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The motivation of this dissertation is to develop a ‘Seeing-Eye’ video-based

interface for the visually impaired to access environmental text information. We

are concerned with those daily activities of the low-vision people involved with

interpreting ‘environmental text’ or ‘scene text’ e.g., reading a newspaper, can labels

and street signs.

First, we discuss the devopement of such a video-based interface. In this

interface, the processed image of a scene text is read by off-the-shelf OCR and

converted back to speech by Text-to-Speech(TTS) software. Our challenge is to feed

a high quality image of a scene text for off-the-shelf OCR software under general

pose of the the surface on which text is printed. To achieve this, various problems

related to feature detection, mosaicing, auto-focus, zoom, and systems integration



were solved in the development of the system, and these are described.

We employ the video-based interface for the analysis of video of lectures/posters.

In this application, the text is assumed to be on a plane. It is necessary for automatic

analysis of video content to add modules such as enhancement, text segmentation,

preprocessing video content, metric rectification, etc. We provide qualitative results

to justify the algorithm and system integration.

For more general classes of surfaces that the text is printed on, such as bent or

worked paper, we develop a novel method for 3D structure recovery and unwarping

method. Deformed paper is isometric with a plane and the Gaussian curvature

vanishes on every point on the surface. We show that these constraints lead to a

closed set of equations that allow the recovery of the full geometric structure from a

single image. We prove that these partial differential equations can be reduced to the

Hopf equation that arises in non-linear wave propagation, and deformations of the

paper can be interpreted in terms of the characteristics of this equation. A new exact

integration of these equations relates the 3D structure of the surface to an image of

a paper. In addition, we can generate such surfaces using the underlying equations.

This method only uses information derived from the image of the boundary.

Furthermore, we employ the shape-from-texture method as an alternative to

the method above to infer its 3D structure. We showed that for the consistency of

normal vector field, we need to add extra conditions based on the surface model.

Such conditions are are isometry and zero Gaussian curvature of the surface.

The theory underlying the method is novel and it raises new open research

issues in the area of 3D reconstruction from single views. The novel contributions



are: first, it is shown that certain linear and non-linear clues (contour knowledge

information) are sufficient to recover the 3D structure of scene text; second, that

with a priori of a page layout information, we can reconstruct a fronto-parallel view

of a deformed page from differential geometric properties of a surface; third, that

with a known cameral model we can recover 3D structure of a bent surface; forth, we

present an integrated framework for analysis and rectification of scene texts from

single views in general format; fifth, we provide the comparison with shape from

texture approach and finally this work can be integrated as a visual prostheses for

the visually impaired.

Our work has many applications in computer vision and computer graphics.

The applications are diverse e.g. a generalized scanning device, digital flattening

of creased documents, 3D reconstruction problem when correspondence fails, 3D

reconstruction of single old photos, bending and creasing virtual paper, object clas-

sification, semantic extraction, scene description and so on.
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Chapter 1

Introduction

1.1 Preamble

‘The blind live in a world of hearing and touch (where) knowledge of the object is

gained through the sense of touch since hearing gives no information unless sound is

an integral part. Thus, objects that are too finite or too large or too far for the sense

of touch cannot be experienced’ (Sholl-Schur [75]). Text falls under this category.

1.2 Motivation

Imagine the frustration of walking in a street where you can not read street signs, of

not being able to read newspaper. If you are visually impaired, this is the scenario

for your lifetime. An ever-increasing segment of the population (6 million in the

US) suffers from low vision brought about by complication of diseases and old age

as human longevity increases [2]. The total is far greater if we consider those who
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cannot see fine print without spectacles. While this group may be classified as blind

but they do have some vision which can be assisted by prostheses and visual aids.

By the definition of the American Foundation of the Blind (AFB) [2], the biggest

problem for such people is lack of information about the environment. Therefore,

the challenge is to provide access to environmental information.

Here, we are concerned with those daily activities involved with interpret-

ing ‘Environmental text’ or ‘Scene text’. Scene text of various kinds, including

bound printed material(books, newspapers, magazines, brochures, etc.), distant

scene text(street signs,warning, shop labels and directions) and other miscellaneous

text (nutrition labels, ATM instructions, etc.) abound in the world. In table 1.2,

we gathered different scene text categories [51].

Such textual information above is too far or too finite for a sense of touch.

Therefore, the visually impaired people cannot be able to recognize and interpret

them for their daily activities. A recent extensive survey by Massof [54, 55] shows

that the visually impaired are most desirous of portable technologies that enable

them to take personal care of their needs. Since much of this population lives alone,

there is a need for devices and services that can assist them in getting about, and

providing them with access to information [19].

There are many efforts to provide access to textual information for the visually

impaired. There is a huge effort on recording books [5], newspapers and magazines

[63] and commercially available books on audio-cassette. However, for news articles

and documents, audio conversion is an unavoidable step, and due to the excessive

volume of audio-cassette library storage, not all information is going to be available
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Item Features Complications

Mail Letterheads, addresses, Background, font size and style

handwritten, textured surface

Street signs Names, directional, colored Colors and shapes,

background (on block and scene),

surfaces, location, size, lighting,

occlusion

Notices Notice boards contain many notices Wide variety of fonts, sizes,

of varying relevance and urgency often overlapping, some handwritten

and graphical

Medicines Dosage, drug name, warning labels Shape of container, label layout,

often small font

Food Packaging Instructions, quantities, contents Colors, graphics, shape of packaging

brand names, used-by date variable

Flat Newspapers, magazines, posters Text, graphics, color, size

Printed text

Curled Reading article while in the hand, animation Non-flat surface

Printed text

Advertising Wide variety of information Different formats from pamphlets to

books, colors, layouts, graphics

Maps Location of text, spatial representation, Screen characters, button association,

symbols time restrictions, animated

Money Denomination Graphical, poor quality

Electronic devices Digital screen and associated buttons Colored, textured surfaces, shape

Table 1.1: Scene Text Categories

when required. Personal scanning devices in conjunction with OCR and speech

synthesis provide access to text in books and magazines while scanned by the scanner

[4]. However, there are other scene texts which are not necessarily located on pages

of books or magazines or not close to a scanning device, e.g. nutrition labels on

arbitrary shape cans, street signs ,etc. In these cases, the scanner-based interface

can not be used.

Over the last decade, there has been major advances in hardware e.g., cheaper

and more efficient cameras, display, faster and smaller computers and in software

and algorithms e.g., advances in OCR, text-to-speech software, computer vision
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algorithms. Therefore, video-based acquisition of text is an alternative that provides

portable access to text for the visually impaired. The interface includes a computer,

a digital video-camera, audio interface and off-the shelf OCR software. Our ‘Seeing-

Eye’ computer is composed of three modules:

• Data Acquisition: Image acquisition device e.g. a digital camera that is used

to interact with the environment.

• Processing: This module that stabilizes and enhances images, identifies text

images, corrects for physical and projective distortion, reading text and con-

verting to speech format.

• Output interface: A speech synthesis display for the visually impaired to con-

vey the recognized scene text to the user.

In this system (shown in Fig. 1.1), the camera captures scene text, with full

intelligent control on focus and zoom. The computing device pre-processes the video

before feeding it to OCR. There are constraints on the quality of the input image

to OCR software. In general, for better quality of OCR output, we require that:

• Text images are binarized and enhanced;

• Text images are from flat scene texts;

• All text has the same degree of skew and slant;

• Mixture of text and graphics have components layout seperated;

• The text image have at least some minimum number of pixels per character.

4



Figure 1.1: Schematic of Seeing-eye computer

Therefore, the challenges for the vision system can be summarized into these research

issues:

1. Preprocessing captured video-content;

2. Text segmentation and identification;

3. Image enhancement;

4. 3D structure recovery and unwarping text images;

5. OCR from degraded text;

6. System Integration.
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In the next section, we will present the main contribution of the thesis which includes

the solution to the problems stated above.

1.3 Contribution Overview

1.3.1 Preliminary Video-based Interface to Scene Text

We presented a preliminary prototype device for scene text acquisition and process-

ing in [93]. In this system, the camera captures ‘scene text’ with control on focus

and zoom that depends on orientation and quality of the document video. The

computing device pre-processes video before feeding into the OCR, by performing

operations such as image mosaicing, auto-focus and binarization.

1.3.2 Computer Vision for Planar Scene Text

Detection and recognition of textual information in an image or video is important

for many applications. The increased resolution and capabilities of digital cameras

and faster mobile processing allow for the development of interesting systems. We

present an application based on the capture of information presented at a slide-

show presentation, or at a poster session. We describe the development of a system

to process the textual and graphical information in such presentations. The ap-

plication integrates video and image processing, document layout understanding,

optical character recognition (OCR) and pattern recognition. The digital imaging

device captures slides/poster images, and the computing module pre-processes and

6



annotates the content. Various problems related to metric rectification, key frame

extraction, text detection, enhancement and system integration are addressed. The

results are promising for applications such as a mobile text reader for the visually

impaired. By using powerful text-processing algorithms, we can extend this frame-

work to other applications e.g.document and conference archiving, camera-based

semantics extraction and ontology creation.

1.3.3 Unwarping and 3D structure recovery for surfaces ap-

plicable to planes

We consider the problem of 3D structure recovery and unwarping text images from

single views as the core of the dissertation. We show that differential geometric

shape properties are sufficient to solve 3D structure equations. The input is the

image of a scene text, possibly curled and the goal is to construct a fronto-parallel

view of the text image before inputting OCR.

When a picture of text is captured by a camera, our problem is to unwarp

the captured image to its flat, fronto-parallel representation. In the simple case

that the text surface is flat, the problem reduces to one of undoing a projection of

a rectangle, and the rectification (or unwarping) can be achieved by computing a

simple homography. A harder problem is posed when we consider the case when

the piece of paper is itself deformed or bent. In this case the unwarping must undo

both the effects of the three-dimensional bending of the surface, and the effect of

the projection. Examples includes reading newspaper without any constraint on

7



flatness of a paper sheet(Fig 1.2-a), reading planar signs (Fig 1.2-b)and can labels

(Fig 1.2-c).

(a) (b) (c)

Figure 1.2: a) Curled newspaper b) Planar Scene Text c) Cylindrical Can

Knowledge of the differential geometry of surfaces can provide a very powerful

set of relations for analysis. However, most quantitative use of differential geometry

has been restricted to range data, while the analysis of image data has been primarily

qualitative. A celebrated exception is the work of Koenderink on occluding contours.

The deformations of paper surfaces satisfy the conditions of isometry (the

lengths of curves and areas enclosed by them, are conserved by the bending) and

vanishing Gaussian curvature (also called intrinsic curvature).

Previous authors have attempted to enforce these conditions in reconstruction.

However, in their approaches, they essentially enforced these as constraints to a pro-

cess of polynomial/spline fitting using data obtained on the surface. In contrast, we

solve these system of equations, and show that information on the bounding con-

tour is sufficient to determine structure completely. Further, exact correspondence

information on the bounding contour is only needed at corner points.

8



1.3.4 Unwarping and 3D structure recovery using texture

information

we developed the shape-from-texture method as an alternative to the method above

to infer the 3D structure. We showed that for the consistency of normal vector field,

we need to add extra conditions based on the surface model. Such conditions are

isometry and zero Gaussian curvature of the surface.

1.4 Other Applications

Other than its theoretical importance, our research can potentially benefit diverse

computer vision applications, e.g. rectifying scanner output, digital flattening of

creased documents, 3D reconstruction without correspondence or with occlusion of

paper, and perhaps most importantly, optical character recognition of scene text.

Other than its theoretical importance, our research can potentially benefit diverse

computer vision applications, e.g. a generalized scanning device, digital flatten-

ing of creased documents, 3D reconstruction problem when correspondence fails,

3D reconstruction of single old photos, bending and creasing virtual paper, object

classification, semantic extraction, scene description and so on.

1.5 Dissertation Organization

The outline of the dissertation is as follows: Chapter 2 describes a preliminary

video-based interface to textual information. In chapter 3 we develop a computer
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vision framework for analysis of scene text printed on planes. In this chapter, we

give the solution based on the previous solid computer vision algorithms e.g. metric

rectification of planes. To motivate the problem, we consider poster/presentation

analysis problem for such interface. in Chapter 4, we investigate 3D structure re-

covery and unwarping for more general class of surfaces (applicable to planes) from

single views. In chapter 5, we present an alternative shape from texture method to

3D structure recovery.
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Chapter 2

A video based interface to Scene

Text

2.1 Introduction

Video-based acquisition of text is an alternative that provides portable access to

text for the visually impaired. However, before such a system can be successfully

implemented, several problems arising from text identification in images, low reso-

lution sensors, image stabilization, text being warped, and others on the one hand,

and practical system integration issues, on the other, have to be solved. We describe

here the development of a preliminary prototype device for scene text acquisition

and processing. The system consists of a computer, a digital Video Camera, an

audio interface and off-the-shelf OCR software. The camera captures text from the

scene, with full control of focus and zoom that depends on orientation and quality of

the document video. Video is ‘conditioned’ before OCR, by performing operations
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Figure 2.1: Schematic of a Seeing-Eye computer system

such as image mosaicing, binarization, etc. The OCR software recognizes text from

still and super-resolved images of whole text blocks, and the recognized text is read

back by speech-to-text. In general, off-the-shelf OCR systems are successful if:

• Document images are binarized and enhanced.

• All Text has the same degree of skew and slant.

• The text image has sufficient number of pixels per character experimentally

calculated as ≥ 12.

These criteria are often not met by the images of text captured by commercial digital

video cameras which have low-resolution and narrow field of view. To successfully

use off-the-shelf OCR software, we must construct high resolution input to OCR, we

use image registration and mosaicing techniques cited at [6][9][38][47][70][77][79] to

read patches of text and stitch them together to make a super-resolved text image

[39][73][58][59].
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To calculate number of frames(patches), it is necessary to determine font-size

of text, we then zoom into each patch to obtain the image that satisfy font-size

constraint and capture the whole page while it is in-focus. Then, the super-resolved

image from the mosaicing algorithm is interpreted by OCR and TTS software.

In section 2, we discuss a fast mosaicing method that at the individual frame

level employs image processing to clean up the text, followed by a two stage regis-

tration procedure and mosaicing. Both mosaicing and successful OCR require clear

images with maximal resolution, and hence the system needs auto-focus and auto-

zoom capabilities. These are described in section 2.3. Section 2.4 describes the

system development and presents some sample results.

2.2 Image Registration Algorithm

Mosaicing is a way to create large still images from a set of images taken by a moving

camera. Creating a mosaic from video sequences is useful for many application such

as image browsing, video surveillance and virtual reality. Although a page of a

magazine or a book can be captured in a single image, it may not be readable by

OCR. We present an image mosaicing algorithm to enhance OCR results.

Our image mosaicing method uses a frequency-based analysis to obtain an

initial transformation matrix. Then, the initial estimate is refined using an intensity-

based method to get both speed and best match [9][47][70][77].

In figure 2, a rectangle(page) is projected to an image plane of a camera at

different pose(time); images 1 and 2, respectively . Consider a point on the rectangle,
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(X,Y, Z); its projection onto image 1 and image 2 are (x, y), (x
′
, y

′
), respectively:

The point on image 1 is related to corresponding point on image 2 by:

Figure 2.2: Projection of a plane onto image plane of a camera at different pose
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(2.1)

The equation above defines a homographic deformation between the two frames.

There are two common situations in which images are related by homographic trans-

formations: images obtained by rotating the camera about its center (a motion con-

straint); images of a plane from varying viewpoints (a structure constraint). Here,

we concentrate only on sequences obtained from any viewpoint of a planar surface.

In the former case, the eight unknowns are the three Euler angles (θ, ψ, φ) of

a camera and the five intrinsic camera parameters. In the latter case, we have the

three parameters of a planar surface and the five camera intrinsic parameters [77].

Frequency domain based image registration has a long history, but has largely

been restricted only to translation between image pairs through calculating phase

correlation. This method is fast in computation and independent of illumination
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change between the two frames. There is a more general phase correlation method

to solve for affine image transformations, but is computationally expensive [70].

We use phase-correlation method solution to the transformation matrix as an ini-

tial guess for an intensity-based method [47]. Consider two successive frames of a

video sequence, f1 and f2. If the motion vector is assumed to be purely translation

(4x,4y), then :

f2(x, y) ≈ f1(x−4x, y −4y) (2.2)

Let F1(u, v) and F2(u, v) be the Fourier transforms of f1 and f2. Applying the

Fourier shift theorem gives:

F2(u, v) ≈ e−2πj(u4x+v4y)F1(u, v) (2.3)

The Cross-power spectrum of F1 and F2 (where F ∗
2 is the complex conjugate of F2)

as :

CPS =
F1(u, v)F ∗

2 (u, v)

|F1(u, v)F ∗
2 (u, v)| ≈ e−2πj(u4x+v4y) (2.4)

Ideally, the inverse of the cross-power spectrum is an impulse at location

(4x,4y). In real applications, there would be many impulses due to different mo-

tions in the scene, parallax effects, etc. In real applications two consecutive frames

are not completely shifted replicas of each other. The above equation is satisfied

only in the overlap region between the two frames. In order to remove the repeat-

ing nature of the frequency spectrum and to give less value to the boundaries, we

used a raised cosine function to make a window that smoothly reaches zero at the

boundaries. This spatial filter gives more weights to the pixel close to center of an
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image rather than the boundaries. This spatial filter is formulated as bellow:

w(i) = 0.54− 0.46 cos(
2πi

N
), i = 0 · · ·N(Hamming Cosine Window) (2.5)

Summarizing the phase correlation algorithm:

• Apply the Hamming cosine spatial window to both frames.

• Compute the maximum of the Fourier inverse of the Cross-power spectrum

between the Fourier of the filtered frames.

• The spatial location of the maximum is the translation vector(magnitude of

maximum shows qualitatively the percentage of overlapped region).

and the initial guess for M is:

M (0) =




1 0 tx

0 1 ty

0 0 1




Now, starting from this initial transformation matrix, we search for a matrix that

yields a minimized intensity error in the overlapped area shared between image

1 and 2. This method has the advantage of not requiring any easily identifiable

feature points, and of being statistically optimal once we are in the vicinity of the

true solution. We can remove the term ω in Eqn. (2.1) by dividing the first two set

of equations by the third equation. Therefore:

x
′
i =

m0xi + m0yi + m2

m6xi + m7yi + 1
, y

′
i =

m3xi + m4yi + m5

m6xi + m7yi + 1
(2.6)
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Our technique minimizes the sum of the squared intensities errors:

E =
∑

i

e2
i =

∑
i

[I2(x
′
i, y

′
i)− I1(x, y)]2 (2.7)

This sum is calculated over all pixels i which are inside both images I1(x, y)

and I2(x
′
, y

′
) (pixels which are outside the overlap region do not contribute) [In the

above equation, x
′
and y

′
are pixels of the second image mapped to the first image].

To perform this minimization, we use the Levenberg-Marquardt (LM) nonlin-

ear optimization algorithm. To implement this algorithm, the partial derivatives of

ei with respect to m0 · . . . ·m7 are needed and computed as:

∂ei

∂m0

=
xi

Di

∂I2

∂x
′
i

. . .
∂ei

∂m7

=
−yi

Di

(x
′
i

∂I2

∂x
′
i

+ y
′
i

∂I2

∂y
′
i

) (2.8)

We employ a Taylor series expansion to E at m +4m. So:

E(m +4m) ≈ E(m)−4mT b +
1

2
4mT A4m + O(4m3) (2.9)

Where A (Hessian of E) and b (gradient of E) are:

[A]ij ≡ ∂2E

∂mimj

, b ≡ −∇E (2.10)

Once the partial derivatives of ei are calculated, a Hessian matrix A and gradient

vector b can be generated as:

akl =
∑

i

∂ei

∂mk

∂ei

∂ml

, bkl = −
∑

i

ei
∂ei

∂mk

(2.11)

Therefore, 4m is solved iteratively from:

(A + λI)4m = b (2.12)
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where λ is a tuning parameter that is adjusted according to the change in the sum

of squared differences at each iteration.

Once the images are aligned, the next major task is blending the overlapped

regions seamlessly. In the mosaicing literature, there are different type of blend-

ing routines from simple intensity averaging to more complex Vornoi weights of

the images or Gaussian spline interpolations. In our method, for any pixel in the

overlapped area, we give more weight to the frame whose center is close to that

pixel.

2.2.1 Image Mosaicing Results

Using techniques that are only intensity-based image mosaicing is locally optimal

and computationally expensive. So, we use a phase correlation-based technique for

coarse estimation of the transformation matrix. The initial guess can be computed

by choosing 4 corresponding feature points in each of two consecutive frames. Al-

though this method gives us a statistically very close solution to transformation

matrix, it has two disadvantages; it is not automatic, and it fails in case of choosing

non-optimal feature points (non optimal choice happens when the corresponding

points lie on a line or too close to each other causing the transformation matrix to

be ill-conditioned).

While we assume that the relationship between two consecutive frames is a

homographic transformation, real camera optical distortions that may cause unde-

sirable results.

18



(a) (b)

Figure 2.3: a) Frame 1 b) Frame 11

(a) (b)

Figure 2.4: a) Mosaic image b) binarized and de-skewed mosaic

Figure 2.3 shows the first and eleventh frames from a sequence. The result

of image mosaicing algorithm is shown in figure 4(the original number of frames

was 132 but we employ several heuristics to reduce this number and increase the

computation speed). The super-resolved still image is processed by OCR software

and the classification rate is almost ≥ 98%. Frames are of 320x240 size and the

mosaic is shown in a scaled view.
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2.3 Improving Image Quality

2.3.1 Auto-Focusing

In general, focused images have higher frequency components than de-focused im-

ages of a scene. In auto-focus techniques the objective is to set the focus of a camera

by maximizing high frequency components in an image sequence. For our device we

need to search for the best focus in near real time.

Possible criteria for extracting the best focusing position of the lens includes

the Tenengrad , sum-modules difference and sum-modified laplacian [39]. The

choice of criteria function is crucial to the auto-focusing Algorithm. The criteria

function should satisfy the following properties:

• The maximum position of the criteria function corresponds to the best focusing

position of lens.

• It is robust to different textures, and works on both outdoor and indoor scenes.

• It has no local maxima to make optimizing the focus difficult.

• It focuses on near and dominant objects closer to the center.

Sum-Modules-Difference (SMD) Criterion is calculated by summing the in-

tensity difference between adjacent pixels:

SMD = SMDx + SMDy =
∑

i

∑
j

|fij − fi,j−1|+ |fij − fi−1,j|, (2.13)

Tenengrad Criterion is simply the magnitude of the gradient at each pixel. If we
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define horizontal and vertical gradient as fx and fy, then:

Tenengrad =
∑

∀x,y |∇f(x, y)| = ∑
∀x,y

√
f 2

x + f 2
y

fx = ix ∗ f(x, y), fy = iy ∗ f(x, y) (2.14)

where ix and iy can be any gradient mask. We employed Sobel Operator.

Sum-Modified-Laplacian (SML) estimates high frequency components in

an image:

SML = |2f(x, y)−f(x−1, y)−f(x+1, y)|+|2f(x, y)−f(x, y−1)−f(x, y+1)| (2.15)

Search Algorithm

We find the in-focus position of the camera lens by determining the maximum of a

neighborhood contrast function iteratively searching for the maximum criterion po-

sition. We use a parabolic bracketing and hill climbing method, simultaneously [69].

For each iteration we need to get focus values and corresponding focus parameters

of a camera. Focus value and focus parameter are H and f, respectively. The steps

of the searching algorithm are as follows:

• Initial step: f0 = fmin, f1 = fcur, f2 = fmax

• Do until Convergence: |fnew − fcur| < tol

if H(f0) < H(f1) < H(f2) , then:

fnew ← parabolic Bracketing method
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else if H(f0) > H(f1) then:

fnew ← f0 − fstep

else:

fnew ← f2 + fstep

pick fnew and the other closest two focus values to fnew

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SML(:), SMD(−.), Tenengrad((−−)

Figure 2.5: Camera characteristic curve for different methods, y-axis: focus value

scale to one and x-axis: focus parameter in mm

The best in-focus state of the camera is calculated on dominant edges in a frame.

The frames are pre-filtered by a 5x5 Gaussian kernel. We tried all the three for

documents and non-document objects and there was no notable difference with

respect to speed and accuracy (Fig. 2.5). The in-focus state of a camera is 210mm.

All methods find the same focus parameter. We used SMD for Figures 2.6 and 2.7

to show the quality and accuracy of the auto-focusing algorithm.
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(a) (b)

(c) (d)

Figure 2.6: Auto-focus on page: a) de-focus(78mm), b) in-focus(210mm), c) de-

focus(366mm), d) OCR results for case(b)

2.3.2 Auto-zooming

We present a methodology to set the zoom parameter of camera based on font-size

of text. In general, for low-resolution and narrow field camera, we need to zoom

further into sections of the text. If we zoom too little, the resolution of text may

be too low and the text will be too small for OCR interpretation. If we zoom too

much, characters may become too large for OCR interpretation and moreover, there

will be more frames to process.

To find the font-size, we calculate the horizontal projection profile of a de-

skewed and binarized image (skew estimation, image thresholding and clean up is

done by OCR software). Then,we compute the font-size by finding the average width

of pulses on the horizontal projection profile. Based on the font-size calculation, our

application automatically zooms to reach the OCR font-size constraint(figure 2.8).
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(a) (b)

(c)

Figure 2.7: Auto-focus on document and non-document objects:a) de-focus (78mm),

b) in-focus(318mm), c) de-focus(444mm)

In figure 2.9 (a− b), we show the original image of text processed by the auto-zoom

algorithm.

2.4 System Integration and Development

We developed an interface to textual information in the environment for the visually

impaired. Our integrated system consists of a digital Camera Sony DFW-VL500,

pentium III 866 Mhz computer, loudspeakers. This interface scans document images

in the scene and converts them to speech. Our software is written in C++ using

MFC library for developing software environment, IPL and OpenCV library for

image processing [65], Microsoft Vision SDK for full camera intelligent control(focus,

zoom, iris, exposure), Scan soft 2000 for OCR [74], Microsoft Speech SDK for text-

to-speech conversion. Fig. 2.10 shows a snapshot of the video-based interface on
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Figure 2.8: font-size calculation :a) original image , b) binarized and de-skewed

image, c) horizontal projection profile

(a) (b)

Figure 2.9: a) original frame b) auto-zoomed frame

the left side and the real-video content. We have similar version of our interface in

both the VC++ environment and the MATLAB environment.
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Figure 2.10: Left: Video-based interface snapshot, Right: Video-content preview

snapshot
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Chapter 3

Computer Vision for Planar Scene

Text

3.1 Introduction

On a more practical level, one of the chief methods for scientific and business com-

munication is the use of slide shows and posters. Often organizations or individuals

record these presentations, but have no means to index or retrieve these digital im-

ages by subject. Both these problems need the ability to detect and recognize the

layout of text in images, and make sense of the image.

In this chapter we present results from the development of a vision system

for the processing of scene text in a relatively restricted context: the processing of

images captured in a presentation or a poster session. Our system aims at mapping

the layout of a slide or a poster into text and image blocks, performing appropri-

ate rectification, image processing of the text blocks, followed by optical character
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recognition.

Such a system could be useful to a visually impaired person or for meeting

archiving. Text processing algorithms that extract latent semantics [81] have become

very powerful. The availability of the text in the presentations (without having

access to the digital source slides) can allow these slides to be indexed and retrieved.

3.2 Scenario and Problems

Our goal is to change information from one medium (lecture presentation/slide/poster)

to another (text and graph bounding boxes followed by OCR and text-to-speech).

Here, we consider that images of slides/posters are taken by a digital camera. These

images are composed of text and graphic blocks and background. After image

blocks are stored, the rectified text blocks are binarized and passed to OCR soft-

ware. Finally, we store the detected text and images in a searchable format. More-

over, for recognized texts blocks, we include the content and font-size information.

Prior knowledge consists of expected image layout since slides/posters consist of

text/graph blocks.

For off-the-shelf OCR software the output of character recognition is reliable

only if the text blocks are provided in the fronto-parallel view. In practice, the

images are deformed when the optical axis of a camera is not perpendicular to

presentation/poster surface. Therefore, the challenge is to extract fronto-parallel

views of the deformed image. This is called ‘metric rectification’. In a fronto-parallel

view, right angles are projected to right angles and parallel lines are projected
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to parallel lines. Features must be found to perform metric rectification, . Such

features are parallel lines and right angles in the image. Hence, in Section 3.4.3

we will introduce an automatic and precise line segment detection algorithm to

detect these features. Then, text and image regions are segmented from rectified

images. Before providing text boxes to OCR, we pre-process them to improve OCR

output quality. Note that all these problems stated are for one image, not an image

sequence. In practice, a digital camera takes a video of text printed on a surface. A

video contains of a lot of redundant frames with the same information. The problem

is how to extract changes in a video due to changes in slides/posters content and

not due to illumination change or camera jitter. The schematic of the video-based

slides/posters recording framework is shown in Figure 3.1.

Figure 3.1: Schematic of the system for Annotation and Analysis of Lectures/posters
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3.3 Previous work

Camera-based document image analysis is addressed in a recent review article [24].

The following papers touch on problems of video analysis of scene text.

Camera-based acquisition: Ref. [59] addressed a simple scheme for auto-

zoom of a camera. This method is useful if the background around an object has

low variance compared to the object. Then, in the observation window variance

is used as an indicator of best zoom. In [93], a video-based interface to access

textual information for the visually impaired was discussed. Auto-focusing and

auto-zooming algorithms were presented. The best focus is achieved when the edges

are strongest in the image. The best zoom is set when the readable font-size of a

text region is more than the OCR readable font-size constraint. We consider this

method for preprocessing the real-time recorded video content by controlling the

zoom and focus of a camera.

Key-frame extraction: Since in the video of lectures, textual information is

not varying rapidly, we need to detect the changes in video and remove redundant

frames. In [85], a simple difference operation was introduced. This algorithm is

very accurate for still camera pose and constant illumination condition. We used

the phase correlation method from the image registration literature to detect the

changes in slide or poster video content. This algorithm is stable under global

illumination changes and small camera jitter [28, 47].

Metric rectification: The common method in the literature is to extract

vanishing lines and right angles in the image [13, 14, 48]. Extraction of vanishing
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lines is achieved by different methods, such as the projection profile method [14] and

using illusory and non-illusory lines in textual layouts [61]. We employ an automatic

line segment algorithm for line detection due to Dementhon. We cluster the line

segments in feature space (edge angle and edge distance as features)using a mean

shift algorithm [17]. We implemented the algorithm of [48, 49] which is suitable for

our problem scenario since the image of a poster/slide includes rectangular boxes

and lines.

Text segmentation: There are various text segmentation algorithms in the

computer vision and document understanding literature that all address the follow-

ing three basic problems: feature extraction, clustering and validation. For fea-

ture extraction, there are different filtering methods: steerable pyramids, Laplacian

pyramids [29] and Gabor filters, etc.. Our system uses Gabor filters for the feature

extraction part. For clustering, we employ a K-means algorithm, and more gener-

ally, a mean shift filter does not require prior knowledge of cluster numbers [17]. In

[15], different features from local moments of pixel intensity were used. We use the

text segmentation module in [27, 91, 37]. In this paper, we consider the clustering

method although in more elaborate and robust methods [50], learning is the choice.

Enhancement: A Global thresholding scheme is not ideal for camera-captured

images due to lighting variation and complex background [29]. The survey in

[82], compared eleven different adaptive thresholding methods and concluded that

Niblack [78] is the best. In this paper, we apply the Niblack method for binarization

of text boxes before providing it to OCR.

Contribution: While many of the individual components have been de-
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scribed previously, our contribution is the development of a video-based interface, a

unified framework to analyze text and graphs printed in video-lectures and storing

them in a searchable format. In [64, 84], a system that supports selection of text

in video, and several techniques for segmentation and resolution enhancement of

camera images, were described.

3.4 Preprocessing

3.4.1 Key Frame Extraction

Since in video of lectures, textual information is not varying rapidly, many frames

will have the same information and we do not want to waste processing resources

on the redundant frames. In [85], a simple difference operation was used on three

consecutive frames. The difference between two consecutive frames at time t is:

FD(t) =
1

mn

∑

∀x,y

|I(x, y; t + 1)− I(x, y; t)| , (3.1)

where m and n are the pixel dimensions of a frame. Here, we set a frame as key

frame, if:

|FD(t)− FD(t− 1)| > e. (3.2)

The input to the key frame extraction module is a video and the output is a set of

sorted frames in time. This algorithm works extremely well if the camera is still and

the same illumination condition holds. It often happens that the illumination varies

during the lecture presentation and moreover there is a small camera movement

while capturing the content. In this case the simple difference algorithm fails. Our
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solution is to use phase correlation [47] for key frame extraction. This method ,

which is well known in the image registration literature, uses the Discrete Fourier

Transform (DFT) of two consecutive frames to compute the overlap percentage.

Consider two consecutive frames denoted as f1 = I(x, y; t) and f2 = I(x, y; t + 1).

Denote the DFT of these frames as F1(u, v) and F2(u, v). Then the cross power

spectrum is:

CPS =
F1(u, v) · F ∗

2 (u, v)

|F1(u, v)||F2(u, v)| (3.3)

If f2 is a translated version of f1, then:

f2(x, y) ≈ αf1(x−4x, y −4y) (3.4)

where α is a constant illumination factor. So the CPM is:

CPM ≈ e−j2π(u4x+v4y) (3.5)

Therefore, the inverse of the CPM gives an impulse at (4x,4y) and the impulse

height is the amount of normalized similarity overlap between f1and f2(0 corre-

sponds to no overlap and 1 to the maximum area overlap). This method is fast

enough for real-time applications and is invariant to constant illumination changes.

To suppress the repeating nature of the frequency spectrum and to give less weight

to the boundary pixels, we used a raised cosine function, as a window that smoothly

reaches 0 at the boundaries. This spatial filter gives more weight to pixels close to

center of an image rather than the boundaries. This spatial filter (Hamming cosine

window) is formulated in 1D as:

w(i) = 0.54− 0.46 cos(
2π

N
); i = 0 : N − 1 (3.6)
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Summarizing the key frame extraction method,

1. The first frame is a key frame.

2. While receiving the video sequence for some threshold tol (we experimentally

choose 0.2), do:

(a) Apply Hamming cosine window to the previous key frame and the new

frame.

(b) Compute the overlap percentage on the filtered images; if it is less than

tol then record the new key frame.

This overlap indicator is extremely efficient and robust for all types of transla-

tions and constant illumination changes. At each time step, we keep only two frames

in memory and the process is very fast using the FFT (Fast Fourier Transform).

3.4.2 Metric Rectification

An image of a presentation that is not fronto-parallel to the image plane of a camera

is deformed due to perspective projection. This distortion is called the keystone

effect. That means parallel lines and right angles are not projected as parallel lines

and right angles in the image plane (Figure 3.2). For planar surfaces the deformation

can be modelled by a 3× 3 matrix, a ‘homographic transformation’, that maps the

pixels of the unwarped image to the warped image [26].

(u, v)
H7−→ (x, y), (3.7)
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where H is the homographic mapping, (u, v) is the spatial location of a pixel in

the image of fronto-parallel view and (x, y) is the corresponding pixel in the image

captured by the camera. Knowledge of at least four corners in the image is enough to

estimate the eight unknown parameters of the mapping by least squares estimation

algorithms (up to scale). Often we do not have the exact correspondences and

also the corners may not be visible. However, we can use the linear features (lines

and right angles) in the image for the rectification process. In presentations, lines

and boxes in the image provide such linear clues. We address the solution to the

Figure 3.2: Warped image: parallel lines and right angles are not perceived respec-

tively parallel and right angles in the image plane.

keystone correction by estimating vanishing lines and right angles. Before describing

the algorithm, we review a few definitions from projective geometry.

Points and lines in homogenous representation: Let l be a line in 2D

plane denoted by ax + by + c = 0. A line is represented by (a, b, c)T and if a point

(x, y) on a plane is represented in homogenous coordinates as x = (x, y, 1)T , then
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the line equation in homogenous coordinate is lTx = 0. The intersection of two lines

l and l
′
is the point x; x = l× l

′
. The line joining two points x and x

′
is l = x×x

′
.

Therefore, lines and points are dual in projective geometry.

Intersection of two parallel lines: Consider two parallel lines l and l
′

with coordinates of (a, b, c)T and (a, b, c
′
)T . The intersection of two parallel lines is

x = l × l
′

= (c
′ − c)(b,−a, 0). Ignoring the scale factor (c

′ − c), the intersection

would be (b,−a, 0)T which does not belong to R2. In general, the intersection of

two parallel lines, an ideal point, is of the form of (x1, x2, 0)T . A line at infinity that

passes through an ideal point (from Eqn. lTx = 0) is represented as l∞ = (0, 0, 1)T .

Transformation of lines: If a point x′ is mapped by a matrix H to a point

x. Then, we can show that x′ = Hx, where H is a 3× 3 homographic matrix as:

H =




h1 h2 h3

h4 h5 h6

h7 h8 1




, (3.8)

where all entries are scaled by h9. Therefore, if a point x belongs to a line l , then:

lTx = 0 ⇒ lT H−1Hx′ = l
′Tx′ = 0 (3.9)

and consequently line l is mapped to l
′
by a matrix H−T :

l
′
= H−T l (3.10)

Vanishing points and vanishing line: In a perspective image of a plane, an

ideal point is mapped by a homographic transformation H to a vanishing point.

The vanishing line is an image of line at infinity in the image plane. Figure 3.3
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demonstrates two vanishing points and the vanishing line of a perspectively skewed

image. Here, we denote the two spaces: affine skewed space and perspectively skewed

space E and F respectively. Therefore, as Eqn. (3.10), we can find a transformation

Figure 3.3: Vanishing line and vanishing points.

that maps a line at infinity in E to a vanishing line in the image (F ).

Decomposition of a projective transformation: It is known that H can

be decomposed to S, A and P matrices; Similarity, Affine and Projection matrix

[48]. Therefore:

H = SAP, (3.11)

=




sR t

o 1







1
β

−α
β

0

0 1 0

0 0 1







1 0 0

0 1 0

l1 l2 l3




,

where (l1, l2, l3) is a vanishing line vector in the image plane (F ), R2×2 is the rotation

matrix around the image axis of a camera. Therefore, for the metric rectification,
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we compute (α, β, l1, l2, l3)
T .

Circular points: are points on the line at infinity which are fixed under any

similarity transformation. These points are often called absolute points I and J ; (1,

±i, 0)T denoted in the homogenous coordinates. These points are the intersection

of any circle with a line at infinity. These points are mapped to (α ∓ βi, 1, 0)T

on the affine plane (E) by a matrix A and to ((α ∓ iβ)l3, l3,−αl1 ∓ iβl1 − l2)
T in

the projective plane (F ) by a matrix (A ∗ P ). Unfortunately, we cannot compute

circular points directly because they are complex numbers. Instead we calculate

them indirectly through their dual conic representation.

Absolute Conic: It is known that the absolute conic is dual to the circular

points as C∗
∞ = IJT + JIT where C∗

∞ is a absolute dual conic.

Rectification Algorithm: Here, we can solve for the metric rectification in

two ways. In the first method, we extract vanishing lines and then at least two right

angles for the metric rectification. We then compute matrix P from the vanishing

line and then A from two right angles. In the second method, we extract five right

angles (five pairs of orthogonal lines) and solve for the image of absolute dual conics

D in the projective plane. D is denoted as:

D = MNT + NMT ,

M, N = ((α∓ iβ)l3, l3,−αl1 ∓ iβl1 − l2)
T (3.12)

where M and N are images of circular points in the projective plane. Each pair

of orthogonal lines places a linear constraint on D. From D entries, the 5 known

unknown parameters (α, β, l1, l2, l3)
T are extracted. Based on the angle between lines
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in projective geometry, we can show that orhtogonal lines are conjugate with respect

to D. Each pair of orthogonal lines adds a linear constraint on D:

lTa Dlb = 0, (3.13)

for orthogonal lines la and lb. In 3.4.3, we describe the precise line detection algo-

rithm we use.

In some cases, presentations appear on curved surfaces. These surfaces, appli-

cable surfaces, have special differential geometric properties of vanishing Gaussian

curvature at any point and isometry with flat surfaces. We addressed and developed

the 3D structure recovery and unwarping of applicable surfaces using differential ge-

ometry in [34].

3.4.3 Line Detection

We follow an algorithm suggested by DeMenthon. We compute the edge map of

the input image using the Robert operator [29] which is thinned by non-maxima

suppression [20]. Then, we make a feature vector with components of edge angles

and edge distances. The distance used is that of an edge line segment to the center

of the image and the angle is the angle of an edge line segment with respect to

the horizontal axis. In feature space, we find the center of clusters using the mean

shift algorithm with large mean shift radius of kernel [17]. Then, for each set of

pixels with a specific label, relabel each connected component. Now, the angle map

and distance map of edges are recomputed and pixels are reclustered with the small

kernel radius. At the final stage, we determine the end points of pixels with the same
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labels. After lines are segmented precisely, the dominant direction of the segmented

lines are chosen using the histogram of the segmented line angles. Since lines of

different dominant direction are assumed to be orthogonal, so we relabel a pair of

orthogonal lines for the metric rectification method either method I or II.

3.4.4 Text Segmentation and Enhancement

In camera-based OCR systems, unlike in scanner-based systems, the image is low in

quality and blurred, so that the output of the OCR is poor. The quality of the image

is a function of the presentation quality, the camera parameters, camera motion and

so on. Here, we assume that the camera is fixed while capturing a video of lectures.

Therefore, the challenge is to enhance the image before providing it to OCR. The

steps are text segmentation and adaptive binarization.

Treating text as a distinctive texture, we use Gabor filter banks associated

with an edge map for text segmentation. The Gabor filter method gives both the

benefits of Fourier methods and local spatial distribution methods. The feature

responses of the filters at each pixel, are designed to identify text bearing regions.

Although none of the filters can individually identify text and non-text regions, a

concatenation of the filters provides text detection. This method is robust and pre-

cise for text segmentation in natural scenes, text in different size and orientation and

complex background. To improve the segmentation results, we will later introduce

post-processing algorithms on the output of the text segmentation module. A two
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dimensional Gabor function g(x, y) in polar coordinates can be written as:

g(x, y ; σx, σy, w, θ) =

1

2πσxσy

exp{−π(
x2

σ2
x

+
y2

σ2
y

)} exp{jw(x cos(θ) + y sin(θ)}, (3.14)

where σx and σy are the standard deviations of the Gaussian mask along the x and

y directions, wx and wy are the center frequencies of the filter, θ = tan−1(wy

wx
) is

the orientation and w =
√

w2
x + w2

y is the radial frequency. Gabor functions with

different scales and orientations form a complete but nonorthogonal basis set. Ex-

panding an image using this basis provides a localized frequency description. In

Figure 3.4, the filters in two scale and four direction are shown. One characteristic

of the Gabor filters is its orientation selectivity. Assume the orientation θ = θ∗, the

Gaussian mask filters the image in the θ∗ orientation only and blocks other orienta-

tions. For the feature extraction part, we choose two scales with four orientations

(0o, 45o, 90o, 135o) at each scale. We implemented the Gabor bank filter from [83].

To increase the precision of the feature extraction part, we choose the magnitude of

the responses for each pixel filtered by a nonlinear soft thresholding function of:

Φ(x) = tanh(αx) =
1− exp(−2αx)

1 + exp(−2αx)
(3.15)

where α = 0.2 (experimentally). We associate further a partially redundant feature,

a local edge density measure. This feature improves the accuracy and robustness of

the method while reducing false detections. Before the clustering step, features are

normalized to have zero mean and unit variance [27].

For clustering features in 9D space, we use a K-means clustering algorithm to

cluster feature vectors. Empirically, the number of clusters (value of K) was set to
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three. This value works well with all test images. The cluster whose center is closest

to the origin of features vector space is labeled as background (there is no significant

edge in any orientation and scale if the background is almost uniform pattern) while

the furthest one is labeled as text. If the background is not stationary or highly

textured (as often happens in lecture presentation), we could learn the background

and subtract it from the key-frame slide. We do not discuss this here.

The output of the clustering is filtered by a median filter to remove small noise

due to non-uniformity of the background. Using a morphological operator (closing

with disk), we increase the area of text region candidates. Then, we use connected

component analysis to label all the text box candidates for the future processing.

The final stage of text detection module is a validation module that confirms text

boxes. To increase the text segmentation module precision and efficiency, there are

few heuristics which are helpful to remove the outlier detected text boxes. We can

remove the box if:

1. The OCR output is null.

2. The area of text box is less than some threshold value (This value is empirically

set to 100 because OCR can not read text with the width less than 7 pixels

and the height less 13 pixels).

Adaptive thresholding processing plays a key role in text image binarization.

It is shown in the literature that the global thresholding scheme is not ideal for

camera-captured images due to lighting variation and complex background [29]. In

the histogram space, the foreground and background density functions are inter-
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mixed so a reliable decision boundary (global threshold) cannot be achieved. With

a wrong threshold, we will either lose important textual information or add more

unwanted edges to the OCR. We implemented the Niblack adaptive thresholding

scheme to binarize each text box extracted by text segmentation module [78]. In

this algorithm, we compute the local threshold value in a local window as:

T (x, y) = M(x, y) + k
√

V (x, y) (3.16)

where M(x, y) and V (x, y) are mean and variance at each local window size w

centered at pixel (x, y). The Niblack parameter k is the input parameter to the

binarization module. For our system, we set k to −0.2.

3.4.5 Structured Output

In a camera-based presentation analysis framework, we seek an annotating scheme

to extract important and compressed information about slides/posters. For the text

data embedded in a slide/poster we can recover the font-size of each text box (like

the algorithm in [93]) and its spatial location. Therefore, we can sort them in a

structured format like a power-point representation e.g. title, text box and graph

captions, for each box we record the coordinate, textual content read by OCR and

font-size. To find the font-size, we calculate the horizontal projection profile of a

binarized text box. Such horizontal profile includes pulses (Figure 3.5). The average

font-size is defined as a median over all widths of pulses.
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3.5 Implementation Issues and Results

We developed a video-based framework for analysis of presentations 2. We tested

the key frame extraction in two ways, simulated and real video sequences. In the

simulated version, we initially consider all the slides of a presentation. Then, we

randomly add in between the frames by a random generator e.g. after the initial

frame 1 we add 14 frames with different random uniform illumination of frame 1

after frame 1. These are the random frame numbers; 14, 20, 16, 18, 14, 12, 18,

19, 14 and 19. The output of this forward simulation is 164 frames. So, we apply

the key frame extraction method and we calculated the exact number of key frames

which initially was 10. We applied the same method to the video of lectures and

posters with the value of 0.2 for the overlapping percentage factor and the results

were precise and robust.

The first image in Figure 3.6 portrays a still image image of a poster (one frame

extracted from the key frame extraction) module. We applied the automatic metric

rectification algorithm described in Section 3.4.2. The OCR output by Scansoft2000

of the rectified image is shown in Figure 3.6. The smaller figures are in-between steps

of the automatic metric rectification. We applied the algorithm to different images

gone under projection and the algorithm works extremely well if the slide/poster

layout consist of text/graph boxes.

In Figure 3.7, we tested the power of our segmentation module for different

examples; original color images are on the left and the output of text segmentation

module after the morphological operation at right. We gathered different text sizes
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and orientations on different backgrounds. The first example is for complex back-

grounds and highly-textured graphs. The second image is for simple graphs and

texts. The third image is for the different text orientations on simple background

(Scansoft2000 can process up to 30o rotation). We convert color images to grayscale

images. In all the cases we had the ground-truth and the missing rate was negligi-

ble. The text boxes font-size in such cases were more than more than OCR readable

font-size. In the first example of Figure 3.7 the rotated text was not readable by the

algorithm. The rotated text in gray color space was not clear from the background

pattern. These are the main results of our video-based interface:

1. Automatic metric rectification is possible because in lecture presentations/posters

we have structured formats like rectangular and lines. This algorithm fails if

the necessary information of parallel and orthogonal lines is missed e.g. a slide

with one line of text.

2. Key frame extraction is robust and precise under uniform illumination change.

It detects major changes in the presentations depending on the tol value , with

the prescribed value in this paper it can not detect text animation in the slides.

3. The text segmentation module is promising under different text sizes and

orientation and complex background.

4. It is assumed that text segmentation is done on the slides which is in fronto-

parallel view because segmentation module is placed after the rectification

algorithm.
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5. The text segmentation is done on grayscale images. The best way to do

analysis is to include color information.

6. OCR is sensitive on the text color. We tested on different text colors and if

the text was black on white background the results were much more accurate.

7. Our system is capable of reading textual information of lectures/poster videos,

detecting the text box coordinates, estimating the font-size in pixels.

In table (3.1), we show the overall performance of each module. The test data

is a collection of 50 posters taken by a digital camera Powershot S200 (image size

is 2 mega pixel) and 25 presentation videos taken by a digital camera Sony DFW-

VL500(frame size 480x640). The hit rate is the correct detection percentage, the

false rate is the false detection percentage, and miss rate is the missing percentage.

Module hit false miss

Line detection 96.1% 6.3% 3.9%

Orthogonal line detection 86.2% 16.7% 13.8%

Text segmentation 98.2% 3.3% 1.8%

Key frame extraction 98.6% 2.6% 1.4%

Table 3.1: Quantitative results
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Figure 3.4: Original image and Gabor filter’s output for each scale and direction.

The color bar for this figure is red for the minimum and yellow for the maximum. a)

original image b) s = 1, o = 0o c) s = 1, o = 45o d) s = 1, o = 90o e)s = 1, o = 135o

f) s = 2, o = 0o g) s = 2, o = 45o h) s = 2, o = 90o i)s = 2, o = 135o j) segmented

text regions.
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Figure 3.5: Font-size calculation from horizontal projection profile: Figure on left is

the binarized text box and Figure on right is the horizontal projection profile of the

complement of the image on the left texts are in white and background is in black.

Font-size is 24 in pixels.
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Figure 3.6: This example is to test the overall algorithm (pictures are (a)-(g) scanned

from top-down and left-right). (a) Original extracted frame (b) Detected segmented

lines by Mean shift algorithm (c) The rectified image (d) Labeled Image; text-

graph-background are represented in RGB (e)Segmented text after morphological

operation (f) Text Box Regions (g) OCR output. In this example, the small text

box ‘block diagram’ in (f) was not readable by OCR.
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Figure 3.7: In this example, we test the power of text segmentation algorithm for

different presentation/poster and outdoor scene text layout. From top-down images

are (a)-(d). (a)and (c) are presentation slides with different text size and orientation,

different graphs and complex or simple background. (c) is an image of a poster with

simple background. (d) is an image of a book on the textured background. The

results of text segmentation are shown in the second column.
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Chapter 4

3D Structure Recovery and

Unwarping Surfaces applicable to

Planes

4.1 Introduction

When a picture or text printed on paper is imaged, we are presented with a problem

of unwarping the captured digital image to its flat, fronto-parallel representation,

as a preprocessing step before performing tasks such as identification, or Optical

Character Recognition (OCR). In the case that the paper is flat, the problem re-

duces to one of undoing a projection of an initial shape such as a rectangle, and the

rectification (or unwarping) can be achieved by computing a simple homography. A

harder problem is when the piece of paper is itself deformed or bent. In this case the

unwarping must undo both the effects of the three-dimensional bending of the sur-
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face, and the imaging process. The differential geometry of surfaces provides a very

powerful set of relations for analysis of the unwarping. However, most quantitative

use of differential geometry has been restricted to range data, while its use for image

data has been primarily qualitative. The deformation of paper surfaces satisfies the

conditions of isometry and vanishing Gaussian curvature. Here, we show that these

conditions can be analytically integrated to infer the complete 3D structure of the

surface from an image of its bounding contour.

Previous authors have attempted to enforce these conditions in 3D reconstruc-

tion. However, they essentially enforced these as constraints to a process of poly-

nomial/spline fitting using data obtained on the surface [62]. In contrast, we solve

these equations, and show that information on the bounding contour is sufficient

to determine structure completely. Further, exact correspondence information along

the bounding contour is not needed. We only need the correspondences of a few

points, e.g., corners. Other than its theoretical importance, our research can poten-

tially benefit diverse computer vision applications, e.g. portable scanning devices,

digital flattening of creased documents, 3D reconstruction without correspondence,

and perhaps most importantly, OCR of scene text.

4.2 Previous Work

A seminal paper by Koenderink [42] addressed the understanding of 3D structure

qualitatively from occluding contours in images. It was shown that the concavities

and convexities of visual contours are sufficient to infer the local shape of a sur-
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face. Here, we perform quantitative recovery of 3D surface structure for the case

of applicable surfaces. While we were not able to find similar papers dealing with

analytical integration of the equations of differential geometry to obtain structure,

the following papers deal with related problems of unwarping scene text, or using

differential geometric constraints for reconstruction.

Metric rectification of planar surfaces: In [14, 48, 61] algorithms for

performing metric rectification of planar surfaces were considered. These papers ex-

tract from the images, features such as vanishing lines and right angles and perform

rectification. Extraction of vanishing lines is achieved by different methods; such as

the projection profile method [14] and the illusory and non-illusory lines in textual

layouts [61].

Undoing paper curl for non-planar surfaces knowing range data: A

number of papers deal with correcting the curl of documents using known shape (e.g.

cylinders) [40, 92]. These approaches all need 3D points on the surface to solve for

the inverse mapping. In [62] sparse 3D data on the curled paper surface was obtained

from a laser device. An approximate algorithm to fit an applicable surface through

these points was developed that allowed obtaining dense depth data. The isometry

constraint was approximately enforced by requiring that distances between adjacent

nodes be constant. In [10] a mass-spring particle system framework was used for

digital flattening of destroyed documents using depth measurements, though the

differential geometry constraints are not enforced.

Isometric mapping: In [41] an algorithm is developed to bend virtual paper

without shearing or tearing. Ref. [60] considers the shape-from-motion problem for
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shapes deformed under isometric mapping.

4.3 Theory

4.3.1 Basic Surface Representation

A surface is the exterior boundary of an object/body. In a 3D world coordinate

system, a surface r = r(X,Y, Z), (where (X,Y, Z) is any point on the surface) is

mathematically represented in explicit, implicit and parametric forms respectively

as:

z = f(x, y), F (x, y, z) = 0, r(u, v) =(X(u, v), Y (u, v), Z(u, v)). (4.1)

Consider a smooth surface S expressed parametrically as:

r(u,v) = (X(u, v), Y (u, v), Z(u, v)), (4.2)

which is a mapping from any point (u, v) in the parametric (or undeformed) plane

(uv-plane) to a point (X,Y, Z) on the surface in 3D (Figure 3). The sets {r(u, v), v =

Figure 4.1: Parametric representation of a surface

const} and {r(u, v), u = const} represent two families of curves on the surface,

whose partial derivatives are tangent vectors to the curves v = const and u = const
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respectively. These derivatives are often called tangent vectors [44]. Let the second

derivatives of r with respect to u and v be ruu, ruv and rvv. The element of distance

ds = |dr| on the surface is given at each surface point (u, v) by the first fundamental

form of a surface

ds2 = |dr|2 = ||ru||2du2 + 2ru · rv dudv + ||rv||2dv2 = E du2 + 2F dudv + G dv2,

(4.3)

E(u, v) = ||ru||2, F (u, v) = ru · rv, G(u, v) = ||rv||2.

The surface coordinates are orthogonal iff F ≡ 0. The surface normal n and area

element dn can be defined in terms of the tangent vectors as:

n =
ru × rv

|ru × rv| =
√

EG− F 2, dn = |ru × rv| dudv =
√

EG− F 2 dudv. (4.4)

The second fundamental form of a surface at a point (u, v) measures how far the

surface is from being planar. It is given by

−dr·dn = L(u, v)du2 + 2M(u, v)dudv + N(u, v)dv2, (4.5)

where L, M and N are defined as[44]:

L(u, v) = −ru · nu = ruu · n,

M(u, v) = −ru · nv = ruv · n,

N(u, v) = −rv · nv = rvv · n. (4.6)

For every normal section through (u, v) there exist two principal curvatures (k1, k2).

The mean and Gaussian curvature; H(u, v) and K(u, v) are

H ≡ k1 + k2

2
=

1

2

EN − 2FM + GL

EG− F 2
, K ≡ k1k2 =

LN −M2

EG− F 2
. (4.7)
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4.3.2 Special Surfaces

Let us assume that we have a mapping of a point in the parametric plane (u, v) to a

point in 3D (X,Y, Z). The mapping is isometric if the length of a curve or element

of area is invariant with the mapping, i.e.

E(u, v) = ||ru||2 = 1, F (u, v) = ru · rv = 0, G(u, v) = ||rv||2 = 1. (4.8)

Lengths and areas are conserved in an isometric mapping

ds2 = |dr|2 = E(u, v)du2 + 2F (u, v)dudv + G(u, v)dv2 = du2 + dv2,

dA =
√

EG− F 2 dudv = dudv. (4.9)

The mapping is conformal if the angle between curves on a surface is invariant of

the mapping (F = 0). It is developable if the Gaussian curvature is zero everywhere.

K = 0 =⇒ LN −M2 = 0. (4.10)

It is applicable to a flat surface if the surface is isometric with a flat surface (Eq.

4.8) and the Gaussian curvature vanishes (Eq. 4.10) for every point on the surface.

It is stated in ([43]) that two surfaces are applicable if the first fundamental form

that embodies the metric, the Gaussian curvature are conserved. Here, we denote a

surface applicable to a flat surface as an applicable surface.
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4.3.3 Differential Equations for a surface applicable to a

plane

If we differentiate the first and third equations at (4.8) with respect to u and v, we

have:

ruu · ru = ruu · rv = ruv · ru = ruv · rv = rvv · ru = rvv · rv = 0. (4.11)

This shows that ruu = (Xuu, Yuu, Zuu), ruv = (Xuv, Yuv, Zuv) and rvv = (Xvv, Yvv, Zvv)

are perpendicular to ru and rv and consequently, are collinear with the normal vector

to the surface.

n ‖ (ru × rv) || ruu ‖ ruv ‖ rvv, (4.12)

where || denotes “is parallel to”. We can thus express n as

n =aruu = bruv = crvv. (4.13)

Theorem 1: For a surface r = r(u, v) isometric with a plane, a normal vector n

is parallel to the derivatives of tangent vectors ru and rv in the u and v direction

(ruu, ruv, rvv).

We can rewrite (4.10) using (4.13) as:

LN −M2 = 0 =⇒ (ruu · n)(rvv · n)− (ruv · n)2 = 0, (4.14)

then,

a||n||2c||n||2 − b2||n||2||n||2 = 0 =⇒ ac− b2 = 0, (4.15)

where a, b, and c are scalars, and

ruv

ruu

=
a

b
=

b

c
=

rvv

ruv

. (4.16)
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Therefore from (4.16) we have:

Theorem 2: For a surface r = r(u, v) = (X(u, v), Y (u, v), Z(u, v)) applicable

to a plane, there is a nonlinear higher order paritial differentail equations governing

the surface as follows:

∂2W

∂v2

∂2W

∂u2
=

(
∂2W

∂u∂v

)2

, for W = X,Y, Z. (4.17)

Solving the set of nonlinear higher order partial differential equations (PDEs) (Eq.

4.17), we can compute the surface structure r in 3D, given boundary conditions

(curves) for an applicable surface. These equations may be solved by conventional

methods of solving PDEs e.g. Finite Differences or FEM. However, we provide a

much more efficient method, based on reducing the solution to integration of several

simultaneous ODEs.

4.3.4 A First Integration: Reduction to ODEs

Let Wu = ∂W/∂u, Wv = ∂W/∂v. The functions Wu (u, v) and Wv (u, v) satisfy the

consistency conditions

∂Wu

∂v
=

∂Wv

∂u
, W = X, Y, Z. (4.18)

i.e. cross-derivatives are the same. From Eqs. (4.17) and (4.18) we have

∂Wu

∂u

∂Wv

∂v
− ∂Wu

∂v

∂Wv

∂u
=

∂ (Wu,Wv)

∂(u, v)
= 0. (4.19)

Therefore Eq. (4.19) can be treated as a degeneracy condition for the Jacobian of

the mapping from (u, v) 7−→ (Wu,Wv) . This degeneracy means that the functions
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Wu and Wv are functions of a single variable, t, which in turn is a function of (u, v) .

In other words:

∃ t = t(u, v) such that Wu (u, v) = Wu (t) , Wv (u, v) = Wv (t) , (4.20)

where W = X,Y, Z. In this case t = const is a line in the parametric plane. Since

W denotes any of X, Y and Z, Eq. (4.20) could hold separately for each component,

with some different mapping functions tx(u, v), ty(u, v), and tz(u, v) specific to each

coordinate. However, these functions must all be equal because all are functions of

the single variable t(u, v), which can be called the mapping or characteristic function

for the surface S.

Theorem 3: For a surface r = r(u, v) applicable to a plane there exists a

characteristic line t=t(u,v) that tangent vectors of the surface are functions of it.

ru = ru (t) , rv = rv (t) , (4.21)

where t = t(u, v). Denoting by the superscript dot the derivative of a function with

respect to t, we can write ruu and rvv as

ruu = ṙu
∂t

∂u
, rvv = ṙv

∂t

∂v
. (4.22)

From Eqns. (4.12) and (4.22), we see that ṙu and ṙv are collinear with the surface

normal i.e. ṙu||n, ṙv||n. Let us define a new vector w as :

w = uṙu (t) + vṙv (t) . (4.23)

Also note that w is a function of the characteristic variable t, since the Jacobian of
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a mapping from (u, v) 7−→ (t,m ·w) for a constant vector m vanishes:

∂ (t,w ·m)

∂ (u, v)
=

∂t

∂u

∂w ·m
∂v

− ∂t

∂v

∂w ·m
∂u

=
∂t

∂u
ṙv (t) ·m− ∂t

∂u
ṙv (t) ·m

= ruv·m− ruv·m =⇒ ∂ (t,w ·m)

∂ (u, v)
= 0. (4.24)

This means that w is a function of t alone; w = w (t). From collinearity of w with

ṙu and ṙv it follows that two scalar functions hu (t) and hv(t) can be introduced as

ṙu (t) = hu (t)w (t) , ṙv (t) = hv(t)w (t) ⇒ hv(t)ṙu (t)− hu (t) ṙv (t) = 0. (4.25)

By substituting Eqn. (4.25) in Eqn. (4.23),

w(t) = uhu (t)w (t) + vhv(t)w (t) ⇒ uhu (t) + vhv(t) = 1. (4.26)

therefore,

uhu (t) + vhv(t) = 1, hv(t)ṙu (t)− hu (t) ṙv (t) = 0. (4.27)

Therefore, Eq.(4.27) defines a characteristic line in the uv-plane for t = const. While

the latter equation provides a relation between functions of t, the former implicitly

determines t (u, v). Once hu (t) and hv(t) are known, Eq. (4.27) gives t (u, v). Note

that t satisfies the equation

hv (t)
∂t

∂u
− hu (t)

∂t

∂v
= 0, (4.28)

which is a Hopf equation, a common nonlinear hyperbolic equation in shock-wave

theory [87]. The characteristics of this equation are t = t (u, v) which satisfies

t (u, v) = t (u + c(t)v) , c(t) =
hu (t)

hv (t)
. (4.29)
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Therefore, for any t = const the characteristic is a line in the uv-plane. The prop-

erties of the Hopf equation are well studied in the theory of propagation of shock

waves in nonlinear media [87]. Along the characteristics, t = t(u, v) = const, all

functions of t are constant, including hu (t) and hv (t). As follows from Eq. (4.27),

in the (u, v)-plane these characteristics are straight lines. The lines corresponding

to characteristics are also straight lines on the surface. In fact to generate an appli-

cable surface, we can sweep a line in space and the generated envelope will be an

applicable surface to a flat surface. Through every point on the surface there is a

Figure 4.2: Characteristics lines as generator lines

straight line as shown (Figure 4.2) by:

r (t) = uru (t) + vrv (t) + ρ (t) , ρ̇ (t) = −w (t) , (4.30)

Theorem 4: for an applicable surface, characteristic lines in the parametric plane

are lines in 3D.

Proof: Consider a characteristic line t = t∗. Therefore, the tangent vectors

(ru(t
∗), rv(t

∗)) and ρ (t∗) are constant vectors. Also, any point (u, v) on the charac-

teristic line t = t(u, v) = t∗ lies in:

uhu (t∗) + vhv(t
∗) = 1, (4.31)
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where hu (t∗) and hv (t∗) are constant scalars. Therefore,

r (t∗) = uru (t∗) +
(1− uhu (t∗))

hv (t∗)
rv (t∗) + ρ (t∗) , (4.32)

so we can rewrite it as:

r = uq + q0 , (4.33)

where q0 = 1
hv(t∗)rv (t∗)+ρ (t∗) and q = ru (t∗)− hu(t∗))

hv(t∗) rv (t∗) . Recall that this is the

line equation in 3D.

The above equations are sufficient to solve the basic warping and unwarping

problems for images based on information about the shapes of the image boundaries.

The goal is to find for any characteristic line, the variables ru (t) , rv (t) , ρ (t) , hu (t)

and hv (t) and, finally, r (t) from available information. To summarize the differential

and algebraic relations for applicable surfaces, we have

r (u, v) = uru (t) + vrv (t) + ρ (t) ,

ṙu (t) = hu (t)w (t) ,

ṙv (t) = hv(t)w (t) ,

ρ̇ (t) = −w (t) ,

uhu (t) + vhv(t) = 1,

||ru||2 = 1, ru · rv = 0, ||rv||2 = 1. (4.34)
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4.3.5 Forward Problem: Surface with a Specified Boundary

Curve

Here, we specify the bending of a flat page in 3D so that one edge conforms to a

given 3D curve. We call this the forward problem. We generate the warped surface

to demonstrate the solution to Eq. (4.34). Let Γ′be an open curve on a patch

Figure 4.3: Generation of an applicable surface with a 3D curve. In this example a

straight line Γ′ in the uv-plane is mapped on a given 3D curve Γ.

Ω′ ⊂ P in the uv-plane, corresponding to an open curve Γ in 3D. To generate an

applicable surface in 3D, knowledge of the corresponding curves Γ′ and Γ and the

patch boundaries in the uv-plane (Figure 4.3) are sufficient. We know that the

curve Γ′ starts from a point A′ = (u0, v0) and the corresponding curve Γ passes from

A = (X0, Y0, Z0) and the point B corresponds to the point B′. Due to isometry,

the lengths of the two curves are the same, and there is a one-to-one mapping from

a domain Ω′ ⊂ P to Ω ⊂ S, which are respectively bounded by Γ′ and Γ. For any

point (u∗, v∗) ∈ Ω′ there exists a characteristic, t = t∗, which also passes through

some point on Γ′. Assume now that Γ′ is specified by the parametric equations

u = U (t) , v = V (t), u2 + v2 6= 0.
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Without loss of generality, we can select t to be a natural parameterization of Γ′ ,

measured from point A′; i.e. the arc length s along the curve Γ, measured from the

curve starting point t = t0,

s ≡
∫ t

t0

ds ≡
∫ t

t0

√
dr.dr. (4.35)

parameterizes the curve. Let Γ′ : (U(t), V (t)) be in [tmin,tmax]. If we represent Γ in

parametric form as r = R(t), then due to isometry, t will also be a natural parameter

for Γ′, and

U̇2 + V̇ 2 = 1, Ṙ · Ṙ =1. (4.36)

The surface equations for any (u, v) ∈ Ω′ are

ru · ru = 1, ru · rv = 0, rv · rv = 1,

Uhu + V hv = 1, hvṙu − huṙv = 0, Uru + V rv + ρ = R. (4.37)

While the number of unknowns here is 11 (ru, rv, ρ, hu, hv) and the number of equa-

tions are 12 (Eqs. 4.36,4.37) but two of them are dependent(Eqs. including hu and

hv). For unique solution of Eqs. (4.36,4.37), we differentiate Eq. (4.36) to obtain

sufficient equations to solve the forward problem

ṙu =
huF

U̇hu + V̇ hv

,

ṙv =
hvF

U̇hu + V̇ hv

,

hu =
gu

V gv + Ugu

, hv =
gv

V gv + Ugu

,

F = R̈−Üru − V̈ rv, gu =
...
U − ...

R · ru, gv =
...
V − ...

R · rv. (4.38)
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These equations must be integrated numerically using, e.g., the Runge-Kutta method

[68]. To generate the structure of the applicable surface we need for any character-

istic line, the functions ru (t),rv (t) and ρ (t); (ru (t), rv(t)) are obtained from the

solution to ODEs, while ρ (t) is computed from the fifth equation in (4.37). The so-

lution to our problem is a two-point boundary value problem (bvp). Most software

for ODEs are written for initial value problems. To solve a bvp using an initial value

solver, we need to estimate ru0 = ru (0) and rv0 = rv (0) .which achieves the cor-

rect boundary value. The vectors ru0 and rv0 are dependent, since they satisfy the

first three equations (4.37), which describe two orthonormal vectors. Assuming that

(ru, rv, ru × rv) is a right-handed basis, we can always rotate the reference frame of

the world coordinates so that in the rotated coordinates we have ru0 = (1, 0, 0) ,

rv0 = (0, 1, 0) . Consistent initial conditions ru0 and rv0 for Eq. (4.37) can be ob-

tained by application of a rotation matrix Q (α, β, γ) with Euler angles α, β and γ,

to the vectors (1, 0, 0) and (0, 1, 0) , respectively. We note that for some particular

cases it may happen that both the functions gv and gu in Eq. (4.38) may be zero.

In this case the equations for hu and hv can be replaced by the limiting expressions

for gv → 0, gu → 0. In the special case (rectangular patch in the parametric plane),

we can show that there is an analytical solution given by:

ru =
R̈× Ṙ∣∣∣R̈

∣∣∣
, rv = Ṙ. (4.39)

Proof: From Eqn. (4.22), we can imply that:

ṙu ‖ ṙv || ruu ‖ ruv ‖ rvv|| (ru × rv), (4.40)
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Therefore ṙu and ṙv are perpendicular to ru and rv. From Eqn. (4.38):

ṙu · ru =
hu(F · ru)

U̇hu + V̇ hv

= 0 ⇒ F · ru = 0,

ṙv · rv =
hv(F · rv)

U̇hu + V̇ hv

= 0 ⇒ F · rv = 0. (4.41)

Then, if we multiply F = R̈−Üru − V̈ rv in ru and rv, we have the equation below:

F · ru = R̈ · ru − Ü = 0,

F · rv = R̈ · rv − V̈ = 0. (4.42)

and in more simple form as:

R̈ · ru = Ü , R̈ · rv = V̈ . (4.43)

Moreover, by differentiating Eqn. Uru + V rv + ρ = R with respect to t, we have:

U̇ru + V̇ rv = Ṙ. (4.44)

Consider special rectangular patch in the parametric plane U = V̈ = 0. Then denote

ez =
R̈∣∣∣R̈

∣∣∣
, ex = Ṙ, ey = ez × ex, (4.45)

where (ex, ey, ez) makes a right-handed coordinate system. Let us expand ru and

rv in this coordinate system as:

ru = ex cos ψ + ey sin ψ, rv = ex sin ψ − ey cos ψ. (4.46)
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So by substituting in Eqn. (4.44),

U̇ (ex cos ψ + ey sin ψ) + V̇ (ex sin ψ − ey cos ψ) = ex,

U̇ cos ψ + V̇ sin ψ = 1,

−V̇ cos ψ + U̇ sin ψ = 0. (4.47)

then the solution is

cos ψ = U̇ , sin ψ = V̇ . (4.48)

particularly, for ( U̇ = 0, V̇ = 1), we have:

cos ψ = 0, sin ψ = 1. (4.49)

then

ru = ey, rv = ex. (4.50)

therefore:

ru =
R̈× Ṙ∣∣∣R̈

∣∣∣
, rv = Ṙ.

4.3.6 Inverse Problem: 3D Structure Recovery of Applica-

ble Surfaces

Here, we seek to estimate the 3D structure of an applicable surface from a single view

(with known camera model) and knowledge of the undeformed uv plane boundary.

For any point (x, y) in the image plane, we can estimate the corresponding point

in the uv-plane and vice versa by solving the ODEs for the problem. The input

parameters are the known camera model, the patch contours in the uv-plane and
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Figure 4.4: Inverse Problem Schematic

the image plane. Assume that the image of the patch (Ω′) is bounded by two curves

Γ′1 and Γ′2, the corresponding patch (Ω) in the uv-plane is bounded by Γ1 and Γ2

and that the patch Ω bounded by the two characteristics, t = tmin, and t = tmax

(Fig. 4.4). We assume that Γ1 and Γ2 are piecewise continuous curves in the uv-

plane, and not tangential to the characteristic lines tmin < t < tmax. For any point

(u∗, v∗) ∈ Ω there exists a characteristic, t = t∗, which passes through some points

on Γ1 and some points on Γ2. In the uv-plane these curves can be specified by a

natural parameterization u = U1(s1), v = V1(s1) for Γ1, and u = U2 (s2) , v = V2(s2)

for Γ2, with u2 + v2 6= 0. Here s1 (t) and s2 (t) are unknown and must be found in

the process of solution.

Γ1 and Γ2 correspond to the 3D curves r = r1 (t) and r = r2 (t), which are

unknown and found in the process of solution. Note that at the starting point or

end point, Γ1 and Γ2 may intersect. At such a point the characteristic t = tmin or

t = tmax is tangential to the boundary or the boundary is not smooth (e.g. we are at

a corner). In case Γ1 and Γ2 intersect at t = tmin and t = tmax they completely define

the boundary of the patch Ω. These cases are not special and can be handled by

the general method described below. Assume that the camera is calibrated, and the
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relation between the world coordinates r =(X, Y, Z) and coordinates of the image

plane (x, y) are known as x = Fx(r) and y = Fy(r). What is also known are the

equations for Γ′1 and Γ′2 that are images of the patch boundaries Γ1 and Γ2. These

equations, assumed to be in the form x = x1 (τ1) , y = y1 (τ1) for Γ′1; and x = x2 (τ2) ,

y = y2 (τ2) for Γ′2. Here τ1 and τ2 are the natural parameters of these curves; τ1 (t)

and τ2 (t) are obtained from the solution. The specification of the curve parameters

as “natural” means:

U ′2
i + V ′2

i = 1, x′2i + y′2i = 1, i = 1, 2. (4.51)

A complete set of equations describing the surface can be reduced then to

ru · ru = 1, ru · rv = 0, rv · rv = 1,

r2 = (U2 − U1) ru + (V2 − V1) rv + r1, ṙi = ṡi (U
′
iru + V ′

i rv) ,

Fx (ri) = xi (τi) , Fy (ri) = yi (τi) , i = 1, 2. (4.52)

We have 16 equations relating the 15 unknowns (ru, rv, r1, r2, s1, s2, τ1, τ2). As in the

previous case, one equation depends the other 15 and so the system is consistent.

After s(t), r1 (t) , ru (t) , and rv (t) are found, hu, hv, and ρ can be determined as

hu =
V2 − V1

U1V2 − U2V1

, hv =
U1 − U2

U1V2 − U2V1

, ρ = r1 − U1ru − V1rv. (4.53)

This enables determination of t (u, v) and r (u, v) , similar to the forward problem.

Here too the vector w is collinear to the normal to the surface (Eq. 4.23) and satisfies

w = kn. Let the rate of change of s1 be a constant, ˙s10. The ODEs containing the
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unknowns (s1, s2, τ1, τ2, ru, rv, ρ) can be written as follows:

s1 = ṡ10t, τ̇1 = ṡ10c1 · a1,

ṡ2 = − kf2 · b2

e2 · b2 + c2 · [(c2 · a2)d2 + G2 · c2]
, τ̇2 = ṡ2c2 · a2,

k = −e1 · b1 + c1 · [(c1 · a1)d1 + G1 · c1]

f1 · b1

ṡ10,

ṙu = khun,

ṙv = khvn,

ρ̇ = −kn,

hu =
v2 − v1

u1v2 − u2v1

, hv =
u1 − u2

u1v2 − u2v1

,

ai (τi, ri) =
x′i∇Fx (r1) + y′i∇Fy (ri)

x′2i + y′2i
,

bi (τi, ri) = y′i∇Fx (ri)− x′i∇Fy (ri) ,

ci (si, ru, rv) = u′iru + v′irv, di = y′′i∇Fx (ri)− x′′i∇Fy (ri) ,

ei = u′′i ru + v′′i rv, fi = (u′ihu + v′ihv)n,

Gi = y′i∇∇Fx (ri)− x′i∇∇Fy (ri) . (4.54)

To start the integration of the inverse problem, we need initial conditions for (s1, s2, τ1,

τ2, ru, rv, ρ).

Solution to the Boundary Value Problem

While the equation above can be solved for a general camera model, we will consider

the simple orthographic case here. We can show these initial values here are:

t0 = s10 = s20 = τ10 = τ20 = 0, r10 = r20 = r0,

u10 = u20 = u0, v10 = v20 = v0, x10 = x20 = Fx (r0) , y10 = y20 = Fy (r0) ,
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and for the starting point in 3D, r0 = r0 (x0, y0, z0) where z0 is some free parameter

in the orthographic case. Note also that at the initial point the formulae for huand

hv

hu =
v2 − v1

u1v2 − u2v1

, hv =
u1 − u2

u1v2 − u2v1

. (4.55)

are not acceptable, since the numerators and denominators are zero. However, we

can find hu0 and hv0 from

u0hu0 + v0hv0 = 1, ṡ10 (u′10hu0 + v′10hv0) = ṡ20 (u′20hu0 + v′20hv0) . (4.56)

The solution of this linear system specifies hu0 and hv0 as a function of ṡ20, which

can be estimated from the free parameter, and is in fact one of the Euler angles γ0

. Recalling that (ru, rv, ru × rv) is a right-handed basis, we can rotate the reference

frame of the world coordinates by Euler angles (α0, β0, γ0) so that we have ru0 =

(1, 0, 0) , rv0 = (0, 1, 0). Further:

ṡ10e10 · b10 + k0f10 · b10 + ṡ10c10 · [(c10 · a10)d10 + G10 · c10] = 0,

ṡ20e20 · b20 + k0f20 · b20 + ṡ20c20 · [(c20 · a20)d20 + G20 · c20] = 0,

c10 · b10 = 0, c20 · b20 = 0. (4.57)

These 4 relations can be treated as equations relating the 10 unknowns k0, ru0, rv0,n0

(ru0, rv0 and n0 are 3D vectors). Also ru0, rv0, and n0 form an orthonormal basis,

which therefore can be completely described by the three Euler angles (α0, β0, γ0) :

ru0 = Q0




1

0

0




, rv0 = Q0




0

1

0




, n0 = Q0




0

0

1




,
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where Q0 is the Euler rotation matrix. This shows that ru0, rv0, and n0 a three-

parameter set depending on (α0, β0, γ0). Thus the relations Eq. (4.57) can be

treated as 4 equations with respect to the unknowns k0, α0, β0, γ0, for given ṡ20 or

k0, α0, β0, ṡ20 for given γ0, and can be solved. Then

ρ0 = r0 − u0ru0 − v0rv0. (4.58)

determines ρ0 as soon as ru0, rv0, and r0 are specified. Furthermore, we can reduce

the four equations above to one nonlinear equation, whose roots can be determined

by conventional numerical methods [68].

We found that this equation has two solutions, and so the Euler angles have

four possible values. By choosing the free parameter γ0 (Orthographic case), we can

set all the initial conditions needed for the inverse problem. The challenge is to get

the best estimate of γ0 so that the boundary condition specifying correspondence

points (such as the corners) is achieved. This is called the shooting method. We do

this by minimizing a cost function J :

J = arg min
γ0

||(xe, ye)− F(r(tmax; γ0, Γ1, Γ2, Γ
′
1, Γ

′
2))|| , (4.59)

where (xe, ye) is the image coordinates of the 3D surface ending point (Xe, Ye, Ze)

and r(tmax; γ0, Γ1, Γ2, Γ
′
1, Γ

′
2) is the last step of the 3D structure solution and F is

the camera model function. It is clear that F(r(tmax; γ0, Γ1, Γ2, Γ
′
1, Γ

′
2)) is the ending

point of 3D surface calculated by the ODE solver. Therefore, we change the free

parameter γ0 until we can hit the ending corner or are within a specified tolerance

of the ending point in the image plane. If the number of the correspondence points
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on the edge available exceeds the number of shooting parameters (say the 4 corners)

a least-square approach can be used.

Ambiguities

As stated in the inverse problem, the method relies on the boundary information of

the patch in the image plane. So, since some deformations can lead us to the same

images of the boundary, we have ambiguities. In these cases we need to extract

other useful cues such as texture or shading to resolve the ambiguities. This is the

subject for future work.

4.3.7 Forward: generating flat page in 3D

Let us assume that an applicable surface be a plane in 3D. Then, we can represent

a plane at any point (X, Y, Z) in the world coordinate system as:

aX + bY + cZ + 1 = 0, (4.60)

where (a, b, c) is a normal vector to the surface. In more restricted representation,

we can consider a patch Ω with known length and width (l and w). We can uniquely

define Ω given the surface normal (a, b, c), on a corner C0 = (X0, Y0, Z0) and the

rotation angle around the normal vector γ0 (Figure 4.5). We can prove that these

parameters are enough to calculate other corners (C1,C2,C3).

Let us define a right-handed coordinate system on the patch ‘body coordinate

system’ with the basis vectors of (E1,E2,E1×E2). We show that given γ0 and surface

normal vector it is enough to calculate the rotation matrix Q0 which transforms the
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Figure 4.5: Patch in 3D

basis vector of the world coordinate system to the body coordinate system. Let us

define the unit surface nomal vector n as:

n =
(a,b, c)

||(a,b, c)|| . (4.61)

and consider that the rotation matrix which transforms the world coordinate to the

body coordinate system as Q0 = Q0(α, β, γ) where α, β and γ are Euler angles. E1

and E2 are the rotation of e1 and e2 in the world coordinate system by the rotation

matrix Q0 = Q0(α, β, γ) :

E1 = Q0e1, E2 = Q0e2, (4.62)

where e1 and e2 are (1, 0, 0)T and (0, 1, 0)T in the world coordinate system. We can

compute α and β from the equation below, given that γ = γ0:

E1 × E2 = Q0e1 ×Q0e2 = n. (4.63)

Other corners are derived from the given corner as:

C1 = C0 + l E1, C2 = C1 + w E2, C3 = C0 + w E2 (4.64)
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4.3.8 Inverse problem: special case

In this section, we consider the inverse for a flat surface. Here, the boundary of a

flat surface in the image plane consist of lines. Therefore:

x
′′
(τi) = y

′′
(τi) = 0 ; i = 1, 2 (4.65)

The same conditions hold in the parametric plane. So,

u
′′
(τi) = v

′′
(τi) = 0 ; i = 1, 2 (4.66)

Hence, we can simplify Eqn. (4.54) into:

s1 = ṡ10t, , ṡ2 =
f2 · b2

f1 · b1

ṡ10,

k = 0, ṙu = 0, ṙv = 0, ρ̇ = 0

τ̇2 = ṡ2c2 · a2, τ̇1 = ṡ10c1 · a1

hu =
v2 − v1

u1v2 − u2v1

, hv =
u1 − u2

u1v2 − u2v1

,

ai (τi, ri) =
x′i∇Fx (r1) + y′i∇Fy (ri)

x′2i + y′2i
, bi (τi, ri) = y′i∇Fx (ri)− x′i∇Fy (ri) = bi,

ci (si, ru, rv) = u′iru + v′irv, di = 0, ei = 0

fi (si, ri) = (u′ihu + v′ihv)n = fi, Gi = 0. (4.67)

These are the important conclusions from Eqn. (4.67):

• Tangent vectors (ru(t) = ru0, rv(t) = rv0) and surface normal (n = ru0 × rv0)

are constant on any point on a flat surface.

• All characteristic lines are parallel in the parametric plane and in 3D. Therefore

the characteristic line tangents are the same in the parametric plane ( hv(t)
hu(t)

=

α).

75



• Start and ending points are not adjacent in the parametric plane.

4.3.9 Homographic transformation

In this section, we want to prove that the mapping from any point in the uv-plane

to any point in the xy-plane is homographic. Recall that:

r(t) = uru0 + vrv0 + ρ0, u ∈ [umin, umax], v ∈ [vmin, vmax], uhu(t) + vhv(t) = 1.

(4.68)

we can re-write it in the matrix format as:

r =




X

Y

Z




=

(
ru0 rv0 ρ0

)




u

v

1




. (4.69)

We can show Eqn. (4.69) in the homogenous coordinate:

X =




X

Y

Z

1




=




ru0 rv0 ρ0

0 0 1







u

v

1




. (4.70)

We can relate image of a point X in the world coordinate in the image plane (x)

with:

x = PX = [K | 03×1]X, (4.71)

where P is the 3× 4 projection matrix. We can show that any point in xy-plane is

related to the corresponding point in the uv-plane by a 3 × 3 homography matrix
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H:

x = PX = P




ru0 rv0 ρ0

0 0 1


u =wHu, (4.72)

where x =(x, y, 1)T , u = (u, v, 1)T and w is a scaling factor.

4.3.10 3D structure recovery from H

In the literature, we can compute H from 4 corners information up to scale (ref?).

We can compute (ru0, rv0, ρ0) given the camera calibration matrix as follows:

[K | 03×1]




ru0 rv0 ρ0

0 0 1


 =wH, (4.73)

then,

K

(
ru0 rv0 ρ0

)
=wH, (4.74)

(
ru0 rv0 ρ0

)
=wK−1H, (4.75)

we can compute scaling factor from the fact that the length tangent vectors ru0 and

ru0 are one. Finally from the plane parameters (ru0, rv0, ρ0), 3D structure of a page

is known (section forward-special case) given that:

E1 = ru0, E2 = rv0,C0 = uminru0 + vminrv0 + ρ0,

w = umax − umin, l = vmax − vmin. (4.76)
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4.4 Implementation Issues

4.4.1 Simple Validation of the Forward Problem

The purpose of this is to present and validate the new method. For this purpose we

implemented the solution in algorithms. In the validation stage, we compared the

results for warping to a 3D curve with the following analytical solution corresponding

to a cylindrical surface

X = u− umin, Y = N cos ϕ (v) , Z = N sin ϕ (v) , ϕ (v) = v/N. (4.77)

To reproduce this surface we started our algorithm for warping with a 3D curve

with the condition that in the (u, v)-plane the curve is a straight line, u = umin, and

the fact that the corresponding 3D curve is

X(t) = 0, Y (t) = N cos ϕ (t) , Z(t) = N sin ϕ (t) . (4.78)

For this surface we have the initial conditions for integration as ru0 = (−1, 0, 0) ,

rv0 = (0,− sin ϕ0, cos ϕ0) with ϕ0 = vmin/N . We integrated the forward problem Eq.

(4.38) numerically using an ODE solver from MATLAB, which was based on the

4th order Runge-Kutta method. The results were identical to the analytical solution

within the tolerance specified to the solver. We also checked that solution (4.39) is

correct.

4.4.2 Forward Problem: Implementation Issues and Results

After initial tests we used the method of warping with 3D curves for generation of

more complex applicable surfaces. The tests were performed both by straightfor-
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ward numerical integration of ODE’s (4.38) and using the analytical solution for

rectangular patches (4.39). Both methods showed accurate and consistent results.

To generate an example curve R(t) parameterized naturally, we specified another

function R̃(θ) where θ is an arbitrary parameter and then used transform

R(t) =R̃(θ),
dt

dθ
=

∣∣∣∣∣
dR̃(θ)

dθ

∣∣∣∣∣ , (4.79)

which provides
∣∣∣Ṙ

∣∣∣ = 1, and guarantees that t is the natural parameter. The

function R̃(θ) used in tests was

R̃(θ) = (P (θ) , N cos θ, N sin θ) , P (θ) = a1θ + a2θ
2 + a3θ

3 + a4θ
4, (4.80)

and some other than polynomial dependencies P (θ) were tested as well. One of the

examples of image warping with a 3D curve is presented in Figure 5.

For this case the boundary curve were selected in the form (4.80), with param-

eters N = 200, a1 = 20, a2 = 10, a3 = 10, a4 = −10 and we used Eqs (31) and (34)

to generate the 3D structure and characteristics. In this example the characteristics

for this surface are not parallel, which is clearly seen from the graph in the upper

right corner of Fig. 5. The image of the portrait of Ginevra dé Bencia by Leonardo

da Vinci, was fit into a rectangle in the uv-plane and warped with the generated

surface. Further its orthographic projection was produced using pixel-by-pixel map-

ping of the obtained transform from the (u, v) to the (x, y) . These pictures are also

shown in Figure 5.
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Figure 4.6: ‘Forward’ problem: given a plane sheet of paper, and a smooth 3-D open

curve in Cartesian XY Z space. Our goal is to bend the paper so that one edge

conforms to the specified curve. Using the analytical integration of the differential

geometric equations specifying applicability we are able to achieve this. We can also

achieve the same result not only for the straight line edge, but for an arbitrary 2-D

curve in the uv-plane. The picture shown are actual computations.

4.4.3 Inverse Problem: Implementation Issues and Results

To check the validity of the unwarping procedure, we ran the 2D unwarping problem

with synthetic input data on the patch boundaries and corner correspondence points

obtained by the warping procedure. The output of the solver providing hu, hv, ru, rv,

and ρ as functions of t coincided with these functions obtained by the 3D curve

warping program within the tolerance specified for the ODE solver. The unwarped

pixel-by-pixel images are shown in Figure 4.7 as the end point of the unwarping

process in the xy-plane. We ran the algorithm for small fonts. The original image

has the same font size everywhere and with the forward algorithm we warp the
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image. The unwarped image has uniform font size everywhere, lines are parallel and

right angles are preserved. The output is noisy at the top of the output image, since

in the image this information was lost. We make the following remarks about the

(a) (b) (c)

Figure 4.7: Inverse Problem for small font: a) original image b) warped by the for-

ward R̃(θ) = (aθ(b− θ3), Ncosθ, Nsinθ) where a = 10, b = 2, N = 200 c) unwarped

by the inverse problem

implementation of the inverse problem:

Global Parameterization: In the inverse problem, we march the ODE’s

with respect to the bounding contours in uv-plane and xy-plane. Therefore, for

simplicity and modularity, we parameterize the contours using a global parameter η

from η in [0,1] on the first boundary to η = [3, 4] on the last. This parameterization

gives us a simple and exact way of tracking the corners of the boundary contours

and the correspondence between them.

ODE solver: To solve the ODE, we applied the Runge-Kutta solver of 4th

and 5th order in MATLAB, except for the last edge of the ODE, where the problem

was computationally stiff. For this, we solved the ODE using Gear’s method [68].

Automatic Corner Detection by ODE solver: We need the corners in

the image plane for the boundary of the patch to solve the inverse problem. As
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Figure 4.8: Images taken for the camera calibration parameter estimation

stated, the global natural parameterization of the curve in the image plane, gives

us an easy and reliable feature for corner detection. Basically, the corner is reached

when s2 and τ2 (global parameters of Γ′2 and Γ2) are 1, 2 and 3, respectively.

Camera Calibration: For 3D structure recovery, we need to have a camera

model and the associated calibration matrix. Therefore, we used the MATLAB

camera calibration toolbox at [7] to extract camera calibration matrix. To check

the estimated parameters, we used the estimated matrix K in the simple case of

the plane. In this case, we measure the angles of the page at corner and the length

of each side in 3D using the camera calibration parameters. The results were as

expected: a rectangle with the given length and width.
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Chapter 5

3D Structure Recovery and

Unwarping using texture

information

5.1 Introduction

Texture is a phenomenon that is everywhere in the world, hard to define and easy

to recognize. Texture is a regular or almost periodic pattern consisted of sub-

elements (sometimes called textons). It can be viewed as larger numbers of small

objects. Examples include grass, brush and marble ([29]). These subelements can

be exactly the same (deterministic) or statistically the same (stochastic). Fig. 5.1

shows different texture patterns. Here, we are interested in treating documents as

being composed of stochastic textured pattern. There are three standard problems

in the texture literature:
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Figure 5.1: Textured pattern: Deterministic vs. Stochastic

• Texture Segmentation is the problem of splitting an image to small sub-

elements within which the texture is constant. In the literature, the statistical

properties of sub-elements are used as a feature. The goal is to obtain the

size of the block for texture representation and to extract useful statistical

properties to represent the extracted texture pattern. Examples are diverse

but work most relevant to the thesis is text segmentation. In this problem,

we identify the texture pattern as that which gives a similar response to the

collection of wavelet filters e.g. Gabor filters(Chapter 3).

• Texture Synthesis is used to create a large texture pattern from small ex-

ample images. This is done by modelling a texture pattern with a probabilistic

framework from a set of image examples ([67]). We tried this method to model

texture in document images but it fails. The reason is that a large amount of

information on text images ignored if we use few filters to model the textual

pattern.
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• Shape from Texture attempts to recover a shape of the viewed object from

two-dimensional image of a textured surface. There are two distinct areas

of activity in the shape-from-texture problem. The first is focused at planar

surfaces and studies aspects of perspective geometry using texture gradients.

The second problem is to infer the shape of curved surfaces. Without a priori

knowledge of the camera model, we can determine some shape properties e.g.

local surface orientation from texture gradient. With a camera model, the

problem is 3D structure recovery. In this thesis, we are interested in shape

from texture and 3D structure recovery from single view for surfaces applicable

to planes.

5.2 Previous works

The shape-from-texture problem originates from the work of Gibson at [32]. He

introduced the term texture gradient as a feature for the 3D shape recovery. The

difference between the images of two adjacent and similar texture patterns allows us

to infer local orientation of a surface in 3D. Moreover, Marr [53] stated that texture

information as providing a potentially useful data of the shape recovery.

Shape from texture proceeds along two main lines: (1) Measuring the texture

gradient (2) 3D shape recovery and integrability. For problem (1) One approach is a

global method, where it is assumed that the distribution of the texture is given e.g.,

isotropy [88] or homogeneity [1]. These assumptions on the texture model made us

decide not to employ these methods for text patterns. Local methods recover some
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differential geometric properties at a point on a surface. There are surprising few

works in the literature for recovering surface properties using local methods. This

method is based on the work of Garding [30] and was expanded to various surfaces

by [52]. A reformulation of the problem in terms of wavelet basis was done by [16].

Here, we chose the Malik and Rosenholtz algorithm [52] for further development.

These local methods provide local estimation of surface properties. These local

estimates are not necessarily consistent. This problem is called ‘integrability ’. In

[46], a new approach to the reconstruction of surface normals using basis functions,

referred as shapelets was presented. These shapelets are smooth in nature but it

does not impose the applicable surface property. Here, we used their reconstruction

method to reconstruct the 3D structure of the surface.

Our contribution is use of the applicable property for the 3D reconstruction of

the surface from texture information. In our method we use the differential geometric

properties for the integration of normal vectors. Such properties are isometry and

vanishing Gaussian curvature. Here, we used local robust smoothing to satisfy this

property.

5.3 Theory

5.3.1 Review of the geometric framework

The basic underlying geometry is shown in Fig. 5.2. A surface S is mapped to a

unit sphere view of Σ by a central projection model. The view is chosen spherical
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because it is uniform in each direction. This viewing model is the camera model

assumption. In Fig. 5.2, F is a back projection of a point on the imaging view to a

point on surface in 3D. The slant σ is defined to be the angle between the surface

normal N and the viewing direction p. Defining the tilt direction t, the tangent

plane of the viewing sphere at p to be a unit vector in the direction of the gradient of

the distant function r(p). We denote the back projection mapping from the viewing

sphere to the surface as F (p) = r(p) = pr(p) where p is a unit vector from the

focal point to a point on the image sphere, and r(p) is the distance along the visual

ray from the focal point through p to the corresponding point r = F (p) on the

surface S. The orientation of the surface can be defined in different ways. One

Figure 5.2: A smooth surface S is mapped to a unit sphere Σ centered at the focal

point by central projection.

convenient choice are the slant-tilt parameters (σ, τ) where σ ∈ (0, π) is the slant,

and τ ∈ (0, 2π) is the tilt. Let us define the direction of b = t× p. Then, (t,b)

forms an orthonormal basis in the image plane at point p. Furthermore, (T,B)

are the back projections of vectors (t,b) on a surface at point F(p). Garding [30]
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formulates F(p) in terms of (T,B) as

F (p) =




r
cos σ

0

0 r


 =




1
mp

0

0 1
Mp


 , (5.1)

where r is the distance to a point on the surface to the center of viewing sphere,

σ is slant angle, mp and Mp are respectively the scaling of the minor and major

axis in the tilt direction. Fig 5.3 the projection of a planar surface with circles of

the same size painted on it. We can see the minor axis of each ellipse in the tilt

direction. Major and minor axis notations are motivated by Fig. 5.3. In this figure,

the local orientation of the plane makes circles be perceived as ellipses. We assumed

Figure 5.3: Projection of circle textured pattern.

that the surface is smooth therefore for any two adjacent points P1 and P2, the

corresponding orthonormal basis (T1,B1) and (T2,B2) are rotated replica of each

other. The transformation can be formulated by a rotation matrix R(δT ). It can be

shown that [30] for any two adjacent points p1 and p2 on the image sphere of Σ, the

mapping is affine , and determined by a matrix A. Fig. 5.3.1 illustrates the affine

mapping from p1 to p2 that is obtained if we back project p1 to P1, rotate the basis

from (T1,B1) to (T2,B2) and project it to p2 from P2 and finally rotate the basis
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in the image sphere by a rotation matrix R(δt). Therefore, A can be formulated for

4t,4b → 0 as:

Figure 5.4: Affine transformation between two adjacent points P1 and P2 on a

surface. The corresponding image are represented as p1 and p2. The mapping

between two image points is affine matrix A. R(δT ) is the rotation of the (T,B)

between P1 and P2 and R(δt) rotates between the (t,b) basis from point p1 to p2.

A = R(δt)F
−1(P2)R(δT )F (p1),

= R(δt)




cos δT
m2

m1
sin δT

m2

M1

− sin δT
M2

m1
cos δT

M2

M1


 , (5.2)

where

m2 = m1 + ( 4t 4b ) ◦ ∇m,

M2 = M1 + ( 4t 4b ) ◦ ∇M, (5.3)

m and M are the minor and major axis scaling at point p and ∇m and ∇M are

the gradients. Garding [30] proved that the gradients of the minor and major axis
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can be represented in the (t,b) coordinates as:

∇m

m
= − tan σ




2 + rκt/ cos σ

rτ


 ,

∇M

M
= − tan σ




1

0


 . (5.4)

where κt is the normal curvature in the T direction and τ is the geodesic torsion.

Also, we can relate p1 to p2 by :

p1 − p2 =(4t,4b)T (5.5)

We can rewrite Eqn. (5.2) using Eqns. (5.1) and (5.4):

A = R(δt)




km cos δT km sin δT cos σ

−kM
sin δT

cos σ
kM cos δT


 , (5.6)

where

km = 1 + ( 4t 4b ) ◦ ∇m

m
,

kM = 1 + ( 4t 4b ) ◦ ∇M

M
. (5.7)

The actual affine transformation is not necessarily in the (t,b) basis. Therefore, we

have to change the basis:
−
A = UAU−1. Here, U is a rotation matrix with tilt as the

angle of rotation.

5.3.2 Affine estimation

In this section, we assume that two images I1 and I2 are related by an affine trans-

formation:

I2(x) = I1(Ax), (5.8)
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where x is the pixel location in I1and A is an affine matrix. We can show that in

the frequency domain, the Fourier transform of I1 and I2 are related by an affine

matrix as well

F2(x) =
1

det(A)
F1(A

−Tx). (5.9)

Thus if we can calculate the affine transformation in the frequency domain, we can

consequently compute it in the spatial domain. There are advantages to working in

the frequency domain: calculations are insensitive to small changes in the spatial

domain and are fast because of the availability of the fast Fourier transform. Now,

assume that we have the Fourier transforms of images I1 and I2. We use a differential

method to estimate the affine matrix parameter. To illustrate the concept, we first

consider the case in 1D:

f2(w) = f1(aw), (5.10)

then suppose a = 1 +4a where 4a is small. From the Taylor expansion:

f2(w) = f1(w + w4 a) ≈ f1(w) +
∂f1

∂w
w4 a, (5.11)

Therefore, if f1 and f2 are given, we can approximately solve for affine parameter

4a. We can extend the method to 2D. Assume that the two spectograms are related

by affine matrix A = I +4A. Then the difference equation is:

F2(w)− F1(w) ≈ ∇F1 ◦ 4Aw, (5.12)
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The only unknown is 4A which is a 2× 2 matrix. If we write the elements of 4A

as aij, we can rewrite Eqn. 5.12 as:

F2(w)− F1(w) ≈
(

∂F1

∂w1
w1

∂F1

∂w1
w2

∂F2

∂w2
w1

∂F2

∂w2
w2

)




a11

a12

a21

a22




, (5.13)

where each partial derivative is computed at frequency w. This is a standard linear

matrix equation Ax = b. We have many independent equations if the 2D signals

are rich in content. To find the solution to the affine matrix only four independent

equations are enough. In this formulation, we can have more than four points and

the solution is given by the least square solutions. The method is explicitly addressed

in [52].

5.3.3 Shape recovery

To estimate the texture gradient map at a point p1, we calculate the Fourier trans-

forms of the block centering at that point and for neighboring points in a number

of different directions. Therefore, p2 is given by:

p2 = p1 + d(cos θi, sin θi)
T , (5.14)

where d the distance to be chosen and θi the orientation angle. In this section ,

we apply the shape recovery algorithm addressed in [52] by Malik and Rosenholtz.

In this method, the tilt and slant parameters are computed from the estimation of

affine matrix for each direction. Recall that for the orientation angle θi, the affine
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matrix can be formulated as:

−
Ai = UAiU

−1 = UR(δi
t)




ki
m cos δT ki

m sin δi
T cos σ

−ki
M

sin δi
T

cos σ
ki

M cos δi
T


 U−1

where U = R(θt) and θt is the tilt direction. The three stages of the shape-recovery

algorithm are:

1. Compute the singular values of
−
Ai denoted as si

1 and si
2. It can be shown that:

trace(
−
A

T

i

−
Ai) = trace(AT

i Ai),

det(
−
A

T

i

−
Ai) = det(AT

i Ai). (5.15)

We drop superscripts i to avoid confusion. Therefore, we can claim that:

(s1 + s2)
2 = trace(

−
A

T

i

−
Ai) = trace(AT

i Ai) ≈ (kM + km)2,

s2
1s

2
2 = det(

−
A

T

i

−
Ai) = det(AT

i Ai) ≈ k2
Mk2

m, (5.16)

where 4ti,4bi→ 0. So, we can approximate s1 + s2 ≈ kM + km and s1s2 ≈

kMkm. Therefore, we can estimate kM and km from the singular values of the

estimate of
−
A. As we stated before, the major scaling is in the minor axis

direction, kM is close to one. This is true for planar surfaces and for many

surfaces with positive curvature and torsion.

2. Estimate the tilt and slant angles from the major axis gradient. from Eqns.

(5.7) and (?) that ki
M − 1 = − tan σ4ti. Here, we still do not know the tilt

direction and so forth 4ti. Let us represent the major axis gradient as (tx, ty)
T

in the standard basis, (x, y). This vector has length | − tan σ| and it is in the
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tilt direction. Then,




4x1 4y1

4x2 4y2

. .

4xn 4yn







tx

ty


 =




k1
M − 1

k2
M − 1

.

kn
M − 1




, (5.17)

where 4xi = d cos θi and 4yi = d sin θi.

3. Smooth the surface normals robustly. The surface normals calculated by the

shape-from-texture method are likely to be noisy and inconsistent. This in-

consistency in the sense of local smoothness of the surface, relegates the needle

map estimate for curved surface usage. Therefore, to improve the consistency

of the needle map and hence the surface local smoothness criteria, we need

to impose an iterative scheme to smoothen out the normals. We used the

algorithm at [90]. This smoothing is a robust smoothing method whereas the

smoothing process can be gauged by the choice of the kernel. Here, we choose

the smoothness penalty as:

I =

∫ ∫
{ρσ(||∂n

∂x
||) + ρσ(||∂n

∂y
||)}dxdy, (5.18)

where ρσ(η) is the robust error kernel. Our choice of the kernel is:

ρσ(η) =
σ

π
log cosh(

πη

σ
). (5.19)

This kernel is the log-cosh sigmoidal derivatives M-estimator. Applying vari-

ational calculus the update equation for the surface normals which minimizes
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the smoothness penalty I is:

nk+1
i,j = ||∂nk

i,j

∂x
||−1 tanh(

π

σ
||∂nk

i,j

∂x
||)(nk

i+1,j − nk
i−1,j) + (

π

σ
||∂nk

i,j

∂x
||−2 sec h2(

π

σ
||∂nk

i,j

∂x
||)−

||∂nk
i,j

∂x
||−3 tanh(

π

σ
||∂nk

i,j

∂x
||))(∂nk

i,j

∂x
· ∂2nk

i,j

∂x2
)
∂nk

i,j

∂x
+ ||∂nk

i,j

∂y
||−1×

tanh(
π

σ
||∂nk

i,j

∂y
||)(nk

i,j+1 − nk
i,j−1) + (

π

σ
||∂nk

i,j

∂x
||−2 sec h2(

π

σ
||∂nk

i,j

∂y
||)

− ||∂nk
i,j

∂y
||−3 tanh(

π

σ
||∂nk

i,j

∂y
||))(∂nk

i,j

∂y
· ∂2nk

i,j

∂y2
)
∂nk

i,j

∂y
. (5.20)

where nk
i,j is the estimate of the surface normals at the ith row and jth column

at the iteration k of the smoothing process.

5.4 Discussion and Results

Here, we show the results of the shape-from-texture algorithm for different surfaces:

positive Gaussian curvature and zero Gaussian curvature. For all results, the pa-

rameters stated in section 5.3: d= 7 , number of orientations= 8, block-size= 64

and image-size= 256 × 256. We robustly smoothed the surface normal needle map

in 25 iterations.

In Fig. 5.5, we show the results of the algorithm for a golf ball. In this example

the tilt-slant parameters estimations are accurate because we have a deterministic

textured pattern and we picked the affine parameters using 3 features in the fre-

quency domain. To overcome inconsistencies in the sense of surface normals, we

applied the robust smoothing to the needle-map field.

In Fig. 5.6 and 5.7, we show the result of our algorithm on surfaces with zero

Gaussian curvature. The first example is a flat surface and the second example is a
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(a) (b)

Figure 5.5: (a) Original image of a golf ball (Gaussian curvature is nonzero) (b)

Normal vector field after robust smoothing

worked surface with deformation applicable to a plane. Both input images are taken

by a digital camera Canon S200-PowerShot. In these examples, the camera model

is (viewing model) not a spherical central projection model. Also, we automatically

estimated the affine parameters at each chosen point on the surface which is not as

precise as manual method of picking points in the frequency domain. Furthermore,

in the reconstruction stage, we used the Kavosi method [46] for the 3D reconstruction

using a set of smooth Gaussian kernels. Therefore, the results are smoothed out

even if the normal surface needle map were noisy. However, in Fig. 5.6, we can

infer the smooth increasing nature of the tilted plane at the center of the surface.

Moreover, in Fig. 5.7, we can claim the nature of the bending. So far, we tried

the automatic affine estimation module which is not very precise and consequently

affect the results.

In the future, we will work in the accuracy of the affine estimation module

which has direct impact on the quality of surface local orientation results. Also, we
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(a) (b)

(c) (d)

Figure 5.6: (a) Original image of a flat paper (b) Normal vector field from shape-

from-texture algorithm (c) Robustly smoothed normal vector field (d) 3D recon-

struction

think with a more elaborate objective function for the robust smoothing method, we

can improve significantly the results for the applicable surface. The additional term

can be the direction of the vectors in the needle-map field. As stated in chapter 4,

at any point on the surface there is a direction which has zero curvature (back to

zero Gaussian curvature property). On this direction, surface normals are parallel

as stated in 4.
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(a) (b)

(c) (d)

Figure 5.7: (a) Original image of a bent paper (b) Normal vector field from shape-

from-texture algorithm (c) Robustly smoothed normal vector field (d) 3D recon-

struction
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Chapter 6

Conclusion and Future work

In this dissertation, we first described the development of a prototype device for

scene text acquisition and processing for the visually impaired to access textual in-

formation in the environment. This integrated system uses video, image processing,

optical-character-recognition (OCR) and text-to-speech (TTS). The video provides

a sequence of low resolution images in which text must be detected, rectified and

converted into high resolution rectangular blocks that are capable of being analyzed

via off-the-shelf OCR. To achieve this, various problems related to feature detec-

tion, mosaicing, auto-focus, zoom, and systems integration were addressed in the

development of the system.

Next we employ the video-based interface for a case that the scene text is

printed on plane. Several modules for pre-processing and analysis were augmented

e.g., text segmentation, enhancement and pre-processing the video content and met-

ric rectification. we presented a system to extract textual and graphical infor-

mation in lecture presentations or poster/slides using video and image processing,
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optical-character-recognition (OCR) and pattern recognition. Related computer vi-

sion problems were introduced and solved. The results were promising and efficient

for the video-based interface. The indexed output is represented in structured for-

mat; text , graph and importance of text in the content. So, a video of lecture or

slide/poster can be compressed without losing any key information, and still be small

enough to be retrieve in on-line environments. The ability to capture and process

textual information access by camera-based scanning system has many applications

e.g. mobile text reader for the visually impaired, sign detection and translation,

document and conference archiving, semantic extraction and so on.

Next, we considered a more general class of worked paper surfaces with scene

text printed on them. Such surfaces are applicable to planes. This thesis presents,

to our knowledge, the first occasion that differential geometry has been used quanti-

tatively in the recovery of structure from images. A theory and method for warping

and unwarping images for applicable surfaces based on patch boundary information

and solution of nonlinear PDEs of differential geometry was developed. The method

is fast, accurate and correspondence free (except for a few boundary points). We

see many useful applications of this method for virtual reality simulations, computer

vision, and graphics; e.g. 3D reconstruction, animation, object classification, OCR,

etc. While the purpose of this study was developing and testing of the method itself,

ongoing work is related both to theoretical studies and to development of practical

algorithms. This includes more detailed studies of the properties of the obtained

equations, problems of camera calibration, boundary extraction, sensitivity analysis,

efficient minimization procedures, and unwarping of images acquired by a camera,
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where our particular interest is in undoing the curl distortion of pages with printed

text.

We next developed the shape-from-texture method to complement the method

above to infer the 3D structure. We showed that for the consistency of normal vector

field, we need to add extra conditions based on the surface model. Such conditions

are isometry and zero Gaussian curvature of the surface.

The novel contributions are: first, it is shown that certain linear and non-linear

clues (contour knowledge information) are sufficient to recover the 3D structure of

scene text; second, that with a priori of a page layout information, we can reconstruct

a fronto-parallel view of a deformed page from differential geometric properties of a

surface; third, that with a known cameral model we can recover 3D structure of a

bent surface; forth, we present an integrated framework for analysis and rectification

of scene texts from single views in general format; fifth, we provide the comparison

with shape from texture approach and finally this work can be integrated as a visual

prostheses for the visually impaired.

We expect our work to have many applications in computer vision and com-

puter graphics. The applications are diverse e.g. a generalized scanning device,

digital flattening of creased documents, 3D reconstruction problem when correspon-

dence fails, 3D reconstruction of single old photos, bending and creasing virtual

paper, object classification, semantic extraction, scene description and so on. The

direction for the future work is listed as following:
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6.1 Image enhancement and restoration

Let us assume that the images taken by a a camera is blurred. The statement is

that given a degraded image of printed text can we restore the image such that

image looks as if it is taken from an in-focus camera? Here, we will point out the

direction for this problem. In the thesis, the solution to this problem is beneficial

to the improvement of the OCR output accuracy. In more general definition, the

degradation process can be modeled as:

y = H(x) + η (6.1)

where x is the original image, y is the blurred image, H is the PSF (point spread

function) that degrades the original image and

eta is an additive noise. These are the vivid research areas involved:

• PSF modeling: We assume that the degradation is out-of-focus blur. In

general, we can classify the image restoration schemes with respect to the

PSF. If we have the PSF of a camera for this application, it is called ‘classical

image restoration’. There are different methods e.g. Inverse filtering, Wiener

Filtering, Least-square filtering and so on. Without the prior knowledge of

PSF, the method is called ‘blind image restoration, e.g. Direct de-convolution,

Recursive filtering, Neural network, Wavelet filters, etc. [3].

• Statistical properties of the additive noise: For simplicity, we can assume

that it is white Gaussian noise.

• Prior knowledge on the original image: The prior knowledge improves
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the quality of the restoration scheme e.g. Markov Random Fields (MRF) [31].

• Temporal data: If we have a sequence of the low-resolution images(y’s), we

can restore the super-resolution image (x) and estimate the H [11, 18].

• PDE-based technique: In this method [45], we model the degradation pro-

cess as:

IN = I + η, (6.2)

where to minimize:

inf
I∈BV (Ω)

∫

Ω

{(I − IN)2 + αφ(
||∇I||

δ
)}dΩ, (6.3)

where α and δ are two constants, IN is the noisy image, and φ is a function

still to be defined. Notice that if φ(x) = x2 , we recognize the Tikhonov regu-

larization term. This method is well known to smooth the image isotropically

without preserving discontinuities in intensity.

6.2 3D structure recovery from differential geo-

metric properties

This problem stated in Chapter 4 can be extended to the real applications. So

far, our algorithm is able to perform on the inverse problem using the shooting

method bases on one parameter. As we claimed, we have to find the minimum of

the objective function J in Eqn. (4.59). This function is not smooth enough for the

real images, thus the results on the real images were not accurate. We will augment
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the extra initial constraint to the initial constraint equation set. Such condition is

the smoothness of the rate of change of the characteristic slope at the starting point:

·
m(0) =

−hu(0)

hv(0)
= 0 (6.4)

Also, the major step for the future work of the 3D structure recovery is the sensitivity

analysis of our method.

6.3 Knowledge-driven OCR

Database of text in the environment: We will gather a database consisting of

digitized samples of reading material for each task and characterize the distributions

of print parameters (e.g., size, font, contrast, color, background pattern, etc.) for

each task. it has already been constructed a similar database for U.S. newspapers

[22] and for product labels [8]. This database is necessary for development of the

knowledge-driven OCR for tasks relevant to the target population.

Contextual Dictionaries: The words that appear in daily activities for the

visually impaired to read the scene text are are from a very restricted vocabulary.

We propose to use the domain knowledge to improve the recognition accuracy of the

OCR subsystem. The knowledge will be represented as dictionaries and thesauri.

6.4 User interface

The proposed system in the real application for the visually impaired need a user

interface capable of performing the analysis of the scene text. Therefore, the future
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work can be dedicated to set up a video-based interface consisting of a head-mounted

camera with the loudspeaker on person’s ears and a laptop for the processing part

instead of the lab set-up we already built up. In this context, we can add hardware

for the user input to the system e.g. a mouse or a joystick.
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