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The need for data analysis by different industries, including telecommunica-

tions, retail, manufacturing and financial services, has generated a flurry of research,

highly sophisticated methods and commercial products. However, all of the current

attempts are haunted by the so-called “high-dimensionality curse”; the complexity

of space and time increases exponentially with the number of analysis “dimensions”.

This means that all existing approaches are limited only to coarse levels of analysis

and/or to approximate answers with reduced precision. As the need for detailed

analysis keeps increasing, along with the volume and the detail of the data that is

stored, these approaches are very quickly rendered unusable. I have developed a

unique method for efficiently performing analysis that is not affected by the high-

dimensionality of data and scales only polynomially -and almost linearly- with the

dimensions without sacrificing any accuracy in the returned results. I have imple-

mented a complete system (called “Dwarf”) and performed an extensive experimen-

tal evaluation that demonstrated tremendous improvements over existing methods



for all aspects of performing analysis -initial computation, storing, querying and

updating it.

I have extended my research to the data-streaming model where updates are

performed on-line, exacerbating any concurrent analysis but has a very high impact

on applications like security, network management/monitoring router traffic con-

trol and sensor networks. I have devised streaming algorithms that provide complex

statistics within user-specified relative-error bounds over a data stream. I introduced

the class of “distinct implicated statistics”, which is much more general than the

established class of distinct count statistics. The latter has been proved invaluable

in applications such as analyzing and monitoring the distinct count of species in a

population or even in query optimization. The “distinct implicated statistics” class

provides invaluable information about the correlations in the stream and is neces-

sary for applications such as security. My algorithms are designed to use bounded

amounts of memory and processing -so that they can even be implemented in hard-

ware for resource-limited environments such as network-routers or sensors- and also

to work in noisy environments, where some data may be flawed, either implicitly

due to the extraction process, or explicitly.
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Chapter 1

Introduction

During the last decade, the need for data analysis by different industries, including

telecommunications (call analysis, fraud detection), retail (user profiling, inventory

management), manufacturing (customer support, order shipment) and financial ser-

vices (risk and claims analysis), has generated a flurry of research, highly sophisti-

cated methods and commercial products. However, all of the attempts are haunted

by the so-called “high-dimensionality curse”; the complexity of space and time in-

creases exponentially with the number of analysis “dimensions”. In practice, this

means that all existing approaches are limited only to coarse levels of analysis and/or

to approximate answers with reduced precision. As the need for detailed analysis

keeps increasing, along with the volume and the detail of the data that is stored,

these approaches are very quickly rendered unusable. In my dissertation I have de-

veloped a unique method for efficiently performing analysis that is not affected by

the “high-dimensionality” of data and scales only polynomially -and almost linearly-

with the dimensions without sacrificing any accuracy in the returned results. I have

implemented a complete system (called dwarf cube) and performed an extensive

experimental evaluation that demonstrated tremendous improvements over existing

methods for all aspects of performing analysis -initial computation, storing, query-

ing and updating it. My method has already been used by the academic community

1



as a point of reference for similar “coalesced” methods of analysis.

1.1 Multidimensional Analysis

When performing analysis, data is typically modeled multidimensionally, where data

attributes are divided into dimensions and measures. For example, when process-

ing data in the telecommunication industry, the source phone number, the target

phone number, and the time -when the phone call took place- define dimensions of

interest and each specific call can be visualized as a point in this multidimensional

space. Furthermore, the dimensions can be hierarchical; i.e. time can be orga-

nized in a second→minute→hour→ . . . hierarchy and source/target phone number

in a street→area→zip code hierarchy. Other attributes of phone calls like their

durations or their costs constitute measures. Exploratory analysis requires efficient

performance for aggregating the measure attributes over any possible combination

(grouping) of the dimensions. For example, requesting the average cost of all phone

calls per residential customer, or the maximum duration for each target phone num-

ber. The grouping may be at several hierarchy levels such as in the average duration

grouped by the zip code of the source phone number and the week of the month.

Undoubtedly the core for such analysis is the data cube operator which encap-

sulates all such possible groupings and provides the formulation for queries over

categories, rollup/drilldown operations which allow the user to query from highly

detailed groupings to less detailed or vice-versa, and perform cross tabulation. How-

ever the introduction of the cube operator and its expressive power comes at a big
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cost. The number of groupings in the cube increases exponentially with the number

of dimensions and the number of hierarchy levels per dimension. As a consequence,

all attempts by previous researchers and commercial products are deemed unable

to compute and store but small low-dimensional data cubes.

I developed a revolutionary storage system called the “dwarf cube”. It is based

on the discovery of and elimination of prefix and suffix redundancies in the groupings

of data cubes. I introduced a specialized directed acyclic graph (called dwarf) to

represent the cube, where all groupings are “overlapped” together. In dwarf, unique

prefixes of the cube are stored only once through the prefix expansion operation.

This operation is very effective in dense areas of the cube, where a lot of points

share the same dimensions. However, by far the most important operation is the

suffix coalescing operation that complements the prefix expansion and is orders of

magnitudes more effective in sparse areas of the cube. A cube has areas that are

totally empty or sparse, where there are no -or very few- points for the corresponding

groupings. In addition, certain dimension values appear, most of the time, together

in such a way that a dimensional value implies another. This implicit sparsity of

the cube and the implications between dimension values generate a huge amount

of “redundant” groupings, in the sense that another grouping provides the exact

same aggregates to the cube. The suffix coalescing operation stores such redundant

groupings just once, reducing by orders of magnitudes the storage requirements

while maintaining the indexing for the redundant groupings.

The construction of the dwarf cube is done by two interleaved processes, one

that does the prefix expansion and one that does suffix coalescing. These two pro-
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cesses are performed in just a single pass over the data. Equally, or even more

important, than the discovery and elimination of prefix and suffix redundancies,

is that the interleaving of prefix expansion and suffix coalescing has the unique

property of identifying these redundancies before computing any aggregates in the

redundant areas of the data cube. This avoidance of recomputation of redundant

aggregates results in a remarkable savings in computation time. As an example of

such savings of the dwarf cube computation, a cube of twenty-five dimensions, that

needed a petabyte of storage when stored in a conventional data cube, reduces to

a dwarf cube of only a couple of gigabytes in under 20 minutes of time. This is for

a full data cube in which every unique grouping was computed and stored with no

loss in precision.

The analysis of the interleaved process revealed the surprising result that, even

if one considers only the sparsity of the cube, the complexity of the dwarf storage

is polynomial to the number of dimensions, unlike all previous methods that scale

exponentially. This striking result reformulates the context of cube management and

extends its applicability into a much wider area of applications than ever before. In

real data, the complexity of my approach was even smaller -almost linear- due to

the implications between dimensions. With respect to the volume of the data, my

analysis proves that the dwarf storage scales again polynomially and very close to

linear (the polynomial power is very close to 1).

Establishing the theory is one thing, and actually developing a complete sys-

tem and applying it to real applications is another. I am the main author and

maintainer of the dwarf storage that was developed from scratch for this purpose
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and is the current state-of-art tool for analyzing huge and highly complex data.

During the development and experimentation of the dwarf system, I discovered a

rather counter-intuitive fact. Aggregates have a wide variety of computation cost

and therefore, it is much more efficient to aggregate and store those groupings that

are “hard” to compute, and postpone the “easy” groupings to be performed on the

fly during request time. This kind of partial materialization benefits not only the

initial computation, but also the overall response performance because of the big

gap between raw computation power and fetching data from secondary memory. For

example, when a data cube query asks for specific groupings, it is much more effi-

cient to perform the aggregation on the fly using either other groupings or raw data

than fetching precomputed aggregates from secondary memory. For that reason,

I introduced the granularity parameter for sparse areas, and the knob materializa-

tion for dense areas. Both approaches control the amount of materialization by

avoiding storing and handling groupings that are “easy” to perform during request

time. The granularity parameter and knob materialization control how much initial

computation and storage are saved. An extensive experimental evaluation for the

granularity and knob parameter is covered in the thesis. This demonstrated that

although a large number of groupings are not computed nor stored, the response

performance increases four times, while the computation/storage requirements are

reduced ten-fold with comparison to fully materialized dwarf cubes.

In addition, the effect of the knob materialization is so profound that, in one

of our experiments with a real data set given to us by a principal database manage-

ment system vendor, the query performance increased two times, while the storage
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requirements dropped eight times and the computation time dropped six times with

respect to the partial materialized dwarf cubes with only the granularity approach

-which are already two times faster and smaller than fully materialized dwarf cubes-.

Due to our non-disclosure agreement I can only reveal that the principal vendor used

a partial materialization technique that needed over three days just to select what

to materialize, while my knob/granularity approach required about 15 minutes to

compute/store and index the corresponding cube on the same hardware achieving

sub-second performance for analytical requests.

1.2 Streaming Analysis

My research is not limited to the “data-warehousing” model, where data from differ-

ent operational databases, perhaps over very large periods of time, are consolidated

in a single place resulting in historical and summarized data that is orders of mag-

nitudes larger than the source operational databases. In this model, analysis is

performed in an off-line mode and updates are performed in batches, when no anal-

ysis can take place. I have extended my research to the “data-streaming” model

where updates are performed on-line, exacerbating any concurrent analysis but has

a very high impact on applications like security (intrusion detection, denial of ser-

vice attacks), network management/monitoring (network and user statistics) router

traffic control (pricing, alternate queuing, route selection) and sensor networks. The

data stream is potentially unbounded in size and one must assume that neither the

memory, required to store the whole stream, nor the processing power, required to
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keep up in pace with the stream, is available.

I have devised streaming algorithms that provide complex statistics within

user-specified relative-error bounds over a data stream. I introduced the class of

“distinct implicated statistics”, which is much more general than the established

class of “distinct count” statistics. The latter has been proved invaluable in appli-

cations such as analyzing and monitoring the distinct count of species in a population

-like the distinct number of sources seen at any moment by a network router- or

even in query optimization -selecting a good query plan-. The “distinct implicated

statistics” class provides invaluable information about the correlations in the stream

and is necessary for applications such as security. For example, an online intrusion

detection system, running on a network router, could be interested in the “number

of distinct destinations that 90% of the time are contacted by at least ten different

sources for the FTP service over a sliding window of 1h”. Such statistics capture

interesting correlations in an online fashion and can be used as a monitoring or anal-

ysis tool and provide the framework for triggering mechanisms. My algorithms are

designed to use bounded amounts of memory and processing -so that they can even

be implemented in hardware for resource-limited environments such as network-

routers or sensors- and also to work in “noisy” environments, where some data may

be flawed either implicitly due to the extraction process (i.e. acceptable errors in

sensors) or explicitly (i.e. due to an attack in a secured environment).
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Chapter 2

Preliminaries & Contributions

2.1 Preliminaries

2.1.1 Computing Data Cubes

The data cube operator [GBLP96] performs the computation of one or more aggre-

gate functions for all possible combinations of grouping attributes (called views).

The inherent difficulty with the cube operator is its size, both for computing and

storing it. The number of all possible group-bys increases exponentially with the

number of the cube’s dimensions and a naive store of the cube behaves in a similar

way. The authors of [GBLP96] provided some useful hints for cube computation

including the use of parallelism, and mapping string dimension types to integers

for reducing the storage. The problem is exacerbated by the fact that new appli-

cations include an increasing number of dimensions and, thus, the explosion on the

size of the cube is a real problem. All methods proposed in the literature try to

deal with the space problem, either by precomputing a subset of the possible group-

bys [HRU96a, GHRU97a, Gup97, BPT97a, SDN98], by estimating the values of the

group-bys using approximation [GM98, VWI98, SFB99, AGP00] or by using online

aggregation [HHW97] techniques or finally by pre-computing only those group-bys
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that have a minimum support (membership) of at least minimum support Cmin tu-

ples [BR99]. The larger the value for Cmin, the smaller the number of group-bys

that satisfy the minimum support condition and, therefore, the smaller the size of

the resulting sub-cubes.

2.1.2 Storing/Indexing/Updating Data Cubes

Although computing is a major aspect of the problem of computing data cubes, of

equal importance is the problem of efficiently storing, indexing, querying and up-

dating the precomputed aggregates. The “easiest” way is to store each view as an

independent relation in a relational database system. Such systems are called Rela-

tional OLAP (ROLAP) and the major benefit is that they are build upon well-known

and understood technology. However the major drawback is not only the need of ex-

tra indexes for efficiently querying the views, but the tremendous amount of space

required to store all the views of high-dimensional data sets. Multidimensional-

OLAP (MOLAP) tries to address the issue of indexing by using multidimensional

array storage techniques that provide an implicit indexing mechanism. Still how-

ever these systems suffer from the “dimensionality curse” and cannot scale to high-

dimensional datasets.
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2.2 Contributions — The Dwarf Solution

To address these issues, we propose Dwarf, a highly compressed structure1 for com-

puting, storing, and querying data cubes. Dwarf solves the storage space problem,

by identifying prefix and suffix redundancies in the structure of the cube and fac-

toring them out of the store.

Prefix redundancy can be easily understood by considering a sample cube with

dimensions a, b and c. Each value of dimension a appears in 4 group-bys (a, ab,

ac, abc), and possibly many times in each group-by. For example, for the fact table

shown in Table 2.1 (to which we will keep referring throughout this chapter) the value

S1 will appear a total of 7 times in the corresponding cube, and more specifically

in the group-bys: 〈S1, C2, P2〉, 〈S1, C3, P1〉, 〈S1, C2〉, 〈S1, C3〉, 〈S1, P2〉, 〈S1, P1〉

and 〈S1〉. The same also happens with prefixes of size greater than one -note that

each pair of a, b values will appear not only in the ab group-by, but also in the abc

group-by. Dwarf recognizes this kind of redundancy, and stores every unique prefix

just once.

Store Customer Product Price
S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

Table 2.1: Fact Table for cube Sales

Suffix redundancy occurs when two or more group-bys share a common suffix

(like abc and bc). For example, consider a value bj of dimension b that appears

1The name comes after Dwarf stars that have a very large condensed mass, but occupy very
small space. They are so dense, that their mass is about one ton/cm3
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in the fact table with a single value ai of dimension a (such an example exists in

Table 2.1, where the value C1 appears with only the value S2). Then, the group-bys

〈ai, bj, x〉 and 〈bj, x〉 always have the same value, for any value x of dimension c.

This happens because the second group-by aggregates all the tuples of the fact table

that contain the combinations of any value of the a dimension (which here is just the

value ai) with bj and x. Since x is generally a set of values, this suffix redundancy

has a multiplicative effect. Suffix redundancies are even more apparent in cases of

correlated dimension values. Such correlations are often in real datasets, like the

Weather dataset used in one of our experiments. Suffix redundancy is identified

during the construction of the Dwarf cube and eliminated by coalescing their space.

What makes Dwarf practical is the automatic discovery of the prefix and suffix

redundancies without requiring knowledge of the value distributions and without

having to use sophisticated sampling techniques to figure them out. The Dwarf

storage savings are spectacular for both dense and sparse cubes. We show that in

most cases of very dense cubes, the size of the Dwarf cube is much less than the size

of the fact table. However, while for dense cubes the savings are almost entirely from

prefix redundancies, as the cubes get sparser, the savings from the suffix redundancy

elimination increases, and quickly becomes the dominant factor of the total savings.

Equally, or even more, significant is the reduction of the computation cost.

Each redundant suffix is identified prior to its computation, which results in sub-

stantial computational savings during creation. Furthermore, because of the con-

densed size of the Dwarf cube, the time needed to query and update is also reduced.

Inherently, the Dwarf structure provides an index mechanism and needs no addi-
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tional indexing for querying it. It is also self-sufficient in the sense that it does not

need to access or reference the fact table in answering any of the views stored in it.

An additional optimization that we have implemented is to avoid precompu-

tation of certain group-bys that can be calculated on-the-fly by using fewer than a

given constant amount of tuples. The information needed to calculate these group-

bys is stored inside the Dwarf structure in a very compact and clustered way. By

modifying the value of the above constant, the user is able to trade query perfor-

mance for storage space and creation time. This optimization was motivated from

iceberg cubes [BR99] and may be enabled by the user if a very limited amount of

disk space and/or limited time for computing the Dwarf is available.

2.3 Contributions — Dwarf Polynomial Complexity

The whole problem of managing data cubes is further complicated by the fact that

since precomputation may result in an nonintuitive large increase in the amount

of storage required by the database, the database administrator would like an ac-

curate and fast estimate of the required storage without actually performing the

aggregations. The Dwarf solution, by factoring out structural redundancies exac-

erbates the problem rendering previous approaches (i.e. [SDNR96]) inapplicable.

We investigate the problem of efficiently and accurately estimating the size of the

Dwarf.

The complexity analysis for the time and space requirements of the Dwarf

construction algorithm shows that unlike all previous methods Dwarf scales polyno-
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mially with respect to the dimensionality and therefore the problem of cube man-

agement is not inherently exponential in nature. Additionally we show that real

datasets scale even better because of theirs implicit correlations. Finally, we were

able to devise an efficient algorithm for estimating the size of the Dwarf before

actually computing it.

2.4 Contributions — Implication Counts

The spectacular savings achieved by the Dwarf for managing data cubes, naturally

leads to the question of defining a metric that encapsulates the “volume” of struc-

tural redundancies of the data cube. We propose the use of Implication Counts as

a set of sufficient aggregates that capture that information. For a data set logically

divided into two sets of attributes A and B, we define as the implication count Ca of

itemsets ai of A, the number of ai that imply some itemsets of B. For example, in the

fact table in Table 2.1 we observe that the group-bys 〈S2, C1, x〉 and 〈C1, x〉, where

x is any value of the dimension Product, have always the same aggregate values.

This happens because the 〈C1, x〉 group-by aggregates all the tuples of customer

C1 for any combination of stores. However, in this case, there is only one store

(S2) and the aggregation “degenerates” to the aggregation already performed for

the group-by 〈S2, C1, x〉. In this sense, customer C1 implies store S2 and the count

of such implications directly translates to savings due to suffix redundancy.

We have addressed the problem of efficiently estimating such implications

counts and our contribution can be summarized as follows:
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1. We describe a generalization of implication aggregate queries that frequently

arise in the data stream model of data processing and in many other fields of

database research.

2. We provide memory and processing efficient algorithms for estimating such

aggregates, within small error bounds (typically less than 10% relative error).

3. We prove that the complement problem of estimating non-implication counts

can be (ε, δ)-approximated under most conditions.

4. We demonstrate the accuracy of our methods, through an extensive set of

experiments on both synthetic and real datasets.
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Chapter 3

The Dwarf Cube

3.1 Introduction

In the following we define Dwarf, a highly compressed data structure for managing

(computing, storing, indexing, updating) data cubes. To demonstrate the storage

savings provided by Dwarf (and what fraction of the savings can be attributed to

prefix and suffix redundancies), we first compare the Dwarf cube sizes against a

binary storage footprint (BSF), i.e. as if all the views of the cube were stored in

unindexed binary summary tables. Although this is not an efficient (or sometimes

feasible) store for a cube or sub-cubes, it provides a well understood point of refer-

ence and it is useful when comparing different stores.

We also compared the Dwarf cubes with Cubetrees which were shown in

[RKR97, KR98] to exhibit at least a 10:1 better query response time, a 100:1 better

update performance and 1:2 the storage of indexed relations. Our experiments show

that Dwarfs consistently outperform the Cubetrees on all counts: storage space, cre-

ation time, query response time, and updates of full cubes. Dwarf cubes achieve

comparable update performance on partial cubes stored on Cubetrees having the

same size with Dwarf cubes. However, byte per byte, Dwarf stores many more

materialized views than the corresponding Cubetree structures and, therefore, can
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answer a much wider class of queries for the same footprint.

We used several data sets to compute Dwarf cubes. One of them was a cube

of 20 dimensions, each having a cardinality of 1000, and a fact table containing

100000 tuples. The BSF for its cube is 4.4TB.1 Eliminating the prefix redundancy,

resulted in a Dwarf cube of 1.4 TB (31.8% of the original size). Eliminating the

suffix redundancy reduced the size of the Dwarf cube to just 300 MB2, a 1:14666

reduction over BSF. Following Jim Gray’s spirit of pushing every idea to its limits,

we decided to create a Petacube of 25-dimensions with BSF equal to one Petabyte.

The Dwarf cube for the Petacube is just 2.3 GB and took less than 20 minutes to

create. This is a 1:400000 storage reduction ratio.

3.2 Formal Dwarf Description

We first describe the Dwarf structure with an example. Then we define the proper-

ties of Dwarf formally.

3.2.1 A Dwarf example

Figure 3.1 shows the Dwarf Cube for the fact table shown in Table 2.1 . It is a

full cube using the aggregate function sum. The nodes are numbered according

to the order of their creation. The height of the Dwarf is equal to the number of

dimensions, each of which is mapped onto one of the levels shown in the figure.

1 The BSF sizes, and the size of Dwarf cubes without enabling suffix coalescing were accurately
measured by first constructing the Dwarf cube, and then traversing it appropriately.

2All the sizes of Dwarf cubes, unless stated otherwise, correspond to the full Dwarf cubes
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The root node contains cells of the form [key, pointer], one for each distinct value

of the first dimension. The pointer of each cell points to the node below containing

all the distinct values of the next dimension that are associated with the cell’s key.

The node pointed by a cell and all the cells inside it are dominated by the cell. For

example the cell S1 of the root dominates the node containing the keys C2, C3.

Each non-leaf node has a special ALL cell, shown as a small gray area to the right

of the node, holding a pointer and corresponding to all the values of the node.

P1  $40 P2  $70 $110

(1)

(2)

(5)

(4)

(3)

(6)

(7)

(8)

(9)

P2  $70 $70

P1  $40 $40

C2 C3

S1 S2

C1

P1  $90 P2  $50 $140

C1 C2 C3

P1  $130 P2  $120 $250

Store Dimension

Customer Dimension

Product Dimension

Figure 3.1: The Dwarf Cube for Table 2.1

A path from the root to a leaf such as 〈S1, C3, P1〉 corresponds to an instance

of the group-by Store, Customer, Product and leads to a cell [P1 $40] which stores

the aggregate of that instance. Some of the path cells can be open using the ALL

cell. For example, 〈S2, ALL, P2〉 leads to the cell [P2 $50], and corresponds to the

sum of the Prices paid by any Customer for Product P2 at Store S2. At the leaf level,

each cell is of the form [key, aggregate] and holds the aggregate of all tuples that

match a path from the root to it. Each leaf node also has an ALL cell that stores the
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aggregates for all the cells in the entire node. 〈ALL,ALL,ALL〉 leads to the total

Prices (group-by NONE). The reader can observe that the three paths 〈S2, C1, P2〉,

〈S2, ALL, P2〉, and 〈ALL,C1, P2〉, whose values are extracted from processing just

the last tuple of the fact-table, all lead to the same cell [P2 $50], which, if stored in

different nodes, would introduce suffix redundancies. By coalescing these nodes, we

avoid such redundancies. In Figure 3.1 all nodes pointed by more than one pointer

are coalesced nodes.

3.2.2 Properties of Dwarf

In Dwarf, like previous algorithms proposed for cube computation, we require the

dimension attributes to be of integer type (thus mapping other types, like strings,

to integers in required) but, unlike other methods, we do not require packing the

domain of values between zero and the cardinality of the dimension. Any group-

by of a D-dimensional cube can be expressed by a sequence of D values (one for

each dimension), to which we will refer as the coordinates of the group-by in a

multidimensional space. In SQL queries, the coordinates are typically specified in

the WHERE clause. The group-by’s j-th coordinate can either be a value of the

cube’s j-th dimension, or left open to correspond to the ALL pseudo-value.

The Dwarf data structure has the following properties:

1. It is a directed acyclic graph (DAG) with just one root node and has exactly

D levels, where D is the number of cube’s dimensions.

2. Nodes at the D-th level (leaf nodes) contain cells of the form: [key, aggrV alues].
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3. Nodes in levels other that the D-th level (non-leaf nodes) contain cells of the

form: [key, pointer]. A cell C in a non-leaf node of level i points to a node

at level i + 1, which it dominates. The dominated node then has the node of

C as its parent node.

4. Each node also contains a special cell, which corresponds to the cell with the

pseudo-value ALL as its key. This cell contains either a pointer to a non-leaf

node or to the aggrValues of a leaf node.

5. Cells belonging to nodes at level i of the structure contain keys that are values

of the cube’s i-th dimension. No two cells within the same node contain the

same key value.

6. Each cell Ci at the i-th level of the structure, corresponds to the sequence

Si of i keys found in a path from the root to the cell’s key. This sequence

corresponds to a group-by with (D− i) dimensions unspecified. All group-bys

having sequence Si as their prefix, will correspond to cells that are descendants

of Ci in the Dwarf structure. For all these group-bys, their common prefix will

be stored exactly once in the structure.

7. When two or more nodes (either leaf or non-leaf) generate identical nodes and

cells to the structure, their storage is coalesced, and only one copy of them is

stored. In such a case, the coalesced node will be reachable through more than

one paths from the root, all of which will share a common suffix. For example,

in the node at the bottom of the Product level of Figure 3.1, the first cell of
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the node corresponds to the sequences 〈S1, C2, P2〉 and 〈ALL,C2, P2〉, which

share the common suffix 〈C2, P2〉. If a node N is a coalesced node, then any

node X which is a descendant of N will also be a coalesced node, since it can

be reached from multiple paths from the root.

A traversal in the Dwarf structure always follows a path of length D, starting

from the root to a leaf node. It has the form 〈[Node1.val|ALL] , [Node2.val|ALL]

, ... , [NodeD.val|ALL]〉, meaning that the i-th key found in the path will either

be a value Nodei.val of the i-th dimension, or the pseudo-value ALL. The Dwarf

structure itself constitutes an efficient interlevel indexing method and requires no

additional external indexing.

We now define some terms which will help in the description of the algorithms.

The dwarf of a node N is defined to be the node itself and all the dwarfs of the

nodes dominated by the cells of N . The dwarf of a node X that is dominated by

some cell of N is called a sub-dwarf of N . Since leaf node cells dominate no other

nodes, the dwarf of a leaf node is the node itself. The number of cells in the node

Nj, which a cell Ci dominates, is called the branching factor of Ci.

A sequence of i keys, followed in any path from the root to a node N at level

i+1 of the Dwarf structure, is called the leading prefix of N . A leading prefix of N ,

which contains no coordinate with ALL, is called the primary leading prefix of N .

The content of a cell Ci, belonging to a node N , is either the aggrValues of Ci

if N is a leaf node, or the sub-dwarf of Ci if N is a non-leaf node.
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3.2.3 Evidence of Structural Redundancy

Prefix Redundancy

A path from the root of the Dwarf structure to a leaf, corresponds to an instance

of some group-by. Dwarf creates the minimum number of cells to accommodate

all paths. In the cube presented in Figure 3.1, for the first level of the structure

(Store), the maximum number of cells required is equal to the cardinality of the

Store dimension Cardstore plus 1 (for the ALL cell).

For the second level (Customer), if the cube was completely dense, we would

need a number of cells equal to the product: (Cardstore + 1) × (Cardcustomer + 1).

Since most cubes are sparse, there is no need to create so many cells.

However, even in the case of dense cubes, the storage required to hold all cells

of the structure (including the ALL cells) is comparable to that required to hold the

fact table. A Dwarf for a saturated cube of D dimensions and the same cardinality

N for each dimension, is actually a tree with a constant branching factor equal to:

bf = N + 1. Therefore, the number of leaf nodes and non-leaf nodes required to

represent this tree is:

nonLeafNodes =
(N + 1)D−1 − 1

N
, LeafNodes = (N + 1)D−1 (3.1)

Each non-leaf node contains N non-leaf cells and one pointer and each leaf node

contains N leaf cells and the aggregates. The size of a non-leaf cell is two units (one

for the key and one for the pointer), while the size of a leaf-cell is A+1 (A units for
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the aggregates and one for the key). The fact table of the saturated cube has ND

tuples. The size for each tuple is D + A. The ratio of the size of the Dwarf over the

fact table is then approximated3 by:

ratio ≈
A(N + 1)D + N(N + 1)D−1

(D + A)ND
(3.2)

For example for a full dense cube with D = 10 dimension, a cardinality of

N = 1000 for each dimension, and one aggregate (A = 1), we have a ratio of: 0.18,

i.e. the Dwarf representation needs less than 20% of the storage that the fact table

requires. This proves that the fact table itself (and, therefore, certainly the cube)

contains redundancy in its structure.

The above discussion serves to demonstrate that Dwarf provides space savings

even in the case of very sparse cubes. Of course, for such a case a MOLAP repre-

sentation of the cube would provide a larger cube compression. However, MOLAP

methods for storing the cube require knowledge (or the discovery) of the dense areas

of the cube, and do not perform well for sparse, high-dimensional cubes. On the

other hand, Dwarf provides an automatic method for highly compressing the cube

independently of the characteristics (distribution, density, dimensionality...) of the

data.

3The size of all the leaf nodes is much larger than the size of all the non-leaf nodes
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Suffix Redundancy

Since Dwarf does not store cells that correspond to empty regions of the cube, each

node contains at least one cell with a key value, plus the pointer of the ALL cell.

Therefore, the minimum branching factor is 2, while the maximum value of the

branching factor of a cell at level j is 1+Cardj+1 , where Cardj+1 is the cardinality

of dimension j + 1. The branching factor decreases as we descend to lower levels of

the structure. An approximation of the branching factor at level j of the structure,

assuming uniform distribution for the values of each dimension for the tuples in the

fact table, is:

branch(j) = 1 + min



Cardj+1, max



1, T/
j
∏

i=1

Cardi







 (3.3)

where T is the number of tuples in the fact table. If the cube is not very dense,

the branching factor will become equal to 2 at the k-th level, where k is the lowest

number such that T/
k
∏

i=1
Cardi ≤ 1. For example, for a sparse cube with the same

cardinality N = 1000 for all dimensions, D = 10 dimensions and T = 10000000(¿

ND) tuples, the branching factor will reach the value 2 at level k = dlogN T e = 3.

This means that in very sparse cubes, the branching factor close to the root levels

deteriorates to 2. A branching factor of 2 guarantees (as we will see in Section 3.2)

that suffix redundancy exists at this level. Therefore, the smaller the value of k, the

larger the benefits from eliminating suffix redundancy, since the storage of larger

dwarfs is avoided.

Correlated areas of the fact table can also be coalesced. Assume for example,
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that a set of certain customers Cs shop only at a specific store S. The views

〈Store, Customer, ...〉 and 〈ALL,Customer, ...〉 share the suffix that corresponds to

the set Cs. In Table 2.1, customers C2 and C3 shop only at store S1 and in Figure

3.1 we see that the nodes 3 and 4 of the dwarf of node 2 are also coalesced from

node 8.

3.3 Constructing the Dwarf Cube

The Dwarf construction is governed by two processes: the prefix expansion, and

the suffix coalescing. A non-interleaved two-pass process would first construct a

cube with the prefix redundancy eliminated, and then check in it for nodes that

can be coalesced. However, such an approach would require an enormous amount

of temporary space and time, due to the size of the intermediate cube. It is thus

imperative to be able to determine when a node can be coalesced with another node

before actually creating it. By imposing a certain order in the creation of the nodes,

suffix coalescing and prefix expansion can be performed at the same time, without

requiring two passes over the structure.

Before we present the algorithm for constructing the Dwarf cube, we present

some terms that will be frequently used in the algorithm’s description. A node

Nans is called an ancestor of N iff N is a descendant node of Nans. During the

construction of the Dwarf Cube, a node N at level j of the Dwarf structure is closed

if there does not exist an unprocessed tuple of the fact-table that contains a prefix

equal to the primary leading prefix of N . An existing node of the Dwarf structure
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which is not closed is considered open.

The construction of a Dwarf cube is preceded by a single sort on the fact

table using one of the cube’s dimensions as the primary key, and collating the other

dimensions in a specific order. The choice of the dimensions’ ordering has an effect

on the total size of the Dwarf Cube. Dimensions with higher cardinalities are more

beneficial if they are placed on the higher levels of the Dwarf cube. This will cause

the branching factor to decrease faster, and coalescing will happen in higher levels

of the structure. The ordering used will either be the one given by the user (if one

has been specified), or will be automatically chosen by Dwarf after performing a

scan on a sample of the fact table and collecting statistics on the cardinalities of the

dimensions.

3.3.1 Prefix Expansion algorithm

The Dwarf construction algorithm PrefixExpansion is presented in Algorithm 1. The

construction requires just a single sequential scan over the sorted fact table. For

the first tuple of the fact table, the corresponding nodes and cells are created on all

levels of the Dwarf structure. As the scan continues, tuples with common prefixes

with the last tuple will be read. We create the necessary cells to accommodate new

key values as we progress through the fact table. At each step of the algorithm, the

common prefix P of the current and the previous tuple is computed. Consider the

path we need to follow to store the aggregates of the current tuple. The first |P |+1

nodes (where |P | is the size of the common prefix) of the path up to a node N have
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already been created because of the previous tuple. Thus, for a D-dimensional cube,

D − |P | − 1 new nodes need to be created by expanding the structure downwards

from node N (and thus the name Prefix Expansion), and an equal number of nodes

have now become closed. When a leaf node is closed, the ALL cell is produced by

aggregating the contents (aggregate values) of the other cells in the node. When a

non-leaf node is closed, the ALL cell is created and the SuffixCoalesce algorithm is

called to create the sub-dwarf for this cell.

Algorithm 1 PrefixExpansion Algorithm

Input: sorted fact table, D : number of dimensions
1: Create all nodes and cells for the first tuple
2: last tuple = first tuple of fact table
3: while more tuples exist unprocessed do
4: current tuple = extract next tuple from sorted fact table
5: P = common prefix of current tuple , last tuple
6: if new closed nodes exist then
7: write special cell for the leaf node homeNode where last tuple was stored
8: For the rest D−|P |−2 new closed nodes, starting from homeNode’s parent

node
and moving bottom-up, create their ALL cells and call the SuffixCoalesce
Algorithm

9: end if
10: Create necessary nodes and cells for current tuple { D − |P | − 1 new nodes

created}
11: last tuple = current tuple
12: end while
13: write special cell for the leaf node homeNode where last tuple was stored
14: For the other open nodes, starting from homeNode’s parent node and moving

bottom-up,
create their ALL cells and call the SuffixCoalesce Algorithm (Algorithm 2)

For example consider the fact table of Table 2.1 and the corresponding Dwarf

cube of Figure 3.1. The nodes in the figure are numbered according to the order
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of their creation. The first tuple 〈S1, C2, P2〉 creates three nodes (Nodes 1, 2 and

3) for the three dimensions (Store, Customer and Product) and inserts one cell to

each node. Then the second tuple 〈S1, C3, P1〉 is read, which shares only the prefix

S1 with the previous tuple. This means that cell C3 needs to be inserted to the

same node as C2 (Node 2) and that the node containing P2 (Node 3) is now closed.

The ALL cell for Node 3 is now created (the aggregation here is trivial, since only

one other cell exists in the node). The third tuple 〈S2, C1, P1〉 is then read and

contains no common prefix with the second tuple. Finally, we create the ALL cell

for Node 4 and call SuffixCoalesce for Node 2 to create the sub-dwarf of the node’s

ALL cell.

3.3.2 Suffix Coalesce algorithm

Suffix Coalesce creates the sub-dwarfs for the ALL cell of a node. Suffix Coalesce

tries to identify identical dwarfs and coalesce their storage. Two, or more, dwarfs

are identical if they are constructed by the same subset of the fact table’s tuples.

Prefix expansion would create a tree if it were not for Suffix Coalescing.

The SuffixCoalesce algorithm is presented in Algorithm 2. It requires as input

a set of Dwarfs (inputDwarfs) and merges them to construct the resulting dwarf.

The algorithm makes use of the helping function calculateAggregate, which aggre-

gates the values passed as its parameter.

SuffixCoalesce is a recursive algorithm that tries to detect at each stage whether
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Algorithm 2 SuffixCoalesce Algorithm

Input: inputDwarfs = set of Dwarfs
1: if only one dwarf in inputDwarfs then
2: return dwarf in inputDwarfs {coalescing happens here}
3: end if
4: while unprocessed cells exist in the top nodes of inputDwarfs do
5: find unprocessed key Keymin with minimum value in the top nodes of input-

Dwarfs
6: toMerge = set of Cells of top nodes of inputDwarfs having keys with values

equal to Keymin

7: if already in the last level of structure then
8: write cell [Keymin calculateAggregate(toMerge.aggregateValues)]
9: else

10: write cell [Keymin SuffixCoalesce(toMerge.sub-dwarfs)]
11: end if
12: end while
13: create the ALL cell for this node either by aggregation or by calling SuffixCoa-

lesce
14: return position in disk where resulting dwarf starts

some sub-dwarf of the resulting dwarf can be coalesced with some sub-dwarf of in-

putDwarfs. If there is just one dwarf in inputDwarfs, then coalescing happens im-

mediately, since the result of merging one dwarf will obviously be the dwarf itself.

The algorithm then repeatedly locates the cells toMerge in the top nodes of input-

Dwarfs with the smallest key Keymin which has not been processed yet. A cell in

the resulting dwarf with the same key Keymin needs to be created, and its content

(sub-dwarf or aggregateValues) will be produced by merging the contents of all the

cells in the toMerge set. There are two cases:

1. If we are at a leaf node we call the function calculateAggregate to produce the

aggregate values for the resulting cell.

2. Otherwise, coalescing cannot happen at this level. We call SuffixCoalesce

recursively to create the dwarf of the current cell, and check if parts of the
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structure can be coalesced at one level lower.

At the end, the ALL cell for the resulting node is created, either by aggregating the

values of the node’s cells (if this is a leaf node) or by calling SuffixCoallesce, with

the sub-dwarfs of the node’s cells as input.

As an example, consider again the Dwarf cube presented in Figure 3.1. We

will move to the step of the algorithm after all the tuples of Table 2.1 have been

processed, and the ALL cell for Node 7 has been calculated. SuffixCoalesce is

called to create the sub-dwarf of the ALL cell of Node 6. Since only one sub-dwarf

exists in inputDwarfs (the one where C1 points to), immediate coalescing happens

(case in Line 1) and the ALL cell points to Node 7, where C1 points to. Now,

the sub-dwarf of the ALL cell for Node 1 must be created. The cell C1 will be

added to the resulting node, and its sub-dwarf will be created by recursively calling

SuffixCoalesce, where the only input dwarf will be the one that has Node 7 as its

top node. Therefore, coalescing will happen there. Similarly, cells C2 and C3 will

be added to the resulting node one by one, and coalescing will happen in the next

level in both cases, because just one of the inputDwarfs contains each of these keys.

Then the ALL cell for Node 8 must be created (Line 13). The key P1 is included in

the nodes pointed by C1 and C3 (Nodes 7,4), and since we are at a leaf node, we

must aggregate the values in the two cells (Line 8).
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3.3.3 Memory Requirements

The PrefixExpansion algorithm has no major requirements, since it only needs to

remember which was the previously read tuple. For the SuffixCoalesce algorithm,

the priority queue (used to locate in Line 5 the cells with the minimum key), contains

at each step one key from the top node of each dwarf in inputDwarfs. Since in the

worst case we will descend all D levels of the structure when creating the ALL cell

for the root node, the memory requirements for the priority queue (which are the

only memory requirements for the algorithm) in the worst case of a fully dense

Dwarf cube are equal to:

MaxMemoryNeeded = c ·
D
∑

i=1

Cardi (3.4)

where c is the size of the cell. However, since the cube is “always” sparse, the number

of cells that must be kept in main memory will be much smaller than the sum of the

dimensions’ cardinalities, and the exact number depends on the branching factor at

each level of the structure.

3.3.4 Proof of Correctness

In this section we prove by induction on the number of dimensions that the con-

struction process described by the two interleaved algorithms PrefixExpansion and

SuffixCoalesce constructs a correct representation of the data cube. Let’s assume

that the number of dimensions is represented with the symbol d. First we prove

that the dwarf for d = 1 is a correct representation the we assume that the process
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works for d = k and finally we prove that the construction is correct for d = k + 1.

Dwarf with d = 1

The PrefixExpansion algorithm creates one node with as many cells as unique tuples

in the fact table aggregating the measures of identical tuples. The SuffixCoalesce

algorithm then aggregates the cell in the node and creates the special ALL cell. This

results in a correct one-dimensional cube representation.

Dwarf with d = k

We assume that the process is correct when the number of dimensions d = k.

In other words we assume that the two interleaved algorithms PrefixExpansion and

SuffixCoalesce construct a correct cube representation for a k-dimensional data cube.

Dwarf with d = k + 1

In this case the PrefixExpansion algorithm creates a node that points to sub-dwarfs

of k dimensions. By our assumption in the second step of the induction these

dwarfs are correct representations of the corresponding k-dimensional data cubes.

The suffix coalesce algorithm merges all the sub-dwarfs by calling recursively the

suffix coalesce for k-dimensional dwarfs. Again by our assumption this step creates

correct representations of the corresponding k-dimensional data cubes. The inter-

leaved process in this case create a node that points to correct representations of

k-dimensional data cubes and therefore it is a correct representation of the (k + 1)-

dimensional data cube.
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3.3.5 Incremental Updates

The ability to refresh data in a modern data warehouse environment is currently

more important than ever. As the data stored increases in complexity, the possibility

of incrementally updating the data warehouse/data-mart becomes essential. The

“recompute everything” strategy cannot keep up the pace with the needs of a modern

business. The most common strategy is using semi-periodic bulk updates of the

warehouse, at specific intervals or whenever up-to-date information is essential.

In this section we describe how the Dwarf structure is incrementally updated,

given a set of delta tuples from the data sources and an earlier version of the

Dwarf cube. We assume that the delta updates are much smaller in size compared

to the information already stored. Otherwise, a bulk incremental technique that

merges [KR98] the stored aggregates with the new updates and stores the result in

a new Dwarf might be preferable than the in-place method.

The incremental update procedure starts from the root of the structure and

recursively updates the underlying nodes and finishes with the incremental update

of the node that corresponds to the special ALL cell. By cross-checking the keys

stored in the cells of the node with the attributes in the delta tuples, the procedure

skips cells that do not need to be updated, expands nodes to accommodate new

cells for new attribute values (by using overflow pointers), and recursively updates

those sub-dwarfs which might be affected by one or more of the delta tuples.

Since the delta information is much less compared to the information already

stored, the number of the cells that are skipped is much larger than the number of
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cells that need to be updated. One case requires special attention: by descending

the structure, we can reach a coalesced node from different paths. Once we get to

the coalesced node we have to check if the coalesced path is still valid, since the

insertion of one or more tuples might have caused the coalesced pointer to become

invalid. In this case, the corresponding subdwarf has to be re-evaluated, and any

new nodes have to be written to a different area of the disk. However, it is important

to realize that an invalid coalesced pointer does not mean that the entire subdwarf

needs to be copied again. Coalescing to nodes of the old dwarf will most likely

happen just a few levels below in the structure, since only a small fraction of all the

aggregate values calculated is influenced by the update.

An important observation is that frequent incremental update operations slowly

deteriorate the original clustering of the Dwarf structure 4, mainly because of the

overflow nodes created. This is an expected effect, encountered by all dynamic data

structures as a result to online modifications. Since Dwarf is targeted for data ware-

housing applications that typically perform updates in scheduled periodic intervals,

we envision running an process in the background periodically for reorganizing the

Dwarf and transferring it into a new file with its clustering restored.

4The query performance of Dwarf still remains far ahead of the closest competitor as shown in
our experiments section.
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3.4 Performance issues

3.4.1 Query Execution

A point query is a simple traversal on the Dwarf structure from the root to a leaf.

At level i, we search for the cell having as key the i-th coordinate value in the query

and descend to the next level. If the i-th coordinate value is ALL, we follow the

pointer of the ALL cell. A point query is fast simply because it involves exactly D

node visits (where D is the number of dimensions).

Range queries differ from point queries in that they contain at least one di-

mension with a range of values. If a range is specified for the i-th coordinate, for

each key satisfying the specified range we recursively descend to the corresponding

sub-dwarf in a depth-first manner. As a result, queries on the Dwarf structure have

trivial memory requirements (one pointer for each level of the structure).

According to the algorithms for constructing the Dwarf cube, certain views

may span large areas of the disk. For example, for a 4-dimensional cube with

dimensions a, b, c, d, view abcd is not clustered, since all views containing dimension

a (views a, ab, ac, ad, abc, abd, acd) are all interleaved in the disk area that view abcd

occupies. Therefore, a query with multiple large ranges on any of these views would

fetch nodes that contain data for all these views. For this reason, we deviate from

the construction algorithm, in order to cluster the Dwarf cube more efficiently. This

is described in the following section.
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3.4.2 Clustering Dwarf Cubes

none

abc

ba c

acab bc

Figure 3.2: Data Cube Lattice for dimensions a, b and c

The algorithms described in section 3.3 present the general principles for con-

structing Dwarf structures. However there is a lot of room for improvement as far

as the clustering of the structure is concerned. As we mentioned, the algorithms

do not cluster views of the cube together and therefore accessing one view requires

accessing nodes that are probably on different disk pages that are too far apart from

each other. In this section we describe how the Dwarf structure can be created in

a very clustered manner. Typically, the clustered version of the dwarfs decreased

the query response time in real datasets by a factor of 2 to 3.

The lattice representation [HRU96a] of the Data Cube is used to represent the

computational dependencies between the group-bys of the cube. An example for

three dimensions is illustrated in Figure 3.2. Each node in the lattice corresponds

to a group-by (view) over the node’s dimensions. For example, node ab represents

the group-by ab view. The computational dependencies among group-bys are repre-

sented in the lattice using directed edges. For example, group-by a can be computed

from the ab group-by, while group-by abc can be used to compute any other group-
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by. In Figure 3.2 we show only dependencies between adjacent group-bys, but we

refer to the transitive closure of this lattice.

In Table 3.1 we illustrate an ordering of the views for a three dimensional

cube. The second column of the table contains a binary representation of the view

with as many bits as the cube’s dimensions. An aggregated dimension has the

corresponding bit set to true(1). For example view ab corresponds to 001 since the

dimension c is aggregated. The views are sorted in increasing order based on their

binary representation.

View Binary Rep
Parents

w/
Coalesce

abc 000
ab 001 abc
ac 010 abc
a 011 ab, ac
bc 100 abc
b 101 ab, bc
c 110 ac, bc

none 111 a, b, c

Table 3.1: View ordering example

This ordering has the property that whenever a view w is about to be com-

puted, all the candidate ancestor views vi with potential for suffix coalescing have

already been computed. Note that the binary representation for vi can be derived

from the binary representation of w by resetting any one true bit (1) to false (0).

This essentially means that the binary representation of vi is arithmetically less

than the binary representation of w and therefore precedes that in the sorted or-

dering. For example, in Table 3.1, view w = a(011) has ancestors v1 = ab(001) and
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v2 = ac(010). Figure 3.3 demonstrates the processing tree for the example in Table

3.1. In this order we have chosen to use the ancestor vi with the biggest common

prefix for w.

none

abc

ba c

acab bc

(1)

(2) (3)

(4)

(5)

(6) (7)

(8)

Figure 3.3: Processing Tree

By removing the recursion in the algorithms in Section 3.3 (lines 8,14 in the

PrefixExpansion algorithm, and line 13 in the SuffixCoalesce algorithm) we are

able to create any one view of the cube. More specifically, the most detailed view

(in our example abc) can be created with PrefixExpansion, while any other view

can be created with the SuffixCoalesce algorithm. Therefore it is easy to iterate

through all the views of the cube using the described ordering and create each

one of them. This procedure clusters nodes of the same view together and the

resulting Dwarf structure behaves much better. For example, consider the structure

in Figure 3.1. If this structure is created using the algorithms in Section 3.3 then

the nodes will be written in the order: 123456789. Note that node 5 that belongs

to view 〈Store, ALL, Product〉 is written between nodes 4 and 6 that belong to

view 〈Store, Customer, Product〉, therefore destroying the clustering for both views.

However, the procedure described here creates the nodes in the order 123467589,
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maintaining the clustering of each view. Table 3.2 describes in more detail the

procedure.

View Binary Rep Nodes

Store,Customer,Product 000 create 1,2,3,4,6,7
Store,Customer 001 close 3,4,7
Store,Product 010 create 5, coalesce to 7

Store 011 close 5,7
Customer,Product 100 create 8, coalesce to 7,4,3

Customer 101
Product 110 create 9

none 111 close 9

Table 3.2: Example of creating a clustered Dwarf

3.4.3 Optimizing View Iteration

In our implementation we used a hybrid algorithm which does not need to iterate

over all views. The hybrid algorithm takes advantage of the situation encountered

while creating view 〈Store, Customer〉 or view 〈Store〉 as described in Table 3.2.

Iterating over these two views did not create any new nodes, but rather closed the

nodes by writing the ALL cell.

The situation is more evident in very sparse cubes (usually cubes of high

dimensionalities). Assume a five-dimensional cube with ten thousand tuples where

each dimension has a cardinality of one hundred. Let us assume that data values

are uniformly distributed. The Dwarf representation of view abcde (00000) consists

of five levels. The first level has only one node with one hundred cells. The second

level for every cell of the first one has a node with another one hundred cells. The

third level however -since we assumed that the data are uniform and there only ten
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thousand tuples- has nodes that consist of only of one cell. Therefore we can close

the corresponding cells right away. Thus we avoid iterating on views abcd(00001),

abce(00010), abc(00011) and abde(00100).

3.4.4 Coarse-grained Dwarfs

Even though the Dwarf structure achieves remarkable compression ratios for calcu-

lating the entire cube, the Dwarf size can be, in cases of sparse cubes, quite larger

than the fact table. However we can trade query performance for storage-space by

using a granularity Gmin parameter. Whenever at some level of the Dwarf structure

(during the Dwarf construction) the number of tuples that contributes to the subd-

warf beneath the currently constructed node N of level L is less than Gmin, then for

that subdwarf we do not compute any ALL cells. All the tuples contributing to this

coarse-grained area below node N can be stored either in a tree-like fashion (thus

exploiting prefix redundancy), or as plain tuples (which is useful if the number of

dimensions D is much larger than L, to avoid the pointers overhead). Notice that

for all these tuples we need to store only the last D−L coordinates, since the path

to the collapsed area gives as the missing information. Each query accessing the

coarse-grained area below node N will require to aggregate at most Gmin tuples to

produce the desired result. The user can modify the Gmin parameter to get a Dwarf

structure according to his/her needs.
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3.5 Experiments

We performed several experiments with different datasets and sizes to validate our

storage and performance expectations. All tests in this section were run on a single

700Mhz Celeron processor running Linux 2.4.12 with 256MB of RAM. We used a

30GB disk rotating at 7200 rpms, able to write at about 8MB/sec and read at about

12MB/sec. We purposely chose to use a low amount of RAM memory to allow for

the effect of disk I/O to become evident and demonstrate that the performance of

Dwarf does not suffer even when limited memory resources are available.

Our implementation reads a binary representation of the fact table, where all

values have been mapped to integer data (4 bytes). Unless specified otherwise, all

datasets contained one measure attribute, and the aggregate function used through-

out our experiments was the SUM function. The reported times are actual times

and contain CPU and I/O times for the total construction of Dwarf cubes including

the initial sorting of the fact table.

In the experiments we compared Dwarf to Cubetrees, as far as storage space,

creation time, queries and update performance are concerned. In [KR98] Cubetrees

were shown to exhibit at least 10 times faster query performance when compared

to indexed relations, half the storage a commercial relational system requires and

at least 100 times faster update performance. Since no system has been shown to

outperform the Cubetrees so far, we concluded that this was the most challenging

test for Dwarf.
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3.5.1 Cube construction

Prefix redundancy vs Suffix Coalescing

In this experiment we explore the benefits of eliminating prefix redundancy, and

using suffix coalescing when computing the CUBE operator. For the first set of

experiments, we used a binary storage footprint (BSF) as a means of comparison.

The BSF representation models the storage required to store the views of the cube

in unindexed binary relations. This representation was also used by [BR99] to

estimate the time needed to write out the output of the cube.

uniform 80-20

#Dims BSF
Dwarf
Prefix
only

Dwarf
(MB)

Time
(sec)

Dwarf
(MB)

Time
(sec)

10 2333 MB 1322 MB 62 26 115 46
15 106 GB 42.65 GB 153 68 366 147
20 4400 GB 1400 GB 300 142 840 351
25 173 TB 44.8 TB 516 258 1788 866
30 6.55 PB 1.43 PB 812 424 3063 1529

Table 3.3: Storage and creation time vs #Dimensions

In Table 3.3, we show the storage and the compute time for Dwarf cubes as the

number #Dims of dimensions range from 10 to 30. The fact table contained 100000

tuples and the dimension values were either uniformly distributed over a cardinality

of 1000 or followed a 80-20 Self-Similar distribution over the same cardinality. We

did not impose any correlation among the dimensions. The BSF column shows an

estimate of the total size of the cube if its views were stored in unindexed rela-

tional tables. The “Dwarf w/ Prefix only” column shows the storage of the Dwarf

with the suffix coalescing off, and therefore, without suffix redundancy elimination.
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Figure 3.4: Dwarf Compression Ratio over BSF (log scale) vs #Dimensions

To measure the BSF size and the “Dwarf w/ Prefix only” size, we generated the

Dwarf with the suffix coalescing turned on, and then traversed the Dwarf structure

appropriately. We counted the BSF and the “Dwarf w/ prefix only” storage for

both distributions and the results (as far as the savings are concerned) were almost

identical -slightly smaller savings for the 80-20 distribution-, so we just present the

uniform sizes. The remaining four columns show the Dwarf store footprint and the

time to construct it for each of the two distributions. Figure 3.4 shows the compres-

sion over the BSF size as the number of dimensions increases. Observe that, as the

cube becomes sparser, the savings increase exponentially due to suffix coalescing.

We observe the following:

• Elimination of prefix redundancy saves a great deal, but suffix redundancy is

clearly the dominant factor in the overall performance.

• The creation time is proportional to the Dwarf size.

• The uniform distribution posts the highest savings. The effect of skew on

the cube is that most tuples from the fact table contribute to a small part
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of the whole cube while leaving other parts empty. The denser areas benefit

from prefix elimination which is smaller, and sparser areas have less suffix

redundancy to eliminate (since fewer tuples exist there).

Table 3.4 gives the Dwarf storage and computation time for a 10-dimensional

cube when the number of tuples in the fact table varies from 100000 to 1000000. The

cardinalities of each dimension are 30000 , 5000, 5000, 2000, 1000, 1000, 100, 100,

100 and 10. The distribution of the dimension values were either all uniform or all

80-20 self-similar. This set of experiments shows that the store size and computation

time grow linearly in the size of the fact table (i.e. doubling the input tuples results

in a little more than twice the construction time and storage required).

uniform 80-20
#Tuples Dwarf(MB) Time(sec) Dwarf(MB) Time(sec)

100,000 62 27 72 31
200,000 133 58 159 69
400,000 287 127 351 156
600,000 451 202 553 250
800,000 622 289 762 357

1,000,000 798 387 975 457

Table 3.4: Storage and time requirements vs #Tuples

Comparison with Full Cubetrees

In this experiment we created cubes of fewer dimensions, in order to compare the

performance of Dwarf with that of Cubetrees. We created full cubes with the number

of dimensions ranging from 4 to 10. In each case, the fact table contained 250000

tuples created by using either a uniform, or a 80-20 self-similar distribution. In
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Figure 3.5: Storage Space vs #Dimensions

Figure 3.5 we show the space required for Dwarf and for Cubetrees to store the

entire cube. Figure 3.6 shows the corresponding construction times. From these

two Figures we can see that:

• Cubetrees do not scale, as far as storage space is concerned, with the number

of dimensions. On the contrary, Dwarf requires much less space to store the

same amount of information.

• Dwarf requires significantly less time to build the cube. This is because Cu-

betrees (like other methods that calculate the entire cube) perform multiple

sorting operations on the data, and because Dwarf avoids computing large

parts of the cube, since suffix coalescing identifies parts that have already

been computed.
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Figure 3.6: Construction Time vs #Dimensions

Comparison to Reduced Cubetrees

This experiment compares the construction time of Dwarf with that of Cubetrees

when the Cubetrees size is limited to that of the Dwarf structure. We will refer

to this type of Cubetrees as reduced Cubetrees. This is useful to examine, since

in many cases of high-dimensional data, Cubetrees (and most other competitive

structures) may not fit in the available disk space. Since the Cubetrees will not

store all the views of the CUBE operator, we have to make a decision of which

views to materialize. The PBS algorithm [SDN98] provides a fast algorithm to

decide which views to materialize under a given storage constraint, while at the

same time guaranteeing good query performance. The PBS algorithm selects the

smallest views in size, which are typically the views that have performed the most

aggregation. In addition, we have also stored in the reduced Cubetrees the fact

table, in order for them to be able to answer queries (in the Queries section) on

views which are not materialized or cannot be answered from other materialized
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views.

Dataset #Dims #Tuples
Size

(MB)
Cubetrees
Time(sec)

Dwarf
Time(sec)

PBS
Views

Meteo-9 9 348448 66 64 35 63 out of 512
Forest 10 581012 594 349 350 113 out of 1024

Meteo-12 12 348448 358 451 228 310 out of 4096

Table 3.5: Storage and Creation Time for Real Datasets

Table 3.5 gives the Dwarf and reduced Cubetrees storage and creation times

for three real datasets. Cubetrees were created having the same size as the corre-

sponding Dwarfs. The construction times of the reduced Cubetrees do not include

the running time for the PBS algorithm. The table also shows the number of views

contained in the reduced Cubetrees. The first real dataset contains weather con-

ditions at various weather stations on land for September 1985 [HWL]. From this

dataset we created two sets - Meteo-9 and Meteo-12 - of input data: one which con-

tained 9 dimensions, and one with 12 dimensions. The second real data-set contains

“Forest Cover Type” data [Bla98] which includes cartographic variable that are used

to estimate the forest cover type of land areas. In all data sets some of the attributes

were skewed and among some dimensions there was substantial correlation.

Even though the reduced Cubetrees calculate significantly fewer views that

Dwarf does, Dwarf cubes are significantly faster at their creation for the two Weather

datasets, and took the same amount of time as the Cubetrees for the Forest dataset.

One important observation is that the Dwarf structure for the Weather dataset with

12 dimensions is smaller, and faster to compute than the Dwarf for the Forest data,

which had 10 dimensions. The top three dimensions in the Weather data were highly
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correlated and suffix coalescing happened at the top levels of the Dwarf structure

in many cases, thus providing substantial space and computational savings.

3.5.2 Query Performance

In this section we study the query performance of Dwarf when compared to full and

reduced Cubetrees. We also give a detailed analysis of how range queries, applied

to different levels of the Dwarf structure, are treated by both the clustered and

unclustered structure.

Dwarfs vs Full Cubetrees

We created two workloads of 1000 queries, and queried the cubes created in the pre-

vious experiment (full cubes of 4-10 dimensions with 250000 tuples). The description

of the workloads is presented in Table 3.6.

Probabilities Range
Workload #Queries PnewQ Pdim PpointQ Max Min

A 1000 0.34 0.4 0.2 20% 1
B 1000 1.00 0.4 0.2 20% 1

Table 3.6: “Dwarfs vs Full Cubetrees” Query Workload

Since other query workloads will also be given in tables similar to Table 3.6,

we give below a description on the notation used. An important thing to consider

is that in query workloads to either real data, or synthetic data produced by using

the uniform distribution, the values specified in the queries (either point values, or

the endpoints of ranges) are selected by using a uniform distribution. Otherwise,

we use the 80/20 Self-Similar distribution to produce these values. This is more
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suitable, since we suspect that the user will typically be more interested in querying

the denser areas of the cube.

PnewQ The probability that the new query will not be related to the previous query.

In OLAP applications, users typically perform a query, and then often execute

a series of roll-up or drill-down queries. When our query generator produces a

query, it produces a roll-up query with probability (1−PnewQ)/2, a drill-down

query with the same probability or a new query with probability PnewQ. For

example, Workload B creates only new (unrelated) queries, while workload A

creates a roll-up or a drill-down with a probability of 0.33 each.

Pdim The probability that each dimension will be selected to participate in a new

query. For example, for a 10-dimensional cube, if the above probability is

equal to 0.4, then new queries will include 10 · 0.4 = 4 dimensions on average.

PpointQ The probability that we specify just a single value for each dimension par-

ticipating in a query. Otherwise, with probability 1 − PpointQ we will specify

a range of values for that dimension. This way we control how selective our

queries will be: a value of 1 produces only point queries, and a value of 0

produces queries with ranges in every dimension participating in the query.

In most of our experiments we selected low values for this parameter, since a

high value would result in most queries returning very few tuples (usually 0).

Range The range for a dimension is uniformly selected to cover a specified percent-

age of the cardinality of the dimension. For example, if a dimension a has
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Figure 3.7: Query Performance on Uniform Data

values ranging from 1 to 1000, a 20% value maximum range will force any

range of dimension a to be limited to at most 200 values. Each range contains

at least one value.

Returning to the experiment, the results for the workloads of Table 3.6 on the

cubes created in the previous experiment are shown in Figures 3.7 and 3.8. Dwarf

outperforms Cubetrees in all cases, and for small-dimensionality Dwarf cubes are 1-2

orders of magnitude faster. The main advantage of Dwarf cubes is their condensed

storage, which allows them to keep in main memory a lot more information than

Cubetrees can. Moreover, we can see that Dwarf performs better in workload A,

because roll-up and drill-down queries have a common path in the Dwarf structure

with the previously executed query, and thus the disk pages corresponding to the

common area are already in main memory. For example, for the 10-dimensional

cases, in the Uniform dataset the response time drops from 35 to 28 seconds when

roll-up and drill-down operations are used (a 20% reduction), while for the Self-
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Figure 3.8: Query Performance on Self-Similar Data

Similar case the improvement is even larger: from 58 to 40 seconds. This is a 31%

reduction in response time.

Dwarfs vs Reduced Cubetrees

In this set of experiments, we compare the query performance of Dwarfs with that

of reduced Cubetrees. The datasets used in this experiment were the real datasets

described in Section 3.5.1 (Meteo-9, Meteo-12, Forest). Since Cubetrees in this case

did not contain all the views of the cube, we need to explain how we answered

queries on non-materialized views.

When a query on a non-materialized view v is issued, the Cubetree optimizer

picks the best materialized view w to answer v. If v does not share a common prefix

with w, then it uses a hash-based approach to evaluate the query. If however v shares

a common prefix with w, then the result is calculated on the fly, taking advantage

of the common sort order. The second case is much faster than using a hash-table.
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The Cubetree optimizer needs estimates for the size of all views, but in our case we

had the exact sizes by issuing appropriate queries to the Dwarf structure.

Workload #Queries PnewQ #Dims PpointQ Rangemax

A 2000 0.34 4 0.1 15%
B 2000 0.34 4 0.5 25%
C 2000 1.00 4 0.5 25%
D 2000 0.34 3 0.5 25%
E 2000 1.00 3 0.5 25%

Table 3.7: “Dwarfs vs Reduced Cubetrees” Query Workload

For each real dataset we created 5 workloads of 2000 queries, whose charac-

teristics are presented in Table 3.7. Here, the #Dims column denotes the average

number of dimensions specified on each query. Notice that workloads C and E

are similar to workloads B and D, respectively, but contain no roll-up/drill-down

queries.

The query performance of Dwarf and the reduced Cubetrees is presented in

Table 3.8. Dwarf is about an order of magnitude faster than the reduced Cubetrees

in the Weather datasets Meteo-9, Meteo-12), and 2 − 3 times faster in the Forest

dataset. Dwarf performs significantly better in the Weather datasets due to the

correlation of the attributes in these datasets. Because coalescing happened at the

top levels of the structure, a large fraction of nodes at the top levels were cached,

thus improving performance dramatically.

An important observation is that Dwarfs are faster when the workload contains

roll-up/drill-down queries. For example, for workloads D and E of the forest dataset,

Dwarf was 17% faster. Also notice that in this type of workloads the limitation of
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the average number of dimensions specified in each query, favors Cubetrees, which

typically store views with up to 3 dimensions, because of the PBS algorithm. For

workloads with queries containing more dimensions, on average, the performance of

the Cubetrees was significantly worse.

Reduced Cubetrees Dwarf
Workload Meteo-9 Meteo-12 Forest Meteo-9 Meteo-12 Forest

A 305 331 462 13 34 150
B 292 346 478 13 39 176
C 304 340 483 13 44 208
D 315 301 427 12 47 217
E 305 288 448 15 49 262

Table 3.8: Query Times in Seconds for 2000 Queries on Real Datasets

Evaluating Ranges in Dwarf Cubes

One of our initial concerns when designing Dwarf was to ensure that their query

performance would not suffer on queries with large ranges on the top dimensions

of the structure. The dimensions on the higher levels of the Dwarf structure have

higher cardinalities, and thus a large range on them (for example a range containing

20% of the values) might be expensive because a large number of paths would have

to be followed. In the following experiment we study the query behavior of Dwarf,

when queries with ranges in different dimensions are issued.

We first created four 8-dimensional datasets, each having a fact table of 800,000

tuples. For the first 2 datasets (Auni, A80/20), each dimension had a cardinality of

100. For the last 2 datasets (Buni,B80/20), the cardinalities of the dimensions were:

1250, 625, 300, 150, 80, 40, 20 and 10. The underlying data used in datasets Auni and
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Buni was produced by using a Uniform distribution, while for the other 2 datasets

we used the 80-20 Self-Similar distribution. For reference, the sizes of the Dwarf

cubes for the Auni and A80/20 datasets were 777 and 780 MB, while for the Buni and

B80/20 datasets the corresponding sizes were 490 and 482 MB.

We decided to create workloads of queries, where three consecutive dimen-

sions would contain ranges on them. For example, if we name the cube’s dimensions

a1, a2, ..., a8, then the first workload would always contain ranges on dimensions

a1, a2, a3, the second workload on dimensions a2, a3, a4... We also considered ranges

on dimensions a7, a8, a1 and on a8, a1, a2. Each workload contained 1000 queries.

Since a set of three dimensions was always queried in each workload, we also is-

sued a point query on the remaining dimensions with probability 30% -otherwise

the ALL value is selected-. Having point queries on few dimensions allowed our

queries to “hit” different views while the three ranged dimensions remained the

same, and the small probability with which a point query on a dimension happens

allowed for multiple tuples to be returned for each query. Each range on a dimen-

sion contained 5-15% of the dimension’s values. The results for datasets Auni and

A80/20 are presented in Table 3.9, and for datasets Buni and B80/20 in Table 3.10.

To view the effect of clustering on Dwarf cubes, we also present the query times

achieved by Dwarf when we use the original PrefixExpansion and SuffixCoalesce

algorithms, without improving clustering the way we described in Section 3.4.2. We

refer to the corresponding structure as “Unclust. Dwarfs”. For comparison reasons

we have also included the corresponding query times for the full Cubetrees5. In the

5to minimize the effect of online aggregation
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following paragraphs we will focus our discussion on how the query performance of

Dwarf cubes is influenced by the location of ranges. The behavior of Cubetrees was

explained in [KR98].

Auni A80/20

Ranged Cubetrees Dwarf Unclust. Result Cubetrees Dwarf Unclust. Result

Dims (sec) (sec)
Dwarf
(sec)

Tuples (sec) (sec)
Dwarf
(sec)

Tuples

1,2,3 142 8 20 60663 170 13 18 158090
2,3,4 126 9 21 78587 146 15 18 150440
3,4,5 117 10 37 65437 128 15 22 162875
4,5,6 113 13 41 78183 114 16 42 165284
5,6,7 110 18 53 72479 108 17 42 150926
6,7,8 109 22 39 69165 104 13 18 163357
7,8,1 126 28 53 71770 119 23 23 153532
8,1,2 134 17 19 86547 154 19 19 155837

Table 3.9: Time in seconds for 1000 queries on datasets with constant cardinality

In Table 3.9, for the uniform workload Auni and the clustered Dwarf we can

observe that the query performance decreases as the ranges move to lower dimen-

sions. In this case, the query values (either point, or ALL), on dimensions above the

ranged ones, randomly hit different nodes at the upper levels of the structure. This

has the effect that consecutive queries can follow paths in vastly different locations

of the Dwarf file. Since the Dwarf does not fit into main memory, the larger the area

targeted by queries of each workload, the more swapping that takes place to fetch

needed disk pages to main memory, and the worse the query performance. Thus,

the performance degrades as the queries move towards the lower levels, because a

larger area of the Dwarf file is targeted by the queries, and caching becomes less

effective.

Here we need to clarify that a single query with ranges on the top dimensions is
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more expensive than a single query with ranges on the lower dimensions. However,

consecutive queries involving ranges on the top levels of the structure benefit more

from caching, since after a few queries the top level nodes where the ranges are

applied will be in main memory. This is why this kind of queries exhibited better

performance in the experiment.

The same behavior can be observed for the unclustered Dwarf, with one ex-

ception, the 6,7,8 ranges. In this case the benefits of the reduced per-query cost

seem to outweigh the cache effects resulting in better overall performance.

Overall, the unclustered Dwarf performs much worse than the clustered one

-although still much better compared to Cubetrees-. The reason for the worse

behavior of the unclustered Dwarf is (as we have mentioned before) the interleaving

of the views. This has the result that most disk pages fetched contain “useless”

information for the query, and thus more pages need to be fetched when compared

to the clustered Dwarf.

The above concepts can help explain the behavior of the Dwarf structure for

the wrapped queries on dimensions 8,1,2 and 7,8,1. The ranges at the top dimensions

benefit the cache performance but increase the per-query cost. The tradeoff between

the two determines the overall performance.

A similar behavior can be observed for the A80/20 workload. In this case the

queries address denser areas compared to that of the uniform case, as the returned

tuples and the overall performance demonstrate. Dwarf performs similarly to the

Auni case.
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Buni B80/20

Ranged Cubetrees Dwarf Unclust. Result Cubetrees Dwarf Unclust. Result

Dims (sec) (sec)
Dwarf
(sec)

Tuples (sec) (sec)
Dwarf
(sec)

Tuples

1,2,3 206 20 37 96383 271 66 87 2582365
2,3,4 164 11 25 106879 183 29 38 1593427
3,4,5 130 11 22 106073 129 13 17 427202
4,5,6 112 14 19 56261 107 12 16 85862
5,6,7 105 16 15 12327 99 10 8 21808
6,7,8 103 17 12 2773 96 9 8 5173
7,8,1 180 19 73 47436 165 19 39 93139
8,1,2 180 24 37 115291 228 28 34 989998

Table 3.10: Time in seconds for 1000 queries on datasets with varying cardinalities

Table 3.10 presents the query performance of Dwarf for the datasets Buni and

B80/20. The extra parameter -and the dominating one- to be considered here is the

different cardinalities, as a range (i.e. 10%) on the top dimension contains much

more values than the same range does in any other dimension. The effect of the

different cardinalities is more evident in the B80/20 workload. This happens because

a given range will be typically satisfied by a lot more values than in the uniform

case (recall that 80% of the values exist in 20% of the space). This is evident from

both the number of result tuples, and from the query performance which improves

when the queries are applied to dimensions with smaller cardinalities. However the

basic concepts described for Table 3.9 apply here as well.

Coarse-grained Dwarfs

As described in Section 3.4.4, we can limit the space that Dwarf occupies and subse-

quently computation time, by appropriately setting the minimum granularity (Gmin)

parameter. In this set of experiments we investigate how the construction time,

space, and query performance of Dwarfs are influenced when increasing the Gmin
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threshold. We created the Dwarf structure for the 8-dimension cubes of the Buni and

B80/20 datasets (see previous experiment) for different values of the Gmin parameter

and then issued 8,000 queries on each of the resulting Dwarf cubes. The description

of the queries was the same as in the case of the rotated dimensions. Table 3.11

presents the creation times, the required storage, and the time required to execute

all 8,000 queries for each Dwarf.

Uniform Distribution 80-20 Distribution

Gmin
Space
(MB)

Construct
(sec)

Queries
(sec)

Space
(MB)

Construct
(sec)

Queries
(sec)

0 490 202 154 482 218 199
100 400 74 110 376 81 262

1000 312 59 317 343 62 295
5000 166 29 408 288 53 1094

20,000 151 25 476 160 30 1434

Table 3.11: Performance measurements for increasing Gmin

When we increase the value of Gmin, the space that Dwarf occupies decreases,

while at the same time query performance degrades. The only exception was for the

Uniform distribution and Gmin value of 100, where the reduction of space actually

improved query performance, despite the fact that some aggregations needed to be

done on-the-fly. The reason is that coarse-grained areas for this value fit in one -or

at most two- pages and it is faster to fetch them and do the aggregation on the fly,

rather than fetching two or more pages to get to the precomputed aggregate.

In Table 3.11 the pay-off in construct time is even higher than the space

savings. A Gmin value of 20000 results in 3 to 1 storage savings, but in more than

7 to 1 speedup of computation times. After various experiments we have concluded

that a value of Gmin between 100 and 1000 typically provides significant storage/time
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savings with small degradation in query performance.

3.5.3 Updates

In this section we present experimental results to evaluate the update performance

of Dwarfs when compared to the full and reduced Cubetrees.

Synthetic Dataset

In this experiment, we used the 8-dimension dataset Buni. We originally constructed

the Dwarf, the full Cubetrees and the reduced Cubetrees with 727,300 tuples and

then proceeded to add 10 increments of 1% each (to reach the total of 800,000 tuples).

The reduced Cubetrees were selected to have about the same size as the Dwarf cube

when both are constructed using 727.300 tuples. Table 3.12 shows the update time

for all 3 structures. We clearly see that the full Cubetrees require significantly more

time, since their size is much larger than that of the Dwarf structure. Dwarf performs

better at the beginning when compared to the incremental updates of the reduced

Cubetrees. For example, for the first incremental update, the reduced Cubetrees

took 34% more time than Dwarf. As we update the structures with more and more

data, the difference in update times becomes smaller, and eventually Dwarf becomes

more expensive to update incrementally. The main reason for this is the degradation

of the Dwarf’s clustering as nodes are expanded during updates, and overflow nodes

are added to the structure. To demonstrate this, we ran on the final Dwarf structure

(after the 10 increments had been applied) the same set of queries that we used in

the previous experiment. Dwarf now required 211 seconds, 37% more time than the
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154 seconds of the reorganized Dwarf.

We notice that Cubetrees (according to the specification of the update algo-

rithm [KR98]) are always kept optimized by using new storage for writing the new

aggregates. This results in having about twice the space requirements of Dwarf dur-

ing updates, since the old structure is used as an input for the update process. The

same technique can be implemented for Dwarf too. After a few increments we can

reorganize the dwarf structure with a background process that writes a new Dwarf

into new storage, restoring its clustering. For example, if we reorganize the Dwarf

after the first 9 increments, the update time for the last increment is 82 seconds,

which is faster than the corresponding update of the Cubetrees.

Full Cubetrees Dwarf
Reduced
Cubetrees

Action Time (sec) Space (MB) Time (sec) Space (MB) Time (sec)

Create 1089 3063 180 446 296
Update #1 611 3093 65 455 87
Update #2 605 3123 68 464 84
Update #3 624 3153 70 473 92
Update #4 618 3183 73 482 86
Update #5 631 3212 79 491 90
Update #6 626 3242 81 499 87
Update #7 636 3272 87 508 91
Update #8 633 3301 98 517 88
Update #9 651 3331 107 526 93

Update #10 644 3361 121 535 90

Table 3.12: Update performance on Synthetic Dataset

Using the APB-1 Benchmark Data

We tested the update performance of Dwarf on the APB-1 benchmark [Cou98],

with the density parameter set to 8. The APB-1 benchmark contains a 4-d dataset
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with cardinalities 9000, 900, 17 and 9 and two measure attributes. We mapped the

string data of the fact table to integers, randomly permuted the fact table, and then

selected about 90% of the tuples (22,386,000 tuples) to initially load the Cubetrees

(full and reduced) and Dwarf, and then applied 10 successive increments of 1%

each. Table 3.13 shows the results for the reduced Cubetrees and Dwarf. The full

Cubetrees are always more expensive to update than the reduced Cubetrees (since

they have more views to update) and, thus, are not included in the results. Dwarf

surpassed the reduced Cubetrees in all the incremental updates. Moreover, it is

interesting to notice that the update time of Dwarf decreased as more tuples were

inserted. This is mainly because this dataset corresponded to a dense cube and,

therefore, the number of coalesced tuples was small. Updating coalesced tuples is

the most time consuming part of the incremental update operation for Dwarf. As

more tuples were inserted, fewer coalesced links existed, and the update performance

improved.

3.6 Summary

In this chapter we presented Dwarf, a highly compressed structure for computing,

storing, and querying data cubes. Dwarf identifies prefix and suffix structural re-

dundancies and factors them out by coalescing their storage. The Dwarf structure

shows that suffix redundancy is the dominant factor in sparse cubes and its elimi-

nation has the highest return both in storage and computation time.
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Dwarf
Reduced
Cubetrees

# Action
Time
(sec)

Space
(MB)

Time
(sec)

Create 1124 346 1381
Update #1 42 350 76
Update #2 36 353 78
Update #3 39 359 77
Update #4 34 365 79
Update #5 24 369 80
Update #6 34 374 82
Update #7 24 378 79
Update #8 30 384 83
Update #9 22 390 82
Update #10 20 393 84

Table 3.13: Update performance on the APB-1 benchmark

Dwarf is practical because it is generated over a single pass over the data and

requires no deep knowledge the underlying value distributions. It is scalable because

the higher the dimensions the more the redundancy to harvest. Dwarf can be used

to store the full cube (made possible because of its compact size) or, alternatively,

precompute only aggregates whose computation will be too costly to be done on the

fly, using the minimum granularity metric.

The great reduction in terms of storage space that the dwarf structure exhibits

has positive effects in terms of query and update performance. The dwarf structure

plays a double role as a storage and indexing mechanism for high dimension data.

Roll-up and drill-down queries seem to benefit from the dwarf structure due to

common paths that are exploited while caching. In terms of update speed, dwarf

by far outperforms the closest competitor for storing the full data cube, while their

performance is comparable when the competitor is reduced to storing only a partial

cube of the same size as Dwarf.
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Chapter 4

The Dwarf Complexity

4.1 Introduction

The data cube operator is an analytical tool which provides the formulation for ag-

gregate queries over categories, rollup/drilldown operations and cross-tabulation.

Conceptually the data cube operator encapsulates all possible multidimensional

groupings and its an invaluable tool to applications that need analysis on huge

amounts of data like decision support systems, business intelligence and data min-

ing. Such applications need very fast query response on mostly ad-hoc queries that

try to discover trends or patterns in the data set.

However the number of views of the data cube increases exponentially with

the number of dimensions and most approaches are unable to compute and store

but small low-dimensional data cubes. After the introduction of the data cube

in [GBLP96] an abundance of research followed for dealing with its exponential

complexity. The main ideas can be classified as either a cube sub-setting (partial

materialization) [GHRU97b, HRU96b, TS97] or storing the full cube but with less

precision (approximation or lossy models) [AGP00, VWI98]. However, all these

techniques do not directly address the problem of space complexity. Furthermore,

all problems associated with the data cube itself appeared to be quite difficult,
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from computing it [AAD+96, DANR96, SAG96, ZDN97, BR99, RS97], storing it

[JS97, FH00], querying and updating it[RKR97]. Even a problem that appears

simpler, that of obtaining estimates on the cube size, is actually quite hard and

needs exponential memory with respect to the dimensionality [SDNR96] in order to

obtain accurate results.

Currently the most promising approaches for handling large high-dimensional

cubes lie in the context of coalesced data cubes[SDRK02, LPZ03, WLFY02]. In

[SDRK02] we demonstrate that the size of the dwarf data cube, even when every

possible aggregate is computed, stored and indexed, is orders of magnitudes smaller

than what expected. The coalescing discovery [SDRK02], completely changed the

perception of a data cube from a collection of distinct groupings into a complex

network of interleaved groupings that eliminates both prefix and suffix redundancies.

It is these redundancies and their elimination that fuse the exponential growth of

the size of high dimensional full cubes and dramatically condense their store without

loss in precision.

To help clarify the basic concepts, let us consider a cube with three dimensions.

In Table 4.1 we present such a toy dataset for the dimensions Store, Customer, and

Product with one measure Price.

Store Customer Product Price

S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

Table 4.1: Fact Table for Cube Sales

The size of the cube is defined as the number of the tuples it contains, which
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essentially corresponds to the sum of the tuples of all its 23 views. The size of the

coalesced cube is defined as the total number of tuples it contains, after coalescing.

For example, for the fact table in Table 4.1 and the aggregate function sum we have

a cube size of 23 tuples, while the coalesced cube size is just 9 tuples as depicted

in Table 4.2. The redundancy of the cube is eliminated by storing the coalesced

areas just once. For example, the aggregate $70 appears in total of five tuples,

(S1|ALL,C2,P2|ALL) and (S1,ALL,P2), in the cube and it is coalesced in just one

tuple. In [LPZ03] a similar notion of “quotient class” is used.

no Coalesced Price

1 (S1|ALL,C2,P2|ALL) (S1,ALL,P2) $70
2 (S1|ALL,C3,P1|ALL) (S1,ALL,P1) $40
3 (S1,ALL,ALL) $110
4 (S2|ALL,C1,P1) (S2,ALL,P1) $90
5 (S2|ALL,C1,P2) (S2,ALL,P2) $50
6 (S2|ALL,C1,ALL) $140
7 (ALL,ALL,P1) $130
8 (ALL,ALL,P2) $120
9 (ALL,ALL,ALL) $250

Table 4.2: Coalesced Cube Tuples

In this chapter we provide a framework for estimating the size of a coalesced

cube and show that for a uniform cube the expected complexity is:

O

(

dlogC T T

(logC T )!

)

= O
(

T 1+1/ logd C
)

where d is the number of dimensions, C is the cardinality of the dimensions

and T is the number of tuples. This result shows that, unlike the case of non-

coalesced cubes which grow exponentially fast with the dimensionality, the 100%
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accurate and complete (in the sense that it contains all possible aggregates) coalesced

representation only grows polynomially fast. In other words, if we keep the number

of tuples in the fact table constant and increase the dimensionality of the fact table

(by horizontally expanding each tuple with new attributes) then the size of the

coalesced cube scales only polynomially. The first form of the complexity shows

that the dimensionality d is raised to logC T which does not depend on d and is

actually quite small for most realistic datasets1.

The second form of the complexity shows that the coalesced size is polynomial

w.r.t to the number of tuples of the data set T , which is raised to 1 + 1/ logd C

(and is very close to 1 for most realistic datasets2). In other words, if we keep the

dimensionality of the fact table constant and start appending new tuples, then the

size of the coalesced cube scales polynomially (and almost linearly). These results

change the current state of the art in data-warehousing because it allows to scale

up and be applicable to a much wider area of applications.

In addition we extend our analysis to cubes with varying cardinalities per

dimension and we provide an efficient polynomial -w.r.t to the dimensionality- algo-

rithm which can be used to provide close upper bounds for a coalesced cube based

only on these cardinalities without actually computing the cube. Such estimates

are invaluable for data-warehouse/OLAP administrators who need to preallocate

the storage for the cube before initiating its computation. Current approaches

[SDNR96] cannot be applied to high-dimensional data cubes, not only because they

1For example for a data set of 25 million tuples and a cardinality of 5,000, logC T = 2
2I.e., for a dimensionality of 30 and a cardinality of 5,000, 1 + 1/ logd C ≈ 1.4
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require an exponential amount of work per tuple and exponential amount of memory

but mostly because they cannot be extended to handle coalesced cubes.

Although our algorithm is based on a uniform assumption is provides very

accurate results for both zipfian and real datasets requiring as input only basic

metadata about the cube –it’s dimension cardinalities–.

In particular in this chapter we make the following contributions:

1. We formalize and categorize the redundancies found in the structure of the

data cube into sparsity and implication redundancies

2. For the sparsity redundancies, we provide an analytical framework for esti-

mating the size of the coalesced cube, and show that for uniform data sets

it scales only polynomially w.r.t to the number of dimensions and number of

tuples

3. We complement our analytical contributions with an efficient algorithm and

an experimental evaluation using both synthetic and real data sets and we

show that our framework not only provides accurate results for zipfian distri-

bution but most importantly that real coalesced cubes scale even better than

polynomially due to implication redundancies.

Our work provides the first analytical results showing that a full (i.e. contains

all possible groupings and aggregates) and 100% accurate (no approximation) data

cube is not inherently exponential in size and that an effective coalescing data cube

model can reduce its size to realistic values. Therefore, we believe it has not only

theoretical but also very practical value for data warehousing applications.
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4.2 Redundancies

In this section we formalize the redundancies found in the structure of the cube and

explain their extend and significance.

4.2.1 Prefix Redundancy

none

abc

ba c

acab bc

Figure 4.1: Lattice for the ordering a, b, c

This redundancy is the first that has been identified and can be used to build

indexes over the structure of the cube. The idea is easily visualized in the lat-

tice representation of the cube. For example, in Figure 4.1, one can observe that

half the group-by’s share the prefix a. We can exploit this by just storing the corre-

sponding values just once and avoid replicating the same values over all views(prefix-

reduction). By generalizing this to other prefixes (like for example to prefix b, which

appears to one fourth of the views) we can reduce the amount of storage required

to store the tuples of the cube.

Lemma 1 The total number of tuples of the cube is not affected by prefix redun-

dancy, only the storage required to store each tuple is reduced.
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This lemma essentially says that the prefix-reduced cube still suffers from the

dimensionality curse, since we have to deal with every single tuple of the cube. The

benefits of the prefix-reduction are therefore quickly rendered impractical even for

medium dimensional cubes.

4.2.2 Suffix Redundancy

In this section we formally define the suffix redundancy and we give examples of

different suffix redundancies.

DEFINITION 1 Suffix Redundancy occurs when a set of tuples of the fact

table contributes the exact same aggregates to different groupings. The operation

that eliminates suffix redundancies is called coalescing. The resulting cube is called

coalesced cube.

EXAMPLE 1 Suffix redundancy can occur for just a single tuple: In the fact table

of Table 4.1, we observe that the tuple:

〈 S1 C2 P2 $70 〉

contributes the same aggregate $70 to two group-bys: (Store,Customer) and (Cus-

tomer). The corresponding tuples are:

(Store,Customer) (Customer)

〈 S1 C1 $70 〉 〈 C2 $70 〉
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EXAMPLE 2 We must point out that suffix redundancy does not work only on a

per-tuple basis, but most importantly it extends to whole sub-cubes, for example the

sub-cube that corresponds to the tuples:

〈 S2 C1 P1 $90 〉, 〈 S2 C1 P2 $50 〉

contributes the same aggregates to sub-cubes of (Store,Product), (Customer,Product),

(Store), (Customer) :

(Store,Product) (Customer,Product)

〈 S2 P1 $90 〉 〈 C1 P1 $90 〉
〈 S2 P2 $50 〉 〈 C1 P2 $50 〉

(Store) (Customer)

〈 S2 $140 〉 〈 C1 $140 〉

The reason that whole sub-cubes can be coalesced is the implication between

values of the dimensions. In our example, C1 implies S2, in the sense that customer

C1 only buys products from store S2. Dwarf is the only technique that manages to

identify such whole sub-cubes as redundant and coalesce the redundancy from both

storage and computation time, without calculating any redundant sub-cubes. For

comparison, the condensed cube[WLFY02] can only identify redundant areas only

tuple-by-tuple, and QC-Trees[LPZ03] have to compute first all possible sub-cubes

and then check if coalescing can occur.

Such suffix redundancies demonstrate that there is significant overlap over the

aggregates of different groupings. The number of tuples of the coalesced cube, where
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coalesced areas are only store once is much smaller than the size of the cube, which

replicates such areas over different groupings.

DEFINITION 2 The size of a cube is the sum of the tuples of all its views. The

size of a coalesced cube is the total number of tuples after the coalescing operation.
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Figure 4.2: Compression vs. Dimensionality

Prefix redundancy works in harmony with suffix redundancy by eliminating

common prefixes of coalesced areas. A comparison between these redundancies

is demonstrated in Figure 4.2, where we depict the compression ratio achieved by

storing all the tuples of a cube exploiting in the first case just the prefix redundancies

and in the second both prefix and suffix redundancies w.r.t to the dimensionality of

the dataset. We used a dataset with a varying number of dimensions, a cardinality

of 10,000 for each dimension and a uniform fact table of 200,000 tuples. It is obvious

that in high-dimensional datasets the amount of suffix redundancies is many orders

of magnitudes more important the prefix redundancies.
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4.3 Coalescing Categories

In this section we categorize suffix redundancies in sparsity and implication redun-

dancies. We use the Dwarf model[SDRK02] -a summary is in the appendix- in order

to ease the definition and visualization of the redundancies. In the rest of the chap-

ter we will use this visualization, but our approach can be applied to other coalesced

cube approaches[LPZ03, WLFY02].

4.3.1 Sparsity Coalescing

’y y’y y

...

Path P

’z zz z’

Coalesced Tuples

Tail Coalescing

Left Coalescing

...

x x’

Figure 4.3: Sparsity Coalescings

In Figure 4.3 we depict two types of suffix redundancies due to the sparsity of

the dataset. Lets assume that a path 〈P 〉 leads to a sparse area and that for the

paths 〈P x〉 and 〈P x′〉 there is only one tuple due to the sparsity of the cube. We

differentiate to two different types of coalescing based on the nature of the path P .

DEFINITION 3 Tail coalescing happens on all groupings that have 〈P x〉 as
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a prefix, where path 〈P x〉 leads to a sub-cube with only one fact tuple and path P

does not follow any ALL pointers.

EXAMPLE 3 In Figure 4.3, since there is only one tuple in the area 〈P x . . .〉 then

all the group-bys that have 〈P x〉 as a prefix (i.e. 〈P x ALL z . . .〉, 〈P x y ALL . . .〉

etc.) share the same aggregate.

DEFINITION 4 Left coalescing occurs on all groupings with prefix 〈P ALL y〉,

where path 〈P ALL y〉 leads to a sub-cube with only one tuple. In this case, P follows

at least one ALL pointer.

EXAMPLE 4 Left coalescing complements tail coalescing and in Figure 4.3 we

depict the case where 〈P ALL y . . .〉 is redundant and corresponds to 〈P x y . . .〉.

Tha same is observed for 〈P ALL ALL z〉 and 〈P ALL ALL z ′〉.

Areas with just one tuple (like 〈P xy〉 and 〈P x′y′〉) therefore produce a large

number of redundancies in the structure of the cube. The difference between tail

and left coalescing is two-fold:

• Paths the lead to tail coalescing do not follow any ALL pointers while in left

coalescing the paths follow at least one ALL pointer -the one immediately

above the point where coalescing happens-.

• Tail coalescing introduces one coalesced tuple in the coalesced cube, while left

introduces no coalesced tuples.
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In our analysis we consider these two types of coalescing (tail and left) and we

show that their effect is so overwhelming that the exponential nature of the cube

reduces into polynomial.

4.3.2 Implication Coalescing

The sparsity-coalescing types defined in Section 4.3.1 work only in sparse areas

of the cube where a single tuple exists. The implication-coalescing complements

these redundancies by coalescing whole sub-cubes. For example, for the fact table in

Table 4.1 we observe that C1 implies S2 -in the sense that customer C1 only buys

products from S2. This fact means that every grouping that involves C1 and S2 is

essentially exactly the same with the groupings that involve C1. This redundancy

can be depicted in Figure 4.4

...

...S2

...

... C1

P1P2

C1

Path P

Figure 4.4: Implication Coalescing, where C1→ S2

The implication coalescing is the generalization of left-coalescing when impli-

cations between the values of dimension occur. Such implications are very apparent

in real datasets and -since we do not consider those in our analysis- they are the

reason that in the experiments section we overestimate the size of the coalesced cube

for real data sets.
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4.4 Basic Partitioned Node Framework

In this section we formulate the coalesced cube structure by first introducing the

basic partitioned node and then by building the rest of the coalesced cube around it

-by taking into account both tail and left coalescing-. Although in this chapter we

focus on uniform datasets our framework is applicable to more general distributions

by properly adjusting the probability that is used in lemma 2.

Assume a uniform fact table with d dimensions, where each dimension has

a cardinality of C = L! and that there are T = C tuples. The root node of the

corresponding coalesced cube is depicted in Figure 4.5, where the node has been

partitioned3 into L groups. We refer to such a node as the basic partitioned node.

Group G0 contains cells that get no tuples at all, group G1 contains cells that get

exactly one tuple, group G2 contains cells that each one gets exactly two tuples, etc.

G1G0 G2

�������������
�������������
�������������
�������������

...... ...

...

G

L−1

L−1

Figure 4.5: Basic Partitioned Node; Group Gz gets exactly z tuples

Lemma 2 From a collection of C items, if we uniformly pick an item and repeat T

times, then the probability that we pick one item exactly z times is:

Pz(C, T ) =

(

T
z

)

(C − 1)z
e−T/C

3for this analysis we relax the property of the dwarf, where the cells inside a node are lexico-
graphically sorted

74



[Proof: The probability that we will pick one item exactly z times is:

Pz(C, T ) =

(

T

z

)

1/Cz(1− 1/C)T−z =

=

(

T

z

)

1/Cz(C − 1)−z/C−z(1− 1/C)T

where the quantity (1− 1/C)T can be approximated by e−T/C and the binomial
(

T
z

)

corresponds to the number of different ways the product 1/Cz(1− 1/C)T−z can be

written. ]

By applying lemma 2 to the basic partitioned node we get by substituting

T = C:

Lemma 3 A group Gz of a basic partitioned node, where z = 0 . . . L− 1, contains

≈ C
z!
e−1 cells that get exactly z tuples each

[Proof: The expected number of cells inside a group Gz is:

CPz(C,C) = C

(

C
z

)

(C − 1)z
e−1 ≈

C

z!
e−1

because z ¿ C (z is at most L− 1, where C = L!). ]

In Figure 4.5 we depict that the dominated nodes of a group Gz have exactly

z cells. From lemma 3 we know that exactly z tuples are associated with each cell of

group Gz and from the independence assumption we have that the probability that

a key is duplicated for these tuples is 1/C2 with an expected number of duplicated

keys z/C2. Even for z = L, we expect L/(L!)2 ¿ 1 duplicate cells.
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4.4.1 Left Coalesced Areas

In this section we deal with areas of the coalesced cube that are reachable through

paths that follow ALL pointers. These areas have the possibility of left coalescing

and as we’ll show they are dominated by such redundancies.

In Figure 4.6 we show a basic partitioned node which corresponds to a path P

that follows at least one ALL pointer and that it corresponds to a subset of the fact

table with T = C tuples. We refer to the corresponding sub-cube as left-coalesced

sub-cube and we show that it introduces a ”small” number of new coalesced tuples.

Obviously cells in group G0 that get no tuples offer no tuples at all. Cells in group

G1 that get only a single tuple, left-coalesce to other tuples in the structure and

offer no aggregation. This is the reason we differentiate between paths that follow

at least one ALL pointer and those which do not. Cells in groups G2, G3, . . . , GL−1

introduce only a single aggregate per cell.

G1G0 G2

���������������
���������������
�������������
�������������

...... ...

GL−1

... ...

One new Coalesced Tuple per root cell

...

Left Coalescing

G1G0 G2

...

�������������
�������������
�������������
�������������

P with at least one ALL pointer

...
L−1

...

...... ...

GL−1

...

... ...

One new Coalesced Tuple per root cell

...

Left Coalescing

L−1

Figure 4.6: Left-Coalesced partitioned node with T = C

To help clarify this, consider a cell in group G2. Since there are two fact tuples

associated with this cell (by definition) there are two paths 〈P x 〉 and 〈P x′ 〉 that
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correspond to these two tuples. Since the path P follows at least one ALL pointer,

the exact same tuples appear with another path Q that does not follow any ALL

pointer, and therefore paths 〈P x 〉 and 〈P x′ 〉 coalesce to 〈Q x 〉 and 〈Q x′ 〉. The

only aggregate that this sub-cube introduces is the aggregate of these two tuples

(located at the leaf nodes). The same holds for all groups G2, G3, . . . , GL−1 and

therefore the number of new coalesced tuples that a left-coalesced sub-cube with d

dimensions and T = C fact tuples introduces is (by using lemma 3):

NLeft(T = C, d, C) = a0 · C · d + 1

where a0 = (e− 2)/e.

[Proof: As depicted in Figure 4.6 a left-coalesced partitioned node introduces:

d(C/2!e−1 + C/3!e−1 + . . .) + 1 =

= Cd/e(1/2! + 1/3! + . . .) + 1 =

= a0 · C · d + 1

]

We can extend our analysis to the general case where T = Ck, k = logC T in

the way that is depicted in Figure 4.7. By induction we prove that:

Lemma 4 The number of new coalesced tuples that a left-coalesced area introduces
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Figure 4.7: Left-Coalesced partitioned node with T = Ck

is:

NLeft(T = Ck, d, C) =

= C ·
d−1
∑

i=1

NLeft(T = Ck−1, d− i, C) + 1 =

= a0C
k

(

d

k

)

+
k−1
∑

i=1

Ck−i

(

d

k − i

)

+ 1

4.4.2 Tail Coalesced Areas

G1G0 G2
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�������������
�������������
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...... ...

GL−1

... ...

One new Coalesced Tuple per root cell

...

Left Coalescing

G1G0 G2

...

���������������
���������������
�������������
�������������

P with no ALL pointers

...
L−1

...

...... ...

G

3 coalesced tuples

... ... ... ... ... ... ... ...

1 coalesced tuple
per root cell per root cell per root cell

Left CoalescingTail Coalescing

...
L−1

L−1

L coalesced tuples

Figure 4.8: Tail-Coalesced partitioned node with T = C
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In this section we deal with areas that are reachable through paths that do

not follow any ALL pointers. These areas have less chances for left-coalescing but

as will show the amount of coalescing is still very significant.

In Figure 4.8 we show a basic partitioned node which corresponds to a path

P that does not follow any ALL pointers and that it corresponds to a subset of

the fact table with T = C tuples. We refer to the corresponding sub-cube as tail-

coalesced sub-cube and we count the number of coalesced tuples it introduces. As

in the left-coalesced case, cells in group G0 that get no tuples offer no tuples at all.

Cells in group G1 that get only a single tuple, offer just a single aggregate, due to

tail coalescing. Cells in groups Gz, where z = 2, . . . , L− 1 introduce z +1 coalesced

tuples,the z tuples of the fact table plus their aggregation. The number of coalesced

tuples a tail-coalesced sub-cube with d dimensions and T = C fact tables introduces

is:

NTail(T = C, d, C) = b0C + a0C(d− 1) + 1

where a0 = (e− 2)/e and b0 = (2e− 2)/e.

[ Proof: The new tuples under the root tail-coalesced node (ignoring the all

cell) are:

C/1!/e + C/3!/e + C/4!/e + . . . = b0C

while the all cell points to a left-coalesced node with: a0C(d− 1) + 1 new tuples (as

explained in Section 4.4.1) ]
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We can extend our analysis to the general case where T = Ck, k = logC T in

the way that is depicted in Figure 4.9. Using induction we prove that:

Lemma 5 The number of new coalesced tuples that a left-coalesced area introduces

is:

NTail(T = Ck, d, C) =

= C ·NTail(Ck−1, d− 1, C) +
d−1
∑

i=2

NLeft(Ck−1, d− i, C) =

= a0C
k

[(

d

k

)

− 1

]

+
k
∑

i=1

ck−i

[(

d

k − i

)

− 1

]

+ b0C
k

Tuples: C
k−1

#Dims: d−1

...

Left Coalesced
area

Left Coalesced
area

...

...

Tuples: C
k−1

#Dims: d−2

area area
Tail Coalesced Tail Coalesced

Figure 4.9: Tail-Coalesced partitioned node with T = Ck

4.4.3 Total Coalesced Size

The analysis for the tail coalesced areas gives the total number of coalesced tuples

for the full coalesced cube with d dimensions, cardinality C per dimension and T
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fact table tuples4. Lemma 5 gives that:

#CoalescedTuples = O

(

T
dlogC T

logC T !

)

= O
(

T 1+1/ logd C
)

with the surprising result that even if we consider only two out the three coalescings,

the size of the coalesced cube is only polynomial w.r.t to the dimensionality of the

fact table and polynomial (and very close to linear) w.r.t to the number of tuples

in the fact table.

Additionally, if we consider the number of nodes or cells, that are introduced

in the coalesced structure, the expected complexity is multiplied by d (i.e. the

polynomial power increases by one), since we need at most d nodes and cells (ignor-

ing any prefix reduction) in order to represent each tuple. Therefore the expected

complexity for the number of cells (or the full size of the structure) is:

#TotalCells = O

(

T
dlogC T+1

logC T !

)

Finally, the suffix coalesce algorithm described in [SDRK02] visits its coalesced

tuples at most d times and therefore the time complexity for constructing coalesced

cubes is:

ComputationTime = O

(

T
dlogC T+1

logC T !

)

4When we start creating the root node of the coalesced cube there is no chance of left-coalescing,
since nothing has been created
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4.5 Algorithm for Coalesced Cube Size Estimation

In this section we extend our analytical contribution to general case of varying car-

dinalities per dimensionality. Algorithm 3 can be used to estimate the number of

coalesced tuples for sparse uniform data sets given the cardinalities of each dimen-

sion.

Algorithm 3 SparsityTraverse Algorithm
Input: d: Number of Dimensions

Card: array of dimension cardinalities
FactT: current no of fact tuples
nc: tail coalesce flag(0 or 1)

1: if FactT=0 then

2: return 0
3: else if FactT=1 then

4: return nc {here tail or left-coalescing happens}
5: else if d=0 then

6: return 1
7: end if

8: coalescedT ← 0
9: mC ← Card[d]

10: zeroT ← mC · e−FactT/mC

11: oneT ← FactT/(mC− 1) · zeroT
12: if oneT ≥ 1 then

13: x ← 1
14: while there are still fact tuples do

15: xT ←
(FactT

x
)

/(mC− 1)x · zeroT
16: coalescedT += SparsityTraverse(d-1,Card,xTuples,nc) {tail or left-coalescing may

happen here}
17: FactT -= xT
18: x++
19: end while

20: else

21: coalescedT += SparsityTraverse(d-1,Card,FactT/mC,nc) {drill-down traversal}
22: end if

23: coalescedT += SparsityTraverse(d-1,Card,FactT,0) {roll-up traversal with left-
coalescing}

24: return coalescedT

Initially the algorithm is called with the tail coalescing flag set to 1, since

there is no chance for left-coalescing (there are no tuples to coalesce to). In line 4

82



we check if there is just one tuple in the subcube where tail or suffix coalescing

happens depending on the tail coalescing flag. In lines 12- 19 we traverse the basic

partitioned node by checking iteratively how many cells get one, two, three, ... tuples

until all the available tuples for the subcube are exhausted. The quantity:

(

FactT
x

)

(mC− 1)x
·mC · e−FactT/mC

where FactT is the number of fact tuples for the current subdwarf and mC is the

cardinality of the current dimension, returns the number of cells that get exactly x

tuples

The algorithm works in a depth-first manner over the lattice and estimates

recursively the number of coalesced tuples that its sub-dwarf generates. For exam-

ple, for a three-dimensional cube abc, the algorithm in line 21 starts the drill-down

to all subcubes with prefix a and recursively it proceeds to those with prefix ab and

finally reaches prefixes abc, by estimating appropriately the number of tuples that

each subdwarf gets. When (lines 1-7) there are no more dimensions to drill-down

(or a tail or left coalescing can be identified), the drill-down over the subdwarfs with

prefixes in abc stops and the algorithm rolls-up to the subdwarfs with prefixes ab in

line 23 by setting the nC flag to 0 -since now there is possibility of left-coalescing

with the subcubes in abc-. The process continues recursively to all the views of the

lattice.

The running complexity of the algorithm is derived from the basic partitioned

node framework and is polynomial on the number of dimensions. It also requires
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minimal memory enough to accommodate the stack for performing a DFS to d

dimensions deep.

4.6 Experiments

In this section we provide an extensive experimental evaluation of our approach

based on synthetic and real data sets. We compare the results of our analytical

approach with actual results taken from our implementation of Dwarf. The exper-

iments were executed on a Pentium 4, clocked at 1.8GHz with 1GB memory. The

buffer manager of our implementation was set to 256MB.

4.6.1 Synthetic Datasets

In this section we use the following formalism. The graph entitled “Actual” in the

legend corresponds to numbers taken from our implementation, while the graph

entitled “Estim” corresponds to the estimates our analytical framework and algo-

rithm provides. We use the symbol d to refer to the number of dimensions, C to

the cardinality and a to the zipfian parameter (skewness).

Scalability vs dimensionality

Uniform Distributions In Figure 4.10 we demonstrate how the number of coa-

lesced tuples scales w.r.t to the dimensionality, for a uniform dataset. The number

of fact table tuples was set to 100,000. We used two different cardinalities of 1,000

and 10,000. We see that our analytical approach provides extremely accurate re-
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sults for large cardinalities.The reason that the error decreases as the cardinality

increases is the approximation in lemma 3, where we assume that C − 1 ≈ C. The

second observation has to do with the scalability w.r.t. to the dimensionality. The

quantity logC T which determines the exponent of d is much smaller in the case of

C = 10, 000 and therefore this data set scales better.
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Figure 4.10: Size v.s. #dims, varying cardinalities (uniform)

In Figure 4.11 we depict the time scalability –w.r.t to the dimensionality–

required to compute and store the coalesced cubes using the Dwarf approach for

the uniform datasets. We must point that the y-axis are logarithmic and that

the graphs –for both #coalesced tuples and computation time– correspond to a

polynomial scaling.

Zipfian Distributions In Figure 4.12 we depict the size scalability w.r.t to

the dimensionality for zipfian datasets for various values for the zipfian parameter

a that controls the skew. The number of fact table tuples was set to 100,000.

The cardinalities were again 1,000 and 10,000 respectively. We observe that our

estimation algorithm approximates better the zipfian coalesced cube size for large
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Figure 4.11: Time v.s #dims, varying cardinalities (uniform)

values of cardinalities than it does for smaller values of cardinalities5. On the other

side, we observe that the skew parameter affects more the dataset with C = 1, 000

than the dataset with C = 10, 000. The reason for these two observations is that

the zipfian parameter directly affects the sparsity of the cube. For lower values

of cardinalities the percentage of sparsity coalescings is significantly less than the

case of higher cardinality values. However it is evident that the zipfian distribution

scales polynomially and that our estimation algorithm can be used to get good

estimates about zipfian coalesced cubes. We must point out that from the graphs

it can be derived that the zipfian distribution affects the scalability –w.r.t to the

dimensionality– in a multiplicative way. In other words, it increases the complexity

factor but not the polynomial power.

In Figure 4.13 we depict that the scalability of the required computation time

for varying dimensionalities, cardinalities and skew parameters is again polynomial.

We observe that the skew parameter affects proportionally the computation time as

it affects the coalesced cube size.

5This behavior is observed (to a lesser degree) for uniform datasets as well
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Figure 4.12: Size v.s. #dims, varying cardinalities & zipf parameters
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Figure 4.13: Time v.s. #dims, varying cardinalities & zipf parameters

Scalability vs #TuplesIn Figures 4.14, 4.15 and 4.16 we depict the coalesced

size scalability w.r.t to the number of tuples for uniform and Zipfian datasets for

a variable number of dimensions, cardinalities and skew. We observe that in all

cases both the number of coalesced tuples and the computation time scale almost

linearly w.r.t to the number of tuples in the fact table. We must point that a

value C = 10, 000 for the cardinality offers more chances for sparsity coalescing

and therefore the required storage and time is lower than the case of C = 1, 000.

The skewness of the zipfian distributions affects sparsity coalescing in a negative

way and increases the corresponding coalesced cube size and computation time. For
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completeness we also depict the required computation time for the same cubes in

Figures 4.14 and 4.15.

In this series of experiments our estimation algorithm, although based on a

uniform assumption, provides very accurate results over all the range of the param-

eters (cardinality, number of dimensions, skewness) that we experimented on.
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Figure 4.14: Size v.s. #Tuples, varying cardinalities (uniform)
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Figure 4.15: Size v.s. #Tuples, varying cardinalities & zipf parameters
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Figure 4.16: Size v.s. #Tuples, varying cardinalities & zipf parameters
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Figure 4.17: Time v.s. #Tuples, varying cardinalities (uniform)

4.6.2 Real Datasets

For this experiment we use a real eight-dimensional data set given to us by an OLAP

company. The data set has varying cardinalities per dimension. We used various

projections on the data set in order to decrease the dimensionality and study its

Projection d Cardinalities

A 5 1300,2307,2,2,3098
B 6 1300,2307,3098,130,561,693
C 7 1300,2307,2,3098,130,561,693
D 8 1300,2307,2,2,3098,130,561,693

Table 4.3: Real data set parameters
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Figure 4.18: Time v.s. #Tuples, varying cardinalities & zipf parameters
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Figure 4.19: Size Scalability v.s. dimensionality for real data set

effect on the accuracy. For this experiment the fact table had 672,771 tuples and

two measures. Table 4.3 summarizes the parameters of each projection. Column

“Projection” denotes the name of the data set, column d the number of dimensions

and column “Cardinalities” the cardinalities of each dimension. In Figure 4.19 we

depict the estimates of our approach compared with the actual numbers taken, when

the dwarf is computed and stored. In Figure 4.20 we depict –for completeness– the

time scalability w.r.t the dimensionality of the real datasets.

Our approach overestimates increasingly more the coalesced size. The rea-
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Figure 4.20: Time Scalability v.s. dimensionality for real data set

son is that our approach currently handles only sparsity coalescing and ignores the

implication coalescing that is very apparent in high-dimensional data sets. As the

dimensionality increases such implications increase and complement the sparsity im-

plications reducing even further the coalesced size. This observation is in contrast to

what happens with zipfian datasets, which affect the sparsity of the coalesced cube

in a negative way without however creating any implications between the dimen-

sions. However real datasets are not only skewed but present a large number of

implications between values of their dimensions.

4.7 Summary

We have presented an analytical and algorithmic framework for estimating the size

of coalesced cubes, where suffix redundancies diminish the number of aggregates

that need to be stored and calculated. Our analytical framework although it uses

only sparsity coalescing, derives the surprising result, that a uniform coalesced cube

grows polynomially w.r.t to the dimensionality. This result changes the establish
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state that the cube is inherently exponential on the number of dimensions and extend

the applicability of data warehousing methods to a much wider area. We were also

able to device an efficient algorithm for estimating the size of a coalesced cube

based only its dimensions’ cardinalities and demonstrated that it provides accurate

results for a wide range of distributions. In addition we have demonstrated –using

real data– that real coalesced cubes scale even better than our analysis derives. The

reason is that the effects of implication coalescing complement the results of sparsity

coalescing that we have presented here.
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Chapter 5

Hierarchical Dwarfs (CRC)

5.1 Introduction

The introduction of the data cube operator has been both a blessing and a curse

for the analysis of large datasets using On Line Analytical Processing (OLAP) ap-

plications. It provides the means for the succinct formulation of query primitives

that are fundamental in OLAP, including histograms (aggregation over computed

categories), roll-up and drill-down operations and cross-tabulation. The data cube

operator has formalized the concepts of multidimensional aggregate views and the

hierarchies within them.

Unfortunately, the expressive power unleashed by the data cube comes at a

big cost. The number of views in the data cube increases exponentially with the

number of dimensions. As a result, a naive computation and storage of all the views

was deemed non-feasible but for toy-like data sets. Following the seminal paper

of [GBLP96] there has been a flurry of literature for handling the alarming com-

plexity of the data cube by pre-computing a subset of all possible views [GHRU97b,

HRU96b, TS97], providing approximate answers using a lossy representation of the

data cube [AGP00, VWI98], or by using some form of online aggregation [HHW97].

All these techniques, albeit their novelty, leave a taste of defeat; instead of
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attacking the problem, they rather circumvent it. Two recent proposals, namely

Dwarf [SDRK02] and QC-tree [LPZ03] have been shown to handle large data cubes

by exploiting the inherit redundancy of their structure. A lot of the aggregates in

the data cube, especially on sparse datasets, are computed by the same set of tuples.

Dwarf, identifies these aggregates through a process called suffix coalescing, while

QC-tree uses an analogous notion of cover-equivalent classes. The elimination of

multiplicities of the aggregates in the data cube has a dramatic effect in its size; the

authors of [SDRK02] have reported storing a petabyte data cube in just 2.3GB of

disk space.

The techniques of [SDRK02, LPZ03] have paved the way for managing large

data cubes by compressing their canonical structure but are both incomplete, as

they are limited to aggregates computed directly on the raw data. Nevertheless, in

most data warehouse applications, dimensional values are further annotated with

hierarchies. Their importance is outlined in [JLS99] and their presence has a pro-

found effect on the size of the data cube; in-fact it increases its computational and

storage complexity exponentially.1 One may handle hierarchies externally to the

storage engine. First the data cube of the lowest hierarchy levels for each dimension

is computed. Roll-up or drill-down hierarchical queries are then mapped into queries

on the raw data cube and their results are further aggregated to the proper level

of each hierarchy in a second step. This practice however is very costly, especially

for queries at the higher levels of a hierarchy. Such queries are very common during

1A D-dimensional data cube has 2D aggregate views. When each dimension has a hierarchy
with L levels, the number of views increases to (L + 1)D i.e. by an exponential factor of (L+1

2 )D.
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exploratory data analysis. For instance, in basket data analysis, one first aggregates

sales on a yearly or monthly basis and then drills-down to particular weeks or days

of interest. One, thus, would like to be able to support these queries directly without

the post-processing cost.

In this chapter we present a new framework called “Coalesced Rollup Cubes”

(CRC) for managing rollup data cubes; i.e. data cubes computed over all the dimen-

sion hierarchies. In CRC, not only are structural redundancies[SDRK02] eliminated

across all the hierarchical levels, but, most importantly, the amount of materializa-

tion is controlled through a novel “knob” method that requires a very small time

and storage overhead compared to flat (no hierarchies) cubes, while at the same

time significantly improving query performance.

The knob materialization targets dense areas of hierarchical aggregates that are

common in rollup cubes, for instance at the top levels of each hierarchy. Unlike view

selection algorithms that work with a-priori estimates of the size of the aggregates,

in CRC the selection of which rollup aggregates to materialize is performed in an on-

line fashion using the data at-hand. The user controls the amount of materialization

by specifying the maximum number of rollup aggregates that can be aggregated

on the fly for a given query. What is important is that this selection process is

interleaved with the construction algorithm. As a result, we retain the key benefit

of the interleaved top-down/bottom-up computation, namely the ability to prune a

lot of aggregates prior to their computation.

In our experiments we demonstrate that the online selection algorithm results

in highly compressed rollup cubes that are very fast to compute. Furthermore, the
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reduction of the size of CRC has a similar effect on query performance. A common

misconception is that full materialization of the data cube results in optimal per-

formance. In practice there is an optimal level of materialization that delivers best

query performance, after which additional data materialization results in slower re-

sponse times due to congestion in memory buffers and lack of locality. In CRC, the

selection of the rollup aggregates to materialize is performed based on the I/O cost

of consolidating finer-grained aggregates on the fly for a user query. This results in

an extremely compact structure which exhibits better access locality during queries.

In one of our experiments, compared to materializing the full rollup cube, we ob-

served more than six times speedup in creation (768sec vs 4860sec) and eight times

reduction in storage (806MB vs 6.6GB) while at the same time query performance

increased by a factor of two(191sec vs 282sec) –for 1,000 queries–. Compared to

the Dwarf techniques that materialize the raw data cube and handle hierarchical

queries externally, the optimized CRC structure is about seven times faster during

queries(191sec vs 1331sec) –for 1,000 queries–, while requiring less than 1% more

time and just 5% more space to compute, although it handled ≈ 44 times more

views (11,200 vs 256).

5.2 Framework

We first formally define the properties of our Coalesced Rollup Cube structure

(CRC) and then present a small example of a CRC structure. Finally we present

in detail the notion of the knob parameter in our CRC structure, and how it is
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StoreId Code Name Sales

S1 C2 N1 $10
S2 C3 N2 $30
S3 C1 N1 $60

Table 5.1: Fact Table w/ hierarchies

S2 R1 R2S1 S3

C2 C1C3

$30

$60

$10

Store Dimension

N2  $30

N1  $60

N1  $10

Product Dimension

Customer Dimension

[2]

C1 C2 C3

[1]

N1  $70 N2  $30 $100

(1)

(2)

(3)

(4)

(5)

(6)

[1]

G1 G2

[2]

(7)

(8)

(9) (10)

(11)

[1]

[1]

[1]

[1]

[1]

[1]

[1]

Figure 5.1: CRC example with knob=2 & Hierarchical Pruning

calculated. In our discussion throughout the chapter we will commonly point to

Figure 5.1, which depicts the CRC for the fact table of Table 5.2 and the hierar-

chies/metadata of Table 5.2.

5.2.1 Properties of CRC

The CRC data structure for storing rollup cubes has the following properties. It is

a directed acyclic graph (DAG) with just one root node and has exactly D levels,

where D is the number of the cube’s dimensions. Each level i is conceptually (only)

partitioned into Li fragments, where Li is the number of hierarchy levels of dimension

i. The fragments are considered ordered based on the hierarchy level they correspond

to, starting from the most detailed level and moving towards the least detailed
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level of the hierarchy. Nodes at the D-th level (leaf nodes) contain cells of the

form: [key, aggregateV alues], while nodes in levels other that the D-th level (non-

leaf nodes) contain cells of the form: [key, pointer+]. Cells containing more than

one pointers are termed as split cells, while cells containing a single pointer are

termed as normal cells. Split cells may only appear in nodes that do not belong

to the first (most detailed) fragment of a level. Thus, their presence is limited

to dimensions which contain more than one hierarchy levels. Based on the above

discussion, we define as the content of a cell Ci, belonging to a node N , to be either

the aggregateValues of Ci or the set of pointers of Ci, depending on whether Ci

stores a pointer, a set of pointers or aggregateValues.

Hierarchies Declared Metadata
Store Product Customer Dimension Metadata

ALL

↑
Retailer

↑
StoreId

ALL

↑
Group

↑
Code

ALL

↑
Name

Store

Store

Store

Product

Product

Product

Customer

Customer

S1→ R1
S2→ R1
S3→ R2
C1→ G2
C2→ G1
C3→ G2

N1
N2

Table 5.2: Example of declared Hierarchies

A normal cell in a non-leaf node of level i points to a node, which it dominates,

at the first fragment of level i + 1. A split cell in a non-leaf node of level i points

to a set (of size between 2 and the value of the knob parameter) of nodes, which

it dominates, at the first fragment of level i + 1. Each node also contains a special

cell, which corresponds to the cell with the pseudo-value ALL as its key. For nodes

that contain more than one cells, their special cell contains either a pointer to a
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node in the next fragment of the node’s level, if the node does not belong to the last

fragment of its level, or, otherwise, either a pointer to a node at the first fragment

of level i + 1, if this is a non-leaf node, or aggregateValues, if this is a leaf node.

Hierarhical Pruning If the node contains a single cell, then the content (see

definition above) of the ALL cell is identical to the one of that single cell. In this

case, some hierarchy levels are “shortcut” (see the dashed pointers in Figure 5.1)

and not materialized, in a process called hierarchical pruning. The reasoning behind

hierarchical pruning is that the materialization of the remaining, less-detailed levels

does not perform any aggregation and would only introduce redundancy in the

structure. Hierarchical pruning may occur at any level of the CRC structure.

Cells belonging to nodes at fragment j of the i-th level of the structure contain

keys that are values of the cube’s i-th dimension and which correspond to the j-th

hierarchy level of this dimension. No two cells within the same node contain the

same key value. Each cell Ci at the i-th level of the structure, corresponds to the

sequence Si of i ≤ |Si| ≤
∑i

j=1 Lj keys found in a path from the root to the cell’s

key. This sequence corresponds to a group-by with the last (D − i) dimensions

unspecified. All group-bys having sequence Si as their prefix, will correspond to

cells that are descendants of Ci in the CRC structure. For all these group-bys, their

common prefix will be stored exactly once in the structure (prefix reduction).

When two or more nodes (either leaf or non-leaf) generate identical nodes

and cells to the structure, their storage is coalesced, and only one copy of them is

stored. This happens, when the exact same tuples contribute the same aggregates to
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different group-bys ([SDRK02]). In such a case, the coalesced node will be reachable

through more than one paths from the root, all of which will share a common suffix.

For example, in node 3 at the bottom of the Customer level of Figure 5.1, the

first cell of the node corresponds to the sequences (among others) 〈S1, C2, N1〉 and

〈ALL,ALL,C2, N1〉, which share the common suffix 〈C2, N1〉. If a node N is a

coalesced node, then any node X which is a descendant of N will also be a coalesced

node, since it can be reached through multiple paths from the root.

A traversal in the CRC structure follows a path of length at least D and at

most
∑

i Li (where Li is the number of hierarchy levels of dimension i) starting from

the root to a leaf node. For each dimension i, the path contains at most Li ALL

values, if the dimension is left unspecified (fewer than Li ALL values may occur in

this case due to the hierarchical pruning process). If a value V at the j-th fragment

is specified, in the absence of hierarchical pruning in this path at this level, the path

for the i-th dimension contains j − 1 ALL values, followed by the V value. In the

presence of hierarchical pruning at this path and in this level, this path for the i-th

dimension contains at most j − 1 ALL values, the last of which is the ALL cell of

a node containing a single cell C, and where V is an ancestor of C in the hierarchy

of the i-th dimension. The CRC structure itself constitutes an efficient inter-level

indexing method and requires no additional external indexing.

We now define some terms which will help in the description of the algorithms.

The cube of a node N is defined to be the node itself and all the cubes of the nodes

dominated by the cells of N . The cube of a node X that is dominated by some cell

of N is called a sub-cube of N . Since leaf node cells at the last fragment dominate
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no other nodes, the cube of such a node is the node itself.

5.2.2 A Simple CRC Example

We now explain the properties of the CRC structure using the sample CRC of Figure

5.1.

Levels, Fragments and Cells. The CRC of Figure 5.1 is a rollup cube using the

aggregate function sum and containing a total of (2 + 1) × (2 + 1) × (1 + 1) = 18

views. The nodes are numbered (inside parentheses, located at the lowest left part of

each node) according to the order of their creation. Each node also contains another

number inside brackets, which is related to the knob value of the node, and which

will be explained in Section 5.2.3. The height of the CRC structure is equal to 3,

one for each of the Store, Product and Customer dimensions, which contain 2, 2 and

1 hierarchy levels, respectively.2 The root node (node 1) contains cells of the form

[key, pointer], one for each distinct value of the first dimension at its most detailed

(bottom-most) hierarchy level. The pointer of each cell points to a node on the next

level containing all the distinct values of the next dimension that are associated

with the cell’s key. In the data of Table 5.2 the product with Code C2 is the only

product associated with S1 (first tuple). Since the cell S1 of the root contains a

pointer to node 2, S1 dominates node 2. Each node that does not correspond to

the least detailed level of the last dimension (lowest level in CRC) has a special

ALL cell, shown as a small gray area to the right of the node, holding a pointer and

2The top-most ALL levels of Figure 5.1 are not counted in this discussion as they are directly
computed in the structure; the rest of the levels pose new challenges.
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corresponding to all the values of the node. For example, node 1 that corresponds

to the StoreId level of the Store hierarchy has an ALL cell that points to node 6,

which corresponds to the Retailer level. Moreover, since node 6 corresponds to the

top-most level of its hierarchy (Retailer level), its ALL cell in Figure 5.1 points to

node 9 (corresponding to the Code hierarchy level for the Product dimension). In

this figure two split cells exist, namely cells with keys R1 and G2 in nodes 6 and

10, respectively. The pointers of these split nodes are marked as bold, to easier

distinguish them from the other pointers in the figure.

Paths, Queries and Hierarchical Pruning. The path 〈ALL,R2, C1, N1〉 leads

to the cell [N1 $60] which contains the aggregate value of the sales of product C1

that Customer N1 has bought from stores supplied by retailer R2. 〈ALL, ALL,

ALL, ALL, ALL〉 in our example leads to the total sales (group-by NONE) of

$100 (the ALL cell of node 11). Moreover, the path 〈S1, C2, N1〉 leads to the cell

[N1 $10] of node 3, and corresponds to the sum of the prices paid by customer N1

for product C2 at store S1. Note that the same path would have been followed

if we wanted to find the sum of prices paid by customer N1 for products of the

group G1 at store S1, due to the process of hierarchical pruning. Nodes 2, 4 and

7, which all correspond to the Product dimension and contain a single cell, have

their ALL pointers “shortcut” to the dimension level Customer below by ignoring

the remaining hierarchy level (the Group level) of the dimension.

The reader can observe that the four paths 〈S1, C2, N1〉, 〈ALL,ALL,C2, N1〉,

〈ALL,R1, C2, N1〉, and 〈ALL,ALL,ALL,G1, N1〉, the two hierarchically pruned
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paths 〈S1, ALL,G1, N1〉, 〈S1, ALL,ALL,N1〉 (answered by the path 〈S1, ALL,N1〉)

and the hierarchically pruned path 〈ALL,R1, ALL,G1, N1〉 (answered by the path

〈ALL,R1, ALL,N1〉), whose values are extracted from processing just the first tu-

ple of the fact-table, all lead to the same cell [N1 $10] of node 3, which, if stored in

different nodes, would introduce suffix redundancies. By coalescing these nodes, we

avoid such redundancies.

5.2.3 Knob Materialization

In huge real data sets, we expect that the cost to fully materialize the rollup cube

will be prohibitive. We therefore need to develop techniques that effectively reduce

the amount of materialization performed, and therefore the size of CRC, without

sacrificing, if possible, query performance.

The work in [SDRK02] proposed the use of a granularity parameter Gmin as a

solution to effectively reduce the size of its Dwarf structure. This technique is heavily

utilized in the lower parts of its Dwarf structure, where the data is typically very

sparse, due to their proposed dimension ordering (order dimensions in decreasing

cardinalities). The Dwarf algorithms calculate and store the content (sub-cubes) of

cells only when this calculation aggregates at least Gmin tuples.

We propose a technique that controls the amount of performed materializa-

tion termed knob, which is orthogonal to the Gmin technique, and is used in dense

hierarchical areas of the rollup cube. Typically, higher hierarchical levels are less

detailed and contain areas that are considerably more dense and compact than those
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at lower hierarchical levels. Our new materialization method avoids materializing

certain such dense areas, based on a well-defined cost model that bounds the amount

of online aggregation needed to calculate these areas. As we will demonstrate in this

chapter, this method not only results in dramatic storage and computation time sav-

ings, but also provides significantly faster response times in queries (due to improved

buffering and locality).

Knob Cost Model and Materialization. In this section we describe the knob

cost model, which associates a knob value to each node of the CRC structure,

depending on the worst-case cost of queries that address the sub-cube that this node

dominates. This value is used to control the amount of performed materialization

by avoiding the computation and storage of some sub-cubes which can be calculated

on-the-fly with a cost (in the number of generated subqueries) of at most equal to

the knob threshold. Any query that targets a non-materialized sub-cube, is broken

in multiple queries that need to be further aggregated in run-time.

To calculate the knob value at each node in the CRC structure, we first assign

a knob value V = 1 to all leaf nodes. For non-leaf nodes, we then need to consider

the maximum number of generated subqueries to which any point query through

that node will be split into, and whose results will need to be aggregated in run-time.
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Therefore, the knob value of a non-leaf node N should be set to:

V (N) = max
cell ci in N











































V (ci.sub-cube) ci normal cell

∑

Sij of ci

[V (Sij)] ci split cell

In the above equation, V (ci.sub-cube) denotes the knob value of the only sub-cube

dominated by a normal cell ci, while V (Sij) denotes the knob value of the j-th sub-

cube Sij dominated by a split cell ci. This model assigns very small costs to lower

areas of the cube that can be aggregated efficiently during run-time while, through

the combination of the max operation over the sum of the costs of the split nodes,

denser areas that are difficult to aggregate in run-time get monotonically higher

values.

5.3 CRC Construction and Updates

5.3.1 CRC Construction

The CRC construction algorithm is motivated by the ideas of [SDRK02], but

is considerably more complex due to the significantly larger number of views that

exist in the rollup cube, the dependencies between these views because of the de-

fined hierarchies, the introduction of our knob metric to control the amount of

materialization, and the hierarchical pruning property. By far the most important

advantage of the Dwarf structure in [SDRK02] was a property called suffix coalesc-
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Algorithm 4 ExpandRollupCube Algorithm
Input: sorted fact table, D : number of dimensions
1: Create all nodes and cells for the first tuple
2: active path = root-to-leaf path of created nodes
3: while more tuples exist unprocessed do

4: current tuple = extract next tuple from sorted fact table
{current tuple may reveal that some nodes will not get additional cells}

5: Moving bottom-up in active path, call KnobMaterialize(N) for nodes that will not get addi-
tional input

6: Create necessary nodes and cells for current tuple
7: Assign knob value = 1 to new nodes
8: active path = root-to-leaf path of last inserted tuple
9: end while

10: Moving bottom-up in active path, call KnobMaterialize(N) for nodes that will not get addi-
tional input

ing, which was based on the observation that, especially in sparse datasets, there

are multiple group-bys (views) that are produced by the same set of the fact table’s

tuples. These group-bys would create identical copies in the data structure. The

algorithms in [SDRK02] managed to identify such group-bys and eliminate this type

of redundancy before their computation, therefore not only reducing the size of the

compressed data cube, but also reducing the running time of their algorithms, since

the redundant parts of the structure did not have to be calculated.

The construction of the CRC structure is based on three interleaved processes:

the ExpandRollupCube, the KnobMaterialize and the SuffixCoalesce algorithms.

These algorithms will be presented shortly in detail. Briefly, the ExpandRollupCube

parses the tuples in the sorted fact table and creates all the nodes and cells in the

CRC structure to store the dimension coordinates and values of the input tuples. It

is important to note that the ExpandRollupCube algorithm creates nodes and cells

that correspond to the most detailed hierarchy level of each dimension. To calculate

and store all the other views in the rollup cube, the KnobMaterialize algorithm is
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used. Finally, this algorithm requires merging/aggregating the information stored

in different sub-cubes. The SuffixCoalesce algorithm performs this merging process.

The ExpandRollupCube Algorithm. At the beginning the fact table is sorted

based on the dimension ordering of decreasing cardinalities. Then the Expand-

RollupCube algorithm, presented in Algorithm 4, parses the tuples of the fact table

one by one, and creates all the necessary nodes and cells in the CRC structure to

store the dimension coordinates of each tuple. These dimension coordinates corre-

spond to the lowest (most-detailed) hierarchy level of each dimension. Due to the

sorting of the tuples, it is trivial to figure out at each step whether there will be

nodes in the CRC structure that will receive no more input. This is simply done by

viewing the coordinates of the current and the immediately previously inserted tu-

ple. The aggregate values of each of these tuples can be reached from a root-to-leaf

path of length exactly D. If we consider the node where these two paths will diverge,

for all the nodes of the previously inserted tuple lying below the diverging node, it

is certain, due to the sorting of the tuples, that they will receive no more input. For

these nodes, moving bottom-up, we therefore need to calculate the content of their

ALL cell. This is accomplished by a call to the KnobMaterialize algorithm. Any

node created by the ExpandRollupCube algorithm is assigned a knob value of 1.

As an example, consider the hierarchy definitions and metadata of Table 5.2,

the fact table of Table 5.2, and the resulting CRC structure in Figure 5.1. The

nodes in this figure are numbered based on their order of creation. We first process

the tuple 〈S1, C2, N1, 10〉, create the nodes 1,2 and 3 (one for each dimension) and
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insert one cell in each of these node. We then process the tuple 〈S2, C3, N2, 30〉.

Nodes 2 and 3 will now certainly not receive any additional input and, therefore, the

KnobMaterialize algorithm is called first for node 3, and then for node 2. Afterwords,

a cell will be added to node 1 to store the S2 coordinate, and nodes 4 and 5 will be

created.

The KnobMaterialize Algorithm. The KnobMaterialize algorithm, presented

in Algorithm 5, is used to calculate the sub-cube of the ALL cell of each node. If the

node contains a single cell, then hierarchical pruning happens here, and the content

of the ALL cell is the same as the content of the lone cell in the node (Lines 2-4).

Otherwise, in the presence of hierarchies, when we create the sub-cube pointed by

the ALL cell of a node which does not belong to the last fragment of its hierarchy

level, we first move one level up in the current dimension’s hierarchy, and map each

key value of the cells to be merged to their parent values in the hierarchy (Lines 6-9).

The metadata manager provides us with this parent mapping (Line 7). We then

calculate the knob value of each cell in the new node (of the less detailed level) and

decide whether to perform or avoid the merging process of the corresponding sub-

cubes (Lines 10-19). Finally, if the cells belong to the upper hierarchy level of their

dimension, then we cannot move to a higher hierarchy level, and the SuffixCoalesce

algorithm is called to merge/aggregate the data of the cells’ sub-cubes (Line 25).

As an example consider node 9 in Figure 5.1. This node contains coordinates

of the second dimension (Product), at its most detailed hierarchy level. When we

compute the content of the ALL cell of the node, we want to move one level higher
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in the Product hierarchy, to the Group level. Based on the metadata of Table 5.2,

the products C1 and C3 correspond to group G2, while the product C2 corresponds

to group G1. Therefore, node 10 is created with 2 cells containing the G1 and G2

values. The sub-cube of G2 is not materialized, since the knob value of the cell is 2

(the sum of the knob values of nodes 5 and 8). The sub-cube of G1 is produced by

merging the single sub-cube pointed by the cell C2 of node 9. In this case, as we will

show, the SuffixCoalesce algorithm trivially recognizes that the resulting sub-cube

will be identical to the input sub-cube, and therefore the G1 cell points to the root

of the input sub-cube (node 3). The knob value of node 10 is therefore equal to 2,

which is the maximum knob value among all cells of the node. Finally, for the ALL

cell of the node, we need to call the SuffixCoalesce algorithm, since the new node

belongs to the last fragment of its dimension.

The SuffixCoalesce Algorithm. The SuffixCoalesce algorithm is presented in

Algorithm 6. It requires as input a set of cubes (inputCubes) and merges them

to construct the resulting cube. The algorithm makes use of the helping function

calcAggregate, which aggregates the values passed as its parameter.

SuffixCoalesce is a recursive algorithm that tries to detect at each stage whether

some sub-cube of the resulting cube can be coalesced with some sub-cube of in-

putCubes. If there is just one cube in inputCubes, then coalescing happens imme-

diately, since the result of merging one cube will obviously be the cube itself. The

algorithm then repeatedly locates the cells toMerge in the top nodes of inputCubes

with the smallest key Keymin which has not been processed yet. A cell in the result-
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ing cube with the same key Keymin needs to be created, and its content (sub-cube or

aggrValues) will be produced by merging the contents of all the cells in the toMerge

set. There are two cases:

1. If we are at a leaf node and at the last fragment, we call the function calcAggre-

gate to produce the aggregate values for the resulting cell.

2. Otherwise, coalescing cannot happen at this level. We call the SuffixCoalesce

algorithm recursively to calculate the cube of the current cell, and check if

parts of the structure can be coalesced at one level lower.

At the end, the ALL cell for the resulting node is created, either by aggregating the

values of the node’s cells (if this is a leaf node at the last fragment) or by calling

the KnobMaterialize algorithm, with the sub-cubes of the node’s cells as input.

Memory Requirements. The memory requirements of the overall algorithm are

quite small since the only memory needed is that required to keep open nodes (i.e.

nodes where we are still inserting cells). Since in the worst case we will descend all

D dimension levels of the structure when creating the ALL cell of the root node, the

memory requirements of the algorithms are: MaxMemoryNeeded = c ·
∑D

i=1 Cardi,

where c is the size of the cell and Cardi is the cardinality of dimension i at its

most detailed hierarchy level. We must point that the hierarchy levels inside the

dimensions do not change the memory requirements since nodes that correspond

to lower hierarchical levels are closed (and the memory required to maintain them

released) before proceeding to higher level nodes.
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Algorithm 5 KnobMaterialize Algorithm
Input: CubeSet: Set of cells pointing to the sub-cubes to merge (each sub-cube corresponds to

one cell)
1: MappedCubeSet ← ∅
2: if CubeSet contains just a single cell then

3: return Content0 {Hierarchical Pruning happens here}
4: end if

5: if cells in CubeSet are not in last fragment of their hierarchy then

6: for each cell [Keyi, Contenti] of CubeSet do

7: fatherMapping = getFatherMapping(Keyi)
8: MappedCubeSet.insert(cell [fatherMapping,Contenti])
9: end for

10: for cells c with the same keyi in MappedCubeSet that point to nodes Sj do

11: {calculate the knob value if we do not materialize}
knob1 ←

∑

Sj
[knob(Sj)]

12: if knob1 > knob-threshold then

13: {create the sub-cubes in lower levels of the CRC Structure}
create a normal cell using SuffixCoalesce(c)

14: temp-knob(new cell)=maxSj
[knob(Sj)]

15: else

16: {avoid materialization}
Create a split cell that points to all its underlying sub-cubes

17: temp-knob(new cell)=knob1

18: end if

19: end for

20: Create a node N for the current hierarchy fragment with all the new cells
21: {determine the knob value of the node}

knob(new node)=max [temp-knob(new cells)]
22: {recursively proceed to higher hierarchical levels}

Create the ALL cell of N with KnobMaterialize(MappedCubeSet)
23: return N
24: else

25: return SuffixCoalesce(CubeSet) {Finished merging for hierarchy}
26: end if

5.3.2 Updating of CRC

In this section we describe how the CRC structure can be incrementally updated,

given a set of delta tuples from the data sources. The incremental update process

is based on the three interleaved algorithms that are used to initially construct the

CRC structure. In a nutshell, the incremental update procedure merges the sorted

delta fact table with the old CRC and stores the resulting CRC in the same file

as the old one. During this process, our algorithms are able to efficiently identify
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Algorithm 6 SuffixCoalesce Algorithm
Input: inputCubes = set of cubes
1: if only one cube in inputCubes then

2: return cube in inputCubes {coalescing happens here}
3: end if

4: while unprocessed cells exist in the top nodes of inputCubes do

5: find unprocessed key Keymin with minimum value in the top nodes of inputCubes
6: toMerge = set of Cells of top nodes of inputCubes having keys with values equal to Keymin

7: if in the last level and fragment of structure then

8: write cell [Keymin calcAggregate(toMerge.aggrValues)]
9: else

10: write cell [Keymin SuffixCoalesce(toMerge.sub-cubes)]
11: end if

12: end while

13: create the ALL cell for this node either by aggregation or by calling KnobMaterialize
14: return position in disk where resulting cube starts

those sub-cubes that are not affected by the update tuples and remove them from

consideration, thus significantly reducing the update time. For the remaining sub-

cubes, new nodes may need to be created to accommodate the insertion of new cells

caused by the update tuples.

All three algorithms update an already existing node, and only if there is not

enough space in the existing node to hold all the cells, they allocate a new node

and release the old one, thus making it available for allocation in subsequent steps.

Due to the complexity of the algorithms (all three presented algorithms need to be

modified) and the space limitations, we only sketch the necessary modifications.

UpdateRollupCube. This algorithm is similar to the ExpandRollupCube algo-

rithm. It continuously parses the tuples in the sorted delta fact table and traverses

the CRC structure to update existing aggregate values and create nodes and cells

in areas that are not materialized, in the same way ExpandRollupCube does. If a

new cell needs to be inserted in an existing node, then a new node is allocated with
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enough space to hold all the cells and the old node is deleted, making the storage

it occupied available for allocation. Our algorithms try to populate these deleted

areas in subsequent steps of the update algorithm, in order to reduce the size of

the updated CRC structure. When there are no more delta tuples that correspond

to a node, then the UpdateKnobMaterialize algorithm is called in order to create

the hierarchical levels of that node, with input the old hierarchy level and the cells

to be merged divided into two regions, the cells that were not updated by the Up-

dateRollupCube and the new or updated cells. We must point out that cells from

A may participate in the merging phase only when these cells have the same father

values with cells in region B.

UpdateKnobMaterialize. This algorithm is used to update the sub-cube of the

ALL cell of each node. The difference with KnobMaterialize is that the input set of

the cells to be merged is divided into two regions. The first region A contains cells

that were not updated and the second region B contains updated or new cells. This

is used to guide the traversal only to areas of the cube that need updating. The

algorithm works like KnobMaterialize by mapping keys to their father values and ei-

ther merges the corresponding sub-cubes using the UpdateSuffixCoalesce algorithm

for normal cells or avoids materialization and creates split cells if the corresponding

knob value is less than the knob threshold. The merging only happens for father

keys with cells in region B, otherwise there is no need to update the corresponding

sub-cubes. As in UpdateRollupCube, cells from A may participate in the merging

phase only when these cells have the same father values with cells in region B. More-
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over, the process may eliminate from some existing nodes the hierarchical pruning

pointers, due to the insertion of new cells in the nodes.

UpdateSuffixCoalesce. This algorithm is used to perform the merging of sub-

cubes and its main difference with the SuffixCoalesce algorithm is that its input

set of cells to merge is divided in two regions. Like in the UpdateRollupHierarchy

algorithm the region A contains cells that were not updated and region B contains

new or updated cells. The algorithm merges only areas of the sub-cube with at

least one cell in region B (no merging is performed in the case where all the cells

are in region A). When the UpdateSuffixCoalesce algorithm is called to update a

coalesced sub-cube, it first checks to see if the area is still coalesced (i.e. there is

only one cell to merge) and if this is the case, it returns immediately. Otherwise, the

UpdateSuffixCoalesce algorithm creates a new sub-cube. The last case corresponds

to the situation where a coalesced area is no longer coalesced because of the deltas.

5.3.3 Handling Complex Hierarchies

Some hierarchies are more complex than the ones that we have presented so far.

Consider for example the lattice of Figure 5.2, where we demonstrate two different

aggregation paths for the time hierarchy.

Figure 5.3 depicts, conceptually, how we can create nodes of CRC in different

fragments by following the paths in the graph hierarchy. At each step we can create,

from any node N , nodes that correspond to all possible immediate parent hierarchy

levels based on the graph hierarchy. However, in our work we prefer to serialize
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Figure 5.3: Conceptual representation of non-flat
hierarchy
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Figure 5.4: Real implementation of non-flat hierarchy

the hierarchy levels. Figure 5.4 demonstrates an example of such a serialization.

By traversing the graph hierarchy in a Depth-First manner we construct the cor-

responding nodes and serialize them. The metadata manager can then be used to

locate any level at query time.

5.4 Hierarchical View-Cover

In this section we present the Hierarchical View Cover (HVC) approach which stores

all the views of the rollup cube in a non-redundant way. The alternative way of

storing the full rollup cube by treating each hierarchical level as a different dimension

is not scalable and requires significantly more space and time. The number of views,

when treating each single level as a different dimension is: 2
∑

Li , while the number

of views that hierarchical view cover stores is:
∏

(Li + 1), where Li is the number
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of levels for dimension i. For example, even for the three-dimensional data set in

Table 5.2, the number of views that hierarchical view cover handles and stores is

18 (= 3 · 3 · 2), while the number of views if we treat each hierarchical level as a

different dimension is 32(= 22+2+1).

The HVC approach can be applied to any method that handles flat (with no

hierarchies) cubes in order to handle hierarchical dimensions and is used in this

chapter as a reference point. In the following, without loss of generality, we describe

HVC using the Dwarf structure([SDRK02]) to handle flat cubes.

Partial Dwarfs. To store all the views of the rollup cube, we create a forest of

Partial Dwarfs, each of which will store a subset of the cube’s views. There is a

single Dwarf cube for each combination of hierarchy levels from different dimensions

(except for the top-most ALL level). All but the first of these Dwarfs will be partial

in the sense that they do not store every possible combination of views. This is

done to avoid duplicating the storage of some views and will be made clear with an

example.

Table 5.2 contains the declaration of the hierarchies imposed on the Store,

Product and Customer dimensions of a sample dataset. There are 18 possible

views (Table 5.3) defined in the rollup data cube in the presence of these hier-

archies. For instance the view Retailer.Code.Name aggregates the measure(s)

on three dimensions: Store (at the Retailer level), Product (at the finer Code

level) and Customer (at the Name : level); i.e. corresponding to the group-by:

Store.Retailer, Product.Code, Customer.Name.
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Partial
Dwarf

Calculated
Views

Not Calculated
Views

1

StoreId.Code.Name,
StoreId.Code,

StoreId.Name, StoreId,
Code.Name,

Code, Name, None

2
StoreId.Group.Name,

StoreId.Group,
Group.Name, Group

StoreId.Name, StoreId,
Name, None

3
Retailer.Code.Name,

Retailer.Code,
Retailer.Name, Retailer

Code.Name, Code,
Name, None

4
Retailer.Group.Name,

Retailer.Group

Retailer.Name,
Group.Name,Retailer,
Group,Name, None

Table 5.3: HVC for Dataset of Table 5.2

To store the 18 views of the rollup cube, we create 4 Dwarfs, as shown in

Table 5.3, and store in each Dwarf a subset of the possible views (the original

Dwarf [SDRK02] of a set of D attributes stores all 2D views on every combination

of the attributes). We here note that we cannot directly use the Dwarf structure

as presented in [SDRK02] to store all 18 views, and that the definition of the 4

Dwarfs is not unique. Any non-redundant set of Dwarfs that covers all the views

of the rollup data cube is acceptable as a solution and constitutes a Hierarchical

View Cover (HVC). However, if the i-th dimension contains Li hierarchy levels,

then we can show that at least
∏D

i=1 Li Dwarfs need to be created to cover all the

views. The proof is based on the fact that each Dwarf of D dimensions can only

store views that contain a subset of these D dimensions. In this example, at least

2× 2× 1 = 4 Dwarfs need to be created. However, these are constructed partially,

to avoid duplicating the storage of some views. Table 5.3 presents the views that

are stored at each Partial Dwarf, and the ones that are not calculated or stored, to
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avoid their duplication. These Partial Dwarfs can be computed by modifying the

algorithms of [SDRK02] to “block” some recursive calls (calls to the SuffixCoalesce

algorithm) that create these views.

To understand why the HVC presented in Table 5.3 is a good candidate cov-

ering, one has to recall that the computation of each Dwarf requires an initial sort

of the fact table (a single sort using the combined key composed by all dimension

values). We can create the fact tables for Dwarfs 2,3 and 4 (in the specified order)

from the fact tables of Dwarfs 1,1 and 3 (respectively) by using the declared meta-

data (ex: Table 5.2) to map the values of each hierarchy to the next level. Notice

that the fact tables for Dwarfs 2 and 4 will then be partially sorted, because the

initial dimension is the same as in the Dwarfs 1 and 3. Thus, the sorting operations

for these Dwarfs are less costly.3

To construct the HVC of Table 2 we use a simple enumeration process. We

first set the fact table of the first Dwarf to contain the most detailed levels of each

dimension. We then enumerate all the possible combinations of hierarchy levels,

by changing more quickly the hierarchy level of the last dimension, and slower the

hierarchy levels of the first dimension, and assign each such combination one-by-one

to the Partial Dwarfs. The advantage of this enumeration is that the duplication of

views can be avoided by just looking at the definition of the latest Partial Dwarf.

CRC vs HVC. Any covering of the rollup cube’s views using a set of Partial Dwarfs

has certain disadvantages. First of all, there are cases when some prefix redundancies

3We assume that the mapping of the dimension values to higher levels of its hierarchy can be
arbitrary and is not necessarily order preserving.
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are not exploited. For example, views containing the hierarchy level StoreId exist

in both the first and the second Dwarf. Moreover, by using multiple Dwarfs we

cannot remove all the suffix redundancies of the rollup cube. Suppose for example

that some retailer supplies a single store. Then the views containing this store in

the Partial Dwarfs 1 and 2 (in the StoreId and Retailer levels correspondingly)

will be identical, and their storage will be duplicated. On the other hand, the CRC

structure does not suffer from these drawbacks, since it stores all the views in a

single structure and manages, therefore, to eliminate all possible prefix and suffix

redundancies.

5.5 Experiments

In this section we provide an evaluation of Dwarf, HVC and our proposed CRC

structure for managing rollup data cubes. We used a real dataset provided by an

OLAP company, whose name is not disclosed due to our agreement. The eight-

dimensional dataset has hierarchies on four dimensions and its characteristics are

summarized in Table 5.4. All the experiments were performed on a Pentium 4 PC

clocked at 1.8GHz and with 1GB of memory. The memory available to the buffer

manager of our implementation was limited to 256MB.

In our experimental evaluation we compare all techniques on all terms: query

performance, computation time and required storage. We further include in the pre-

sentation the corresponding numbers for simply storing the base cube comprised just

of the views corresponding to the most detailed hierarchy levels of each dimension
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Dimension Level Cardinalities

A 7458 → 2265 → 737 → 188 → 32 → 11
B 2765 → 91 → 31 → 8
C 3857 → 841 → 111 → 16
D 213 → 68 → 8
E 3247
F 660
G 4
H 4

Table 5.4: Real Dataset Hierarchies

(without hierarchies) using the Dwarf algorithm presented in [SDRK02]. We denote

this implementation as Base Dwarf. This provides better insight on the benefits of

materializing the rollup cube (using our CRC structure or HVC). When the base

cube is used, rollup or drilldown hierarchical queries induce a post-processing cost

because aggregation to the proper level of each hierarchy has to be performed in an

additional step. Finally, we perform an experimental evaluation of the incremental

update algorithm of CRC.

Workload Description. In OLAP applications, the user typically performs a

series of exploratory queries to identify areas of interest, and then drills down (or

rolls up) to more (or less) detailed data. A very common operation in this case, is

to use a children(x) function to specify interest to all the children for a given value

x in a hierarchy level, and then drill down to those children. For example, in a

sample T ime hierarchy, the value of children(2003) could be the twelve months of

year 2003.

We used two workloads that try to emulate this behavior by generating queries

that reference parts of the cube. The difference in the two workloads lies in the
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Probabilities
Workload #Queries All DD/RU Children Width

A 1,000 60% 50% 30% 5%
B 1,000 60% 0% 30% 5%

Table 5.5: Workload parameters

amount of rollup/drilldown queries. Workload A contains rollup/drilldown queries

with a probability 1/2, i.e every other query is either a rollup or a drilldown query.

Workload B contains only random ad-hoc queries without any rollup or drilldown

queries. We believe that a real query workload lies somewhere in the middle. Both

workloads contained 1,000 queries and their parameters are presented in Table 5.5.

Each query can be described as a path 〈DA, DB, ..., DH〉, where Di is a subpath

that corresponds to dimension i and has the pattern 〈li,1, li,2, ...li,k〉, where li,j is the

level j of dimension i. The query specifies at each li,j either the pseudo-value ALL,

or a set of “points”. A point can either be a literal value of that level or all the

children values of a father value in the immediately higher level. The column “ALL”

represents the probability of Di not participating (being specified) in the query. In

the case where Di participates, a level li,j is uniformly chosen from all levels of Di,

and a set of values is generated for that level. The “Width” column corresponds to

the number of values that are generated and in our case it is uniformly distributed

over 5% of all possible values for the level. The “Children” column corresponds to

the probability of asking for the children of a father value and in our case is 30%.

The “DD/RU” column depicts the probability for a Drill-Down or a Roll-Up query.

Such a query is created by rewriting appropriately the immediately previous query.
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Figure 5.5: Computation vs Knob

Knob Evaluation. We first evaluate the effect of the knob materialization on

the computation time, the storage requirements and the query performance of the

CRC. For this experiment we used the full real dataset of 13,5 million tuples and

set the parameter Gmin = 1, 000, as it was recommended in [SDRK02]. We also

used the query workloads A and B with the parameters specified in Table 5.5. In

Figures 5.5, 5.6 and 5.7 we show the results for varying values of the knob parameter.

We observe that with a knob value of 10,000 CRC becomes about six times faster

in computation time and requires eight times less space compared to CRC with

knob=0, where all hierarchical aggregates are calculated and stored, while its query

performance is almost doubled.

We observe that as the knob increases (note the logarithmic x-axis) the query

performance gradually increases (the response time decreases) reaching a maximum

point at a knob threshold ≈ 10, 000 and then the query performance starts to
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Figure 5.6: Storage vs Knob

decrease. As the value of the knob threshold increases, queries perform more work,

as aggregation is required during query time. On the other hand, larger values

require significantly less space to store the CRCand, therefore, improve buffering

and locality. The tradeoff between processing and accessing secondary memory

determines the optimum value for the knob threshold. Our experience with CRC

reveals that a knob value between 1,000 and 10,000 often results in the optimal

performance.

Compared to the base Dwarf with only the raw aggregates, we see that while

CRC with knob=10,000 requires a negligible overhead in creation time (0.5%) and

just 5% overhead in storage, it improves query performance by a factor of seven.

The base Dwarf requires 1706 sec and 1331 sec for workloads B and A respectively.

The main reason for the superiority of the CRC structure is the use of the

knob parameter which is a data-based metric that materializes only those subcubes

that are more expensive to calculate during the queries. On the contrary, no such

123



0 10 100 1000 10000
Knob Threshold

100

200

400

1000

R
es

po
nc

e 
T

im
e 

(s
ec

)

Base Dwarf (B)
Base Dwarf (A)
CRC (B)
CRC (A)

Figure 5.7: Workload vs Knob

optimization can take place in the base Dwarf, where only the lower levels of the

dimensions exist and all other levels are handled externally.

Tuples Base Dwarf HVC CRC

134,280 1s 286s 1s
1,344,591 10s 3160s 10s
2,690,181 34s 10221s 34s

Table 5.6: Sorting Evaluation

Fact
Table

(Tuples)

Base
Dwarf

HVC CRC

134,280 1:49 1:15 1:1244
1,344,591 1:29 1:11 1:523
2,690,181 1:25 1:12 1:531

Table 5.7: Compression Ratio over corresponding Data Cube

Computation/Storage Space Evaluation w.r.t #Tuples. In this experiment

we use a varying uniform sample of the original dataset to demonstrate the scalability

of the techniques with respect to the number of tuples. For the granularity parameter

we used the proposed value Gmin = 1, 000 of [SDRK02], which avoids materialization
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Figure 5.8: Computation vs. #Tuples

of areas of the cube with under 1, 000 tuples. The aggregation for these areas is

performed during query time. For these experiments we also set the knob threshold

to 10, 000 for CRC, because as it is demonstrated in section 5.5 this threshold

optimizes both the query performance and the computation/storage requirements.

The computation times and the required storage for each structure are pre-

sented in Figures 5.8 and 5.9, correspondingly. Additionally, we present the sorting

times for all methods in Table 5.6. The column names of this table refer to the

corresponding structure being used. The Base Dwarf contains only the most de-

tailed 256 views for this 8-dimensional dataset. In contrast, the rollup data cube

has 11,200 views, partitioned among 288 Partial Dwarfs, as described in Section 5.4.

Note that the first Partial Dwarf is identical to the Base Dwarf. CRC contains all

11,200 views in a single store.

We observe that in all cases CRC needs considerably less space and time to be

computed than the HVC. It is important to note here that when the hierarchies are
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not order-preserving (i.e. sorted values in lower levels do not map to sorted values

in higher levels) a sorting operation is required for each Partial Dwarf. The sorting

time in that case dominates the computation time of the Partial Dwarfs, as shown

in Table 5.6.4

Although, the Base Dwarf contains only a small fraction of the views stored in

CRC (256 vs 11,200 views), we observe that the computation and storage require-

ments of the two structures are almost identical. However, in the query evaluation

experiments we demonstrate that the query performance for the Base Dwarf suffers

significantly due to the amount of online processing required. Since data warehouses

are typically bulk-loaded at specific time intervals, the superior query performance

of CRC would be more desirable in most applications where a significant amount of

queries and post-processing is performed.

Table 5.8 shows the number of tuples and the binary storage footprint (BSF)

4For this experiment, we exploited partially overlapping sort orders, as explained in Section 5.4.
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Fact Table
Full Rollup

Cube
Full Base

Cube

Tuples
Tuples
(billions)

BSF (GB)
Tuples
(billions)

BSF (GB)

134,280 16.9 12.2 0.565 0.45
1,344,591 109.8 65.8 2.9 3.1
2,690,181 189.9 124.7 5.4 5.2

Table 5.8: Full Cube Statistics

of the base cube (without hierarchies) and of the rollup cube respectively. The

BSF representation stores the cube in unindexed binary relations. The presence of

hierarchies substantially increases the cube size. In Table 5.7 we further compute

the compression ratios obtained by the three implementations5 when Gmin=1,000.

We observe that the storage savings are even higher for CRC, since it eliminates

redundancy over all the hierarchical views.

Query Performance Evaluation vs #Tuples. Figures 5.10 and 5.11 contains

the results for workloads A and B over the Base Dwarf, HVC and CRC when

Gmin=1,000 and knob threshold = 10, 000 are being used. In the Base Dwarf a lot of

external aggregation is required for most queries. In CRC the knob materialization

is data-driven and avoids computing and storing hierarchical aggregates that are

easy to compute during query-time. The result is that the Base Dwarf exhibits

substantially slower query response times compared to both CRC and HVC. The

latter is faster than the Base Dwarf –since hierarchical aggregates are computed

and stored– but requires significantly more space and time to compute. For larger

samples of the fact table, the HVC could not be stored within our disk space.

The new CRC structure significantly outperforms the Base Dwarf, while re-

5For the Base Dwarf the computation is over the size of the base cube.

127



quiring much less computation and storage than the HVC. Compared to the Base

Dwarf it offers approximately x7 times better query performance. Compared to

HVC, which stores all hierarchical aggregates, CRC exhibits better query perfor-

mance due to better buffering and locality.

The effect of having Drill-Down and Roll-Up queries is the same overall for all

storage techniques. Due to common paths being buffered between such queries, all

structures benefit from their existence [SDRK02]. On the contrary, due to their

lack of locality, random queries (workload B) that often access distant disk pages

are proportionally worse.
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Figure 5.10: Workload A (1,000 queries) vs #Tuples

Update Performance. We evaluated the update performance of the CRC with

Gmin = 1, 000 and knob= 10, 000 by using a sample of 1,344,591 tuples and in-

crementally updating the structure by adding ten batches of 134,459 tuples. In

Figure 5.12 we depict the initial construction time along with the time required for

each batch of updates. We observe that the time to incrementally update the struc-
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Figure 5.11: Workload B (1,000 queries) vs #Tuples

ture remains virtually unaffected by previous updates and that it is considerably

less than fully recomputing the cube each time. For comparison the resulting CRC

after being incrementally updated ten times required 145MB vs. 125MB if we fully

reconstructed it. The difference in the size occurs because of the presence of nodes

that had to be expanded during the update operations. A copying process could

periodically run in the background and move the updated CRC structure into a new

file, thus consolidating any unused areas inside the structure.

5.6 Related Work

The concept of aggregation over dimension hierarchies is fundamental in data ware-

house modeling [BPT97b, CD97, JLS99] and its importance is exemplified in the

Star and Snowflake schemata [Kim96]. A plethora of papers has focused on the

conceptual modeling of data warehouses, see [VS99] for a survey. To a great ex-

tend, materialized aggregate views and their potential have been rediscovered in the

context of OLAP and data warehousing due to the introduction of the data cube129
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Figure 5.12: Incremental Update Performance

operator in [GBLP96]. Rather quickly, researchers saw the potential of the new

operator as well as its drawbacks: its enormous storage and processing costs.

[Rou82] first explored the problem of selecting a set of materialized views

(with no aggregations) for answering queries under the presence of updates and a

global space constraint. View selection algorithms in the context of the data cube

can be found in [GHRU97b, HRU96b, TS97]. The authors of [KM99] show that

no polynomial time (in the number of views) approximation (with respect to query

response time) algorithm exists for the view selection problem unless P = NP . We

notice here that most of the aforementioned greedy algorithms have complexity that

is polynomial in the number of views, which is in-fact exponential in the number

of dimensions, making them impractical for multidimensional datasets with hier-

archies. In [SDRK02] a different reduction technique, similar in spirit to iceberg

queries [FSGM+98], was presented. The key idea is to avoid materializing portions

of the views whose aggregates can be computed by at most Gmin other tuples, where
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Gmin is a tunable parameter of the data structure.

The time to compute the data cube is another overwhelming factor. Tech-

niques that have been proposed take advantage of commonalities between differ-

ent views by sharing partitions, sorts or partial sorts and intermediate results

[AAD+96, DANR96, SAG96]. In [ZDN97] an array-based algorithm is proposed

that uses memory-arrays to store partitions and to avoid sorting. The algorithms

in [BR99, RS97] are designed to handle sparse data cubes, without however elim-

inating any cube redundancies. The Bottom-Up Cube (BUC) algorithm described

in [BR99] stores only those partitions of a view whose values are produced by aggre-

gating at least MinSup tuples of the fact table. The parameter MinSup is called

the minimum support and is analogous to the Gmin parameter of [SDRK02]. A

key difference is that the interleaved top-down/bottom-up generation of the data

cube in [SDRK02], in contrast to the bottom up computation in BUC, allows the

elimination of redundancies on the aggregate views before actually computing the

aggregates.

Several indexing techniques, in addition to multidimensional arrays mentioned

above, have been devised for storing data cubes. Cubetrees [RKR97] and DC-

trees [EKK00] extend the original R-tree structure, with the latter supporting hi-

erarchical aggregates. However, they both store uncompressed data cubes and are

thus limited to small datasets. Cube Forests [JS97] implement a forest of indexes

that store the leading dimension coordinates of an aggregate only once. A similar

optimization is obtained in the Statistics Tree [FH00]. A more fundamental view for

exploiting the redundancy within the data cube is shared among more recent publi-
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cations [WLFY02, LPZ03, SDRK02]. The main idea is to reduce the size of the data

cube by identifying aggregates that are produced by the same set of tuples in the

relation. Up until now, none of these techniques has been extended to support rollup

cubes. The presence of hierarchies has a profound effect in the computation and

storage complexity of the cube. As we demonstrate in this chapter, a straightfor-

ward extension of prior methods is inadequate for managing rollup cubes of realistic

sizes. Our CRC construction algorithm employs an interleaved top-down/bottom-

up computation strategy for the rollup data cube, which automatically discovers and

eliminates all redundancies on a given dataset in a single pass. What is important is

that this elimination happens prior to the computation of the redundant values. As

a result, not only is the size of the CRC dramatically reduced but its computation

is also drastically accelerated. In contrast, it is not obvious how the framework we

present here can be incorporated in the QC-tree algorithm that employs a bottom-

up computation [BR99] of the data cube and eliminates duplicate entries after they

have been discovered. Clearly, this two-step approach can not be implemented for

rollup data cubes of realistic sizes. Furthermore our knob optimization is orthogo-

nal to the Gmin parameter of [SDRK02]. While the latter works well for sparse areas

of the cube, the materialization we present in this chapter focuses on dense areas

resulting from the aggregation over dimension hierarchies. The immense size of the

rollup data cube deems impracticable storage engines like Cubetrees [RKR97] and

the DC-tree [EKK00] because they do not coalesce the aggregates.
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5.7 Summary

Aggregate queries on dimension hierarchies are fundamental in exploratory data

analysis. However, due to the enormous size of the resulting rollup cube there

has been little work on directly supporting such queries. In this chapter we have

demonstrated that previous techniques that materialize raw data cubes are very

inefficient during drilldown and rollup hierarchical queries because aggregation of

the proper level of each hierarchy has to be performed at run-time.

In this chapter we have presented a framework for managing compressed rollup

cubes that aggregate data over all dimension hierarchies. Our construction algo-

rithm detects and eliminates redundancy on hierarchical aggregates in a single pass

requiring a single sort over the data. However, unlike previous techniques, support

for hierarchies is embedded in the data structure, providing significant benefits when

querying rollup data cubes. We have also presented a new cost-based optimization

for controlling the amount of materialization of the cube. This knob materialization

is interleaved with the creation algorithm and has been shown in our experiments to

substantially reduce the size of the rollup cube. Using real high dimensional data,

we have shown that CRC can store in a single data structure the rollup cube, using

almost the exact time and 5% more space than what previous techniques require

for the same cube without hierarchies. At the same time, query performance signif-

icantly improves (about seven times) because hierarchical aggregates are supported

directly.
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Chapter 6

Implicated Statistics

6.1 Introduction

Keeping track of “interesting” data trends by evaluating various relations between

values of different attributes is the focus of a lot of research. For example, decision

support systems are trying to evaluate efficient ways of accomplishing that in an

offline fashion. The problem is computationally challenging even for such offline

algorithms but is exacerbated for the case of data streams with high throughputs

that are encountered in constrained, streaming environments.

However, environments like communication and sensor networks, security and

monitoring applications need accurate and up-to-date statistics in real-time in order

to trigger certain actions. The class of Distinct Count [Gib01] statistics are very

useful for such applications since it provides at any moment the distinct number

of values or species in a population[BF93]. For example a typical statistic, for a

network router is to maintain the distinct number of sources and destinations or

even (source,destination) pairs that the router handles. The distinct count problem

has been extensively studied in the database literature(see [Gib01] for a survey)

and has found applications in other areas like selecting a good query plan in query

optimization[PHIS96].
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In this chapter we focus on the problem of maintaining distinct implication

statistics in constrained environments even under the presence of noise. Some items

imply other items in the sense that they either always, or a given percentage of

the time, appear together. We use the term implication to denote such properties

between sets of attributes and the term implication count to refer to the number

of items that exhibit such implication properties. The statistics we collect not only

generalize the distinct value statistics we mentioned but also aggregate and comple-

ment information gathered from data-mining techniques such as association rules

or frequent itemsets[MM02]. Such techniques return the set of frequently encoun-

tered associated itemsets, while the implication statistics we consider here, return

aggregated information (counts, averages, ratios) without returning the involved

itemsets. In constrained environments (like sensor networks, where aggregation is

important for bandwidth conservation and energy consumption) frequent itemsets

and association rules techniques cannot be extended in order to provide real-time

aggregates and error guarantees for the implicated queries we are considering. The

same stands for the class of “heavy hitters”[CKMS03] which identifies the set of

objects whose frequency of appearance is above a given threshold. The cumula-

tive effect of many objects, whose frequency of appearance is less than the given

threshold, may overwhelm the implication statistics, although these objects are not

identified.

To help clarify the meaning and the extend of the statistics that we address,

consider a simplistic data stream called Network Traffic, a window of which is

presented in Table 6.1. The stream is comprised of the attributes Source, Destina-
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Source Destination Service Time

S1 D2 WWW Morning
S2 D1 FTP Morning
S1 D3 WWW Morning
S2 D1 P2P Noon
S1 D3 P2P Afternoon
S1 D3 WWW Afternoon
S1 D3 P2P Afternoon
S3 D3 P2P Night

Table 6.1: Example network traffic data

tion, Service and Time and is obtained by the traffic a router observes. Table 6.2

contain examples of real-time statistics which are essential for monitoring purposes

and that our framework supports.

A security administrator would like to maintain in real-time the statistic “how

many destinations are contacted by just a single source?” in order to identify possi-

ble intrusion attempts. We consider the Destinations with the implication property:

Destination → Source. In our example, we have that 〈D2, S1〉 and 〈D1, S2〉 have

the implication property, D2 appears only with S1 and D1 only with S2, and there-

fore the returned implication count is two. Furthermore, one might want to consider

destinations that 80% of the time are contacted by one single source. In that case

D3 qualifies and the returned count is three.

Another similar query for this specific dataset is: “how many services are being

requested from only one source?”. The returned aggregate in our case is again two

(because the corresponding implications are 〈WWW,S1〉, 〈FTP, S2〉).

A small set of all possible implication statistics that someone can keep track for

our toy data set in Table 6.1 is classified in Table 6.2 based on the definition of the

implication on each instance. The apparent wide range of implication statistics is the
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Example Class

How many sources
have we seen so far?

Distinct Count

How many destinations are
contacted by only one source?

Implication one-to-one

How many sources contact
more than ten destinations?

Implication one-to-many

How many destinations are contacted
by only one source 80% of the time?

Implication one-to-one
with noise

How many sources do
not use only the WEB service?

Complement Implication

How many sources contact only
one destination during the morning?

Conditional Implication

How many sources contact only
one target per service?

Compound Implication

Average number of destinations that 90%
of the time

are contacted from more than ten sources
for the P2P service

over a sliding window of 1h

Complex Implication

Table 6.2: Classification of Example Implication Queries

motivation behind this chapter. In our example, such statistics help to keep tracking,

in real-time, various traffic parameters. More sophisticated statistics address either

conditional or involving one-to-many implications. A security-expert may want to

keep track of the answer to the following questions: “How many sources connect

to only one destination during the morning?”, and “ How many destinations are

connected from more than ten sources for the P2P service 90% of the time? ”.

Similar aggregate queries are very important to users of decision support sys-

tems and data warehouses, where we assume that all the data can be stored and

aggregated and that a lot of computation can be performed offline with bulk up-

dates during down time. Even in this case however, the problem of maintaining

distinct implication statistics is complicated and requires too many computational
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and storage resources. Although we concentrate on data streams, our methods can

be applied to offline query scenarios, since our algorithm does not require repeated

rescans over the entire database. It can run with input the incremental updates

to maintain the implication counts as it does for a data stream. The complication

behind maintaining implication statistics is partially common with the problem of

Distinct Value queries where there is a huge number of duplicates that cannot be

accommodated by either available memory or processing power.

In this chapter we describe a framework that can be used to estimate a rich

variety of distinct implication statistics in the context of streaming environments

under constraints on storage and processing power, as for example in the case of

communication routers or sensor networks. In addition our techniques can be applied

directly to decision support systems and data warehouses, enriching the collection of

aggregates that an analyst can use. For a data stream that is logically divided into

two sets of attributes A and B, we calculate implication statistics of itemsets ai of A

that imply some itemsets of B. The problem is more difficult than identifying frequent

itemsets in a data stream, because the contribution of a large number of infrequent

implicated itemsets can be very significant, overwhelming the aggregate count. We

actually show that current streaming algorithms for frequent itemsets[MM02] cannot

be extended and provide error guarantees in the aggregate statistics.

The context of the environments we are considering, forces the following as-

sumptions:

• There is not enough memory to accommodate the cardinalities of the attributes
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participating in the query. For example, consider the case where one attribute

is the network address of a client which in IPv6 has an address space of O(2128).

• Although some itemsets may not appear frequently enough and therefore may

pass “undetected” by some technique, they can seriously affect the total count.

This is the case for first hop routers[WZS02] in distributed denial of service

attacks where the counts are very small at the first hop but significantly con-

tributing to the cumulative effect on the last hop routers.

• The exact meaning of the implication depends on the nature of the application.

In most situations a analyst will need to allow some tolerance to avoid noise

in the data.

The work in this chapter concentrates on how such implication counts can be

accurately estimated, in the context described above, by using a small amount of

memory that holds a “summary” data structure which makes possible the estimation

of the answer. The key issue is that the data structure can be kept up to date with

a small amount of effort. Our technique is based on using certain properties of hash

functions. We also investigate the error bounds of the estimation and how one can

improve those bounds.

The main contributions of our work are summarized as follows:

1. We describe a generalization of implication aggregate queries that frequently

arise in the data stream model of data processing and also in other fields of

database research.
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2. We provide memory and processing efficient algorithms for estimating such

aggregates, within small error bounds (typically less than 10% relative error).

3. We prove that the complement problem of estimating non-implication counts

can be (ε, δ)-approximated under most conditions.

4. We extend online algorithms[MM02] that estimate frequent itemsets and prove

that they cannot applied directly to the problem of estimating implication

counts.

5. We demonstrate the accuracy of our methods, through an extensive set of

experiments on both synthetic and real datasets.

6.2 Applications

The following applications can benefit from such implication statistics. We briefly

describe them and how the statistics can be applied to solve important problems in

them.

Network traffic monitoring and characterization: Accurately measuring aggre-

gate network traffic from one router to another is essential not only for monitoring

purposes but also for traffic control (rerouting), accounting (pricing based on usage),

security[SLC+01] (detecting denial of service attacks). Certain characteristics of the

traffic like router bottlenecks or patterns of resource consumption[ESV03] or even

flash crowds[JKR02] and denial of service attacks can be modeled as implication

queries. One can associate triggers when such implication counts exceed certain
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thresholds and could for example reroute traffic.

Approximate Dependencies: Functional dependencies have a very “strict”

meaning. They leave no room for exception. On the other hand, association rules

are essentially probabilistic and allow room for exceptions which is typical in large

databases. Approximate dependencies[KM95] attempt to bridge the gap by defining

functional dependencies that “almost hold”. Such approximate dependencies can

be “validated” during updates or on a data-stream by conditions on the aggregate

implication counts.

Multi-dimensional histograms or models: A fundamental problem in scenarios

like query optimization or query approximation is creating an accurate and compact

representation for a multi-dimensional dataset. Typical models used are histograms

or probabilistic graph models[FGKP99, GTK01], or other original approaches[BF95].

In [DGR01] a methodology is proposed where the independence assumption between

attributes is waived. The histogram synopsis is broken into one model that captures

“significant” correlation and independence patterns in data and a collection of low-

dimensional histograms. Estimations of implication counts can be used in a pre-

processing step to provide information about significant dependent or independent

areas among certain attributes. These counts can then be used to more efficiently

and accurately construct the model part of the synopsis.
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6.3 Problem Definition

In this section, we formally describe the problem and the notation. We assume

that a node in a distributed environment receives a stream of data and wants to

maintain a series of statistics about various implicated attributes. More specifically,

we are interested in approximating the answer to the general query, written in SQL-

like format1 : “select count (distinct A) from R where A implies B”, where R is a

relation that models a data stream, A, B and C are sets of attributes(dimensions) of

the relation R. We assume -without loss of generality- that A∩B= ∅.

In order to fully define the meaning of the predicate implies, we first introduce

the notion of an itemset and then proceed by defining certain implications between

itemsets. Then we proceed by defining the aggregation of such implications over a

distributed environment.

6.3.1 Itemsets and definitions

The projection of a single tuple τ of R on the attributes of A is defined as an itemset

a, and we denote: a = τ [A]. For example, in the case of the data set in Table 6.1 if

A={Source,Destination} the itemset of the first tuple is {S1,D2}.

At any given moment the number of tuples seen so far is denoted by T . The

compound cardinality |A| of the set of attributes A is the product of the cardinalities

of the attributes of A. In our example the compound cardinality is: |A| = 3 · 3 = 9,

because there are three different sources and three different destinations.

1We are not trying to extend SQL but rather use it to describe the class of queries we are
addressing
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For an itemset a of A and b of B, we denote as 〈a, b〉 their association and we

define the following:

Implication Set κ(a, B): An itemset a of A may appear with more than one

itemsets of B. We define as implication set of an itemset a of A w.r.t. B, the set of

different itemsets of B it appears with: κ(a, B) = {bi} , (τ [A] = a)∧ (τ [B] = bi), τ ∈ R.

The cardinality |κ(a, B)| of the implication set is called multiplicity of a w.r.t to B.

For example, the itemset a = {S1,D3} of A={Source,Destination} has a multiplicity

with B={Service}, |κ(a, B)| = 2 since it appears with two different services (WWW

and P2P).

Support σ(a): An itemset a of A is said to have support σ when it appears at

σ tuples out of T . For example, itemset a = {S1,D3} of A={Source,Destination}

has a support of four, since it appears in four tuples. In the literature (for example

association rules) the minimum support is expressed in terms of a ratio over all the

tuples. In the case of streams, which are potentially unbounded in size, we chose to

define it in terms of an absolute number of tuples. Additionally the relative minimum

support has some interesting side-effects that are discussed in Section 6.5.1.

Confidence Level λ(a, b): An itemset a of A and an itemset b of B have a

confidence level λ = σ(a∪b)
σ(a)

, where σ(a∪ b) is the number of tuples where itemsets a

and b appear together. For example, the itemsets a = {S1,D3} and b = {WWW},

of A={Source,Destination} and B={Service} respectively, have an confidence level

λ(a, b) = 2/4 since itemsets a and b appear together in two tuples over the four

tuples of itemset a.

Top-Confidence Level `c(a, B), c ≤ |κ(a, B)|: Assume the sequence of all the
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confidence levels of a, i.e the sequence of λi = λ(a, bi), bi ∈ κ(a, B). We define

as: `c(a) =
∑

[topc(
{

λ1, λ2, ..., λ|k(a,B)|

}

)], where the topc(X) operator returns the c-

biggest items in sequence X. This metric can be used to keep track of approximate

one-to-c implications, where one itemset a of A appears with at-most c different

itemsets of B in `c(a, B) percent of the tuples where a appears. For example, for

the itemset a = {P2P} of A={Service} and B={Source} the confidence levels with

sources {S1,S2,S3} it appears with are: {2/4, 1/4, 1/4}. The top-confidence level

for c = 2 is: `2(a, B) = 2/4 + 1/4 = 75%. This means that P2P appears with at

most c = 2 sources in 75% of all the tuples where P2P appears. The top-confidence

level with c = 3 in this specific case is 100%, i.e. service P2P appears with at most

three different sources in all the tuples of P2P. Similarly the top-confidence level

with c = 1 is 50%, i.e in half the tuples, P2P appears with only one source.

Implications between itemsets and attributes

An implication of an itemset a of A to B, denoted by a → B, holds for a given

maximum multiplicity K, a given minimum support Σ and a given minimum top-

confidence level Λc, when all of the following implication conditions are met:

1. Maximum Multiplicity K: |κ(a, B)| ≤ K

2. Minimum Support Σ: σ(a) ≥ Σ

3. Minimum top-Confidence Level Λc `c(a, B) ≥ Λc

The cardinality S of the set of itemsets ai of A such that ai → B is the im-

plication count for the general query of Section 6.3. When an itemset ai satisfies
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implications conditions (1)-(3), then we say that the itemset contributes or partici-

pates in the implication count.

Note that by definition, we are interested in counting itemsets that satisfy

the implication conditions throughout the life of the stream (we lift this restriction

using sliding windows and incremental counts in Section 6.3.2). This has a direct

effect on how the confidence level is interpreted: When an itemset satisfies the

minimum support and maximum multiplicity but does not satisfy the minimum

top-confidence level then we immediately discard that itemset from the implication

count. It is possible that later in the stream, the same itemset may satisfy the top-

confidence level condition. However, since the itemset at least once did not satisfy

all the implication conditions then by definition we do not count its contribution to

the implication count.

Example

The above parameters describe a very flexible framework for filtering out noise and

defining one-to-many implications.

Consider the network traffic data set described in Table 6.1 and assume that

an analyst is interested in identifying how many services are being used at most two

different sources 80% of the time. The user may also want to consider all services

even if they appear for just one tuple but does not want to consider services that

are being used at more than five sources.

The corresponding implication conditions are:

Maximum multiplicity is set to five; a service that is being used by more than
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five different sources does not contribute in the returned count.

Minimum Support is set to one; meaning that we take into account services

even if they appear in just one tuple of the dataset.

Top-Confidence Level is set to 80% for c = 2; That means that a service P that

contributes in the implication count, appears with at-most c = 2 different sources

in at-least 80% of all the tuples where P appears.

Let’s go over all services in Table 6.1 to see how the above parameters affect

the returned count. Service WWW appears in two tuples with only S1 and there-

fore participates in the count. FTP appears in only one tuple (with S2) and also

participates. P2P appears in four tuples with three different stores. The confidence

level of 〈P2P, S1〉 is 2/4, of 〈P2P, S2〉 is 1/4 and of 〈P2P, S3〉 is 1/4. Therefore the

top-confidence level for c = 2 is 2/4 + 1/4 = 75% and service P2P doesn’t satisfy

the minimum top-confidence level condition. The returned count is two (for services

WWW and FTP).

The minimum top-confidence level corresponds to the fact that the user needs

to consider only the services that appear with at most c = 2 different stores. The

value of 80% corresponds to the gravity of this constraint. If we change to minimum

top-confidence level to 75% then P2P is valid and participates in the count.

The minimum support is used to filter out implications that hold for a very

small fraction of the data set. For example, if the user increases the minimum

support to two tuples, then the pair 〈FTP, S2〉 is not valid since it appears in only

one tuple.
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6.3.2 Incremental and Sliding Queries

t 1

start ic

t 2 stream

Figure 6.1: Incremental maintenance

Our framework provides for implication counts given a reference point in the

stream where the counting begins and the implication conditions must hold w.r.t to

that reference point. We relax that constraint by using two techniques. The incre-

mental technique can answer queries like: How many new sources with some given

implication conditions have appears in the last 1h. The sliding window technique

generalizes the incremental technique and provides the support for more general

aggregates like moving averages.

In Figure 6.1 we demonstrate a count (ic) at two points t1 and t2. In many

cases the user is interested in the incremental implication count, which is the distinct

count of new itemsets that appeared and satisfy the implication conditions between

t1 and t2. This can be derived by ic(t2)− ic(t1).

On the other hand sliding queries where we want to retire old implication

counts or compare implication counts with different origins can by supported by

t 1

start ic
stream

t 2

start ic’ stop ic

Figure 6.2: Sliding Windows
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maintaining a vector of implications counts with different origins and appropriately

retiring old ones as depicted in Figure 6.2.

6.4 Algorithm for Implication Counts

In this section we describe an algorithm that can be used to efficiently estimate

implication counts. The algorithm uses selective sampling driven by hashing tech-

niques and is based on ideas that are used to estimate the count of distinct elements

on a stream or relation using limited memory and processing per data item.

We evaluate analytically the accuracy and describe techniques that can be

used to increase the accuracy. Finally we describe the complexity requirements of

the algorithm both for total space required and time per data item.

6.4.1 Counting Distinct Elements

The presence of duplicates in the data can traditionally be handled using sort-

ing, sampling or using hash tables. Sorting and using hash tables do not scale

well under both memory and time constraints, as those encountered in a stream-

ing environment. Sampling appears as an attractive alternative mechanism. Tak-

ing a simple random sample and then extrapolating the answer, however may in-

troduce an arbitrarily large error or require indexed access to the data[HNSS95].

The alternative is to approximate the answer using properties of hash functions

[FM85, WVZT90, AMS99, BYJK+02, Gib01].
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Basic Probabilistic Counting

One can probabilistically estimate[FM85, AMS99] the number of distinct itemsets

in a large collection of data, denoted as zeroth-frequency moment F0, in a single

pass using only a small additional storage of space complexity O(log |A|), where |A|

is the compound cardinality of A.

The basic counting procedure assumes that we have a hash function that maps

itemsets into integers uniformly distributed over the set of binary strings of length

L. The function p(y) represents the position of the least significant 1-bit in the

binary representation of y.

For each itemset ai that appears in the stream we keep track of the maximum

pi = p(hash(ai)). Let’s consider an initially empty bitmap and define that an

itemset ai is hashed in position pi of the bitmap. By assigning the value one to

the corresponding bit in the bitmap, the maximum pi can then be determined by

the position of the most-significant one bit in the bitmap. If the number of distinct

elements in M is F0, then bm[0] (least significant bit) is accessed approximately

F0/2 times, bm[1] approximately F0/4 times etc. This leads to Lemma 6.

Lemma 6 The expected number of values that hash in the cell i of the bitmap is

F0

2i+1 , where i = 0 corresponds to the least significant bit of the bitmap.

At any given moment, bm[i] will almost certainly be zero if i À log F0 and one

if i ¿ log F0 with a fringe of zeros and ones for i ≈ log F0. The position R of

the leftmost zero value in the bitmap is an estimator of log F0 with expected value:

E(R) ≈ log(F0) [FM85, AMS99].
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6.4.2 Counting Implications

The basic probabilistic counting procedure can be extended in a straightforward

(but inapplicable) manner in order to count implications. The idea is that the basic

procedure can be thought of as recording events. When we are counting distinct

elements, the recorded event is the existence of an itemset that hashes in a cell of

the bitmap and it is recorded by assigning one to the value of that cell. Note that

we only record events and never erase them.

When counting implications, the recording event is the existence of an itemset

that satisfies the implication conditions. Whenever we discover such an itemset we

must assign the value of one to the corresponding cell. The problem is that we don’t

know if an itemset will keep on satisfying the implication conditions in the future.

However we can postpone the assignment of one to a cell for the time when the user

requests the implication count.

We extend the cells of the bitmap so that we can store itemsets in them. When

an itemset ai hashes in a cell, we keep track of all the itemsets of B it appears with,

postponing the assignment of one or zero to the corresponding cell. When the user

asks for the count of itemsets ai of A with the property ai → B, we check each cell

to see if there is at least one ai such that ai → B and we assign a value of one to the

corresponding cells. Then -as described in Section 6.4.1- the position of the leftmost

zero is an estimator for the implication count.

One obvious optimization is that whenever we can determine that some itemset

ai 6→ B we can remove it from the cell. However the memory requirements of this
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algorithm is still O(K|A|), where K is the maximum multiplicity, since we must keep

track of every single itemset ai and the K different itemsets of B it appears with.

Otherwise there is not enough information to determine if the implication holds for

the itemsets. Such memory requirements are unacceptable, not only because we

cannot assume that this memory is available, but also because with such memory

requirements we can have an exact implication count.

6.4.3 Counting non-implications

Assume that instead of counting the itemsets ai : ai → B we consider the complement

problem of estimating the count of itemsets āi : āi 6→ B. Let’s call this problem Non-

implication Counting. More specifically an itemset ai has the property āi 6→ B with

respect to the implication conditions in Section 6.3.1 when it satisfies the minimum

support requirement but does not satisfy the maximum multiplicity or the minimum

top-confidence level. In this section we describe how we can bound the required

memory and still get an estimate of the non-implication count.

The recording event is the existence of an itemset āi : āi 6→ B. Unlike the case

when counting implications , we can now assign the value of one to a cell as soon

as we discover such an itemset. Once an itemset does not satisfy the implication

conditions we know that it will never satisfy them in the future. Below we define

the fringe zone and we show that for all non-implication counts -except for very

small counts- the size of the fringe zone is quite small.

We can observe in Figure 6.3 that the general format of the bitmap while
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Figure 6.3: Fringe Zone

performing the probabilistic counting has three “zones”.

The bitmap consists of cells bm[i], where the leftmost cell bm[0] is the least

significant one. Zone-1 is always filled with ones -because we found an itemset

āi : āi 6→ B, while Zone-0 is always filled with zeros -because the corresponding cells

are empty-. Note that these are the only two cases where we can assign a value of

one or zero to a cell.

The fringe zone lies between Zone-1 and Zone-0. In its boundaries (at least)

we cannot determine the existence of an itemset āi, i.e. all itemsets in the zone

so far imply B and therefore we must keep track of all the itemsets ai and the

corresponding itemsets of B until we determine there is at least one āi.

Size of the Fringe Zone

In order to calculate how big the fringe zone is, lets assume that we are interested

in estimating the non-implication count: āi 6→ B for some set of attributes A and B.

Let F0(A) be the number of distinct elements of A and let S̄ be the non-implication

count. The size in cells of the fringe zone is quantified with very high probability

by the following lemma:
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Lemma 7 The size F of the fringe zone is: F = − log q, where q = S̄
F0(A)

.

Proof: This is a direct effect of the way the function p(hash(ai)) distributes

itemsets ai of A to cells. We expect 2qF0(A)−1 itemsets āi : āi 6→ B in the first (less

significant) cell, 2qF0(A)−2 in the second etc. and therefore there are log(qF0(A))

such cells -that correspond to the Zone-1 of the bitmap-. The whole bitmap (ig-

noring Zone-0 ) holds log(F0(A)) cells and therefore the size of the fringe zone is

log(F0(A))− log(qF0(A)) = − log q.

This observation demonstrates that the size of the fringe zone is quite small

for almost all non-implication counts and that it logarithmically increases when the

ratio q → 0. For example, all non-implication counts greater than 1/16 of F0(A)

correspond to a fringe zone of only four cells.

We must point out that the bounds given in Lemma 7 are very pessimistic and

that the size of the fringe zone is actually smaller. For example in the case where

all distinct elements satisfy the implication condition (q = 0) then the counting

procedure degenerates to the basic probabilistic counting described in [FM85], where

the fringe zone size is quantified with high probability by O(log log F0(A)).

Bounding the size of the Fringe Zone

This gives rise to the idea of bounding the size of the fringe zone to a specific size.

This limits the amount of itemsets we must keep in memory.

In section 6.4.1 we mention that the index of the cell in the bitmap is deter-

mined by function p(hash(ai)), which represents the position of the least significant

1-bit in the binary representation of hash(ai). From Lemma 6 we know that as we
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move to higher-order bits the number of ai’s that get hashed in the corresponding

cells decreases exponentially. For example, if the number of distinct ai’s is 128, we

know that about 64 will get hashed to the first -from left to right- cell, 32 to the

second, ..., 2 to the 6th and only 1 to the 7th cell. Note that this distribution is

the same regardless the original distribution of ai values or the frequency that ai’s

appear. In [AMS99], there is a discussion about using linear hash functions in order

to accomplish that.

Assume that we arbitrarily choose to define that the fringe zone has a fixed

size of four cells. We expect that in the rightmost cell of the fringe zone only one

ai will get hashed in, in the immediate left cell two, ..., and to the leftmost cell of

the fringe we expect 23 = 8 different ai’s. We keep track of every single itemset ai

that gets hashed in the cells of the fringe zone, as well as all the itemsets of B there

itemsets appear with. This allows us to check if there is at least one āi : āi 6→ B in

a cell and therefore assign it a value of one. If this happens for the leftmost cell in

the fringe zone, then we “float” the fringe zone to the right, by increasing the size

of Zone-1 by one. By “limiting” the size of the fringe to four cells we bound the

amount of memory required to make a decision. Note that for each different itemset

that hashes in a cell we need to keep at most K different itemsets of B it appears

with. Therefore, in our case where the fringe has a size of four cells, we need at

most (20 + 21 + ...23) × K (i.e O(K)) itemsets to be stored in the corresponding

cells. Note that the actual memory required is much less since we can free all the

memory required by cells in the fringe that have been assigned a value of one.

We can also double the allocated memory (keeping the asymptotic require-
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ments unaffected) to accommodate deviations from the expected distributions due

to inefficiencies of the hash function.

Estimation Error due to Fringe Size Fixation

When there is not enough space in a cell to accommodate an itemset ai we arbitrarily

assign a value of one to the cell and shift the floating fringe to the right. This can

happen under two different situations. In the first one, it just happens to hash

an itemset to a cell in the fringe zone that already accommodates the expected

number of itemsets. In the second situation, an itemset is hashed to Zone-0 and the

fringe zone must float to the right to accommodate that itemset. Remember that

-by definition- the rightmost cell of the fringe is always the rightmost cell where an

itemset has been hashed. As the fringe floats to the right, the leftmost cells of the

fringe now belong to Zone-1. This step is that “fixates” the length of the fringe zone.

The only effect that it has, is the introduction of an error for small non-implication

counts that cannot be “managed” by the chosen fringe zone size.

Note that no error is introduced when the fringe zone has a size of at least

F = − log(q). By limiting the size of the fringe, we essentially limit the minimum

non-implication count we can estimate. If the fringe size is F then the minimum non-

implication count we can estimate with the basic probabilistic counting algorithm

is 2−F ·F0(A). Smaller non-implication counts are “mapped” to that specific value.

For example, with a fringe size F = 4 we can estimate an implication count

accurately if that count is bigger than than 6.25% · F0(A), (2−4 ≈ 6.25%). Without

changing the asymptotic memory requirements one can increase the size of the
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fringe to eight, in order to estimate accurately very small counts, > 0.4% · F0(A),

(2−8 ≈ 0.4%). Smaller counts than that, are mapped to the same value: 2−8 ·F0(A).

Tracking Non-Implication Conditions

In this section we describe how we can keep track if an itemset āi āi 6→ B given the

implication conditions.

For each itemset ai that hashes in the fringe zone we keep track of all itemsets

of B it appears with. Therefore the implication count κ(ai) is known at any moment.

The support σ(ai) of that itemset can be represented by a counter that is increased

every time itemset ai is hashed in the cell. For the confidence level λ(ai, b) with an

itemset b of B we use a counter that represents the support σ(ai ∪ b). Every time

the itemset ai appears with b in the stream we increase the corresponding counter.

At any moment the corresponding confidence level is: λ(ai, b) = σ(ai∪b)
σ(ai)

, which

can be determined just by dividing the corresponding counters. The top-confidence

level of an itemset ai can therefore be determined by summing the biggest λ(ai, b)

at any given moment.

Whenever an itemset ai satisfies the minimum support condition but does

not satisfy the rest of the implication conditions we assign a value of one to the

corresponding cell.

6.4.4 Deriving Implication Counts

So far we have described how to get an estimate of the non-implication count S̄ of

A to B. The implication count can be derived by subtracting the non-implication
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count from the distinct count F sup
0 (A) of itemsets ai ∈ A that satisfy the minimum

support requirement, i.e: S = F sup
0 (A)− S̄.

We can have an estimate of distinct count F sup
0 (A) without using any addi-

tional memory from the bitmap used to estimate S̄, by virtually assigning a value

of one to each cell in the fringe zone where at least one itemset of ai, that meets the

minimum support condition, is hashed in. The cells in Zone-1 by definition have at

least one itemset that satisfies the minimum support condition.

6.4.5 Algorithm NIPS/CI

Algorithm 7 referred to as NIPS (Non-Implication Probabilistic Sampling) gives the

complete algorithm using a floating fringe for performing the probabilistic sampling

for non-implication counts with given implication conditions. This algorithm is

designed to sample a small O(K) number of pairs (ai, bj), based on the hash repre-

sentation of ai over a data stream. Any time a tuple arrives, the bitmap is updated

accordingly.

In line 2 we project the tuple to the attributes of A and B respectively. Then

we calculate the position i of the cell where itemset a is hashed. If the position i

is in Zone-0 -right of the fringe zone, where no item has been hashed yet- then we

“float” the fringe zone to the right by making position i its rightmost cell. In the

process of floating, the leftmost cells of the fringe zone that become part of Zone-1

are cleared of all itemsets inside and are set to value 1. As explained in Section 6.4.3,

this process introduces an error only when counting very small non-implications and
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Algorithm 7 NIPS: Non-Implication Probabilistic Sampling
Input: M:stream of tuples
Input: A,B: set of attributes of M
Input: K,Σ,ΛC : Implication Conditions
State: bm: bitmap of L cells
1: for each tuple t do

2: a← t[A];b← t[B];i ← p(hash(a))
3: if i in Zone-0 then

4: float fringe by making i its rightmost cell
5: end if

6: if i in fringe zone and bm[i].value=0 then

7: bm[i].supp[(a, b)] ← bm[i].supp[(a, b)]+1
8: bm[i].supp[a] ← bm[i].supp[a]+1
9: curConf ← ΛC

10: if bm[i].supp[a]> Σ then

11: curConf ←
Sum[ topc bm[i].supp[(a, b)] ]

bm[i].supp[a]
12: end if

13: if (curConf < ΛC)
or (bm[i].overflowed) then

14: bm[i].value=1
15: free all the memory allocated for the cell bm[i]
16: if bm[i] is the leftmost in the fringe then

17: float fringe one cell to the right
18: end if

19: end if

20: end if

21: end for

the size of the fringe zone is not appropriately set. In lines 7 and 8 the counters

that represent the current support of the itemsets a and a∪ b are increased. Line 11

calculates the top-confidence level of itemset a. In lines 14 to 17 a cell is assigned

the value one, if we have found an itemset a that either does not imply B or if there

is no room in the corresponding cell. Additionally the fringe zone is shifted to the

right if necessary.

Algorithm 8 referred to as CI (Counting Implications) returns an estimate of

the implication count S and is designed to work with the bitmap used in (and in

parallel with) algorithm NIPS. Whenever the user wants an estimate of the current

implication count she runs CI on the bitmap of NIPS.

158



Algorithm 8 CI:Counting Implications
Input: K,Σ,ΛC : Same implication conditions used in NIPS
Input: bm: bitmap of L cells used in NIPS
1: RF sup

0 (A) ← 0

2: while exists ai in bm[RF sup

0 (A)] s.t.

supp[ai] > K and RF sup

0 (A) < L do

3: RF sup

0 (A) ← RF sup

0 (A) + 1
4: end while

5: RS̄ ← 0
6: while bm[RS̄ ].value=1 and RS̄ < L do

7: RS̄ ← RS̄ + 1
8: end while

9: return 2
R

F
sup

0
(A) − 2RS̄

Lines 1 to 3 find the position RF sup
0

(A) that corresponds to the number of

distinct elements F sup
0 (A) that satisfy the minimum support requirement. Lines 5

to 7 similarly locate the position RS̄ that corresponds to the non-implication count.

Line 9 returns the estimate of the implication count as described in Section 6.4.4.

6.4.6 Space and Time Complexities

The basic probabilistic counting algorithm has a space complexity (in bits) of

O(log |A|) where |A| is the compound cardinality of A.

In order to estimate the implication count S, Algorithm NIPS , in addition

to the memory O(log log |A|) required for the counter for Zone-1 and the O(log |A|)

memory required for the hash function, requires enough memory to accommodate

all the counters for the pairs (a, b) that hash in the cells of the fringe zone. The

distinct number of a’s that hash in the fringe zone is bounded by the fringe zone

(for example for a fringe size of eight we expect about
∑7

i=0 2i = 255 different a’s).

We can actually double or even triple the expected number of a’s, without affecting

the asymptotic complexities, in order to accommodate more a’s due to inefficiencies
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of the hash function.

The number of distinct b’s that corresponds to each a is bounded by the

maximum multiplicity K, i.e. there are at most K different such b’s. The number

of counters for each cell then is O(K). In general we need O(log T ) bits to represent

each counter, where T is the number of tuples of the dataset or the data stream.

Therefore the total space (in bits) complexity of algorithm 7 is: O(K · log T +

log log |A| + log |A|) ,where K is the maximum multiplicity, T is the number of

tuples and |A| is the compound cardinality of A. We do not include the 2F term

since the size F of the fringe zone is fixed and usually a value of four is sufficient to

estimate very large implication counts as described in Section 6.4.3.

By using hash tables to locate a counter in a cell given a pair (a, b) or an a,

and a priority queue to handle the topc operator, c ≤ K counters for a cell, the time

complexity of the algorithm per data item is: O(K · log K)

The number of entries (ai, bj) that NIPS holds in memory is bounded by the

fringe zone size and the maximum multiplicity condition. For example, for F = 4,

the number of entries in the bitmap is at most 15 · K. The above complexities

demonstrate the scalability potential of algorithm NIPS. One can estimate accu-

rately any implication counts for arbitrarily big attribute cardinalities or number of

tuples.

160



6.4.7 Approximation

In this section we discuss how an algorithm approximates a value and we show

how existing techniques can be used in order to get more accurate results based on

algorithm NIPS/CI.

A probabilistic algorithm (ε, δ)-approximates a value A if it outputs a value Ã

such that: P [
∣

∣

∣A− Ã
∣

∣

∣ ≤ εA] ≥ 1 − δ The parameters ε, δ are called approximation

parameter and confidence parameter respectively. For example, if a user requests

ε = 10% and δ = 1% then the algorithm should return an estimate Ã that is at

most 10% relatively off the actual value A with probability at least 99%.

Approximating Non-Implication Counts

The basic probabilistic algorithm is shown[AMS99] to approximate the number of

distinct elements F0 (zeroth frequency moment) in a different manner: P [ 1
c
≤ F̃0

F0
≤

c] ≥ c−2
c

,∀c > 2 by using a linear hash function. In [BYJK+02] techniques are

presented that can be used to (ε, δ)-approximate F0 based on the algorithm in Sec-

tion 6.4.1.

NIPS approximates the non-implication count in exactly the same manner with

the basic probabilistic algorithm under the condition that the non-implication count

is large enough for the chosen size of the fringe zone. The same techniques used

in [BYJK+02] can be applied to get an (ε, δ)-approximation of the non-implication

count.
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Approximating Implication Counts

The implication count is determined by subtracting two (ε, δ)-approximations, namely

the number of distinct itemsets, that satisfy the minimum support condition, and the

non-implication count. This operation however does not maintain (ε, δ)-approximation,

since the relative error can grow arbitrarily large, when the non-implication count

is very close to the number of distinct elements. This essentially means that the

relative error for very small implication counts (close to zero) can be unbounded.

For a pragmatic approach however this is not an issue. We have already made

the assumption that the user is not interested in very small non-implication counts

in order to fixate the size of the fringe zone. We can make the assumption that

the user is not interested in very small implication counts (very close zero) as well

and in the experiments section we demonstrate that for a wide range of implication

counts the estimates returned by algorithm 8 are very accurate.

6.5 Frequent Itemsets

In this section we extend the algorithms “Lossy Counting” and “Sticky Sampling”

introduced in [MM02] so that they identify itemsets that satisfy given implica-

tion conditions. Then we discuss the advantages and disadvantages compared to

NIPS/CI and point out why they cannot be applied successfully to the problem of

estimating implication counts.
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6.5.1 Implication Lossy Counting

The Implication Lossy Counting(ILC) algorithm is deterministic and requires at

most: K
ε

log(εT )(see [MM02]) sampling entries in order to compute an (ε, δ)-synopsis2,

that can be used to identify the implicated itemsets, for given implications condi-

tions K, Σrel, Λ. It is important to point out that the minimum support condition is

required to be specified relatively to the current number of tuples T in the stream,

and that the approximation parameter ε must satisfy: ε¿ Σrel. These requirements

have some very interesting side-effects discussed in Section 6.5.1.

The stream is conceptually divided into buckets of width w = d 1
ε
e. The

current bucket is denoted by bcurrent. The algorithm samples entries of the form

[ai,support,∆] and [(ai, bj),support,∆], where ∆ is the maximum possible error in

the support. For each pair (ai, bj) that arrives in the stream we check if there is an

entry for ai and if it is we update the support of both ai and (ai, bj). Otherwise

we create two new entries [ai,1,bcurrent-1] and [(ai, bj),1,bcurrent]. The supports of

the itemset ai and the pairs (ai, bj) allow us to check if the itemset ai satisfies

the implication conditions, as explained in Section 6.4.3. If we determine that an

itemset ai satisfies the minimum support requirement but not one of the remaining

implication conditions then we mark the corresponding sample entry as dirty and

delete all the pair entries for that itemset ai. At bucket boundaries we prune all

non-dirty entries of the form [ai,support,∆] where support + ∆ ≤ bcurrent. For

each non-dirty itemset ai that is deleted we also remove the corresponding entries

[(ai, bj),support,∆]. When the user requests the implicated itemsets we output all

2δ = 1 in this case
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non-dirty ai’s with support ≥ (Σrel − ε)T .

Algorithm ILC has two differences with the original Lossy Counting algorithm,

first we sample supports and errors for both itemsets and pairs of itemsets and

second we mark an itemset as dirty -and remove all the corresponding pairs from the

samples- as soon as we determine that the itemset does not satisfy the implication

conditions.

It is possible to make the same modifications to the “Sticky Sampling”[MM02]

algorithm in order to identify implicated itemsets, but the issue with the relative

minimum support remains.

Relative Minimum Support Issues

The ILC algorithm returns the actual itemsets that satisfy any given implication

conditions and not just their count. Although the complexity appear quite small

(actually, in [MM02] it is shown that the required memory is much less than the

worst case, which corresponds to a rather pathological situation), it does not tell

the whole truth.

More specifically, one problem is that every single itemset that satisfies the

minimum support Σrel has to stay in memory (marked dirty even if it doesn’t satisfy

the rest of the implication conditions). This property, although desirable for certain

applications, limits the applicability of ILC due to the amount of memory required.

In the worst case the number of entries that need to be sampled is in the order

of the number of different itemsets in the stream. For conditional implications,

the compound cardinality of the participating attributes can be quite high. The
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only way to limit the memory used, is by increasing the Σrel minimum support

condition, which implies that the contribution of many implications that hold for a

smaller amount of tuples is totally lost (see [WZS02] for an example application).

The major problem however, is the relative nature of the minimum support

itself. As the stream evolves, the number of tuples that correspond to the given

implication conditions implicitly increases. The side-effect is that the contribution

of “small” implications to the implication count is lost, although these specific im-

plication may hold for a quite large (and continuously increasing) number of tuples.

The relative nature of the minimum support in the ILC algorithm cannot be

removed since the approximation parameter ε must remain constant (the size of the

buckets is a function of ε) and satisfy: ε ¿ Σrel, throughout the execution of the

algorithm. The same holds for the extended sticky sampling algorithm.

On the other hand the NIPS/CI algorithm returns an accurate estimation of

the implication count by keeping only O(K) samples in memory, regardless of how

small the minimum support requirement is, capturing the cumulative effect of small

implications throughout the life of the stream.

6.6 Experiments

In this section, we present an extensive empirical study on the accuracy of the

estimation for implication counts. The first section demonstrates the results using

artificially generated datasets, while the second section describes the result obtained

from real-world datasets. For the synthetic datasets we imposed implication patterns
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—of known count— on the datasets and used both the bounded and the unbounded

fringe estimator to estimate the strength of the correlations and report the relative

error and the deviation. For the real datasets, we used an exact method (based on

hash tables) for calculating the implication count and compared with the estimation

of both the bounded and the unbounded version of our estimator.

6.6.1 Synthetic Dataset One
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Figure 6.4: Dataset One with c = 1 and |A| = 100

We conducted a series of experiments to verify the error bounds of NIPS/CI

with a fixed fringe size of four. We used a varying cardinality for attribute A and the

imposed implications had a variable count between 10% and 90% of |A|, for various

one-to-c implications, where c = 1, 2, 4. We increased the accuracy of our estimation

to approximately 10% using stohastic averaging([FM85]). More specifically for the

accuracy of 10%, we used 64 bitmaps with a fringe zone of size four (i.e. there was

available space for 1920 itemsets in memory).
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Figure 6.5: Dataset One with c = 1 and |A| = 1000

We chose a minimum top-confidence level Λ of 90% while the itemsets a’s that

should participate in the count, were imposed to have a top-confidence level of 92%.

The chosen minimum support was 50 tuples. The maximum multiplicity was chosen

to be equal to c.

To test the accuracy of the algorithms with respect to the implication con-

ditions we also imposed a “noise”. Some itemsets ai where created in a way that

breaks at least one implication condition and therefore they should not participate

in the count.

For example, itemsets that did not participate because of the maximum mul-

tiplicity condition were imposed to appear with a number u of different itemsets of

B that was uniformly distributed as: c + 1 ≤ u ≤ c + 10.

Each combination of these parameters was tested one hundred times. The

experiments were performed by generating random numbers using a random number

generator to simulate the itemsets. Specifically the experiments were organized as
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Figure 6.6: Dataset One with c = 2 and |A| = 100

follows: Pick a cardinality size |A|, an implication count S and a c. Generate S

different itemsets ai. For each ai create at most c (uniformly distributed in the

range [1, c]) different bj. For each combination (ai, bj) write 50 tuples. Then for

each ai create four b′j different than all bj’s created before. And write the four

tuples (ai, b
′
j). This step creates S itemsets ai such that ai → B with a minimum

support of 54 tuples and a top-confidence level of 50/54 = 92% and therefore these

itemsets participate in the implication count. The number of tuples created by this

step is: S · 50((c + 1)/2 + 4).

The rest of the steps create itemsets that should not participate in the count.

We create three different kind of tuples that break one implication condition. The

relative weight of each kind is 1/3.

Generate (|A| − S)/3 pairs (ai, bj) where each ai is different than all itemsets

of A created before. As in the previous step, for each ai create at most c different

bj. For each combination (ai, bj) write 50 tuples. Then for each ai create eight b′j
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Figure 6.7: Dataset One with c = 2 and |A| = 1000

different than all bj’s created before. And write the eight tuples (ai, b
′
j). This step

creates (|A| − S)/3 new itemsets of A that should not participate in the implication

count because they do not satisfy the minimum top-confidence level, although they

satisfy both the minimum support and the maximum multiplicity constraint. The

number of tuples created by this step is: (|A| − S)/3 · 50((c + 1)/2 + 8).

Generate (|A| − S)/3 pairs (ai, bj) where each ai is different than all itemsets

of A previously generated and each one appears with u different bj, where: c + 1 ≤

u ≤ c + 10. Write 50 such tuples. This step creates (|A| − S)/3 new itemsets of

A that should not participate in the implication count because they do not satisfy

the maximum multiplicity condition. The number of tuples created by this step is:

(|A| −S)/3 · 50(c + 5.5) Generate (|A| −S)/3 pairs (ai, bj) where each ai is different

than all itemsets of A previously generated. For each pair (ai, bj) write 40 tuples.

This step creates (|A| − S)/3 new itemsets of A that should not participate in the

implication count because they do not satisfy the minimum support requirement.
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Figure 6.8: Dataset One with c = 1 and |A| = 10, 000

The number of tuples created by this step is: (|A| − S)/3 · 40.

Shuffle the output file. This step just demonstrates that the operation of

the algorithm is independent to the ordering of the tuples. Estimate the implication

count using algorithm NIPS/CI with a fringe size of four and also without a bounded

fringe. Perform one hundred such experiments and calculate the mean and the

standard deviation of both estimations.

The total number of tuples for each experiment can be derived by adding

the partial number of tuples created in each step. For example, for |A| = 10000,

S = 5000 and c = 4 the average number of tuples for the corresponding experiment

was ≈ 3, 108, 333. A minimum support of 50 tuples for this case corresponds to only

≈ .001% of the tuples, demonstrating that in the implication count contribute even

implications that hold for a very small number of tuples.

Figures 6.4,6.6 and 6.12 show the results for c = 1, 2, 4, for varying cardinalities

|A|. The x-axis corresponds to the actual implication count of the dataset as that
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Figure 6.9: Dataset One with c = 1 and |A| = 100, 000

was imposed by the creation process. The y-axis denotes the mean relative error as

it is calculated by running one hundred experiments. We used the following formula

to estimate the mean relative error: relative error = |Actual S−Measured S|

Actual S

Graphs “Bounded Fringe” express the experimental results for the case of a

fringe with size F = 4, while graphs “Unbounded Fringe” demonstrate the result

for the case of an arbitrarily large fringe. The error bars correspond to the sta-

tistical deviation of the mean error as that was computed by one hundred such

experiments.The deviation is generally negligible, which means that the error of the

estimated S is always very close to the mean error. We also observe that the differ-

ence between the estimation using a bounded fringe of size four and a unbounded

one, is negligible for a very wide range of implication counts and therefore a size

of four for the fringe zone is sufficient to provide very accurate results for most

applications.
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Figure 6.10: Dataset One with c = 2 and |A| = 10, 000

6.6.2 Real-world datasets & Algorithmic comparison

We compare our estimates with the results taken using Distinct Sampling (DS)[Gib01]

which has been shown provide highly-accurate estimates for distinct value queries

and event reports. This algorithm outperforms other estimators that are based on

uniform sampling[CCMN00, CMN98] even when using much less sample space. We

also provide comparison with our Implication Lossy Counting (ILC) algorithm (de-

scribed in Section 6.5.1) which is based in the Lossy Counting algorithm introduced

in [MM02].

Dimension Cardinality

A 1557
B 2669
C 2
D 2
E 3363
F 131
G 660
H 693

Table 6.3: Cardinalities

Workload A Workload B
Tuples A ∗B ∗ E → G E → B

134,576 608 50
672,771 12,787 125

1,344,591 34,816 152
2,690,181 84,190 165
4,035,475 132,161 182
5,381,203 187,584 188

Table 6.4: Impl. counts w.r.t tuples
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Figure 6.11: Dataset One with c = 2 and |A| = 100, 000

NIPS/CI #bitmaps 64
NIPS/CI K 2

DS sample size 1920
DS bound t 39

ILC ε 0.01

Table 6.5: Algorithm Parameters

For this series of experiments we used a real dataset of eight dimensions which

was given to us by an OLAP company, whose name we cannot disclose due to our

agreement. The cardinalities of the dimensions are presented in Table 6.3. The

parameters of the algorithms are presented in Table 6.5. For NIPS/CI, we used

64 concurrent bitmaps with a fringe size of four thus requiring memory enough to

hold (24 − 1) · 64 ·K = 1920 itemsets. We expect that the “averaging”([BYJK+02,

FM85]) over these many bitmaps will result in an error less than 10%. We used

the exact same sample space for DS. The bound parameter t for DS was set to

d1920/50e following the suggestion in [Gib01]. For ILC we used an approximation

parameter ε = 0.01 which increases the memory requirements of ILC relative to
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Figure 6.12: Dataset One with c = 4

those of NIPS/CI or DS. On the average, ILC used more than twice the memory

that NIPS/CI and DS used. For example for the experiment in Figure 6.14 it used

more than 8,000 entries.

We evaluate the results of the algorithms with respect to the number of tuples,

the cardinality of the participating dimensions and the implication conditions. To

simulate a real data stream scenario we “tracked” the conditional implication counts

of A∗B∗E → F and the unconditional B → E using the aforementioned algorithms.

The first workload corresponds to quite large compound cardinality while the second

to very moderate cardinalities. Table 6.4 presents the actual aggregates for various

instances of the stream for Σ = 5 and Λ1 = 60%. We believe that most workloads fall

somewhere in the middle with respect to the complexity of the wanted implications

and the size of the returned counts.

Figure 6.13 depicts the relative error as the stream evolves for workload A,

using the algorithms DS, NIPS/CI and ILC for different implication parameters. In
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Figure 6.13: Relative Error vs stream size
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Figure 6.14: Relative Error vs stream size

Figure 6.13(a) we show the results for minimum support Σ = 5 and Λ1 = 60% or

Λ1 = 80%. The different Λ1 are encoded in the parentheses next to identification

of the algorithm in the legend of the graph. In Figure 6.13(b) we increased the

minimum support to Σ = 50. We observe that the behavior of DS varies widely

while NIPS/CI remains always below the expected 10% error. DS actually keeps a

sample of the distinct elements seen so far and tries to “scale” the implication count

that holds for that sample to the whole set of distinct elements. In most cases the
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data in the sample is not representative of the implication. The situation for DS is

exacerbated when the minimum support increases, where quite a lot of samples do

not participate in the count making the “scaling” even more error-prone. Algorithm

ILC in all cases returned very erroneous results although it used much more space

than NIPS/CI and DS, since it tries to store not the implication counts but the

actual implicated itemsets. In these workload the implicated itemsets overwhelm

its available memory (which is actually larger than the amount given to NIPS/CI

and DS).

In figure 6.14 we present the results of the algorithms for workload B. The

situation is still in favor of NIPS/CI whose relative error remains always close to the

expected 10% unlike DS who returns highly skewed errors even though the domain

cardinalities are much smaller and therefore keeps in the sample space much more

data. As expected from the analysis the error guarantees of NIPS/CI are virtually

unaffected by changes in the cardinalities or the number of tuples seen so far in the

stream. ILC returns very erroneous results although now the cardinalities and the

implicated items are much smaller compared to those of workload A. The reason is

not only because it keeps too much information in memory (i.e. all the implicated

itemsets) (while both NIPS/CI and DS only hold a ”mantissa” for the count) but

also because the constraint ε¿ Σrel is broken as the number of tuples increases.
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6.7 Related Work

There are unique challenges in query processing for the data stream model. Most

challenges are the result of the streams being potentially unbounded in size. There-

fore the amount of the storage required in order to get an exact size may also grow

out of bounds. Another equally important issue is the timely query response required

although the volumes of data the need to be processed is continually augmented at

a very high rate. Essentially the amount of computation per data item received

should not add a lot of latency to each item. Otherwise any such algorithm wont be

able to keep up with the data stream. In many cases accessing secondary storage

—such as disks— is not even an option. In [ABB+02] there is a discussion of what

queries can be answered exactly using bounded memory and queries that must be

approximated unless disk access is allowed. Sketching techniques([FM85, AMS99])

have been introduced to build summaries of data in order to estimate the number

F0 of distinct elements in a dataset. In [BYJK+02] three algorithms that (ε, δ)

approximate the F0 are described with various space and time requirements. Dis-

tinct Sampling[Gib01] is driven by hashing functions similar to those studied in

[FM85, AMS99] and provides highly accurate results for distinct value queries com-

pared to those taken by uniform sampling by using only a fraction of their sample

size. In [MM02] the algorithms “Sticky Sampling” and “Lossy Counting” are in-

troduced that estimate frequency counts with application to association rules and

iceberg cubes. In [GGR03] a framework for performing set expression on continu-

ously updated streams based on sketching techniques is presented. In [ZGTS03] a
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general framework over multiple granularities is presented for both range-temporal

and spatio-temporal aggregations. In [CKMS03] a framework for identifying “hi-

erarchical heavy hitters”, i.e. hierarchical objects (like network addresses whose

prefixes defines a hierarchy) with a frequency above a given threshold, is described.

6.8 Summary

We have presented a generalized and parameterized framework that can accurately

and efficiently estimate implication counts and can be applied to many scenarios.

To the best of our knowledge, this is the first practical and truly scalable approach

to the problem of online estimation —within small errors— of complex implica-

tion (and non-implication) counts between attributes of a data stream under severe

memory and processing constraints and even in the presence of noise. We prove

that the complement problem of estimating non-implication counts can be (ε, δ) ap-

proximated, when the size of the fringe zone is fixed appropriately. We demonstrate

that existing algorithms for estimating frequent itemsets or sampling cannot be ap-

plied to the problem since they lose the cumulative effect of small implications. In

addition, through an extensive set of experiments on both synthetic and real data,

we have shown that NIPS/CI always remains very close to the actual implication

count, capturing even very small implications whose total contribution is significant.
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