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Curdlan, a microbial hydrocolloid, has the ability to form strong, irreversible gels 

when heated above 80ºC, which distinguishes curdlan from other hydrocolloids.  To date, 

however, very limited information is available on copolymerized solutions containing 

curdlan gum and other hydrocolloids. 

The objective was to characterize the rheological and textural behavior of 

copolymerized hydrocolloidal solutions containing curdlan gum. 

Hydrocolloidal mixtures containing curdlan were prepared respectively with 

carrageenan, xanthan, guar, and locust bean gum.  Rheological properties under shear and 

dynamic shear at various concentration ratios were measured using an AR 2000 

rheometer. The textural properties were measured using a TA.XT2i Texture Analyzer by 

Texture Technologies Corp.   

Synergistic increases in apparent viscosity were observed when curdlan was 

combined with guar and locust bean gum, which is attributed to the chemical structure.  
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An additive effect was observed in gel strength for all copolymers. Curdlan added to the 

heat stability of locust bean and guar gum.   
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Chapter 1 

INTRODUCTION 

Many ingredients are added to various food systems in order to provide a 

wide selection of products for the consumer to choose from. Food hydrocolloids 

or food gums are added to food systems for numerous reasons, mainly to modify 

the texture, increase the stability, or reduce the fat or calories of a product.  

Specifically, food hydrocolloids are used to thicken, gel, control syneresis, 

stabilize an emulsion or suspension, function as a coating, and bind water.  Use of 

food hydrocolloids continues to increase with recent development of low-fat and 

reduced-fat products as well as in the formulation of products in need of thermal 

or freeze-thawing stability.  There are a variety of hydrocolloids on the market, 

including those derived from plants or seaweed, and those produced by 

microorganisms.  Increasing numbers of products in the form of a blend of 

hydrocolloids are now available commercially for specific areas of applications 

such as reduced gelling points or increased viscosity.  However, only limited 

information exists in the literature that fully characterized their applicability in 

mixture. 

It has been demonstrated that the structure of the hydrocolloid, including 

the type and number of monosaccharide backbone as well as the type, number, 

and distribution of side units, determines its characteristics and behavior in 

solutions.  Moreover, the net charges on the polymeric side chains also play an 

important role in their functionality as well.  In general, hydrocolloids have a 
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sugar backbone that contains protruding substituents such as esters, sulfates, or 

additional sugars.  Hydrocolloids available for food applications are either neutral 

or negatively charged.  Guar gum and locust bean gum, both classified as 

galactomannans with the same mannose backbone, are used in products such as 

cheeses, frozen desserts, processed meats, and bakery products.  However, these 

two galactomannans differ in cold water solubility as well as in their gelling 

capability due to their difference in the degree of substitution and the distribution 

of side units. Carrageenan, a negatively charged hydrocolloid derived from red 

seaweed plants, has been widely used in ice cream, chocolate milk, jellies, sauces 

and dessert gels.  The three basic types of carrageenan (kappa, iota, and lambda) 

exhibit their own unique properties when incorporated into food products, due 

mainly to the sulfate side groups and anhydro bridges, which are responsible for 

influencing cold water solubility and degree of rheological behavior (Moirano 

1977; Hoefler 2001) .  Xanthan gum, also negatively charged with trisaccharide 

side chains, is the most industrially important microbial exopolysaccharide known 

for its thickening ability and shear thinning behavior.  The functionality of 

xanthan gum is highly dependent on the ionic strength of the solution (Sworn 

2000), suggesting electrostatic interactions between the polymer and its 

surrounding electrolytes.  

Curdlan gum, a neutral linear homopolymer produced by the 

microorganism Alcaligenes faecalis var. myxogenes, is known for its ability to 

form both thermal reversible and irreversible gels without the addition of cations 

or salts (Kanzawa 1987; Nakao 1991) and possesses special diffusion properties 
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because of its characteristic viscoelastic behavior (Lo 2003).  With a backbone 

similar to cellulose, curdlan gum does not have protruding side units.  Instead, it 

is a linear homopolymer chain.  However, it is capable of forming complex 

tertiary structures believed to be caused by intramolecular and intermolecular 

hydrogen bonding (Nishinari 2000).  Recently, researchers in the Food Bioprocess 

Engineering Laboratory at the University of Maryland discovered that, unlike 

other hydrocolloids, curdlan gel forms smooth layers of sheets when frozen and 

dried, indicating an intriguing two-dimensional network of the gel (Lo 2004).  

This two-dimension configuration indicates a different pattern of stretch during 

the polymerization process and suggests potential notable effects on the textural 

and flow behavior of other hydrocolloidal polymers   

The ultimate goal of this study was to elucidate and characterize the 

interactions of curdlan with carrageenan, xanthan, guar, and locust bean gum.  To 

achieve the goal, there were two specific objectives to accomplish.  First, the 

rheological and textural properties such as steady state flow, dynamic oscillatory 

tests, and gel strength of the copolymers containing curdlan gum were 

investigated  The optimum combinations of curdlan gum with the other four 

hydrocolloids in terms of rheological and textural properties were identified using 

response surface methodology (RSM) (Wheeler 2003).  Secondly, the stability of 

the copolymers over a wide range of temperature and freeze-thaw cycles were 

evaluated.  It was anticipated that this work would provide useful information 

(e.g. synergistic or diminishing effects, if any) on the relationship and interactions 

among these food hydrocolloids. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1 HYDROCOLLOIDS 

 
 Hydrocolloids are defined as “a macromolecular substance such as a 

protein or polysaccharide which swells by absorption of water, in some cases 

forming a stiff gel” (Ockerman 1978).  Food hydrocolloids, or food gums, have 

high molecular weights when compared to carbohydrate ingredients, such as 

sugar or corn syrup (Hegenbart 1993).  Food gums are usually added to food 

systems/products for specific purposes, such as thickening agents, stabilizers, 

emulsifiers, gelling, etc (Kuntz 1999; Hoefler 2001).  Hydrocolloids ultimately 

alter the rheological properties in a desired fashion for food systems (Pedersen 

1979). 

2.1.1 Basic Structure 

 The typical structure of a food hydrocolloid includes a sugar backbone 

with protruding substituents (Kuntz 2002).  The backbone can vary in length from 

several hundred to several thousand sugar units long (Kuntz 1999).  These sugar 

units are most commonly linear in form, but branched backbones have been seen.  

The backbone provides pertinent information such as the acid stability of the 

particular hydrocolloid.  The type, number, and distribution of substituents 
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protruding from the backbone determine whether a gum is a thickening agent or a 

gelling agent (Hegenbart 1993). 

 

2.1.2 Factors Influencing Behavior 

 The four major factors influencing food gum properties include molecular 

weight, the monosaccharide backbone, type of side chains, and distribution of side 

chains (Kuntz 1999; Hoefler 2001).  The molecular weight of the food gum is 

basically the chain length.  An example presented by Hoefler (2001) includes a 

linear gum that occupies a certain volume as it randomly tumbles through a 

solution.  If the chain length is doubled, the chain will now occupy eight times the 

volume it did before, thus it is eight times more likely to collide with an adjacent 

chain.  These collisions and restrictions are referred to as resistance to flow, 

which is measured as viscosity.  The composition of the backbone also indicates 

gum properties.  The monosaccharide composition influences properties such as 

pH stability, ability to thicken or gel in food systems.   Therefore the molecular 

weight and monosaccharide composition affects the final behavior of the food 

hydrocolloid (Hegenbart 1993).   

 In addition to those two factors, the type of side chains or substituents also 

plays a part in determining gum behavior (Klahorst 2002).  The main influence of  

side units is whether the gum will become a thickening or a gelling agent.  Side 

chains can vary drastically in size.  In the case of pectin and carrageenan, the side 

units are small in size and are simply a carboxyl or a sulfate group respectively.  

Side units can be an additional sugar protruding off the backbone as is the case 



 6

with both guar gum and locust bean gum.  In the case of xanthan gum, the side 

unit is a whole group of sugars.  Depending on the type of side chain, different 

properties can be seen.   

 The final factor that influences food gum properties is the distribution or 

uniformity of these side chains (Kuntz 1999).  The distribution of side chains can 

determine cold water solubility and synergistic effects with other gums 

(Hegenbart 1993; Hoefler 2001).  Substituents are distributed either evenly or 

unevenly on the sugar backbone.  Uneven substitution results in smooth and hairy 

regions.  Smooth areas are defined by areas on the backbone that do not contain 

any side units.  In contrast, hairy regions contain a cluster of side units projecting 

from the backbone.  An example of distribution of side units is seen by locust 

bean gum and guar gum.  Both hydrocolloids have the same galactomannan 

backbone, but locust bean gum is unevenly distributed and guar gum is evenly 

distributed.  Due to the substitution difference, they both possess different cold 

water solubility properties as well as synergistic relationships with other gums.   

 The next question to address is why side units are needed on these 

backbones.  They weaken the intermolecular association between layers and may 

provide space for water to “slip” between layers, thus making the hydrocolloid 

water soluble (Hoefler 2001).  The substituents prevent hydrogen bonding to 

occur between the backbone chains.  A common example is cellulose and 

cellulose gum.  Cellulose is composed of layers of linear glucose molecules with 

hydroxyl groups protruding from each glucose molecule.  Hydrogen bonding 

occurs at these hydroxyl groups with neighboring cellulose chains.  The hydrogen 
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bonds are tight which prevents water from separating the chains, thus making the 

cellulose water insoluble.  However, in the case of cellulose gum, carboxymethyl 

groups substitute some of the hydroxyl groups, which allow separation of adjacent 

cellulose chains.  The substitution prevents hydrogen bonding from occurring 

which leads to water able to get between the chains and hydrate, thus making 

cellulose gum water soluble (Hoefler 2001).   

 Another example regarding the importance of substituents is with 

carrageenan.  Carrageenan comes in three forms: kappa, iota, and lambda.  All 

three have the same galactose sugar backbone, however, each varies with the 

number of sulfate groups and anhydro bridges.  The sulfate groups (OSO-3) 

increases water solubility whereas anhydro bridges have hydrophobic properties.  

The number of sulfate groups, anhydro bridges, and final texture is presented 

below in the table.   

Table 1: Differences Between Carrageenan Types 

Kappa Iota Lambda
Sulfate
Group
Anhydro 
Bridge
Texture firm, brittle elastic, cohesive no gelling, thickening

syneresis no syneresis provides "body"

3

0

1

1

2

1

 

 Some other general concepts that need to be addressed are the degree of 

polymerization and degree of substitution (Kuntz 1999).  Degree of 

polymerization (DP) is basically the chain length of the hydrocolloid.  The higher 

the DP, the higher the viscosity of the hydrocolloid in solution.  In addition to 

this, the bigger the chain length, or DP, the longer it will take to hydrate the 
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hydrocolloid.  Degree of substitution (DS) is the number of side units for every 

sugar molecule.   The more substitution the hydrocolloid has, the more water 

soluble it will be (Hoefler 2001).  Therefore, this leads to quicker hydration of the 

gum.  In addition to this, the higher the degree of substitution the more uniform 

the side units will be distributed.   

 Hydration of hydrocolloids is an important concept to mention as they 

behave very differently from common food ingredients (Imeson 2000; Klahorst 

2002).  In the case of ordinary food ingredients, such as sucrose, when they are 

introduced to water they begin to dissolve starting with the outside layer.  As time 

passes, their general size decreases and soon they are fully dissolved in water.  

However, when hydrocolloids are introduced to water, they absorb water and 

swell, similar to that of a sponge (Deis 2001; Hoefler 2001).  It will reach a 

maximum point where the molecules will start to unravel starting with the outside 

surface.  In time, the molecules will float away resulting in a completely hydrated 

hydrocolloid.  The figure below shows the difference between the hydration of 

sugars versus gums.   

sugar

gum

All gone

All gone

 

Figure 1: Hydration of hydrocolloids compared to Sugar 
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Due to the fact that food gums swell when they are first introduced to water, the 

particles need to be separated just before contacting the water surface (Imeson 

2000; Hoefler 2001).  If the gum particles would not be separated, each particle 

would absorb water, leading to swelling and would stick together to form a large 

lump.  Lumping is not desirable, since it will take much time to fully hydrate each 

gum particle.  Therefore, to insure lumping does not occur, the gum particles need 

to be slightly separated (Hegenbart 1993).  Separation will allow each molecule to 

go through the initial swelling without colliding with any other swelling 

molecules.   Particles can be separated one of four ways: eductor funnel, 5/1 

sugar, non solvents, and high shear (Imeson 2000).  An eductor funnel separates 

particles with a stream of air right before they contact the water.  Another way of 

separating these particles is by the use of sugar.  Five parts of sugar are dry 

blended with one part of food hydrocolloid.  The sugar will separate the 

hydrocolloid molecules enough so they will not contact each other upon swelling.  

The third way to separate particles is through the use of non solvents, such as 

vegetable oil, glycerine, or corn syrup (Hoefler 2001).  These substances coat the 

hydrocolloid particles, but when they are introduced into water, they cannot swell.  

Lastly, high shear can be used, which uses fast moving water to separate particles 

as they are added.   

 

2.1.3 Functions 

 As stated previously, hydrocolloids are added to various food systems for 

a variety of reasons.   Listed below in Table 2 are some of the functions of 
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hydrocolloids along with the types of foods they are used in.  However, there is 

usually one of three reasons why they are added to any food product.  Those 

reasons are to influence the texture, to increase the stability, or to reduce fat or 

calories in a food product.   

Table 2: Functions and products hydrocolloids are used in 

Function Type Of Products Used In
Thickening canned goods, gravies, sauces, soups, 

dressings, low calorie foods and beverages
Suspending salad dressings, fruit juice drinks, chocolate milk
Instant Viscosity dry mix beverages
Gelling jams, jellies, preserves, dessert gels, canned pet foods
Emulsion Stabilization salad dressings, cream sauces
Protein Stabilization yogurt drinks, low pH milk beverages, chocolate milk
Crystallization Inhibition ice cream, confectionary
Water Binding baked goods, icings, and candy
Film Forming/Fat Holdout french fries, batter and breaded foods
Syneresis Control sauces, low calorie preserves, pie filling, desserts  

 

2.1.4  Types of Hydrocolloids 

Not only can hydrocolloids perform numerous functions, but there is a 

wide selection of hydrocolloids available for manufacturers.  The function of each 

gum varies and certain ones are chosen for particular reasons.    Decisions may be 

based on solution clarity, solubility at various temperatures, suspension ability, 

natural versus not natural, ability to stabilize proteins at a low pH, acid stability, 

or relative cost per pound.  All hydrocolloids either carry a negative charge or a 

neutral charge.  At the present time, there are no food hydrocolloids that possess a 

positive charge.   Table 3 lists the food hydrocolloids available for use. 
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Table 3: Various types of hydrocolloids 

 

 

 

 

 

 

The hydrocolloids highlighted in yellow will be studied for this research project.   

 

2.2 CARRAGEENAN 

 
 Red and brown seaweed provides many different types of hydrocolloids 

for the food industry.  Brown seaweed species provide alginate food gums, where 

the red seaweed family, Rhodophycae, provides the polysaccharides agar, 

carrageenan, and furcellaran.  The main species of the Rhodophycae family 

include Euchema cottonii and Euchema spinosum which carrageenan gum is 

extracted from.  E. cottonii produces kappa carrageenan, E. spinosum yields iota 

carrageenan, and Chrondrus crispus yields both kappa and lambda carrageenan, 

although the same plant does not produce both types.  Individual plants that grow 

together will produce both types of carrageenan (McCandless 1973). 

 

Agar Gum Arabic
Alginates Gum Karaya
Carrageenan Gum Ghatti
Cellulose Gums Gum Tragacanth
(MCC, CMC, MC) Locust Bean Gum
Curdlan Konjac
Furcellaran Pectin
Gelatin Pollulan
Gellan Gum Tara Gum
Guar Gum Xanthan 

Types of Hydrocolloids
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2.2.1 Structure 

 Carrageenan gum has a linear backbone of repeating galactose units with 

different proportions and locations of ester sulfate groups and 3,6-

anhydrogalactose (anhydro bridges).  Carrageenan is one of the two food gums 

that is naturally sulfated, furcellan being the other.  Varying compositions and 

conformations provide different rheological behavior, ranging from viscous 

thickeners to thermally reversible gels, which range in texture from soft and 

elastic to firm and brittle.  The main types of carrageenan are kappa, lambda, and 

iota.  Rees (1963) and coworkers were able to distinguish these different types 

and assign different chemical properties to identify each of them.  Three other 

forms were also found called mu, nu, and theta, which are precursors to kappa and 

iota forms and a successor to lambda respectively (Rees 1963).   

 The number of ester sulfate groups and anhydro bridges present on the 

backbone distinguishes kappa, lambda, and iota carrageenan from one another.    

These variations allow different rheological properties to be attained as well as 

influencing hydration, gel strength, texture, syneresis, synergism, melting and 

setting temperatures.  The differences among these carrageenan types are due to 

the type of seaweed, as well as the processing and blending processes.    The 

sulfate groups make the carrageenan molecule more water soluble, whereas the 

anhydro bridges inhibit water solubility because of its natural hydrophobic 

properties (Hoefler 2001).  Kappa carrageenan has approximately 25% ester 

sulfate and 34% anhydro bridges with iota having approximately 32% ester 

sulfate and 30% anhydro bridges (Moirano 1977).  Lambda has the highest 
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amount of ester sulfate at 35% with little or no anhydro bridges.  Kappa 

carrageenan has one sulfate group and one anhydro bridge for every two galactose 

molecules.  Iota carrageenan has a similar structure; however it possesses an 

additional sulfate group, making iota carrageenan more water soluble then kappa.  

Lambda, which is the most water soluble of the three, consist of three sulfate 

groups and no anhydro bridges for every two galactose molecules.  For simplicity 

of categorizing carrageenan gum it is described as 'extracts from Rhodophyceae 

which contain an ester sulfate content of 20% or above and are alternatively 

alpha-(1,3) and beta-(1,4) glycosidically linked' (Anon 1988).   
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Figure 2: Structures of Kappa, Iota, and Lambda Carrageenan 

 

 

2.2.2 Properties of Carrageenan 

 Each type of carrageenan gum has its own physical properties, which will 

be discussed in this section.  All carrageenan types are hot water soluble.  

However, not all of them are soluble in cold water.  Only lambda is fully soluble 

in cold water in addition to Na+ salts of kappa and iota.  Lambda carrageenan 
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produces a viscous solution, which exhibits pseudoplastic characteristics when it 

is pumped or stirred.  Usually it is used for thickening in order to provide body to 

a product.   When heating a carrageenan solution, the required temperature of 

hydration depends on factors such as concentration of carrageenan, the cations 

associated with it, as well as the cations present in the food system.   In most food 

products, full hydration of kappa and iota is achieved at temperatures above 70ºC.  

(Moirano 1977).   

 Carrageenan is most stable at neutral and alkaline pH, even at increased 

temperature.  However, if a pH drops below 4.5, carrageenan solutions will lose 

viscosity and gel strength.  This occurs because of autohydrolysis, which is due to 

the acid form of carrageenan cleaving the glycosidic linkages (Moirano 1977; 

Hoffmann 1996).  At elevated temperatures and low cation concentrations, this 

process occurs even quicker.  An exception to this is when kappa and iota 

carrageenan are used in low pH food systems when gelling is induced prior to a 

decrease in pH.  Once the carrageenan is in a gelled state, the secondary and 

tertiary structures protect the glycosidic linkages from cleavage as well as the 

cations being unavailable (Moirano 1977; Imeson 2000).   

 Kappa and iota carrageenan is capable of forming a range of gel textures 

upon cooling of a hot solution.  The gel textures depend on the cations used to 

induce gelling.  The gels are thermally reversible, as they remelt 5-20ºC above the 

gelling temperature and re-gel upon cooling.  It is believed the ability of gelling is 

due to double helix formation (Anderson 1969; Rees 1969; Glicksman 1979; 

Hoefler 2001).  
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Figure 3: Double helix formation of carrageenan upon cooling 

When the temperature is above the melting point of the gel, random coils are 

present because thermal agitation overcomes the ability to form helices.  Upon 

cooling, double helices form junction zones which produces a three dimensional 

network.  Further cooling induces aggregation of these junction zones by 

hydrogen bonding of adjacent double helixes (Rees 1969; Moirano 1977; Hoefler 

2001).  Sulfation of carrageenan can explain some of the gelling properties.  The 

sulfate group in lambda carrageenan acts as a "wedging group" which prevents 

the double helix from forming.  However the sulfate on the anhydro bridge of iota 

projects outward and does not interfere with double helix formation.  This is also 

true for kappa though the sulfate group is located on the 1,3-linked galactoside 

(Moirano 1977).  The higher degree of anhydro bridges the better the gelling 

properties (Moirano 1977) as it increased the capability of forming double helices.   

 The type of cations used to induce gelling is extremely important in the 

gelling properties of carrageenan.  The most common cations used in food 

applications are K+, Ca++, and NH4
+. These cations influence the hydration 
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temperature as well as the setting and melting temperatures.  Carrageenan exhibits 

hysteresis, which means there is a difference between the gelling and remelting 

temperature of a carrageenan gum.  The melting temperatures are always higher 

than the gelling temperatures due to the need of extra energy to disrupt the 

existing gel network.  Kappa carrageenan when used with potassium cations 

forms a firm and brittle gel seen in the figure below (Imeson 2000). This gel is 

subject to syneresis, which causes gel shrinkage due to the loss of fluid.  Because 

of this, kappa carrageenan exhibits very poor potential for good freeze-thaw 

stability.  Also seen below is the structure of an elastic iota carrageenan gel, 

which is induced by calcium cations. Iota carrageenan can also gel using 

potassium and NH4+, but the strongest gel results when calcium is used.  Iota gels 

are not subject to syneresis, which results in good freeze-thaw stability.  Different 

combinations of kappa and iota carrageenan can be made in order to have a range 

of gelling textures, which in turn can exhibit good freeze-thaw stability as well as 

moisture binding (Imeson 2000). 
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Figure 4: Structures of kappa-carrageenan and iota-carrageenan 

 Synergistic interactions have been researched with carrageenan gum.  The 

most famous combination is kappa carrageenan and locust bean gum.  This 

combination can lead to elastic gels with low syneresis when cooled below 50-

60ºC.  Locust bean gum is a galactomannan with one galactose side unit for every 

four mannose units.  The substitution, however, is unevenly and randomly 

distributed, which creates smooth areas on the locust bean backbone.  This area is 

capable of associating with helical structure of the kappa carrageenan to form 

gels.  Not only does locust bean gum influence the type of gel formed but the gel 

strength is increased also.  The gel strength is maximized within the ratio range of 

40:60 and 60:40 of kappa carrageenan and locust bean gum (Imeson 2000).  This 

combination is frequently used in cooked meats, gelled pet food, as well as cake 

glaze.  Another synergistic relationship exists between konjac flour and kappa 

carrageenan.  A strong elastic gel is created with a gel rupture strength four times 

greater than kappa carrageenan by itself.   
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 Carrageenan has a synergistic relationship with the casein molecules in 

milk. It is just about 5 times more effective in milk than it is in water, which 

means less carrageenan can be used to achieve the same effect.  Kappa 

carrageenan has the ability to interact with positively charged amino acids present 

in the casein molecules thus incorporating the casein micelles directly into its gel 

structure.  Enhanced gelling properties have been discovered in milk when 

appropriate cations are present and when the concentration of carrageenan is 

relatively high.   

 

2.2.3 Applications 

 Carrageenan has various uses in the food industry.  The basic carrageenan 

types may be used individually or mixed together to form blends.  For simplicity, 

the food applications of carrageenan gum have been divided into dairy based and 

water based topics.   

2.2.3.1 Dairy Based Applications 

 Since carrageenan can interact synergistically with the casein molecules in 

milk, it is easier to divide the applications into categories.  The original use of 

carrageenan was in milk gels, such as flans and custards.  The carrageenan 

imparts a creamy mouthfeel and reduces syneresis.  It is also added to products 

such as puddings and pie fillings.  It is responsible for reducing the amount of 

starch, minimizing syneresis development, in addition to modifying the texture of 

the final product.  The most common use for carrageenan gum in dairy products is 

in ice cream or ice milk.  It is added to control ice crystallization as well as whey 
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separation.  Carrageenan is also used in chocolate, eggnog, and fruit flavored 

pasteurized milks.  The carrageenan can suspend particles, such as cocoa, as well 

as providing a rich mouthfeel by adding thickness to the product.  Rich mouthfeel 

is also achieved when carrageenan is added to reconstituted nonfat dry milk, as 

well as stabilizing the emulsion.  Another product carrageenan is added to is 

creamed cottage cheese.  The creamy mixture that surrounds the curds needs to be 

stable and have the ability to cling on to the cottage cheese curd.  Carrageenan is 

added to controlled calorie milk drinks in order to prevent fat particles from 

settling out as well as adding a rich mouthfeel.  Carrageenan gum may be used in 

processed cheese to give the final product good mouthfeel characteristics and 

good grating, melting, and slicing properties.  It is also added to evaporated milk 

and infant formulations as well.  In evaporated milk it is added to prevent fat 

separation and in infant formulas it is added to stabilize proteins and fats.  Lastly, 

carrageenan is added to whipped cream and yogurt.  It is added to these two 

products to stabilize and suspend.   
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Table 4  :Typical Milk (Dairy) Applications of Carrageenan (adapted from Moirano 1977)

Use Function Product Use Level
(%)

Frozen Desserts whey prevention Kappa 0.010-0.030
Ice cream, ice milk control meltdown

Pasteurized Milk Products
Chocolate, egg-nog, fruit-flavored suspension, bodying Kappa 0.025-0.035
fluid skimmilk bodying kappa, iota 0.025-0.035
filled milk emulsion stabilization kappa, iota 0.025-0.035

bodying
creamy mixture for cottage cheese cling kappa 0.020-0.035

Sterilized Milk Products
chocolate, etc suspension, bodying kappa 0.010-0.035
controlled calorie suspension, bodying kappa 0.010-0.035
evaporated emulsion stabilization kappa 0.005-0.015
infant formulations fat and protein stabilization kappa 0.020-0.040

Milk Gels
cooked flans or custards gelation kappa, kappa + iota 0.20-0.30
cold prepared custards thickening, gleation kappa, iota, lambda 0.20-0.50
pudding and pie fillings level starch gelatinization kappa 0.10-0.20

syneresis control, bodying iota 0.10-0.20
Whipped Products
whipped cream stabilize overrun, stabilize lambda 0.05-0.15
aerosol whipped cream stabilize overrun, stabilize kappa 0.02-0.05

emulsion
Cold Prepared Milks
instant breakfast suspension, bodying lambda 0.10-0.20
shakes suspension, bodying, stabilize lambda 0.10-0.20

overrun
Acidified milks
yogurt bodying, fruit suspension kappa + locust bean 0.20-0.50

 

2.2.3.2 Water Based Applications 

 Carrageenan is added to products such as dessert gels, cake glazes, and 

low calorie jellies for the main purpose of controlling syneresis, yet providing 

elastic and cohesive texture.  It is also added to replace gelatin in order to meet 

religious and vegetarian beliefs.  Carrageenan improves water retention, cooking 

yields, slicing properties, mouthfeel, and succulence in canned meat products, 

luncheon meats, fish aspics, and pet foods.  Syrups, particularly chocolate syrup, 

and salad dressings are other products that use carrageenan.  It is used in order to 

suspend particles, such as cocoa in chocolate syrup and herbs and spices in salad 
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dressings.  Surprisingly, carrageenan is used in some low pH foods such as 

relishes, pizza, and barbecue sauces.  The carrageenan provides body to these 

food products.  In addition to the above mentioned products, carrageenan is added 

to imitation milk and imitation coffee creams.  For each of these products, 

carrageenan adds body and stabilizes the emulsion.   

Table 5: Typical Water Application of Carrageenan

Use Function Product Use Level
(%)

Dessert gels gelation kappa + iota 0.5-1.0
kappa + iota +
locust bean gum

Low calorie jellies gelation kappa + iota 0.5-1.0
kappa + galactomannans 0.5-1.0

Pet foods (canned) fat stabilization, thickening, kappa + locust bean
suspending, gelation

Fish gels gelation kappa + locust bean 0.5-1.0
kappa + iota

Syrups suspension, bodying kappa, lambda 0.3-0.5
Fruit drink powders bodying Na+ kappa, lambda 0.1-0.2
Frozen concentrates pulping effects K+/Ca+ kappa 0.1-0.2
Relishes, pizza, BBQ bodying kappa 0.2-0.5
sauce
Imitation milk bodying, fat stabilization iota, lambda 0.03-0.06
Imitation coffee cream emulsion stabilization lambda 0.1-0.2
Whipped topping stabilize emulsion, overrun kappa, iota 0.1-0.3
Puddings (nondairy) emulsion stabilization kappa 0.1-0.3  

 Though carrageenan has many uses it does however have limitations.  The 

main limiting factor for carrageenan gum is its unstability at low acidity.  Once it 

exposed to a pH at approximately 4.5 or below it loses gel strength and viscosity, 

thus limiting the products it can be used in.  Also another limitation that 

carrageenan gum has is that it requires cations to induce gelling.  

2.3 XANTHAN GUM 
 Xanthan gum is a hydrocolloid that is produced by the microorganism, 

Xanthomonas  campestris.  Xanthomonas campestris is a bacterium which is 

naturally found on the cabbage plant, which produces slimy and gummy colonies.  
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The microorganism produces these slimy and gummy colonies which are called 

extracellular polysaccharides.  These polysaccharides are released from the 

bacterium cell because no covalent bonds are formed to the cell wall.  The 

extracellular polysaccharide released from Xanthomonas campestris is called 

xanthan gum.  Xanthan gum is produced by the process of submerged aerobic 

fermentation using glucose as the primary carbohydrate source.  The xanthan gum 

is recovered, purified, dried and milled into a white powder.   

 

2.3.1 Structure 

  Xanthan gum is an anionic linear hydrocolloid with a (1  4) 

linked β-D-glucose backbone, as seen in cellulose.  However, unlike cellulose it 

has a large side unit on every other glucose unit at location C-3.  The side unit, a 

trisaccharide, contains a glucuronic acid residue linked (1 4) to a terminal 

mannose unit and (1 2) to a second mannose which connects to the glucose 

backbone (Sworn 2000).  The mannose unit connected to the backbone usually 

contains an acetyl group.  Approximately 50% of the terminal mannose molecules 

carry a pyruvic acid residue.  (Kovac P 1977; Zirnsak MA 1999; Sworn 2000).  

The primary structure is shown in Figure 5. 
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Figure 5: Molecular structure of xanthan gum 

 

2.3.2 Properties 

Xanthan gum is an excellent thickening agent. It exhibits pseudoplastic 

rheological characteristics, which means as shear is increased, viscosity is 

reduced.  Once the shear is removed, the starting viscosity is recovered.  The 

reason this occurs with xanthan gum is the ability of the xanthan molecules to 

form aggregates through hydrogen bonds and polymer entanglement (Sworn 

2000).  At low shear rates, xanthan solutions are highly ordered, entangled, stiff 

molecules.  As shear is increased, the aggregates are interrupted and individual 

polymer molecules align in the direction of the shear force, which results in the 

pseudoplastic conditions.(Vanderbilt 2000; Deis 2001). 

 As little as 0.1% xanthan gum will significantly increase viscosity.  When 

1.0% xanthan gum is used, an almost gel-like consistency will be observed at rest 

(Sworn 2000; Vanderbilt 2000).  However, when shear is applied, it exhibits the 

same rheological properties seen at a lower concentration.   

 Generally, xanthan gum is stable over the pH range 2 to 12 (Dziesak 1991; 

Sworn 2000; Vanderbilt 2000).  At pH below 2 and above 12, viscosity tends to 
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decrease slightly.  However, change in viscosity is dependent on the concentration 

of xanthan gum.  The lower the concentration, the more profound the decrease in 

viscosity (Sworn 2000; Vanderbilt 2000).   

Xanthan gum, unlike many other food gums, is stable at a range of 

temperatures.  The viscosity will not change significantly between ambient 

temperature and a definitely “melting temperature”, which is usually around 60ºC. 

(Sworn 2000; Vanderbilt 2000).  At the melting temperature, a sharp decrease in 

viscosity is seen due to a reversible molecular conformation change (Sworn 

2000).  The specific “melting temperature” is dependent upon the ionic strength 

of the solution.  If viscosity is lost due to an increase in temperature, it is 

reversible and as the solution cools, the initial viscosity will return.   

 Depending the concentration of xanthan gum, salts may either decrease or 

increase viscosity.  At 0.25% xanthan gum concentration or below, monovalent 

salts may cause a slight decrease in viscosity.  When a higher concentration is 

used, the salt actually increases the viscosity.  Many divalent salts, such as 

calcium or magnesium, affect viscosity similarly (Sworn 2000). 

 Unlike most hydrocolloids, xanthan gum is not degraded by enzymes.  

Frequently enzymes, such as proteases, pectinases, cellulases and amylases, 

are found in many food systems.  It is believed the arrangement of the 

trisaccharide side unit is responsible for this enzyme resistance (Sworn 2000).  

The side unit prevents enzymes from attacking the β-(1 4) linkages located on 

the backbone.  Therefore, xanthan gum can be used in food products containing 

active enzymes.   
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Although xanthan gum is not a gelling agent, it can form elastic, 

thermoreversible gels when combined with locust bean gum. High viscosities are 

achieved when combined with galactomannans such a locust bean gum and guar 

gum (Dziesak 1991). 

 

2.3.3 Applications and Limitations 

Xanthan gum is approved for food use as a stabilizer, emulsifier, 

thickener, suspending agent, and foam enhancer (Sanderson 1996). Since its 

introduction to the marketplace in the 1960s, it has been used in many food 

products including baked goods and pie fillings.  Xanthan gum contributes to 

smoothness, air incorporation and retention for batters of cakes, muffins, biscuits, 

and bread mixes.  It also adds volume and moisture, which leads to higher crumb 

strength with less crumbling.  The use of xanthan gum in a microwave cake mix 

application facilitates better moisture retention, better stabilization and structure 

formation which help producing a more tender and moist cake (Anon 1989). 

Xanthan gum can be added to cold or hot processed bakery and fruit pie fillings in 

which it will improve texture and flavor release.  It also can extend shelf life as 

well as syneresis control and stability during freeze-thaw cycles.  Xanthan gum is 

used in wet prepared batters and batter coatings.  In prepared batters, xanthan gum 

acts as a suspension agent and improves gas retention. Shrimp, chicken, fish, and 

onion rings can use xanthan gum in their batter formulations in order for 

consistent adhesion and stabilization.   Frequently, xanthan gum is used in salad 

dressing.  The pseudoplasticity of xanthan gum makes it flow easily when poured 



 27

and once the flow stops it recovers its viscosity, resulting in cling or adhesion.  

Small particles of xanthan gum can be added to dry mixes for milk shakes, sauces, 

gravies, dips, soups, and beverages.  The xanthan gum can provide a very rapid 

viscosity development as well as enhancing body and evenly suspending particles.  

Xanthan gum provides stability, syneresis control and consistent viscosity when 

exposed to freeze-thaw cycles (Sanderson 1996).  It can be added to frozen 

products like whipped toppings, batters, soufflés, gravies, and entrees.  Another 

use of xanthan gum is in retorted products, due to the stability over a wide range 

of temperatures.  Although the viscosity would be low at high retort temperatures, 

upon cooling the original viscosity would return.  In addition to this reason, the 

xanthan can improve the filling process and reduce splashing (Sworn 2000).  

Syrups and toppings also have a use for xanthan gum.  It allows these products to 

have excellent pouring and cling properties as well as good stability and uniform 

suspension of ingredients.  

In general terms, xanthan thins under shear in the mouth, facilitating 

flavor release (Chinachoti 1995). Pseudoplasticity is also important for the 

mouthfeel and visual aesthetics of the product and for its utility as a processing 

aid.  



 
Table 6: Food Applications of Xanthan Gum 

Product Functionality Typical use 
level (%)        

 Ref 

Ice cream Stabilizer, viscosity and crystallization control of mix 0.05-0.2 Dziezak 1991, 
 Urlacher and Noble 1997     

Baked goods Stabilizer, facilitates pumping  0.1-0.4             Garcia-Ochoa et al. 2000 
Fruit gels Adds body, prevents sticking  Dziezak 1991 
Pizza sauces Thickener, inhibits absorption by dough  0.1-0.2 Dziezak 1991,  

Urlacher and Noble 1997 
Microwave cakes Stabilizer, helps moisture retention 0.2  Anon 1989 
Beverages Stabilizer, mouthfeel modification 0.05-0.2    (Giese 1995) 

Salad dressings  Stabilizer, suspending agent, emulsifier 0.1-0.5             Garcia-Ochoa et al. 2000 
Dry mixes  Eases dispersion in hot or cold water, thickener  0.05-0.2           Garcia-Ochoa et al. 2000   

Frozen foods Improves freeze-thaw stability 0.05-0.2 Garcia-Ochoa et al. 2000 
Syrups, toppings, relishes Thickener, heat stability, uniform viscosity 0.05-0.2 Garcia-Ochoa et al. 2000 
Cheese Syneresis inhibitor 0.5-0.2 Garcia-Ochoa et al. 2000 

Becker et al. 1998 
Juice drinks Suspending agent 0.05-0.2 Garcia-Ochoa et al. 2000, 

Becker et al. 1998 
Sausage casings Film formation - Becker et al. 1998 
Icings and glazes Adhesiveness - Becker et al. 1998 
Gravies and sauces Thickener, mouthfeel, flavor release, heat resistant 0.1-0.2 Urlacher and Noble 1997 



 29

 
Xanthan gum’s pseudoplastic properties allow for easy mixing and pumping 

during the production of food products in addition to providing food systems with 

long-term stability.  Xanthan gum is stable over a wide pH range, temperature, 

and exposure to enzymes.  Therefore it can be used in many different products.  

However, xanthan gum is a thickening agent not a gelling agent.  Therefore it 

cannot form a gel network.     

 

2.3 Galactomannans 

 
 Other hydrocolloids used in the food industry, which come from a plant 

origin, include the galactomannans.  These are widely used due to their ability to 

alter rheological properties of aqueous solutions, such as thickening and gelling 

behavior.  The most common galactomannans are from the carob tree (Ceratonia 

siliqua), from the guar plant (Cyamopsis tetragonoloba) and the tara shrub 

(Cesalpinia spinosa), though the first two are used more extensively.  All three 

types of galactomannans have identical backbone composed of linear (1 4)-β-D-

mannan chains with varying concentrations of (1 6) linked D-galactose side 

units.  Each galactomannan can be identified by the mannose-galactose ratios.  

Different quantities of galactose lead to different physical and chemical properties 

of each galactomannan.  All three galactomannans mentioned are capable of 

interacting with other hydrocolloids such as agar-agar, Danish agar, carrageenan, 

and xanthan gum in order to form three dimensional structures.   
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2.4.1 Guar Gum 

 Guar gum is found in the endosperm of the seeds of the guar plant, 

Cyamopsis tetragonoloba, which is milled in order to obtain guar gum (Meer 

1977; Wielinga 2000).     

 Guar gum is a neutral hydrocolloid with linear chains of D-

mannopyranosyl units with D-galactopyranose substituents protruding by (1→6) 

linkages.  For every galactose residue there are approximately two mannose 

residues.   

 

Figure 6: Molecular structure of guar gum 

Guar gum is highly substituted which allows for good hydration and 

hydrogen-bonding activity.  Water can easily “slip” between the molecules in 

order to hydrate or dissolve the gum.  The molecular weight of guar gum is 

between 220,000 and 300,000 (Hoyt 1966).  Guar gum has a higher degree of 

galactose substitution (40%) than locust bean gum (20-23%) (Maier 1992). The 

galactose content of galactomannans has been studied to show that it strongly 

influences the behavior of each hydrocolloid.  Low galactose content leads to 

stronger synergistic interactions with other hydrocolloids as well as a stronger 

gelling capacity independently based upon interactions of smooth areas of the 
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mannan backbone (Dea 1977; McCleary 1985).  The higher galactose content 

leads to prevention of strong cohesion of the main backbone, so no extensive 

junction zones or crystalline regions can be formed. Another factor that influences 

physical behavior of the galactomannan is the distribution of galactose units along 

the mannan backbone.  Guar gum is evenly substituted, which means there are no 

smooth and hairy regions of the mannan backbone.  On average, for every two 

molecules of mannose, a galactose side unit is attached (Meer 1977).  A two to 

one mannose-galactose ratio leaves small galactose uninhibited mannose areas, 

which has been shown to have lesser functionality (McCleary 1979; Launay 

1986).  Whereas locust bean gum, on average, has a four to one ratio, which 

should exhibit greater functionality.  Richardson et al (1998) reported that two 

galactomannans, with the same average galactose content but with different 

mannose-galactose ratios, would exhibit different degrees of functionality 

(Richardson 1998).  The galactomannan with the broader distribution of galactose 

units would be more functional because they contain a greater proportion of 

chains with lower galactose content (McCleary 1979; Launay 1986). 

 

2.4.1.1 Functions and Applications 
 

Guar gum is used as a thickener and stabilizer in the food industry as a 

result of its hydration and water-binding properties.  It is used as a stabilizer at a 

concentration of 3.0% in ice cream, ice pops, and sherbet.  It improves the body, 

texture, chewiness, and heat-shock resistance by binding free water (Wielinga 

2000).  Guar gum is also used in cheese products.  In cold-pack cheese it is used 
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at a concentration of 3.0% in order to prevent syneresis and weeping.  In soft 

cheeses it is added to increase the yield of curd and to give the curds a better 

texture.  Concentrations of .25-.35 are added to pasteurized cheeses in addition to 

locust bean gum and act as a stabilizer.  Guar gum is also added to dessert and 

pastry products, such as pie fillings, icings, cake and donut mixes.  It is added to 

pie fillings to thicken but prevent shrinking and cracking of the filling (Meer 

1977; Wielinga 2000).  In icing it is added to absorb free water, which prevents 

stickiness as well as not sticking to packaging materials.  Meat and gravy sauces 

contain guar gum since it allows for reduction of the total solids in the product.  

Another use for guar gum is in canned meat products.  It is used in conjunction 

with agar to prevent fat migration during storage as well as controlling syneresis.  

As a thickener it is sometimes added to salad dressings, pickle and relish sauces.  

Guar gum can also be used in dietetic beverages or low carbohydrate products due 

to its suspending ability and improving body of thin and watery products.  (Meer 

1977).   

An advantage of guar gum is its cold water solubility which allows 

viscous pseudoplastic solutions to form when hydrated in cold water (Deis 2001).   

Its viscosity is dependent upon factors such as time, temperature, concentration, 

pH, ionic strength, and type of agitation.  Maximum viscosity is reached during 

the temperature range of 25-40ºC, with higher temperatures increasing the rate at 

which maximum viscosity is achieved.  However, too high a temperature will 

degrade the gum and normal function will not be carried out.  Guar gum is stable 

over a wide range of pHs, with its optimal rate of hydration between pH 7.5-9.  
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The maximum viscosity will remain stable between the pH range of 1 to 10.5.  

Another advantage of guar gum is its ability to be compatible with salts over a 

wide range of electrolyte concentrations.  For instance, guar gum with borate ions, 

the borate ions act as cross-linking agents with guar gum to form structural gels.  

It is also a good emulsifier due to the amount of galactose substituents.  Guar gum 

exhibits stability during freeze-thaw cycles as it is able to retard ice crystal growth 

by slowing mass transfer across solid and liquid interfaces (Chaplin 2003).  

Though guar gum is easily hydrated and is an economical stabilizer and 

thickener, it has some limitations as well.  Unlike locust bean gum, it does not 

form gels.  Guar gum is stable over a wide pH range, however if both temperature 

and pH are at extreme points, it could lead to degradation.  For instance, at a pH 3 

and temperature of 50ºC, guar gum starts to degrade.   

 
2.4.2 Locust Bean Gum 

 Locust bean gum, also called carob bean gum, is produced from the 

evergreen carob tree, Ceratonia siliqua.  Locust bean gum is found in the 

endosperm of the pods from the carob tree.  The endosperm is separated from the 

hull and germ, which is then mechanically ground to produce locust bean gum.  

The slightly off-white powder consists of 88% galactomannan, 3-4% pentosan, 

and 5-6% protein, cellulose and ash (Griffiths 1952).  The molecule weight of 

locust bean gum is approximately 310,000 (Kubal 1948).  

2.4.2.1 Structure 

Locust bean gum is a neutral galactomannan with linear chains of 1,4-

linked beta-D-mannan backbone with 1,6-linked alpha-D-galactose side units.  



 34

For every galactose residue there are approximately 4 mannose residues 

(Wielinga 2000).   

 
Figure 7: Molecular structure of locust bean gum 
 
  

Locust bean gum is not as highly substituted as guar gum, but the 

galactose side units still allow for hydration and hydrogen-bonding activity.  

Locust bean gum has an approximate mannose-galactose ratio of 4:1, which is a 

relatively low galactose concentration.  According to Dea et al (1977), this 

signifies stronger synergistic interactions with other food hydrocolloids in 

addition to stronger gelling abilities when used independently (Dea 1977).  With 

such a high mannose-galactose ratio, this influences solubility of the hydrocolloid.  

 

2.4.2.2 Properties 
 

At ambient temperatures, locust bean gum is only partly soluble therefore 

heat treatment is required for maximum solubility (Hui 1964; Gaisford 1986; 

Maier 1992).  Since locust bean gum is a neutral hydrocolloid it is stable over a 

wide pH range (3-11). Distribution of side units greatly influences the physical 

behavior of the galactomannan.  Locust bean gum is unevenly substituted, which 

means there are smooth and hairy regions found on the mannan backbone.  On 
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average, for every four molecules of mannose, one galactose side unit is attached 

(Meer 1977).  A four to one mannose-galactose ratio leaves considerable smooth 

mannose backbone regions, which has been shown to have more functionality 

(McCleary 1979; Launay 1986).  As Richardson et al (1998) reported locust bean 

gum should be more functional because it contains greater unsubstituted areas on 

the mannose backbone. 

 

2.4.2.3 Applications and Limitations 

 Locust bean gum acts as a thickening agent, stabilizer, and a fat replacer in 

various food systems.  It is an excellent stabilizer for dairy products, such as ice 

cream, due to its ability to bind free water and high swelling potential.  It also has 

good heat-shock resistance and provides good body to the ice cream product 

(Meer 1977; Lazaridou A 2000).  Locust bean gum is also used in processed 

meats, such as salami, bologna, and sausages, as a binding and stabilizing agent.  

It also provides a lubricating effect on the meat mixture and eases the extruding 

and filling operation.  In addition to guar gum, locust bean gum is added to cheese 

products.  Soft cheeses uses locust bean gum in order to catalyze the coagulation 

step as well as increasing the yield of curd produced.  It also contributes body and 

texture to the final cheese product.  At low concentrations, approximately 0.2%, it 

is added to soup as a thickener.  It is also added as a thickener to pie fillings, it 

also serves to produce a clear filling.  Another category of food systems locust 

bean gum is added to are bakery products.  When added to dough, it provides 

more uniformity with increased water-holding capacity, greater resiliency and 
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higher yields.  Locust bean gum can also be added to cake and biscuit dough, in 

order to give higher yields as well as not needing to add as many eggs.  It also 

allows the cake and biscuit to be softer, keep their freshness, and retain their 

shape during processing.  Many prepared foods also have locust bean gum added 

such as soup bases, sauces, frozen batter, vegetable and fish dishes.  In addition to 

those already stated, it is added to whipping cream, mayonnaise, ketchup, and 

salad dressings as a stabilizer.    

Locust bean gum is an economic thickener and stabilizer, requiring only 

small concentrations to make highly viscous solutions.  Locust bean gum is stable 

over a pH range of 3 to 11, so it is little affected by pH changes.   Locust bean 

gum has the ability to form gels, unlike guar gum.   Another advantage of locust 

bean gum is its ability to interact with other hydrocolloids to influence gelling 

properties (Meer 1977).  For instance, locust bean gum has synergistic 

relationships with xanthan gum, carrageenan, and agarose.  Locust bean gum is 

also capable of self-associating upon freeze-thaw cycles.   

Though locust bean gum has many advantages, it has some limitations as 

well.  Locust bean gum is not cold water soluble, so heat needs to be applied in 

order to fully hydrate the gum.   Solution clarity can be a deciding factor when 

choosing food hydrocolloids.  Locust bean gum produces a cloudy, off-white, and 

opaque solution.   

 

2.5 CURDLAN GUM 
    Curdlan gum was discovered by Dr. Harada and coworkers in 1964.  

The name curdlan was given due to the ability of this substance to curdle when 
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heated (Harada 1966; Maeda 1967; Pszczola 1997; Nishinari 2000).    Curdlan is 

an extracellular microbial polysaccharide produced by Alcaligenes faecalis var. 

myxogenes, which is today classified as Agrobacterium biovar 1 (Nakao 1997; 

Jezequal 1998).   Curdlan is produced by a fermentation process using the 

microorganism Alcaligenes faecalis var. myxogenes, which was originally isolated 

from the soil.  The aerobic fermentation process is described in U.S. patents 

3,754,925 and 3,822,250 (Kimura 1973; Kimura 1974). Curdlan is the third 

microbial exopolysaccharide approved for use in the United States by the FDA, 

which was approved in 1996 (USFDA 1996).  Over 100 tons of curdlan are 

produced annually even though curdlan is relatively expensive in comparison to 

other food gums (Chaplin 2003b).     

2.5.1 Structure 
 
 Curdlan is composed of a minimum carbohydrate concentration of 90% 

and a maximum water content of 10% (Nakao 1997; Jezequal 1998). Curdlan is a 

neutral polysaccharide consisting of D-glucose with β-1,3 glucosidic linkages 

(Figure 8), which means there are repeating glucose subunits joined by a beta 

linkage between the first and third carbon of the glucose ring (Nakao 1997; 

Jezequal 1998; Funami 1999; Funami 1999b).  The 1,3 β-D-linkage is similarly 

seen in other hydrocolloids such as carrageenan, agarose, and gellan gum, 

however curdlan does not possess any acidic components (Nishinari 2000).  The 

D-glucose that makes up curdlan is similar to cellulose however, the linkages 

differ (Nishinari 2000).  
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  Figure 8: The Molecular Structure of Curdlan 
 
 

Curdlan, in its solid state, may exist in a triple helix shown by 13C NMR 

analysis (Nishinari 2000).  It is in granular form similar to that of a donut shape.  

Curdlan is not water soluble although it can be dissolved in aqueous NaOH 

because of the ionization of hydrogen bonds.  Upon introduction to aqueous 

NaOH, the bonds are broken due to swelling and the granular structure of curdlan 

is lost (Nishinari 2000).   

 

2.5.2 Properties 

 Curdlan gum is not soluble in water, alcohol, and most organic solvents, 

however it is soluble in alkaline solutions such as sodium hydroxide and 

trisodium phosphate (Nakao Y 1991; Nakao 1994; Nishinari 2000).  Ogawa et al 

(1972) studied curdlan conformation in various concentrated alkaline solutions.  

At low concentrations of sodium hydroxide (below 0.19 N NaOH), curdlan has an 

ordered (helical) conformation, however a significant change is seen once the 

sodium hydroxide concentration is increased to a concentration between 0.19 and 

0.24 N NaOH (Ogawa K 1972).  At a concentration higher than 0.2 N NaOH, 

curdlan is fully soluble and has a random structure.  However, once this solution 
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is neutralized, the soluble turns to an order state which consists of single and 

triple helices (Ogawa K 1972).  

 Curdlan is a linear homopolymer chain, but forms complex tertiary 

structures believed to be caused by intramolecular and intermolecular hydrogen 

bonding (Nishinari 2000).  It is these hydrogen bonds that may confirm why 

curdlan is not soluble in water.  It acts somewhat similar to cellulose.  Although 

curdlan is not soluble in water, an aqueous solution containing curdlan can form a 

gel depending on the heating temperature (Nakao Y 1991; Nakao 1994; Nakao 

1997).  Two types of curdlan gels can be formed:  a low-set gel and a high-set gel.  

The low-set gel, which is thermo-reversible, can be created one of three ways: 

addition of the cations Ca++ or Mg++, neutralization of an aqueous alkaline 

solution of curdlan, or by heating a curdlan solution between 55 and 60ºC and 

then cooling it below 40ºC (Kanzawa Y 1987; Kanzawa Y 1989).  A low-set 

curdlan gel exhibits properties similar to those of carrageenan and agar-agar.  The 

curdlan molecules swell around 55ºC which results in partial rupture of 

intramolecular hydrogen bonding (Jezequal 1998).  Therefore upon cooling, new 

hydrogen bonds cross-link curdlan micelles, which are occupied by molecules of 

a single-helix (Maeda 1967; Kimura 1973). If the aqueous solution is heated to 

temperatures exceeding 80ºC a high-set gel will result, which is also identified as 

a thermo-irreversible gel (Pszczola 1997; Jezequal 1998). The high-set curdlan 

gel is a much stronger and more resilient gel then the low-set gel.  The texture of 

the high-set gel is described as being between a soft, elastic gel as seen with 

gelatin and a hard brittle gel seen with agar-agar (Nakao 1997; Jezequal 1998).  It 
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is believed the molecular mechanism for a high-set gel results from cross-linking 

between curdlan micelles with hydrophobic interactions (Fulton WS 1980).  The 

curdlan micelles are occupied by molecules of multiple-chain helix or triple 

stranded helix (Marchessault 1979; Kasai 1980).  The high set gel is stable at low 

temperatures, such as freezing as well as at high temperatures, as seen in 

processing conditions such as retorting.  It is also resistant to enzymatic and acidic 

hydrolyses (Nakao Y 1991; Nakao 1997).  It is possible to change a low-set gel 

into a high-set gel by increasing the temperature to 80ºC (Nakao 1997).  The 

formation of the two types of gels are seen in the figure below. 

 

 Figure 9: Effect of temperature on viscosity and gel strength (adapted from Nakao 1997) 

Either type of curdlan gel does not add any color, smell, or taste to products, 

however, can make a profound difference when added in small amounts.  A 

general property of curdlan gel is as the concentration of curdlan is increased, the 

gel strength is also increased.  For higher strength gels, a higher concentration of 

curdlan is needed, however, if a low strength gel is needed; only a minimal 

amount of curdlan is needed.  Gel strength is not only dependent on the 
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concentration of curdlan, but on the heating temperature and time as well.  Gel 

strength increases with increasing temperature as well as heating time (Nakao 

1997; Nishinari 2000).  In addition to curdlan concentration, heating time and 

temperature, gel strength is stable over the pH range of 2-10 (Nakao 1997; 

Jezequal 1998).  There are no significant effects on gel strength with addition of 

inorganic salts (Funami 1999).   

 

 2.5.3 Applications and Limitations 

 Curdlan, which is not soluble in water, can be made into a gel if heat is 

applied.  The distinguishing characteristic of curdlan is that no other conditions 

need to be met to induce gel formation, such as pH, sugar concentration, and 

cation presence.  Before heating though, the curdlan needs to be properly 

dispersed in water.  Usually a high speed mixer or homogenizer would be 

sufficient (Nishinari 2000). 

 There are many potential uses for curdlan gel as it is a tasteless, odorless, 

and colorless gel.  The gel is able to withstand the temperature extremes in the 

case of freezing and retorting.  Curdlan is also capable of forming a gel when a 

large amount of lipids are used in a product.  In noodle dough, the curdlan helps 

to prevent soluble ingredients from leaking out and overall softens the noodles, 

which results in a very clear soup broth (Nakao 1997; Nishinari 2000).    Curdlan 

can also be added to tofu.  When tofu is frozen without curdlan, upon thawing it, 

it possesses a rough texture that is not desirable.  The addition of curdlan 

however, enables the tofu to keep a normal smooth texture that it possesses prior 
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to freezing. It is also used in surimi products, which is ground fish meat, as it 

contributes to the elasticity (Nishinari 2000).  Curdlan is also used in frozen sweet 

products, such as cakes and ice cream.  Curdlan contributes to the texture of the 

cakes and helps retain shape for ice cream.  Another popular use for curdlan gel is 

in processed meat products.  It can improve the water-holding capacity as well as 

positively altering the texture (Nakao 1997; Nishinari 2000).  An additional use 

for curdlan is in freeze-dried foods.  The curdlan can improve the rehydration 

time and the overall texture of the food product. Retorted products provide an 

ideal opportunity for curdlan use.  The overall body and viscosity of retorted 

sauces can be greatly improved with a low concentration of curdlan gum.  

Curdlan can also be used in foods as a fat replacer (Jezequal 1998).  Frequently, 

consumers desire healthier products, but do not want to give up the mouthfeel of 

their products.  Curdlan mimics fat mouthfeel once it is hydrated and heated.  

Lastly, since curdlan can bind additional water, it can be added to food products 

to inhibit ice crystallization and moisture migration.  Potential applications for 

curdlan are shown in Table 7. 
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Table 7: Potential Uses of Curdlan in Food Products 

Product Functionality Typical use level (%) 
Noodle texture modifier 0.2-1 
Kamaboko texture modifier 0.2-1 
Sausages, Ham texture modifier, water holding 0.2-1 
Processed cooked 
foods binding agent, moisture retention 0.2-2 
Processed rice cake shape retention 4.0-6.0 
Cakes moisture retention 0.1-0.3 
Ice cream shape retention 0.1-0.3 
Jellies gelling agent, freeze-thaw stability 1.0-5.0 
Fabricated Foods gelling agent, freeze-thaw stability 1.0-5.0 
Edible films film formation 1.0-10 
Dietetic foods low-energy ingredient 30-100 

Adapted from Nishinari 2000 
 

Curdlan can be used in many food systems due to its ability to form two 

types of gels, retain its gel strength as well as being stable over a wide range of 

pH.  Also important to mention is that it is a colorless, odorless, and tasteless 

substance that will not affect the final sensory outcome of food products.  

Frequently, hydrocolloids can influence final color, odor, or impart an undesirable 

taste.  Though curdlan gum has many advantages, limitations are still present.  

The biggest limitation of curdlan is the cost.  It is relatively expensive in 

comparison of other gums on the market.  However, the cost is decreasing as 

technology is improving.  Though curdlan is relatively new to the market (1996) 

there has been a lot of research done solely on curdlan.  However, studies are 

lacking on the use of curdlan with other hydrocolloids currently used in food 

systems.   

 
 

 



 44

 

Chapter 3 

OBJECTIVES 

The ultimate goal of this study was to reveal and characterize the 

interactions of curdlan gum with four common hydrocolloids: carrageenan, 

xanthan, guar, and locust bean gum.   

 In order to achieve this goal, there were two specific objectives 

accomplished.  The first objective was to evaluate the rheological and textural 

properties of the copolymers.  Rheological studies included using steady shear 

and dynamic oscillatory shear measurements, to better understand the viscoelastic 

characteristics.  Textural properties included measuring the gel strength and 

adhesiveness of all four copolymer solutions.   

The second objective was to expose the copolymers to a wide range of 

temperatures as well as a series of freeze-thaw cycles to see if curdlan gum 

enhanced the stability of the copolymers.   
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Chapter 4 

MATERIALS AND METHODS 

4.1 Materials 
 Odorless and tasteless, free flowing curdlan powder was obtained from 

Tadeka USA (Orangeburg, New York). 

 Kappa carrageenan was provided by TIC Gums (Belcamp, MD) in the 

form of TIC Pretested Colloid F-390 Powder from Lot #: 5075.  It is a white free 

flowing powder which is used between .8-1.5% for gel systems.  It requires a 

temperature of 180ºF in order to be soluble in water.  

 Xanthan Gum was provided by TIC Gums (Belcamp MD) in the form of 

TIC Pretested Ticaxan Xanthan Powder from Lot #5556.  Its typical usage is .05-

.35% and is cold water soluble.  

 TIC Gums also supplied guar gum in the form of TIC Pretested Gum Guar 

8/22A NF (USP) Powder.  It is typically used between 0.1 and 1.0% and is cold 

water soluble.   

 Locust bean gum was in the form of TIC Pretested Pre-Hydrated Locust 

Bean Gum Powder.  It is usually used in a range of 0.15% and 0.75%.  The pre-

hydrated term in the name implies that when it is added to hot water, the locust 

bean gum will not lump.   

4.2 Methods 
 The experimental design was completed using ECHIP Statistical Software 

for engineers and scientists (Hockessin DE).  Curdlan was used with other 
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hydrocolloids, which produced a copolymer, and rheological properties were 

measured.  The design variables were curdlan concentration and the concentration 

of the other four gums (carrageenan, xanthan, guar, and locust). ECHIP calculated 

the number of trials and designed a completely randomized continuous design.  

Levels of gums ranged from 0% (w/v) to 1% (w/v).  The randomized trials are 

seen below.  For each combination of gums, an ECHIP program was set up.   

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trial Carra_conc Curdlan_conc Trial Xanth_conc Curdlan_conc
2 0 0.5 10 1 0.667
5 1 0 9 1 0.333
7 0.667 0 2 0 0.5
1 0 1 1 0 1
3 0.5 1 2 0 0.5
8 0.333 0 11 0.333 0.667

11 0.333 0.667 4 1 1
9 1 0.333 3 0.5 1
4 1 1 1 0 1
2 0 0.5 5 1 0
1 0 1 4 1 1
5 1 0 3 0.5 1
3 0.5 1 6 0 0
4 1 1 7 0.667 0

10 1 0.667 8 0.333 0
6 0 0 5 1 0

Trial Guar_conc Curdlan_conc Trial Locust_con Curdlan_conc
4 1 1 4 1 1
7 0.667 0 5 1 0
5 1 0 1 0 1
1 0 1 4 1 1
9 1 0.333 5 1 0
5 1 0 3 0.5 1
6 0 0 2 0 0.5
2 0 0.5 7 0.667 0
3 0.5 1 8 0.333 0

11 0.333 0.667 1 0 1
2 0 0.5 2 0 0.5
3 0.5 1 11 0.333 0.667
4 1 1 3 0.5 1

10 1 0.667 9 1 0.333
8 0.333 0 10 1 0.667
1 0 1 6 0 0
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4.2.1 Preparation of Copolymer Solutions 

The hydrocolloid powders were weighed and dry blended at ambient 

temperature before being introduced to fast moving DI Water.  Upon introduction 

to the DI Water, they were constantly stirred while the temperature reached 90ºC.  

Once the temperature was met, the gums were removed from the heat and poured 

into 50 mL test tubes and allowed to cool to room temperature.  They were 

covered and refrigerated overnight.  Before analysis the following day, they each 

were set at room temperature for 30 minutes to adjust to the ambient temperature.   

4.2.2 Rheological Testing 

 General and dynamic rheological measurements were carried out using the 

AR 2000 Rheometer (TA Instruments, New Castle DE) using a 40mm stainless 

steel parallel plate.  Viscosity tests were conducted to see changes in viscosity as 

shear rate increased.  Oscillation tests were done within the linear viscoelastic 

region (LVR) to determine storage and loss moduli.  Frequency sweeps were 

conducted at a frequency of 1 Hz.  Once results were collected, they were 

reported to ECHIP Statistical Modeling Software which calculated two and three 

dimensional contour plots.   

4.2.3 Heat Stability Testing 

The AR 2000 Rheometer was also used to conduct heat stability testing of 

the copolymer gels.  Viscosity was measured as the temperature was ramped from 

20ºC to 80ºC.   
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4.2.4 Gel Strength and Adhesiveness 

 The TA.XT2i Texture Analyzer by Texture Technologies, Inc (Scarsdale, 

NY) was used to determine the gel strength and adhesiveness profiles.  A P/0.5R 

probe using a 5kg load cell was used.  For this analysis, when 5g of force was 

detected by the probe, it continued to descend into the sample for 5 seconds and 

then returned to the starting position.  The graph produced by the TA.XT2i can 

provide very valuable information such as the gel strength, the adhesiveness, as 

well as elasticity or brittleness of a particular gel. 

 

 

 

 

 

 

 

 

 

 

 

4.2.5 Syneresis Testing 

 Syneresis testing was completed by centrifuging the samples at 2200 rpm 

(707 x g) for 20 minutes in a Beckman Model TJ-6 centrifuge.  The volume of the 

Figure 4.1: Typical graph from Texture Analyzer and the areas to find 
information on gel strength, adhesiveness, and brittleness  
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exuded water was determined using a graduated cylinder.  The percent of 

syneresis was defined as 

 
(volume of water exuded/ total volume of sample) x 100 

 

4.2.6 Freeze-Thaw Stability 

 Copolymerized hydrocolloidal solutions containing various concentrations 

of curdlan gum were prepared as above.  The solutions were stored at 4ºC for 24 

hours.  The samples were then subjected to five freeze-thaw cycles in which they 

were stored at -16ºC for 18 hours and then at 25ºC for 6 hours.  The thawed 

samples were then tested for viscosity, storage and loss moduli, gel strength, 

adhesiveness, syneresis, and heat stability.   
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Chapter 5: 

Results and Discussion 

 

5.1 RHEOLOGICAL AND TEXTURAL CHARACTERISTICS 

5.1.1 Viscosity 
 

To elucidate the basic flow behavior of various combinations of 

hydrocolloids containing curdlan-based copolymers, the changes in the solution’s 

apparent viscosity, ηa, which is defined as the resistance to flow with a material 

that follows the relationship shear stress divided by shear rate (Steffe 1996), were 

investigated.  As an example, a set of solutions containing carrageenan/curdlan at 

different combinations were tested under increasing shear rates with constant 

strain (Figure 5.1).  A typical shear-thinning behavior was observed, as the 

solution ηa decreased with increasing shear rate.  As expected, the viscosity 

increased as the total gum concentration increased, and none of the solutions 

exhibited yield stress behavior.  All hydrocolloidal copolymers investigated in the 

present study showed similar shear-thinning flow behavior, which is a desirable 

property for food hydrocolloids.  Shear-thinning hydrocolloids are extensively 

used to improve or modify food texture.  The reduction in solution ηa provides 

processing advantage during high-shear processing operations such as pumping 

and filling (Tada 1998), whereas the high apparent viscosity during mastication 

provides a desirable mouthfeel upon consumption (Reilly 1997). 
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To further characterize and compare the contribution of each polymer to ηa 

in a copolymeric hydrocolloidal system, a set of experiments were conducted 

based on the response surface methodology (RSM) with a quadratic model and 

the results were illustrated in both three-dimensional (3D) and two-dimensional 

(2D) contour plots (Figure 5.2).  In the present study, the values of ηa at 2 s-1 shear 

rate, a typical shear rate at which hydrocolloids are stirred-in in many food 

preparations, were recorded for each combination of copolymers.   

As seen in the 3D contour plot, the highest viscosity occurred when 1.0% 

(w/v) curdlan was in combination with 1.0% (w/v) carrageenan (Figure 5.2a).  It 

is also apparent that curdlan, when present alone in a solution, had the lowest 

viscosity at 1% (w/v) as compared to the other gums.  Therefore, the 3D contour 

plot curved upward along the carrageenan axis steeper than the curdlan axis.  The 

highest viscosity was found in the carrageenan/curdlan system, reaching 42.3 Pa⋅s 

Figure 5.1: Changes in apparent viscosity as shear rate increases for 
Carrageenan/curdlan combinations (-◊-, 1.0% carrageenan; -▼-, 1.0% 
carrageenan with 0.33% curdlan; -○-, 1.0% carrageenan with 0.667% curdlan;     
-■-, 1.0% individual gums with 1.0% curdlan) 
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at 1%/1% combination.  Similar trends were found when curdlan was combined 

with guar or locust bean gum (Figure 5.2c-d).   

Conversely, the 3D viscosity contour plot of solutions containing 

xanthan/curdlan copolymers curved downward along the xanthan gum axis after 

steep increase at low concentration ranges up to 0.4% (w/v) (Figure 5.2b).  This 

could be attributed to the high viscosity of xanthan gum even at very low 

concentration.  For instance, 0.1% (w/v) xanthan gum solution gives 0.34 Pa·s.  

The food industry has taken advantage of such properties and used xanthan gum 

as a thickening agent to control and/or modify the texture of products in many 

food systems (Sworn 2000).   

A synergistic relationship was found when locust bean gum was combined 

with curdlan gum, namely the viscosity of two gums combined were greater than 

the effect of each gum individually (Figure 5.2d).  The viscosity of 1.0% (w/v) 

curdlan was 0.36 Pa⋅s and for 1.0% (w/v) locust the viscosity was 3.8 Pa⋅s.  When 

they were added together at 1.0% (w/v) of each, the total viscosity was 13.80 Pa⋅s, 

greater than the sum of their respective viscosity at 1.0% (w/v).    

Synergism was also found with guar and curdlan combinations; however 

the effect was to a lesser extent compared with locust bean gum/curdlan.  The 

viscosity of 1.0% of guar was 9.4 Pa⋅s and when it was mixed with 1.0% curdlan 

(viscosity 0.36 Pa⋅s); the viscosity reached 16.9 Pa⋅s.  It is understood as a rule of 

thumb that by doubling the concentration of guar gum in an aqueous solution the 

viscosity would increase by 10 Pa⋅s (Wielinga 2000), i.e., if 2.0% (w/v) of guar 
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gum solution would be made, it would have a viscosity higher than 1.0% (w/v) 

guar gum combined with 1.0% (w/v) curdlan.   

The difference in the degree of synergism between locust bean gum and 

guar gum could be attributed to the chemical structure of these two hydrocolloids.  

Both gums are galactomannans, which have an identical (1  4)-β-D-mannan 

backbones.  However, there is a difference in the degree and type of substitution 

of these two hydrocolloids.  Locust bean gum is unevenly substituted and has a 

low galactose content, but can lead to stronger synergistic interactions (Dea 1977; 

McCleary 1985).  The unevenly substituted backbone allows for large smooth 

areas to be open for creating junction zones with adjacent molecules.  In the case 

of guar gum, it is evenly substituted and has a higher galactose content, which 

means there are smaller areas on the backbone that are uninhibited, rendering less 

functionality (McCleary 1979; Launay 1986). 
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Figure 5.2: Comparison of 3-D and 2-D contour plots of apparent viscosity values for (a) 
Carrageenan/Curdlan (b) Xanthan/Curdlan (c) Guar/Curdlan and (d) Locust bean gum/curdlan 
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5.1.2 Storage and Loss Modulus 
 
 To characterize the respective rheological capacity of curdlan gum 

copolymerized with carrageenan, xanthan, locust bean, and guar gum, the storage 

(G’) and loss (G”) moduli of each combination were measured (Figure 5.3).  In 

solutions containing carrageenan and curdlan copolymers at various 

concentrations, G’ predominated over G” at all frequencies studied, exhibiting 

more elastic than viscous behavior.  At the higher frequencies studied (ca. 2 

rad/s), G’ decreased rapidly and the crossover points were found for 1.0% 

carrageenan alone and for 1.0% carrageenan with 0.33% curdlan (Figure 5.3a).  

However, crossover points would have occurred in a few radians per second 

higher for 1.0% carrageenan with 0.667% and 1.0% curdlan.  It was observed that 

the crossover frequency increased with increasing curdlan concentration.  In 

addition, as curdlan concentration increased, the values of G’ and G” increased.  

The crossover point signifies the frequency at which the characteristic behavior of 

the gels shifts from elastic to viscous (Lo 2003).   

 In solutions containing xanthan/curdlan copolymers, G’ predominated at 

lower frequencies, indicating certain degrees of elastic behavior (Figure 5.3b). 

However, the crossover frequency occurred at a low frequency and it was 

observed as curdlan concentration increased so did the crossover frequency.  The 

data illustrated that at lower frequencies, xanthan and curdlan combinations 

exhibited more elastic behavior.  However, as frequency increased, more viscous 

behavior was displayed, as indicated by the increasing predomination of G” at 

higher frequencies.   
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 When guar and curdlan gum were combined, as curdlan concentration 

increased, so did the crossover point (Figure 5.3c).   Guar gum in the solution all 

by itself showed slightly higher elastic properties at low frequencies; however, at 

those low frequencies, G’ and G” were overlapping.  The loss modulus G” 

predominated at higher frequencies, indicating more viscous behavior of the 

solution.  Moreover, as curdlan concentration increased, so did the elastic 

behavior at low frequencies.  At the higher frequencies G” continued to 

predominate, in agreement with the very high viscosity observed in guar and 

curdlan combinations.  On the other hand, locust gum, another galactomannan, in 

combination with curdlan in solution showed G” predominant over G’ for the 

entire frequency sweep.  This observation suggests that the locust/curdlan 

combinations exhibited more viscous behavior than elastic.  No crossover point 

was observed in any of the locust/curdlan combinations.   
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Figure 5.3: Storage and Loss Moduli for (a) Carrageenan/curdlan (b) Xanthan/curdlan (c) Guar/curdlan and (d) Locust/curdlan 
(-□-, 1.0% of individual gums; -○-, 1.0% individual gums with 0.33% curdlan; -●-, 1.0% individual gums with 0.667% curdlan; 
-■-, 1.0% individual gums with 1.0% curdlan) 
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5.1.3 Gel Strength 
  
 Gel strength is commonly measured to indicate the strength of a gel 

network.  This can be a very important characteristic depending on what type of 

food system is being used.  The graph produced can provide very valuable 

information such as the gel strength, the adhesiveness, as well as elasticity or 

brittleness of a particular gel (Fiszman 2000; Hoefler 2004).   

To illustrate how the gel strength of copolymers differs at various 

concentration combinations of curdlan and the other gums studied, both 3D and 

2D contour plots were employed (Figure 5.4).  In combinations that contained 

carrageenan/curdlan, guar/curdlan, and locust/curdlan, the highest gel strength 

was attained when there was 1.0% of each gum, making a total gum concentration 

of 2.0%.  However, in the case of xanthan/curdlan, the maximum gel strength was 

reached at a curdlan concentration of 1.0% and a xanthan concentration of 0.64%, 

which showed higher gel strength than 1.0% of each.  Out of all the combinations 

studied, only carrageenan/curdlan produced a real gel network, which also 

produced the highest gel strength.   

It has been shown that the ability of gelling is due to the double helix 

formation of carrageenan (Anderson 1969; Rees 1969). In the present study, a 

temperature of 90ºC was reached when preparing the solutions.  Such a high 

temperature promoted the formation of random coils in the solution (Anderson 

1969; Rees 1969; Rees 1970).  Upon cooling, double helices formed junction 

zones, which produced a three-dimensional network.  The gels were then placed 

in the refrigerator overnight, which induced aggregation of the junction zones by 



 59

hydrogen bonding of adjacent double helixes (Rees 1969; Moirano 1977; Hoefler 

2001).  Carrageenan with a 1.0% (w/v) concentration produced a gel network with 

relatively high gel strength.  However, 1.0% (w/v) of curdlan alone had very low 

gel strength, again attributed to the low concentration of curdlan.  Though the 

highest gel strength was reached when 1.0% (w/v) carrageenan mixed with 1.0% 

(w/v) curdlan, it appears that the interaction is more additive than synergistic.  For 

all concentration combinations, no synergistic relationships were observed in 

regards to gel strength, only additive.   

The results obtained in the present study help indicate the applications of 

these copolymers.  Carrageenan is capable of forming a gel network upon cooling 

from high temperatures.  Therefore it can be easily pumped through 

manufacturing equipment at high temperatures and able to form and shape upon 

cooling (Glicksman 1979; Pedersen 1979).  This is observed in the case of 

chocolate and flavored milks, which uses very low levels of carrageenan (0.02-

0.03%) (Hoefler 2004).  The carrageenan is added to suspend cocoa particles and 

provide body to the milk.  Carrageenan only dissolves in milk at temperatures 

above 50ºC and contributes viscosity to the beverage only once the milk is cooled 

to below 30ºC (Hoefler 2004).  Therefore, the carrageenan can go through all the 

processing steps including pasteurization without contributing any increased 

viscosity.  Primarily, carrageenan is used in products such as water dessert gels 

and milk puddings, due for the desirable gel-like texture (Glicksman 1979).  Its 

gelling ability is the reason that carrageenan is the most common hydrocolloid 

used in meat processing.  It is used predominately in poultry products, such as 
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chicken breast, and precooked, reformed products such as deli meats (Imeson 

2000).  Carrageenan is not hydrated when introduced to the product.  However, 

upon cooking the product, the carrageenan is hydrated and assists proteins in 

creating a gel network (Hoefler 2004).  The carrageenan also binds water in the 

gel and prevents it from running out during cooking.  Therefore, carrageenan not 

only reinforces the gel network, but also improves the sliceability of the product, 

and minimizes syneresis (Imeson 2000; Hoefler 2004).   

The low gel strength of curdlan with xanthan, guar, and locust bean could 

find applications in products such as ice cream and salad dressings where added 

body is desired.  Xanthan gum is most commonly used in salad dressings due to 

its ability to suspend herbs and spices while thickening and adding body to the 

product (Hoefler 2004).  Frequently, other hydrocolloids are added to salad 

dressings in addition to xanthan gum to further modify the texture (Sworn 2000; 

Hoefler 2004).  Therefore, curdlan combined with xanthan could be a potential 

combination.   

All four copolymers could be used as fat replacers as each provide either a 

thickening or gelling effect and can promote a creamy texture under the 

appropriate conditions (Hoefler 2004). 
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Figure 5.4: Comparison of gel strength for the following copolymers  (a) Carrageenan/Curdlan (b) 
Xanthan/Curdlan (c) Guar/Curdlan and (d) Locust bean gum/Curdlan 
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5.1.4 Adhesiveness 
 
 It is apparent with the 3D and 2D contour plots that curdlan reduced the 

adhesiveness, which refers to amount of work needed to overcome the attractive 

forces between the surface of the food product and the surface of the material with 

which it comes in contact (Texture Technologies Corp), of the 

carrageenan/curdlan combinations (Figure 5.5).  The highest degree of 

adhesiveness was observed when 1.0% (w/v) carrageenan was in the solution 

alone (Figure 5.5a).  This reduction in adhesiveness is desirable in processing and 

manufacturing.  However, quite the opposite was observed for combinations 

containing xanthan, guar, and locust bean gum.   

In the xanthan/curdlan and locust/curdlan combinations, adhesiveness was 

the greatest when 1.0% (w/v) curdlan and 1.0% (w/v) of xanthan (Figure 5.5b) or 

locust bean gum (Figure 5.5d) was used.  In all solutions, it was found that 

curdlan in the solution alone did not have good adhesive properties, whereas 1.0% 

(w/v) of each of the other gums by themselves showed higher adhesive properties 

than curdlan.  Except for the carrageenan/curdlan mixture, when 1.0% (w/v) 

curdlan was combined with 1.0% (w/v) of the other gums, respectively, the 

solution adhesiveness was at its maximum.  Among all combinations investigated 

in the present study, the locust/curdlan combination exhibited the highest degree 

of adhesiveness, which was supported by visual observations that a large amount 

of sample solution adhered to the tip of the probe on the Texture Analyzer.   

 Adhesiveness can be observed two different ways: adhesion to 

manufacturing equipment or sticking to fingers and parts of the mouth (Fiszman 
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2000).  Adhesiveness may be deemed a positive attribute in food products such as 

puddings, bakery products, and confectionery products (Fiszman 2000; Fiszman 

2000).  In the present study, curdlan combined with xanthan, guar, and locust 

bean gum had high levels of adhesiveness.  These copolymers could potentially 

be used in salad dressing formulations.  Manufacturers and consumers, in most 

cases, want a salad dressing which clings to the salad and won’t quickly collect in 

the bottom of the bowl (Sworn 2000; Hoefler 2004).  Therefore, this high 

adhesiveness would be desirable in this type of product.  
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Figure 5.5: Three-dimensional and two-dimensional contour plots showing the comparison of adhesiveness 
between the copolymers of (a) Carrageenan/Curdlan solutions (b) Xanthan/Curdlan solutions (c) 
Guar/Curdlan solutions and (d) Locust bean gum/Curdlan solutions 
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5.1.5 Syneresis  
  
 Syneresis, the separation of liquid from a gel, is a common problem with 

some food hydrocolloids in food applications.  Without proper control or 

preventative measure, syneresis could result in significant loss of moisture, flavor, 

color, and eventually the quality of food (Glicksman 1977; Hoefler 2004)  It has 

been researched that, by proper blending of hydrocolloids, the degree of syneresis 

could either be reduced or delayed (Imeson 2000; Hoefler 2004)   

Measured by the percent of water secreted from the solutions during 20 

minutes of centrifugal force (707 × g), curdlan alone in the solution exhibited 

certain degrees of syneresis, due mainly to the relatively low concentration of 

curdlan and lack of a gel network.  A gel-like network was only found in the 

bottom of the centrifuge tube after the supernatant was decanted.  Since syneresis 

is, in most cases, an undesirable characteristic, a combination of hydrocolloids 

that could reduce or delay syneresis would be of great interest to the food 

industry.   

In the case of carrageenan/curdlan, the optimal concentration combination 

that yielded the lowest amount of syneresis was found at 1.0% (w/v) carrageenan 

and 0.33% (w/v) curdlan (Figure 5.6a).  Similarly, in the xanthan/curdlan mixture, 

the combination showing the least syneresis was found to be 0.68% (w/v) xanthan 

and 0.68% (w/v) curdlan.  Moreover, all combinations containing xanthan and 

curdlan gum were very stable, which coincides with the results reported by 

Sanderson (1996).  
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While guar gum or locust bean gum was used in combination with 

curdlan, the least syneresis was found when only guar gum (Figure 5.6c) or locust 

bean gum (Figure 5.6d) was present in the solution by themselves or used at 1.0% 

(w/v) in conjunction with 1.0% (w/v) curdlan, respectively.  The degree of 

syneresis was reduced as guar or locust bean gum concentration was increased.  

These results suggest that, to avoid syneresis in copolymers containing curdlan 

and guar or locust bean gum, empirical measurements are required to fulfill the 

needs of each specific application.  Interestingly, in all of the curdlan 

combinations, when curdlan was used in addition to another gum, the solutions 

were homogeneous before any centrifugal force was applied.   
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Figure 5.6: Contour Plots for Syneresis which is shown in % Water Lost for (a) Carrageenan/curdlan (b) 
Xanthan/curdlan (c) Guar/curdlan and (d) Locust/curdlan  
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5.1.6 Heat Stability 
 
 To understand the heat stability of each of the copolymers, the solution 

viscosity of various combinations of hydrocolloids in question was measured at a 

constant shear rate of 2 s-1 over a temperature range of 20ºC to 80ºC (Figure 5.7).  

Without combining with curdlan gum, carrageenan showed the most dramatic 

decrease in viscosity as temperature increased, with its steepest and quickest 

decrease starting around 40ºC and reached below 0.02 Pa⋅s at 55ºC (Figure 5.7a).  

The results are as expected since κ-carrageenan is known to create a thermo-

reversible gel (Imeson 2000; Williams 2000). This means that at low temperatures 

a gel network is formed, however, at higher temperatures, the gel melts and 

becomes a liquid.  Yet, upon cooling a gel network is reformed.   

Both guar and locust bean gum also decreased in viscosity as heat 

increased, but the curve does not have a very steep slope.  Furthermore, as 

opposed to carrageenan, guar and locust bean gum did not fall to extremely low 

viscosity.  Overall guar showed good heat stability, but at too high a temperature 

the gum can degrade and become unable to function normally (Deis 2001).  It has 

been reported that the viscosity of 1.0% (w/v) guar gum in aqueous solutions will 

decrease as temperature increases (Wielinga 2000).  As temperature increases 

from 20° to 80ºC a drop in viscosity should be approximately 50%.  However, in 

the present study, when 1.0% (w/v) curdlan was added to the 1.0% (w/v) guar 

gum solution, the viscosity decreased only by 33% over the 20º to 80ºC range 

(Figure 5.7d), showing enhanced heat stability.   
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 Xanthan gum, which is known for its stability over a wide temperature 

range (Pedersen 1979; Sworn 2000), is the only gum out of the four to have an 

overall increase in viscosity as temperature increased.  There is approximately a 4 

Pa⋅s viscosity difference from 20º to 80ºC.  This increase is primarily due to the 

intermolecular entanglement during the breakdown of the native conformation of 

xanthan molecules (Dea 1979).  The phenomenon has been characterized 

spectroscopically using optical rotation and circular dichroism (Morris 1977).  

The xanthan molecules undergo a helix-coil transition as temperature increases.  

Once the xanthan is in coil form, the molecule would show the expected decrease 

in viscosity as seen in other hydrocolloids upon heating.  If the temperature ramp 

would have been carried out to 100ºC, a decrease in viscosity would have been 

observed after the increase in viscosity around 65ºC (Dea 1977)   

With increasing amounts of curdlan were added to 1.0% (w/v) of 

carrageenan, xanthan, guar, or locust bean gum, the effect of curdlan on heat 

stability could be identified (Figure 5.8b-d).  It was found that, as curdlan 

concentration increased, so did initial and final viscosities.  However, this was 

expected due to the higher total gum concentration.  Carrageenan combinations, 

independent of added curdlan, still withheld its thermo-reversible gel network, 

which was unexpected because curdlan is thermo-irreversible when it is exposed 

to 80ºC (Pszczola 1997; Jezequal 1998).  Xanthan combined with curdlan did not 

change significantly except in the viscosity, but this is due to the increase in total 

gum concentration.  Xanthan combinations still continued to increase at the higher 

temperatures.  For the combinations that involved guar and locust bean gum, as 
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curdlan concentration increased, viscosity values did as well.  This was also 

observed in terms of viscosity.  For guar gum, the increase in total gum 

concentration is responsible for the viscosity increase.  However, a synergistic 

relationship was observed with locust bean gum and curdlan gum for viscosity.  

For heat stability, the added curdlan increased the heat stability of the locust bean 

gum by over 10%.  Therefore, curdlan added to the heat stability of guar and 

locust bean gums, but did not for xanthan or carrageenan.      
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Figure 5.7: Heat Stability of (a) the individual gums at 1.0% (b) 1.0% individual gums with 0.33% curdlan (c) 1.0% 
individual gums with 0.667% curdlan and (d) 1.0% of the individual gums with 1.0% curdlan (-○-, 
carrageenan/curdlan; -■-, xanthan/curdlan; -●-, guar/curdlan; -□-, locust/curdlan)  
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5.2 FREEZE THAW STABILITY 
 
 Measurements for viscosity, storage and loss moduli, gel strength, 

adhesiveness, syneresis, and heat stability were taken after each individual freeze-

thaw cycle.  The results presented are from the combination of 1.0% (w/v) 

curdlan blended with 1.0% (w/v) of either carrageenan, xanthan, guar, or locust 

bean gum.  This combination was chosen due to the results of the original data.   

5.2.1 Viscosity 
 
 Apparent viscosity was reported as a single point at a shear rate of 2 s-1 

(Figure 5.8).  The viscosity for the carrageenan/curdlan combination decreased 

over the first two freeze-thaw cycles, but then increased slightly for the third 

through fifth cycle. The overall decrease in apparent viscosity was 10 Pa·s. It is 

apparent that xanthan/curdlan combinations were the most stable over the freeze-

thaw cycles as the viscosity was not altered significantly.  A dramatic change in 

apparent viscosity was observed with the locust/curdlan combination.  Upon the 

first freeze-thaw cycle, the locust/curdlan combination changed from a viscous 

liquid to a weak gel network, thus increasing the viscosity.  The viscosity 

increased extensively during the first two freeze-thaw cycles, but decreased with 

the third freeze-thaw cycle.  However, the viscosity after the fifth freeze-thaw 

cycle (39.89 Pa·s) was dramatically higher than before the solution was exposed 

to extreme temperatures (11.97 Pa·s).  The gel network was produced due to the 

chemical structure of the galactomannan, locust bean gum.  Locust bean gum is 

unevenly substituted which has smooth mannose backbone regions uninhibited.  
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These unsubstituted regions allow for the hydrocolloid to have more functionality 

(McClearly 1979; Launay 1986).  In addition, Dea et al (1977) suggests that due 

to the low galactose concentration of locust bean gum, it signifies stronger 

synergistic interactions with other food hydrocolloids in addition to stronger 

gelling abilities when used independently.  With freeze-thaw cycles, locust bean 

gum is known to self-associate, creating a weak gel (Wielinga 2000). The 

opposite was identified for guar/curdlan combinations.  There was no viscosity 

increase following the first freeze/thaw cycle with solutions containing guar gum.  

Rather, the viscosity was maintained through the first freeze thaw cycle but then 

decreased beginning with the second cycle, which is in agreement with Dea 

(1979) and Wielinga (2000). 
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5.2.2 Storage and Loss Modulus 
 
 Stability of original characteristics regarding elasticity and viscosity 

components were compared over the five freeze-thaw cycles (Figure 5.9).  In the 

carrageenan/curdlan combination (Figure 5.9a), during the first two cycles, the 

characteristics were similar to the solution prior to any freeze-thaw cycles.  

However, as frequencies and freeze-thaw cycles increased, G” did as well.  The 

storage modulus, G’, predominated over the entire frequency range studied and no 

crossover points were observed. Yet, as frequency increased, G” increased and G’ 

decreased, which was observed with the original data. 

 The xanthan/curdlan combination did not show a significant difference 

between any of the freeze-thaw cycles (Figure 5.9b).  In past studies, which 

supports the present study, it suggests xanthan gum is a very stable hydrocolloid 

through a number of different environments, including freeze-thaw cycles 

(Pedersen 1979, Sanderson 1996, Sworn 2000).The only difference observed was 

a slight increase in G’ at very low frequencies as freeze-thaw cycles continued, 

showing some increased elasticity.  

 In the freeze-thaw cycles zero to four, G’ predominated over G” during 

exposure to low frequencies for the guar/curdlan combination (Figure 5.9c).   As 

frequency increased, a crossover point was observed and viscous behavior 

predominated.  The guar/curdlan solution not exposed to freeze-thaw treatment 

possessed the longest elastic curve; however, as the cycles continued a decrease in 

elasticity (G’) was observed.  By the fifth cycle, the solution displayed more 
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viscous behavior than elastic, seen by G” predominating G’ over the entire 

frequency sweep.      

 A dramatic change was observed for the locust/curdlan combination when 

it was exposed to the freeze/thaw conditions (Figure 5.9d).  In the original data 

the loss modulus, G”, predominated over the entire frequency sweep and no 

crossover point was observed.  The solution was in liquid form prior to being 

exposed to freezing temperatures.  However, after the first freeze-thaw cycle, the 

liquid changed into a gel network, which explains the significant change in the 

storage and loss moduli.  Just after the first freeze-thaw cycle, G’ and G” 

increased by one decade.  The storage modulus, G’, predominated at low 

frequencies and then at higher frequencies G” predominated.  This displayed a 

significant difference in the rheological properties after the freeze-thaw cycles.  

For cycles one through five, as frequency increased G’ decreased and G” 

continued to increase.  This change is attributed to the self-association of locust 

bean gum, promoted by freeze concentration and ample time to thaw (Dea 1979).   
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Figure 5.9: Frequency Sweep over the freeze-thaw cycles for (a) 1.0% carrageenan with 1.0% curdlan (b) 
1.0% xanthan with 1.0% curdlan (c) 1.0% guar with 1.0% curdlan and (d) 1.0% locust with 1.0% curdlan  
(-○-, cycle 0;  -●-, cycle 1;  -□-, cycle 2;  -■-, cycle 3;  -◊-, cycle 4;  -♦-, cycle 5) 

(a) 

(c) (d) 

(b) 
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5.2.3 Gel Strength 
 

Over the course of five freeze-thaw cycles, guar/curdlan and 

xanthan/curdlan combinations, both in 2.0% (w/v) total gum concentrations, 

remained the most stable in gel strength, seen by consistent gel strength after each 

cycle (Figure 5.10).  This combination could potentially be used in products that 

require freezing and thawing since there was not a large deviation in gel strength 

during the freeze-thaw cycles.     

 Locust with curdlan showed a sharp increase in gel strength, which was 

also observed in the viscosity results after the first freeze-thaw cycle.  Again this 

is attributed to the formation of the gel network after the first freeze-thaw cycle.  

However, after the first freeze-thaw cycle the gel strength decreased and then 

remained relatively constant for the rest of the cycles. Overall though, it was 

observed that the gel strength at the end of the fifth freeze-thaw cycle (9.2g) was 

higher than before any freeze-thaw cycles occurred (6.51g).    

The biggest decrease in gel strength was observed with the 

carrageenan/curdlan combination.  Gel strength decreased dramatically during the 

first two freeze-thaw cycles and then slowly decreased each following cycle.  The 

overall decrease in gel strength was 74.02 grams.  Thus not showing 

carrageenan/curdlan to be a very stable combination, athough κ-carrageenan is not 

freeze-thaw stable independently (Imeson 2000).  A decrease was also seen for 

carrageenan/curdlan with viscosity measurements over the five freeze-thaw 

cycles.   Therefore, 1% (w/v) carrageenan and 1.0% curdlan would not be an ideal 
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combination to use in food products that need to retain high gel strength during 

freeze-thaw cycles.   

 
 

 

 

 

 

 

 

 

 

 

 

5.2.4 Adhesiveness 
 
 Curdlan when combined with locust had the highest degree of 

adhesiveness prior to freeze-thaw cycles and carrageenan with curdlan had the 

lowest.  However, after the first freeze-thaw cycle a shift was observed in the 

adhesiveness of locust with curdlan (Figure 5.11).  Adhesiveness decreased from 

33.65 g·mm to 0.59 g·mm.  The reasoning is due to the development of a weak 

gel, which was also responsible for the increased viscosity and gel strength after 

the first freeze-thaw cycle.   

The carrageenan/curdlan combination decreased in adhesiveness during 

the freeze-thaw cycles, thus again not showing a freeze-thaw stable combination.   
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Figure 5.10: Gel Strength of the copolymers over five freeze-thaw cycles  
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Xanthan when combined with curdlan had the same degree of adhesiveness prior 

to and through the freeze-thaw cycles.  Therefore, xanthan and curdlan 

combinations could be used in frozen food applications where adhesiveness is an 

important characteristic, such as the case with Cool-Whip. A decrease in 

adhesiveness was observed with the guar/curdlan combination as the freeze-thaw 

cycles continued.  Though out of all the combinations, it had the highest 

adhesiveness after the freeze-thaw cycles.  If adhesiveness is not a desirable 

characteristic in the frozen food system, as is the case for pastas, these 

copolymers could be used if they are stable in other aspects (Fiszman 2000).   

 
 

 
 

 

 

 

 

 

 

 

5.2.5 Syneresis 
 

Over the course of five freeze-thaw cycles (Figure 5.12), it is apparent that 

1.0% (w/v) curdlan combined with 1.0% (w/v) xanthan or 1.0% (w/v) guar were 

the most stable combinations in the area of syneresis.  During all five freeze-thaw 

Figure 5.11: Comparison of adhesiveness properties of the copolymers over the 
five freeze-thaw cycles 
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cycles, no water was excreted from the solutions, thus providing a very stable 

combination.  All solutions which contained xanthan gum, independent if curdlan 

was added, were unaffected by centrifugal force.  However, for the 

carrageenan/curdlan or locust/curdlan combinations syneresis did occur.  The 

most pronounced syneresis was observed with the locust/curdlan combination, 

which released water as the cycles continued.  Dea (1979) reports that 

“galactomannan gels are unstable and, on a second freeze-thaw cycle, synerese 

badly, often losing up to 50% of their water content”. Syneresis was very obvious 

in the solutions prior to centrifugal force as a weak gel network was surrounded 

by exuded water, which is characteristic for this galactomannan (Wielinga 2000).  

This was not only found in this particular combination, but in all combinations 

containing locust.  However, of all combinations, the lowest degree of syneresis 

was observed by 1.0% (w/v) curdlan with 1.0% (w/v) locust in addition to 1.0% 

(w/v) locust with 0.667% (w/v) curdlan with syneresis percents at 55 and 54 

respectively by the fifth cycle.  Both of these combinations had much lower 

syneresis than 1.0% (w/v) of locust independently, which had a percent loss of 

68.50 by the fifth freeze-thaw cycle.  One percent (w/v) carrageenan and 1.0% 

(w/v) curdlan combinations exhibited no syneresis prior to any freeze-thaw cycle.  

However, after the first freeze-thaw cycle, close to 20% water was lost and this 

continued for the remainder of the freeze-thaw cycles. It is known that kappa-

carrageenan is subject to syneresis, which causes gel shrinkage due to the loss of 

fluid (Imeson 2000). And because of this, kappa-carrageenan has very poor 

potential for good freeze-thaw stability.   Similar to locust bean gum, 
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combinations containing 1.0% (w/v) carrageenan with 1.0% (w/v) curdlan and 

1.0% (w/v) carrageenan with 0.667% (w/v) curdlan both had the lowest amounts 

of syneresis.  The water lost for 1.0% (w/v) carrageenan alone was 47% by the 

fifth cycle, whereas the percent lost for 1.0% (w/v) carrageenan with 1.0% (w/v) 

curdlan was 13% by the fifth cycle.  Therefore, curdlan helped stabilize both the 

locust/curdlan and carrageenan/curdlan combinations, but it is still not ideal for 

products that require freezing and thawing steps as the case with frozen pies.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5.2.6 Heat Stability 
 
 Heat stability testing was also preformed after each freeze-thaw cycle.   

Results show the viscosity at 80ºC during 2 s-1 shear rate (Figure 5.13).  

Carrageenan with curdlan remained to have a very low viscosity at 80ºC during 

Figure 5.12: Syneresis over five freeze-thaw cycles for 1.0% individual gums 
combined with 1.0% curdlan gum 
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the freeze-thaw cycles, though as the cycles occurred the final viscosity did 

decrease.   

 Xanthan combined with curdlan remained to be very stable in the area of 

heat stability showing almost no differences in viscosity over the five cycles.  

Again supporting that xanthan gum is a freeze-thaw stable hydrocolloid (Sworn 

2000).  Guar when combined with curdlan also remained stable over the course of 

several cycles, however, by the fourth cycle, the viscosity began to decrease 

slightly and a further decrease was seen by the fifth cycle.  During the first two 

freeze-thaw cycles, locust/curdlan had an increase in viscosity at 80ºC, which was 

also seen by the viscosity data for freeze-thaw cycles.  However, the viscosity at 

80ºC decreased in cycles three through five.  This could be accepted as the 

unstableness of the galactomannan gel which is produced under freeze-thaw 

conditions (Dea 1979). 
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5.3 RHEOLOGICAL AND TEXTURAL CHARACTERISTICS 
USING SODIUM HYDROXIDE 
 
5.3.1 Viscosity 
 
 Apparent viscosity was reported as a single point at a shear rate of 2 s-1 

(Figure 5.14).  An increase in viscosity was observed for carrageenan/curdlan, 

xanthan/curdlan, and guar/curdlan combinations as curdlan concentration 

decreased.     As carrageenan concentration increased (Figure 5.14a), viscosity 

increased significantly which is attributed to the gel network formed by 

carrageenan (Imeson 2000).  In the locust bean/curdlan combination, when 0.5% 

curdlan was combined with 0.5% locust bean gum, the apparent viscosity 

observed was the lowest among all combinations studied.  The results observed 

using sodium hydroxide did not reveal the same interactions for guar/curdlan and 

locust bean/curdlan combinations when DI water was used.  This may be 

attributed to the difference in pH of the solutions, as both guar and locust bean are 

stable up to a pH of 10.  Curdlan is not soluble in water at room temperature, but 

dissolves in an alkaline aqueous solution such as 0.1 M NaOH (Nishinari 2000).  

Therefore, this solubility difference might affect the interactions observed 

between different hydrocolloids.   
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(a) 

Figure 5.14 Apparent viscosity at shear rate 2/s of copolymers containing fixed concentrations of (a) Carrageenan/curdlan 
(b) xanthan/curdlan (c) guar/curdlan and (d) locust bean/ curdlan (■ 1.0% curdlan; ■ .7% curdlan, .3% other gum; ■ .5% 
curdlan, .5% other gum; ■ .3% curdlan, .7% other gum; ■ 1.0% other gum) 
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5.3.2 Storage and Loss Modulus 
 

 The storage (G’) and loss (G”) moduli were measured to characterize the 

rheological properties of the copolymers in sodium hydroxide (Figure 5.15).  

When DI water was used as the solvent for the carrageenan/curdlan copolymer, 

G’ predominated over the entire frequency sweep.  However, when sodium 

hydroxide was used as the solvent, G’ predominated at lower frequencies, with G” 

predominating at higher frequencies (Figure 5.15a).  As the curdlan concentration 

increased, the crossover point decreased.  In addition, as the amount of 

carrageenan increased, higher decades were observed for both G’ and G”.   

 In solutions containing xanthan/curdlan copolymers, G’ predominated at 

lower frequencies, showing some elastic components (Figure 5.15b).  However, 

as the frequency increased, a crossover point was observed and G” predominated.  

As xanthan gum increased, an increase in elasticity was observed, which contrast 

with results observed when DI water was used as a solvent.   

 In both guar/curdlan (Figure 5.15c) and locust/curdlan (Figure 5.15d) all 

combinations evaluated had a predomination of G” over the entire frequency 

sweep.  In addition, as curdlan concentration decreased, there was an increase in 

the decades for G’ and G”.  Results for solutions containing locust/curdlan were 

not very different between the two solvents.  However, the results observed for 

guar/curdlan solutions were very different between the two solvents, DI water and 

sodium hydroxide.  The results indicated differences in rheological properties of 

the copolymers as different solvents were used.   
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(a) (b) 

(c) (d) 

Figure 5.15 Storage and Loss Moduli for (a) Carrageenan/curdlan (b) Xanthan/curdlan (c) Guar/curdlan and (d) 
Locust/curdlan (-■-, 1.0% other gums (no curdlan); -○-, 0.7% other gums with 0.3% curdlan; -●-, 0.5% other gums with 
0.5% curdlan; -□-, 0.3% other gums with 0.7% curdlan) 
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5.3.3 Gel Strength 
 
 Gel strength was evaluated for the copolymers when sodium hydroxide 

was used as the solvent.  In all combinations studied, the highest gel strength was 

attained when there was 1.0% (w/v) of carrageenan, xanthan, guar, or locust bean 

used without the addition of any curdlan gum.  Unlike the carrageenan/curdlan 

results observed from when DI water was used, no additive or synergistic effect 

was observed.  However, in the solutions containing xanthan/curdlan, 

guar/curdlan, and locust/curdlan, each of these displayed an additive effect in gel 

strength.  For these particular combinations, this was also observed when DI 

water was used as the solvent.   
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Figure 5.16 Gel strength of fixed concentrations of copolymers containing (a) Carrageenan/curdlan (b) 
xanthan/curdlan (c) guar/curdlan and (d) locust bean/ curdlan (■ 1.0% curdlan; ■ .7% curdlan, .3% other gum; ■ 
.5% curdlan, .5% other gum; ■ .3% curdlan, .7% other gum; ■ 1.0% other gum) 
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5.3.4 Adhesiveness 
  

 Adhesiveness is defined as the amount of work needed to overcome the 

attractive forces between the surface of the food product and the surface of the 

material in which it comes in contact (Texture Technologies Corp.).  It is apparent 

that adhesiveness was increased when 0.5% (w/v) curdlan was combined with 

0.5% (w/v) carrageenan when sodium hydroxide was used for the solvent (Figure 

5.17a).  However, quite the opposite was observed when DI water was used as the 

solvent, which indicated a sharp decrease in adhesiveness when the two gums 

were combined in equal amounts.  Not only was an increase in adhesiveness 

observed for carrageenan/curdlan but also for the 0.5% xanthan with 0.5% 

curdlan combination.  When compared to the results obtained using DI water, the 

xanthan/curdlan combination did not behave very differently.   

 A combination where a large difference was observed was with the 

locust/curdlan combination (Figure 5.17d).  When DI water was used as the 

solvent, equal amounts of locust bean and curdlan gum displayed the highest 

amount of adhesiveness over all the combinations evaluated.  However, with the 

solvent sodium hydroxide, 1.0% locust bean gum displayed more adhesiveness 

than any combination of locust bean with curdlan gum.  In addition, the 0.5% 

locust with 0.5% curdlan, had the lowest amount of adhesiveness compared to this 

combination with any other gum, which deviates from the results significantly 

when using DI water.   
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Figure 5.17 Adhesiveness of copolymers containing fixed concentrations of (a) Carrageenan/curdlan (b) 
xanthan/curdlan (c) guar/curdlan and (d) locust bean/ curdlan (■ 1.0% curdlan; ■ .7% curdlan, .3% other gum; ■ .5% 
curdlan, .5% other gum; ■ .3% curdlan, .7% other gum; ■ 1.0% other gum) 
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5.3.5 Heat Stability 
 

 The heat stability of each of the copolymers was evaluated under a 

constant shear rate of 2 s-1 over a temperature range of 20ºC to 80ºC (Figure 5.18).  

When carrageenan was combined with curdlan using DI water as the solvent, a 

thermoreversible gel was created.  The results were expected since ĸ-carrageenan 

is known to create thermoreversible gels (Imeson 2000; Williams 2000).  

However, when sodium hydroxide was used, combinations of 0.7% curdlan, 0.3% 

carrageenan and 0.5% curdlan, 0.5% carrageenan, both had higher viscosities 

attained at 80ºC.  The combination that withheld viscosity best under high 

temperatures was the 0.7% curdlan with 0.3% carrageenan copolymer.  This may 

be attributed to the ability of curdlan gum to produce thermo-irreversible gels 

(Nishinari 2000). 

 For the copolymers containing xanthan/curdlan, guar/curdlan, and 

locust/curdlan, the highest viscosity at 80ºC was observed when curdlan was not 

included.  For guar/curdlan and locust/curdlan these results deviate from those 

obtained when DI water was used as the solvent.  In the aqueous solutions, the 

solutions containing curdlan gum with guar and locust bean gum displayed 

enhanced heat stability 
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Figure 5.18 Apparent viscosity at 80ºC under a shear rate 2/s for copolymers containing fixed concentrations of (a) 
Carrageenan/curdlan (b) xanthan/curdlan (c) guar/curdlan and (d) locust bean/ curdlan (■ 1.0% curdlan; ■ .7% 
curdlan, .3% other gum; ■ .5% curdlan, .5% other gum; ■ .3% curdlan, .7% other gum; ■ 1.0% other gum) 
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Chapter 6 

Conclusions and Recommendations for Future Work 

 
An AR2000 Rheometer was used to characterize the rheological properties 

of the copolymers.  All combinations exhibited shear-thinning behavior with 

increasing shear rate. A synergistic relationship was observed for curdlan 

combined with guar and locust bean gum in apparent viscosity measurements.  

Storage and loss moduli were studied during a frequency sweep.  For all 

copolymer blends, as curdlan concentration increased, the crossover frequency 

also increased, except for locust/curdlan combinations which exhibited no 

crossover point.   An additive interaction was observed for gel strength in all 

cases of copolymers containing curdlan gum.  Adhesiveness was also measured 

for all copolymer blends.  In all combinations, except carrageenan/curdlan, 

curdlan increased adhesiveness of the copolymers.  However, curdlan 

dramatically decreased adhesiveness for carrageenan gels. In addition, curdlan 

added to syneresis stability for all copolymers studied. Unexpectedly, curdlan did 

not increase the heat stability of carrageenan gels.  Curdlan also did not enhance 

the heat stability of xanthan gum as xanthan gum is already extremely heat stable.  

However, heat stability was increased when curdlan was added to both guar and 

locust bean gum.   

 The freeze-stability of the copolymer solutions was also studied.  

Xanthan/curdlan blends remained very stable during the freeze-thaw cycles in all 



 94

aspects.  Combinations with guar and curdlan were also stable in areas of gel 

strength, syneresis, and heat stability.  Curdlan when combined with carrageenan 

and locust bean gum showed more stability than the gums independently.  Even 

though curdlan increased the stability, the copolymers did not exhibit stability as 

in the case of xanthan/curdlan.   

 The use of sodium hydroxide as a solvent compared to DI water 

influenced the rheological and textural behavior of the copolymers.   

Equipped with the knowledge of some basic aspects of copolymers 

containing curdlan gum, it is recommended future research be conducted using a 

higher curdlan gum concentration which would give a gel network.  In addition, 

research could be conducted on the molecular level to analyze how the molecules 

are interacting.  Now that some initial research has been completed on 

copolymers containing curdlan, it is also recommended to use a model food 

system to see how the copolymers interact with other food components.  Lastly, it 

is recommended to further the knowledge of the stability of the copolymers under 

different conditions such as a wide range of pH.  
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APPENDIX A 

RHEOLOGICAL AND TEXTURAL CHARACTERISTICS DATA 
 
 

Table A.1 Apparent viscosity under increasing shear for carrageenan/curdlan 
(Figure 5.1) 
 

shear rate viscosity shear rate viscosity shear rate viscosity shear rate viscosity
1/s Pa.s 1/s Pa.s 1/s Pa.s 1/s Pa.s

0.468 92.15 0.468 92.15 0.4947 84.88 0.4983 71.61
0.9428 61.7 0.9428 61.7 0.97 56.42 0.9735 47.95
1.418 49.07 1.418 49.07 1.444 43.76 1.447 37.37
1.893 41.2 1.893 41.2 1.92 35.51 1.923 30.46
2.369 35.4 2.369 35.4 2.395 29.44 2.398 25.47
2.844 31 2.844 31 2.871 24.68 2.874 21.73
3.319 27.24 3.319 27.24 3.346 21.07 3.269 19.31
3.793 23.95 3.793 23.95 3.821 17.91 3.825 16.4
4.27 21.2 4.27 21.2 4.295 15.55 4.22 14.84

4.744 18.55 4.744 18.55 4.693 13.77 4.695 13.14
5.22 16.42 5.22 16.42 5.166 12.1 5.171 11.88

5.694 14.31 5.694 14.31 5.642 10.76 5.645 10.61
6.169 12.84 6.169 12.84 6.117 9.678 6.121 9.506
6.644 11.62 6.644 11.62 6.593 8.774 6.595 8.544
7.119 10.41 7.119 10.41 7.066 7.925 7.071 7.673
7.594 9.48 7.594 9.48 7.542 7.278 7.545 6.957
7.989 8.827 7.989 8.827 8.017 6.733 8.02 6.327
8.466 7.976 8.466 7.976 8.492 6.278 8.495 5.735
8.939 7.316 8.939 7.316 8.967 5.82 8.971 5.306
9.415 6.828 9.415 6.828 9.442 5.472 9.445 4.949
9.811 6.502 9.811 6.502 9.838 5.248 9.842 4.608

1.0% car, 1.0% cur 1.0% car, 0.667% cur 1.0% car, 0.33% cur 1.0% car

 
 

 
Table A.2 Viscosity measurements for the four copolymer solutions (Figure 5.2) 

 

Trial carrageenan/curdlan xanthan/curdlan guar/curdlan locust/curdlan
1 0.35 0.35 0.35 0.35
2 0.02 0.02 0.02 0.02
3 10.47 4.10 2.80 1.02
4 42.30 5.20 21.00 14.10
5 26.65 2.50 9.50 3.90
6 0.00 0.00 0.00 0.00
7 9.97 1.80 1.61 0.89
8 1.32 1.20 0.20 0.10
9 23.70 3.20 10.85 6.00

10 33.01 4.00 11.20 9.20
11 3.20 2.40 0.53 0.15

Viscosity (Pa s) at 2 s-1

 



 96

 
Table A.3 Storage and Loss Moduli for the four copolymer solutions (Figure 5.3) 
 
 
Part (a)

ang. Freq G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa
6.284 1302 233.2 1302 233.2 1118 174.7 949.4 162.9
7.912 1324 233.8 1324 233.8 1137 173 963.4 162
9.961 1345 239.2 1345 239.2 1153 175.6 976.8 163.8
12.54 1364 245.5 1364 245.5 1166 180 988 167.2
15.78 1383 249 1383 249 1180 182.3 1002 166.5
19.87 1406 248.9 1406 248.9 1195 183 1013 168.3
25.02 1421 252.6 1421 252.6 1203 188.1 1019 171.7
31.49 1431 259.2 1431 259.2 1207 192.2 1023 171.7
39.65 1436 258.9 1436 258.9 1202 195.4 1013 175.4
49.91 1421 266.6 1421 266.6 1177 202.8 987.3 180.9
62.81 1379 274.2 1379 274.2 1125 211.1 935.9 187.1
79.11 1295 280.8 1295 280.8 1030 217.6 840.3 189.9
99.57 1143 291 1143 291 876.4 228.6 693.1 189.8
125.4 913.3 284.3 913.3 284.3 631.5 229.5 439.2 194.2
150 617.5 291.4 617.5 291.4 326.8 234.2 129.8 200.6

1.0% car, 1.0% cur 1.0% car, 0.667% cur 1.0% car, 0.33% cur 1.0% car

 
 
 
Part (b)

ang. Freq G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa
6.284 9.618 5.813 13.65 9.089 6.527 4.376 3.977 3.254
7.912 9.141 6.288 12.88 9.785 5.873 4.734 3.194 3.541
9.961 8.065 6.829 11.74 10.5 4.618 5.158 1.788 3.887
12.54 6.006 7.473 9.793 11.28 2.34 5.644 -0.6726 4.284
15.78 2.302 8.218 6.234 12.18 -1.58 6.206 -4.73 4.728
19.87 -3.96 9.058 0.2651 13.18 -8.035 6.851 -11.29 5.284
25.02 -14.32 10 -9.931 14.27 -18.5 7.62 -21.97 5.896
31.49 -30.92 11.14 -26.44 15.54 -35.39 8.491 -39.07 6.614
39.65 -57.86 12.45 -53.26 16.99 -62.56 9.577 -66.57 7.498
49.91 -101.2 13.99 -96.86 18.72 -106.1 10.79 -110.8 8.607
62.81 -170.8 15.9 -165.7 21 -175.8 12.32 -180.5 10.14
79.11 -281.3 18.52 -275.9 23.95 -286.3 14.6 -291.6 12.51
99.57 -456.9 22.18 -451.4 28.4 -461.7 17.92 -467.9 16.47
125.4 -736.9 28.44 -733.3 36.11 -741.2 23.81 -750 23.58
150 -1069 37.07 -1066 46.53 -1072 31.58 -1082 33.55

1.0% xan, 1.0% cur 1.0% xan, 0.667% cur 1.0% xan1.0% xan, 0.33% cur
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Part (c ) 

ang. Freq G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa
6.284 59.38 47.15 30.32 29.65 24.85 23.58 18.82 17.87
7.912 65 49.25 33.49 31.48 26.85 24.75 20.22 18.81
9.961 70.36 51.29 36.24 33.22 28.52 25.95 21.11 19.7
12.54 74.91 53.12 38.22 34.9 29.15 26.97 21.08 20.54
15.78 78.11 54.85 38.82 36.5 28.32 27.95 19.56 21.36
19.87 78.94 56.42 37.05 38 25.13 28.92 15.49 22.14
25.02 75.71 57.78 31.47 39.47 17.77 29.78 7.405 22.86
31.49 66.46 59.23 19.27 40.89 4.143 30.62 -7.087 23.55
39.65 46.66 60.55 -2.945 42.29 -19.67 31.41 -31.74 24.31
49.91 10.58 61.7 -41.41 43.61 -59.82 32.25 -72.88 25.07
62.81 -51.1 63.13 -105.6 44.99 -126 33.29 -140.6 25.99
79.11 -154 64.6 -211.3 46.49 -233 34.56 -249.4 27.26
99.57 -322.8 66.49 -383.8 48.36 -404.6 36.6 -423.4 29.52
125.4 -599.6 68.95 -659.7 51.55 -679.9 40.43 -702.1 33.76
150 -923.5 71.91 -985.7 55.63 -1007 45.75 -1033 40.45

1.0% gua, 1.0% cur 1.0% gua, 0.667% cur 1.0% gua, 0.33% cur 1.0% guar

 
 
 
 
Part (d)

ang. Freq G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa
6.284 11.82 28.94 15 31.58 9.836 23 6.446 17.4
7.912 14.43 33.12 18.25 35.86 11.97 26.28 7.805 19.99
9.961 17.05 37.46 21.59 40.27 14 29.63 8.997 22.67
12.54 19.39 41.92 24.6 44.68 15.6 33.03 9.625 25.43
15.78 20.88 46.49 26.76 49.12 16.18 36.44 9.111 28.18
19.87 20.49 51.04 27.03 53.46 14.71 39.77 6.457 30.87
25.02 16.72 55.52 23.83 57.66 9.6 43.02 0.06491 33.52
31.49 7.175 59.96 14.85 61.69 -1.531 46.13 -12.4 36.02
39.65 -12.12 64.18 -4.063 65.53 -22.55 49.03 -34.85 38.43
49.91 -47.04 68.22 -38.74 69.17 -59.54 51.82 -73.56 40.81
62.81 -107.3 72.2 -98.77 72.64 -122.2 54.6 -137.8 43.13
79.11 -208.7 76.13 -200.4 76.14 -226.4 57.36 -243.4 45.58
99.57 -376.6 80.21 -368.6 79.76 -397.1 60.32 -416.1 48.45
125.4 -647 85.26 -639.9 84.26 -671.5 64.5 -692.6 52.98
150 -966.7 90.17 -961.8 89.2 -995.6 69.55 -1019 59.42

1.0% loc, 1.0% cur 1.0% loc, 0.667% cur 1.0% loc, 0.33% cur 1.0% loc
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Table A.4 Gel strength measurements for the four copolymer solutions (Figure 
5.4) 
 

Trial carrageenan/curdlan xanthan/curdlan guar/curdlan locust/curdlan
1 5.57 5.83 5.83 5.57
2 5.83 5.57 5.57 5.83
3 32.29 6.1 6.04 5.79
4 86.02 6.21 7.23 6.51
5 78.84 6.02 6.41 5.92
6 5.18 5.3 5.01 5.36
7 30.82 6.08 5.92 5.67
8 6.89 5.75 5.35 5.3
9 81.45 6.08 6.65 6.18

10 99.73 5.99 6.53 6.22
11 5.8 6.1 5.54 5.31

Gel Strength (force in grams)

 
 
Table A.5 Adhesiveness measurements for the four copolymer solutions (Figure 
5.5) 
 

Trial carrageenan/curdlan xanthan/curdlan guar/curdlan locust/curdlan
1 0.35 0.35 0.35 0.35
2 0.3 0.3 0.3 0.3
3 0.87 1.58 4.87 9.01
4 1.89 2.56 14.56 33.65
5 5.11 1.35 14.43 17
6 0 0 0 0
7 7.89 1.06 4.98 5.37
8 1.41 0.58 0.61 0.52
9 9.59 1.6 13.27 20.16

10 2.03 2.07 15.56 26.47
11 0.69 1 0.96 0.82

Adhesiveness

 
 
Table A.6 Syneresis data for curdlan with carrageenan, xanthan, guar, and locust 
(Figure 5.6) 
 

Trial carrageenan/curdlan xanthan/curdlan guar/curdlan locust/curdlan
1 63.53 63.53 63.53 63.53
2 85.56 85.56 85.56 85.56
3 59.26 0 0 0
4 0 0 0 0
5 0 0 0 0
6 100 100 100 100
7 8.95 0 0 0
8 74.29 0 89.5 94.29
9 0 0 0 0

10 0 0 0 0
11 14.29 0 71.36 81.43

Syneresis (% Water Lost (v/v))
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Table A.7 Heat stability of trial 5, 9, 10, and 4 (Figure 5.7) 
 
Carrageenan/curdlan results

1.0% car, 1.0% cur 1.0% car, 0.667% cur 1.0% car, 0.33% cur 1.0% car
temperature viscosity viscosity viscosity viscosity

°C Pa.s Pa.s Pa.s Pa.s
21 35.87 21.02 16.4 9.257

24.6 34.21 20.67 15.95 8.964
27.8 32.17 20.09 15.77 8.876
30.9 29.65 19.19 15.33 8.708
34.4 26.19 17.93 14.53 8.428
37.4 22.66 16.46 13.9 8.019
40.4 18.93 14.21 12.31 7.551
43.5 13.55 10.79 10.28 6.405
46.6 8.334 7.275 6.194 4.149
49.5 4.522 3.497 2.298 1.362
52.5 2.252 1.327 1.01 0.3872
55.4 1.311 0.6212 0.4534 0.1125
58.6 0.8047 0.3538 0.2536 0.06786
61.7 0.551 0.2326 0.1453 0.04264
64.7 0.3424 0.1612 0.06782 0.03758
67.7 0.2299 0.1238 0.04532 0.0231
70.7 0.1572 0.09658 0.03583 0.01207
73.7 0.1221 0.08033 0.03383 0.01002
76.6 0.1154 0.07007 0.02921 0.0111
79.6 0.1066 0.06181 0.02309 0.01606  

 
Xanthan/curdlan results

1.0% xan, 1.0% cur 1.0% xan, 0.667% cur 1.0% xan, 0.33% cur 1.0% xan
temperature viscosity viscosity viscosity viscosity

°C Pa.s Pa.s Pa.s Pa.s
21.1 4.651 3.937 3.205 2.746
24.6 4.405 3.611 2.886 2.506
27.9 4.341 3.489 2.765 2.341
31.2 4.317 3.444 2.666 2.282
34.3 4.348 3.454 2.639 2.245
37.4 4.392 3.471 2.636 2.227
40.5 4.468 3.522 2.674 2.253
43.5 4.562 3.61 2.726 2.281
46.6 4.695 3.721 2.802 2.352
49.6 4.856 3.87 2.93 2.452
52.7 5.062 4.045 3.089 2.615
55.5 5.272 4.279 3.318 2.838
58.6 5.568 4.543 3.595 3.132
61.6 5.872 4.901 3.942 3.47
64.8 6.287 5.338 4.4 3.927
67.5 6.837 6.032 5.093 4.552
70.8 7.601 6.957 6.092 5.52
73.6 8.481 8.067 7.116 6.291
76.6 9.11 8.599 7.489 6.621
79.6 9.095 8.588 7.518 6.731  
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Guar/curdlan results
1.0% gua, 1.0% cur 1.0% gua, 0.667% cur 1.0% gua, 0.33% cur 1.0% guar

temperature viscosity viscosity viscosity viscosity
°C Pa.s Pa.s Pa.s Pa.s

17.2 21.1 10.51 8.95 7.825
16.52 24.6 10.08 8.653 7.506
15.84 27.8 9.657 8.326 7.174
15.15 31 9.231 8.061 6.866
14.72 34.4 8.826 7.737 6.499
14.29 37.4 8.396 7.449 6.205
13.93 40.3 8.033 7.118 5.876
13.48 43.5 7.635 6.829 5.568
13.09 46.6 7.292 6.49 5.231
12.57 49.8 6.929 6.191 4.964
12.17 52.6 6.567 5.874 4.662
11.85 55.6 6.269 5.614 4.405
11.61 58.5 6.048 5.379 4.156
11.46 61.6 5.8 5.148 3.925
11.35 64.7 5.589 4.906 3.709
11.18 67.6 5.407 4.72 3.506
11.08 70.7 5.22 4.508 3.302
10.97 73.6 5.052 4.373 3.128
10.76 76.9 4.892 4.137 2.966
10.57 79.5 4.705 3.997 2.879  

 
 
Locust/curdlan results

1.0% loc, 1.0% cur 1.0% loc, 0.667% cur 1.0% loc, 0.33% cur 1.0% locust
temperature viscosity viscosity viscosity viscosity

°C Pa.s Pa.s Pa.s Pa.s
21.1 8.351 7.524 4.798 3.59
24.6 7.85 7 4.49 3.342
27.8 7.352 6.511 4.193 3.085
30.9 6.923 6.049 3.917 2.857
34.3 6.44 5.647 3.63 2.62
37.3 6.062 5.224 3.356 2.421
40.4 5.663 4.859 3.119 2.218
43.7 5.313 4.533 2.905 2.041
46.5 4.953 4.227 2.668 1.87
49.5 4.634 3.9 2.468 1.717
52.7 4.331 3.645 2.27 1.564
55.7 4.07 3.402 2.101 1.427
58.7 3.853 3.198 1.944 1.321
61.6 3.669 3.008 1.825 1.221
64.6 3.48 2.863 1.711 1.125
67.8 3.31 2.701 1.608 1.048
70.6 3.168 2.58 1.507 0.9587
73.8 3.043 2.468 1.426 0.8983
76.6 2.922 2.362 1.337 0.8201
79.7 2.815 2.259 1.285 0.7718  
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APPENDIX B 

FREEZE-THAW STABILITY DATA 
 
 
 
Table B.1 Viscosity over five freeze thaw cycles (Figure 5.8) 
 
Freeze-thaw Cycles

Carra/curdlan Xan/curdlan Guar/curdlan Locust/curdlan
0 43.2 5.71 20.99 11.97
1 31.1 5.7 21.1 40
2 25.2 4.919 11.9 56.4
3 32 4.21 8.61 34.8
4 34.1 4.73 7.53 39
5 33.2 4.19 6.35 39.89

Viscosity (Pa s) at 2 s-1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Table B.2  Storage and loss moduli over the freeze-thaw cycles (Figure 5.9) 
 
Results for Carrageenan

ang. Freq G' G'' G' G'' G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa
6.284 1302 233.2 1342 244.8 1279 251.4 1821 373.1 2963 601.3 2074 512.6
7.912 1324 233.8 1370 246.3 1309 255.8 1856 377.7 3011 604.5 2104 531.4
9.961 1345 239.2 1400 249.4 1340 260.9 1892 389.9 3044 639.6 2138 556.3
12.54 1364 245.5 1426 254.6 1369 268.2 1926 401 3063 689.7 2175 582
15.78 1383 249 1452 259.6 1397 276.2 1962 411.5 3101 714 2219 603.3
19.87 1406 248.9 1478 264.6 1425 284.2 1999 422.5 3144 737.6 2265 621.6
25.02 1421 252.6 1501 269 1449 289.9 2032 435 3185 769.4 2310 641.8
31.49 1431 259.2 1515 276.2 1466 299.8 2064 442.9 3231 785.6 2356 655.8
39.65 1436 258.9 1523 283 1477 307 2085 456.5 3281 789.5 2398 665.2
49.91 1421 266.6 1514 291.1 1470 316.9 2098 461.3 3310 808.4 2431 670
62.81 1379 274.2 1478 301.1 1438 327.8 2078 473 3323 789.9 2430 672.8
79.11 1295 280.8 1399 314.9 1363 343.3 2023 486.3 3286 802.5 2387 689.8
99.57 1143 291 1243 340.1 1209 365.2 1891 507.6 3184 825.6 2283 707
125.4 913.3 284.3 1018 339.6 986.6 364.8 1659 524.5 2975 843.2 2065 728.1
150 617.5 291.4 730.8 347.2 700.9 372.8 1403 518.5 2701 863.6 1815 731.5

Cycle 4 Cycle 5Original Cycle 1 Cycle 2 Cycle 3

 
 
 
 
 
 
 
 
 
 
 



 103

 
 
Results for Xanthan (Figure 5.9)

ang. Freq G' G'' G' G'' G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa
6.284 13.65 9.089 14.93 9.474 13.03 8.885 11.68 8.803 16.74 10.69 10.25 8.579
7.912 12.88 9.785 13.95 10.23 12.43 9.626 11.55 9.686 14.9 11.69 10.69 9.428
9.961 11.74 10.5 12.78 10.94 11.31 10.36 10.63 10.49 13.44 12.46 10.11 10.23
12.54 9.793 11.28 10.88 11.7 9.423 11.12 8.875 11.29 11.94 13.22 8.457 10.97
15.78 6.234 12.18 7.433 12.55 5.895 11.99 5.513 12.15 8.835 14.09 5.168 11.78
19.87 0.2651 13.18 1.357 13.5 -0.2062 12.93 -0.4372 13.05 3.14 15.04 -0.7828 12.59
25.02 -9.931 14.27 -8.666 14.58 -10.23 13.97 -10.33 14.03 -6.513 16.1 -10.58 13.49
31.49 -26.44 15.54 -25.07 15.8 -26.66 15.14 -26.63 15.14 -22.61 17.27 -26.84 14.49
39.65 -53.26 16.99 -51.79 17.21 -53.36 16.5 -53.2 16.43 -49.03 18.64 -53.33 15.66
49.91 -96.86 18.72 -95.11 18.89 -96.65 18.09 -96.31 17.92 -92.1 20.26 -96.39 17.03
62.81 -165.7 21 -163.5 21.05 -164.9 20.08 -164.5 19.88 -160.6 22.32 -164.4 18.85
79.11 -275.9 23.95 -273.3 23.91 -274.6 22.87 -274 22.5 -270.1 25.11 -273.8 21.26
99.57 -451.4 28.4 -448.1 28.09 -449 26.83 -448.1 26.39 -444.9 29.31 -447.8 24.94
125.4 -733.3 36.11 -728.7 35.17 -728.9 33.62 -727.6 33.15 -726.1 36.41 -727.2 31.26
150 -1066 46.53 -1061 44.42 -1060 42.36 -1058 41.88 -1058 46.34 -1057 39.74

Cycle 2 Cycle 3 Cycle 4 Cycle 5Original Cycle 1
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Results for Guar (Figure 5.9)

ang. Freq G' G'' G' G'' G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa
6.284 59.38 47.15 42.29 37.32 46.66 39.45 26.14 25.02 32.15 30.32 20.39 21.31
7.912 65 49.25 46.71 39.43 51.37 41.48 28.83 26.6 35.56 32.16 22.47 22.79
9.961 70.36 51.29 50.81 41.44 55.72 43.44 31.06 28.09 38.58 33.92 24.08 24.18
12.54 74.91 53.12 54.26 43.4 59.52 45.38 32.51 29.54 40.79 35.6 24.88 25.52
15.78 78.11 54.85 56.19 45.16 61.68 47.04 32.51 30.9 41.64 37.15 24.27 26.83
19.87 78.94 56.42 55.79 46.79 61.49 48.59 30.15 32.2 40.1 38.64 21.28 28.09
25.02 75.71 57.78 51.53 48.32 57.4 49.98 23.95 33.44 34.8 40.04 14.32 29.32
31.49 66.46 59.23 41.05 49.85 47.31 51.47 11.3 34.73 23 41.41 1.02 30.5
39.65 46.66 60.55 20.17 51.34 26.53 52.85 -11.75 35.93 1.172 42.8 -22.69 31.68
49.91 10.58 61.7 -16.82 52.82 -10.12 54.23 -50.85 37.1 -36.98 44.12 -62.46 32.8
62.81 -51.1 63.13 -79.14 54.24 -72.37 55.51 -115.7 38.3 -100.6 45.43 -128 34.01
79.11 -154 64.6 -182.5 55.77 -175.8 57.04 -221.7 39.75 -205.8 47 -234.7 35.53
99.57 -322.8 66.49 -351.6 57.72 -344.8 58.9 -393.2 41.56 -376.3 48.83 -406.6 37.17
125.4 -599.6 68.95 -628 60.17 -622.2 61.52 -671 44 -653.8 51.17 -685.2 39.47
150 -923.5 71.91 -950.4 62.92 -944.7 64.26 -995 47.11 -977.9 54.17 -1010 42.36

Cycle 1Original Cycle 5Cycle 4Cycle 3Cycle 2
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Results for Locust (Figure 5.9)

ang. Freq G' G'' G' G'' G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa
6.284 11.82 28.94 495.8 288 18.12 40.5 558 203.7 462.1 376.2 243.7 111.8
7.912 14.43 33.12 551.1 276.8 19.52 42.32 608.2 176.9 591.9 357.3 161.7 144.7
9.961 17.05 37.46 561 284.3 22.99 45.57 603 191.8 727.7 309.9 120.3 145.9
12.54 19.39 41.92 530.7 304.6 27.12 49.49 561.1 226.4 823.2 265.7 111.2 144.9
15.78 20.88 46.49 481.6 327.7 28.59 52.52 509 261.2 846.1 264.7 118.8 145.2
19.87 20.49 51.04 449.2 343.4 25.82 54.56 454.8 290.5 820.8 293.2 125.8 146.2
25.02 16.72 55.52 452.3 348.1 19.59 56.6 378 302 747.1 343.4 130.8 148.3
31.49 7.175 59.96 449.6 347.5 7.496 58.62 266.6 293.9 627.9 383.4 126.6 148.8
39.65 -12.12 64.18 363.9 346.9 -15.23 60.31 183.1 273.1 446.2 398.3 115.5 149.5
49.91 -47.04 68.22 262.9 334.5 -54.18 61.95 152.5 274.7 292.6 375.1 87.84 149.3
62.81 -107.3 72.2 218.4 339 -118.9 63.89 107.9 281 243 377.5 32.11 148.4
79.11 -208.7 76.13 133.3 344.7 -224.7 66.28 22.31 286.9 162.4 383.5 -63.63 148
99.57 -376.6 80.21 -17.51 351.4 -396.2 69.51 -132.2 291.7 14.62 390.2 -226.8 148.3
125.4 -647 85.26 -268.7 358.9 -668.6 74.27 -390 296.8 -235 397.6 -492.3 149.6
150 -966.7 90.17 -575.4 365.9 -988.9 79.71 -699.6 302.5 -543.3 404.9 -804.4 152.4

Original Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

 
 
 
 
 
 
 
 
 



Table B.3  Gel strength over the five freeze-thaw cycles (Figure 5.10) 
 

Cycles Carrageenan/curdlan Xanthan/curdlan Guar/curdlan Locust/curdlan
0 86.02 6.21 7.23 6.51
1 44.54 6.46 7.04 19.89
2 20.3 6.42 6.68 10.27
3 19.74 6.42 6.67 10.01
4 17.58 6.47 6.43 10
5 12 6.26 6.25 9.2

Gel Strength (force in grams)

 
 
Table B.4 Adhesiveness differences over freeze-thaw cycles (Figure 5.11) 
 

Cycles Carrageenan/curdlan Xanthan/curdlan Guar/curdlan Locust/curdlan
0 1.89 2.56 14.56 33.65
1 2.1 2.86 12.4 1.11
2 0.94 2.36 10.69 0.72
3 0.66 2.78 9.42 0.61
4 0.62 2.49 5.72 0.59
5 0.45 2.12 4.25 0.51

Adhesiveness

 
 
Table B.5 Percent water lost over the freeze-thaw cycles (Figure 5.12) 
 

Cycles Carrageenan/curdlan Xanthan/curdlan Guar/curdlan Locust/curdlan
0 0 0 0 0
1 18.57 0 0 27.5
2 14.09 0 0 41.43
3 17.27 0 0 44.09
4 18 0 0 55.71
5 15.01 0 0 57

Percent Water Lost (v/v)

 
 
Table B.6 Viscosity at 80º to determine heat stability (Figure 5.13) 
 

Freeze-thaw Cycles
Carrageenan/curdlan Xanthan/curdlan Guar/curdlan Locust/curdlan

0 0.1066 9.095 10.5 3.047
1 0.1217 10.42 10.29 36.74
2 0.1308 8.599 8.604 89.48
3 0.1156 7.966 7.299 74.85
4 0.0481 6.029 5.33 109.7
5 0.1175 5.267 1.692 59.19

Viscosity (Pa s) at 80ºC
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APPENDIX C 

RHEOLOGICAL AND TEXTURAL CHARACTERISTICS USING SODIUM 
HYDROXIDE DATA 

 
Table C.1 Information for the following Figures: 
Apparent viscosity at shear rate 2/s of copolymers containing fixed concentrations (Figure 5.14) 
Gel strength of fixed concentrations of copolymers (Figure 5.16) 
Adhesiveness of copolymers containing fixed concentrations (Figure 5.17) 
Apparent viscosity at 80ºC under a shear rate 2/s for copolymers containing fixed concentrations 
(Figure 5.18) 

 
Carrageenan/Curdlan

Viscosity (Pa.s)
Trial Force (g) Adhesiveness Viscosity at 80º

1.0 Cu/ 0 Ca 5.3 0.3455 0.2916 0.01123
.7 Cu/ .3 Ca 6.5 3.891 8.213 0.6468
.5 Cu/ .5 Ca 11.7 7.515 7.986 0.3285
.3 Cu/ .7 Ca 11.3 6.954 5.998 0.005079
0 Cu/ 1.0 Ca 62.6 4.208 17.85 0.03586  

 
Xanthan/Curdlan

Viscosity (Pa.s)
Trial Force (g) Adhesiveness Viscosity at 80º

1.0 C/ 0 X 5.3 3.662 0.2916 0.1824
.7 C/ .3 X 6.1 5.581 2.676 0.6321
.5 C/ .5 X 6.1 7.11 4.561 1.681
.3 C/ .7 X 6.6 4.862 8.451 4.418
0 C/ 1.0 X 6.9 6.469 13.892 8.322  

 
 
Guar/Curdlan

Viscosity (Pa.s)
Trial Force (g) Adhesiveness Viscosity at 80º

1.0 C/ 0 G 5.3 3.203 0.2916 0.02779
.7 C/ .3 G 5.4 4.862 0.3587 0.029
.5 C/ .5 G 5.7 9.118 1.019 0.05828
.3 C/ .7 G 6.2 10.64 4.192 0.3594
0 C/ 1.0 G 6.4 12.12 9.081 1.285

Locust/Curdlan
Viscosity (Pa.s)

Trial Force (g) Adhesiveness Viscosity at 80º

1.0 C/ 0 L 5.3 1.151 0.2916 0.002935
.7 C/ .3 L 5.2 3.287 0.1964 0.03409
.5 C/ .5 L 5.4 5.068 0.01121 0.04193
.3 C/ .7 L 5.4 8.734 0.7743 0.1641
0 C/ 1.0 L 5.7 18.9 2.589 0.3802  



 108

Table C.2 Storage and Loss Moduli (Figure 5.15) 
 
 
Carrageenan (Ca)/Curdlan (Cu)

ang. frequency G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa
6.284 575.3 79.46 575.3 79.46 190.7 23.5 99.32 16.29
7.912 580.5 78.77 580.5 78.77 188.9 23.16 99.39 16.58
9.961 586.9 79.58 586.9 79.58 186.9 23.3 98.99 17.07
12.54 591.2 81.16 591.2 81.16 184.7 23.69 97.8 17.41
15.78 592.6 82.62 592.6 82.62 181.6 24.49 95.08 17.98
19.87 592.8 84.26 592.8 84.26 175.8 25.46 89.15 18.58
25.02 588.7 87.27 588.7 87.27 166.3 26.63 76.19 19.88
31.49 577.6 89.71 577.6 89.71 149.5 28.82 61.78 20.04
39.65 555.8 92.49 555.8 92.49 121.4 31.46 39.18 20.69
49.91 514.2 95 514.2 95 84.51 31.46 3.33 21.54
62.81 437.9 96.97 437.9 96.97 19.13 33.28 -58.61 22.87
79.11 344.2 99.44 344.2 99.44 -87.1 35.75 -158.3 24.53
99.57 183.6 105.1 183.6 105.1 -258 38.83 -317.4 26.97
125.4 -79.3 111.8 -79.3 111.8 -529.8 43.4 -573.2 32
150 -391.4 117.2 -391.4 117.2 -851.3 48.72 -874.3 36.75

.3 Ca/ .7 Cu.5 Ca/ .5 Cu.7 Ca/ .3 Cu1.0 Ca/ 0 Cu

 
 
 
 
 
Xanthan (Xan)/Curdlan (Cu)

ang. frequency G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa
6.284 4.252 4.502 33.57 9.862 22.64 9.354 12.25 7.064
7.912 3.735 4.911 34.21 9.998 23.1 9.734 12.14 7.488
9.961 2.618 5.37 34.19 10.15 22.94 10.14 11.44 7.945
12.54 0.5256 5.871 33.1 10.32 21.72 10.56 9.774 8.433
15.78 -3.163 6.431 30.31 10.53 18.9 11.02 6.527 8.968
19.87 -9.46 7.074 24.88 10.79 13.54 11.54 0.7393 9.534
25.02 -19.77 7.759 15.24 11.12 4.021 12.1 -9.209 10.18
31.49 -36.54 8.558 -1.109 11.55 -12.1 12.76 -25.58 10.86
39.65 -63.62 9.492 -27.87 12.08 -38.46 13.5 -52.35 11.64
49.91 -107 10.55 -71.05 12.77 -81.42 14.38 -95.33 12.59
62.81 -176.4 11.92 -140.2 13.76 -150.2 15.5 -164.1 13.77
79.11 -288.7 13.68 -251.5 15.1 -260.9 17.07 -274.8 15.3
99.57 -465.5 17.05 -430.3 17.59 -439.3 19.51 -453.3 17.62
125.4 -747 23.35 -712.1 22.93 -720.8 24.44 -735.3 22.52
150 -1074 30.15 -1043 30.09 -1051 31.11 -1066 29.88

1.0 Xan/ 0 Cu .7 Xan/ .3 Cu .5 Xan/ .5 Cu .3 Xan/ .7 Cu
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Guar (Gu)/Curdlan (Cu)

ang. frequency G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa

0.1 0.6123 1.255 0.6123 1.255 0.7385 1.776 0.07959 0.2895
0.1259 0.75 1.466 0.75 1.466 0.8925 2.099 0.09 0.3415
0.1585 0.9174 1.708 0.9174 1.708 1.072 2.47 0.1084 0.4093
0.1995 1.114 1.983 1.114 1.983 1.279 2.899 0.1339 0.4927
0.2512 1.348 2.295 1.348 2.295 1.496 3.387 0.1667 0.5936
0.3163 1.62 2.645 1.62 2.645 1.711 3.947 0.208 0.7151
0.3982 1.936 3.04 1.936 3.04 1.89 4.562 0.2594 0.8602
0.5013 2.308 3.487 2.308 3.487 1.987 5.248 0.3238 1.034
0.631 2.728 3.978 2.728 3.978 1.92 6.025 0.4021 1.239

0.7944 3.207 4.519 3.207 4.519 1.55 6.877 0.4975 1.485
1 3.756 5.122 3.756 5.122 0.6391 7.814 0.6128 1.773

1.259 4.378 5.786 4.378 5.786 -1.175 8.821 0.7445 2.105
1.586 5.085 6.512 5.085 6.512 -4.497 9.915 0.8899 2.491
1.995 5.867 7.301 5.867 7.301 -10.35 11.13 1.048 2.93
2.512 6.726 8.161 6.726 8.161 -20.21 12.38 1.219 3.441
3.163 7.649 9.081 7.649 9.081 -36.43 13.76 1.384 4.02
3.98 8.608 10.06 8.608 10.06 -62.84 15.19 1.522 4.683
5.011 9.554 11.11 9.554 11.11 -105.5 16.84 1.582 5.436
6.309 10.39 12.22 10.39 12.22 -174.4 18.62 1.475 6.271
7.943 11 13.4 11 13.4 -285.9 20.74 1.075 7.204

10 11.12 14.61 11.12 14.61 -463.1 23.57 0.141 8.237
12.59 10.4 15.87 10.4 15.87 -744.6 28.39 -1.692 9.351
15.84 8.221 17.19 8.221 17.19 -1068 34.15 -5.04 10.57
19.95 3.599 18.55 3.599 18.55 na na -10.84 11.87
25.12 -5.079 19.97 -5.079 19.97 na na -20.62 13.26
31.63 -20.16 21.4 -20.16 21.4 na na -36.77 14.75
39.81 -45.44 22.87 -45.44 22.87 na na -63.1 16.34
50.11 -87.02 24.45 -87.02 24.45 na na -106 18.05
63.09 -154.5 26.12 -154.5 26.12 na na -175.3 20.01
79.43 -264.9 28.02 -264.9 28.02 na na -285.5 22.46
100 -440.9 30.58 -440.9 30.58 na na -461.9 26.14

125.9 -720.6 34.66 -720.6 34.66 na na -742.9 32.05
150 -1044 39.76 -1044 39.76 na na -1067 41.47

1.0 Gu/ 0 Cu .7 Gu/ .3 Cu .5 Gu/ .5 Cu .3 Gu/ .7 Cu
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Locust (Loc)/Curdlan (Cu)

ang. frequency G' G'' G' G'' G' G'' G' G''
rad/sec Pa Pa Pa Pa Pa Pa Pa Pa

0.1 0.01845 0.2921 0.01845 0.2921 1.09E-03 0.09085 9.06E-05 0.06743
0.1259 0.02894 0.367 0.02894 0.367 3.92E-03 0.1154 3.28E-04 0.08677
0.1585 0.04186 0.4604 0.04186 0.4604 5.36E-03 0.1464 2.41E-03 0.1111
0.1995 0.05905 0.5755 0.05905 0.5755 6.90E-03 0.1854 6.77E-03 0.1408
0.2512 0.08171 0.7182 0.08171 0.7182 9.35E-03 0.2345 0.01219 0.177
0.3163 0.1118 0.894 0.1118 0.894 0.01316 0.2957 0.01747 0.2215
0.3982 0.1521 1.109 0.1521 1.109 0.01845 0.3718 0.02253 0.2762
0.5013 0.2053 1.374 0.2053 1.374 0.02528 0.4666 0.02795 0.3438
0.631 0.2759 1.696 0.2759 1.696 0.03416 0.5841 0.03349 0.4271

0.7944 0.3677 2.084 0.3677 2.084 0.04506 0.7291 0.03872 0.5303
1 0.4893 2.557 0.4893 2.557 0.05803 0.9074 0.04347 0.6572

1.259 0.6436 3.123 0.6436 3.123 0.0731 1.128 0.04527 0.8131
1.586 0.8417 3.802 0.8417 3.802 0.0871 1.396 0.04124 1.005
1.995 1.09 4.602 1.09 4.602 0.09708 1.722 0.02534 1.238
2.512 1.386 5.531 1.386 5.531 0.09287 2.117 -0.01343 1.521
3.163 1.734 6.617 1.734 6.617 0.06414 2.595 -0.08721 1.866
3.98 2.121 7.879 2.121 7.879 -0.0222 3.171 -0.2321 2.284

5.011 2.515 9.316 2.515 9.316 -0.2065 3.846 -0.5007 2.783
6.309 2.854 10.93 2.854 10.93 -0.5703 4.644 -0.9828 3.36
7.943 3.016 12.75 3.016 12.75 -1.259 5.566 -1.821 4.032

10 2.803 14.77 2.803 14.77 -2.483 6.62 -3.231 4.819
12.59 1.862 16.96 1.862 16.96 -4.605 7.819 -5.589 5.717
15.84 -0.4067 19.36 -0.4067 19.36 -8.207 9.18 -9.497 6.738
19.95 -4.958 21.91 -4.958 21.91 -14.29 10.7 -15.9 7.908
25.12 -13.28 24.61 -13.28 24.61 -24.28 12.36 -26.28 9.21
31.63 -27.74 27.45 -27.74 27.45 -40.6 14.18 -43.08 10.65
39.81 -52.19 30.4 -52.19 30.4 -67.02 16.21 -70.04 12.29
50.11 -92.66 33.49 -92.66 33.49 -109.6 18.39 -113.3 14.18
63.09 -159 36.8 -159 36.8 -178.2 20.85 -183 16.15
79.43 -267.5 40.41 -267.5 40.41 -289.2 23.54 -294.5 18.83
100 -441.5 44.51 -441.5 44.51 -465.9 27.21 -471.4 22.32

125.9 -719 50.34 -719 5.727 -746.2 32.35 -752.8 28.58
150 -1040 56.48 -1040 6.941 -1069 38.4 -1076 35.11

1.0 Loc/ 0 Cu .7 Loc/ .3 Cu .5 Loc/ .5 Cu .3 Loc/ .7 Cu
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