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Comparing to wired networks, wireless networks have some special features in the 

physical layer, medium access control (MAC) layer, and the network layer. This work 

discusses several research topics in the physical layer, and studies the cross-layer design 

of wireless networks. 

First, we consider a Code-division multiple-access (CDMA) system with multiuser 

detection when the presence of a subset of the users is unknown to the receiver. The 

performance of the system in terms of Signal-to-Interference and noise-Ratio (SIR) and 

user capacity is given, by assuming symmetric signals. Then, we study the power control 

problem with multiple flow types. Each node has multiple flow types requiring different 

QoS, (for example in a multimedia system,) and has the constraint of using the same 



  

power level for all of the flow types. The conditions for solution to exist are given; and 

the characteristics of the solution are provided. Next, we propose a passive rate 

adaptation, in which some bits are dropped at the receiver end of a link, for the ad hoc 

network to use in the temporary channel fluctuation. We study the performance of this 

passive rate control scheme in terms of both symbol error probability and mean square 

distortion. 

Finally, we study the coupling between layers of the network structure, and the cross-

layer design. We explore the coupling between the physical layer and the MAC sublayer 

first, and propose the scheduling algorithm with power control. Then we consider the 

coupling between MAC sublayer and the network layer, and propose the joint scheduling 

and routing algorithm. The simulation results demonstrate that the joint algorithm 

improves the performance significantly. 
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Chapter 1  Introduction 

 

Wireless communication networks are widely used nowadays. Cellular networks, 

wireless LANs, and mobile ad hoc networks are a few examples. Wireless networks have 

an air interface rather than a wireline interface. This wireless characteristic provides 

special features to the network, and has a profound impact on the lower layers of the 

network.  

First, in the physical layer, the channels are noisy and unstable, and usually have very 

limited bandwidth. Then in the MAC layer, the broadcasting nature introduces 

interference to other users in the nearby area, and therefore, generates new challenge for 

the multi access schemes. Also, wireless networks include mobile users which are 

powered by battery. Therefore, the energy efficiency is very important to the wireless 

networks. Finally, there are coupling between network layers, especially in ad hoc 

wireless networks. 

In this dissertation, the following issues in the wireless networks are discussed. 

1.1 CDMA and Multiuser Detection 

Code-division multiple-access (CDMA) is a method of multiple-access in which all 

the users occupy the given time-frequency space simultaneously. Each user is given a 

unique signature sequence (code) at the transmitter with which to spread its signal. The 

receiver de-spreads the received signal if it knows the signature sequences of the 
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transmitter. As long as the codes are orthogonal, all signals can be separated. CDMA has 

superior performance over time-division multiple access (TDMA) or frequency division 

multiple access (FDMA) in mobile communication systems [1] and in harsh channel 

environments [2]. However, in non-orthogonal CDMA systems the traditional single-user 

receiver suffers from the near-far problem caused by multi-access interference and 

performance degrades.  

Multiuser receivers suppress the interference between users in spread-spectrum 

CDMA systems by making use of the structure of the multi-access interference [3]-[5] 

and of the knowledge of the code sequences. Linear multiuser detectors are more 

attractive than nonlinear ones because of their reduced complexity. Much of the work on 

multiuser detection has focused on the multiuser efficiency and the near-far resistance 

[6]-[7] of multiuser receivers. Since improving network capacity is an important design 

goal [8], increased attention is paid to receiver performance in power-controlled CDMA 

systems and to the resulting user capacity [9]-[11].  

The effective bandwidth characterization of the user capacity was first derived in [9]. 

Specifically, it was proved that the SIR requirements of all users can be met if and only if 

the sum of the effective bandwidths of the users is less than the total number of degrees 

of freedom in the system. Simple expressions are derived for systems with matched filter, 

decorrelator, or linear minimum mean square error (MMSE) receiver, assuming the users 

are assigned random sequences. Then a synchronous power-controlled CDMA system 

with a MMSE linear receiver was studied in [10], and the optimal signature sequences 

and power allocation scheme were identified to meet the SIR requirement with minimum 

total power.  
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The multiuser detector needs to know which of the users are active and what their 

signature sequences are in order to detect the signals correctly. But in some instances, the 

detector may not know exactly all of the transmitting users and their sequences. One 

solution to this problem is the group-blind multiuser detection [12,13]. The interference 

from users with unknown signatures may affect the performance in a different way than 

the interference from known users and the noise. If we have some information about the 

unknown users, like sequence crosscorrelation and power, we may be able to track their 

effect on the performance of the system.  

In Chapter 2 we evaluate the performance degradation caused by unknown 

interference if there is no blind multiuser detection. The performance indices we study 

include SIR, user capacity and effective bandwidth. Although random sequences are 

often used in analysis (as in [9]), meaningful results are not possible for a system with a 

finite number of users. Here, we use symmetric sequences to simplify the analysis and 

obtain one data point of reference in the study of finite-user system performance. 

1.2 Power Control and Sequence Optimization 

Power control is used to balance the received powers of the users of a CDMA system, 

so that no single user creates excessive interference that can destroy the quality of the 

communication of other users. At the same time it is desirable to use power levels as low 

as possible, provided they satisfy the quality of service (QoS) objective defined by fixed 

signal-to-interference ratio (SIR) requirements.  

In previous papers [15,16], the optimum power vector was found by inversion of a 

non-negative matrix [14,17] related to the channel gains and crosscorrelation. For N<L, 

(N is number of users and L is the processing gain.) the optimal sequences are orthogonal 
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sequences. For N>L, the optimal sequences are found to be the WBE sequences [18,19]. 

Optimal sequence sets for synchronous and asynchronous CDMA systems are studied in 

[20] and [21]. An iterative power control algorithm to calculate the optimum power 

vector was given in [22], and the convergence of the algorithm was proved if the 

interference function satisfies some conditions.   

However, all the studied models assume only one flow type at each node. In practice, 

users may have multiple flow types that have different QoS requirements. In Chapter 3 

we consider a synchronous CDMA system with a base station and N nodes. At each node, 

there are F flow types and they transmit simultaneously to the base station. Each node has 

only one transmitter, i.e., only one power level is available in the uplink for all F flow 

types. Such a transmitter structure is simpler than the one in which the power levels of 

the multiplexed flow types are adjusted by appropriate weights or baseband processing, 

or the one in which separate transceivers and power amplifiers are used for each flow.  

The objective of Chapter 3 is to evaluate the performance degradation that results 

from this simple and inexpensive transmitter structure. For the uplink, we studied the 

conditions for this power control problem to have solutions, the minimum power vector, 

and if possible, the optimal sequences to achieve the minimum total power. For the 

downlink, we studied the power assignment at the base station, and obtained some 

properties of the optimal sequences. 

1.3 Rate Control for Fluctuating Links 

The link quality of a wireless connection may vary considerably due to noise burst, 

fades, and the mobility of transmitter and/or receiver nodes. Therefore a fixed modulation 

scheme and a fixed data rate will lead to variable link quality. When the Signal-to-Noise 
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Ratio (SNR) of the received signal drops significantly, there are many ways to maintain 

the link quality. One way is to increase the transmission power [23]. Another way is to 

change the channel coding rate or choice of code, and therefore change the received data 

rate indirectly [24,25]. It can also be done by adapting the date rate directly [26,27,28], or 

some combination of the methods listed above [29,30,31]. 

However, all these methods require feedback channels from the receiver to the 

source. Some may require buffering of traffic at the source, which may cause longer 

delay and/or buffer overflows or underflows. Some methods may also require increased 

complexity in the transmitter design. 

In Chapter 4, we consider a passive rate adaptation scheme at the receiver in which 

only part of the transmitted bits are detected (i.e., some bits are intentionally dropped). 

For example, if the transmitter uses 8-PAM (PAM modulation with 8-point 

constellation), then when the channel is in poor condition, the receiver uses a detector 

with 4 output levels after the demodulator. We denote the procedure by 8-PAM->4. 

Another example is 16-QAM->4.  

This method is motivated by the need to have a quick and simple rate adaptation 

scheme when a link in an ad hoc wireless network fluctuates for very brief periods. The 

advantage of the proposed method is that no feedback is needed; and the receiver alone 

makes the decision according to the channel status. It is also fairly simple at the receiver, 

while there is no buffer and complicated transmitter design at the transmitter.  

With our method, when the receiver detects few of the transmitted bits, it decreases 

the symbol error probability. At the same time, the dropped bits take away some signal 

information and cause additional quantization noise. In terms of the mean square 
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distortion metric, there is a trade-off between the error probability and the detected data 

rate. This trade-off is identified and illustrated. In fact, it is the main focus of Chapter 4. 

The question is precisely whether the overall distortion, with fewer bits but with smaller 

symbol error probability, exceeds or not that achieved with more bits but with larger 

symbol error probability. 

In Chapter 4 we consider two examples of the modulation schemes, PAM and QAM, 

and study the performance of the rate adaptation in terms of symbol error probability and 

mean square distortion, in both a Gaussian channel and a Rayleigh fading channel. 

1.4 Cross-layer Design of Ad-hoc Networks 

An ad-hoc wireless network is a collection of wireless mobile hosts forming a 

temporary network. Connections of mobile hosts are via multihop wireless connection 

without the support from a fixed infrastructure (“Base Station”). Its classical applications 

are battlefield communications, disaster recovery, search and rescue, and so on. Due to 

the mobility of nodes, the status of a communication link is a function of the location and 

transmission power of the source and destination nodes, and the channel interference 

from other links.  

The traditional layered structure of networks simplifies the design and 

implementation, and allows end systems manufactured by different vendors to share the 

information seamlessly. Recently, more and more people realize that in wireless 

networking there is strong coupling among the traditional layers of the OSI (open 

systems interconnection) architecture and that these interactions can not be ignored. 

These couplings are most obvious in the ad hoc networks. Cross-layer design is able to 

improve the network performance [38,39,40]. 
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One example of the coupling is between the routing in the network layer and the 

access control in the MAC sublayer. The selection of routes clearly affects the flows and, 

hence, the requirement of bandwidth allocation at each wireless link. On the other hand, 

the choice of bandwidth allocation and access control affects the accumulation of queuing 

at links, and therefore changes the distance of each link and the route selection. Many 

works on routing in such networks (see, e.g., [41,42]) assume a fixed underlying protocol 

for access control, and most of the researches on multiple access assume fixed routes and 

flow requirements [43]. In the past several years, the problem of coupling routing with 

medium access control in ad-hoc wireless networks has been addressed [44,45,46]. 

Another example of the coupling between layers is the coupling of power control in the 

physical layer and the scheduling in the MAC layer. The power assignment of links 

changes the link status, and the topology of the network, and hence the scheduling result. 

On the other hand, the scheduling decides the link activation and the interference 

generated, and therefore changes the power required at each link to achieve the QoS. 

Joint scheduling and power control algorithm are studied in [47,48]. 

In Chapter 5, we assume a TDMA-based wireless ad-hoc network, where each node 

has one receiver and one transmitter. We study both scheduling algorithms with joint 

power control and without joint power control, and conclude that with joint power 

control, the network achieves significantly larger throughput and less delay in the cost of 

slightly higher energy consumption. We also study the joint routing and scheduling 

algorithm. The simulation results show that there is a trade-off between the energy 

consumption and the network performance, and the network performance improves 

significantly by the joint algorithm. 
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Chapter 2: Linear Multiuser Detectors for Incompletely 

Known Symmetric Signals in CDMA Systems  

 

 

2.1 Introduction 

Code-division multiple-access (CDMA) is a method of multiple-access in which all 

the users occupy the given time-frequency space simultaneously. Each user is given a 

unique signature sequence (code) at the transmitter with which to spread its signal. The 

receiver de-spreads the received signal if it knows the signature sequences of the 

transmitter. As long as the codes are orthogonal, all signals can be separated. CDMA has 

superior performance over time-division multiple access (TDMA) or frequency division 

multiple access (FDMA) in mobile communication systems [1] and in harsh channel 

environments [2]. However, in non-orthogonal CDMA systems the traditional single-user 

receiver suffers from the near-far problem caused by multi-access interference and 

performance degrades.  

Multiuser receivers suppress the interference between users in spread-spectrum 

CDMA systems by making use of the structure of the multi-access interference [3]-[5] 

and of the knowledge of the code sequences. Linear multiuser detectors are more 

attractive than nonlinear ones because of their reduced complexity. Much of the work on 
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multiuser detection has focused on the multiuser efficiency and the near-far resistance 

[6]-[7] of multiuser receivers. Since improving network capacity is an important design 

goal [8], increased attention is paid to receiver performance in power-controlled CDMA 

systems and to the resulting user capacity [9]-[11].  

The effective bandwidth characterization of the user capacity was first derived in [9]. 

Specifically, it was proved that the SIR requirements of all users can be met if and only if 

the sum of the effective bandwidths of the users is less than the total number of degrees 

of freedom in the system. Simple expressions are derived for systems with matched filter, 

decorrelator, or linear minimum mean square error (MMSE) receiver, assuming the users 

are assigned random sequences. The corresponding user capacity and effective bandwidth 

(as the processing gain and the number of users approach to infinity) were found to be a 

function of the SIR requirement β. Specifically, it was shown that 

( ) ( ) ( )mf dec mmse

1 1
,   1,   1C C Cβ β β

β β
= = = + , 

mf dec mmse( ) ,   ( ) 1,    ( )
1

e e e
ββ β β β

β
= = =

+
. 

Then a synchronous power-controlled CDMA system with a MMSE linear receiver 

was studied in [10], and the optimal signature sequences and power allocation scheme 

were identified to meet the SIR requirement with minimum total power. The user 

capacity and effective bandwidth of the MMSE linear receiver were found to be given by  

( ) ββ 11mmse +=C  and ( ) ( )βββ += 1mmsee  respectively. After that, the user capacity of 

power-controlled CDMA systems with linear receivers in fading channels was evaluated 

in [11].  

In this chapter, we consider a synchronous CDMA system that uses BPSK 
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modulation and is equipped with a multiuser receiver. We assume that all of the users 

have symmetric signature sequences, i.e., the crosscorrelation between any two signature 

waveforms from different users are the same: ijρ ρ= , 0 1ρ≤ < , for all i j≠ . Although 

random sequences are often used in analysis (as in [9]), meaningful results are not 

possible for a system with a finite number of users. Here, we use symmetric sequences to 

simplify the analysis and obtain one data point of reference in the study of finite-user 

system performance. 

The multiuser detector needs to know which of the users are active and what their 

signature sequences are in order to detect the signals correctly. But in some instances, the 

detector may not know exactly all of the transmitting users and their sequences. For 

example, in some CDMA systems, the receiver detects which of the users are 

transmitting from the analysis of the received signal; so some error in this detection may 

cause some of the users’ identity to remain unknown to the receiver. Another example is 

the out-of-cell interference in a cellular network. One solution to this problem is the 

group-blind multiuser detection [12] that is based on stochastic approximation or 

subspace tracking techniques. When the set of codes of all possible users is known, an 

algorithm was proposed in [13] that make use of the knowledge of the codes to identify 

the interference and achieve faster convergence of the group-blinded multiuser detection. 

These blind multiuser detection schemes improve the performance, but introduce 

additional complexity. 

The interference from users with unknown signatures may affect the performance in a 

different way than the interference from known users and noise. If we have some 

information about the unknown users, like sequence crosscorrelation and power, we may 
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be able to track their effect on the performance of the system. In this chapter we are NOT 

trying to detect or identify the unknown users; instead, we evaluate the performance 

degradation caused by unknown interference if there is no blind multiuser detection. The 

performance indices we study include SIR, user capacity and effective bandwidth. Note 

that the detector is operated without the knowledge of the unknown users; however, the 

performance analysis is exact in that it accounts for all the active users. 

The organization of this chapter is as follows: In Section 2.2, we introduce the DS-

CDMA signal model and the multiuser receivers when some users are unknown. In 

Section 2.3, the SIR of the matched filter, the decorrelator, and the MMSE detector are 

derived and compared. In Section 2.4, the single-class case is considered and user 

capacity for the matched filter, the decorrelator, and the MMSE detector are given. In 

Section 2.5, the multiple-class case is studied and effective bandwidth for the matched 

filter and decorrelator are computed. Finally in Section 2.6, we summarize our 

conclusions. The detailed derivations of some formulas are given in Appendices A to E. 

2.2 Signal Model 

Assume a BPSK modulated, synchronized CDMA system with a total of K possible 

users. Each user has a specific SIR requirement and is assigned a unique signature 

sequence with processing gain L. There are two kinds of users: 

Known users: For these, the receiver knows their signature sequences, and uses them 

in the detector structure. The system can control their transmission power. 

Unknown users: For these, the receiver does not know their signature sequences, and 

can not control their transmission power. The system does not detect their signals. 

Let there be M known users (1 M K≤ ≤ ) and N (N=K-M) unknown users. The 
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notation (M,N) is used to denote the corresponding detection problem. Since in this case 

the receiver does not know that the N unknown users are actually transmitting, the 

detector operates as if there were only M users. That is, the (M,N) detector has the same 

structure as the (M,0) detector, although, of course, its performance will be different. The 

special case of N=0, i.e., the (K,0) receiver, is the regular multiuser detector discussed in 

[3], where all the users are known to the receiver.  

User i (i=1,2,…,K) has power iP , transmitted bit 1ib = ± , and signature waveform 

( )iS t , 0 t T≤ ≤ , which satisfies 2

0
( ) 1

T

iS t dt =� . The waveform ( )iS t  can also be represented 

by its corresponding signature sequence [ ]1 2i i i iLs s s=s � , where 
1

( ) ( )
L

i ij jj
S t s tψ

=
=�  

is based on an orthornormal basis { }( ), 1,...,j t j Lψ = . We assume that the crosscorrelation 

between any two users’ sequences is given by a constant � between 0 and 1.  

0
( ) ( )

T

ij i jS t S t dtρ ρ= ⋅ =� , 0 1ρ≤ < , for all i j≠ . 

This symmetry assumption leads to some restrictions on the possible values of L, K, 

and ρ . 

Restriction 1: In L-dimensional space, K ( K L≤ ) symmetric vectors with unit length 

and crosscorrelation ρ exist, if and only if 

1
1

1K
ρ− ≤ ≤

−
.       (2.1) 

Restriction 2: In L-dimensional space (L finite), the number of symmetric vectors K 

satisfies 1K L≤ + ; and for K to have the maximum value L+1, the value of ρ must be 

equal to 1L−− . 

The proofs of these statements are in Appendices A and B respectively. From these 
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two restrictions, if K=L+1, the only possible value of � is 1Lρ −= − ; while if K L≤ , the 

possible values of �  satisfy (2.1). Negative values of �, namely the interval 

( ) 11 ,0K
−� �− −

� �
, have a very limited range, which actually vanishes as K gets large. So we 

assume 0 1ρ≤ <  in our calculations; and therefore, the number of users K has to satisfy 

K L≤ . 

A natural question that arises is that, since the number of users is always less than or 

equal to the processing gain, why not let 0ρ = . In this way the same user capacity would 

be achieved and better performance would be realized. The answer is that in assigning 

sequences (and, hence, the value of �), the designer deals with a number of subscribers 

much greater than L and orthogonal sequences are not possible. In general, fewer than L 

users are simultaneously active in the system at any given moment. In a cellular case, the 

base station assigns codes to active users as they enter the system, hence orthogonal 

codes are possible. But for military and other ad hoc environments, codes are pre-

assigned and hence the option of orthogonal codes to only active users does not exist, if 

the population of potential users is very large. The case we are considering corresponds 

to a subset of a large number of users who cannot have orthogonal sequences in L 

dimensions. Why should they be symmetric then? They need not be. Another popular 

assumption about sequences is that they be random. Analysis of the random sequence 

case for a finite number of users is very difficult. Hence, we assume symmetric sequences 

here, both for simplifying the analysis and for obtaining one data point in the space of 

performance evaluation of multiuser detectors.  

We impose two constraints on the maximal admissible number of users. The first is 

from the power consumption point of view; i.e., the power allocation to any of the users 
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must be finite. This is similar to the assumption made in [9] and [10]. The other is from 

our assumption that the K users are symmetric. Assuming an L-dimensional space and 

0 1ρ≤ < , there are at most L symmetric users with crosscorrelation ρ (i.e., K L≤ ). This 

constraint was not needed in [9] and [10], since there could be arbitrary numbers of 

random sequences or optimum sequences. 

The received signal at the receiver is given by 
1

( ) ( ) ( )
K

i i ii
y t Pb S t n tσ

=
= + ⋅� , where n(t) 

is the white Gaussian noise with unit power spectral density. The (K,0) receiver passes 

the received signal through K matched filters, the outputs of which can be written in 

matrix form as  

K K K K Kσ= ⋅ ⋅ + ⋅y R A b n .       (2.2) 

Here the K×1 vectors , ,  and   K K Ky n b , the K×K crosscorrelation matrix KR , and the 

diagonal matrix  KA  are defined as: 

( )
0

( ) ( )
T

K ii
y t S t dt= ⋅�y , 

( )
0

( ) ( )
T

K ii
n t S t dt= ⋅�n , 

( )K ii
b=b ,  i=1,2,…,K, 

( ) ( )1  if ,   if K Kij ij
i j i jρ= = = ≠R R , 

and { }1 2= diag , ,...,K KP P PA . 

After the matched filters, a multiuser detector is used to detect the signal from the 

vector yk. The signal from user i is detected by ( )ˆ sgn ( )i K K ib = H y . The choice of the 

matrix KH  distinguishes the different linear multiuser detectors. The matched filter has 

the form of K K=H I , and is a single-user detector. The decorrelator has the form of 
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1
K K

−=H R , it eliminates the multi-access interference by projecting the signal onto the 

orthogonal space of the interference.  The MMSE multiuser detector is designed to be the 

optimal linear detector by minimizing MSE (maximizing SIR). As derived in [3], it has 

the form of ( ) 122 −−+= KKK ARH σ .  

For the (M,N) detector, the receiver passes the signal through M matched filters based 

on the waveform of the M known users. The outputs in matrix form are given by 

M M M M N N Mσ= + + ⋅y R A b �A b n .     (2.3) 

Here ,   ,   ,   ,   and   M M M M My R A b n  are defined as above, except that the dimension of the 

matrix is different. The matrix 
M N×
�  represents the crosscorrelation between unknown 

users and known users, with ij ρ=�  for all 1 ,  1i M j N≤ ≤ ≤ ≤ . And 

( )N N i M i M iP b+ += ⋅A b , i=1,2,…,N, represents the signal from unknown users.  

Since the receiver assumes only the M known users are active, it has the same 

structure as the (M,0) detector. The signal from user i is detected by ( )ˆ sgn ( )i M M ib = H y . 

The matrix MH  is equal to MI  for the matched filter, 1
M
−R  for the decorrelator, and 

( ) 122 −−+ MM AR σ  for the MMSE detector. 

2.3 Performance of Linear Multiuser Detectors 

2.3.1 Matched filter 

In the (M,N) matched filter detector, the user i is detected by ( )( )ˆ sgni M i
b = y , 

i=1,2,…,M. Therefore the SIR for user i is given by 
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( , )
mf , 2 2 2

1 1

M N i
i M M N

j j jj Mj i

P
SIR

P Pσ ρ ρ+
= = +≠

=
+ +� �

. i=1,2,…,M.   (2.4) 

We notice that ( , ) ( ,0)
mf , mf ,

M N M N
i iSIR SIR += , i=1, 2, …, M. This means that the interference 

from unknown users affects the SIR in the same way as the interference from known 

users. Actually, the interference from unknown users affects the SIR in the same way as 

noise with power 2
uPρ . The SIR for user i in the (K,0) matched filter detector can be 

obtained from (2.4) by letting M=K and N=0. 

2.3.2 Decorrelator 

For the (M,N) decorrelator, we have 

( ) ( ) ( )( )1 1 1ˆ sgn ( ) sgni M M i i i M N N M Mi
b Pb σ− − −= = + +

i
R y R �A b R n . 

Here ( )1
M M i

−R n  is the colored Gaussian noise with variance ( )1
M ii

−R . The term 

1
M N N
−R �A b  represents the extra interference from the N unknown users. After some 

matrix calculation (Appendix C), we obtain the SIR of user i, which is given by 

( , )
dec, 22

1

1 ( 2)
1 1 ( 1) 1 ( 1)

M N i
i

M N

jj M

P
SIR

M
P

M M
σ ρ ρ

ρ ρ ρ
+

= +

=
� �+ −⋅ + � �− + − + −� �

�

, i=1,2,…,M.  (2.5) 

The error probability of user i is obtained by conditioning on all interference bits Nb  

and making use of the symmetry of Gaussian distribution. We obtain 

1

( , )
dec, 1

{ 1, 1} { 1, 1}

(1 ( 1))(1 )
_  ( ) 2 1

1 ( 1) 1 ( 2)

        

M M N

M N jiM N N
i jj M

b b i

PP M
P err Q b

M P M
ρ ρ ρσ

σ ρ ρ
+ +

+−
= +

= + − = + −

	 
	 
 + − −
� �= + ⋅� �

� �� �+ − + − � �
� � �� . 

 (2.6) 

Let us review some of the concepts defined in [3] in order to evaluate the multiuser 
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performance of the (M,N) decorrelator. 

Effective energy: ( )σKe , is the energy that user k would require to achieve bit-error-

rate equal to ( )σKP  in a single-user Gaussian channel with the same noise level. i.e., 

( ) ( )( )k kP Q eσ σ σ= . 

Multiuser efficiency: ( ) KK Pe σ , is the ratio between the effective and actual energies. 

Asymptotic multiuser efficiency: ( ) KKK Pe ση
σ 0
lim

→
= . It measures the slope with which 

( )kP σ  goes to 0 in logarithmic scale in the high signal-to-noise (SNR) region; that is 

( )
( ) ( )

2

0 0

2 1
sup 0 1: lim 0 lim log .k

k
k kk

P
r

P PQ r Pσ σ

σ
η σ

σσ→ →

� �
� �= ≤ ≤ = =� �
� �� �

 

From the error probability expression (2.6), the expression of the asymptotic 

multiuser efficiency is obtained from the largest term of the Q function among all 

possible combinations in bN . That is, 

( , ) 2
dec, 1

(1 ( 1))(1 )
max 0, 1 .

1 ( 1) 1 ( 2)
M N jM N

i j M
i

P M
M P M
ρ ρ ρη

ρ ρ
+

= +

� �	 
 + − −� �= − ⋅ ⋅� �� �� �+ − + −� � �� �
�  (2.7) 

Equations (2.6) and (2.7) are derived by analogy with the matched filter receiver in 

[3, Ch. 1]. 

From (2.7) it is seen that the asymptotic multiuser efficiency of the (M,N) case is 

smaller than that of the (M,0) case, and the reduction depends on the sum of the unknown 

users’ signal amplitudes. When the unknown signal amplitudes exceed a certain value, 

the asymptotic multiuser efficiency reduces to zero. Specifically, when 

[ ]1
  1 (M-1)

M N

j ij M
P P ρ ρ+

= +
≥ +�  is true, then ( , )

dec, 0M N
iη =  holds. This means that when the 

unknown power is very large, the (M,N) decorrelator is not near-far resistant, and the bit 
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error rate does not vanish as the noise level goes to zero. 

For the (K,0) decorrelator, we let M=K and N=0 in (2.5), (2.6) and (2.7), and thus the 

SIR, error probability, and asymptotic multiuser efficiency, (which is also multiuser 

efficient in this case,) are given by 

( ,0)
dec, 2 1 ( 2)

1 1 ( 1)

K i
i

P
SIR

K
K

σ ρ
ρ ρ

=
� �+ −
� �− + −� �

 ,       (2.8) 

( )( ,0)
dec,

1 ( 1) (1 )
_  ( )

1 ( 2)
iK

i

P K
P err Q

K

ρ ρ
σ

σ ρ
	 
+ − −
� �=
� �+ − �

,     (2.9) 

and ( )( )( )( ,0)
dec,

1 1 1

1 ( 2)
K

i

K

K

ρ ρ
η

ρ
+ − −

=
+ −

.      (2.10) 

Asymptotic Performance of the (M,N) decorrelator: The asymptotic performance 

can be calculated from (2.5) and (2.7), by letting 

,   ,   ,  and  
K M

L K
L K

α φ→ ∞ → ∞ = = . 

We find that 

( )( , )
dec, 2 1M N i

i

P
SIR ρ

σ
→ − . 

Notice that ( , ) ( ,0)
dec, dec,lim limM N K

i iL L
SIR SIR

→∞ →∞
= , i.e., the interference from the unknown users 

vanishes asymptotically. This is caused by the factor ( ) 2
1 ( 1)Mρ ρ+ −� �� �  in (2.5), which 

goes to 0 as fast as 2−M , and therefore faster than 
1

M N

jj M
P

+

= +� , which is of order M if the 

average powers of the unknown users are the same.  

For simplicity, we assume that the average relative amplitude of any unknown user 

(with respects to user i) is one. i.e., 
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1

1
lim 1

M N

j ij MK
P P

N
+

= +→∞
=� . 

We observe that if � is constant and 10 <≤ ρ , then 

( )( , ) 2
dec,

1
1 max 0 ,  2M N

iη ρ
φ

� �→ − −� �
� �

.     (2.11) 

Equation (2.11) implies that, in order to have ( , )
dec, 0M N

iη > , we must have 1 2φ > , i.e., at 

least half of the transmitting users must be known by the receiver. 

Effective Interference: The following expression of SIR is an approximation for a 

large system [9].  

2
1

1
( , , )

i
i

K
j ji j i i
j i

P
SIR

I P P SIR
L

σ =
≠

=
+ �

.      (2.12) 

The quantity ( , , )ji j i iI P P SIR  is the effective interference that user j imposes on user i.  

We rewrite the SIR of the (M,N) decorrelator as  

[ ]
22 2

( , ) 2
dec, 1

( 1)
1 ( 1) (1 ) 1 ( 1)

M NM N
i i jj M

SIR P M P
M M
σ ρ ρσ

ρ ρ ρ
+

= +

� �� �� �= + − +� �� �+ − − + −� �� �� �
� . (2.13) 

In this equation, the three terms in the denominator are identified to be respectively 

(i) the noise, (ii) the effective interference from the other M-1 known users except user i, 

and (iii) the interference from the N unknown users. By analogy between (2.12) and 

(2.13), we define the effective interference from each of the K-1 users to user i as: 

[ ]
2 2

( , )
dec, 2

,  1,2,  ,
1 ( 1) (1 )

1, ,  .
1 ( 1)

M N
ji

j

L
j i j M

M
I

LP j M M N
M

σ ρ
ρ ρ

ρ
ρ

�
≠ =� + − −�= �

� �� = + +� �� + −� ��

�

�

   (2.14) 

Notice that the effective interference from known user j is independent from its 

power, while the effective interference of the unknown users is proportional to their 
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power. This is because the decorrelator uses the projection of My  onto the orthogonal 

space of { }1 2 1 1,i i M− +s ,s , ,s s , ,s� �  to detect bi, so the performance in detecting user i is 

independent of the power in the direction of js . Actually, the “effective interference” is 

not the real interference; it is the noise enhancement that corresponds to the power 

reduction in the desired signal in the process of projection. For (K,0) case, (2.14) 

becomes 

[ ] [ ]
2 2 2

( ,0)
dec, ,    ,  1,2, . 

1 ( 1) (1 ) 1 ( 2)
K i

ji
i

PL L
I j i j K

K K
σ ρ ρ

ρ ρ β ρ
= = ≠ =

+ − − + −
�  

In [9], the effective interference in the decorrelator is given by i iP β  for a large 

system and for the case of random sequences, which is also independent of the interfering 

power.  

2.3.3 MMSE detector  

The (M,N) MMSE detector minimizes the MSE assuming only users 1,…, M are 

active. We let 2 2
M Mσ − −= + 1G (R A )  . Since this is hard to calculate for a general AM matrix, we 

assume equal power for all the users, i.e., 1 MP P P= = =� . Define the 1M ×  vector Mu  

as [ ]1 1
T

M =u � . Now, ( )2
M MPσ −= + ⋅ 1G (R I ) , and  

( )( )
( ) )1 1

ˆ sgn

sgn ( ) ( ) ( ) ( ) .

i M i

M M N
jM ii i M ij j j j M i M ij Mj i

b

P b P b P bρ σ+
= = +≠

=

	= ⋅ + ⋅ + ⋅ ⋅ + ⋅�


� �

Gy

GR GR Gu Gn
 

Here, ( )M iii
P b⋅GR  is the desired signal; ( )1

M
j M jijj i

P b=
≠

⋅� GR  is the interference from 

the M-1 known users; ( ) ( )1

M N

j j M ij M
P bρ +

= +
⋅� Gu  is the interference from the N unknown 
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users; and finally, ( ) ( )~ (0, )M Mi ii
NGn GR G  is the colored Gaussian noise.  

Define 1 ( 1)Mδ ρ= + − , 1γ ρ= − , and 
1

M N

u jj M
P P

+

= +
=� . We obtain the SIR as follows 

(Appendix D).  

( ) ( )2( , ) 2 4 2 4 2 2 2 2 2
mmse  = ( 1) 2 ( ) ( )M N

uSIR P P P P P P Pδγ σ δ ρ σ σ σ δγσ δγ δ ρ ρ γ σ ��+ − + + + − + ⋅ +� �
 

(2.15) 

For the (K,0) MMSE detector, let M=K and 0uP =  in (2.15); we then obtain 

(Appendix D) 

( )( )( )( )
( )( )( )

2

( ,0)
mmse 2 2

1 1 1

1 2
K

P K P
SIR

K P

ρ ρ σ

σ ρ σ

+ − − +
=

+ − +
.     (2.16) 

We reorganize (2.15) as follows 

( ) ( ) ( )

( , )
mmse 2 2 2 2

2 2
22 1 2

 =
( )

( 1)

M N

M N

jj M

P
SIR

P P
M P

P P

ρ σ γ σσ ρ
δγ σ δγ σ

+

= +

++ − +
+ +

�

    (2.17) 

By analogy between (2.12) and (2.17), we define the effective interference from each 

of the K-1 users to user i as: 

[ ]
( )

[ ]( )

2 2

2

( , )
2dec, 2 2

22

,  1, 2,  ,
1 ( 1) (1 )

(1 )
1, ,  .

1 ( 1) (1 )

M N
ji

j

LP
j i j M

M P
I

P LP
j M M N

M P

σ ρ
ρ ρ σ

ρ ρ σ

ρ ρ σ

�
≠ =� + − − +��= � − +� = + +� + − − +��

�

�

  (2.18) 

2.3.4 Comparison of linear multiuser detectors 

Based on the above analysis we can now compare the matched filter, the decorrelator 

and the MMSE detector, for both the (K,0) and the (M,N) cases, in the special case of 

equal power P and equal SIR requirement � for all known users. The symmetry constraint 
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still has to be satisfied. 

(K,0) Linear Multiuser Detectors: From equations (2.4), (2.8), and (2.16), we 

obtain Figure 2.1, which shows the comparative behavior of the SIR of these detectors for 

ρ =0.5. From Figure 2.1-a) and 2.1-b), we observe that: 

a) The MMSE detector has the best performance in terms of the SIR, because its 

design is based on SIR maximization. 

b) As P →∞, or K → ∞ , the performance difference between the MMSE and the 

decorrelator detector vanishes. The reason is that the decorrelator focuses on 

canceling interference from other users, while the MMSE works on both noise and 

interference in an optimal way. As P →∞ , or K →∞ , the effect of noise is negligibly 

small compared to the interference, therefore the difference between MMSE and the 

decorrelator reduces to 0. 

c) As P →∞, we have ( ,0)
mmse

KSIR → ∞ , ( ,0)
dec

KSIR → ∞ , but ( ,0) 2 1
mf ( 1)KSIR Kρ − −→ − < ∞ . 

Therefore, any SIR requirement � is feasible for the decorrelator and the MMSE 

detectors, but there is a maximum value of SIR requirement that the matched filter 

can achieve no matter how large the power is. Also, as K →∞ , we have ( ,0)
mf 0KSIR → , 

which means there is a constraint on maximum number of users in the matched filter 

case. However, there is no constraint on the maximum number of users in the 

decorrelator and in the MMSE detector, because the SIR requirement can always be 

satisfied by using large enough power.   

d) When power P is small, we have ( ,0) ( ,0)
mf dec

K KSIR SIR> ; but as P increases, this order 

switches. Because the matched filter treats both interference and noise as noise, it 

performs well if the interference is much smaller than the noise (when P is small), 
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and poorly if the interference is dominant (when P is large). On the contrary, the 

decorrelator focuses on canceling interference from other users, and it works better 

when the interference is much stronger than the noise. The MMSE detector represents 

the compromised solution and it is actually a decorrelator when the noise is 0, and 

becomes a matched filter when the interference is 0.  

All these observations for the (K,0) linear detectors agree with the behavior described 

in [3]. 

(M,N) Linear Multiuser Detectors: The SIR of the (M,N) matched filter, 

decorrelator, and MMSE detector, from equations (2.4), (2.5), and (2.15), is plotted by 

Figure 2.2, for the case of ρ =0.5 and Pu/σ2=10. From these figures, we observe that: 

a) For the (M,N) decorrelator and the MMSE detector, the SIR increases with M, 

which is contrary to the (K,0) case. The reason is that for Pu/σ2=10, the interference 

from the unknown users is stronger than the noise. The more the known users, the 

less the effect of the unknown users on the detection. In the matched filter, however, 

the knowledge of the known users is not used to mitigate the interference from the 

unknown user and the noise, and its SIR is always decreasing with M. 

b) Sometimes the MMSE detector loses its optimality. We consider P/σ2=0.5 and 

observe the SIR versus M, or consider M=10 and observe SIR versus P/σ2. For these 

examples, the performance of the decorrelator is clearly better than that of the MMSE 

detector. This is not surprising, because the MMSE detector is optimal when all users 

are known; the presence of the interference from unknown users is responsible for 

this suboptimality. 
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(a) SIR versus number of users, when P/σ 2=0.5 and 10. 

 

(b) SIR versus transmission power P/σ 2, when K=10 

Figure 2.1: SIR of (K,0) linear multiuser detectors, when ρ=0.5. 
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(a) SIR versus number of known users M, when P/σ 2=0.5, or 10. 

 

(b) SIR versus transmission power P/σ 2, when M=10. 

Figure 2.2: SIR of (M,N) linear multiuser detectors, when ρ=0.5 and  Pu /� 2=10. 
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c) As P →∞ , or M →∞, the differences between the MMSE detector and the 

decorrelator vanish.  

d) The matched filter has limited user capacity from the viewpoint of power. 

2.4 Single-class Case and User Capacity 

In the so-called single-class case, all the users have the same SIR requirement, i.e., 

iSIR β≥  (� is the target SIR), and the same power constraint iP P≤  ( P  is the maximum 

allowable power). We consider two kinds of power constraint:  

Infinity power constraint: P = ∞  (extreme, or ideal, case).  

Finite power constraint: P < ∞  (practical case). 

For the (M,N) detector, we assume that the unknown users have power 

 , 1, ,jP j M M N= + +�  and total power 
1

M N

j uj M
P P

+

= +
=� .  

In a power-controlled system, we need to find the minimum power allocation for the 

system to satisfy the SIR requirements. Since all the users have symmetric sequences and 

same SIR requirements, their minimal allocated power should be the same. This is easy to 

prove mathematically. Because the inequality iSIR β≥  is a function of only �2, �, uP , and 

, 1,...iP i M= , the minimum power allocation Pi of different users satisfy exactly the 

same equations; therefore their solutions should be the same. 

For both the (K,0) and the (M,N) detector, we consider the user capacity for the 

single-class case. For the (K,0) case, the K users are admissible into the system if a power 

allocation scheme can be found such that the SIR requirements of all K users are 

satisfied. The maximal admissible number of users per degree of freedom (in the single-

class case) with infinity power constraint is called the user capacity. For the (M,N) case, 
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this definition is changed to identify the known users. 

User capacity for (M,N) detector: The M known users are admissible into the system 

if there exists a power allocation scheme for the M known users such that their SIR 

requirements are satisfied. The maximum admissible number of known users per degree 

of freedom with infinite power constraint is called the user capacity. 

2.4.1 Matched filter 

Analysis for the matched filter is simple. Since known and unknown users affect the 

performance in the same way, the (K,0) and the (M,N) detector behave similarly. So we 

only give results for the (M,N) case here; the (K,0) case can be easily obtained by simply 

letting M=K, N=0, and Pu=0. 

Infinite Power Constraint: From symmetry, all M users should have the same 

power; we let 1 MP P P= = =�  and 1 MSIR SIR β= = =�  in (2.4), and the power allocation 

to satisfy SIR requirements of all M known users is given by 

2 2
( , )

mf , 2

( )
1 ( 1)

M N u
i

P
P

M
β σ ρ

βρ
+=

− −
, i=1,2,…,M. 

Therefore in order to have iP < ∞ , M must satisfy 

2

1
1M

βρ
< + . 

Another constraint from the symmetric property gives M L N≤ − . Hence the user 

capacity is 

( , )
mf 2

1 1
( ) min 1 ,   M N N

C
L L L

β
βρ

� �= − +� �
� �

user / degree of freedom.   (2.19) 

Finite Power Constraint: The power allocation is the same as before, but from 
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iP P≤ , we now have ( ) ( )2 2 2 21 1 uM P Pβρ σ ρ ρ≤ + − + , which yields a smaller region 

than that of the infinite power constraint case. Therefore the admissible number of known 

users satisfies: 

2 2

2 2

1
min ,1   uP

M L
P

σ ρ
βρ ρ

� �+≤ + −� �
� �

.     (2.20) 

2.4.2 (K,0) Decorrelator 

Infinite Power Constraint: The minimal power allocation is the same for all users 

and is given by 

2
( ,0)

dec,

1 2
, 1 2

1- 1 1
K

i

(K )
P   i , , K

(K )
βσ ρ

ρ ρ
� �+ −= =� �+ −� �

� . 

The allocated power increases as the number of users K increases. Since 

( )2
iP 1βσ ρ< − < ∞  is true for any value of K, there is no constraint imposed on the 

number of users from the viewpoint of the allocated power. However, the assumption of 

the existence of K users with symmetric sequences requires that K L≤ . Therefore,  

( ,0)
dec ) 1  KC (� = user / degree of freedom.     (2.21) 

Finite Power Constraint: We must have 2P βσ≥  if there is at least one user. 

Remember that there is the additional constraint that K L≤  from the symmetry 

assumption. Therefore, the admissible number of users satisfies: 

2

2 2
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min 1 if  ,  
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, if  .
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� � �� ≤ − + ≤ <� � �− − −� ��
�
� ≤ ≥

−��

   (2.22) 
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2.4.3 (M,N) Decorrelator 

Infinite Power Constraint: The power allocation is the same for all M users and is 

given by 

22
( , )

,

1 ( 2)
,   1,2, , .

1 1 ( 1) 1 ( 1)
M N

dec i u

M
P P i M

M M
σ ρ ρβ β

ρ ρ ρ
� � � �+ −= + =� � � �− + − + −� � � �

�   (2.23) 

Since ( )2 2 21i uP Pβσ βσ ρ βρ< < − + < ∞  holds for any value of M, there is no constraint 

imposed on M from the viewpoint of power. From the symmetry condition we have 

M L N≤ − , and, hence, the user capacity is given by: 

( )( , )
dec 1M N N

C
L

β = −   user / degree of freedom.    (2.24) 

To study the behavior of power allocation P(M) versus M, we define ∆(M), �*, and 

F(M) as follows 

1
( )

1 ( 1)
M

Mρ
∆ ≡

+ −
, 

2

*
2 (1 ) uP

σ
ρ ρ

∆ ≡
−

, 

( )

2
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2

F( ) ( ) ( )
1

         ( ) ( ) 2 *

u

u

M M P M

P M M

σ ρ ρ
ρ

ρ

≡ − ∆ + ∆
−

= ∆ ∆ − ∆

. 

Then from (2.23) we obtain the power allocation to any one of the known users given 

by 

( )
2

F( )
1

P M M
� �

= +� �−� �

σβ
ρ

. 

We see that this power depends on the value of M. The function F(∆(M)) is a parabolic 

function of ∆(M) ( ( )0 1M< ∆ ≤ ) with the minimum at �*. There are three critical points 
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for this function as listed below: 

( )
2 1

F 1 1
1 2 *

M
σ ρ

ρ
	 
= = − +� �− ∆ �

, 

( )( )
2*

F *
2 1

M
ρ σ

ρ
∆∆ = ∆ = −

−
, 

and  F( ) 0M = ∞ = . 

The behavior of the quantity F(M) is based on the relative position of *∆  in the range 

of �(M), that is, whether 1* ≥∆ , or 1*2
1 <∆≤ , or 1

20 *< ∆ ≤ . This is illustrated in Figure 

2.3.  

 

Figure 2.3: Function F(M) for (M,N) decorrelator. 

Specifically, 

a)  1* ≥∆  implies that F(M) increases monotonically from a minimum of ( )F 1M =  to 

a maximum of F( )M = ∞ .  
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b)  1*2
1 <∆≤  implies that F(M) decreases first from ( )F 1M =  to the minimum 

( )F *∆ = ∆ , and then it increases to a maximum of F( )M = ∞ .  

c)  1
20 *< ∆ ≤  implies that F(M) first decreases from the maximum of ( )F 1M =  to the 

minimum of ( )F *∆ = ∆ , and then increases to F( )M = ∞ .  

Note that F(M), and therefore P(M) are not always monotonic with M. This is different 

from the case of the (K,0) decorrelator and the matched filter detector. The explanation of 

the difference is as follows. The first term in the power allocation of (2.23) is the power 

to overcome the noise and the M-1 other known users; this term is monotonically 

increasing with M. The second term in (2.23) is the power to overcome the interference 

from N unknown users; this term is decreasing monotonically with M. The reason is that 

for a fixed number and power of unknown users, if we let the number of known users 

increase, the ratio of the power from the unknown users to the power of known users is 

decreasing, and hence it enhances the detection process. Therefore, the curve shape of 

P(M) is determined by the relative values of the increasing term and of the decreasing 

term, which, in turn, depend on the parameter ∆*. When 1* ≥∆ , i.e., when 

( )2 21 uPσ ρ ρ ρ− ≥ , the noise term is dominant, and P(M) is increasing with M. When 

1* <∆ , the unknown interference term is dominant for small M and the noise term 

becomes dominant as M becomes large. Therefore the power needed to satisfy the SIR 

requirement will decrease first as M increases, and then will start increasing when M 

becomes large enough.  

Finite Power Constraint: We only discuss the constraint on the number of known 

users M from the power point of view here. The constraint from the symmetry property, 
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i.e., the constraint that M L N≤ − , can be incorporated easily. We have to compare the 

possible values of iP  with that of P  to obtain the constraint on M. The number of known 

users M has to satisfy ( )P M P≤ . Let 

2

F( )
1

P
M

σ
β ρ

= −
−

 .        (2.25) 

We denote the value of M that solves (2.25) by 0M  if there is a unique solution. If 

there are two solutions, we denote them by M1 and M2 (M1<M2). Then the constraint on 

M depends on the values of �* (i.e., the behavior of F(M)) and of P , as shown in Figure 

2.4. The following possibilities arise. 

a) If 
2 2

min 1 * , 1
1 2 1 2 *

P
βσ ρ βσ ρρ

ρ ρ
� �	 
 	 
< − ∆ − +� �� � � �− − ∆ �  �� �

, then M=0. 

b) If 
2 2

max 1 ,
1 2 * 1

P
βσ ρ βσρ

ρ ρ
� �	 
> − +� �� �− ∆ − �� �

, then M < ∞  (No constraint). 

c) If 1
20 *≤ ∆ < , and 
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1 1 2 *
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ρ ρ
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, then 0M M≥ . 

d) If 0 * 1≤ ∆ <  and 
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, then 1 2M M M≤ ≤ . 

e) If 
2
1

*≥∆  and 
2 2

1
1 2 * 1

P
βσ ρ βσρ

ρ ρ
	 
− + ≤ <� �− ∆ − �

, then 0M M≤ . 

M0 is solution of (2.25) when only one solution exists. M1 and M2 are solutions of 

(2.25) when two solutions exist. 
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Figure 2.4: Constraint on number of known users M for (M,N) decorrelator.  

2.4.4 (K,0) MMSE detector 

For any fixed value of the power P, the function of SIR versus K is monotonically 

decreasing (Appendix E) from 2P σ  to 2Pγ σ . Also for any fixed number of users 

1K ≥ , the function of SIR versus P is monotonically increasing (Appendix E) from 0 to 

∞ . Therefore, any 0β >  is a feasible SIR requirement as far as the power constraint is 

concerned. However, the symmetry constraint still has to be satisfied. 

Infinite Power Constraint: Our assumption of equal powers for all users is 

reasonable here because the allocated power to each user will be the same as follows 

from the assumed symmetry of their sequences.  

To calculate the minimum power needed for K users with SIR requirement β, we let 

( ,0)
mmse

KSIR β=  and find the positive solution of the quadratic equation that P satisfies. It is 
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given by  

( ) ( )2
( ,0) 2

mmse

(1 ) 1 ( 1)1 1
( , ) 2 1 ( 1) 1 ( 2) 4 .K K

P K K K
ρ ρ

β σ ρ ρ ρ
β β β

� �− + −	 
� �= + − + − + + − − +� �� �
 �� �� �

 

This is an increasing function of K from 2( 1)P K σ β= =  to ( )2( ) 1P K σ β ρ→ ∞ = − . 

Since P < ∞  is always true and independent of K, there is no constraint on the number of 

users from the power allocation viewpoint. However the symmetry property of sequences 

requires K L≤ , and thus the user capacity is 

( ,0)
mmse 1KC =  user / degree of freedom.    (2.26) 

Finite Power Constraint: Define *K  such that ( ,0)
mmse ( , *)KSIR P K β= ; then the 

admissible number of users satisfies 

{ }
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, if  P ,
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min *, , if  ,
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    (2.27) 

2.4.5 (M,N) MMSE detector 

The behavior of the SIR function of the (M,N) MMSE detector versus M (K varies 

along with M) depends on the value of the constant Pu /σ2, that is, the ratio between the 

total unknown powers and the noise. We observe that as Pu /σ2>0, the SIR is no longer a 

monotonically decreasing function of M. An example is shown in Figure 2.2-a). When       

Pu /σ2=10 and �=0.5, the SIR is an increasing function of M. The reason is that the 

interference from the unknown users decreases with M; while the interference from the 

known users and the noise increases with M. For very large Pu /σ2, (which means that the 
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interference from the unknown users is dominant,) the more known users there are, the 

better it is in order to counterbalance the interference from the unknown users. 

For any fixed number of known users 1M ≥ , the function of SIR versus the 

transmission power P is monotonically increasing from 0 to ∞ as P increases from 0 to ∞ 

(Appendix E). So, the quantity ( )( , )
mmse1

min ,M N

M
SIR P M

≤ <∞
 is also monotonically increasing with 

P from 0 to ∞. Therefore, any 0β >  is a feasible SIR requirement as far as the power 

constraint is concerned; again, however, the symmetry constraint still has to be satisfied.  

Infinite Power Constraint: To satisfy the SIR requirement, we can always use large 

enough power allocation P, so that ( , )
mmse1

min ( , )M N

M
SIR P M β

≤ <∞
= . In this way, 

( ) ( )( , ) ( , )
mmse mmse1

, min ,M N M N

M
SIR P M SIR P M β

≤ <∞
≥ =  is satisfied for any M. Since P < ∞  is always true, the 

only constraint on the number of users is from the symmetry property of the sequences, 

which yields M L N≤ − . Therefore the user capacity is given by 

( , )
mmse 1M N N

C
L

= −  user / degree of freedom.    (2.28) 

To find the minimal power allocation, we let ( , )
mmse

M NSIR β= , and find that P satisfies a 

cubic equation. The solution is too complex to derive analytically, instead we provide a 

numerical evaluation for 3 cases, namely, Pu /σ2=0 (the (K,0) case), Pu /σ2=4, and             

Pu /σ2=10, shown in Figure 2.5. Notice that when Pu /σ2=10, the power allocation is 

decreasing with the number of users. Again this phenomenon arises from the interference 

the unknown users cause.  
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Figure 2.5: Power allocation of (M,N) MMSE detector for Pu /� 2=0, 4, and 10, when  

ρ =0.5, β =10. 

Finite Power Constraint: The number of users depends on the value of P  and on the 

behavior of the function P(M,β). We observe that M has to satisfy M L N≤ −  and 

( )P M P≤ . From the similarity between Figure 2.3 and Figure 2.5, we know that the 

constraint on M is similar to that of the (M,N) decorrelator with finite power constraint. 

There are 5 possible constraints on M: (i) M = 0, (ii) M < �, (iii) M � M0, (iv) M � M0, 

and (v) M1 � M � M2, with M0, M1, and M2 solutions of ( )P M P= . Which kind of 

constraint applies to a specific problem depends on the values of P  and Pu /σ2=10. Since 

we do not have the analytical form of the function P(M,β), we cannot provide exact 

analytical results. But the idea is the same as in the analysis of Section 2.4.3. 

2.4.6 Comparisons 
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(M,N) Detector Versus (K,0) Detector for Symmetric Sequences: Comparing the 

(M,N) to the (K,0) case for all three detectors (i.e., matched filter, decorrelator, and 

MMSE), we see that ( ) ( )( , ) ( ,0)M N KC Cβ β≤ . For the matched filter, although the knowledge 

of N does not change the SIR of the known users, the unknown users do occupy and, 

hence, waste resources, and, therefore reduce the user capacity. For the decorrelator and 

the MMSE detector, the observed user capacity of the (M,N) detector is less than that of 

the (K,0) detector by a factor of N/L.  

Symmetric Sequences Versus Random Sequences for the (K,0) Case: The results 

given in [9] for random sequences are asymptotic results, while our results for symmetric 

sequences are for finite values of K and L, and depend on the crosscorrelation �. In order 

to make a valid comparison, we let L → ∞ , and let � depend on L, so that both cases 

have approximately the same level of multiple access interference. Since 2
ij jPρ  is the 

interference from user j to user i in the matched filter, { }2
ijE ρ  is a good representation of 

the interference level. The crosscorrelation between any two random sequences is a 

random variable, with. { }2 1
ijE Lρ −=  Hence we let 

1
2Lρ −= , so that the crosscorrelation 

between any two symmetric sequences also satisfies { }2 1
ijE Lρ −= .  

From (2.19), the user capacity of the matched filter for symmetric sequences is given 

by { }1min 1, β − , as compared to 1β −  in [9]. Of these asymptotic results, the dimension 

corresponding to the symmetry property is not applicable to the random sequence case; 

however, the dimension corresponding to the power constraint is the same as that of the 

random sequence case.  

The user capacity of the (K,0) decorrelator using symmetric sequences is the same as 
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that of the case of random sequences as given in [9]. But here the constraint is actually 

imposed by the symmetry property rather than from the power constraint.  

The user capacity is equal to 1 for the (K,0) MMSE detector using symmetric 

sequences, which is less than that of the random sequence case, which is 11 β −+ . But the 

constraint for symmetric sequences case is imposed by the symmetric sequence 

assumption, while for random sequence case it is imposed by the power allocation.  

Symmetric Sequences Versus Optimum Sequences for the (K,0) MMSE 

Detector: The results for both symmetric sequences and optimum sequences are for a 

finite system. The user capacity is given by 1 for the (K,0) MMSE detector using 

symmetric sequences, which is less than that of the optimum sequence case, which is 

given by 11 β −+ . But, again, the constraint for the symmetric sequences case is imposed 

by the symmetric sequence assumption, while for optimum sequence case it is imposed 

by the power allocation. 

2.5 Multiple-class Case and Effective Bandwidth 

In the multiple-class case, each of the J classes of users has its own SIR requirement 

and power constraint. The jth class, j=1,2,…,J, has number of users jK  (or jM  for the 

(M,N) case), (where 
1

J

jj
K K

=
=� , or 

1

J

jj
M M

=
=� ,) SIR requirements �j, 

( 1 2 Jβ β β< < <� ,) and power constraint jP . We consider two kinds of power constraint, 

infinite power constraint with jP = ∞ , and finite power constraint with jP < ∞ . Just as in 

the single-class case, since all the users in one class have symmetric sequences and 

identical SIR requirement, their powers should be the same. 
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We consider the multi-class case for the effective bandwidth calculation. The MMSE 

detector is not considered here, because the SIR values in (2.15) and (2.16), are only for 

valid for the equal-power case, which is correct for the single-class case, but not for 

multiple-class case. 

The original definition of effective bandwidth in [9] works for the (K,0) case. For the 

(M,N) case, we modify it slightly to focus on the known users. Besides, since we have 

two constraints on the number of users, effective bandwidth can NOT be written in a 

scalar form. So we introduce a two-dimensional vector effective bandwidth quantity, 

whose two components correspond to the symmetric correlation constraint and to the 

power constraint respectively. Now the SIR of all users can be satisfied if and only if the 

sum of the effective bandwidth vectors of all the users is less than the total number of 

degrees of freedom for both components; which can be written formally as  

( ) 21

J

j jj
K � L

=
⋅ ≤ ⋅� e u , 

where 2u  is the vector [ ]1 1 . 

Effective Bandwidth for the (M,N) detector: The effective bandwidth vector of a 

known user can be defined so that the SIR requirements of all the known users can be met 

if and only if the sum of the effective bandwidth vectors of the known users is less than 

the total number of degrees of freedom for each component. 

2.5.1 Matched filter 

Infinite Power Constraint: Let j jSIR β=  for j=1,2,…,J in (2.4); we obtain the power 

allocation for class j to be 
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2 2
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From jP < ∞  and the symmetric property, the user capacity constraint for the 

matched filter receiver with J classes is given by: 

2

21 1
J j

jj
j

L
M L

β ρ
β ρ=

<
+� , 

and 
1

J

jj
M L N

=
≤ −� . 

According to the new definition, the effective bandwidth vector of the (M,N) matched 

filter can be written as 

2
( , )
mf 2

1
( )

1 1
M N

N
L

Lβρβ
βρ

� �
= � �− +� �

e  degree of freedom / user.   (2.29) 

Finite Power Constraint: The power allocation is as before, but we now have 

,    1,2, , .j jP P j J< = � ,. Thus jM  satisfies 

( )
( )

2 22

2 21
1 max

1 1
J i uj

jj i
j i i

P
M

P

β σ ρβ ρ
β ρ β ρ=

� �+
� �≤ −

+ +� �� �
� .    (2.30) 

This equation, together with 
1

J

jj
M L N

=
≤ −� , defines the restricted user capacity 

region of the system, which is obviously smaller than that of the infinite power constraint 

case. 

2.5.2 (K,0) Decorrelator 

Infinite Power Constraint: The power allocation to class-j user is given by 

2
( ,0)

dec,

1 2
1 2

1- 1 1
jK

j

(K )
P .  j , , J

(K )

β σ ρ
ρ ρ
� �+ −= =� �+ −� �

� . 
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Note that Pj satisfies ( )2 2 1j j jPβ σ β σ ρ≤ < − . Define max jj
β β= . Just as in the single-

class case, the inequality ( )2 1jP βσ ρ< − < ∞  is true for any number of users. So, the user 

capacity constraint is just given by 
1

J

jj
K L

=
≤� . From this, we can identify the effective 

bandwidth to be 1. To be consistent with the matched filter case, we still write it as the 

form of effective bandwidth vector, that is 

[ ]( ,0)
dec ( ) 1 0K β =e  degree of freedom / user.      (2.31) 

Finite Power Constraint: If we have J power constraints ,   1,2,...,j jP P j J≤ < ∞ = , 

we first need to partition the J classes into three sets according to the value of P  as 

follows:  

2

1 :
1

j
jJ j P

β σ
ρ

� �� �= ≥� �−� �� �

, 
2

2
2 :

1
j

j jJ j P
β σ

σ β
ρ

� �� �= ≤ <� �−� �� �

, and { }2
3 : j jJ j P β σ= < . 

For set 3J , it is not possible to satisfy the power constraint, so we must have 

0
3

=�
∈Jj

jK . For set 1J , the power constraints are satisfied automatically. So the only real 

constraint arises from classes 2j J∈ . 

If 2J  is a null set, there is actually no constraint on the number of total users from 

either the SIR requirement or from the power constraint; the user capacity is given 

accordingly by:  

1 3 2

 ,   and   0.j j
j J j J J

K L K
∈ ∈ ∪

≤ =� �  

If J2 is not a null set, it follows from j jP P≤  that 

2

2

1
1

(1 )
j

j j

K
P

β σ
ρ β σ ρ

≤ − +
− −

 , for each 2j J∈ . 
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Therefore the user capacity constraint can be written as: 

( )2 1 3
2

2

1 1
min ,  1  ,  and   0.

1 (1 ) minj j
j J J j Jj jj J

K L K
Pρ ρ β σ∈ ∈

∈

	 

� �≤ − + =
� �− −
 �

� �
�

  (2.32) 

2.5.3 (M,N) Decorrelator 

Infinite Power Constraint: Define max jj
β β= . The power allocation to the class j 

users is given by 

22
( , )

dec,

1 ( 2)
,   1,2, .

1 1 ( 1) 1 ( 1)
jM N

j j u

M
P P j J

M M
� � � �+ −= + =� � � �− + − + −� � � �

�
β σ ρ ρβ

ρ ρ ρ
 

Since ( )2 21i uP Pβσ ρ β ρ< − + < ∞  holds for any value of M, the user capacity 

constraint is given by 
1

J

jj
M L N

=
≤ −� . Thus, we can identify the effective bandwidth 

vector as 

( , )
dec

1
( ) 0

1
M N

N
L

β
� �

= � �−� �
e    degree of freedom / user.   (2.33) 

Finite Power Constraint: Now the number of known users M has to satisfy the J 

inequalities of the form ( )j jP M P≤ . For those classes j for which ( )min j jM
P M P>  is true, 

we need to require 0jM = . For each of the other classes, we obtain a region of 

acceptable values of M. The overall acceptable region of M is the intersection of all 

regions obtained in this way. The results depend on ∆* and on the value of jP , and are 

rather complicated to derive. We omit the detailed discussion of this case here. 

2.5.4 Comparisons 

(M,N) Detector Versus (K,0) Detector for Symmetric Sequences: Comparing the 
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(M,N) to the (K,0) case for symmetric sequences, for the matched filter and the 

decorrelator cases, the effective bandwidth vector is clearly larger than that of the (K,0) 

decorrelator. This is because the unknown users waste the resources.  

Symmetric Sequences Versus Random Sequences for the (K,0) Case: For the 

matched filter, the effective bandwidth is [ ]1 β , as compared to β in [9]. Of these 

asymptotic results, the dimension corresponding to the symmetry property is not 

applicable to the random sequence case; however, the dimension corresponding to the 

power constraint is the same as that of the random sequence case.  

For the decorrelator case using symmetric sequences, the effective bandwidth vector 

can be actually reduced to the original scalar form, because the constraint iP < ∞  is 

satisfied all the time. Therefore, the effective bandwidth of the (K,0) decorrelator using 

symmetric sequences is the same as that of the random sequences case as given in [9]; 

both are equal to 1. However, here the constraint is actually imposed by the symmetry 

property rather than from the power constraint. 

2.6 Summary 

In summary, for the CDMA system with symmetric sequences, we found the user 

capacity and the effective bandwidth for the (K,0) and the (M,N) matched filter and 

decorrelator detectors, by assuming fixed total power from unknown users. By making 

the equal power assumption for all known users, we obtained the user capacity for the 

(K,0) and the (M,N) MMSE detectors. Our conclusions about the user capacity and 

effective bandwidth for these detectors are listed in Table 2.1, and are compared to the 

results for the case of random sequences [9] and optimum sequences [10]. 



 44 

 

Table 2.1: User capacity and effective bandwidth for linear multiuser detectors 

User Capacity# Effective Bandwidth Sequence Detector 
Finite L As L→∞ * Finite L As L→∞ * 

Matched 
Filter 

�
�
�

�
�
�

+
LL 2

11
,1min

βρ
 }

1
,1min{
β

 
�
�

�
�
�

�

+ 2

2

1
,1

βρ
βρ L [ ]β,1  

Decorrelator min{1,∞} min{1,∞} [1, 0] [1, 0] 

 
Symmetric 
Sequence 

(K,0) 
MMSE 

Detector 
min{1,∞} min{1,∞} ——— ——— 

Matched 
Filter �

�
�

�
�
�

+−
LLL

N
2

11
,1min

βρ
 

}
1

,1min{
β

 
�
�

�
�
�

�

+− 2

2

1
,

1
1

βρ
βρ L

LN
 [ ]β,1  

Decorrelator min{
L
N−1 ,∞} min{1,∞} 

�
�

�
�
�

�

−
0,

1
1

LN
 [1, 0] 

 
Symmetric 
Sequence 

(M,N) 

MMSE 
Detector 

min{
L
N−1 ,∞} min{1,∞} ——— ——— 

Matched 
Filter 

——— β1  ——— β 

Decorrelator ——— 1 ——— 1 

 
Random 
Sequence 

(K,0) 
MMSE 

Detector 
——— 

β
1

1 +  ——— 
β

β
+1

 

Optimum 
Sequence 

(K,0) 

Matched 
Filter, 

MMSE 
Detector 

β
1

1 +  ——— 
β

β
+1

 ——— 

 

#: In the user capacity, the first term inside of the min{ , } is from the symmetry 
property of the sequences; the second term is from the power constraint. We leave the ∞  
there to make it clear where does the constraint on the number of user come from. 
Similarly, in the effective bandwidth, the first dimension in the 2-dimensional vector is 
from the symmetry property and the second term is from the power constraint. 

*: As L→∞, we assume 2 1 0L−= →ρ . We also assume N, the number of unknown users 
is fixed and ( )lim 0

L
N L

→∞
=  is used. If we assume ( )lim

L
N L

→∞
= α , then the user capacity and 

effective bandwidth of (M,N) detectors as L→∞ should be changed accordingly. 
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Chapter 3  Power Control in Uplink and Downlink CDMA 

System with Multiple Flow Types 

 

 

3.1 Introduction 

Power control is used to balance the received powers of the users of a code division 

multiple access (CDMA) system, so that no single user creates excessive interference that 

can destroy the quality of the communication of other users. At the same time it is 

desirable to use power levels as low as possible, provided they satisfy the quality of 

service (QoS) objective defined by fixed signal-to-interference ratio (SIR) requirements. 

In previous papers [15,16], the optimum power vector was found by inversion of a non-

negative matrix related to the channel gains and crosscorrelation. But all the studied 

models assume only one flow type at each node. In practice, users may have multiple 

flow types that have different QoS requirements. Here we consider a synchronous 

CDMA system with a base station and N nodes. At each node, there are F flow types with 

SIR requirements 1 2 Fβ β β≤ ≤ ≤� . Each flow type is assigned a code with processing 

gain L, and they transmit simultaneously to the base station. Each node has only one 

transmitter, i.e., only one power level is available in the uplink for all F flow types. So 

when a node sets its power, it has to satisfy all of the SIR requirements of its flow types. 
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Such a transmitter structure is simpler than the one in which the power levels of the 

multiplexed flow types are adjusted by appropriate weights or baseband processing, or 

the one in which separate transceivers and power amplifiers are used for each flow. The 

objective of this chapter is to evaluate the performance degradation that results from this 

simple and inexpensive transmitter structure. In the downlink, the base station transmits 

to N nodes simultaneously using NF different codes. Its power level P can be adjusted to 

satisfy the SIR requirements of the users. We assume that the distances from the nodes to 

the base station are equal; therefore the gain factors are ignored. This simplification must 

be eventually removed to establish the feasibility of the proposed transmitter design in 

practical systems. We also assume matched filter receivers. We can think of the system 

having NF virtual users, i.e., N sets of F users with the same power in each set, or F sets 

of N users with the same SIR requirements in each set. 

For the uplink, the questions are:  

(i) For fixed codes, the conditions for the power control problem to have solutions; 

i.e., when are the SIR requirements met? 

If this question is answered and the power control problem has solutions, then the 

next question is: 

(ii) What is the optimum (minimum) power vector to satisfy all the SIR 

requirements?  

If the above two questions are answered, the natural question followed is 

(iii) What are the optimal sequences so that the total power of all users is minimum, 

suppose the optimum power vectors are used? 

For the downlink, the questions are: 
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(i) For fixed codes, what is the minimum power assignment of the base station to 

satisfy the SIR requirements?  

Since the base station only has one power level, the power assignment is relatively 

easy to obtain; then the next question is 

(ii) What are the optimal sequences to minimize that power assignment of the base 

station?  

The organization of this chapter is as follows. In Section 3.2, we first formularize the 

problem for the uplink case, then we organize the rest of this section from the most 

simple F=1 special case (Section 3.2.1), to the F>1, N=2 special case (Section 3.2.2 and 

3.2.3), and then to the general F>1, N>1 case (Section 3.2.4). The special case of F=1 is 

the typical power control problem already solved in the literature. We revisit this problem 

and find the optimal sequences to minimize the total power. For F>1, the condition to 

have solutions is completely solved for the special case N=2 and partially solved for the 

general N>1 case. An iterative algorithm to find the optimum power vector for the 

general N>1 case is given with the proof of the convergence.  

In Section 3.3, we solve the power assignment of the base station and write it as the 

maximum of F terms. We first obtain the optimal sequences for the F=1 special case in 

Section 3.3.1, then we provide a partial solution of the optimal sequences for the special 

case of N=1 in Section 3.3.2 and general case of N>1 in Section 3.3.3. In particular, we 

have obtained some properties of the optimal sequences.  

In Section 3.4, we compare the performance achieved by the optimal solution in the 

proposed constrained problem with the performance of the same system if each flow type 

can have its own power level chosen without the assumed constraint. Three examples are 
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given in Section 3.4.1, 3.4.2 and 3.4.3. 

Finally, we summarize our work in Section 3.5. 

3.2 Uplink 

In the uplink CDMA system, the signal received at the base station [3] is given by 

1 1

( ) ( ) ( )
N F

i if if
i f

y t P b S t n tσ
= =

	 

= ⋅ + ⋅� �

 �
� � , 

which consists of the signals from the NF virtual users and the noise. Here iP  is the 

power of node i,  and ( )if ifb S t  are the transmitted bits and the signature waveform of type 

f at node i. We assume Additive White Gaussian Noise (AWGN) with power spectral 

density 2σ . 

The SIR requirements of flow type f at node i can be written as 

, 2 2
,

( , ) ( , )

,   1,2, ,   1, 2,i
i f f

j if jg
j g i f

P
SIR f F i N

P
β

σ ρ
≠

= ≥ = =
+ ⋅�

� � . 

The notation ,if jgρ  denotes the crosscorrelation between flow type f at node i and flow 

type g at node j, that is,  

, 0
( ) ( )

T

if jg jg if if jgS t S t dtρ = ⋅ = ⋅�
Ts s . 

Define the total squared crosscorrelation between flow type f at node i and all flow 

types at node j as 

2
,

1

F
f

ij if jg
g

α ρ
=

=� . 

Then the SIR requirements become 

( )2

1

,   1,2,..., ,    1, 2,...,
N

f
i f f j ij f i

j

P P P f F i Nβ σ β α β
=

≥ + − = =� .   (3.1) 
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Or in matrix form, 

( ) 2 ,  1, 2,...,f
f f f Fβ β σ≥ ⋅ + =P A P 1 ,    (3.2) 

with 
11 12 1

( ) 21 22 2

1 1

1
1

1

f f f
N

f f f
f N

f f f
N N NN

α α α
α α α

α α α

� �−
� �−� �=
� �
� �

−� �� �

A

�

�

� � � �

�

,  
1

2

1

1
1

,   

1N N

P
P

P ×

� � � �
� � � �
� � � �= =
� � � �
� � � �

� �� �

P 1
� �

. 

3.2.1 Special Case of F=1 

This goes back to the typical power control problem considered in [15] and [16], i.e., 

2β βσ≥ ⋅ +P A P 1.        (3.3) 

Now the symmetric non-negative matrix A has entries 2   for  ,ij ija i jρ= ≠  

and  0    ija for i j= = . The solutions to this problem with fixed sequences are well known 

from the properties of the non-negative matrices [17]. If A1β ρ<  is true, then solutions 

exist. Here Aρ  is the largest eigenvalue of the matrix A (Perron-Frobenius eigenvalue). 

Therefore the feasible β satisfies 1 Aβ ρ< , and the optimum power vector is given by 

( ) 1* 2σ β β −= − ⋅P I A 1 . 

Notice that this optimum power vector is component-wise minimum over all feasible 

power vectors. So it also reaches the minimum total power over all feasible power 

vectors. 

Here we wish to find the optimal codes, which minimize ⋅T *1 P , the total power of the 

optimum power vector. The minimization by the sequence assignment now reduces to the 

problem of ( )( )1
min β −⋅ − ⋅T

S
1 I A 1 . Here [ ]11 1 1, , , , , ,F N NF=S s s s s� � �  is the matrix 

that consists of column sequence vectors. Using the properties of the matrix ( )β−I A  



 50 

(which is positive definite and Hermitian [14,17]), and the Welch Bound of total squared 

correlation [18], we obtain the following conclusion. 

Proposition 1:  For N L> , the optimal sequences to minimize the total power in an 

uplink power-controlled CDMA system with SIR requirement β are the WBE sequences 

and the corresponding optimum power vector is  

2

11 N
Lβ

σ= ⋅
+ −

P 1 . 

And for N L≤ , the optimal sequences are orthogonal with optimum power vector 

2βσ= ⋅P 1 . 

Therefore the total power for N L>  case is  

2

11total N
L

N
P

β

σ=
+ −

. 

Since this total power is for the optimum power assignment and optimal code 

assignment, it is the least possible total power needed to satisfy a SIR requirement β. This 

total power should be positive, i.e., 0 totalP< < ∞ . This implies that 

1
1

N
L β

< + . 

Therefore 1 1 β+  is the maximum number of users per degree of freedom the system 

can hold, provided the SIR requirement β is satisfied. It is the so-called user capacity for 

the uplink CDMA system with matched filter for N L> case. 

The conclusions about the optimal sequences, the optimum power vector, and the user 

capacity of the uplink CDMA system with a matched filer were also given in [10] 

following a different approach. In [10], the power and sequence assignment were jointly 

optimized to maximize the user capacity for a synchronous CDMA system with linear 
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MMSE multiuser receiver. Then the optimal sequences were found to be the WBE 

sequences, which also minimize the total power. Moreover, the MMSE receiver for the 

optimal sequences and optimum power assignment was found to be a matched filter. Here 

we first optimize the power vector for any sequences; then we optimize the sequence 

assignment for a CDMA cell (which uses the optimum power vector) to minimize the 

total power. We also have a separate proof (Appendix F), which is much simpler than the 

one given in [10]. It is interesting that the same result is obtained by looking at this 

problem from different angles. 

The WBE sequences satisfy ( )N L=TSS I , and 2

1

, 1, 2,...,
N

ij
j

N L i Nρ
=

= =� . This means 

that the matrix S, whose columns are the sequences, has orthogonal rows. The matrix A 

therefore has equal row summations. This symmetry comes from the symmetry between 

all the N users, in the sense of having the same SIR requirement and adjustable 

sequences. The WBE sequences are known to be the optimal sequences for several 

problems when N L> . Reference [19] showed that the overall information capacity of a 

multi-access channel with equal power is maximized by the WBE sequences. In [10], the 

author proved that the user capacity of a single cell synchronous CDMA system is 

maximized by the WBE sequences. The sequence sets to minimize the total squared 

correlation and maximize the common achievable SIR are also found to be the WBE 

sequences [20]. An iterative algorithm for the construction of the WBE sequences is 

introduced in [21]. 

3.2.2 Special Case of N=2, with Common Flow Types at Two Nodes 

We now study thoroughly the case of two nodes because it is the simplest case that 
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reveals the different character of our problem. We start from the special case of N=2, 

with common flow types at the two nodes, and give an example of N=2, F=2 to show the 

details.  

For the special case of N=2, recall from (3.1) that the SIR requirements for the flow 

types at node 1 and at node 2 are as follows 

( )2
1 1 11 2 121 ,  1, 2,...,f f

f f fP P P f Fβ σ β α β α≥ + − + = , 

( )2
2 1 21 2 22 1 ,  1, 2, ...,f f

f f fP P P f Fβ σ β α β α≥ + + − = . 

Let us rewrite them as 

1 2 2 1,   and   ,  1,2,...,f f f fP a b P P c d P f F≥ + ≥ + = ,     (3.4) 
2 2

12 21
1 1 1 1

11 11 22 22

,   ,   ,   
1 1 1 1

f f f f

f f

f f f ff f f fa b c d
β β β β

α ασ σ
α α α α

= = = =
+ − + − + − + −

. 

Because of the non-negativity of f
ijα , if positive solutions 1 2( , )P P  exist, then we have 

2
1 11 2 12

1
1 0,  1, 2, ...,f f

f

P P f Fα σ α
β

	 

+ − ≥ + > =� �� �

 �

, 

2
2 22 1 21

1
1 0,  1, 2, ...,f f

f

P P f Fα σ α
β

	 

+ − ≥ + > =� �� �

 �

. 

Therefore we have the following necessary conditions in order for the problem to 

have solutions. 

11 22

1 1
1 ,   1 ,  1,2,...,f f

f f

f Fα α
β β

< + < + = . 

And then the coefficients defined in (3.4) satisfy 

0,   b 0,   c 0,   d 0 f f f fa > ≥ > ≥ . 

If 
11 22

1 1
1 ,   1 ,  1,2,...,f f

f f

f Fα α
β β

< + < + = , are satisfied, the straight lines 2 1f fP c d P= +  
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have non-negative slope fd  and positive ordinate intersection fc ; and lines 1 2f fP a b P= +  

have positive slope 1 fb  and positive abscissa intersection fa .  

Further more, (3.4) can be written as  

{ }
{ }

1 2

2 1

max ,

max .

f ff

f ff

P a b P

P c d P

≥ +

≥ +
       (3.5) 

The area ( )1 21,2,...,
max f ff F

P a b P
=

≥ +  is the infinite area to the right of all the lines 

1 2f fP a b P= + , f=1,2,…,F. Its behavior when 1 2 and P P  are large enough is determined by 

the minimum slope ( )
1,...,

min 1 ff F
b

=
. The area ( )2 11,2,...,

max f ff F
P c d P

=
≥ +  is the infinite area above all 

the lines 2 1f fP c d P= + , f=1,2,…,F. Its behavior when 1 2 and P P  are large enough is 

determined by the largest slope ( )
1,...,

max ff F
d

=
. If solutions exist, the power vectors that 

satisfy (3.5) are in the overlapping area of ( )1 21,2,...,
max f ff F

P a b P
=

≥ +  and ( )2 11,2,...,
max f ff F

P c d P
=

≥ +  on 

the 1 2( , )P P  plane. Therefore the existence of solutions can be completely determined by 

the coefficients. Specifically, we need ( )
1,...,

max f
f F

d
=

 and ( )
1,...,

min 1 ff F
b

=
. 

Proposition 2: In the N=2 uplink power control problem with common SIR 

requirements 1 2 Fβ β β≤ ≤ ≤� , the solutions exist if and only if  

11 22

1 1
1 ,    1 ,   1, 2,...,f f

f f

f Fα α
β β

< + < + = ,  and  ( ) ( )
1,2,..., 1,2,...,

max max 1f ff F f F
b d

= =
⋅ < . 

The proof can be obtained from the proof of the later Proposition 3 as a special case 

of N=2 with different flow types at the two nodes. The optimum power vector *P  should 

be the intersection of the two curves { }1 21,2,...,
max f ff F

P a b P
=

= +  and { }2 11,2,...,
max f ff F

P c d P
=

= + . An 

iterative algorithm can be used to find the minimum power solution in this fixed-point 
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problem. Namely,  

{ }
{ }

( 1) ( )
1 21,2,...,

( 1) ( )
2 11,2,...,

max ,  

max .

i i
f ff F

i i
f ff F

P a b P

P c d P

+

=

+

=

= +

= +
      (3.6) 

This algorithm converges to the optimum power vector very fast. The proof of the 

convergence is discussed later in Section 3.2.4 as a special case of N>1. 

Example of N=2, F=2: To make it clear in the 2-D ( )21 , PP  space, we rewrite (3.4) as: 

1 1 1 2 2 1 1 1   and   P a b P P c d P≥ + ≥ + ,      (3.7a) 

and 

1 2 2 2 2 2 2 1   and   P a b P P c d P≥ + ≥ + .      (3.7b) 

The coefficients are the same as in (3.4) with f=1 and 2. Then the solution area of 

flow type 1 (defined by (3.7a)) is bounded by two lines, one with a smaller slope 1d , and 

the other with a larger slope 11 b . The solution area of flow type 2 (defined by (3.7b)) is 

also bounded by two lines, one with a smaller slope 2d , and the other with a larger slope 

21 b . Whether the two solution areas of flow type 1 and 2 overlap depends on the value of 

the 8 coefficients defined above. Some examples are shown in Figure 3.1 and Figure 3.2.  

When 2 11 b d≤  is true, the smaller slope of the solution area of flow type 1 is larger 

than the larger slope of the solution area of flow type 2, as shown in Figure 3.1a. Since 

the solution area of flow type 1 is always above the solution area of flow type 2, the two 

solution areas do not overlap. When 1 21 b d≤  is the case, as shown in Figure 3.1b, the 

two solution areas also do not overlap because the solution area of flow type 1 is always 

below the solution area of flow type 2. Therefore 2 1 1 21  and 1 >b d b d>  are the necessary 

conditions for both flow types to have solutions simultaneously. 
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(a)  
1

2

1
d

b
≤        (b)  

2
1

1
d

b
≥  

Figure 3.1: Examples of N=2, F=2 power control problem. Solutions do not exist. 

 

(a)  
1

2 1

1 1
d

b b
< ≤         (b) 

2
1 2

1 1
d

b b
< <   

Figure 3.2:  Examples of N=2, F=2 power control problem. Solutions exist. 

When 2 1 1 21  and 1 >b d b d>  are satisfied, there are two possible cases. One is 
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1 2 11 1d b b< ≤  (the larger slope of the solution area of flow type 2 is between the smaller 

and larger slopes of the solution area of flow type 1). The other is 2 1 21 1d b b< <  (the 

larger slope of area 1 is between the smaller and larger slopes of area 2). For either case, 

by studying Figure 3.2, we can guarantee the overlap of the two areas. 

The solution area (if it exists) is also the overlapping area of the two curves 

{ }1 1 1 2 2 2 2max ,P a b P a b P≥ + +  and { }2 1 1 1 2 2 1max ,P c d P c d P≥ + + . The minimum power vector *P  

is actually the intersection of these two curves. Since this is a fixed-point problem, we 

can use an iterative algorithm to find this intersection. Let us start from [ ]0 0 0=P , and 

iterate as follows, 

{ }
{ }

( 1) ( ) ( )
1 1 1 2 2 2 2

( 1) ( ) ( )
2 1 1 1 2 2 1

max ,  ,

max ,  .

i i i

i i i

P a b P a b P

P c d P c d P

+

+

= + +

= + +
      (3.8) 

Figure 3.3 gives two examples of the convergence of the iteration in (3.8) on the 

( )1 2,P P  plane. We can see that this algorithm converges to the right solution very fast.  

3.2.3 Special Case of N=2, with Different Flow Types at Two Nodes 

Up to now we have assumed that there are F flow types, and they are common to all 

nodes. Now we remove this assumption and look at the case of N=2 again. Assume at 

node 1, there are F1 flow types with 
111 12 1Fβ β β≤ ≤ ≤� ; and at node 2, there are F2 flow 

types with 
221 22 2 Fβ β β≤ ≤ ≤� . With some minor modifications, this problem can fit into 

the previous structure. 
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Figure 3.3: Examples of the convergence of iterative algorithm in the 2-D plane. 

The SIR requirements for node 1 and node 2 can be written as 

( )2
1 1 1 1 11 1 2 121f f

f f fP P Pβ σ β α β α≥ + − + , 

where 
1 2

2 2
11 1 ,1 12 1 ,2 1

1 1

,  ,  1,2,..., ,
F F

f f
f g f g

g g

f Fα ρ α ρ
= =

= = =� � and 

( )2
2 2 2 1 21 2 2 22 1f f

f f fP P Pβ σ β α β α≥ + + − , 

where 
1 2

2 2
21 2 ,1 22 2 ,2 2

1 1

,  ,  1,2,...,
F F

f f
f g f g

g g

f Fα ρ α ρ
= =

= = =� � . 

Finally, we get an expression similar to that of (3.4), i.e., 

1 2 ,f fP a b P≥ +         (3.9a) 

if we let 
1 1

2
12

11 1
11 11

,   ,   1,2,..., ,
1 1

f f

f

f ff fa b f F
β β

ασ
α α

= = =
+ − + −

and  

2 1,  f fP c d P≥ +        (3.9b) 
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if we let 
2 2

2
21

21 1
22 22

,   , 1,2,..., .
1 1

f f

f

f ff fc d f F
β β

ασ
α α

= = =
+ − + −

 

Similarly to the case of N=2 with common flow types in Section 3.2.2, we have a 

necessary condition from the positivity of 1 2( , )P P  and non-negativity of f
ijα  as follows 

(Appendix G). 

11 1 22 2
1 2

1 1
      1 ,  1, 2,..., ,  and  1 ,  1, 2,..., .f f

f f

f F f Fα α
β β

< + = < + =    (3.10) 

And when these conditions are satisfied, the coefficients satisfy  

10,  b 0,  1, 2,..., ;  f fa f F> ≥ = 20,  0,  1, 2,...,f fc d f F> ≥ = . 

Now the solution area for node 1 (described in (3.9a)) is bounded by 1F  straight lines 

with non-negative slopes 1 fb  and the solution area for node 2 (described in (3.9b)) is 

bounded by 2F  straight lines with non-negative slope fd . Similarly to the discussion in 

Section 3.2.2, the existence of the solutions can be completely determined by the 

coefficients. Specifically, it depends on ( )
21,2,...,

max ff F
d

=
, the largest slope of lines 

2 1 2,  1,2,...,f fP c d P f F= + = , and ( )
11,2,...,

min 1 ff F
b

=
, the smallest slope of lines 

1 2 1,  1,2,...,f fP a b P f F= + = .  

Proposition 3: In the N=2 uplink power control problem with SIR requirements 

111 12 1Fβ β β≤ ≤ ≤�  at node 1 and 
221 22 2 Fβ β β≤ ≤ ≤�  at node 2, the solutions exist if 

and only if  (Appendix H) 

11 1 22 2
1 2

1 1
1  , 1, 2,..., ,   1 , 1, 2,...,f f

f f

f F f Fα α
β β

< + = < + = ,  and ( ) ( )
1 21,2,..., 1,2,...,

max max 1f ff F f F
b d

= =
⋅ < . 

If solutions exist, then the solution area is the overlapping area of { }
1

1 21,2,...,
max f ff F

P a b P
=

≥ +  
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and { }
2

2 11,2,...,
max f ff F

P c d P
=

≥ + . And the optimum power vector *P  should be the intersection of 

the two curves { }
1

1 21,2,...,
max f ff F

P a b P
=

= +  and { }
2

2 11,2,...,
max f ff F

P c d P
=

= + . Similarly, the same iterative 

algorithm introduced earlier can be used to find the optimum power vector, i.e., 

{ }
{ }

( 1) ( )
1 21,..., 1

( 1) ( )
2 11,..., 2

max ,

max .

i i
f ff F

i i
f ff F

P a b P

P c d P

+

=

+

=

= +

= +
      (3.11) 

This algorithm converges to the optimum power vector. The proof of the convergence 

is discussed later in Section 3.2.4 as a special case of N>1. 

3.2.4 General Case of N>1 

Recall that for the general case of N>1 with common F flow types at each node, the 

power assignment should satisfy (3.2). Define the interference function ( )I P  as follows, 

( ){ }( ) 2

1,2,...,
max , 1,2,...,f

i f fif F
i Nβ β σ

=
= + =I (P) A P .    (3.12) 

Then (3.2) is now  

( )≥P I P . 

For general case of N>1 with different F flow types at each node, we assume that at 

node i, there are Fi flow types with 1 2 ii i iFβ β β≤ ≤ ≤� . The SIR requirements at node i 

can be rewritten as 

( )2 1 ,   1, 2,...,f f
i if if i ii if j ij i

j i

P P P f Fβ σ β α β α
≠

≥ + − + =� , 

with 2
,

1

,  1,2,...,
jF

f
ij if jg i

g

f Fα ρ
=

= =� . 

Since the flow types are different at each node, there is no matrix form like that of 

(3.2) here. But we can still define a similar interference function ( )I P  as follows: 
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( )2

1,2,...,
max 1 ,  1, 2,...,

i

f f
i if if i ii if j ijf F j i

P P i Nβ σ β α β α
= ≠

� �
= + − + =� �

� �
�I (P) .   (3.13) 

Then the SIR requirements can still be written as ( )≥P I P . 

Let us suppose the solutions exist first, and consider the existence later. The problem 

is now to find the minimum P, such that ( )≥P I P  is satisfied. The iterative algorithm we 

used in (3.6) and (3.11) can all be written as  

( 1) ( )( )i i+ =P I P . 

We use the conclusions from [22] to prove the convergence of the algorithm. 

Reference [22] defined an interference function ( )I P  to be standard if for all >P 0 , the 

following properties are satisfied: 

1. Positivity: ( ) >I P 0 . 

2. Monotonicity: If ′≥P P , then ( ) ( )′≥I P I P . 

3. Scalability: For all 1α > , ( ) ( )α α>I P I P . 

The algorithm ( 1) ( )( )i i+ =P I P  with standard ( )I P  is called a standard power control 

algorithm. From [22] it follows that if there is a fixed point, then it is unique and it is the 

optimum power vector (component-wise minimum) that we are looking for. Further 

more, if ≥P I(P)  has solutions, then, for any initial power vector P , the standard power 

control algorithm converges to the optimum power vector *P . Since the proof of 

convergence was given in [22], we only need to verify here that the interference function 

defined above is standard. This can be verified in a straightforward way.  

Proposition 4: The algorithm ( 1) ( )( )i i+ =P I P  with the interference function defined in 

either (3.12) or (3.13) converges to the optimum power vector *P , if solutions of 
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≥P I(P)  exist (Appendix I). 

Notice that, by letting N=2, we come back to the special case of N=2. Therefore the 

proof of Proposition 4 also proves the convergence of the algorithm in (3.6) and (3.11). 

Now we discuss the existence of the solutions for the general case of N>1. Similarly 

to the N=2 case, we have the following necessary condition from the positivity of the 

power vector. 

Proposition 5: If the N>1 uplink power control problem with SIR requirements 

1 2 ii i iFβ β β≤ ≤ ≤�  at node i has solutions, then, 

1
1 ,  f

ii
if

α
β

< +  1, 2,..., ,if F=  1, 2,.., .i N=  

Let us assume that these necessary conditions are satisfied. Then under what 

condition do solutions exist? In the N-D space 1 2( , ,..., )NP P P , the requirements are not as 

clear and direct as those in the 2-D 1 2( , )P P  space. We have not obtained a complete 

answer to the question of the existence of the solutions. However, we can relate the N>2 

case with the N=2 case and obtain some insights.  

For a necessary condition, let us simplify the problem to N=2, assuming other nodes 

are not transmitting, that is, for any ,   ( )i j i j≠ , let ( , ) 0kP k i j≠ = , and then only 2 

inequality sets for  and i jP P  are left in ( )≥P I P . If the original N>2 problem has 

solutions, then this simplified less demanding N=2 problem has solutions. Therefore, one 

necessary condition for the original N>2 problem to have solutions is that any simplified 

N=2 problem, as described, satisfies ( ) ( )
1 21,2,..., 1,2,...,

max max 1f ff F f F
b d

= =
⋅ < . 

For a sufficient condition, let us partition the N nodes into two distinct sets, one with 
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N1 nodes 1 2 1, ,..., Ni i i , and the other with N2 nodes 1 2 2, ,..., Nj j j , ( 1 2N N N= + ). Let nodes 

in set 1 have same power P1 and nodes in set 2 have same power P2. Set 1 has a total of 

F1 flow types with 1 1 2 1...i i iNF F F F= + + + ; set 2 has a total of F2 flow types with 

2 1 2 2...j j jNF F F F= + + + . Then re-index the flow types in set 1 from 1 to F1, and flow 

types in set 2 from 1 to F2, and define an α factor and coefficients a, b, c, and d as in the 

N=2 case. Since the N=2 problem defined in this way is almost the same as the original 

problem, except that it has additional constraints on P, the original problem has solutions 

if the corresponding N=2 problem has solutions. If for any partition, as described above, 

the coefficients of the corresponding N=2 problem satisfy ( ) ( )
1 21,2,..., 1,2,...,

max max 1f ff F f F
b d

= =
⋅ < , then 

the original power control problem has solutions. And if the optimum power vector of the 

corresponding N=2 problem is 2N =P , and then the optimum power vector of the original 

power control problem satisfies 2* N =≤P P . 

3.3 Downlink 

In the downlink case, the base station transmits to all the flow types at all the nodes 

simultaneously. Its power level P can be adjusted to satisfy the SIR requirements of all 

flow types. The signal received at the multiuser receiver of any node [3] is given by 

1 1

( ) ( ) ( )
N F

if if
i f

y t P b S t n tσ
= =

= + ⋅�� . 

The SIR requirement of flow type f at node i is given by 

,

, 2 2

( , ) ( , )

,   1,2, ,   1,2,
if jg

i f f

j g i f

P
SIR f F i N

P
β

σ ρ
≠

= ≥ = =
+ ⋅�

� � . 

Define the total squared crosscorrelation between flow type f at node i and all flow 
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types at all nodes as  

2
,

1 1

N F

if if jg
j g

α ρ
= =

=�� . 

Then the SIR requirements become 

2 1
1 if

fP
σ α

β
≤ + − ,  f=1,2,…,F,  i=1,2,… N. 

Hence, the power assignment P has to satisfy *P P≥ , with *P  the minimum power 

level of the base station, which satisfies 

2

*

1
min 1 max iff i

fP
σ α

β
	 


= + −� �� �
 �

.     (3.14) 

In order to have positive solutions P, we need 1 1 0f ifβ α+ − >  for all i and f. That is, 

the feasible fβ  (which means that fβ  alone can be satisfied by power control if the SIR 

requirements of other flow types are not considered) should satisfy  

1
max 1ifi

f

α
β

< + , f=1,2,…,F. 

Now we wish to minimize *P  by selecting the appropriate sequences. That is,  

1
max min 1 max iff i

f

α
β

� �	 
� �+ −� �� �� �
� � �� �

S
, 

with [ ]11 1 1, , , , , ,F N NF=S s s s s� � � , the matrix that consists of the column 

sequence vectors. The optimal sequences to minimize the power are now a max-min 

problem.  

3.3.1 Special Case of F=1 

For F=1, (3.14) becomes 
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2
2

*

1
1 max iji

jP
σ ρ

β
= + − � .      (3.15) 

The problem to minimize P* is now  

2 21 1
max 1 max 1 min maxij iji i

j j

ρ ρ
β β

	 
 	 

+ − = + −� � � �

 �  �
� �SS

. 

For N L≤ , obviously 2min max 1iji
j

ρ
	 


=� �
 �

�S
, and the minimum power is obtained by 

orthogonal sequences. 

For N>L, The Welch Bound of total squared crosscorrelation is [18]  

2
2

1 1

N N

ij
i j

N
L

ρ
= =

≥�� .       (3.16) 

The sequences which satisfy (3.16) with equality are the WBE sequences [20] which 

satisfy N
L=TSS I , and 2

1

N

ij
j

N
L

ρ
=

=� ,  i=1,2,…,N. Since the maximum value is always greater 

than or equal to the average, we also have 

2 2

1 1

1
max

N N

ij iji
j i jN

ρ ρ
= =

	 

≥ � �

 �
� � � .      (3.17) 

The equality is satisfied when 2

1

N

ij
j

ρ
=
�  is the same for all i=1,2,…,N. It happens that the 

WBE sequences that satisfy equality in (3.16) also reach equality in (3.17). Using (3.16) 

and (3.17) in succession we find  

2max iji
j

N
L

ρ ≥� , 

and the equality is satisfied by the WBE sequences. After calculating the minimum 

power level from (3.15), we have the following conclusion. 

Proposition 6:  For N>L, the optimal sequences that minimize the power in a 
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downlink CDMA system with SIR requirement β are the WBE sequences and the 

minimum power assignment is 

2
*

11 N
L

P
β

σ=
+ −

. 

For N L≤ , the optimal sequences for this problem is orthogonal sequences with  

* 2P σ β= . 

For the N>L case, *0 P< < ∞  implies  

1
1

N
L β

< + . 

This is the maximum number of users per degree of freedom the system can have 

provided the SIR requirements are satisfied. It is the user capacity for the downlink 

CDMA system using matched filter for the N>L case. Recalling the results from the 

uplink section, we find that for both the uplink and the downlink F=1, N>L case, the 

optimal sequences are the WBE sequences, the minimum power (of base station or any 

node) is ( )2 11 N
Lβσ + − , and the user capacity is 1 1 β+  users per degree of freedom. Also 

for both the uplink and the downlink N L≤  case, the optimal sequences are orthogonal, 

and the minimum power is 2σ β .  

3.3.2 Special Case of N=1 

For N=1, both the downlink and the uplink are simple point-to-point links. Equation 

(3.14) becomes 

2
2

*

1
min 1 ,    f f gff

gfP
σ α α ρ

β
	 


= + − =� �� �
 �

� .     (3.18) 

The feasible fβ  should satisfy  



 66 

1
1f

f

α
β

< + , f=1,2,…,F.      (3.19) 

If F L≤ , then orthogonal sequences is the optimal choice, with  

* 2
FP β σ= . 

If F>L, we have ( )2
f fg ff

g

α ρ= =� 2R , and 
12 1

21 2

1 2

1
1

1

F

F

F F

ρ ρ
ρ ρ

ρ ρ

� �
� �
� �= =
� �
� �
� �

TR S S

�

�

� � � �

�

. 

Then the problem ( )max min 1 1 f ffS
β α+ −  becomes now 

( )1
max min 1

fffS
fβ

	 

+ −� �� �

 �

T TS SS S . 

Again, [ ]1 2, , , F=S s s s�  is the matrix whose columns are the sequences. 

It is difficult to get an exact analytic solution for this problem. Here we find some 

properties that the optimal sequences must satisfy. Let us start from F=3. If 3 codes are 

available with 1 2 3α α α≥ ≥ , then the question is how to assign these 3 codes to the 3 flow 

types so that ( )( )1,2,3
min 1 1 f i ff

β α
=

+ −  is maximized. The notation i(f) used here implies that 

code i(f) is assigned to flow type f. It is clear that we should assign the code with the least 

correlation (i.e., the code with min α) to the most demanding flow type (i.e., the flow 

type with max β) and the code with highest correlation (i.e. the code with max α) to the 

least demanding flow type (i.e. the flow type with min β). This assignment is always 

better or at least as good as other assignments. So, there is at least one optimal set of 

sequences that satisfies 1 2 3α α α≥ ≥ . Therefore, when we search for the optimal sequences, 

we can limit the search to the code sets that satisfy 1 2 3α α α≥ ≥  without missing the 

minimum power. For F>3, we can prove the following proposition. 
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Proposition 7: The set of solutions for ( )max min 1 1 f ffS
β α+ −  with 1 2 Fβ β β≤ ≤ ≤�  

includes solutions that satisfy (Appendix J) 

1 2 Fα α α≥ ≥ ≥� . 

 (i.e., there is at least one optimal set of sequences that satisfies 1 2 Fα α α≥ ≥ ≥� ).  

Using the definition of iα , we can transform the condition for α into conditions that 

ijρ  has to satisfy for small F. For F=3, this property implies 2 2 2
12 13 23ρ ρ ρ≥ ≥ . For F=4, it 

implies 2 2 2 2 2 2
12 34 13 24 23 14 0ρ ρ ρ ρ ρ ρ− ≥ − ≥ − ≥ . For F 5≥ , we were not able to obtain similar 

analytic conditions. 

3.3.3 General Case of N>1 and F>1 

For the general case of N>1 and F>1, similarly to Proposition 7, we have the 

following property of the optimal sequences. 

Proposition 8: The set of optimal solutions of ( )max min 1 1 maxf iff i
β α+ −

S
 with 

1 2 Fβ β β≤ ≤ ≤�  includes solutions that satisfy 

( ) ( ) ( )1 2max max maxi i iFi i i
α α α≥ ≥ ≥� . 

We can use the same induction process as in the proof of Proposition 7 to prove this 

proposition, by changing ( )ifi
 to minfα α . 

From this conclusion, we know that at least one optimal set of sequences assigns the 

N sequences with largest α to the flow type 1 at N nodes (permutation is fine within the N 

sequences), the next N sequences with largest α to flow type 2 at N nodes, and so on. 

3.4 Effect of the One Power Level Constraint 
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The word “constraint” in this section means that all the flow types at one node has the 

same power level. On one hand, this constraint allows the usage of a simple and 

inexpensive transmitter structure; on the other hand, it degrades the performance. In this 

section, we inspect the performance degradation by comparing the systems with and 

without the constraint. 

With the constraint, the problem is a synchronous CDMA system with one base 

station and N nodes. At each node, there are F flow types with SIR requirements 

1 2 Fβ β β≤ ≤ ≤� . For the uplink, the SIR requirements of flow type f at node i are given 

in (3.1) and (3.2). For the downlink, the minimum power level of the base station satisfies 

(3.14). Without the constraint, the problem is a synchronous CDMA system with one 

base station and NF nodes. For both the uplink and downlink, there are NF separate 

power levels for each of the flow types satisfying 

( )2 2
,

1 1

,   1,2, ,   1, 2,
N F

if f f jg if jg f if
j g

P P P f F i Nβ σ β ρ β
= =

≥ + ⋅ − = =�� � � .  (3.20) 

The problem with the constraint is a special case of the problem without the 

constraint. For the uplink if power vector [ ]1 2, , ,
T

NP P P=P �  satisfies (3.1), then the 

power vector 1 F×⊗P 1  is a solution of (3.20). (Notation 1 F×⊗P 1  is the Kronecker product, 

which denotes the vector whose ith (i=1,…,N) element is replaced by [ ]1
1, , 1

T

i F
P

×
⋅ � .) 

For the downlink, if power level *P  satisfies (3.14), then obviously, the power vector 

*
1 NFP ×⋅1  satisfies (3.20). That is, it is more difficult for the power control problem with 

the constraint to have solutions.  

If solutions exist, we suppose the optimum power vector of the uplink problem with 

the constraint is *P  and the optimum power vector of the problem without the constraint 
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is *P� . Since 1 F×⊗*P 1  is a solution of the problem without the constraint, from the 

property of the iterative algorithm, we have 

*
1 F×⊗ ≥*P 1 P� . 

For the downlink, we suppose the minimum power level at the base station is *P , 

then *
1 NFP ×⋅1  is also the solution of the downlink power control problem without the 

constraint. From the component-wise minimum property of *P� , we know that 

* *
1 NFP ×⋅ ≥1 P�  is true. Therefore the minimum total power needed to satisfy the same SIR 

requirements ( )1 2, , , Fβ β β�  for the problem with the constraint is larger than or equal to 

the total power needed for the problem without the constraint. 

In order to inspect the performance degradation more directly, we study some special 

cases and examples. 

3.4.1 Special Case of N=1 

The uplink and the downlink are the same for the N=1 case except the meaning of the 

variables. With the constraint, for fixed sequences, the condition to have solutions is that 

the SIR requirements satisfy (3.19) and the optimum power satisfies (3.18). 

Without the constraint, we have 

( ) 2σ− ⋅ ⋅ ≥ ⋅I � A P � , 

with 

2 2
12 1

2 2
21 2

2 2
1 2

0

0

0

F

F

F F

ρ ρ
ρ ρ

ρ ρ

� �
� �
� �=
� �
� �
� �� �

A

�

�

� � � �

�

,  
1

2

0 0
0 0

0 0 F

β
β

β

� �
� �
� �=
� �
� �
� �

�

�

�

� � � �

�

,  
1 1

2 2,    

F F

P

P

P

β
β

β

� � � �
� � � �
� � � �= =
� � � �
� � � �
� � � �

P �
� �

. 

For fixed sequences, from the property of nonnegative matrix ⋅� A , the condition to 

have solutions is that the SIR requirements satisfy 
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( )1 P F eigenvalue of > − ⋅� A ,     (3.21) 

and the optimum power vector is 

( ) 1* 2σ −= ⋅P I -�A �� .     (3.22) 

Example of N=1 and F=2: We study this example to clearly compare the difference 

of the power with and without the constraint. We are comparing for fixed sequences, 

because the optimal sequences for this case are unknown, and might be different for the 

problems with and without the constraint. 

For the problem with the constraint, Equations (3.19) and (3.18) give the conditions 

to have solutions and the minimum total power required as,  

1 22 2

1 1
   and   β β

ρ ρ
< < ,       (3.23) 

2
2

2
2

2
1totalP

σ β
ρ β

=
−

� .       (3.24) 

For the problem without the constraint, now we have 
2

1
2

2

0
0

ρ β
ρ β
	 


⋅ = � �
 �

� A , with 

eigenvalues  2 4
1 2λ ρ β β= . After deriving ( ) 1−− ⋅I � A , equations (3.21) and (3.22) are 

simplified to 

1 2 4

1β β
ρ

< ,       (3.25) 

( )
2

2 2 2 2
1 2 1 24

1 21totalP
σ β β ρ β ρ β
ρ β β

= + + +
−

.    (3.26) 

Comparing (3.23) and (3.25), it is obviously that (3.25) defines a larger region for 

( )1 2,β β  than (3.23) does, i.e., it is easier for the power control problem without the 

constraint to have solutions. 
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From 1 2β β≤ , we always have  

( ) ( )
22 2

2 2 2 2 2 2 2
1 2 1 2 2 24 4 2 2

1 2 2 2

22
1 1 1

σ βσ σβ β ρ β ρ β β ρ β
ρ β β ρ β ρ β

+ + + ≤ + =
− − −

, 

i.e., total totalP P≤� , the problem with the constraint needs larger total power. 

3.4.2 Special Case of 1 2 Fβ β β= = =�  

With one power level constraint we have for the uplink the power vector satisfies 

( ) 2 ,  1, 2,...,f f Fβ βσ≥ ⋅ + =P A P 1 . 

For the downlink, the minimum power needed at the base station is given by 

( )
2

*

11 min max iff i

P
β

σ
α

=
+ −

. 

Without the constraint, this is the same as the NF nodes, one flow type problem. 

( ) 1* 2βσ β −= ⋅P I - A 1� . 

Example of N=1 and 1 2 Fβ β β= = =� :  We consider this example to clearly 

compare the performance difference. Now the uplink and downlink are the same except 

the meanings of the variables. This time we compare the minimum total power for 

optimal sequences. 

For the problem with the constraint, it is actually the same as the one flow type, F 

nodes downlink case. Referring to Proposition 6, we know that the optimal sequences for 

F L≤  are orthogonal sequences with minimum power at each of the flow type 

* 2F LP βσ≤ = , 

and the optimal sequences for F>L case are the WBE sequences with 

2
*

11
F L

F
L

P
β

σ> =
+ −

. 
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For the problem without the constraint, this is actually same as the case of F nodes 

one flow type problem. Referring to Proposition 1, we know that the optimal sequences 

for F L≤  are orthogonal sequences with minimum power at each of the flow type 

2F L
totalP βσ≤ =� , 

and the optimal sequences for the F>L case are WBE sequences with 

2

11
F L

total F
L

P
β

σ> =
+ −

� . 

In this example the constraint of one power level cost nothing for the optimal 

sequences. (Also agree with our conclusion.) The reason is that the optimum power 

vector for N=1 and 1 2 Fβ β β= = =�  case when optimal sequences are used has equal 

powers at different flow types; therefore the constraint is satisfied automatically without 

causing any performance degradation. 

3.4.3 Numerical Example for General N And F 

For general N and F, we don’t have analytical expression of the power vector for the 

problem with the constraint. We study an example numerically to check the difference of 

the total power needed for the power control problem with and without the constraint. 

Basically, this difference depends on the SIR requirements and the level of correlations.  

Example: N=3; F=2; L=20: Sequences are generated randomly as 

[ ]1 2, , , ,  1, 2,..., .i i i iLV V V i NF= =s �  Here 1ijV = ±  with equal probability. (The L=20 

random sequences is just a way to introduce random correlations, this does not mean that 

the number of users has to be less than the number of degree of freedom.) Then we solve 

iteratively the power control problem with and without the constraint. Each time we run 

the program, a new set of sequences is generated, and power control problems are solved 
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and the results for both problems are compared. We define: 

Total power needed for the power control problem WITH constraint
Power ratio = 

Total power needed for the power control problem WITHOUT constraint
. 

For SIR requirements 1 21.0 and  1.5β β= = , we run the program 100 times. Each time 

the solutions exist. The power ratio is between 1.0 and 1.4 most of the time (with about 

80% probability). Please refer to Table 3.1 for details. For more strict SIR requirements 

1 22.0,  3.0β β= = , we also run the program 100 times. There are 4 times no solution exists 

for either of the problems. There are 13 times only the problem without the constraint has 

solutions. For the remained 83 times, both problems have solutions. This again indicates 

that it is easier for the problem without the constraint to have solutions. When both of the 

problems have solutions, the power ratio distributed more widely than the 

1 21.0,  1.5β β= =  case, with an obviously larger average.  

Table 3.1: Comparison of the power for the power control problem with and without 

the constraint of one power level. N=3; F=2; L=20. 

In 100 simulations, number of times that 
1 21.0,  1.5β β= =  1 22.0,  3.0β β= =  

Power ratio is in the region [1.0,1.2) 11 4 
Power ratio is in the region [1.2,1.4) 69 23 
Power ratio is in the region [1.4,2.0) 16 23 
Power ratio is in the region [2.0,10) 2 21 
Power ratio is in the region [10,∞) 2 12 

Only problem w/o constraint has solutions 0 13 
Neither problem has solutions 0 4 

 

3.5 Summary 

We study the problem of a power-controlled CDMA system with N nodes and F flow 

types with the constraint that each node uses the same power level for all flows that it 

multiplexes. Each flow type may have its own SIR requirement. For the F=1 case, we 
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find that for both the uplink and the downlink, if N>L, the optimal sequences are the 

WBE sequences, and the user capacity is 1 1 β+  users per degree of freedom. Also if 

N L≤ , the optimal sequences are orthogonal. For the uplink problem with N=2 and F 

arbitrary, the necessary and sufficient conditions to have solutions are found and proved. 

For the general N>1 uplink problem, we provide an iterative algorithm to find the optimal 

solution and prove its convergence. For the downlink case with F>1, the power 

assignment problem is solved and some properties of the optimal sequences are proved. 

Finally, the one power level constraint simplifies the transmitter structure, with the cost 

of performance degradation. 
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Chapter 4  Simple Rate Control for Fluctuating Channels in 

Ad Hoc Wireless Networks 

 

 

4.1 Introduction 

The link quality of a wireless connection may vary considerably due to noise burst, 

fades, and the mobility of transmitter and/or receiver nodes. Therefore a fixed modulation 

scheme and a fixed data rate will lead to variable link quality. When the Signal-to-Noise 

Ratio (SNR) of the received signal drops significantly, there are many ways to maintain 

the link quality. One way is to increase the transmission power [23]. Another way is to 

change the channel coding rate or choice of code, and therefore change the received data 

rate indirectly [24,25]. It can also be done by adapting the date rate directly [26,27,28], or 

some combination of the methods listed above [29,30,31]. 

Basically, there are two ways to control the bit rate transmitted over a channel. The 

first is to change the symbol transmission rate [26]. When the channel is poor, a longer 

pulse gives more energy per bit to mitigate the noise. Another method is to vary the size 

of the constellation of the modulation scheme (the number of points in the constellation) 

[27,28]. With this method, during a fade, the number of modulation levels is decreased 

accordingly. For the same transmission power, a smaller sized constellation creates a 
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larger Euclidean distance between the signal points, and hence it provides a better symbol 

error rate. For example, when a rectangular 16-QAM (QAM modulation with 16-point 

constellation) is used for a good channel, a 4-QAM could be used when the channel 

becomes poor. 

However, all these methods require feedback channels from the receiver to the 

source. Some may require buffering of traffic at the source, which may cause longer 

delay and/or buffer overflows or underflows. Some methods may also require increased 

complexity in the transmitter design. 

In this chapter we consider a passive rate adaptation scheme at the receiver in which 

only part of the transmitted bits are detected (i.e., some bits are intentionally dropped). 

For example, if the transmitter uses 8-PAM (PAM modulation with 8-point 

constellation), then when the channel is in poor condition, the receiver uses a detector 

with 4 output levels after the demodulator. We denote the procedure by 8-PAM->4. 

Figure 4.1 shows the signal space of 8-PAM and 8-PAM->4. As another example, the 

transmitter uses 16-QAM with rectangular constellation, while the receiver only decides 

which quadrant the signal is located in, i.e., uses a detector like the one used for 4-QAM 

to receive only 2 bits. We denote this by 16-QAM->4. Figure 4.2 shows the signal space 

of 16-QAM and 16-QAM->4. 

This method is motivated by the need to have a quick and simple rate adaptation 

scheme when a link in an ad hoc wireless network fluctuates for very brief periods. To 

avoid declaring a link broken and, hence, necessitating a search for a new route, the link 

may be maintained at some loss of quality until the channel recovers. Of course if it does 

not, rerouting will be necessary. The intent of our method is to sacrifice moderately the 
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quality of the signal for a brief period in order to avoid costly frequent rerouting. The 

advantage of the proposed method is that no feedback is needed; and the receiver alone 

makes the decision according to the channel status. It is also fairly simple at the receiver, 

while there is no need for buffer or complicated design at the transmitter. One drawback 

of the proposed scheme is that it can only reduce, rather than also increase, the rate. 

However, for the intended use, rate reduction is what is required. Of course, since some 

bits are transmitted and then dropped, resources are wasted; and the overall performance 

of the link may be inferior to the alternative methods. But again, this scheme is motivated 

by the need for an emergency rate reduction scheme.  

The proposed method is not meant as a replacement for more sophisticated rate 

adaptation schemes, but is intended as a simple additional capability that maintains the 

current connection when a link undergoes a temporary fluctuation. As an example, 

consider an ad hoc wireless network, in which a link is utilized to transmit data based on 

specific, given MAC and routing protocols.  When the channel of that link degrades, 

what are the choices? One choice is to terminate the link and to reroute the traffic through 

an alternative route in the network; this method involves considerable delay and 

overhead. Another choice is to adapt the rate at the transmitter; this method requires 

feedback, complex transmitter design, and poses the risk of buffer overflow and 

disruption of real-time delivery. Our proposed scheme is a third choice that maintains the 

use of the link for a short time without engaging the higher layer protocols or the 

transmitter. Another example is the case of broadcasting. The channels from the 

transmitter to the receiving nodes can vary significantly and independently at each 

receiver. In this case it is pointless to involve the transmitter, since rate adaptation may be 
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required only at a subset of the receiving nodes.  

With our method, when the receiver detects few of the transmitted bits (by using 

fewer levels at the detector), it decreases the symbol error probability by not 

distinguishing the precise position of the transmitted point on the signal space. At the 

same time, the dropped bits take away some signal information and cause additional 

quantization noise. In terms of the mean square distortion metric (defined in Section II), 

there is a trade-off between the error probability and the detected data rate. This trade-off 

is identified and illustrated in this chapter. In fact, it is the main focus of the chapter. The 

question is precisely whether the overall distortion, with fewer bits but with smaller 

symbol error probability, exceeds or not that achieved with more bits but with larger 

symbol error probability. 

For some signals arising in multimedia applications, not all bits have the same 

importance in terms of signal representation accuracy. There are several ways to take 

advantage of this variation by exploiting it and providing unequal error protection. In 

[32], a non-uniform phase-shift-key (PSK) modulation is studied that allows a receiver to 

receive additional information in the multicast transmission without requiring additional 

network resources. By using non-uniform constellations, the Euclidean distance in 

detecting more significant bits increases. In [33], both more powerful conventional error-

correction coding and non-uniform constellation are used to achieve unequal error 

protection and hence ensure the successful reception of the significant bits when channels 

fluctuate. Such methods involve special design at the transmitter. In this chapter, we do 

not consider source coding or error control coding, although the latter, at a cost of 

increased complexity and delay, is likely to result in improved performance.  
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In our proposed rate adaptation scheme by dropping bits at the receiver, the choice of 

which bits to drop is important. We assume real time analog traffic. For a digitized 

analog signal, the modulation scheme has the capability to decide which bits to retain and 

which bits to drop. Since we assume no source or channel coding, we may arrange the 

signal points in the constellation in such a way as to provide a measure of unequal error 

protection and favor the more significant bits. We consider in Section III-V the uniformly 

spaced constellation as an illustration, and do not change the basic transmitter structure at 

all. The only change is the mapping. For example, in the 16-QAM->4 case, instead of 

using a Gray code, we place all 4 points with the same first 2 bits in the same quadrant, 

and use a Gray code for the last 2 bits in each quadrant. In Section VI, we consider a 

simple non-uniform constellation and find that our scheme works for a larger range of 

SNR values since the important bits are given additional preferential treatment. 

In this chapter we consider two examples of the modulation schemes, PAM and 

QAM, and study the performance of the rate adaptation in terms of symbol error 

probability and mean square distortion, in both a Gaussian channel and a Rayleigh fading 

channel. We compare the performance of the original modulation scheme (8-PAM or   

16-QAM) with the rate adaptation at the source by using fewer levels of modulation (    

4-PAM or 4-QAM), and with the rate adaptation we proposed by using fewer levels at the 

detector (8-PAM->4 or 16-QAM->4). The reason we confine ourselves to rather simple 

modulation examples is to illustrate our method in a simple way. A preliminary and 

incomplete treatment of these ideas without substantial evaluation was presented in [34]. 

The organization of this chapter is as follows. In Section 4.2, we introduce the model 

used in the study, and define the criteria of symbol error probability and mean square 
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distortion. In Section 4.3 and 4.4, we compare the performance in a Gaussian channel for 

PAM and QAM examples separately. The comparisons are performed for fixed energy 

consumption and fixed symbol rate. In Section 4.5, the performance in a Rayleigh fading 

channel is given. In Section 4.6, we study a non-uniform constellation case. Finally we 

summarize our work in Section 4.7. 

4.2 Model and Analysis 

We now describe in detail our model. Suppose there are K independent samples 

generated per second, from a random variable X with probability density function (pdf) 

( )xf . These samples need to be transmitted from the source to the receiver. Each sample 

is first quantized into one of M levels ( 10  , ... , M-CC ) before the modulation. We call the 

quantized value X
~ . Then quantity X

~  is mapped to one of the signal points in the 

constellation of the modulation scheme. The modulated signal is transmitted over a 

channel with additive white Gaussian noise (AWGN), and/or Rayleigh fading. After 

transmission, the signal is demodulated and detected at the receiver. The receiver has a 

detector of N levels ( 10  , ... , N-DD ). We call the recovered sample after the demodulation 

and detection as X̂ . Therefore, the bit rate transmitted is MK 2log  bits/second; and the 

bit rate received is NK 2log  bits/second (possibly NM ≥ ).  

For the 8-PAM and 8-PAM->4 examples shown in Figure 4.1, 8-PAM is used when 

the SNR is large enough and the performance requirement is satisfied. If this is the case, 

the correct recovery when 0C  is transmitted is still 0C . When SNR is small, 8-PAM does 

not satisfy the requirement, and if 8-PAM->4 satisfies the requirement, we switch to the 
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8-PAM->4 and only detect the first 2 bits. In this case, when 0C  or 1C  is transmitted, the 

correct recovery is 0D . We study the performance of both 8-PAM and 8-PAM->4 to find 

out when we should make this switch. In the 8-PAM->4 scheme, there is one bit per 

symbol that is transmitted but then dropped; to assess the effect of the elimination of this 

bit, it is fair to compare the result with the one obtained if that bit was dropped at the 

transmitter. Therefore, we also include the 4-PAM scheme for the purpose of this 

comparison. 

 

Figure 4.1:  Signal space constellation of 8-PAM and 8-PAM->4. 

For the 16-QAM->4 example shown in Figure 4.2, the first 2 bits are kept and the last 

2 bits are dropped. In this case, when any one of the four points 3210  and ,, , CCCC  is 

transmitted, the correct recovery is 0D . We study the performance of 16-QAM,            

16-QAM->4, and 4-QAM scheme for the purpose of this comparison. 

We define the correct recovery when iC  is transmitted as ( )iCg . If MN = , then 

( ) ii CCg = . If MN < , ( )iCg  is a mapping from iC  to jD . For the example of                

8-PAM->4, we have ( ) � �2ii DCg = . For the example of 16-QAM->4, we have 

( ) � �4ii DCg = . Here, the symbol � �x denotes the maximum integer that is less than or 

equal to x . 

C0      C1       C2       C3      C4      C5       C6      C7 

D0                  D1                 D2                D3 
000      001     010      011    100     101      110     111 In-phase 

Quadrature 
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Figure 4.2:  Signal space constellation of 16-QAM and 16-QAM->4. 

In order to accurately compare the alternative modulation schemes, we need to define 

the criterion of overall performance. One criterion is simply the Symbol Error Probability 

(SEP), i.e., the probability of X̂  not being the correctly recovered symbol. If MN = , 

the SEP is the probability that XX
~ˆ ≠ . If MN < , the SEP is the probability that 

( )XgX
~ˆ ≠ . For example, in 16-QAM->4, it is the probability that X̂  and X

~  are in 

different quadrants. We focus here on the symbol error rate and not on the bit error rate, 

as the latter is less meaningful when bits are actually dropped. The drawback of this 

criterion is that it does not take into account the effect of the lost bits directly. 

Consequently, it is more useful to consider a criterion that includes the effect of the 

dropped bits, namely the Mean Square Distortion (MSD), the mean value of the squared 

distortion between the original sample X, and the recovered sample X̂ . Although by 

reducing the number of bits transmitted or received we decrease the distortion caused by 

the detection error, the lost bits definitely induce additional quantization noise. The MSD 

is a combination of the quantization noise and the transmission error. 
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Define MSD from X to X̂  as 

( ){ }2
X̂XEMSD −= .       (4.1) 

Then, MSD of scheme M->N can be written as 
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Here ),[ ii UL  and iC , i=0,…,M-1, are the input ranges and their corresponding output 

levels of the quantizer; the quantity jD  is the output of the detector at the receiver side; 

and ( )ij CDP  is the probability of obtaining jDX =ˆ  given iC  is transmitted, which can 

be calculated from ( )ik CCP  as ( ) ( )
( )
�

=

=
jk DCgk

ikij CCPCDP
 s.t.  all

. 

Assume iC  is chosen to be the centroid of the input range ),[ ii UL  (as for example in 

the Lloyd-Max quantizer). Then we have ( ) ii
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probability that the sample X is in the range ),[ ii UL . We also choose jD  to be the 

centroid of the corresponding region. 

We can separate the distortion shown in (4.2) into two parts, one part with ( )ij CgD =  

(correct recovery), and the other part with ( )ij CgD ≠  (detection error). Then we have 
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Therefore, 
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The special case NM =  implies ( ) ii CCg =  and jj CD = . Then (4.3) becomes 
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In both (4.3) and (4.4), iC  and iP  are determined by the pdf of the random variable X 

and the quantizer used. For given noise, ( )ij CCP  is determined by the modulation 

scheme and the signal space constellation. The first terms of (4.3) and (4.4) are not 

related to the detection error; therefore they represent the quantization noise. The second 

terms are associated with SEP, and represent the distortion caused by the detection error.  

In terms of the MSD of M-level modulation, there is a trade-off between the two 

terms. For larger M, the quantization noise is smaller, but the points in the signal space 

are more crowded (since we assume fixed average energy per symbol), and the SEP is 

larger, therefore the distortion caused by the detection error is larger. The total MSD 

depends on the modulation scheme, the signal, and the channel. 

Comparing the M->N scheme and the M-level modulation scheme, there is also a 

trade-off between the quantization noise and the error probability. It is easy to verify that 

the quantization noise of M->N scheme is the same as that of an N-level quantizer with 

the same boundary and output levels jD , j=0,…,N-1; therefore it is larger than that of the 

M-level modulation scheme. However, the SEP of the M->N scheme is smaller than that 
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of the M-level modulation scheme, which may cause smaller overall distortion. The exact 

MSD depends on the modulation scheme, the signal form, and the channel behavior. 

Since we are considering only real time analog signals, we fix the symbol rate to K 

symbols/second, the rate at which the samples are generated. Then the bit rate depends on 

the modulation schemes. We also fix the average energy used to transmit a sample. 

Because the symbol rate is fixed, this is equivalent to fixing the average energy per 

symbol avE . 

4.3 PAM Example in a Gaussian Channel 

In this section, we calculate and compare the SEP and MSD for the PAM example in 

a Gaussian channel. We assume the AWGN has power spectral density 20N . We 

consider two types of distribution for the source random variable X. One is uniform 

distribution ]3,3[~ −UX , and the other is Gaussian distribution ( )1,0~ NX . They all 

have [ ] 0=XE  and 1][ 2 =XE  for the convenience of comparison. 

4.3.1 Symbol Error Probability 

In the M->N scheme, without distinguishing the detailed position of a transmitted 

point in the signal space, the probability of detection error decreases. So, we expect less 

SEP in the reduced-rate case compared to the original full-rate modulation scheme. 

However, by transmitting more bits than the detected bits, the signal points cannot be at 

their optimal position to minimize the error probability. Therefore the error probability 

will not be as small as in the case when the bits are dropped at the transmitter. This is the 

cost we have to pay for the simplicity of the scheme and the lack of feedback. 
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For M-ary PAM modulation, if X is uniformly distributed, we have MPi 1= ; and the 

SEP, as a function of the average energy per symbol, is given [35] by  

( ) ( ) ( ) ( )( )0
2 1612PAM NEMQMMMP av⋅−⋅−=− .   (4.5) 

The SEP of 8-PAM->4 can be easily obtained as 

( ) ( ) ( )( ) ( ) ( )( ){ }.21132114PAM8 004
3 NEQNEQP avav ⋅+⋅=→−   (4.6) 

The comparison of the SEP of 8-PAM, 8-PAM->4, and 4-PAM is shown in Figure 

4.3. As expected, the SEP of 8-PAM->4 is less than that of 8-PAM, approximately half of 

the latter. Then we notice that the SEP of 8-PAM->4 is remarkably larger than that of    

4-PAM. This is expected since the transmitted points of the 8-PAM->4 scheme in the 

signal space are closer to the detecting threshold than that of the 4-PAM scheme. For 

very small SNR, the SEP of 4-PAM and that of 8-PAM->4 are very close; they both 

approach 3/4.  

The SEP for a Gaussian source is obtained through simulation, because it can not be 

expressed in a closed form. The result, shown in Figure 4.4, is almost the same as that for 

a uniform source. 
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Figure 4.3:  SEP of PAM example, for a uniform source, in a Gaussian channel. 

 

Figure 4.4:  SEP of PAM example, for a Gaussian source, in a Gaussian channel. 

SNR per symbol (dB), 10log10(Eav/N0) 

Log10 SEP 

SNR per symbol (dB), 10log10(Eav/N0) 

Log10 SEP 
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4.3.2 Mean Square Distortion 

We first assume a uniform source ]3,3[~ −UX . Then the uniform quantizer is the 

optimum quantizer among all quantizers with M levels. Using ( )( ) MMiCi 3221−−=  

and MPi 1= , after some algebra, we obtain for general M (see Appendix K for details) 

( ) ( ) ( )( ) ( )( )�
−

=

− −−−+=−
1

0

32 121224PAM
M

i
MziQiiMMMMMSD .  (4.7) 

Here we let ( ) ( )0
2 16 NEMz avM ⋅−=  to simplify the error probability expression.  

For strong signal ( dB 0>>SNR ), we have ( )( ) 012 →− MziQ , and, hence, only the 

quantization noise is left in the MSD expression, which is 2−M .  

For very weak signal ( dB 0<<SNR ), we have ( )( ) 2112 →− MziQ , and MSD 

approaches ( )( )[ ] .12121 2MMM −−+  Now, the quantization noise is almost negligible 

compared to the distortion caused by transmission error. For very large M, we can see 

clearly that the MSD approaches the value of 4. The explanation is as follows. As 

dB 0<<SNR , the signal is dominated by the noise; therefore the detection result is either 

M-1 or 0 with equal probability. When M is large, 31 →−MC , and 30 −→C . The 

distortion is then given by 
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Notice that the variance of the random variable X is only 1, but the MSD for 

dB 0<<SNR  is much larger than 1. Therefore the transmission for very low SNR is not 

meaningful any more. 

For 8-PAM->4, we recall (4.3), and we use ( ) 4332 −= jD j  and 
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( ) 435.3−= iCi , then obtain the numerical form of the MSD as 

( ) ( ) ( ) ( ) ( ) ( ){
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zQzQzQMSD

+++
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   (4.8) 

The comparison of the MSD of 8-PAM, 8-PAM->4, and 4-PAM is shown in Figure 

4.5. First we notice that if SNR<~-6 dB, the distortion of the PAM transmission is larger 

than the variance of the random variable. Then we notice that the distortion of 8-PAM->4 

is smaller than 8-PAM when SNR<~0 dB, and larger in other regions of SNR values. 

This is the trade-off between the detection error and the quantization noise for different 

SNR values. There is not enough of a range of SNR values for which the switch from    

8-PAM to 8-PAM->4 is meaningful for this example.  

Comparing 8-PAM and 4-PAM, we notice that for not too small values of SNR, the 

larger the value of M, the smaller the distortion. And for other SNR values (<-3 dB), the 

order is reversed. Hence, when a strong signal is available, using larger M gives us better 

performance in terms of MSD. When the signal is very weak, smaller M gives smaller 

distortion. This behavior is another facet of the trade-off between the detection error and 

the quantization noise. 

Comparing the distortion of 8-PAM->4 with that of 4-PAM, one might intuitively 

guess that 4-PAM should be better than 8-PAM->4, because by dropping one bit at the 

beginning, it is less likely to have detection error. This is true for the SEP, but not 

necessarily for the MSD. In this example, the MSD of 8-PAM->4 is slightly smaller than 

4-PAM when SNR<~7 dB, and larger in other regions of SNR values. Let us think 

through this more carefully. Since the quantization noise part is the same for both 

schemes, we only need to compare the distortion caused by the detection error. We can 

focus on the most likely detection error, i.e., the one that causes erroneous reception of a 
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symbol adjacent to the transmitted one (or adjacent range for the M->N scheme). Both   

8-PAM->4 and 4-PAM have 6 possible adjacent detection errors. But for a particular pair 

of adjacent symbol error, 8-PAM->4 has larger error probability due to the fact that 

( ) ( )84 zQzQ < ; and the distortion of 8-PAM->4, which is equal to 

( )( ) ( )( )ikiki CgDCDCg −−− 2 , is half of that of 4-PAM, which is given by ( )2
ji CC − , 

because the transmitted points are closer to the detected points. These effects are another 

trade-off for the MSD. Since the MSD is the mean value of all possible squared 

distortions, it is not a priori clear which scheme wins without exact numerical calculation. 

Now we analyze again the distortion of the three schemes assuming a Gaussian 

random variable ( )1,0~ NX . The Lloyd-Max quantizer is used because it is the optimum 

quantizer for a Gaussian signal. We use a MATLAB file to calculate the quantization 

output levels, their input ranges, and the coefficients in the MSD expression. We omit the 

detailed calculation and only give the results in Figure 4.6.  

Notice that if SNR<~-3 dB, the distortion of PAM transmission is larger than the 

variance of the random variable. This time the distortion of 8-PAM->4 is almost always 

larger than that of 4-PAM. We again observe the trade-off between the detection error 

and the quantization noise in the comparison of 8-PAM->4 and 8-PAM. The distortion of 

8-PAM->4 is smaller than that of 8-PAM when SNR<~4 dB, and larger in other regions 

of the SNR. This means that we can switch to 8-PAM->4 and get better performance 

when SNR<~4 dB.  
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Figure 4.5:  MSD of PAM example, for a uniform source, in a Gaussian channel. 

 

Figure 4.6:  MSD of PAM example, for a Gaussian source, in a Gaussian channel. 
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4.4 QAM Example in a Gaussian Channel 

In this section, we calculate and compare the SEP and MSD for the QAM method in a 

Gaussian channel.  

4.4.1 Symbol Error Probability 

Since the in-phase and quadrature components of the QAM signals can be perfectly 

separated at the demodulator for kM 22= , the probability of the symbol error for the    

M-QAM modulation scheme is easily determined from the formula of the M -PAM 

modulation scheme with half the average energy per symbol [35]. That is, 

( ) ( )( )2
PAM11QAM −−−=− MPMP .    (4.9) 

For a uniform source X, using (4.5), we have  

( ) ( ) ( )( )( )( ) .132111QAM
2

0
21 NMEQMMP av −−−−=− −   (4.10) 

For 16-QAM->4, the in-phase and quadrature components of the signals can also be 

perfectly separated at the demodulator. Define xP  as the probability that the in-phase 

component of he detected symbol is in error; then, 

( ) ( ) ( ) ( )( ) .53511114QAM16
2

02
1

02
12 NEQNEQPP avavx −−−=−−=→−  (4.11) 

For 10 >>NEav , we have ( ) ( )00 535 NEQNEQ avav >> . Therefore we have 

( ) ( )QAM164QAM16 3
1 −≈→− PP .    (4.12) 

The comparison of the SEP of 16-QAM, 16-QAM->4, and 4-QAM is shown in 

Figure 4.7. The SEP of 16-QAM->4 is less than that of 16-QAM. For large SNR, the SEP 

of 16-QAM->4 is approximately 1/3 of that of 16-QAM. Another observation is that the 
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16-QAM->4 has significantly larger SEP than the 4-QAM. For very small SNR, the SEP 

of 16-QAM->4 and 4-QAM are very close, both approaching 3/4. 

Again, same as for the PAM example, the SEP for a Gaussian X is also obtained from 

simulation, and is almost same as that of a uniform X. We omit the detailed result here. 

 

Figure 4.7:  SEP of QAM example, for a uniform source, in a Gaussian channel. 

4.4.2 Mean Square Distortion 

We assume that a Gray code is used for 4-QAM. Gray code is also the one that 

minimizes the MSD for 4-QAM modulation. We use a 4 4×  rectangular constellation for 

16-QAM. Since we intend to use it as 16-QAM->4 when the channel is poor, we want the 

symbols with the same first two bits to be located in the same quadrant. Thus we can 

recover the first 2 bits of the signal with smaller SEP and can know the approximate 

range of the transmitted signal. Define the 4 4×  signal space matrix as shown in Figure 

SNR per symbol (dB), 10log10(Eav/N0) 

Log10 SEP 



 94 

4.2. This is the optimal rectangular constellation that minimizes MSD among all the 

matrices that locate the symbols with the same first two bits in the same quadrant. This 

constellation is not the optimal one among all rectangular constellations, but its distortion 

is only slightly worse than the optimum. Notice that this is not the Gray code. 

For a uniform signal, the uniform quantizer is the optimum quantizer, and a 

MATLAB file was written to calculate the MSD. For a Gaussian signal, the optimum 

quantizer is the Lloyd-Max quantizer. MATLAB files were written to calculate the 

quantization output levels and their input ranges, and to calculate the numerical results of 

MSD. We obtain results for both a uniform signal and a Gaussian signal, shown in Figure 

4.8 and 4.9. At the range of low SNR values, the difference between the MSD of 16-

QAM and 16-QAM->4 for a uniform signal is smaller than that for a Gaussian signal. 

This is very similar to the PAM example shown in Figure 4.5 and 4.6.  

The comparison for a Gaussian signal is shown in Figure 4.9. In this case, if 

SNR<~0-3 dB, the distortion of QAM transmission is larger than the variance of the 

random variable. We notice that, the MSD of 16-QAM->4 is always larger than that of 4-

QAM in this example. Also, the MSD of 16-QAM->4 is smaller than 16-QAM for 

SNR<~3 dB, and larger in other regions of SNR values. This means there is not enough 

of a range of SNR values in which the switch from 16-QAM to 16-QAM->4 is very 

meaningful. 
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Figure 4.8:  MSD of QAM example, for a uniform source, in a Gaussian channel. 

 

Figure 4.9:  MSD of QAM example, for a Gaussian source, in a Gaussian channel. 
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4.5 Rayleigh Fading Channel 

In order to study the effect of fading on the system performance, we assume a 

frequency-nonselective, slow fading channel, where the attenuation � has Rayleigh 

distribution and the phase shift � has uniform distribution. Modulation schemes PAM and 

QAM are not suitable for a fading channel, unless the amplitude attenuation can be 

compensated, since the detection depends on the amplitude of the received signal. We 

assume that the channel fades sufficiently slowly, so that perfect measurement and 

compensation of both attenuation and phase shift are possible at the receiver. The AWGN 

with power spectral density 20N  is added on top of the fading.  

For a fixed attenuation �, the SEP of both PAM and QAM examples for a uniform 

source are derived in the previous sections; and they can be used by replacing 0NEav  

with 0
2 NEavs αγ =  in (4.5), (4.6), (4.10), and (4.11). To obtain the error probability of 

M-PAM when � is random, we must average ( )sMP γPAM−  over the pdf of sγ . The 

pdf of � with parameter ][ 2αE=Ω  is given by 

( ) ( ) Ω−⋅Ω=
2

2 ααα ef .     (4.13) 

Then the pdf of sγ  is exponential with parameter 0NEavs Ω=γ , 

( ) ( ) ssef ss
γγγγ −⋅= 1 .      (4.14) 

For the PAM example, the integral can be computed, and we obtain 

( ) ( ) ( )( )( )13311PAM 2 −+−⋅−=− MMMMP ss γγ ,    (4.15) 

( ) ( ) ( ){ }.7332124PAM8 8
3 +−+−=→− ssssP γγγγ    (4.16) 

The integral for the QAM example does not have a closed-form expression. In [36] 
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and [37], the SEP of 16-QAM in a fading channel is studied and numerical results are 

given. What we show here are results from our simulation. Figures 4.10 and 4.11 show 

the comparison of a Rayleigh fading channel with �=1 and a Gaussian channel. 

 

Figure 4.10:  SEP of PAM example, for a uniform source, in a Gaussian channel and 

a Rayleigh fading channel with �=1. 

In a Rayleigh fading channel, the SEP of any modulation scheme is worse that that of 

the same scheme in an equivalent Gaussian channel. At high SNR, SEP in a Gaussian 

channel decreases exponentially, while in a fading channel it only decreases linearly. 

Also, the comparison of the three schemes in a Rayleigh fading channel is very different. 

In a Gaussian channel the rate reduction at the receiver diminishes the SEP only slightly 

(to about 1/2 for PAM and 1/3 for QAM). However, the rate reduction at the transmitter 

significantly diminishes the error probability. By contrast, in a Rayleigh fading channel, 

although the rate reduction at the transmitter still has the advantage over the rate 
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reduction at the receiver, that advantage is NOT as significant as in a Gaussian channel. 

 

Figure 4.11:  SEP of QAM example for a uniform source, in a Gaussian channel and a 

Rayleigh fading channel with �=1. 

The MSD is obtained from a simulation program written in C. Figures 4.12 and 4.13 

show the MSD of PAM and QAM for a Gaussian source in a Rayleigh fading channel 

with �=1, as well as the results in a Gaussian Channel. The MSD of any scheme in a 

Rayleigh fading channel is worse than that of the same scheme in a Gaussian channel. In 

a Rayleigh fading channel, the rate reduction at the transmitter only has slight advantage 

over the rate reduction at the receiver. Also we notice that in a Rayleigh fading channel, 

there is a larger range of SNR values where the switch to our scheme is meaningful. For 

example in the PAM case, our scheme achieves smaller MSD for SNR<~10dB in a 

Rayleigh channel, while only for SNR<~3dB in a Gaussian channel.  

From both the SEP and MSD comparisons, we conclude that our scheme is more 

suitable for use in fading channel environments. 
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SNR per symbol (dB), 10log10(Eav/N0) 

Log10 SEP 



 99 

 

Figure 4.12:  MSD of PAM example, for a Gaussian source, in a Gaussian channel 

and a Rayleigh fading channel with �=1. 

 

Figure 4.13:  MSD of QAM example, for a Gaussian source, in a Gaussian channel 
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and a Rayleigh fading channel with �=1. 

4.6 Non-uniform Constellation 

In our scheme of rate reduction, the choice of bits to be dropped is important. So far, 

for the case of uniform constellation, we do not offer any special treatment to the 

important bits, except that we map the more important bits to a certain subset of the 

constellation. In this section, we study a simple example of non-uniform constellation. 

This example is a non-uniform 4-QAM shown in Figure 4.14. It is also the non-uniform   

4-PSK studied in [32]. The angle � indicates the level of the non-uniformity. When 

�=�/4, the scheme reduces to the uniform 4-QAM. We only need to consider ���/4 

because of symmetry.  

 

Figure 4.14: Signal space constellation of non-uniform 4-QAM and 4-QAM->2. 

The SEP for a uniform source in a Gaussian channel is given by 

( ) ( ) ( )
( ) ( )00

00

cos2sin2

cos2sin2,QAM4

NEQNEQ

NEQNEQP

avav

avav

θθ

θθθ

⋅−

+=−
  (4.17) 

( ) ( )0cos2,2QAM4 NEQP avθθ =→−      (4.18) 

The comparison of SEP is shown in Figure 4.15 for two values of �, namely �/4 

(uniform) and �/16 (non-uniform). Because of the implied extra protection for the first bit 

and the reduced protection for the second bit, the SEP of 4-QAM increases significantly 
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as � decreases, while the SEP for 4-QAM->2 decreases as � decreases. This results in 

remarkable gain for 4-QAM->2 over 4-QAM in terms of SEP.  

 

Figure 4.15: SEP of uniform and non-uniform 4-QAM and 4-QAM->2,                      

for a uniform source in a Gaussian channel.  

We simulated the MSD for a Gaussian source in a Gaussian channel for two values of 

�, �/4 (uniform) and �/16 (non-uniform). The results are shown in Figure 4.16. We find 

that as � decreases, the MSD of 4-QAM->2 decreases for any SNR value, and the MSD 

of 4-QAM increases for the region SNR>~0dB. This results in a larger range of SNR 

values in which 4-QAM->2 has smaller MSD than 4-QAM. For �=�/16, this range is 

SNR<~9dB, comparing to SNR<~3dB for �=�/4. We also notice that at �=�/16, for 

SNR<~5dB, the scheme 4-QAM->2 has the smallest MSD among all four schemes 

considered. 

Our scheme outperforms the original scheme without rate adaptation over a larger 
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range of SNR values in the non-uniform constellation case. But the cost we incur is the 

complexity associated with the transmitter design, and the worse performance of the 

original 4-QAM scheme at medium values of SNR. 

 

Figure 4.16: MSD of uniform and non-uniform 4-QAM and 4-QAM->2,                  

for a Gaussian source in a Gaussian channel. 

4.7 Summary and Conclusions 

From the examples of PAM and QAM that we have considered, we notice that the 

performance depends significantly on the distribution of the signal, on the modulation 

scheme, and on the channel behavior. In a Gaussian channel, the rate reduction scheme at 

the transmitter reduces the SEP significantly, while the rate reduction scheme at the 

receiver reduces SEP only slightly. In terms of MSD, our scheme achieves smaller MSD 

for a certain region of SNR values when compared to the original scheme without rate 
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adaptation. However, the rate reduction scheme at the transmitter has significant 

advantage over our rate reduction scheme which only operates at the receiver. In a 

Rayleigh fading channel, the rate reduction scheme at the transmitter still has advantage 

over the rate reduction scheme at the receiver, but that advantage is NOT significant 

anymore. Our scheme achieves smaller MSD for a much larger region of SNR values. 

Therefore, our scheme is more suitable for use in a fading channel rather than in a 

Gaussian channel. The study of an example with non-uniform constellation verifies that 

our scheme has a larger applicable region of SNR values if the important bits are given 

additional protection. 

The trade-off between compression and detection is identified and illustrated in this 

chapter. More elaborate quantization and/or modulation schemes will lead to similar, and 

perhaps more meaningful, trade-offs. Also, the incorporation of error control coding will 

alter the identified trade-offs in possibly significant ways. 

Nevertheless, we believe that the proposed rate control technique represents a 

practical choice that can augment the arsenal of tools for the quality control of wireless 

communications. The simplicity of our method makes it especially attractive for the 

wireless links in an ad hoc wireless network, where link failures can be “softened” 

without rerouting and other drastic measures.  
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Chapter 5  Joint Scheduling, Power Control, and Routing 

Algorithm for Ad-Hoc Wireless Networks 

 

 

5.1 Introduction 

An ad-hoc wireless network is a collection of wireless mobile hosts forming a 

temporary network. Connections of mobile hosts are via multihop wireless connection 

without the support from a fixed infrastructure (“Base Station”). Its classical applications 

are battlefield communications, disaster recovery, search and rescue, and so on. Due to 

the mobility of nodes, the status of a communication link is a function of the location and 

transmission power of the source and destination nodes, and the channel interference 

from other links.  

The traditional layered structure of networks simplifies the design and 

implementation, and allows end systems manufactured by different vendors to share the 

information seamlessly. Recently, more and more people realize that in wireless 

networking there is strong coupling among the traditional layers of the OSI (open 

systems interconnection) architecture and that these interactions can not be ignored. 

These couplings are most obvious in the ad hoc networks. Cross-layer design is able to 

improve the network performance [38,39,40]. 
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One example of the coupling is between the routing in the network layer and the 

access control in the MAC (medium access control) sublayer. The selection of routes 

clearly affects the flows and, hence, the requirement of bandwidth allocation at each 

wireless link. On the other hand, the choice of bandwidth allocation and access control 

affects the accumulation of queuing at links, and therefore changes the distance of each 

link and the route selection. Many works on routing in such networks (see, e.g., [41,42]) 

assume a fixed underlying protocol for access control, and most of the researches on 

multiple access assume fixed routes and flow requirements [43]. In the past several years, 

the problem of coupling routing with access control in ad-hoc wireless networks has been 

addressed [44,45,46]. 

In TDMA-based structure, the bandwidth is partitioned by nodes (or links) in terms of 

time slots; and the access control is achieved by scheduling time slots for links to 

activate. If the system has multiple flow types of traffic in the network, (each flow type 

can be thought of as a distinct application with its own QoS requirement,) then in each 

link, different flow types also share the bandwidth in terms of time slots. Another 

example of the coupling between layers is the coupling of power control in the physical 

layer and the scheduling in the MAC layer. The power assignment of links changes the 

link status, and the topology of the network, and hence the scheduling result. On the other 

hand, the scheduling decides the link activation and the interference generated, and 

therefore changes the power required at each link to achieve the QoS. Joint scheduling 

and power control algorithm are studied in [47,48].  

In this chapter, we assume a TDMA-based wireless ad-hoc network, where each node 

has one receiver and one transmitter. All nodes share the bandwidth by occupying 
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different time slots. In the scheduling, links are assigned slots depending on their link 

metrics. Our algorithm gives priority to the links which have large queue and blocks less 

traffic from neighboring links. We study both algorithms with joint power control and 

without joint power control, and conclude that with joint power control, the network 

achieves significantly larger throughput and less delay in the cost of calculation 

complexity, and slightly higher energy consumption. We also compare our algorithm 

with the one base on [48], and conclude that our algorithm achieve better throughput and 

delay with less complexity, with the cost of slightly higher energy consumption. 

In the route selection, the least energy route could be selected at the beginning of the 

network operation to save energy. But for some unbalanced topology, bandwidth 

requirements can not be satisfied by scheduling only, rerouting is needed periodically to 

lead some packets to go through alternative route and release the congestion. Routes are 

then selected periodically according to both the energy consumption and the traffic 

accumulation. The simulation results show that there is a trade-off between the energy 

consumption and the network performance. There is an optimal weight factor of energy 

consumption and queue accumulation in the routing distance such that the performance is 

best. The optimal point depends on the specific topology of the network. 

The organization of this chapter is as follows. The network model is given in Section 

5.2. We introduce our joint scheduling and power control algorithm in Section 5.3. The 

centralized algorithm and simulation results are also given. In Section 5.4, we discuss our 

joint scheduling and routing algorithm with simulation results. The distributed 

implementation is discussed in Section 5.5. Finally, the future work and extension of the 

research is discussed in Section 5.6, and conclusions are given in Section 5.7. 
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5.2 Network Model 

For a wireless ad-hoc network, there is no support from a fixed infrastructure, and the 

network is connected by wireless channels. In TDMA-based structure, all nodes share the 

same frequency band, and time is slotted. We assume there is a good global time known 

to all users. We assume same waveform for all users and there is no multiuser detection 

available. A separate low data rate channel is used for network control, exchange of 

various information, scheduling, and routing. Power decay law is assumed to be inversely 

proportional to the 	-th order of the distance between the transmitter and the receiver. 

That is, the attenuation factor from node i to node j is given by 

( ) γ−= 0RRG ijij .       (5.1) 

Here ijR  is the distance between node i and j, and 0R  is a normalization constant.  

Each node is supported by one omni-directional antenna; and has one receiver and 

one transmitter, which cannot work simultaneously. Due to the property of the receiver 

and the transmitter, a node cannot transmit and receive at the same time; it can not 

receive from more than one node at the same time; and cannot transmit to more than one 

node at the same time either. We assign time slots to directed links, for example, link 

(i,j). Each link has two possible statuses, active or idle; and each node has three possible 

modes: transmission mode, receiving mode, and idle mode.  

Node i can adjust the power of transmission iP  within the range ∞<≤< max0 PPi ; 

here maxP  is the maximal available power. We assume each successful transmission has 

to satisfy SIR (Signal-to-interference and noise-ratio) requirement �, then the maximal 

transmission distance can be defined as: 
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( )( ) 0
2

maxmax

1

RPR ⋅= γβσ ,      (5.2) 

with 2σ  the power spectral density of the noise. 

We assume that each node generates data packets of fixed length to all other nodes, 

according to Poisson distribution. Each packet needs a slot to transmit. The number of 

nodes is N. We assume that the rates from node i to each of the (N-1) destinations are the 

same, and equal to eλ  packets per second. After routing, local rate of traffic from node i 

to j is ( ) �=Λ
),( nm

ei j λ . Here (m,n) are source destination pairs whose route include link 

(i,j). 

5.3 Jointly Scheduling and Power Control 

We assign time slots to directed links according to their priority defined by their link 

metric. 

5.3.1 Scheduling Metric 

The definition of metric is as follows: 

( )
�

�

+
⋅+

+
⋅=

).,(by  blocked Links

).,(by  blocked Links

11
1

,

ji
kl

ji
kl

ij Q

Q
b

Q
ajiL .     (5.3) 

a and b: Weight factors between 0 and 1, 1=+ ba . 

ijQ : Queue size of link (i,j) at node i.  

klQ : Queue size at blocked link (k,l). Blocked links (k,l) are links such that jik or  = , 

or,  jil or  = , excluding the link (i,j) itself. 

The first term takes into account the delay by giving large queue the higher priority. 
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The second term takes care of the possible blocked links. We prefer assigning slot to 

links which block less other links. Both terms are between 0 and 1. Therefore the metric 

of link (i,j) is also between 0 and 1. 

The choice of the weight factors affects the performance of the network. We have run 

simulations to compare the performance of the network for different values of a and b, 

and choose 5.0 ,5.0 == ba  for later use.  

Originally we have a third term in the link metric definition. However, we tried 

( )γ
maxRRij  (to encourage the links to use less power), and ( ) ( )( )�

�

�


	 ΛΛ− jj ijii ,

max1  (to 

encourage the link with large average rate), and find out that the best performance always 

has a zero weight factor for the third term. Therefore, we now use two terms. 

5.3.2 Scheduling Rules 

The scheduling rules include three parts. First, the link with lower link metric has 

higher priority in the scheduling to occupy the time slot. Next, when link (i,j) is active, 

node i and node j can not transmit to other nodes or receive from other nodes. Finally, the 

SIR requirements are satisfied. That is, 

activated. ),(link     ,
2

ji
GP

GP

ik
kjk

iji ∀≥
+�

≠

β
σ

    (5.4) 

The scheduling rules require that one node can only be associated with one active 

link, and then the first order collision is avoided. We then need each activated link satisfy 

the SIR requirement, which means, the interference from all other nodes is small enough 

to guarantee the SIR threshold β. 
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5.3.3 Scheduling Algorithms and Power Control 

Scheduling and power control are coupled. The power assignment decides the 

network topology, and therefore, affects the scheduling result. The scheduling decides the 

link activation and interference generated, and hence the power requirement at each link 

to achieve the SIR requirement. There are two alternative methods for scheduling. One is 

the simplified method without power control. Power is preset to each link before 

scheduling. The other is finding the maximal possible allowable links to transmit at the 

same time, with the joint power control and scheduling. The algorithm provided in [48] 

belongs to the second category. Here we propose one simplified algorithm without power 

control, and one joint scheduling and power control algorithm.  

Simplified scheduling: The power of link (i,j) is calculated before scheduling 

according to the attenuation factor ijG , so that the SIR of link (i,j) is satisfied if there is 

no interference from other links. Then the power is preset by (5.5). Here α (α >1) is the 

marginal protection to allow some interference from other links. 

ij
i G

P
2σαβ ⋅⋅=         (5.5) 

The first link scheduled is the lowest metric one. Then links are tried one by one 

according to their metric. If the new link does not introduce excessive interference to the 

prescheduled links, and its own SIR requirement can be satisfied, then it is added. 

Otherwise it is rejected. Each time when a new link is added, the links this link blocked 

are out of future consideration. Since there is no iterative power control, this method can 

be extent to distributed algorithm easily.  

Our joint algorithm: We add link one by one from the lowest metric. Each time a 
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new link is tried, run the iterative power control algorithm (5.6) to calculate the required 

power to satisfy the SIR requirement.  

),(link     ,/)(2)1( jiGGPP ij
ik

kj
n

k
n

i ∀�
�



�


	 += �
≠

+ σβ    (5.6) 

If there is a solution, the power control algorithm converges fast to the minimum 

power vector [12]. There are two possible cases that the SIR requirements can not be 

satisfied. One is when some of the elements in the converged minimum power vector are 

larger than  maxP . The other is when there is no solution. In this case the algorithm 

diverges, and the elements in the power vector will grow beyond maxP  very fast. In either 

case, power elements exceed maxP . In the simulation, we have limited number of 

iterations iN , “Iterative power control algorithm succeed” is replaced by “Power does 

not exceed maxP  within iN  iterations”. There is a chance of non-satisfactory of SIR 

requirement after iN  iterations even if the power vector does not exceed maxP . If this 

happens, the transmission is considered failed.  

The selection of parameter iN  is important. Due to the inherent characteristics of the 

converging process of the power control algorithm, some marginal protection (that is, 

using βα (� >1) instead of β as the SIR requirement.) significantly reduces the number of 

iterations to achieve acceptable level of failure. The algorithm is as follows: 

1. Calculate metrics of links, define link set as all links that have traffic, and 

define activation set as an empty set. 

2. Select the lowest metric link and add it into the activation set. Remove this 

link and the links blocked by this link from the link set. 
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3. Select the lowest metric link from the link set and try iterative power control 

algorithm with this link added to the activation set. 

4. If not succeed, remove this link from the link set, and go back to step 3. 

Otherwise, continue to step 5. 

5. If succeed, add this link to activation set, and update power of scheduled links. 

Remove this link and the links blocked by this link from the link set. 

6. Repeat step 3 to 5 until the link set is empty. 

This method has to run the iterative power allocation each time a new link is tried. 

But it can achieve optimal throughput because all the links are tried. And since the links 

are added one by one, it is easier for the power control iterations to satisfy SIR 

requirement  in less number of iterations. 

Algorithm based on [48]:  Reference [48] provided a joint power control and 

scheduling algorithm working in two phases. It calls a transmission scenario Valid if one 

node can only be associated with one active link at a time, and any receiver is spatially 

separated from other transmitter by at least a distance D. This algorithm first finds the 

valid scenario with maximum number of links by a centralized scheduling algorithm. 

Then, power control algorithm is executed in a distributed fashion. If there is no power 

vector can be found to satisfy the SIR requirements, the link with the smallest SIR is 

removed from the valid scenario. Then, power control algorithm is executed again, until 

the SIR requirements are satisfied. 

An alternative way of joint power control and scheduling is using the centralized 

version of the algorithm from [48], with D=0. We consider this algorithm based on [48] 

in our simulation, and compare it to our joint power control and scheduling algorithm. 
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This method gives suboptimal throughput; and the number of power control algorithm is 

limited to number of links in the valid scenario. However, it needs more iterations for the 

power control algorithm to satisfy SIR requirement, therefore has the problem of high 

failure rate or high complexity. 

5.3.4 Simulation Results 

We study centralized algorithm first to evaluate the performance gain of the joint 

algorithm, and to provide a reference point for the distributed algorithm. It is also 

applicable to some networks with a base station. 

A 10-node network and a 20-node network are generated by random points in a 

10×10 area. We assume that the maximal transmission distance is 4 for both networks. 

The topologies of these networks are shown in Figure 5.1. Packets are generated by 

Poisson process at each node pair. We assume that eλ  is the average number of packets 

generated per slot for any source destination pair, and then the traffic rate at node i is 

ei N λλ )1( −= . We assume large buffer size maxQ  at nodes. Packets are discarded if the 

buffer is full. Packets are failed if the SIR is not satisfied due to the inaccurate power 

calculation because of the finite number of iterations.  

Simulation parameters are listed as the follows: 

Maximal transmission distance 4max =R , 

Buffer size 10000max =Q . 

SIR requirement .1=β  

Power decay factor 4=γ . 

Simulation time 100000 slots. 

Link metric a=0.5, b=0.5. 

Simplified scheduling, 3.1=α . 
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Our joint algorithm, 10 ,05.1 == iNα . 

Algorithm based on [48], 15 ,05.1 == iNα . 

 

 

 

Figure 5.1: The 10-node network and 20-node network used in simulation. 

The three scheduling algorithms we have just discussed are simulated. The 
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performance of the 10-node network and the 20-node network in terms of throughput, 

delay, and power versus eλ  is shown in Figure 5.2 and 5.3. There is no joint routing and 

scheduling at this point, the route is selected to be the least power route. The results are 

discussed as the follows. 

Effect of � in simplified scheduling: The performance of the 10-node network for 

different values of α is listed in Table 5.1. Obviously, transmission power increases with 

�. The throughput also increases with α, and achieves the maximum throughput when 

1.1≥α  in the 10-node example. However, there is an optimal � to maximize the 

throughput/Power, which is around 1.1 for the 10-node example. Although the optimal 

value of α depends on the SIR requirement, the traffic rate, and the network topology, the 

great news is that the extra 10~30% power can improve the network performance 

significantly. In the following comparison with other scheduling algorithms, we use 

�=1.3 for the simplified scheduling to achieve the maximum throughput and small delay, 

with the cost of 30% more energy consumption. 

Table 5.1: The throughput, delay, and power of the 10-node network with simplified 

scheduling for different values of α.* 

α Throughput Delay Power Throughput/Power 
1.0 0.339 11852. 61.5 5.51e-3 
1.1 0.449 12.88 67.8 6.62e-3 
1.2 0.449 9.76 73.9 6.07e-3 
1.3 0.449 7.10 80.1 5.60e-3 
1.5 0.449 6.37 92.5 4.85e-3 
2.0 0.449 5.69 118.0 3.80e-3 
5.0 0.449 4.12 163.9 2.74e-3 
10.0 0.449 3.98 165.8 2.71e-3 

*: These results are for eλ =0.005. Throughput is the number of packets transmitted from the 

source to the destination per slot. Delay is in slots. The unit of power is 2σ . 



 116 

Convergence of the power control: The choice of iN and � are coupled. Usage of � 

>1 reduces number of iterations to reach SIR satisfaction. For the 10-node example with 

eλ =0.01, and the 20-node example with eλ =0.002, the minimum iN  needed to have less 

than 0.1% failure rate is listed in Table 5.2. We choose α=1.05 in the following 

simulation. To reach the same ≤0.1% failure rate in both the 10-node and 20-node 

examples, we use 10=iN  for our algorithm, and 15=iN  for the algorithm based on 

[48]. 

Table 5.2: Minimum number of iteration needed for joint scheduling and power 

control algorithms with 0.1% failure rate. 

� 1.10 1.05 1.02 1.01 
Our algorithm 7 9 12 14 10 nodes  

eλ =0.01 Algorithm based on [48] 10 12 18 21 

Our algorithm 7 10 14 16 20 nodes 

eλ =0.002 Algorithm based on [48] 12 16 21 26 

 

Threshold rate and throughput: There is a threshold rate for each of the scheduling 

algorithm. If the rate is larger than the threshold rate, then the number of waiting packets 

keeps increasing until the buffer is full and packets are dropped. The delay also increases 

rapidly if the rate exceeds the threshold. Table 5.3 shows the threshold rates 

(packets/slot/source destination pair) for the three scheduling algorithms for the 10-node 

network and the 20-node network we simulated.  

As we can see from Figure 5.2 and 5.3, when the rate is larger than the threshold, the 

throughput no longer increases as the rate in the same slope. We find that both joint 

algorithms achieve larger throughput and threshold rate than the simplified algorithm; 

and our algorithm has larger throughput than the algorithm based on [48].  
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Table 5.3: Threshold rates for scheduling algorithms 

 10-node 20-node 
Simplified scheduling, �=1.3 0.0078 0.00175 
Our joint algorithm, α=1.05, Ni= 10  0.0109 0.00215 
Algorithm based on [48], α=1.05, Ni =15  0.0096 0.00210 

Power: The average power of the simplified algorithm does not change significantly 

as the rate increases, because the power is preset, and is not related to the interference 

caused by higher rate. On the contrary, the joint scheduling and power control algorithms 

use more power for larger rate. The reason is that more interference is generated by more 

links, and therefore more power is needed to overcome the interference and satisfy the 

SIR requirement. Our algorithm has slight larger power than the algorithm based on [48], 

due to the larger throughput it achieves. 

Delay: Delay depends significantly on the rate. If the rate is larger than the threshold 

rate, the queues keep growing, and the delay also increases very fast as the rate increase, 

as shown in Figure 5.2 and 5.3. Our joint scheduling and power control algorithm achieve 

best delay among the three scheduling algorithms compared. 

Complexity: We count the number of calculations (comparison and updating) to 

compare the complexity of the three scheduling algorithms. The number of calculations 

per packet transmission is shown in Figure 5.2 and 5.3. 

Because the algorithm based on [48] needs more iterations to converge, it has more 

complexity than our joint algorithm. The simplified scheduling has smallest complexity 

at the low rate. However, at high rate, its number of calculations is not smaller than that 

of our joint algorithm. Actually, it has the highest complexity when normalized by its 

smallest throughput. 
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Figure 5.2: Throughput, power, delay, and complexity of scheduling algorithms,      

for the 10-node network. 
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Figure 5.3: Throughput, power, delay, and complexity of scheduling algorithms,      

for the 20-node network. 

Comparison: The simplified scheduling is the simplest one because there is no 
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power control. But the amount of calculation is not less than that of the joint scheduling 

and power control algorithms, and the delay and throughput are significantly worse than 

other schemes for the roughly same level of power consumption. 

Our joint scheduling and power control algorithm gives the maximum use of the 

channel (i.e., maximum throughput and smallest delay). It is easy to prove that, whatever 

scheduling result algorithm based on [48] found will also be accepted by our algorithm at 

a certain step. Our algorithm also has smaller complexity compare to the algorithm based 

on [48], and only slightly larger power.  

5.4 Jointly Scheduling and Routing 

The actually assigned bandwidth by the scheduling algorithm may be different from 

the required bandwidth, which is ( )jiΛ  in average. As time goes on, queues start building 

up at the buffers of some links. These queues do not build up uniformly among all nodes. 

The link distance is changed by the building up of the queues. A least distance routing 

algorithm can re-compute routes using the updated information about the queues at links. 

The recomputed routes provide new values of the average rates on each link that the 

scheduling aims to satisfy. This is the problem of joint solving the access control and the 

routing problem in ad-hoc networks.  

This successive interaction from frame to frame, between the route selection, (that 

determines the required bandwidth,) and the bandwidth allocation, (that determines the 

actually assigned bandwidth,) is the heart of the joint routing/access resolution.  

5.4.1 Routing Distance  

Bellman-Ford algorithm is chosen because it can be operated distributedly. The 



 123 

distance is defined as: 

( )
γ

��
�
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⋅+��

�



��


	
⋅=

maxmax

,
R

R
e

Q

Q
djiD ijij .      (5.7) 

d and e: Weight factor, 1=+ ed . 

ijQ : Queue at the buffer of link (i,j). 

maxQ : Maximum buffer size. 

The first term is the queue size, to encourage the usage of less congested links and 

avoid congestion. The second term is related to power consumption, or physical distance 

of the link, to encourage transmission over short distance. The link between two nodes in 

close distance not only spends less power in transmission, therefore prolong the lifetime 

of nodes and network, it also causes less interference to all other link in the network. At 

the beginning of the network operation, we have 0=ijQ . As long as e>0, routes are 

optimized by energy consumption. After that, routes are calculated periodically by the 

Bellman-Ford algorithm based on the defined link distance in (5.7).  

5.4.2 Rerouting 

Although the scheduling algorithm takes into account the average bandwidth 

requirement and the queue, there are still cases where the bandwidth requirement can not 

be satisfied by scheduling only. For example, in an unbalanced topology, if a node is 

close to many nodes, and is on the route of many source destination pairs, the bandwidth 

requirement to that node may just exceed the maximal possible value, even if it is 

assigned slots all the time. As time goes on, the difference between the bandwidth 

requirement and the bandwidth assignment at some links may stay positive for a number 
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of slots, and queues start building up at the buffers. These queues do not build up 

uniformly among all nodes and flows. Thus the packets which are encountering long 

delay in their current route need to be rerouted. The rerouting helps in balancing the 

traffic throughout the links and nodes in the network. Rerouting periodically may 

increase the throughput and stable rate, and decrease the number of discarded packets and 

the delay.  

The route is rerouted periodically by Bellman-Ford algorithm. It may not be possible 

to redefine routes across the network at the rate of every frame. Then the time constant of 

route adjustment can be made greater to encompass multiple frames and react only to the 

aggregate queue size fluctuations over a sufficiently large number of frames. We 

compare the performance of the network with and without periodic rerouting. 

5.4.3 Simulation Results 

In order to study the effect of joint routing and scheduling algorithm, we simulated 

the two networks shown in Figure 5.1. The performance of the 10-node network, in terms 

of throughput, delay, and power, is shown in Figure 5.4, and the performance of the 20-

node network is shown in Figure 5.5. Since the maximum transmission power maxP , and 

the maximum transmission distance maxR , are the same for the two networks, the 20-

node network is a denser network than the 10-node one. 

For the joint scheduling and routing algorithm, we use our joint scheduling and power 

control algorithm (with 10 ,05.1 == iNα ) to do the scheduling, and the routes are 

updated every 1000 slots.  

In Figure 5.4 and 5.5, the curves for d=0, e=1 is the least power route without 
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rerouting; and the curves for d=1, e=0 is the least congestion route without the 

consideration of power. We found that for both 10-node example and 20-node example, 

the power consumption of d=0, e=1 is the smallest, and the power of d=1, e=0 is the 

largest. All the other curves are in between. The reason for this is straight forward. 

From Figure 5.4, we find that rerouting only improves the throughput and delay 

slightly compare to the least energy route. It shows that the link metric and the scheduling 

algorithm assigns bandwidth to links in a way that the queues are built up evenly in 

average; therefore the adding of queuing term in the routing distance does not improve 

the performance significantly for this particular 10-node network.  
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Figure 5.4: Throughput, delay, and power for different routing parameters,              

10-node example. 
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Figure 5.5:  Throughput, delay, and power for different routing parameters,              

20-node example.  

However, from Figure 5.5, we find that the least power route performs very badly in 

both throughput and delay; and rerouting improves the performance significantly. This is 

because that the 20-node example has some busy nodes and is easy to be congested 

without the help of rerouting. It is more likely for a larger and denser network to have 

unbalanced topology, so that rerouting is important to balance the traffic through links. 

For both examples, the optimal values of (d,e) in terms of throughput and delay are 

somewhere between (1,0) and (0,1). For the 10-node example, it is around (0.9,0.1), and 

for the 20-node example, it is around (0.99,0.01). 

5.5 Distributed Algorithm 

Since ad hoc networks do not have a central controller, distributed implementation is 

/σ
2   



 129 

very important for the routing and scheduling algorithms. The distributed routing based 

on Bellman-Ford algorithm converges and is well studied [49]. We now need to focus on 

the distributed scheduling and power control algorithm.  

We assume there is a separate channel for scheduling, routing, and information 

exchange. In each frame of this channel, there are M iterations for the scheduling. In each 

iteration, each node has its own time slot to send its request or information to its 

neighbors. A node i knows its neighbor j about its attenuation factor jiG  and the link 

metric of the requesting link from it, ( )kjL , . 

One problem of distributed algorithm is how to relate allocated slots to the metric of 

links. We let a node send request at a random time of the M iterations, and that random 

time is related to the link metric. That is, the link with lower link metric is more likely to 

request earlier than the link with higher link metric. Another possibility would be let links 

with lower metric replace the existing higher metric one. 

Another problem is the iterative power control. The distributed power control 

algorithm with maxP  uses the measured SNR to update power, and its convergence is 

proved [50]. However, it is possible that the power vector converges to the vector whose 

elements are all maxP , that is, the SIR requirements are not satisfied. We now hope to run 

power control along with scheduling. Each link should update its power according to the 

power levels of its neighbors. Methods to reduce the number of iteration include using 

discrete power levels and set margin protection. The complexity of asynchronous power 

control algorithm and the information needs to be exchanged between neighbors are other 

possible problems. 

We do not have exactly distributed algorithm in detail for the joint scheduling and 
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power control algorithm at this moment. For the simplified scheduling, we have an 

outline of the distributed algorithm, and plan to finalize it and simulate it in the near 

future. For the joint scheduling and power control algorithm, we have some thoughts and 

wish to finish the distributed algorithm in the future. We discuss these in the following 

subsections. 

5.5.1 With Simplified Scheduling 

We first discuss the distributed simplified scheduling where the power is preset 

before scheduling, as in Section 3.3.1. We define Tolerable Interference (TI) of link (m,n) 

as 

( ) �
≠

−−=
mk

kmkmnm GPGPnmTI ββσ 2, .    (5.8) 

If the SIR requirement of link (m,n) is satisfied, then ( ) 0, ≥nmTI . For a new link (i,j) 

to be added without destroying link (m,n), the power iP  must satisfy  

( )nmTIGP ini ,≤⋅⋅β .       (5.9) 

Assume each node knows the TI of all of nodes it can hear. In order to check whether 

(5.9) is satisfied; each node keeps tracking the scheduling information of its neighbors.  

When node i (which is idle) want to request a slot to transmit to node j, it first presets 

power according to (5.5), then goes through the following process. 

1. Node i first check whether (5.9) is satisfied for all its neighbor n who is the 

receiver of a scheduled link. 

2. Then node i sends request message RQS to node j. 

3. Node j checks whether it is in idle mode, and the SIR is satisfied, i.e., (5.4) is 

satisfied. 
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4. If yes, it send accepting reply message RPL to node i. If no, it sends rejecting 

reply message RJT back to node i. 

5. When node i receives the message RPL, it sends confirm message CNF to 

node j and all its neighbors and then changes the database. Its neighbors 

update their information. 

6. Upon receive the message CNF from node i, node j broadcast its new TI to all 

its neighbors and change the database.  

7. If node i receives RJT, it stops requesting for the current slot.  

In order to avoid the change of TI during the RQS-RPL-CNF process, the nodes who 

hear the RQS message should stop scheduling until the finish of the current link 

scheduling. 

5.5.2 With Joint Scheduling and Power Control 

To reduce the number of iteration for the power control algorithm to converge, we 

use multiple power levels instead of continuous power. 

When a new link (i,j) wants to be added, the transmitter i first checks the TI of 

neighboring receivers, and find out the Max power level it could use. Then it sends a 

RQS to its receiver j. The receiver checks whether this Max power level can satisfy the 

SIR requirement. If not, it sends RJT message, and the power level needed. If yes, it 

sends RPL along with the actual power level needed. Upon getting RPL from node j, 

node i sends out CNF message to receiver, and all its neighbors for them to update their 

database. If the transmitter gets RJT message, it send out request to the neighbor k 

(whose TI limited node i’s Max power level) to increase its power, so that the Max power 

level of node i can be the power level needed for link (i,j). If neighbor k can do this, then 
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node i can resend RQS to node j. If for some reason, (for example, node k already at 

highest power level) node k can not improve its power, it reject node i’s request of 

increasing power, and node i give up the scheduling of link (i,j). 

In order to leave some TI for the later links, we should leave some marginal 

protection when decide power level, like using �� instead of �. 

5.6 Future Work and Extension 

We plan to finish the distributed joint scheduling and power control algorithm and 

simulate it in the near future.  

The algorithms above can be easily modified to have multiple flow types. The only 

modification is using Fff ,...,2,1, =β , instead of β when checking SIR requirement. For 

some applications, it may not be possible to do the scheduling for each slot; we can also 

do scheduling for a frame consists of many slots. The basic ideas are the same.  This 

study can also be extended to CDMA-based systems by slightly changing the scheduling 

rules.  

5.7 Conclusions 

In this chapter, we provide a centralized algorithm of joint power control, scheduling, 

and routing. Simulation results show that the joint scheduling and power control 

algorithm improve the throughput and delay significantly, and the joint scheduling and 

routing algorithm also improves the network performance. Our simulation shows that 

there is a trade-off between the energy consumption and the network performance, such 

as throughput and delay. Algorithm for distributed implementation is also discussed.   
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Chapter 6  Summary 

 

For the CDMA system with symmetric sequences, we found the user capacity and the 

effective bandwidth for the (K,0) and the (M,N) matched filter and decorrelator detectors, 

by assuming fixed total power from unknown users. By making the equal power 

assumption for all known users, we obtained the user capacity for the (K,0) and the (M,N) 

MMSE detectors. For symmetric sequences, the effective bandwidth can not be expressed 

by a scalar, because two constraints have to be satisfied simultaneously to satisfy the SIR 

requirement. We introduce a 2-D vector notion of effective bandwidth with and without 

unknown users. For both the decorrelator and the MMSE detector, the user capacity is 

one when all users are known to the receivers and is reduced to (1-N/L) when N users are 

unknown (with L the processing gain). 

We study the problem of a power-controlled CDMA system with N nodes and F flow 

types with the constraint that each node uses the same power level for all flows that it 

multiplexes. For the F=1 case with SIR requirement β, we find that for both the uplink 

and the downlink, if N>L, the optimal sequences are the WBE sequences, and the user 

capacity is 1 1 β+  users per degree of freedom. Also if N L≤ , the optimal sequences 

are orthogonal. For the uplink problem with N=2 and F arbitrary, the necessary and 

sufficient conditions to have solutions are found and proved. For the general N>1 uplink 

problem, we provide an iterative algorithm to find the optimal solution and prove its 

convergence. For the downlink case with F>1, the power assignment problem is solved 
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and some properties of the optimal sequences are proved. Finally, the one power level 

constraint simplifies the transmitter structure, with the cost of performance degradation. 

We study an unusual method of passive rate adaptation in which some bits are 

dropped at the receiver end of a link. From the examples of PAM and QAM, we notice 

that the performance depends significantly on the distribution of the signal, on the 

modulation scheme, and on the channel property. In Gaussian channels, the rate reduction 

scheme at the transmitter has significant advantage over our rate reduction scheme at the 

receiver, in terms of both SEP and MSD. In Rayleigh fading channels, the rate reduction 

scheme at the transmitter still has advantage over the rate reduction scheme at the 

receiver, but that advantage is NOT significant anymore. Our scheme achieves smaller 

MSD for a much larger region of SNR values. Therefore, our scheme is more suitable to 

use in fading channels than in Gaussian channels. The study of an example with non-

uniform constellation verifies that our scheme has a larger applicable region of SNR 

values if the important bits are given additional protection. 

We study the cross-layer coupling in a wireless ad hoc network. We assume a 

TDMA-based wireless ad-hoc network, and provide a centralized algorithm of joint 

power control, scheduling, and routing. Energy efficiency is another very important topic 

for ad hoc networks, and is considered in our algorithm. Simulation results show that the 

joint scheduling and power control algorithm improve the throughput and delay 

significantly, and the joint scheduling and routing algorithm also improves the network 

performance substantially. Our simulation shows that there is a trade-off between the 

energy consumption and the network performance, such as throughput and delay. 

Algorithm for distributed implementation is also discussed.  
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Appendices 

 

A. Proof of Restriction 1 

Any two symmetric vectors, si and sj, satisfy 1i j= =s s  and i j ρ⋅ =s s . Then, by the 

Schwarz inequality we have 
i j i j⋅ ≤ ⋅s s s s , which implies 1 1ρ− ≤ ≤ .  

First we prove the sufficiency by giving a construction scheme. 

Assume (2.1) is true. Then K symmetric 1 K×  vectors can be constructed one by one 

starting from [ ]1 1 0 ... 0=s  in the following way. When adding is , we guarantee that 

1i =s  and i j ρ⋅ =s s  for all j<i, by setting ,1 1,1i is s −= , …, , 2 1, 2i i i is s− − −= , 

( )2

, 1 1, , 1, 11
/

i

i i i j i j i ij
s s s sρ −

− − − −=
= −� , and ( )

1
21 2

, ,1
1

i

i i i jj
s s

−

=
= −� . The resulting vectors are given by:  

[ ]1

2
2

(1 )(1 2 )1
3 1 1

(1 ) (1 )(1 3 )1
4 1 (1 )(1 2 ) 1 2

1       0            0               0        0   ,

1       0               0        0   ,

         0        0   ,

0   ,

− +−
+ +

− − +−
+ + + +

=

� �= −
� �
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� �
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� �

s

s

s

s

�

�

�

�

�

ρ ρρ
ρ ρ

ρ ρ ρρ
ρ ρ ρ ρ

ρ ρ

ρ ρ

ρ ρ ρ

(1 )1
1 (1 )(1 2 )

(1 ) (1 )[1 ( 1)]
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+ − + − + −

�=
�

�
�

s

�

�
ρρ

ρ ρ ρ

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

ρ

 

The condition of (2.1) guarantees that all the factors inside the square root are 

positive. It is easy to check that the K vectors constructed above have unit length and 

pair-wise crosscorrelation ρ. 
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We prove the necessity by induction. Because 1 1ρ− ≤ ≤  is true, (2.1) is satisfied for 

K=2. 

Now assume that, if K-1 symmetric vectors with unit length and crosscorrelation ρ 

exist, then ( ) 1
1 1 1K ρ−

− − ≤ ≤� �� �  is satisfied. The K symmetric vectors with unit length and 

crosscorrelation ρ can always be rotated to: 

[ ]
[ ]

[ ]

1

2 22 23

32 33

1   0    0 ,  

,

,  

  .K

s s

s s

ρ

ρ

=

=

=

s

s

s

�

�

�

�

 

Define  

( ) [ ]
1

2 2
2 31 ,   1,..., .i i is s i Kρ

−
′ = − =s �  

Then ==′ �2s  1K′ =s  is true from 2 1K= = =s s� ; and ( ) 1i j ρ ρ′ ′⋅ = +s s  is true 

from i j ρ⋅ =s s  for all , 1i j ≠ . Therefore, 2 K,  , ′ ′s s�  are K-1 symmetric vectors with unit 

length and crosscorrelation ( )1ρ ρ+ . From our hypothesis, we have 

( ) ( )12 1 1K ρ ρ−− − ≤ + ≤ , and hence for K symmetric vectors with unit length and 

crosscorrelation ρ, the inequality ( ) 11 1K ρ−− − ≤ ≤  is satisfied.  

B. Proof of Restriction 2 

First we look at the example of L=2. 

Obviously there are at most 3 symmetric vectors from the origin to the unit circle. 

They can be [ ] 2 2 4 2
1 2 33 3 3 31 0 ,   cos sin ,   cos sinπ π π π= = =� � � �� � � �s s s , and 1

2ρ = − . The 3 

vectors are separated by �120  in the plane; they are the 3 vertices of an equal-side triangle 
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inscribed in the unit circle. 

For 3,L ≥  we want to find the largest possible number of vectors 

[ ]1 2 ...i i i iLs s s=s , i=1,2,…, K, such that 
2

1 i =s , and   for all  .i j j iρ⋅ = ≠s s  

Without lost of generality, we can let [ ]1 1 0 ... 0=s . Then, 1 j ρ⋅ =s s  implies 

1js ρ= , and 2
1j =s  implies 2 2 2

2 ... 1i iLs s ρ+ + = − , and finally i j ρ⋅ =s s  implies 

2
2 2 ...i j iL jLs s s s ρ ρ+ + = − , for all i,j=2,…,K and j i≠ . Define now 

( ) [ ]
1

(1) 2 2
2 31 ... ,  2,...,i i i ils s s i Kρ

−
= − ⋅ =s . 

Then in (L-1) dimension space, we want to have the largest K such that the K-1 

vectors ( )1
is  satisfy 

2(1) (1)2 (1)2
2

(1) (1) (1) (1) (1) (1)
2 2

... 1,   for 2,..., ,

... ,  
1

for all , 2,...,  and .

i i iL

i j i j iL jL

s s i K

s s s s

i j K j i

ρ
ρ

= + + = =

⋅ = + + =
+

= ≠

s

s s  

This is the same problem as the original one, except the L-dimensional space is 

reduced to an (L-1)-dimension, and the crosscorrelation changes to ( )1 1L L Lρ ρ ρ− = + . 

Similarly, we can rotate the vectors such that [ ](1) 1 0 ... 0i =s , and then define (2)
is  

similarly and reduce to (L-2) dimension. After J times of reduction, the problem reduces 

to a search for K-J symmetric vectors in (L-J) dimensional space. But we know that in the 

2-dimensional space, there are at most 3 symmetric vectors with 1
2 2ρ = − , therefore 

1.K L≤ +  

From the induction, we know that in order to get the maximal number of symmetric 

vectors, we must have ( )1 1L L Lρ ρ ρ− = + , i.e., 1 1
1 1L Lρ ρ− −

−= − . Thus,  
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1
1 ( 2) 2

1 1 1 1
1 ... ( 2) 2

L L L L

L L L
ρ ρ ρ− − −

= − = = − − = − + = −
−

. 

Therefore, to have L+1 symmetric vectors in L-dimensional space, we must have 

1Lρ −= − . 

C. Derivation of (2.5)  

Let us first obtain 1
M
−R . Consider the symmetric Hermitian matrix D with 

( ) 0,  if 
ij

i j= =D , and ( ) 1,  if 
ij

i j= ≠D . Then D can be diagonalized as ⋅ ⋅ T
DU � U , where 

D�  is the diagonal eigenvalue matrix { }diag 1, 1, , 1M − − −� . The unitary matrix 

[ ]1 2 M=U v v v�  consists of normalized eigenvectors of D. Define the ( 1M × ) vector 

[ ]1 1 ... 1
T

M =u ; then 
1
2

1 MM −=v u , and the other eigenvectors satisfy 0T
M i⋅ =u v  

and 1T
i i⋅ =v v , for all i=2, 3, …, M. 

Since 

( ) ( ) ( )1 1 2

1,
0,

MT T T
ij k kkij ij ij

i j

i j=

=�
= = ⋅ + ⋅ = � ≠�

�I UU v v v v , 

the following are true and will be used later: 

( )1 1

1T

ii M
⋅ =v v  , ( )2

1M

k kk ii

M
M=

−⋅ =� Tv v , 

( )1 1

1
,  T

ij
i j

M
⋅ = ≠v v ,  ( )2

1
,  

M

k kk ij
i j

M=

−⋅ = ≠� Tv v . 

It is well known [14] that the matrix ( ) 1
M �

−− = +1R I D  has the same eigenvectors as D 

and eigenvalues ( ) 11 −= +R Dλ ρλ , where  Dλ  are the eigenvalues of D. Then,  
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( )
1 1 1

diag , , ,
1 1 1 1M

� �� �= � �+ − − −� �� �
-1R

� �
ρ ρ ρ

. 

We have 

1
1 1 2

1 1
1 1 1

MT
M j jj�(M ) �

−
=

= = ⋅ + ⋅
+ − − �-1

T T
R

R U� U v v v v , 

( )

[ ]

1 1 1 1 1
1 ( 1) 1

           ,         1,2,..., ,

M ii

M
M M M

1 �(M 2)
i M

1 �(M 1) (1 �)

ρ ρ
− −= ⋅ + ⋅

+ − −
+ −= =

+ − −

R
 

1
1 2

1
          0 0 ,

1 ( 1)

TT T T
M M M M

T

MM
Mρ

− � �= ⋅ ⋅� �

� �= =� � + −

-1

-1

R

R

R u U� v v v u

U� u

�

�

 

1 1
1

1
                  .

1 ( 1)

M N

M N N M M j jj M

M N

M j jj M

P b

P b
M

+− −
= +

+

= +

∆ = ⋅ ⋅

= ⋅
+ −

�

�

R A b R u

u

ρ

ρ
ρ

 

Therefore we obtain 

( ) ( ){ }
( , )
dec, 22 1 1

22

1

             .
1 ( 2)

1 1 ( 1) 1 ( 1)

M N i
i

M M N N i

i

M N

jj M

P
SIR

E

P

M
P

M M

− −

+

= +

=
+

=
� �+ −⋅ + � �− + − + −� �

�

R R �A bσ

σ ρ ρ
ρ ρ ρ

   (2.5) 

D. Derivation of (2.15) and (2.16) 

Define the same Hermitian matrix D and unitary matrix U as in Appendix C. Define 

2Pε σ= , 1 ( 1)Mδ ρ= + − , and 1γ ρ= − . Then the matrix M ρ= +R I D  and 

( ) 11(1 )ε ρ
−−= + ⋅ + ⋅G I D  can be written as: 

G= TG U� U , with ( ){ }diag 1 , 1, , 1= + + +G� �ε δε ε γε ε γε . 
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and ,M = T
RR U� U  with { }diag , , ,=R� �δ γ γ . 

Similarly as in Appendix C, we have ( )
1M i

ε
δε

⋅ =
+

G u . 

From 

( )

( ) ( )1 1 2
        , 

1 1

M

MT T
k kk

δε γε
δε γε =

= ⋅ =

= ⋅ + ⋅
+ + �

T T T
G R G RGR U� U U� U U � � U

v v v v
 

we have     1 1
( )

1 1M ii

M
M M

δε γε
δε γε

−= +
+ +

GR , 

1
( ) ,  i j

1 1M ij M
δε γε

δε γε
	 
= − ≠� �+ + �

GR . 

Then, from 

( )

( ) ( )
2 2

1 12 2 2
           ,

( 1) ( 1)

M

MT
k kk

δε γε
δε γε =

=

= ⋅ + ⋅
+ + �

T
G R G

T

GR G U � � � U

v v v v
 

we have    
2 2

2 2

1 1
( )

( 1) ( 1)M ii

M
M M

δε γε
δε γε

−= +
+ +

GR G . 

Therefore, 

( ) ( )( ){
( ) ( ) ( ) }

2 2( , )
mmse

22 2
1

1

                  

M N
M Mii ij

M N

j M M iij M

SIR P M P

P ρ σ+

= +

= −

+ +�

GR GR

Gu GR G
 

( )

2 2

2

2 2 2
2

2 21

1 1 1
1 1 1 1

1 1
    

1 ( 1) ( 1)
M N

jj M

M M
P P

M M M

M
P

M M
+

= +

�	 
 	 
− −�= ⋅ + − +�� � � �+ + + + �  ���

�	 
− �	 
 + ⋅ + �� �� �+ + + �  ���
�

δε γε δε γε
δε γε δε γε

ρε δε γεσ
δε δε γε
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( )
( ) ( )

( )
( )

2

2 2 2 2 2

22

4 2 4 2 2 2 2 2

1
=

( 1) 1 2 ( ) ( 1)

= .
( 1) 2 ( ) ( )

u

u

M P

P P

P P P P P

ε δγε
ρ ε δγε δγ δ ρ ε σ ρ γε

δγ σ
δ ρ σ σ σ δγσ δγ δ ρ ρ γ σ

+
− + + + − + +

+

− + + + − + +

  (2.15) 

Let Pu=0, then ( )1 1Kδ ρ= + −  and, hence, we obtain 

( )
( )

( )
( )

( )
( )

( )( )( )( )
( )( )( )

2
( ,0)
mmse 2 2

22

2 4 2 2

1 1
1 1 2 ( ) 1

1 1 1
.

1 2

KSIR
M

P K PP P

P K P

ε δγε ε δγε
ρ ε δγε δγ δ ρ ε δ ρ ε

ρ ρ σδγ σ
δ ρ σ σ σ ρ σ

+ +
= =

− + + + − − +

+ − − ++
= =

− + + − +

  (2.16) 

E. Monotonicity of ( ,0)
mmse ( , )KSIR P K and ( , )

mmse ( , )M NSIR P M  

In the simplification, the following constraints are used: 

1K ≥ , 1δ ≥ , 1 0δ − ≥ , 0 1ρ≤ < , 0 1γ< ≤ , 0δγ > , 0ε > , 1 0δγε + > . 

Rewrite (2.16) as 

( ) ( )
( ,0)
mmse

1
11 ( )1 1

1

a b
KSIR

ε δγε
ρ γε δ ρ

εγ δγε

+= =
	 
+ − ++ ⋅ −� �+ �

. 

From (a), SIR is a decreasing function of δ ( )( 1 1 )Kρ= + −  when P is fixed ( 2Pε σ=  

is fixed), and therefore it is a decreasing function of K from 2P σ  for K=1 to ( ) 21 Pρ σ−  

for K=�. From (b), the SIR is an increasing function of � when K is fixed, and therefore it 

is an increasing function of P from 0 to � as P goes from 0 to �. 

We rewrite (2.15) as 
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( )
( )

( ) ( )

2
( , )
mmse 2 2 2

2 2 2 2 2
2

2 2

22

2

122

2

1

( 1) 1 2 ( ) ( 1)

( 1) ( ) ( 1)
1

1 1

( 1) 1
1 1

1 1

1 ( 1) 1
1 .

1 1

M NSIR
ε δγε

δ ρε δγε δγ δ ρ ε θρ γε

ε
ερ δ δ γ ε δγ δ ρ ε γεθρ

δγε δγε
ε

ερ δ ρ δθ
δγε δ δγε

ρ δ ρ δθ
ε δγε εδ δγε

−

+
=

− + + + − + +

=
− − + − ++ +

+ +

=
	 
− −+ + +� �+ + �

� �	 
− −= + + +� �� �+ + �� �� �

 

Hence, SIR is an increasing function of P from 0 to �. 

F. Proof of Proposition 1 

Matrix A is real and symmetric, so it can be diagonalized to = ⋅ ⋅ T
AA U � U . Here U is a 

unitary matrix (i.e., IUUUU TT == ), and A�  is a diagonal matrix, whose diagonal 

elements are equal to the real eigenvalues of A. Define β= −G I A . Then G can be 

diagonalized to = ⋅ ⋅ TG U � U , with β= − A� I � . From the feasibility assumption on β , (i.e. 

1 Aβ ρ< ), the diagonal elements of �  (eigenvalues of G) are all positive. So G and -1G  

are positive definite, and they can be written as 
1 1
2 2= ⋅ ⋅ ⋅ TG U � � U , and 

1 1
2 21 − −− = ⋅ ⋅ ⋅ TG U � � U . 

Then, by the Cauchy-Schwartz inequality, we have 

( ) ( ) ( ) ( )
( ) ( )

1

2
2 2.N

− − −−

−

= ⋅ ⋅ ⋅ ⋅ = ⋅

≥ ⋅ = =

1 1 1 1 1 1
2 2 2 2 2 2

1 1
2 2

2 2
T T T T T T

T
T T T

1 G1 1 G 1 1 U� � U 1 1 U� � U 1 � U 1 � U 1

� U 1 � U 1 1 1
  (a) 

The condition to have equality in (a) is γ −=
1 1
2 2T T

� U 1 � U 1 , for some constant γ. This 

means γ⋅ = ⋅G 1 1  and ( )1 γ β⋅ = − ⋅� �� �A 1 1 ; i.e., the row summation of matrix A should be a 

constant. Then,  
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( )2

1

1 1 ,  1,2,...,
N

ij
j

i Nρ γ β
=

	 

− = − =� �

 �
� ,  for some constant γ.   (b) 

For N L> , apply the Welch bound [20] that yields 2 2

1 1

N N

ij
i j

N Lρ
= =

≥�� . So, we have 

( )
2

2

1 1

1 1
N N

ij
i j

N N
N N N N

L L
β ρ β β β β

= =

	 
 	 
⋅ ⋅ − − ≤ + − = + −� � � �
 � �

��T1 G 1 = .   (c) 

The sequences that satisfy the equality in (c) are the WBE sequences, which obey 

( )N L=TSS I , and 2

1

, 1, 2,...,
N

ij
j

N L i Nρ
=

= =� . Notice that the WBE sequences also satisfy 

(b) with 1 N Lγ β β= + − . Therefore WBE sequences also achieve equality in (a). 

Since 2
totalP βσ= ⋅ ⋅-11 G 1 , using (a) and (c) in succession yields 

2

11total N
L

N
P

β

σ≥
+ −

.        (d) 

Therefore, the minimum value in (d) is achieved by the WBE sequence, and the 

assigned power vector should be 

2 2
2

11 N
Lβ

βσ σβσ
γ

= = =
+ −

-1P G 1 1 1 . 

For N L≤ , orthogonal sequences are available for N L≤  to achieve the lowest total 

crosscorrelation, and 2

1 1

N N

ij
i j

Nρ
= =

≥�� . Thus, 

2

1 1

N N

ij
i j

N N Nβ ρ
= =

	 

⋅ ⋅ − − ≤� �

 �
��T1 G 1 = .      (e) 

Orthogonal sequences also achieve equality in (a) with γ=1. Therefore, the minimum 

total power can be obtained from (a) and (e) as 

2
totalP Nβσ≥ , 
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and the assigned power vector is given by 

2βσ=P 1 . 

G. Proof of (3.10) 

Suppose the power control problem has solutions; then there exist some 

1 20 and 0P P> > , which satisfy  

( )2
1 1 1 1 11 1 2 12 11 ,   1, 2,...,f f

f f fP P P f Fβ σ β α β α≥ + − + = , 

and ( )2
2 2 2 1 21 2 2 22 21 ,   1, 2,...,f f

f f fP P P f Fβ σ β α β α≥ + + − = . 

Because 12 0fα ≥ , 1 0fβ > , and 2 0P > , we obtain for node 1 that 

( ) 2
1 1 11 1 1 2 121 1 0f f

f f fP Pβ α β σ β α� �− − ≥ + >� �
. 

Therefore from 1>0P , we have 11 1 11 1  , 1, 2,..., ,f
f f Fα β< + =  

Also, because 21 0fα ≥ , 2 0fβ > , and 1 0P > , we obtain for nodes 2 

( ) 2
2 2 22 2 2 1 211 1 0f f

f f fP Pβ α β σ β α� �− − ≥ + >� �
. 

Therefore from 2 >0P , we have 22 2 21 1 , 1, 2,..., .f
f f Fα β< + =  

Then from the definition of the parameters a, b, c, and d, and because 

12 10,  f 1, 2,...,f Fα ≥ = , and 21 20,  1,2,...,f f Fα ≥ = , we have  

10,  0,  1, 2,..., ;  f fa b f F> ≥ =  

20,  0,  1, 2,...,f fc d f F> ≥ = . 

Notice that, if we start from ( )2 1 ,  1, 2,...,f f
i if if i ii if j ij i

j i

P P P f Fβ σ β α β α
≠

≥ + − + =� , and 

go through the same steps, we can prove Proposition 5 for the case of N nodes.  
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H. Proof of Proposition 3 

The solution set can be described as  

( ){ }1 2 2 1 2 1 2 1, 0 ,  1,2,...,   and  P ,  1,2,...,f f f fP P P c d P f F a b P f F> ≥ + = ≥ + = . 

The necessity: Suppose 
11 11 1f

fα β≤ +  and 22 21 1f
fα β≤ +  are not satisfied; then there is 

no solution. Suppose 
11 11 1f

fα β≤ +  and 22 21 1f
fα β≤ +  are satisfied, but 

( ) ( )
1 21,2,..., 1,2,...,

max max 1f ff F f F
b d

= =
⋅ <  is not satisfied; then, there exist at least one pair of h and g 

( h g≠ ) such that 0 1 h gb d< ≤ . From the non-negative property of the coefficients, for any 

1 0P > , we have 1 1g g h h hc d P a b P b+ > − + . So, 

( ){ }
( )

1 2 2 1 1 2

1 2 2 1 2 1

, 0  and P

1
, 0  and P

.

g g h h

h
g g

h h

P P P c d P a b P

a
P P P c d P P

b b

> ≥ + ≥ +

� �� �= > ≥ + ≤ − +� �
� �� �

= ∅

 

Since the solution set is a subset of ( ){ }1 2 2 1 1 2, 0  and Pg g h hP P P c d P a b P> ≥ + ≥ + , it is 

also an empty set, i.e., no solution exists. 

The sufficiency: Suppose 11 11 1f
fα β≤ + , 

22 21 1f
fα β≤ + , and ( ) ( )

1 21,2,..., 1,2,...,
max max 1f ff F f F

b d
= =

⋅ <  are 

satisfied. From  

2 2

1 1

1 1 21,2,..., 1,2,...,

2 2 11,2,..., 1,2,...,

max ( ) max ( ) ,  1,2,..., ,

max ( ) max ( ) ,  1, 2,..., ,

f f f ff F f F

f f f ff F f F

c d P c d P f F

a b P a b P f F
= =

= =

+ ≥ + =

+ ≥ + =
 

we have  

( ){ }
( ){ } ( ){ }
1 2 2 1 2 1 2 1

1 2 2 1 2 1 2 1 2 1

, 0  f=1,2,...,F and P , 1,2,...,

, 0 , 1,2,...,  , 0 P , 1,2,...,

f f f f

f f f f

P P P c d P a b P f F

P P P c d P f F P P a b P f F

> > + > + =

= > > + = > > + =�
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( ){ } ( ){ }
( )

2 2 1 1

1

2 2

1

1 2 2 1 1 2 1 21,2,..., 1,2,..., 1,2,..., 1,2,...,

1 1,2,...,
1 2 1 21,2,..., 1,2,...,

1,2,...,

, 0 max ( ) max ( )  , 0 P max ( ) max ( )

max ( )
, 0 max ( ) max ( ) < 

max ( )

f f f ff F f F f F f F

ff F
f ff F f F

ff F

P P P c d P P P a b P

P a
P P c d P P

b

= = = =

=

= =
=

⊇ > > + > > +

−
= > + <

�

.

� �
� �
� �
� �� �

≠ ∅

 

The last step is justified because ( )
2 2 1 1

1 11,2,..., 1,2,..., 1,2,..., 1,2,...,
max ( ) max ( ) < max ( ) max ( )f f f ff F f F f F f F

c d P P a b
= = = =

+ −  

is guaranteed when P1 is large enough, specifically, when  

( ) ( )
2 1 1 1 2

1 1,2,..., 1,2,..., 1,2,..., 1,2,..., 1,2,...,
max max max 1 max max 0f f f f ff F f F f F f F f F

P c a b b d
= = = = =

> + − > . 

The last part “>0” is from the non-negative properties of the coefficients and 

( ) ( )
1 21,2,..., 1,2,...,

max max 1f ff F f F
b d

= =
⋅ < . 

Notice that the proof of Proposition 2 can be obtained from the proof of Proposition 3 

by changing 1 2 and  into F F F , and 1 2f f and  into fβ β β . 

Furthermore, by specifying F=2 in the proof of Proposition 2, we obtain the necessary 

and sufficient conditions for the N=2, F=2 uplink problem to have solutions is: 

11 22

1 1
1 ,   1f f

f f

α α
β β

< + < + , f=1,2,  and ( ) ( )
1,2 1,2

max max 1f ff f
b d

= =
⋅ < . 

I. Proof of Proposition 4 

First we prove that ( )I P  defined in (3.12) is standard.  

The positivity property follows directly from the non-negativeness of matrix ( )fA . 

For the monotonicity property, assume ′≥P P ; then we have 

{ } { }( ) 2 ( ) 2max maxf f
f f f ff f

β β σ β β σ′ ′= ⋅ + ≥ ⋅ + =I(P) A P 1 A P 1 I(P ) . 

For scalability, assume 1α > , then 
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{ } { }( ) 2 ( ) 2( ) max max ( ) ( )f f
f f f ff f

α αβ αβ σ β α β σ α= + > + =I P A P 1 A P 1 I P . 

Therefore, ( )I P  defined in (3.12) is standard. Using the main theorem from [22], the 

iterative algorithm ( 1) ( )( )i i+ =P I P  converges to the optimum power vector *P . 

Then we prove that ( )I P  defined in (3.13) is standard.  

The positivity property follows directly from 1, 0f f
ii ijα α≥ ≥ . 

For the monotonic property, assume ′≥P P ; then we have 

( )2

1,2,...,
max 1

i

f f
i if if i ii if j ijf F

j i

P Pβ σ β α β α
= ≠

� �
= + − +� �

� �
�I (P)  

( )2

1,2,...,
max 1

, 1,2,..., .

i

f f
if if i ii if j ijf F

j i

i

P P

I i N

β σ β α β α
= ≠

� �′ ′≥ + − +� �
� �

′= =

�

(P )

 

For the scalability property, assume 1α > ; then 

( )2

1,2,...,
max 1

i

f f
i if if i ii if j ijf F

j i

I P Pα αβ σ αβ α αβ α
= ≠

� �
= + − +� �

� �
�(P)  

( )( ) ( )2

1,2,...,
max 1

( ).

i

f f
if if i ii if j ijf F

j i

i

P P

I

β σ β α α β α α

α

= ≠

� �
> + − +� �

� �

=

�

P

 

In conclusion, the iterative algorithm ( 1) ( )( )i i+ =P I P  with ( )I P  defined by (3.13) 

converges to the optimum power vector *P . 

J. Proof of Proposition 7 

We start from F=3. Suppose there are 3 codes, with 1 2 3α α α≥ ≥ , ( 2
i ij

j i

α ρ
≠

=� ), and 3 

flow types with SIR requirements 1 2 3β β β≤ ≤ . We use notation (i,j,k) to imply that code i 

is assigned to flow type 1β , code j is assigned to flow type 2β , and code k is assigned to 



 148 

flow type 3β . We want to maximize ( )1 2 3( , , ) min 1 ,  1 ,  1i j kf i j k β α β α β α= − − − . 

Suppose ,  and  i j i jβ β α α≤ ≥ ; then 1 1i i j iβ α β α− ≥ − ,   1 1j j j iβ α β α− ≥ − ,   

1 1i j j iβ α β α− ≥ − . 

Therefore, ( ) ( )min 1 , 1 1 min 1 , 1i i j j j i i j j iβ α β α β α β α β α− − ≥ − = − − . 

Consequently, 

( ) ( )( )1 1 2 2 3 3 1 1 2 2 3 3(1,2,3) min 1 ,  1 ,  1 min 1 ,  min 1 ,  1f β α β α β α β α β α β α= − − − = − − −  

( )( )1 1 2 3 3 2min 1 ,  min 1 ,  1 (1,3, 2)fβ α β α β α≥ − − − = . 

Similarly, we show (1, 2,3) (2,1,3) (2,3,1)f f f≥ ≥ , and (1,3, 2) (3,1, 2) (3, 2,1)f f f≥ ≥ . 

Therefore, f(1,2,3) is the maximal assignment among all 6 possible ones, i.e., for any 

code set, the best assignment should always assign the code with minimum α to the flow 

with maximum β, and the code with maximum α to the flow with minimum β. So, the 

problem of ( )min 1 f ff
β α−  should have solutions that satisfy 1 2 3α α α≥ ≥ . i.e., Proposition 

7 is true for F=3.  

Now consider F=4 with 1 2 3 4α α α α≥ ≥ ≥ . From the conclusion for F=3, since 

2 3 4α α α≥ ≥ , and 2 3 4β β β≤ ≤ , we have 

(1,2,3,4) (1, , , ),  where (i,j,k) is any permutation of (2,3,4).f f i j k≥   

Similarly, 

(2,1,3,4) (2, , , ),  where (i,j,k) is any permutation of (1,3,4).f f i j k≥  

(3,1,2, 4) (3, , , ),  where (i,j,k) is any permutation of (1,2,4).f f i j k≥  

(4,1, 2,3) (4, , , ),  where (i,j,k) is any permutation of (1,2,3).f f i j k≥  

We can also show (1, 2,3, 4) (2,1,3, 4) (4,1, 2,3)f f f≥ ≥ , and (1, 2,3, 4) (3,1, 2, 4)f f≥ . 
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Altogether, (1,2,3,4) ( , , , ),  where (i,j,k,m) is any permutation of (1,2,3,4).f f i j k m≥  

Then assume that for F=n the proposition is true, that is, 

1 2 1 2(1,2,..., ) ( , ,..., ),  with ( , ,..., ) any permutation of (1,2,...,n).n nf n f i i i i i i≥  

Then using the same procedure as above, we prove that the proposition is true for 

F=n+1.  

Hence, the induction process implies that for any F flow types with 1 2 Fβ β β≤ ≤ ≤� , 

the optimal codes should always include the sequences that satisfy 1 2 Fα α α≥ ≥ ≥� . 

K.  Derivation of (4.7) 

Using ( )( ) MMiCi 3221−−=  and MPi 1= , from (4.4) we have 

( ) ( ) ( ) ( )��
−

= ≠

− −⋅+=−
1

0

232 12PAM
M

i ij
ij jiCCPMMMMSD , 

with ( ) ( )( ) ( )( )
( )( )�

�
�

−=−−
−=+−−−−

=
.1or    0,12

.2,...,1,1212

MjzjiQ

MjzjiQzjiQ
CCP

M

MM
ij  

Here ( ) ( )0
2 16 NEMz avM ⋅−= . Therefore,  

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ){ } ( )jikzkQkMzkQkMkMM

jiCCPMMMMSD

M

k
MM

M

i

M

ji
ij

−=+−−−−−+=

−⋅+=−
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