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With deregulation in the electric power industry, traditional approaches for

minimizing production costs have become unfit for the present competitive en-

vironment. Owners of generation assets must now consider price uncertainty

in solving unit commitment problems for scheduling and operating their power

plants. Operation flexibility of the generating assets, such as fuel switching and

overfire, becomes an important issue. Because in a competitive market with

volatile electricity prices, these flexibility may add significant values. On the

other hand, operational constraints, such as ramp and minimum uptime/downtime

constraints, present physical limits for the generating assets to flexibly react to

rapid price changes, which have a negative effect on the asset value. Both of the

operational flexibility and operational constraints must be considered simulta-

neously so as to achieve optimal operation under uncertainty. This dissertation

devotes to this very important subject.



Deregulation in the power industry allows new firms to freely enter the gen-

eration markets. As a result, capacity expansion is no longer the responsibility

of local utility companies and has become a pure investment problem. Overesti-

mating the value of a power may result in stranded capital for a long time period.

Therefore, to ensure a successful investment a fair valuation method is essential.

The generation asset valuation must fully account for market uncertainty, which

results in not only risks but also opportunities. To minimize the risks, one must

first have sound models for market uncertainties. In this research, we consider

not only the uncertainties of electricity price and fuel price, but also environ-

ment temperature because some characteristics of power plants may be sensitive

to the temperature. To fully capitalize on profitable opportunities arising in

the marketplace due to price spreads of different commodities, such as fuel and

electricity, a real options approach is considered, in which different options are

exercised at different but ‘optimal’ timings.

Overall, this research is expected to contribute a new methodology for fair

generation valuation that accounts for multiple and interdependent uncertain-

ties and complex physical constraints. The proposed approach can help opera-

tors achieving optimal operation and investors making appropriate investment

decisions. In the long run, customers also benefit from the improved societal

efficiency.
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Chapter 1

Introduction

1.1 Motivation

With deregulation in the electric power industry, traditional approaches for

minimizing production costs have become unfit for the present competitive en-

vironment. Owners of generation assets must now consider price uncertainty

in solving unit commitment problems for scheduling and operating their power

plants. Operation flexibility of the generating assets, such as fuel switching and

overfire, becomes an important issue. Because in a competitive market with

volatile electricity prices, these flexibility may add significant values. On the

other hand, operational constraints, such as ramp and minimum uptime/downtime

constraints, present physical limits for the generating assets to flexibly react to

rapid price changes, which have a negative effect on the asset value. Both of the

operational flexibility and operational constraints must be considered simulta-

neously so as to achieve optimal operation under uncertainty. This dissertation

devotes to this very important subject.

Deregulation in the power industry allows new firms to freely enter the gen-

1



eration markets. As a result, capacity expansion is no longer the responsibility

of local utility companies and has become a pure investment problem. Overesti-

mating the value of a power may result in stranded capital for a long time period.

Therefore, to ensure a successful investment a fair valuation method is essential.

The generation asset valuation must fully account for market uncertainty, which

results in not only risks but also opportunities. To minimize the risks, one must

first have sound models for market uncertainties. In this research, we consider

not only the uncertainties of electricity price and fuel price, but also environ-

ment temperature because some characteristics of power plants may be sensitive

to the temperature. To fully capitalize on profitable opportunities arising in

the marketplace due to price spreads of different commodities, such as fuel and

electricity, a real options approach is considered, in which different options are

exercised at different but ‘optimal’ timings.

Overall, this research is expected to contribute a new methodology for fair

generation valuation that accounts for multiple and interdependent uncertain-

ties and complex physical constraints. The proposed approach can help opera-

tors achieving optimal operation and investors making appropriate investment

decisions. In the long run, customers also benefit from the improved societal

efficiency.

1.2 Summary of contributions

The research in this dissertation has the following original contributions:

• It uniquely develops an efficient method to solve ramp-constrained self-

scheduling unit commitment problem with and without price uncertainties.
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A polynomial-time algorithm is proposed for solving the self-scheduling

problem when the electricity prices are known with certainty.

• It is the first one to propose a general framework to value a thermal gener-

ation unit with fuel-switching options considering operational constraints.

In this framework, three correlated uncertainties including electricity price

and two different fuel prices are considered.

• It uniquely integrates both overfire options and maintenance constraints

to value a thermal generation unit in competitive power market.

• It is the first one to incorporate a stochastic ambient temperature model

with the asset valuation of power plants.

1.3 Organization of the dissertation

The remaining sections of this dissertation are structured as follows. Chapter

2 presents some background knowledge related to this research, including power

plant operations, multivariate linear regression, discounted cash flow (DCF),

and options theory. Chapter 3 provides a thorough literature review in unit

commitment, real options, and asset valuation of power generation units. A

self-scheduling unit commitment problem, subject to ramp constraints and price

uncertainties, is discussed in Chapter 4. A regression-based method is devised

to determine the optimal commitment and dispatch decision rule under price

uncertainty in terms of reductions of fuel economy, heat-electricity transforma-

tion efficiency, and available generation capacity. Chapter 5 presents a Monte

Carlo (MC) simulation approach to value fuel-switching units. Chapter 6 values
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a gas turbine considering overfire options, maintenance constraints and environ-

ment temperature in the competitive power market based on a MC method.

Finally, Chapter 7 concludes this dissertation and suggests some future research

directions.

An overview of this dissertation is illustrated in Fig. 1.1. It can be seen that

this dissertation is composed of three main parts. Part I focuses on the optimal

self-scheduling problem in the deregulated electric market (Chapter 4). Part II

discusses the value of a power generating unit with fuel switching options (Chap-

ter 5). In Part III, overfire options, maintenance constrains, and environment

temperature are considered to value a thermal generation unit in the competitive

power market (Chapter 6).
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Optimal self-scheduling problem

with ramp constraints

Part I

Part II

Part III

(Chapter 4)

Valuing power generation units

with fuel switching options

(Chapter 5)

Valuing thermal power generation units

considering overfire options,  maintenance

constraints and environment temperature

(Chapter 6)

Figure 1.1: Overview of the research.
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Chapter 2

Background

In this Chapter, a brief introduction of background knowledge related to this

research will be given, including power plant operation, multivariate linear re-

gression, DCF analysis, options theory and least squares Monte Carlo approach.

2.1 Power plant operation

In terms of the load and size, power plants can be classified into two groups:

base-load units and peak-load units. The base-load units are normally with

large size, including nuclear units, hydro units and large-scale thermal units

etc. Such units may always stay on-line whether in regulated or deregulated

environment except for scheduled maintenance or unexpected malfunctions. On

the other hand, the peak-load units are smaller. One representative is gas turbine

(GT). Because a GT can start up within minutes, it is preferred in a volatile

competitive power market. In this dissertation, I focus on thermal power plants.

Some important concepts relative to the operation of thermal power plants are

provided next.

6



2.1.1 Unit commitment

Unit commitment (UC) is an important optimization problem for power util-

ities to economically schedule generating resources to achieve cost minimization

under the traditional regulatory regime. Although the electricity industry is

moving toward deregulation, the importance of the UC does not diminish along

with the restructuring trend.

The objective of the traditional UC problem is to minimize the total generat-

ing cost over the planning horizon subject to system constraints, such as demand

and spinning reserve constraints, and operational constraints, such as capacity

constraints, minimum up/down time constraints and ramp rate constraints.

In this dissertation, only the gas-fired or oil-fired units are considered. The

dynamic processes of a gas unit operation are relatively simple. For such a

generation unit, the startup (or shutdown) cost can be estimated by a constant

or a linear function of startup (or shutdown) rate. The fuel cost can be captured

by a quadratic function of power amount produced in the corresponding time

period.

There are many constraints considered in the typical UC problem. They are

stated as follows.

• Demand constraint

The amount of power produced must equal the power consumed in each

time period. This is due to the unique characteristic of electricity that it

cannot be stored in inventory.

• Spinning reserve constraint

Spinning reserve refers to capability that the system can quickly make up
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for loss of some unit(s) and may be modeled as the total capacity of all

on-line units less the present load. The amount of spinning reserve at any

time must follow certain rules, usually set by regional reliability councils.

• Capacity constraint

There exists a upper bound (qmax) and lower bound (qmin) for the produc-

tion level of each unit, which is determined by the physical characteristics

of each unit.

• Minimum up/down time constraint

A thermal unit is turned on (resp. shut down), it is required to stay on-

line (resp. off-line) for a minimum period, known as the minimum uptime

(resp. downtime), before it can be shut down (resp. turned on) again. In

other words, a thermal unit cannot switch frequently between the on-line

and the off-line mode, due to the unit’s response time and the damaging

effects of stress.

• Ramp rate constraint

Ramp rate limits the capability of a unit to move between scheduled op-

erating levels over short time periods. With the ramp rate constraints,

the generation level of a unit becomes interdependent in all hours, which

complicates the solution procedure of the UC problem.

More detailed information for UC can be found in Tseng (1996), Baldick

(1995) and Lai (1999).
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2.1.2 Fuel switching

Generally speaking, fuel switching of a generating unit refers to the ability to

convert alternate fuels, such as nature gas (gas, for short) or fuel oil, to electricity.

Switching occurs when one fuel out-of-the-money is replaced by another in-the-

money (or less out-of-the-money), and can be categorized based on the rate of

occurrence:

• Short-term: switch between gas and oil in dual-fired units within hours;

• Mid-term: switch from one unit which can only burn gas or oil to another

dual-fired unit through device modifications within days or weeks;

• Long-term: switch from a gas-fired unit to an oil-fired unit (or from an oil-

fired unit to a gas-fired unit) through new equipment installation within

months or years.

In power industry, players may prefer nature gas to fuel oil because nature gas is

much ‘cleaner’ than fuel oil under environment restriction on emission of waste.

Therefore, fuel switching has been considered as an emission abatement means.

On the other hand, nature gas prices are much more expensive than fuel oil

prices based on per British thermal unit. Power producers may have to react to

the soaring price of natural gas by switching to cheaper, more environmentally

harmful fuel sources. Overall, to reduce power producers’ exposure to price

volatility or possible supply disruptions in the present deregulated environment,

industrial users are expected to increasingly seek the flexibility to switch fuels

using hybrid technologies. Motivated by this, this dissertation focuses on the

short-term switchable units.
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2.1.3 Overfire

Overfire is an ability to generate power over the upper bound of a unit’s

production capacity (qmax) under the normal conditions. The disadvantage of

overfire is that the unit may wear out more quickly because the overfiring temper-

ature inside the unit is much higher than the designed one in normal conditions.

This is also the reason why a unit is not allowed to overfire continuously for a

long time period. Therefore, a unit that overfires frequently will require more

frequent maintenance. In addition, there also exists an upper limit (qover) for

the overfired production level due to the damage effects of high temperature.

Normally, qover is different from unit to unit and it is usually about 5 ∼ 20%

over qmax. In a volatile market, overfire can be viewed as a real option ( the

concept of real options is reviewed in Section 2.4), which can be exercised when

the benefit outweighs the cost of outage due to maintenance. Fig. 2.1 shows a

typical production schedule of a unit with overfire capacity.

Furthermore, overfire can be regarded as a compound options (an option of

options), because the a unit can be overfired only when it has been on-line. In

other words, overfire options cannot be isolated from the real option of turning

on/off the power plant.

In a regulated world, overfire is only used as a temporary remedy in emer-

gency. For example, when a large unit is shut down suddenly due to a serious

malfunction, and operators cannot obtain enough spinning-reserved capacity or

turn on the other units in a short time to meet the demand load, a simple and

efficient way is to overfire some on-line units to meet the demand without delay

and startup costs. After deregulation, the demand constraints do not exist any

more especially for some peak-load units controlled by individual owners, who

10



0                 5                 10                 15                20

Time (Hours)

Output

qover

qmax

qmin

Figure 2.1: An example of production schedule for an overfired unit.

produce for profit. In this situation, overfire can be viewed as a useful option if

exercised properly.

There are two types of overfire processes in thermal power generation units

as follows:

1. Similar to the fuel switching process (especially for large-scale units), two

fuels can be burned to generate power. One fuel is assumed to be consider-

ably more expensive and provides additional capability. In this sense, the

fuel cost function will also change correspondingly during overfire.

2. Only one kind of fuel is burned, but additional capacity is provided by

additional fuel (particularly for small-scale units). The fuel cost function

will not change.

In this dissertation, overfire is assumed to be the latter case for small-size power
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generation units. The capacity of overfired units can be improved around 5 ∼
15% over qmax by adding the same additional fuel.

The overfire decisions involve the amount of power to be added and the

times at which they should be added. Typically, the overfire options should be

exercised without any hesitation once they are profitable in the short run. How-

ever, in the long run, overfire may increase maintenance cost and maintenance

frequency at the same time, which may cost more than the profit made from

overfiring. Therefore, overfire options must be considered in conjunction with

maintenance constraints. That is, the value of the overfire options should be

incorporated in the asset valuation framework to maximize the total profit of a

thermal generation unit. Omission of the option value of overfire may result in

over or under valuation of power plants.

2.1.4 Maintenance of thermal units

For a thermal generation unit, whether a steam turbine (ST) or a gas turbine

(GT), maintenance in time is always one necessary operation to keep the unit

working economically and reliably. A typical maintenance process of thermal

unit includes: (1) let the unit cool down; (2) clean all working parts; (3) test hot

section components; (4) replace ineffective ones with new parts; (5) reassemble

the unit and lubricate it.

In this dissertation, we do not consider the detailed maintenance process

and how to improve the reliability of thermal units, but only focus on how to

minimize maintenance costs while preserving service safety.

The maintenance cost consists of the following two parts:

1. Direct cost: including the salary of maintenance crews, the cost of new

12



parts and some resources and utilities, such as electricity, gas and water.

2. Indirect cost: during the time period of maintenance interval, the unit has

to stay off. That means loss of many hours for generating power and the

corresponding revenue.

In power industry, maintenance itself is a complicated problem, especially for

a large unit (Shahidehpour and Marwali 2000). A maintenance manager must

consider many factors, including crew availability, resource availability, seasonal

limitations, desirable schedule, and reliability check, before making any mainte-

nance plan. In order to simplify maintenance constraints, we transform all these

constraints into a maintenance contract, which is common in small-scale units

and will be discussed in detail in Chapter 6. The payment of the maintenance

contract can be viewed as maintenance cost. In this dissertation, a valuation

framework is developed for determining the value of thermal generating unit

while considering maintenance contracts, overfire options and other operation

constraints in the competitive power market.

2.2 Multivariate linear regression

The multiple regression model is typically generalized to handle the pre-

diction of several dependent variables. To illustrate the model, we may let

x1, x2, · · · , xn be n dependent variables related to a response variable y. The

linear regression model with a single response takes the following form:

y = a0 + a1x1 + · · ·+ anxn + ε (2.1)

The term linear regression refers to that the right hand side of (2.1) is a linear

13



function of the unknown parameters a0, a1, · · · , an. It is not necessary for the

predictor variables to enter the model as first-order terms.

When we have m independent observations on y and the associated values of

x1 to xn, the complete model becomes

y1 = a0 + a1x11 + a1x12 + · · ·+ anx1n + ε1

y2 = a0 + a1x21 + a1x22 + · · ·+ anx2n + ε2

...
...

...

ym = a0 + a1xm1 + a1xm2 + · · ·+ anxmn + εm

(2.2)

where the error terms ε are assumed to have the following properties:

• E(εi) = 0;

• var(εi) = σ2;

• cov(εi, εj) = 0, i 6= j.

The purpose of the regression analysis is to develop a functional relation

that will allow the investigator to predict the response for given values of the

predictor variables. Thus it is necessary to fit the model (2.2) to the observed y

and the associated x. That is, we must determine the values for the regression

coefficients a and the error variance σ2 consistent with the available data. The

value of a can be obtained by the following formula derived from least squares

estimation:

A = (XT X)−1XT Y (2.3)
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where A = (a0, a1, · · · , an)T , Y = (y1, y2, · · · , ym)T and

X =




1 x11 x12 · · · x1n

1 x21 x22 · · · x2n

...
...

...
...

...

1 xm1 xm2 · · · xmn




Let Ŷ = (ŷ1, ŷ2, · · · , ŷm)T = XA denote the fitted value of Y , ȳ =
∑m

i=1 yi/m

be the average value of Y . Thus, the quality of the model fit can be measured

by the coefficient of determination

R2 =

∑m
i=1(ŷi − ȳ)2

∑m
i=1(yi − ȳ)2

(2.4)

Here R is called the multiple correlation coefficient. When R is close to 1, it

means that the fitted equation passes through most of the data points. On

the other hand, when R is close to 0, it represents the dependent variables

x1, x2, · · · , xn have no influence on the response.

2.3 DCF analysis

Before the electricity industry move toward deregulation, electricity prices

were set by the regulators based on the cost of service. At that time, the eco-

nomic viability of investment in power generation units could be determined

by a traditional economic evaluation, so called the discounted cash flow (DCF)

method (e.g., Riggs et al. 1996). The DCF method identifies estimated cash

flows over time, and then discount the cash flows back to the present with cri-

terion of net present value (NPV). NPV represents the difference between the

present value of the discounted cash flows and the investment costs. If the NPV
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is positive, the investment is accepted, otherwise, it is rejected. In the research,

the corresponding NPV can be determined by this DCF analysis coupled with

a simulation model that produces the projected cash flow of a generation unit

under some loads. For example, a cash flow stream (x0, x1, · · · , xT ) that spans

over time period [0, T ], the NPV is as follows:

NPV =
T∑

t=0

xt

(1 + r)t
(2.5)

where r is the discount rate per time period.

DCF method assumes that the investment opportunity is not reversible and

is a now or never opportunity. That means new information and future opportu-

nities are ignored. Therefore, DCF often underestimates the value of investment

strategies. Although DCF method tends to undervalue assets in the presence of

uncertainty since that approach tends to ignore the value of real options, such

as turning off a plant when the price is too low, this analysis can still helpful

and play a role in valuing a power plant in the current electric industry.

2.4 Options theory

A brief introduction to options theory will be given in this section. A more

thorough introduction can be found in classical textbooks, such as Luenberger

(1998). Some basic concepts about options theory in finance are stated as follows:

• Option: an option is defined as the right, but not the obligation, to buy

(or sell) an asset under specified terms (e.g., Luenberger 1998; Hull 1999).

Usually there are a specified price and a specified period of time over which

the option is valid.
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• Call option: A call option gives the right to purchase something.

• Put option: A put option gives the right to sell something.

• Exercise price (or strike price): For each option, usually there is a specified

price (called an exercise price or strike price) at which the underlying asset

can be purchased or sold upon exercise of the option and within a specified

period of time over which the option is valid.

• American option: An American option allows exercise at any time before

and including the expiration date.

• European option: A European option allows exercise only on the expiration

date.

• In the money or out of money: A call option is called in the money, at the

money, or out of the money, depending on whether the underlying asset’s

price is greater than, equal to, or less than the exercise price; whereas put

options have reverse terminology, since the payoff at exercise are positive

only if the asset’s price is less than the strike price.

For example, consider a call option that allows you to buy a specified stock

at exercise price K at some future time T . This option will be valuable if the

stock price at T , denoted by S(T ), turns out to be higher than K. The call

option can be exercised by buying the stock at K and then reselling the stock

back to the market at a profit of S −K. However, if the stock price falls below

K at T , this call option is virtually worthless then.

In general, an option provides an opportunity for the decision-maker to take

some action after uncertainties are revealed. For example, the owner of a call
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option will exercise the option only after learning that the stock price S(T ) is

greater than K. Again, to determine whether holding this option is worthy the

expected option payoff should be compared with the cost to acquire the option.

Note that risk preference can be taken into account through either the discount

rate or the probability measure.

In the recent, the concept of options has been extended toward a variety of

areas other than financial contracts. One of the most popular subjects is known

as real options valuation. Real options allows evaluating the investment tak-

ing into account the value of flexibility embedded in real operational processes,

activities, or investment opportunities that are not financial instruments (e.g.,

Trigeorgis 1996). Typically, a real option gives the option holder the right but

not the obligation to take an action in the future. An embedded real options

in valuing electric generating units is one immediate example of real options

because turning on/off a power plant is an obvious real option in the volatile

marketplace. It is no doubt that a power plant owner would only exercise the

operational right at time t when the electricity price less generating fuel cost

is positive at that time. A spark spread call option is an option that yields its

holder the positive part of electricity price less the production cost at its matu-

rity time. Therefore, the value of the underlying power plant can be estimated

by summing up a set of spark spread call options with maturity time spanning

the lifetime of the plant (e.g., Deng 1999).

Another recognition of real options theory is that the most valuable invest-

ment opportunities may come with uncertainty (Ameram 1999). Its focus is

strategic investment and operating decisions. Some types of real options are

given below (Trigeorgis 1996):
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• Option to defer: enables management to defer investment and benefit from

more information. It is an American call option where the investment is

the exercise price and value of underlying asset is the operating cash flow.

• Option to expand: is a call option to acquire an additional part of the base

project, paying the investment as exercise price.

• Option to contract: is to reduce the production if market conditions turn

bad. It is a put option on part of the base sale project with exercise price

equal to the potential cost savings.

• Option to abandon: is to abandon a project when the market conditions

turn bad in order to avoid loss. It is an American put option on the

project’s current value with an exercise price of the salvage value.

• Option to switch: is the possibility to switch one input to a cheaper input

or one output to a more profitable output as the prices of input and output

fluctuate.

More discussions on real options can be found in Chapter 3 of literature

review.

2.5 Least squares Monte Carlo method

The least squares Monte Carlo (LSMC) approach was first introduced by

Longstaff and Schwartz (2001) to value American-like financial options. As well

known that standard simulation programs follow forward algorithms to generate

the paths of state variables over time. It is not enough to value American-like

options purely by the forward algorithms, and generally a backward algorithm
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is required to look for the optimal exercise strategy due to the property of early

exercise.

At any exercise time, the holder of an American option compares the payoff

of immediate exercise with the expected payoff from retaining it, then exercise if

the immediate payoff is higher. The holder can get the highest expected payoff

by doing so, thus it is the optimal exercise strategy, which is fundamentally

determined by the conditional expectation of the payoff from continuing to keep

the option alive. The key characteristics is that the conditional expected function

can be estimated from the representational information in the simulation by

using least squares regression. The realized payoff from retaining the option are

regressed to estimate the parameters of the conditional expected functions. The

fitted value of this regression is an efficient unbiased estimate of the conditional

expected function. By estimating the conditional expectation function for each

exercise time period, we can obtain the optimal exercising rule along each path.

To apply the LSMC method to generation asset valuation problem, consider

the following (generic) multi-stage stochastic program. Assume that at unit state

xt at time t, the uncertainty Qt is revealed. After observing Qt the decision

maker (i) must realize the current asset value ft(xt,Qt); and (ii) can maximize

the expected value of the unit for the rest time periods by making decision vt.

Let Ft(xt, Vt;Qt) be the value-to-go function of the unit for the remaining period

at state xt at time t with operational option set Vt. Then this problem can be

formulated as the following recursive relations:

Ft(xt, vt;Qt) = ft(xt,Qt) + max
vt∈Vt

Et[Ft+1(xt+1, vt+1;Qt+1)] (2.6)

where Et denotes the expectation operator, and the subscript t indicates that

the expectation is based on the available information for uncertainty at time t,
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and t ∈ [0, T − 1], T represents the length of the unit’s lifetime. The last term

in (2.6) with the expectation operator defines another stochastic program to be

considered in the subsequent time period. Also the optimization problem in

(2.6) is subjected to a set of operational constraints. When boundary conditions

FT and initial conditions x0, v0 and Q0 are given, the optimal value of F ∗,

representing the maximal expected unit value with operational option set Vt

over the period [0, T ], can be obtained from the last step of recursive relation as

F0(x0, v0;Q0).

The difficulty for solving (2.6) comes from the last term Et[Ft+1(xt+1, vt+1;Qt+1)],

which in general cannot be expressed in an analytical form. This term, however,

can be approximated using the LSMC method. Through simulating a set of

random variables, the expected value yields the least square error. Thus the

expected value of Ft+1(xt+1, vt+1;Qt+1) can be approximated by a conditional

expected function θt(xt,Qt) that regresses Ft+1 on the revealed uncertain data

Qt. The functional form θ(·) can be obtained by the linear regression method

treating xt and Qt as the predictor variables and θt as the corresponding response

variable. The Monte Carlo method is used to generate the observations of θt and

the associated values of Qt. Once Qt is realized, for any state xt at time t, one

would know how to make optimal decisions for the next time period based on the

above regression function θt(xt,Qt). This is the basic idea of the LSMC method.

The above LSMC approach will be used to solve other complex asset valu-

ation problems similar to (2.6) in this dissertation. Like other regression-based

methods, the most difficult part of LSMC method is to find the suitable basis

functions of the relevant state variables, which may affect the regression quality

significantly.
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Chapter 3

Literature Review

In this section, a complete review will be given the subjects related to the

valuation of a thermal power plant in the present electric industry, including

research on unit commitment, real options, and asset valuation etc.

3.1 Unit commitment problem

3.1.1 Deterministic unit commitment problem

In power industry electricity is a non-storable commodity and needs to be

produced and consumed at the same rate. It is very important to determine when

to switch generating units between on and off mode, in order to schedule a group

of generators over a set of time periods to satisfy a series of constraints at least

cost (Baldick 1995). The decision problem of optimally scheduling the operation

of generating units is known as the unit commitment (UC) problem (Wood and

Wollenberg 1996). In a typical UC problem, especially for thermal units, the

objective is usually to minimize the total generating cost of a power system

over the planning horizon and to come up with the detailed generating schedule
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involving when to start up or shut down and generation levels in each time period

for each generator simultaneously (Bard 1988). The constraints usually include

demand constraints, spinning reserve constraints, capacity constraints, minimum

up/down time constraints and ramp constraints etc. These restrictions make the

unit commitment complicated and become a difficult mixed integer program (Lai

and Baldick 1999). The NP-hardness of the unit commitment problem has been

rigorously proved in literature (Tseng 1996).

UC is a short-term planning problem with a time horizon ranging from a

day to a week and considers unit operation on an hourly basis. As opposed

to the short-term UC problem, there are also mid-term and long-term planning

problems. The time horizon for a mid-term planning problem could be a month

or a quarter, which is suitable to manage hydro units. For a long-term problem,

the time horizon could be a year or a decade, especially useful for the electric

utility planning and the study of the cyclical natures of electricity markets (Marin

and Salmeron 1998; Louveaux 1988).

Generally speaking, the UC problem is usually very complex to solve because

it has both on/off combination and continuous production level optimization

components. Some coupling constraints, especially ramp constraints, make this

problem even more complicate.

3.1.2 Stochastic unit commitment problem

In a regulated environment, the UC problem is independent of the price

of electricity, which is predetermined by the customer demand and the total

generating capacity. In this sense, the decisions on how to operate the generating

units have no effect on the total revenue of the company. The maximum profit is
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guaranteed by the minimization of the production costs (Sheble and Fahd 1994).

However, the price of electricity is not predetermined any more under dereg-

ulation (Galiana and Ilic 1998). When restructuring is completed, the utility

company will be under no obligation to serve any or all of the demand. For

example, the power generating utility has the option to turn off the units and

refuse to deliver the power when the electricity price in the spot market is so

low that its production cost cannot be recovered by its revenue.

Since the spot prices of electricity are highly volatile, the power industry will

no longer rely on traditional rules. The UC problem needs to incorporate a new

stochastic formulation considering load uncertainty and price uncertainties in

the spot market.

In literature, Allen and Ilic (1999) provided a new formulation of the unit

commitment problem in the deregulated environment. They discussed the sto-

chastic characteristics of the spot market prices derived from available data on

market-clearing prices, load, and covariates (temperature). Then Takriti et al.

(2000) developed a stochastic model for the UC problem in which the demand

and price uncertainties are introduced via a set of possible scenarios generated

by the MC method. Tseng (2001) mentioned that the prices of electricity and

fuel can be modelled by Ito processes. However, it is still a challenge to find an

efficient way to generate representative scenarios and to forecast price trend in

the future, because we may need many years of data, which may not be available.

Besides, the electricity price under deregulation could be highly volatile and the

history data may not affect the future price in some sense.
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3.1.3 Methodologies

Researchers have developed different methods for solving the UC problem.

Among these methods, priority list-based methods (Lee 1988; Chandler et al.

1953) are typical heuristic methods, which can commit available units in a pre-

determined order, but may yield a far from optimal, or even infeasible solution.

Dynamic programming methods can solve the UC problem efficiently (Hobbs et

al. 1987), but still suffer from the familiar curse of dimensionality especially when

the size of state space is large. Similar to the dynamic programming methods,

branch-and-bound methods can schedule a small power system within reason-

able time, but fail to solve real-world power system scheduling problems due to

the large size of the search space (Cohen et al. 1983; Dillon 1978). Lagrangian

relaxation (LR) based technique (Ferreire et al. 1989; Guan et al. 1992) seems

to be the most efficient and popular, because it attempts to solve the problem

indirectly by solving the dual problem. Zhuang and Galiana (1988) proposed a

simulated annealing approach to obtain dual optimal solutions, but the corre-

sponding reserve-feasible commitments are not guaranteed to be dispatchable.

To ensure the feasibility of solution, a new unit decommitment method is in-

troduced to not only improve the solution quality, but also be able to relieve

unpredicted heuristic effects and make the LR approach more robust (Tseng

1996). As to other methods, genetic algorithms (Kazarlis et al. 1996; Cheng et

al. 2000) have also been tried, but the results are not encouraging. A hybrid

method of genetic algorithms and neural networks, reported by Huang et al.

(1997), seems to produce reasonable results. Further references regarding the

UC can be found in the book of Wood and Wollenberg (1996).

Compared with the deterministic UC problem, there were few attempts to
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solve the stochastic unit commitment (SUC) problem in earlier periods, but sub-

ject to limitation in computer hardware. Recently, the SUC problem has been

solvable with advanced computers. Valenzuela et al. (2000) report on the statis-

tical analysis of hourly demand covering a region of the Eastern United States.

They have shown that when the effect of temperature is suitably subtracted from

the hourly load, such a process can represent the demand quite accurately. Both

Carpentier et al. (1996) and Takriti et al. (1996, 2000) use a set of scenarios

with associated probabilities to model the random electric load over the plan-

ning horizon. Thus the SUC problem is solved by minimizing the expected cost

of running the electric system while meeting the load of the different scenarios.

To decompose the stochastic model, Carpentier et al. (1996) relax the demand

constraints. As a result, each generating unit has its own separate stochastic dy-

namic programming. In Takriti et al. (1996, 2000), both electric and fuel price

uncertainty are incorporated in their model in addition to load uncertainty. The

cost function of each generator is allowed to change with fuel prices. That means

this model is a multi-stage, mixed-integer, stochastic program and each node in

the scenario tree carries information regarding the spot market prices of electric-

ity and fuel as well as the electric demand. Another approach also incorporates

uncertainties into the UC problem in a two-stage stochastic program (Caroe et

al. 1997). In the first stage, the on/off decisions are made, while the generating

level of each unit is determined by the second stage.
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3.2 Real options

3.2.1 Overview

In literature, many applications of real options (or flexibility) have been

identified and valued by researchers. It is well recognized that flexibility has

value because of uncertainty, and the higher uncertainty in the payoffs of an

investment, the higher value of real options is (Dixit and Pindyck 1994).

The real options approach applies derivative pricing theory to the analysis of

options opportunities in real assets. For example, suppose an investment would

be profitable at the average price, but not at the lower price. The decision

maker can postpone her decision and collect more information about actual

price movement. She invests if the price has gone up, but not if it has gone

down. Thus it avoids the loss if she had invested in the very beginning and then

seen the price go down. This value of waiting option must be traded off against

the loss of profit flow during the waiting time period (e.g., Dixit and Pindyck

1994).

As an extension of financial theory, the real options theory may use the

methods in financial options, which cannot always be applicable because the

option pricing method requires that the underlying asset is tradable while the real

assets are not always tradable. However, according to Copeland and Antikarov

(2001), the options valuation and the portfolios of traded securities are still

usable, if we adopt same assumptions used by DCF approach which attempts to

determine what a project would be worth if it were to be traded.

Besides, most of investments in real life are not restricted to only one type

of real options. Typically, there exist complicated interdependencies between
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options, such as compound options, which can not be valued individually or sep-

arately, because the exercise of an option may influence other existing options

or even incur a number of new options. It is difficult for researchers to find

analytical expressions for these complicated options, but approximate solutions

could be achieved through numerical techniques. To evaluates interrelated op-

tions, Herath and Park (2002) develop a binomial lattice framework to model

a multi-stage investment as a compound real options. Kulatilaka (1995) shows

that the value of a collection of interdependent options is less than the sum of

individual options. Similarly, Trigeorgis (1993) finds that the value of a set of

options generally deviates from the sum of the values of each individual option.

The incremental value of an additional option when other options are present is

generally less than the value of the options when it is valued individually.

3.2.2 Applications of real options in electric industry

Since Black and Scholes (1973) and Merton (1973) presented their work on

option pricing theory, many application areas, including valuing complex finan-

cial securities and valuing real options, have been found. Especially after the

electric industry is moving toward restructuring, in which electricity prices be-

come extremely volatile and significant financial risks are introduced, the real

options approach can be a useful tool to take into account the flexibility in

strategic decision-making and operation management in power industry.

In the context of electricity producing firms, real options theory can be used

as a method of identifying and quantifying the contingent decisions embedded

in owning generation assets (Hlouskova et al. 2002). Applications of the real

options approach fall into two broad categories:
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• Operational options - those related to the UC problem such as fuel switch-

ing capabilities, overfire options, locational arbitrage on regional prices, ar-

bitrage between energy and ancillary services markets (Griffes et al. 1999).

For example, in the operation stage, the option value of a generating unit

can be modelled as a series of call options on the spread between electricity

prices and variable costs (Deng et al. 1999).

• Capital investment options - those related to the acquisition of new plants

or the extension of current plants. The investors will exercise such options

if the market value of the generation unit exceeds the construction cost or

if the extra revenue after the expansion exceeds the expansion cost.

Edleson et al. (1995) analyzed the actual investment decision of a utility

using real options, in order to find a suitable alternative from buying or selling

pollution allowances, installing scrubbers or switching to low-sulphur coal for a

particular coal-fired power plant to account for the pollution levels. Hsu (1998)

compared the spark spread call and put options with financial instruments in

order to mitigate exposure to both electricity and gas price risks. Thus the spark

spread options conveniently tie the power and gas price movements. Pereira et

al. (1999) developed some basic ideas, such as methodologies and computational

tools on real options theory to handle risk and uncertainty in investment planning

both in traditional power sector and in the competitive environment. Chaton

et al. (1999) discussed how uncertainty affects investment in power market,

if given the uncertainty of demand, the natural gas price and the possibility

of electricity sales between regions. Min (2000) illustrated various options of

capacity expansion and capacity reduction, and evaluated the values of options

for a utility that has two inter-related generation units. Frayer et al. (2001)
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calculated the value of two plants, one of which is peaking gas-fired plant, the

other is mid-merit coal-fired plant, and shown that the gas-fired plant has a

higher value taking into account its operation flexibility using real options theory.

Similarly, Ajax et al. (2000) applied real options theory to analyze the investment

decision on a hydropower and a thermal power plant. The exercise price is

the investment of each plant and the utility’s revenue is collected by selling

electricity both in forward contracts and in spot market. For each plant, the

investor calculates the option value and decides whether to keep the option alive

or delaying the investment, or to exercise it.

3.3 Asset valuation of power generation units

3.3.1 Overviews

The asset value of a power plant can be regarded as the total profit (revenue

less cost) of generating power over its life time. The revenue is dependent upon

the electricity prices, which are determined by the electric spot market. The

cost consists of mainly two parts: one is the production cost (90 ∼ 95%), the

other is maintenance cost (5 ∼ 10%). In order to maximize the total profit

of a unit, we need to find optimal commitment, production and maintenance

schedules under price uncertainties considering both production constraints and

maintenance constraints.

Before deregulation, the method of the net present value (NPV) is widely

used in valuing a power generating asset or investment. The economic viability

of such investment can be determined by means of a DCF method (e.g., Dixit and

30



Pindyck, 1994), but the result tends to underestimate the value of power plant

because of ignoring the value of real options associated with the investment.

With the development of financial and physical markets for electricity after

deregulation, the value of a power plant can be modelled as a set of financial

instruments on electricity (Deng et al. 1998; and Hsu 1998). The idea of their

approaches is as follows: a power plant can generate electricity by consuming a

particular fuel with its associated heat rate. When the electricity price is high but

the fuel price is low, the power plant should turn on to collect the profitable price

spread between the electricity price and the generation cost of the unit. If the

price spread is negative, then the unit should stay off. Therefore, the value of a

power plant can be regarded as a series of call options of spark spreads, defined as

the electricity price less the product of the heat rate associated with the generator

and the fuel price. Although the option-based valuation provides a much better

result than does the traditional DCF valuation, it overlooks the power plant’s

operational constraints, such as minimum up/down time constraints and ramp

constraints. This may lead to overvalue a power plant.

In Tseng and Barz (1999, 2001), a MC method is introduced to value the

power generating units with physical constraints including ramp constraints over

a short-term period. Although the computational speed of this approach is not

fast, its result of valuation is closer to the “true” value than the financial op-

tions methods. Similarly in Gardner and Zhuang (2000), employs a real options-

based stochastic dynamic programming method to value power plants consid-

ering operational characteristics including minimum up/down time, ramp rate,

non-constant heat rate and response rate. Their numerical results also show

that operating constraints have a significant impact on power plant values and
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optimal operating policies.

Understanding the value of the operating flexibility is important for mak-

ing investment decisions in power industry, especially when the environment is

highly volatile and new technology also emerges quickly. For example, when fac-

ing unexpected stochastic prices, a generator with operating options can protect

itself against some of the adverse price movements by switching to an alter-

nate model of operation (e.g., Kulatilaka 1993). Cohen and Ostrowski (1996)

discussed different operating modes including combined cycles, fuel switching,

overfire and duel boiler, but did not consider them from the perspective of op-

erational options, and did not consider their values. To my best knowledge,

there are relatively few papers in the domain of valuing the operating options of

power generating units especially incorporating the operational constraints. The

fuel-switching flexibility of a duel-fuel steam boiler has been valued in Kulatilaka

(1993), which may shed some light on future research about the valuation of the

operating options. As to the overfire options, no literature has been found.

Although there is a great deal of literature on maintenance issues, most of

them are regarding maintenance scheduling. A recent comprehensive review

for maintenance scheduling can be found in Shahidehpour and Marwali (2000).

They provide a general framework for achieving trade-off between minimizing

the maintenance cost and preserving the service reliability.

3.3.2 Valuation methods

Currently methods for asset valuation can be roughly classified into two types:

DCF methods and options-based methods. Because the traditional DCF method

ignores the value of operating flexibility and strategic option, the real options-
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based methods have become increasingly popular (Trigeorgis and Mason 1987).

Numerous methodologies (see, for example, Dixit and Pindyck 1994; Trigeor-

gis 1995; and Feurstein 2000) in the domain of real options have been developed

to calculate the value of options. Although some valuation techniques in finance

can be used directly in some specific cases, most of real option pricing prob-

lems need to resort to approximation methods because the underlying stochastic

process becomes multivariate due to the interaction of several types of uncer-

tainties. Among these numerical methods, discrete tree/lattice models, finite

difference approaches, and the MC simulation are widely used.

Cox et al. (1979) introduced discrete tree/lattice models to represent stochas-

tic processes in option valuation. To generate a binomial price lattice, we need to

know initial price of the asset, which is assumed to be multiplied by either the up

factor u, or the down factor d, the choice should be made according to the cor-

responding possibilities p and 1− p. The option value at expiration is computed

by boundary conditions and all the other nodes in the option lattice are calcu-

lated sequentially by working backward through the periods (e.g., Luenberger

1998). The trinomial models can also be developed similarly for generation as-

set valuation problems (Tseng and Lin 2004). They develop a framework for

generating discrete-time two-factor price lattices for two general correlated Ito

processes: electricity and fuel prices. In Gardner and Zhuang (2000) and Hull

and White (1994), the price processes for electricity and fuel are also modelled

as a two-factor lattice, which allow fuel prices to be stochastic and make it pos-

sible to model the spark spread directly if the power plant heat rate is assumed

to be constant. Although the lattice models are easy to be implemented, they

still need to face the curse of dimensionality, especially when the option is path
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dependent and the time horizon is long. If extended to three-factor problems,

the lattice model becomes almost infeasible due to the increased dimensionality.

Parallel to lattice/tree model, there exists an alternate approach, finite dif-

ference methods (FDM) (e.g., Schwartz 1977; Brennan and Schwartz 1978). The

basic idea of FDM is to approximate the solution of the Black-Scholes partial

differential equation to calculate the option prices using numerical techniques.

All state variables are discretized, the boundary conditions are determined by

the value of contingent claim at expiration, and the first and second derivatives

are replaced by a finite difference approximation. Then the option price is solved

backward by using a discretized partial differential equation that represents the

valuation equation. In the domain of valuing electric power generators, a gen-

eral framework for the valuation based on partial-integro-differential equations is

developed by Thompson et al. (2004). This method can handle both European-

like options and American-like options, and achieve high levels of computational

speed, but it cannot treat path-dependent options, and cannot be extended to

multi-factor problems either.

MC simulation is one of the most popular methods to value options. Based on

the idea that the probability distributions of underlying asset values are approx-

imated by simulating price trajectories, Boyle (1977) proposes MC simulation

procedures for European option valuation. Recently, several efforts have been

taken to extend MC simulation techniques to value real American-like options.

Tseng and Barz (1999, 2002) provide a valuation model for short-term gener-

ation asset based on MC simulation. Longstaff and Schwartz (2001) discussed

the solving process of American-like options, in which the criteria of the optimal

option exercise in backward induction was introduced and a detailed review on
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valuing American-like options via MC simulation was also provided. The main

drawback of the MC technique is that the simulation process is time consuming,

but its major advantage is that MC methods can accommodate general price

processes and can be extended to multi-factor problems easily. For example, in

Chapter 5 a MC-based approach, integrated with stochastic dynamic program-

ming, is proposed to value a thermal generation unit with fuel-switching options

involving three uncertainties: electricity, gas and oil prices.
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Chapter 4

Optimal Self-Scheduling Problem

4.1 Problem description

Unit commitment (UC) is an important optimization problem for power util-

ities to economically schedule generating resources to achieve cost minimization

in the regulated environment (e.g., Tseng 1996). Although the electricity indus-

try is moving toward deregulation, the importance of the UC does not diminish

along with the restructuring trend. On the other hand, new features and re-

quirements are now considered in UC models such as price uncertainty, which

significantly increase the complexity of the problem (e.g., Hobbs et al 2001).

Some centralized markets (such as the PJM) still perform UC-like optimization

to conduct electricity auctions.

Among the methods that have been proposed to solve the UC problems, the

Lagrangian relaxation (LR) methods are the most widely used ones. One nice

feature of the LR approach for solving the UC problem is its decomposition of

the centralized problem into decentralized unit subproblems, which are linked

by Lagrange multipliers. Under the assumption of competitive market, the mul-
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tipliers can be viewed as the market prices and each unit subproblem represents

a profit-maximizing commitment decision-making for the unit in response to the

market prices. In this chapter, we focus on thermal units and discuss optimiza-

tion of a decentralized unit subproblem, called the self-scheduling problem (SSP),

which refers to optimal scheduling of a single unit in response to price changes in

the spot market, subject to operational constraints, where the demand constraint

is left out, because nobody needs to take the responsibility to satisfy the electric

demand in the competitive market. In an SSP, the operator of a power plant

intends to maximize total profit by optimally committing the unit to generate

power to sell in a spot market, since no participants have the capabilities to alter

spot prices. The unit commitment is subject to physical constraints including

the ramp constraints. These operational constraints can impact the capability

of how the unit can quickly respond to profitable opportunities. The solution

procedure developed in this chapter can be used to help independent power pro-

ducers achieve optimal commitment and dispatch decisions in the competitive

marketplace. It can also contribute to the traditional UC optimization.

Ramp constraints limit the capability of a unit to the change generation levels

over a short period of time. They can have significant impacts on the solution of

the SSP. When subject to the ramp constraints, the generation levels of a unit

become interdependent in all hours, which complicates the solution procedures.

Thus far, in the LR approach the ramp constraints have only been dealt with by

further relaxation (Svoboda et al 1997), discretization of the generation levels

(Bard 1988), or other methods (Guan et al 1992 and Lai and Baldick 1999). None

of these approaches can achieve optimality of the SSP, or achieve it efficiently.

More discussions of these approaches will be given in the next section.
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Arroyo and Conejo (2000) proposed a rigorous approach using a mixed linear

integer programming (MILP) method to solve the SSP with ramp constraints.

Their approach is general and does not assume convexity of operating costs.

However all nonlinear cost structures need to be linearlized. Although the

method produces a satisfactory result for a 24-hour test case, it may not be ap-

plicable to larger cases, such as 7-day ones, in unit commitment. This is because

the MILP solvers (e.g., CPLEX used in their paper) are based on branch-and-

bound or branch-and-cut searches, whose computational complexity normally

increases exponentially with the problem size.

In this paper, we first tackle the SSP by assuming the spot prices are known

with certainty, same as in Arroyo and Conejo (2000). A network graph method

is proposed to solve the SSP with the ramp constraints. We will show that

under the convexity assumption, the ramp-constrained SSP is not NP-hard by

presenting an efficient polynomial-time algorithm. Our proposed algorithm can

guarantee the optimality of the solution without discretizing the generation lev-

els and linearizing the cost functions. Because of its efficient polynomial-time

complexity, the proposed method can be incorporated in large-scale UC related

problems.

Price uncertainty is then introduced to the SSP via price scenarios generated

by the Monte Carlo method. The optimal (deterministic) ramp-constrained SSP

is solved for each scenario. A linear regression- based method is developed to

devise the optimal unit response strategy under the ramp constraints and the

price uncertainty.
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4.1.1 The mathematical formulation

This section presents a mathematical model for the optimal unit response

problem to spot prices. The following standard notation will be used. Additional

symbols will be introduced when necessary.

t : index for time (in hours), t = 0, · · · , T , where T is the number of hours of

the operating period.

τ : unit startup time.

ν : unit shutdown time.

ut : zero-one decision variable indicating whether unit is up or down in time

period t.

ũ0 : initial condition of ut at t = 0.

xt : state variable indicating the status of the unit in time period t (length of

time unit has been up or down).

x̃0 : initial condition of xt at t = 0.

ton : the minimum number of periods the unit must remain on after it has been

turned on.

toff : the minimum number of periods the unit must remain off after it has been

turned off.

tcold : the number of periods required to cool the unit from shutdown(tcold ≥ toff).

qt : variable indicating the amount of power the unit is generating in time period

t.
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q̃0 : initial condition of qt at t = 0.

qmin : minimum rated capacity of the unit.

qmax : maximum rated capacity of the unit.

∆ : ramp rate of the unit.

C(qt) : fuel cost for operating the unit at output level qt in time period t.

S(xt) : startup cost associated with turning on the unit at state xt in time period

t.

λt : spot price at time t for electricity.

µt : spot price at time t for spinning reserve.

The SSP is formulated as a mixed-integer programming problem. The ob-

jective is to maximize the total profit:

(P0) min
u,x,q

T∑

t=1

(λtqt − C(qt))ut + µt(q
max − qt)ut − S(xt−1)ut(1− ut−1) (4.1)

where revenue is collected from selling electricity to the spot market and provid-

ing spinning reserve. Note that the symbols in bold face are vectors. We assume

that the spot prices and are deterministic and are known. This assumption will

be relaxed in Section § 4.3.

To describe the power plant operation, let Φ be the set of states that is

composed of four subsets of states: Φ1 for the startup period, Φ2 for the normal

operation period, Φ3 for the shutdown period, and Φ4 for the normal off-line

period.

xt ∈ Φ = Φ1 ∪ Φ2 ∪ Φ3 ∪ Φ4 (4.2)
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where Φ1 ≡ {1, 2, · · · , τ} (4.3a)

Φ2 ≡ {τ + 1, τ + 2, · · · , τ + ton} (4.3b)

Φ3 ≡ {−1,−2, · · · ,−ν} (4.3c)

Φ4 ≡ {−ν − 1,−ν − 2, · · · ,−ν − tcold} (4.3d)

The optimization is subject to the following constraints.

• State transition constraints:

xt+1 =





min(τ + ton, xt + 1), if xt ∈ Φ1 ∪ Φ2 and ut+1 = 1,

xt − 1, if xt ∈ Φ3 and ut+1 = 1,

max(−ν − tcold, xt − 1), if xt ∈ Φ4 and ut+1 = 0,

(4.4)

and

ut =





1, if − ν ≤ xt < τ + ton,

0, if − ν − toff < xt ≤ −ν − 1

0 or 1, otherwise,

(4.5)

• Ramp constraints:

If xt ∈ Φ1,

qt = qminxt/τ (4.6)

If xt ∈ Φ2,

|qt+1 − qt| ≤ ∆ (4.7)

qmin ≤ qt ≤ qmax (4.8)

If xt ∈ Φ3,

qt = qmin(ν + xt + 1)/ν (4.9)

If xt ∈ Φ4,

qt = 0 (4.10)
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• Initial conditions:

u0 = ũ0, x0 = x̃0, q0 = q̃0. (4.11)

Remark

Note that the equation (4.6) implies that when the unit is turned on, it takes

τ hours with a fixed increasing rate in generation qmin/τ to reach the minimum

rated capacity of the unit. Therefore, at xt = τ , qt = qmin. Similarly, (4.9)

implies that at xt = −1, qt = qmin. That means when an on-line unit is turned

off, its generation level has to be reduced to qmin first, then from qmin it takes

ν hours with a fixed decreasing rate in generation qmin/ν to reduce to zero. To

sum up, during the startup and shutdown periods, the unit continues to generate

power, but not as much as in the normal on-line period Φ2. Therefore, ut = 1

when xt is in Φ1, Φ2 or Φ3.

Problem (P0) is similar to a LR unit subproblem of the unit commitment,

in which λ and µ are Lagrange multipliers of the demand and spinning capac-

ity constraints, respectively. In the following section, we discuss some existing

methods for solving (P0).

4.1.2 Related methods

Wang and Shahidepour (1993, 1994) introduced an artificial neural network

(ANN) method incorporating dynamic programming (DP) to solve the ramp-

constrained unit commitment problems. Although the authors claimed that

they can obtain good results, the solution quality is significantly affected by the

training examples and categories. Also When the size of training set is increased,
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additional memory and training time required correspondingly. Also, using peak-

load units to accommodate the unit ramping characteristics may introduce errors

and solution feasibility is not guaranteed, let along the solution optimality.

Lee et al. (1995) claimed that ramp-rate constraints can be reflected by

hourly marginal ramp-rate price of generators and these marginal prices can be

achieved by a simple iteration algorithm. It seems that their method can improve

the solution quality to some extent, but cannot avoid infeasible or bad results

either.

In Bard (1988), a LR unit subproblem similar to (P0) was tackled. The au-

thor discretized the generation level qt to accommodate the ramp constraints.

With the discretized generation levels and the discrete states xt, the subproblem

is then solved using dynamic programming. The more refined the discretization

of the generation level is, the more precise the solution is and the greater state

space for the dynamic programming is required. A tradeoff between optimal-

ity and computational feasibility must be made. Since the discretization of the

generation level cannot be made to infinitely refined, this approach obtains only

a sub-optimal (or near-optimal) solution. However, the duality theory of the

LR approach holds only when each subproblem is solved to the exact optimal-

ity. Therefore, the approach using discretization to solve the ramp-constrained

subproblem is somewhat questionable in theory, although it is recognized to be

practically feasible (Peterson et al 1995).

To avoid solving a ramp-constrained subproblem, Svoboda et al. (1997) fur-

ther relaxed ramp constraints in the LR scheme, which incurred additional 2TI

Lagrange multipliers to the original 2T ones, where I is the number of units.

For example, a common test case with 10 units over a 7-day period would re-
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quire updating 3,696 multipliers simultaneously (as opposed to 336 multipliers

otherwise), which makes the dual optimization much harder to converge. Fur-

thermore, it can be shown that the duality gap increases when more constraints

are relaxed, indicating a potentially worse solution quality. Therefore, a method

that can directly solve a ramp-constrained LR unit subproblem to optimality is

very much in need.

Solving (P0) to optimality was first reported by Arroyo and Conejo (2000).

The authors made efforts to convert the minimum uptime/downtime constraints

to standard integer programming formulations and solved the problem to op-

timality using a commercial mixed-integer linear programming (MILP) solver

CPLEX. In order to use the MILP solver, the cost function C and the start

up cost S must be linearized. Their method does not assume the cost function

C to be convex. The authors reported a satisfactory test result for a 24-hour

instance. Although Arroyo and Conejo (2000) provide a means to solve the

ramp-constrained subproblem to optimality, their method may not be applica-

ble to larger-scale problems in UC. As we will show in the next section, under the

convexity assumption for the cost function C the ramp-constrained unit subprob-

lem is not NP-hard. We demonstrate a polynomial-time algorithm for solving

it. Given the fact that a polynomial- time algorithm exists, the branch-and-

bound (or branch-and-cut) based MILP algorithms become less appealing for

solving such a problem because its computational complexity normally increases

exponentially as the problem size (such as T ) increases.
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4.2 Algorithm development

In this chapter, we assume the cost function C to be a quadratic function:

H(qt) = c0 + c1qt + c2q
2
t , (4.12a)

C(qt) = H(qt)× P F , (4.12b)

where H(·) is the heat rate function, P F is the fuel price and is assumed fixed.

In the sequel, without loss of generality we will focus on solving the following

problem (P ), equivalent to (P0).

(P ) min
u,x,q

T∑

t=1

πt(qt)ut + S(xt−1)ut(1− ut−1) (4.13)

where πt is a concave quadratic function and (P ) is subject to (4.4) - (4.11)

including the ramp constraints. Note the spot price information is now implied

in the subscript t of πt. Next we will propose a method for solving (P ) that does

not require discretization of the generation level or linearization of the objective

function, and has a polynomial-time complexity.

4.2.1 A network graph approach

Consider a directed graph G(N ,A), where A and N are the sets of nodes

and arcs, respectively. N is defined as ∪T
t=0Wt, where Wt is the set of states at

time t:

Wt ≡ Φ1 ∪ Φ3 ∪ Φ4 = Φ\Φ2 (4.14)

That is, each node inN corresponds to a state of generating status. Note that Φ2

has been suppressed. In the remainder of this chapter, a node (of the network)

and a state yt (a counterpart of xt) are used interchangeably. A contains directed
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arcs only, each of which is incident from a state of some time period to another

state of a later time period. Detailed configuration is as follows.

• Arc from yt to yt+1

yt+1 =





yt + 1, if yt ∈ [1, τ),

max(−ν − tcold, yt − 1), if yt < 0,

1, if yt ∈ [−ν − tcold,−ν − toff ].

(4.15)

• Arc from yt1 to yt2 for every t1, t2 ∈ [0, T ] such that t2 − t1 ≥ ton

yt1 = τ, yt2 = −1 (4.16)

Since an arc satisfying (4.16) represents some normal operation period, it

is called an operating arc. Basically, the states in Φ2 are replaced by all

possible operating arcs in the proposed approach.

1. Nodal properties

Each node in N is associated with a generation level Qt(a counterpart of

qt), which is a function of the corresponding state yt and is subject to the

following constraints.

Qt(yt) =





ytq
min/τ, if yt ∈ Φ1,

(ν + yt + 1)qmin/ν, if yt ∈ Φ3,

0 if yt ∈ Φ4,

(4.17)

except that Q0(τ) = q̃0 and QT (−1) is a free variable between qmin and qmax.

Each node is associated with a profit(receipt) πt(Qt), which is collected

when the node is visited.

2. Arc properties
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• For each arc incident into yt+1 = 1 from yt, a transition cost S(yt) is

incurred, which represents a unit startup cost.

• For each operating arc, incident from yt1 to yt2 satisfying (4.16), a

profit f(t1, t2) is applied, where the profit f(t1, t2) is the optimal ob-

jective function value of the following parametric optimization prob-

lem, denoted by (Qt2
t1):

(Qt2
t1
) f(t1, t2) ≡ max

q

t2−1∑

t=t1+1

πt(qt) (4.18a)

s.t. qt1 = Qt1(τ) (4.18b)

qt2 = Qt2(−1) (4.18c)

−∆ ≤ qt+1 − qt ≤ ∆, ∀t ∈ [t1, t2 − 1] (4.18d)

qmin ≤ qt ≤ qmax, ∀t ∈ [t1, t2] (4.18e)

If (Qt2
t1) is not feasible, f(t1, t2) is assigned to be −∞.

3. Start node

A start node is the node in W0 that corresponds to the initial state x̃0. If

x̃0 ∈ Φ2, the start node is y0 = τ .

Clearly, each path in G from the start node to any node in WT corresponds

to a feasible ramp-constrained unit schedule, and vice versa. The corre-

sponding commitment and dispatch of a node on a path in G is defined by

(4.5) and (4.17). An operating arc between t1 and t2 implies that ut = 1

and qt are obtained from the optimal solution of f(t1, t2) for all t ∈ [t1, t2].

Therefore, solving (P ) is equivalent to finding a longest (or shortest) path

from the starting node to any node in WT .

Given a directed network, finding a longest (or shortest) path problem is an
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Figure 4.1: An example network graph with five time periods.
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easy task, which can be done efficiently using the dynamic programming.

The most efficient algorithm for finding a shortest path is the Dijvstra

method with O(T 2) arithmetic operations required (Murty 1992). Solving

(P ), however, includes developing the network graph G and evaluating all

costs associated with arcs. The part that demands the most computational

effort is the evaluation of (Qt2
t1) of all operating arcs. There are as many as

O(T 2) of problem (Qt2
t1) to be solved. Since πt(·) is assumed to be a con-

vex quadratic function, each (Qt2
t1) is a standard quadratic programming

problem with linear constraints, which can be solved in polynomial-time.

The best known result for solving a (Qt2
t1) is O(|t2 − t1|3K) (e.g., Kojima

et al. 1987; Monteiro and Adler 1989), where L is the problem size (Pa-

padimitriou and Steiglitz 1982). Therefore, the optimal solution of (P )

can be solved with no more than O(T 5K) arithmetic operations using the

proposed network graph approach.

Theorem The proposed network graph approach solves (P ) within a poly-

nomial time.

Remark

Problem (Qt2
t1) can be solved using commercial nonlinear programming solvers

such as LSGRG2 and MINOS. The former solver is incorporated in our numerical

tests. Note the algorithm complexity discussed defines algorithm performance

in the worst case. Therefore, in practice, a better complexity may be sought by

a more efficient implementation. In view of this, note that all operating arcs

are not necessarily unrelated. For example, f(t1, t2) and f(t1, t2 + 1) share the

same multipliers (or spot prices) from t1 to t2. Therefore, the optimal solution
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of f(t1, t2) can be used to create an initial feasible solution for f(t1, t2 + 1), e.g.,

incorporating with qt2+1 = qmin. Since the number of (Qt2
t1) to be evaluated is

large, such a “warm start” strategy can make significant savings of CPU time

(see Section 4 for numerical tests). In the next section, I will show how to

take advantage the special structure of the problem and develop a more efficient

algorithm.

In the next section, I will focus on solving (Qt2
t1) that is subject to (4.4) −

(4.11) including the ramp constraints. I will propose a method for solving (Qt2
t1)

that does not require discretization of the generation level, linearization of the

objective function, and is polynomial-time.

4.2.2 An active-set method for solving (Qt2
t1)

In this section, I will use an example to illustrate the basic idea of a new

algorithm For solving (Qt2
t1). Consider solving f(0, 15) denoted by (Q15

0 ), which

is summarized below.

(Q15
0 )

max
q1,···,q14

14∑

t=1

πt(qt) (4.19a)

s.t. qt−1 − qt −∆ ≤ 0, t = 1, · · · , 15 (4.19b)

qt − qt−1 −∆ ≤ 0, t = 1, · · · , 15 (4.19c)

−qt + qmin ≥ 0, t = 1, · · · , 14 (4.19d)

qt − qmax ≥ 0, t = 1, · · · , 14 (4.19e)

q15 = qmin (4.19f)

q0 = qmin (4.19g)

Let µt, ξt, αt and βt be the Lagrange multipliers associated with (4.19b), (4.19c),
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(4.19d) and (4.19e), respectively. The Lagrangian of the problem is defined as

follows:

L(qt, µt, ξt, αt, βt) =
14∑

t=1

πt(qt) +
15∑

t=1

(
µt(qt−1 − qt −∆) + ξt(qt − qt−1 −∆)

)
+

14∑

t=1

(
αt(−qt + qmin

t ) + βt(qt − qmax)
)

(4.20)

The optimality condition ensures that

∂L
∂qt

=
∂L
∂µt

=
∂L
∂ξt

=
∂L
∂αt

=
∂L
∂βt

= 0, ∀t (4.21)

and the complementary slackness condition for each constraint.

Starting with a feasible solution, the basic idea of the active-set method is

to determine the values of the Lagrange multipliers corresponding to the active

(or binding) constraints that satisfy the optimality conditions (4.21). If all the

multipliers for the active constraints (inequalities) are nonnegative, then the

feasible solution must be optimal. Note that (Qt2
t1) is a convex problem and its

optimal solution is unique. If the multiplier of an active constraint is negative,

it implies that the objective function value could have been improved, had that

constraint not been active. Therefore, one can search along the direction that is

strictly feasible with respect to that constraint alone to locate a better feasible

solution.

For illustrative purpose, consider a feasible solution {q̃0, · · · , q̃15}, which cor-

responds to the sixteen discrete generation levels shown in Fig. 4.2. If a ramp

constraint is binding between two consecutive hours, a solid line is depicted to

connect these two corresponding generation levels, otherwise a dash line is used.

In this example, the two dash segments separate the interval of concern into
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q
min

Figure 4.2: A feasible solution to Q15
0 .

three subintervals, [0, 4], [5, 9], and [10, 15]. Each of these three subintervals is

not coupled with any adjacent subinterval and can be treated independently.

These three subintervals also illustrate three categories of subintervals that can

cover all possible scenarios. They are discussed below.

• One-end fixed and nondegenerate (t ∈ [0, 4])

This subinterval has one end point (t = 0) whose generation must be set to

qmin. Because no other points except the end point has its qt equal to qmin or

qmax, this subinterval is called nondegenerate. The issue of degeneracy will

be discussed in more detail later. The corresponding optimality conditions

are as follows, with the multipliers corresponding to inactive constraints

ignored:

∂L/∂q1 = π′1(q̃1)− µ1 + µ2 = 0 (4.22a)

∂L/∂q2 = π′2(q̃2)− µ2 − ξ3 = 0 (4.22b)

∂L/∂q3 = π′3(q̃3) + ξ3 − µ4 = 0 (4.22c)

∂L/∂q4 = π′4(q̃4)− µ4 = 0 (4.22d)

One can solve µ4 from (4.22d), and then plug it to (4.22c) for ξ3, (4.22b)

for µ2, and (4.22a) for µ1. If a multiplier is negative, say ξ3 < 0, it means
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that it is an improving direction by further dividing this subinterval to two

subintervals, [0, 2] and [3, 4], i.e., replacing the corresponding solid line to

a dash line between t = 2 and 3. The subinterval [3, 4] then becomes one

with “both-end free,” to be discussed next.

• Both-end free and nondegenerate (t ∈ [5, 9])

In this subinterval, both end points are not tied to qmin and none of the

points is either qmin or qmax. We will also call such an subinterval as a free

subinterval. The optimality conditions are as follows.

∂L/∂q5 = π′5(q̃5) + µ6 = 0 (4.23a)

∂L/∂q6 = π′6(q̃6)− µ6 − ξ7 = 0 (4.23b)

∂L/∂q7 = π′7(q̃7) + ξ7 + µ8 = 0 (4.23c)

∂L/∂q8 = π′8(q̃8)− µ8 − ξ9 = 0 (4.23d)

∂L/∂q9 = π′9(q̃9) + ξ9 = 0 (4.23e)

In this case, one may solve µ6 first from (4.23a), then solve other multipliers

from top-down; or solve ξ9 first from (4.23e) and then move from bottom-

up. However, both results may not necessarily coincide. To avoid this,

for a free subinterval, one should always determine its optimal position

by performing parallel shift. For example, in this case one can solve the

following one-dimensional optimization problem.

min
δq

∑9
t=5 πt(q̃t + δq) (4.24a)

s.t. |q̃5 + δq − q̃4| ≤ ∆ (4.24b)

|q̃9 + δq − q̃10| ≤ ∆ (4.24c)

qmin ≤ q̃t + δq ≤ qmax, 5 ≤ t ≤ 9. (4.24d)
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After a free subinterval is positioned optimally, it may no longer be free

if it becomes binding with its adjacent subinterval(s). If this subinterval

remains to be free, solving the multipliers in (4.23a) to (4.23e) either from

top-down or bottom-up would yield the same result.

• A degenerate subinterval (t ∈ [10, 15])

First, let’s examine the optimality conditions for this subinterval.

∂L/∂q10 = π′10(q̃10)− ξ11 = 0 (4.25a)

∂L/∂q11 = π′11(q̃11) + ξ11 + µ12 − α11 = 0 (4.25b)

∂L/∂q12 = π′12(q̃12)− µ12 − ξ13 = 0 (4.25c)

∂L/∂q13 = π′13(q̃13) + ξ13 + µ14 − α13 = 0 (4.25d)

∂L/∂q14 = π′14(q̃14)− µ14 − ξ15 = 0 (4.25e)

∂L/∂q15 = π′15(q̃15) + ξ15 = 0 (4.25f)

In this subinterval, because q̃11 = q̃13 = qmin, two additional multipliers

α11 and α13 appear in the optimality conditions. This creates linear de-

pendence among the linear constraints. Therefore, the system of equations

may have infinitely many solutions. Such a situation is normally termed

as degeneracy. To deal with the degeneracy, it is necessary to drop some

dependent variables, i.e., to make some active constrains inactive while re-

taining enough active constraints to identify the existing feasible solution.

In this example, two variables may be dropped corresponding to the two

additional active constraints. They are one from {ξ11, µ12, α11} and one

from {ξ13, µ14, α13}. For example, if µ12 would be dropped, it is equiva-

lent to further dividing the subinterval into two subintervals, [10, 11] and
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[12, 15], where the former becomes a free section. It is likely that after

dropping a variable, no improvement in the objective function value can

be made without violating one of the dependent constraints that have been

excluded. In that case, such a constraint must be added back to the active

constraints. One can then try to drop another dependent variable. Finally,

note that the linear dependence among the linear constraints here is not a

unique product of the proposed method. It is, however, “commonplace in

practical problems, but it is not a serious impediment to practical compu-

tation” (P. 201, Gill et al. 1989). The interested reader is directed to Gill

et al. (1989) for more detailed discussions on how to deal with degeneracy.

4.2.3 A numerical test on ramp-constrained SSP

Numerical tests are conducted to measure the performance of the proposed

approach. The network graph method for solving (P ) is implemented in FOR-

TRAN on a Pentium IV PC. Two methods for solving (Qt2
t1) are implemented:

LSGRG2 and the proposed active-set-based method. For LSGRG2, the FOR-

TRAN source code of the commercial software is integrated with our programs.

A natural gas-fueled generating unit with the input-output characteristics fol-

lowing (4.12a) and (4.12b) is considered. Assume P F is $ 2.2/MMBtu, and

qmin=250 MW, qmax=750 MW, c0=600, c1=9.121, and c2=0.00131. We also as-

sume that τ = ν = 2, ton = toff = 5, and tcold = 10 to fully capture the influence

of the physical constraints. Assume the startup cost

Su(xt) = 2300(1− exp(xt/4)) + 950 (4.26)

and a constant shutdown cost $1000. Hourly electricity prices λt are generated
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by a uniform random variable between $16/MWh and $25/MWh. Note that

in reality electricity hourly prices may follow some pattern, such as on-peak vs.

off-peak. Without considering any price pattern, our test cases here are actually

harder in the sense that degeneracy is more likely to occur. Without loss of

generality, the spinning reserve market is not considered by setting µt =0. To

fully observe the algorithm performance in terms of the complexity analysis,

seven cases are tested corresponding to seven operating periods, ranging from 1

day (24 hours) to 7 days (168 hours). For each case, we randomly generate 100

instances of the electricity hourly prices. The LSGRG2 method and proposed

active-set method are used to solve (Qt2
t1) for each instance of (P ). The average

CPU times are recorded in Table 4.1.

Table 4.1: Average CPU time (seconds)

(T ) 24 48 72 96 120 144 168

LSGRG2 0.16 2.42 15.79 57.90 180.77 463.63 972.23

Active-Set 0.03 0.46 1.49 2.92 4.96 7.54 12.19

Note that in the implementations of both methods for solving (Qt2
t1), the

warm-start feature, discussed in Section § 4.2.1, has been included, which re-

duced the CPU times as much as 60% on average. Based on the performance

data in Table 1, both approaches reveal a polynomial-time complexity with ap-

proximately O(T 5.0) for LSGRG2 and O(T 2.5) for the proposed active-set-based

method. The complexity of the proposed active-set-based method is much better

than the theoretic result O(T 5K), as shown in Section§ 4.2.1.

To sum up, the numerical testing result verifies the polynomial-time perfor-

56



0

50

100

150

200

24 48 72 96 120 144 168

GRG

Proposed Method

Planning Horizon T (hours)

C
P

U
 T

im
e 

(s
ec

o
n
d
s)

Figure 4.3: Comparison of average CPU times for solving (P ).

mance for the proposed methods for solving the optimal unit response problem.

The proposed method also guarantees the optimality of the solution. Because

of the polynomial-time complexity, the proposed method can be incorporated in

large-scale unit commitment related problems.

4.3 Stochastic ramp-constrained SSP

In this section, we consider the SSP under price uncertainty in the spot

markets. Let Pt = (λt , µt) be the market price information at time t . At

time t , the operator observes the price Pt and he needs to make a commitment

decision subject to the physical constraints. We assume a one-hour lead time

for commitment decisions. Therefore, the operator determines ut+1 at time t .

If the unit is on-line at time t (i.e., ut = 1), the operator needs to dispatch the
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generator. It is assumed that the dispatch decision can be made instantaneously

after the price Pt is observed. The stochastic SSUCP can be formulated as the

following multi-stage recursive equation, denoted by (SP ):

(SP ) Ft(ut|Pt) = max
qt ,ut+1

(πt(qt)ut + S(xt−1)ut(1− ut−1)+

Et+1[Ft+1(ut+1|Pt+1)]) (4.27)

where Ft(ut|Pt) represents expected total profit of the unit for the remain-

der of the operating period starting at commitment ut at time t, and Et is the

expectation operator given the available price information at time t. The maxi-

mization in (SP ) is subject to constraints (4.4) - (4.11). Without considering the

ramp constraints, (SP ) can be solved using the Monte Carlo simulation (Tseng

and Barz 2002) or a lattice approach (Tseng 2001). With the presence of the

ramp constraints, solving (SP ) to optimality becomes very difficult because each

stage is interdependent and the dispatch variable qt is a continuous variable. We

consider a two-stage approximate formulation for (SP ), in which the first stage

is t = 1 and the second stage covers from t = 2 to T . First, consider the dispatch

decision problem at time t = 1 (given that has been made available at t = 0).

Ft(ut|Pt) ≈ max
q1

θ(q1|P1) (4.28)

where

θ(q1|P1) ≡ (π1(q1)u1 + S(x̃0)u1(1− ũ0)+

E1[max
u,x,q

T∑

t=2

πt(qt)ut + S(xt−1)ut(1− ut−1)|P1]) (4.29)

Apparently, q1 = 0 if u1 = 0 and the dispatch decision in (4.28) is made only

when u1 = 1. The first stage decision q1 (as well as u1) will become the initial
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condition of the second stage problem. We are interested in the optimal dispatch

rule at t = 1 under ramp constraints and price uncertainty if u1 = 1. That is,

q∗1(P1) = arg max
q1

θ(q1|P1) (4.30)

Since we assume that the dispatch can be performed immediately, q∗1(P1) rep-

resents the optimal dispatch decision after the operator observes the spot price

P1 at t = 1. This optimal dispatch rule has accounted the ripple effect of the

ramp constraints to the future hours imposed by q∗1(P1).

It can be shown easily that the optimal dispatch rule without considering the

ramp constraints (or ∆q = ∞) is a piecewise-linear function of P1 = (λ1, µ1):

q∗1,∆q=∞(P1) = max
(
qmin, min

(
qmax,

1

2c2

(
λ1 − µ1

P F
− c1)

))
(4.31)

where the cost function of the unit is assumed to follow (4.12a) and (4.12b). If

q∗1(P1) is available, then the optimal commitment decision u1 (made at t = 0)

can be determined by

u∗1 = arg max
u1∈{0,1}

E0[F1(u1|P1)] (4.32)

The two-stage formulation in (4.29) can then be performed sequentially in time

over a rolling horizon to make optimal commitment and dispatch decisions.

To evaluate θ(q1|P1) and q∗1(P1), we employ the least squares Monte Carlo

(LSMC) method, originally introduced by Longstaff and Schwartz (2001) for

financial options valuation.

4.3.1 Solving ramp-constrained SSP using LSMC

To determine θ(q1|P1), recognize that θ(·) can be viewed as some conditional

probability of q1 and P1. Therefore, the functional form θ(·) can be obtained by
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the linear regression method treating q1 and P1 as the predictor variables and

θ as the corresponding response variable. The Monte Carlo method is used to

generate the observations of θ and the associated values of q1 and P1 . This is

the basic idea of the LSMC method.

Based on the initial condition (q0,P0) at time 0, randomly generate N sam-

ples of (q
(j)
1 ,P

(j)
1 ), j = 1, · · · , N where q

(j)
1 ∈ [q0 − ∆q, q0 + ∆q] ∩ [qmin, qmax].

For each P
(j)
1 , generate a price scenario (vector) for the rest of the operating

period (P
(j)
2 , · · · ,P(j)

T ), based on which evaluate the corresponding observation

of θ, denoted by θ(j) = θ(q
(j)
1 |P(j)

1 ). Note that to evaluate θ(j), a deterministic

SSUCP (over [2, T ]) must be solved, which is handled by the proposed network

graph method in Section §4.2.

Finally, θ(q1|P1) can be approximated by regressing {θ(j)}N
j=1 on {(q(j)

1 ,P
(j)
1 )}N

j=1.

What remains to show is an appropriate functional form for the regression. Note

the analytic form for θ(q1|P1) may not exist. Our experience shows that the fol-

lowing polynomial form works well for the regression.

θ(q1|P1) ≈ a1 + a2q1 + a3q
2
1 + a4q̂q1 + a5λ1 + a6µ1 (4.33)

where q̂ = max(q0−∆q, min(q0 + ∆q, ((λ1−µ1)/P
F − c1)/2c2)) is similar to the

optimal dispatch rule without the ramp constraints in (4.31) , and a1 ∼ a6 are

the parameters to be fitted in the regression. Here we assume that the heat rate

function of the unit follows the quadratic function given in (4.12a) and c1 and

c2 are the coefficients.

Note that θ(q1|P1) is a highly nonlinear function in q1 and P1 and θ(q1|P1)

may not be smooth everywhere because it involves q̂. However, θ(q1|P1) is a

linear function of the regression parameters a1, · · · , a6. It is well known that

linear regressions can be done efficiently, which only involves solving a system of
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Figure 4.4: Optimal dispatch rule q∗1(λ) for different ramp rates.

linear equations (a 6× 6 linear system in this case.)

Once θ(q1|P1) is obtained, the ramp constrained optimal dispatch rule q∗1(P1)

in (4.30) can be determined using standard nonlinear programming methods.

4.3.2 Numerical tests

The same natural gas-fired generating unit used in Section §4.2.3 is con-

sidered, and the initial conditions are λ0 = $20/MWh, q0 = 400MW . For

simplicity, the spinning reserve market is not considered by setting µt = 0 at all

times. Assume a 7-day (168-hour) operating period and the hourly electricity

spot prices λt are generated based on the mean reverting process reported in

(Tseng and Barz 2002).
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The expected profit function θ(q1|λ1) varies with ramp rates ∆q, and so does

the optimal dispatch rule q∗1(λ1). In Fig. 4.4, the optimal dispatch rule q∗1(λ1)

under the ramp constraints and price uncertainty is displayed for four different

cases: ∆q = ∞(no ramp), ∆q = 90, ∆q = 40 and ∆q = 20. As shown in

(4.31), q∗1(λ1) is linear when there is no ramp constraint. From Fig. 4.4, when

the ramp constraints exist, is a s-curve bounded by q̃0 ± ∆q. When the ramp

rate ∆q decreases, the slope of the s-curve decreases. Again assume the fuel

cost function can be represented by a quadratic function in (4.4) and (4.11). A

less-steep s-curve can be viewed as an equivalent unit with (i) greater c1 and

c2; (ii) reduced available capacity; and (iii) no ramp constraints. A greater c2

indicates a more curved (upward sloping) cost function representing a worse fuel

economy; while a greater indicates a higher (incremental) heat rate representing

a less efficient heat-electricity transformation. Adjusting the cost function to deal

with ramp rates is commonly practiced in industry. Our test result validates this

practice, but also indicates that it is only an approximation because the s-curve

is nonlinear.

Finally, Fig. 4.5 illustrates the LSMC approach for determining θ(q1|λ1).

Around 1000 (= N) samples are taken to estimate the conditional expectation

function θ.

4.4 Summery and conclusions

In this chapter, the optimal unit response of a thermal unit to an electric-

ity spot market is studied. When the spot prices are known with certainty, a

polynomial-time algorithm based on network graph is proposed for solving the
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problem. Using the developed algorithm to evaluate the unit responses in vari-

ous price scenarios generated by the Monte Carlo method, we obtain the optimal

commitment and dispatch rule under price uncertainty. Our test results indicate

that the ramp constraints impact a thermal unit on its capability of responding

to price uncertainty by reducing its fuel economy, heat-electricity transformation

efficiency, and available generation capacity. Our proposed method provides a

way to quantify these effects.
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Chapter 5

Valuing Power Generation Units with

Fuel Switching Options

The deregulation of the US electric power market in the last few years has

replaced the vertical utility by a series of independently operating units with a

more horizontal relationship. After the restructuring, the electric utility industry

throughout the US has been facing pressure to increase its efficiency, to reduce

operational costs, and to lower purchase cost of power equipment. In order to

adapt well in the new business environment, generation asset investors must

consider market uncertainty in appraising the asset value.

In addition to market uncertainty, the investors must also consider an as-

set’s operating flexibility that enables the unit to respond to changing exogenous

economic conditions. The importance of such operating options becomes crit-

ical when the market environment is highly volatile. For example, when fac-

ing exogenous stochastic prices a generator with operating options, such as fuel

switching can protect itself against adverse price movements, with the capabil-

ity of switching into an alternative fuel that may be less affected by the adverse

price realizations (e.g. Kulatilaka 1993).
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In the present competitive environment, a generator will be invested only

when an adequate return on the investment is expected. Since electricity is non-

storable in nature, the generation asset value may be replicated on future spark

spread options (Deng et al. 1999). In addition to pure spark spread options,

physical constraints such as minimum uptime and downtime constraints may

also affect the value. Tseng and Barz (1999, 2002) proposed a Monte Carlo

(MC) simulation to formulate the power plant valuation problem as a multi

stage stochastic problem. In addition, discrete-time price trees for correlated

price processes for both electricity and fuel, such as geometric mean reverting

processes are employed to value power asset. The computational efficiency of the

valuation problem may be improved by using stochastic dynamic programming

via a price tree (Tseng 2000). Although the method produces a satisfactory

result for a two-factor case (referring to two uncertainties such as electricity price

and gas price), it may not be applicable to a three-factor case if an additional

uncertainty must be considered (e.g., for a unit capable of switching fuels). The

tree approach is especially prohibitive when the time horizon is long because

of the ‘curse of dimensionality’. Therefore, valuing a generation asset with fuel

switching option (considering three price uncertainties) is a challenging task.

In this chapter, we explore the LSMC approach and use it to value the fuel

switching option.

This chapter is organized as follows. In Section 5.1, we provide an overview of

the fuel switching unit including physical constraints and fuel switching options.

We then formulate and solve the generation asset valuation problem in Section

5.2. Numerical results are presented in Section 5.3. This chapter concludes in

Section 5.4.

66



5.1 Problem statement

5.1.1 Overview of fuel-switching units

A thermal generation unit with fuel-switching options can consume two dif-

ferent fuels, which can be switched within a short time period, and then converts

the fuels into electricity. This conversion involves three commodities with dif-

ferent market prices. The following conditions are implicitly assumed: (1) fuel

switching does not affect normal operation of a unit; (2) fuel switching can be

finished within a reasonable time. In general, the fuel-switching options can

provide the following two advantages:

• Fuel-switching capabilities may help stabilizing the operation of a unit

under limited resources available to a country or region;

• Fuel-switching options may help solving some pollution issues, such as

reducing emissions of waste.

In power industry, players may prefer nature gas to fuel oil because nature

gas is much ‘cleaner’ than fuel oil under environment restriction on emission of

waste. Therefore, fuel switching has been considered as an emission abatement

means. On the other hand, nature gas prices are much more expensive than fuel

oil prices based on per British thermal unit. Power producers may have to react

to the soaring price of natural gas by switching to cheaper, more environmentally

harmful fuel sources. To reduce power producers’ exposure to price volatility or

possible supply disruptions in the present deregulation environment, industrial

users are expected to increasingly seek the flexibility of switching fuels using

hybrid technologies.
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5.1.2 Notations

The following standard notation will be used to formulate the valuation of a

fuel-switching unit mathematically. Additional symbols will be introduced when

necessary.

t : index for time horizon in hours (t = 0, · · · , T, where T is the length of time

horizon).

j : index for fuel (j = 1, 2, where “1” represents gas and “2” represents oil).

xt : state variable indicating the commitment status of the unit in time period

t.

ut : zero-one generation unit commitment decision variable in time period t.

vt : zero-one variable indicating which fuel the unit choose in time period t

(where “1” represents gas and “0” represents oil).

ton
j : the minimum number of periods the unit must remain on after it has been

turned on for fuel j.

toff
j : the minimum number of periods the unit must remain off after it has been

turned off for fuel j.

tcold
j : the minimum number of periods required to cool down the boiler of a unit

after it has been turned off for fuel j.

qt : decision variable indicating the amount of power the unit is generating in

time period t.

qmin
j : minimum rated capacity of the unit for fuel j.
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qmax
j : maximum rated capacity of the unit for fuel j.

PE
t : electricity price ($/MWh) in time period t.

P F1
t : fuel 1 price ($/MMBtu) in time period t.

P F2
t : fuel 2 price ($/MMBtu) in time period t.

πt(xt, vt, qt; P
E
t , P F1

t , P F2
t ) : profit for operating the unit at state xt at output

level qt when the electricity and fuel prices are PE
t , P F1

t and P F2
t in time

period t respectively.

Jt : the asset value of unit in time period t.

h1,1
t : the regression function when the unit is on in both time periods t and t+1.

h1,0
t : the regression function when the unit is on in time period t and off in time

period t + 1.

h0,1
t : the regression function when the unit is off in time period t and is on in

time period t + 1.

h0,0
t : the regression function when the unit is off in both time periods t and t+1.

h0,0,n
t : the regression function when the unit is cold in both time periods t and

t + 1 without switching fuel.

h0,0,s
t : the regression function when the unit is cold in both time periods t and

t + 1 with fuel switched.

St(ut, ut−1, vt) : startup/shutdown cost when the unit is turned on/off in time

period t.
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5.1.3 Fuel-switching options

Generally speaking, fuel switching options of a generating unit refers to the

ability to burn alternate fuels, such as nature gas or fuel oil. Switching occurs

when one fuel out-of-the-money is replaced by another in-the-money (or less

out-of-the-money).

Since a fuel-switching unit can operate using different fuels, the cost charac-

teristics of the unit depend on the fuel used. Different fuel may have a different

amount of MMBtu required to produce a MW (Cohen et al. 1996; Zhai et

al. 2001). This property differs from unit to unit and fuel to fuel. The value

of a fuel-switching unit is affected by the operational constraints such as the

minimum up/down time constraints.

In reality, fuel switching is an transitional process, which may take from

minutes to hours dependent upon different units. In this chapter, we assumed

that the fuel switching could be done instantaneously under other conditions to

be addressed next.

There are normally two ways to switch fuels: on-line switching and off-line

switching. The switch takes place when the unit has already been on-line for

at least its minimum uptime periods (i.e., state ton
1 . During the switching, it

transits to the shutdown status using another fuel. For the off-line switching,

the unit must be off-line while the fuel switching takes place. Therefore, the

state transits (from tcold
1 to tcold

2 or from tcold
2 to tcold

1 ). Fig. 5.1 illustrates the

state transitions of both the on-line and off-line switching. In this dissertation,

we focus on the off-line switching model.
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Figure 5.1: A state transition diagram between two fuels (on-line and off-line).
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5.1.4 Profit function of a fuel-switching unit

As in the previous chapters, the input-output characteristic of a generating

unit is captured by H(q) (MMBtu), which is a function described required to

generate q (MW) of power. Now this function is dependent on the fuel type

used, denoted by Hj(q) for fuel j. The profit at time t may be represented as

follows:

πt(xt, vt, qt; P
E
t , P F1

t , P F2
t )

=





PE
t qt −H1(qt)P

F1
t vt −H2(qt)P

F2
t (1− vt), if xt > 0,

0, otherwise.
(5.1)

where qt is the generation level at time t and we assume that qt is dispatched

instantaneously and optimally after the prices (PE
t , P F1

t , P F2
t ) are revealed.

5.1.5 Operational constraints of a fuel-switching unit

The operational constraints are formulated as follows.

• Minimum up/downtime constraints:

ut =





1, if 1 ≤ xt < ton
1 vt + ton

2 (1− vt),

0, if − toff
1 vt − toff

2 (1− vt) < xt ≤ −1

0 or 1, otherwise.

(5.2)

• Switch constraints:

vt =





1− vt−1 or vt−1, if xt = tcold
1 or tcold

2

vt−1, otherwise.
(5.3)

switch happens only when the unit is cold at time t.
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• State transition constraints:

xt =





min(ton, max(xt−1, 0) + 1), if ut = 1,

max(−tcold, min(xt−1, 0)− 1), if ut = 0
(5.4)

where

ton = ton
1 vt + ton

2 (1− vt) (5.4a)

toff = toff
1 vt + toff

2 (1− vt) (5.4b)

tcold = tcold
1 vt + tcold

2 (1− vt) (5.4c)

• Unit capacity constraints:

ut(q
min
1 vt + qmin

2 (1− vt)) ≤ qt ≤ ut(q
max
1 vt + qmax

2 (1− vt)) (5.5)

• Startup/shutdown cost:

St(ut, ut−1, vt) =





Su
1 vt + Su

2 (1− vt), if ut = 1 and ut−1 = 0,

Sd
1vt + Sd

2(1− vt), if ut = 0 and ut−1 = 1,

0, otherwise.

(5.6)

where Su
1 and Su

2 represent constant startup cost for fuel 1 and fuel 2; Sd
1

and Sd
2 are constant shutdown cost for fuel 1 and fuel 2.

The operational constraints including the switch constraints have been fully

captured in the state transition diagram in Fig. 5.1.

5.2 Problem formulation and solution procedure

The method to be introduced in this section can be viewed as an extension

of the method proposed in Longstaff and Schwartz (2001) for valuing American-

style options. We extend their approach to a more complicated situation involv-

ing multi-stage decision making and fuel switching options.
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Let Jt(xt, ut, vt, qt; P
E
t , P F1

t , P F2
t ) be the so-called value-to-go function indi-

cating the total value of the unit for the remaining period at state xt at time

t, and assume a finite time horizon [0, T ]. The asset valuing problem can be

formulated as the following recursive relation:

Jt(xt, ut, vt, qt; P
E
t , P F1

t , P F2
t ) = πt(xt, vt, qt; P

E
t , P F1

t , P F2
t )+

max
ut,vt

{Et[Jt+1(xt+1, ut+1, vt+1, qt+1; P
E
t+1, P

F1
t+1, P

F2
t+1)]− St(ut, ut−1, vt)} (5.7)

where Et denotes the expectation operator given the price information available

at time t.

5.2.1 Solution procedure

From (5.7), it can be seen at time t to make an optimal commitment decision,

one must know Et[Jt+1(xt+1, ut+1, vt+1, qt+1; P
E
t+1, P

F1
t+1, P

F2
t+1)], which implicitly is

a function of current price information, PE
t , P F1

t , and P F2
t . The main idea of

the LSMC method is to approximate such a function by regression. In terms of

the states and the switching option, different functions are to be approximated

using regression. They are defined below.

If xt = xt+1 = ton,

h1,1
t (vt, qt; P

E
t , P F1

t , P F2
t ) = Et[Jt+1(t

on, ut+1, vt+1, qt+1; P
E
t+1, P

F1
t+1, P

F2
t+1)] (5.8a)

If xt = ton and xt+1 = −1,

h1,0
t (vt, qt; P

E
t , P F1

t , P F2
t ) = Et[Jt+1(−1, ut+1, vt+1, qt+1; P

E
t+1, P

F1
t+1, P

F2
t+1)] (5.8b)

If −tcold ≤ xt ≤ −toff and xt=1 = 1,

h0,1
t (vt, qt; P

E
t , P F1

t , P F2
t ) = Et[Jt+1(1, ut+1, vt+1, qt+1; P

E
t+1, P

F1
t+1, P

F2
t+1)] (5.8c)
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If −tcold < xt ≤ −toff and xt+1 < 0,

h0,0
t (vt, qt; P

E
t , P F1

t , P F2
t ) = Et[Jt+1(xt − 1, ut+1, vt+1, qt+1; P

E
t+1, P

F1
t+1, P

F2
t+1)]

(5.8d)

If xt = xt+1 = −tcold,

h0,0,n
t (vt, qt; P

E
t , P F1

t , P F2
t ) = Et[Jt+1(−tcold, ut+1, vt+1, qt+1; P

E
t+1, P

F1
t+1, P

F2
t+1)]

(5.8e)

If xt = −tcold and xt+1 = −(tcold
1 (1− vt) + tcold

2 vt),

h0,0,s
t (vt, qt; P

E
t , P F1

t , P F2
t ) = Et[Jt+1(xt+1, ut+1, vt+1, qt+1; P

E
t+1, P

F1
t+1, P

F2
t+1)]

(5.8f)

If the above regression functions ht(vt, qt; P
E
t , P F1

t , P F2
t ) are available at time

t, one could know the expected unit value for the next time period when the

uncertainty prices (PE
t , P F1

t , P F2
t ) are revealed. Then, one could also know how

to make optimal decisions at t. Especially when the unit stay at the cold state

and h0,0,n
t < h0,0,s

t , fuel switching may happen at this time period. Since analyti-

cal forms of ht(·) are nonexistent in general, we can only use numerical methods

based on Monte Carlo simulation to approximate ht(·). Through simulating a

set of random variables, the expected value yields the least square error. There-

fore, to approximate the above expected function, we generate N data samples

of prices based on the mean reverting uncertainty model (5.10). Thus, the ex-

pected value of Jt+1(xt+1, ut+1, vt+1, qt+1; P
E
t+1, P

F1
t+1, P

F2
t+1) can be approximated

by the function that best regressions Jt+1 on the data of price (PE
t , P F1

t , P F2
t ) and

possible decision values of (ut, vt, qt). That means any realization of (ut, vt, qt)

at time t, one would know how to optimally make decisions for the next time

period based on the above regression functions ht(vt, qt; P
E
t , P F1

t , P F2
t ).
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The expected value of Jt+1(·) can be approximated though forward-moving

simulation and backward-moving dynamic programming iterations from T − 1 to

T−2, · · · , 0. Thus, the asset value can be obtained by J0(x0, u0, v0, q0; P
E
0 , P F1

0 , P F2
0 ),

where (x0, u0, v0, q0; P
E
0 , P F1

0 , P F2
0 ) are determined by the initial conditions of the

unit. As to JT , it is determined by the boundary conditions as follows.

5.2.2 Boundary conditions

At time T , there is no commitment decision to make, because the power

plant value is only conditioned on the state xT as follows:

JT (xT , ut, vT , q∗T ; PE
T , P F1

T , P F2
T )

=





PE
T q∗T −H1(q

∗
T )P F1

T vT −H2(q
∗
T )P F2

T (1− vT ), if xT > 0,

0, otherwise.
(5.9)

where q∗T represents the optimal generation level in time T within the capacity

range [qmin
j , qmax

j ] for fuel j, which is determined by vT .

At time T − 1, for the remaining two time periods, one can use the LSMC to

estimate JT−1(xT , uT−1, vT−1, qT−1; P
E
T−1, P

F1
T−1, P

F2
T−1) for every data sample. The

decision maker can choose whether to switch fuel immediately or not and revisit

the exercise decision at the next time period when the unit is at cold state. The

value of JT−1(·) is maximized path-wise, and hence the value of fuel switching

option is greater than or equal to 0 unconditionally. This procedure can be

repeated to T -2,· · · , 0. The last iteration, starting with the initial conditions at

time 0, provides the optimal planning and asset estimation for the whole time

horizon.
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5.2.3 Price processes

In this paper, we assume that price of electricity PE
t , price of fuel-1 P F1

t ,

and price of fuel-2 P F2
t are all functions of y1, y2, and y3, respectively, which are

governed by the following (mean-reverting) stochastic differential equations.

dyl = −µl[yl(t)−mt,l(t)]dt + σldBl, (5.10)

where l=1, 2, and 3 represents electricity, fuel-1, and fuel-2 respectively; µl is a

drift function; σl is a constant volatility and Bl is a Wiener process with correla-

tion ρlm (l,m=1, 2, 3). There exists a one-to-one transformation between y1 and

PE
t , between y2 and P F1

t , and between y3 and P F2
t . Therefore, (PE

t , P F1
t , P F2

t )

can be obtained through the corresponding (y1, y2, y3), and vice versa.

For the purpose of carrying out the simulation process, the time horizon of

fuel-switching options is divided into T subintervals of length ∆t (=1 hour). The

discrete version of the process for yl is

∆yl = −µl(yl −mt,l)∆t + σlεl

√
∆t (5.11)

where ∆yl is the change in yl in time ∆t; εl is a random sample from a stan-

dardized normal distribution. The coefficient of correlation between εl and εm is

ρlm for 1 ≤ l,m ≤ 3. One simulation trial involves obtaining T samples of the

εl(1 ≤ l ≤ 3) from a multivariate standard normal distribution. These are sub-

stituted into equation (5.11) to produce simulated paths for each yl and enable

a sample value for the real option to be calculated.

In (5.11), to generate three correlated normal random variables, ε1, ε2, and ε3,

first we generate three mutually independent standard normal random variables,
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Z1, Z2, and Z3. We then consider the following linear transformation:

εl =
l∑

k=1

αlkZk (l = 1, 2, 3) (5.12)

To meet the variances and covariances of εl(l = 1, 2, 3), the following two con-

straints are imposed.
∑

k

α2
lk = 1 (5.13)

and
∑

k

αlkαmk = ρlm (5.14)

The first sample ε1 is set equal to Z1. Then the above equations can be solved,

ε2 is calculated from Z1 and Z2, ε3 is calculated from Z1, Z2 and Z3.

From (5.12), we have

ε1 = α11Z1,

ε2 = α21Z1 + α22Z2,

ε3 = α31Z1 + α32Z2 + α33Z3.

(5.15)

In matrix form, it is

ε = αZ (5.16)

where ε = (ε1, ε2, ε3)
T , Z = (Z1, Z2, Z3)

T and

α =




α11 α12 α13

α21 α22 α23

α31 α32 α33




Then, according to (5.13) and (5.14), we obtain

α =




1 0 0

ρ12

√
1− ρ2

12 0

ρ13
ρ23−ρ12ρ13√

1−ρ2
12

√
1− ρ2

13−2ρ12ρ13ρ23+ρ2
23

1−ρ2
12




(5.17)
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Define new uncertainty variables zl, l = 1, 2, 3 that satisfy the following linear

relation. 


z1

z2

z3




= α−1




y1

y2

y3




(5.18)

It can be shown that zl, l = 1, 2, 3 have been ‘decoupled’. That is, given a real-

ization of zl, l = 1, 2, 3 at time t, their increments dzl, l = 1, 2, 3 are uncorrelated.

We generate sample path data (over time) for zl, l = 1, 2, 3 first, which are then

converted to yl, l = 1, 2, 3, and then PE
t , P F1

t , and P F2
t to evaluate the payoffs.

This procedure preserves the correlation among the price data that is critical to

the value of the generation assets.

5.2.4 Algorithm development

Now, we can use the above regression functions and boundary conditions to

value the fuel switching unit through backward dynamic programming based on

the pre-generated price database. The detailed algorithm is as follows:

Data: Initial conditions (x0, u0, v0, q, 0, P
E
0 , P F1

0 , P F2
0 ) are given, and data set

size N > 0 is also given.

Step 0: Set t ← T−1, k ← 1, j ← 1, i ≡ xt ← ton
j , JT (xT , uT , vT , q∗T ; PE

T , P F1
T , P F2

T )

get from (5.9).

Step 1: Obtain a set of sample prices (P
E(k)
t , P

F1(k)
t , P

F2(k)
t ).

Step 2: Regress J
(k)
t+1 on (P

E(k)
t , P

F1(k)
t , P

F2(k)
t ) to obtain ht(·) .

Step 3: If xt = ton
j ,

J
(i,j,k)
t ← πt(xt, vt, qt; P

E
t , P F1

t , P F2
t ) + max(h1,1

t , h1,0
t − St);
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else if 0 < xt < ton
j ,

J
(i,j,k)
t ← πt(xt, vt, qt; P

E
t , P F1

t , P F2
t ) + J

(i+1,j,k)
t+1 ;

else if xt = 0,

J
(i,j,k)
t ← −∞;

else if −toff
j < xt < 0,

J
(i,j,k)
t ← J

(i−1,j,k)
t+1 ;

else if −tcold
j < xt ≤ −toff

j ,

J
(i,j,k)
t ← max(h0,0

t , h0,1
t − St);

else if xt = −tcold
j ,

J
(i,j,k)
t ← max(h0,0,n

t , h0,0,s
t , h0,1

t − St).

Step 4: If i ≥ −tcold
j , i ← i− 1, go to Step 3.

Step 5: If j < 2, j ← j + 1, i ← ton
j , go to Step 3.

Step 6: If t > 0, t ← t− 1, j ← 1, i ← ton
j , go to Step 1.

Step 7: Stop.

Note that the fuel switching will happen when xt = −tcold, and h
(0,0,n)
t <

h
(0,0,s)
t . Now, according to the initial unit status (x0, u0, v0, q0), and initial prices

(PE
0 , P F1

0 , P F2
0 ), the expected value of the fuel-switching unit is

J0(x0, u0, v0, q0; P
E
0 , P F1

0 , P F2
0 ) ≈

N∑

k=1

J
(k)
0 /N (5.19)

Among the above algorithm, the most difficult part is to obtain the regres-

sion function ht(vt, qt; P
E
t , P F1

t , P F2
t ). What remains to show is an appropriate

functional form for ht(·). Our experience shows that the following polynomial

form works well for the regression.

ht(vt, qt; P
E
t , P F1

t , P F2
t ) ≈ a1 + a2qt + a3q

2
t + a4q

3
t + a5q

∗qt + a6P
E
t + a7P

F
t
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+a8q
∗P F

t + a9(P
E
t )2/P F

t (5.20)

where

q∗ = max(qmin
1 , min(qmax

1 , (PE
t /P F1

t − c1,1)/2c2,1))vt

+ max(qmin
2 , min(qmax

2 , (PE
t /P F2

t − c1,2)/2c2,2))(1− vt) (5.21)

q∗ is determined by the optimal dispatch rule and the present fuel, P F
t =

P F1
t vt+P F2

t (1−vt), and a1 to a9 are the parameters to be fitted in the regression.

Here we assume that the heat rate function of the unit follows the quadratic

function given in (15a) and c1,j and c2,j are the coefficients for different fuel j.

As a result, the multiple correlation coefficient R2 is around 0.89, which means

the regression on the above polynomial form is good.

Although ht(vt, qt; P
E
t , P F1

t , P F2
t ) is a highly nonlinear function in (vt, qt) and

(PE
t , P F1

t , P F2
t ), and it may not be smooth everywhere because it involves q∗,

ht(·) is still a linear function of the regression parameters a1, · · · , a9, which can

be figured out efficiently by solving a system of linear equations (a 9 × 9 linear

system in this case.)

5.3 Numerical results

5.3.1 Baseline: a non-switching case

Without considering the fuel-switching option, the valuation problem only

involves two uncertainties and can be solved using a two-factor lattice method

(Tseng 2000). This serves a baseline case, using which we can calibrate the

performance of the LSMC method.
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Table 5.1: Mean reverting process coefficients of electricity, gas and oil

Coefficients σ mu mt P0

Electricity 0.27 0.072 2.878 20

Gas 0.24762 0.010570 1.01945 2.2

Oil 0.10209 0.003704 0.48054 0.58

Consider a natural gas-fired generating unit with the following input-output

characteristics.

H1(qt) = c0,1 + c1,1qt + c2,1q
2
t (5.22a)

C1(qt) = H1(qt)× P F1
t (5.22b)

where the cost function C1(·) is assumed to be a quadratic function of qt, H1(·)
is the heat rate function, P F1

t is the fuel price at time period t. Assume P F1
0 is

$2.2/MMBtu, PE
0 is $20/MW, and qmin

1 = 225MW, qmax
1 = 700MW, c0,1 = 540,

c1,1 = 9.223, and c2,1 = 0.00234. We also assume that ton
1 = 5, and toff

1 = tcold
1 =

10 to fully capture the influence of the physical constraints. Let the startup cost

be $2300 and shutdown cost be $1000. Hourly electricity prices and gas prices are

generated by two mean reverting processes following (5.10). The corresponding

coefficients are in Table 5.1. The correlation coefficient between electricity and

gas is 0.078744. And electricity hourly prices also follow a certain on-peak vs.

off-peak pattern as Table 5.2.

To compare the algorithm performance of LSMC with the lattice method in

(Tseng 2000), seven cases are tested corresponding to seven operating periods

using the same gas-fueled generating unit, ranging from 1 day (24 hours) to 7

days (168 hours). The average CPU times are recorded in Table 5.3.
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Table 5.2: Mean log Price of electricity: mt(t)

t 1 2 3 4 5 6 7 8

mt(t) 1.8874 2.6557 1.9348 2.3402 3.5027 3.8568 3.7583 4.6602

t 9 10 11 12 13 14 15 16

mt(t) 4.8613 4.71 5.8114 4.7363 5.044 5.7383 5.9166 4.7126

t 17 18 19 20 21 22 23 24

mt(t) 3.7233 1.4573 1.322 2.5106 3.6167 0.6446 1.6033 1.8328

Table 5.3: Average CPU time (seconds)

T (hours) 24 48 72 96 120 144 168

Lattice 0.78 1.64 2.83 4.22 5.86 7.86 10.09

LSMC 0.23 0.47 0.69 0.94 1.16 1.38 1.61

 0                   50                 100                150                200

Time(hours)

C
P

U
T

im
e(

se
co

n
d

s)

12

10

8

6

4

2

0

Lattice(snds)
LSMC(snds)

Figure 5.2: CPU time of the lattice model and the LSMC approach.
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Figure 5.3: The asset value of the lattice model and the LSMC approach.

Fig. 5.2 shows that the LSMC method is much more efficient than the lattice

method. However, the LSMC method obtains 1 to 3% lower value than that from

the lattice method in Fig. 5.3. This discrepancy increases as the time horizon

increases. This is because the regression function is only an approximation, not

an exact fit. So there are errors in assessing the asset values. In addition, the

errors may add up during the forward and backward iterations. Nevertheless,

this test serves a calibration of the LSMC method for valuing a generation asset.

5.3.2 A fuel-switching unit

To value a fuel-switching unit, an additional (fuel) price uncertainty must be

considered. As mentioned previously, the lattice approach is prohibitive because

of huge memory space and the corresponding large CPU time required.

For simplicity, we assume that when the generating unit is fired by oil, the
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Table 5.4: Asset value (dollars)

T (hours) 24 48 72 96 120 144 168

Lattice (w/o FSO) 221343 525641 835970 1145564 1453553 1759987 2065077

LSMC (w/o FSO) 218998 518436 821987 1122878 1420875 1715641 2006559

LSMC (w FSO) 229492 547244 873881 1202886 1535541 1868028 2201012

input-output characteristics remain the same as in (5.22a) and (5.22b), although

in reality the coefficients of the quadratic function in (5.22a) should vary. That

is,

H1(qt) = H2(qt) (5.23)

and

C2(qt) = H2(qt)× P F2
t (5.24)

Hourly electricity prices, gas prices and oil prices are generated by three mean

reverting process following (5.10). The correlation coefficient between electricity

and oil is 0.033024 and the correlation between gas and oil is 0.19704.

In Fig. 5.4 and Table 5.4, it can be seen that the fuel-switching capability

can increase the asset value. There exist a 7% (when T=168) additional value

due to the fuel switching option, comparing with the baseline using the lattice

method. Since the LSMC approach underestimates the asset value (3%) in the

baseline case (compared with the lattice method), it may also underestimate the

asset value with the fuel-switching options. If this argument is true, than the

fuel switching option may increase the asset value as high as 10%. To verify this

conjecture, we build a three-factor lattice (with a small T , T = 12). We compare

the asset values using both the (3-factor) lattice method and the LSMC method,

the result of lattice method is 1% higher than that of the LSMC method. Since
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Figure 5.4: The asset value with and without fuel switching options (FSO).

Table 5.5: Asset Value (dollars)

ρ 0.0 0.1 0.2 0.3 0.4 0.5

Asset value 2208745 2202111 2195412 2188820 2182207 2175539

the error increases over T , it is fair to estimate that the error in the 1-week case

(T = 168), the error (underestimate) is at least 3%.

5.3.3 Sensitivity analysis on ρgas,oil

Intuitively the value of the fuel-switching option increases as the correlation

between the fuel prices decreases. That means more chances for one fuel to be

in-the-money and the other out-of-the-money.

To study the impacts of fuel price correlation on the option value, we take
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Figure 5.5: The asset value vs. ρgas,oil.

the same fuel-switching unit and repeatedly run the program with different ρ

between gas and oil prices. The following results for one-week case (T=168) are

obtained.

It can be seen that the asset value decreases linearly as the correlation coef-

ficient ρgas,oil increases. For an example, under an extreme case, the correlation

between gas and oil price is -1. That is the increase of gas price will cause the

decrease of oil price correspondingly. Under this condition, the power producer

will make decisions in switching fuel from nature gas to fuel oil to cut down

fuel cost, so as to increase the asset value of the fuel-switching unit. In the

present energy market, changes in oil prices in this country are almost irrelevant

to natural gas. Our recent analysis based on futures price data, indicates that

the price correlation between the oil and gas is only 0.033024, which means the

fuel-switching units are still in great need in the current power market. This has
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not considered the value as being emission abatement.

5.4 Conclusions

In this chapter, we use the LSMC method to value the fuel-switching option of

a generation asset considering the operational constraints. We estimate that the

option value is very significant (at 10% over a 1 week period). It provides another

evidence that operational flexibility should not be overlooked when valuing an

generation asset.
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Chapter 6

Valuing Thermal Generation Units with

Overfire Options and Maintenance

Constraints

6.1 Problem statement

As the power industry moves toward deregulation, more and more small

investors are attracted to buy gas turbines (GTs) to participate the competitive

energy market. Compared with steam turbines (STs), GTs have the following

advantages:

• A GT has much lower installment cost than a ST.

• The construction time of a GT is much shorter than that of a ST.

• A GT may cause less environment pollution problems than any other ther-

mal units.
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The above are also the reasons why a small or medium size GT working in

peak hour is an ideal choice of small investors, who may not wait for years to be

paid off.

In the current restructured market, the existence of stochastic electricity

prices allow each individual generator to be decoupled from that original col-

lective power pools and to optimize its own generation schedules based on the

available market information and its operating conditions without considering

whether the demand side is satisfied by the supply side or not. The main concern

of individual owners is profitability. For example, if turning off his generator is

profitable from the perspective of individual owner, he will do so without hesi-

tation regardless of how much the power is in need in energy market.

So the new challenge offered by the restructured market is how individual

market participants respond to the stochastic prices optimally considering vari-

ous maintenance constraints, such as crew availability, resource availability, sea-

sonal limitations, desirable schedule; and operating constraints, such as capacity

constraints, ramping constraints, overfire constraints and minimum up/down

time constraints.

Among these constraints, the capacity constraint remains the same as in the

previous chapters, except that qmax may be sensitive to the ambience tempera-

ture. In general, qmax decreases when the environment temperature increases.

As for the ramp constraints, they will be ignored in this chapter, because we

focus on gas turbines only, which can be turned on or shut down within minutes.

To the contrary of the ramp constraints that may limit power generation

(change), overfire process improves the production capacity of the unit, although

it may have adverse effect to the unit such that it may require more frequent
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maintenance. There are two types of overfire process in thermal power generation

industry. The first is similar to fuel switching process. Two fuels can be burned

to generate power, and the second fuel is assumed to be considerably more

expensive and provides additional capability. In this sense, the fuel cost function

will also change correspondingly. The second type is simpler. Only one kind of

fuel is burned and additional capacity is provided by burning additional fuel.

The fuel cost function will not change because of overfiring. In this paper, for

simplicity we only consider the second type.

Although overfire can bring additional profit for the short run, it also cre-

ates problems. This is because overfiring a unit can cause the temperature

inside the combustor to be significantly higher than its normal value. Under

this condition, the unit’s hot section components are subjected to overstressing

and high-temperature corrosion, which may then create further damages, such

as degradation, deformation, and/or even cracks. Therefore, the duration for

overfiring a unit must be restricted based on metal characteristics of the gas

turbine.

Maintenance is an efficient way to correct/prevent such potential damages

due to overfire. During a maintenance process, the following steps are taken:

• Let the unit cool down;

• Clean all working parts;

• Test hot section components;

• Replace ineffective ones with new parts;

• Reassemble the unit and lubricate it.
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Sometimes the above steps may take weeks to complete. After the maintenance,

the gas turbine can work efficiently and safely again.

Some basic definitions about maintenance are introduced here:

• A maintenance interval refers to the time of length required to finish main-

tenance.

• A operation period refers to the time period between any two maintenance

intervals that the unit is in operation.

• An outage refers to a period of power system non-function due to supply

failure or scheduled maintenance.

6.2 A valuation framework considering overfire

options and maintenance constraints

In this section, the following standard notation will be used to formulate

the asset valuation problem considering the overfire option and maintenance

constraints. Additional symbols will be introduced when necessary.

t : index for time (in hours), t = 0, · · · , T , where T is the number of hours of

the planning horizon.

ut : zero-one decision variable indicating whether the unit is up or down in time

period t.

vt : zero-one decision variable indicating whether the unit is overfired or not in

time period t.
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wt : zero-one decision variable indicating whether the unit is shutdown for main-

tenance or not in time period t.

xt : state variable indicating the operation status of the unit in time period t.

x̃0 : initial condition of xt at t = 0.

yt : state variable indicating how many operation hours remained at time t before

the next maintenance interval for the unit.

ỹ0 : initial condition of yt at t = 0.

zt : state variable indicating how many startup numbers remained at time t

before the next maintenance interval for the unit.

z̃0 : initial condition of zt at t = 0.

ton : the minimum number of periods the unit must remain on after it has been

turned on.

toff : the minimum number of periods the unit must remain off after it has been

turned off.

tcold : the number of periods required to cool the unit from shutdown.

tover : maximum number of periods the unit can be overfired continuously.

qt : variable indicating the amount of the unit is generating in time period t.

qmin : minimum rated capacity of the unit.

qmax : maximum rated capacity of the unit.

qover : maximum rated capacity of the unit when it is overfired (qover > qmax).
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Ct(qt, P
F
t ) : fuel cost for operating the unit at output level qt with fuel price at

P F
t in time period t.

St(ut, ut−1) : startup/shutdown cost associated with turning on/off the unit in

time period t.

PE
t : spot price at time t for electricity.

P F
t : spot price at time t for fuel.

T e
t : environment temperature at time t.

T d : designed operating temperature of this gas turbine.

∆T d : designed operating temperature range of the gas turbine.

βe
f (T

e
t ) : fuel cost adjusting factor, which is dependent on environment temper-

ature T e
t at time t.

βe
q(T

e
t ) : qmax adjusting factor, which is dependent on environment temperature

T e
t at time t.

Rf : fuel cost adjusting range (%) due to environment temperature variation.

Rq : qmax adjusting range (%) due to environment temperature variation.

nt(ut, ut−1, xt) : equivalent startup number at time t determined by the unit

status xt in time period t before turning on.

tmt : the minimum number of periods the unit must be shutdown for mainte-

nance.
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Mmt : direct maintenance cost which are determined by the maintenance con-

tracts.

Nop : the maximal operating time periods between any two maintenance inter-

vals, which are determined by the maintenance contracts.

N start : the maximal number of startups between any two maintenance intervals,

which are determined by the maintenance contracts.

Xt : a state vector including xt, yt and zt indicating the status of the unit in

time period t.

Vt : a decision vector including ut, vt and wt indicating the decisions of the unit

in time period t.

Qt : an uncertainty vector including PE
t , P F

t and T e
t indicating all the uncer-

tainties in time period t.

ft(Xt;Qt) : value function of the unit in time period t under state Xt and un-

certainty Qt.

6.2.1 The mathematical model

The objective is to value the thermal generation unit with overfire options and

maintenance contracts subject to environment temperature uncertainty. This

valuation is a typical multi-stage stochastic problem. Assume that at any time

t and state Xt, uncertainty vector Qt is observed. The operator can realize the

asset value in the current time period first of all, then maximize the expected

value of the unit for the rest time periods by taking suitable actions Vt. Let

Jt(Xt,Vt;Qt) be the so-called value-to-go function indicating the total value of
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the unit for the remaining period at state Xt at time t, and assume a certain time

horizon [0, T ]. The asset valuation problem can be formulated as the following

recursive relation:

Maximize the expected total profit:

(P0) Jt(Xt,Vt;Qt) = πt(xt, qt;Qt)+

max
ut,vt,wt

{Et[Jt+1(Xt+1,Vt+1;Qt+1)]− St(ut, ut−1)−Mmtwt} (6.1)

where

πt(xt, qt;Qt) =





PE
t qt − Ct(qt, P

F
t ), if xt > ton,

0, otherwise.
(6.2)

Assume that qt can be dispatched instantaneously and optimally, when uncer-

tainty Qt is realized.

Ct(qt, P
F
t ) = βe

f (T
e
t )(c0 + c1qt + c2q

2
t )P

F
t (6.3)

βe
f (T

e
t ) = 1 +

(
T e

t − T d

∆T d

)
Rf% (6.4)

In (6.3), fuel cost C(qt, P
F
t ) is dependent on the environment temperature T e

t at

time t. Equation (6.4) shows that when the environment temperature deviates

from its designed temperature T d, the adjusting factor βe
f will have value and

apply to the fuel cost.

St(ut, ut−1) =





Sup, if ut−1 = 0 and ut = 1

Sdown, if ut−1 = 1 and ut = 0

0, otherwise,

(6.5)

where Sup and Sdown represent constant startup cost and constant shutdown

cost.

The last term Mmtwt in the objective function represents a fixed maintenance

cost, incurred only when maintenance takes place. Finally, the above optimiza-

tion is subject to several constraints, each of which will be detailed next.

96



Maintenance contract

Proper maintenance can keep a GT to work efficiently and reliably. However,

it may not be economic for an owner to staff full-time crews to maintain the

units. This is true especially for owners of small GTs, who usually prefer to

sign maintenance contracts with some maintenance companies, responsible for

on-site unit maintenance.

A complete maintenance contact is normally complicated. Since frequent up

and down and violent temperature variation are the main causes for early fatigue

or outage of a unit, we consider a simplified contract such that maintenance

must be performed (therefore, the unit must be shutdown) if at least one of the

following conditions is met: (i) the aggregated unit operation hours (yt) exceeds

some prespecified level Nop; (ii) the aggregated unit startup numbers zt exceeds

some prespecified level N start. These two conditions are detailed next.

• The aggregated operation hours is tracked by yt, whose initial value is 0. A

normal operation hour refers to an hour during which the generation level

is within the rated capacities, i.e., [qmin, qmax]. As opposed to the normal

operation hour, an overfire hour is one in which the unit overfires. Since

overfiring a unit results in more fatigue than normal operation, an overfire

hour is considered equivalent to W > 1 normal operation hours (specified

in the maintenance contract). Therefore,

yt+1 = yt + (Wvt + (1− vt))ut. (6.6)

• The aggregated startup numbers is tracked by zt, initially set to 0. Similar

to the operation hours, different levels of startups are categorized depend-

ing on the temperature of turbines. They are: warm start, normal start,
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cold start, and very cold start. From the perspective of maintenance, the

range of temperature variation is the less, the better. The startup of a

gas turbine is a typical process of increasing temperature. Generally, the

longer a unit has been shutdown, the lower the temperature of the tur-

bine is. A warm start causes less temperature variation and fatigue than

a normal start; and a cold and very cold starts cause more temperature

variation and fatigue than a normal start. The following is an example

how the startup number is considered, depending on how long the unit has

been down (xt < 0).

nt(xt) =





0.5, if xt > −4 (warm start),

1, if − 4 ≥ xt > −20 (normal start),

1.5, if − 20 ≥ xt > −40 (cold start),

2, if xt ≤ −40 (very cold start),

0, otherwise.

(6.7)

In (6.7), a warm start is considered a half normal start if the unit has been

down for less than 4 hours, and a cold start (down for 20 to 40 hours) is

considered one and a half normal start. Overall, the startup number is

aggregated as follows.

zt+1 = zt + nt(xt)(1− ut−1)ut, (6.8)

As aforementioned, once the aggregated operation hours or aggregated startup

numbers reaches some levels, specified in the maintenance contract, shutting

down the unit for maintenance (wt = 1) is enforced.
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Maintenance condition

wt =





1, if yt ≥ Nop or zt ≥ N start,

0 or 1, otherwise.
(6.9)

Maintenance interval constraints

Once a maintenance decision wt = 1 is made at time t, the unit goes into a

maintenance interval with a duration tmt time periods. That is, the unit must

stay off for at least tmt time periods (approximately two weeks in reality). That

is, if wt = 1 and wt−1 = 0, then

xt+tmt = −tcold, (6.10)

yt+tmt = 0, (6.11)

zt+tmt = 0. (6.12)

A sample state transition diagram is shown in Fig. 6.1, in which it can be seen

that once a maintenance decision is made at t, the state is then transited to time

t+tmt, and the counters yt+tmt and zt+tmt are reset to 0. In (6.10), xt+tmt = −tcold

implies that this generator can be viewed as staying at the cold status and ready

to put back on-line again.

Next we incorporate the maintenance constraints into the state transition

(see Fig. 6.1). Two phases are discussed: (i) operation phase (wt = 0); (ii)

maintenance phase (wt = 1).

State transition: operation phase (wt = 0)

xt+1 =





min(ton + tover, max(ton, xt) + 1), if ut = 1 and vt = 1,

min(ton, max(xt, 0) + 1), if ut = 1 and vt = 0,

max(−tcold, min(xt, 0)− 1), if ut = 0 and vt = 0.

(6.13)
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and

ut =





1, if 1 ≤ xt < ton and ton < xt ≤ ton + tover,

0, if − toff < xt ≤ −1,

0 or 1, otherwise.

(6.14)

vt =





0, if xt = ton + tover or xt < ton,

0 or 1, otherwise.
(6.15)

Equations (6.14) and (6.15) represent the minimum uptime/downtime and over-

fire constraints, respectively. Equation (6.15) implies that the unit can be over-

fired only when after the minimal uptime constraint has been satisfied, i.e., after

at least ton hours of normal operation. This restriction can prevent significant

temperature variation within a short time period due to overfire. In addition,

the unit cannot overfire for more than tover hours continuously. When it is turned

back to normal operation status from overfire, it must remain normal operation

for at least an hour before it can overfire again.

State transition: maintenance phase (wt = 1)

xt+1 = max(−tcold − 1, min(0, xt)− 1) (6.16)

yt+1 = 0 (6.17)

zt+1 = 0 (6.18)

and

ut = 0 (6.19)

vt = 0 (6.20)

Equations (6.16) to (6.20) describe the values of the states when the unit is in

the maintenance phase (i.e., shut down). Apparently, the unit cannot overfire in

a maintenance interval.
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Figure 6.1: State transition diagram including operation and maintenance

processes.
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Capacity constraint

As aforementioned, the production capacity of a unit may be dependent on

environment temperature. The capacity constraint is modeled below.

qmin ≤ qt ≤ (qmax(1− vt) + qovervt)β
e
q(T

e
t ) (6.21)

where

βe
q(T

e
t ) = 1−

(
T e

t − T d

∆T d

)
Rq% (6.22)

Equations (6.21) and (6.22) state the maximum rated capacity can be increased

from qmax to qover. Regardless of overfire, both qmax and qover are sensitive to the

environment temperature T e
t . For instance, when T e

t increases, both qmax and

qover will decrease.

6.2.2 Temperature model

In the formulation, we have shown that GT’s operational characteristics (in-

cluding C(qt, P
F
t ), qmax, and qover) are sensitive to the environment temperature

T e
t . It is, therefore, important to study temperature variation over time.

Cao and Wei (2000) suggested that future temperature deviation on day τ +1

can be forecasted based on temperature deviations over the three previous time

periods, τ , τ − 1 and τ − 2. Later Baldick et al. (2003) claim that the tempera-

ture deviations on τ − 2 are statistically insignificant to the future temperature

deviations on τ + 1. Thus, in their model the temperature deviation from the

historical average on τ + 1 is a function of temperature deviations on τ and

τ − 1 only. The stochastic fluctuations around historical average can be further

described by the following equations:

∆T
τ+1 = ρT

1 ∆T
τ + ρT

2 ∆T
τ−1 + σT

τ εT
τ (6.23)
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Table 6.1: Value of the parameters of the temperature model

Parameters Value

ρT
1 0.831

ρT
2 -0.194

σT
0 8.322

σT
1,1 5.697

σT
1,2 5.774

σT
1,3 5.741

σT
1,4 5.753

φ -14.2

σT
τ = σT

0 − σT
1 | sin(

π(τ + φ)

365
)| (6.24)

where ∆T
τ = Tt − T̄τ , Tτ is the actual temperature for day τ T̄τ is the average

temperature for day τ , and ρT
1 , ρT

2 represent the autocorrelation coefficients for

deviations from average temperature on day τ and τ − 1, respectively. The

magnitude of the random fluctuations is seasonal, with a fixed term σT
0 and

a seasonal term of magnitude σT
1 . Each εT

t is a standardized normal random

variable.

Following the model of Baldick et al. (2003), we collect weather data (from

January 2000 through December 2002) at the National Climatic Data Center

website (www.ncdc.noaa,gov), and use which to calibrate the model. We fur-

ther categorize σT
1 into seasonal values: σT

1,1(spring), σT
1,2(summer), σT

1,3(fall) and

σT
1,4(winter). The estimated values of the parameters are summarized in table

6.1.
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6.2.3 Stochastic price process

In this chapter, it is assumed that the prices for electricity PE
t and fuel P F

t

follow some mean reverting processes and are functions of α1 and α2 respectively,

which are governed by the following stochastic differential equations.

dαl = µl(αl, t)dt + σldBl, (6.25a)

µl(αl, t) = −mul[αl(t)−mtl(t)], (6.25b)

where l = 1 and 2 represent the prices for electricity and fuel, respectively, µl

is a drift function, σl is a constant volatility and Bl is a Wiener process with

correlation ρ1,2. Assume that there exists one-to-one transformations between α1

and PE
t , and between α2 and P F

t . Therefore, (PE
t , P F

t ) can be obtained through

the corresponding (α1, α2). Price samples are generated in the same way used

in Chapter 5.

6.3 Algorithm development

The problem (P ) is a difficult mixed-integer multi-stage program. In order

to solve the problem (P ), which is subject to all the above operating constraints

(6.6) to (6.22) including overfire and maintenance constraints, we need to find a

suitable method.

In this chapter, we use the LSMC approach described in the previous chapter

to solve the problem (P ) based on the graphic network in Fig. 6.1.

6.3.1 Solution procedure

At any time t, one must know how to approximate Et[Jt+1(·)] before making
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optimal decisions. The regression functions ht(·) of current uncertainty Qt and

production level qt are regressed as follows:

• Stay overfire

ho,o
t (qt;Qt) = Et[Jt+1(min(ton + tover, xt + 1), yt−W, zt,Vt+1;Qt+1)] (6.26a)

• From overfire to normal

ho,n
t (qt;Qt) = Et[Jt+1(t

on, yt − 1, zt,Vt+1;Qt+1)] (6.26b)

• From normal to overfire

hn,o
t (qt;Qt) = Et[Jt+1(t

on + 1, yt −W, zt,Vt+1;Qt+1)] (6.26c)

• Stay normal

hn,n
t (qt;Qt) = Et[Jt+1(min(ton, xt + 1), yt − 1, zt,Vt+1;Qt+1)] (6.26d)

• From up to down

hu,d
t (qt;Qt) = Et[Jt+1(−1, yt, zt,Vt+1;Qt+1)] (6.26e)

• From down to up

hd,u
t (qt;Qt) = Et[Jt+1(1, yt − 1, zt − nt,Vt+1;Qt+1)] (6.26f)

• Stay down

hd,d
t (qt;Qt) = Et[Jt+1(max(−tcold, xt − 1), yt, zt,Vt+1;Qt+1)] (6.26g)

• From cold to maintenance

hc,m
t (qt;Qt) = Et[Jt+1(−tcold − 1, 0, 0,Vt+1;Qt+1)] (6.26h)
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• Stay maintenance

hm,m
t (qt;Qt) = Et[Jt+1(−tcold − 1, 0, 0,Vt+1;Qt+1)] (6.26i)

• From maintenance to cold

hm,c
t (qt;Qt) = Et[Jt+tmt(−tcold, Nop, N start,Vt+1;Qt+1)] (6.26j)

The aforementioned expected value of Jt+1(·) can be approximated through

forward-moving simulation and backward-moving dynamic programming itera-

tions. Since analytical forms of ht(·) are nonexistent in general, we can only

use numerical methods based on Monte Carlo simulation to approximate it.

If the above regression functions ht(·) are available at time t, one could know

the expected unit value for the next time period when the uncertainty prices

(PE
t , P F

t ) and environment temperature T e
t are revealed. Then, one could de-

termine: (i)whether to do maintenance or not; (ii)whether to turn on or off the

unit; or (iii)whether to overfire or not. That means for any realization of Qt

at time t, one would know how to optimally make decisions for the next time

period based on the above regression functions ht(·).

6.3.2 Overfire options

Overfire may be viewed as a real option. However, when and how to exer-

cise the overfire option may not be an easy task. This is because that overfire

operation affects maintenance schedule of gas turbine. Therefore, optimally ex-

ercising the overfire option must be considered over the entire planning horizon.

Assume that the length of time horizon is T and all boundary conditions are

given. Whether one should overfire or not can be determined by the following
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equations:

vt =





1, if 1 ≤ xt < ton + tover and Jt+1(max(ton, xt) + 1, yt −W, zt,Vt+1;Qt+1)

> Jt+1(min(ton, xt + 1), yt − 1, zt,Vt+1;Qt+1),

0, otherwise.

(6.27)

6.3.3 Maintenance options

From maintenance constraints (6.9), it can be seen that one may still decide

to shutdown the unit for maintenance even when any of the two conditions

specified in the contract is not met. Therefore, maintenance may also be viewed

as a real option. For example, one may intentionally maintain the unit even

when it is not required in order to make the unit available for some forecasted

heat wave in the near future. Since the maintenance requires shutting down

the unit for some period, it is not obvious whether early exercise the option is

optimal. At any time t when xt = tcold, one may have three options: (i) turn on

the unit; (ii) stay off; or (iii) do the maintenance. The optimal decision can be

determined based on the expected value of Jt+1 as follows:

wt =





1, if xt = tcold, yt > 0, zt > 0, and Jt+1(−tcold − 1, 0, 0,Vt+1;Qt+1) >

max(Jt+1(−tcold, yt, zt,Vt+1;Qt+1), Jt+1(1, yt − 1, zt − 1,Vt+1;Qt+1)),

0, otherwise.

(6.28)

6.3.4 Boundary conditions

Boundary conditions refer to the values of JT at time T . If T represents the

life time of a GT, JT must be zero for sure; otherwise, JT should be equal to the
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rest value of the GT.

Once the boundary values of JT are known, one can use the LSMC to estimate

JT−1 for every data sample. The decision maker can choose whether to do

maintenance or not, whether to startup or not, whether to overfire or not, and

revisit the exercise decision at the next time period. This procedure can be

repeated to T − 2, · · · , 0. The last iteration, starting with the initial conditions

at time 0, provides the optimal planning and asset estimation for the whole time

horizon.

6.3.5 Algorithm for the asset valuation

Next we show how to use the LSMC method to value the GT with overfire

capacity and maintenance contracts through backward dynamic programming

based on the pre-generated price database and temperature data. Two algo-

rithms will be presented. The first one is the generic algorithm, which, however,

requires a huge state space. The second one is an improved method.

Algorithm 1: Generic algorithm

Data: Initial conditions (x0, y0, z0, P
E
0 , PR

0 , P F
0 , T e

0 ) are given, and data set size

N > 0 is also given.

Step 0: Set t ← T − 1, i ← ton + tover, j ← Nop, k ← N start, JT (·) get from

boundary conditions.

Step 1: Obtain a set of sample prices (P
E(n)
t , P

R(n)
t , P

F (n)
t ) and environmental

temperatures T
e(n)
t (n = 1, · · · , N).

Step 2: Regress J
(n)
t+1 on (P

E(n)
t , P

R(n)
t , P

F (n)
t ) to obtain ht(·) .
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Step 3: If xt = ton + tover,

J
(i,j,k;n)
t ← πt(·) + J

(ton,j−1,k;n)
t+1 ;

else if ton < xt < tover,

J
(i,j,k;n)
t ← πt(·) + max(ho,o

t , ho,n
t );

else if xt = ton,

J
(i,j,k;n)
t ← πt(·) + max(hn,o

t , hn,n
t , hu,d

t − Sdown);

else if 0 < xt < ton,

J
(i,j,k;n)
t ← πt(·) + max(J

(i+1,j−1,k;n)
t+1 , hn,o

t );

else if xt = 0,

J
(i,j,k;n)
t ← −∞;

else if −toff < xt < 0,

J
(i,j,k;n)
t ← J

(i−1,j,k;n)
t+1 ;

else if −tcold < xt ≤ −toff ,

J
(i,j,k;n)
t ← max(hd,d

t , hd,u
t − Sup);

else if xt = −tcold,

J
(i,j,k;n)
t ← max(hc,m

t −Mmt, hd,d
t , hd,u

t − Sup);

else if xt = −tcold − 1,

J
(i,j,k;n)
t ← max(hm,m

t , hm,c
t ).

Step 4: If i > −tcold − 1, i ← i− 1, go to Step 3.

Step 5: if j > 0,

j ← j − 1, i ← ton + tover, go to Step 3;

else

J
(i,j,k;n)
t ← max(J

(i,j,k;n)
t , J

(i,Nop,k;n)
t+tmt ).

Step 6: If k > 0,
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k ← k − 1, j ← Nop, i ← ton + tover, go to Step 3;

else

J
(i,j,k;n)
t ← max(J

(i,j,k;n)
t , J

(i,j,Nstart;n)
t+tmt ).

Step 7: If t > 0, t ← t− 1, k ← N start, j ← Nop, i ← ton + tover, go to Step 1.

Step 8: Stop.

While in theory the above algorithm can work, it is not solvable from the

perspective of implementation due to the huge state space (I ∗ J ∗ K ∗ T )

required. For example, when the number of unit status xt is 10, the num-

ber of total operation hour yt is 1000, the number of total startup zt is 100,

and the number of total hours T (in a year) is 8760, the state space becomes

10∗1000∗100∗8760 = 8.76∗109. Further considering N sample paths of several

uncertainties and the least squares regression in each state, this problem cannot

be handled within reasonable time by the current computer hardware. One al-

ternative method is to absorb the state variables yt and zt into each regression

function so as to reduce the state space significantly. The algorithm is as follows:

Algorithm 2: An improved version

Data: Initial conditions (x0, y0, z0, P
E
0 , PR

0 , P F
0 , T e

0 ) are given, and data set size

N > 0 is also given.

Step 0: Set t ← T − 1, i ← ton + tover, JT (·) get from boundary conditions.

Step 1: Obtain a set of sample prices (P
E(n)
t , P

R(n)
t , P

F (n)
t ) and environmental

temperatures T
e(n)
t (n = 1, · · · , N).

Step 2: Regress J
(n)
t+1 on (P

E(n)
t , P

R(n)
t , P

F (n)
t ) to obtain ht(·) .
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Step 3: If xt = ton + tover,

J
(i;n)
t ← πt(·) + J

(ton;n)
t+1 ;

y
(i;n)
t ← y

(ton;n)
t+1 −W ;

z
(i;n)
t ← z

(ton;n)
t+1 ;

else if ton < xt < tover,

if y
(i+1;n)
t+1 > 0 and z

(i+1;n)
t+1 > 0;

J
(i;n)
t ← πt(·) + max(ho,o

t , ho,n
t );

y
(i;n)
t ←





y
(i+1;n)
t+1 −W, if ho,o

t > ho,n
t ;

y
(ton;n)
t+1 −W, otherwise.

z
(i;n)
t ←





z
(i+1;n)
t+1 , if ho,o

t > ho,n
t ;

z
(ton;n)
t+1 , otherwise.

else

J
(i;n)
t ← πt(·) + ho,n

t ;

y
(i;n)
t ← y

(ton;n)
t+1 −W ;

z
(i;n)
t ← z

(ton;n)
t+1 ;

else if xt = ton,

if y
(i+1;n)
t+1 > 0 and z

(i+1;n)
t+1 > 0;

J
(i;n)
t ← πt(·) + max(hn,o

t , hn,n
t , hu,d

t − Sdown);

y
(i;n)
t ←





y
(i+1;n)
t+1 − 1, if ho,o

t > max(hn,n
t , hu,d

t − Sdown);

y
(i;n)
t+1 − 1, else if hn,n

t > hu,d
t − Sdown;

y
(−1;n)
t+1 − 1, otherwise.

z
(i;n)
t ←





z
(i+1;n)
t+1 , if ho,o

t > max(hn,n
t , hu,d

t − Sdown);

z
(i;n)
t+1 , else if hn,n

t > hu,d
t − Sdown;

z
(−1;n)
t+1 , otherwise.

else if y
(i;n)
t+1 > 0 and z

(i;n)
t > 0;
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J
(i;n)
t ← πt(·) + max(hn,n

t , hu,d
t − Sdown);

y
(i;n)
t ←





y
(i;n)
t+1 − 1, if hn,n

t > hu,d
t − Sdown;

y
(−1;n)
t+1 − 1, otherwise.

z
(i;n)
t ←





z
(i;n)
t+1 , if hn,n

t > hu,d
t − Sdown;

z
(−1;n)
t+1 , otherwise.

else

J
(i;n)
t ← πt(·) + hu,d

t − Sdown;

y
(i;n)
t ← y

(−1;n)
t+1 − 1

z
(i;n)
t ← z

(−1;n)
t+1

else if 0 < xt < ton,

if y
(ton+1;n)
t+1 > 0 and z

(ton+1;n)
t+1 > 0;

J
(i;n)
t ← πt(·) + max(h

(n;n)
t , hn,o

t );

y
(i;n)
t ←





y
(ton+1;n)
t+1 − 1, if hn,o

t > hn,n
t ;

y
(i+1;n)
t+1 − 1, otherwise.

z
(i;n)
t ←





z
(ton+1;n)
t+1 , if hn,o

t > hn,n
t ;

z
(i+1;n)
t+1 , otherwise.

else

J
(i;n)
t ← πt(·) + h

(n;n)
t ;

y
(i;n)
t ← y

(i+1;n)
t+1 − 1

z
(i;n)
t ← z

(i+1;n)
t+1

else if xt = 0,

J
(i;n)
t ← −∞;

else if −toff < xt < 0,

J
(i;n)
t ← J

(i−1;n)
t+1 ;

y
(i;n)
t ← y

(i−1;n)
t+1

z
(i;n)
t ← z

(i−1;n)
t+1
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else if −tcold < xt ≤ −toff ,

if y
(1;n)
t+1 > 0 and z

(1;n)
t+1 > 0;

J
(i;n)
t ← max(hd,d

t , hd,u
t − Sup);

y
(i;n)
t ←





y
(1;n)
t+1 , if hd,u

t − Sup > hd,d
t ;

y
(i−1;n)
t+1 , otherwise.

z
(i;n)
t ←





z
(1;n)
t+1 − nt(i), if hd,u

t − Sup > hd,d
t ;

z
(i−1;n)
t+1 , otherwise.

else

J
(i;n)
t ← hd,d

t ;

y
(i;n)
t ← y

(i−1;n)
t+1

z
(i;n)
t ← z

(i−1;n)
t+1

else if xt = −tcold,

if y
(1;n)
t+1 > 0 and z

(1;n)
t+1 > 0;

J
(i;n)
t ← max(hc,m

t −Mmt, hd,d
t , hd,u

t − Sup);

y
(i;n)
t ←





y
(1;n)
t+1 , if hd,u

t − Sup > max(hc,m
t −Mmt, hd,d

t );

y
(i;n)
t+1 , else if hd,d

t > hc,m
t −Mmt;

y
(i−1;n)
t+1 , otherwise.

z
(i;n)
t ←





z
(1;n)
t+1 − nt(i), if hd,u

t − Sup > max(hc,m
t −Mmt, hd,d

t );

z
(i;n)
t+1 , else if hd,d

t > hc,m
t −Mmt;

z
(i−1;n)
t+1 , otherwise.

else if y
(i;n)
t+1 > 0 and z

(i;n)
t+1 > 0;

J
(i;n)
t ← max(hc,m

t −Mmt, hd,d
t );

y
(i;n)
t ←





y
(i;n)
t+1 , if hd,d

t > hc,m
t −Mmt;

y
(i−1;n)
t+1 , otherwise.

z
(i;n)
t ←





z
(i;n)
t+1 , if hd,d

t > hc,m
t −Mmt;

z
(i−1;n)
t+1 , otherwise.
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else

J
(i;n)
t ← hc,m

t −Mmt;

y
(i;n)
t ← y

(i−1;n)
t+1

z
(i;n)
t ← z

(i−1;n)
t+1

else if xt = −tcold − 1,

J
(i;n)
t ← max(hm,m

t , hm,c
t );

y
(i;n)
t ←





Nop, if hm,c
t > hm,m

t ;

y
(i;n)
t+1 , otherwise.

z
(i;n)
t ←





N start, if hm,c
t > hm,m

t ;

z
(i;n)
t+1 , otherwise.

Step 4: If i > −tcold − 1, i ← i− 1, go to Step 3.

Step 5: If t > 0, t ← t− 1, i ← ton + tover, go to Step 1.

Step 6: Stop.

Based on the initial unit status (x0, y0, z0), initial prices (PE
0 , PR

0 , P F
0 ) and the

initial temperature T e
0 , the asset value of the GT at t = 0 is

J0(x0, y0, z0,V0;Q0) ≈
N∑

n=1

J
(x0,y0,z0;n)
0 /N (6.29)

Since the analytical form of ht(·) is unavailable in general, we can only try to

find an appropriate functional form to approximate it. Based on our numerical

experience, the following polynomial form including state variable yt and zt works

well for the regression.

ht(qt, yt, zt;Qt) ≈ a1 + a2qt + a3q
2
t + a4q

∗qt + a5P
E
t + a6P

R
t + a7P

F
t + a8T

e
t

+a9q
∗(PE

t )2/P F
t + a10yt + a11zt + a12ytq

∗ (6.30)
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where

q∗ =





max(qmin, min(ce
q(T

e
t )qover,

P E
t /P F

t −c1
2c2

)), if xt > ton,

max(qmin, min(ce
q(T

e
t )qmax,

P E
t /P F

t −c1
2c2

)), if 0 < xt ≤ ton,

0, otherwise.

(6.31)

q∗ is determined by the present status xt, and the current environmental tem-

perature T e
t ; and a1 ∼ a12 are the parameters to be fitted in the regression.

6.4 Numerical results

Consider a small-size gas-fired turbine with the input-output characteristics

following (6.3) and (6.4). Assume that P F
0 is $2.2/MMBtu, PE

0 is $20/MW,

and qmin = 75MW, qmax = 200MW, qover = 230MW, c0 = 200, c1 = 8.149,

and c2 = 0.00452. We also assume that ton = 2, toff = tcold = 1, and tover = 1

to fully capture the influence of the physical constraints. The corresponding

state transition diagram is given in Fig. 6.2. Let the startup cost be $1000 and

shutdown cost be $500. Hourly electricity prices and gas prices are generated

by two mean reverting process following (6.25a) and (6.25b) The corresponding

parameters of the price models are given in Table 6.1 and Table 6.2. Assume

that the correlation coefficient between electricity and gas prices is 0.078744.

For the maintenance contracts, we assume that the maximum number of oper-

ation hours Nop = 1600 hours and the maximum startup numbers is N start = 120

between any two maintenance intervals. Assume W = 4, i.e., an overfire hour

is equivalent to 4 normal operation hours. Assume the duration of each mainte-

nance interval Tmt is two weeks, i.e., 336 hours. As to the environment temper-

ature model, the corresponding parameters are showed in Table 6.1, calibrated
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Figure 6.2: The state transition diagram for this case.

Table 6.1: Mean reverting process coefficients of electricity and gas

Coefficients σ mu mt P0

Electricity 0.27 0.072 2.878 20

Gas 0.2476 0.01057 1.0195 2.2

from real data. Assume the designed operating environment temperature T d to

be 66oF and the allowable variation range of environment temperature ∆T d to

be 60oF. Both fuel cost adjusting range Rf and qmax adjusting range Rq are 2%.

6.4.1 Valuing a GT with overfire capacity and mainte-

nance contract

A set of price and temperatures scenarios are generated to estimate the ca-
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Table 6.2: Mean log Price of electricity: mt(t)

t 1 2 3 4 5 6 7 8

mt(t) 1.887 2.656 1.935 2.340 3.503 3.857 3.758 4.660

t 9 10 11 12 13 14 15 16

mt(t) 4.861 4.710 5.811 4.736 5.044 5.738 5.917 4.713

t 17 18 19 20 21 22 23 24

mt(t) 3.723 1.457 1.322 2.511 3.617 0.645 1.603 1.833

pacity value of the same GT considering overfire capacity and maintenance con-

straints using Algorithm 2. Assume that the time horizon is 8760 hours (1 year)

and after which the remaining value of the GT is zero. (This does not mean

that the GT is worthless in a year, but a simplified ‘mid-term’ asset valuation

and planning.)

Asset value vs. time T

First we consider the capacity value of the GT vs. the length of the time horizon

T , ranging from one month to one year. The result is depicted in Fig. 6.3. It

can be seen that the capacity value of the GT with overfire capacity and mainte-

nance contract is around 150$/KW for one year. In general, the capacity value

increases with the length of time horizon T monotonically and approximately

linearly. The relation is bumpy when T is between 3 and 7 months. This is

because that maintenance intervals start to exist within such durations. Since

each maintenance interval takes two weeks, it impacts the overall asset value

and creates the bumpiness of the seemingly linear relation when T is not big.

However, as T exceeds 8 months, which is considerably much longer than the
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Figure 6.3: Capacity value of the GT over time.

duration of the maintenance interval, the asset value returns to an approximately

linear function of T .

Asset value affected by environment temperature

In the proposed model, a GT’s operational characteristics (including C(qt, P
F
t ),

qmax, and qover) are sensitive to the environment temperature T e
t . To test how

the asset value is sensitive to the environment temperature, we design a baseline

test case, in which the environmental temperature T e
t = T d

t for all t such that

βe
f = βq

f = 1. That is, in the baseline case, these operational characteristics are

not temperature dependent. The baseline case is then compared with two cases

with uncertain temperatures following the model in Section 6.2.2. For simplicity,

we choose T to be 8 weeks to exclude the effect of maintenance. One test case

is in summer and one in winter. Generally, T e
t > T d

t in the summer, and both
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Figure 6.4: Asset value affected by environment temperature in summer.

qmax, and qover decrease. Therefore, the asset value also decreases. The situation

is reversed in the winter case. The result of the summer case is depicted in

Fig. 6.4. It can be seen that as T = 8, temperature uncertainty accounts for

approximately 2.2% decrease of the asset value (compared with the baseline.)

The result of the winter case is given in Fig. 6.5, where the asset value is higher

than that of the baseline.

6.4.2 Overfire option value

To extract the value of the overfire real option, we introduce an additional

constraint that limits the overall number of overfire hours. First, let ot be a new

state variable that tracks the aggregated overfire hours, which is reset to 0 after

a maintenance is performed. An upper bound Nover is then imposed to ot. The
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Figure 6.5: Asset value affected by environment temperature in winter.

new and modified constraints as follows.

vt =





0 or 1, if 0 < xt < ton + tover and ot ≤ Nover,

0, otherwise.
(6.32)

ot+1 = ot + vt (6.33)

ot = 0 if wt = 0 and wt−1 = 1 (6.34)

We then run the algorithm for determining the asset value (T = 1 year)

repeatedly with the value of Nover increased gradually. The capacity value of

the GT vs. Nover is depicted in Fig. 6.6. Apparently, the asset value increases

as Nover increases, since overfiring the GT is a real option that has value. When

the value of Nover reaches 100 hours, the asset value is at a maximum and does

not increase even Nover is further increased. Therefore, Nover = 100 hours can

be viewed as the optimal number of overfire per year. Overfiring the GT less
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Figure 6.6: Capacity value affected by overfire limit.

than 100 hours is equivalent to giving away this option value. On the other

hand, overfiring the unit more than 100 hours is not economical, because the

maintenance costs outweigh the benefit.

6.4.3 Maintenance option value

Note that (6.9) states that maintenance is mandatory if either one of the

two maintenance conditions is met. This equation, however, allows to perform

the maintenance even when any of the two conditions is not met. That is,

the maintenance is an (American style) option. To measure the value of such an

option, we manage to take away the option modify by modifying (6.9) as follows.

wt =





1, if xt = −tcold and yt ≥ Nop or zt ≥ N start,

0, otherwise.
(6.35)

In (6.35), a slight modification appears in the second line, which implies that
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maintenance is performed only when it is required. We then run the algorithm

for determining the asset value (with T = 1 year) and compare it with the

original asset value with the maintenance option. The capacity value of the

GT is 146.7 $/KW without the maintenance option, and was 149.8 $/KW with

the option. That is, approximately 2 percent of capacity value is due to the

maintenance. This shows that maintenance can be part of a profitable strategic

plan to increase the asset value.

6.5 Conclusions

In this chapter, a general valuation framework for thermal units consider-

ing overfire option, maintenance constraints and environment temperature is

developed. The numerical results show that the overfire option can increase

the capacity value (about 3.3% per year) and the maintenance option can also

increase the capacity value (about 2% per year). We also show that the envi-

ronment temperature may affect the asset value, which tends to be decreased in

summer and increased in winter. The proposed model and the numerical results

provide some new insights in the valuation and operation of the GT.
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Chapter 7

Conclusions and Further Research

Directions

This dissertation advocates that all relative operational options, constraints

and interdependent uncertainties should be considered when a thermal genera-

tion unit is valued in the competitive power market. Failing to do may signif-

icantly overestimate a power plant, which may result in stranded capital for a

long time period.

In Chapter 4, the optimal self scheduling of a thermal unit in an electric-

ity spot market was studied. When the spot prices are known with certainty,

a polynomial-time algorithm based on network graph is proposed for solving

the problem. Using the developed algorithm to evaluate the unit responses in

various price scenarios generated by the LSMC method, we obtain the optimal

commitment and dispatch rule under price uncertainty. The test results indicate

that the ramp constraints impact a thermal unit on its capability of responding

to price uncertainty by reducing its fuel economy, heat-electricity transformation

efficiency, and available generation capacity. The proposed method provides a

way to quantify these effects. Although the ramp-constrained self-scheduling
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problem can be solved using the proposed two-stage approximation method, to

solve the multi-stage recursive equation directly with ramp constraints remains

very challenging. The major difficulty lies in the ramp constraints. Further

research direction may include new multi-stage recursive formulation and new

techniques for reducing state space.

In Chapter 5, a LSMC approach was proposed to value a power plant with

fuel-switching options. The numerical results show that the LSMC is much more

efficient than lattice model especially when time horizon is long and more than

two uncertainties are involved. Our test shows that the fuel-switching options

may increase the power plant value from 4 to 7% or even higher, depending on

the market condition. This shows that fuel-switching is an important operational

real option in determining the asset value. This, however, has not included the

fact that fuel-switching is also a useful emission abatement means. Although the

initial tests show that the LSMC approach is a useful tool for handling multiple

uncertainties, it remains unclear how a suitable regression functional form is

determined. This problem, however, is not unique to our case, but general to all

regression-based methods.

In Chapter 6, a general valuation framework for thermal units considering

overfire option, maintenance constraints and environment temperature has been

developed. The numerical results show that the overfire option can increase the

capacity value (about 3.3% per year). We also showed that the environment

temperature may affect the asset value, which tends to be decreased in summer

and increased in winter. The proposed model and the numerical results provide

some new insights in the valuation and operation of the GT. Further research

includes development of better temperature and price models.
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In conclusion, this dissertation contributes a new methodology for fair genera-

tion asset valuation that accounts for multiple and interdependent uncertainties

and complex physical constraints. The proposed research will certainly help

unit operators achieving optimal operation and investors making appropriate

investment decisions. In the long run, customers also benefit from the improved

societal efficiency.
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