
ABSTRACT

Title of Dissertation: Maintenance of Spatial Queries

on Continuously Moving Points

Glenn S. Iwerks, Doctor of Philosophy, 2004

Dissertation directed by: Professor Hanan Samet

Department of Computer Science

Cars, aircraft, mobile cell phones, ships, tanks, and mobile robots all have the

common property that they are moving objects. A kinematic representation can be

used to describe the location of these objects as a function of time. For example, a

moving point can be represented by the linear function p(t) = −→x0 + (t− t0)−→v , where

−→x0 is the start location, t0 is the start time, and −→v is its velocity vector. Instead of

storing the location of the object at a given time in a database, the coefficients of the

function are stored. When an object’s behavior changes enough that the function

describing its location is no longer accurate, the function coefficients for the object

are updated. Because the objects are represented as a function of time, spatial query

results can change even when no transactions update the database. Our hypothesis

is that algorithms for the maintenance of spatial queries on kinematic point data

types can be developed to support updates to base relations as time advances that

are more efficient than straight forward adaptations of previous work. We present

algorithms to maintain k-nearest neighbor, spatial join, and spatial semijoin queries

in this domain. We compare by experimentation these new algorithms to more

straight forward adaptations of previous work to support updates. Experiments

are conducted using synthetic uniformly distributed data, and real aircraft flight

data. The primary metric of comparison is the number of I/O disk accesses needed

to maintain the query results and supporting data structures. A system to query

and visualize results on moving object data, in a client-server environment, is also

presented. The work presented here is built upon a culmination of our previously

published work, including work on continuously moving point queries [35, 36], and

client-server systems [31, 33, 34].

Maintenance of Spatial Queries

on Continuously Moving Points

by

Glenn S. Iwerks

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:

Professor Hanan Samet, Chairman/Advisor
Professor Samuel Goward
Professor David Mount
Professor V. S. Subrahmanian
Professor Amitabh Varshney

c© Copyright by

Glenn S. Iwerks

2004

DEDICATION

To my loving wife Sydne, for being so patient.

ii

TABLE OF CONTENTS

List of Tables vii

List of Figures ix

1 Introduction 1

2 Event Driven Query Processing 5

2.1 Data Types . 6

2.2 Events . 7

2.3 Notation . 8

2.4 Event Example . 9

2.5 Event Driven Query Processing Without Updates 9

3 Previous Work 15

3.1 Spreadsheet for Images . 15

3.2 SAND Browser . 16

3.3 The Original Spatial Spreadsheet . 16

3.4 Spatial Queries on Static Data . 18

3.5 Incremental View Maintenance . 19

3.6 Incremental Distance Query . 20

3.7 Moving Objects . 21

3.7.1 Indexing Moving Objects . 22

iii

3.7.2 Moving Object Queries Over Time 23

3.7.3 Time Parameterized Queries 24

3.8 Animated Cartography . 27

4 The Internet Spatial Spreadsheet 29

4.1 ISS Server . 29

4.2 ISS Client . 32

4.3 Example . 33

4.4 Cell Update Propagation . 35

4.5 Pushing Data From Server to Client Using HTTP 42

4.6 Interactive Visualization . 45

4.7 Conclusion . 46

5 K-Nearest Neighbor Queries 48

5.1 Continuous Windowing KNN (CW) 49

5.2 Extending TP KNN for Updates . 59

5.3 Performance Issues . 64

5.4 Experimental Results . 68

5.5 Data Sets . 69

5.6 Experimental Results . 72

5.7 Conclusion . 79

6 Spatial Join Queries 80

6.1 Query Engine . 83

6.2 All Events (AE) Approach . 88

6.3 Next Event (NE) Approach . 92

6.4 Performance Issues . 99

6.5 Experimental Results . 100

iv

6.5.1 Implementation . 100

6.5.2 Results . 101

6.6 Conclusion . 107

7 Spatial Semijoin Queries 110

7.1 Introduction . 110

7.2 Data Structures . 115

7.3 CFS Algorithm . 118

7.4 CFS vs. CW . 128

7.5 Experiments . 129

7.6 Data Sets . 130

7.7 Results . 131

7.8 Concluding Remarks . 136

8 Visualizing Changing Query Results for Moving Objects 138

8.1 Introduction . 138

8.2 Definitions and Notation . 140

8.3 Small Sets of Moving Objects . 144

8.3.1 Fixed Update and Playback Rates 144

8.3.2 Example . 146

8.3.3 Variable Update and Playback Rates 148

8.3.4 Variable Update Rate and Fixed Playback Rate 151

8.4 Large Sets of Intermittently Moving Objects 153

8.5 Large Sets of Continuously Moving Objects 156

8.6 Conclusion . 157

9 Conclusion 159

v

A View Maintenance Proof 162

A.1 Notation . 162

A.2 Incremental Update of Spatial Join Views 164

A.2.1 Correctness . 167

A.3 Rewrite Rule Proof . 173

vi

LIST OF TABLES

2.1 A trace of the Simple Within() algorithm for the example in Figure 2.1

through time t = 7. 12

2.2 Simple Nearest Neighbor() algorithm trace for the example from Fig-

ure 2.1 through time t = 7.5. 14

4.1 Base relation r at time t0. 34

4.2 Base relation s at time t0. 34

4.3 Result of example query Q. The first row shows the initial result at time

t0. The second row shows the result at time t0 + 1 after the deletion of

tuple {y, (5, 3), 1}, and insertion of tuple {y, (4, 3), 1} in relation s, and

the deletion of tuple {a, (2, 2), 1} and insertion of tuple {a, (1, 1), 1} in

relation r. The result at time t0 + 4 is shown in the last row after tuple

{y, (4, 3), 1} is replaced with tuple {y, (1, 3), 1} in s. Tuple {x, (3, 1), 2}

from relation s does not appear in the join result because its type attribute

is not equal to 1. 35

5.1 A trace of the CW algorithm applied to the example in Figure 5.2. . . . 53

5.2 ETP trace for the example in Figure 5.2. 61

vii

5.3 Each column corresponds to a different aircraft data set. Each row is a

statistic on the data sets. Row 1 is the mean number of flights at any

given time (µ). Row 2 is the standard deviation in the number of flights

(σ). Row 3 is the average update interval (UI) in seconds. 72

6.1 Trace of the example join query given in Figure 6.1. 82

6.2 Trace of the All Events (AE) algorithm for the example from Figure 6.1. 89

6.3 Trace of the Next Event (NE) algorithm for the example from Figure 6.1. 93

6.4 Each column corresponds to a different aircraft data set. Each row is a

statistic on the data sets. Row 1 is the mean number of flights at any

given time (µ). Row 2 is the standard deviation in the number of flights

(σ). Row 3 is the average update interval (UI) in seconds. 100

7.1 Each column corresponds to a different aircraft data set. Each row is a

statistic on the data sets. Row 1 is the mean number of flights at any

given time (µ). Row 2 is the standard deviation in the number of flights

(σ). Row 3 is the average update interval (UI) in seconds. 130

8.1 Example trace of procedure Convert . 154

A.1 Truth table where T is TRUE and F is FALSE. The conditions (τs = τt) =

T and P(τs, τv) 6= P(τt, τv) are not shown since these states are not possible.176

viii

LIST OF FIGURES

2.1 Example snapshots of 1D moving point attributes and events for time

interval 1 ≤ t ≤ 7.5. Arrow lengths indicate the distance traveled in one

time unit. 10

2.2 Simple Within() . 12

2.3 Simple Nearest Neighbor() . 13

3.1 The original Spatial Spreadsheet: Cells display spatial data contained in

base relations and query results associated with each cell. 17

4.1 ISS data flow: r indicates a base relation, or materialized view. Tables

i and d are insert and delete differential tables respectively. The query

cell’s view (a binary operation in this case) is initially computed using the

base relations of each input cell. It is then incrementally updated when

input cell’s are updated. Changes in the query cell’s view are stored in

its own differential tables. This allows query cell’s to be composed with

other query cells. After the updates propagate through the system, the

differential tables are applied to the cell’s relation r and the differential

tables are cleared for the next transaction. 31

ix

4.2 Graphical representation of the state of relations r (locations denoted by

the � symbol) and s (locations denoted by the • symbol) at times (a) t0, (b)

t0 + 1, and (c) t0 + 4. The ovals show pairs of objects included in the query

result shown in Table 4.3. Arrows show the direction of motion of moving

objects. 34

4.3 Update propagation example: The example query Q from Section 4.3 is

broken up into two views. Supposing the user wants to see where all

the objects of type 1 are located before the join is performed, a view

is created as a selection on relation s using the query σs = {τs : τs ∈

s ∧ τs[type] = 1} in cell (0,1). To see which objects are within distance

2 of each other, the user then creates the view r 1 σs = {τrτσs : τr ∈

r ∧ τσs ∈ σs ∧ Distance(τr[loc], τσs[loc]) ≤ 2} in cell (1,1). Arrows

indicate cell dependencies. 38

4.4 Update propagation data flow through cells in the ISS. The example shown

is from Section 4.3, where the selection and join are separated out into

different cells. The selection operation is q1 = σs, where σ is shorthand

for στs[type]=1. The selection insert differential operation is iq1 = σis, and

the selection delete differential operation is dq1 = σds. The join operation

(a) is q2 = r 1 q1, where 1 is shorthand for 1Distance(τr[loc],τs[loc])≤2. The

join insert differential operation (b) is iq2
= ((((ir 1 q1)] (r 1 iq1

))]

(ir 1 iq1
)) − (ir 1 dq1

)) − (iq1
1 dr), and the join delete differential

operation (c) is dq2
= (((q1 1 dr)] (r 1 dq1

)) − (dq1
1 dr)). 41

x

4.5 ISS client-server polling session. The client initiates the HTTP session.

Updates generated in the server query threads are placed on a queue in

the server. The server’s push thread pops updates off the queue and

transmits them to the client. The client push thread receives the updates

and places them on the client’s queue. The client data processing thread

pops the data off the queue and executes the display callbacks. Each

display callback is associated with a particular spreadsheet cell in the

client. 44

5.1 2D example illustrating the CW approach, where ⊗ is the query point q,

r indicates the radius of the query window, • indicate points in q’s within

set, and ◦ indicate points not in the within set. 51

5.2 Example snapshots in time of 1D moving points, events, and updates up

to time t = 3.5. Arrow length indicates distance traveled in one unit

of time. The shaded area shows the extent of the query window within

distance d = 1.5 of query point q. 52

5.3 Continuous Windowing Knn() (CW) 52

5.4 CW Adjust Window() . 54

5.5 CW Compute Knn Result() . 55

5.6 CW Update Data Relation() . 56

5.7 CW Update Query Point() . 57

5.8 CW Process Within Evt() . 58

5.9 CW Process Nn Evt() . 59

5.10 Extended TP Knn() (ETP) . 61

5.11 ETP Update Data Relation() . 63

5.12 ETP Update Query Point() . 64

5.13 ETP Process Nn Evt() . 64

xi

5.14 Example EB-tree with one root node, and two leaf nodes. 69

5.15 Snapshot of aircraft flight data. 71

5.16 Disk accesses vs. data set size for aircraft data. 74

5.17 Disk accesses vs. data set size for uniform data. 74

5.18 No updates . 75

5.19 Number of entries vs. data set size for aircraft data. 76

5.20 Number of entries vs. data set size for uniform data. 76

5.21 Disk accesses vs. number of neighbors for aircraft data. 76

5.22 Disk accesses vs. number of neighbors for uniform data. 76

5.23 Disk accesses vs. extra neighbors for CW algorithm. 77

5.24 Disk accesses vs. number of disk cache pages for CW algorithm. 78

5.25 Disk accesses vs. number of disk cache pages for ETP algorithm. 78

5.26 Disk accesses vs. average update interval for uniform data. 79

6.1 Example spatial join of 1-dimensional moving points. 82

6.2 CSJU() . 84

6.3 AE Process Next Event(j) . 90

6.4 AE Insert L(j) . 91

6.5 AE Delete L() . 91

6.6 AE Generate Events(j) . 92

6.7 NE Process Next Event(j) . 94

6.8 NE Insert L(j) . 95

6.9 NE Insert R(j) . 97

6.10 NE Delete R() . 98

6.11 NE Generate Events(j) . 98

xii

6.12 Comparison of total disk accesses for our simple adaptation of Tao and

Papadias’s CSJ algorithm to support updates (TP) to NE and AE without

updates (a) and with updates (b and c). 104

6.13 Aircraft flight data (x-axis is log scale) 105

6.14 Uniform synthetic data . 106

6.15 Number of disk accesses vs. join distance 107

6.16 Number of disk accesses vs. mean number of moving points (per relation) 108

7.1 Example fuzzy set, where ⊗ is the query point q, • indicate points in q’s

fuzzy set, and ◦ indicate points not in the fuzzy set. 114

7.2 Example NN-B-tree with one root node, and two leaf nodes, where idi =

id(query pt(ei)). 116

7.3 E-queue Insert() . 117

7.4 E-queue Delete QueryPt() . 117

7.5 E-queue Delete All DataPt() . 117

7.6 Process Event() . 119

7.7 Enqueue Event() . 120

7.8 Handle Underflow() . 121

7.9 Update Fuzzy Set() . 123

7.10 Insert Data Point() . 124

7.11 Delete Data Point() . 126

7.12 Insert Query Point() . 127

7.13 Delete Query Point() . 127

7.14 Disk accesses with respect to data set size. 133

7.15 Disk accesses with respect to k with circle factor = 2. 133

7.16 CFS algorithm parameters. (a) Disk accesses vs. circle factor. (b) Disk

accesses vs. fuzzy-set-interval. 134

xiii

8.1 Function Process And Sequence() appends a new animation layer frame

as a query is processed. 146

8.2 Function Play Sequence() renders an animation layer sequence. 146

8.3 Function Process Variable Rate() saves a transaction time for each layer

frame. 149

8.4 Procedure Play Variable Rate() . 150

8.5 Procedure Convert() converts a variable rate layer frame sequence to a

fixed rate bitmap animation. 153

8.6 Function Process Incremental() copies the previous layer frame and ap-

plies the changes from differential tables iv, and dv. 156

8.7 Function Play Kinematic() . 158

xiv

Chapter 1

Introduction

Cars, aircraft, mobile cell phones, ships, tanks, and mobile robots all have the com-

mon property that they are moving objects. Some example sources of moving object

data are mobile networks, sensor networks, and remote sensors such as radar. A

moving object database stores, indexes and queries moving object data. The chal-

lenge in moving object databases is in the query processing and visualization of data

that is frequently updated.

Consider the following queries on moving point objects. For a cell phone, keep

track of the nearest cell tower. For a suspect getaway car, keep track of the nearest

police cruiser. For each airplane, keep track of every other airplane that is too

close for safety. For each tank, keep track of each target that is within firing range.

For each moving firetruck, keep track of the nearest mobile police unit. For each

unmanned air vehicle, keep track of the nearest observation objective. These are all

examples of queries that need to be maintained over time.

A view is a query maintained over time. Typically, when transactions update

data in the base relations, updates are propagated to query results using incremental

view maintenance algorithms [9, 25]. These algorithms operate under the assumption

know as the heuristic of inertia [25] which states that updates to relations involve

1

only a small fraction of tuples found in a relation.

In the domain of continuously moving objects, the heuristic of inertia may not

hold. Consider two representations for moving objects: samples and kinematic rep-

resentations. The sampling representation involves taking a sample of the location

of a moving object at periodic intervals. The time interval may or may not be the

same between each sample. A series of samples for the same object is called a track.

Each sample in a track is associated with a unique object id.

The heuristic of inertia only holds for a sample representation when objects move

intermittently. Intermittently moving objects move occasionally and then stop for

relatively long periods of time. Object data is updated periodically in the database

when its location changes. Cars in a parking lot are examples of intermittently

moving objects.

A kinematic1 representation describes the location of an object as a function

of time. For example, a moving point can be represented by the linear function

p(t) = −→x0 + (t − t0)−→v , where −→x0 is the start location, t0 is the start time, and −→v is

its velocity vector. Instead of storing the location of the object at a given time in

a database, the coefficients of the function are stored. When an object’s behavior

changes enough that the function describing its location is no longer accurate, the

function coefficients for the object are updated. This can help reduce the number

of updates needed to keep track of an objects location as compared to the sampling

approach. Kinematic representations have been used in this way to reduce network

traffic load in the domain of distributed interactive simulation [11, 51]. Also known

as kinetic data structures (KDS), they were pioneered in part by Basch, Guibas, and

Hershberger [5] in their computational geometry publications on theoretical KDS

algorithms.

1Kinematics is the branch of mechanics that studies the motion of a body or a system of bodies

without giving any consideration to its mass or the forces acting on it.

2

When objects are moving continuously we assume a kinematic representation.

Continuously moving objects are in constant motion, but we assume their velocity is

updated only periodically so that the heuristic of inertia is applicable. For example,

aircraft in flight moving between way-points. When their course and speed varies by

some threshold amount, the database is updated to reflect the change.

Although the heuristic of inertia may be applicable with kinematic data types

even when all the objects are in constant motion, they introduce another problem

that must be addressed in the maintenance of query results. Because the objects

are represented as a function of time, spatial query results can change even when

no transactions update the database. Little research has been published addressing

the issue of query maintenance of kinematic data types with updates to the base

relations. Most research has focused on ad-hoc queries returning a query result for a

particular moment in time, or on future queries that accumulate a query result of a

time interval in the future (see Chapter 3 for more on previous work and references).

Our hypothesis is that algorithms for the maintenance of spatial queries on kine-

matic point data types can be developed to support updates to base relations as time

advances that are more efficient than straight forward adaptations of previous work.

We present algorithms to maintain k-nearest neighbor, spatial join, and spatial semi-

join queries in this domain. We compare by experimentation these new algorithms

to more straight forward adaptations of previous work to support updates. Exper-

iments are conducted using synthetic uniformly distributed data, and real aircraft

flight data. The primary metric of comparison is the number of I/O disk accesses

needed to maintain the query results and supporting data structures.

A system to query and visualize results on moving object data, in a client-server

environment, is also presented. The system architecture and visualization techniques

give a context and motivation behind the primary focus of this thesis, that is, al-

gorithms to maintain query results on continuously moving points with updates.

3

The work presented here is built upon a culmination of our previously published

work, including work on continuously moving point queries [35, 36], and client-server

systems [31, 33, 34].

The rest of this thesis is organized as follows. Chapter 2 gives some background on

event-based query processing. Chapter 3 discusses previous work on relevant system,

query processing, and visualization approaches. Chapter 4 gives an overview of our

system architecture. Chapter 5 presents k-nearest neighbor maintenance algorithms

and experiment results. Chapter 6 presents spatial join, and Chapter 7 presents

semijoin algorithms and experiment results. Visualization of moving object queries

is addressed in Chapter 8. Concluding remarks are given in Chapter 9.

4

Chapter 2

Event Driven Query Processing

In this chapter we present background in the basic principals of event driven query

processing to maintain spatial query results on linear kinematic point objects as

the points move. This chapter serves as a tutorial in the basic concepts needed to

understand the query algorithms in other chapters. In this chapter we consider two

types of queries. Maintenance of a within query maintains the set of all the points

within a given distance of a query point as the point move. Maintenance of a k-

nearest neighbor (k-nn) query maintains the set of the k closest points to a query

point. Algorithms to support both these queries are presented in this chapter to

illustrate the fundamental differences in processing of these two types of queries.

Support for updates to the base relations are not addressed here. Instead, it is

assumed the state of the database remains constant throughout the duration of the

queries. Support for updates to the kinematic points in the database during query

maintenance is addressed in subsequent chapters.

5

2.1 Data Types

A common representation for moving points are sampled locations (sometimes know

as discretely moving points) [50]. For example, the motion of an aircraft can be

represented by sampling its location using radar every 6 seconds and updating its

position in the database each time the location of the aircraft changes. The problem

with this representation is that the costs of updating the location of every aircraft in

flight in a database every 6 seconds, and maintaining queries between updates, are

prohibitive.

A kinematic1 representation is an alternative to sampling. The movement of a

kinematic point is represented as a function of time. In particular, the motion of a

linear kinematic point is represented by the linear function p(t) = −→x0 + (t − t0)−→v ,

where −→x0 is the start location, t0 is the start time, and −→v its velocity vector. The

coefficients of this function are stored in the database for each point. When the

speed or direction of an object changes, the database is updated. For example, if an

aircraft moving east at 500 miles per hour turns to head south, then the the function

describing its motion is updated with a new velocity vector to reflect the new direction

of travel. Errors that may arise due to discrepancies between the kinematic model of

the objects motion, and the actual location of an object are beyond the scope of this

thesis. Kinematic data types have been studied in other domains such as simulation

(i.e, dead reckoning) to reduce network traffic in distributed simulations [11, 51], and

computational geometry [5, 6, 24] also know as kinetic data structures, and spatial

databases [49, 58, 65].

When objects are moving continuously we assume a kinematic representation.

Continuously moving objects are in constant motion, but we assume their velocity

1Kinematics is the branch of mechanics that studies the motion of a body or a system of bodies

without giving any consideration to its mass or the forces acting on it.

6

changes only occasionally. For example, aircraft in flight moving between way points.

2.2 Events

Events are used to maintain query results on kinematic points as time advances.

Events are processed to keep the query result consistent as the points move. This

is similar to event-driven simulation [22], but instead of maintaining a simulation

state, events are used to maintain query results as time advances. To support the

maintenance of the results of these queries we distinguish between two basic types

of events: within events (w-event), and order change events (oc-events).

The first basic event type, the within event (w-event), occurs when two objects

move to be at a given distance d to a query point. If a point is moving closer to the

query point, then the w-event is called an enter event. If a point is moving farther

away from the query point then the w-event is called an exit event. For a moving

point, the time of a within event is based on solving the Euclidean distance equation

|p(time), q(time)| = d for time, where p and q are two moving points. This results in

a closed form quadratic equation. See [53, 65] for more details on the computation

of events between pairs of moving points.

The other basic event type of event is the order change event (oc-event). The

oc-event occurs when two points change order with respect to their distance from a

query point. For query point q, and two other points p1 and p2, the time of their

oc-events is based on solving the equation |p1(time), q(time)| = |p2(time), q(time)|

for time (see [53, 65] for details). A special case of an oc-event is a nearest neighbor

event (nn-event). Given a query point and its current k th neighbor, the nn-event

is the soonest oc-event to occur in the future out of all possible future oc-events

between the query point, the k th neighbor, and any other given query point in the

data set. For example, suppose that q is a query point, pk is its current k th neighbor,

7

and S is a set of moving points S = {s1...sn}. For each point si ∈ S, if si is closer

to q than pk, then the next oc-event ei of point si occurs the next time when si

moves to become farther from q than pk. If si is farther from q than pk, then the

next oc-event ei of point si occurs the next time when si moves to become closer to

q than pk. The next nn-event for q, pk, and S is the soonest oc-event ei of all next

oc-events {e1...en}. The time of the next nn-event is the next time in the future the

k th neighbor of q will change given the set S.

2.3 Notation

A particular instance of a kinematic point is denoted pt(x0, v, t0), where x0 is the

start location, t0 is the start time, and v0 is the velocity vector. We assume an

object-relational database environment in which a point kinematic data type is an

attribute in a relation r, referred to as a moving point, or simply a point. For

simplicity, and without loss of generality, we consider relations having one moving

point attribute. The instance of a moving point attribute for some tuple τ ∈ r is

denoted P(τ). Each instance of a moving point attribute value has its own unique

identifier. This allows us to index a relation on the point’s id and retrieve the tuple

to which the instance belongs. To indicate the tuple containing some point instance

p we write Tuple(p). The Euclidean distance between point instances p and q at time

t is ||p, q, t|| = |p(t), q(t)| =
√

(q(t)− p(t))2

A w-event instance is denoted as w(p, t) where p is the moving point, and t is the

time of the event. It is important to remember that the query point and distance

are part of a within query, and not explicitly represented in the w-event notation.

An oc-event instance is denoted as oc(p, t) where p is the point involved, and t is the

time. Likewise, the query point is part of the query and not explicitly represented in

the oc-event notation. Additionally, it is important to note that the k th neighbor of

8

the query point is the other point involved in the oc-event. Since this is part of a k-nn

query result, it also is not explicitly represented in the oc-event notation. For some

event e (either a w-event or an oc-event), P(e) denotes the moving point explicitly

represented in that event (e.g., P(w(p, t)) = p). The time of an event is denoted as

Time(e) (e.g., Time(w(p, t)) = t). For a null event (denoted e = ∅), Time(∅) =∞.

2.4 Event Example

Figure 2.1 shows snapshots of a 1-dimensional data set {a,b, c} of moving points, and

a query point q at different instances of time where a = pt(1, 1, 1), b = pt(3.5, 1, 1),

and c = pt(6.5,−1, 1). Query point q = pt(5.5, 0, 1), and query distance d = 1.5.

The shaded area around q indicates the region along the line that is within distance

d = 1.5 of q. A w-event, w(b, 2), takes place at time t = 2 when point b comes

within distance d = 1.5 of query point q. An oc-event oc(b, 4) is shown at time

t = 4 when point b is moving closer to q than point c. At time t = 4, point c is the

nearest neighbor prior to the event.

2.5 Event Driven Query Processing Without Up-

dates

In this section we present some simple algorithms to maintain simple queries without

any updates to the database over the duration of the query. This section serves as a

tutorial to give the reader a better sense of how events are used in query processing,

and of the properties of the different types of events.

Event-driven query processing is used to maintain queries on kinematic data

9

w−event

oc−event

w−event

w−event

oc−event

coordinate value

tim
e

4 6 752 31

q bc a

q ca b

q ca b

qbca

q ba c

q bc a

7.5t=

1t=

2t=

4t=

6t=

t=7

Figure 2.1: Example snapshots of 1D moving point attributes and events for time interval
1 ≤ t ≤ 7.5. Arrow lengths indicate the distance traveled in one time unit.

types. This is similar to event-driven simulation [22], but instead of maintaining a

simulation state, events are used to maintain query results as time advances. Events

are processed in turn to keep query results consistent as points move.

Event-driven within query processing is performed by examining all within events

in temporal order while updating the result appropriately2. Figure 2.2 gives a simple

event-driven algorithm Simple Within() for maintaining a within query. For example,

consider the 1D scenario in Figure 2.1, and a query to find all points within distance

d = 1.5 of q. Initially, relation r containing tuples with moving point attributes

2There are cases when a point may only “touch” the event threshold and then move back (closer

or farther) to its former state. For simplicity, we do not address these cases.

10

{a, b, c}3 is scanned (lines 2–6) to find the initial result at time t = 1, W = {c},

and the next w-event for each point. The w-events are inserted into priority queue

Q, so that Q = {w(b, 2),w(c, 6),w(a, 7)}. Function next w event(p, q, d, t) returns the

next event after time t when point p will be at distance d from q, or it returns a

null event with time stamp ∞ if no such event exists. This is a simple computation

based on solving the equation |p(time), q(time)| = d for time. For dimensionality

greater than 1, this is a quadratic equation with a closed form solution. If the roots

exist and are real numbers, then the next one greater than t is returned. Events are

processed one-by-one (Figure 2.2, lines 7–14). Function Pop(Q) removes the next

event from Q and returns it. Line 9–12 process enter events adding the incoming

point to the within result and computing the next exit event. Line 13 processes exit

events removing the point from the within result. No new events are generated by

exit events. Table 2.1 shows a trace of the event processing portion of the algorithm

(lines 7–14) up to time t = 7 for the 1D example in Figure 2.1 where d = 1.5.

An event-driven k-nn query processing algorithm finds the soonest oc-event to

occur in the future out of all possible oc-events. This is called the nearest neighbor

event (nn-event) because it will cause the k-nn query result to change. A nn-event

is an oc-event, but not every oc-event is a nn-event. Figure 2.3 outlines a simple

event-driven algorithm to maintain a simple nearest neighbor query.

The algorithm first scans r to find the nearest neighbor nn to query point q.

The algorithm then examines every point to find the next oc-event for that point.

3For brevity only the moving attributes of tuples are shown.

11

procedure Simple Within(r, q, d, t)
1. Q← ∅, W ← ∅
2. foreach tuple τ ∈ r do
3. if ||P(τ), q, t|| < d then W ← W ∪ τ
4. e←next w event(P(τ), q, d, t)
5. if Time(e) <∞ then Q← Q ∪ e
6. end foreach
7. while Q 6= ∅ do
8. e←Pop(Q), t←Time(e)
9. if W∩Tuple(P(e)) = ∅ then

10. W ← W∪Tuple(P(e))
11. e←next w event(P(e), q, d, t)
12. if Time(e) <∞ then Q← Q ∪ e
13. else W ← W−Tuple(P(e))
14. end while

Figure 2.2: Simple Within()

line # e Q W t

8 w(b, 2) 〈w(c, 6),w(a, 7)〉 {c} 2

10 ” ” {b, c} ”

11 w(b, 8) ” ” ”

12 ” 〈w(c, 6),w(a, 7),w(b, 8)〉 ” ”

8 w(c, 6) 〈w(a, 7),w(b, 8)〉 ” 6

13 ” ” {b} ”

8 w(a, 7) 〈w(b, 8)〉 ” 7

10 ” ” {a, b} ”

11 w(a, 13) ” ” ”

12 ” 〈w(b, 8),w(a, 13)〉 ” ”

Table 2.1: A trace of the Simple Within() algorithm for the example in Figure 2.1 through
time t = 7.

Function next oc event(p, q, nn, t) returns the next oc-event for point p after time

t with respect to query point q, and the nearest neighbor nn. If no such event

exists, then it returns a null event with time stamp ∞. Finding the time of oc-

events is a simple computation based on solving the equation |p(time), q(time)| =

12

procedure Simple Nearest Neighbor(r, q, t)
1. nn ← ∅, done← false

2. foreach tuple τ ∈ r do
3. if nn = ∅ ∨ ||P(τ), q, t|| < ||P(nn), q, t|| then
4. nn ← τ
5. end foreach
6. while ¬done do
7. e← ∅
8. foreach τ ∈ r ∧ τ 6= nn do
9. e′ ←next oc event(P(τ), q,P(nn), t)

10. if e = ∅∨Time(e′) <Time(e) then e← e′

11. end foreach
12. if e 6= ∅ then t←Time(e), nn ←Tuple(P(e))
13. else done← true

14. end while

Figure 2.3: Simple Nearest Neighbor()

|nn(time), q(time)| for time. For dimensionality greater than 1 this is a quadratic

equation with a closed form solution. If the roots exist and are real numbers, then

the next one greater than t is returned. When the next nn-event comes due, the

algorithm again examines every point and computes their oc-events to find the next

nn-event. Table 2.2 shows a trace of the event processing portion of the algorithm

(lines 6–14) up to time t = 7.5 for the 1D example in Figure 2.1.

Note that Simple Nearest Neighbor() does not have a queue for events. This is

because the nearest neighbor changes on each nn-event thereby rendering previ-

ously computed oc-events irrelevant. The asymptotic running time for procedure

Simple Nearest Neighbor() is O(Enn ∗N) where Enn is the number of nn-events pro-

cessed throughout the course of the query maintenance, and N is the cardinality of

r. The asymptotic running time for Simple Within() is O(N + Ew) where Ew is the

13

line # τ e e′ nn t

7 - ∅ - c 1
8 a ” ” ” ”
9 ” ” oc(a, 6.5) ” ”
10 ” oc(a, 6.5) ” ” ”
8 b ” ” ” ”
9 ” ” oc(b, 4) ” ”
10 ” oc(b, 4) ” ” ”
12 ” ” ” b 4
7 ” ∅ ” ” ”
8 a ” ” ” ”
9 ” ” oc(a, 7.5) ” ”
10 ” oc(a, 7.5) ” ” ”
8 c ” ” ” ”
9 ” ” oc(c,∞) ” ”
12 ” ” ” a 7.5

Table 2.2: Simple Nearest Neighbor() algorithm trace for the example from Figure 2.1
through time t = 7.5.

number of w-events processed throughout the course of the query maintenance.

These simple algorithms serve to illustrate the fundamental differences in pro-

cessing nn-events vs. processing w-events. The oc-events from which the nn-event is

chosen are dependent on the query result which changes when an nn-event occurs.

This makes all previous oc-events computed with respect to the old query result ir-

relevant. This requires computing new oc-events when the query result changes. On

the other hand, pending w-events do not become irrelevant when the query result

changes because w-events are independent of the query result.

14

Chapter 3

Previous Work

3.1 Spreadsheet for Images

Spreadsheets for Images (SI) [41] applies the spreadsheet concept to the image pro-

cessing domain. In this case, the spreadsheet is a means of data visualization. Each

cell in the spreadsheet contains graphical objects such as images and movies. Formu-

las for processing data can be assigned to cells. These formulas can use the contents

of other cells as inputs. This ties the processing of data in the cells together. When

a cell is modified, other cells that use it as input are updated. A similar capabil-

ity is provided by the CANTATA programming language used with the KHOROS

system [54].

15

3.2 SAND Browser

The SAND Browser is a front end graphical user interface for the SAND [19] spatial-

relational database. The query results are displayed graphically. This gives the user

an intuitive interface to the database to help the visualization of the data and the

derivation of additional information from it. However, such a system does have lim-

itations. In the SAND Browser, one primitive operation is processed at a time. A

primitive operation is a query invoking one simple unary or binary query operation

such as select, project, join, etc. When the user wants to make a new query, the

results of the previous operation are lost unless saved explicitly in a new relation. As

a result, there is no simple and implicit way to compose complex queries from prim-

itives. In [31] we presented alternatives to the SAND Browser designed to overcome

some of these limitations while maintaining ease of use and intuitive interface.

3.3 The Original Spatial Spreadsheet

In a classic spreadsheet, operations are single cell operations, row operations, or col-

umn operations. Column operations duplicate queries down a column of cells, and

likewise for rows. The power of a spreadsheet is in its ability to organize data, formu-

late operations on that data quickly through the use of row and column operations,

and to propagate changes in the data throughout the system. The original Spatial

Spreadsheet described in [31] attempts to combine a spreadsheet paradigm with a

spatial database management system, creating a new way to conceptually organize

16

spatial data, pose queries on that spatial data, and view the results (see Figure 3.1).

In particular, the Spatial Spreadsheet provides a way to organize base relations and

query results in a manner that is intuitively meaningful to the user.

Figure 3.1: The original Spatial Spreadsheet: Cells display spatial data contained in base
relations and query results associated with each cell.

The original Spatial Spreadsheet described in [31] operates as a front end to a

spatial database system called SAND [19] running as a single process on one machine.

In the classic spreadsheet paradigm, cell values are non-spatial data types whereas in

the Spatial Spreadsheet, cell values are database relations. The Spatial Spreadsheet is

made up of a 2D array of cells. Each cell in the Spatial Spreadsheet can be referenced

by the cell’s location (row, column). A cell can contain two types of relations: a base

17

relation, or a query result. A query result is a materialized view [9, 27] defined on

the base relations or other materialized views. The user may pose simple queries

using primitive query operators. For instance, a cell might contain the result of a

spatial join between base relations in two other cells. Some examples of a primitive

query operators are selection, projection, join, spatial join [29], window [4], nearest

neighbor [30], etc. Primitive query operators may be composed to create complex

queries. If a base relation is updated, the effects of those changes are propagated

to all other cells by way of the query operators. This is done through the Spatial

Spreadsheet’s view maintenance algorithms. In the Spatial Spreadsheet, the spatial

data are stored in a cell’s relation can be displayed visually. This allows the effects

of updates on the base relations to be observed when changes occur. Although the

original Spatial Spreadsheet is useful as a means to organize, visualize, and query

spatial data, it was not designed to handle dynamic spatial data, or operate as a

remote client.

3.4 Spatial Queries on Static Data

Some of the most widely researched queries on static spatial data include within,

window, spatial join, k-nearest neighbor (k-nn), and spatial semijoin. A within [59]

query returns all objects within a given distance d ≥ 0 from a query object. A window

query can be thought of as a special case of a within query where the query object

is a hyper-rectangle and the distance is zero. A spatial join [29] returns all pairs of

objects in the Cartesian product of two relations that are within a given distance

18

d ≥ 0 of each other. Each of these spatial queries also has an incremental [29, 30]

version in which the query result is incrementally computed and reported one tuple

at a time until some termination condition is satisfied. A k-nn query [56] returns

the closest k > 0 spatial objects to a given query object. A spatial semijoin [29] is a

subset of a spatial join A 1 B where a tuple in the result 〈a, ∗〉 appears only once for

any given a ∈ A, denoted A n B. An additional constraint is imposed in the spatial

context of semijoins which stipulates for any tuple 〈a, b〉 in the result that b ∈ B is

the closest neighbor to a out of all objects in B. Another way to define this form of

spatial semijoin is for every object a ∈ A, to find the nearest neighbor b ∈ B and

report 〈a, b〉. Using this definition, we can relax the 1-nn constraint and find the k

nearest neighbors for every object a ∈ A, denoted A nk B.

3.5 Incremental View Maintenance

There are several strategies for incremental view maintenance including periodic up-

date, deferred update, and immediate update. Periodic updates are performed on

snapshots [2, 42] only occasionally. This approach allows for fast queries and updates,

but can only be used in systems that can tolerate stale data in the query results.

Deferred updates [1, 15] delay updating views until the view is needed in a query.

This allows faster updates but slower query processing times. Immediate updates are

performed at the end of each transaction that modifies a base relation upon which

a view is defined. Algorithms for immediate incremental view maintenance updates

are presented in [9, 25]. A comparison of immediate, deferred and query modifica-

19

tion [63] is discussed in [27] along with a performance analysis by experiments. A

system that uses immediate, deferred, and periodic update strategies in the same

environment is described in [16].

3.6 Incremental Distance Query

The incremental distance query [30] returns all the objects within a given distance

d of a query object q, one at a time, in increasing order of distance from q. The

incremental distance query algorithm can be used for both within queries, and k-nn

queries. Retrieving all the objects from q within distance d < ∞ is a within query.

Retrieving the first k objects and then stopping, with d = ∞, is a k-nn query. The

incremental distance query algorithm assumes a spatial tree index where, as in the

case of the R-tree [26] spatial index, the internal nodes have bounding boxes (BB)

that spatially contain all objects in the subtree. It makes use of a priority queue of

objects sorted by distance from q. The queue is initialized with the root BB of the

index. Objects are successively removed from the queue. Data objects are reported

as they are dequeued. Internal nodes are expanded when they are dequeued by

inserting each element in the node into the queue. This process continues until a

maximum number of elements are reported, a maximum distance is reached, or there

are no more elements in the queue.

20

3.7 Moving Objects

Objects represented as a function of time have been studied in other domains such

as simulation [22, 51], and computational geometry [5]. In databases, past research

includes indexing methods [3, 58, 66], ad-hoc queries [58, 62], and continuous queries

such as continuous window [58, 62], within [35, 65], nearest neighbor and k-nearest

neighbor (k-nn) [7, 35, 49, 53, 65], and spatial join [65].

The problem of querying objects (vehicles) moving through a road network is

addressed in [14]. A space-time grid is used to partition and prune the domain space

to support ad-hoc space-time range queries. In this work it is assumed that each

object has a preplanned start point and destination. This means all future changes

in speed and direction are computed and adjusted as objects are inserted. In the

paper the spatial component of a grid cell is called a section. The max speed through

a section is a function of the number of vehicles in the section. This can cause a

cascade of updates through the grid if the insertion of an object changes the max

speed in a section. Experimental results for algorithm performance is given. It is

assumed all the data structures are main memory given that there is no mention of

disk accesses, or secondary storage issues in the paper.

In [17] moving points are modeled as a function of time using the point-slope

equation of a line. These lines are indexed in a space-time PMR quad-tree where

time is one dimension and space is the rest. Ad-hoc space-time range queries are

supported. No asymptotic analysis of the algorithms or experimental results are

presented in the paper.

21

3.7.1 Indexing Moving Objects

In [3] three indexing schemes are presented to support ad-hoc window queries on

continuously linearly moving 2D points. The first is a space-time partition tree, the

second is a kinetisized range tree, and the third is a hybrid of the two. The kinetic

range tree is more query efficient for range queries, but has more maintenance over-

head. The third index is a trade off between the two. A modified version of the

third index type can also answer approximate nearest neighbor queries. No experi-

mental results are given, but extensive asymptotic analysis of each data structure is

presented.

The TPR-tree [58] indexes moving objects described as a function of time. It is

a disk-based object hierarchy R-tree variant. In the R-tree, each node is stored in

one disk page. Each node has an associated minimum bounding box (MBB). Leaf

nodes contain the MBBs for the indexed objects themselves. Each internal node

has an MBB for each subtree spatially bounding the objects in the subtree. In the

TPR-tree, a bounding box (BB) is a moving hyper-rectangle specified by two moving

points defining opposite corners of the BB. The corner points are chosen so that the

BB will always spatially contain the moving objects within it. The BBs in the TPR-

tree rarely stay minimal, tending to grow faster than what would be the minimum

bounding box at any given time. This is partly compensated for by the TPR-tree

update algorithms. As an update occurs, the BB is adjusted to be minimal at the

update time. Another compensatory action is that the TPR-tree insertion algorithm

tries to insert objects moving in a similar manner (e.g., speed, direction), or to a

22

similar destination, into the same leaf node.

In [57] Šaltenis and Jensen present the REXP-tree. It is based on, and an im-

provement to the TPR-tree based on the assumption that most moving objects have

a predetermined expiration time associated with them (x, v, texp). The idea in cre-

ation of bounding objects is to find a minimum bounding hyper-trapezoid, as it were,

over the finite length trajectories of all the objects in a node. Expired entries are

left in the tree until the node they are in is updated and written to disk by some

other operation. The REXP-tree is compared experimentally with the TPR-tree in

the paper.

3.7.2 Moving Object Queries Over Time

Plane-Sweep k-nn Algorithm

In [49], Mokhtar et. al. describe a method to maintain the k-nn query result on sets

of moving point data over time. The algorithm starts by creating a list of points

sorted by their current distance from a query point. Events are then computed

corresponding to the instances in time when any point will change its position on

the list with its neighbor. These events are inserted in a priority queue sorted by

time. If an object is updated, then any events on the queue involving that object

are recomputed. The list of points is updated as each event is processed in temporal

order. The first k elements on the list form the k-nn result set.

The asymptotic size of the priority queue isO(n) where n is the number of moving

points. The number of points that need to be examined when an event is processed

23

is O(1) since only immediate neighbors on the list need to be examined. If n is

large, it would be reasonable to assume that much of the event queue would reside

on disk. The rate of events that need to be processed in this approach depends

on the distribution and motion characteristics of the data set, but it would be easy

to imagine cases were the number of events processed over a given amount of time

would be much greater than for the algorithm presented in Figure 2.3 because an

event is processed every time any two objects change order on the list and not just

when an object changes order with the nearest neighbor. The performance behavior

in practice of this algorithm remains unclear since its presentation is theoretical, and

no implementation details or experimental results are presented.

3.7.3 Time Parameterized Queries

Algorithms for processing moving object queries over a period of time into the future

are presented in [65]. Known as time-parameterized (TP) queries, these queries take

the current state of the database and predict how spatial queries will change in the

future. TP queries do not support updates to the database. A TP query is of the

form 〈R,T,C〉 where R is the initial query result (e.g., at time 0), the influence time

T is the time of the next event, and C is the set of objects involved in the event.

The result R is the conventional component of the query. The event 〈T,C〉 is the

called the TP component of the query.

Repeated application of a TP query yields a future query over a continuous period

of time. The result is of the form 〈R1, 〈T1,C1〉, 〈T2,C2〉, ..., 〈Tm,Cm〉〉. This is

24

a future query giving the current result R1 followed by the future changes to the

result given the current state of the database. An updated result Ri+1 is derived

by incrementally applying events 〈Ti,Ci〉 to the previous result Ri. For example,

suppose that an object o1 is within query distance d of query object q at time t0.

Let the query result at time t0 be Rt0 . Now suppose o1 is moving away from q. At

some time in the future t1 > t0, o1 will be at exactly distance d from q. The event

is 〈t1, o1, q〉. After time t1 the query result Rt0 will be incorrect. To keep the query

result correct, the result is updated, Rt1 ← Rt0 − {o1}, at time t1. Each subsequent

event is determined through repeated application of the TP portion of the TP query.

Each event involves one data object and the time it either enters the window, or

leaves the window. The algorithm applies an incremental within event query to find

each subsequent event.

An incremental within event query is similar to an incremental distance query [30],

except that an event time metric is used instead of a distance metric [65]. An

incremental within event query returns all the objects and the time at which they

will enter the region within a given distance d around a query object q, one at a time,

in increasing order of event time. If the distance d = 0 then the event time will be

the time the objects will intersect, or cease to intersect one another. The algorithm

assumes an object hierarchy tree index on the moving objects (e.g., the TPR-tree)

for which internal nodes have bounding boxes (BB) that continually contain all the

moving objects in each subtree. The algorithm is identical to the incremental distance

query [30] (see above), except that the priority queue is sorted by within event time

25

instead of by the distance from q. The within event time for an internal node BB

will always be less than or equal to the within event times of the objects it contains.

The TP k-nn (TP KNN) [65] is a k-nn query where R is the initial set of k >

0, k ∈ N closest objects to a given query object. The next event (TP portion of a

query) is found using a next nearest neighbor event query.

A next nearest neighbor event query (next nn-event query) finds the next nearest

neighbor given a query object and its current nearest neighbor. In [65], Tao and

Papadias describe a method for finding the next nn-event given a query object, the

current k thneighbor, and a set of data points indexed in a TPR-tree. To find the

next event, the bounding box (BB) of each node is examined and the node is placed

on a global priority queue sorted by the oc-event time of its BB. Processing starts

with the root node of the TPR-tree. The first object on the queue is dequeued and

expanded, repeating the process recursively. When the first leaf node is examined,

the object in the leaf with the soonest oc-event time is saved along with its event as

the candidate nn-event. If the next BB on the queue has an oc-event sooner than

the candidate nn-event, then it is expanded. And objects in a subsequent leaf node

with an oc-event sooner than the candidate nn-event replaces the candidate. When

the oc-event time of the next node on the queue is later than the candidate, then

the candidate oc-event is returned as the next nn-event and processing stops.

The difference between TP KNN and TP WQ is that instead of the time being

when objects become within a given distance from the query object, the event time is

when an object is the same distance from the query object as the current kth nearest

26

neighbor. This points out a fundamental difference between the within query and

k-nn query when dealing with moving objects. In particular, events of TP KNN

query are dependent on the query result, whereas, events of a TP WQ are not. This

observation leads to a fundamentally different solution strategy when addressing the

continuous k-nn query problem (see [65] for details).

Tao and Papadias’s also describe a spatial join future query called the continuous

spatial join (CSJ) algorithm in [65]. Each event involves two data objects and the

time when they either start intersecting, or stop intersecting each other. Events

are retrieved in increasing order of event time until some termination condition is

satisfied (e.g., maximum time, maximum number of events, etc.).

3.8 Animated Cartography

Visualization of geo-referenced spatio-temporal data has been a topic of study for

over 40 years [12]. One approach to this problem is to use static maps where tem-

poral components are represented by different symbols or annotations on the map.

Another approach is to use a chronological set of ordered maps to represent differ-

ent states in time [40], sometimes known as strip maps. With the advent of more

powerful computers and better graphics capabilities, animated maps are increasingly

used to present time-series spatial data. One of the most commonly recognized uses

is in presentation of weather reports on television. Animation is used in the pre-

sentation of meteorological data in weather forecast presentations to show changes

over time [60]. Animated cartography is also used for decision support in disease

27

control to visually detect patterns and relationships in time-series geo-referenced

health statistics [44, 45]. The use of animation in the study of remote sensing time-

series data is also explored in [47, 48]. In [38], animated cartography is used in the

presentation of urban environmental soundscape information for environmental de-

cision support. The use of animation of spatio-temporal data in non-cartographic

fields is presented in [37] and [43] to visualize dynamic scientific spatio-temporal

data. The effectiveness of animation techniques to present time-series cartographic

data to a user is studied in [39], where experiments were performed to determine the

advantages of animated cartography over other presentation techniques. The study

concluded that animation may be able to help decrease the amount of time needed

for a user to comprehend time-series spatial data and to answer questions about it,

over static map methods. In [20] a commercial system is described that supports 2D

animation of base data, ad-hoc query processing, and triggers. However [20] does

not describe any support for continuous or ongoing query processing or animation of

continuous or ongoing query results, nor does it describe animations as interactive

such that the perspective can be readily changed through zooming and panning while

the animation is playing.

28

Chapter 4

The Internet Spatial Spreadsheet

The Internet Spatial Spreadsheet (ISS) extends the concept of the original Spatial

Spreadsheet [31] to support dynamic spatial data, and operate over a network.

4.1 ISS Server

Conceptually, the ISS server manages a set of spreadsheets each consisting of a set

of cells organized in rows and columns. Each cell manages the processing of a single

relation. A cell’s relation may be a base relation found in the database schema, or a

materialized view. In the ISS, materialized view cells are also called query cells.

Incremental view maintenance techniques [23, 25, 55] have been extensively stud-

ied to efficiently maintain materialized views when changes occur. These techniques

rely on the assumption that a relatively small number of tuples in an input relation

are affected by any given transaction. This assumption is also known as the heuristic

of inertia [25].

29

The data for each relation or materialized view is contained in three tables or

relations. The first table is the main table containing the state of the entire base

relation or query result. The other two tables contain pending updates to the main

table. These are called the insert differential table, and the delete differential table.

The main table is stored on disk. The differential tables are assumed to be small, so

they are stored in main memory.

Consider a relation r. Let relation ir be the set of tuples inserted into r during

transaction Φ. The insertion update to r is expressed as r′ = r] ir where r′ is

the state of r after transaction Φ. Let relation dr be the set of all tuples deleted

from relation r during Φ. The deletion update to r is expressed as r′ = r − dr. By

combining these two expressions we get r′ = (r] ir) − dr. The parentheses show

the appropriate precedence needed in case a tuple is inserted and deleted during the

same transaction. Symbols ir, and dr denote the insert differential table, and delete

differential table of relation r respectively.

Incremental view maintenance algorithms are written by substituting (r] ir)−dr

for r′ in the query expression. For example, the update for the selection query σr′

becomes σ((r] ir)− dr) = (σr] σir)− σdr. In this way the selection need only be

applied to ir (dr), and the result inserted to (deleted from) the current query result

σr. This results in an incremental update to the view rather than recomputing the

view from scratch (see [25, 32] for more details).

Each cell of the ISS manages a main relation table, and two differential tables

to support incremental view maintenance (see Figure 4.1). When a base relation is

30

In
iti

al
iz

e
Query Cell

r i d

Incremental
Query

Processor

Processor
Transaction

In
iti

al
iz

e

Base Cell

r i d

Processor
Transaction

In
iti

al
iz

e

Base Cell

r i d

Figure 4.1: ISS data flow: r indicates a base relation, or materialized view. Tables i
and d are insert and delete differential tables respectively. The query cell’s view (a binary
operation in this case) is initially computed using the base relations of each input cell. It
is then incrementally updated when input cell’s are updated. Changes in the query cell’s
view are stored in its own differential tables. This allows query cell’s to be composed
with other query cells. After the updates propagate through the system, the differential
tables are applied to the cell’s relation r and the differential tables are cleared for the
next transaction.

opened in a cell, the cell handles the processing of updates to that base relation.

An update is a combination of one or more insertions or deletions to a base relation

that take place during a single database transaction. These updates then propagate

to query cells managing the materialized views. The update propagation algorithm

described in Section 4.4 is different from that of the original Spatial Spreadsheet

presented in [31]. The original Spatial Spreadsheet did not update materialized

31

views incrementally, but instead recomputed the query results from scratch.

4.2 ISS Client

The ISS client runs remotely on a separate machine. The conceptual architecture of

the client mirrors the server in that it also has a set of cells arranged in rows and

columns. There is a one-to-one correspondence between the cells of a given client

and the cells on the server. Cells in the client handle user interactions with the data.

This includes query formulation, and spatial data visualization.

Instead of rendering an image on the server and transmitting it to the client,

the server transmits the geometry information for the spatial data to the client,

then the client renders the image on the client. Multiple perspectives, or different

points of view, may be rendered simultaneously without increasing the load on the

server. Each cell can have a different perspective through zooming and panning of

individual cell displays. Additionally, when the perspective changes, the information

needed to render the image is already on the client. If rendering were done on the

server machine, a new image would need to be transmitted to the client each time the

perspective changed. This would not only increase network traffic, but also increase

the load on the server with work not directly related to query processing.

Although broadband Internet access is becoming more prevalent, improvements

in processor speeds, main memory capacity, and graphics hardware are progressing

even faster. This leads us to believe that network bandwidth rather than client

machine processing and graphics capability is a greater constraint.

32

In our approach we allow for clients running behind firewalls. We assume only the

ability to operate a client web browser that accesses external web sites from the client

machine using the HTTP[21] protocol. We do not assume that any other means of

communication through a firewall may be available. The HTTP client pull model

presents some interesting challenges when there is a need to push data to the client

from the server. This happens when base relations are updated thereby requiring

data to be sent to the client to update the visualization displays.

4.3 Example

We will use the following query to illustrate the concepts presented in the following

sections. Consider two relations r(R) and s(S) where schema R = {id, loc, type}, loc

is a 2D point, id is a unique object identifier, and type is a number. The schema of

relation s is the same, R = S. As an example, consider the materialized view defined

below. In our notation we denote a tuple in relation s as τs. For tuple τs ∈ s we

denote the value of attribute α0 in τs as τs[α0]. The join of two tuples τq and τr is

their concatenation is written τqτr.

Q = {τrτs : τr ∈ r ∧ τs ∈ s ∧ Distance(τr[loc], τs[loc]) ≤ 2 ∧ τs[type] = 1}.

This query returns all pairs of objects in r and s that lie within 2 distance units of

each other, where all the objects from s are of type 1. Suppose that the initial states

of r and s at time t0 are as shown in Tables 4.1 and 4.2, respectively. Now, suppose

that object y is moving at a constant velocity, while object a moves and then stops

as shown in the graphical representation in Figure 4.2. Intermittent updates to the

33

database change the current known locations of y and a.

id loc type

a (2, 2) 1
b (3.5, 5) 1
c (6, 2) 2

Table 4.1: Base relation r at time t0.

id loc type

x (3, 1) 2
y (5, 3) 1
z (6, 1) 1

Table 4.2: Base relation s at time t0.

Now consider the example query Q. The result for time t0 is shown in the first

row of Table 4.3. The locations of the objects participating in the join are indicated

by the ovals in Figure 4.2a. Note that although object a is within distance 2 of object

x, the pair is not included in the query result because the type of x is not 1.

(c) t 40 +
1 2 3 4 5 6

1

 2

 3

 4

 5

(a) 0t
1 2 3 4 5 6

1

 2

 3

 4

 5

(b) t 10 +

1

 2

 3

 4

 5

1 2 3 4 5 6

y

z

c

b

x
a

z

y

a

c

b

x

b

y

a x z

c

Figure 4.2: Graphical representation of the state of relations r (locations denoted by the
� symbol) and s (locations denoted by the • symbol) at times (a) t0, (b) t0 +1, and (c) t0 +4.

The ovals show pairs of objects included in the query result shown in Table 4.3. Arrows show

the direction of motion of moving objects.

Now suppose that at time t0 + 1 minutes, the s relation is updated by deleting

tuple {y, (5, 3), 1} and inserting tuple {y, (4, 3), 1}, and the r relation is updated by

deleting tuple {a, (2, 2), 1} and inserting tuple {a, (1, 1), 1}. The resulting change in

the query result is shown in the second row of Figure 4.3, and graphically by the

oval in Figure 4.2b. Now suppose that after 3 more minutes, at time t0 + 4, an

update changes object y’s location from (4, 3) to location (1, 3). The join result

after the update is shown in the third row of Figure 4.3, and corresponding ovals in

34

Figure 4.2c.

at time: r.id r.loc s.id s.loc

t0 c (6, 2) y (5, 3)
c (6, 2) z (6, 1)

t0 + 1 c (6, 2) z (6, 1)

t0 + 4 a (1, 1) y (1, 3)
c (6, 2) z (6, 1)

Table 4.3: Result of example query Q. The first row shows the initial result at time t0.
The second row shows the result at time t0 + 1 after the deletion of tuple {y, (5, 3), 1},
and insertion of tuple {y, (4, 3), 1} in relation s, and the deletion of tuple {a, (2, 2), 1}
and insertion of tuple {a, (1, 1), 1} in relation r. The result at time t0 + 4 is shown in
the last row after tuple {y, (4, 3), 1} is replaced with tuple {y, (1, 3), 1} in s. Tuple {x,
(3, 1), 2} from relation s does not appear in the join result because its type attribute is
not equal to 1.

4.4 Cell Update Propagation

If any base relations used in the definition of the view are updated, then the view

needs to be updated to reflect the change to keep query results current. To update

materialized views after a transaction, it is often more efficient to reevaluate the

query in terms of changes to the base relations instead of reevaluating the query

from scratch.

This is known as incremental view maintenance [13, 23, 25, 55]. In particular we

address the immediate update of materialized views as opposed to lazy, or deferred

maintenance. A view is nested when it is in turn used in the definition of another

view. We assume views may be nested up to a finite, non-cyclic, arbitrary depth.

Tuple updates are treated as a deletion followed by an insertion of the updated

35

tuples. Duplicate tuples are allowed. In the case of duplicates, a deletion removes

only one copy of a tuple. Additionally, a tuple may be inserted and deleted in the

same transaction with the result of no net change.

When a transaction updates a base relation, the tuples to be inserted are entered

into the insert differential table of the base relation before the transaction commits.

Similarly, tuples to be deleted are entered into the base relation’s delete differential

table. When some view v is defined in terms of some view or base relation r, we

say that v is a dependent of r. When the transaction commits, the contents of the

differential tables for a given view, or base relation, are fed to its dependents. Up-

dates for each subsequent materialized view are computed and inserted into its own

differential tables. The contents of these are in turn propagated to other dependent

views, and so on. The chain of dependents can not be cyclic. When the propagation

is complete, the differential tables are applied to their associated main tables and

the differential tables are cleared.

Cell Marking: To ensure correct order of execution, a simple cell marking algo-

rithm is employed. Before a transaction takes place, all cells are marked clean. When

a base relation is updated it is marked dirty. After all the base relations affected

by the transaction are processed, and before the updates are propagated to their

dependents, each dependent of a dirty base relation is marked dirty as well. Next,

all of their dependent’s dependents are marked dirty, etc. This process continues

recursively until no more views can be marked.

To illustrate, consider the example query Q given in Section 4.3. To pose this

36

query in the ISS, the user first opens the base relations in their own cells. Figure 4.3

shows relation s open in cell (0,0), and relation r open in relation (1,0). Now suppose

that the user wants to know where all the objects of type 1 are located before the

join is performed. To do this the user can create a view using the query σs = {τs :

τs ∈ s∧ τs[type] = 1}. In Figure 4.3, σs is in cell (0,1). Finally, to see which objects

are within distance 2 of each other, the user creates a view in cell (1,1) using the

query r 1 σs = {τrτσs : τr ∈ r ∧ τσs ∈ σs ∧ Distance(τr[loc], τσs[loc]) ≤ 2}. In this

case the view r 1 σs, shown in cell (1,1) of Figure 4.3, is equivalent to the example

query Q given in Section 4.3.

Now suppose, once the spreadsheet is set up, a transaction arrives at time t0 + 1

minutes updating both relations r and s. When this occurs, the marking algorithm

marks cell (0,0) and cell (1,0) as dirty. Once all base relations are marked, it then

marks their dependents dirty, cells (0,1) and (1,1) in this case.

In the next step of update propagation, all cells managing base relations are

marked clean. Then each query cell is examined. If all the cell’s dependents are clean,

then the incremental view maintenance for the cell’s view is executed. No updates for

a given materialized view may be computed until its dependents are marked clean.

Views are marked clean as soon as the update for the view is calculated and stored

in its differential tables. If instead of using this cell marking algorithm we simply

iterate through the cells and update a view as soon as a dependent is updated, then

incorrect results may occur. For example, without cell marking, cell (1,1) could be

updated as a result of the update to cell (1,0) before cell (0,1) is updated. Since cell

37

σsr

s

Cell (0,0)

σs

Cell (1,1)

Cell (1,0)

r

Cell (0,1)

Figure 4.3: Update propagation example: The example query Q from Section 4.3 is
broken up into two views. Supposing the user wants to see where all the objects of type
1 are located before the join is performed, a view is created as a selection on relation s
using the query σs = {τs : τs ∈ s ∧ τs[type] = 1} in cell (0,1). To see which objects
are within distance 2 of each other, the user then creates the view r 1 σs = {τrτσs :
τr ∈ r ∧ τσs ∈ σs ∧ Distance(τr[loc], τσs[loc]) ≤ 2} in cell (1,1). Arrows indicate cell
dependencies.

(1,1) is also dependent on cell (0,1) this could lead to incorrect results.

View Maintenance: Consider a relation r. Let relation ir be the set of tuples

inserted into r during transaction Φ. The insertion update to r is expressed as

r′ = r] ir. Let relation dr be the set of all tuples deleted from relation r during

Φ. The deletion update to r is expressed as r′ = r − dr. By combining these two

expressions we get r′ = (r]ir)−dr. The parentheses show the appropriate precedence

needed in case a tuple is inserted and deleted during the same transaction. Symbols

ir, and dr denote to the insert differential table, and delete differential table in a cell

38

respectively.

Consider some arbitrary binary query operator Υ that operates on two relations.

Suppose v = l Υ r is our original view definition. Let v′ = l′ Υ r denote the query

update operation after relation l is updated by some transaction Φ where l′ is the

state of relation l after Φ is applied. By substitution, this expression can be rewritten

in terms of l’s differential tables and the state of l before Φ as v ′ = ((l] il)−dl) Υ r.

If the operator Υ is distributive over the] and − operations, then this expression

can be rewritten as v′ = ((l Υ r)] (il Υ r)) − (dl Υ r). Substituting v for (l Υ r)

the expression becomes v′ = (v] (il Υ r)) − (dl Υ r). The operations (il Υ r) and

(dl Υ r) are much easier to compute than (l′ Υ r) since by the heuristic of inertia we

can assume that il, and dl are much smaller than l′. Therefor, il and dl are stored in

main memory making access to the table’s contents much faster.

Instead of imediately applying the update to the main table, the changes are

stored in auxiliary differential tables associated with v where iv = (il Υ r) and

dv = (dl Υ r). These differential tables are then fed into any number of nested views

defined in terms of v. The approach is similar for unary query operators.

Computing differential tables for binary operators, when both of the relations

change in the same transaction, is more difficult. One approach is to apply the

updates to one base relation (say l), run the update propagation algorithm, then

apply the updates to r, and run the update propagation algorithm again. This

approach can result in executing the update propagation as many times as there are

bases relations updated in a single transaction.

39

A different approach ensures that the update propagation algorithm is run only

once regardless of the number of base relations that are updated. It is derived by

factoring out the term (l Υ r) from the equation v′ = ((l] il)− dl) Υ ((r] ir)− dr)

so v can be substituted for (l Υ r). The resulting expression (see Expression 4.4.1)

is more complex than when only one table is updated, but still leads to an efficient

view maintenance algorithm that can be nested. Expression 4.4.2 is the subexpression

for the insert differential table of the binary view operation, and Expression 4.4.3

is the subexpression for the delete differential table. Note that only two terms in

expression 4.4.2, and two terms in expression 4.4.3 involve base relations. None of

these involve more than one base relation. All other terms are operations between

differential tables stored in main memory.

A proof of correctness for Expression 4.4.1 is given in Appendix A.

Expression 4.4.1

v′ = (v] (((((ilΥr)] (lΥir))] (ilΥir)) − (ilΥdr))− (irΥdl)))
− (((rΥdl)] (lΥdr))− (drΥdl))

Expression 4.4.2

iv = ((((ilΥr)] (lΥir))] (ilΥir)) − (ilΥdr))− (irΥdl)

Expression 4.4.3

dv = (((rΥdl)] (lΥdr))− (drΥdl))

Figure 4.4 shows the update propogation algorithm for our join example using

these expressions.

To evaluate either expression without indexes, in the worst case, the number of

disk page accesses is O(nr/Nr + nl/Nl) where nr (nl) is the number of tuples in

relation r (l), and Nr (Nl) is the number of tuples in r (l) that will fit in a single disk

40

ir dr si ds

si sds

q2 iq2 2
dq q1 iq1

dq1

sr

Cell (0,0) Cell (1,0)

Cell (1,0) Cell (1,1)

(a) (b) (c) σ σσ

Figure 4.4: Update propagation data flow through cells in the ISS. The example shown
is from Section 4.3, where the selection and join are separated out into different cells.
The selection operation is q1 = σs, where σ is shorthand for στs[type]=1. The selection
insert differential operation is iq1 = σis, and the selection delete differential opera-
tion is dq1 = σds. The join operation (a) is q2 = r 1 q1, where 1 is shorthand for
1Distance(τr[loc],τs[loc])≤2. The join insert differential operation (b) is iq2

= ((((ir 1 q1)]
(r 1 iq1

))] (ir 1 iq1
)) − (ir 1 dq1

)) − (iq1
1 dr), and the join delete differential

operation (c) is dq2
= (((q1 1 dr)] (r 1 dq1

)) − (dq1
1 dr)).

page. If indexes can be used (e.g. indexes on join predicate attributes), then in the

worst case, the number of disk page accesses is O(log(nr/Mr) + log(nl/Ml)) where

Mr (Ml) is the number of index entries for tuples in r (l) that will fit in a single disk

page. Further analysis and proof for the join operation can be found in [32].

This approach will work for any query operation that distributes over] and −.

This is the case for relational projection, selection, and joins. An example proof

of the distributive property of the join operation over deletion can be found in the

appendix of [32].

41

4.5 Pushing Data From Server to Client Using

HTTP

After update propagation, and before applying the differential tables to the main

tables, the spatial data of the non-empty differential tables are transmitted to the

client for incremental update of the data visualization.

Pushing data from a server to a client in an Internet environment can present

additional challenges when the client is behind a firewall. Many users may want to

run their clients from behind a firewall for security reasons. Firewalls help prevent

attack from outside by closing off communication ports through the firewall. A

firewall configuration may allow clients to initiate connections through particular

ports to servers on the outside. For example, port 80 is sometimes open for web

browsers to access web servers outside the firewall. Opening ports so that connections

may be initiated from outside the firewall is not desirable because it can make the

system more vulnerable to attacks from outside.

Although access from clients inside a firewall to the outside may vary from firewall

to firewall, many firewall administrators at least allow web browsing from inside

the fire wall. This is done via the HTTP protocol through a specific port either

directly or via a proxy. The Hypertext Transfer Protocol (HTTP) [21] is designed to

pass Hypertext Markup Language (HTML) [8] documents between web servers and

clients. HTTP tunneling is a technique used to pass arbitrary data back and forth

between clients and servers by placing it in an HTTP wrapper, using the HTTP

42

protocol to send the data through the firewall.

The HTTP protocol enforces a client pull model. Every HTTP connection session

has two phases. In the first phase, the client sends data to the server. In the second

phase the server receives data from the client. Once the second phase starts, no

more data may be sent to the server during that session. When the second phase

is complete, the connection is closed. The protocol does not provide any way for

servers to initiate connections to clients.

The HTTP client pull model is a problem in the ISS. Updates to the base relations

on the server side from external sources other than the client require the server to

push data to clients to update visualization displays. Since HTTP does not support

server initiated transactions, the server can not initiate transactions to push data

to the client using this protocol. To get around this, the client polls the server

for updates in a continuous never ending HTTP session that quickly moves to the

second phase and stays there. This is called the ISS polling session. If for some

reason the connection is terminated (e.g., the proxy closes the connection after a

time out period), then the client immediately establishes a new polling session.

Multi-threading can be used to enable the client to continually poll the server

and still send data to the server at the same time allowing more than one HTTP

connection or session to be active at a time between a client and server. Multi-

threading is supported in most popular general purpose computer systems today,

either directly by the operating system, or through programming libraries.

The threads handling the polling session are called the ISS push threads. There

43

is both a client side push thread and a server side push thread (see Figure 4.5). The

client push thread initiates an HTTP polling session with the server. The server

spawns its own server side push thread when contacted by the client to service the

polling session. Other threads running in the server handle processing of data. The

other threads push data to the client by placing the data on a queue. When data is

placed on the queue, the server push thread wakes up, pops the data off the queue,

and transmits it to the client. On the client side, the client push thread receives the

data and places it on a queue. Another thread in the client, called the data processing

thread, processes each item on the queue in turn. Having a separate thread to receive

data and place it on the clients queue enables data to be transmitted while processing

data already received in parallel.

thread
query

...
query
thread

thread
push

i
n
i
t
i
a
t
e

s
e
s
s
i
o
n

thread
push

processing
data

thread ...

display
callback

display
callback

display
callback

Server

q
u
e
u
e

u
p
d
a
t
e
s

q
u
e
u
e

Client

Figure 4.5: ISS client-server polling session. The client initiates the HTTP session.
Updates generated in the server query threads are placed on a queue in the server. The
server’s push thread pops updates off the queue and transmits them to the client. The
client push thread receives the updates and places them on the client’s queue. The client
data processing thread pops the data off the queue and executes the display callbacks.
Each display callback is associated with a particular spreadsheet cell in the client.

If the data pulled off the queue is an update to a relation, or a query result, then

the appropriate visualization displays are updated. To accomplish this, each cell

controlling its own display window registers a callback with the communication event

44

thread to be invoked when data is received from the server. Callback procedures or

methods are registered with the data processing thread to be invoked when particular

kinds of data are transmitted from the server. The data processing thread invokes

the appropriate callbacks depending on the nature of the data it pops off the queue.

Let us now consider again the example from Section 4.3 set up in the spreadsheet

shown in Figure 4.3. Recall that relation s is updated at time t0 +1 by deleting tuple

{y, (5, 3), 1} and inserting tuple {y, (4, 3), 1}. The selection predicate on the view in

cell (0,1) is τs[type] = 1. The update propagation algorithm computes d = {y,

(5, 3), 1}, and i = {y, (4, 3), 1} for cell (0,1). Before moving on to the next cell, data

from d and i are placed on the server’s push queue by the query thread processing

the transaction. The data needed for rendering which in this case is the object id

and old location, {y, (5, 3)}, and the object id and new location, {y, (4, 3)}. The

server’s push thread reads this data off the queue, then transmits this information to

the client where the client’s push thread places the update information for cell (0,1)

on its own queue. The data processing thread of the client in turn pops this data off

the queue. It invokes all callbacks that are registered for update data on cell (0,1).

These callbacks take the update information as an argument and use it to update

data visualization displays.

4.6 Interactive Visualization

The spatial attributes of base relations and query results are transmitted to the client

to be rendered. This enables interactive visualization without the need to transmit

45

data from the server again when the perspective changes and a new rendering is

needed. The user can pan and zoom without any further interaction with the server.

In the ISS, every client cell owns its own display window to display spatial data

from the corresponding cell on the server. The data used to create the rendering

is saved in a separate data structure to be used for rendering when the perspective

changes. Any cell can also display data belonging to other cells. This allows the user

to overlay data from different cells in the same display window. Although this other

data is owned by the other cells, it is not rendered by other cells. This is because

each cell may have a different perspective (e.g. different zoom or pan). Each cell

renders data according to its own perspective.

In a network based environment, the spatial data to be displayed must fit in main

memory on the client. This requirement can be relaxed if the client is allowed to

write files to the local machine. Non-spatial data, other than object ids, are not

transmitted to the client except in small amounts when the user wants to know the

details about a particular object.

4.7 Conclusion

As a proof-of-concept we implemented the algorithms and techniques described here

in JAVA (client and server front end), Tcl (server interface), and C/C++ (database

server engine). The implementation demonstrated the ability of this approach to

achieve the goal of keeping client visualizations of spatial data up-to-date as ma-

terialized view results change. This was accomplished in the Internet environment

46

constrained by firewall security.

47

Chapter 5

K-Nearest Neighbor Queries

Consider the following queries. For a cell phone, keep track of the nearest cell tower.

For a suspect getaway car, keep track of the nearest police cruiser. For a robot

explorer, keep track of the nearest maintenance robot. For a ship, keep track of

the nearest sonar tracking station. Each of these queries is an example of a nearest

neighbor query that is maintained over time.

In this chapter, we address the maintenance of k-nearest neighbor queries on

moving points. Most previous work in moving object databases has been in ad-hoc

queries (e.g., where is the nearest police car right now), and future queries (e.g., which

police cars will be the closest over the next 5 minutes given the current speed and

direction of all cars). Little work has been done on the problem of query maintenance.

For example, keeping track of which car is the nearest police car to a suspect vehicle,

as they move around in real-time, and the database is updated to reflect changes in

speed and direction.

48

Our main contributions in this chapter are algorithms based on an event-based

query maintenance approach to maintain k-nn query results on continuously moving

points over time. Although the examples given in this paper are 1-dimensional

(1D) and show static query points, the techniques and algorithms are general and

applicable to higher dimensions and moving query objects.

In this chapter, we expand on our work first presented in [35] to support updates

to the query point, and to handle query circle underflow (see below for more de-

tails). Additionally, we present new experiments using both real and simulated data,

whereas the experiments in [35] employed only synthetic data. Experimental results

also include statistics on cpu intensive operations as well as disk accesses, whereas

[35] reported only disk accesses in results.

In Section 5.1 we present our Continuous Windowing k-nn algorithm. In Sec-

tion 5.2 we present an extension of other previous work to support updates. Perfor-

mance issues of these algorithms are discussed in Section 5.3. Experimental results

are given in Section 5.4.

5.1 Continuous Windowing KNN (CW)

In this section we present our approach, called the Continuous Windowing k-nn

algorithm (CW). The CW algorithm is based on the observation that window queries

are easier to maintain on moving points than k-nn queries, because w-events are

fundamentally less expensive to process than oc-events (see Chapter 2). The CW

algorithm filters points to be considered as nearest neighbor candidates using a within

49

query around the query point. If the within query selects at least k points, then only

those points in the within query result need to be considered when computing the

k-nn query.

Figure 5.1 is an example where the circle represents the circular query window.

Conceptually, the data set is divided into two subsets, those that are close to the

query point q called the within set, and those that are far away. Only points in

the window are considered in searching for the next nn-event. For the example in

Figure 5.1, points a, b, and g are the only points in the within set of q with a query

window of radius r.

Figure 5.2 shows a 1D example with updates. This 1D example will be used to

illustrate the algorithms below. Note that in these examples the query point is not

moving, but the CW does support moving query points.

The CW algorithm is given in Figure 5.3. It makes use of the notation and

functions defined in Chapter 2. Parameter r is a relation with a moving point

Attribute, q is the query point, k is the number of neighbors that are sought, x ≥ 2

is an integer used in determining the initial size of the window. We assume that

parameter x is chosen to be sufficiently small to store k + x + 1 points well within

the limits of main memory. Variable d is the radius of the within query window.

Variable W is the within set. Variable Q is the w-event priority queue. Variable enn

is the next nn-event, and K is the set of k nearest neighbors to q.

The algorithm starts by invoking procedure CW Adjust Window() (line 1). Pro-

cedure CW Adjust Window() computes the initial size of the query circle (radius d),

50

g

i

c

d b

e

q

a

h

r

f

Figure 5.1: 2D example illustrating the CW approach, where ⊗ is the query point q,
r indicates the radius of the query window, • indicate points in q’s within set, and ◦
indicate points not in the within set.

within set W , and w-events enqueued in priority queue Q sorted by time of the w-

events (see Figure 5.4 for more details). Next in the CW algorithm, the within set

W is used to compute the k-nn result set K, and the next nn-event enn in a call

to CW Compute Knn Result() (line 2) (see Figure 5.5 for more). The query result

K is maintained indefinitely until it is no longer needed by the user (line 3). The

algorithm does nothing until an update occurs or an event comes due (line 4). If

there is an update to the data point relation r, then CW Update Data Relation() (line

6) is invoked (see Figure 5.6 for more). If there is an update to the query point, then

CW Update Query Point() (line 8) is invoked (see Figure 5.7 for more). W-events

are processed by CW Process Within Evt() (line 10) (Figure 5.8), and nn-events are

processed by CW Process Nn Evt() (line 11) when they occur (Figure 5.9).

51

insert

w−event

delete

delete

t=

t=

t=

t=

t=

coordinate value

tim
e

q cb

a p b q c

a p b qc

a

a

b

b q

c q

a

4 6 75321

3.25

2

2.5

3

3.5

Figure 5.2: Example snapshots in time of 1D moving points, events, and updates up to
time t = 3.5. Arrow length indicates distance traveled in one unit of time. The shaded
area shows the extent of the query window within distance d = 1.5 of query point q.

procedure Continuous Windowing Knn(r, q, k, x)
1. CW Adjust Window(r, q, k, x, d,W,Q)
2. CW Compute Knn Result(q, k, enn,W,K)
3. while true do
4. Sleep until there is an update, or an event comes due.
5. if there is an update to r then
6. CW Update Data Relation(r, q, k, x, d, enn,W,K,Q)
7. else if there is an update to q then
8. CW Update Query Point(r, q, k, x, d, enn,W,K,Q)
9. else if a w-event has come due then

10. CW Process Within Evt(r, q, k, x, d, enn,W,K,Q)
11. else CW Process Nn Evt(q, enn,W,K)
12. end while

Figure 5.3: Continuous Windowing Knn() (CW)

Table 5.1 shows a trace of the CW algorithm for the example given in Figure 5.2

up through time t = 3.5. It illustrates how the updates in the example from Figure 5.2

52

can change the pending events for the CW algorithm. Column 1 indicates the current

time for each row. Column 2 shows the update or event (if any) at time t. Column

3 shows the nearest neighbor (nn) at time t. Column 4 gives the next nn-event enn.

Column 5 shows the w-events on Q at each time step t. At time t = 2.5, a tuple

with moving point p = pt(2.75, 2.5, 2.5) is inserted into relation r. Location p(2.5)

is farther from q than d = 1.5 so a new w-event w(p, 3) is added to the priority

queue Q. At time t = 3, the w-event is processed and p is added to the within set

W . Since the oc-event of p comes before the oc-event of any other point in W , it

becomes the new nn-event enn ← oc(p, 3.5). At time t = 3.25, p is deleted, and the

new nn-event, enn ← oc(b, 4), is computed by examining the remaining elements of

W = {b, c}. At time t = 3.5, the nearest neighbor c is deleted.

t update nn enn Q

or event

2 - c oc(b, 4) 〈w(c, 6),w(a, 7),w(b, 8)〉

2.5 insert p c oc(b, 4) 〈w(p, 3),w(c, 6),w(a, 7),w(b, 8)〉

3.0 w-event c oc(p, 3.5) 〈w(p, 4.2),w(c, 6),w(a, 7),w(b, 8)〉

3.25 delete p c oc(b, 4) 〈w(c, 6),w(a, 7),w(b, 8)〉

3.5 delete c b ∅ 〈w(a, 7),w(b, 8)〉

Table 5.1: A trace of the CW algorithm applied to the example in Figure 5.2.

CW Adjust Window(), given in Figure 5.4, computes the circular window by main-

taining a set S of the (k + x + 1) closest points from q as it scans the entire relation

r (line 2). Set S is sorted by order of each point’s current distance to query point q

(line 3). Point si ∈ S denotes the ith point in the ordered set. The distance from the

query point to the edge of the circular window is the average distance from q to the

furthest two points in the list (line 4). The last point is thrown out since its not in

53

the circle, and the remainder become the within set W (line 5). The next w-event for

each point in the within set W is enqueued in Q (line 6–7). Recall from Section 2.5

that function next w event(p, q, d, t) returns the next event after time t when point p

will be at distance d from q, or it returns a null event (denoted ∅) with time stamp

∞ if no such event exists.

procedure CW Adjust Window(r, q, k, x, d,W,Q)
1. Let W ← ∅; Q← ∅
2. Scan r and find the closest k + x + 1 points to

q at the current time, and assign them to set S.
3. Sort points in S by distance to q at the current time.
4. Let d← (||q, sk+x,now||+ ||q, sk+x+1,now||)/2.
5. Let W ← first k + x points in S.
6. foreach point wi ∈W
7. Q←next w event(wi, q, d,now)

Figure 5.4: CW Adjust Window()

CW Compute Knn Result(), given in Figure 5.5, computes the k-nn result K given

the within set W . We assume the size of W allows it to be stored stored and

operated on entirely in main memory. All tuples in W are sorted by the distance of

their moving point attribute from q at the current time. The first k tuples in the

sorted list are assigned to set K (line 1)1. Procedure CW Compute Knn Result() also

computes the next nn-event enn from the points in W , with respect to the current

k th neighbor Kth(K) and query point q (lines 4–7). Function Kth(K) returns the

k th nearest neighbor of K at the time K was last modified. Recall from Section 2.5

that function next oc event(p, q, nn, t) returns the next oc-event for point p after time

1For simplicity, and brevity, we do not consider the case when two moving points are at exactly

the same distance from q at time t.

54

t with respect to query point q, and k th neighbor nn.

procedure CW Compute Knn Result(q, k, enn,W,K)
1. Let K be the closest k points to q in set W

at the current time sorted by distance to q.
3. enn ← ∅ /* note: Time(∅) =∞ */
4. foreach point wi ∈ W ∧ wi 6=Kth(K) do
5. eoc ←next oc event(wi, q,Kth(K),now)
6. if Time(eoc) <Time(enn) then enn ← eoc

7. end foreach

Figure 5.5: CW Compute Knn Result()

CW Update Data Relation(), given in Figure 5.6, is invoked when relation r is

updated. If there is no current query point, then nothing is done (line 1)2. When

a point p is inserted (line 3), and falls within the query window (line 4), then the

w-event for when it will exit the query window is computed and enqueued in Q

(line 5), and p is added to the within set W (line 6). If the new point p is also

closer to the query point q than the current k th neighbor (line 7), then it pushes out

the k th neighbor from the query result, i.e., the k th neighbor becomes the (k + 1)th

neighbor. This results in the k th neighbor being removed from the result set K,

and the new point added (line 8). Since the k th neighbor has now changed, a new

nn-event is computed (line 9). If the new point p is in the within set W , but is not

in the query result, then its checked to see if it will become the new k th neighbor

before any other point in the within set (lines 11-12). If a point is inserted, but does

not fall inside the query window, then its enter event is enqueued, if one exists (line

2We assume that a query point deletion is shortly followed by a query point insertion, but not

necessarily at the exact same time step.

55

14).

procedure CW Update Data Relation(r, q, k, x, d, enn,W,K,Q)
1. if there is no current query point then return.
2. Let point p be the point just inserted or deleted from r.
3. if p was inserted into r then
4. if ||q, p,now|| ≤ d then
5. Let Q← Q ∪ next w event(p, q, d,now).
6. Let W ← W ∪ p.
7. if ||q, p,now|| < ||q,Kth(K),now|| then
8. Let K ← (K−Kth(K)) ∪ p.
9. Let enn ← soonest oc-event from points in W

after current time.
10. else
11. Let eoc ←next oc event(p, q,Kth(K),now)
12. if Time(eoc) <Time(enn) then enn ← eoc

13. end if-then-else
14. else if next w event(p, q, d,now) <∞ then
15. Let Q← Q ∪ next w event(p, q, d,now).
16. end if-then-else
17. else if p has a w-event in Q then
18. Remove the w-event involving p from Q.
19. if p is in W then
20. Let W ← W − p.
21. if |W | ≤ k then /* underflow */
22. CW Adjust Window(r, q, k, x, d,W,Q)
23. CW Compute Knn Result(q, k, enn,W,K)
24. else if p in K then
25. CW Compute Knn Result(q, k, enn,W,K)
26. else if p involved in enn then
27. Let enn ← soonest oc-event from points in W

after current time.
28. end if-then-else
29. end if
30. end if-then-else

Figure 5.6: CW Update Data Relation()

When point p is deleted, and has a w-event in Q (line 17), then its w-event is

removed from Q (line 18). Additionally, if p is a member of the within set W (line

56

19), then it is removed from set W (line 20). If removing the point from set W

results in query window underflow (line 21), then the query window needs to be

expanded to include more points (line 22) , and the query result and the nn-event

are recomputed (line 23). If underflow does not occur, but the deleted point p is

in the result set K (line 24), then the query result and nn-event are recomputed

because the k th neighbor will have changed (line 25). If underflow does not occur,

and the deleted point p is not in the result set K, but p is involved in the current

nn-event (line 26), then the nn-event is recomputed (line 27).

CW Update Query Point() given in Figure 5.7, is invoked when the query point

is updated. When the query point q is inserted (line 1), then a new query window,

within set, w-events (line 2), result set K, and next nn-event (line 3) are computed.

When query point q is deleted, then the query result and all events are removed (line

4). Note that there is at most one query point at any given time.

procedure CW Update Query Point(r, q, k, x, d, enn,W,K,Q)
1. if query point q was inserted then
2. CW Adjust Window(r, q, k, x, d,W,Q)
3. CW Compute Knn Result(q, k, enn,W,K)
4. else let K ← ∅, Q← ∅, enn ← ∅.

Figure 5.7: CW Update Query Point()

CW Process Within Evt() in Figure 5.8 is invoked on w-events. Recall from Sec-

tion 2.2, an enter event is a w-event where the data point is moving closer to the

query point at event time, and an exit event is a w-event where the data point is

moving away from the query point at event time. In CW Process Within Evt(), if the

57

next w-event on the queue is an enter event (line 3), then the data point p is added

to within set W (line 4), the exit event for p is enqueued (line 5), and p’s oc-event

event is considered for the next nn-event (lines 6–7). If the w-event is an exit event

(line 8), then the data point p of the w-event is removed from within set W (line 9).

If the exit of point p from the query window results in underflow (line 10), then the

window is resized to include more data points, sets W and K are recalculated given

the new window, and new events are computed (lines 11–12). If no underflow occurs,

but p is involved with the next nn-event (line 13), then a new nn-event is computed

(line 14).

procedure CW Process Within Evt(r, q, k, x, d, enn,W,K,Q)
1. ew ←Pop(Q).
2. Let p be the data point involved in ew.
3. if ew is an enter event then
4. Let W ← W ∪ p.
5. Let Q← Q ∪ next w event(p, q, d,now).
6. Let eoc ←next oc event(p, q,Kth(K),now).
7. if Time(eoc) <Time(enn) then enn ← eoc.
8. else /* ew is an exit event */
9. W ← W − p.

10. if |W | ≤ k then /* underflow */
11. CW Adjust Window(r, q, k, x, d,W,Q)
12. CW Compute Knn Result(q, k, enn,W,K)
13. else if p is involved in event enn then
14. Let enn ← soonest oc-event from points in W

after current time.
15. end if-then-else
16. end if-then-else

Figure 5.8: CW Process Within Evt()

CW Process Nn Evt(), given in Figure 5.9, is invoked on nn-events. Of the two

data points involved in nn-event enn, if the data point p that is not currently the

58

k th neighbor is moving to be closer to the query point than the k th neighbor after

the event (line 2), then the query result is updated since p will push out the old

k th neighbor from the query result K (line 3). In any case, the k th neighbor has

changes, so a new nn-event is computed with respect to the new k th neighbor (line

4).

procedure CW Process Nn Evt(q, enn,W,K)
1. Let p← non-k th neighbor data point involved in enn.
2. if p will be closer to q than Kth(K) after event then
3. K ← (K −Kth(K)) ∪ p.
4. Let enn ← soonest oc-event from points in W

after current time.

Figure 5.9: CW Process Nn Evt()

5.2 Extending TP KNN for Updates

In this section we extend the continuous TP KNN algorithm presented in [65] to

support updates during processing of the query, termed the extended TP (ETP)

algorithm. This algorithm is compared experimentally with CW in Section 5.4. All

notation, variables and functions are as described in the previous sections unless

otherwise specified.

Extended TP Knn() (ETP), given in Figure 5.10, is similar to the top-level CW

algorithm presented in Figure 5.3. The main loop of Extended TP Knn() is nearly

identical to the main loop of Continuous Windowing Knn() presented in Figure 5.3,

except for the lack of a subroutine to process w-events since their are no w-events

59

used in the ETP approach. The primary difference between the CW algorithm and

the ETP algorithm is that the ETP algorithm uses a TPR-tree to find members of

the k-nn query result set and nn-events. The CW algorithm, on the other hand uses

the within set to find the k-nearest neighbors and nn-events. Consequently, there

are no w-events processed in the ETP approach. In the figure, parameter r is a

relation with a moving point attribute in its schema, q is the query point, and k is

the number of neighbors that are sought. Variable enn is the next nn-event. Variable

tpr is a TPR-tree index on the moving point attribute in r. Variable K is the set of

k neighbors of q.

The first step is to build a TPR-tree index (see Section 3.7.1) on the moving

points in relation r (line 1). The index is used in an incremental distance query to

find the closest k neighbors of query point q (line 2). This is the same incremental

distance query algorithm presented in [30] (see Section 3.6). The TPR-tree index

is also used in a next nn-event query to find the next nn-event (line 3). The same

method presented in [65] is used here to perform the next nn-event query here (see

Section 3.7.3).

Table 5.2 shows a trace of the ETP algorithm for the example given in Figure 5.2

up through time t = 3.5. Column 1 indicates the current time for each row. Column

2 shows the update or event (if any) at time t. Column 3 shows the nearest neighbor

(nn) at time t. Column 4 gives the next nn-event enn. Only one event is computed

at a time, so there is no event queue as for the CW algorithm. At time t = 2.5, point

p = pt(2.75, 2.5, 2.5) is inserted. The oc-event for the new point p comes before the

60

procedure Extended TP Knn(r, q, k)
1. Build TPR-tree index, tpr on the moving points in r.
2. Let K ← first k points returned by the incremental

distance query on index tpr for query point q.
3. Let enn ← result of next nn-event query on index tpr

for query point q and k thneighbor Kth(K).
4. while true do
5. Sleep until there is an update, or event enn comes due.
6. if there is an update to r then
7. ETP Update Data Relation(r, q, k, enn, tpr,K)
8. else if there is an update to q then
9. ETP Update Query Point(q, k, enn, tpr,K)

10. else ETP Process Nn Evt(q, k, enn, tpr,K)
11. end while

Figure 5.10: Extended TP Knn() (ETP)

oc-event of any other point in the entire data set, so it becomes the new nn-event

enn ← oc(p, 3.5). Point p is deleted at time t = 3.25. This means the oc-events

of the points in the data set must be examined again to find the next to occur. In

this case, the oc-event for b becomes the next nn-event. When the current nearest

neighbor c is deleted at time t = 3.5, point b becomes the new nearest neighbor.

The only other point in the data set now is point a with nn-event enn = oc(a, 7.5).

t update or event nn enn

2 - c oc(b, 4)

2.5 insert p c oc(p, 3.5)

3.25 delete p c oc(b, 4)

3.5 delete c b oc(a, 7.5)

Table 5.2: ETP trace for the example in Figure 5.2.

ETP Update Data Relation(), given in Figure 5.11, is invoked on updates to data

61

relation r. When point p is inserted into relation r (line 2), it is also inserted into

the TPR-tree index (line 3). If there is no current query point, then nothing else

need be done (line 4). If there is a query point, and p is closer to it than the current

k th neighbor (line 5)3 , then p is added to the result set, and the old k th neighbor

is removed (line 6). Since the k th neighbor has changed, the new nn-event is found

using the next nn-event query (see Section 3.7.3) on the TPR-tree index (line 7). If p

is not in the result set, then its oc-event is checked against the current nn-event enn.

If p’s oc-event occurs sooner than enn then the oc-event becomes the new nn-event

(lines 9–10).

When point p is deleted from relation r, it is removed from the TPR-tree index

(line 13). If no query point exists, then nothing else is done (line 14), otherwise if

p was in the query result set (line 15), then the new k th neighbor pk is found using

the incremental distance query algorithm (see Section 3.6) on index tpr (line 16).

Point p is then removed from the query result set K, and the new k th neighbor pk is

added to K (line 17). Since the k th neighbor has changed, a new nn-event for the the

k th neighbor is found (line 18). If p is not in the query result set, then the current

nn-event enn is checked to see if p is involved in enn (line 19). If it is, then a new

nn-event is computed (line 20).

ETP Update Query Point(), given in Figure 5.12, is invoked on updates to the

query point. If a query point q is inserted (line 1), then the query result set K is

found using the incremental distance query algorithm (line 2), and the next nn-event

3For simplicity, we do not consider the case where p and the k
th neighbor are at exactly the

same distance to q.

62

procedure ETP Update Data Relation(r, q, k, enn, tpr,K)
1. Let p be the point just inserted or deleted in r.
2. if p was inserted into r then
3. Insert p into index tpr.
4. if there is no current query point then return.
5. if ||q, p,now|| < ||q,Kth(K),now|| then
6. K ← (K−Kth(K)) ∪ p.
7. Let enn ← result of next nn-event query on

index tpr for query point q and new Kth(K).
8. else /* Kth(K) closer to q than p */
9. Let eoc ←next oc event(p, q,Kth(K),now).

10. if Time(eoc) <Time(enn) then enn ← eoc.
11. end if-then-else
12. else /* p was deleted from r */
13. Remove p from index tpr.
14. if there is no current query point then return.
15. if ||q, p,now|| < ||q,Kth(K),now|| then
16. Let pk ← k th point returned by incremental

distance query on index tpr for query point q.
17. K ← (K − p) ∪ pk.
18. Let enn ← result of next nn-event query on

index tpr for query point q and new Kth(K).
19. else if p is involved in event enn then
20. Let enn ← result of next nn-event query on

index tpr for query point q and new Kth(K).
21. end if-then-else
22. end if-then-else

Figure 5.11: ETP Update Data Relation()

enn is found using the next nn-event query algorithm (line 3). If q is deleted, then

the query result (line 5), and the nn-event are removed (line 6).

ETP Process Nn Evt(), given in Figure 5.13, is invoked when the nn-event enn

comes due. Point p is the data point involved in nn-event enn that is not the current

k th neighbor of the query point (line 1). If p is not already in the query result set K

(line 2), then it is added to the result set K and the old k th neighbor is removed (line

63

procedure ETP Update Query Point(q, k, enn, tpr,K)
1. if inserting q then
2. Let K ← first k points returned by incremental

distance query on index tpr for query point q.
3. Let enn ← result of next nn-event query on

index tpr for query point q and Kth(K).
4. else /* deleting q */
5. K ← ∅.
6. enn ← ∅.
7. end if-then-else

Figure 5.12: ETP Update Query Point()

3). One of the other points in K is now the new k th neighbor. The new k th neighbor

is used along with the query point to find the next nn-event by invoking the next

nn-event query algorithm (line 4).

procedure ETP Process Nn Evt(q, k, enn, tpr,K)
1. Let p← non-k th neighbor data point involved in enn.
2. if p will be closer to q than Kth(K) after the event occurs then
3. K ← (K −Kth(K)) ∪ p.
4. Let enn ← result of next nn-event query on index tpr

for query point q and k thneighbor Kth(K).

Figure 5.13: ETP Process Nn Evt()

5.3 Performance Issues

Analysis of algorithms for kinematic data is difficult without making many simpli-

fying assumptions. Performance is dependent on many factors such as data set size,

location distribution, velocity distribution, distribution of updates among tuples, and

update frequency distribution. Instead of attempting a rigorous analysis on an overly

64

constrained subset of these factors, this section discusses some key performance issues

of the ETP, CW, and Plane-Sweeping technique (PS) (described in Section 3.7.2),

and how these factors play a part in the performance of each algorithm.

We assume that for large data sets, the majority of the data is stored on disk.

Accesses to disk are orders of magnitude slower than memory, so cost is measured in

number of disk accesses. For the sake of discussion, assume that all moving point data

and query points share the same location, velocity, and update rate distributions.

Ignoring esoteric cases, assume that all points are moving relative to the query point,

and that they are not all moving in the same direction and at the same speed. Note

that no implementation details are given for the PS method presented in [49], and

thus we need to make assumptions for this approach in order to analyze it. We

assume that PS creates a sorted list LPS of all points by distance to the query point,

and that is makes use of an event queue QPS . Let us assume an implementation using

B-tree variants for both LPS , and QPS to support efficient insertions and deletions.

The CW event priority queue QCW is implemented using a B+-tree variant (see

Section 5.4).

Initial Build: All three methods require an initial scan of some relation r. ETP

scans r to build the TPR-tree index. CW scans the relation to find the query result

and pending w-events. PS creates a list sorted by distance.

Data Structure Size: Let n be the size of the point data set. The asymptotic upper

bound for the TPR-tree, LPS (ignoring QPS for now), and QCW data structures is

O(n). The lower bounds for each data structure are not the same. The entire data

65

set must be inserted into the TPR-tree, and the sorted list LPS , giving a lower bound

of Ω(n). The best case for CW is when no points outside the within query result will

enter the within query window in the future. In this case, the only points involved in

events in QCW are those in the within query result giving a lower bound of Ω(|W |).

Given our assumption that |W | � n, it is likely that the size of QCW will be much

smaller than the data structures for the other approaches.

Rebuilds: Rebuilding these structures from scratch may be required on occasion.

Let UI be the average time period between two updates for a single object. By

experimentation, Saltenis et. al. [58] determined that the performance of the TPR-

tree degrades after time UI because almost all the entries have been updated by that

time thereby causing the index to degenerate due to increasing overlap of the index

nodes. They conclude the TPR-tree should be rebuilt when time UI is reached.

The PS priority queue QPS needs to be rebuilt whenever the query point is updated

because all the events on the queue will no longer be valid. The expected time

between updates to the query point is also UI if we assume the same update rate

distribution for the query point as the rest of the data set. A rebuild is also needed

for CW when the query point is updated or the within set W underflows. The failure

rate for these constraints depends heavily on the characteristics of the data and the

method used to determine d. At the least, we would expect the CW method to

rebuild more often than the other methods.

Number of Events: Only the nn-events are processed in the ETP approach. This

makes the ETP approach optimal in the number of events processed throughout the

66

course of a query. There is only one event pending at any one time. CW processes

additional w-events. The number of w-events over the course of a query, or on the

event queue at any one time, depends on the selectivity of the within window and the

motion characteristics of the data. PS processes an oc-event every time a neighbor

changes position in LPS . This includes the nn-event. The number of events on QPS

at any one time is O(n). Since these events occur when points change order in LPS ,

it is easy to imagine cases when the distances between neighbors on the list are small

and thus many of these events on the queue will be imminent (e.g., points moving

with different speeds and directions). In such cases, many more events would be

processed over the course of a query than what the CW method would require.

Cost of Events: The cost of processing each event for each method is not the

same. For the PS method it is only necessary to examine the immediate neighbors

of points that switch order on LPS to find the next time they will switch order with

their new neighbors. Assuming a B-tree structure for LPS yields a cost of at most

O(log n) to find the neighbors. The cost of event updates in QPS is also O(log n).

The CW approach is even cheaper requiring no disk accesses to examine other points

when either a w-event or oc-event is processed because all the points that need to be

examined are already in main memory. The only cost is in updating the event queue

which is O(log n). In the ETP approach, the cost of processing an event is O(n) for

the incremental distance query. The worst case for the incremental distance query

happens when all points are at the same distance from the query point. In practice

this is unlikely in low dimensional data sets. The ETP method has no event queue.

67

The entire cost of the ETP method lies in the TPR-tree operations.

5.4 Experimental Results

This section presents experimental results comparing the ETP (Section 5.2) and CW

(Section 5.1) algorithms. Our primary metric for cost is the number of disk accesses

needed to compute and maintain a query. This is because accessing data on disk is

several orders of magnitude slower than accessing data in memory.

We did not implement the PS algorithm since the approach is theoretical and

no implementation details were given in [49]. In any case, from our analysis in

Section 5.3, it appears that the PS data structures will be large (i.e., O(n)). It also

appears that the frequency of the occurrence of events would likely be higher than

in the CW or ETP approaches, since the differences in distances between points on

the list will be small, especially in the case of uniform data.

We use code provided by Saltenis et. al. from their original implementation of

the TPR-tree [58]4. This was built on the GiST [28] code version 0.9beta1. We

extended this with implementations of the incremental distance query [30], and the

next nn-event query [65]. In [35], we did not find a significant difference between depth

first and best first versions of the TPR-tree index search algorithms (i.e, incremental

distance query, next nn-event query), (see [35] for more details) so we use only best

first versions in the experiments presented here.

4A special thanks to Saltenis et. al. and Tao et. al. for making their code available for use and

study.

68

To implement the CW priority queue, we use a B+-tree variant of a priority

search tree called the Event B-tree (EB-tree). In our implementation, every point

has a unique id, or key. The priority queue is a B+-tree ordered by key to support

efficient insertions and deletions of events. In addition to propagating the min-max

key up the B+-tree, the earliest event time of all events in each subtree is also

propagated up to the root. The earliest event in the tree is found by following the

minimum event time down the branches of the tree to the leaf in which it is stored.

The time of the next event can be found by examining just the root node. Figure 5.14

shows an example EB-tree. Our EB-tree is implemented using the same GiST code

used by Saltenis et. al [58].

id7id1

id ,e11 id ,e22 id ,e33 id ,e44 id ,e55 id ,e66 id ,e77

min_time() id4 min_time(4 7)e , ... ,e e , ... ,e1 3

Figure 5.14: Example EB-tree with one root node, and two leaf nodes.

5.5 Data Sets

We used both real aircraft flight data and synthetic uniformly-distributed data in our

experiments. Data sets consist of an initial set of moving points described as a linear

function of time (p(t) = −→x0 +(t− t0)−→v), and updates to the function coefficients (−→x0,

t0, −→v) over time. A data set is characterized by the mean and standard deviation

in the number of moving points (cardinality) at any given time, the period of time

covered by the data set, and the average update interval. The average update interval

69

(UI) is the average length of time between updates for any given point.

All synthetic uniformly-distributed data sets are generated using a data genera-

tion tool developed by Saltenis et. al. [58]. The synthetic moving points are uniformly

distributed over a 1000x1000 coordinate space. The speed of each point is uniformly

distributed between 0 and 3/60 = 0.05 coordinate distance units per time unit. All

synthetic moving points are inserted at the start time of the dataset. Updates change

the speed, but not the current location of each point. No new points are introduced

after the start time, nor are any removed. The average update interval (UI) for our

synthetic data is 600 time units. Each synthetic data set covers 3600 time units. The

UI and speed relative to the size of the coordinate space of the synthetic data were

chosen to be similar to the aircraft flight data for comparability.

Real commercial aircraft flight data was acquired as location data sampled at

one minute intervals. Figure 5.15 shows an example snapshot in time to see how

the data is clustered. The latitude-longitude of sampled locations were converted to

linear functions describing aircraft motion by first applying the Douglas-Peucker line

simplification algorithm [18] to the 2D latitude-longitude points forming a polyline

from earliest to latest sampled location in time.5 In our application of the Douglas-

Peucker algorithm, we used a maximum error bound of 0.06 degrees. Distortions

introduced by the latitude-longitude projection onto the Earth’s surface was ignored.

The resulting vertices serve as the start locations for each update. Each vertex has

an associated time stamp. The line segment to the next vertex divided by the time

5Although experiments were conducted on 2-dimensional data, the algorithms presented in this

paper are applicable to higher dimensions.

70

difference between their time stamps gives the velocity vector for each update. The

result was an average update interval of 700–735 seconds. The aircraft data sets

cover a window [20◦, 60◦] latitude by [−135◦,−60◦] longitude. Since only about 5000

aircraft are in the air at any one time, larger data sets are generated by combining

flights on different days during the same time period. Each aircraft data set covers

a time period of two hours.

Figure 5.15: Snapshot of aircraft flight data.

One significant difference between the real and synthetic data is in the size of

the data set at any given time. The number of points for the synthetic data stays

constant, but the real flight data changes in the number of aircraft as flights land

and take off.

Table 5.3 shows statistics for the data sets used in the experiments of this chapter.

The table shows the mean and standard deviation in the size of the data sets over

71

the entire 2 hour time interval covered by each data set. The figure also shows the

average update interval (UI) for each aircraft data set.

µ 9021 21020 29551 41855 50822

σ 680.8 1591 2223 3386 4381

UI 712.8 729.0 724.6 727.5 726.6

Table 5.3: Each column corresponds to a different aircraft data set. Each row is a
statistic on the data sets. Row 1 is the mean number of flights at any given time (µ).
Row 2 is the standard deviation in the number of flights (σ). Row 3 is the average update
interval (UI) in seconds.

To make full use of the real data sets available, each data set was divided into 12

subsets starting at evenly spaced start times over the duration of the data set. For

example, for a data set covering a time period of 900 units, the subset start times

are 0, 75, 150, etc. If the duration of the experiment is longer than the time between

subsets, then the subsets overlapped. If needed, the spacing between start times was

adjusted so the experiments didn’t run past the time covered by the subset. For our

900 time unit example above, if the experiment duration is 100 time units, then the

time between start times might be only 72 time units. The time domains of each

subset were then transformed to start at time 0.

5.6 Experimental Results

Default parameter values for each experiment, unless otherwise specified in the de-

scription of an individual experiment, are as follows. Duration of each experiment is

1000 time units (the time duration in [35] was only 60 time units). Disk page size

is 4096 bytes. Number of neighbors k = 1. Experiments that do not vary by data

72

set size are run on a data set of 50000 points for uniform data, and an average of

50822 points for aircraft data. The number of pages in the cache for the TPR-tree

index tpr is 64 pages. The event queue disk cache is 8 pages. Each cache uses a least

recently used (LRU) page replacement policy. For the CW algorithm, the number of

extra points to find (parameter x in Figure 5.3) is x = 4. Disk accesses are computed

as an average over 100 experiments for a given set of parameters. All results report

statistics accumulated after the initial loading data structures, and flushing of the

disk based data structure caches.

For the CW algorithm, whenever there is a query point update or an underflow of

the within set, the base relation is scanned. We assume one page access for every 93

moving point objects in the data set at the time the relation is scanned. This number

was derived as follows. A 2D kinematic point is represented by 5 double floating point

numbers of 8 bytes each, two doubles for the start location coordinates, two for the

velocity vector, and one for the start time. Each moving point also has a unique

identifier represented by a 4 byte integer. This gives a total of (5 ∗ 8 bytes)+4 bytes

= 44 bytes per object. Each page is 4096 bytes, therefor b4096 bytes per page/44

bytes per objectc = 93 objects per page.

The purpose of the first experiment is to determine which algorithm, CW or ETP,

performs better in terms of disk accesses for different data set sizes. The results are

given in Figures 5.16 and 5.17 for aircraft and uniform data respectively. In both

figures, the x-axis is the average data set size, and the y-axis is the number of disk

accesses in thousands (k). The points indicated by 4 symbols are the number of

73

disk accesses for the CW algorithms, while the 3 symbols indicates the number of

disk accesses for the ETP algorithm. For the aircraft data set, the CW algorithm

has over 17 times fewer disk accesses than the ETP algorithm for the largest data

sets tested. For the uniform synthetic data, the CW algorithm has over 29 times

fewer disk accesses than the ETP algorithm for the largest data sets tested.

 0

 50k

 100k

 150k

 200k

 250k

 300k

 350k

 10k 20k 30k 40k 50k

CW

di
sk

 a
cc

es
se

s

average data set size

ETP

Figure 5.16: Disk accesses vs. data set
size for aircraft data.

 0

 50k

 100k

 150k

 200k

 250k

 300k

 350k

 10k 20k 30k 40k 50k

CW
ETP

di
sk

 a
cc

es
se

s

average data set size

Figure 5.17: Disk accesses vs. data set
size for uniform data.

An additional experiment was conducted to show relative performance of the

two algorithms when there are no updates. The results are given in Figure 5.18 for

both aircraft data set of approximately 50k points, and uniform data set size of 50k

points. The results were obtained by simply ignoring all subsequent updates once the

experiment started and processing events only. Two pairs of vertical bars are shown

for each data set. The black bar on the left indicates the number of disk accesses

for the ETP algorithm, and the white bar on the right indicates the number of disk

accesses for the CW algorithm. When there are no updates, the ETP algorithm has

72 time fewer disk accesses than the CW algorithm for aircraft data, and 57 times

74

fewer disk accesses for uniform data. However, the number of disk accesses even for

the CW algorithm, is relatively small (< 1000).

CWETP CWETP
 0

 200

 400

 600

 800

 1000

 1200
CW
ETP

di
sk

 a
cc

es
se

s

aircraft uniform
Figure 5.18: No updates

The performance shown in Figures 5.16 and 5.17 likely correlates with size of

the disk based data structures. Figures 5.19 and 5.20 support this hypothesis. The

y-axis is the number of entries in thousands (k) that are stored in each data structure

(TPR-tree or event queue). The x-axis is the average data set size. Disk access for

the CW algorithms are indicated by the 4 symbols, and disk accesses for the ETP

algorithm are indicated by the 3 symbols. For the largest data set, the CW event

queue has 33 times fewer entries than the ETP TPR-tree index for the aircraft data,

and 96 times fewer entries for the uniform data.

The purpose of the next experiment is to determine how queries for more neigh-

bors affect performance of the two algorithms. The results are given in Figures 5.21

and 5.22 for aircraft and uniform data respectively. The number of disk accesses are

plotted on the y-axis versus the number of neighbors (k) along the x-axis. Disk ac-

75

ETP

 10k 20k 30k 40k 50k
 0

 10k

 20k

 30k

 40k

 50k

 60k
CW

average data set size

nu
m

be
r

of
 e

nt
ri

es

Figure 5.19: Number of entries vs. data
set size for aircraft data.

 0
 5k

 10k
 15k
 20k
 25k
 30k
 35k
 40k
 45k
 50k

 10k 20k 30k 40k 50k

CW
ETP

nu
m

be
r

of
 e

nt
ri

es

average data set size

Figure 5.20: Number of entries vs. data
set size for uniform data.

cess for the CW algorithms are indicated by the 4 symbols, and disk accesses for the

ETP algorithm are indicated by the 3 symbols. The results show that an increase

in the number of neighbors has a relatively small affect on overall performance.

 0

 50k

 100k

 150k

 200k

 250k

 300k

 350k

 400k

neighborsk
 1 2 3 4 5 6 7 8

CW

di
sk

 a
cc

es
se

s

ETP

Figure 5.21: Disk accesses vs. number of
neighbors for aircraft data.

 0

 50k

 100k

 150k

 200k

 250k

 300k

 350k

 400k

neighborsk

CW
ETP

 1 2 3 4 5 6 7 8

di
sk

 a
cc

es
se

s

Figure 5.22: Disk accesses vs. number of
neighbors for uniform data.

Figure 5.23 gives the results of an experiment to study the affect of extra neigh-

bors on performance for the CW algorithm. Recall that the parameter x of the

76

Continuous Windowing Knn() algorithm presented in Figure 5.3 determines the size

of the initial within set W (i.e., |W | = k+x). For a nearest neighbors query of k = 1,

Figure 5.23 shows disk accesses on y-axis versus the number of extra neighbors x on

the x-axis. The 4 symbols indicate the number of disk accesses for aircraft data,

and the 3 symbols indicate disk accesses for uniform data. It appears that small

increases in the number of extra neighbors reduce performance for uniform data, but

have little affect on the non-uniform aircraft data.

 0

 5k

 10k

 15k

 20k

 25k

 30k
aircraft

uniform

extra neighbors ()x
 2 3 4 5 6 7

di
sk

 a
cc

es
se

s

Figure 5.23: Disk accesses vs. extra neighbors for CW algorithm.

The purpose of the next experiment is to determine how the size of the disk cache

affects performance for each algorithm. Figure 5.24 shows the results of varying the

cache size for the event queue of the CW algorithm. Figure 5.25 shows the results

of varying the cache size for the TPR-tree of the ETP algorithm. Each figure plots

disk accesses on the y-axis versus the number of pages in the cache on the x-axis.

The 4 symbols indicate disk accesses for aircraft data, while the 3 symbols indicate

disk accesses for uniform data. This experiment was used in choosing the default

77

disk cache sizes for other experiments.

 0
 20k
 40k
 60k
 80k

 100k
 120k
 140k
 160k
 180k

aircraft
uniform

 1 2 3 4 5 6 7 8

di
sk

 a
cc

es
se

s

number of cache pages

Figure 5.24: Disk accesses vs. number of
disk cache pages for CW algorithm.

 200k
 300k
 400k
 500k
 600k
 700k
 800k
 900k

 1000k
 1100k
 1200k

 0 20 40 60 80 100 120 140

aircraft
uniform

di
sk

 a
cc

es
se

s

number of cache pages

Figure 5.25: Disk accesses vs. number of
disk cache pages for ETP algorithm.

The purpose of the final experiment is to study the relative performance of the

to algorithms as the average update interval (UI) changes. Figure 5.26 gives the

results for uniform data. This experiment was run on just synthetic data since

precise control of the UI is much easier for synthetic data than for real data. In

Figure 5.26, disk accesses (y-axis) are plotted against the average update interval

(UI). The 4 symbols show disk accesses for the CW algorithm while 3 symbols

show disk accesses for the ETP algorithm. It appears from the graph that changes in

UI have very little affect on the CW algorithm, whereas the ETP algorithm appears

to grow exponentially with respect to UI. This is a significant improvement for

the improved CW algorithm presented here from original CW algorithm presented

in [35]. In [35] the CW did not have a dynamic within query window, but rather a

window of a fixed radius was used for all queries. This resulted in a within set that

was much larger than it had to be so underflow could be avoided. The result in [35]

78

was apparent exponential growth in the number of disk accesses with respect to the

average update interval UI. The ability of the improved CW algorithm presented

in this section to adjust the window size dynamically, results in nearly constant

performance factor for different values for UI.

 0

 100k

 200k

 300k

 400k

 500k

 600k

 700k
CW
ETP

average update interval ()UI
 0 500 1000 1500 2000 2500

di
sk

 a
cc

es
se

s

Figure 5.26: Disk accesses vs. average update interval for uniform data.

5.7 Conclusion

In this chapter we presented an improved version of the the continuous Windowing k-

NN algorithm (CW). We extend the algorithm originally presented in [35] to support

updates to the query point, and to dynamically adjust the size of the within set. We

also extended the ETP algorithm presented in [35] to support updates toe the query

point for comparison. The improved CW method outperformed the improved ETP

algorithm when updates occur during query maintenance by more than an order of

magnitude.

79

Chapter 6

Spatial Join Queries

Consider the following queries. For each airplane, keep track of every other airplane

that is too close for safety. For each tank, keep track of each target that is within firing

range. For each robot explorer in a swarm of robots, keep track of all neighboring

robots that are within radio range. For each unmanned air vehicle, keep track of

every observation target within 5 miles. Each of these example queries is a spatial

join query that is maintained over time.

In Chapter 2 we introduced the concept of w-events and event-based query main-

tenance. In Chapter 5 we used them to support k-nn queries and introduce an

event-based query maintenance algorithm (see Figure 5.3 and 5.10) to support up-

dates. In this section we generalize the event-based query maintenance algorithms

given in Figures 5.3 and 5.10 to maintain spatial join queries on moving points while

the base relations are updated throughout the duration of the query. As in Chap-

ter 5, it is assumed there is no previous knowledge about the updates prior to the

80

arrival of the update. We also introduce a new concept of an event generation cycle

to help reduce the size of the event queue.

Given relations l(L) and r(R), a spatial join is the join l 1‖αl,αr‖≤d r where

αl ∈ L and αr ∈ R are the spatial attribute names of moving points in the relational

schemas, d ≥ 0, and ‖αl, αr‖ is the Euclidean distance metric.

Figure 6.1 is an example of a continuous spatial join on 1-dimensional moving

points where l = a, b and r = x, y at time ct = 2. Each row in the figure shows the

state of the moving objects as the current time ct advances. The join distance is

illustrated by the shaded crosshatched areas extending for 8 distance units around

points in relation r. Points b, and x are moving at speed 1. Point a is moving at

speed 2. The arrows indicate their direction of movement. Although the example

is 1-dimensional, the algorithms presented in this paper work for any dimension

D > 0, D ∈ N.

Table 6.1 shows how updates and events affect the query result as time advances.

Column 1 is the current time ct. Column 2 gives the event or update at time ct.

Column 3 gives the join result J after the event or update occurs. For brevity, only

the moving point attributes of tuples are presented.

The solution to this problem centers on how to refresh the precomputed events

as well as the query result when the spatial join base relations are updated. Simple

application of previous work (e.g., [65]) is not sufficient as shown by the results

of experiments in Section 6.5. To our knowledge, there is no previous work on

maintaining spatial joins on continuously moving points as the relations are updated.

81

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

y

y

y

y

y

x

x

x

x

x

x

x

x

y

x

ct=1

ct=2

ct=3

ct=4

ct=6

ct=5

ct=7

ct=8

ct=0

b

b

b

b

b

b

b

a

a

a

a

a

a

b

exit event

insert

delete

delete

delete

enter event

insert

Figure 6.1: Example spatial join of 1-dimensional moving points.

time ct event or update J

0 initial join {〈a, x〉}

1 exit event {}
2 insert y into r {〈a, y〉}

3 enter event {〈a, y〉, 〈b, x〉}

4 delete b from l {〈a, y〉}

5 delete a from l {}

6 insert b into l {〈b, x〉}
7 delete y from r {〈b, x〉}

8 no change {〈b, x〉}

Table 6.1: Trace of the example join query given in Figure 6.1.

Recall that event-based query maintenance involves the processing of events and

updates to maintain a consistent query result as time advances. For example, in the

sample query in Figure 6.1, events occur at times 1 and 3 resulting in a change to the

82

query result. The occurrences of one or more events are computed in advance and

placed in a priority queue sorted by time. Thus, when the time of the event arrives,

the query result is modified, and more events are possibly computed. Updates may

also change the query result. For example, in the sample query in Figure 6.1, updates

occur at times 2, 4, 5, and 6 resulting in a change to the query result. The query

result can be updated using techniques similar to incremental view maintenance

techniques [25] when an update occurs. Additionally, the events in the queue must

also be modified as a result of updates to keep them correct. Adjusting events and

the spatial join query result when updates occur is the focus of this chapter. Support

for updates to the base relations is what distinguishes our work from previous work

on maintaining spatial joins on continuously moving points (i.e., [65]).

In Section 6.1 we present the general query engine. Two approaches based on the

query engine are the presented. The first approach is an extension of the continuous

spatial join [65] algorithm to support updates (Section 6.2). Our own novel approach

is presented in Section 6.3. Performance issues are discussed in Section 6.4, and

experimental results are presented in Section 6.5.

6.1 Query Engine

The continuous spatial join with updates query engine, given in Figure 6.2, main-

tains continuous event-driven spatial join queries on moving points while supporting

updates.1 The algorithm starts by computing the initial join result and events to

1For brevity, we do not consider simultaneous events and/or updates.

83

be processed. It then processes events and updates to maintain the query result as

time advances. Note the similarity between the CSJU() algorithm and the top-level

of the Continuous Windowing Knn() algorithm presented in Figure 5.3. The primary

difference is that the CSJU() algorithm supports a binary query operator, whereas

the Continuous Windowing Knn() supports a unary operator on one relation.

procedure CSJU(j)
1. Perform initial join and report result J .
2. Generate Events(j)
3. while true do
4. Sleep until there is an update, or an event comes due,

or the end of the event generation cycle is reached.
5. if an event came due then
6. Process Next Event(j)
7. else if there is an update then
8. if tuple was inserted in j.l then
9. Insert L(j)

10. else if tuple was deleted from j.l then
11. Delete L(j)
12. else if tuple was inserted in j.r then
13. Insert R(j)
14. else /* tuple was deleted from j.r */
15. Delete R(j)
16. end if-then-else
17. else /* end of event generation cycle was reached */
18. Generate Events(j)
19. end if-then-else
20. end while

Figure 6.2: CSJU()

Input parameter j to the CSJU() algorithm defines the continuous spatial join

query. Associated with j are the two relations j.l and j.r to be joined. Relation

j.l has a TPR-tree index j.tprl on moving point attribute αl ∈ L where L is the

schema of j.l. Relation j.r has a TPR-tree index j.tprr on moving point attribute

84

αr ∈ R where R is the schema of j.r. Events are stored in a queue j.Q sorted by

time in increasing order. The scalar value j.dist is the join distance, and scalar

j.generation length is the event generation cycle duration (described below).

When the CSJU() algorithm in Figure 6.2 is initially called, no query result has

been computed yet, and thus the event queue j.Q is empty. Therefore, it starts

by computing the initial query result for the current time (line 1). In other words,

for relations j.l(L) and j.r(R), the spatial join J = (j.l 1pred j.r) is computed

where pred = (‖αl, αr‖ ≤ j.dist) is the join predicate, αl ∈ L and αr ∈ R are

the attribute names of the moving points in their schemas, j.dist > 0 is the join

distance, and ‖αl, αr‖ is the Euclidean distance metric. Once the initial query result

J is computed, then the events needed to maintain the query result J during the

current event generation cycle are computed in a call to Generate Events(j) (line

2). Time is divided into segments of equal length called event generation cycles.

Only events that occur during the current event generation cycle are considered for

processing. The first event generation cycle starts at the current time (e.g., now),

and lasts for the next j.generation length time units. The details on what events

get placed on the queue j.Q by Generate Events(j) depend on the approach used (All

Events (AE) see Section 6.2, or Next Event (NE) see Section 6.3). For now, all the

reader needs to know is that events will be enqueued before they occur.

The main loop of CSJU() in Figure 6.2 repeatedly processes events and updates

to maintain the query result J as time advances. An update is a tuple deletion,

or insertion in a relation. At the beginning of the loop, the algorithm will sleep

85

until either an event comes due, an update takes place, or the end of the current

event generation cycle is reached. If the end of the current event generation cycle is

reached, then Generate Events(j) is invoked again to enqueue the events for the next

event generation cycle.

Updates are processed according to the type of update (lines 8–16). An inser-

tion update to relation j.l is processed in a call to Insert L(j) (line 9). Insert L(j)

maintains the consistency of the query result J with respect to the update. The

details on how Insert L(j) works depends on the approach used (AE Section 6.2, or

NE Section 6.3). Similarly, Insert R(j) (line 13) processes an insertion to relation j.r,

Delete L(j) (line 11) processes a deletion from relation j.l, and Delete R(j) (line 15)

processes a deletion from relation j.r. Again, these procedures maintain the correct-

ness of the query result J with respect to updates. Details on how these procedures

work can be found in following sections for each approach.

If an event comes due, then the event is processed by invoking Process Next Event(j)

(line 6). Process Next Event(j) updates the query result J using the next event on

j.Q to maintain correctness as time advances. The details on how procedure Pro-

cess Next Event(j) operates depends on the approach used (AE described in Sec-

tion 6.2, or NE described in Section 6.3).

W-events are placed on the priority queue j.Q. In the context of the spatial join

query J = (j.l 1pred j.r), where join predicate pred = (‖αl, αr‖ ≤ j.dist), a w-event

is denoted w(pl, pr, t), where pl represents an instance of moving point attribute αl,

pr represents an instance of moving point attribute αr, and t is the time at which pl

86

and pr move to be at the distance j.dist of each other. For example, the enter event

in line ct = 3 of Figure 6.1 is denoted w(b, x, 3), and the exit event in line ct = 1 of

Figure 6.1 is denoted w(a, x, 1).

The design of the procedures in Figure 6.2 that take j as their argument vary

with the two approaches All Events (AE) or Next Event (NE) presented below in

Sections 6.2, and 6.3, respectively. The basic differences between AE and NE are

the times at which events are computed and placed on the queue. Both of the

approaches presented below follow the general strategy of only changing events on

the queue directly affected by a particular update. The difference lies in which events

are put on the queue in the first place, and consequently the events on the queue are

modified when an update occurs. The AE algorithm enqueues all events up to the

end of the event generation cycle. The NE algorithm enqueues only the next event

to occur for each moving point in one designated join relation. By convention this is

the left relation j.l. Again, neither approach enqueues any event that occurs beyond

the end of the current event generation cycle.

It is worth mentioning that updates could be supported in a simple modification

to Tao and Papadias’s algorithm for continuous spatial joins [65] (see Section 3.7.3)

by discarding any previously computed events, and recomputing all of them when

an update occurs. This alternative turns out to be much less efficient than our AE

or NE approach as shown by the experiments described in Section 6.5.

87

6.2 All Events (AE) Approach

The All Events (AE) approach maintains all currently pending events on the queue

that occur between the current time and the end of the current event generation

cycle. This algorithm can be thought of as an extension of the continuous spatial

join (CSJ) algorithm for future queries presented in [65] (see Section 3.7.3) to support

updates. The approach of this extension is to run the CSJ future query for some

finite time in the future to find all the events in that time period and place them

on an event queue. If an update occurs, modify the query result, and modify the

event queue to reflect the change introduced by the update. When updates occur,

the event queue is modified to maintain consistency between it and the new state

of the join relations. In this section we describe the AE versions of the procedures.

The NE versions of the procedures are described in Section 6.3.

Table 6.2 shows a trace for the example from Figure 6.1 using the AE approach.

For this example, assume each event generation cycle is 12 time units long. The

first cycle starts at time ct = 0, so the end of the first generation cycle is at time

12. Column 1 is the current time ct. Column 2 gives the event or update at time

ct. Column 3 gives the join result J , and column 4 shows the contents of the event

queue j.Q for the AE approach after each event or update is processed. Notice when

y is inserted into j.r at time ct = 2 there is no exit event inserted in the queue for

point b. This is because the exit event for b and y does not occur until the next event

generation cycle.

The AE version of Process Next Event() is given in Figure 6.3 (called from line 6 of

88

time ct event or update J j.Q

0 initial join and event gen. {〈a, x〉} 〈w(a, x, 1),w(b, x, 3)〉,
w(b, x, 11)〉

1 exit event {} 〈w(b, x, 3), w(b, x, 11)〉

2 insert y into j.r {〈a, y〉} 〈w(b, x, 3), w(a, y, 5.75),
w(b, y, 8.6), w(b, x, 11)〉

3 enter event {〈a, y〉, 〈b, x〉} 〈w(a, y, 5.75), w(b, y, 8.6),
w(b, x, 11)〉

4 delete b from j.l {〈a, y〉} 〈w(a, y, 5.75)〉

5 delete a from j.l {} 〈〉

6 insert b into j.l {〈b, x〉} 〈w(b, y, 8.6), w(b, x, 11)〉

7 delete y from j.r {〈b, x〉} 〈w(b, x, 11)〉

Table 6.2: Trace of the All Events (AE) algorithm for the example from Figure 6.1.

Figure 6.2). This handles the processing of events as they happen. The query result

J is updated based on the event type. The function pop(j.Q) (line 1) dequeues the

next w-event from j.Q and returns it. If the event is an enter event, then a new tuple

is added to the join result. If it is an exit event, then a tuple is removed from the join

result. The function pair(e) (lines 3 and 5) joins the tuples that contain the moving

points involved in the event e and returns them. For example, pair(w(b, x, 3)) = 〈b, x〉.

For brevity, only the moving point attributes are used to represent the whole tuple.

In Figure 6.3, once an event has been processed, no new events need to be placed

on the queue since all the events for the current event generation cycle are already

enqueued. This is why this approach is called the All Events approach, as all the

events from now until the end of the current event generation cycle are already on

the queue. Row ct = 1 in Table 6.2 is an example of an exit event. Row ct = 3 in

Table 6.2 is an example of an enter event.

The AE version of Insert L(j) (called from line 9 of Figure 6.2) is given in Fig-

ure 6.4. This is invoked when there has been an insertion to relation j.l. Insert L(j)

89

procedure AE Process Next Event(j)
1. Event e←pop(j.Q)
2. if event e is an enter event then
3. Report pair(e) inserted into result J .
4. else if event e is an exit event then
5. Report pair(e) deleted from result J .

Figure 6.3: AE Process Next Event(j)

performs a within query to update the join query result J , then finds all the new

events involving the newly inserted point, and inserts them in the queue. The

within query is performed in the call to Find Within Dist(j.tprr, j.r, pl, j.dist) (line

4). Find Within Dist() is a within distance query that returns the tuples from j.r

with points indexed by j.tprr that are within distance j.dist of query point pl. These

tuples are joined with the newly inserted tuple τl and added to the join query result

J (line 5). The call to function All Within Events(j.tprr, pl, j.dist, ∆t) (line 6) returns

all the w-events at distance j.dist from query point pl during the next ∆t with the

moving points indexed by j.tprr. Procedure All Within Events() is implemented us-

ing the incremental within event query described in Section 3.7.3, stopping when the

max time ∆t is reached. All new events found are placed on the queue j.Q (line 7).

Finally, the new tuple’s moving point attribute pl is added to the index j.tprl (line

8). Row ct = 6 in Table 6.2 is an example of an insertion to j.l.

The AE version of the Delete L() (called from line 11 of Figure 6.2) is given in

Figure 6.5. It is invoked when there has been a deletion from relation j.l. The

algorithm removes all events involving the instance pl of the moving point attribute

αl of tuple τl from the queue (line 3). It then performs a within query using pl as

90

procedure AE Insert L(j)
1. Let τl be the new tuple that was inserted into j.l.
2. Let pl be the instance of moving point attribute αl in τl.
3. Let ∆t be the time between now and the end of the

current event generation cycle.
4. foreach tuple τ ∈ Find Within Dist(j.tprr, j.r, pl, j.dist)
5. Report joined tuple τlτ inserted into result J .
6. foreach event e ∈ All Within Events(j.tprr, pl, j.dist, ∆t)
7. Enqueue event e on queue j.Q.
8. Insert point pl into index j.tprl.

Figure 6.4: AE Insert L(j)

the query point in a call to Find Within Dist() (line 4). The join of the newly deleted

tuple τl and the tuples found in the within query are removed from the join query

result J (line 5). Finally, pl is removed from index j.tprl (line 6). Rows ct = 4 and

ct = 5 of Table 6.2 are examples of deletions from relation j.l.

procedure AE Delete L(j)
1. Let τl be the tuple that was deleted from j.l.
2. Let pl be the instance of moving point attribute αl in τl.
3. Remove all events involving pl from j.Q.
4. foreach tuple τ ∈ Find Within Dist(j.tprr, j.r, pl, j.dist)
5. Report joined tuple τlτ deleted from result J .
6. Delete point pl from index j.tprl.

Figure 6.5: AE Delete L()

The AE version of Insert R() (called from line 13 of Figure 6.2) is symmetric with

AE Insert L(j). In particular, replacing τlτ with ττr in line 5 of Figure 6.4, followed

by swapping symbols l with r in Figure 6.4 yields the AE Insert R(j) algorithm. Row

ct = 2 of Table 6.2 is an example of an insertion update to j.r. Similarly, the AE

version of Delete R() (called from line 15 of Figure 6.2) is symmetric with procedure

91

AE Delete L(j). In particular, AE Delete R(j) is derived from AE Delete L(j) by re-

placing τlτ with ττr in line 5 of Figure 6.5, and then swapping symbols l with r in

Figure 6.5. Row ct = 7 of Table 6.2 is an example of a deletion update to j.r.

The AE algorithm for Generate Events(j) (called from line 18 of Figure 6.2) is

given in Figure 6.6. It is invoked at the beginning of each event generation cycle to

populate the event queue j.Q with new events. Note that j.Q is necessarily always

empty when Generate Events(j) is invoked. All events occurring during the new event

generation cycle are found and enqueued on the event queue j.Q. This is done by

scanning all the leaf nodes of index j.tprl (line 2). Each point pl found in a leaf

node (line 3) is used as the query point to All Within Events() (line 4). The resulting

events are placed on the event queue j.Q (line 5).

procedure AE Generate Events(j)
1. Let ∆t be the time between now and the end of the

current event generation cycle.
2. foreach leaf node n ∈ j.tprl

3. foreach moving point pl ∈ n
4. foreach event e ∈ All Within Events(j.tprr, pl, j.dist, ∆t)
5. Enqueue event e in queue j.Q.

Figure 6.6: AE Generate Events(j)

6.3 Next Event (NE) Approach

The Next Event (NE) approach enqueues just the next pending event during the cur-

rent event generation cycle for each moving point from one designated join relation,

relation j.l by convention. In other words, there is at most one event, the next event,

92

for each moving point in relation j.l. Table 6.3 shows a trace of the NE approach

with respect to the example given in Figure 6.1. This example assumes each event

generation cycle is 12 time units long. The first cycle starts at time ct = 0, so the end

of the first cycle is at time 12. Column 1 is the current time ct. Column 2 gives the

event or update at time ct. Column 3 gives the join result J , and column 4 shows

the contents of j.Q for the NE approach after each event or update is processed.

As with the AE approach, the event queue is modified after an update to maintain

consistency between it and the new state of the join relations.

time ct event or update J j.Q

0 initial join and event gen. {〈a, x〉} 〈w(a, x, 1), w(b, x, 3)〉

1 exit event {} 〈w(b, x, 3)〉

2 insert y into j.r {〈a, y〉} 〈w(b, x, 3), w(a, y, 5.75)〉

3 enter event {〈a, y〉, 〈b, x〉} 〈w(a, y, 5.75), w(b, y, 8.6)〉

4 delete b from j.l {〈a, y〉} 〈w(a, y, 5.75)〉

5 delete a from j.l {} 〈〉

6 insert b into j.l {〈b, x〉} 〈w(b, y, 8.6)〉

7 delete y from j.r {〈b, x〉} 〈w(b, x, 11)〉

Table 6.3: Trace of the Next Event (NE) algorithm for the example from Figure 6.1.

Figure 6.7 gives the NE version of Process Next Event() (called from line 6 of

Figure 6.2). This handles the processing of events as they occur. The query result J

is updated based on the event type of e. Then, the next event for the moving point

from relation j.l involved in e is enqueued, if one exists. The function pop(j.Q) in

line 1 dequeues the next w-event from j.Q and returns it. If the event is an enter

event, then a new tuple is added to the join result (line 5). If the event is an exit

event, then a tuple is removed from the join result (line 7). The function pair(e) joins

the tuples that contain the moving points involved in event e and returns them.

93

procedure NE Process Next Event(j)
1. Event e←pop(j.Q)
2. Let pl be the moving point in j.l involved in e.
3. Let ∆t be the time between now and the

end of the current event generation cycle.
4. if event e is an exit event then
5. Report pair(e) deleted from result J .
6. else if event e is an enter event then
7. Report pair(e) inserted into result J .
8. Let eexit be the exit event following

e for the points involved in e.
9. if event eexit occurs before now + ∆t then

10. Let ∆t be the time between now and eexit.
11. end if-then-else
12. enext ← Next Within Event(j.tprr, pl, j.dist, ∆t)
13. if event enext is not null then enqueue enext in j.Q.

Figure 6.7: NE Process Next Event(j)

In the case of an enter event, an optimization is made in NE Process Next Event()

in finding the next event enext. Observe that every enter event between moving points

is followed by an exit event sometime in the future. An exit event eexit for the points

involved in e can be computed using the information already in memory. The time

of eexit is an upper bound on the time of the next event enext. Event eexit is used

to shorten ∆t if it occurs before the end of the current event generation cycle (line

10). The call to Next Within Event(j.tprr, pl, j.dist, ∆t) (line 12) returns the next

w-event at distance j.dist from query point pl during the next ∆t time units with

the moving points indexed by j.tprr. It returns a null event if no such next event

exists. Procedure Next Within Event() is implemented using the incremental within

event query described in Section 3.7.3, stopping after the first event is returned. Row

ct = 1 in Table 6.3 is an example of an exit event. Row ct = 3 in Table 6.3 is an

94

example of an enter event.

Figure 6.8 gives the NE version of Insert L() (called from line 9 of Figure 6.2).

It is invoked when there has been an insertion to relation j.l. First, the instance pl

of the moving point attribute αl in the inserted tuple τl is used as the query point

in a call to Find Within Dist() to perform a within query (line 4). The result of

the within query is used to update the join query result J (line 5). Then the next

event for pl is found by calling Next Within Event() (line 10). If null is returned by

Next Within Event(), then no such next event for pl exists, otherwise the non-null

event is enqueued in j.Q (line 11). Finally, pl is added to the index j.tprl (line 12).

procedure NE Insert L(j)
1. Let τl be the new tuple that was inserted into j.l.
2. Let pl be the instance of the moving point in τl.
3. Let ∆t be the time between now and the end of the

current event generation cycle.
4. foreach τ ∈ Find Within Dist(j.tprr, j.r, pl, j.dist)
5. Report joined tuple τlτ inserted into result J .
6. Let eexit be the exit event between the points in τl and τ .
7. if event eexit occurs before now + ∆t then
8. Let ∆t be the time between now and eexit.
9. end foreach

10. enext ←Next Within Event(j.tprr, pl, j.dist, ∆t)
11. if event enext is not null then enqueue enext in j.Q.
12. Insert point pl into index j.tprl.

Figure 6.8: NE Insert L(j)

In the case when the new moving point is joined with a moving point in j.r, an

optimization can be performed to find the next event enext. As in the optimization

for NE Process Next Event() described above, an exit event for each join pair can be

computed using the information already in memory. The time of the earliest exit

95

event is an upper bound on the time of the next event enext. If it occurs before the

end of the current event generation cycle, it is used to shorten ∆t (line 8). Row

ct = 6 of Table 6.3 is an example of an insertion update to relation j.l.

Procedure NE Delete L(j) is the NE version of procedure Delete L() (called from

line 11 of Figure 6.2). It is called when there has been a deletion from relation j.l.

It is identical to AE Delete L(j) given in Figure 6.5.

Figure 6.9 gives the NE version of Insert R() (called from line 13 of Figure 6.2).

It is invoked when there has been an insertion to relation j.r. First, the instance pr

of the moving point attribute αr in the newly inserted tuple τr is used as the query

point in a call to Find Within Dist() to perform a within query (line 4). The result of

the within query is used to update the join query result J (line 5). Then all events

involving the newly inserted point pr and points in j.l are checked to see if any of

them take place before the currently queued events for points in j.l. To do this, the

function All Within Events() (line 6) is called to find the events. All the events for pr

must be examined to determine if any of them will be added to the queue. If a new

event e involves a point pl from relation j.l, and pl is not involved in any other event

already on queue j.Q, then e is added to the queue j.Q (line 9). On the other hand,

if the point pl is involved in another event on the queue eprev, then the time of eprev

is compared to the time of e. If e occurs before eprev then eprev is replaced on queue

j.Q with event e (line 13). Row ct = 2 of Table 6.3 is an example of an insertion

update to j.r.

Procedure NE Delete R(j) is the NE version of Delete R() (called from line 15 of

96

procedure NE Insert R(j)
1. Let τr be the new tuple that was inserted into j.r.
2. Let pr be the instance of moving point attribute αr in τr.
3. Let ∆t be the time between now and the end of the

current event generation cycle.
4. foreach τ ∈ Find Within Dist(j.tprl, j.l, pr, j.dist)
5. Report joined tuple ττr inserted into result J .
6. foreach e ∈ All Within Events(j.tprl, pr, j.dist, ∆t)
7. Let pl be the point from j.l that is involved in e.
8. if there is no event already in j.Q involving pl then
9. Enqueue event e in j.Q.

10. else
11. Let eprev be the event involving pl in j.Q.
12. if eprev occurs after e then
13. Replace eprev with e in j.Q.
14. end if
15. end if-then-else
16. end foreach
17. Insert point pr into index j.tprr.

Figure 6.9: NE Insert R(j)

Figure 6.2). It is called when there has been a deletion from relation j.r. Shown

in Figure 6.10, it is similar to AE Delete R(j) described above in Section 6.2, except

that in addition to removing all the events involving pr from j.Q (line 6), it then

computes the next event for the other points pl involved in those events (line 7),

and enqueues them (line 8). Note that in order to correctly compute the next event

using the tpr index, the point pr must be removed from the tpr index (line 4) before

Next Within Event() is called in line 7.

Figure 6.11 gives the NE algorithm for Generate Events(j) (called from line 18 of

Figure 6.2). It is invoked at the beginning of each event generation cycle to popu-

late the queue j.Q with events. This algorithm is identical to AE Generate Events(j)

97

procedure NE Delete R(j)
1. Let τr be the tuple that was deleted from j.r.
2. Let pr be the instance of moving point attribute αr in τr.
3. Let ∆t be the time between now and the end of the

current event generation cycle.
4. Delete point pr from index j.tprr.
5. foreach event w(pl, pr, t) ∈ j.Q
6. Remove w(pl, pr, t) from j.Q.
7. e←Next Within Event(j.tprr, pl, j.dist, ∆t)
8. Enqueue e in j.Q.
9. end foreach

10. foreach τ ∈Find Within Dist(j.tprl, j.l, pr, j.dist)
11. Report joined tuple ττr deleted from result J .

Figure 6.10: NE Delete R()

(Figure 6.6) except for line 4. In line 4, Next Within Event() is called instead of

All Within Events() (Next Within Event() and All Within Events() are described above).

As a result, one event, the next w-event, involving each point pl in j.l is enqueued.

This is analogous to a spatial semi-join operation [29] where each object in one rela-

tion joins with at most one object in the other relation. Note that j.Q is necessarily

always empty when NE Generate Events(j) is called.

procedure NE Generate Events(j)
1. Let ∆t be the time between now and the end of the

current event generation cycle.
2. foreach leaf node n ∈ j.tprl

3. foreach moving point pl ∈ n
4. foreach event e ∈ Next Within Event(j.tprr, pl, j.dist, ∆t)
5. Enqueue event e in queue j.Q.

Figure 6.11: NE Generate Events(j)

98

6.4 Performance Issues

The asymptotic sizes of the event queues differ for the AE and NE approaches. For

simplicity, assume join relations of equal size each containing n tuples. The size of

the TPR-tree indexes are the same for both the AE and NE approaches, but the

event queues are of different sizes. The worst case for the AE algorithm arises when

the join result J starts out empty, and every pair of moving points in the Cartesian

product of the join relations will be in the result set and then leave the results set

at some time in the future before the next event generation cycle. This leads to two

events for each pair, or O(n2) events in the queue. For the NE algorithm, only the

next event is computed for each point in one join relation. This means that there

can be at most O(n) events in the queue in the worst case. This may make updates

more costly for the AE approach because of a larger event queue.

Although the NE algorithm queue is smaller, there is a trade off between the size

of the queue and the frequency of use of the TPR-tree indexes. When an event is

processed, the AE Process Next Event() procedure does not access either TPR-tree

index. It only accesses the event queue to get the next event. On the other hand,

NE Process Next Event() not only pops the next event off the queue, but also accesses

the TPR-tree index j.tprr to find the next event so that it can be inserted in the

queue.

Accessing the event queue for NE is cheaper than for AE, but NE has the addi-

tional overhead lost in use of the TPR-tree to find the next event. Given this trade

off between the size of the event queue, and the frequency of use of the TPR-tree

99

indexes, it is not apparent which approach is better through analysis alone.

6.5 Experimental Results

In our join query experiments, we used the same data set sources as those described in

Section 5.5. Table 6.4 shows summary statistics for each aircraft data set used in this

chapter after conversion from samples to linear functions. Each column corresponds

to a different aircraft data set. Each row is a statistic on the data sets. Row 1 is the

mean number flights at any given time (µ). Row 2 is the standard deviation in the

number flights (σ). Row 3 is the average update interval (UI) for each data set.

µ 1097 2212 3334 4453 9021 12690 17106

σ 81.9 165.4 148.3 330.8 680.8 962.4 1293

UI 683.3 699.4 699.3 700.7 712.8 725.1 734.6

Table 6.4: Each column corresponds to a different aircraft data set. Each row is a
statistic on the data sets. Row 1 is the mean number of flights at any given time (µ).
Row 2 is the standard deviation in the number of flights (σ). Row 3 is the average update
interval (UI) in seconds.

6.5.1 Implementation

The priority queue of events (e.g., j.Q) was implemented using a disk based priority

search tree. Two B+-trees are used to support deletion of events based on ids of

objects involved in the event. One B+-tree is sorted by ids (idl) of objects from the

first join relation j.l, while the second B+-tree is sorted by ids (idr) of objects from

the second join relation j.r. This results in a mapping of the form idl → {idr, t},

and idr → {idl, t}. In addition to propagating the minimum and maximum id keys

100

up the internal nodes of the B+-tree, the minimum event time is also propagated

up the tree. The next event in time on the priority queue is found by following the

minimum event time down to the leaf containing it. The TPR-tree was implemented

using code provided by Saltenis et. al. [58]. Both the TPR-tree and the B+-trees

were implemented using the generalized search tree (GiST) [28] version 0.9beta1

code. The code was compiled using gcc 2.95. The experiments were run on several

VLSI 80686 CPU based machines running Linux.

6.5.2 Results

The experiments measure the total number of disk accesses over the duration of

a query. Since we are concerned with the maintenance portion of the query, disk

accesses to compute the initial join result are not included. To make full use of the

real data sets available, each data set is divided into subsets at evenly spaced time

intervals. Each query was performed on combinations of these subsets, including self

joins. Pairs of subsets were chosen randomly without replacement from all possible

combinations for a total of 110 joins per query. Only subsets taken from the same

original data set are joined in a query, so the join relations are approximately the

same size for each query. The number of disk accesses was averaged to yield the

experiment results for a given query. This technique was used on both the synthetic

and real data sets for comparability.

Independent variables are mean data set size (µ), join distance (d), event gener-

ation cycle length (EG), query duration (tQ), and disk cache size (|cache|). A disk

101

page size of 1024 bytes was used in all experiments. For aircraft flight data, the

defaults are µ = 9021 flights, d = 0.08 degrees, tQ = 100 seconds, and |cache| = 32

pages. For synthetic uniform data, the defaults are µ = 10000 points, d = 8 distance

units, tQ = 100 time units, and |cache| = 32 pages. Values for EG, and values other

than the defaults are stated for each individual experiment below.

Each TPR-tree index and each B+-tree has a cache of size |cache|. Every cache

uses a least recently used (LRU) replacement policy. For a page size of 1024 bytes,

leaf nodes of the TPR-tree (B+-tree) hold 50 (22) entries, and internal nodes hold

up to 28 (66) entries.

The purpose of the first experiment is to establish a baseline for performance

between a simple adaptation of the state-of-the-art and the NE and AE approaches.

The state-of-the-art approach is the continuous spatial join (CSJ) algorithm pre-

sented in [65]. Recall that CSJ is a future query and does not support updates (see

Section 3.7.3). To support updates, the TP portion (the part that finds the events)

of Tao and Papadias’s CSJ algorithm is reinvoked at the time of the update to find

the events for the remainder of the event generation cycle. Non-default parameters

for this experiment are EG = 11, tQ = 10, and |cache| = 12. Figure 6.12 examines

the total number of disk accesses (y-axis) vs. mean number of objects at any given

time (x-axis). Figure 6.12a shows the number of disk accesses in the absence of any

updates to the dataset as a baseline. This is only shown for the synthetic uniform

data distribution since the aircraft flight data has updates. Figure 6.12b shows the

number of disk accesses for updates on the synthetic uniform data. This is only

102

shown for a max mean data set size of only 5000 objects since our simple adaptation

of Tao and Papadias’s CSJ algorithm is so expensive. Figure 6.12c shows disk ac-

cesses for updates on the aircraft flight data. As can be seen in Figure 6.12a, when

there are no updates, the NE and AE approaches are about an order of magnitude

less efficient than Tao and Papadias’s CSJ algorithm (TP). On the other hand, when

the data set is updated, Figures 6.12b and 6.12c show an advantage for the NE and

AE approaches over our simple adaptation of Tao and Papadias’s CSJ algorithm to

support updates by nearly two orders of magnitude.

The remainder of our experiments are designed to compare the AE and NE

approaches with each other. The purpose of the second experiment is to determine

what influence the event generation cycle length (EG) has on the relative performance

between AE and NE. This is accomplished by varying the EG using the values 1, 6,

12, 25, 50, 100, and 200 and comparing the results. All other parameters were set to

the default. Figure 6.13 shows the results for aircraft flight data, while Figure 6.14

shows the results for uniform data. Graph (a) in each figure show the total number of

disk accesses. This reveals that the optimal performance for both methods is around

EG = 6. With a small EG value, the AE approach is better. With a large EG value,

the NE approach is better. To find out why, a closer look at each disk data structure

is needed. Recall that each relation in the join makes use of a TPR-tree to index

the moving points. Graph (b) in each figure shows the number of disk accesses for

the two TPR-tree indexes corresponding to the j.l and j.r relations. Recall also that

the priority queue is implemented using two B+-trees. Graph (c) shows the average

103

mean data set size

(a) no updates − uniform
di

sk
 a

cc
es

se
s

mean data set size

(c) updates − aircraft flight data

di
sk

 a
cc

es
se

s

mean data set size

(b) updates− uniform data

di
sk

 a
cc

es
se

s

 0

 10k

 20k

 30k

 40k

 50k

 60k

 10k5k 15k 20k

NE total
AE total
TP total

 0
 10k
 20k
 30k
 40k
 50k
 60k
 70k
 80k
 90k

 1k 2k 3k 4k

NE total
AE total
TP total

 2500 1250 5000 3750
 0

 20k

 40k

 60k

 80k

 100k

 120k

 140k

 160k
NE total
AE total
TP total

Figure 6.12: Comparison of total disk accesses for our simple adaptation of Tao and
Papadias’s CSJ algorithm to support updates (TP) to NE and AE without updates (a)
and with updates (b and c).

number of disk accesses of the two B+-trees for the priority event queue. For small

EG values, the TPR-tree performance dominates. For a large EG values, the queue

performance becomes dominant. Since the AE approach uses the event queue more

heavily, and a shorter EG results in a small queue size, a small EG favors the AE

approach. The NE approach uses the queue more efficiently, but accesses the TPR-

tree indexes more often than the AE approach, so a large EG value favors the NE

approach. The best performance is EG = 6 out of all values of EG tested.

104

(a) total
event generation cycle length (EG)

di
sk

 a
cc

es
se

s

(b) index (c) queue

 0

 50k

 100k

 150k

 200k

 250k

 300k

 1 10 100 1000

NE index
AE index

event generation cycle length (EG)

di
sk

 a
cc

es
se

s

 0

 50k

 100k

 150k

 200k

 250k

 300k

 1 10 100 1000

NE queue
AE queue

event generation cycle length (EG)

di
sk

 a
cc

es
se

s

 0

 50k

 100k

 150k

 200k

 250k

 300k

 1 10 100 1000

NE total
AE total

Figure 6.13: Aircraft flight data (x-axis is log scale)

The purpose of the third experiment is to determine how query distance affects

the performance of the AE and NE approaches. This is done by varying the query

distance for two different EG values as shown in Figure 6.15. All other parameters

were set to their default values. The uniform number of disk accesses seems to vary

quadratically with distance for small values of EG, but varies linearly with distance

for larger values of EG. The complex interaction between the TPR-tree indexes,

and the event queue makes it unclear why linear behavior is observed for larger EG

105

 0

 50k

 100k

 150k

 200k

 250k

 300k

 1 10 100 1000

NE total
AE total

event generation cycle length (EG)

(a) total
di

sk
 a

cc
es

se
s

 0

 50k

 100k

 150k

 200k

 250k

 300k

event generation cycle length (EG)
 1 10 100 1000

NE queue
AE queue

(c) queue

di
sk

 a
cc

es
se

s

 0

 50k

 100k

 150k

 200k

 250k

 300k

 1 10 100 1000

NE index
AE index

event generation cycle length (EG)

(b) index

di
sk

 a
cc

es
se

s

Figure 6.14: Uniform synthetic data

values. For a small EG value, the AE approach is better (Figures 6.15a and 6.15b).

For a large EG, value the NE approach is better (Figures 6.15c and 6.15d).

The purpose of the fourth and final experiment is to determine how the size of

the join relations affect the performance of the AE and NE approaches. This is done

by varying the data set size for two different EG values as shown in Figure 6.16. All

other parameters were set to their default values. The number of disk accesses seems

to follow a quadratic growth rate as a function of data set size. This is consistent

with our expectations since the selectivity of a static join exhibits a quadratic growth

106

join distance (degrees)

join distance (degrees)

(a) Aircraft flight data, EG 6 (b) Uniform data, EG 6

(c) Aircraft flight data, EG 200
join distance

(d) Uniform data, EG 200

join distance

 0

 50k

 100k

 150k

 200k

 250k

 300k

 350k

 400k

 0 .05 .1 .15 .2 .25 .3 .35

NE total
AE total

di
sk

 a
cc

es
se

s

di
sk

 a
cc

es
se

s

di
sk

 a
cc

es
se

s

di
sk

 a
cc

es
se

s

 0

 200k

 400k

 600k

 800k

 1000k

 1200k

 1400k

 0 .05 .1 .15 .2 .25 .3 .35

 0
 50k

 100k
 150k
 200k
 250k
 300k
 350k
 400k
 450k
 500k

 0 5 10 15 20 25 30 35

NE total
AE total

NE total
AE total

 0 5 10 15 20 25 30

NE total
AE total

 0

 200k

 400k

 600k

 800k

 1000k

 1200k

 35

Figure 6.15: Number of disk accesses vs. join distance

rate with respect to join relation size. For a small EG value, the AE approach is

better (Figures 6.16a and 6.16b). For a large EG value, the NE approach is better

(Figures 6.16c and 6.16d).

6.6 Conclusion

In this chapter we extended the general event base-query processing approached

from Chapter 5 to support binary queries, and we scaled the within query of the CW

107

 0

 50k

 100k

 150k

 200k

 250k

 300k

 350k

 400k

 4k 6k 8k 10k 12k 14k 16k 18k
mean number of points

mean number of points

NE total
AE total

mean number of aircraft
(a) Aircraft flight data, EG 6

mean number of aircraft

(b) Uniform data, EG 6

(c) Aircraft flight data, EG 200 (d) Uniform data, EG 200

di
sk

 a
cc

es
se

s
di

sk
 a

cc
es

se
s

di
sk

 a
cc

es
se

s
di

sk
 a

cc
es

se
s

 4k 8k 12k 16k 20k
 0

 200k

 400k

 600k

 800k

 1000k

 1200k

 1400k

 4k 6k 8k 10k 12k 14k 16k 18k

 0
 50k

 100k
 150k
 200k
 250k
 300k
 350k
 400k
 450k

 4k 8k 12k 16k 20k

NE total
AE total

NE total
AE total

NE total
AE total

 0

 200k

 400k

 600k

 800k

 1000k

 1200k

 1400k

Figure 6.16: Number of disk accesses vs. mean number of moving points (per relation)

algorithm to support spatial joins. The All Events (AE) approach can be thought

of as an adaptation of the continuous spatial join algorithm [65] to support updates

in the spirit of the ETP algorithm from Chapter 5. This and our new approach, the

Next Event (NE) approach, were shown to be nearly two orders of magnitude better

than a more naive adaptation of the continuous spatial join algorithm from [65]. The

relative performance of the AE and NE approaches varies depending on the tuning

of an internal system parameter, namely the event generation interval length (EG).

For small EG values, the AE approach is better, while for large EG values, the NE

108

approach is better. The AE approach performs slightly better than the NE approach

in the best case (EG = 6).

109

Chapter 7

Spatial Semijoin Queries

7.1 Introduction

We consider the following queries. For each moving firetruck, keep track of the

nearest mobile police unit. For each airplane, keep track of the nearest airport. For

each cell phone, keep track of the nearest airborne relay station. For each tank, keep

track of the nearest target. For each robot explorer in a swarm of robots, keep track

of the nearest maintenance robot. For each unmanned air vehicle, keep track of the

nearest observation objective. For each ship, keep track of the nearest sonar tracking

station. These are all examples of spatial semijoin queries on moving objects. Many

are examples where all the objects are moving simultaneously and continuously. All

must update the query result as the objects move in real time. None know how the

object will move ahead of time.

In this chapter, we address the maintenance of spatial semijoin queries over con-

tinuously moving points. Given two sets of moving points Q and D, we define

110

semijoin Q nk D as all the pairs 〈q, p〉, q ∈ Q∧ p ∈ D, that are in Cartesian product

Q×D, and p is one of the k nearest neighbors of q. Set Q is the set of query points,

and D is the set of data points. This amounts to a massive scaling of a continuous

nearest neighbor query for all query points. Traditionally, a semijoin returns tuples

from only one join relation. However, we relax this constraint to make the result

meaningful in light of the examples above.

Data sets Q, and D are updated through insertions and deletions to the sets.

There is no prior knowledge of what the updates will be in advance of each update

occurrence. This is analogous to the maintenance of a materialized view [25], with

the difference being that the query result may change as a result of the motion of

points represented in the database as well as updates to the database.

Points are modeled as linear functions of time, as opposed to samples of an objects

location that are updated as an object moves. Therefore, as time advances, the query

result may change independently of updates. To our knowledge there has been no

previous work to perform continuous spatial semijoin queries on moving objects so

that any of the examples queries given in the first paragraph above for data sets of

significant size can be answered. Some work on scaling k-nn queries on point data

represented as samples (e.g., [52]) has been done, but not on the scale needed to

perform semijoins.

In this paper, we present a new approach, termed continuous fuzzy sets (CFS),

to perform spatial semijoins. This approach is most similar to a continuous window

k-nn algorithm presented in [35]. However, CFS is not just a simple scaling of this

111

previous work. As we will show, previous work (e.g., [35, 65]) does not scale well.

CFS is compared experimentally to a simple scaling of the time-parameterized k-nn

algorithm presented in [65]. The result is a significant better performance of CFS

compared to this previous work by up to an order of magnitude in some cases.

The continuous fuzzy set (CFS) semijoin algorithm maintains a semijoin query

result Qnk D on the sets of kinematic points Q and D as time advances and updates

occur. The main algorithm is a simple event-driven query processing algorithm that

supports updates similar to the one presented in [35]. Events are placed on a priority

queue sorted by time and dequeued one at a time for processing. There is one and

only one nn-event or underflow event (described below) on the event queue for each

query point in Q. Updates (insertions and deletions) are also processed as they occur.

The assumption on updates is that there is no priori knowledge of updates, such as

is the case in a real-time system.

The fuzzy set of a query point q ∈ Q consists of all the points S = {s1...sn},

where si ∈ D, that are now or will be within some given distance of q sometime in

the near future. This maintains a cloud of points around each query point. The next

nn-event for any given point q ∈ Q is computed from q’s fuzzy set.

A fuzzy set is determined by a circle (or hypersphere for higher dimensional data)

centered at q and with radius r known as the query circle. Radius r is chosen so that

there are at least k points within Euclidean distance r of q. The points in the circle,

along with points that will enter the circle sometime in the near future, make up

the fuzzy set of q. Scalar value r is generally a different value for each query point

112

q ∈ Q. This region around the query point is denoted circle(q, r).

Time is divided up into uniform segments of time called fuzzy-set-intervals. The

fuzzy-set-interval determines which points entering circle(q, r) belong to the fuzzy

set. Only points that enter circle(q, r) during the current fuzzy-set-interval are in q’s

fuzzy set. At the start of each new fuzzy-set-interval, each query point’s fuzzy set is

updated (see Update Fuzzy Set() below).

Figure 7.1 illustrates an example fuzzy set for a single query point q in set Q, and

data points {a,b,c,d,e,f,g,h,i} ∈ D. Assume for this example, that the length of

the arrows in the figure indicate how far each point will travel in one minute. In this

example, the query point is not moving for simplicity. Also, assume for this example,

that the current fuzzy-set-interval will end in one minute. In this example, all the

points in circle(q, r), and all the points that will enter circle(q, r) within the next

minute (up to the end of the current fuzzy-set-interval), are in the fuzzy set of point

q. The length of each fuzzy-set-interval is a system parameter. Points {a,b,c,f,g,i}

are in the fuzzy set of query point q. Note that point d is closer to the circle than

point c, but it is moving slower and will not enter the circle during the next minute.

An underflow event occurs when the k thneighbor of some query point q leaves

circle(q, r). When this happens, r has to be increased to encompass more data points

in circle(q, r). Underflow events are denoted by uf(q, pk, t), where q ∈ Q is the query

point, pk ∈ D is the current k thneighbor of q, and t is the underflow event time. For

example, suppose that the query for Figure 7.1 is Qn3 D, that is, for each point in Q

find the 3 nearest neighbors in D. Point g is currently the 3rd nearest neighbor from

113

f

g

i

c

d b

e

q

a

h

r

Figure 7.1: Example fuzzy set, where ⊗ is the query point q, • indicate points in q’s
fuzzy set, and ◦ indicate points not in the fuzzy set.

point q. Recall from Section 7.1, the subscript k for a semijoin Q nk D denotes the

number of nearest neighbors in D to be found for every point in Q. Suppose that

point g will leave circle(q, r) at time tg, then the underflow event is uf(q,g, tg). The

component members of an underflow event are denoted by query pt(uf(q, pk, t)) = q,

kth pt(uf(q, pk, t)) = pk, and time(uf(q, pk, t)) = t. For the sake of consistency with

nn-event notation (described below) we define other pt(uf(q, pk, t)) = pk.

An nn-event is denoted by nn(q, r, pk, o, t), where q is the query point, r is the

radius of circle(q, r), pk is the k thneighbor of q, o is the other data point that will

become the new k thneighbor at event time t. For example, suppose that the query

for Figure 7.1 is Q n1 D, that is, for each point in Q find the nearest neighbor in

D. Point a is currently the nearest neighbor of point q. Let the time for the next

114

oc-event between points a, c, and q be time ta,c. Also, suppose that this is the next

oc-event out of all the oc-events among the points in q’s fuzzy set. In this case,

the nn-event for point q is nn(q, r, a, c, ta,c). To support fuzzy sets, the radius of

the query circle is stored with the nn-event. The radius is not part of the definition

of the nn-event itself, but it will be needed when the nn-event is processed. The

component members of an nn-event are denoted by query pt(nn(q, r, pk, o, t)) = q,

radius(nn(q, r, pk, o, t) = r, kth pt(nn(q, r, pk, o, t)) = pk, other pt(nn(q, r, pk, o, t)) = o,

and time(nn(q, r, pk, o, t)) = t.

7.2 Data Structures

The event queue E-queue is a priority queue of events (underflow and nn-events)

sorted by time. It is made up of three data structures. The first is a B+-tree variant

called the nearest neighbor event B-tree (NN-B-tree). Every point p is assumed to have

an associated unique id denoted id(p). The NN-B-tree B+-tree is sorted on the key

id(query pt(e)) and yields the event value e (i.e., id(query pt(e))→ e). In addition to

implementing a range tree on id(query pt(e)), the B+-tree is augmented to implement

a heap in the event times. In particular, in addition to the minimum and maximum

keys, the minimum event time for a subtree in the NN-B-tree is propagated up to the

root. Thus the result is a variant of a priority search tree [46]. Figure 7.2 shows an

example NN-B-tree. The next event time is found by examining the root node, and

returning the minimum event time in the root. To obtain the next event, the tree

is traversed from its root to the leaf by following the minimum event time down the

115

branches of the tree. The NN-B-tree allows efficient updates based on the id of query

points from Q. However, in order to efficiently perform updates using a data point id

as a key, additional data structures are needed. The K-B-tree is a standard B+-tree

sorted by key id(kth pt(e)) yielding the value id(query pt(e)) (i.e., id(kth pt(e)) →

id(query pt(e))). The O-B-tree is a standard B+-tree sorted by key id(other pt(e))

yielding the value id(query pt(e)) (i.e., id(other pt(e))→ id(query pt(e))).

id7

e 1 2 3 4 5 6 7e e e e e e

id1 min_time() id4 min_time(4 7)e , ... ,e e , ... ,e1 3

Figure 7.2: Example NN-B-tree with one root node, and two leaf nodes, where idi =
id(query pt(ei)).

Together, these three data structures NN-B-tree, K-B-tree, O-B-tree and their

algorithms form the event queue E-queue. The algorithm to insert an event e is given

in Figure 7.3. The algorithm to delete an event, given a query point q, is given in

Figure 7.4. These are straight-forward since there is one and only one event for each

query point in Q. The algorithm to delete all events involving a given data point

p is more complicated since there may be many events involving p in the queue.

The algorithm is given in Figure 7.5. First, all query points q for which p is the

k thneighbor are considered (line 1). The event for each q is found (line 2), then all

the entries involving q are removed from the three B+-trees; O-B-tree, NN-B-tree,

K-B-tree (lines 3–5). Since id(q) is unique, there is only one entry for a given q in

each B+-tree. Second, all query points q are considered where p is the other point

involved in q’s event (line 7). Likewise, each entry for each of these query points are

116

deleted from the three B+-trees (lines 8–11).

procedure E-queue Insert(e)
1. Insert id(query pt(e)) → e into NN-B-tree.
2. Insert id(kth pt(e)) → id(query pt(e)) into K-B-tree.
3. Insert id(other pt(e)) → id(query pt(e)) into O-B-tree.

Figure 7.3: E-queue Insert()

procedure E-queue Delete QueryPt(q)
1. Find entry id(q) → e in NN-B-tree.
2. Delete entry id(kth pt(e)) → id(q) from K-B-tree.
3. Delete entry id(other pt(e)) → id(q) from O-B-tree.
4. Delete entry id(q) → e from NN-B-tree.

Figure 7.4: E-queue Delete QueryPt()

procedure E-queue Delete All DataPt(p)
1. foreach id(p) → id(q) in K-B-tree do
2. Find entry id(q) → e in NN-B-tree.
3. Delete id(other pt(e)) → id(q) from O-B-tree.
4. Delete entry id(q) → e from NN-B-tree.
5. Delete entry id(p) → id(q) from K-B-tree.
6. end foreach
7. foreach id(p) → id(q) in O-B-tree do
8. Find entry id(q) → e in NN-B-tree.
9. Delete entry id(kth pt(e)) → id(q) from K-B-tree.

10. Delete entry id(q) → e from NN-B-tree.
11. Delete entry id(p) → id(q) from O-B-tree.
12. end foreach

Figure 7.5: E-queue Delete All DataPt()

To manage fuzzy sets, another set of data structures is used. The fuzzy set index

(FS-index) keeps track of points in fuzzy sets, and the time the points will expire

from each fuzzy set. The FS-index utilizes two B+-trees. The first B+-tree is the

117

FS-B-tree. It is sorted by id(q) yielding the value {q, p, t} (i.e., id(q) → {q, p, t}),

where q ∈ Q, p ∈ D, and t is the expiration time for p. The expiration time is the

time when p leaves circle(q, r) and is no longer part of q’s fuzzy set.

The other B+-tree used by the FS-index is the ID-B-tree. It is sorted by id(p)

yielding id(q) (i.e., id(p) → id(q)). It serves a similar purpose as the K-B-tree or

O-B-tree for the E-queue to support deletions of data points. Together, the FS-B-tree

and the ID-B-tree form the FS-index. The algorithms to insert and delete objects in

the FS-index are similar to those for the E-queue, but simpler since there are only

two B+-trees involved.

Two tpr indexes [58] are used by the CFS algorithm. One index is on the query

circles circle(q, r) rather than the query points in set Q. A second tpr index used by

CFS is on the set of data points D.

7.3 CFS Algorithm

The main loop of the event-driven algorithm processes events and updates as they oc-

cur to maintain the query result over the moving points. The main loop invokes pro-

cedures Process Event(), Update Fuzzy Set(), Insert Data Point(), Delete Data Point(),

Insert Query Point(), and Delete Query Point() as needed (see below). Updates are

not known in advance of their occurrence. Processing continues indefinitely.

When an event on the E-queue comes due, it is dequeued and passed to procedure

Process Event() (Figure 7.6). Every query point has either an nn-event, or an under-

flow event associated with it in the event queue, E-queue, even if the event time is∞.

118

procedure Process Event(e)
1. Point q ← query pt(e)
2. if e is an nn-event then
3. if kth pt(e) is becoming k + 1 neighbor of q then
4. update the query result.
5. Get all entries for q from FS-index, and remove

expired points to get fuzzy set S.
6. if count of expired points > expired threshold then
7. remove all expired entries for q from FS-index.
8. Enqueue Event(S, q,radius(e),kth pt(e))
9. else if e is an underflow event then

10. Handle Underflow(q)

Figure 7.6: Process Event()

This is done so that every query point and its k th neighbor can be found simply by

examining the queue. For an nn-event (line 2), if other pt(e) was not previously part

of the k-neighbor-set for q (line 3), then it pushes the current k th neighbor out of the

set and other pt(e) becomes the new k th neighbor. This necessitates an update to

the query result. The query result is updated by reporting 〈kth pt(e), q〉 deleted, and

〈other pt(e), q〉 inserted (line 4). For example, suppose that the query for Figure 7.1

is Q n1 D, that is, for each point in Q find the nearest neighbor in D. Point a is

currently the nearest neighbor of point q. The event on the queue for point q is

nn(q, r, a, c, ta,c), where time ta,c is the time points a and point c will be equidistant

from point q. When this event comes due and is processed, point c pushes point a

out of the k-neighbor-set (in this case the 1-neighbor-set) of point q, and becomes

the new nearest neighbor.

If, on the other hand, other pt(e) was already part of the k-neighbor-set, then it

simply becomes the new k th neighbor, and the current k th neighbor becomes the k−1

119

neighbor. For example, suppose that the query for Figure 7.1 is Q n2 D, that is, for

each point in Q find the 2 nearest neighbors in D. Point b is currently the 2nd nearest

neighbor from point q. In this example, the nn-event for point q is nn(q, r,b, a, tb,a),

because point a will be the first to be equidistant with point b from point q before

any other point in point q’s fuzzy set. When nn(q, r,b, a, tb,a) comes due at time

tb,a, point a becomes the new k th neighbor (2nd neighbor), but point b stays in the

2-neighbor-set of point q, so the query result does not change. However, since the

2nd neighbor changed, a new nn-event for point q must be calculated and enqueued.

The new nn-event is calculated from q’s fuzzy set. The fuzzy set S for q is stored

in the FS-index. All points in the FS-index that have not expired are in q’s current

fuzzy set (line 5). A point expires from the fuzzy set when it leaves the circle around

q. If the number of expired points exceeds a certain threshold, then all expired points

for q are removed from the FS-index (line 6) This keeps down the number of expired

entries in the FS-index. The fuzzy set S is used to compute the next event for q

(line 8) (see description of Enqueue Event() below). An underflow event occurs when

circle(q, r) contains less than k points (line 9). When underflow occurs, the fuzzy set

must be expanded (line 10) (see description of Handle Underflow() below).

procedure Enqueue Event(S, q, r, pk)
1. S ← (S − pk)
2. Find the next nn-event e from among the points in S.
3. if kth pt(e) will expire before e occurs then
4. enqueue an underflow event for q in E-queue.
5. else enqueue e in E-queue.

Figure 7.7: Enqueue Event()

120

Enqueue Event() (Figure 7.7), called from line 8 of Figure 7.6, computes the next

event for a query point from its fuzzy set. The current k th neighbor is removed from

the fuzzy set S (line 1). The remaining points in fuzzy set S are each considered

for the next nn-event by computing each of their next occurring order change events

(oc-events) in turn (line 2). Recall from Chapter 2 that an oc-event for a data point p

occurs when p moves to be at the same distance to q as its current k th neighbor. The

soonest oc-event becomes the next nn-event (line 5), unless circle(q, r) underflows

sooner. In that case, an underflow event is enqueued instead (line 4).

procedure Handle Underflow(q)
1. Remove all entries for q from FS-index.
2. n← dk∗circle factore
3. Get new set S of n + 1 neighbors around q.
4. r ← (‖q, sn‖+ ‖q, sn+1‖)/2, where sn, sn+1 ∈ S
5. Remove sn+1 from S.
6. Add points to S that will enter circle(q, r) during the

current fuzzy-set-interval.
7. Insert points S, and their expiration times into FS-index.
8. Enqueue Event(S, q, r, sk), where sk ∈ S is the k thneighbor of q.
9. Remove old circle centered at q from query point tpr

tree, and insert circle(q, r).

Figure 7.8: Handle Underflow()

Handle Underflow() (Figure 7.8), called from line 10 of Figure 7.6, resizes the

fuzzy set for a query point. The old fuzzy set needs to be removed from the FS-

index, since the radius defining the expiration times for the points in the old fuzzy

set will change (line 1). The circle around q is calculated to initially contain some

multiple of k points. The global constant circle factor > 1 is used to determine how

many points to start with in a circle (line 2). An incremental distance algorithm [30]

121

(see Section 3.6) is used to get the n + 1 neighbors of q using the tpr index on the

data points (line 3). The n+1 neighbor, sn+1, is used to determine the radius of the

new circle. The new radius is the average of the distances from q to the nth neighbor,

sn, and q to the (n + 1)th neighbor, sn+1 (line 4). Note that the Euclidean distance

at the current time between two kinematic points q and p is denoted ‖q, p‖. This

technique for finding the radius helps to avoid the situation where points instantly

leave the circle after it is resized. Once the radius is computed, sn+1 is discarded

from the set S because it is outside the circle (line 5). The rest of the fuzzy set is

found using an incremental within event query [65] (see Section 3.7.3) on the tpr

index on the data points (line 6). At this point S contains all the points in q’s new

fuzzy set. The points in fuzzy set S are inserted into the FS-index along with their

expiration times (line 7). The next nn-event is computed from the points in S and

enqueued (line 8). Finally, the tpr index on the query circles is updated (line 9).

For example, suppose that the query for Figure 7.1 is Q n1 D, that is, for each

point in Q find the nearest neighbor in D. Point a is currently the nearest neighbor

of point q. Also suppose that the radius of the circle is not r as in the figure, but is

smaller, and suppose that an underflow event has just occurred. In other words, the

radius of the circle is at the distance from point q that point a is at right now, say

rold. Suppose also that circle factor = 3. When Handle Underflow() is invoked, we get

n = k∗circle factor= 1∗3 = 3 (line 2). We then find the n+1, or 4 nearest neighbors

to point q (line 3). Set S now contains points {a, b, g, f}. The new distance r (the

large circle in Figure 7.1) is calculated to be halfway between point g and point f

122

from point q (line 4). Once r is computed, the 4th neighbor of q is removed from

S leaving {a, b, g} (line 5). Suppose that the end of the current fuzzy-set-interval

is one minute in the future. All the points that will enter circle(q, r) before the end

of the current fuzzy-set-interval (e.g., within the next minute) are added to set S to

give {a,b,c,f,g,i} (line 6). In this case, point f ends up back in set S, but it would

not if it were moving away from the circle. The points {a,b,c,f,g,i}, along with their

expiration times are inserted into the FS-index (line 7). They are also used to find

the next nn-event (line 8). The old circle circle(q, rold) is removed from the circle tpr

tree and the new circle circle(q, r) is inserted (line 9).

procedure Update Fuzzy Set()
1. foreach circle(q, r) in the query circle tpr tree do
2. Add new points to q’s fuzzy set S that will enter

circle(q, r) during the current fuzzy-set-interval.
3. Find the next nn-event e from among the points in S.
4. if e occurs before the currently enqueued event for q
5. then replace currently enqueued event with e.
6. end foreach

Figure 7.9: Update Fuzzy Set()

Update Fuzzy Set() (Figure 7.9) is invoked at the start of each new fuzzy-set-

interval to update the fuzzy set for each query point. This finds all the data points

that will enter query circles during the new fuzzy-set-interval segment of time. The

tpr index on the query circles is scanned to get all the query circles circle(q, r) (line

1). The fuzzy set S for each q is updated by finding all the new data points entering

circle(q, r) using an incremental within event query [65] (see Section 3.7.3) on the

data point tpr index (line 2). The current k th neighbor sk ∈ S is found, and then

123

the nn-event e from the rest of the points in S is computed (line 3). This is done

by considering each point si ∈ S, i 6= k for the next nn-event by computing each si’s

next oc-event with respect to sk and q. The soonest oc-event out of all is the next

nn-event e. If e occurs before the event that is currently in the event queue E-queue

for q, then e replaces the one on the queue for point q (line 5).

procedure Insert Data Point(p)
1. foreach circle(q, r) with p in q’s fuzzy set do
2. if p is in the k-neighbor-set of q then
3. Update the query result.
4. Remove q’s event from the E-queue.
5. Get all entries for q from FS-index, and remove

expired points to get fuzzy set S.
6. Enqueue Event(S, q, r, sk), where sk ∈ S is the k thneighbor of q.
7. else if p introduces a sooner nn-event for q then
8. Replace the nn-event for q in E-queue.
9. end if-else-if

10. end foreach
11. Insert p into the data point tpr index.

Figure 7.10: Insert Data Point()

Insert Data Point() (Figure 7.10) is invoked when a new point p is added to the

set of data points D in the semijoin query Q nk D. The query circle tpr index is

used to find all circle(q, r)’s that currently contain, or will contain p between now

and the end of the current fuzzy-set-interval (line 1). In particular, this entails the

performance of two operations using the query circle tpr index. The first finds all

the circles that currently contain point p using a within distance d = 0 query [30].

The second uses an incremental within event query [65] (see Section 3.7.3) to find

all the circles that will contain p before the end of the fuzzy-set-interval. Each query

124

circle circle(q, r) is processed in turn. If p is closer to a given q than the k th neighbor

of q, then it is in the k-neighbor-set of q (line 2). Point q’s entry in the event queue

can be used to find the k th neighbor of q since both nn-events and underflow events

keep track of the k th neighbor. When p is in the k-neighbor-set of q, then the current

k th neighbor becomes the k + 1 neighbor. The entry involving the old k th neighbor

〈kth, q〉 is removed from the query result and the new entry 〈p, q〉 is added (line 3).

When the k th neighbor changes, the nn-event or underflow event changes as well, so

the old event needs to be removed from E-queue (line 4). The new event is calculated

from the fuzzy set of q (lines 5–6). If p is not in the k-neighbor-set, then it may still

affect the next nn-event. If p’s next oc-event occurs before the current nn-event for

q, then the oc-event becomes the new nn-event, and replaces the old nn-event on the

queue (lines 7–8). After all circles have been processed, the tpr index on the data

points is updated (line 11).

Delete Data Point() (Figure 7.11) is invoked when a data point p is deleted from

the set of data points D in the semijoin query Q nk D. First, p is removed from the

data point tpr index (line 1), and FS-index (line 2). All the circles that contain p,

or would contain p during the current fuzzy-set-interval are processed in turn (line

3). These circles are found by applying an incremental distance [30] (Section 3.6),

and incremental within event query [65] (Section 3.7.3) on the data point tpr index.

If p is the current k th neighbor, or closer to a given q than its k th neighbor, then

the events and query result change (line 4). The current k + 1 neighbor becomes

the k th neighbor. After the old event for q is removed from the event queue (line

125

procedure Delete Data Point(p)
1. Remove p from the data point tpr index.
2. Remove all entries involving p from FS-index.
3. foreach circle(q, r) with p in q’s fuzzy set do
4. if p is in the k-neighbor-set of q then
5. Remove q’s event from the E-queue.
6. Get all entries for q from FS-index, and remove

expired points to get fuzzy set S.
7. if number of data points in circle(q, r) < k then
8. Handle Underflow(q)
9. else

10. Enqueue Event(S, q, r, sk), where sk ∈ S is the new k thneighbor of q.
11. Update query result.
12. else if p is involved in q’s enqueued event then
13. Remove q’s event from the E-queue.
14. Get all entries for q from FS-index, and remove

expired points to get fuzzy set S.
15. Enqueue Event(S, q, r, sk), where sk ∈ S is the new k thneighbor of q.
16. end if-else-if
17. end foreach

Figure 7.11: Delete Data Point()

5), the fuzzy set S is found (line 6), and checked for underflow (line 7). Underflow

results in a resizing of the fuzzy set, and a new nn-event is enqueued (line 8). If

the fuzzy set does not underflow, then a new nn-event is enqueued given the new

k th neighbor (line 10). The result is updated by deleting the old k th neighbor and

inserting the new one (line 11). When p is not in the k-neighbor-set, but is involved

in the nn-event for q (line 12), then the nn-event changes. In particular, the new

nn-event is found from the points in q’s fuzzy set S, replacing the old nn-event in

the queue (lines 13–15).

Insert Query Point() (Figure 7.12) is invoked when a query point is inserted into

Q in the semijoin query Q nk D. This procedure is similar to Handle Underflow()

126

procedure Insert Query Point(q)
1. n← dk∗circle factore
2. Get new set S of n + 1 neighbors around q.
3. r ← (‖q, sn‖+ ‖q, sn+1‖)/2, where sn, sn+1 ∈ S.
4. Remove sn+1 from S.
5. Add points to S that will enter circle(q, r) during the

current fuzzy-set-interval.
6. Insert points S, and their expiration times into FS-index.
7. Enqueue Event(S, q, r, sk), where sk ∈ S is the k thneighbor of q.
8. Report 〈si, q〉 inserted to result for the closest k

points si ∈ S to q.
9. Insert circle(q, r) into query circle tpr index.

Figure 7.12: Insert Query Point()

except that there are no previous entries for q in FS-index or the query circle tpr

index to remove. Lines 1–7 are identical to lines 2–8 of Figure 7.8. Before finishing,

the k neighbors of q are added to the query result (line 8), and the query circle is

added to the index (line 9).

procedure Delete Query Point(q)
1. Delete the current k neighbors to q from query result.
2. Remove any entries for q from FS-index, E-queue,

and the query point tpr index.

Figure 7.13: Delete Query Point()

Delete Query Point() (Figure 7.13) is invoked when a query point is deleted. It

first updates the query result (line 1). This is done by applying an incremental

distance query [30] (Section 3.6) on the data point tpr tree with q as the query point

to determine what entries to delete. It then removes any entires involving the query

point q from all the data structures (line 2).

127

7.4 CFS vs. CW

The CFS algorithm somewhat resembles the CW k-nn algorithm for one query point

presented in [35] and the improved version in Chapter 5. However, there are signif-

icant differences. The similarity is that both approaches maintain a circular region

around a query point with the constraint that it contain at least k points at all

times. This filters the data points for candidates from which to select the k nearest

neighbors.

The differences are in the other ways in which the circles are used. In the CW

algorithm, the nn-event is computed from only those points found inside the query

circle. In the CFS algorithm, points entering the circle in the near future are also

considered for the next nn-event. This reduces the number of “false” nn-events that

need to be changed before they occur when new candidates enter the widow of the

CW algorithm. The CFS algorithm introduces the notion of fuzzy-set-intervals to

limit the number of points entering the circle in the future that will be considered

for the nn-event. Points entering the window in the distant future are not likely to

be involved in the next nn-event. In the CW algorithm, within events are used to

process points entering the window of a single query point. The CFS algorithm does

not process within events as they occur. Instead, it only processes nn-events and

underflow events for each query point. Within events are used in the CFS algorithm

to determine when fuzzy set elements will expire.

To scale the CW algorithm to handle many query points at the same time, ad-

ditional data structures would be needed to keep track of nn-events, the contents

128

of each query circle, the size of each query circle, and underflow. This, in addition

to the sheer number of within events that would need to be queued and processed

makes scaling the CW algorithm an inferior solution to the CFS algorithm.

7.5 Experiments

For the purpose of evaluating our algorithm, we scale up an existing k-nn algorithm

to perform semijoin queries. We then compare the simple scaling of the previous

work to the CFS algorithm.

In [35], the TP k-nn algorithm [65] was extended to support updates (presented

as the ETP algorithm in [35]). Here, we scale up the ETP algorithm to do semijoins

in addition to updates. We call the extension to perform semijoins the TP-semijoin

(TPS) algorithm. To scale the ETP algorithm to perform semijoins, an event queue

containing an nn-event for each query point is added. If for some query point q,

no such event exists, then a pseudo event nn(q, pk, pk,∞) is added to keep track of

the current k th neighbor pk. When an update occurs, the event queue is scanned to

determine what part of the query result, and which events need to be modified. If

the set of k neighbors changes due to an update, then new neighbors and events are

found using a tpr index on the data points similar to what was done in the ETP

algorithm in [35]. No tpr index for the query points is needed since all the query

points are in the event queue.

As discussed above (Section 7.4), the CW algorithm also presented in [35] would

not scale well because there would be too many within events to process. Note

129

that a straight-forward scaling of the CW algorithm given in [35] can be achieved

by adding an nn-event queue in addition to the within event queue. In preliminary

results, scaling of the CW algorithm was found to be significantly less efficient than

the TPS algorithm.

7.6 Data Sets

We use the same data sets sources as those described in Section 5.5. Table 7.1 shows

the mean and standard deviation in the size of the data sets used over the entire

2 hour time interval covered by each data set. The figure also shows the average

update interval (UI) for each aircraft data set.

µ 4453 9021 12690 17106

σ 330.8 680.8 962.4 1293

UI 700.7 712.8 725.1 734.6

Table 7.1: Each column corresponds to a different aircraft data set. Each row is a
statistic on the data sets. Row 1 is the mean number of flights at any given time (µ).
Row 2 is the standard deviation in the number of flights (σ). Row 3 is the average update
interval (UI) in seconds.

Each query was performed on combinations of these subsets, not including self

semijoins. Pairs of subsets were chosen at random without replacement from all

possible combinations for a total of 100 joins per query. Only subsets taken from the

same original data set are used in a query, so the semijoin sets are approximately

the same size for each query. In other words, the number of query points is about

the same as the number of data points in each semijoin query. This technique was

used on both the synthetic and real data sets for comparability.

130

7.7 Results

Experiments were conducted in a simulation of a real-time system in which semijoin

queries are maintained over time as updates occur. The experiments measured the

total number of disk accesses over the duration of a query. Since we are concerned

primarily with the maintenance portion of the query, the number of disk accesses

used to compute the initial join result are not included. The number of disk accesses

over 100 trials was averaged to yield the experiment results for a given query.

The implementation of the event queue used the generalized search tree (GiST) [28]

version 0.9beta1 code. The code was compiled using gcc 2.96. The experiments were

run on several VLSI 80686 CPU based machines running Linux.

The primary independent variables for comparison are the mean data set size

(µ), and number of neighbors (k) to find for each query point. For the experiments

where these variables do not vary, the defaults are µ = 9021 for real aircraft data,

µ = 10000 for synthetic uniform data, and k = 1. Other general parameters, unless

otherwise specified, are query duration of 130 seconds, disk page size of 4096 bytes,

and disk cache size of 8 pages for each disk-based data structure.

Every cache page uses a least recently used (LRU) replacement policy except for

the event queues. The event queues use a Greatest Next Event (GNE) replacement

policy. GNE removes the page whose minimum next event time is the furthest in the

future out of all pages in the cache. GNE worked better than LRU for small pages

(e.g., 1024 bytes) and large caches (e.g., 32 pages). However, when the cache size

was reduced, and the page size increased, we found nearly no difference between the

131

LRU and GNE policies. Therefore, LRU can be used with nearly the same results

as GNE.

Parameters specific to the CFS algorithm, unless otherwise specified, are cir-

cle factor = 2, expired threshold = 25 events, and fuzzy-set-interval duration of 128

time units to ensure that at least one call is made to Update Fuzzy Set() per each

130 second query. We found these particular settings for the CFS algorithm to be

nearly optimal in our experiments.

The purpose of the first experiment is to determine which algorithm, TPS or CFS,

performs better in terms of disk accesses for different data sets sizes. Figure 7.14

shows the results for (a) real aircraft flight data, and (b) uniform synthetic data.

Parameter k is 1. The x-axis is the average data set size (see row 1 in Table 7.1),

and the y-axis is the number of disk accesses in millions (M). The points indicated

by 4 symbols are the number of disk accesses for the CFS algorithm, while the 3

symbol indicates the number of disk accesses for the TPS algorithm. For the aircraft

data, the CFS algorithm has 5 times fewer disk accesses than the TPS algorithm for

the largest data sets tested. For the uniform synthetic data, the CFS algorithm has

10 times fewer disk accesses than the TPS algorithm for the largest data sets tested.

The purpose of the second experiment is to determine the relative performance

of the CFS algorithm to the TPS algorithm when k is varied. Figure 7.15 shows

the results for (a) real aircraft flight data (data set size µ = 9021), and (b) uniform

synthetic data (data set size µ = 10000). The x-axis is k, and the y-axis is the number

of disk accesses in millions (M). The points indicated by 4 symbols are the number

132

CFS
TPS

 6K 10K 14K 18K

 1M

 2M

 3M

 4M

 5M

di
sk

 a
cc

es
se

s

average data set size

(b) uniform data

di
sk

 a
cc

es
se

s

average data set size

(a) aircraft data

 6K 10K 14K 18K

 2M

 4M

 6M

 8M

CFS
TPS

 10M

Figure 7.14: Disk accesses with respect to data set size.

of disk accesses for the CFS algorithm, while the 3 symbol indicates the number of

disk accesses for the TPS algorithm. The CFS algorithm has fewer accesses than

the TPS algorithm, but the number of disk accesses for the CFS algorithm increases

faster as the value of k is increased.

k k

CFS
TPS

 0.5M

 1M

 1.5M

 2M

 2.5M

 1 2 3 4 5 6 7 8
neighors neighors

(a) aircraft data

di
sk

 a
cc

es
se

s

di
sk

 a
cc

es
se

s

(b) uniform data

 1 2 3 4 5 6 7 8

 0.5M

 1M

 1.5M

 2M

 2.5M
CFS
TPS

Figure 7.15: Disk accesses with respect to k with circle factor = 2.

The purpose of the third experiment is to study the effect of circle factor on the

performance of the CFS algorithm. Figure 7.16a shows the results for real aircraft

flight data (data set size µ = 4453), and k = 1. The x-axis is the circle factor, and

133

the y-axis is the number of disk accesses in thousands (K). The points indicated by

4 symbols are the number of disk accesses for the CFS algorithm. Although the

TPS algorithm is not affected by circle factor, for comparison purposes, we show the

number of disk accesses (3 symbol) for this data. From Figure 7.16a it can be seen

that a circle factor value of 2 yields the best performance for the CFS algorithm with

k = 1. A circle factor < 2 for k = 1 is not meaningful since there needs to be at least

k + 1 points inside a query circle when it is resized. As we see, larger circle factor

values do lead to more disk accesses for the CFS algorithm but this is still much

lower than the number of disk accesses for the TPS algorithm.

circle factor

di
sk

 a
cc

es
se

s

 50K
 100K
 150K
 200K
 250K
 300K
 350K
 400K
 450K

CFS
TPS

 2 3 4 5 6 7 8

(b)(a)

 0.95M

 1.00M

 1.05M

 1.1M

 1.15M

 1.2M
aircraft

uniform

 0 100 200 300 400

di
sk

 a
cc

es
se

s

fuzzy−set−interval

Figure 7.16: CFS algorithm parameters. (a) Disk accesses vs. circle factor. (b) Disk
accesses vs. fuzzy-set-interval.

Figure 7.16b shows disk accesses (y-axis) versus different values for the CFS

fuzzy-set-interval parameter (x-axis) for aircraft data (µ = 9021), and k = 1. The

× symbols indicate disk accesses for aircraft data, and the + symbol indicates disk

accesses for uniform data. Each point is an average over 50 trials. Small values

(< 128) show increased disk activity due to more frequent calls to Update Fuzzy Set().

Larger values (> 192) show increased disk activity due to larger fuzzy sets for each

134

point for the uniform data set. The reason why aircraft data does not exhibit the

same performance characteristics as for uniform data for larger values of fuzzy-set-

interval is unclear.

Data structure size: The implementation resulted in the following entry sizes.

The tpr index entries were 32 bytes for internal node and leaf node entries. The

NN-B-tree leaf node entries were 115 bytes, and internal node entries were 9 bytes.

The FS-B-tree leaf node entries were 73 bytes, and internal node entries were 4 bytes.

The K-B-tree, O-B-tree, and ID-B-tree leaf node entries were 8 bytes, and internal

node entries were 4 bytes.

Given these numbers, we can estimate the size of the data structures under certain

assumptions. Assume for query of k = 1 on data sets of size 20k, and page size of 4096

bytes, that 70% space utilization is achived. For each of the 20k query points, there is

one event in the E-queue data structure. This gives d20000/((4096∗0.7)/115)e = 803

pages of leaf nodes in the NN-B-tree of the E-queue. and d803/((4096 ∗ 0.7)/9)e = 3

pages of internal nodes. This gives a total size of (803 + 3) ∗ 4069 = 3301376

bytes on disk total for the NN-B-tree. For the K-B-tree and the O-B-tree we get

d20000/((4096 ∗ 0.7)/8)e = 56 leaf node pages and 1 internal node page for a total

of (56 + 1) ∗ 4096 = 233472 bytes on disk for each. The total space taken by the

NN-B-tree for this example is 3301376 + 262144 + 262144 = 3768320 bytes.

To examine the FS-index, lets assume an average of 3 elements in each fuzzy set.

This give (20000∗3) = 60000 entries in the FS-index. For the FS-B-tree, this results in

d60000/((4096∗0.7)/73)e = 1528 pages of leaf nodes, and d1528/((4096∗0.7)/4)e = 3

135

pages of internal nodes. This gives a total of (1528 + 3) ∗ 4096 = 6270976 bytes on

disk. For the ID-B-tree, we get d60000/((4096 ∗ 0.7)/8)e = 168 leaf node pages and 1

internal node page for a total of (168 + 1) ∗ 4096 = 692224 bytes on disk. The total

space take by FS-index for this example is 6270976 + 692224 = 6963200 bytes.

Finally, for the tpr indexes, we get d20000/((4096 ∗ 0.7/32)e = 224 pages of leaf

nodes, and d224/((4096 ∗ 0.7)/32)e = 3 pages of internal nodes. This gives a total

(224 + 3) ∗ 4096 = 929792 bytes on disk per tpr index.

The total disk space used for the E-queue, FS-index, and two tpr tree indices is

3768320 + 6963200 + (2 ∗ 929792) = 12591104 bytes in this example.

7.8 Concluding Remarks

Even with the improved performance over previous work, the number of disk accesses

is still too high for the relatively small data sets to be practical. As can be seen in

the example at the end of the last section, the size of the data structures is relatively

small, yet the disk accesses are in the millions for small data sets over a short time

interval. The main cost arises from updates to the data structures. In order to scale

these algorithms up to large data sets (i.e., in the order of millions of objects) future

work must focus on update efficient disk based data structures for indexing moving

objects, event queues, and range trees.

In spite of these shortcomings, our experiments in Figure 7.14 show that the CFS

algorithm clearly outperforms the TPS algorithm. In some cases, the difference can

be as much as an order of magnitude (Figure 7.14b). The CFS algorithm is the first

136

algorithm of its kind to maintain spatial semijoin results on kinematic data types,

over an indefinite period of time, and with no prior knowledge of the updates that

will be made.

137

Chapter 8

Visualizing Changing Query

Results for Moving Objects

8.1 Introduction

The primary focus of spatial database research has been on static spatial data [59].

Static spatial data does not change frequently, and includes keeping track of such

data as buildings, roads, land use zoning, etc. The types of query operators include

spatial join, nearest neighbor, and windowing. An example query is to show all the

houses for sale within one kilometer of a grade school. Past research on static spatial

data has primarily focused on issues of how to store and process the data to answer

ad-hoc queries and display the results.

In recent years there has been an increased interest in moving object database

research [49, 58, 64]. Objects in moving object databases change location frequently.

138

Some examples are vehicles, mobile networks, weather systems, etc. Moving object

data is collected through sensors. These sensors may be located on the objects

themselves (e.g. global positioning system), or the data may be collected through

remote sensing (e.g. radar). Query operators include both spatial and temporal

operators. An example query is to show all the school buses currently within one

mile of a grade school. The dynamics of the data present different challenges in how

to store the data, process queries, and display the results.

We focus on two types of moving objects. The first are intermittently moving

objects. These objects move occasionally and then stop for relatively long periods

of time. This results in a data set where relatively few objects are in motion at any

one time. For example, consider cars in a parking lot. Most of the cars are parked,

but a few cars may be moving at any given time. Generally, cars in the parking lot

don’t move for long since their drivers either find a spot to park or leave the lot.

For a set of continuously moving objects, most of the objects are moving, and they

tend to move for relatively long periods of time. We address a subset of this problem

space were the motion of the moving objects are somewhat predictable at least for the

near future, as opposed to random Brownian motion. For example, consider airborne

aircraft. Most of the aircraft move in straight lines, or smooth curves. They tend

to move at a constant speed, or constant acceleration for relatively long periods of

time.

This paper presents techniques for different representation of moving object data

to visualize changes in moving object queries over time using animation. Animation

139

provides the user with a means to visually inspect patterns or trends over time.

Our goal is to generate animations that are interactive so that the user can zoom,

pan, and change the playback rate during the animation. We begin by presenting

technique to visualize intermittently changing data then show how these techniques

may be extended to visualize continuous change.

8.2 Definitions and Notation

In a relational database, a relation is a table of values. Each column of a relation

represents an attribute of a particular data type or domain (e.g. integers, strings,

points, etc.). Each row in a relation is a set of related values over the attribute

domains called a tuple. A relation’s schema is a set of name and data type pairs, one

for each attribute of a relation.

A spatial database is a database in which spatial attributes can be stored. A

spatial database also stores non-spatial data.

Relations are updated during transactions. A transaction is a set of changes

to a database state such that the database is left in a consistent state when the

transaction completes. The database state may not change by any other means. If

a transaction fails to complete, then the database reverts to its state just before the

attempted transaction.

A view is a virtual relation defined by a database query expression. When the

base relations used to define the view change, the view is reevaluated. This virtual

relation may be used to define subsequent views. A materialized view is a view that

140

is stored to disk.

A relational join is a subset of the cross product of two relations. The cross

product is filtered by a join predicate defined on the attributes of both relations. A

spatial join involves a predicate defined on spatial attributes. Relation names are

denoted by lower case letters (e.g. s). Schemas are denoted by upper case letters. To

show that relation s is a collection of related tuple values over the domain of schema

S we write s(S). A set of attributes in a relation’s schema is denoted as a series

of attribute names or symbols (e.g. {α0, α1, ..., αn−1}). The ordering of attributes

within the schema is not significant. For example, schema S = {α, β} = {β, α}

where α and β are attribute names. If S = {α0, α1, ..., αn−1} where each attribute

αi (0 ≤ i < n) is an attribute name, then we express the domain of αi as Dαi
. The

domain of S is DS = Dα0
×Dα1

× ...×Dαn−1
and thus s ⊆ DS.

The cross product of two relations r and s is denoted r× s. The cross product of

two relational domains DR and DS is denoted R×S. The join of two relations q(Q)

and r(R) is denoted q 1P r where P is a predicate defined on the schema attributes

Q∪R. At times, we write q 1 r where P is understood. A tuple in some relation s is

denoted τs. For some tuple τs ∈ s we denote the value of attribute α0 in tuple τs as

τs[α0]. The join of two tuples τq ∈ q and τr ∈ r is their concatenation written τqτr.

The domain of tuple τqτr is DQ×DR. Without loss of generality, we do not consider

the order of attributes within a tuple to be significant, and thus τqτr = τrτq. If the

schema’s Q ∩ R 6= ∅, then we assume that attributes are renamed as appropriate to

avoid ambiguity when a join takes place.

141

There is some evidence to show that animation may be useful in detecting patterns

and trends over time [39]. Alerters [10] or triggers [61] may be used to determine

when a particular database state has occurred, but it may be desirable for the user

to be aware of the events leading up to a particular situation. For example, a trigger

can notify the user when vehicles enter a particular area of interest, but when the

trigger is fired there is no general way to know what led up to that event. In some

cases it may be sufficient for the user to simply monitor the display as events occur,

but if the amount of time between events is very long or very short, or the user needs

to do other things at the time this may not be feasible. This can make it difficult

for the user to visually detect associations between events that occur over time.

One approach to get around this problem is to render spatio-temporal information

in a static map [12, 39], but these can get cluttered especially if many moving objects

are involved. Another approach is to capture the display output image when data is

originally processed and then sequence it into an animation. Our approach is based

on animation, but instead of capturing the image we capture the data from which the

image is rendered to produce interactive animations. We present different methods

to accomplish this depending on dynamic characteristics of both small and large sets

of data.

Most, if not all, previous applications of animation to this domain have been to

visualize changes in base data rather than to database query results [12, 39, 60].

In general, most previous methods render spatial data in a bitmap. One bitmap is

created for each discrete time step in a series. The bitmaps are then displayed in

142

succession creating the animation, or in other words, animated maps. This is also

known as animated cartography (See Section 3.8 for background).

One problem with bitmap animation is that if updates do not occur at a fixed

rate then the perception of time relationships between events may be distorted when

a fixed frame rate is used for playback. To correct this, we take the approach of time

indexing the movie frames. The goal is to display each frame for a time proportional

to the time between updates. For example, suppose an update occurs after one

minute, then again after three more minutes. The resulting animation would have

three frames. If at playback time the time between the first and second frame is one

second then the time between the second and third frame is three seconds, so that

it is proportional to the time between updates.

The restrictions on user interaction with the display is another drawback of

bitmap animations. Our approach is to capture the minimal set of data needed

to render each frame to a bitmap and render the frames when the animation plays,

not when the data is generated. This allows the user to zoom in on an area of interest

without loosing image quality. It also makes it easier for the user to simultaneously

view multiple perspectives on the same data set.

Section 8.3 shows how to create interactive animations for small sets of moving

objects. Section 8.4 then modifies those techniques to handle large sets of dynamic

sample track data. Finally in Section 8.5, animation of large sets of continuously

moving objects is addressed.

143

8.3 Small Sets of Moving Objects

To visualize changes over time, the minimal set of data needed to render the layers is

saved and redisplayed in rapid succession to create an animation. Each layer in the

sequence is a layer frame, and the whole animation sequence is a layer sequence. The

layer frame is a data structure containing the data needed to render one animation

frame. When the contents of a base relation or a query result change, the old layer

frame is saved, and a new layer frame is created. When the user wants to play back

the changes over time, layer frames are rendered and displayed successively in order

from the oldest to the most recent.

For small sets of moving objects, we assume that any views are recomputed from

scratch when the base relations or views upon which it depends are updated. Later

in Sections 8.4 and 8.5, we address the animation of large sets of moving objects in

which the frames are updated incrementally.

8.3.1 Fixed Update and Playback Rates

One approach is to create a new layer frame by scanning a query result (e.g., a

materialized view) after each update. Each new layer frame is appended to the layer

sequence. This has the advantage of decoupling the layer sequence support from the

query processing.

Another approach is to build a layer sequence as the query is processed. This

adds query processing overhead, but avoids scanning the query result again after it is

generated. Function Process And Sequence() shown in Figure 8.1 shows how a layer

144

frame can be created during query processing. Input parameter Q is a query to be

processed. Parameter layer seq is a sequence of layer frames. The query is processed

incrementally. Function Process First() processes the query until the first result tuple

is generated (line 2). Subsequent result tuples are generated by Process Next() (line

5) one at a time. Each call to Process And Sequence() creates a new layer frame (line

1). Minimal information needed to render the animation frame is added to the layer

frame (line 4). When no more tuples are generated the new layer frame is appended

to the layer sequence (line 8), and returned (line 9).

Process And Sequence() is called after each transaction resulting in a change to

any base relation used to compute Q. Repeated calls to Process And Sequence()

build the animation. Note that this may result in unnecessary identical frames in

the case when the query result doesn’t actually change as a result of the transaction.

For example, if the query is to select all the red cars from a relation containing cars,

then the query result will not change in the case where a single blue car is inserted

into the relation. This issue goes away with the improved approach presented in

Section 8.4.

Procedure Play Sequence() (see Figure 8.2) is used to play back a layer sequence.

Parameter layer seq is a sequence of layer frames. The global variable duration indi-

cates how long each frame should be displayed. The main loop iterates through each

layer frame in the sequence layer seq and displays it for the given duration. Proce-

dure Render() (line 2) clears the display, and then renders the current layer frame.

Procedure Render() could render one or more perspectives. These perspectives can

145

function Process And Sequence(Q, layer seq)
begin

1. layer frame← Create New Frame()
2. t← Process First(Q)
3. while t 6= ∅ do
4. Add(layer frame, t)
5. t← Process Next(Q)
6. end while
7. layer seq ← layer seq | layer frame
8. return layer seq

end

Figure 8.1: Function Process And Sequence() appends a new animation layer frame as
a query is processed.

change between calls to Render() to make the animation interactive. In other words,

the user may zoom or pan as the animation plays. Procedure Wait() (line 3) pauses

execution of Play Sequence() for a time period specified by duration. The animation

playback rate can be adjusted during playback by changing the value of duration.

procedure Play Sequence(layer seq)
global var duration

begin
1. foreach layer frame in layer seq do
2. Render(layer frame)
3. Wait(duration)
4. end foreach

end

Figure 8.2: Function Play Sequence() renders an animation layer sequence.

8.3.2 Example

We will use the following example spatial join [29] query to illustrate the concepts

presented in following sections. For the sake of this example, without loss of gen-

146

erality, the spatial data is assumed to be 2D projections and data. The techniques

discussed here are not constrained by the dimensionality of the data, coordinate

projections, or the screen projections used to display them.

Consider two relations r(R) and s(S) where schema R = {id, loc, type}, loc is

a 2D point, id is a unique object identifier, and type is a number. The schema of

relation s is the same, R = S. Consider the materialized view defined in the following

expression.

Example 8.3.2

Q = {τrτs : τr ∈ r ∧ τs ∈ s ∧ Distance(τr[loc], τs[loc]) ≤ 2 ∧ τs[type] = 1}.

This example returns all pairs of objects between r and s within 2 distance units

of each other, and all the object from s are of type 1.

Suppose that the initial states of r and s at time t0 are as shown in Figures 4.1

and 4.2, respectively. Now suppose that object y is moving at a constant velocity,

and object a moves and then stops as shown in Figure 4.2. Intermittent updates to

the database change the current known locations of y and a.

Now, consider the spatial join expressed in Example 8.3.2. The resulting output

is shown in Figure 4.3 in the first row of the table. The locations of the objects

participating in the join are indicated by the ovals in Figure 4.2a. Note that although

object a is within distance 2 of object x, the pair is not included in the query result

because the type of x is not 1.

Now suppose at time t0 + 1 minutes, the s relation is updated by deleting tuple

{y, (5, 3), 1} and inserting tuple {y, (4, 3), 1}, and the r relation is updated by deleting

tuple {a, (2, 2), 1} and inserting tuple {a, (1, 1), 1}. The update results in the recom-

147

puted spatial join shown in the second row of Figure 4.3, and graphically by the oval

in Figure 4.2b. Now suppose after 3 more minutes at time t0 + 4 an update changes

object y’s location from (4, 3) to location (1, 3). The join result after the update are

shown in the third row of Figure 4.3, and corresponding ovals in Figure 4.2c.

8.3.3 Variable Update and Playback Rates

The algorithms presented so far work well if updates to the base relations occur

at fixed intervals in time. If the transactions that update the base relations oc-

cur at random intervals, then the perception of the temporal relationships between

events may be distorted during playback using these algorithms. This is because

the amount of time between the creation of each frame may be different from frame

to frame. Procedure Play Sequence() does not take the amount of time between

updates into account. To support random time intervals between updates, func-

tion Process Variable Rate() replaces function Process And Sequence(), and proce-

dure Play Variable Rate() replaces procedure Play Sequence(). These procedures are

designed to display frames for a period of time proportional to the time between

updates.

Process Variable Rate() (see Figure 8.3) is similar to Process And Sequence(). An

additional input parameter, τ times, is a sequence of transaction times. Each el-

ement in τ times has a one-to-one correspondence with each layer frame in the

layer seq. In other words, the first element in τ times corresponds to the first el-

ement in layer seq, and so forth. The time of the last transaction is appended to

148

τ times (line 8), and returned along with the layer sequence (line 9).

function Process Variable Rate(Q, time, layer seq, τ times)
begin

1. layer frame← Create New Frame()
2. t← Process First(Q)
3. while t 6= ∅ do
4. Add(layer frame, t)
5. t← Process Next(Q)
6. end while
7. layer seq ← layer seq | layer frame
8. τ times← τ times | time
9. return layer seq and τ times

end

Figure 8.3: Function Process Variable Rate() saves a transaction time for each layer
frame.

Procedure Play Variable Rate() (see Figure 8.4) uses the τ times data gathered

by Process Variable Rate() to determine the duration of animation frames during

playback. As an example, consider the query given in Section 8.3.2. An update

transaction occurs after one minute and the next one occurs after another three

minutes. The resulting animation has three frames. If the animation is played back

so that the duration of the first frame is half a second, then it would follow that the

duration of the second frame is 1.5 seconds. At this rate, playback is 120 times faster

than real time. The variable factor controls playback rate. A value greater than 0

but less than 1 is faster than real time. A value greater than 1 is slower than real

time. If factor = 1, then the playback will be close to real time plus some added

time for processing overhead. A factor of 2 means it takes twice as long to play the

animation, and a factor of 0.5 is half as long. The algorithm could be made more

precise by subtracting the processing overhead time from the computed duration

149

value. For simplicity, processing overhead is not considered here.

The main loop of the procedure iterates through the transaction times using

functions first() and rest() (lines 1 and 2). The function first() returns the first element

in a sequence. Function rest() returns all but the first element. The duration of each

frame is computed as the time difference between the current transaction time and

the next multiplied by factor (line 3). The layer frame is then rendered (line 4), and

the procedure pauses for a moment (line 5) before moving on. When there are no

more transaction times, the last layer frame is displayed (line 9) and the procedure

exits. Variable factor is shown as a a global variable to show it may be changed on

the fly.

procedure Play Variable Rate(layer seq, τ times)
global var factor

begin
1. cur time← first(τ times)
2. foreach next time in rest(τ times) do
3. duration← (next time− cur time) ∗ factor
4. Render(first(layer seq))
5. Wait(duration)
6. layer seq ← rest(layer seq)
7. cur time← next time
8. end foreach
9. Render(first(layer seq))

end

Figure 8.4: Procedure Play Variable Rate()

150

8.3.4 Variable Update Rate and Fixed Playback Rate

At times, it may be desirable to export a bitmap animation for use in a web page, or

for import into another application. Procedure Play Variable Rate() supports variable

time intervals between transactions; however, variable frame rate playback is not very

conventional. Many standard animation formats use a fixed frame rate.

Function Convert() (see Figure 8.5) converts a variable rate layer frame sequence

to a bitmap animation with a fixed frame rate. Input parameter duration is the

desired duration of each frame in the output bitmap animation. Parameter factor

controls how much faster or slower than real time the output animation will appear

to be. Basically, the algorithm sees how many times it can chop up each variable

length input frame into fixed length output frames. Since the given output duration

may not evenly divide into the frame duration of a layer frame, the interval must be

rounded off. The difference is saved and added into the next layer frame duration

time.

In Convert(), the variable animation (line 1) is the output bitmap animation.

Variable remainder(line 2) is the amount of time left over from the display of the

last layer frame. The cur time (line 3) is the update transaction time for the current

layer frame being processed. The sequence of transaction time is artificially extended

by one more value (line 4) so the last frame will have a duration. In this case the

duration of the last input frame equal to the duration of the first input frame. The

main loop iterates on the transaction time sequence (line 5). Each iteration of the

loop processes one variable length input frame producing zero or more fixed length

151

output frames. It is possible that a frame may be dropped if the duration of an

input frame is less than the duration of an output frame. For simplicity, this case is

assumed rare and is not given any consideration here. In each iteration of the loop,

the display time of a layer frame is calculated using the given factor value (line 6).

This is then chopped up into a number of equal duration output animation frames

(line 7), and any leftover time is saved for the next iteration (line 8). If the leftover

time is greater than half the duration of a bitmap animation frame the number of

output frames is rounded up (lines 9 - 12). The bitmap animation frames are then

rendered and appended to the output animation (lines 13 - 15). The algorithm then

moves on to the next layer frame (lines 16 - 17). The new fixed frame duration

bitmap animation is returned (line 19).

Figure 8.1 shows a trace of function Convert() on some example input. To see how

this works, consider the example from Section 8.3.2. In the example the first update

transaction occurs after one minute and the second update occurs after another three

minutes. If time is measured in milliseconds, then the input parameter τ times is

the sequence (0, 60000, 240000). Let input parameter duration = 62.5ms (16 frames

per second), and parameter factor = 0.01. Parameter factor = 0.01 will produce

an animation 100 times faster than real time. The left column of Figure 8.1 shows at

what line number the action for that row was performed. A number in a cell indicates

a variable set to a new value. Boolean values indicate an expression evaluation result.

Variables not affecting the control flow are not shown.

152

function Convert(layer seq, τ times, duration, factor)
begin

1. animation← NULL

2. remainder ← 0
3. cur time← first(τ times)
4. τ times← τ times | (last(τ times)

+ first(rest(τ times))− first(τ times))
5. foreach next time in rest(τ times) do
6. delta← ((next time− cur time) ∗ factor)

+ remainder
7. frame count← floor(delta÷ duration)
8. remainder ← mod(delta, frame) ∗ duration
9. if remainder > duration÷ 2 then

10. frame count← frame count + 1
11. remainder ← remainder − duration
12. end if
13. for i← 1 to frame count do
14. animation← animation | Render(first(layer seq))
15. end for
16. layer seq ← rest(layer seq)
17. cur time← next time
18. end foreach
19. return animation

end

Figure 8.5: Procedure Convert() converts a variable rate layer frame sequence to a fixed
rate bitmap animation.

8.4 Large Sets of Intermittently Moving Objects

This section addresses the problem of animation of larger data sets where relatively

few tuples are updated in any given transaction. This is a reasonable assumption

in the case where objects move intermittently, which means that only a few objects

move at any given time or that updates of the object’s positions are infrequent

regardless of how much they move. The animation creation algorithms described

in Section 8.3 may be prohibitively slow for large data sets since they rely on the

153

line next cur delta remainder frame remainder
num time time count >

duration ÷2

1 0

3 0

5 60000

6 600

7 9

8 37.5

9 true

10 10

11 -25

17 60000

5 240000

6 1775

7 28

8 25

9 false

17 240000

5 300000

6 625

7 10

8 0

9 false

17 300000

Table 8.1: Example trace of procedure Convert

complete reevaluation of the query even when just one tuple is updated. Location

information in this section is assumed to be sample track data.

The heuristic of inertia [25] assumes that each update to a large data set is small.

It is a basic assumption for many incremental view maintenance algorithms [9, 25].

Incremental view maintenance is a class of techniques developed to update view

154

query results efficiently based on changes made to base relations during a transaction.

These base relation changes are used to compute the net change to the materialized

view, and are stored in an axillary tables, iv for inserts, and dv for deletions for

some materialized view v (see Section 3.5 for more information on incremental view

maintenance).

A differential table is an auxiliary relation associated with a relation or interme-

diate query result. A differential table contains all the tuples inserted into, or all the

tuples deleted from, a relation during a transaction. Before committing the transac-

tion and updating the materialized view on disk, the differential tables can be used

to generate the next layer frame in an animation sequence. The differential tables

are small, and can be used to generate the new frames without having to endure

costly query computation in the process.

The function Process Incremental() shown in Figure 8.6 builds the next layer frame

in a sequence from differential tables. This function is invoked after each transaction

that results in a change to the base relations or views upon which some view v is

defined. If there is no net change as a result of the transaction then nothing is

done (line 1) and the sequences are returned unchanged. This avoids the creation of

consecutive duplicate layer frames in the sequence.

The last layer frame in the sequence is then copied (line 2). This can be a shallow

copy duplicating the containing data structure (e.g., a binary tree), with references

to the same spatial data (e.g., point coordinates) to save memory. The minimal

data needed for rendering is then added for each tuple in the insert differential table

155

(lines 3 - 5). The data from previously inserted tuples is removed for tuples in the

delete differential table (lines 6 - 8). To support efficient O(log(n)) deletion it may

be desirable to store the layer frame data in a tree data sorted by a key attribute in

tuple t, or organized spatially (e.g. k-d-tree, quad-tree, etc.). The new layer frame

and transaction time are appended to their respective sequences (lines 9 - 10), and

returned (line 12).

The resulting layer frame sequence can be played using Play Variable Rate() shown

in Figure 8.4.

function Process Incremental(iv, dv, time, layer seq, τ times)
begin

1. if (iv 6= ∅ ∨ dv 6= ∅) ∧ iv 6= dv then
2. layer frame← Copy(last(layer seq))
3. foreach tuple t in iv do
4. Add(layer frame, t)
5. end foreach
6. foreach tuple t in dv do
7. Remove(layer frame, t)
8. end foreach
9. layer seq ← layer seq | layer frame

10. τ times← τ times | time
11. end if
12. return layer seq and τ times

end

Figure 8.6: Function Process Incremental() copies the previous layer frame and applies
the changes from differential tables iv, and dv.

8.5 Large Sets of Continuously Moving Objects

For large sets of continuously moving objects we assume a kinematic representation.

Using this representation, all objects may be moving, but the coefficients of the

156

functions describing their motion need only be updated occasionally. For example,

aircraft may move between way points requiring updates to their function descrip-

tions only when they change course. Assuming the heuristic of inertia, the same

function Process Incremental() (Figure 8.6) can be used to build the kinematic layer

frame sequence.

To play back the sequence, procedure Play Kinematic() (Figure 8.7) is used. In

the procedure, the input parameter duration is the time between output anima-

tion frames. Parameters layer seq, and τ times are as before. Global parameter

factor plays the same role as in Play Variable Rate() controlling the rate of change

in the data relative to real time (line 6). The procedure iterates through each

layer frame in layer seq and renders each one zero or more times depending on

the values of duration, factor, and the actual time between transactions. Procedure

Kinematic Render() (line 4) evaluates each kinematic function stored as part of the

given layer frame with respect to the given time to find where the object is at that mo-

ment and renders it. The time is incremented after every call to Kinematic Render()

so the output animation frame is different for each call even when the layer frame may

be the same for two consecutive calls. This results in a smooth animation regardless

of how fast or slow the animation is playing.

8.6 Conclusion

In this chapter we presented algorithms to visualize changing query results over

continuously moving objects using animation. We implemented the algorithms for

157

procedure Play Kinematic(layer seq, τ times,
duration)

global var factor
begin

1. time← first(τ times)
2. foreach next time in rest(τ times) do
3. while time < next time do
4. Kinematic Render(first(layer seq), time)
5. Wait(duration)
6. time← time + (duration ∗ (1/factor))
7. end while
8. layer seq ← rest(layer seq)
9. end foreach

end

Figure 8.7: Function Play Kinematic()

large sets of moving objects. The implementation was in JAVA running as an applet

in a web browser accessing a remote server. The algorithms functioned as expected.

We could easily zoom, pan and vary the speed of the animation during playback.

We also noted that slowed animations of continuously moving objects represented by

kinematic data types did appear much smoother than for the sample representations.

No empirical studies were performed. It is our belief that kinematic data types

combined with incremental view maintenance can greatly reduce network load. The

continuously moving object visualization algorithms enable this representation to be

visualized as an animation on a client. In the future we would like to combine these

components into a coherent system and compare the results experimentally with

more conventional approaches.

158

Chapter 9

Conclusion

Our hypothesis is that algorithms for the maintenance of spatial queries on kinematic

point data types can be developed to support updates to base relations as time

advances that are more efficient than straight forward adaptations of previous work.

To support this hypothesis we presented algorithms to maintain k-nearest neighbor

(Chapter 5), spatial join (Chapter 6), and semijoin queries (Chapter 7) on kinematic

points. We compared these algorithms experimentally using both synthetic and real

aircraft data.

Experiments in Chapter 5 show that the new continuous windowing (CW) k-

nearest neighbor algorithm clearly outperformed the ETP algorithm. The ETP

algorithm is the Tao and Papadias TP algorithm [65] extended by us to support

updates. The strategy of the CW algorithm is based on the observation that w-

events are fundamentally cheaper to process than nn-events. The CW algorithms

filters the points considered for the nn-event using w-events to maintain the set of

159

points close to the query point. The ETP algorithm uses a TPR-tree index on the

data points to find each subsequent nn-event. Although the CW approach processes

more events overall, the cost in the CW algorithm to maintain the event queue when

the base relations are updated is cheaper than updating the TPR-tree index used by

the ETP algorithm. Additional support for underflow and dynamic query window

sizing was added to the CW algorithm that was not included in the original CW

algorithm presented in [35].

The spatial join algorithm presented in Chapter 6 is a generalization of the event-

based query algorithms to support updates that are presented in Chapter 5. Two new

approaches were compared that differ in the number of events placed on the queue.

The All-Event (AE) approach can be thought of as an extension of the continuous

spatial join (CSJ) algorithm presented in [65] to support updates in the same way

that the ETP algorithm in Chapter 5 is an extension of the TP algorihtm to support

updates in k-nearest neighbor queries. The AE approach stores all within events

to occur in the near future in a priority event queue. The more novel Next-Event

(NE) approach only stores the next event to occur for each query point in the event

queue. The time period considered for future events is limited to the current event

generation cycle. When the event generation cycle is short, the AE approach results

in fewer disk accesses than the NE algorithm. When the event generation cycle is

long, the NE approach results in fewer disk accesses because the size of the event

queue is smaller. Both the AE and NE approaches outperform a simpler adaptation

of the CSJ algorithm to support updates by up to two orders of magnitude.

160

In Chapter 7 the continuous fuzzy set (CFS) algorithm is presented as a means

to maintain spatial semijoin queries. This was compared experimentally to a scaled

up version of the ETP algorithm from Chapter 5, called the time-parameterized

semijoin (TPS) algorithm. Although the CFS algorithm clearly outperforms the

TPS algorithm, experimental results are not promising for the scalability of the

implementation of this algorithm to larger data sets.

Updates to the TPR-tree and B+-tree based indexes are costly. Future work

should focus on update efficient supporting data structures. For example, the design

of the event queue was changed from the implementation of the algorithms in Chap-

ter 6 to the implementation in Chapter 7 because the implementation in Chapter 7

was found to be more efficient. Now that algorithms to support the maintenance

of spatial queries on point kinematic data types have been developed, more update

efficient disk based data structures should help improve the performance of these

algorithms and improve their scalability.

The Internet Spatial Spreadsheet (ISS) presented in Chapter 4, and the visualiza-

tion techniques presented in Chapter 8, round out our work by presenting a context

and motivation for our moving object query algorithms.

161

Appendix A

View Maintenance Proof

A.1 Notation

A schema is a set of attribute names denoted by an uppercase letter. The ordering of

attributes within the schema is not significant. For example, schema S = {α, β} =

{β, α} where α and β are attribute names. Relation names are denoted by lower

case letters. To show that relation s is a collection of related tuple values over the

domain of schema S we write s(S). For a given relation, the name of its schema is

the same as the name of the relation, except that it is an uppercase letter, unless

otherwise stated. If S = {α0, α1, ..., αn−1} where each attribute αi (0 ≤ i < n) is

an attribute name, then we express the domain of αi as Dαi
. The domain of S is

DS = Dα0
× Dα1

× ... × Dαn−1
and thus s ⊆ DS. For some tuple τs ∈ s we denote

the value of attribute α0 in tuple τs as τs[α0].

The join of two relations q(Q) and r(R) is denoted q 1P r where P is a predicate

defined on the schema attributes Q ∪ R. Sometimes we write q 1 r where P is

162

understood. The concatenation of two tuples τq ∈ q and τr ∈ r is written τqτr. The

domain of tuple τqτr is DQ × DR. Without loss of generality, we do not consider

the order of attributes within a tuple to be significant, and thus τqτr = τrτq. If the

schemas Q ∩ R 6= ∅, then we assume that attributes are renamed as appropriate to

avoid ambiguity when a tuple τqτr is joined.

Let r(R) and s(R) be relations. Let the function insert(r, s) return all the tuples

from relation r and relation s as one relation (duplicates allowed). Let the function

delete(r, s) return the tuples found in relation r that have no equivalent counterpart

among the tuples of relation s. In the case of duplicates, only one duplicate tuple is

deleted for r for each match found in s. As a means of shorthand, let insert(r, s) ≡

r] s and delete(r, s) ≡ r − s. The insertion of a tuple τr into relation s is written

s] τr. The size or number of tuples contained in a relation r is denoted as |r|. For

example, suppose relation r = {(a,b),(a,b)} and relation s = {(a,b)} then r] s =

{(a,b),(a,b),(a,b)}, r − s = {(a,b)}, and |r| = 2.

A differential table is an auxiliary relation associated with a base relation or inter-

mediate query result. A differential table contains all the tuples inserted into, or all

the tuples deleted from, a relation during a transaction. If s is the state of a relation

before some transaction Φ, then s′ denotes the state of a relation after transaction

Φ. Symbol is denotes the relation of tuples inserted into s during transaction Φ, and

ds is the relation of tuples deleted during the transaction. Relations is and ds are

the differential tables for relation s.

163

A.2 Incremental Update of Spatial Join Views

The view maintenance algorithm is described in terms of insert, delete and join

operations on relations.

Here are some assumptions. A tuple can be deleted and then reinserted during

the same transaction. A join operation is a binary operation in that it joins two input

relations. Joins of more than two relations can be achieved by nesting operations,

e.g. ((r 1 s) 1 t). It is assumed that no attempt will be made to delete a tuple from

a base relation that is not already in the relation, in other words (ds ⊆ s). Relations

may contain duplicate tuples. If a relation has no specified key or discriminator,

then the value of the whole tuple is assumed to be the tuple discriminator. It is

assumed that the old version of each base relation (e.g. state of joined tables the

last transaction) is available. It is also assumed that differential tables is and ds are

available for each input relation.

The differential tables used here are similar to hypothetical relations [67]. For

some relation r, the intersections ir ∩ r and ir ∩ dr are not necessarily empty. This

is in contrast to the disjoint property of the tables described in [9]. The difference

between hypothetical relations and our differential tables is that no extra attributes

are required. The schema of each differential table is the same as its associated base

relation. Another characteristic of this algorithm is that it does not require the use

of keys, or any addition bookkeeping information to accompany base relations or

query results.

Base relation update: Let relation is be the tuples inserted into relation s

164

during transaction Φ. The insertion update to s is expressed as s′ = s] is. Let

relation ds be all tuples deleted from relation s during the same transaction. The

deletion update to s is expressed as s′ = s− ds. By combining these two expressions

we get s′ = (s] is)−ds. The parentheses show proper precedence needed in the case

that a tuple is inserted and deleted during the same transaction.

View update: Now, consider all views v in a database system. An update v

resulting in v′ can be expressed in terms of differential tables v′ = (v] iv) − dv.

After the base relations in a system are updated by a transaction, the differential

tables are then computed for each view. Views depending only on base relations are

computed first followed by views depending on other views where their dependencies

have already been computed. The dependencies must not be circular. After all

differential tables are computed for all views, the views are updated by inserting

tuples contained in the iv differential tables followed by deleting the tuples contained

in the dv differential tables. Once this is finished, the differential tables are cleared

and the system is ready for another transaction. This process allows for incremental

updates of nested views.

Join update: Let j ′ = l′ 1 r be a join operation update after relation l is

updated during some transaction Φ. By substitution this expression can be rewritten

in terms of the relation l’s differential tables and the state of l before the transaction

as j′ = ((l] il) − dl) 1 r. The join operation is distributive over the] and −

operations, so this expression can be rewritten as j ′ = ((l 1 r)] (il 1 r))− (dl 1 r).

Substituting j for (l 1 r) the expression becomes j ′ = (j] (il 1 r)) − (dl 1 r).

165

The (il 1 r) term is the expression for the insert differential table of relation j, and

the term (dl 1 r) is the expression for the delete differential table for relation j.

This gives us a simple expression for the case when only one of the joined relations

changes during a transaction.

The case when both of the joined relations change during a transaction is more

complicated. Here we derive an expression to compute the differential tables involv-

ing changes in both of the joined relations. To create an incremental view mainte-

nance algorithm for join, the following expressions are used.

Exp. A.2.1 l′ = ((l] il)− dl)

Exp. A.2.2 r′ = ((r] ir)− dr)

Exp. A.2.3 j ′ = l′ 1 r′

Exp. A.2.4 j ′ = ((l] il)− dl) 1 ((r] ir)− dr)

Expressions A.2.1 and A.2.2 represent the update of two relations after a transac-

tion. Expression A.2.3 represents a join of those relations in terms of the state of the

joined relations after a transaction. By substitution of expression A.2.1 and A.2.2

into expression A.2.3, the join operation can be expressed in terms of the states of the

joined relations before the transaction, and the differential tables. This is shown in

expression A.2.4. To make expression A.2.4 useful, the joins are distributed over the

relation addition (]) and subtraction (−) operations to produce expression A.2.5. A

proof of the correctness of expression A.2.5 is given in Section A.2.1.

166

Exp. A.2.5

j′ = (j] (((((il 1 r)] (l 1 ir))] (il 1 ir)) − (il 1 dr))− (ir 1 dl)))

− (((r 1 dl)] (l 1 dr))− (dr 1 dl))

The subexpressions of expression A.2.5 form the basis for an algorithm to cal-

culate the join view differential tables ij and dj (see expressions A.2.6 and A.2.7

below).

Exp. A.2.6

ij = ((((il 1 r)] (l 1 ir))] (il 1 ir)) − (il 1 dr))− (ir 1 dl)

Exp. A.2.7

dj = (((r 1 dl)] (l 1 dr))− (dr 1 dl))

A.2.1 Correctness

In this section we prove the correctness of expression A.2.5. Formal definitions of the

addition, subtraction and join of relations are presented. Following the definitions,

we present six rewrite rules used in the proof of expression A.2.5.

Definition A.2.1.1 Addition of relations: Given relations s(S) and t(S), s] t =

{τ : τ ∈ s ∨ τ ∈ t}, duplicates allowed.

167

Definition A.2.1.2 Subtraction of relations: Given relations s(S) and t(S), s− t =

{τ : τ ∈ s ∧ τ /∈ t} where only one tuple element of s is removed for each matching

element in t.

Definition A.2.1.3 Join of relations: Given relations s(S) and t(T) and predicate

P defined on a subset of S ∪ T , s 1P t = {τsτt : τs ∈ s ∧ τt ∈ t ∧ P(τs, τt)}.

In the following, rewrite rules s, t and v are relations and 1, −, and] are binary

operations on relations. A sample proof of a rewrite rule is found in Appendix A.3.

Rule 1: Distribution of join over subtraction

(s− t) 1 v ←→ (s 1 v)− (t 1 v)

Rule 2: Distribution of join over addition

(s] t) 1 v ←→ (s 1 v)] (t 1 v)

Rule 3: Commutativity of join

s 1 t←→ t 1 s

Rule 4: Associativity of subtraction

s− (t] v)←→ (s− t)− v

168

Rule 5: Associativity of addition

(s] t)] v ←→ s] (t] v)

Rule 6: Associativity of subtraction of subset relations

(s] t)− v ←→ s] (t− v) iff v ⊆ t ∨ s ∩ v = ∅

Rule 7: Commutativity of addition

s] t←→ t] s

By successively applying rules 1, 2 and 3 to expression A.2.4, the join operators

are pushed down to the lowest possible level. Rules are then applied to rearrange

the join terms. The rewrite rules used for each step are indicated by the numbers

inside curly braces at the end of each line. For example, {3,5} indicates one or more

applications of rule 3 followed by one or more applications of rule 5.

Proof:

j′ = ((l] il)− dl) 1 ((r] ir)− dr)

{expression A.2.4}

= ((l] il) 1 ((r] ir)− dr))− (dl 1 ((r] ir)− dr))

{1}

169

= (((r] ir) 1 (l] il))− (dr 1 (l] il)))

− (((r] ir) 1 dl)− (dr 1 dl))

{3,2}

= (((r 1 (l] il))] (ir 1 (l] il)))− ((l 1 dr)] (il 1 dr)))

− (((r 1 dl)] (ir 1 dl))− (dr 1 dl))

{3,2}

= ((((l 1 r)] (il 1 r))] ((l 1 ir)] (il 1 ir)))

− ((l 1 dr)] (il 1 dr))) − (((r 1 dl)] (ir 1 dl))− (dr 1 dl))

{3,2}

= (((l 1 r)] (il 1 r))] ((l 1 ir)] (il 1 ir)))

− (((l 1 dr)] (il 1 dr))] (((r 1 dl)] (ir 1 dl))− (dr 1 dl)))

{4}

• dr ⊆ r is true by assumption.

• dr ⊆ r ⇒ (dr 1 dl) ⊆ (r 1 dl)

⇒ (dr 1 dl) ⊆ ((r 1 dl)] (ir 1 dl))

so

j′ = (((l 1 r)] (il 1 r))] ((l 1 ir)] (il 1 ir)))

170

− ((((l 1 dr)] (il 1 dr))] ((r 1 dl)] (ir 1 dl))) − (dr 1 dl))

{6}

= (((l 1 r)] (il 1 r))] ((l 1 ir)] (il 1 ir)))

− (((il 1 dr)] ((l 1 dr)] ((r 1 dl)] (ir 1 dl)))) − (dr 1 dl))

{7,5}

= (((l 1 r)] (il 1 r))] ((l 1 ir)] (il 1 ir)))

− (((il 1 dr)] ((ir 1 dl)] ((r 1 dl)] (l 1 dr)))) − (dr 1 dl))

{7,5}

= (((l 1 r)] (il 1 r))] ((l 1 ir)] (il 1 ir)))

− ((((il 1 dr)] (ir 1 dl))] ((r 1 dl)] (l 1 dr))) − (dr 1 dl))

{5}

• dr ⊆ r is true by assumption.

• dr ⊆ r ⇒ (dr 1 dl) ⊆ (r 1 dl)

⇒ (dr 1 dl) ⊆ ((r 1 dl)] (l 1 dr))

so

j′ = (((l 1 r)] (il 1 r))] ((l 1 ir)] (il 1 ir)))

− (((il 1 dr)] (ir 1 dl))] (((r 1 dl)] (l 1 dr))− (dr 1 dl)))

{6}

171

= ((((l 1 r)] (il 1 r))] ((l 1 ir)] (il 1 ir)))

− ((il 1 dr)] (ir 1 dl))) − (((r 1 dl)] (l 1 dr))− (dr 1 dl))

{4}

= (((l 1 r)] ((il 1 r)] ((l 1 ir)] (il 1 ir))))

− ((il 1 dr)] (ir 1 dl))) − (((r 1 dl)] (l 1 dr))− (dr 1 dl))

{5}

• dl ⊆ l ∧ dr ⊆ r is true by assumption.

• dl ⊆ l ⇒ (ir 1 dl) ⊆ (ir 1 l)

• dr ⊆ r ⇒ (il 1 dr) ⊆ (il 1 r)

• (ir 1 dl) ⊆ (ir 1 l) ∧ (il 1 dr) ⊆ (il 1 r)

⇒ ((il 1 dr)] (ir 1 dl)) ⊆ ((il 1 r)] (l 1 ir))

⇒ ((il 1 dr)] (ir 1 dl)) ⊆ ((il 1 r)] ((l 1 ir)] (il 1 ir)))

so

j′ = ((l 1 r)] (((il 1 r)] ((l 1 ir)] (il 1 ir)))

− ((il 1 dr)] (ir 1 dl)))) − (((r 1 dl)] (l 1 dr))− (dr 1 dl))

{6}

= ((l 1 r)] ((((il 1 r)] ((l 1 ir)] (il 1 ir)))

− (il 1 dr))− (ir 1 dl))) − (((r 1 dl)] (l 1 dr))− (dr 1 dl))

172

{4}

j′ = ((l 1 r)] (((((il 1 r)] (l 1 ir))] (il 1 ir))

− (il 1 dr))− (ir 1 dl))) − (((r 1 dl)] (l 1 dr))− (dr 1 dl))

{5}

= expression A.2.5

{substitution of j for (l 1 r)}

2

A.3 Rewrite Rule Proof

In this appendix, a sample proof of one of the rewrite rules is presented. The follow-

ing definitions are used in the proof.

• Definition A.3.1 Equality of tuples: Let tuple τs ∈ s(S) and tuple τt ∈ t(S). If

∀α ∈ S : τs[α] = τt[α] then τs = τt.

• Definition A.3.2 Subtraction of tuples: Let tuple τs ∈ s(S) and tuple τt ∈ t(S). If

τs = τt then τs − τt = ∅ else τs − τt = τs.

• Definition A.3.3 Join of tuples: Let tuple τs ∈ s(S) and tuple τt ∈ t(T). Consider

173

a join operation s 1P t. P is a predicate defined on a subset of S ∪ T . If P(τs, τt) is

true then τsτt ∈ (s 1P t) else τsτt /∈ (s 1P t).

In the following proof we consider a distinct set of tuples τs ∈ s(S), τt ∈ t(S),

and τv ∈ v(V), and a join operation 1P where P is a predicate defined on S ∪ V .

Rule 1: (s− t) 1 v ←→ (s 1 v)− (t 1 v)

Proof:

The proof is presented in the form of truth table in Figure A.1. The first three

columns of the truth table represent all the possible cases that we need to consider.

The cases where predicate τs = τt is true and P(τs, τv) 6= P(τt, τv) are not shown.

These states are not possible. If τs = τt is true, then P(τs, τv) = P(τt, τv) must be

true. The value of the predicate in column 4, τs ∈ (s− t), is the inverse of predicate

τs = τt. This follows from the definition of equality of tuples (Def. A.3.1) and the

definition of the subtraction of tuples (Def. A.3.2). The value of the predicate in

column 5, τsτv ∈ ((s− t) 1P v), is false if predicate P(τs, τv) in column 2 is false by

the definition of the join of tuples (Def. A.3.3). The value of the predicate in column

5 is also false if τs ∈ (s− t) is false in column 4 since a tuple can not be joined if it

doesn’t exist. If P(τs, τv) is true and τs ∈ (s − t) is true, then τsτv ∈ ((s − t) 1P v)

is true. The predicate τsτv ∈ (s 1P v) in column 6 is true if predicate P(τs, τv),

column 2, is true, else it is false. This follows from the definition of the join of tuples

(Def. A.3.3). The predicate τtτv ∈ (t 1P v) in column 7 is true if predicate P(τt, τv),

174

column 3, is true, else it is false. This also follows from the definition of the join of

tuples (Def. A.3.3). Finally, in column 8, predicate τsτv ∈ ((s 1P v)−(t 1P v)) is true

if predicate τsτv ∈ (s 1P v) in column 6 is true and τtτv ∈ (t 1P v) in column 7 is false.

It is also true if τsτv ∈ (s 1P v) in column 6 is true, and τtτv ∈ (t 1P v) is true, and

τs = τt in column 1 is false. In all other cases, predicate τsτv ∈ ((s 1P v)− (t 1P v))

is false. This follows because if τsτv ∈ (s 1P v) is false, then τsτv does not exist in the

left operand of the subtraction, and will not be in the result of the subtraction. If τsτv

does exist in the left operand of the subtraction operation, then it can be removed if

there exists an equivalent tuple in the right operand (Def. A.3.2). Otherwise it will

not be removed and τsτv will be included in the resulting relation of the subtraction

operation.

By examining the table in Figure A.1 we see that either τsτv /∈ ((s− t) 1P v) ∧

τsτv /∈ ((s 1P v) − (t 1P v)) is true or τsτv ∈ ((s − t) 1P v) ∧ τsτv ∈ ((s 1P

v) − (t 1P v)) is true. In other words, column 5, τsτv ∈ ((s − t) 1P v), and column

8, τsτv ∈ ((s 1P v)− (t 1P v)), match in every row. Therefore rule 1 holds. 2

The proofs of the other rewrite rules are similar.

175

τs = τt P(τs, τv) P(τt, τv) τs ∈ τsτv ∈ τsτv ∈ τtτv ∈ τsτv ∈

(s − t) ((s − t) 1P v) (s 1P v) (t 1P v) ((s 1P v) − (t 1P v))

F F F T F F F F

F F T T F F T F

F T F T T T F T

F T T T T T T T

T F F F F F F F

T T T F F T T F

Table A.1: Truth table where T is TRUE and F is FALSE. The conditions (τs = τt) = T

and P(τs, τv) 6= P(τt, τv) are not shown since these states are not possible.

176

BIBLIOGRAPHY

[1] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying update streams in a soft

real-time database system. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 245–256, San Jose, CA, May 1995.

[2] M. E. Adiba and B. G. Lindsay. Database snapshots. In Sixth International

Conference on Very Large Data Bases, pages 86–91, Montreal, Quebec, Canada,

October 1980.

[3] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In Proceedings

of the 19th ACM Symposium on Principles of Database Systems, pages 175–186,

Dallas, TX, May 2000.

[4] W. G. Aref and H. Samet. Efficient window block retrieval in quadtree-based

spatial databases. GeoInformatica, 1(1):59–91, April 1997.

[5] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data.

In 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 747–756,

New Orleans, LA, January 1997.

177

[6] J. Basch, L. J. Guibas, and L. Zhang. Proximity problems on moving points.

In Symposium on Computational Geometry, pages 344–351, 1997.

[7] R. Benetis, C. Jensen, G. Karciauskas, and S. Saltenis. Nearest neighbor and

reverse nearest neighbor queries for moving objects. In International Database

Engineering and Applications Symposium (IDEAS), pages 44–53, Edmonton,

Canada, July 2002.

[8] T. Berners-Lee and D. Connolly. Hypertext markup language–2.0. Technical

Report RFC 1866, Network Working Group, November 1995.

[9] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently updating materialized

views. In Proceedings of the ACM SIGMOD Conference, pages 61–71, Washing-

ton, D.C., June 1986.

[10] O. Buneman and E. Clemons. Efficiently monitoring relational databases. ACM

Transactions on Database Systems, 4(3):368–382, September 1979.

[11] W. Cai, F.B.S. Lee, and L. Chen. An auto-adaptive dead reckoning algorithm

for distributed interactive simulation. In Proceedings of the 13th Workshop on

Parallel and Distributed Simulation, pages 82–89, Atlanta, GA, May 1999.

[12] C. S. Campbell and S. L. Egbert. Animated cartography: Thirty years of

scratching the surface. Cartographica, 27(2):24–46, 1990.

178

[13] S. Ceri and J. Widom. Deriving production rules for incremental view mainte-

nance. In Proceedings of the 17th International Conference on Very Large Data

Bases, pages 577–588, 1991.

[14] H. D. Chon, D. Agrawal, and A. E. Abbadi. Query processing for moving

objects with space-time grid storage model. In Third International Conference

on Mobile Data Management, pages 121–128, Singapore, January 2002.

[15] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for

deferred view maintenance. In Proceedings of the ACM SIGMOD Conference,

pages 469–480, Montreal, Quebec, Cananda, June 1996.

[16] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A. Ross.

Supporting multiple view maintenance policies. In Proceedings of the ACM

SIGMOD Conference, pages 405–416, Tucson, AZ, May 1997.

[17] R. Ding and X. Meng. A quadtree based dynamic attribute index structure

and query process. In 2001 International Conference on Computer Networks

and Mobile Computing Proceedings, pages 446–451, Los Alamitos, CA, October

2001.

[18] D. Douglas and T. Peucker. Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature. The Canadian

Cartographer, 10(2):112–122, 1973.

179

[19] C. Esperança and H. Samet. Spatial database programming using SAND. In

Proceedings of the Seventh International Symposium on Spatial Data Handling,

volume 2, pages A29–A42, Delft, The Netherlands, August 1996.

[20] ESRI. Arcview tracking analyst. ESRI White Paper Series, 1998.

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer protocol–http/1.1. Technical Report RFC

2616, The Internet Society, Network Working Group, June 1999.

[22] R. M. Fujimoto. Parallel discrete event simulation. Communications of the

ACM, 33(10):30–53, October 1990.

[23] T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In

Proceedings of the ACM SIGMOD Conference, pages 328–339, San Jose, CA,

May 1995.

[24] L. J. Guibas, J. Hershberger, S. Suri, and L. Zhang. Kinetic connectivity for unit

disks. In Proceedings of the 16th ACM Symposium on Computational Geometry,

pages 331–340, 2000.

[25] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incre-

mentally. In Proceedings of the ACM SIGMOD Conference, pages 157–166,

Washington, D.C., May 1993.

180

[26] A. Guttman. R-trees: a dynamic index structure for spatial searching. In

Proceedings of the ACM SIGMOD Conference, pages 47–57, Boston, MA, June

1984.

[27] E. N. Hanson. A performance analysis of view materialization strategies. In

Proceedings of the ACM SIGMOD Conference, pages 440–453, San Francisco,

CA, May 1987.

[28] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search trees for

database systems. In U. Dayal, P. M. D. Gray, and S. Nishio, editors, Proceedings

of the 21st International Conference on Very Large Data Bases, pages 562–573,

Zurich, Switzerland, September 1995.

[29] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial

databases. In Proceedings of the ACM SIGMOD Conference, pages 237–248,

Seattle, WA, June 1998.

[30] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM

Transactions on Database Systems, 24(2):265–318, June 1999. (Also University

of Maryland Computer Science TR–3919).

[31] G. Iwerks and H. Samet. The spatial spreadsheet. In Visual Information and

information Systems: Third International Conference, VISUAL’99, pages 317–

324, Amsterdam, The Netherlands, June 1999. Springer-Verlag.

181

[32] G. Iwerks and H. Samet. Incremental view maintenance of spatial joins. Tech-

nical Report CS-TR-4179, University of Maryland, College Park, MD, August

2000.

[33] G. Iwerks and H. Samet. Visualization of dynamic spatial data and query results

over time in a gis using animation. In Visual Information and information Sys-

tems: Fourth International Conference, VISUAL’00, Lyon, France, November

2000.

[34] G. S. Iwerks and H. Samet. The internet spatial spreadsheet: Enabling remote

visualization of dynamic spatial data and ongoing query results over a network.

In ACM - GIS ’03, Proceedings of the 11th international symposium on geo-

graphic information systems, pages 154–160, New Orleans, LA, November 2003.

[35] G. S. Iwerks, H. Samet, and K. Smith. Continuous k-nearest neighbor queries for

continuously moving points with updates. In Proceedings of the 29th Interna-

tional Conference on Very Large Data Bases, pages 512–523, Berlin, Germany,

September 2003.

[36] G. S. Iwerks, H. Samet, and K. Smith. Continuous k-nearest neighbor queries for

continuously moving points with updates. In To be published in Proceedings of

the 30th International Conference on Very Large Data Bases, Toronto, Canada,

September 2004.

[37] B. Jobard and W. Lefer. The motion map: Efficient computation of steady flow

animations. In IEEE Symposium on Information Visualization, 1997, Proceed-

182

ings, pages 323–328, Phoenix, AZ, October 1997.

[38] M. Kang and S. Servign. Animated cartography for urban soundscape informa-

tion. In Proceedings of the 7th Symposium on Geographic Information Systems,

pages 116–121, Kansas City, MO, November 1999. ACM.

[39] A. Koussoulakou and M. J. Kraak. Spatio-temporal maps and cartographic

communication. The Cartographic Journal, 29:101–108, 1992.

[40] M. Kraak and A. M. MacEachren. Visualization of the temporal component

of spatial data. In Proceedings of Spatial Data Handling 1994, pages 391–409,

1994.

[41] M. Levoy. Spreadsheets for images. In Proceedings of the SIGGRAPH’94 Con-

ference, pages 139–146, Los Angeles, CA, July 1994.

[42] B. G. Lindsay, L. M. Haas, C. Mohan, H. Pirahesh, and P. F. Wilms. A snapshot

differential refresh algorithm. In Proceedings of the ACM SIGMOD Conference,

pages 53–60, Washington, D.C., May 1986.

[43] K. Ma, D. Smith, M. Shih, and H. Shen. Efficient encoding and rendering of

time-varying volumn data. Technical Report NASA/CR-1998-208424 ICASE

Report No. 98-22, National Aeronautics and Space Administration, Langley

Research Center, Hampton. VA, June 1998.

[44] A. M. MacEachren, F. P. Boscoe, D. Haug, and L. W. Pickle. Geographic vi-

sualization: Designing manipulable maps for exploring temporally varying geo-

183

referenced statistics. In IEEE Symposium on Information Visualization, 1998,

Proceedings, pages 87–94,156, Research Triangle Park, NC, October 1998.

[45] A. M. MacEachren and D. DiBiase. Animated maps of aggregate data: Concep-

tual and pratical problems. Cartography and Geographic Information Systems,

18(4):221–229, 1991.

[46] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–

276, May 1985.

[47] R. E. Meisner, M. Bittner, and S.W. Dech. Visualization of satellite derived

time-series datasets using computer graphics and computer animation. In 1997

IEEE International Geoscience and Remote Sensing, 1997. IGARSS ’97. Re-

mote Sensing - A Scientific Vision for Sustainable Development, pages 1495–

1498, Oberpfaffenhofen, Germany, August 1997. IEEE.

[48] R. E. Meisner, M. Bittner, and S.W. Dech. Computer animation of remote

sensing-based time series data sets. In IEEE Transactions on Geoscience and

Remote Sensing, pages 1100–1106, Oberpfaffenhofen, Germany, March 1999.

IEEE.

[49] H. Mokhtar, J. Su, and O. Ibarra. On moving object queries. In Proceedings of

the 21st ACM Symposium on Principles of Database Systems, pages 188–198,

Madison, WI, June 2002.

[50] M. A. Nascimento, R. Silva, and Y. Theodoridis. Evaluation of access struc-

tures for discretely moving points. In Proceedings of the International Workshop

184

on Spatio-Temporal Database Management, pages 171–188, Edinburgh, UK,

September 1999.

[51] Standards Committee on Interactive Simulation (SCIS). IEEE Std 1278.1-1995.

IEEE Computer Society, USA, March 1996.

[52] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambr-

usch. Query indexing and velocity constrained indexing: Scalable techniques

for continuous queries on moving objects. IEEE Transactions on Computers,

51(10):1124–1140, October 2002.

[53] K. Raptopoulou, A. N. Papadopoulos, and Y. Manolopoulos. Fast nearest-

neighbor query processing in moving-object databases. GeoInformatica,

7(2):113–137, 2003.

[54] J. Rasure and C. Williams. An integrated visual language and software develop-

ment environment. Journal of Visual Languages and Computing, 2(3):217–246,

September 1991.

[55] N. Roussopoulos and H. Kang. Principles and techniques in the design of adms±.

IEEE Computer, 19:19–25, 1986.

[56] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Pro-

ceedings of the ACM SIGMOD Conference, pages 71–79, San Jose, CA, May

1995.

185

[57] S. Saltenis and C. S. Jensen. Indexing of moving objects for location-based

services. In Proceedings. 18th International Conference on Data Engineering,

pages 463–472, San Jose, CA, February 2002.

[58] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the

positions of continuously moving objects. In Proceedings of the ACM SIGMOD

Conference, pages 331–342, Dallas, TX, May 2000.

[59] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

Reading, MA, 1990.

[60] F. Schroder. Visualizing meteorological data for a lay audience. IEEE Computer

Graphics and Applications, 13(2):12–14, September 1993.

[61] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts.

McGraw-Hill, New York, NY, third edition, 1996.

[62] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying

moving objects. In Proceedings of the 13th IEEE Conference on Data Engineer-

ing (ICDE), pages 422–432, Birmingham, U.K., April 1997.

[63] M. Stonebraker. Implementation of integrity constraints and views by query

modification. In Proceedings of the ACM SIGMOD Conference, pages 65–78,

San Jose, CA, May 1975.

186

[64] Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal

databases. In Proceedings of the ACM SIGMOD Conference, pages 334–345,

Madison, WI, June 2002.

[65] Y. Tao and D. Papadias. Spatial queries in dynamic environments. ACM Trans-

actions on Databases Systems (TODS), 28(2):101–139, June 2003.

[66] J. Tayeb, Ö. Ulusoy, and O. Wolfson. A quadtree-based dynamic attribute

indexing method. The Computer Journal, 41(3):185–200, 1998.

[67] J. Woodfill and M. Stonebraker. An implementation of hypothetical relations.

In 9th International Conference on Very Large Data Bases, pages 157–166, Flo-

rence, Italy, October 1983.

187

