to mutter, “No, no, I just wanted to know about the 1980's as they really were,” and think me some
kind of lunatic.  The mean that I gave you,  however, was just the regression coefficient of  the
Treasury bill rate on a series of 1's, and I thought — in my lunatic way — that you would want to
know its standard deviation.  Standard errors of regression coefficients on economic time series data
are all more or less in the same class with my lunatic answer about the standard deviation of the
mean.  The regression coefficients themselves, however, are useful descriptive statistics.    

With random samples of cross-section data, matters are a bit more favorable to the usual
interpretation, for we can conceivably draw multiple random samples and compute b and the 95-
percent confidence interval for each and reasonably expect that about 95 percent of these intervals
will include the b that would be found by running exactly the same regression on the whole
population.  Even in this case, however, the confidence intervals tell us nothing about what to expect
if another variable is added to the regression.  Only the belief that we know the full X matrix used
by  Datamaker enables us to make any statement that transcends the particular choice of variables
we have made.  And should we find that one of the variables is “insignificant” and rerun the
regression without it, the standard errors the program gives may be utterly misleading, for we may
have made a type II error in throwing out the variable. 

We may, however, in any case ask What is the factual content of the number that is usually
reported as the standard error of a regression coefficient?  That statistic is really just giving us
information about how rapidly the sum of squared residuals (SSR) rises as that regression coefficient
is moved away from its least-squares value and the other regressions coefficients change to
compensate, as best they can, for that movement.  To be more precise, let us divide the X matrix
vertically into two parts, X1 and X2, where X2 contains only a single variable and X1 contains all the
others.  Similarly, we divide up the b vector between b1 and b2 and then define the vector r of
residuals by

r ' y & (X1b1 % X2b2). (3)

Now let us take hold directly of b2 and move it about, but always changing b1 so as to minimize the
sum of squared residuals.  Thus the SSR becomes a function of the b2 we choose, which we may call
SSR(b2).  We can easily write it down:

SSR(b2) ' (y & X1(X
)

1X1)
&1X )

1(y & X2b2))
)(y & X1(X

)

1X1)
&1X )

1(y & X (4)

Expanding and simplifying gives:

SSR(b2) ' y )y & y )X1(X
)

1X1)
&1X )

1y % 2 X )

2X1(X
)

1X1)
&1X )

1 y & X )

2 y
% X )

2X2 & X )

2X1(X
)

1X1)
&1X )

1X2 b
2
2 . (5)
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SSR(δ) ' SSR ( % δ2/s22 . (11)

To see what familiar friends those long matrix products really are, let us write out the normal
equations for the regression of y on X and the simultaneous inversion of X'X to create its inverse,
S.  They are just

X )

1X1 X
)

1X2

X )

2X1 X
)

2X2

b1 S11 S12

b2 S21 S22

'
X )

1 y I11 0

X )

2 y 0 1
(6)

If we now proceed with the Gauss-Jordan elimination process to the point just before the final pivot
operation to determine b2, we have

I (X )

1X1)
&1X )

1X2

0 X )

2X2&X
)

2X1(X
)

1X1)
&1X )

1X2

b1 S11 S12

b2 S21 S22

'

(X )

1X1)
&1X )

1y (X )

1X1)
&1 0

X )

2y&X
)

2X1(X
)

1X1)
&1X )

1y &X )

2X1(X
)

1X1)
&1 1

(7)

Let us denote the matrix on the left here by A so that a22 is the element in the lower right corner.
By looking back at equation (5), we see that this element is precisely the coefficient on b2

2 in (5).
Moreover, the coefficient of b2 in equation (5) is just -2 times the expression in the lower left corner
of the matrix on the right of equation (7).  Furthermore, the last step of the Gauss-Jordan process
will divide this element by a22 to produce b2

*, the least-squares value of b2.  The first term on the
right of (5) is just SSR1, the SSR resulting from the regression of y on just X1.  Thus, equation (5)
can be written as

SSR(b2) ' SSR1 & 2a22b
(

2 b2 % a22b
2
2 . (8)

Now the final pivot operation for solving equation (6), the step following that shown in equation (7),
will involve dividing the 1 in the lower right corner of the matrix on the right in (7) by a22 to get s22,
the diagonal element of the (X'X)-1 matrix corresponding to the coefficient we are moving.  Thus,
equation (8) can be written as

SSR(b2) ' SSR1 & 2b (

2 b2/s22 % b 2
2 /s22. (9)

Setting b2 = b2
*, we find for the SSR for the full least squares regression, which we may call SSR*,

SSR ( ' SSR1 & b (2
2 /s22. (10)

If we now introduce δ as the deviation of b2 from its least-squares value and substitute b2 = b2
* + δ

into (9), it becomes, after simplification,

Suppose now that we ask, How far from its least-squares value can we move b2 before the SSR for
the whole equation would increase by more than λ percent?  The answer, quickly deduced from
equation (11), is 

δ ' .01λ@SSR (@s22 (12)
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If for example, we picked λ = 5, then we would have for what we might call the "five-percent
loss limit" on b2

δ ' .05@SSR (@s22. (13)

Now if a regression has 20 degrees of freedom, what is the "standard error" of b2 by the usual
calculations?  Exactly the δ given by equation (13).  For 20 degrees of freedom, the metaphysical
"standard error" of the regression coefficient as printed out by the computer is, factually speaking,
its five-percent loss limit.  If there were 100 degrees of freedom, the metaphysical "standard error"
would be the factual 1 percent loss limit, and so on. 

For the calculated number to really be a standard error, a whole host of assumptions must
be valid.  Firstly and most unlikely, there must be a true equation of exactly the form we are
estimating.  Secondly, we must be sure that we know a priori what X is.  If we have done any
previous regression and discarded some variables on the ground that their t-statistics were
insignificant, then through this pre-test we have admitted that we do not know what the true X is;
and our present estimates of β are biased (because we may have made a Type II error and thrown
out a variable which belongs in the equation), and the standard errors are more or less meaningless.
(This point is eloquently made by Fomby et al. [1984, p. 130].)  Thirdly, X must be non-stochastic.
Fourthly, the errors must be uncorrelated with one another.  Fifthly, they must all have the same
variance.  Sixthly, if the standard error is to be used to calculate a valid t-statistic, the errors must
also be normal. By contrast, the factual loss-limit statement is always valid.  If you change a
regression coefficient by its five-percent loss limit and recompute the others by least squares, the
SSR will for sure and certain go up by five percent.  That is just a fact.  (Some of these conditions
can be relaxed a bit for large samples, but that fact hardly helps the worker who has twenty years
of historical data with which to fit his equation.  He can't go back further because the structure of
the economy, the β, would have almost certainly changed and he can't go into the future, because
those data don't yet exist.)

The second of these conditions almost eliminates the valid use of classical statistical methods
in economics.  These methods are aimed at estimating parameters or testing hypotheses when the
correct specification of the equation is known.  But the notion that economic theory will tell us what
variables to put into an equation and the form of the equation is almost always simply laughable.
If we are to find equations with acceptable fits, we have to rely on our own explorations of the data
or on the empirical work of others.  That reliance totally invalidates the classical statistical tests and
sampling properties.  Loss limits, being purely factual statements, remain perfectly valid no matter
how much we have explored the data. They are, of course, descriptive only of the sample and do not
make any claim on a wider applicability. 

What happens to loss limits and standard errors as the sample size increases?  Suppose for
example that we were able to double the sample and that it just so happened that the additional
observations turned out to look, one for one, exactly like the first set.  The loss limits will be
unaffected by such a doubling of the sample.  The standard errors will all shrink by a factor of 1/%2.
Large sample studies nearly always have tiny standard errors and huge t-statistics.  Isn't that nice?
Their loss limits, however, are not necessarily very different from those of regressions on a much
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smaller sample. Isn't that a drawback for the use of loss limits? Is there any way in which a factual
statement can express the superiority of the large sample?  In my view, the factual statement is
simply the sample size and its structure.  I am very leery of tiny standard errors in large-sample
studies, because the large sample is just as sensitive as the small to errors in specifying the X matrix.
The fact that some regression coefficient is ten times its standard error is supposed to make me very
confident of its sign.  But the truth is that I don't really know what the X matrix should include.
After I have done my best you may come along and suggest a new variable.  When I throw it into
the regression, lo, the sign changes on the variable whose t-statistic was 10.  My confidence in my
metaphysical knowledge shattered, I decide to stick to factual statements next time.

Since the loss limit statement is so much more factual  than the standard error statement, one
might well ask that a regression program display loss limits.   The G  regression program available
on the Internet at inforumweb.umd.edu does so.  If you give the command "ll 5", then after the next
regression you will see the 5 percent loss limits for each coefficient.

Factual Mexvals and Metaphysical t-Statistics

Most regression programs report the t-statistics for each regression coefficients.  Their main
use is in deciding whether or not the variable is one of the jokers that Datamaker slipped into the
packet.  Their validity is subject to all the conditions we have just enumerated for the standard
errors.  If we have the slightest doubt about their validity we can ask the factual statement, How
much does the SSR increase if we drop this variable?  The answer is immediately clear from
equation (10).  It goes up by b2

*2/s22.  A convenient way to express the answer is to ask by what
percent the standard error of estimate goes up when the variable is eliminated and all others adjust
to compensate as best they can for the elimination.  We may call this measure the marginal
explanatory value, or mexval, of the variable.  If we denote it by m in general and by m2 for the
particular case we have been developing, then

m2 ' 100
SSR ( % b (2

2 /s22

SSR (
& 1

(14)

The t-statistic is

t2 '
b (

2

s22 @SSR
(/(T&n)

(15)

so if your software fails to compute the mexvals, you can do so yourself by the equation 

m ' 100 1 %
t 2

(T&n)
& 1 (16)

where T is the number of observations and n is the number of parameters estimated.  (You might
also consider switching to the G software or demanding that the makers of your software put in
mexvals.)
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Just as the relation between the loss limits and the standard errors depended on the degrees
of freedom in the equation, so does the relation between mexvals and t values.  Which one is telling
you what you want to know?  Consider an equation with a variable that has a t-statistic of 3.  If that
equation has 10 degrees of freedom, eliminating the variable will wreak havoc with the fit: mexval
= 40.  If the equation has 1000 degrees of freedom, though the variable is somewhat more
"significant" by the t-test, eliminating it will have little effect on the fit: mexval = .45.  As a non-
believer in Datamaker, I find the mexvals to be telling me exactly what I want to know in the two
cases but the t-statistics to be tricky to compare.

Factual Derivatives and Metaphysical Covariances

What sort of factual statements correspond to the covariances of regression coefficients?  If
we return to equation (3) and ask how b1 changes to compensate for changes in b2, we find

b1 ' (X )

1X1)
&1X )

1(y & X2b2) ' (X )

1X1)
&1X )

1y & (X )

1X1)
&1X )

1X2b2. (17)

The matrix (actually, it is a vector) which is multiplied by b2 in the last term of the right side of this
equation is the derivative of b1 with respect to b2.  Now note in equation (7) that if we carry the
Gauss-Jordan pivoting process to its conclusion we will have 

S12 ' &s22 (X )

1X1)
&1X )

1X2. (18)

Note the similarity to the coefficient of b2 on the extreme right of (17).  Recalling that the variance-
covariance matrix by the usual formula is s2S, we see that if we divide each of its columns by the
diagonal element in that column, we obtain a matrix whose jth column shows the derivatives of all
the regression coefficients as bj is independently varied and all the others are varied to maintain as
good a fit as possible with the given bj.  This matrix of derivatives is the factual way of interpreting
the information contained in the metaphysical variance-covariance matrix.  In factual terms, the
variance-covariance matrix is showing us how sensitive the other regression coefficients are to the
value chosen for any one.  One could, of course, also multiply each column of this derivative matrix
by, say, the five-percent loss limit for the corresponding variable to see how far each of the other
regression coefficients would move if a given one were moved out to its five-percent loss limit.  
 
Factual Normalized Residuals and Metaphysical F Statistics 

If a regression is computed by successive Gaussian pivots, it is little extra work to carry one
more row which will give in the diagonal element the SSR after each pivot.  If these numbers are
saved, they can be used for printing at the end of the regression the F statistics for testing, under the
usual Datamaker assumptions, the significance of the last variable, the last two, the last three, and
so on through the whole equation.  (If your software gives only one F, the one for the whole
equation, change to G or demand an improvement.)  These F's are, of course, designed for making
metaphysical statements about significance.  The same information can be conveyed factually by
simply showing the SSR for each stage, or by expressing each of them as a ratio to the SSR when
all variables have been included.   In the G program, these ratios are called "Normalized residuals"
because they have been normalized by the last one.  They are routinely shown by G and are helpful
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for judging the usefulness of a group of variables, especially if the group is placed at the end of the
list of regressors.  These ratios are, of course, simply factual statements without metaphysical
overtones.

Other Factual Statistics

A number of other standard statistics are factual in nature.  For example, the ρ or
autocorrelation coefficient of the residuals has a simple intuitive meaning as the regression
coefficient of the residual on its lagged value, the tendency of the equation to go on making the same
mistake.  Putting the same information in the form of a Durbin-Watson statistic takes away the
intuitive interpretation and raises the suspicion that one has in mind making some metaphysical
statement about how Datamaker drew the e vector.  The mean absolute percentage error is a factual
statistic, as are the elasticities of the various variables evaluated at the means of the observed values.
The leverage vector, used in detecting outlying observations, is simply the derivative of the
predicted value of each observation with respect to its observed value.  It is also factual.  Beta
coefficients, which express the regression coefficients in units of standard deviations of the
dependent and independent variables, are likewise factual.

Data Mining, Factual Statistics, Judging Regressions and Prior Information

Exploring the data with regression analysis certainly invalidates the metaphysical test
statistics.  It is therefore often held to be reprehensible and is referred to in pejorative tones as "data
mining" or "data snooping."  Let me say plainly that I think that it is the responsibility of the
researcher to explore the data thoroughly.  Isn't that what makes one an expert on a subject?  Isn't
that precisely what the researcher is getting paid for?  Have you ever, on looking at someone else's
regression, asked, "Did you try so and so?"  If so, you explicitly recommended data exploration.
Indeed, if we are not allowed to learn about the real world by looking at data, how then are we
supposed to learn about it?  From other researchers who have also not looked at their data? 

So if the researcher has done a thorough job, the data is completely mined and the
conventional test statistics utterly misleading.  The factual statistics, however, remain perfectly valid
for the sample.

Does this attitude open the spillways to all manner of junk regressions?  Not at all.  The next
step after estimating an equation is to use it in a model.  To do so implies that we expect that the
relations found by the equation will continue to hold in the future or at least would have held in the
past even if some of the independent variables had been different.  That expectation gives us a
number of ways to judge an equation.  In Almon [1994], there is  a checklist of such criteria which
have nothing to do with test statistics. They include accounting for important influences, parsimony,
appropriate dimensions, reasonable attention to cointegration, adequate allowance for lags, plausible
parameter values, stability of coefficients when the sample period is changed, satisfactory fit, and
several others not easily explained out of context.  The leverage variable should be examined to
detect outlying observations and those observations considered carefully.  Indeed, the notion that
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all an equation needs is a high R2 and significant t-statistics will certainly admit more junk equations
than do these criteria.  

Since plausibility of regression coefficients is a primary concern for me, one might suppose
that I would use (or at least advocate that others use) Bayesian regression.  But the Bayesian
position, just as much as the classical position, involves assuming that there are true parameters.
One who holds that there are no true parameters needs a procedure closer to the emphasis on
regression coefficients as summaries of data.  If we want the parameters of an equation to satisfy
approximately some linear constraint -- the simplest being that the parameter should have a certain
value -- but the regression refuses to give "nice" values, we can just make up artificial data which
would be fit perfectly by any equation whose parameters satisfy the constraint.  We then combine
this artificial data with the natural data in proportions to give a balance between our desires that the
equation fit both the natural and the artificial data.  A good regression package can make it
extremely easy to use these "soft" or "stochastic" constraints without any appreciable increase in the
time required for the regression computations.  As with Bayesian regression, use of this procedure
obligates us, of course, to report the use of the artificial as well as the natural data.  The use of the
artificial data affects the loss limits, mexvals, and normalized residuals, for in their calculation the
artificial data is just as much data as is the natural data.

Conclusion

It has proven possible to give factual alternatives to all the common metaphysical statistics.
In reporting results from regression analysis, you do not have to make metaphysical statements that
you don't believe.  You can convey the same information to your readers with purely factual
statistics.  These statistics can easily be incorporated into  regression programs, as they already are
in the G program.  By a de-emphasis of testing and an increased emphasis on economic
measurement and interpretation, I hope that they will contribute to putting both the econ and the
metrics back into econometrics.
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