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Time-dependent Origin-Destination (OD) demand information is a 

fundamental input for Dynamic Traffic Assignment (DTA) models to describe and 

predict time-varying traffic network flow patterns, as well as to generate anticipatory 

and coordinated control and information supply strategies for intelligent traffic 

network management. This dissertation addresses a series of critical and challenging 

issues in estimating and predicting dynamic OD demand for off-line and on-line DTA 

operation in a large-scale traffic network with various information sources.

Based on an iterative bi-level estimation framework, this dissertation aims to 

enhance the quality of OD demand estimates by combining available historical static 

demand information and time-varying traffic measurements into a multi-objective 

optimization framework that minimizes the overall sum of squared deviations. The 

multi-day link traffic counts are also utilized to estimate the variation in traffic 

demand over multiple days. To circumvent the difficulties of obtaining sampling rates 

in a demand population, this research proposes a novel OD demand estimation 



formulation to effectively exploit OD demand distribution information provided by 

emerging Automatic Vehicle Identification (AVI) sensor data, and presents several 

robust formulations to accommodate possible deviations from idealized conditions in 

the demand estimation process.

A structural real-time OD demand estimation and prediction model and a 

polynomial trend filter are developed to systematically model regular demand pattern 

information, structural deviations and random fluctuations, so as to provide reliable 

prediction and capture the structural changes in time-varying demand. Based on a 

Kalman filtering framework, an optimal adaptive updating procedure is further 

presented to use the real-time demand estimates to obtain a priori estimates of the 

mean and variance of regular demand patterns. To maintain a representation of the 

network states which consistent with that of the real-world traffic system in a real-

time operational environment, this research proposes a dynamic OD demand optimal 

adjustment model and efficient sub-optimal feedback controllers to regulate the 

demand input for the real-time DTA simulator while reducing the adjustment 

magnitude.
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1. Introduction

1.1 Motivation

Population growth and economic development lead to increasing demand for 

travel and pose mobility challenges on capacity-limited transportation networks, 

especially in metropolitan areas. As the population of travelers and vehicle ownership 

rates continue to increase, traffic congestion is expected to remain as a top public 

concern for urban areas. It has been estimated (Lomax et al.  2002), each person in 

the 75 largest U.S. urban areas wastes, on average, 26 hours a year in congestion 

delays. According to the same source, the annual cost of congestion (based on wasted 

time and fuel) was an average of $520 per person in 2000. Such statistics underscore 

the need for effective solutions to slow the growth of congestion. By integrating 

advances in telecommunication, computation and information technologies, 

Intelligent Transportation Systems (ITS) aims to improve transportation system 

efficiency and traveler convenience.

Accurate OD trip desire estimates are required by the many traffic planning 

applications to evaluate network flow conditions that result from the travel decisions 

of individual travelers. Moreover, on-line applications of intelligent traffic network 

management call for the reliable forecasts of dynamic demand and resulting network 

flow states so that proactive, coordinated traffic information and route guidance 

instructions can be generated to network travelers for their pre-trip planning and en-

route diversion. However, estimating complex traffic demand is difficult in its own 

right, as traffic demand can vary significantly by time of day and day of week over 
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different locations and evolve dramatically due to the feedback of implemented 

strategies. The inability of providing high quality OD demand estimates becomes a 

critical bottleneck in the evaluation and implementation of various promising traffic 

information and management scenarios, and consequently limits the potential for ITS 

deployments to alleviate traffic congestion and enhance mobility in urban networks.

In general, OD trip desire information can be obtained from direct interview 

surveys or estimated from real-time traffic surveillance data. Household, destination 

and roadside interview surveys, typically used in the transportation planning analysis, 

provide valuable samples about the detailed travel activities of each tripmaker, such 

as the origin and destination, the mode used and the travel time. Populating OD 

demand patterns from survey samples, however, is a very costly and time-consuming 

process. Besides, the above traditional survey methods cannot provide up-to-date 

dynamic demand inputs required by on-line ATMS and ATIS applications. 

Thanks to the advances of surveillance, telecommunication and information 

technologies, the continuing deployment of Intelligent Transportation Systems offers

more reliable and less costly channels to measure the complex transportation system 

dynamics. To name a few, these emerging technologies include vehicle identification 

though video image processing and Radio Frequency (RF) transponders, vehicle 

tracking through GPS receivers. These real-time traffic measurements provide a data 

rich environment to enhance modeling capabilities to capture the underling travel 

decision processes.

Substantial research over the last two decades has been devoted to the 

Dynamic Traffic Assignment (DTA) problem, which seeks to distribute given time-
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dependent origin-destination (OD) trips over time and space in a transportation 

network according to specific user behavior and system assumptions. From the OD 

demand estimation perspective, these DTA models offer more realistic and tractable 

tools that describe the inter-relation between OD demand flows and network flow 

patterns. The combination of dynamic traffic assignment models and dynamic OD 

demand estimation models structures an integrated traffic state estimation framework 

that can produce consistent and realistic assignment results for general traffic 

networks.

To date, the potential benefits of utilizing new types of traffic measures to 

enhance travel demand modeling capability have not been adequately exploited, and 

the theoretical and algorithmic aspects on the dynamic OD demand estimation and 

prediction problem are still relatively undeveloped. As shown below, many 

fundamental issues need to be addressed to fulfill the methodological capabilities 

required by the off-line and on-line operation of traffic state estimation and prediction 

systems. These challenging questions place a greater need for flexible and systematic 

modeling methodologies and efficient solution algorithms.

1. How to effectively extract information from historical static demand data 

and from emerging point-to-point vehicle identification data?

2. How to recognize structural demand changes unfolding in complex real-

world environments in addition to providing reliable OD demand 

forecasting under regular conditions?

3. How to accumulate the knowledge on day-to-day demand evolution from 

real-time estimation results?



4

4. How to prevent the propagation of demand estimate errors in a continually 

running real-time DTA system and to ensure its consistency with the real-

world traffic system? 

1.2 Objectives

This dissertation addresses a series of problems pertaining to the provision of 

accurate and reliable dynamic OD demand information for DTA planning and 

operational applications, namely demand estimation, prediction, day-to-day 

information updating as well as on-line consistency checking and updating, in the 

context of large-scale real-world networks with various information sources. The four 

principle objectives are listed as follows.

1. Estimate dynamic OD demand trips based on multiple data sources, including 

historical static OD demand information, multiple-day link counts, as well as vehicle 

identification data from point-to-point traffic detectors.

2. Formulate and develop a real-time OD demand estimation and prediction model 

that provides robust forecasting for both regular and irregular OD demand patterns.

3. Develop a day-to-day updating framework to adaptively and adequately capture 

travel demand evolution based on real-time demand estimates.

4. Construct an efficient and effective real-time demand adjustment model to 

maintain the consistency between the on-line DTA simulator and the actual traffic 

system.

The first objective is primarily intended to estimate traffic demand dynamics 

in the context of long-term planning and medium-term operations, where the major 

concern is to improve the accuracy and reliability of OD demand estimates through 
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effective exploitation of multiple sources of information. Typically, the OD demand 

estimation problem in planning applications deals with a large-scale urban network 

that may have thousands of links and hundreds of traffic analysis zones (TAZ). Real-

time traffic surveillance data from traditional loop detectors, on the other hand, may 

only be available on a small subset of links in the study network, which might lead to 

serious identification problems in inferring a unique dynamic OD demand table for all 

the OD pairs. Therefore, an important and challenging problem in applying the DTA 

methodology to current planning practice is how to maximize the utilization of 

various real-time traffic measurements in conjunction with other available 

information sources in order to reduce the uncertainty of OD demand inputs. 

Historical static demand data obtained from direct household surveys or estimated 

from socio-economic, geographic and transportation supply characteristics, contain 

valuable information about the origin destination distribution of traffic demand. In 

addition, most traffic surveillance devices, such as loop detectors, once installed, can 

record multiple days of traffic data continuously at minimal additional cost. 

Increasing deployment of road pricing and traffic information projects also 

dramatically improves the public usage of RF-based vehicle tags and the availability 

of vehicle identification data. All of these data sources carry useful information and 

hold the promise of improving the identifiability of the dynamic OD demand 

problem.

The second, third and fourth objectives are critical in the successful 

deployment of the real-time traffic network state estimation and prediction systems, 

where dynamic OD demand information serves as an essential input for dynamic 



6

traffic assignment. In order to provide accurate and robust demand forecasting under 

different traffic demand patterns, there is a great need to characterize regular demand 

pattern information, structural deviations and random fluctuations in traffic demand 

dynamics. As regular OD trip desires can be viewed as a repeated process, historical 

demand estimates, obtained from household interview surveys and off-line estimation 

results, serve as an informative source for long-range demand prediction under 

normal conditions. On the other hand, it is necessary to recognize the existence of 

structural deviations of real-time OD demand from the average pattern, which might 

be caused by severe weather conditions, special events, as well as the responses of 

travelers to information and/or other system management measures. With increasing 

availability, traveler information is expected to play a more active role in gradually 

changing day-to-day trip-making decisions and temporally re-distributing OD trip 

desires. In addition, random fluctuations would account for the effect of other 

unobserved factors and the inherent stochastic nature of daily time-varying demand. 

Clearly, a structural model with meaningful components can provide robust demand 

estimate under both regular and irregular conditions.

The third objective is to handle a common issue in the early deployment of 

real-time OD estimation and prediction, where only unreliable historical demand data 

with significant uncertainty is available, often consisting of out-of-date survey data 

and limited surveillance data. In this case, as the prior estimate cannot adequately 

describe the average conditions, the real-time estimate becomes more informative in 

the sense that it captures the prevailing demand pattern and encapsulates up-to-date 

demand information. Hence, it is advantageous to utilize new real-time estimation 
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results to update the a priori estimate of the regular pattern and adequately capture 

the day-to-day demand variations.

The internal traffic network representation of a real time DTA system forms a 

basis for evaluating the effectiveness of different management decisions. The fourth 

objective is related to the demand consistency checking and updating module, which 

aims to effectively control and reduce the propagation of demand estimation and 

prediction error in the DTA simulator. Without correcting OD demand estimation 

errors in the DTA simulator, the inconsistency in OD flows would accumulate in the 

DTA simulator and further propagate into the internal representation of path and link 

flows, making the network state prediction become highly unreliable. Therefore, an 

efficient feedback controller is critically required in real-time DTA systems to correct 

the demand prediction errors in the DTA simulator.

In brief, the overall objective of this dissertation is to provide comprehensive 

solutions to enhance the dynamic OD demand and prediction capabilities, and to 

fulfill various functional requirements of off-line and on-line DTA operation. 

Additionally, this dissertation seeks to apply the proposed models and solution 

algorithms in real-world networks in order to obtain insights on estimation and 

computational performance under alternative modeling formulations and implantation 

strategies, as well as different degrees of data availability.

1.3 Overview of Proposed Methods

To enhance the quality of OD demand estimates, this dissertation first 

combines available historical static demand information and time-varying traffic 

measurements from point detectors and point-to-point detectors into a flexible multi-
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objective optimization framework that minimizes the overall sum of squared errors. 

The multi-day link traffic counts are also utilized to estimate the variation in traffic 

demand over multiple days.

To circumvent the difficulties of obtaining sampling rates in a demand 

population, this research proposes a novel OD demand estimation formulation to 

effectively exploit split fraction information provided by emerging Automatic 

Vehicle Identification (AVI) sensor data, and presents several robust formulations to 

accommodate possible departure from idealized conditions in the demand estimation 

process.

A structural real-time OD demand estimation and prediction model in 

conjunction with a polynomial trend filter is then developed and implemented to 

systematically model regular demand pattern information, structural deviations and 

random fluctuations so as to provide reliable prediction under stable condition and 

capture the structural changes in time-varying demand.

An optimal adaptive updating procedure is further presented to use the real-

time demand estimates to capture the day-to-day variations of regular demand 

patterns. To maintain a representation of the network states consistent with that of the 

real-world traffic system, this research proposes a dynamic OD demand optimal 

adjustment model and efficient sub-optimal feedback controllers to regulate the 

demand input for the real-time DTA simulator while reducing the adjustment 

magnitude.

In the following, the specific problems and proposed models are addressed 

sequentially. 
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Given a traffic network with a historical demand matrix, link counts and 

point-to-point tagged vehicle counts, the off-line dynamic OD demand estimation 

problem is to find a consistent dynamic OD demand matrix that minimizes (1) the 

deviations between estimated traffic states and traffic measurements and (2) the 

deviations between estimated demand and target demand.

To capture the inter-relation between OD demand and traffic network 

conditions, off-line OD demand estimation models in this dissertation are based on an 

iterative bi-level estimation framework (Tavana, 2001). The upper-level problem is a 

constrained ordinary least squares problem, which is to estimate the dynamic OD 

demand using flow proportion matrices that map dynamic OD demand to path or link 

flows. Those mapping matrices are in turn generated from the dynamic traffic 

network assignment problem at the lower level, which is solved by a DTA simulator, 

namely DYNASMART-P (Mahmassani et al. 2000). 

The upper-level estimation problem is to minimize the overall sum of three 

types of deviations. These deviation terms include

1. deviations between simulated link flows and observed link flows,

2. deviations between simulated link-to-link split fractions and observed 

link-to-link split fractions,

3. deviations between estimated dynamic OD demand and historical static 

OD demand.

For the first type of deviations, link flow proportion matrices are used to map 

dynamic OD flows with link flows. In addition, the link-to-link split fractions are 

expressed as the ratio of the sub-path flows that pass two AVI readers over the link 



10

flows, where link-to-link flow proportion matrices are used to link dynamic OD flows 

to the sub-path flows. Three types of deviations are combined in a multi-objective 

optimization framework, and an interactive approach is used to determine an 

appropriate weighting scheme to fuse different information sources and find the best 

compromise solution.

Given historical demand information and real-world traffic measurements 

from various surveillance devices (e.g. occupancy and volume observations from loop 

detectors on specific links), the dynamic OD demand estimation and prediction 

problem seeks to estimate time-dependent OD trip demand patterns at the current 

stage, and predict demand volumes over the near and medium terms in a general 

network. In this research, actual dynamic OD demand is decomposed to three 

meaningful components in a structural state space model, that is, 

true demand = regular pattern + structural deviations + random fluctuations.

In particular, the regular pattern can be estimated from archived data and 

updated with new demand information, while the structural deviation is modeled as a 

time-varying process with smooth trend. Random fluctuations can be modeled as an 

auto-regressive moving average component.

In order to capture possible structural changes in time-varying OD demand 

patterns, a polynomial trend filter is designed to estimate and predict demand 

deviations recursively from the a priori estimate of regular demand patterns. In the 

corresponding Kalman filtering framework, a transition equation is used to describe 

system evolution dynamics, while a measurement equation is to describe the mapping 

between observations and system variables.
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At each estimation stage, the recursive prediction-correction framework 

updates estimation according to 

new estimate = previous prediction + gain factor × (measurement – previous 

prediction)

where gain factor is determined optimally by taking into account mean and 

covariance of estimates.

Consequently, the prediction result is given by propagating mean and 

covariance matrices of OD demand according to the system transition equation.

Given new real-time estimates obtained every day, the day-to-day updating 

procedure seeks to update the a priori estimates of the mean and variance of the 

regular demand pattern. A Kalman filtering framework is applied in this research to 

construct this updating model to capture the day-to-day demand evolutions. This 

model can be naturally integrated into a real-time DTA system, providing an effective 

and efficient approach to utilize the real-time traffic data continuously in operational 

settings.

Given predicted OD demand and the deviations between actual system and 

simulated states, the dynamic OD demand consistency checking is to find OD 

demand adjustment that minimizes (1) the deviation between the adjusted link density 

and real-world density and (2) demand adjustment magnitude. Similar to the OD 

demand estimation formulation, link proportion matrices are used to map OD demand 

adjustment to changes of simulated link density. Several efficient solution algorithms 

and implementation strategies are proposed to design a robust demand consistency 

checking module in a real-time computation environment.
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1.4 Organization of the Dissertation

The dissertation includes seven chapters. Chapter 2 provides a comprehensive 

review and discussion on several topics relevant to the dynamic OD demand 

estimation and prediction problem for DTA applications. In chapter 3, a bi-level off-

line OD demand estimation formulation is presented to incorporate static demand and 

multi-day achieved link counts. Chapter 4 proposes several OD population demand 

estimation models to extract useful information from partially observed vehicle 

identification data. Chapter 5 develops a Kalman filtering model to systematically 

represent regular demand pattern, structural deviation and random fluctuation into 

real-time demand estimation and prediction, and then proposes an optimal day-to-day 

demand updating model. Chapter 6 presents predictive and reactive feedback control 

models for OD demand consistency checking and correction. In Chapter 7, a series of 

experiments are performed to demonstrate the capabilities of proposed models and 

provide insight on the system performance.
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2.  Literature Review  

This chapter reviews topics relevant to dynamic OD demand estimation and 

prediction for off-line and on-line dynamic traffic assignment operations. After a 

short introduction to traditional traffic detection techniques, Section 2.1 highlights 

both potentials and challenges for applying emerging vehicle identification and 

location technologies in the context of traffic state estimation and prediction. Section 

2.2 overviews major traffic state estimation and prediction approaches based on 

statistical models and macroscopic traffic flow models. Section 2.3 reviews the 

dynamic traffic assignment approach as a traffic state estimation and prediction tool, 

with a special focus on simulation-based DTA models. The principle functional 

requirements of OD demand estimation & prediction and consistency checking & 

updating components in on-line DTA systems are also presented. Section 2.4 reviews 

both static and dynamic OD demand estimation problems with different information 

availabilities, and it highlights the connection between dynamic OD demand 

estimation and dynamic traffic assignment. Various dynamic demand process models 

and corresponding trade-offs under regular and irregular conditions are discussed in 

Section 2.5, followed by a review of OD demand consistency checking and updating 

formulations and solution algorithms in real-time DTA systems in Section 2.6. 

2.1 Traffic Surveillance Technologies

There are a number of surveillance techniques available for the traffic 

monitoring and management purposes, each with ability to collect and process real-

time traffic data in specific types, including point, point-to-point and path 
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measurements. This review focuses on the essential operating characteristics of 

different traffic sensor types and their comparative advantages and disadvantages in 

traffic state estimation and prediction applications.

By counting traffic passing through a specific location during a period of time, 

a wide range of vehicle detection devices provide various point measurements such as 

lane occupancy, traffic volume, vehicle headway, as well as time-mean speed. As the 

earliest vehicle detection device, pneumatic tubes have been applied in traffic 

engineering practice since the 1930s, and they are still commonly in use as temporary 

counting devices. In the 1960s, many intrusive sensors such as inductive loops, 

magnetometers, and piezoelectric cables were introduced for automatic vehicle 

detection and classification. Among them, inductive loops have become the 

predominant vehicle detection device in the United States, due to their associated low 

unit equipment cost and relatively high performance. On the other hand, intrusive 

type detectors have to be directly installed on the pavement surface, causing 

considerable traffic disruption and high risk for maintenance workers during the 

installation and repair activities. High failure rates and significant downtimes are two 

other major issues in operating inductive loop detectors. For example, Bikowitz and 

Ross (1982) indicated that approximately 25 percent of inductive loop detectors in 

New York State were not functioning properly at any given time. 

To overcome the disadvantages of inductive loop detectors, many roadside 

and overhead sensors are developed, including passive acoustic, passive infrared, 

microwave radar detectors. These non-intrusive devices are able to provide traffic 

measures without stopping traffic in installation and maintenance, but their 
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application is also limited by relatively high cost and high false detection rates under 

certain traffic or weather conditions.

Many vehicle identification devices have been developed to track the 

identities of vehicles through mounted transponder tags or license plate numbers 

when vehicles pass multiple but non-contiguous reader stations. A raw tag read 

typically records a vehicle ID number, the related time stamp and passing site 

location. If two readers at different locations sequentially identify the same probe 

vehicle, then the corresponding data reads can be fused to calculate the journey travel 

time and the counts of identified vehicles between instrumented points.

In conventional license plate surveys, part of a registration number (e.g. only 

last three digits) might be recorded in order to reduce manual data collection effort 

and avoid high recording errors when recording the complete registration number. 

Several statistical methods (e.g. Makowski and Sinha, 1976; Maher, 1985; Watling 

and Maher, 1992) have been presented to reduce “spurious matches”, which indicates 

that different vehicles observed at two points share the same partial registration 

number.

Automatic license plate matching techniques have entered the traffic 

surveillance field since 1970s, and many statistical and heuristic methods have been 

proposed to reduce reading errors and to provide reliable data association (Turner et 

al., 1998). Due to the difficulties in recognizing dirty and obscure characters, license-

plate based vehicle identification techniques typically lead to relatively low 

identification rates.
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Many feature-based vision and pattern recognition algorithms (e.g. Evans, 

1993; Shuldiner et al., 1996; Coifman et al., 1998) have been presented to track 

individual vehicle trajectories using camera surveillance data. By means of vehicle 

signature matching techniques (Coifman, 1998), several coupled point detectors can 

also be used to approximate point-to-point travel measures such as link segment 

travel time information. However, the required high coverage densities for vehicle 

signature matching techniques dramatically reduce the economic feasibility of their 

application in a large-scale network. 

Radio Frequency Identification (RFID) technologies first appeared in AVI 

applications during the 1980s and has become a mature traffic surveillance 

technology that produces various traffic measures with high accuracy and reliability. 

Currently, many RFID-based AVI systems are widely deployed in road pricing, 

parking lot management, as well as real-time travel time information provision. For 

instance, around 51 AVI sites were installed and approximately 48,000 tags had been 

distributed to users at San Antonio by 2001, corresponding to a 5% market 

penetration rate, while Houston’s TranStar fully relies on AVI data to provide travel 

time information currently (Haas et al. 2001). It should be also noted that, utilizing 

AVI data for traffic OD volume estimation, especially in the early deployment stage, 

can be constrained by low market penetration rates of AVI tags. A simulation-based 

study conducted by Van Aerde et al. (1993) shows that low market penetration rates 

directly result in small data samples in statistical reference and high variances in 

travel time and OD flow estimates.
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With advances in Geographic Information System (GIS) and 

telecommunication, many automatic vehicle location (AVL) technologies, such as 

Global Positioning System (GPS), electronic distance measuring instruments (DMI’s) 

and cellular telephone tracking, provide new possibilities for traffic monitoring to 

semi-continuously obtain detailed passing time and location information along 

individual vehicle trajectories. As pointed out by Tavana et al. (1999), the popular use 

of cellular phones can dramatically increase the quality and quantity of traffic data, as 

a source of probe vehicle information as well as a source of live human reports. 

However, privacy concerns and expensive one-time installation costs are two 

important disadvantages influencing the AVL deployment progress.

Table 2-1 Comparison of Traffic Surveillance Devices.

Type Categories Data Quality Measurements Costs and Concerns
Loop 
Detector

Point 
Detection

High accuracy
Relatively low 
reliability

Occupancy, 
volume and point 
speed 

Low installation 
cost, high 
maintenance cost

AVI Identification Accuracy 
depends on 
market 
penetration 
level of tagged 
vehicles

Point-to-point 
flow information 
for tagged vehicles 
such as travel time 
and volume

High installation 
cost, public privacy 
concerns

GPS Location Accuracy 
depends on 
market 
penetration 
level of probe 
vehicles

Semi-continuous 
path trajectory for 
individual 
equipped vehicles

High installation 
cost, public privacy 
concerns

Table 2.1 summarizes the advantages and disadvantages of three 

representative traffic surveillance devices, namely loop detector, AVI and GPS. The 

primary advantage of vehicle identification and location devices is that they provide a 
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data rich environment for operating ATIS and ATMS. Specifically, point-to-point 

traffic measurements, even under low penetration levels, offer a super set of traveler’s

activities for traffic state estimation and prediction. Coupled with additional sources 

such as link counts, it can greatly improve the observability of the dynamic traffic OD 

demand estimation problem. 

2.2 Traffic State Estimation and Prediction Models

Essentially, any application of real-time traffic measurements for supporting 

ATIS and ATMS functionalities involves estimation and/or prediction of traffic 

states. Depending on underlying traffic process assumptions, the existing traffic state 

estimation and prediction models can be classified into three major approaches.

1. Approach purely based on statistical methods, focusing on traffic flow/ 

travel time forecasting on a freeway segment or an arterial street.

2. Approach based on macroscopic traffic flow models, focusing on traffic 

flow estimation on successive segments of a freeway corridor.

3. Approach based on dynamic traffic assignment models, focusing on wide-

area estimation and prediction of origin-destination demand, route choice 

probabilities, as well as resulting traffic network flow patterns.

Although the focus of this dissertation is mainly on the DTA based methods, 

an introduction to the first two approaches is useful for obtaining insights into many 

modeling issues in OD demand estimation and prediction. The pure statistical 

approach is mainly used to estimate and predict local traffic conditions for route 

guidance, adaptive ramp metering and signal control. Several early traffic signal 

control systems, such as UTCS-2 (FHWA, 1973), directly used historical normal 
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pattern to make traffic prediction for the future control horizon (5-15 min). The 

application of time series methods in traffic prediction started from Ahmed and 

Cook’s work (1979), which predicts traffic occupancies in the context of incident 

detection. Focusing on Autoregressive Integrated Moving Average (ARIMA) models, 

they pointed out that first order differencing is adequate to remove the non-

stationarity of original time series, and a complex model is not necessarily more 

accurate than a simple moving average model. The follow-up study by Ahmed (1989) 

further showed that model ARIMA(0,1,3) outperforms the double exponential and the 

moving average models,  as well as the adaptive-exponential model in predicting 

traffic volume and density. 

In order to combine both the historical data and real-time observations into the 

estimation and prediction process, Okutani and Stephanedes (1984) applied the 

Kalman filtering theory in dynamic traffic flow prediction, where the deviations from 

the historical average are considered as state variables that are assumed to follow an 

Autoregressive process.

The spectral analysis method proposed by Nicholson and Swann (1974) is 

able to provide reliable prediction under stable traffic conditions, but fails to capture 

rapid traffic flow changes. Davis and Nihan (1991) used nonparametric statistical 

methods (e.g. pattern recognition algorithms) to forecast freeway traffic congestion. 

Recognizing that most of the statistical based models only deal with local traffic 

conditions, Whittaker et al. (1997) attempted to apply a multivariate Kalman filtering 

model to predict freeway traffic flows on several links, but major difficulties arise in 

modeling the interaction of traffic flow process between links. Specifically, 
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autocorrelation, partial autocorrelation, cross-correlation characteristics, and order of 

parameters (i.e. time lags) between link flows cannot be determined in advance, 

especially for congested traffic. In general, these purely inductive methods have 

difficulties in providing complete information for a partially observed system, as they 

lack the underlying descriptive models that relate unobserved states to traffic 

measurements.

Based on macroscopic traffic flow models, the second approach aims to 

estimate and predict traffic flow, density and queue lengths on each link segment of 

the corridor under consideration, given a freeway corridor with partially loop detector 

coverage. Early studies started by Gazis and Szeto (1972) for traffic state estimation 

on short road sections.  More realistic and detailed models (e.g., Cremer and 

Papageorgiou, 1981) were proposed and applied in the early 1980s. Most of the 

studies in this category adopted the Kalman filtering technique to estimate traffic state 

variables on each section under the assumption that on-ramp flows, off-ramp flows, 

and entering flows from the upstream section are known. As traffic flow models are 

integrated into the transition equation to describe the traffic flow dynamics evolution, 

the resulting nonlinearity in those models leads to extended Kalman filtering 

formulations and solution algorithms that involve complex linearization.

The DTA-based approach detailed in the following section represents a more 

comprehensive solution methodology to estimate and predict the time-varying traffic 

flow pattern over a general network. 
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2.3 Dynamic Traffic Assignment Models

Wardrop (1952) proposed the user equilibrium and system optimal principles 

of route choice behavior in his seminal paper, and Beckman et al. (1956) formulated 

the static user equilibrium traffic assignment problem as an equivalent convex 

mathematical programming problem. Since their influential contributions, the 

development of the static network assignment formulations, algorithms and 

applications have made remarkable progress. The books by Sheffi (1985) and 

Patriksson (1994) provide the most comprehensive coverage on the static traffic 

assignment problem and its variants.

Recognizing the limitations of static traffic assignment models in describing 

the dynamics of network flow propagation and dynamic travel behavior in response to 

real-time information, dynamic traffic assignment models have attracted active 

research and development attention, starting from Merchant and Nemhauser’s pioneer 

work (1978a, b) that presented a mathematical programming formulation for a one-

destination system optimal DTA problem. Peeta and Ziliaskopoulos (2001) provided 

a state-of-art review and detailed discussions of formulation approaches, model 

objectives, underlying assumptions, solution methodologies, traffic flow modeling 

strategies as well as operational requirements and capability.

The existing DTA methodologies are classified into two major groups: 

analytic approach and simulation based approach, and the former line further includes 

three types of formulations: mathematical programming, optimal control and 

variational control. The analytic approach has the potential on deriving theoretical 

insights. However, well-behaved mathematical formulations are currently unavailable 
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and principal difficulties occur in how to ensure the FIFO property and how to 

preclude the holding of traffic in SO assignment.

In order to avoid mathematical intractability, simulation-based dynamic traffic 

assignment is intended to capture dynamic tripmaker decisions and complex traffic 

processes in the practical deployment for realistic networks. For instance, a 

simulation based DTA system, DYNASMART (Mahmassani et al., 1994), can allow 

(1) a richer representation of traveler behavior decisions, (2) an explicit description of 

traffic processes and their time-varying properties, and (3) a more complete 

representation of the network elements, including signalization and other operational 

controls.

The simulation based DTA methodology has been further extended into the 

design of real-time DTA systems in order to provide real-time traffic state estimation 

and prediction for ITS network applications. In DYNASMART-X developed by 

Mahmassani et al. (1998), several components and modules are integrated to perform 

the following DTA functional capabilities. 

1. Estimate the current traffic states in the network.

2. Provide future network traffic states for a pre-defined horizon in response 

to various control and information dissemination strategies. 

3. Estimate dynamic OD demand in the current stage

4. Forecast dynamic OD demand in future stages

5. Maintain the consistency between the internal representation of the real-

time DTA model and the real world system
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FIGURE 2.1 depicts a high-level view of the DYNASMART-X system 

structure and interrelationships among the components and modules. Through a 

Common Object Request Broker Architecture (CORBA), the above components are 

integrated into the real-time DYNASMART-X system. 

ATMS/ATIS Database
Surveillance Data

Consistency Checking

Graphical User
Interface

O-D Estimation

O-D PredictionNetwork State Estimation

RT-DYNA

Prediction / Routing Policy /Control Strategies

Network State Prediction/ Traffic Assignment

P-DYNA

MUC

FIGURE 2-1 DYNASMART-X Functional Diagram.

Peeta and Mahmassani (1995) introduced a rolling-horizon solution procedure 

for solving the real-time DTA problem. This operational method has been detailed 

and implemented by Mahmassani et al. (1998) and Mahfoud (2002) using an 

asynchronous multi-horizon architecture, where multiple modules (tasks) execute in 

different processors and communicate with each other asynchronously. Different 

modules can run with different execution cycles, and each cycle length is determined 
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by the corresponding operational needs (e.g. providing descriptive information versus 

normative information) and resource constraints (e.g. input/output dependency).

The asynchronous multi-horizon architecture and various components in 

DYNASMART-X are described in detail as the following. Given currently available 

OD demand information, the network state estimation (RT-DYNA) simulates 

network flow patterns periodically (every assignment interval). The network state 

prediction module is executed less frequently (every roll period), in which P-DYNA 

receives the current network condition in RT-DYNA as its initial condition and 

projects the network state for a period in the future (stage length). The Multiple User 

Class (MUC) assignment algorithm is incorporated into the network state prediction 

component to provide new routing information and control strategies (Peeta and 

Mahmassani, 1995). Based on the predicted OD demand, every roll period a new 

network state is forecasted, which overwrites the one obtained from the previous roll. 

Interfacing with traffic detectors and probes on the transportation network, the 

OD Estimation (ODE) module is activated every OD observation interval. The 

complete OD demand prediction-correction cycle operates every OD estimation 

period, which might consists of multiple OD observation intervals. The length of OD 

estimation period is constrained by the sampling rate of the traffic surveillance 

system and the computation time for estimating the related OD demand. In addition, 

an OD estimation period should be long enough to adequately model the correlated 

measurement noise among consecutive OD observation intervals. As ODE requires 

the link proportions generated from P-DYNA, its estimation period should be short 
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enough to accommodate the computation time required by P-DYNA in predicting the 

network state for the entire stage length.

Based on the a posteriori estimate of OD demand from ODE, the OD 

Prediction (ODP) module produces the time-dependent OD desires in the network to 

be used in the simulation-assignment procedure for relatively long time duration 

(prediction horizon). When OD estimation completes its execution, OD prediction 

should starts immediately to make new demand information available. On the other 

hand, ODP can be also periodically launched to ensure that predicted OD demand 

always readily available for RT-DYNA and P-DYNA. 

Utilizing up-to-date surveillance data from different traffic sensor sources, the 

consistency checking and updating module aims to minimize the deviations between 

the real-world measurements and the simulated states. In particular, a Short-Term 

Consistency Checking (STCC) model is designed to regulate traffic flow propagation 

in the DTA simulator, while a Long-Term Consistency Checking (LTCC) model 

adjusts demand input that is fed into the DTA simulator. These two components run 

periodically and their frequencies can vary depending on computation requirements 

and adjustment accuracy. 

Figure 2.2 depicts one execution sample in the asynchronous multi-horizon 

implementation of DYNASMART-X. The cycles for the modules are defined as 

follows. The state estimation module and short-term consistency checking are run 

every 30 seconds. The state prediction (P-DYNA) is run every 5 minutes with a stage 

length of 20 minutes. An OD observation interval is 5 minutes. Every 10 minutes, the 

OD estimation procedure starts estimation of the current stage and then prepares the 
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estimated demand state for the OD prediction module, which in turn predicts demand 

for the next 30 minutes. Long-term consistency checking corrects the predicted OD 

demand based on real-time traffic surveillance data every 5 minutes. 

Time (min)

RT-DYNA
(0.5)

P-DYNA

STCC

LTCC

ODE

ODP

(5,20)

(0.5)

(5)

(5,10)

(10,30)

FIGURE 2-2 Asynchronous Multi-Horizon Implementation of DYNASMART-X 

2.4 OD Demand Estimation Models

The general OD demand estimation problem is to find an estimate of OD 

demand matrix by effectively utilizing traffic flow observations and other available 

information. The review focuses on different estimation and different assumptions for 

the OD demand estimation problem under different information sources. 

Existing OD demand estimation models belong to two major categories: static 

models or dynamic models. Assuming constant trip desires over the estimation 

horizon, static OD demand estimation models estimate a static OD demand table 
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based on daily or hourly average traffic counts. To realistically represent traffic 

formation and congestion on the traffic network, dynamic models utilize time-varying 

traffic flow observations to estimate traffic demand that varies over time. 

2.4.1. Static OD Demand Estimation 

Early studies (e.g. Van Zuylen and Willumsen, 1980) assumed that averaged 

link counts follow a Poisson distribution, and used the entropy minimizing principle 

to construct the OD estimation problem that minimizes the log likelihood function 

(2.1) subject to link volume observation constraint (2.2), where C is the vector of link 

counts, D is the OD demand matrix and A(•) is the traffic assignment function 

providing a mapping matrix between OD flows and link flows. The assignment 

mapping matrix can be obtained by combining route choice proportions and the link 

path incidence matrix.

Ln L = Sum over [C ln A(D) − A(D)] + constant (2.1)

Subject to C = A(D) (2.2)

By assuming a multivariate Normal distribution for traffic counts, Maher 

(1983) and Cascetta (1984) proposed a Bayesian estimator and a generalized least 

squares (GLS) estimator, respectively. If the error terms are Normal variables with 

zero mean and variance-covariance matrix W, the corresponding log likelihood 

function is

Ln L = −
2

1
[C − A(D)]TW −1[C − A(D)] + constant. (2.3) 

In a real traffic network, the number of links with observations is more likely 

to be less than the number of unknown OD pairs, and static OD demand estimation 
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that purely relies on averaged link counts might lead to an underdetermined system. 

As a result, additional information must be supplemented to find a unique OD 

demand estimate. A priori information on trip demand, which typically comes from 

either sample surveys or outdated estimates, has been widely used as an important 

supplementary data source. A Bayesian approach (Maher, 1983) and a GLS estimator 

(Cascetta 1984) can be used to combine traffic counts and target demand, leading to 

an optimization problem as the following form:

Min [C − A(D)]TW−1[C - A (D)] + [D- D′]TZ−1 [D- D′] (2.4)

Subject to D≥0

where W and Z denote dispersion matrices and D′ is the target demand.

By assuming that sample N follows a multinomial distribution with known 

sampling fractions α, Spiess (1987) proposed an OD demand estimation model to 

incorporate trip sample counts, collected from household or origin surveys. The 

resulting log likelihood is

Ln L = Sum over [N ln (αD)] + constant. (2.5)

Cascetta and Nguyen (1988) gave an excellent review for estimating static OD 

demand matrix using traffic counts.

To capture congestion effects in traffic networks, many researchers attempted 

to integrate equilibrium assignment into the static OD demand estimation process. 

Nguyen (1977) and LeBlanc and Farhangian (1982) incorporated link count 

observations into a variable demand UE assignment program as equality side-

constraints so that the estimated link flows can reproduce observed link counts. Along 

this direction, Bell (1993) used link flow observations to construct inequality side 
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constraints for a Logit based stochastic assignment model, and proposed Lagrangian 

solution algorithms. Fisk (1989) combined the entropy maximum model with an UE 

assignment program to construct a bi-level mathematical programming problem. 

Florian and Chen (1992) and Yang (1992) further presented a more flexible bi-level 

framework to estimate consistent OD demand, where the upper level is a GLS-based 

OD estimation model and the lower level is an UE assignment program.

2.4.2. Dynamic OD Demand Estimation

Substantial research efforts have been devoted to the dynamic demand 

estimation problem over the past 20 years. An important research direction is to 

improve the representation capability of the estimation model to adequately describe 

dynamic traffic and behavioral processes in networks. Accordingly, existing models 

can be grouped into two classes (Chang and Tao, 1999): DTA based vs. non-DTA 

based, depending on whether a DTA component is incorporated into the estimation 

process.

Early research methods are proposed to estimate time-dependent OD flows on 

individual components such as a single intersection or a freeway corridor. Cremer and 

Keller (1981, 1984 and 1987) developed four methods for identification of dynamic 

origin-destination flows, including a least squares estimator, a constrained 

optimization method, a simple recursive estimation formula and a Kalman filtering 

method. All these four methods estimate dynamic OD split fractions based on the 

entry and exit flow measurements, under the simplifying assumption of constant link 

travel time.
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Bell (1983) introduced additional travel time dispersion parameters to relax 

the constant travel time assumption, and proposed a constrained weighted least 

squares formulation to estimate dynamic OD flows. In order to establish a more 

realistic measurement equation, Chang and Wu (1994) further used nonlinear

macroscopic traffic relations to compute segment density, speed and travel time. 

Extending the concepts and solution methodologies of the static OD estimation 

problem, Cascetta et al. (1993) proposed a generalized least squares (GLS) estimator 

for dynamic OD demand in a general network. A simplified assignment model was 

used in this study, in particular, path choice fractions are first calculated from a route 

choice model and then the resulting path flows are propagated to link flows based on 

link travel times. Along this line, Ashok (1995) introduced stochastic assignment 

matrices into the demand estimation process to take into account measurement errors 

in travel times and inaccuracies in route choice models.

Growing interest in the application of simulation-based dynamic traffic 

assignment (DTA) models has been accompanied by research into the estimation of 

dynamic OD trip desires. Tavana (2001) proposed a bi-level generalized least squares 

optimization model and an iterative solution framework to estimate dynamic OD 

demand while seeking to maintain internal consistency between the upper-level 

demand estimation problem and the lower-level dynamic traffic assignment problem. 

In addition, a nonlinear least squares formulation was proposed to explicitly consider 

dependence of link flow proportions on demand flows, where derivatives of link flow 

proportions with respect to OD demand are obtained from a DTA simulation 

program, namely DYNASMART (Mahmassani et al., 1994). Tavana (2001) and 
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Peeta and Ziliaskopoulos (2001) offered extensive literature reviews of the dynamic 

OD demand estimation problem and its inherent connection to the dynamic traffic 

assignment problem. 

If the number of independent link flow observations is less than the number of 

cells in the unknown dynamic OD demand matrix, other available information 

sources, such as a priori estimates of OD demand matrices, must be combined to 

ensure identifiability of the corresponding OD demand problem. Cascetta (1993) 

presented a bi-objective formulation that minimizes both (1) deviations between 

estimated link flow and observed traffic counts, and (2) deviations between estimated 

dynamic OD demand and historical or assumed dynamic OD demand. It should be 

noted that this formulation does not provide an explicit model to utilize historical 

static demand tables, which are typically available in conventional planning 

applications. By using prior information on OD demand flows, Tavana (2001) 

proposed several Bayesian inference formulations to update the OD demand estimates 

obtained from link flow observations. The use of the flow counts across screen-lines 

and cordon-lines in dynamic OD demand estimation was introduced by Chang and 

Wu (1994) and Chang and Tao (1996), in order to extract and supply more 

information from existing traffic surveillance and survey data. 

Vehicle identification data represent another important and emerging data 

source for estimating dynamic OD demand. Two classes of demand estimation 

problems using vehicle identification data should be distinguished: the estimation of 

tagged vehicle demand and the estimation of population demand. If AVI data are 

collected based on the license plate numbers, where all vehicles have unique vehicle 
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identification code, then two types of problems are equivalent. In a transponder based 

AVI system, only a subset of vehicles are equipped with transponder tags, so the 

second problem needs to be explicitly considered to estimate the population trip 

desires.

Several studies are devoted to the first class of problem. Based on transponder 

tag data collected from a freeway corridor in Houston, Dixon and Rilett (2002) 

applied Cascetta’s framework (1993) to calculate link flow proportions based on 

observed travel time from AVI counts, and they presented both off-line GLS and on-

line Kalman filtering models for estimating tagged OD demand. Due to budget 

constraints, AVI readers in most applications are installed at limited critical locations, 

such as highway/freeway corridors and on-ramps and off-ramps, indicating that point-

to-point counts rather than complete origin-destination counts are more likely to be

available for OD estimation in a general network. Antoniou et al. (2004) introduced 

path-flow proportion matrices that relate OD demand flows to sub-path tag counts, 

and extended Ashok’s framework (1996) to estimate and predict tagged vehicular OD 

demand flows. 

Several models have been developed to the estimation of population demand 

using AVI counts. Recognizing the low identification rate associated with license 

plate based AVI data, Van der Zijpp (1997) proposed a constrained optimization 

formulation to jointly estimate unknown OD demand flows and identification rates. 

Along the same line, Asakura et al. (2000) provided an off-line least squares model to 

simultaneously determine OD demand and location-dependent identification rates, 

and further investigated day-to-day fluctuations in estimated OD demands. Dixon 
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(2000) proposed a three-stage procedure to estimate population OD demand from 

transponder based AVI data: (1) estimate the tagged OD demand matrix from AVI 

data, (2) estimate market penetration rates using AVI data and link counts, and then 

(3) scale the estimated tagged vehicle demand to the total population demand using 

estimated market penetration rates. In brief, the above models have to estimate either 

market penetration rates or identification rates so as to relate the AVI samples to 

population demand using a multiplicative function structure. The estimation of 

market penetration rates or identification rates, however, is a difficult problem in its 

own right, as these two types of rates are essentially time-dependent and location-

dependent random variables. Moreover, the estimation error of market penetration 

rates and identification rates can dramatically impact the reliability of the final 

population demand estimate.

2.5 Dynamic OD Demand Prediction Models

Existing OD demand prediction models can be categorized according to the 

underlying assumptions in representing dynamic demand processes. Given historical 

mean (i.e. regular pattern) r
kD , and real-time estimate kpkD |−  at stage k where p≥0, the 

short term traffic state forecasting problem is to predict the future value of khkD |+  at 

stage k, where prediction horizon h>0. 

Assuming that the deviations of flows from historical averages come from a 

stationary time series, Okutani and Stephanedes (1984) applied an auto-regressive 

model shown as Equation 2.6 to forecast time-varying traffic flows.
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where pk−φ  are predetermined autoregression coefficients, wk is system 

evolution noise and q is the maximum time lag.

Along the same line, Ashok and Ben-Akiva (1993) formulated the deviations 

of OD demand from historical averages as AR processes, and further developed a 

Kalman filter for real-time OD demand estimation and prediction, in which a 4th–

order AR model is adopted based on calibration results from several data sets. Ashok 

and Ben-Akiva (2000) extended the above framework to construct an alternative 

demand estimation and prediction formulation that models origin trips and destination 

fractions separately. Clearly, an autoregressive model is suitable to describe a 

stationary random process with constant mean and variance. However, if the 

prevailing OD demand is structurally different form the regular demand pattern, 

demand deviations will not satisfy the fundamental stationarity assumption for AR 

processes, and such non-stationarity could seriously degrade the overall prediction 

performance. Moreover, an AR type model with high-order terms requires extensive 

off-line calibration effort for the autocorrelation coefficients, and the corresponding 

augmented state space dramatically increases the on-line computational burden, 

especially for large-scale network applications.

Alternatively, without requiring prior demand information, a simple random 

walk model can be built relatively easier for short-term demand prediction, 

corresponding to an AR(1) model with autocorrelation coefficient of 1. Cremer and 

Keller (1981, 1987) and Chang and Wu (1994) applied the random walk model

kkkkk wDD +=+ ||1 (2.7)
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to predict dynamic OD flow split parameters, by directly extending the latest 

estimates as the future forecasts.

In order to describe the nonlinear trend characteristics in dynamic OD 

demand, Mahmassani et al. (1998) and Kang (1999) proposed a polynomial trend 

filter to estimate time-dependent OD flows on a general network, while historical data 

were used to calibrate polynomial function parameters in demand evolution 

processes.
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where m is the order term, βp is the polynomial function parameter. 

Majority of real-time Demand estimation studies focus on how to generate 

reliable and accurate demand estimates, with little attention paid to the procedure of 

utilizing newly generated real-time demand estimates. Ashok (1996) suggested 

several heuristic approaches to update the mean estimate of historical demand with 

recent real-time estimates. To the author’s knowledge, no model has been proposed to 

utilize both the first-order and second-order statistics (i.e. mean and variance) of real-

time estimates to update the a priori estimate of the regular demand pattern. There is 

a need to develop a satisfactory updating model that can effectively and 

systematically extract the historical demand information for capture day-to-day 

demand evolution and provide up-to-date regular demand reference for on-line 

estimation and prediction purposes.
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2.6 Dynamic OD Demand Consistency Checking and Updating Models

Network state consistency over time is one of major concerns in a real-time 

DTA system. Doan, Ziliaskopoulos and Mahmassani (1999), Kang (1999) and Peeta 

and Ziliaskopoulos (2001) enumerated possible error sources that can cause the 

potential divergence of the predicted system state from the actual traffic conditions 

unfolding on-line. These error sources can be categorized into the following groups: 

(i) incorrect prediction of the dynamic OD demand, (ii) incorrect route choice 

predictions, (iii) incorrect traffic flow modeling, (iv) incorrect assumptions on driver 

behavior and/or response to information provided, (v) unpredicted incidents, incorrect 

assumptions on system related parameters, (vi) noise and/or sparsity in 

measurements, as well as (vii) failure of the ATIS system components. 

Obviously, the demand estimation/prediction errors can sequentially 

propagate to path and link flow representations along the assignment and simulation 

processes. From the perspective of OD demand estimation and prediction, the role of 

DTA simulators is to provide a process model that links demand states to traffic 

measurements. The discrepancy between the simulated states and the real-world 

system indicates mismatch in the descriptive DTA process model, directly affecting 

reliability of the mapping matrices (e.g. link flow proportions that relate OD demand 

flows to link flows) in the measurement equation. Without correcting these errors, the 

demand error in the DTA simulator can be accumulated and amplified over time in 

the recursive estimation and prediction structure. This operational issue in the 

deployment of a real-time DTA system has motivated the development of OD 

demand consistency checking and updating models. 
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Kang (1999) designed a diagnostic architecture for checking system 

consistency in a real-time DTA system. Based on a proportional-integral-derivative 

(PID) feedback control framework, Mahmassani et al. (1998) and Kang (1999) 

further proposed a real-time demand consistency updating module, which 

heuristically adjusts the demand level according to the discrepancy between simulated 

and observed link density. 

Peeta and Bulusu (1999) proposed a mathematical programming approach for 

ensuring on-line consistency, which seeks to minimize deviations between real-time 

traffic measurements and predicted network states. The OD demand adjustment is 

calculated by iteratively solving a deterministic DTA problem and a least squares 

problem within a stage-based rolling horizon framework. The resulting rank deficient 

least squares problem is solved by a generalized singular value decomposition 

strategy, leading to intensive computational requirements.

The existing models and algorithms discussed here for maintaining OD 

demand consistency have not provided an entirely satisfactory approach that meet the 

following critical requirements: (1) an effective optimization formulation that lead to 

a unique adjustment solution, (2) efficient and robust algorithms applicable to large-

scale realistic networks.

2.7 Summary

This chapter has reviewed several topics relevant to the dynamic OD demand 

estimation and prediction problem for off-line and on-line DTA applications. A wide 

range of traffic surveillance data sources available to the OD demand estimation and 

prediction process are first discussed, followed by the review of three traffic state 
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estimation and prediction approaches using real-time traffic data. The modeling and 

solution methodologies for dynamic traffic assignment are further detailed, with a 

special focus on its real-time system structure and implementation strategies. The 

remaining sections sequentially review the static OD demand problem, dynamic OD 

demand estimation problem, as well as dynamic OD demand prediction problem. In 

particular, this review discusses the connection between OD demand estimation and 

traffic assignment, and various demand process models for OD demand prediction. 

Section 2.7 overviews OD demand consistency checking and updating models, which 

serve as the essential supporting component that corrects OD demand 

estimation/prediction errors in on-line DTA systems.



39

3. Dynamic Origin-Destination Demand Estimation Using Static 

Historical OD Demand and Multi-Day Link Counts

3.1 Introduction

Based on an iterative bi-level estimation framework, this chapter aims to 

enhance the quality of OD demand estimates by efficiently combining available 

historical static demand information and time-varying traffic point measurements 

from multiple days into a flexible multi-objective optimization framework that 

minimizes the overall sum of squared errors. Section 3.2 first proposes a dynamic OD 

estimation model to extract information from a historical static OD demand matrix. 

Section 3.2 also discusses several possible strategies for ensuring identifiability of the 

estimation problem in DTA planning applications, and an interactive approach is also 

presented to determine the appropriate weighting scheme and find the best 

compromise solution. The one-day demand estimation formulation is extended to an 

estimation model in Section 3.3 for inferring day-to-day demand variations by using 

multi-day link counts, followed by a description of the related hypothesis testing 

procedure. The effectiveness of the proposed methods is illustrated in Section 3.4 

using available real-world measurements in a real network.

3.2 Model Framework using Static Historical OD Demand Information

The model presented in this chapter is an extension of the iterative bi-level 

OD demand estimation framework proposed by Tavana and Mahmassani (2001) and 

Tavana (2001). Specifically, the upper-level problem is a constrained ordinary least 

squares problem, which is to estimate the dynamic OD demand based on given link 
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flow proportions. The link flow proportions are in turn generated from the dynamic 

traffic network loading problem at the lower level, which is solved by a DTA 

simulation program, namely DYNASMART-P (Mahmassani et al., 2000). 

The following notation is used to represent all the variables in the demand 

estimation formulation. This section is only concerned with demand estimation using 

one-day link counts, so the subscript of day m is dropped for simplicity.

l = subscript for links with traffic flow measurements, l=1,…,L.

L = number of links in the network that have flow measurements.

τ= subscript for departure time intervals, τ =1, 2, …, Td.

t= subscript for observation time interval, i.e. sampling time interval t =1,…, 

To.

T = number of aggregated departure time intervals in the estimation period.

i = subscript for origin zone, i  =1,…, I.

I = number of origin zones in the network.

j = subscript for destination zone, j =1,…, J.

J = number of destination zones in the network.

m = subscript for day of week.

M = number of days of week, m =1,…, M.  Here, M = 5, representing Monday 

through Friday.

c(l,t),m = measured traffic volume on link l , during observation interval t, on 

day m.
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Cm= vector of measured flows on the links, consisting of element c(l,t),m.

d(i,j,τ),m  = demand volume with destination in zone j , originating their trip at 

zone i during aggregated departure interval τ on day m .

Dm= vector of OD demand flows, consisting of elements d(i,j,τ),m  on day m.

p(l,t),(i,j,τ),m  = link flow proportions, that is the proportion of demand flow 

d(i,j,τ),m  that flows onto link l during observation interval t.

Pm= matrix of link flow proportions, consisting of element p(l,t),(i,j,τ),m .

ε(l,t),m = the combined error terms in estimation of traffic flow on link l

during observation interval t on day m.

Em= vector of combined error terms, consisting of elements ε(l,t),m for link 

flow.

g(i,j) = target demand, which is the total traffic demand during period of 

interest for each origin-destination pair (i, j) .

G = target demand vector, which is a vector of total traffic demand during 

period of interest, consisting of elements g(i,j) .

η(i,j),m = the combined error terms in estimation of total traffic demand during 

period of interest from zone i to zone  j, on day m.

A = mapping matrix between time-dependent demand and total demand.

∏m = vector of combined error terms, consisting of elements η(i,j),m for total 

traffic demand during period of interest.
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Two objectives are considered in this formulation. The first one is to minimize 

the deviation between observed link flows and estimated link flows, as shown in 

Equation (3.1a) or (3.1b). The second objective is to minimize the deviation between 

the target demand and estimated demand. Suppose that the target demand is a 

historical static demand table for the entire study horizon, so the second objective 

function can be explicitly written as the difference between the static demand and the 

sum of dynamic demand over the study period, as shown in Equation (3.2a) or (3.2b).

EDPC +⋅= (3.1a)

or  ),(),,(
,,

),,(),,(),( tlji
ji

jitltl dpc ετ
τ

τ += ∑  (3.1b)

Π+⋅= DAG (3.2a)

or  ),(),,(),( jijiji dg η
τ

τ += ∑ (3.2b)

From a multi-objective programming standpoint, the above bi-objective 

programming problem can be transformed into a single-objective problem by either a 

weighting formulation or a ε-constraint formulation. The former leads to a relatively 

simple quadratic programming problem, which coincides with an ordinary linear 

regression model, while the latter introduces hard nonlinear constraints if the 

deviation is represented by the squared error. The weighted formulation is adopted to 

combine the two sets of deviations, with respective weights w and (1-w) for the first 

and second objectives. The weights w and (1-w) could be interpreted as the decision 

maker’s relative preference or importance belief for the different objectives; they 

could also be considered as the dispersion scales for the first and second error terms 
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in the ordinary least-squares estimation procedure. In general, if the provided target 

demand is not reliable, i.e. the error term ),( jiη  has a high variance, a small value of w

is used; and vice versa. The resulting bi-level dynamic OD estimation problem with a 

single day of link-level observations is presented in Equations (3.3) and (3.4), which 

is to minimize the combined deviations, subject to the dynamic traffic assignment 

constraint and non-negativity constraints for demand variables.





 −+−⋅−= ∑ ∑ ∑∑

tl ji
jijitl

ji
jijitl gdwcdpwZ

, ,

2
),(),,(

2
),(

,,
),,(),,(),,( ][][)1(min

τ
τ

τ
ττ (3.3)

s.t. [ ]),,(),,(),,( a ττ jijitl dssignmentp =    from DTA, τ,,,, jitl∀ (3.4)

0),,( ≥τjid , τ,, ji∀

where w is a positive weight.

If a time-dependent demand matrix is available a priori, the above formulation 

can be written as Equation (3.5), where g(i,j) is extended to g(i,jτ,)  for each departure 

time interval:
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A natural attempt would be to split the given static demand g(i,j)  into equal 

portions of g(i,jτ,)  =  
T

g ji ),( for each time interval and use Equation (3.4), which has a 

similar structure as the static OD estimation case. However, this scheme would 

implicitly impose a uniform temporal pattern on the target demand, thereby biasing 

the resulting estimation. More precisely, let us define the combined error term 
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),,(),,(),,( τττη jijiji gd −= for each departure time interval, then ∑=
τ

τηη ),,(),( jiji . The 

bias for the latter formulation with respect to the previous formulation for each OD 

pair (i, j) is shown in Equation (3.6).

[ ]
∑ ∑

∑∑∑
≠

−=

−=−∑−−

1 21
)2,,()1,,(

2
),,(

2
),,(

2
),(),,(

2

),,(),,(

2

][][

τ ττ
ττ

τ
τ

τ
ττ τ

τ
ττ

ηη
ηη

jiji

jijijijijiji gdgd
(3.6)

The iterative solution algorithm for the proposed bi-level programming 

problem is briefly described as follows. 

Step 1: (Initialization) k = 0. Start from an initial guess of the traffic demand matrix 

D0, obtain link flow proportions P0 from the DTA simulator.

Step 2: (Optimization) Substituting link flow proportions Pk, solve the dynamic OD 

estimation problem as Equation (3.3) to obtain demand Dk.

Step 3: (Simulation) Using demand Dk, run the DTA simulator to generate new link 

flow proportions Pk+1.

Step 4: (Evaluation) Calculate the deviation between simulated link flows and 

observed link counts, and calculate the deviation between estimated demand Dk and 

target demand. 

Step 5: (Convergence test) If the convergence criterion is satisfied (estimated demand 

is stable or no significant improvement in the overall objective), stop; otherwise k = k

+1 and go to Step 2. 
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In the following, two key questions are addressed using the above formulation in 

planning applications. One is how to assess the weight w, the other is how to deal 

with estimation with partial observation.

3.2.1 Retrieving Best Compromise Solution

It may be possible to obtain the least-squares estimate of the weight value through 

linear regression. However, in planning analysis, it is more desirable to incorporate 

the planners’ knowledge and experience in the estimation process, reflecting different 

degrees of confidence in the different sources of information.  Furthermore, planners 

might like to adjust their preferences progressively as they develop better 

understanding of the problem. For these reasons, an interactive approach is presented 

to determine the weight for the above bi-objective problem, consisting of the 

following two steps. A representative subset of non-dominated solutions is first 

generated by varying the weight, and then the decision maker can determine the 

weight that results in the best compromise solution based on the following three 

criteria, as commonly used in the multi-objective programming field.

1. Minimum combined deviation. This is equivalent to the objective function 

value in Equation (3.3). 

2. Best trade-off.  The trade-off measurement can be computed by 
2

1

Z

Z

∂
∂
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 can be numerically approximated from 



46

the ratio of change between the Z1 and Z2 as shown in Equation (3.7). 

Intuitively, a trade-off in the OD estimation problem means how much 

deviation from the target demand the decision maker would give up to 

decrease the deviation for link counts by one unit.
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−
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3. Minimum distance from the ideal point. Planners can define the goal f1 and f2

as the maximum possible deviation for the first and the second objectives, and 

then the goals for both objectives make up an ideal point f* = (f1,  f2) or a 

utopia point. The best compromise solution is the one with minimum distance 

from the ideal point.

3.2.2 Utilizing Limited Real-Time Data 

Given a subset of links with real-time link flow observations, a fundamental 

question is how to identify the demand dynamics using limited information, in 

particular, how to obtain a unique solution for the above ordinary least-square 

formulation. This requires that the number of decision variables (OD demand flows) 

be less than the number of constraints (the number of link observations plus the 

number of OD pairs in the static demand matrix), as shown in Inequality (3.8).

TJIJIHL ××≥×+× (3.8)

If the given link observations cannot satisfy Inequality (3.8), then the OD 

estimation turns out to be an under-determined problem, which can have numerous 

multiple solutions. To ensure the identifiability of the dynamic OD estimation 

problem, the following four possible approaches can be used.
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The first simple remedy is to increase the length of departure time intervals so 

as to reduce the number of decision variables, but this aggregation scheme will 

undermine the capability of modeling OD demand dynamics. The second method is 

to shorten the length of observation time intervals to increase the number of 

observation. However, a short observation time interval would increase the possibility 

of linear correlation in the link flow matrix P, which makes the estimation result 

unstable. In fact, to obtain a unique solution, one still needs to verify the rank 

condition, that is, the sum of rank for matrices G and C is greater than the number of 

variables. Since the coefficient vectors in matrix G correspond to independent OD 

demand, the rank of matrix A is always I×J.  The link flow proportion vector can be 

expressed as Equation (3.9). 

∑
∈

=
),(

),(),,(),,(),,(),,(
jiKk

kjitljitl qp τττ α (3.9)

where  ),,(),,( τα jitl  is the time-dependent link-path incidence indicator, q(k,τ) is 

the path flow choice probability of selecting path k at the departing interval t, and 

K(i,j) is the set of paths between origin i and destination j.

Clearly, the path flow choice probability is determined by traffic assignment, 

and the link-path incidence is governed by the traffic flow propagation process. For 

instance, consider two consecutive short intervals t1 and t2; it is highly possible that 

the path flow choice probability and the time-dependent link-path incidence are 

unchanged, and the corresponding two link flow proportion vectors at t1 and t2 are the 

same. This implies that one cannot arbitrarily shrink the observation interval to 
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increase the number of observations, and the redundant information does not increase 

the chance of making the problem identifiable.

For a traffic network with partial observations, not all OD demand will pass 

through those links that have flow measurements. In other words, only those OD 

demand flows that have impact on the measured flows can be inferred from the 

observed flows. Based on the link flow proportions generated from the network 

loading (simulation-assignment) result, one can denote OD pairs (i, j) with p(l,t),(i,j,τ),m

> 0  as relevant OD pairs, and those with p(l,t),(i,j,τ),m  = 0 as irrelevant OD pairs. 

Consequently, only relevant OD pairs need to enter the OD estimation problem. 

However, this procedure is still an ad hoc technique that highly relies on the quality 

of simulated link flow proportions, and it is still possible to rule out actual relevant 

OD pairs. Therefore, one should try to estimate the full OD matrix table as 

completely as possible in planning practice. 

The fourth approach is to apply the polynomial transformation (Kang, 1999) 

shown in Equation (3.10). In particular, if the degree of the polynomial model N is 

less than the number of departure intervals T, the number of total decision variables 

can be reduced. An advantage of this method is to use fewer decision variables to 

represent the dynamics of demand, especially the trend information. However, it 

should be noted that a low-order polynomial model may not always capture the full 

randomness of demand, and a high order model might lead to wild oscillations even if 

it provides better goodness of fit.

n
N

n

n
jiji bd ττ ∑

=

=
0

),(),,( (3.10)
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where n  is the order term, b is the parameter to be estimated. 

3.3 Multi-day (Weekdays) OD Demand Estimation

3.3.1 Model Specification

The formulation of the OD demand estimation problem with single-day link 

observations is extended to a multi-day context.  Considering five weekdays, a more 

extensive model can be expressed as Equation (3.11).

This formulation is analogous to a multiple linear regression model that has 

the standard form as Equation (3.12). From the multiple linear regression point of 

view, Y are dependent variables, (X1 X2 X3 X4 X5) are independent variables, (D1 D2

D3 D4 D5)
T  are coefficients to be estimated and Ψ  are error terms. 
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Let us consider three possible assumptions about Dm that lead to different 

forms for Equation (3.12).

The first is that the OD demand matrices Dm on different days are different. 

Accordingly, link flow proportions, i.e. Xm  in Equation (3.12), would also have 

different values. 

The second situation corresponds to identical Dm on different days. Thus, link 

flow proportions over different days would be generated identically from the DTA 

simulation, and Equation (3.12) can be collapsed to the simple form shown in 

Equation (3.13).
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However, this assumption Dm is likely to be too stringent for the real-world 

traffic demand.  In order to recognize the inherent stochasticity of traffic demand, the 

third assumption views the multi-day OD demand as the outcome of a common 

underlying random process with mean D0 and variance εD, that is, Dm = D0 + εD.  In 

this way, Equation (3.12) can be simplified to Equation (3.14).
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whereΨ′  is the combined error for Ψ and εD.
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The above multi-day OD estimation problem can still be solved by the bi-level 

ordinary least-squares method used for single-day estimation described previously. Its 

mathematical formulation consists of objective function (3.15) and constraint (3.16). 

Note that, the objective is to minimize multi-day discrepancies, and the link flow 

proportions are obtained from the DTA simulator individually for different demand 

matrices.  

obj. 

∑ ∑ ∑ ∑∑ 



 −+−⋅−=

m tl ji
jimjimtl

ji
mjimjitl gdwcdpwZ

, ,

2
),(),,,(

2
),,(

,,
),,,(),,,(),,( ][]ˆ[)1(min

τ
τ

τ
ττ (3.15)

s.t. 0),,,( ≥mjid τ , mji ,,, τ∀

)(aˆ ),,,(),,,(),,( mjimjitl dssignmentp ττ =    from DTA, mjihl ,,,,, τ∀ (3.16)

3.3.2 Analysis of Day-to-Day Variability

Hypotheses for Dm

In order to identify day-to-day variability of OD demand, two potential 

models are assumed.  The null hypothesis (H0) for Dm is that the means of multi-day 

demand are identical, corresponding to a reduced model.  The alternative hypothesis 

(H1) for Dm is that the means of multi-day demand patterns are different,

corresponding to a full model.

0H : 2121 for , mmDD mm ≠= .

1H : 2121 for , mmDD mm ≠≠ .
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Standard F-test

Statistical testing is performed to compare means across multiple days.  The 

F-statistic tests the null hypothesis that the multiple means of OD demands across all 

days are equal. If the computed F-statistic value is greater than the corresponding 

critical value (for the desired significance level), then the null hypothesis can be 

rejected, and the multi-day mean OD demands may be considered significantly 

different from one another.  

( ) ( )
( )[ ]1+−

−−
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F
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(3.17)

where n is the number of observations; k is the number of restrictions causing 

change of the full model to the reduced model;  g+1 is the number of coefficients in 

the reduced model.

SSE is the sum of square errors, which is calculated according to (3.18),
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It is worth noting that the variables (X1 X2 X3 X4 X5)  in this study would have 

different values in the full model and the reduced model due to the inherent 

dependency of link flow proportions and OD traffic demand matrices. 

Full model calibration

Based on the structure of the model (3.12), the procedure for full model 

calibration is equivalent to performing individual model calibration for each day. 
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After obtaining five estimated OD demand matrices individually, i.e. ( 1D̂ , 2D̂ , 3D̂ , 

4D̂ , 5D̂ ), one just needs to substitute them in Equation (3.18) to compute SSEfull.

Reduced model calibration

The following procedure is adopted to calibrate the reduced model:

Step 1: Compute average the D  and variance 2
Dσ  of the estimated OD 

demand ( 1D̂ , 2D̂ , 3D̂ , 4D̂ , 5D̂ ) obtained from the full model calibration.

Step 2: Randomly generate OD demand on five days ( 1D� , 2D� , 3D� , 4D� , 5D� ) 

based on the average D  and the variance 2
Dσ . 

Step 3: Obtain five link flow proportions matrices ( 1̂P , 2̂P , 3̂P , 4̂P , 5̂P ) through 

DTA simulation, given the randomly generated ( 1D� , 2D� , 3D� , 4D� , 5D� ). 

Step 4: Substitute ( 1̂P , 2P̂ , 3̂P , 4P̂ , 5̂P ) into formulation (3.18) to estimate a 

common demand matrix D0 for all days.  Then, the estimated D0 is taken as a new 

average value used for randomization in Step 2.  If D0 is stable, stop and the estimated 

D0 in this step is the optimal one.  Otherwise, go back to Step 2 and repeat the

process.

Finally, SSEreduced can be computed based on the optimal OD demand D0.
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3.4 Numerical Experiments

3.4.1 Network Configuration and Traffic Measurements 

In this section, the proposed off-line OD estimation models are tested using a 

simplified road network of the Irvine, CA test bed, which consists of two interstate 

freeways (I-5, I-405), a state highway 133, as well as other main arterials.

As shown in Figure 3-1, the simplified network includes 16 OD zones, 31 

nodes and 80 directed links (32 freeway and 48 arterial). Traffic counts are measured 

on 16 links; at 30-second interval on 10 freeway links, and at 5-minute interval on 6 

arterial links. In addition, a static planning OD demand table is given and used as the 

target demand. The time of interest in the following experiments is the morning peak 

period (6:30 am – 8:30 am) on four weekdays (Tuesday ~ Friday).  It would have 

been ideal to investigate the OD demand variability over five weekdays, but the data 

for Monday could not be used in the estimation due to poor data quality (caused by 

sensor malfunction). Simulation is performed for three hours (6:00 am – 9:00 am). In 

order to gain more reliable estimation results, the starting period from 6:00 to 6:30 is 

used as a warm-up period. Moreover, the ending period from 8:30 to 9:00 is not 

considered in the statistics, since a large number of vehicles departing after 8:30 

would not have finished their trips, resulting in incomplete link-flow proportions.
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FIGURE 3-1 Irvine simplified network.

3.4.2 Weighting Scheme in the Upper Level Optimization

Before conducting the OD estimation, let us first want to determine the 

appropriate weighting value in the weighted objective function. Using the data for 

Tuesday, ten different values of w between 0 and 1 are used to generate a 

representative set of non-dominated solutions, as plotted in Figure 3-2. 
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FIGURE 3-2 A representative set of non-dominated solutions.

For w = 0, i.e. OD estimation without target demand, the resulting deviation 

from the target demand is 81042.2 × , which falls outside the range of the plot. As 

expected, greater weight on the target demand can result in smaller deviation from the 

target demand but larger deviation from the link flows. Interestingly, the rate of 

change for the second objective is much more dramatic than the first objective, and 

the total weighted deviation is governed by the deviation from the target demand. In 

addition, w = 1 minimizes the deviation from the target demand, actually yielding an 

overall deviation of zero, since the target demand can always be a feasible solution. In 

contrast, for w = 0  (i.e. only the deviations of link flows are considered), the solution 

does not fit all the link counts perfectly.

The three criteria discussed in Section 3.2.1 for determining a best 

compromise solution are examined here to determine the appropriate weight. First, 

the minimum combined deviation condition is not suitable in our case, since w = 1 

always provides the best result but does not consider the link flows. It is easy to check 
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that w = 0.9 corresponds to the “best” trade-off, but the absolute deviation for the link 

counts is still very high. The ideal point is illustrated in Figure 3-3, where the goals 

for the first and second objectives are set to 61000.2 ×  and 0, respectively. The plot 

reveals that the solutions corresponding to weights of 0.2 and 0.5 are very close to the 

ideal point. This study will use w = 0.5 since this provides better trade-offs.

FIGURE 3-3 A representative set of non-dominated solutions.

3.4.3 Day-to-day OD Demand Patterns

The estimated demand patterns for three OD pairs are shown in Figures 3-4, 

3-5 and 3-6. In particular, the selected OD pairs (12,1), (16, 1) and (16, 4) are 

representative OD pairs with the highest trip demand. In Figure 3-4, the estimated 

dynamic demand on different days is consistent with the magnitude of the historical 

static demand. As expected, all the three OD pairs show significant within-day 

dynamics. In particular, OD pair (12, 1) corresponds to a slow increasing trend, and 
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OD pairs (16, 1) and (16, 4) have similar peaking patterns: the peak occurs around 

7:15 am, and the height of the peak is about 20~30% above the minimal demand level 

during the two hours. Note that the latter two OD pairs start from the same origin 

zone 16, so they are more likely to have common departure time patterns. Moreover, 

the dynamic demand pattern can be verified by the observed link flows as shown in 

Figure 3-7. The reason of selecting link 1 (in Figure 3-1) is that it carries the demand 

flow for OD pair (16, 1). It is easy to see the time of flow peak is relatively later than 

the time of demand peak, which is around 7:15am to 7:45am, due to the traffic flow 

propagation. As can be seen from the plot, the simulated flows on link 1 match the 

observed flows quite well. 
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FIGURE 3-4 Estimated trip demand patterns for OD pair (12, 1).
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FIGURE 3-5 Estimated trip demand patterns for OD pair (16, 1).
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FIGURE 3-7 Observed vs. simulated link flows for Link 1.

Based on the estimated results, all three OD pairs exhibit different patterns of 

day-to-day variation. In general, OD pair (12, 1) exhibits greater variation in terms of 

the time of peak, OD pair (16, 1) shows greater variation in terms of the height of 

peak, while OD pair (16, 4) exhibits much more stable patterns. This information is 

useful to help the transportation manager alleviate congestion by redistributing 

demand flow spatially and temporally on the network. 

3.4.4 Hypothesis Testing for the Mean of the Demand

The sum of squared errors SSE  for estimation (that is, the total objective 

value) is required for computation of the F-statistic. Calibration of the full model and 

the reduced model provide the value of SSE  without additional effort. The results are 

61090.4 ×=fullSSE  for the full model and 61055.5 ×=reducedSSE  for the reduced 

model.  In addition, during 2 hours (or 120 minutes) and for 16×16−16 = 240 OD 

pairs, the number of observations n = (120×2×10+120/5×6+240)×4 = 11136. The 
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number of restrictions from the full model to the reduced model is k = 120/15×240×3 

= 5760, and the number of coefficients in the reduced model is 1+g = 120/15×240 = 

1920. The F-statistic is

( ) ( )
( )[ ]1+−

−−
=

knSSE

gkSSESSE
F

full

fullreduced  = 0.186.

By selecting the significance level α  as 0.05, the critical value )1(,, +−− kngkFα

=1.10, so the null hypothesis cannot be rejected, indicating that the mean OD demand 

pattern for the network is essentially identical across multiple days.

Since link-flow proportions are generated by simulation instead of known a 

priori, the F-test statistics for the model specification in this example should be 

viewed as an approximate indicator. Moreover, demand flows associated with 

different OD pairs might not be independent of each other, so the conclusion from the 

statistical testing should again be interpreted with considerable caution.

3.5 Summary

Time-dependent OD demand matrices are a critical input to dynamic traffic 

assignment methodology in real-time operational and planning applications. This 

chapter introduces and highlights the potential of using multiple sources of 

information to estimate the dynamic OD demand for planning applications. The 

particular sources available here include the historical static information and ITS real-

time link-level information. First, a bi-level iterative dynamic OD estimation model is 

extended to combine both (1) deviation between estimated link flows and real-time 

link counts and (2) deviation between estimated time-dependent demand and given 
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historical static demand. The two objectives are combined using a weighted function, 

where the weighting value is determined by an interactive approach to obtain the best 

compromise solution. In particular, the trade-offs among several methods that are 

designed to use limited real-time information to infer the demand dynamics are 

discussed. The model was extended to use the multiple days of link counts to estimate 

the variations in traffic demand over multiple days. Indicated by the estimation results 

based on the Irvine network, the ideal point approach is suitable for determining the 

weights in the multi-objective framework for estimating OD demand with various 

information sources, and major OD pairs exhibit different patterns of day-to-day 

variation.
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4.  Off-line Dynamic OD Demand Estimation Using Automatic 

Vehicle Identification Data

4.1 Introduction

Previous chapter addressed the dynamic OD demand estimation problem 

using multi-day link counts and historical static OD demand data, and formulated a 

statistical testing procedure to investigate day-to-day demand variations. Together 

with commonly used point sensors, AVI systems provide valuable point-to-point 

traffic data for identifying the complex OD demand system state. To estimate 

population OD demand, this study is intended to use extract OD demand distribution 

information from partially observed AVI counts without estimating market 

penetration rates. Specifically, population OD split fractions are sampled from point-

to-point AVI counts, as opposed to being treated as unknown variables in the early 

dynamic OD estimation models (Cremer and Keller, 1981, 1984, 1987). Section 4.2 

first illustrates the use of point-to-point split fractions in dynamic population OD 

demand estimation with AVI data, and addresses the resulting modeling and 

formulation issues. Based on two idealized assumptions, a nonlinear ordinary least-

squares model is presented in Section 4.3 to extract OD distribution information from 

AVI counts. Section 4.4 proposes two OD demand estimation formulations in the 

presence of possible identification and representativeness errors. Sections 4.5 and 4.6

extend the iterative solution algorithm from Chapter 3 and discuss the identification 

condition and properties of the resulting estimation problem. Section 4.8 uses 

synthetic AVI traffic counts to systematically investigate the relative value of AVI 
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information under different market penetration rates, identification rates and detector 

location schemes.

4.2 Problem Statement and Illustrative Examples

The following notation is used to represent all the variables in the dynamic 

OD demand estimation formulation.

L = set of links in the network.

Llc = set of links with link count observations.

Lvi = set of links with vehicle identification observations.

l = subscript for link with traffic measurements.

i = subscript for origin zone, i∈I.

j = subscript for destination zone, j∈J.

τ= subscript for departure time intervals, τ =1, 2, …, Td.

t = subscript for observation time interval, i.e. sampling time interval, t=1, 2, 

…, To.

tg = superscript for tag-equipped vehicles.

id = superscript for identified vehicles.

k = superscript for iteration counter.

c(l,t) = number of vehicles on link l during observation interval t .

C = vector of measured flows on the links, consisting of element c(l,t) .
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c(l,s,t) = number of vehicles observed on link s, traveling from link l during 

observation interval t.

d(i,j,τ) = demand volume with destination in zone j , originating their trip at 

zone i  during departure interval τ.

D = dynamic OD demand matrix, consisting of elements d(i,j,τ) .

c(i,j,τ)= number of vehicles observed in destination zone j, originating their trip 

at zone i  during departure interval τ.

b(i,j,τ) = origin-to-destination split fraction, i.e. proportion of traffic departing 

from origin i during departure time interval τ, heading towards destination j.

b(l,s,t) = link-to-link split fraction, i.e. proportion of traffic passing link l during 

observation time interval t, heading towards link s (link s is not necessary to 

be a downstream link of link l) .

p(l,t),(i,j,τ) = link flow proportions, i.e. proportion of vehicular demand flows 

from origin i to destination  j,   starting their trips during departure interval τ, 

contributing to the flow on link l during observation interval t.

),,(),,(ˆ τjitlp = estimated link flow proportions based on a DTA program.

p(l,s,t),(i,j,τ) = link-to-link flow proportions, i.e. proportion of vehicular flows 

from origin i to destination  j,  starting their trips during departure interval τ, 

contributing to the link-to-link flow from link l (during observation intervals t) 

to link s.

ˆ ),,(),,,( τjitslp = estimated point-to-point-flow proportions based on a DTA 

program.
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P̂ =estimated flow proportion matrix that includes elements ),,(),,(ˆ τjitlp and 

ˆ ),,(),,,( τjitslp .

η(l,s,t) = sampling error term in estimation of link-to-link split fraction b(l,s,t) .

ζ(l,s,t)= combined error term in estimation of link-to-link split fraction b(l,s,t) .

ε(l,t) = combined error term in estimation of traffic flow on link l during 

observation interval t.

g(i,j) = target demand, which is total traffic demand during period of interest 

for origin-destination pair (i, j) .

G = historical OD demand matrix, consisting of elements g(i,j) .

Consider a traffic network consisting of multiple origins i∈I and destinations 

j∈J, as well as a set of nodes connected by a set of directed links. The analysis period 

of interest, is discretized into departure time intervals τ =1, 2, …, Td. Link counts c(l,t)

are available on link l ∈ Llc  during observation interval t = 1, 2, …., To. AVI reader 

stations are located on link l ∈ Ivi, and vehicle identification data include point counts 

cid
(l,t) ∀ l ∈Lvi, t =1, …,To and point-to-point counts cid

(l,s,t) ∀ l,s ∈Lvi, t =1, …,To. The 

sampling time intervals for AVI counts and traffic link counts are assumed to be the 

same for notation simplicity. As AVI reader stations are installed on link segments in 

a network, the “point-to-point counts” will be equivalently referred to as “link-to-link 

counts” in order to maintain continuity with “link counts” from point sensors. Given 

link counts, vehicle identification counts and prior information on OD trips, the 

dynamic OD demand estimation problem seeks to find time-dependent OD trip 
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desires so as to minimize deviations between the observed traffic flows and the traffic 

flows resulting from a DTA program, and deviations between estimated OD demand 

flows and the historical demand matrix.

5 7

6

8

1 5 7

6

8

AVI reader Loop detector

f

l
s

1

2

3

4

2

4

Zone

3

f

FIGURE 4-1 Example of utilizing AVI point-to-point counts

In order to circumvent difficulties in estimating market penetration rates of 

AVI tags, this study utilizes probe vehicle data to extract spatial distribution 

information of trip-makers in traffic networks. This approach can be illustrated using 

a small network shown in Figure 4-1. The problem is to estimate population OD 

demand flows d(1,2), d(1,3) and d(1,4) from available AVI and loop detector counts. For 

simplicity, subscripts τ and t are dropped in the following discussion. In part (I) of 

Figure 4-1, an AVI reader located on link (1,5) records tagged vehicle flows 

departing from zone 1, that is, )4,1()3,1()2,1()(1,
tgtgtg

j

j
tg dddd ++=∑ . Origin-

destination AVI counts )3,1(
tgd  and )4,1(

tgd  are also observed. If tagged vehicles are 

representative of the total population, then AVI counts can be used to estimate the 

OD split fractions for the population demand traveling from zone 1, leading to the 

following measurement equations:
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where η(1,3), η(1,4) are sampling errors.

The loop detector on link (5,6) captures partial OD flow d(1,2), so demand d(1,2) can be 

related to link count c(f) using link flow proportion )2,1(),( fp , where f denotes link 

(5,6).

)((1,2))2,1(),()( fff dpc ε+= (4.3) 

Combining the above three measurement equations, one can create a system of 

nonlinear equations to estimate unknown population OD demand flows d(1,2), d(1,3)

and d(1,4), without knowing the market penetration rate of vehicle tags.

Part (II) of Figure 4-1 shows a more general case, where direct origin 

destination tagged vehicle counts are unavailable. Denote links (5,7) and (7,6) as 

links l and s, respectively. Link-to-link counts c(l,s) include partial OD flows d(1,2), 

d(1,3), d(1,4), while link counts c(l) record partial OD flows d(1,2). The resulting split 

fraction for link pair (l,s) is 

),(
)4,1()4,1)(()3,1()3,1)(()2,1()2,1)((
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c ηη +
++

=+= ∑
∑

. (4.4) 

In this case, the information on OD demand distributions can be partially revealed 

from link-to-link split fractions, i.e. the ratio of the link-to-link AVI counts and link 

AVI counts. Because link proportions are determined by the route choice behavior 
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and traffic flow propagation, the above link-to-link split formulation introduces 

additional complexity and uncertainty in demand estimation, compared to the 

formulation using OD split factions. A simulation-based DTA program, namely 

DYNASMART-P, be used to estimate the link flow and link-to-link flow proportions.

4.3 Nonlinear Least Squares Formulation

This section formulates a dynamic OD estimation model based on the 

following two assumptions.

1. AVI readers can correctly identify every tagged vehicle, i.e. 100% 

identification rates.

2. Tagged vehicles are a representative set of the entire population.

Under the first condition, cid
(l,s,t) = ctg

(l,s,t); cid
(l,,t) = ctg

(l,t). Under the second 

condition, the tagged vehicles probabilistically represent the entire population, and 

the split fractions of tagged vehicles can be used as sample estimates for the 

population split fractions. To construct a rigorous statistical inference model, the 

following discussion examines the properties of a random AVI sample for estimating 

split fractions. Recognizing that there are cid
(l,s,t) tagged vehicles choosing link s out of  

cid
(l,t) vehicles observed on link l at time t, link-to-link identified vehicle count cid

(l,s,t)

essentially follows a binomial distribution with sample size cid
(l,t) and success 

probability 
),(

),,(

tl

tsl

c

c
, i.e. cid

(l,s,t)~ Binomial [cid
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the sample proportion 
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 is an unbiased estimator of slit fractions for the 

population proportion. That is,
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and the corresponding mean and variance of sampling error η(l,s,t) are E(η(l,s,t)) = 0 and 

Var(η(l,s,t))= 
),(

),,(),,( )1(

tl
id

tsltsl

c

bb −⋅
, (4.7) 

where =),,( tslb
),(

),,(

tl

tsl

c

c
. Equation (4.7) indicates that the variance of sampling error 

η(l,s,t) decreases as the size of the sample cid
(l,t) increases. 

Let links s and s′ denote two distinct links reachable from link l. If links s and 

s′ are two independent choice alternatives for vehicles traveling on link l at time t, 

link-to-link AVI counts ),,( tsl
idc  and ),,( tsl

idc ′  follow a multinomial distribution, 

leading to the covariance of sampling errors as

),(

),',(),,(
),',(),,( ),(

tl
id

tsltsl
tsltsl c

bb
Cov

⋅
=ηη .  (4.8) 

 If certain vehicles in link-to-link flows ),,( tslc  and also appear in flows ),,( tslc ′ , 

links s and s′ cannot be viewed as independent choice alternatives for vehicles 

traveling on link l at time t. In this case, link counts ),,( tslc  and ),,( tslc ′  can be 

partitioned into three mutually exclusive categories ω∈Ω:

ω =1: Only choose s; ω = 2: only choose s′; ω = 3: choose both s and s′.
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The resulting covariance can be expressed in terms of variance and covariance 

between disjoint sets.

∑∑∑∑
Ω∈ Ω∈′
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where b(l,ω,t) is the proportion of link flow from link l at time t heading towards 

category ω∈Ω. 

In the following two cases, the complicated nonlinear equation (4.6) can be 

simplified. First, if link volume c(l,t) is observed from a loop detector for link l ∈ Ivi, a 

linear measurement equation can be derived as:
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Second, if AVI readers cover the entry links of origin i and the exit links of 

destination j, then AVI origin-destination counts are directly used to infer destination 

distributions:
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Substituting the estimates of flow proportion matrices from a DTA problem 

into Equation (6) yields a complete measurement equation for link-to-link split 

fractions 
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where ζ(l,s,t) refers to the combined error in estimation of link-to-link split fraction 

b(l,s,t). The combined error term ζ (l,s,t) includes the following error sources.
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1. Model assumption errors related to perfect representativeness and 

100% identification rates.

2. Sensor errors (i.e. identification errors) related to link-to-link AVI 

count cid
(l,s,t) and link count cid

(l,t).

3. Sampling errors η(l,s,t).

4. Aggregation errors related to time-varying OD demand flows.

5. Estimation errors related to link flow and link-to-link flow proportions 

from the DTA program, which can be further caused by inconsistency in 

dynamic traffic assignment assumptions on the route choice behavior, traffic 

flow propagation, as well as input data errors related to traffic control and 

information strategies.

Because the split fractions only carry information on OD demand 

distributions, it is necessary to combine other information sources that describe OD 

population demand volumes in order to estimate a complete OD matrix. The observed 

traffic volume on link l during time interval t can be related to the OD demand flows 

using the link flow proportions, leading to the following measurement equation

),(
,,

),,(),,)(,(),( ˆ tl
ji

jijitltl dpc ε
τ

ττ +⋅= ∑ . (4.13)

If a static OD demand matrix is available from existing survey data or other 

planning applications, the difference between the static demand and the sum of 

dynamic demand over the study period can be expressed as

),(),,(),( jijiji dg ξ
τ

τ += ∑ . (4.14)

In addition, OD demand flows should satisfy non-negativity constraints
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ττ ,,0),,( jid ji ∀≥ . (4.15)

If the split fraction is small and the number of observations in the AVI point 

sample is large, the binomial probabilities can be approximated by a Poisson 

distribution. If the AVI point sample size is sufficiently large with a moderate value 

of the split fraction, error terms ζ(l,s,t) can be assumed to follow a normal distribution 

with zero mean according to the central limit theorem. If assuming the error terms 

ζ(l,s,t), ε(l,t) and ξ(i,j) are independent, one can construct an Ordinary Least Squares 

(OLS) estimator to fuse data from different information sources. The corresponding 

bi-level dynamic OD estimation problem is to minimize the combined deviations with 

respect to link counts, historical static demand and AVI split fractions, subject to the 

dynamic traffic assignment constraint and non-negativity constraints for demand 

variables.
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s.t. [ ]DssignmentP aˆ =    from DTA, (4.20)

d (i,j,τ) ≥ 0 ∀ i,j, τ. (4.21)
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where w1, w2 and w3 are positive weights for deviations with respect to link counts, 

historical static demand and observed split fractions.

With the full information on the covariance and autoregression terms, the 

objective function can be formulated as a Generalized Least Squares (GLS) 

formulation to obtain an efficient estimator. 

4.4 Considering Representativeness Bias and Identification Errors

The two idealized assumptions in the above analysis, 100% identification 

rates and perfect representativeness of AVI samples, are difficult to meet in the real 

world. First, recognition rates vary significantly among different AVI technologies. 

For instance, Active tags, especially used for toll collection purposes, can provide a 

satisfactory >99% identification rate, but the identification rates for license plates and 

passive tags are relatively lower and have large variability. On the other hand, the 

AVI sample data might not a perfectly representative miniature of the population. For 

instance, tag users might experience less congestion on dedicated lanes in toll plaza, 

but they might need to pay one-time charge or monthly fee for transponder tags. In 

this case, tag users and non-tag users might belong to different socio-economic 

groups with heterogeneous preferences on the value of time. Essentially, the 

representativeness of AVI data should be verified on a case-by-case basis. 

When these two assumptions are not attainable, there is a great need to 

establish a flexible estimation framework that can accommodate possible departure 

from the idealized conditions. A natural approach is to establish a joint estimation 

model as follows: 
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where a fixed effect parameter α(l,s) is introduced to take into account possible 

systematic errors in estimating link-to-link split fractions.

The validity of the two idealized assumptions can be measured using the 

following statistical procedure. A full estimation model incorporates a fixed effect 

parameter for each possible link pair (l,s) explicitly, leading to a new deviation 

function between the unknown OD demand and the identified vehicle counts:
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The null hypothesis ( 0H ) states that the mean of deviations is zero, corresponding to 

a reduced model with fixed effect parameters as 1.  The alternative hypothesis ( 1H ) 

states that the mean of deviations is non-zero, corresponding to the full model. A 

standard F-statistic test can be applied in this context.

H0: α(l,s) =1 (4.24)

H1: α(l,s) ≠1  (4.25)

Essentially, introducing fixed effect parameters complicates the model 

structures. The existence of numerous error sources, such as assignment modeling 

errors and temporal fluctuation of demand flows, might lead to inconclusive estimates 

for α(l,s) with large variance.  In addition, if only average AVI counts for the entire 

planning horizon are available (e.g. in the context of static OD estimation), then fixed 
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effect parameters, which are designed to deal with time series data, are inappropriate 

to be included in the estimation model. 

It is desirable to design a population OD demand estimator without involving 

fixed effect parameters. In many instances, the traffic planner knows the likely sign of 

fixed effect parameters but with little information about the exact magnitude of 

representativeness and identification errors. For instance, AVI samples based on 

license plates have perfect representativeness but low identification rates, meaning 

that α(l,s) ≤ 1 for sure. In an AVI system where passive tags offered to the public at no 

charge, both representative errors and identification errors can coexist but the impact 

of identification errors is more likely to be dominating. In these two cases, the mean 

deviation in the original measurement equation (4.12) becomes 
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so the residuals are more likely to be negative, as illustrated in Figure 4-2.  In this 

study, two-sided penalty terms are introduced to reflect the asymmetric distribution of 

residuals. 
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where w+
3 and w−

3 are penalty terms for positive and negative deviations, 

respectively.

The above objective function can be viewed as an adaptation of the goal 

programming approach, which is used to assign priority factors for over- or under-
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achievement of a goal. The target value (goal) in this study is given by the observed 

AVI point-to-point split fraction, and the overall aim is to simultaneously minimize 

the positive and negative deviations (i.e. overestimation and underestimation) from 

the specified goals. An interactive approach can be used to determine the value of 

two-sided weights, which can be in turn interpreted as the relative confidence and 

preference of a decision maker on the possible sign of representativeness and 

identification errors.

0 residual

FIGURE 4-2 Positive and negative deviations in estimating split fractions.
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is more desirable to penalize positive residuals than to penalize negative residuals, as 

shown in Figure 4-2. A simply weighting scheme is to use a one-sided penalty 

formulation by choosing w+
3 > 0 and w−

3 =0. It is easy to verify that, the smaller the 

α(l,s), the few chances for the deviation being positive and the less information 

obtained from the AVI counts in this one-sided formulation. In other words, the one-

sided penalty formulation becomes weaker when fixed parameters are closer to 0. It 
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should be noted that, the value of w+
3 still needs to be jointly determined by 

considering the relative confidence on link counts and historical demand information. 

For fixed values of w1 and w2, a larger w+
3 means that the decision maker has more 

confidence on the quality of AVI data and vice versa. Compared to the least squares 

form, another advantage of the linear penalty function form is that it is much 

“smoother” to outlying observations in a sense that large deviations cannot 

substantially impair the estimation performance. In general, the first joint estimation 

model is a systematical statistical approach to verify the proposed hypothesis, but it 

leads to considerable modeling complexity and requires a large number of time-series 

observations. The one-sided penalty formation, on the other hand, can utilize the 

imprecise knowledge from the analyst and obviates the need for exactly estimating 

time-dependent and location-dependent representation identification rates and 

representativeness parameters.

4.5 Bi-Level Estimation Procedure

The above bi-level programming problem can be solved by an iterative 

solution algorithm. 

Step 1: (Initialization) k = 0. Start from an initial guess of the traffic demand 

matrix 0D̂ , obtain flow proposition matrix kP̂  from the DTA simulator.

Step 2: (Optimization) Substituting flow proportion matrix kP̂ , solve the 

upper-level estimation problem to obtain demand Dk.

Step 3: (Simulation) Using estimated demand kD̂ , run the DTA simulator to 

generate new flow proportions 1ˆ +kP .
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Step 4: (Evaluation) Calculate the deviation between simulated link flows and 

observed link counts, the deviation between estimated demand 1ˆ +kD  and target 

demand G, as well as the deviation between estimated link-to-link split fractions and 

observed link-to-link split fractions. 

Step 5: (Convergence test) If the convergence criterion is satisfied (estimated 

demand is stable or no significant improvement in the overall sum of deviations), 

stop; otherwise k = k +1 and go to Step 2. 

The multi-objective optimization techniques presented in Chapter 3 can be 

applied here to determine the weights in the upper-level objective function. Standard 

nonlinear optimization algorithms, such as the projected gradient algorithm, can be 

applied to solve the proposed nonlinear least squares estimation problem. To evaluate 

gradient directions for the objective function shown in Equation (4.19), the derivative 

of objective function Z3 with respect to demand d(i,j,τ) is derived as

2

,,
),,(),,)(,(

),,)(,(),,)(,,(

, ),(

),,(

,,
),,(),,)(,(

,,
),,(),,)(,,(

3
),,(

3

]ˆ[

ˆˆ
]

ˆ

ˆ

[2 ∑∑ ∑ ∑
∑ −

×−=∂
∂

∈ ∈
τ

ττ

ττ

τ
ττ

τ
ττ

τ
ji

jijitl

jitljitsl

tLl Ls tl
id

tsl
id

ji
jijitl

ji
jijitsl

ji dp

pp

c

c

dp

dp

w
d

Z

vi vi

(4.28)

To further obtain a computationally feasible algorithm for the upper-level 

estimation problem, one can linearize the nonlinear function of split fraction b(l,s,t)

based on a first-order Taylor series approximation around previous estimate of kD̂  at 

iteration k, 
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where ),,( tslν  is the approximation error in the above Taylor series expansion for link-

to-link split fraction b(l,s,t). 

Substituting Equation (4.29) into measurement equation (4.12) for link-to-link 

split fractions yields the following transformed measurement equation in a more 

convenient form:
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transformed mapping proportion is
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and new combined error term ),,(),,(),,(' tsltsltsl ζνς += .

The resulting deviation function for the AVI sample becomes 
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and now objective function  Z3  in the upper-level is converted into a tractable linear 

least squares function.

4.6 Identification Conditions

The dynamic OD demand estimation problem has |I|×|J|×Td unknown demand 

variables. On the other hand, loop detectors can provide at most |Llc|×To independent 

link volume observations. AVI data can provide at most |Lvi|×|Lvi|×To link-to-link 

tagged vehicle counts, which dramatically alleviate the under-specification problem 

of OD estimation. With prior static information on dynamic OD demand, the number 

of independent observations should be greater than the number of unknown demand 

variables so as to identify a unique solution for the transformed linear least squares 

problem, leading to the necessary condition for uniquely estimating a dynamic OD 

demand matrix as

|Llc|×To +|Lvi|×|Lvi|×To +|I|×|J|≥ |I|×|J|×Td. (4.34)

AVI data only provide OD demand distribution information, so OD demand 

volume information from loop counts and historical OD tables must be added to 

identify a unique solution. To quantify the minimum requirement for additional link 

counts and prior information, let us consider an extreme case, where AVI readers 

cover all the entry/exit links of each zone so that OD identified vehicle count cid
(i,j,τ)

are available for each OD pair.
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Because of summation equation ∑=
j

ji
id

i
id cc ),,(),( ττ , one OD split fraction 

observation is obviously redundant for origin zone i. Therefore, available AVI data 

provide at most |I|×(|J|−1)×Td independent observations in the proposed formulation, 

and the minimum information requirement for link counts and historical demand data 

is

|Llc|×To +|I|×|J|≥ |I|×Td. (4.36)

It should be noticed that, several factors significantly decrease the number of 

independent observations in an actual AVI data set. First, many OD flows might not 

be captured by any AVI readers due to the partial coverage of AVI detectors in a 

general network. This situation occurs when there is no feasible path from link l to 

link s, or the related feasible paths are not considered in the choice set. More 

precisely, if for OD pair (i,j)

vijitsl Lslp ∈∀= ,0),,)(,,( τ , (4.37)

then no information for OD pair (i,j) can be extracted from the AVI point-to-point 

sample data. In addition, as mentioned in the previous chapter, time-dependent link 

counts from two closely related detectors can be highly correlated. In the same way, 

time-dependent point-to-point AVI measures from two neighboring readers might 

produce few independent observations on OD demand distributions. 

4.7 Numerical Experiments

4.7.1 Experiment Design
This section is intended to evaluate the performance of the proposed dynamic 

OD demand estimation models under different levels of market penetration rates and 



83

identification rates. The experiments are conducted based on a simplified Irvine test 

bed network shown as Figure 3-1, which includes 16 OD zones, 31 nodes and 80 

directed links (32 freeway and 48 arterial). The time of interest is the morning peak 

period (6:30 am – 8:30 am). Traffic link counts are measured on 16 links; at 30-

second interval on 10 freeway links, and at 5-minute interval on 6 arterial links, but 

no real-world AVI traffic measurements are currently available in this data set. In 

order to capture a realistic OD demand pattern for the underlying real network, this 

study first uses actual link counts and a historical static demand table to estimate the 

OD traffic demand matrix, and then uses the estimated matrix as the “true” OD 

demand in the following experiments. The “true” OD demand is loaded onto the 

network using a DTA simulation program (i.e. DYNASMART-P) to generate both 

link counts and point-to-point counts as the “ground-truth” observations in the 

synthetic data set. The DTA simulator is also used to provide link flow proportions 

and link-to-link flow proportions to the OD estimation program. Note that, to ensure 

the internal consistency between link flow measurements and point-to-point flow 

measurements, this study uses simulated link counts as estimation input, instead of 

the actual link flow observations from the field data. In addition, stochastic 

disturbances following an independent normal distribution with zero mean is added 

into simulated link counts so as to emulate the effect of measurement errors, and the 

standard deviation of random errors is set to 10% of the corresponding simulated link 

volume. AVI readers are assumed to cover all the entry/exit links of each OD demand 

zone, indicating that OD AVI counts are available for each OD pair. In addition, both 

departure time interval in the dynamic OD demand matrix and the AVI observation 
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time interval are set to 5 minutes. For each experiment in this study, the initial 

demand is assumed to be 50% of the assumed actual values.

To quantify the accuracy of estimation results, the Root Mean Squared Error 

(RMSE) is selected as the performance measure: 
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where d(i,j,τ) = “true” demand volume for OD pair (i, j) during departure interval τ,

),,(
ˆ τjid = estimated demand volume for OD pair (i, j) during departure interval 

τ, 

I = number of origin zones,

J = number of destination zones,

Γ = number of departure time intervals in the dynamic OD demand table.

4.7.2 Effect of Market Penetration Rates of AVI Tags
Identification rates in the first set of experiments are assumed as 100%. To 

test the nonlinear ordinary least squares model without fixed effect parameters, i.e. 

the objective function shown in Equation (4-19), the following two scenarios are 

used: (1) all OD pairs have the exactly same market penetration rate; (2) the market 

penetration rates are assumed to follow an independent uniform distribution with a 

range [0.75β , 1.25β ] among different origin-destination pairs at different departure 

times, where β  is the mean market penetration rate for all OD pairs. Figure 4-3 

shows the change of the solution quality in response to increasing market penetration 



85

rates. Each data point in the figure represents the mean value of RMSE from five 

random replications. Overall, the estimation performance under the random market 

penetration scenario is relatively worse than that under constant market penetration. 

Because random variations in market penetration rates introduce almost equal 

possibilities of the small and large sample size with respect the mean sample size, the 

slightly higher estimation errors in the random penetration case suggest that the loss 

of estimation quality due to the small sample size is more significant than the gain 

due to the large sample size. 
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FIGURE 4-3 Dynamic OD estimation under different market penetration rates.

As shown in Figure 4-3, increasing market penetration rates gradually 

improves the quality of final OD demand estimates. When the market penetration rate 

is zero, OD demand is estimated only using dynamic link count data, corresponding 

to the do-nothing case. At a market penetration rate of 1%, the additional AVI 

information does not lead to significant error reductions compared to the do-nothing 
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case for both penetration scenarios. At such a low market penetration level, the 

number of tagged vehicles observed at each observation time interval is too small to 

provide reliable samples for point-to-point split fractions, leading to large sampling 

errors for the corresponding measurement equations. When the market penetration 

rate increases to 5%, the nonlinear OLS model produces nearly 20% error reductions 

even in the case of random tag penetration. The quality improvement in terms of 

RMSE further rises to around 40% at a 10 % market penetration rate, and extra error 

reductions become relatively smaller beyond this market penetration level. In brief, 

the experiment results clearly demonstrate that the proposed OD estimation model is 

able to effectively utilize AVI information in the presence of random market 

penetration rates. On the other hand, a certain level of market penetration of vehicle 

transponders is necessary to achieve meaningful quality improvement using 

additional AVI data.

4.7.3 Effect of Identification Rates
In the next set of experiments, the market penetration rates are assumed to 

follow an independent uniform distribution with a range [7.5%, 12.5%]  and the 

recognition rates of AVI readers are assumed to follow a random uniform distribution 

with mean γ and a range [γ−0.1, γ+0.1].

Table 4-1 summarizes the estimation errors resulted from the joint estimation 

model with fixed effect parameters and the one-sided positive penalty formulation 

(i.e. w+
3 > 0 and w−

3 =0), and the corresponding percentage improvement compared to 

the do-nothing case (without AVI information). Each data point in the table 

represents the mean value of estimation performance from five random replications.



87

Table 4-1  Performance of estimation models in the presence of identification 
errors.

Identification Rates [0.8, 1.0] [0.7,0.9] [0.6,0.8] [0.5,0.7] [0.4,0.6]
Joint Estimation 
Model

21.5 22.0 22.8 23.73 23.65

% Improvement 9.4%  7.6% 4.2% 0.2% 0.5%
One-sided penalty 
model

18.12 19.17 20.84 22.22 23.02

% Improvement 23.7% 19.4%  12.4% 6.5% 3.2%

 The experimental results show that, the joint estimation model only produces 

a marginal performance improvement by using AVI information. The difficulty in 

applying this model can be attributed to the increase in unknown variables and the 

resulting high nonlinearity in the model structure due to the inclusion of the fixed 

effect parameters. In contrast, even under a medium level of identification rates [0.7, 

0.9], the one-sided linear penalty estimator is still able to reduce error by nearly 30 

percent, revealing that this parsimonious structure is quite robust to the imperfect 

observations. As expected, the estimation errors from the one-sided model become 

larger when identification rates decrease, and the value of AVI data tends to be 

insignificant. In fact, as observed values of split fractions are significantly smaller 

from the true values (due to identification errors), the estimated OD demand is less 

likely to be penalized by the one-sided function, leading a very weak estimator to 

reduce the solution variance. Overall, the one-sided linear penalty formulation 

presents a tractable and intuitive approach for incorporating partially observed point-

to-point sensor data with small identification errors.
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4.7.4 AVI D etector Coverage

Obviously, the complete AVI coverage scheme in the above experiments 

requires extensive detector installation and maintenance efforts for a general traffic 

network. It is desirable to maintain the estimation quality while minimizing the 

number of AVI detectors in the network. A group of experiments are first conducted 

to reveal the relation between the estimation quality and the percentage of covered 

OD demand flows by AVI readers. The other experimental settings are 100% 

identification rate and uniformly distributed market penetration rates between [7.5%, 

12.5%].
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FIGURE 4-3 Relationships between estimation performance and AVI detector 

coverage

Total of 16 detector location schemes are randomly generated, and the 

resulting estimation errors are shown in Figure 4-3. Clearly, the estimation errors 

decrease with increasing AVI coverage of OD demand flows. The above strong 

correlation between these two attributes suggests a basis for optimizing AVI detector 
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locations for the estimation of population OD demand flows, that is, it is 

advantageous to cover as more OD demand flows as possible with limited number of 

AVI detectors. 

The following experiments represent a preliminary attempt to optimize the 

AVI location for OD demand estimation purposes. The Irvine test bed network in the 

study has a clear triangular structure, where the OD demand flows among zones 1, 4 

and 16 account for 36.4% of total OD trip desires. Thus, AVI detectors should be first 

located on the entry/exit links for these critical OD zones. Next, OD pair (16→12) is 

the uncovered dominant OD pair, which has the largest number of travelers beyond 

the internal OD demand flows between the zone subset {1, 4 and 16}, so zone 12 is 

added into the AVI coverage subset. In the same way, zones 13, 15, 5, 2 and 11 are 

sequentially added into the coverage plan, and the corresponding OD demand 

estimation errors at each step are reported in Table 4-2. 

Table 4-2 Estimation performance under different AVI location schemes.

# of Zones 
Covered 

3 4 5 6 7 8 9 16

Zones 
Covered

1,4,16 +12 +13 +15 +5 +2 +11

Percentage 
of demand 
coverage

36.4% 47.3% 52.5% 61.4% 73.1% 76.2% 84.6% 100%

RMSE 20.896 19.119 18.41 16.812 16.647 16.061 15.378 14.775
Percentage
improvement

12.1% 19.6% 22.6% 29.3% 30.0% 32.5% 35.3% 37.9%

Figure 4-4 further depicts the trade-off curve between the number of zones 

covered and the estimation error reduction. Compared to the do-nothing case, nearly 

30% error reduction is obtained by locating AVI detectors to cover the six major 
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zones, which capture 61.4% of the total OD flows in the study network. For the 

remaining OD zones carrying less trip flows, the marginal improvements in fit are not 

as significant. Particularly, when 10 major OD demand zones are selected into the 

coverage plan, only 12.6% of total OD flows remain uncovered by the AVI detectors, 

leading to very small potential for further estimation error reduction. According to 

this preliminary study, locating AVI detectors on major OD demand zones with large 

traffic attraction/production can capture the essential OD distribution pattern in the 

network and dramatically improve the quality of OD estimates. 
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FIGURE 4-4 Trade-offs between estimation errors and number of zones covered 

by AVI detectors.

4.8 Summary

The emerging AVI technique provides valuable point-to-point flow 

observations for estimating dynamic OD trip desires. This chapter proposes a novel 

OD demand estimation approach to effectively exploit OD demand distribution 

information from AVI counts. A nonlinear ordinary least squares model is presented 
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to combine AVI counts with other available information sources into a multi-

objective optimization framework. A joint estimation formulation and a two-sided 

linear penalty formation are further developed to take into account identification and 

representativeness errors. The resulting models are solved using an iterative bi-level 

estimation framework. Based a synthetic data set using the simplified Irvine test bed 

network, this study evaluates the performance of new estimation models and provides 

the following key findings. (1) Sufficient market penetration is required to obtain 

reliable information from AVI counts. (2) In the presence of identification errors, a 

parsimonious structure accounting for imprecise information can provide more robust 

estimates than a complex joint estimation model. (3) For the estimation of population 

OD demand flows, it is advantageous to locate AVI detectors on major OD demand 

zones with large traffic attraction/production to capture the essential OD distribution 

pattern in the network.
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5.  A Structural State Space Model for Real-Time OD Demand 

Estimation and Prediction in a Day-to-Day Updating Framework

5.1 Introduction

The off-line dynamic OD demand estimation problem has been presented and 

solved under different information sources in the previous chapter. This chapter 

considers the dynamic OD demand estimation and prediction problem for real-time 

dynamic traffic assignment operations. As discussed in Chapter 2, there is a great 

need for systematically integrating historical demand information and structural 

changes into a real-time demand process model, in order to provide accurate and 

robust demand prediction under regular and irregular conditions. In addition, it is also 

advantageous to progressively update the a priori estimate of the regular demand 

pattern using new real-time estimation results. Section 5.2 first overviews the 

recursive OD demand estimation-prediction mechanism and the demand data flow 

structure in the real-time DTA system. Section 5.3 introduces the core mathematical 

model, which formulates demand deviations from the a priori estimate of the regular 

pattern using a polynomial trend filter. This is followed by a detailed explanation of 

the process equation, measurement equation in the structural state space formulation. 

Additionally, the values of the historical demand information and polynomial trend 

components are analyzed. In Section 5.4, a Kalman filter based updating framework 

is further proposed to keep track of the up-to-date regular demand pattern using real-

time demand estimates.
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5.2 Recursive OD Demand Estimation-Prediction Mechanism

Estimation StageTime Lag

OD Demand
Estimaiton Stage k

OD Demand
Estimation Stage k+1

Observations

Prediction Horizon

Estimation StageTime Lag

Observations

Prediction Horizon

Observation Time Intervals

Departure Time Intervals

q departure time intervals s departure time intervals h departure time intervals
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D
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FIGURE 5-1 Illustration of recursive demand estimation-prediction mechanism.

As shown in Figure 5-1, the time is divided into consecutive demand 

departure time intervals and observation time intervals. The estimation stage (i.e. 

estimation period) represents the time duration for which an estimation-prediction 

cycle performs. Note that, an estimation stage can cover multiple departure time 

intervals and multiple observation time intervals. Starting at the end of an OD 

demand estimation period, an OD demand prediction horizon corresponds to the time 

length for which forecasted OD demand should be available for the simulation-

assignment procedure. OD demand estimates are calculated using traffic 

measurements streaming in real-time, and predictions for a given planning horizon 

are prepared on the basis of the estimation results during the current estimation stage.

Because each traveler takes a certain time to complete his/her trip in a large 

city network, and the resulting travel time can be very long depending on trip length 
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and prevailing traffic conditions. The time lag in Figure 5-1 indicates that the traffic 

flow at the current demand estimation stage can include traffic demand flows 

departing from pervious estimation stage, leading to a thorny modeling issue in 

recursive on-line OD estimation-prediction. Failure to recognize the existence of 

lagged demand would attribute all current flows to demands departing during the 

current estimation stage, potentially causing serious bias in estimation results. One 

possible solution of handling lagged OD demand is to extend the dimension of the 

state variable vector so as to include all the lagged OD demand variables in the 

current estimation stage (Okutani and Stephanedes, 1984), but the resulting expanded 

state space could significantly increase the computational complexity. Alternatively, a 

polynomial trend model can offer a compact representation of lagged demands, which 

will be addressed in a later section.

Figure 5-2 depicts the demand data flow diagram in the real-time DTA 

system. As essential supporting components in the rolling horizon approach for 

solving a real-time DTA problem, real-time OD estimator and predictor are naturally 

integrated with other on-line DTA modules. Specifically, the DTA simulator is relied 

upon to generate link proportions for the OD estimation module at the current stage, 

and the OD demand predictor provides future OD demands for the assignment and 

simulation in the future stages. These real-time OD demand predicts are regulated by 

the OD demand consistency checking module before being loaded into the real-time 

network state estimator (RT-DYNA). Since the current state of RT-DYNA is 

forwarded into the network state predictor (P-DYNA) as the initial condition every 

roll period, the corrected OD demand by the consistency checking module is 
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indirectly updated in the network state prediction component. Finally, real-time OD 

demand estimates obtained on a new day are extracted to update the regular demand 

pattern database, which in turn provides the a priori estimate of the regular demand 

pattern for real-time estimation on next day. 

Real-time
Traffic

Measurements

OD Demand Estimation
State Prediction

P-DYNA

Historical Dynamic
OD Demand

State Estimation
RT-DYNA

OD Demand Prediction

Link Proportions

Dynamic OD demand

Dynamic OD Demand

Consistency Checking and Updating

Day-to-day Updating

Demand Adjustment

Simulated State

Initial State

FIGURE 5-2 Demand data flow structure in a real-time DTA system.

The recursive demand estimation-prediction procedure is described in 

Algorithm 5.1. This scheme entails sequential execution of the OD estimator and 

predictor, in conjunction with real-time DTA simulators.

Algorithm 5.1. Recursive OD estimation and prediction

Step 1: Receive real-time traffic measurements from the surveillance system.

Step 2: Fetch link proportion data for the current estimation stage from the 

DTA simulator.

Step 3: (OD estimation) Estimate time-varying OD demand matrices involved 

in the current estimation stage using the Kalman filtering method.
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Step 4: (OD prediction) Predict OD demand over next planning horizon to 

make latest demand information available for the network state predictor and 

estimator.

Step 5: Advance estimation period forward, and then go back to Step 1.

5.3 Kalman Filtering Model of the Dynamic OD Demand Estimation and 

Prediction Problem

5.3.1 Notation and Problem Definition

For convenient reference, the notation used in the real-time OD estimation and 

prediction model is first presented as follows. 

l = subscript for link with traffic measurements, l=1,…,Nod.

(i, j) = subscript for origin-destination pair, (i, j) =1,…, Nod.

τ= subscript for aggregated departure time interval, τ =1, 2, …

t = subscript for observation time interval, i.e. sampling time interval, t=1, 2, 

…

k = subscript for estimation stage, k  = 1, 2, 3, … 

n = number of observation intervals per departure time interval.

s = number of departure time intervals per estimating period.

h = prediction horizon in numbers of departure time intervals.

q = maximum lag length in numbers of departure time intervals, i.e. the traffic 

flow at the current departure time interval τ might depart from intervals τ -1, τ

-2, …, τ -q.
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c(i,t) = number of vehicles measured on link l, during observation interval t .

d(i,j,τ) = demand volume from origin-destination pair (i, j) during departure 

time interval τ.

LP(l,t),(i,j,τ) = link proportions, that is the proportion of vehicles on link l at 

observation time t, coming from OD pair (i, j) at departure time τ, to the total 

demand of OD pair (i, j)  at departure time τ.
r

jid ),,( τ  = demand volume in regular demand pattern for OD pair (i, j)   during 

departure time interval τ .

r
jid ),,(

~
τ  = a priori estimate of regular demand volume for OD pair (i, j)  during 

departure time interval τ.

),,( τµ ji = structural deviation between a priori estimate r
jid ),,(

~
τ and true demand 

r
jid ),,( τ .

),,( τε ji = error term in approximating true demand for OD pair (i, j)   with 

departure time τ.

µ′(i,j,τ), µ″(i,j,τ) =  first and second derivatives of demand deviation ),,( τµ ji , 

respectively.

p = order index of a polynomial model.

µ(p)
(i,j,τ)  = pth-order derivative of demand deviation ),,( τµ ji .

λ = maximum order of a polynomial model.

w(p)
(i,j,τ)  = evolution noise for pth-order derivative of demand deviation ),,( τµ ji .

u(l,t) = error term in estimation of link observation c(l,t).
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v(l,t) = combined error term due to u(l,t) and ),,( τε ji   for link observation c(l,t) .

),,(
ˆ τjid  = estimated mean value of d(i,j,τ) .

),,(
)(ˆ τµ ji

p = estimated mean value of ),,(
)( τµ ji

p .

Zk= state variable vector at stage k.

Yk= measurement vector at stage k.

Hk= measurement matrix, relating measurement Yk to state Zk.

wk= process noise at stage k.

vk= measurement noise at stage k.

1,
ˆ −kkZ = prediction of Zk using observations up to stage k-1, i.e. 

( )121 ,,, −kk YYYZE � .

kkZ ,
ˆ = estimation of Zk using observations up to stage k, i.e. ( )kk YYYZE ,,, 21 � .

Pk,k-1= predicted state covariance matrix of Zk at stage k-1,i.e. ( )1,
ˆ −− kkk ZZVar .

Pk,k= estimated state covariance matrix of Zk at stage k, i.e. ( )kkk ZZVar ,
ˆ−  .

Consider a traffic network consisting of multiple origins i∈I and destinations 

j∈J, as well as a set of nodes connected by a set of directed links. The time is 

discretized into departure time intervals τ =1, 2, … , and the time-dependent OD trip 

desires are expressed as the number of vehicle trips ),,( τjid , traveling from origin zone 

i to destination zone j during departure time interval τ, where i ∈I, j ∈J and τ=1, 2, 

….Link observations c(l,t) are available on link l ∈ L during observation interval t=1, 

2, …. The a priori estimate of regular demand volume for OD pair (i,j)  during 
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departure time interval τ, denoted as r
jid ),,(

~
τ , is obtained from the off-line OD 

estimation results or day-to-day demand updating using previous real-time demand 

estimates. Given prior information on OD trips and link observations at the current 

stage, the dynamic OD demand estimation and prediction problem seeks to estimate 

time-dependent demand flows involved at the current estimation stage and to predict 

OD demand flows during the prediction horizon.

5.3.2 Transition Equation

As discussed previously, the true demand can be decomposed into three 

components, namely, regular patterns, structural deviations and random fluctuations. 

In reality, only the a priori estimate r
jid ),,(

~
τ  of the regular demand, reflecting prior 

survey data and surveillance information up to the previous day, is available before 

performing real-time estimation on the current day. For this reason, the true demand 

),,( τjid  in the following study is modeled as a linear combination of the a priori

estimate, structural deviation and random disturbance:

),,(),,(),,(),,(

~
ττττ εµ jiji

r
jiji dd ++= , (5.1)

where the random disturbance term is assumed to follow a Normal 

distribution with zero mean. Moreover, a polynomial trend model is introduced here 

to describe the structural deviations based on the following assumption.

Assumption 5.1 (Polynomial trend) Deviations at time τ + ζ can be 

adequately represented locally by an (λ+1)th-order polynomial function as Equation 

(5.2) near time τ for a small value of ζ, while derivatives of higher orders are assumed 

to be zero: µ(p)
(i,j,τ) = 0 for p>λ.
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λ
λζτ ζζζζµ bbbbb p

pji +++++=+ ��2
210),,( (5.2)

By Taylor’s theorem, the smooth function of µ(i,j,τ+ζ)  can be expanded about 

the point µ(i,j,τ)  as 
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(5.3)

A comparison of Equations (5.2) and (5.3) indicates that the polynomial 

coefficients in the original functional form can be obtained directly from

!
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p
b

ji
p

p

τµ= . (5.4)

A more compact form for the pth-order derivative of a polynomial is 
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For example, a third-order polynomial model in matrix form is 
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The second assumption allows time-varying trends to evolve stochastically 

between time stages.

Assumption 5.2. (Evolution process) From stage k to stage k+1, the change of 

derivative µ (p)
(i,j,τ)  can be described as

∑
=

−
+ +−=

λ
τττ µµ

pp

p
jiji
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where departure time index τ = ks, and ],0[~ ),,(
)(

),,(
)( ττ ji

p
ji

p WNw . 



101

In other words, the change of demand derivations from departure time interval 

τ to τ+s is contributed by a local Taylor series expansion term plus an evolution noise 

term as a result of time shift s. 

Incorporating the evolution noise term to Equation (5.6) yields a transition 

equation for a third-order polynomial trend model in the Kalman filtering 

formulation:















′′
′+















′′
′














=















′′
′

+

+

+

),,(

),,(

),,(

),,(

),,(

),,(

2

),,(

),,(

),,(

1

1
!21

τ
τ
τ

τ
τ
τ

ζτ
ζτ
ζτ

µ
µ
µ

ζ
ζζ

µ
µ
µ

ji

ji

ji

ji

ji

ji

ji

ji

ji

w

w

w

. (5.8)

In the above system process equation, the state vector consists of the zeroth to 

1th-order derivatives of demand structural deviations from the a priori estimate of 

regular demand pattern, and the transition matrix is independent of the current stage k

and related departure time interval τ. The single OD-pair model can be easily 

extended to consider all the OD pairs in a network. Consider a third-order polynomial 

filter with departure time τ=ks at stage k, one can define the state vector as

T
NNNk ododod

Z ),,,,,,,,,,,( ),(),(),(),2,1(),2,1(),2,1(),1,1(),1,1(),1,1( τττττττττ µµµµµµµµµ ′′′′′′′′′= ��

and define the transition matrix as

),,,,,( ),()2,1()1,1( odN
k
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for (i,j)=1, 2, …, Nod.

By assuming the evolution noise wk as
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the complete transition equation in real-time OD estimation and prediction can be 

written as

kkkk wZAZ +=+1 . (5.10)

where ],0[~ kk WNw .

To obtain the future demand level with prediction horizon h, one needs to first 

predict the demand deviation at time τ + h based on estimated derivatives at the 

current stage, and then substitute the predicted demand deviation and the a priori

estimate of the regular demand pattern into Equation (5.1). Thus, 
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where τ =ks.

Equation (5.11) indicates that prediction errors of the proposed model are 

dependent on the order of model λ and the length of prediction horizon h. Evidently, 

a complicated high-order polynomial model describes the dynamic demand process in 

greater detail than a low-order model, but it might lead to potential large prediction 

errors.

5.3.3 Value of Historical Demand Information

It is important to theoretically investigate possible benefits of incorporating 

the a priori estimate of the regular demand pattern in the proposed structural model. 

The following hypothetic analysis is based on two assumptions: (1) a high-order 
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polynomial model shown as Equation (5.13) adequately represents the true demand 

flows; (2) the true OD demand flows are directly measured without observation 

errors.

)()(2
210),,(

g
gji aaaaad ζζζζ λ

λζτ ++++++=+ �� . (5.13)

Case (i): If the historical demand pattern is not incorporated into the structural 

state space model, a low-order polynomial trend model with degree λ<g can be fitted 

as

λ
λζτ ζζζµ aaaaji ++++=+ �2

210),,( (5.14)

and the residual is )()1(
1

g
gaa ζζ λ

λ +++
+ � . The magnitude of the approximation error 

is dominated by its first residual coefficient 1+λa .

Case (ii): If the estimate of regular demand pattern r
jid ),,(

~
ςτ +  satisfactorily 

approximates real OD demand d(i,j,τ+ζ), one can express r
jid ),,(

~
ςτ +  in the following 

polynomial form 

)()(2
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~~~~~~ g
gji
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and ppp aaa <− ~  for gp ≤≤0 (5.16)

Then, the deviation between the true demand and the historical demand 

pattern,

)()(
1100),,(),,( )~()~()~()~(

~ g
gg

r
jiji aaaaaaaadd ζζζ λ

λλζτζτ −++−++−+−=− ++ ��
(5.17)

Using a low-order polynomial trend model to approximate the structural 

deviations yields the following estimation result
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)(
1100),,( )~()~()~( λ
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where the dominating truncation error is bounded by coefficient 11
~

++ − λλ aa .

The assumption in (5.16) indicates that the magnitude of the residual error in 

the polynomial trend model can be reduced from 11
~

++ − λλ aa  to 1+λa  due to 

additional historical demand information. From the linear regression standpoint, the 

regular daily pattern can be viewed as a good explanatory regressor that absorbs a 

considerable amount of variation in the independent variable (i.e. true dynamic 

demand). Thus, compared to a pure polynomial model, the proposed structural model 

with the regular pattern component leads to smaller regression residual errors, that is, 

smaller estimation and prediction variance. 

With the help of historical demand information, one can apply a polynomial 

model with lower order to maintain the same representation accuracy. Since the 

computational complexity of a Kalman filter is on the order of O(N3), where N= 

Nod×(λ+1) in our case, the reduction of the model order dramatically decreases the 

size of the state vector and resulting real-time computational requirements. In 

summary, incorporating a reliable estimate of the regular demand pattern is always 

beneficial for improving real-time OD demand prediction quality and computational 

efficiency. Morrison (1969) and Brookner (1998) provided more comprehensive 

treatments on value of the nominal trajectory in a polynomial trend filter.

5.3.4 Value of Polynomial Trend Component

In the context of short-term economic forecasting, the first, second and third-

order polynomial models can be viewed as the local level model, local linear growth 

model and local quadratic growth model, respectively. Regarding connections 
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between the polynomial trend models and other typical time-series ARIMA models, 

West and Harrison (1997) demonstrated that, if restrictions are imposed on the 

autocorrelation structure, the limiting case of an (λ+1)th polynomial trend model is 

equivalent to an ARIMA(0, λ, λ) model. According to the generalized state space 

architecture proposed by Harvey (1989), an auto-regression (AR) term can be also 

incorporated into the state variable vector in the proposed structural model to 

represent the autocorrelation structure in the random disturbance. 

The following example is intended to show the importance of combining both 

the polynomial trend model and historical demand information into the prediction of 

real-time traffic demand flows. In Figure 5-3, solid lines represent the true demand in 

the morning peak; dotted lines represent the available historical demand data that 

represent the regular demand patterns; dash lines represent the predicted demand 

flows given by different state space models. 
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True Demand

Random Walk Model

Linear Trend Model

Historical Demand + Autoregressive Model

Historical Average

Historical Demand + Linear Trend Model

FIGURE 5-3 Illustrative examples of different structural state models.

Two types of demand conditions are shown in the plots on the left hand and 

on the right hand, respectively 

1. The true demand evolves similar to the regular demand pattern. 

2. The true demand is significantly lower than the regular demand level, 

which can be caused by severe weather conditions.
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The random walk model in the first row is equivalent to the first order 

polynomial model (West and Harrison, 1997), and the linear trend model in the 

second row is the second order polynomial model. Obviously, the linear trend is more 

suitable to describe the upward or downward pattern in the on-peak and off-peak 

periods than the random walk model. However, the linear trend model dramatically 

overestimates the OD demand during the peak time period, because all real-time 

measurements before the turning point indicate an upward tendency. The error in 

trend prediction can be explained by the potential uncertainty associated with the 

high-order polynomial term, as discussed previously.

Under the regular condition, the “historical demand + autoregressive” model 

perfectly detrends the real-time demand time series and produces accurate prediction 

results. In the presence of structural changes, however, deviations between the actual 

demand and the regular demand have non-zero means, leading to significantly biases 

for the model without the trend component. In contrast, the “historical demand + 

linear trend” model utilizes the polynomial filter to absorb possible structural 

difference, producing robust prediction results under both regular and irregular 

conditions. Comparing the historical demand + linear trend” model with the “linear 

trend” model, one can also verify that additional historical demand information 

dramatically decreases prediction variance. In brief, both regular pattern and trend 

components should by closely integrated in the demand representation so as to ensure 

the prediction accuracy and robustness. Even if the underlying trends for demand 

structural deviations are negligible, it is advisable to embed a simple trend component 
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in the space state representation so that possible future changes in the process 

structure can be monitored and identified.  

5.3.5 Measurement Equation

Similar to off-line OD estimation models, a link proportion matrix is used to 

connect OD demand flows with link observations:
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where τ = ks, (i,j) =1, 2, …, Nod, and kns ≤ t < (k+1)ns.

Specifically, the above equation maps all the lagged and current demand flows 

involved in the current estimation stage to link measurements obtained during the 

current stage. Error term ),( tlu can be caused by inconsistencies in assumptions about 

traffic assignment, traffic control and flow propagation, as well as measurement 

noise.

To relate link measurements to the state vector in the polynomial filter, 

substitute Equations (5.1) and (5.3), the above equation becomes
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Accordingly, one can define the explicit measurement equation in the Kalman 

formulation as follows.

kkkk vZHY += (5.21)

where measurement vector Yk consists of elements 



109

( )∑ ∑−
−=

++ ×−=
ji

s

q

r
jijitltltl dLPcy

,

1

),,(),,(),,(),(),(

~

ζ
ζτζτ , (5.22)

measurement noise vector Vk consists of elements 
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The above measurement error term in the transition equation combines the 

random fluctuations in the OD demand process, estimation errors related to link 

proportions.

The dimension of measurement matrix Hk is (Nod×ns, Nod×(λ+1)), and its 

(l,t)th, thpji ),,(  element is
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By applying a polynomial approximation for OD demands during departure 

time intervals from ks – q to ks + s –1, the proposed polynomial trend filter neatly 

incorporates the lagged demands into the estimation procedure for the current stage, 

leading to an efficient state space representation desirable for large-scale network 

applications.

5.3.6 Solution Algorithm

Assumption 5.3. System error wk and measurement error vk  are white noise 

terms uncorrelated with the initial state Z0 and with each other, where wk ~N(0, Wk) 

and vk ~N(0, Vk).
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With system equation (5.9), measurement equation (5.21) and assumption 5.3, 

the classical Kalman filtering algorithm is ready to be integrated into the following 

recursive dynamic demand estimation and prediction procedure. 

Algorithm 5.2. Real-time dynamic demand OD estimation and prediction

Step 1: (Initialization) Construct initial estimates )( 00,0 ZVarP =  and 

)(ˆ
00,0 ZEZ = . Let k=1.

Step 2: (Prediction) Propagate the mean and covariance estimates from k-1 to 

k.

1,11,
ˆˆ −−− = kkkkk ZAZ (5.25)

k
T
kkkkkk WAPAP += −−− 1,11, (5.26) 

Step 3: (Estimation of state variable) After receiving new link proportions and 

link observations, calculate the weighting matrix as

1
1,1, )( −

−− += k
T
kkkk

T
kkkk VHPHHPK , (5.27)

and then update the a posteriori mean and covariance estimates.

)ˆ(ˆˆ
1,1,, −− −+= kkkkkkkkk ZHYKZZ (5.28)

1,, )( −−= kkkkkk PHKIP (5.29)

Step 4: (Estimation of real-time demand) Calculate the estimation of real-

time demand using new estimates ),,(ˆ τµ ji

( ) ),,(),,(),,(),,(),,(),,( ˆ
~~ˆ ττττττ µεµ ji

r
jijiji

r
jiji ddEd +=++=  (5.30)

where τ=ks,ks+1,…, (k+1)s-1.

Step 5: Advance estimation period forward from k to k+1, and then go back to 

Step 2.
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If assuming independence of measurement errors, one can further apply the 

scalar updating scheme described by Chui and Chen (1991) in order to avoid 

complicated matrix inversions in a real-time computation setting. 

5.4 Adaptive Day-to-Day Updating of Regular Demand Pattern Information

5.4.1 Notation

As discussed earlier, the initial estimate for the regular demand pattern could 

be unreliable due to limited observations, and the normal daily pattern could evolve 

smoothly due to intrinsic day-to-day demand dynamics. Hence, it is necessary to 

update the a priori estimate based on new observation data. A desirable updating 

formulation should be able to adaptively recognize and capture the systematic day-to-

day evolution, and also maintain robustness under disruptions due to special events. 

In response, an optimal updating formulation based on a Kalman filter framework is 

proposed.

The notation used in the real-time OD estimation and prediction model is 

extended to the day-to-day context as follows.

m = index for day.

r
mD = state variable vector of regular OD demand pattern on day m ,consisting 

of elements r
jid ),,( τ .

ξm = day-to-day evolution variance on day m.
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mD̂ = vector of the real-time demand estimate on day m, consisting of 

estimates ),,(
ˆ τjid .

ηm = measurement variance matrix on day m.

r
mmD 1,

ˆ − = predicted state variable vector r
mD  using observations up to day m-1 , 

consisting of elements r
jid ),,(

ˆ τ .

r
mmD ,

ˆ = estimated state variable vector r
mD  using observations up to day m.

1, −Σ mm = predicted state covariance matrix for the regular demand pattern on 

day m.

mm ,Σ = estimated state covariance matrix for the regular demand pattern on 

day m.

Km= Kalman gain matrix for using real-time demand estimates on day m.

Cm = vector of traffic observations on day m, consisting of elements c(l,t) .

LPm= link proportion matrix on day m, consisting of elements LP(l,t),(i,jτ).

5.4.2 Transition and Measurement Equations

The transition and measurement equations for the day-to-day demand 

evolution can be written as 

Transition Equation:

m
r
m

r
m DD ξ+=+1 (5.31)

Measurement Equation:

m
r
mm DD η+=ˆ  . (5.32)



113

Assumption 5. ξm and ηm are white noise terms uncorrelated with the initial 

state rD0  and with each other, where ξm ~N(0, Qm) and ηm ~N(0, Rm)

According to transition equation (5.31), the regular demand pattern can evolve 

smoothly from day to day, where stochastic day-to-day evolution is captured by the 

evolution random term ξm. In the measurement equation, since the true demand state 

cannot be directly observed, the new real-time demand estimate mD̂  is considered as 

“measurement” incoming everyday. 

5.4.3 Updating Algorithm and Parameter Tuning 

Following the standard Kalman filtering algorithm, the updating procedure 

can be summarized as follows.

Algorithm 3. Day-to-day updating for regular demand pattern estimate 

Step 1: (Initialization) Construct rD 0,0
ˆ  and 0,0Σ  as the initial estimated mean 

and covariance of the regular demand. Let m=1.

Step 2: (Computation of a priori estimate) The a posteriori estimate r
mmD 1,1

ˆ −−

on previous day m-1 is used as the a priori estimate for current day m. The 

corresponding covariance matrix is updated by taking evolution noise into account.

r
mm

r
mm DD 1,11,

ˆˆ −−− = (5.33)

mmmmm Q+Σ=Σ −−− 1,11, (5.34)

Step 3: (Real-time OD estimation and prediction) Run the real-time OD 

estimation and prediction module in conjunction with real-time DTA simulators, to 

obtain new estimates mM̂  and mD̂  for day m.
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Step 4: (Update of gain matrix) Compute the gain matrix using predicted state 

covariance matrix and measurement variance matrix.

1
1,1, )( −

−− +ΣΣ= mmmmmm RK (5.35)

Step 5: (Update of mean and covariance) Update the estimated mean and 

covariance matrix for the regular demand state vector.

mm
r

mm
r
mmm

r
mm

r
mmmm

r
mm

r
mm MKDDDKDDDKDD ˆˆ)

~ˆ(ˆ)ˆˆ(ˆˆ
1,1,1,1,, +=−+=−+= −−−−

(5.36) 

1,, )( −Σ−=Σ mmmmm KI (5.37) 

Step 6: Move to the next day, m = m+1, and then go back to Step 1.

After accumulating additional information from the new real-time estimation 

result, the conditional demand estimate contains less uncertainty than the 

corresponding a priori estimate for the regular demand pattern, i.e. 1,, −Σ≤Σ mmmm . In 

order to make this recursive algorithm operational, the next question is how to specify 

the values of evolution variance Qm and measurement variance Rm. By using the 

multi-day OD estimation method discussed in Chapter 3, the variance of the 

measurement noise associated with mD̂  can be obtained by evaluating the variance of 

estimated OD demands across several days. Determining the day-to-day variance is 

generally more difficult, since one cannot directly observe the day-to-day demand 

evolution process. Recognizing that the proposed day-to-day evolution process can be 

described as a random walk plus noise model, existing time series techniques are 

applied to choose appropriate values of process variance. A common approach is to 
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first assume a constant signal to noise ratio
m

m

R

Q
=γ , indicating the ratio of inherent 

system variance with respect to observational variance. Based on calibrated Rm, Qm =

γ Rm, so one can select an appropriate signal to noise ratio so as to minimize average 

prediction errors in the training data sets. The reader is referred to West and Harrison 

(1997) for a comprehensive treatment on specification of system and observational 

variances using a Bayesian estimation framework. In early time period of using this 

updating procedure, considerable uncertainty in the predicted state covariance 1, −Σ mm

results in a high gain factor, implying that the new real-time estimates receive 

relatively large weighting. After a certain number of iterations, the gain factor 

becomes stable as it is gradually reaching a steady state. If constant Q and R are 

assumed, the following limiting behavior for the Kalman gain matrix can be derived 

(West and Harrison, 1997). 




 −+=∞→ 141
2

lim γ
γ

m
m

K (5.38)

A typical value of γ can be 0.05, leading to 2.0lim =
∞→ m

m
K , so the most recent 

real-time estimate receives relatively small weighting eventually. If γ =0.5, 

corresponding to limiting gain factor of 0.5, then the a priori estimate and the new 

real-time estimate share equal importance in determining priori demand information 

for the next day.

This Kalman filtering formulation provides a least squares unbiased estimator 

for the regular demand pattern, with the optimal weights on the a priori estimate and 

new information. It is important to note that this recursive prediction-correction 

algorithm only requires a priori mean and covariance statistics at each iteration 
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instead of the entire historical data series, resulting in efficient storage 

implementation for on-line applications. Practically, this updating method can be 

viewed as a moving average method with adaptive weights, depending on the 

respective reliability of the a priori and real-time information sources.

5.5 Summary

Real-time OD estimation and prediction is an important component in real-

time dynamic traffic assignment for ATMS/ATIS network applications. This chapter 

exploits the potential of using a structural state space model to systematically 

incorporate regular demand pattern information, structural deviations and random 

fluctuations.

The contributions of this study are as follows. First, a polynomial trend filter 

is developed to estimate and predict demand deviations from the a priori estimate of 

the regular demand pattern, so as to capture predictable patterns based on historical 

information and adaptively response to possible structural deviations in demands. The 

proposed structural model can assist the analyst to deconstruct the demand process 

and further reveal the underlying irregularities. Second, based on a Kalman filtering 

framework, an optimal recursive procedure is proposed for updating the regular 

demand pattern estimate with new real-time estimates and observations obtained 

every day. This updating formula explicitly accounts from the uncertainty and 

variance associated with real-time estimates, and the resulting dynamic learning 

framework can also assist the analyst to progressively investigate the day-to-day 

behavior of traffic demand. These models can be naturally integrated into the real-
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time DTA system and provide an effective and efficient approach to utilize the real-

time traffic data continuously in the operational settings.
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6. Recursive Approaches for On-Line Consistency Checking and OD 

Demand Updating

6.1 Introduction

Previous chapter discussed the real-time OD estimation and prediction model 

in the context of on-line traffic state estimation and prediction. The proposed 

structural state model improves forecasting reliability under both regular and irregular 

conditions, and the day-to-day updating model provides an optimal learning 

mechanism for capturing demand evolution. In addition to the above important 

demand estimation and prediction supporting functions, there is still one critical 

operational requirement to be addressed for any real-time simulation based DTA 

system, that is, ensuring the consistency between the real-world system and the 

internal representation of the DTA simulator. This chapter is concerned with the 

formulation and computation issues of an OD demand consistency checking and 

updating model, which aims to reduce the demand discrepancy between the real-time 

DTA simulator and the real-world system. Section 6.2 begins with an overview of the 

recursive prediction-correction procedure in the OD demand estimation and 

prediction system. A predictive linear quadratic tracking model and a reactive 

adjustment model are presented in Sections 6.3 and 6.4 to correct demand estimation 

errors in the DTA simulator. Section 6.5 proposes a spectrum of solution algorithms 

along with implementation strategies to design a robust and efficient real-time 

demand adjustment controller.
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6.2 Recursive Demand Prediction-Correction Mechanism

This section uses a Kalman filtering framework to illustrate the prediction-

correction methodology in real-time DTA and to classify possible error sources in the 

proposed OD demand estimation and prediction models. First, let k be a subscript for 

OD demand estimation stages, and let Xk and Yk be the state variable vector and 

measurement vector at stage k, respectively. In addition, Hk represents the 

measurement matrix that relates measurement Yk and state Xk , and Ak  represents the 

transition matrix that maps the state variables from stage k to k+1. The Kalman filter 

used in OD demand estimation and prediction relies on a transition equation to 

describe demand evolution dynamics 

Xk+1 = AkXk + wk (6.1)

 and a measurement equation to link OD demand states to traffic measurements 

Yk = HkXk + vk (6.2) 

where wk~Normal(0, Wk) and  vk~Normal(0, Vk) are process noise and measurement 

noise at stage k, respectively. 

Based on the demand transition matrix, the dynamic OD demand state at stage 

k is predicted from stage k-1 by propagating the mean 

1,11,
ˆˆ −−− = kkkkk XAX (6.3) 

and covariance estimates

k
T
Kkkkkk WAPAP += −−− 1,11, , (6.4)

where 1,
ˆ −kkX = prediction of Xk using observations up to stage k-1,

kkX ,
ˆ = estimation of Xk using observations up to stage k, 
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Pk,k-1 = predicted state variance covariance matrix of Xk at stage k-1,i.e. 

( )1,
ˆ −− kkk XXVar ,

Pk,k = estimated state variance covariance matrix of Xk at stage k, 

i.e. ( )kkk XXVar ,
ˆ− .

After receiving new traffic observations obtained at estimation stage k, the 

Kalman filter adds new information of measurement Yk into the a posteriori estimates 

of OD trip demand. Specifically, the mean of OD demand is updated by adding a 

correction term in proportion to deviations between measurement Yk and predicted 

system output 1,
ˆ −kkk XH , i.e.,

)ˆ(ˆˆ
1,1,, −− −+= kkkkkkkkk XHYKXX , (6.5)

where the weighting matrix is 

1
1,1, )( −

−− += k
T
kkkk

T
kkkk VHPHHPK . (6.6)

The variance of the OD demand estimate is updated according to

1,1,, −− −= kkkkkkkk PHKPP . (6.7)

Equation (6.7) clearly indicates, from the a priori demand estimate to the a posteriori

demand estimate, the uncertainty in the OD demand estimator is reduced by 

1, −kkkk PHK . 

When the real-time DTA simulator starts at stage k, it can only use available 

OD prediction 1,
ˆ −kkX  as the demand input, indicating that there exists demand 

prediction errors 1,,
ˆˆ −− kkkk XX . In order to correct the errors in the a priori estimate, a 

demand updating formula equivalent to Equation (6.5) should be applied to the real-
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time DTA simulator, after measurement Yk is collected from the traffic surveillance 

system. Without this correction step, the demand prediction errors would propagate to 

the subsequent network state prediction through the simulation-assignment process. 

Since the real-time OD demand estimator relies on the DTA simulator to provide 

measurement matrix Hk (i.e. link proportions) in updating equations (6.5) and (6.7), 

an inconsistent internal representation of the DTA simulator could in turn make the 

OD estimator and predictor gradually diverge from the real-world demand process. 

One brute force strategy of maintaining system consistency is to backtrack the 

simulator to the start time of stage k, and to re-simulate the network traffic conditions 

using the a posteriori estimate kkX ,
ˆ . If the state variable vector Xk also covers the 

demand flows departing from previous stages, the DTA simulator should be further 

backtracked to an earlier stage so as to truly reflect the demand update 1,,
ˆˆ −− kkkk XX

for lagged OD demand. Obviously, this computationally intensive strategy is not 

suitable for a real-time DTA implementation, so the following analysis focuses on the 

an OD demand adjustment method that does not require state resetting.

6.3 Predictive OD Demand Adjustment Model

As shown in Figure 6-1, OD demand consistency checking and updating in 

this study is modeled as a feedback controller. For the DTA traffic simulator, i.e. the 

plant to be controlled, the control input is the adjusted demand from the consistency 

checking and updating module; and the system output is the simulated network flow 

pattern. Taking the real-world measurements as the control reference, the controller 

seeks to (1) reduce deviations between the simulated states and the real-world 
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observations and (2) keep the adjustment magnitude as small as possible.  Similar to 

the commonly used minimum energy criterion in the optimal control, the second 

objective is intended to avoid unsteady responses of the DTA simulator due to 

dramatic demand adjustments.

Consistency
Checking and Updating DTA Simulator

Reference
(Real-world

Measurements) Deviations
Input

( Adjusted Demand)

Output
(Simualted States)

+ -

OD Demand
Estimation & Prediction

Predicted
Demand

FIGURE 6-1 Feedback control model for OD demand adjustment.

The controller can be formulated using a 1-step look-ahead linear quadratic 

control model.

Traffic Simulator

Total Demand

Total Exit FlowDemand Adjustment

τd ′

τu′ τc′ τo′

FIGURE 6-2 Conceptual state space representation of traffic simulator.

 The state space representation of the DTA simulator is simplified using a 

liquid tank model as shown in Figure 6-2. Let τ be subscript for departure time 

intervals. Let cτ and c′τ  represent total numbers of vehicles in the real-world system 

and in the traffic simulator, respectively, at departure time interval τ. Furthermore, let 

d′τ and u′τ denote total predicted demand volume and total demand adjustment, 
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respectively, at departure time interval τ. In the following linear quadratic tracking 

model, the total number of vehicles in the simulation system is considered as the state 

variable.

Jτ =(cτ+1 - c′τ+1)
2+ r(u′τ)2 (6.8)

where r = weight for the demand adjustment magnitude.

The transition equation is give by

c′τ+1= c′τ + d′τ + u′τ - o′τ (6.9)

where o′τ = total number of vehicles exiting from the traffic simulator at departure 

time interval τ.

Performance index Jτ simultaneously minimizes the state deviation at the next 

departure time interval and adjustment magnitude. In the above simplified single-

input single-output system, the system transition equation shows that the total number 

of vehicles remaining in the simulator at departure time interval τ+1 changes by the 

addition of the demand input (i.e. predicted demand τd ′plus demand adjustment τu′ ) 

minus the total exit flow τo′  at departure time interval τ. This state space 

representation explicitly considers the intermediate effects of the adjustment 

implemented at departure time interval τ on the future state at departure time interval 

τ+1. As a result, the above predictive control strategy can compute manipulated 

variable adjustments to optimize the future performance of the plant (i.e. DTA 

simulator). However, this predictive control procedure has one critical shortcoming 

that prevents its application in real-time settings. That is, the future state of the real-

world traffic system cτ+1 has not been observed at departure time interval τ, so the 
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adjustment τu′  cannot be determined as a function of cτ+1. An alternative strategy is to 

use a predicted value of cτ+1 to generate the reference point for this controller, but the 

resulting prediction errors might dramatically degrade the actual adjustment 

performance.

6.4 Reactive OD Demand Adjustment Model

To circumvent the above-mentioned difficulty in the predictive model, a 

reactive approach is adopted in this study to optimize OD demand adjustments for 

prevailing state deviations. Let eτ denote the deviation between the total number of 

vehicles in real-world system and that in the simulator at departure time interval τ. 

The reactive adjustment model assumes that

τττ uee ′−=+1 , (6.10)

meaning that the state deviation at next time interval τ+1  is changed by the addition 

of the demand adjustment at departure time interval τ. Accordingly, a new 

performance index is

22

'
)()( τττ

τ
urueMin

u
′+′− (6.11)

with a closed form solution as

ττ e
r

u
+

=
1

1
. (6.12)

Without considering the impact of predicted demand d′τ and existing flow o′τ, 
the system transition equation (6.10) focuses on system state changes due to demand 

adjustment u′τ so calculated adjustments are only suitable for a short time interval. 

Essentially, the reactive control strategy shown in Equation (6.12) follows the closed 
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loop feedback law: if the current number of vehicles in the simulator is lower (higher) 

than the observed measures, corresponding to the positive (negative) deviation term 

eτ, then positive (negative) adjustment u′τ is applied to the demand input. 

As the above univariate liquid tank model is only an extremely simplified 

representation of the complex DTA traffic simulation system, the following further 

proposes a detailed demand prediction feedback adjustment model to deal with a 

realistic traffic network, which consists of multiple origins and destinations as well as 

a set of nodes connected by a set of directed links. If both origin and destination of 

each vehicle are observed by point-to-point sensors, then the unique state of OD 

demand flows is determined and the corresponding errors in the demand 

representation can be explicitly identified. However, for most applications, only 

limited point detectors are available on a subset of links, resulting in inability to 

reveal the true origin destination states. Alternatively, link density is selected as the 

reference measure in the proposed model.

Using link proportions to describe relationships between OD demand 

adjustments and changes in link density, the proposed optimization problem seeks to 

minimize (1) deviations between the simulated link density and the real-world link 

density and (2) demand adjustment magnitude. 

2
),(),(

2

, ,
),(),)(,(),( )'()'ˆ( jiji

tl ji
jijitltl

u
urupeMin +


 −∑ ∑′ (6.13)

Subject to 

d′(i,j) + u′(i,j) =0. (6.14)

where l = subscript for link with traffic measurements, l=1,…,m,
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t = subscript for observation time interval in an OD adjustment period, t=1, 2, 

…, T,

(i, j) = subscript for origin-destination pair, (i, j) =1,…, nod,

c(l,t) = number of vehicles measured on link l, during observation interval t,

c′(l,t) = number of vehicles simulated on link l, during observation interval t,

e(l,t) = deviation between c(l,t)  and c′(l,t),

),)(,(ˆ jitlp = link proportion in the DTA simulator, i.e. the proportion of 

vehicular demand flows from origin i to destination j,   contributing to the 

number of vehicles on link l during observation interval t,

u′(i,j) = demand adjustment from origin i  to destination j to be applied in the 

DTA simulator,

d(i,j) = demand volume of OD pair (i, j) during the current adjustment period,

r(i,j) = positive weight for adjustment  magnitude of OD pair (i, j).

The above optimization problem is a linear quadratic model with inequality 

constraints, and the positive link proportion matrix and positive diagonal weighting 

matrix [ri,j] can guarantee the positive definiteness of the optimization problem and 

the existence of a unique solution. In other words, the combined weighting objective 

function successfully overcomes a possible rank deficient problem posed by limited 

traffic measurements during an adjustment time interval. If ignoring the nonnegativity 

constraint, the unconstrained problem has a closed form solution:

( ) ePRPPu TT 1−+=′ (6.15)

where R = the weighting matrix on demand adjustment, i.e. nod×nod diagonal matrix 

consisting of elements r(i,j),
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P = link proportion matrix consisting of elements ),)(,(ˆ jitlp ,

e = deviation vector of link density,

u′ = demand adjustment vector.

The regulation term in the objective function limits the magnitude of 

adjustment and consequently reduces the chance of violating the nonnegativity 

constraint. The constrained problem can be solved by the Lagrangian method. 

Alternatively, one can first solve the unconstrained problem and ensure the 

nonnegativity constraints by resetting u′(i,j) = − d′(i,j) for any demand pair such that 

d′(i,j) + u′(i,j) <0. In essence, the proposed OD demand updating function (6.15) and  

the OD demand estimation function (6.5) in the Kalman filter share a similar 

feedback function form, that is, the adjustment magnitude u′ and 1,,
ˆˆ −− kkkk XX are 

proportional to gain factors ( ) TT PRPP
1−+  and error term, respectively. On the other 

hand, the proposed OD demand adjustment model can be viewed as a simple least 

squares optimization program, where the Kalman filter is a least squares estimator 

that fully considers the second order noise statistics. 

6.5 Efficient Algorithms and Implementation Issues 

Integrated in the real-time DTA system, the OD demand adjustment module operates 

at every updating time interval as follows. 

(1) Receive real-world observations from the surveillance system,

(2) Measure deviations between the real-world observations and the internal 

states of the DTA simulator,

(3) Obtain link proportions from the DTA simulator,
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(4) Solve the proposed optimization problem and calculate appropriate 

demand adjustments, 

(5) Feed the demand adjustment into the DTA simulator.

The subsequent discussion is devoted to the development of tractable and 

computationally efficient solution algorithms. The closed form solution (6.15) 

requires inverting a (nod×nod) matrix, and the complexity of a direct matrix inversion 

is O(nod
3). For a short updating period, the number of observations (m×T) is typically 

less than the number of OD pairs to be updated. For example, at a 5-minute updating 

time interval, the ratio of the number of observations over the number of OD demand 

pairs is only 14.6% in the Irvine test bed network. In this case, a recursive updating 

scheme without involving direct matrix inversions can reduce the computational time 

dramatically. The recursive least squares algorithm is first presented here, which has 

been widely used in the field of Kalman filtering (Chui and Chen, 1991). Its each 

iteration requires 2(nod)
2+3(nod) multiplications, leading to the time complexity of the 

algorithm is O(nod)
2×m×T, In addition, storing the variance matrix Φ(n) requires 

O(nod)
2 memory space. 

Notation

n= observation index at each adjustment period, n =1, 2, …, m×T

e(n) = deviation in terms of the number of vehicles based on  observation n

u′(n) = vector of demand adjustment taking into account observations 1, 2, …, 

n

p(n) = vector of link proportions related to observation n
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g(n) = gain vector related to observation n

Φ(n) = error correlation matrix considering observations 1, 2, …, n

α(n) = step size scalar related to observation n

Note that, u′(n), p(n) and g(n) are column vectors with nod elements.

Algorithm 1:  Recursive least squares algorithm

Initialization

n=0; u′(n)=0

Φ(n)= ]
)(

1
,,

)2(

1
,

)1(

1
[

odnrrr
diag �

Main loop

For each measurement n = 1 to m×T,

(1) Compute the gain vector

)(p1)()(p1

)(p1)(
)(g

nnn

nn
n

T −Φ+
−Φ= (6.16)

(2) Update the estimate of the adjustment vector

)](e1)()(p)[(1)()( nnunngnunu T −−′−−′=′ (6.17)

(3) Update the error correlation matrix

1)()()p(1)()( −Φ−−Φ=Φ nnngnn T (6.18)

End Loop

Although the recursive least algorithm is able to reduce the complexity from 

O(nod)
3 to O(nod)

2, calculating and maintaining a huge variance covariance matrix 
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Φ(n) is both time and memory demanding, especially for a real-time feedback 

controller with hundreds of state variables. A simple sub-optimal algorithm with 

stable performance is preferred in this context. Simplifying time-varying matrix Φ(n) 

to a constant scalar 
r

1
(n) =φ  yields

)(p)(p

)(p

)(p)(p
)1(

1
)(p

)(p)(p)1(1

)(p1)(
)(g

nnr

n

nn
n

n

nnn

nn
n

T
T

T +
=

+−
=−+

−=

φ
φ
φ

. (6.19)

This leads to the following normalized incremental gradient algorithm, which is 

extensively used in the field of adaptive filtering and neural networks. Each iteration 

of this algorithm only requires 3×nod multiplications and nod memory space. Note that, 

a positive step size term should be added for this gradient algorithm, as the above 

gain factor is an approximation for the optimal search direction. 

Algorithm 2: Normalized incremental gradient algorithm

Initialization

n=0; u′(n)=0

Main Loop

For each measurement n = 1 to m×T,

(1) Compute the gain vector

)(p)(p

)(p
)(g

nnr

n
n

T+
= (6.20)

(2) Update the estimate of the adjustment vector

e(n)]1)()()[p(n)g1)()( −−′−−′=′ nunnnunu T(α (6.21)
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End Loop

In the above algorithm, the demand adjustment for each OD pair is 

proportional to )()( npnpT . If ignoring this product term, then one can obtain a 

standard incremental gradient algorithm, where )(
1

)( np
r

ng = . This simplified 

algorithm only requires 2×nod×m×T multiplications and nod memory space. Compared 

to the optimal recursive least squares algorithm, both sub-optimal algorithms are 

substantially faster with less memory requirements.

1

2

a

b

c

FIGURE 6-3 Idealized network for illustrating the advantage of the 

normalization

Principally, the normalized gain factor is able to recognize the impact of 

overlapping OD pairs in the OD demand adjustment process. Its advantage can be 

illustrated using a simplified network shown in Figure 6-3, where vehicular flows 

along OD pair a pass through link 1 and vehicular flows along OD pairs b and c pass 

through link 2. Further assume the link proportions from OD pair a to link 1, from 

OD pair b to link 2, and from OD pair c to link 2 are all 100%. If the same deviations 

are observed on links 1 and 2, i.e. e(1)=e(2), the standard incremental gradient 

algorithm would suggest that the OD demand adjustments for three OD pairs have the 

same magnitude, leading to possible over-adjustments for traffic states on link 2. 



132

Since product terms pT(1)p(1)=1 and pT(2)p(2)= 2, according to the normalized 

incremental algorithm, the individual demand correction for overlapping OD pairs b

and c would be only half of the correction for independent OD pair a.

As shown by Bertsekas (1999), the above three algorithms are variants of the 

incremental gradient method to solve the sequential linear quadratic problem. These 

algorithms process the data blocks in sequence, and they mainly differ in terms of the 

calculation related to the gain matrix (factor). In addition, the recursive least squares 

algorithm only needs a single pass through the entire data to reach the optimum, 

where two sub-optimal algorithms might require multiple passes to find the 

minimum, although a single pass typically produces a very dramatic decrease in the 

value of the objective function. Because the link proportion matrix in the adjustment 

formulation is still a simplified representation of the input-output relation for the 

DTA simulator, it is difficult to make the simulator completely reach the desired state 

even using an “optimal” adjustment based on the proposed mathematical model. In 

fact, computational efficiency is a more important consideration. A desirable real-

time demand regulator should require substantially small computation efforts while 

maintaining adjustment performance. In addition, for a stable feedback controller in a 

complex and dynamic real-time environment, the weighting matrix (factor) R must be 

properly tuned to obtain a desired response to a given disturbance. A small R

indicates a large gain, quick response and small errors when a disturbance occurs. On 

the contrary, the choice of a large R will result in great errors under disturbances, but 

tends to be stable when the process structure changes. Experiments are also needed to 

select an appropriate demand updating frequency, which is jointly determined by the 
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execution time for retrieving link proportions from the DTA simulator and 

computational efficiency of the demand adjustment algorithm.

6.6 Summary

To maintain an internally consistent representation with actual traffic 

conditions, this section presents an OD demand consistency checking and updating 

model for on-line dynamic traffic assignment operation. Both predictive and reactive 

approaches are proposed to minimize (1) the deviations between simulated states and 

real-world observations and (2) OD demand adjustment magnitude. The two 

objectives are combined into a weighted linear quadratic function to construct a 

guaranteed over-determined optimization problem. Alternative recursive solution 

algorithms are presented to design an efficient feedback controller that regulates the 

demand input for the real-time dynamic traffic assignment simulator.
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7. Experimental Analysis of Dynamic OD Demand Estimation and 

Prediction Methods

7.1 Introduction

After presenting the OD demand estimation and prediction mathematical 

models for on-line applications, this chapter aims to evaluate the performance of the 

proposed models under different degrees of information availability and for 

alternative formulation strategies. Since the dynamic OD demand estimation and 

prediction process in this study relies on a simulation-based dynamic assignment 

model to describe the spatial and temporal interactions of travelers, the resulting 

complexity precludes the analytical derivation of the properties and the performance 

of the demand estimators in a general network. Alternatively, numerical experiments 

are conducted to achieve the following objectives: (1) illustrate the effectiveness of 

the proposed methods using available real-world measurements in a real network, (2) 

quantify the relative benefits of additional information and model enhancement for 

OD demand estimation and prediction, and (3) perform sensitivity analysis of the 

consistency checking algorithm under different parameter settings. The results are 

intended to provide insight on effective real-time demand estimation and prediction 

and traffic data collection schemes. 

The chapter is organized as follows. Section 7.2 evaluates the performance of 

on-line OD demand estimation and prediction components under various model 

structures, and Section 7.3 tests alternative demand consistency checking and 
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updating algorithms and implementation strategies. This chapter is concluded by a 

summary of the analysis results in Section 7.4.

7.2 Real-Time OD Demand Estimation and Prediction

This section is intended to demonstrate the effectiveness of the dynamic OD 

estimation and prediction models for on-line DTA applications, and to test the 

performance of alternative model structures.

7.2.1 Network Configuration and System Settings

The numerical experiments in this section are conducted based on the detailed 

Irvine test bed traffic network, as shown in Figure 7-1. This network includes 61 OD 

demand zones, 326 nodes and 626 links, where traffic counts are measured at 30-

second intervals on 19 freeway links and at 5-minute interval on 28 arterial links. 

Table 7-1 defined the data sampling frequency, execution frequency and cycle 

length for different components in the real-time DTA system. All the experiments are 

performed on a PC with 2 GHz CPU and 4 GB memory, and all the algorithms are 

implemented in Visual Fortran and Visual C++ on the Windows platform.

Table 7-1 System Execution Parameters.

Parameter Value

Observation interval for OD demand estimation 0.5 min

Observation interval for consistency checking and 
updating

0.5 min

RT-DYNA roll period 0.5 min

P-DYNA roll period 5 min

P-DYNA prediction horizon 20 min
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ODE estimate time interval 5 min

ODP execution cycle 10 min

ODP prediction horizon 45 min

Long term consistency checking cycle 5 min

Short term consistency checking cycle 0.5 min

FIGURE 7-1 Detailed Irvine network.
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7.2.2 A priori Estimation vs. Real-time Estimation

The a priori estimate of the regular demand pattern is constructed by the off-

line OD estimation method using the first day data. Real-world observations on the 

second day are used to calibrate the system and measurement variances in the real-

time OD estimation and prediction model. The third day data are used to validate the 

proposed real-time OD estimation and prediction algorithm. The time of interest in 

the following experiments is the morning peak period (4:00 AM – 10:00 AM). 

The a priori estimation results are generated by loading the a priori OD 

estimate (from the first day) into the traffic network, while on-line estimation refers to 

real-time traffic assignment results using real-time OD estimates (on the third day). 

Comparing simulated results and real-world observations, Table 7-2 summarizes the 

root mean squared errors of density, volume and speed for observed links in the 

network. In particular, link density and speed measures are processed at 1-minute 

time intervals, while link volume is processed based on 15-minute time intervals to 

obtain reliable samples. The consistent error reduction in these three major traffic 

measures clearly demonstrates that the on-line estimator is able to utilize the real-time 

information to improve the final quality of network state estimation and prediction.

Table 7-2 Average RMSE in on-line estimation vs. A Priori estimation.

A priori Estimation Online Estimation Percentage 
Improvement

Density 11.6 10.5 9.5%

Volume 288.8 208.5 27.8%

Speed 16.7 14.1 25.6%
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Taking link 1 in the network as a specific example, Figures 7-3 and 7-3 

further illustrate the difference between the a priori estimate and real-time estimate in 

terms of link density. The off-line simulation result generated from the a priori

demand estimate with the first day observations does not capture the morning traffic 

peak between 6 AM and 7 AM on the third day, while the on-line estimator 

recognizes the day-to-day demand changes from the real-time measurements. 
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FIGURE 7-2 Off-line estimation of density on Link 1
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FIGURE 7-3 Online estimation of density on Link 1.
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7.2.3 Polynomial Model

First, a second-order polynomial trend model (i.e. local linear trend model) is 

applied to estimate the demand deviations from the a priori estimate of the regular 

demand pattern. In Figure 7-4, the a priori regular pattern estimate and the 

corresponding demand deviations are displayed for the OD pair from zone 53 to zone 

40, which carries the highest trips among all the OD pairs in the study network. On 

average, the a priori demand data underestimates the real-time demand on the third 

day for this selected OD pair, but the prior estimate still represents similar time-

varying dynamic patterns as the real-time demand. As expected, the demand 

deviations exhibit a much slower changing pattern than the corresponding real-time 

demand flows over the same time. As discussed previously, the day-to-day dynamics 

is one of the major causes of the estimated structural demand deviations. In 

additional, the estimation noise in the a priori demand data, which only utilizes one-

day observations, may have contributed to the deviations shown in this case.

Considering the smooth trend for demand deviations in Figure 7-4, it is 

desirable to further reduce the second-order polynomial model to the first-order 

polynomial model. To compare the estimation performance of alternative models, the 

root mean squared error in density is defined as
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Where ),( tic = density measured on link i, during observation interval t,
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),(ˆ tic = simulated density from the real-time DTA estimator on link i, during 

observation interval t, 

nobs= number of observations.
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FIGURE 7-4 Dynamic demand estimates for OD pair from zone 53 to zone 40.

The RMSE at every 5 minutes are plotted in Figure 7-5, for the first-order and 

second-order polynomial models, respectively. The average RMSE of the first-order 

model during the study horizon (10.2608) is marginally greater than the average 

RMSE of the second-order model (10.8588) by 1.8%. These two models produce 

smaller estimation errors in the early morning (from 4:00 AM to 6:00 AM), compared 

to the peak hour period (from 7:00 AM to 9:00 AM). Such large estimation errors 

around 8 AM can be explained by the increasing demand variability and significant 

dynamics in the underlying traffic flow propagation process during the peak hour 

period. Based on experiment results from the third day data, the first-order 

polynomial model seems to be more attractive than the first-order model, since it 
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offers acceptable accuracy with considerable computation efficiency. On the other 

hand, if real-time response constraints can be satisfied, keeping a higher order 

polynomial model is always preferable, because it is more capable of capturing 

nonlinearity in the demand structure changes.
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FIGURE 7-5 RMSE in density for the first-order and second polynomial models.

Figure 7-6 plots simulated density, predicted density and the observed density 

on link 212, using a 20-minute prediction horizon. Link 212 is a freeway link going 

northbound, and its location is marked in Figure 7-1. The simulated density and the 

predicted density are generated from the DTA network state estimation module and 

the DTA state prediction module, respectively. As revealed by the graph, the DTA 

network state estimator is able to capture the time-varying trends of real-world traffic, 

while the DTA network state predictor can forecast dynamic flow propagation with 
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acceptable quality. The above results further validate the effectiveness of the 

proposed real-time OD estimation and prediction framework.
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FIGURE 7-6 Observed density vs. simulated density and predicted density on 

link 212

7.3 Online OD Demand Consistency Checking and Updating

This section is intended to evaluate the performance of different OD demand 

adjustment algorithms proposed in Chapter 6. In addition, it also conducts sensitivity 

analysis for the key system parameters, such as the step size for sub-optimal 

algorithms and updating frequency.
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7.3.1 Description of the Test Network and Data Set

The experiments in this section are conducted based on the Irvine test bed 

network shown in Figure 7-1. The root mean square error in terms of number of 

vehicles on links with observations is used as the consistency measure.
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where c(l,t) = number of vehicles measured on link l, during observation 

interval t,

c′(l,t) = number of vehicles simulated on link l, during observation interval t,

nods= number of observations.

To specifically examine the influence of demand consistency checking on the 

system performance, the short-term (flow propagation) consistency checking module 

is not activated in the following experiments.

7.3.2 Experimental Design and Results

1. Computational performance

The first task is to compare the computational performance of the three 

consistency solution algorithms. Table 7-3 lists average execution time and 

estimation errors for these three algorithms at a 1-min updating interval. Obviously,

the efficient sub-optimal approach is suitable for real-time operation, and the exact 

solution algorithm does not satisfy the real-time response constraint for the medium-

scale network considered in the study. However, the optimal adjustment solution 

result can still serve as a useful benchmark for comparing the performance of sub-

optimal algorithms. The percentage improvements shown in Table 1 are the relative 
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error reduction compared to the do-nothing case (i.e. without OD demand 

adjustment). Overall, both sub-optimal algorithms can dramatically reduce the 

estimation errors, and the normalized incremental algorithm outperforms the standard 

algorithm, because the former can capture the overlapping effect in OD demand 

adjustments.

Table 7-3 Computational performances of consistency solution algorithms.

Avg. computational 

time (sec)

Avg. RMSE Error

reduction

Recursive least square algorithm 192.830 18.17 44.8%

Normalized incremental gradient 0.829 23.99 28.4%

Standard incremental gradient 1.131 27.12 19.1%

Figure 7-7 details the time-varying performance for different consistency 

checking algorithms. From 4:00 AM to 6:30 AM, the benefit of all three adjustment 

algorithms is insignificant, as the overall OD demand level remains steady and OD 

prediction errors are relatively small. After 6:30 AM, the estimation errors in the do-

nothing case increase sharply, which can be attributed to high OD prediction errors 

during the peak period. Between 6:30 AM and 7:30 AM, all three algorithms are able 

to reduce the system inconsistency, and the optimal solution procedure clearly 

generates a lower bound of error reduction relative to the other two sub-optimal 

regulators. During the off-peak period (7:30 AM to 8:30 AM), the deviations between 

the real-time simulator and real-world system cannot be significantly reduced by any 

OD demand consistency checking algorithm. By carefully comparing the simulation 

results with the real-world observations on a link-by-link basis, the author finds that 

the remaining large state deviations are more likely due to incorrect route choice 
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prediction or incorrect traffic flow modeling.  As only the OD demand consistency 

checking module is activated in this study, the system might attribute all the state 

inconsistency to the OD demand prediction errors, leading to slightly worse results 

compared to the do-nothing case. This observation underscores the need for a joint 

consistency checking system, which should correctly recognize and correct system 

inconsistency caused by different error sources. After 9:00 AM, the adjustment 

algorithms again produce significant error reductions. 

Figure 7-7 details the time-varying performance for the three consistency 

checking algorithms. From 4:00 AM to 6:30 AM, the benefit of all three consistency 

checking algorithms is insignificant, as the overall OD demand level remains steady 

and OD prediction errors are relatively small (The demand pattern of a major OD pair 

is shown in Figure 7-4). After 6:30 AM, the estimation errors in the do-nothing case 

increase sharply, which is due to high estimation errors associated with the OD 

demand predictor during the on-peak period. Between 6:45 AM and 7:30 AM, all 

three consistency checking algorithms are able to reduce the system inconsistency, 

and the optimal solution procedure clearly generates the lower bound of error 

reduction relative to other two sub-optimal regulators. During the off-peak period 

(7:30 AM to 8:30 AM), the deviations between the real-time simulator and real-world 

system cannot be significantly reduced by any OD demand consistency checking 

algorithm. Such large remaining deviations in terms of number of vehicles can be 

attributed to the other error sources, e.g., incorrect route choice prediction or incorrect 

traffic flow modeling.  In this case, if attributing all the system inconsistency to the 

OD demand prediction errors, that is, only the OD demand consistency checking 
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module is activated, then such incorrect modeling could even lead to worse results 

compared to the do-noting case. This observation underscores the need for a joint 

consistency checking system, which should correctly recognize and correct system 

inconsistency caused by different error sources. After 9:00 AM, the recursive least 

squares algorithm and the normalized incremental algorithm again consistently 

perform well in reducing the traffic state deviations. 
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FIGURE 7-7 Performance of three consistency checking algorithms

1. Step size in sub-optimal algorithms

The weighting factor of the objective in the OD consistency checking 

formulation can be calibrated using the multi-objective programming techniques 

discussed in Chapter 3. The following experiments are designed to tune the step size

in the two sub-optimal algorithms. The minimum estimation error for the normalized 

incremental gradient algorithm is obtained for a step size of 0.5. The standard 
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incremental gradient algorithm gains the best performance when the step size is 

around 0.05. The dramatic difference between these two step size parameters is due to 

the existence of the term pT(n)p(n) in the normalization algorithm. As expected, when 

the step size parameter in both sub-optimal algorithms decreases, the experiment 

results show that the OD demand correction magnitude tends asymptotically toward 

zero, and the performance improvement due to demand consistency checking and 

updating becomes gradually negligible.

2. Updating time interval

With different updating time intervals, Figure 7-8 depicts the performance of 

the normalized incremental gradient algorithm in terms of network state estimation 

and prediction errors. Under all three updating intervals, the sub-optimal algorithm 

produces dramatic error reductions for the real-time traffic state estimation. 

Moreover, the short (i.e. 1-min and 2.5-min) updating interval can control the near-

term prediction errors within a certain range, compared to a sharp prediction error 

increase in the do-nothing case. This indicates that frequent updating is preferred in 

order to rapidly respond to possible OD demand prediction disturbances. In 

comparison, a longer updating interval corresponds to less frequent updates, 

implicitly allowing more time for OD demand prediction errors propagating in the 

DTA simulator. The figure clearly illustrates that, at a 5-min updating interval, the 

influence of error propagation becomes very significant when the prediction horizon 

extends from 10 minutes to 20 minutes. In this case, OD demand consistency 
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checking only provides marginal quality improvement for medium-term network state 

prediction. 
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7.4 Summary

This section uses the field data from the Irvine network to evaluate real-time 

OD estimation and prediction and real-time demand consistency checking algorithms. 

In summary, the experiments provide the following important findings for on-line 

DTA operations:

1. Compared to the a priori estimator, the on-line demand estimator is able to 

utilize the real-time information to significantly improve the final quality of 

network state estimation and prediction. The first-order polynomial model can 

offer acceptable OD estimation and prediction accuracy with considerable 

computation efficiency.
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2. The exact solution algorithm does not satisfy the real-time response constraint 

for the given medium-scale network in the study. In contrast, the normalized 

incremental algorithm and standard algorithm are capable to generate on-line 

OD correction solutions for the real-time DTA simulator, and make 

significant reductions in both estimation and prediction errors, especially with

a short updating interval.
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8.  Conclusions and Future Extensions

This chapter begins with a brief summary of the proposed formulations and 

findings. Section 8.2 presents the author’s perspective on the contributions of this 

research to the state of the art of dynamic OD demand estimation and prediction. 

Section 8.3 discusses further extensions and directions for future research in this area. 

8.1 Summary

This research deals with a series of critical issues in the estimation and 

prediction of dynamic OD trip flows using various information sources for off-line 

and on-line DTA operations, namely, OD estimation using link counts and AVI 

counts for planning applications, real-time OD estimation and prediction, as well as 

real-time demand consistency checking and updating. 

8.1.1 Off-line OD Demand Estimation

The inability of providing accurate OD demand estimates becomes a critical 

bottleneck in the deployment of advanced dynamic traffic assignment methodologies 

and other promising traffic information and management scenarios. Mary studies 

have been devoted to the dynamic OD demand estimation problem, in which time 

varying traffic link counts in a single day are the most widely used input. Since 

limited traffic observations from single data source typically lead to non-unique 

solutions and large estimation errors, current planning and operational applications 

place a great need for an effective modeling approach that can extract more 

information from other available data sources. 
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Based on an iterative bi-level estimation framework, this dissertation aims to 

enhance the quality of OD demand estimates by combining historical static demand 

information and time-varying archived traffic measurements into a flexible multi-

objective optimization framework that minimizes the overall sum of squared errors. 

The one-day demand estimation formulation is extended to utilize multi-day link 

counts for inferring day-to-day demand variations. The field data from the Irvine test 

bed network are used to illustrate the proposed methodology and demonstrate the 

effectiveness of new estimation models.

To circumvent the difficulties of obtaining market penetration rates of 

transponder tags in a demand population, this research proposes a novel OD demand 

estimation formulation to effectively exploit OD demand distribution information 

provided by emerging Automatic Vehicle Identification (AVI) sensor data, and 

presents robust formulations to accommodate possible deviations from idealized 

conditions in the demand estimation process. Using a synthetic data set, this study 

evaluates the performance of new estimation models and provides the following key 

findings. (1) Sufficient sample size, which is jointly determined by market 

penetration rates and observation time interval, is necessary to obtain accuracy 

demand estimates from partially observed vehicle identification data. (2) In the 

presence of identification errors, a parsimonious structure accounting for imprecise 

information can provide more robust and accurate estimates than a complex joint 

estimation model for OD demand flow and identification rates. 
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8.1.2 Real-time OD Demand Estimation and Prediction

A structural real-time OD demand estimation and prediction model and a 

polynomial trend filter are developed to systematically model regular demand pattern 

information, structural deviations and random fluctuations so as to provide reliable 

prediction and capture the structural changes in time-varying demand, which can be 

caused by severe weather conditions and special events. Based on a Kalman filtering 

framework, an optimal adaptive updating procedure is further presented to use the 

real-time demand estimates to obtain a priori estimates of the mean and variance of 

regular demand patterns.

To maintain a representation of the network states consistent with that of the 

real-world traffic measurements in a real-time DTA system, this research proposes a 

dynamic OD demand optimal adjustment model and efficient sub-optimal feedback 

controllers to regulate the demand input for the real-time DTA simulator while 

reducing the adjustment magnitude. Without correcting OD demand estimation errors 

in the DTA simulator, the inconsistency in OD flows would accumulate in the DTA 

simulator and further propagate into the internal representation of path and link flows, 

making the network state prediction become highly unreliable. The proposed real-

time OD estimation & prediction and consistency checking models are implemented 

and tested using the field data from the Irvine test bed network. In addition, this 

research conducts sensitivity analysis for various model structures and parameter 

settings, such as updating frequency and the magnitude of gain factor.
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8.2 Research Contributions

This section presents specific contributions of this research to the theoretical 

and algorithmic developments of dynamic OD estimation and prediction. 

To date, the potential benefits of utilizing new types of traffic measures to 

enhance travel demand modeling capability have not been adequately exploited in the 

traditional approaches. Many existing OD estimation and prediction models lack the 

capability to systematically capture the dynamic nature of OD trip desires, 

particularly the day-to-day evolution and possible structural changes encountered in 

real-world traffic systems. In addition, existing OD demand consistency models either 

lack efficient real-time solution implementations for realistic networks, or fail to 

systematically account for spatial and temporal interaction of demand errors.

Based on the simulation-based solution methodology for dynamic traffic 

assignment (Mahmassani, 1998), this dissertation significantly enriches the 

capabilities of the basic bi-level dynamic OD estimation model and iterative solution 

procedure proposed by Tavana (2001), and the real-time OD estimation and 

prediction framework proposed by Kang (1999). In this research, the simulation-

based DTA program is used to describe the network flow pattern and provide 

measurement matrices for the estimation process. A wide range of optimization 

formulations and efficient algorithms are constructed to estimate and predict real-

world OD demand flows, and control the OD demand loading in the DTA simulator. 

This dissertation provides the following key contributions.

(i) The proposed formulation can effectively incorporate historical static OD 

demand information while avoiding potential modeling biases. The multiple-objective 
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framework provides a tractable and intuitive approach to incorporate multiple 

information sources, and it can considerably alleviate the common under-

specification problem encountered in traditional models. In addition, the multi-day 

estimation model offers valuable opportunities to utilize traffic flow time series to 

capture the day-to-day demand variations.

(ii) This research provides an effective mechanism to extract OD distribution 

pattern information from AVI data. The formulation based on point-to-point split 

samples circumvents the principle difficulties in estimating dynamic market 

penetration rates for different OD pairs. Moreover, the robust formulation utilizes the 

imprecise knowledge from the analyst and obviates the need for estimating dynamic 

and location-dependent identification rates.

(ii) The polynomial model in the real-time OD estimation and prediction 

model provides key capability to recognize the non-stationary characteristic in 

dynamic demand time series, and produces a compact state space representation for 

modeling lagged OD demand without complex state argumentation. The structural 

model represents a significant advantage over the existing forecasting models where 

regular pattern, structural trend and random variation are viewed in isolation of one 

another. This systematic integration reduces the order of the polynomial trend model, 

and decreases the demand prediction variability and computational complexity in 

both time and space dimensions.

(iii) The day-to-day updating formulation provides an integrated framework to 

account for the inherent uncertainty nature of OD estimates, including stochasticity 

and correlation in estimated values. The bi-objective consistency checking model 



155

with the efficient normalized least mean squares algorithm can account for the spatial 

interaction of OD demand flows in the network, providing a tractable solution 

procedure for general networks.

Overall, this research successfully satisfies various requirements in different 

problem contexts with diverse information sources. More importantly, this 

dissertation strengthens the inherent connections between off-line OD estimation, on-

line estimation & prediction and real-time consistency, rather than approaching these 

problem stages as a set of isolated problems. These models and algorithms are 

systematically integrated into off-line and on-line DTA systems, and are rigorously 

tested using the field data and synthetic data based on the real Irvine network. 

8.3 Future Research

With enhanced demand estimation and prediction formulations, this 

dissertation illustrates considerable potential for generalizing the modeling

framework into the field of traffic state estimation and prediction. These innovative 

methods still require further investigation into numerous issues, especially in the 

following dimensions.

Multi-process day-to-day demand updating

This study uses a single process model to represent the multi-day demand 

dynamics. To better understand the day-to-day OD demand evolutions in a real traffic 

system, there is a need to uncover complex multi-process characteristics by using 

more elaborate system representation models. More verification tests using real-world 

data are also necessary to investigate the effectiveness of day-to-day demand 
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updating models, especially for DTA planning applications in large-scale 

metropolitan networks.

Off-line and on-line estimation models using real-world AVI data

In this research, possible benefits of AVI data are investigated through 

experimental control using the synthetic data, and the AVI data are only utilized in 

the off-line OD estimation process. The real-world data can provide further insight on 

the actual performance of alternative estimation models. The on-line DTA 

applications also call for further integration of point-to-point sensor measurements in 

the real-time estimation and prediction of OD demand. 

Dynamic estimation and prediction of route choice model parameters

The proposed OD demand estimation and prediction models suggest a 

promising modeling approach for estimating and predicting the other two key 

components in dynamic traffic states, namely, route choice behavior and traffic flow 

propagation. On the other hand, reducing the route choice and traffic flow 

propagation errors in the DTA system can significantly improve the performance of 

OD estimation, which relies on the DTA simulator to provide input-output mapping 

matrices. Collectively, these extensions will offer a comprehensive and integrated 

framework for estimating and predicting traffic network states.
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