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Uncontrollable variations are unavoidable in engineering design. If ignored, such 

variations can seriously deteriorate performance of an optimum design. Robust 

optimization is an approach that optimizes performance of a design and at the same time 

reduces its sensitivity to variations. The literature reports on numerous robust 

optimization techniques. In general, these techniques have three main shortcomings: (i) 

they presume probability distributions for parameter variations, which might be invalid, 

(ii) they limit parameter variations to a small (linear) range, and (iii) they use gradient 

information of objective/constraint functions. These shortcomings severely restrict 

applications of the techniques reported in the literature.  

The objective of this dissertation is to present a robust optimization method that 

addresses all of the above-mentioned shortcomings. In addition to being efficient, the 

robust optimization method of this dissertation is applicable to both single and multi-

objective optimization problems.  



There are two steps in our robust optimization method. In the first step, the method 

measures robustness for a design alternative. The robustness measure is developed based 

on a concept that associated with each design alternative there is a sensitivity region in 

parameter variation space that determines how much variation a design alternative can 

absorb. The larger the size of this region, the more robust the design. The size of the 

sensitivity region is estimated by a hyper-sphere, using a worst-case approach. The radius 

of this hyper-sphere is obtained by solving an inner optimization problem. By comparing 

this radius to an actual range of parameter variations, it is determined whether or not a 

design alternative is robust. This comparison is added, in the second step, as an additional 

constraint to the original optimization problem. An optimization technique is then used to 

solve this problem and find a robust optimum design solution.  

As a demonstration, the robust optimization method is applied to numerous 

numerical and engineering examples. The results obtained are numerically analyzed and 

compared to nominal optimum designs, and to optimum designs obtained by a few well-

known methods from the literature. The comparison study verifies that the solutions 

obtained by our method are indeed robust, and that the method is efficient.  
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CHAPTER 1 

INTRODUCTION 

 

1.1. MOTIVATION AND OBJECTIVE 

Back in the late 1970’s, there was a tile manufacturer in Japan called Ina Tile 

Company. One day the company discovered that an uneven temperature profile of its 

kilns was causing unacceptable variations in the size of its manufactured tiles. An 

obvious way to solve the problem was to modify the kilns by adding thermocouples and 

temperature controllers to monitor and correct the malfunction. However, this 

modification would have been very expensive. Instead, the company chose to make an 

inexpensive modification to their tile design to reduce the sensitivity of the manufactured 

tiles to temperature variations. Using statistically designed experiments, they found that 

increasing the lime content of their clay-mix from 1% to 5% reduced the variations in 

their tile size by a factor of 10 (Leon et al., 1987).  

Uncontrollable variations and noises are unavoidable in engineering design. 

Temperature variations, deviation of material properties from specifications, and 

dimensional tolerances of a design are just a few examples of uncontrollable parameter 

variations. When designing a system, these variations cannot and should not be ignored 

because they can seriously affect the performance of a design. As in the Ina Tile 

Company example above, one way to counter the effects of these variations is to try to 

reduce or eliminate the parameter variations themselves. However, this approach is 

usually very difficult to undertake and/or expensive to implement. Furthermore, it is quite 

possible that such variations will re-appear some other time in the future. A better 
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approach is to try to reduce the sensitivity of the design to the variations so that 

deteriorations caused by these variations are kept within an acceptable level.  

Dr. Genichi Taguchi from Japan is commonly credited for introducing the idea of 

reducing the sensitivity of a design, a process he called parameter design. Since then, this 

“least-sensitive design” idea has been developed much further, and later the term “robust 

design” was coined to refer to a design alternative that is insensitive to parameter 

variations. With the introduction of design optimization into system design, it was not 

long before the idea of a robust and optimum design surfaced, and the concept of robust 

optimization became popular among researchers in the field. Following conventional 

terminologies, Parkinson et al. (1993) later introduced the term “objective robustness” 

and “feasibility robustness” to refer to robustness with respect to objective and constraint 

functions in an optimization problem, respectively. 

Many robust optimization methods have been developed in the literature, as will be 

reviewed in detail in Chapter 2. However, the applicability of these methods is limited to 

optimization problems with small variations, and continuous and/or differentiable 

objective and constraint functions. In addition, these methods typically presume a certain 

form of probability distribution function of the uncertain parameters, and are applicable 

for single objective optimization problems only. The computational cost of these methods 

also often limits their application to relatively simple optimization problems.  

Practically, real world optimization problems rarely exhibit the properties mentioned 

above. The functions involved in real world optimization problems are typically non-

differentiable. The parameter variations of interest are very often large, beyond the 

validity of gradient estimation. Probability distribution of the uncertain parameters is also 
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generally not known, or is difficult and expensive to estimate accurately. Many problems 

have multiple objectives that need to be considered simultaneously. In our case study for 

example, the design of a payload for an Undersea Autonomous Vehicle (Chapter 6), the 

objective and constraint functions are discontinuous, the parameter variations are large, 

and the probability distribution of parameter variations is unknown. This problem also 

has multiple objectives, instead of just one objective, for which we want to find the 

robust optimum solutions. To make matter worse, in reality it is computationally 

expensive to compute the functions involved in the problem, so computational efficiency 

of the method used is important.   

The overall objective of this dissertation is to develop an efficient robust 

optimization method for both single- and multi-objective design optimization problems to 

obtain optimum designs that are robust with respect to both objectives and constraints, 

without having to: (1) presume a probability distribution of the parameter variations, (2) 

limit parameter variations to a small (linear) range, and (3) use the gradient information 

of objective/constraint functions.  

Before we continue, it is important to provide a distinction between the concept of 

robust optimization and Post Optimality Sensitivity Analysis (POSA) (e.g., Fiacco, 

1983). Both concepts deal with the uncertainties and variabilities that exist in an 

optimization problem. However, POSA is a posteriori approach where it determines the 

sensitivity and stability of the solution due to variability after the optimization process is 

completed. The goal of POSA is to provide information to the designer regarding the 

behavior of the optimum solution and the active constraints if some of the parameters 

vary. It is hoped that based on this information, the designer can then take appropriate 
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measures to maintain the performance of the optimum design. It is essentially a passive 

approach to optimization under uncertainty. In contrast, robust optimization is an active 

approach in dealing with uncertainty whereas the sensitivity of the design is considered 

during the optimization process. The goal of robust optimization is not to inform the 

designers of how to guard the optimum design against variations, but rather to reduce the 

sensitivity of the optimum design obtained so that there is little need for the designer to 

devise corrective measures when the variabilities exist.  

 

1.2. RESEARCH COMPONENTS 

To achieve the overall objective, we developed a step-by-step approach for the 

research in this dissertation. We first developed three research components for different 

types of robustness. These research components are: (1) single objective robustness, (2) 

multi-objective robustness, and (3) feasibility robustness. Next, we combined these 

different types of robustness to obtain a robust optimization method that accounts for 

both objective and feasibility robustness. In the next three sub-sections, an overview and 

objective of each research component is given. 

 

1.2.1. Research Component 1: Single Objective Robust Optimization 

The first research component is concerned with variations in the objective value of 

an optimum design due to uncontrollable variations in the parameters. This so-called 

“objective robustness” of an optimum design is important because if its objective value 

changes significantly, then performance of the design can degrade so much that it may be 

deemed unsatisfactory. Objective robustness of an optimum design is especially 
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important if the design is part of a larger system because deviations in the design’s 

performance could affect the rest of the system.  

The objective of the first research component is to develop a novel robust 

optimization method for single objective optimization problems that can obtain an 

optimum design solution that is robust in terms of the objective function.  

 

1.2.2. Research Component 2: Multi-Objective Robust Optimization 

The second research component is concerned with performance variations of an 

optimum design when there are multiple objectives involved. Similar to the first research 

component, here we also look into the changes in the objective values of a design due to 

variations in the parameters. However, since there are now multiple objectives, we have 

to examine the performance variation of the design with respect to each objective, and 

then based on it, determine the overall robustness of the design.  

The objective of the second research component is twofold. First, since the notion of 

a design that is optimum and robust for multiple objectives has not yet been defined in the 

literature, this research component aims to introduce and develop the concept of “multi-

objective robustness” and “multi-objective robust optimality” of a design alternative. 

Second, this research component seeks to develop a novel method for robust optimization 

of a design in multi-objective optimization problems.  

 

1.2.3. Research Component 3: Feasibility Robust Optimization 

The third research component is concerned with the feasibility of an optimum design 

due to uncontrollable variations in parameters. Typically, an optimum solution to an 
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engineering optimization problem is a boundary optimum, i.e., at the optimum at least 

one of the constraints is active (Papalambros and Wilde, 2000). Because of this, if some 

of the problem’s parameters vary, the optimum design may no longer be feasible. A 

design that is always feasible even if there are parameter variations is called “feasibly 

robust,” and the method to obtain a feasibly robust solution is called “feasibility robust 

optimization” method.  

The objective of the third research component is to develop a novel and efficient 

feasibility robust optimization method to obtain an optimum design that is always feasible 

regardless of parameter variations. 

 

1.3. ASSUMPTIONS 

In developing our robust optimization method, we make the following assumptions: 

• For objective robust optimization, we assume that there exists a trade-off between 

objective values of a design, and its robustness. If such a trade-off does not exist, 

then an optimum design is also a robust design, and there is no need to conduct 

robust optimization. 

• For feasibility robust optimization, we assume that the optimum is on (or near) the 

boundary of the feasible domain. If the optimum is well inside the feasible 

domain, then most likely that optimum is already feasibly robust, and we do not 

need to conduct robust optimization.  

• We assume that the range of parameter variations is known a priori, and that they 

are symmetric. (Robust optimization with asymmetric parameter variations will 

be discussed briefly in Chapter 6.) 
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1.4. ORGANIZATION OF DISSERTATION 

The rest of the dissertation is organized as follows. Chapter 2 gives the definitions of 

concepts and terminologies used throughout the dissertation, as well as a comprehensive 

review of related previous work in the literature. We develop the method for objective 

robust optimization of a single objective optimization problem in Chapter 3 (Research 

Component 1), and extend it to multi-objective problems in Chapter 4 (Research 

Component 2). In Chapter 5, we develop a method for feasibility robust optimization 

(Research Component 3). Chapter 6 presents our combined objective and feasibility 

robust optimization method. To demonstrate the applications of our method, several 

numerical and engineering examples are given in Chapters 3 through 6. Chapter 7 

concludes the dissertation with some remarks as well as a discussion on the contributions 

of the dissertation and potential future research directions.  

After reading this chapter and the next, we recommend that the readers continue with 

Chapter 3 first because it contains the bulk of our research results that will become the 

foundation of Chapters 4, 5 and 6. Chapters 4 and 5 may be read separately; however, 

Chapter 6 should be read after Chapters 3, 4, and 5.  

Figure 1.1 shows the organization and flow of information in this dissertation.  

 

 7



 

CHAPTER 1

Motivation and overall objective; 
research components; assumptions

CHAPTER 2

Definitions and terminologies; 
review of related works

CHAPTER 3

Single objective robust 
optimization

CHAPTER 4

Multi-objective robust 
optimization

CHAPTER 5

Feasibility robust optimization

CHAPTER 6

Combined objective and feasibility 
robust optimization

CHAPTER 7

Conclusions; contributions; future 
research directions

CHAPTER 1

Motivation and overall objective; 
research components; assumptions

CHAPTER 2

Definitions and terminologies; 
review of related works

CHAPTER 3

Single objective robust 
optimization

CHAPTER 4

Multi-objective robust 
optimization

CHAPTER 5

Feasibility robust optimization

CHAPTER 6

Combined objective and feasibility 
robust optimization

CHAPTER 7

Conclusions; contributions; future 
research directions  

Figure 1.1: Organization of dissertation. 
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CHAPTER 2 

DEFINITIONS AND PREVIOUS WORK 

 

2.1. INTRODUCTION 

In this chapter, we provide several definitions and terminologies that will be used 

throughout the dissertation. In addition, we also give a comprehensive review of previous 

work in the literature related to single objective, multi-objective, and feasibility robust 

optimization concepts and methods. 

 

2.2. DEFINITIONS AND TERMINOLOGIES 

 A general single objective optimization problem can be formulated as shown in 

Eq. (2.1) below. 
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   (2.1) 

Here, f is the objective function to be optimized, x = [x1,…,xN]t is the design variable 

vector (with superscript ‘t’ referring to the transpose of the row vector), and p = 

[p1,…,pG]t is the set of parameters. For practical reasons, x and p are restricted to real 

values. The problem has J inequality constraints, gj, j = 1,...,J, and K equality constraints, 

hk, k = 1,…,K.  

In this dissertation, the notation p represents problem factors that have variability, 

including design variables. Following this notation, if there are variations in some of the 

design variables, then a subset of x belongs to p, i.e., these are the design factors that we 

control during the optimization of f but these factors have variability. Some researchers 
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prefer to differentiate between variations in x and variations in p, the so-called type-1 and 

type-2 variations (Chen et al., 1996; Kalsi et al., 2001). For simplicity, we do not make 

that distinction. Also, the parameters value p = p0 that we use to optimize a design is 

called the nominal parameters value.  

Because of noise and uncertainty, parameter values vary by some amount: ∆p = 

(∆p1,…,∆pG)t, and in turn these variations affect the objective and constraint values of a 

design.  

The goal of objective robust optimization is to obtain a design variable vector xR 

whose objective value f(xR,p) is not only minimum but also remains within an acceptable 

bound when p varies. In other words, the objective value of the design is insensitive to 

variations in p.  

The goal of feasibility robust optimization is to obtain a design variable vector xR 

whose inequality constraint values gj(xR,p), j=1,..,J, are always feasible regardless of ∆p 

variations. Feasibility robust optimization is concerned only with inequality constraints 

(i.e., equality constraints are not considered in feasibility robust optimization). This is 

because equality constraints are “hard” to consider, i.e., unless the ∆p variations are such 

that hk(x,p+∆p) = 0 for all k=1,…,K, there is no way to guarantee that these equality 

constraints will always be satisfied.  

When there is more than one objective function to minimize, the problem becomes a 

multi-objective optimization problem as shown in Eq. (2.2).  
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The formulation in Eq. (2.2) is the same as that of a single objective optimization 

problem, except that now we have M > 1 objectives to minimize simultaneously. Here, 

we assume that the number of objectives is finite (i.e., M < ∞). We also assume that at 

least two of the objectives are conflicting, i.e., for a given design, as we decrease 

(improve) the value of one objective, the value of at least one other objective increases 

(worsens). Because of this trade-off among the objectives, there is generally a set of 

optimum solutions to the problem in Eq. (2.2). This set is called a Pareto set (see 

definitions below), and the design solutions in the set are called Pareto designs. The 

Pareto set is a trade-off set meaning that there is no design in the set that dominates or is 

better than the other designs in the set. Extensive reviews of multi-objective optimization 

concepts and methods are given by Miettinen (1999), and in evolutionary multi-objective 

optimization by Deb (2001) and Coello Coello et al. (2002). 

When there are variations in design parameters (i.e., ∆p), some or all of the M 

objectives will be affected. The goal of multi-objective robust optimization is to obtain a 

design variable vector xR whose objective values f(xR,p) are Pareto optimum, and at the 

same time are insensitive to these ∆p variations for all objectives.  

Next, we provide several definitions and terminologies used in this dissertation. 

Objective space (f-space): An M-dimensional space in which the coordinate axes are the 

objective values. 

Parameter variation space (∆p-space): A G-dimensional space in which the coordinate 

axes are the parameter variation (∆p) values. 

Normalized parameter variation space ( p∆ -space): A G-dimensional ∆p-space where all 

the entries are normalized by the known ranges of parameter variations (∆p0), i.e., 
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Maximum acceptable performance variation (∆f0 = [∆f1,0,…,∆fM,0]t): The maximum 

acceptable change in the objective function values f. These values are determined by 

the designer. The maximum acceptable change may also be given as a percentage 

value.  

Inferiority, non-inferiority, and dominance: In multi-objective minimization, a feasible 

design point xa is said to be inferior with respect to (w.r.t.) another feasible design 

point xb if fi(xb) ≤ fi(xa) for all i=1,…,M, with strict inequality for at least one i. 

Correspondingly, the design point xb is said to dominate xa. If xa neither dominates 

nor is inferior to xb, then xa and xb are said to be non-inferior w.r.t. each other.  

Inferior, non-inferior, and dominant regions: In multi-objective minimization, the inferior 

region of a design xa is defined to be the region in the objective space where the 

design points are dominated by xa. Similarly, regions in the objective space where 

the design points in the regions are non-inferior and dominate xa are called the non-

inferior and dominant regions of xa, respectively. 

Trade-off set: A set of design points is a trade-off set if all points in the set are non-

inferior with respect to each other (although there might be design points outside the 

set that dominate the points in the set).  

Pareto optimality, Pareto set, and Pareto frontier: In multi-objective optimization, a 

feasible design point xp is Pareto optimum if it is not inferior w.r.t. any other feasible 

design point. The set of all Pareto optimum points is called the Pareto set. The plot of 

the Pareto set in the objective space is called the Pareto frontier.  
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Nominal Pareto set: Pareto set of a multi-objective optimization problem without 

robustness consideration. 

Robust Pareto set: A trade-off set whose elements are both multi-objectively robust and 

Pareto optimum (see Chapter 4 for further explanations). 

Vector operator ⊗: Let a and b be nx1 vectors. We define the operation: c = a ⊗ b, where 

c is a nx1 vector whose elements are:  c = (a1b1, a2b2,…, anbn)t.  

Ternary vector operator 〈•〉 : Let a, b, and c be nx1 vectors. We define the operation: d = 

, where d is a nx1 vector whose i-th element is d  for all 

i=1,…,n. 

〉〈 cba ,,




>
≤

=
0a if,ca
0a if,ba

iii

iii
i

 

2.3. OVERVIEW OF PREVIOUS WORK 

Most of the robust optimization methods in the literature are developed to account 

for both objective and feasibility robustness of an optimum design. However, some 

methods are developed to account for objective robustness only, while others are for 

feasibility robustness only. There are also some related works that developed methods for 

robustness measurement of a design only, without optimization. 

In general, these methods can be categorized into three main groups: (i) experiment-

based methods, (ii) deterministic methods, and (iii) probabilistic methods. Experiment-

based methods are those methods that perform local sampling around the nominal value 

of a design to probe its behavior under parameter variations. Taguchi’s orthogonal array 

(Taguchi and Phadke, 1984; Kackar, 1985; Phadke, 1989) and simple random sampling 

(Branke, 1998, 2001) are examples of experiment-based methods. Deterministic methods 
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are those methods that do not use statistical measures in calculating a design’s 

robustness; rather, they use some deterministic measures. Gradient minimization 

(Belegundu and Zhang, 1992), worst-case analysis (Parkinson et al., 1993), and the mini-

max method (Hirokawa and Fujita, 2002) are examples of deterministic methods. 

Probabilistic methods are those methods that use statistical measures, such as mean and 

variance, to calculate a design’s robustness. These methods often use a Taylor series 

expansion to estimate these statistics. Examples of probabilistic methods include Yu and 

Ishii’s variation pattern method (1994, 1998), reliability index method (Tu et al., 1999; 

Youn et al., 2003), and most probable point method (Du and Chen, 2000).  

In addition to these three main groups, there are other more specialized robust 

optimization methods such as fuzzy robustness method (Otto and Antonsson, 1993; 

Arakawa and Yamakawa, 1998), tolerance maximization method (Balling et al., 1998), 

and Zhu and Ting’s performance sensitivity distribution method (2001). There are also 

methods that combine several of the methods from the above three main groups.  

Experiment-based methods are generally simple and straightforward, but their 

computational efforts grow rapidly, and eventually become impractical for problems with 

many parameters because they are essentially based on exhaustive permutations of all 

possible parameter variations. The computational cost of these methods is even more 

prohibitive as the number of discrete variation levels to be analyzed becomes large. Even 

for methods that use only partial permutations (Branke, 2001) the computational cost is 

still very high. Because of this computational issue, often these methods require 

preliminary experiments to eliminate those parameters that are statistically insignificant, 
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and to determine the levels of variations to be analyzed. These preliminary experiments 

are often costly and difficult.  

Many deterministic methods (Belegundu and Zhang, 1992; Parkinson et al., 1993) 

try to reduce the computational effort by using gradient information to estimate a 

design’s robustness. Estimating the gradient of a function is indeed computationally more 

efficient than exhaustive permutations. However, since these methods need gradient 

information, obviously they are only applicable to optimization problems whose 

functions are differentiable. These methods cannot solve robust optimization problems 

having non-smooth objective and/or constraint functions (e.g., a step function). Besides, 

as parameter variations grow large (beyond the range in which linear approximation is 

valid), gradient estimation will cease to be valid. 

Some deterministic methods use worst-case analysis to calculate a design’s 

robustness (Badhrinath and Rao, 1994; Hirokawa and Fujita, 2002). These methods are 

also computationally more efficient than experiment-based methods. However, the results 

obtained are typically conservative because they use the worst possible instance of a 

design’s performance as its robustness measure.  

Probabilistic methods (Yu and Ishii, 1994, 1998; Tu et al., 1999) extend the 

experiment-based methods by calculating probability information of a design based on a 

probability distribution of the parameters. For objective robustness, they calculate the 

mean and variance of a design’s performance. For feasibility robustness, they calculate 

the probability of constraint satisfaction for a design. Clearly, these methods require that 

the probability distribution of parameters is known a priori (which often is not the case), 

and the results obtained from these methods are dependent on the validity of the assumed 
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distribution. The computational cost of these methods is also more prohibitive than 

experiment-based methods because they need to calculate probability information. Even 

for those probabilistic methods that claim to be efficient (Du and Chen, 2000), the 

number of function evaluations needed is still very high. 

Almost all of the robust optimization methods in the literature are only applicable to 

single objective optimization problems. It is widely acknowledged, however, that an 

engineering design problem generally has multiple conflicting objectives. Very few 

papers address the issue of multiple objectives (sometimes also called multi-criteria): Rao 

(1984), Pignatiello (1993), and Ramakrishnan and Rao (1996). However, these methods 

essentially convert a multi-objective robust optimization problem into a single-objective 

one by aggregating the performance variations, and do not take into account trade-offs 

among the solutions. To our knowledge, there is no reported work in the literature that 

has formulated and defined the concept of a robust and multi-objectively optimum design 

as will be developed in this dissertation.  

A more detail discussion of related works in the literature is given in the next three 

sections. For clarity, we divide our discussions according to our research components: (i) 

single objective robust optimization, (ii) multi-objective robust optimization, and (iii) 

feasibility robust optimization.  

 

2.3.1. Single Objective Robust Optimization 

One of the earliest works in objective robustness is the parameter design method of 

Taguchi (Taguchi, 1978; Taguchi and Phadke, 1984; Kackar, 1985; Phadke, 1989). This 

method is an experiment-based method that uses full-factorial experiments to obtain the 
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responses of a design, calculates the mean and variance of the responses, and then based 

on these values, minimizes a quantity called signal-to-noise (S/N) ratio. Taguchi’s 

method has been widely used to obtain a robust design, e.g., Pignatiello and Ramberg 

(1985), Wang et al. (1999), Hwang et al. (2001). However, it also has received much 

criticism for its use of the S/N ratio because it could result in a design with very low 

performance or very high variance. Leon et al. (1987) proposed an alternative to S/N 

ratio, and developed a robustness measure called PerMIA (Performance Measure 

Independent of Adjustment). They showed that PerMIA is a quality loss measure that 

Taguchi originally proposed in his parameter design concept, but did not use in his 

formulation. They also showed that PerMIA is a more reliable measure than S/N ratio in 

terms of solution quality, and that for certain special cases, PerMIA simplifies to the S/N 

ratio. The use of PerMIA in factorial experiments is also proposed and discussed in 

Pignatiello and Ramberg (1987) and Box (1988).  

In a different approach to Taguchi’s experiment-based method, some methods 

calculate a design’s robustness deterministically. Many methods (e.g., Belegundu and 

Zhang, 1992) use the gradient of the objective function as a robustness measure, and 

minimize a weighted sum (or some other combinations) of the objective and gradient 

values. However, Badhrinath and Rao (1994) showed that in general this weighted-sum 

approach is not reliable because it could lead to a local maximum solution. Instead they 

proposed a worst-case approach where they minimize the maximum objective value 

within the given parameter range. Parkinson (1998, 2000) and Hirokawa and Fujita 

(2002) also developed methods based on this worst-case min-max strategy. However, this 

min-max approach is often computationally extensive because it calculates the maximum 
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objective value every time a new feasible solution is obtained. To reduce computation 

cost, Sundaresan et al. (1992, 1993) proposed to simply calculate objective values at the 

“corners” of parameter range, and used their average as a robustness measure. 

Balling et al. (1986) proposed an interesting deterministic method for robust 

optimization. Unlike other methods, their method works “backward” in that they first 

specify an acceptable variation in objective value, and then maximize the parameter 

range. Zhu and Ting (2001) also proposed a similar “backward” approach where they 

define relative robustness of a design based on the relationship between variation in the 

objective value and the parameter range corresponding to this variation. 

A large portion of the literature uses probabilistic measures to determine robustness, 

most commonly the mean and variance of objective value. The simplest of these methods 

is the sampling approach where the mean and variance values are estimated by local 

sampling around the nominal objective value: Tsutsui and Gosh (1997), Branke (1998, 

2001), Tsutsui (1999). Many probabilistic methods estimate the mean and variance using 

a Taylor series expansion, and then minimize a weighted sum of the two values: Yu and 

Ishii (1994, 1998), Du and Chen (2000), Jung and Lee (2002). Many other methods 

propose to treat mean and variance as two conflicting objectives, and use multi-objective 

optimization to simultaneously optimize them: Chen et al. (1996), Simpsons et al. (1997), 

Chen and Yuan (1999), Chen et al. (2000), Kalsi et al. (2001).  

 

2.3.2. Multi-Objective Robust Optimization 

 Only a few methods in the literature are applicable to multi-objective robust 

optimization problems, and most of them are generalizations of Taguchi’s loss function 

 18



 

(i.e., the S/N ratio). The first work to extend the loss function to multiple responses is by 

Pignatiello (1993) for the case of nominal-the-best. Tsui (1999) later expanded the work 

to include smaller-the-better and larger-the-better cases. Not wanting to use the S/N ratio 

in their robust design, Elsayed and Chen (1993) developed a quantity called PerMQ 

(Performance Measure on Quality), a generalization of the PerMIA measure of Leon et 

al. (1987) for single-response problems.  

Other non-Taguchi based methods have been developed as well: Rao (1984), 

Ramakrishnan and Rao (1996), Lee and Lee (2001), Messac and Yahaya (2002), 

Shelokar et al. (2002), but they all use different approaches and are not focused on a 

certain approach.   

None of the methods mentioned above take into account the trade-off that exists 

among the multiple objectives. A few researchers attempt to include Pareto dominance 

when searching for a robust solution (Kunjur and Krishnamurty, 1997; Fernandez et al., 

2001). However, a true multi-objective robust optimization method that accounts for both 

multi-response robustness and Pareto optimality, as presented in this dissertation, has not 

yet been developed.  

 

2.3.3. Feasibility Robust Optimization 

Many deterministic methods have been developed for feasibility robust optimization, 

the simplest being the use of a safety factor. Several methods propose a worst-case 

approach where they constrain the largest constraint variation instead of the original 

constraint value: Parkinson et al. (1993), Yu and Ishii (1994, 1998), Hirokawa and Fujita 

(2002). Other methods propose non-mathematical “procedures” to guarantee a design’s 

 19



 

robustness: “closest feasible point” method (Balling et al., 1986), “corner space” method 

(Sundaresan et al., 1992, 1993). Yet some other methods use fuzzy logic rules to 

determine if a design is feasibly robust: Arakawa and Yamakawa (1998), Rao and Cao 

(2002).  

The most popular of all feasibility robustness approaches is the probabilistic 

approach. Some methods calculate the statistical variance of the constraint value using a 

Taylor series expansion, and then add this variance to the original constraint, a so-called 

“moment matching” approach: Wu et al. (1990), Parkinson et al. (1993), Chen et al. 

(1996), and Ramakrishnan and Rao (1996). Some other methods replace the original 

constraints with a constraint on the probability of constraint satisfaction of the optimum 

design. This “chance-constrained” approach has been well developed for linear problems 

(Charnes and Cooper, 1959; Charnes and Cooper, 1963), as well as non-linear ones (Du 

and Chen, 2000; Jung and Lee, 2002).  

The chance-constrained approach has been much expanded and developed further 

using reliability analysis techniques, where a design’s probability of constraint 

satisfaction is calculated via a so-called “reliability index”: Chandu and Grandhi (1995), 

Choi et al. (2001), Choi and Youn (2002), Youn et al. (2003). Tu et al. (1999) generalize 

this approach to two approaches: the conventional Reliability Index Approach (RIA) and 

the Performance Measure Approach (PMA), and show that in most cases PMA is better 

than RIA. Du and Chen (2000) later propose to perform a local sampling around the so-

called “most probable point” to get a more accurate estimate of probability of constraint 

satisfaction, as well as to improve computational efficiency.  
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CHAPTER 3 

SINGLE OBJECTIVE ROBUST OPTIMIZATION 

 

3.1. INTRODUCTION 

When optimizing a design or a system, it is important to ensure that its performance 

at the optimum does not change significantly if some parameters vary uncontrollably. In 

designing a racecar, for example, it is often desirable that its weight be minimized. At the 

same time, it is also necessary to guarantee that a change in its weight (due to a change in 

some uncontrollable parameters) is limited. If the weight of the vehicle increases 

significantly, the vehicle speed may decrease considerably. If the weight decreases 

significantly, the lift that the vehicle experiences might result in lost traction. This so-

called performance robustness (or objective robustness) of a design is especially critical if 

the design is part of a larger system. A robotic arm for a cutting tool, for instance, is often 

optimized for maximum movement speed. However, once an optimum speed is decided, 

it must be maintained so that it is compatible with other parts of the robotic system that 

are designed for that speed.  

The purpose of this chapter is to present a robust optimization method that can obtain 

a design solution that is objectively robust for a single objective optimization problem. A 

design is objectively robust if the variation in its objective function (i.e., variation in its 

performance) is small, within an acceptable range specified by the designer.  

We begin this chapter by presenting a method to measure the sensitivity (or inversely 

the robustness) of a design using a sensitivity region concept. We then present an 

approach to use such a measure to obtain a robust optimum design. Several numerical 
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and engineering comparison studies are given in this chapter to demonstrate the 

applications of the method. Note that in this chapter we consider objective robustness 

only, and assume that the robust optimum obtained is feasible when parameter variations 

occur. We will present our feasibility robustness approach later on in Chapter 5. 

 

3.2. TWO-SIDED SENSITIVITY MEASURE 

We start by developing a method to measure the two-sided sensitivity of a design. 

This sensitivity measure is developed based on the notion that for each design alternative, 

there is a region in ∆p-space that can be used to evaluate that design’s sensitivity. This 

measure is a “two-sided” measure because we limit both the increase and decrease of the 

design performance (unlike feasibility robustness in Chapter 5, which is “one-sided”). 

 

3.2.1. Sensitivity Set 

Let x0 be a design alternative whose sensitivity we want to measure, and let p0 be the 

nominal parameter values for which the objective value of that design is defined, i.e., 

f(x0,p0). If a subset of x belongs to p, then the p0 values of this subset are its x0 values. 

Also let ∆f0≥0 be the maximum acceptable changes for the design performance as 

determined by the designer. For this design and given ∆f0, there is a set of ∆p values such 

that the changes in f(x0,p0) due to these ∆p’s are less than or equal to ∆f0. This set is 

called the “sensitivity set” (Sf) of the design, and mathematically it is defined by 

Eq. (3.1). (We use the square of ∆f to account for negative values.) 
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Let us take a moment to discuss the importance of this set. What exactly is a 

sensitivity set? As shown in Eq. (3.1), Sf is a set of ∆p’s that can be allowed to happen if 

we want variation in f(x0,p0) to be within ∆f0. So, a sensitivity set is essentially a 

collection of parameter changes ∆p that a design can “absorb” before it violates the 

acceptable performance variation limit ∆f0. Clearly, a design that can absorb a large 

amount of ∆p is less sensitive (or more robust) than a design that can absorb only a small 

amount. This observation implies that Sf is an indicator of a design’s sensitivity. As the 

number of elements in the set Sf increases, the design can allow more changes in p. This 

in turn brings up two key observations: 

1. Given two designs, the design with a larger Sf is less sensitive (more robust) to 

changes in p than the design with a smaller Sf 

2. If we can control ∆p such that it is always a member of Sf, then we can guarantee 

that the ∆f0 limit will always be satisfied. 

Provided f(x0,p0) is defined and thus exists, Sf is guaranteed to exist and is always 

unique. The existence of Sf is easy to see. Because f is defined for the pair (x0,p0), then 

the smallest set possible is Sf = {0}. An empty Sf implies that f(x0,p0) does not exist; a 

contradiction to our assumption. The uniqueness of Sf is also straightforward. Suppose x0 

has J non-unique sensitivity sets that satisfy Eq. (3.1): Sf,1,…,Sf,J. Then the unions of all 

these sets must necessarily also satisfy Eq. (3.1), and this superset becomes the unique 

sensitivity set of x0: Sf = {Sf,1 ∪…∪ Sf,J }. 

Let us demonstrate with an example how to use the sensitivity set of a design to 

measure its robustness.  
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Example 3.1 

Consider a cylindrical piston pin made out of stainless steel (density ρ = 8.0 gr.cm-3) 

whose height and radius are: h = 5 cm and r = 2 cm, respectively. The nominal weight of 

the pin is W = 502.6 gr, but suppose due to variations in ρ and r, the actual value of the 

pin’s weight varies. If we want the weight to vary by at most ∆W0 = 10 gr, determine the 

∆ρ and ∆r values that can be allowed to occur. 

Solution 

The weight of the pin is given by W = ρπr2h. When there are variations ∆ρ and ∆r, 

the weight becomes W′ = (ρ+∆ρ)π(r+∆r)2h. Setting the square of the weight difference 

(with and without the variations): ∆W2 = (W′−W)2, to be less than (∆W0)2, we obtain a 

quadratic inequality: 

 0rρ
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where: t = uv2, u = (ρ+∆ρ), and v = (r+∆r). Solving the inequality in Eq. (3.2) and using 

backward substitution, we obtain the sensitivity set of the pin design: 
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As long as the condition in Eq. (3.3) is satisfied, the pin weight will always remain within 

±10 gr. For a simple verification, if (∆ρ,∆r) = (-0.4, 0.05), then the pin weight is 501.7 gr 

and the condition in Eq. (3.3) is satisfied. If (∆ρ,∆r) = (1.0, -0.02), then the pin weight is 

554.2 gr, and the condition in Eq. (3.3) is violated. If (∆ρ,∆r) = (0.495, -0.04), the 
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condition is actively (as an equality) satisfied, and the pin weight is 512.6 gr (exactly 

equal to: nominal weight plus ∆W0).  

The reader might have readily observed that there is an apparent relationship 

between strict satisfaction of Eq. (3.3) and the amount of the ∆W0 limit being used up. 

This observation is not a coincidence. In fact, it is an important property that later will 

become the basis for all of our robust optimization methods. ♦ 

 

3.2.2. Sensitivity Region 

Because we are dealing with continuous ∆p, mathematically the size of Sf is infinite, 

and as such we cannot explicitly use it as a measure of a design’s robustness. However, if 

we plot Sf in the ∆p-space, we obtain a region surrounding the origin that we call the 

“sensitivity region” (SR) of the design. The size of this region explicitly corresponds to 

the size of Sf, and therefore the size of a SR is also a measure of a design’s sensitivity: the 

larger the region, the less sensitive (more robust) the design. Figure 3.1 shows a typical 

example of a SR (for a two-parameter function). 
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Figure 3.1: Sensitivity region of a design alternative. 

Since SR is simply a plot of Sf, the conditions for a ∆p point to be inside, outside, or 

on the boundary of a SR can be derived from Eq. (3.1). It is obvious that if a point is 
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outside a SR (e.g., point C), then Eq. (3.1) is not satisfied, i.e., [∆f (∆p)]2 > [∆f0]2. What 

about points inside and on the boundary of a SR? It is not obvious from Eq. (3.1) what 

the conditions for these points are. As it turns out, a point inside a SR (e.g., point B) 

satisfies [∆f (∆p)]2 < [∆f0]2, while a point on the boundary of a SR satisfies Eq. (3.1) with 

an equality [∆f (∆p)]2 = [∆f0]2.  

Let us discuss the boundary point condition first. The argument for this condition is 

as follows. Suppose a point is on the boundary of a SR but Eq. (3.1) is satisfied as an 

inequality. Then the inequality implies that ∆p can change by an infinitesimal amount in 

any direction, and the condition [∆f (∆p)]2 ≤ [∆f0]2 is still satisfied. But geometrically, if 

the point is on the boundary of a SR, then there is at least one direction along which the 

change in ∆p, no matter how small, will push the point to the outside of SR, i.e., 

[∆f (∆p)]2 > [∆f0]2 (Figure 3.2). This is a contradiction, so we conclude that if a point is 

on the boundary of a SR, then Eq. (3.1) must necessarily be satisfied with an equality. 
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Figure 3.2: Geometric condition for a boundary point. 

It should be noted that the above argument is valid only if f(x,p) is continuous with 

respect to p (but not necessarily differentiable). If f(x,p) (hence ∆f (∆p)) is discontinuous, 

the condition [∆f (∆p)]2 = [∆f0]2 is still valid as long as the discontinuity does not occur 
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on the SR boundary (i.e., as long as it is an inner discontinuity). However, even if the 

discontinuity does occur on the boundary, the condition can still be valid provided the 

discontinuity is such that [∆f (∆p)]2 = [∆f0]2 as the discontinuity is approached from the 

left or from the right (Figure 3.3). Most engineering functions are continuous, so we 

rarely have to deal with this situation (recall that we are not dealing with discrete ∆p). 

However, if the function of interest happens to be discontinuous, then we assume that the 

discontinuity observes either one of the two conditions described above. 
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Figure 3.3: One-dimensional SR example of a discontinuous function. 

The argument for the condition of a point inside a SR is similar to that of a boundary 

point condition, but there is a small complication that must be addressed. Strictly 

speaking, the inner point condition should be [∆f (∆p)]2 ≤ [∆f0]2 because it is possible that 

the equality is satisfied by inner points also (as shown in Figure 3.4). However, since we 

are using the size of SR to measure the robustness of a design, we are interested primarily 

in the SR boundary. So, to avoid computational problems it is necessary to make a clear 

distinction between inner and boundary point conditions. To make this distinction, we 

modify the given ∆f0 to , where δfff δˆ
00 +∆=∆ f is an infinitesimal positive number. 
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Using , the inner point condition becomes [  and the boundary point 

condition becomes [ . 

0̂f∆ 2
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Figure 3.4: One-dimensional example of equality inner point condition. 

Mathematically, the boundaries defined by [  and 

 are slightly different. However, since δ

2
0

2 ]ˆ[)]( ff ∆=∆∆ p

2 [)]( ff ∆<∆∆ p

2
0 ][([ ff ∆=∆∆

2
0 ]ˆ[([ ff ∆=∆∆

f is infinitesimal, practically 

they are the same. For the rest of our discussions, we will use [ and 

 for inner and boundary point conditions, respectively. For simplicity, 

we will use the notation ∆f

2
0 ]ˆ

0 to refer to . 0̂f∆

The existence and uniqueness of a SR follows directly from the existence and 

uniqueness of Sf. One property of SR that should be noted is that it always encloses the 

origin of the ∆p-space because the set {0} is always a member of Sf. This property will 

become important later on. It should also be noted that a SR does not necessarily have to 

be fully bounded although we showed a fully bounded SR example in Figure 3.1 and 3.2. 

By fully bounded we mean that in the G-dimensional ∆p-space, the SR boundary is a 

closed hyper-surface. However, we do assume that SR is bounded along at least one ∆p-

direction, not necessarily the coordinate axis (Figure 3.5). 
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Figure 3.5: Boundedness of a sensitivity region. 

The assumption for the SR’s one-directional boundedness is necessary because if the 

SR is completely unbounded, then it implies that the design is already inherently robust, 

and hence there is no need to calculate its robustness. Two conditions can cause a SR to 

be unbounded. First, the objective function f(x0,p0) is independent of ∆p, i.e., 

f(x0,p0) = f(x0,p0+∆p), ∀∆p. In turn, this means that the objective value of the design x0 is 

unaffected by changes in p (i.e., the hyper-surface of f(x0,p0) with respect to p is flat). 

Second, ∆f0 is larger than the maximum possible ∆f (e.g., the sinus function in 

Figure 3.6). This also implies that x0 is practically unaffected by ∆p; at least for the given 

∆f0. If either condition holds, then any design alternative is already inherently robust, and 

there is no need to search for the robust optimum design. 
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Figure 3.6: Example of a condition that causes SR to be unbounded. 
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 Note also that a SR does not have to be a single connected region. It can be a 

collection of several disjointed regions in which one of them encloses the origin 

(Figure 3.7). Each of the disjointed regions can be either fully or partially bounded. 
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Figure 3.7: Example of a disjointed sensitivity region. 

A SR has a geometric significance as well. If we look into the hyper-surface of the 

function ∆f(∆p), then SR is simply the collection of points sandwiched between two 

parallel −∆f0 and +∆f0 hyper-planes, projected onto the ∆p hyper-plane (as shown in 

Figure 3.3 and 3.4 for one dimension). In other words, SR is the region between the 

contours of ∆f(∆p) for values ∆f = −∆f0 and ∆f = +∆f0. Since contours of a function 

always exist and are unique, this observation provides yet another justification for the 

existence and uniqueness of SR. In addition, it also provides an explanation as to why it 

is possible for a SR to be not fully bounded or even be disjointed.  

 

Example 3.2 

Let us revisit our piston pin design example again. In Example 3.1 we derived the 

sensitivity set of the design when its height and radius are h = 5 cm and r = 2 cm, 

respectively. Given ∆W0 = 10 gr, what is the sensitivity region of this design?  
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Solution 

Since we already have Sf, we can directly use Eq. 3.3 to plot the SR of this design as 

shown in Figure 3.8(a) below. 
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Figure 3.8: (a) Sensitivity region of the piston pin. (b) Surface plot of ∆W(∆ρ,∆r). 

For comparison, we have also shown the surface plot of the difference function 

∆W(∆ρ,∆r), as shown in Figure 3.8(b). Notice in Figure 3.8(a) how the SR is simply the 

projection of points between two parallel planes ±∆W0 cutting through the surface in 

Figure 3.8(b). Notice also that the SR encloses the origin, but is unbounded.  

In Example 3.1 we performed a simple calculation to validate the accuracy of 

Eq. 3.3. We showed that for the pair (∆ρ,∆r) = (-0.4, 0.05) the pin weight is 501.7 gr (less 

than W+∆W0), for (∆ρ,∆r) = (1.0, -0.02) the pin weight is 554.2 gr (greater 

than W+∆W0), and for (∆ρ,∆r) = (0.495, -0.04), the pin weight is 512.6 gr (equal 

to W+∆W0). Observe how these three (∆ρ,∆r) pairs fall inside, outside, and on the 

boundary of the SR shown in Figure 3.8(a), respectively, and that the changes in the 

weight are as we predicted. ♦ 
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3.2.3. Directional Sensitivity 

Figure 3.8(a) shows a drawback in using SR size as a robustness measure, namely 

the asymmetry of the SR. Because of this asymmetry, a design might be very robust if ∆p 

moves along certain directions, but very sensitive if it moves along some other directions. 

Besides, if the SR is not fully bounded (like in Figure 3.8(a)), its size is infinite. 

Figure 3.9 shows an example of such a directional sensitivity. In this figure, the SR of 

design A is larger than that of design B and therefore, based on our previous discussions, 

design A is more robust than design B. However, if ∆p happens to vary along the 

direction shown, design A will violate the ∆f0 limit first before design B does. In other 

words, for this ∆p direction design B should be considered more robust than design A. 
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Figure 3.9: Example of a directional sensitivity. 

From this simple example it is apparent that the size of SR only measures the overall 

sensitivity behavior of a design. If design A has a larger SR than design B, then when ∆p 

occurs along all directions, design A will stay within the acceptable ∆f0 bound more often 

than design B. However, this does not mean that design A will always be more robust 
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than design B. Therefore, to get a more complete picture of a design’s robustness, we 

need to consider the directional sensitivity of the design as well.  

 

Example 3.3 

Let us return to our piston pin example. Suppose the designer wants to decrease the 

weight of the pin by using an aluminum alloy 6061 (density ρ = 2.7 gr.cm-3) instead of 

stainless steel. To maintain the strength requirement, however, (s)he finds that the pin 

radius must be increased to r = 3 cm. The pin height is kept at h = 5 cm. The nominal 

weight of the aluminum pin is calculated to be W = 381.7 gr, so it is indeed lighter than 

the stainless steel pin. If the designer still wants the weight variation to be within 

±∆W0 = 10 gr, determine the sensitivity region of this design. Is the aluminum pin more 

or less robust than the stainless steel pin?  

Solution 

The Sf equation in Eq. 3.3 was derived independent of the nature of the design, so it 

is also applicable to the aluminum pin design provided we use the appropriate values. 

Substituting ρ = 2.7 and r = 3 into Eq. 3.3 and plot the inequalities, we obtain the SR of 

the aluminum pin as shown in Figure 3.10. For comparison, we have also shown the SR 

of the stainless steel pin.  

As can be seen in Figure 3.10, the aluminum pin SR is narrower than the steel pin SR 

and is slightly rotated counter-clockwise. Overall, the steel pin SR is larger than the 

aluminum pin SR, so based on the sensitivity region concept, one will conclude that the 

steel pin is more robust than the aluminum pin. However, this assertion is only partially 

accurate because of the SR rotation. If the changes in the pin radius is between 
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∆r = [−0.017, 0.017], then we can safely assert that the steel pin is more robust than the 

aluminum pin (the steel SR encloses the aluminum SR). However, beyond this range 

there are (∆ρ,∆r) pairs that the steel pin can absorb but the aluminum pin cannot, and vice 

versa. As such, we cannot make a conclusive comparison between the two designs. 
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Figure 3.10: SR of the aluminum and stainless steel pins. 

Notice in this example how we can easily compare the two SR’s even though the ρ 

and r values of the two designs are different. This is because SR is defined in the ∆p-

space, and not in the p-space. One advantage of working in the ∆p-space is that the SR’s 

are automatically translated to enclose the origin of this space. In addition, the p value 

difference among the designs is also automatically taken care of because we are now 

looking into the changes of those p values, and not their absolute values. ♦ 

 

An important ∆p-direction that must be considered when measuring a design’s 

robustness is the most sensitive (least robust) direction: the ∆p-direction along which the 

design can absorb the least amount of ∆p before it violates the ∆f0 bound. In other words, 

this direction represents the worst-case scenario for this design. Geometrically, this 
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worst-case direction is depicted as a vector from the origin of the ∆p-space to the point 

on the SR boundary that is closest (in terms of Euclidean distance) from the origin 

(Figure 3.11). 
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Figure 3.11: Most and least sensitive directions of a SR. 

Another ∆p-direction that might also be of interest is the least sensitive (most robust) 

direction: the ∆p-direction along which the design can absorb the most amount of ∆p 

before it violates the ∆f0 bound. This direction represents the best-case scenario for the 

design, and is depicted as a vector from the origin to a point on the SR boundary farthest 

from the origin (Figure 3.11). If a SR is not fully bounded, the least sensitive direction is 

the direction along which the SR is unbounded. For the best-case direction to make sense, 

however, all ∆p along this direction must be part of the SR (Figure 3.12). 
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Figure 3.12: An example where best-case direction not contained in a SR. 
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3.2.4. Worst Case Sensitivity Region 

It is impossible to consider all possible ∆p directions when comparing the robustness 

of two or more designs. This is especially true as the number of parameters under 

consideration increases. For this reason, we choose to measure the robustness of a design 

in the most important direction only: the worst-case direction. Using this worst-case 

approach, the robustness of a design is no longer measured by the size of a SR, but by the 

size of the worst-case approximation to SR. We call this approximation the Worst Case 

Sensitivity Region (WCSR) of the design.  

Geometrically, a WCSR is defined as the smallest hyper-sphere inside a SR that 

touches the SR boundary on at least one point (Figure 3.13). A WCSR does not have to 

be tangent to the SR boundary (e.g., when the point of contact is a cusp), but the point of 

contact between WCSR and SR must necessarily be the point on the SR boundary closest 

from the origin in the ∆p-space. This closest-from-origin requirement guarantees that the 

WCSR is indeed the worst-case estimate of the SR. 
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Figure 3.13: Worst Case Sensitivity Region. 
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Like SR, the size of a WCSR measures how much ∆p a design can absorb before ∆f0 

is violated, although in the worst-case sense only. So, the size of a WCSR is also a 

measure of a design’s robustness: the larger the size the more robust the design. Unlike 

SR, however, WCSR is always symmetric because it is a hyper-sphere. As such, when 

using a WCSR to compare the robustness of two designs, the directional sensitivity of the 

designs has been taken into account, and the comparison will be conclusive (i.e., one 

design is definitely more or less or as robust as the other). Unless the SR is a hyper-

sphere, using a WCSR to approximate it will always lead to an underestimation of its 

size. In return, however, we are guaranteed that the design is at least as robust as the 

approximation predicts it. 

In addition to its symmetry, WCSR has a computational advantage over SR as well. 

Because of its simple geometric shape, size of a WCSR is much easier to calculate than 

the typically-not-so-simple SR size. In fact, in general the mathematical formulation of a 

SR shape is not known in closed form, so analytical calculation is often not possible 

while simulation-based calculation can be prohibitively expensive.  

To calculate the size of a WCSR, we need to calculate its radius, i.e., Euclidean 

distance from the origin to the point of contact. Using the fact that this point of contact is: 

(i) on the SR boundary and (ii) closest from the origin, the WCSR radius can be obtained 

by solving the following optimization problem: 
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In this optimization problem, the variables are the G elements of ∆p, and the objective is 

to minimize the Euclidian distance from the origin. The constraint in the problem reflects 

the fact that a point on a SR boundary has to satisfy: [f(x0,p0+∆p) − f(x0,p0)]2 = [∆f0]2. 

The optimum Rf value for this problem is the WCSR radius that we seek.  

The optimization problem in Eq. (3.4) is guaranteed to have a solution. The point 

∆p = 0 is always a member of Sf, so the smallest WCSR radius is Rf = 0. In the extreme 

case where the design’s SR is unbounded, there will be no feasible solution to Eq. (3.4) 

and Rf = ∞. However, recall that we require the SR to be bounded along at least one ∆p-

direction. So, based on this requirement: Rf < ∞, and in general 0 ≤ Rf < ∞. 

Note that Eq. (3.4) is not the optimization problem for which we are trying to find a 

robust optimum. The optimization problem in Eq. (3.4) is used to measure a design’s 

robustness, which later on will be used to obtain the robust optimum of the original 

optimization problem. 

Mathematically, sometimes it is easier to satisfy an inequality constraint than an 

equality constraint. Since Eq. (3.4) is a minimization problem, its constraint can be 

changed into an inequality, as shown in Eq. (3.5), without changing the optimum Rf. This 

inequality constraint relaxes the requirement that the point of contact must be on the SR 

boundary. The feasible domain now includes points outside the SR as well. However, 

since we are minimizing a distance function, at the optimum this inequality constraint 

must be active (i.e., satisfied as an equality). For differentiability purposes, it is also 

recommended that we optimize  instead of R2R f f. For the rest of our discussions, we will 

use Eq. (3.4) to calculate a WCSR radius because that is a more general formulation. In 

our comparison studies, however, Eq. (3.5) is often used as well.  
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Once we obtain a WCSR radius, its size can be easily calculated using the following 

formula for the “hyper-volume” of a G-dimensional hyper-sphere (Apostol, 1957): 
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often broken down into more readily usable equations: 
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(As a simple check: if G = 2, V = , area of a circle; if G = 3, V = 2Rπ f
3Rπ

3
4

f , volume of 

a sphere.) 

It should be pointed out that as a robustness measure, WCSR size is fundamentally 

different from conventional robustness measures discussed in the literature. That is in 

general, our robustness measure cannot determine ∆f given ∆p (e.g., the gradient measure 

∇p f ). The reason is because unlike conventional measures, WCSR size measures the 

design robustness in “reverse.” Instead of giving an answer to the question: “If we have 

∆p, what is ∆f ?”, we provide an answer to the question: “If we can allow ∆f0, what is 

∆p?”  
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Because the size of a WCSR cannot determine ∆f given ∆p, in this sense WCSR size 

is an ordinal measure. When comparing robustness of two designs, the actual values of 

their WCSR sizes are not important, only the ordering of these values is important. This 

is especially true considering that the actual value of a WCSR size is an abstract indicator 

that does not explicitly represent a physical quantity. On the other hand, the ordering of 

WCSR sizes is not the only important aspect of this measure. The relative ratio among 

WCSR sizes is also important. For instance, if WCSR of say design A is twice as large as 

design B, then we know that design A can absorb G

G

B,

A, 2
R
R

=









f

f


 times more ∆p than 

design B. In this sense, design A is 2G times more robust than design B. So from this 

angle, the WCSR size measure is cardinal, although not in the traditional sense of 

performance robustness. In other words, WCSR size can be said to be a “semi-cardinal” 

measure.  

Because the size of a WCSR is a semi-cardinal measure, we do not need to calculate 

its actual value. Rather, we can simply use the WCSR radius Rf to measure a design’s 

robustness. Like our previous discussion showed, using only Rf is sufficient to calculate 

the relative robustness of two designs. For the rest of our discussions, we will use Rf as a 

robustness measure and will not calculate the actual size of the hyper-volume defined by 

this radius. 

 

Example 3.4 

Determine the WCSR’s of our stainless steel and aluminum pin designs using the 

SR’s obtained in Example 3.3. Based on the worst-case notion, which pin design is more 
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robust? Calculate the radius of each WCSR mathematically using Eq. (3.4). Is it 

consistent with the WCSR graphs obtained?  

Solution 

The SR’s and WCSR’s of the two pin designs are shown in Figure 3.14. We can 

obtain the WCSR radius graphically from Figure 3.14. For the stainless steel pin, the 

point of contact between SR and WCSR is approximately at (∆ρ,∆r) = (0.11, 0.05) for a 

WCSR radius of Rf = 0.12. For the aluminum pin, the point of contact between SR and 

WCSR is approximately at (∆ρ,∆r) = (0.08, 0.001) for a WCSR radius of Rf = 0.08. Since 

the Rf of the stainless steel pin is larger than the Rf of the aluminum pin, the stainless 

steel pin is more robust than the aluminum pin. 
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Figure 3.14: SR and WCSR of the (a) steel pin, and (b) aluminum pin. 

To obtain the WCSR radius mathematically, we solve the following optimization 

problem (we use  as the objective): 2R f

[ ] 0)rρ,(W
)W(

11:tosubject

rρRminimize

2

2
0

222

r)ρ,(

=∆∆∆⋅
∆

−

∆+∆=
∆∆ f

        (3.8) 
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Since we know that the SR boundary is defined by ρ
)rr(
πh
Wρr

ρ 2

02

−
∆+

∆
−

=∆  and 

ρ
)rr(
πh
Wρr

ρ 2

02

−
∆+

∆
+

=∆  (recall Figure 3.8(a)), Eq. (3.8) can be broken down into two simpler 

problems, Eq. (3.9) and Eq. (3.10): 
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∆ f

             (3.10) 

Where the WCSR radius is ( )*2
2,

*2
1,

2 )R(,)R(minR fff = , and ( and are the 

optima of Eq. (3.9) and Eq. (3.10), respectively.  

*2
1, )R f

*2
2, )R( f

Eq. (3.9) and Eq. (3.10) are both one-dimensional unconstrained optimization 

problems. Setting the gradient of each function to zero, the optimum ∆r is obtained by 

finding the roots of the following sixth order polynomial: 




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Wρr

A:where

0A2)rr(Aρ2∆r)∆r(r

02

02

225

            (3.11) 

The optimum ∆ρ is obtained by substituting the optimum ∆r into the equalities in 

Eq. (3.9) and (3.10). We do not need to check for sufficiency condition because the 

function is unimodal minimum (unimodality of Eq. (3.11) can be verified graphically).  

 42



 

Using r = 2 and ρ = 8, the optimum (∆ρ,∆r) for the stainless steel pin is found to be 

(0.0025, 0.0195) for a WCSR radius of Rf = 0.0196. Similarly, using r = 3 and ρ = 2.7, 

the optimum (∆ρ,∆r) value for the stainless steel pin is found to be (0.0166, 0.0297) for a 

WCSR radius of Rf = 0.034. Notice that the Rf values obtained mathematically are 

different from the Rf values obtained graphically. In fact, according to the Rf’s obtained 

by solving Eq. (3.8), the aluminum pin is more robust than the stainless steel pin, a 

contradiction to our graphical observation before!  

The reason for this inconsistency is because the magnitudes of ∆ρ and ∆r are 

different (∆ρ is an order of magnitude larger than ∆r). Because of this magnitude 

difference, when minimizing the distance function , ∆r numerically dominates ∆ρ. 

Graphically this numerical domination translates into an elliptical WCSR, and not a 

circular WCSR (Figure 3.15).   
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Figure 3.15: Mathematical WCSR of the (a) steel pin, and (b) aluminum pin. 

The reader might be surprised to know that actually the mathematical WCSR 

(Figure 3.15) is a circle and the WCSR in Figure 3.14 is an ellipse. The reason they look 

the way we showed them is because the scales of the ∆ρ and ∆r axes are different. The 
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scale of the ∆ρ axis is much larger than the ∆r axis, in effect “compressing” the WCSR. 

If the WCSR is plotted on an equally scaled coordinate system, the mathematical WCSR 

will be circular (Figure 3.16), and hence is consistent with Eq. (3.8).  
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Figure 3.16: Equal-scaled SR and WCSR of (a) steel and (b) aluminum pins. 

According to Figure 3.14, the steel pin is more robust than the aluminum pin, but 

according to Figure 3.16, the aluminum pin is more robust. Which one is correct? 

Clearly, when there is a difference in ∆p magnitudes, there is an ambiguity between the 

WCSR concept and the mathematics behind it. As it turns out, the optimization problem 

used to calculate the WCSR radius (Eq. (3.4)) needs to be normalized when the scales of 

∆p are different. ♦ 

 

3.2.5. Normalization 

When the magnitudes of ∆p are different, the optimum of Eq. (3.4) will be 

numerically driven by those ∆pi’s whose magnitudes are small. For instance, if ∆p are the 
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normal stress (magnitude in the order of 103) and deflection (magnitude in the order of 

10-2) of a beam, then the search for the optimum Rf will be numerically driven by the 

deflection factor. However, this is not what we want because this does not reflect the 

actual robustness of the design. If a beam can absorb say 103 MPa of stress variation, an 

Rf of 10-2 will very much distort the actual robustness of this design. In other words, scale 

importance of the stress and deflection parameters is different.  

Because of this difference in scale importance, an increase (or decrease) of ∆ along 

one axis is not the same as an increase (or decrease) of the same ∆ along another axis. As 

a consequence, the most sensitive direction that we are interested in may not necessarily 

be the closest distance from the origin mathematically. Correspondingly, the WCSR 

defined by this direction may not be geometrically spherical. It should be pointed out that 

although the WCSR is not spherical, it is still equally sensitive along all directions 

because now the scale importance is different.  

To obtain the WCSR radius that reflects the scale importance, the optimization 

problem in Eq. (3.4) needs to be normalized. There are many ways to normalize this 

problem. In this dissertation we use a single-valued normalization where we use the 

known variation ranges ∆p0 as the reference value. The normalized optimization problem 

to obtain the WCSR radius is as follows: 
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In this formulation, the variables are p∆  (the normalized ∆p), and the objective and 

constraint are the same except they are modified for p∆  instead of ∆p. The notation “⊗” 

refers to a vector operation between p∆  and ∆p0 (recall Section 2.2). As shown before 

we can use 2R f  for the objective and ‘≤’ (recall Eq. (3.5)) for the constraint if it makes 

the problem easier to solve.  

One might point out that the normalization in Eq. (3.12) depends on the ∆p0 value, 

and that the optimum fR  will change if we use a different ∆p0. The actual value of fR  

will indeed change along with ∆p0 changes. However, the ratio between the fR ’s of 

different designs will remain the same as long as the change in ∆p0 is consistent, i.e., if 

∆p0,1 is multiplied by 2, ∆p0,2 is multiplied by 2 also, and so on. This ratio preserving 

property is important because the ratio of fR ’s determines the magnitude of relative 

robustness between different designs. If the ∆p0 change is not consistent, then obviously 

the fR  ratio will be different because we have implicitly changed the scale importance, 

and correspondingly, the WCSR that we are searching for.  

Aside from the scale importance issue, normalizing Eq. (3.4) into Eq. (3.12) has 

other advantages as well. Computationally, it is easier to obtain a more accurate optimum 

for Eq. (3.12) than for Eq. (3.4). This is because a non-normalized SR might be so 

stretched (i.e., a very long and thin strip) that solving Eq. (3.4) most likely results in 

Rf = 0 due to round-off errors. Conceptually, normalizing Eq. (3.4) makes a WCSR easier 

to work with because it is now defined in a unit-less space. A WCSR defined in a space 

with different units for its axes (e.g., MPa vs. cm) promotes human errors when 

comparing it to other WCSR’s.  
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In almost all cases, ∆p magnitudes will be different and therefore we will have to use 

the normalized WCSR. Even for cases when the scales are the same, we still recommend 

using the normalized WCSR for the reasons we just discussed. Strictly speaking, we 

should use the notation fR  to refer to the normalized WCSR radius and Rf for the non-

normalized radius. However, since we will be using mostly the normalized radius for the 

rest of our discussions, we will simply use the notation Rf to refer to the normalized one.  

 

Example 3.5 

If the ∆p0 of our piston pin design is known to be (∆ρ0,∆r0) = (0.2, 0.02), calculate 

the normalized WCSR radius of the steel and aluminum pins. Which design (steel or 

aluminum) is more robust now? Derive and graph the WCSR’s of the two designs in the 

normalized (∆ρ,∆r)-space, and compare them to the WCSR’s we obtained in the previous 

examples.  

Solution 

The optimization problem to calculate the normalized WCSR radius is as follows 

(again, we use  instead of R2R f f ): 

[ ] 0)rr,ρρ(W
)W(

11:tosubject

rρRminimize
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00
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      (3.13) 

We can use a procedure similar to the one in Example 3.4 to solve Eq. (3.13). The 

optimum r∆ of this problem is obtained by finding the roots of the following sixth order 

polynomial:  
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The optimum ρ∆  is obtained by substituting the optimum r∆  into Eq. (3.15). 
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Substituting the appropriate values into Eq. (3.14) and solving it, the optimum 

)r∆,ρ(∆  for the steel pin is (0.388, 0.4811) for an Rf = 0.618. The optimum )r∆,ρ(∆  for 

the aluminum pin is (0.0631, 0.342) for an Rf = 0.347. So, according to the normalized 

WCSR, the steel pin is more robust than the aluminum pin. 

The graph of the normalized SR and WCSR in the )r∆,ρ(∆ -space is shown in 

Figure 3.17. Notice that except for the axis values, this graph is identical to the one in 

Figure 3.14, which is what we want. After the normalization, it is verified that our 

mathematical calculation is consistent with the conceptual WCSR. 

For (∆ρ0,∆r0) = (0.2, 0.02), the Rf ratio between the steel and aluminum pins is 1.77. 

If we change ∆p0 to (∆ρ0,∆r0) = (0.1, 0.01), the Rf of the steel and aluminum pin is 1.236 

and 0.695, respectively with a ratio of 1.77. If (∆ρ0,∆r0) = (0.5, 0.05), the Rf of the steel 

and aluminum pin is 0.247 and 0.139, respectively, again with a ratio of 1.77. Notice how 

the ratios are the same in all three cases. Based on this ratio value, we conclude that the 

steel pin is about (1.77)2 = 3.13 times more robust than the aluminum pin. ♦ 
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Figure 3.17: Normalized SR and WCSR of (a) steel pin, and (b) aluminum pin. 

 

3.3. ROBUST OPTIMIZATION 

Now that we have a measure of a design’s robustness, we are ready to tackle the 

problem of finding a robust optimum design for an engineering optimization problem.  

 

3.3.1. Robustness Index 

The quantity Rf determines the ranges of ∆p that a design can absorb without 

violating the ∆f0 limit. In other words, it defines the ranges of ∆p that must occur if we 

want our design to be as robust as we specified. On the other hand, ∆p0 defines the ranges 

of ∆p that actually do occur in the real world. So, by comparing these two ∆p ranges, we 

can see whether or not a design is robust. If the ∆p0 ranges are larger than the Rf ranges, it 

means the design is not robust. There are some ∆p variations that will cause the design to 

violate the ∆f0 limit. Conversely, if the Rf ranges are larger than the ∆p0 ranges, it means 

the design is more robust than we need. It will never violate the ∆f0 limit, and there are 
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some ∆p variations that the design can still absorb. If the Rf ranges are exactly the same 

as the ∆p0 ranges, it means the design is strictly as robust as we want it to be. It strictly 

satisfies the ∆f0 limit.  

Because Rf is defined in the normalized ∆p-space, the ∆p0 ranges must be 

normalized first before we make any comparison. Since we use ∆p0 to normalize Rf, we 

must also use the same reference to normalize ∆p0 ranges. Normalization of ∆p0 ranges 

with itself results in a unit hyper-cube in the normalized ∆p-space (Figure 3.18). We have 

also shown the interior and exterior hyper-sphere of the unit hyper-cube. The radius of 

the interior and exterior hyper-sphere of this hyper-cube is RI = 1 and RE = (G)1/2, 

respectively. For the two-dimensional example shown in Figure 3.18, RI = 1 and 

RE = 1.414. 
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Figure 3.18: Normalized ∆p0 ranges. 

Direct comparison between Rf and the normalized ∆p0 is difficult because Rf is a 

radius of a hyper-sphere while ∆p0 is a range. To facilitate this comparison, we use the 

radius of ∆p0 exterior hyper-sphere (RE) instead. Because both Rf and RE define a hyper-

sphere, if Rf ≥ RE, then Rf encloses the ∆p0 ranges, and our design is robust. If Rf < RE, on 
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the other hand, then our design is not robust. If we define a quantity 
ER

R
η f= , then a 

design is robust if η ≥ 1, and is not robust if η < 1. We call η the “robustness index” of a 

design. Because RE = (G)1/2, the robustness index of a design is fR)G(η 21−= .  

A design is more robust if Rf is larger. Consequently, the larger η, the more robust 

the design. Figure 3.19 shows the comparison between η and the normalized ∆p0 ranges 

in a two-dimensional example. As we can see in this figure, the larger η the more we 

enclose the ∆p0 ranges, and thus the more robust the design. 
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Figure 3.19: Comparison between η and ∆p0. 

 

3.3.2. Constrained Robustness Approach 

In robust optimization, we want to simultaneously optimize performance of a design 

and maximize its robustness, where we use the objective function f(x,p0) to measure the 

design performance, and η to measure its robustness. By doing so, we have essentially 

converted the original single objective optimization problem into a two-objective one. 
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Because of the trade-off between performance and robustness of a design, in general 

there is a set of optimum solutions to this two-objective problem. It is then up to the 

designer to select the single most preferred design from this set by trading-off the two 

objectives. However, the η measure that we use here does not have a physical association 

with the design itself and as such it would be difficult for the designer to do such a trade-

off analysis. This difficulty is compounded further by the fact that η has a semi-cardinal 

scale.  

To avoid these difficulties, in this dissertation we use a constrained approach to 

robustness. Instead of maximizing η, we constrain it to be greater than or equal to 1 to 

make sure that the WCSR of the optimum design at least encloses the ∆p0 ranges. The 

formulation for our robust optimization problem is then as follows:  
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   (3.16) 

where the last constraint is the robustness constraint, fR)G(η 21−= , and Rf is calculated 

by solving an inner optimization shown in Eq. (3.12) (re-shown here for convenience).  
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Notice that although not explicitly shown in Eq. (3.16), η is a function of x, the design 

variable, because Rf is a function of x. In Eq. (3.17), )( 0pp ∆⊗∆∆f  is a function of x.  
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 Using Eq. (3.16), our search for a robust optimum design is performed in the N-

dimensional x-space, in which during this search, we run another search, Eq. (3.17), in 

the G-dimensional p∆ -space. Although our approach involves two optimization 

problems, this is not a multi-disciplinary optimization approach. Rather, Eq. (3.17) is 

simply a tool to obtain the robustness information needed by Eq. (3.16). As such, 

convergence of this approach depends entirely on the convergence of Eq. (3.16), and has 

nothing to do with the links between the two problems. If Eq. (3.16) has an optimum 

solution before the robustness constraint is added, but does not have a feasible solution 

after it is added, it simply means that there is no design that satisfies our robustness 

requirement (i.e., the addition of the robustness constraint causes the feasible domain of 

Eq. (3.16) to become empty).  

Eq. (3.17) is a simple single objective optimization problem with one constraint. If 

the function f(x,p) is simple enough, Eq. (3.17) can be solved analytically like in our 

piston pin examples. Otherwise, traditional gradient-based optimization methods, such as 

Quasi-Newton methods or the Generalized Reduced Gradient method, can be used to 

solve it. The choice of an optimizer for Eq. (3.16) depends on the complexity of the 

problem. Nevertheless, because of the nature of the robustness constraint, we recommend 

using global optimization methods to solve Eq. (3.16). Unlike conventional constraints, 

the robustness constraint in Eq. (3.16) may not necessarily divide the search space into 

two well-defined feasible and infeasible half-spaces. Rather, it may result in many 

disjointed infeasible domains in the feasible domain, in effect adding “holes” to the 

original feasible domain (Figure 3.20). Because of this effect, direction-based optimizers 

may have difficulty converging.  
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Figure 3.20: Effect of adding robustness constraint. 

Sometimes, the constraint η ≥ 1 is too strict, that is no design has that much 

robustness. In this case, the right hand side value of 1 needs to be lowered. To give the 

designer the flexibility to change the desired level of robustness, we use a quantity η0 to 

replace this value of 1, where η0 is determined by the designer. The larger η0, the more 

robust the designer wants the optimum design to be, and vice versa. Using η0 in the 

robustness constraint, our robust optimization formulation becomes:  
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where again η is calculated by solving Eq. (3.17).  

 

3.4. COMPARISON STUDY 

To demonstrate our robust optimization method, we applied it to four examples: one 

numerical example and three engineering examples. The purpose of the numerical 

example is to provide a graphical verification of the results obtained by our method. The 
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purpose of the three engineering examples is as follows. The welded beam example 

demonstrates an application of our method to a non-differentiable objective function. The 

three-bar truss and compression spring examples compare our method to mean-based and 

worst case analysis-based robust optimization methods, respectively. 

 

3.4.1. Wine-Bottle Function 

This example is originally formulated by Van Veldhuizen and Lamont (1998) as a 

multi-objective optimization problem. We converted it into a single objective problem by 

significantly modifying and optimizing one of the original objectives. The problem has 

two variables x1 and x2, both continuous, and the objective is to minimize the “wine-

bottle” function f(x1,x2). There are variations in the variables (∆x1 and ∆x2), and we want 

to minimize the sensitivity of the optimum solution with respect to these variations. 

Because the variability occurs only in the design variables (there are no other noisy 

factors), in this problem p = x and x∆=∆p . The mathematical formulation of the 

problem is as follows:  
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36B;36A

)2BAsin(
2

3BAC:where

32.9
1C),(minimize

21

21

22
22

21

≤≤
−=−=

+++
++

=

+
=

xx
xx

xxf

   (3.19) 

Figure 3.21 shows a three-dimensional surface mesh of the objective function. As 

shown in this figure, the function is axially symmetric and has a dome-like region in the 

center whose shape resembles the bottom of a wine bottle. The function has an infinite 

number of global minima circularly located around the center point (x1,x2) = (0.5,0.5), 
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and they are defined by a circle equation: (x1−0.5)2 + (x2−0.5)2 = (0.246)2. The objective 

value at the global minima is f * = 0.292. Points on the dome-region of the function have 

a slightly higher objective value (fR = 0.365) compared to the global minima. However, 

this region of the function is flat and thus the points in this region are insensitive to the 

variable variations. 

 

Figure 3.21: Surface plot of the wine-bottle function. 

The maximum allowable variation in f is ∆f0 = 0.01, and the variation ranges are 

known to be ∆p = (0.05,0.05). We added the robustness constraint into Eq. (3.19), and 

then solve it using a Genetic Algorithm (GA) for the outer optimization problem, and 

MATLAB’s fmincon function for the inner optimization problem (Eq. (3.17)). 

MATLAB’s fmincon function is an optimizer based on the Sequential Quadratic 

Programming (SQP) method with BFGS formula for the Hessian estimation. We used a 

GA for the outer optimization because the objective function has multiple local minima 

(see Figure 3.21) so that direction-based optimizers may not find the global minima.  

Because GA is a stochastic method, the robust optimum obtained might differ from 

one run to another. To account for this, we solved the problem 50 times (using different 
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initial population each time). Figures 3.22 and 3.23 show the robust optima obtained from 

solving the problem 50 times each for three different values of η0. Figure 3.22 shows the 

distributions of the optima on the contour plot of the objective function, while 

Figure 3.23 shows those points of the distributions that lie on the cross-section of the 

function when x2 = 0.5. 
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Figure 3.22: Distributions of robust optima on a contour plot. 
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Figure 3.23: Distributions of robust optima on a cross-section plot. 

We observe in Figure 3.22 and 3.23 that for η0 = 1, the optimum obtained is located 

at the dome region of the function for all 50 GA runs. Because this region is insensitive to 

the variations, these results confirm that solving the problem using our robust 
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optimization method results in a robust optimum. We also observe from Figures 3.22 and 

3.23 that as η0 is reduced (relaxing the robustness constraint), the objective value 

decreases (gets better). The optimum objective value for η0 = 1 is f1 = 0.365, while f0.707 = 

0.361 and f0.35 = 0.292. When η0 = 0.35, the robust optimum obtained is the global 

optimum. We expect to observe these phenomena because in general there are trade-offs 

between performance and robustness. 

 

3.4.2. Design of a Three-Bar Truss 

This example was first formulated by Schmit (1960), and has been thoroughly 

studied in (Sun et al., 1975) and (Haug and Arora, 1979). Here, we modified the problem 

by substituting the original objective with one of the structural constraints and by adding 

some variations into the problem.  

In this problem, we are designing a system of three-bar truss with a constant force 

P = 100 kN acting at an angle θ at the end of the truss as shown in Figure 3.24 

(l = 1.0 m). The truss is symmetric (member 1 and member 3 are identical), and is to be 

designed for minimum stress in members 1 and 3. The variables in this problem are the 

cross section area of members 1 and 3 (A1), and the angle θ.  
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Figure 3.24: A three-bar truss. 
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To prevent failure, the design is subjected to 6 structural constraints. The horizontal and 

vertical deflection at node 4 (u and v) must be less than ua = 0.5 cm and va = 0.5 cm, 

respectively. The stress on member 2 (σ2) must be less than σa = 140 MPa. The buckling 

load on all members must satisfy the buckling constraint. In addition, the total volume of 

the members is constrained to be less than Va = 2000 cm3. The mathematical formulation 

of the problem is given in Eq. (3.20).  
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The constraints are calculated by the following formulas. In calculating the buckling load, 

the members are considered to be columns with pins at both ends.  
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)AA22(V 21 += l      (3.25) 

where: E = Young’s modulus (= 70 GPa) 

 A2 = cross section area of member 2 (= 2 cm2) 

 β = non-dimensional constant (= 1.0) 

Using MATLAB’s fmincon to solve Eq. (3.20), we obtained the nominal optimum design 

(A1
*,θ*) = (6.36, 40), and σ* = 134.56 MPa in just 3 iterations. The constraint values of 

this nominal optimum are: g = (-0.5133, -0.7173, -0.2934, -1.6128, -1.716, -0.8375, 0.0), 

where g7 is active.  

The two design variables are known to vary by (∆A1, ∆θ) = (0.1 cm2, 5°), and we 

would like to minimize the sensitivity of the optimum design with respect to these 

variations. The allowable variation in the objective is ∆σ = 2.75 MPa. We added the 

robustness constraint (with η0 = 1) into Eq. (3.20) and then solved it using fmincon for 

both the inner and outer optimization problems. On average (we ran the algorithm using 

many different initial points) the outer optimization converges in 9 iterations. On average, 

the inner optimization converges in 13 iterations. The robust optimum design obtained is 

shown in Table 3.1.  

For comparison, we also solved Eq. (3.20) for the robust optimum using two 

conventional robust optimization approaches: (i) minimizing the mean value of the 

objective function, and (ii) minimizing the sum of mean and standard deviation. The 

mean and standard deviation are calculated by performing 10,000 Monte Carlo 

simulations around the design following a uniform pdf of the ranges 

(∆A1, ∆θ) = (0.1 cm2, 5°). The optimum designs obtained using these two methods are 

also shown in Table 3.1.  
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Table 3.1: Optimum designs of the three-bar truss. 

Nominal 
Optimum

Robust 
Optimum

Mean 
Optimum

Mean+Std 
Optimum

σ (Mpa) 134.56 135.08 134.69 135.06
η 0.826 1.0 0.832 0.885
A1 (cm2) 6.364 6.364 6.36 6.35
θ (degree) 40 36.3 30 38.6
Fcall N/A 40 10000 10000  

In Table 3.1, the quantity Fcall is the number of function evaluations needed per 

design to obtain its robustness information. For our method, this quantity is the number of 

function evaluations performed in solving the inner optimization. For the mean-std 

methods, this quantity is the number of samples. In this table we have also shown the η 

value of each optimum design (remember, each design has a corresponding η value even 

though it is not obtained by our robust optimization method).  

We see in Table 3.1 that the nominal optimum has the lowest σ value (the objective 

function), but it also has the lowest η value. In contrast, our robust optimum has the 

highest σ value of the four optima, but it has the highest η. The σ and η values of the 

other two optima are somewhere in between. This observation is just what we expected. 

The larger η, the more robust the design, but at the expense of performance degradation 

(i.e., stress increases). We also see in this table that of the four optima, only the η value 

of our robust design is equal to 1. So, according to our theoretical development, when the 

variations occur, our robust design should be the only one that satisfies the requirement 

∆σ ≤ 2.75 MPa. Let us verify this claim. 

We randomly perturbed (A1, θ) 20 times around their nominal values within the 

given ranges, and calculated the new σ value of the design using these perturbed values. 
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The difference between this new σ value and the previous value is the ∆σ. We did the 

same analysis for all four optima, using the same (∆A1, ∆θ) for each. Figure 3.25 shows 

the graphs of the ∆σ of the optima for the 20 random perturbations. In this figure the 

dashed lines are the ∆σ0 limit (2.75 MPa).  
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Figure 3.25: Sensitivity analysis of the three-bar truss optima. 

We observe in Figure 3.25 that when the variations occur, the nominal optimum 

design as well as the mean and mean+std optima violates the allowable ∆σ limit. Only 

our robust optimum design stays within the limit, thus showing that this design satisfies 

our robustness requirement.  
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To further validate the robustness information provided by the η value, we calculated 

the SR and WCSR of each of the optima, and compared them to the (∆A1, ∆θ) range. 

Since the objective function involves trigonometric expressions, analytical derivation of 

SR is impossible, so we derived them numerically instead. We constructed an orthogonal 

grid in the range (∆A1, ∆θ) = (±0.2 cm2, ±10°), and calculated the ∆σ of the optimum 

designs at each junction. The SR is obtained by determining if (∆σ)2 ≤ (∆σ0)2 at these 

junctions, and the WCSR is obtained by finding the point on the SR boundary closest 

from origin. The SR and WCSR of the four optima are shown in Figure 3.26 through 

Figure 3.29. In these figures, the dashed rectangles are the known (∆A1,0, ∆θ0) range. 
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Figure 3.26: SR and WCSR of the nominal optimum. 
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Figure 3.27: SR and WCSR of the robust optimum. 
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Figure 3.28: SR and WCSR of the mean optimum. 
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Figure 3.29: SR and WCSR of the mean+std optimum. 

As we can see in the above figures, only the SR of our robust optimum design fully 

encloses the (∆A1,0, ∆θ0) range. The other designs have small regions for which the 

requirement (∆σ)2 ≤ (∆σ0)2 is not satisfied. The WCSR’s of the designs also reflect this 

observation. Only the WCSR of our robust optimum encloses the (∆A1,0, ∆θ0) range 

completely.  

 

3.4.3. Design of A Welded Beam 

This example is the well-known welded beam problem originally formulated by 

Ragsdell and Phillips (1976) and Reklaitis et al. (1983). We slightly modified this 
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problem by adding variations to two of the parameters, and by making the objective 

function discontinuous with respect to one of these parameters.  

In this problem, a beam A is to be welded to a rigid support member B. The beam 

has a rectangular cross-section and is to be made out of steel. The beam is designed to 

support a force F = 6000 lbf acting at the tip of the beam, and there are constraints on the 

shear stress, normal stress, deflection, and buckling load on the beam. The problem has 

four (4) continuous design variables, and they are: thickness of the weld (h), length of the 

weld (l), thickness of the beam (t), and width of the beam (b). All variables are in inches. 

The objective of the problem is to minimize the total cost of making such an assembly. 

Figure 3.30 shows a diagram of the welded beam assembly. 
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Figure 3.30: A welded beam assembly. 

The complete formulation of the problem is shown in Eq. (3.26).  

0.21.0           0.101.0   
0.101.0       0.21.0   

01125.0g01g

01Fg01
0.25

g

01g01g:subject to

)L(c)c1(minimize

65

43

21

4
2

3cost

≤≤≤≤
≤≤≤≤

≤−≡≤−≡

≤−≡≤−≡

≤−≡≤−≡

+++=

bt
lh

hb
h

P

ltblhf

c

dd

δ
σ
σ

τ
τ

         (3.26) 

 65



 

where:  

c3 = cost of weld material ($0.1047 /inch3) 
c4 = cost of beam material ($0.0481/inch3) 
τ = maximum shear stress in weld (psi) 
τd = allowable shear stress of weld (13,600 psi) 
σ = maximum normal stress in beam (psi) 
σd = allowable normal stress in beam (30,000 psi) 
δ = deflection at beam end (inch) 
Pc = allowable buckling load (lbf) 
L = length of unwelded beam (14 inch) 

 

The quantities τ, σ, δ, and Pc are calculated as shown in Eq. (3.27) through Eq. (3.33). To 

calculate δ, it is assumed that the beam is a cantilever beam with length L, and for steel G 

= 12 × 106 psi and E = 30 × 106 psi.  
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The parameters L and c3 vary by some amount ∆L and ∆c3, and they affect the total 

cost of the welded beam assembly as shown in Eq. (3.34) (the notation • is for rounding 

up to the nearest integer). Notice that Eq. (3.34) reduces to the original fcost in Eq. (3.26) 

when ∆L = 0 and ∆c3 = 0. 
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We want to find a design that minimizes fcost and is insensitive to ∆L and ∆c3. We 

added the robustness constraint into Eq. (3.26), and we set ∆f0 = $0.30 and 

∆p0 = (0.05, 0.25). In this problem, p = (c3,L)t and p0 = (0.1047, 14)t. We solved the 

problem using a GA for the outer and inner problems (with η0 = 1), and obtained a robust 

optimum value of fR = $2.49. For comparison, we solved Eq. (3.26) using the same GA, 

and obtained a nominal (non-robust) optimum of fcost = $2.39 (which is very close to that 

reported by Ragsdell and Phillips (1976): fcost = $2.38, and by Deb (1991): fcost = $2.43).  

For further comparison, we also solved Eq. (3.26) for robust optimum by minimizing 

the mean value of the design. The mean value was calculated using Monte Carlo 

simulation assuming uniform and normal probability distribution for the parameters. For 

the uniform assumption, ∆c3 distribution is modeled between [-0.05, 0.05] while ∆L 

distribution is modeled between [-0.25, 0.25]. For the normal assumption, ∆c3 

distribution is modeled to have a mean and standard deviation of [0, 0.05/3] while ∆L 

distribution is modeled by [0, 0.25/3]. 

Table 3.2 shows a list of the optimum designs obtained (for the Monte Carlo optima, 

the fcost shown are the mean values). The quantity Fcall is the number of function 
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evaluations needed per design to obtain the sensitivity information. As shown in 

Table 3.2, making different assumptions about the pdf of the uncertain parameters can 

lead to significantly different results. We also observe in Table 3.2 that the solution 

obtained by our method is not the same as the one obtained by the Monte Carlo method 

for a uniform pdf. This shows that although our method uses a range of parameter 

variations, it is not the same as assuming a uniform pdf for the parameters. This in fact is 

an advantage of our method in that it does not require a presumed pdf of the uncertain 

parameters. In Chapter 7 we will show how to use the probability distribution 

information, if they are available, with our robust optimization method.  

Table 3.2: Optimum designs of the welded beam. 

Nominal 
Optimum

Robust 
Optimum

Monte Carlo 
(Uniform)

Monte Carlo 
(Normal)

f cost 2.39 2.49 2.63 2.91
h 0.241 0.246 0.257 0.337
l 6.158 5.461 5.8 5.054
t 8.5 9.138 8.267 7.058
b 0.243 0.248 0.257 0.337
Fcall N/A 250 100000 100000  

Figure 3.31 shows the SR and WCSR of the nominal optimum and the robust 

optimum obtained using our method. In this figure, the shaded region bounded between 

the straight line on the left and the step function on the right is the SR, the ellipse is the 

WCSR, and the dashed rectangle is the ∆p0 ranges. We obtain the SR’s analytically by 

substituting the values in Table 3.2 into the fcost function in Eq. (3.34) and obtain the ∆fcost 

as a function of ∆c3 and ∆L. Then using the given ∆f0 value, we solve for ∆c3 at the six 

discrete ∆L values. Mathematically, the left boundary of the sensitivity region is also a 

step function similar to that of the right boundary. However, the parameter c3 represents a 
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material cost, so in reality it cannot be negative. For this reason we restrict the ∆c3 value 

to be –0.10471 at the lowest (the straight line left boundary). We obtain the WCSR’s by 

solving the inner optimization problem using the values in Table 3.2. The WCSR’s 

shown are ellipses (instead of circles) because Figure 3.31 shows the regions in the non-

normalized ∆p-space (for clarity of presentation).  

-0.3

0.3

0
-0.10471 0.09529 0.29529 0.49529 0.69529 0.89529

3c∆

L∆

(a) Nominal optimum

-0.2

-0.1

0.1

0.2
SR

WCSR

Region of failure

0
0.89529

3c∆

L∆

(b) Robust optimum

0.09529 0.29529 0.49529 0.69529-0.10471

-0.3

-0.2

-0.1

0.1

0.2

0.3

SR

WCSR

No region of failure

-0.3

0.3

0
-0.10471 0.09529 0.29529 0.49529 0.69529 0.89529

3c∆

L∆

(a) Nominal optimum

-0.2

-0.1

0.1

0.2
SR

WCSR

Region of failure

-0.3

0.3

0
-0.10471 0.09529 0.29529 0.49529 0.69529 0.89529

3c∆

L∆

(a) Nominal optimum

-0.2

-0.1

0.1

0.2

-0.3

0.3

0
-0.10471 0.09529 0.29529 0.49529 0.69529 0.89529

0
-0.10471 0.09529 0.29529 0.49529 0.69529 0.89529

3c∆

L∆

(a) Nominal optimum

-0.2

-0.1

0.1

0.2
SR

WCSR

Region of failure

0
0.89529

3c∆

L∆

(b) Robust optimum

0.09529 0.29529 0.49529 0.69529-0.10471

-0.3

-0.2

-0.1

0.1

0.2

0.3

SR

WCSR

No region of failure

0
0.89529

3c∆

L∆

(b) Robust optimum

0.09529 0.29529 0.49529 0.69529-0.10471

-0.3

-0.2

-0.1

0.1

0.2

0.3

SR

WCSR

No region of failure

 

Figure 3.31: SR and WCSR of the optima: (a) nominal, (b) robust. 

Notice that the SR’s are unbounded. This is because for the range of ∆c3 values 

where the regions are unbounded, the value c5 = $0.05 (|∆L|>0.20) still makes the 

inequality (∆f)2 ≤ (∆f0)2 satisfied. Notice also that the SR boundary is discontinuous 

because fcost is a step function. However, at the discontinuity, (∆f)2 = (∆f0)2 is satisfied 

either from the left or from the right, so our SR boundary condition (∆f)2 = (∆f0)2 is valid 

(recall Figure 3.3).  

We observe from Figure 3.31 that the SR of the nominal optimum does not fully 

enclose the ∆p0 ranges while the robust optimum’s does. This remains true when using 

 69



 

the WCSR’s as estimates of the SR’s. We conclude that in the worst case sense, the 

robust optimum is less sensitive to p = (c3,L)t than the nominal optimum. 

To further assess the sensitivity of the robust optimum design obtained, we 

calculated the fcost value of the design for 15 perturbed values of the two uncertain 

parameters (c3 and L), and determined how much the fcost differed from the unperturbed 

fcost value (Table 3.2). For comparison, we performed the same analysis (using the same 

∆c3 and ∆L values) to calculate the ∆fcost of the nominal and the Monte Carlo optima. In 

this analysis, the values for ∆c3 and ∆L were randomly sampled from the ∆p0 range.  

Figure 3.32 and Figure 3.33 show the graphs of the ∆fcost of the optimum designs for 

the 15 cases. The dashed-lines in these figures are the ∆f0. We observe in Figure 3.32 that 

in all 15 cases the ∆fcost of the robust optimum is less than that of the nominal optimum, 

i.e., ∆fR < ∆fN. This shows that the robust optimum obtained by our method is less 

sensitive to ∆p than the nominal optimum. In addition, we also observe that in all 15 

cases, the ∆fcost of the robust optimum stays within the acceptable bound, while the 

nominal optimum violates the bound in cases 6 and 15. In Figure 3.3 we observe that 

both Monte Carlo optima also violate the bound in cases 6 and 15.  
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Figure 3.32: Sensitivity analysis of the welded beam optima. 
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Figure 3.33: Sensitivity analysis of the welded beam optima. 

In this chapter, our robust optimization method looks only at the objective robustness 

of a design, and we implicitly assume that the robust optimum design remains feasible 

when the variations occur. To verify the validity of this assumption, we calculated the 

constraints of the robust optimum for the 15 random cases. The results are shown in 

Table 3.3. In this table we calculated only the constraints g1, g2, g3, g4 because g5 and g6 

are independent of c3 and L. As shown in Table 3.3, in all 15 cases the constraints for the 

robust optimum are still satisfied (g ≤ 0), so our feasibility assumption holds. 

Table 3.3: Constraints of the robust optimum design. 

Case # g1 g2 g3 g4
1 -0.016 -0.204 -0.956 -0.134
2 -0.004 -0.190 -0.954 -0.109
3 -0.004 -0.190 -0.954 -0.109
4 -0.014 -0.201 -0.955 -0.128
5 -0.010 -0.196 -0.955 -0.120
6 -0.011 -0.198 -0.955 -0.124
7 -0.008 -0.194 -0.954 -0.116
8 -0.014 -0.201 -0.955 -0.128
9 -0.002 -0.188 -0.953 -0.105
10 -0.017 -0.205 -0.956 -0.135
11 -0.009 -0.195 -0.955 -0.119
12 -0.004 -0.190 -0.954 -0.109
13 -0.016 -0.204 -0.956 -0.134
14 -0.014 -0.201 -0.955 -0.129
15 -0.015 -0.202 -0.956 -0.131  
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Interestingly, if we look into the constraints of the nominal optimum, we will find 

that constraints g1, g2, g3, g4 of this design are active or nearly active, and when c3 and L 

change, g1 and g4 are violated. So, in some sense the robust optimum provides design 

robustness not only in terms of the objective, but in terms of feasibility also; although 

obviously this observation is not general and is valid for this particular example only. We 

will discuss our feasibility robustness approach in Chapter 5. 

 

3.4.4. Design of a Compression Spring 

This example is from Arora (2001) and has been modified to demonstrate the 

application of our robust optimization method. Consider a coil spring loaded in 

compression as shown in Figure 3.34. Before the force P = 10 lbf is applied, the spring is 

at its free length. The spring is to be used as an energy-storing device, and we are 

designing it to have as large a restoring force as possible by maximizing the axial 

deflection δ. There are three variables that affect the design: the wire diameter (d), the 

mean coil diameter (D), and the number of active coils (N). The wire diameter and the 

mean coil diameter are measured in inches, and the number of active coils must be an 

integer between 2 and 15.  

P PD

d δ

P PD

d δ  

Figure 3.34: A compression spring.  

To guarantee a proper design, five (5) constraints are imposed. The wires of a spring 

under compression experience twisting, so to prevent shear failure, the shear stress due to 

 72



 

this twist is constrained to be less than τA = 80 ksi. In case of a dynamic load P, we would 

like to avoid resonance by requiring that the surge wave frequency of the spring is greater 

than ωA = 100 Hz. The outer diameter of the spring is constrained to be less than 

ODA = 1.5 in, and the total mass of the spring is constrained to be less than 

MA = 2.309 x 10-5 lbm. To prevent an unrealistic design, the spring deflection is 

constrained to be less than δA = 0.75 in (objective constraint). In addition to the design 

constraints, there is also a lower and upper bound constraints on the design variables.  

The mathematical formulation of the problem is shown in Eq. (3.34). In this 

formulation: G = 1.15 x 107 psi is the shear modulus, Q = 2 is the number of inactive 

coils, and ρ = 7.383 x 10-4 lbm/in3 is the mass density. For a more detailed analysis of a 

spring design problem, consult Spott (1953) or Wahl (1963). 
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We use a GA (Goldberg, 1989) to solve Eq. (3.34) and obtain the nominal optimum 

design (d,D,N)* = (0.0519 in, 0.3616 in, 11) for a maximum deflection of δ* = 0.4985 in. 

At the nominal optimum, constraints g1 and g4 are active. The lower bound of the 

variable d is also nearly active. In our implementation we use GA to solve this problem 

because one of the variables is an integer. However, other mixed-integer programming 

methods such as Branch and Bound algorithm (Belegundu and Chandrupatla, 1999) may 

also be used. For comparison, if we relax the variable N to be continuous, the nominal 

optimum becomes (d,D,N)* = (0.0517 in, 0.3569 in, 11.293) for a maximum deflection of 

δ* = 0.50 in.  

Three of the problem’s parameters have variability in them: the wire diameter d 

varies by ±∆d0 = 0.001 in; the mean coil diameter D varies by ±∆D0 = 0.01 in; and the 

compression force P varies by ±∆P0 = 0.1 lbf. We want to minimize the sensitivity of the 

optimum design with respect to these variations. Using ∆δ0 = 0.075 in, we added our 

robustness constraint to Eq. (3.34) and solved it using GA for the inner and outer 

optimization problems (η0 = 1). The robust optimum obtained is (d,D,N)R
* = (0.0548 in, 

0.4219 in, 8) for a deflection of δ* = 0.4633 in (a 0.0352 in. difference from the nominal 

optimum). For comparison, we also solved the problem using the constrained worst-case 

gradient approach where we added the gradient robustness constraint: 

∑
=

∆
∂
∂

=∆
3

1
0,p

p
δδ

i
i

i

≤ ∆δ0 to Eq. (3.34). The optimum obtained using this worst-case 

gradient approach is (d,D,N)G
* = (0.0560 in, 0.3319 in, 9) for a deflection of 

δ* = 0.2321 in. The values of the nominal, robust, and gradient optima are shown in 

Table 3.4. 
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Table 3.4: Optimum designs of the compression spring. 

Nominal 
Optimum

Robust 
Optimum

Gradient 
Optimum

δ (in) 0.4985 0.4633 0.2321
η 0.8248 0.9942 1.9109
d (in) 0.0519 0.0548 0.056
D (in) 0.3616 0.4219 0.3319
N 11 8
Fcall N/A 250 N/A

9

 

We see in Table 3.4 that the nominal optimum has the largest deflection, as expected, 

followed by the robust optimum and then the gradient optimum. If we look at the η value, 

our robust optimum satisfies the η ≥ 1 requirement with an equality (rounded up), the 

nominal optimum does not satisfy the requirement, while the gradient optimum over-

satisfies it. Although the gradient optimum more than satisfies our robustness 

requirement, it comes with a significant reduction in performance (less than half of the 

nominal value).  

This observation brings up a very important fact regarding our robust optimization 

method. Although we label our WCSR measure as a “worst-case” approach, it is not 

really worst-case per se; at least not in the traditional sense. Traditionally, the term 

“worst-case” refers to a situation where all the worst possible variabilities occur together 

simultaneously. Our WCSR measure is different. Instead of blindly using the worst 

variabilities for each parameters, it has implicitly taken into account the fact that some of 

these variables might cancel out. This is the reason why our robust optimization method 

can obtain a design with such a high performance while still satisfying our robustness 

requirement. This capability comes with a price, however, namely it needs to perform 
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some function evaluations to gather the robustness information (~250 function calls per 

design in this example).  

To validate the robustness of the optimum designs shown in Table 3.4, we perturbed 

(d,D,P) 20 times within the (∆d0,∆D0,∆P0) range, and each time calculated the deviation 

of the δ value of each design from its original value. The results of our analysis are 

shown in Figures 3.35 through 3.37. In these figures the dashed lines are the ∆δ0. We can 

make a couple observations from these figures. We see in Figure 3.35 that the nominal 

optimum violates the ∆δ0 requirement in case 11, while the robust and the gradient 

optima never violate ∆δ0 (Figure 3.36 and Figure 3.37, respectively). We also observe in 

these figures that on average the ∆δ of the nominal optimum is large, while the robust 

optimum’s is less, and that of the gradient optimum is least. This observation verifies the 

information provided by their η values.  
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Figure 3.35: Sensitivity analysis of the nominal optimum. 
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Figure 3.36: Sensitivity analysis of the robust optimum. 
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Figure 3.37: Sensitivity analysis of the gradient optimum. 

 

3.5. SUMMARY 

• For each design alternative, there is a unique set of ∆p that indicates how much 

variation the design can absorb before the ∆f0 limit is violated. This set is called the 

sensitivity set (Sf) of that design.  

• Size of a Sf is a measure of how robust a design is: the larger Sf, the more robust the 

design. In addition, since Sf measures how much variation a design can absorb, if we 
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can control the actual variations such that they are always within Sf, then we are 

guaranteed that the performance of the design is always within ±∆f0. 

• The plot of Sf in the ∆p-space is called the Sensitivity Region (SR) of the design. The 

∆p points inside, outside, and on the SR boundary satisfy [∆f (∆p)]2 < [∆f0]2, 

[∆f (∆p)]2 > [∆f0]2, and [∆f (∆p)]2 = [∆f0]2, respectively.  

• The size of a SR is a measure of a design’s robustness: the larger SR, the more robust 

the design. However, since a SR is typically asymmetric, we have to account for the 

directional sensitivity of the design as well. 

• We use the most sensitive direction in approximating a SR of a design to account for 

the worst-case situation. This worst-case approximation to a SR is called the Worst 

Case Sensitivity Region (WCSR), and is defined as the smallest hyper-sphere inside 

the SR that touches the SR boundary on at least one point.  

• Size of a WCSR is a worst-case measure of a design’s robustness: the larger the 

WCSR, the more robust the design. The radius of a WCSR (Rf) can be calculated by 

solving an optimization problem shown in Eq. (3.4). Since WCSR size has a semi-

cardinal scale, it is not necessary to calculate its volume. The radius value is sufficient 

to compare robustness of two or more designs.  

• If the magnitudes of the ∆p are significantly different, then we need to normalize the 

optimization problem used to calculate Rf. We use a single-valued normalization with 

∆p0 as the reference point.  

• To determine whether or not a design meets our robustness requirement, we use the 

robustness index fR)G(η 21−= . A design is robust if η ≥ 1, and is not robust if η < 1.  
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• In robust optimization we want to simultaneously maximize performance and 

robustness. These objectives are often conflicting, so to avoid having to make a trade-

off, we use a constrained robustness approach instead. 

• Using the constrained robustness approach, our robust optimization method searches 

for the robust optimum design by solving two optimization problems: an inner and 

outer optimization. The inner optimization is used to calculate a design’s robustness 

which is then used in the outer optimization.  
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CHAPTER 4 

MULTI-OBJECTIVE ROBUST OPTIMIZATION 

 

4.1. INTRODUCTION 

When an optimization problem has only one objective, the notion of a robust 

optimum is straightforward because the only trade-off present is between the objective 

and the robustness of the design. When a problem has multiple objectives, however, it is 

not quite so because the same variability might affect some or all of the objectives, and in 

turn, a design will have different robustness behavior with respect to different objectives. 

If we follow the conventional definition of a robust optimum design in the context of a 

multi-objective optimization, we might end up making trade-offs between the 

performance of the design in terms of one objective and its robustness in terms of another 

objective. Clearly, not only this is difficult to do, it is not very useful either.  

The purpose of this chapter is to present the concept of multi-objective robustness, a 

method on how to measure such robustness, and an optimization scheme to obtain a 

design that is optimum and robust multi-objectively by using this measure. The method to 

measure a multi-objective robustness of a design presented in this chapter is a 

generalization of the WCSR measure we presented in Chapter 3, so there will be 

similarities, but with important differences. Like in Chapter 3, here we look into the 

robustness of a design in terms of its objectives only. Feasibility robustness will be 

covered in Chapter 5. Several examples are given at the end of the chapter to demonstrate 

the applications of the method.  
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4.2. BASIC CONCEPTS 

Before we present the method to obtain robust solutions of a multi-objective 

problem, we need to first discuss what it means for a design to be multi-objectively 

robust and optimum. 

 

4.2.1. Multi-Objective Robustness 

When there is only one objective, a design is termed “robust” if its objective value is 

insensitive to parameter variations. When there are multiple objectives, a design has 

different robustness behaviors depending on the objective in question. So by direct 

extension, a design is termed “robust” multi-objectively if each of its objective value is 

insensitive to parameter variations. In other words, a design is robust (or insensitive) if 

∆fi is small, for all i = 1,…,M. In the f-space, the robustness of a design is depicted 

graphically as the hyper-rectangle constructed from the ∆fi ranges (Figure 4.1); the 

smaller this hyper-rectangle (i.e., a rectangle in two-dimension, as shown in Figure 4.1), 

the more robust the design. In Figure 4.1, the solid triangles denote the nominal f values 

of the designs A, B, C and D shown.  
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Figure 4.1: Graphical illustration of multi-objective robustness. 
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As shown in Figure 4.1, it is very often the case that a design is less sensitive in one 

objective than the other objective(s) (design B). Also, the negative and positive ranges of 

∆fi do not necessarily have to be equal (design A and D).  

It should be noted that the term “insensitive” is subjective and depends on the 

preferences of the decision maker. If the decision maker is risk averse, then for a design 

to be insensitive, its ∆fi must be very small for all objectives i = 1,…,M. On the other 

hand, if the decision maker is risk prone, then even a rather large ∆fi is acceptable. In this 

chapter, we deem a design multi-objectively robust if |∆fi| ≤ |∆fi,0| for all i = 1,…,M, 

where ∆f0 = [∆f1,0, …, ∆fM,0] is the ranges of acceptable f variation determined by the 

decision maker.  

The multi-objective robustness described previously is defined for one design only. 

If we have a set of designs, the overall robustness of the set is determined by looking at 

the robustness of each and every design, one at a time. In other words, our definition of 

multi-objective robustness is for point robustness. Another type of multi-objective 

robustness worth mentioning is that of set robustness. Unlike point robustness, set 

robustness is not defined for one design, but rather for a set of designs, and this set must 

be a trade-off set. A trade-off set is a set of designs in which all designs in the set are 

non-inferior with respect to each other (recall Section 2.2 that this set is different from a 

Pareto set). We define a set of trade-off designs to observe set robustness if the set 

remains a trade-off set when p varies.  

Figure 4.2 shows a comparison between a set of trade-off designs that observes point 

robustness and a set that observes set robustness. We see in Figure 4.2(a) that the ∆f of 

each design in the set is small, but for some of the ∆f rectangles, there are portions that lie 
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on either the dominant or inferior region of another ∆f rectangle. What this means is that 

when p varies, it is possible that these points are no longer trade-off points (i.e., one 

dominates or is dominated by others). In contrast, the ∆f of each design on the set shown 

in Figure 4.2(b) is rather large (i.e., not a point robustness), but all the ∆f rectangles lie in 

the non-inferior region of each other. This means that no matter how the points change, 

these points will always remain a trade-off set. It can be readily seen in Figure 4.2 that as 

∆f becomes infinitely small, point robustness implies set robustness and vice versa. 
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Figure 4.2: Comparison between point and set robustness. 

In multi-objective robust optimization, we are interested in the point robustness of a 

design only, and not its set robustness. This is because practically, the set robustness of a 

design is not important. We will discuss this issue further in the next section.  

 

4.2.2. Multi-Objective Robust Optimality 

The goal of Multi-Objective Robust Optimization (MORO) is to obtain a set of 

design alternatives that are: (i) multi-objectively robust (point robustness), and (ii) Pareto 

optimum for the nominal p. Such a set of design alternatives is termed multi-objectively 

robust and optimum, and we refer to them as robust Pareto solutions. The set of all robust 

Pareto solutions is called the robust Pareto set.  
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Ideally one wants the robust Pareto set to be the same as the nominal Pareto set. 

However, robust Pareto set is generally inferior to the nominal Pareto set as shown in 

Figure 4.3(a). It is also common for the robust Pareto set and the nominal Pareto set to 

overlap, as in Figure 4.3(b), or for the robust Pareto set to be a subset of the nominal 

Pareto set, as in Figure 4.3(c). Obviously, the robust Pareto set cannot be superior or be a 

superset of the nominal Pareto set. One might argue that in case of Figure 4.3(b), the 

overlap portion of the robust Pareto frontier is better than the non-overlap portion 

because not only this portion is robust, but it also belongs to the nominal Pareto frontier. 

In some sense, it is. However, objective-wise this overlap portion does not dominate the 

non-overlap portion, so multi-objectively the overlap and non-overlap portions are 

equally optimum (i.e., incomparable).  
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Figure 4.3: Comparison between nominal and robust Pareto set. 
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When p varies, f(x,p) deviates from its nominal value. Because the robust Pareto set 

is obtained based on point robustness, it is possible that when p changes the robust Pareto 

set is no longer a trade-off set. However, although the solution to a multi-objective 

optimization problem is a set of trade-off designs, ultimately the designer would choose a 

single design to implement. The purpose of including a design’s robustness as an 

additional optimization criterion is to ensure that the one design selected is robust with 

respect to variations in p. As such, it does not matter if the robust Pareto designs as a set 

are insensitive to p. In other words, the set robustness of the robust Pareto set is of no 

real-world interest beyond our mathematical curiosity.  

 

4.3. TWO-SIDED SENSITIVITY OF MULTIPLE FUNCTIONS 

We are now ready to present our method for measuring multi-objective robustness of 

a design. The method presented here is a generalization of the WCSR method presented 

in Chapter 3 for single objective robustness. As before, the robustness measured here is a 

two-sided robustness, i.e., we account for both the increase and decrease in f.  

 

4.3.1. Generalized Sensitivity Set and Sensitivity Region 

Let x0 be the design alternative whose sensitivity we want to measure, and let p0 be 

the nominal parameter value with respect to which the objective values of this design is 

defined, i.e., f(x0,p0). Given the acceptable variation range ∆f0 = [∆f1,0, ∆f2,0, …, ∆fM,0], 

there is a set of ∆p values such that the ∆f due to these ∆p values falls within the ranges 

of ∆fi,0 for all i = 1,…,M. This set is the generalized sensitivity set Sf, and it is 

mathematically defined as shown in Eq. (4.1). As before, we use the square of each ∆fi 
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values to account for negative values, i.e., a two-sided sensitivity. We do not make a 

distinction between single and multiple objective Sf because the single objective Sf is 

simply the multi-objective version of Sf for M = 1.  

{ }
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Similar to the single objective case (recall Chapter 3), Sf determines how much ∆p a 

design can absorb for the given ∆f0. So, the larger Sf, the more robust the design, and if 

we can make sure that ∆p is always a member of Sf, then ∆f0 will always be satisfied. The 

plot of the generalized Sf on the ∆p-space is the generalized Sensitivity Region (SR) of 

the design.  

If we let the notation Sf,i be the set of ∆p’s such that [∆fi]2 ≤ [∆fi,0]2, i.e., the 

sensitivity set with respect to the i-th objective, then it is easily seen that Sf is really just 

the intersection of all Sf,i’s: 

Sf = Sf,1 ∩ … ∩ Sf,M            (4.2) 

The above observation implies that the generalized SR corresponding to Sf is simply the 

intersection of all the SR’s of Sf,i’s (Figure 4.4). The existence and uniqueness of Sf also 

follows directly from the existence and uniqueness of each Sf,i. 

The fact that the generalized SR is an intersection of each objective’s SR’s has 

another important consequence: it defines the requirements that must be met for a point in 

the ∆p-space to be inside, outside, or on the boundary of the generalized SR. A point 

inside the region (shaded region in Figure 4.4) implies that it belongs to all Sf,i’s, but it is 

not on the boundary of any Sf,i’s, hence it must satisfy [∆fi]2 < [∆fi,0]2 for all i = 1,…,M. A 

point outside the region implies that it does not belong to at least one Sf,i, thus for this 
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point there must be at least one i such that [∆fi]2 > [∆fi,0]2. A point on the boundary of the 

region implies that not only it belongs to all Sf,i’s, but it is also on the boundary of at least 

one Sf,i, therefore it must satisfy [∆fi]2 ≤ [∆fi,0]2 with a strict equality for at least one i. 
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Figure 4.4: Graphical definition of the generalized SR. 

Graphically, the points inside, outside, and on the perimeter of the generalized SR 

correspond to points inside, outside, and on the boundary of the hyper-rectangle formed 

by the ∆f0 ranges respectively (Figure 4.5).  
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Figure 4.5: (a) Generalized SR, and (b) its corresponding ∆f0 ranges. 

Theoretically, it is possible that the SR’s intersect at their boundaries only, which 

graphically translates into a degenerate generalized SR (it is now a G-1 dimensional 
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hyper-surface). When this situation occurs, the points inside the generalized SR satisfy 

the condition for a boundary point as well. Practically however, this implies that one of 

the ∆pj’s can be expressed as a function of the other ∆pj’s. In reality this situation almost 

never happens, so for practical purposes we can safely assume that the SR’s intersection 

is a G-dimensional hyper-surface, and that the equations shown in Figure 4.5(a) are valid.  

 

4.3.2. Generalized Worst Case Sensitivity Region 

As seen in Figures 4.4 and 4.5, in general a multi objective SR is asymmetric, and as 

such it is possible that a design is very sensitive along a certain direction of ∆p, but is 

much less sensitive along other directions. To account for this directional sensitivity, here 

too we use a worst-case approximation to the generalized SR to measure a design’s 

robustness. We call this approximation the generalized Worst Case Sensitivity Region 

(WCSR), which is a symmetric region that approximates the generalized SR along its 

most sensitive direction. The definition for the generalized WCSR is very much the same 

as the single objective WCSR except that now it is defined for the generalized SR. So, 

mathematically the generalized WCSR is defined as a subset of Sf in which for each point 

in the subset, its distance from the origin is less than or equal to the distance of the 

smallest ∆p value in Sf that causes ∆f0 to be satisfied. Graphically, the generalized WCSR 

is a hyper-sphere inside the generalized SR that touches the SR boundary at the closest 

point from the origin, as shown in Figure 4.6.  
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Figure 4.6: Generalized WCSR. 

The radius of the generalized WCSR for a design x0 can be calculated by solving the 

single objective optimization problem shown in Eq. (4.3). In this problem, the design 

variables are the ∆p, the objective function is the WCSR radius, and the constraints 

reflect the fact that the WCSR touches the SR at a boundary point. Notice how the 

constraints of Eq. (4.3) differ significantly from their single objective counterpart 

(Eq. (3.4)). This is because the boundary condition for the generalized SR is different 

than the single objective SR. Despite the difference, however, if M = 1, then Eq. (4.3) 

collapses into Eq. (3.4), thus shows that Eq. (4.3) is simply the generalization of 

Eq. (3.4).  
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Like in single objective WCSR, we can use R  instead of R2
f f if it makes the problem 

easier to solve. However, this time we cannot choose between either “=” or “≤” for the 
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constraints. The constraints must all be inequalities, and at the optimum, at least one of 

them must be satisfied as an equality. 

Eq. (4.3) is a single objective optimization problem with M inequality constraints 

(from which at least one is active). Realizing that these constraints simply mean that the 

optimum must lie on the boundary of the rectangle formed by the ∆f0 ranges (see 

Figure 4.5), we can simplify the constraints by aggregating them into a single constraint 

as follows:  
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The simplified constraint in Eq. (4.4) above restricts the maximum ratio of 
0,i

i

f
f

∆
∆

 to be 

unity (we use the absolute of ∆fi to account for negative values). Graphically, this 

constraint means that the resultant vector of ∆fi’s must touch the rectangle formed by the 

∆f0, which is again equivalent to saying that ∆p must be on the generalized SR boundary 

(Figure 4.7). 
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Figure 4.7: Graphical interpretation of the simplified constraint. 
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Substituting the constraints in Eq. (4.3) with the simplified constraint in Eq. (4.4), 

the optimization problem to obtain the radius of the generalized WCSR becomes: 
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As in the single objective case, Eq. (4.5) is always guaranteed to have a feasible solution. 

At the very least ∆p = {0} is guaranteed to be a feasible solution to Eq. (4.5) and Rf = 0. 

It is also possible that the generalized WCSR is completely unbounded, and Rf = ∞. 

However, in general 0 < Rf < ∞, and solving Eq. (4.5) results in a finite radius of the 

generalized WCSR.  

 

4.3.3. Normalization 

Again, when the magnitudes of ∆p are different, Eq. (4.5) needs to be normalized to 

account for the difference in scale importance. Using a single-valued normalization 

where we use the known variation ranges ∆p0 as the reference value, the normalized 

optimization problem to obtain the generalized WCSR radius is obtained: 

[ ]
j

j
j

i

i

i

j
jf

f
f

,0
G1

0,

0

M,...,1

2
1

G

1

2

p
p

p;p,...,p:where

01
)(

max:tosubject

)p()(Rminimize

∆

∆
=∆∆∆=∆

=−










∆
∆⊗∆∆





∑ ∆=∆

=

=∆

p

pp

p
p

   (4.6) 

 91



 

In this formulation, the objective and constraint are the same as in Eq. (4.5) except that 

they are modified for p∆  instead of ∆p. As before we can use 2R f  for the objective if it 

makes the problem easier to solve.  

To demonstrate the application of Eq. (4.6), let us revisit our stainless steel piston pin 

example from Chapter 3. Previously, we measured the robustness of this pin based on its 

weight only. Here we will add a second objective, the stress acting on the pin. 

 

Example 4.1 

As part of the engine assembly, our stainless steel pin is attached to a piston arm at 

the middle of the pin (Figure 4.8). The length of the pin in contact with the arm is 3 cm, 

and there is a constant force P = 50 kN acting on the piston arm as shown in the figure. 

Determine the normal stress on the pin. If the density and radius of the pin vary by 

(∆ρ0,∆r0) = (0.2, 0.02), determine also the normalized radius of the two-objective WCSR 

(weight and stress). The acceptable stress variation is given to be ∆σ0 = 0.5 MPa.  

pin

piston

arm

P = 50 kN

3 cm

pin

piston

arm

P = 50 kN

3 cm

 

Figure 4.8: A piston-pin-arm assembly. 
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Solution 

The pin is cylindrical, so the amount of area used to calculate stress is the projection 

of a cylindrical area, i.e., a rectangle. The length of the projection area is the length of 

contact (l = 30 mm), while the width is the diameter of the pin (= 2r). So, the normal 

stress acting on the pin is 
(30)(2r)

Pσ = = 41.6 MPa. (Notice that this value is much less 

than the yield stress of stainless steel ~200 MPa, so our pin design is fine.)  

If we use Eq. (4.6) to calculate the normalized WCSR radius of this problem, we 

obtain Rf = 0.618. Let’s verify this result. The generalized SR of the pin design is the 

intersection of the weight SR and the stress SR. We have obtained the weight SR from 

the previous examples in Chapter 3, so all we need now is the stress SR. Setting 

(∆σ)2 ≤ (∆σ0)2, we obtain the following quadratic inequality, where u = 1/(r+∆r).  

031.1730
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          (4.7) 

Substituting the value P = 50 kN and l = 3 cm, and solving the inequality in Eq. (4.7), we 

obtain the stress Sf to be as follows (in cm). Notice that the stress Sf is independent of ∆ρ 

because σ is independent of ρ.  

{ }0.0267r0197.0:)r,ρ( ≤∆≤−∆∆=fS    (4.8) 

The generalized SR and WCSR (based on weight and stress) of this pin design are shown 

in Figure 4.9 (shown in the normalized region). In this graph, the region bounded by the 

solid lines is the weight SR, while the region bounded by the dashed lines is the stress 

SR. The shaded region is the overall SR, while the white circle is the overall WCSR.  
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Figure 4.9: Overall SR and WCSR of the stainless steel pin. 

From the graph, the point of contact is approximately at )r∆,ρ(∆  = (0.4, 0.5), for a 

WCSR radius of 0.64. This value is in good agreement with the one obtained analytically 

(Rf = 0.618). Notice also in this graph that the Rf value is governed by the weight SR. ♦ 

 

4.4. ROBUST OPTIMIZATION 

We will now use the generalized Rf measure developed previously to obtain robust 

solutions to a multi-objective optimization problem.  

As before, by considering the robustness of a design, we have essentially added an 

additional objective to an optimization problem that already has multiple objectives. 

Unlike other “real” objectives, however, robustness is a rather abstract concept, and 

therefore it is hard to make trade-offs with robustness as one of the objectives. To avoid 
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this difficulty, we again use a constrained approach to MORO where we treat the 

robustness of a design as a constraint, and not as an objective.  

With this constrained approach, our MORO method obtains the robust Pareto set by 

first eliminating all non-robust designs and then selecting the best set of trade-off designs 

from the designs that are not eliminated. These optimization steps are illustrated with an 

example in Figure 4.10. In this figure, the triangles indicate the nominal f values of a few 

designs, and the dashed rectangles show the possible ∆f. Initially, there are five feasible 

design alternatives (Figure 4.10(a)), but designs A and C do not meet the robustness 

constraint so they are eliminated (recall that in the objective space, the smaller the 

possible ∆f range, the more robust the design). From the remaining designs, design E is 

inferior to design B so design E too is eliminated. Designs B and D are our robust Pareto 

designs, as shown in Figure 4.10(b).  
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Figure 4.10: Constrained MORO approach. 

If we define fR)G(η 21−=  to be the generalized robustness index, the problem to 

obtain robust solutions to a multi objective problem becomes as follows.  
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Here, η0 is the desired level of robustness and is determined by the designer, and Rf is 

calculated using Eq. (4.6). 

Eq. (4.9) can be solved using any traditional multi-objective optimization methods: 

no preference (e.g., global criterion), a priori (e.g., weighting method), or a posteriori 

(e.g., Multi-Objective Genetic Algorithm, Multi-Objective Simulated Annealing). 

However, again due to the “hole-inducing” nature of the robustness constraint, we do not 

recommend those methods that solve multi-objective problems by converting them into a 

single-objective form. In our implementation, we use Multi-Objective Genetic Algorithm 

(MOGA) as our optimizer (see for example, Deb (2001) or Coello Coello et al. (2002)).  

 

4.5. COMPARISON STUDY 

To demonstrate our MORO method, we applied it to four examples: one numerical 

and three engineering examples. The purpose of the numerical example is to demonstrate 

the behavior of the robust Pareto solutions as we relax our robustness constraint. The 

purpose of the vibrating platform and the speed reducer examples is to demonstrate the 

application of our method to a two-objective optimization problem. The power electronic 

example is presented to show the application of our method to a three-objective 

optimization problem. 

In all examples, the parameter variability of the problems is large (more than 5% of 

the nominal value). In two of the engineering examples, one of the design variables is 
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discrete. For implementation reasons, we use a GA to solve the inner optimization. Thus, 

in each problem each robustness constraint calculation require ~250 function evaluations.  

 

4.5.1. Numerical Example 

This relatively simple example has three variables, two objectives, and three 

constraints. There are also lower and upper bounds on the variables. All variables are 

continuous, and two of the constraints are objective constraints. Both the objectives and 

the constraints are non-symmetric with respect to the variables, and they are non-linear 

and non-convex. The mathematical formulation of the problem is shown in Eq. (4.10).  
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In this formulation, the objectives and constraints have been numerically scaled to help 

expedite the optimization search. The nominal Pareto solutions to this problem are shown 

in Figure 4.11. These solutions are obtained using the NSGA method (see Srinivas and 

Deb, 1995). 
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Figure 4.11: Nominal and robust Pareto set of the numerical example. 

All three variables have variations in them, and we want to obtain robust solutions to 

this problem. The variations in each variable are given as (∆x1,∆x2,∆x3)0 = (10-4,10-4,0.1), 

while the acceptable variation of each objective is specified to be (∆f1,0, ∆f2,0) = (1.0, 1.0). 

Adding the robustness constraint 0
η
η

0

≤−1  to Eq. (4.10) and solving it (with η0 = 1), we 

obtain the robust Pareto solutions as shown in Figure 4.11. We see in Figure 4.11 that the 

robust Pareto set is essentially a subset of the nominal Pareto set (recall Figure 4.3(c)).  

If we relax the robustness constraint slightly by using η0 < 1, we will observe an 

interesting behavior. Figure 4.12 shows the robust Pareto set of the problem for η0 = 0.8 

(left) and for η0 = 0.5 (right). As we see in this figure, as the robustness constraint is 

relaxed, the robust Pareto set “spreads out” along the nominal Pareto frontier, i.e., it 

includes those nominal Pareto solutions that were not robust enough before. This 

behavior is expected because there is a trade-off between the robustness of a design and 

its performance.  
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Figure 4.12: Behavior of robust Pareto set as constraint is relaxed. 

Behavior similar to that observed in Figure 4.12 can also be expected for a robust 

Pareto set that is not a subset of the nominal Pareto set. For a robust Pareto set inferior to 

the nominal Pareto set (Figure 4.3(a)), the robust Pareto set will move closer to the 

nominal one as the robustness constraint is relaxed. For a robust Pareto set that overlaps 

with the nominal Pareto set (Figure 4.3(b)), the non-overlap part of the robust set will 

move closer to the nominal set while the overlap part will remain the same.  

For comparison, we also solved Eq. (4.10) using a probabilistic approach by 

minimizing both the mean values of f1 and f2. The mean values are calculated using 

100000 runs of Monte Carlo simulations assuming two different probability distributions 

of ∆x: uniform and normal. For the uniform assumption, the pdf is modeled as an equal 

probability distribution between [−10-4, +10-4] for ∆x1, between [−10-4, +10-4] for ∆x2, and 

between [−0.1, +0.1] for ∆x3. For the normal assumption, the pdf is modeled to have a 

mean value of 0, and a standard deviation of 10-4/3 for ∆x1 and ∆x2, and 0.1/3 for ∆x3. In 

both models, the variations are assumed to be independent. The solutions obtained using 

this approach are shown in Figure 4.13. 
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Figure 4.13: Robust solutions using Monte Carlo simulations. 

We see in Figure 4.13 that solutions obtained using the Monte Carlo approach are really 

just the nominal Pareto solutions. In other words, minimizing the means of the objectives 

does not result in robust solutions. This is only an intuitive argument, however. Let us 

verify this claim.  

Showing the three-dimensional SR of the designs is difficult, and projecting the SR 

onto a two-dimensional plane does not provide much information. For this reason, we 

will forgo analyzing the SR and WCSR of the solutions obtained, and instead simply 

perform a numerical verification of their robustness. We verify the results by randomly 

perturbing (x1,x2,x3) around their nominal values according to (∆x1,∆x2,∆x3)0, and 

calculating the difference between the perturbed f value and the nominal f value. A 

design is robust if ∆f is within ∆f0. Figures 4.14 and 4.15 show the ∆f of two of the robust 

designs (denoted by “robust-1” and “robust-2”) obtained by our MORO method. The 

figure on the left is for ∆f1, and the one on the right is for ∆f2. The dashed lines in the 

figures are the ∆f0. We see in these figures that the ∆f of both designs is within ∆f0. This 

shows that these designs are indeed robust.  
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Figure 4.14: Sensitivity analysis of the robust-1 design. 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16

Case #

∆
f 1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16

Case #

∆
f 2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16

Case #

∆
f 1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16

Case #

∆
f 1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16

Case #

∆
f 2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16

Case #

∆
f 2

 

Figure 4.15: Sensitivity analysis of the robust-2 design. 

For comparison, we performed the same analysis for the nominal designs. This time 

we picked three designs from the nominal Pareto set: one from the overlap region 

(nominal-1), one from the region where the f1 value is high (nominal-2), and one from the 

region where the f2 value is high (nominal-3). The ∆f of the three designs due to 

perturbations is shown in Figures 4.16, 4.17, and 4.18 for the nominal-1, 2, and 3 designs, 

respectively. As before, the figure on the left is for ∆f1, while the figure on the right is for 

∆f2.  
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Figure 4.16: Sensitivity analysis of the nominal-1 design. 
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Figure 4.17: Sensitivity analysis of the nominal-2 design. 
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Figure 4.18: Sensitivity analysis of the nominal-3 design. 
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We see in Figure 4.16 that the nominal-1 design satisfies the ∆f0 limit, so this further 

shows that the designs in the overlap region are indeed robust. In contrast, Figure 4.17 

shows that the nominal-2 design violates the ∆f1,0 limit, so this design is not robust with 

respect to f1. Similarly, the nominal-3 design violates the ∆f2,0 limit, so this design is not 

robust with respect to f2.  

From Figure 4.13, the solutions obtained using a Monte Carlo approach are 

essentially the same as the nominal Pareto solutions, so robustness of these solutions are 

the same as the robustness of the nominal designs (Figure 4.18), and there is no need to 

redo the sensitivity analysis. 

 

4.5.2. Design of a Vibrating Platform 

For the second example, we applied our MORO approach to a two-objective 

constrained optimization problem as given by Narayanan and Azarm (1999). We 

modified the problem slightly by adding variations to two of the problem’s parameters.  

In this problem, we want to optimize the design of a vibrating platform modeled as a 

pinned-pinned sandwich beam with a vibrating motor on top, as shown in Figure 4.19. 

d1 d2
d3L

   b

Vibrating
   Motor

 

Figure 4.19: A pinned-pinned vibrating platform. 

The platform has three layers of material (the inner layer, two middle layers 

sandwiching the inner layer, and two outer layers sandwiching the inner and middle 
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layers), and they are to be made out of three different materials: materials A, B, and C. 

The choice of materials for the layers must be mutually exclusive, i.e., no two layers can 

use the same material. However, the layers are allowed to have zero thickness (i.e., there 

is no layer). The properties of each of the materials are shown in Table 4.1. In this table, 

ρ is the mass density, E is the modulus of elasticity, and c is the cost of the material per 

volume.  

Table 4.1: Material properties. 

Material A Material B Material C
ρ (kg/m3) 100 2770 7780
E (GPa) 1.6 70 200
c ($/m3) 500 1500 800  

We want to minimize the total cost of making such a platform and maximize its 

natural frequency by controlling five sizing variables (continuous) and one combinatorial 

variable (discrete). The sizing variables are the width of the platform (b), the length of the 

beam (L), and the thicknesses of the three layers (d1, d2, and d3). The thicknesses of the 

middle and outer layers are represented as a difference between two sizing variables (e.g., 

thickness of the middle layer is equal to (d2-d1)).  The combinatorial variable is the choice 

of materials for the layers (M). Since there are three possible material types, there are six 

possibilities for M (starting from the inner layer outward): {A,B,C}, {A,C,B}, {B,A,C}, 

{B,C,A}, {C,A,B}, and {C,B,A}. The platform design is subjected to five constraints: the 

maximum weight of the platform and the lower and upper limits on the thickness of the 

middle and outer layers.  

The optimization formulation for this example is shown in Eq. (4.11).  
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In Eq. (4.11), the notations (ρ1, ρ2, ρ3), (E1, E2, E3), and (c1, c2, c3) refer to the density, 

modulus of elasticity, and material cost for the inner, middle, and outer layer of the 

platform, respectively. The lower and upper bounds for the sizing variables are: 

0.05 ≤ d1 ≤ 0.5, 0.2 ≤ d2 ≤ 0.5, 0.2 ≤ d3 ≤ 0.6, 0.35 ≤ b ≤ 0.5, and 3 ≤ L ≤ 6. 

There are variations in the density and cost of “Material A” (ρA and cA), and we want 

our optimum solutions to be insensitive to these variations. More specifically, we want to 

obtain the robust Pareto solutions of this problem for the nominal parameter values: 

ρA = 100 kg/m3 and cA = 500 $/m3.  

We add the robustness constraint 0
η
η

0

≤−1  to Eq. (4.11), and solve it (using η0 = 1). 

For the sensitivity requirements, we set the acceptable ∆f to be (∆f1,0, ∆f2,0) = ($5, 5Hz) 

and the parameter variations are known to be (∆ρA,0, ∆cA,0) = (5 kg/m3, 25 $/m3); 5% of 

the nominal ρA and cA values. For the optimizer, we use Multi-Objective Genetic 

Algorithm (MOGA) of Fonseca and Fleming (1993) combined with the method of 

Kurapati et al. (2002) to handle constraints.  
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Figure 4.20 shows the robust Pareto set obtained (shown as a min-min plot by taking 

the negative of the frequency value). The average number of function evaluations 

performed in calculating the sensitivity constraint is 250. For comparison, Figure 4.20 

also shows the nominal Pareto set of the problem (without the sensitivity constraint), and 

the Pareto set obtained using the probabilistic approach. In the probabilistic approach, we 

minimize the sum of mean and standard deviation value for each objective. These values 

are calculated by performing 100,000 Monte Carlo simulations. 

0

50

100

150

200

250

-500 -400 -300 -200 -100 0

- Natural frequency (Hz)

C
os

t (
$)

Nominal Robust Probabilistic

Point B
Point A

Point C

0

50

100

150

200

250

-500 -400 -300 -200 -100 0

- Natural frequency (Hz)

C
os

t (
$)

Nominal Robust Probabilistic

Point BPoint B
Point APoint A

Point CPoint C

 

Figure 4.20: Pareto sets of the vibrating platform example. 

We observe in Figure 4.20 that for the given sensitivity requirements, the robust 

Pareto set obtained is mostly inferior to the nominal Pareto set. So in designing the 

platform, we must sacrifice some performance to achieve higher robustness. However, 

when the frequency and cost values of the designs are in the range of (150 Hz, 200 Hz) 

and ($75, $100), the nominal and robust Pareto set overlap. Thus, those platform designs 
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within these ranges are not only insensitive to changes in ρA and cA, but are also Pareto 

optimum for the nominal ρA and cA values. Naturally, when making a selection for the 

final design, the designs in the overlap region are good candidates. The Pareto set of the 

probabilistic approach is inferior overall to both the nominal and robust Pareto sets. So, 

based on their multi-objective optimality these solutions are conservative. 

Figure 4.20 shows the optimality of the robust Pareto set obtained, but we have yet to 

make a case for its robustness. To verify the robustness of the obtained robust Pareto set, 

we performed a sensitivity analysis on the design points by arbitrarily perturbing the 

parameters (ρA,cA) around their nominal values. We then computed the changes in the 

objective values of the designs due to these perturbations and compared those changes to 

the acceptable values. Due to space limitations, we present the results of such sensitivity 

analysis only for three randomly selected design points, one point each from the nominal, 

robust, and probabilistic Pareto set (points A, B, and C in Figure 4.20, respectively). 

Figure 4.21 shows the plots of the ∆f values of the three design points.  

In Figure 4.21, the inner rectangle is the range of acceptable objective value ∆f0, and 

the square points are the (∆freq, ∆cost) value of the design when the parameters (ρA,cA) 

are perturbed. It is clearly shown in Figure 4.21(a) that when (ρA,cA) are perturbed 

around their nominal values, the changes in objective values of the nominal Pareto design 

(point A) are larger than the acceptable range. Thus, according to the sensitivity 

requirements set by the designer, this design is not robust enough. On the other hand, the 

∆f of the robust Pareto design, Figure 4.21(b), is within the acceptable range. So this 

design (point B) is indeed robust. The objectives variation of the probabilistic Pareto 
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design (Figure 4.21(c)) violates the sensitivity requirements as well, so not only this 

design (point C) is inferior, but it is also not robust. 
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(c) Probabilistic Pareto design
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(b) Robust Pareto design
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(c) Probabilistic Pareto design
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(c) Probabilistic Pareto design  

Figure 4.21: Sensitivity of: (a) nominal, (b) robust, and (c) probabilistic designs. 

To further assess the sensitivity of the designs, we calculated their sensitivity regions 

and WCSR’s. This is done by substituting their design variable values (b,L,d1,d2,d3,M) 

into the cost and frequency function of Eq. (4.11), and then using the specified ∆f0 value, 

solve for ∆ρA and ∆cA. Figure 4.22(a), (b), and (c) show the SR’s and WCSR’s of the 

nominal (point A), robust (point B), and probabilistic (point C) Pareto design, 

respectively.  
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Figure 4.22: SR and WCSR of: (a) nominal, (b) robust, and (c) probabilistic designs. 
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The rectangles around the origin in Figure 4.22 are the SR’s of the designs, while the 

circles are their WCSR’s. The SR’s are rectangles because each of the objective functions 

is a function of only one parameter, i.e., cost(∆cA) and freq(∆ρA). Because of this, each 

objective will be sensitive only to a range of one parameter value but not the other, and 

these ranges of values form a rectangle in the ∆p-space. The WCSR’s are easily formed 

by finding the point on the SR boundary closest from the origin. 

We can make a few observations from Figure 4.22. First, we observe that both the 

SR and WCSR of the robust Pareto design are larger than that of the nominal and 

probabilistic Pareto designs, verifying the sensitivity analysis shown in Figure 4.21. 

Second, we also observe that the robust design satisfies the (∆ρA,0, ∆cA,0) = (5 kg/m3, 25 

$/m3) range, while the nominal and probabilistic designs do not.  

In our MORO approach, we have implicitly assumed that the constraints are still 

satisfied when the parameters change. To show the validity of this assumption, we 

performed a sensitivity analysis on the constraints of the robust Pareto design under 

study. We conducted the analysis by again arbitrarily perturbing the parameters around 

their nominal values and then calculating the constraints of the design for these perturbed 

parameters. Table 4.2 shows the values of the g1 constraint for 20 randomly perturbed ρA 

values (cA does not affect the constraints, and g2, g3, g4, and g5 are independent of ρA). 

We see from the table that g1 is still satisfied when ρA changes, so our assumption holds.  
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Table 4.2: Sensitivity of the constraints. 

Case # g1 Case # g1

1 -2196.5 11 -2199.67
2 -2199.8 12 -2195.41
3 -2198.2 13 -2195.33
4 -2198.5 14 -2198.57
5 -2198.6 15 -2197.84
6 -2198.0 16 -2198.77
7 -2198.1 17 -2199.42
8 -2196.9 18 -2195.66
9 -2196.3 19 -2197.14

10 -2195.4 20 -2196.81  

 

4.5.3. Design of a Speed Reducer 

Our third example is the well-known problem of designing a two-shaft speed reducer 

formulated by Kurapati et al. (2002). Here, we modified it by adding variations to two of 

the design variables.  

Figure 4.23 shows the configuration of the speed reducer to be optimized. The 

objectives of the problem are to minimize the total weight of the speed reducer as well as 

the normal stress on the first gear shaft. Since the speed reducer is to be made of the same 

material throughout, the first objective is the same as minimizing the total volume. The 

problem has seven design variables: the gear face width (x1), the teeth module (x2), the 

number of teeth pinion (x3), the distance between bearings on the first shaft (x4) and on 

the second shaft (x5), and the diameter of the first shaft (x6) and second shaft (x7). All 

design variables are continuous except for x3 (the number of teeth), which is an integer.  
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Figure 4.23: A speed reducer. 

A lower and upper bound are imposed on each of the design variables. In addition, 

the design is subject to 11 inequality constraints as required by gear and shaft design 

practices. The constraints are: upper bound on the bending stress of the gear tooth (g1), 

upper bound on the contact stress of the gear tooth (g2), upper bound on the transverse 

deflection of the first shaft (g3) and the second shaft (g4), dimensional restrictions based 

on space and/or experience (g5, g6, and g7), design requirements on the shaft based on 

experience (g8 and g9), and upper bound on the normal stress on the first shaft (g10) and 

on the second shaft (g11). The constraint g10 is an objective constraint. The mathematical 

formulation of the problem is as follows. The units for all the variables are cm (except for 

x3 – the integer variable). The unit for the first and second objective is cm3 and kPa, 

respectively.  
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Solving Eq. (4.12) using NSGA, we obtain the nominal Pareto solutions as shown in 

Figure 4.24. We see in this figure that the nominal Pareto frontier is composed of two 

regions: a weakly Pareto region (the horizontal portion) and a normally Pareto region (the 

non-horizontal portion). For multi-objective minimization, a design xa is termed weakly 

Pareto if there is no feasible design xb such that fi(xb) < fi(xa) for all i=1,…,M. Some 

might argue that a weakly Pareto frontier is not really a Pareto frontier. However, to be 

general we include it in our discussion.  
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Figure 4.24: Nominal and robust Pareto solutions of the speed reducer problem. 

Two of the variables, the teeth module (x2) and the first shaft diameter (x6), vary by 

(∆x2, ∆x6) = (0.01, 0.1), and we want to obtain robust optimum solutions to this problem. 

The acceptable f variation is given to be (∆f1,0, ∆f2,0) = (150, 75). Using η0 = 1, we added 

the robustness constraint 0
η
η

0

≤−1  to Eq. (4.12) and solved it using NSGA. The robust 

Pareto solutions obtained are also shown in Figure 4.24. We see in this figure that the 

robust Pareto set is a subset of the nominal Pareto set, and it is located on the weakly 

Pareto portion of the nominal Pareto frontier.  

To verify the robustness of the designs obtained, we randomly perturbed the 

variables x2 and x6 around their values following (∆x2, ∆x6) = (0.01, 0.1), and observed 

the changes in (f1, f2) due to these perturbations. To ensure the validity of the analysis, we 

performed the analysis on two designs from the robust Pareto set. For reference, we call 

them robust-1 and robust-2 designs. The results of the sensitivity analysis of the two 
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designs are shown in Figure 4.25. In this figure, the small rectangles are the ∆f values of 

the design when x2 and x6 are perturbed, while the large inner rectangle is the ∆f0 limit.  
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Figure 4.25: Sensitivity analysis of the robust-1 (left) and robust-2 (right) design. 

We observe in Figure 4.25 that for both designs, the variations in f1 and f2 are always 

within the ∆f0 limit, thus verifying that these designs are indeed robust.  

For comparison, we performed the same sensitivity analysis for two of the nominal 

Pareto designs. We chose one optimum design from the non-horizontal portion, and 

another design from the horizontal portion to be analyzed. For reference, we call them 

nominal-1 and nominal-2 design, respectively. The results of the sensitivity analysis are 

shown in Figure 4.26. As before, in this figure the small rectangles are the ∆f values of 

the designs, while the large inner rectangle is the ∆f0 limit.  
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Figure 4.26: Sensitivity analysis of the nominal-1 (left) and nominal-2 (right) design. 
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We observe in Figure 4.26 that for the nominal-1 design, the variations in f2 violate the 

∆f2,0 limit, while the ∆f of the nominal-2 design is within the ∆f0 limit. This observation 

shows that the designs in the horizontal portion of the nominal Pareto frontier are robust, 

while those in the non-horizontal portion are not.  

To further confirm the results in Figures 4.25 and 4.26, we computed the SR and 

WCSR of the designs. Since the robustness of the designs has been verified 

experimentally, here we only show the SR and WCSR of the nominal-1 and robust-1 

designs. Analytical derivation of the designs SR is very difficult, if at all possible. So, we 

performed an exhaustive analysis instead. We partition the ranges (∆x2, ∆x6) = (0.04, 0.4) 

into an equally spaced orthogonal grid, and calculate the ∆f of the designs on each 

intersection point. If (∆f)2 ≤ (∆f0)2, then this point is in the SR. The set of such points is 

the SR of the design. To be able to derive the WCSR of the designs graphically, we plot 

the SR in the normalized space. The SR and WCSR of the nominal-1 and robust-1 

designs are shown in Figures 4.27(a) and 4.27(b), respectively (in the normalized space).  
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Figure 4.27(a): SR and WCSR of the nominal-1 design. 
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Figure 4.27(b): SR and WCSR of the robust-1 design.  

We see in Figure 4.27 that the SR of the robust-1 design encloses the normalized range of 

variable variation ),( 62 xx ∆∆ = (1,1), while that of the nominal-1 design does not. This 

observation again confirms the robustness of each design (or lack thereof).  

If we solve the problem for robust optimum solutions using probabilistic methods 

(by minimizing mean of each objective), we will observe that the probabilistic Pareto 

solutions are essentially the same as the nominal Pareto solutions. So, to avoid repetition 

we do not re-show these results in the dissertation (a summary of this result can be found 

in Table 7.3 in Chapter 7).  

 

4.5.4. Design of a Power Electronic Module 

For our last example, we look into the design optimization of a power electronic 

module as formulated by Palli et al. (1998). The main components of the power module 

to be optimized are shown in Figure 4.28. In this configuration, a chip/die is attached to a 

substrate using solder. The substrate is made of alumina and is coated with copper.  
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Figure 4.28: A power electronic module. 

The four design variables of the problem are: the length of the chip (lc), the thickness of 

the chip (tc), the thickness of the alumina substrate (tAl), and the thickness of the copper 

coating (tCu). The units for all design variables are mm.  

The power module experiences stresses in the solder layer due to thermal mismatch 

between the die and the substrate. In addition, the solder also undergoes fatigue due to 

cyclic stresses created by thermal changes during power switches. The objectives of the 

optimization problem are to: (1) minimize the maximum shear stress in the solder layer, 

(2) maximize the life expectancy of the module under chip fatigue, and (3) maximize the 

life expectancy of the module under substrate fatigue.  

The shear stress model used in this problem is based on elastic, plastic, and creep 

behavior and is governed by the following differential equation: 
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In this equation, τ is the shear stress, G is the shear modulus, x is the distance from the 

center of the chip, ∆H is the activation energy, k is the Boltzmann’s constant, and the 

quantities A, β, np, and nc are constants. The boundary conditions for Eq. (4.13) are: (1) 

the shear stress at the center of the chip is zero, i.e., τ(0) = 0, and (2) the compressive 
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force caused by the solder displacement is equal to the tensile force caused by the thermal 

mismatch.  

The shear stress is a function of the position from the center of the chip. However, 

because we are interested only in the maximum shear stress, we need only to calculate the 

shear stress at the edge of the chip, i.e., at x = ± lc/2. Following the boundary condition, 

the shear stress at this position can be estimated using the following function. Here, we 

have looked into the shear stress at a particular instance of time.  
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The expected life of the module under chip fatigue is estimated using Eq. (4.15) 

following the physics of failure model of Suhir (1987). 
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Similarly, the expected module life under substrate fatigue is formulated as follows: 
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The constants used in Eq. (4.14), (4.15), and (4.16) are as follows: 

 ∆T = temperature difference between chip and substrate (= 10 °K) 

Avfc = Length of final vertical crack in chip (= 5.08 x 10-5 m) 

Avfs = Length of final vertical crack in substrate (= 5.08 x 10-5 m) 

Avic = Length of initial vertical crack in chip (= 6.35 x 10-6 m) 

Avis = Length of initial vertical crack in substrate (= 6.35 x 10-6 m) 

Cpc = Paris coefficient for chip fatigue (= 7.53 x 10-18) 

Cps = Paris coefficient for substrate fatigue (= 5.15 x 10-15) 

Ec = elastic modulus of chip (= 120 GPa) 

Eca = elastic modulus of chip attach (= 11.85 GPa) 

Ecase = elastic modulus of case (= 110 GPa) 

Es = elastic modulus of substrate (= 327 GPa) 

 120



 

Esa = elastic modulus of substrate attach (= 29.8 GPa) 

Gc = shear modulus of chip (= 45.1 GPa) 

Gca = shear modulus of chip attach (= 4.2 GPa) 

Gcase = shear modulus of case (= 42.3 GPa) 

Gs = shear modulus of substrate (= 130.8 GPa) 

Gsa = shear modulus of substrate attach (= 10.6 GPa) 

ls = length of substrate (= 27.5 mm) 

tca = thickness of chip attach (= 0.08 mm) 

tcase = thickness of case (= 4.0 mm) 

ts = thickness of substrate (= tCu + tAl)  

tsa = thickness of substrate attach (= 0.5 mm) 

αc = coefficient of thermal expansion of chip (= 2.6 x 10-6/°K) 

αcase = coefficient of thermal expansion of case (= 17 x 10-6/°K) 

αs = coefficient of thermal expansion of solder layer (= 25 x 10-6/°K) 

εpc = Paris exponent for chip fatigue (= 3) 

εps = Paris exponent for substrate fatigue (= 3.3) 

νc = Poisson’s ratio of chip (= 0.3) 

νca = Poisson’s ratio of chip attach (= 0.4) 

νcase = Poisson’s ratio of case (= 0.3) 

νs = Poisson’s ratio of substrate (= 0.25) 

νsa = Poisson’s ratio of substrate attach (= 0.4) 

In addition to the three objectives, there are lower and upper bounds on the design 

variables. The complete formulation of the optimization problem is as follows: 
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The nominal Pareto solutions of the optimization problem, Eq. (4.17), are shown in 

Figure 4.29 (these solution points are obtained using the NSGA method (Srinivas and 

Deb, 1995)). Because we have three objectives, we have shown the points projected onto 

two-dimensional planes. We have also shown the three objectives as all minimization by 

taking the negative of f2 and f3.  

Three of the design variables and four of the design parameters have variability in 

them. The three design variables are (tc, tAl, tCu), and their variations are (0.05, 0.1, 0.2), 

respectively (all in mm). The four design parameters are (αs, αc, Ec, Es), and their 

variations are (2 x 10-6/°K, 0.1 x 10-6/°K, 6 GPa, 10 GPa), respectively. It is required that 

the objective values are bounded within (∆f1,0, ∆f2,0, ∆f3,0) = (3 MPa, 1.0 x 1031 cycles, 

1.5 x 1026 cycles). Adding the robustness constraint 0
η
η

0

≤−1  to Eq. (4.17) and solving it 

with η0 = 1, we obtain the robust Pareto solutions as shown in Figure 4.29.  

From Figure 4.29, we see that the robust Pareto solutions are a subset of the nominal 

solutions. We also observe that the robust Pareto solutions are concentrated around the 

region close to the origin.  
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Figure 4.29: Nominal and robust Pareto solutions of the power electronic problem. 
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Let us now verify the robustness of the solutions obtained. Since we have a total of 7 

design factors with variability, it is impossible to show their SR and WCSR on a two-

dimensional plane. So, we will perform a numerical sensitivity analysis instead. We 

analyze the sensitivity of one design each from the nominal and robust solution set. For 

the nominal design, we choose a design not located in the region near the origin (the 

robust region). The two designs to be analyzed are shown in Table 4.3. For comparison, 

we have also shown their η values. Notice in this table that ηrobust ≥ 1.0 while ηnominal is 

not. So according to our WCSR prediction, the robust design satisfies the ∆f0 limit while 

the nominal design does not.  

Table 4.3: Nominal and robust designs to be analyzed. 

Nominal Robust
l c  (mm) 6.071 9.754
t Cu (mm) 0.596 0.153
t Al (mm) 1.005 1.073
t c (mm) 1.962 1.205
f 1 (MPa) 23.978 9.764

f 2 (x 1030 cycles) 24.478 10.552

f 3 (x 1025 cycles) 9.013 5.789

η 0.418 1.075  

We randomly perturb the value of the 7 design factors within their variation range, 

and then observe the changes in the objective values of the design. A design is robust if 

the objective changes are within the given limit, for all three objectives. The graphs of the 

∆f of the two designs are shown in Figure 4.30. In this figure, the left three graphs are the 

∆f1, ∆f2, and ∆f3 of the nominal design, while the right three graphs are the ∆f1, ∆f2, and 
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∆f3 of the robust design. The horizontal axis shows the case number, while the dashed 

lines are the ∆f0 limits.  
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Figure 4.30: Sensitivity analysis of the nominal (left) and robust (right) designs. 

We see in Figure 4.30 that the ∆f of the robust design is always within the limits for all 

three objectives. In contrast, the ∆f of the nominal design violates the given limits for all 

three objectives. This observation verifies the robustness of the two designs as claimed. 
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As in the previous example, solving this problem using probabilistic approach 

(Monte Carlo simulation with 100,000 samples) gives us essentially the same results as 

the nominal optimization approach. As such, the optimality and robustness of these 

solutions are the same as the nominal Pareto solutions, and we do not re-perform the 

sensitivity analysis here for clarity.  

 

4.6. SUMMARY 

• A design is termed “multi-objectively robust” if each of its objective value is 

insensitive to parameter variations.  

• For a set of designs, the overall robustness of the set is determined by the robustness 

of each of the designs in the set. This type of robustness is called point robustness.  

• In Multi Objective Robust Optimization (MORO), we are interested in the point 

robustness of the solutions. Those designs that are multi-objectively optimum (for 

nominal values of parameters) and also multi-objectively robust are called robust 

Pareto solutions.  

• A robust Pareto set is generally inferior to the nominal Pareto set. It is also common 

for the robust Pareto set and the nominal Pareto set to overlap, or for the robust Pareto 

set to be a subset of the nominal Pareto set. 

• The multi objective Sf of a design is the intersection of the Sf,i of each objective. 

When the number of objectives M = 1, the multi-objective Sf reduces to the single 

objective Sf.  

• The generalized SR is the plot of the generalized Sf on the ∆p-space. A point inside 

the SR satisfies [∆fi]2 < [∆fi,0]2 for all i = 1,…,M. A point outside satisfies [∆fi]2 
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> [∆fi,0]2 for at least one i. A point on the boundary satisfies [∆fi]2 ≤ [∆fi,0]2 with a 

strict equality for at least one i. 

• The generalized WCSR is a hyper-sphere inside the generalized SR that touches the 

SR boundary at the closest point from the origin. The radius of the WCSR can be 

calculated by solving a single-objective optimization problem with an equality 

constraint. If the magnitudes of ∆p are different, this optimization problem needs to 

be normalized to account for scale importance.  

• To avoid difficulties in making trade-offs between the objectives, we use a 

constrained approach to MORO where we treat the robustness of a design as a 

constraint instead of an objective.  

• Using the constrained approach, our MORO method obtains the robust Pareto set by 

first eliminating all non-robust designs and then selecting the set of non-inferior 

designs from those designs that are not eliminated.  
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CHAPTER 5 

FEASIBILITY ROBUST OPTIMIZATION 

 

5.1. INTRODUCTION 

In the previous two chapters we presented a method to measure objective robustness 

of a design, and a scheme to use that measure to obtain a robust optimum design. In those 

chapters, we implicitly assumed that the design will always remain feasible when the 

variations occur. Obviously, this assumption may not be valid in general. Feasibility 

robustness of a design must be explicitly accounted for and enforced if we want the 

design to be always feasible even as the uncontrollable parameters vary.  

The purpose of this chapter is to develop a method to measure the feasibility 

robustness of a design, and develop an optimization scheme to use this measure to 

guarantee the feasibility of a design. Similar to Chapters 3 and 4, the robustness measure 

presented here is also based on the sensitivity region concept, but with a significant 

difference. Unlike objective robustness, which was “two-sided”, feasibility robustness of 

a design with respect to constraints is “one-sided”. This one-sided feasibility robustness 

implies that we are interested in limiting the constraint deviation along one direction 

only, either increase or decrease but not both. In our case, we limit the increase in the 

constraints because we use the notation g(x,p) ≤ 0 for constraints. We will point out this 

important difference in more detail in this chapter.  

For clarity and simplicity, in this chapter we will focus entirely on the feasibility 

robustness of a design, and we will not account for objective robustness. We will discuss 

the combined objective and feasibility robust optimization approach in the next chapter. 

 128



 

In the next few sections we develop the concept of one-side sensitivity region for single 

and multiple constraints, and then present an approach to use it in an optimization 

routine. At the end of the chapter we give a demonstration of the applications of our 

method to numerical and engineering examples.  

 

5.2. ONE-SIDED SENSITIVITY MEASURE 

We begin our discussions by presenting a method to measure the sensitivity 

(robustness) of a design in terms of constraint functions using the sensitivity region 

concept presented in previous chapters. We present our approach for a single constraint 

case first and then extend it to a more general case of multiple constraints. 

 

5.2.1. Single Constraint 

Let x0 be the design alternative whose sensitivity we want to measure, and let g(x0,p) 

be the constraint whose change in value is of interest. Constraint g(x0,p) depends on two 

factors, the design x0 itself and parameter p. Our goal is to get a measure of how g 

changes when p varies by some ∆p.  

Suppose the value of g(x0,p) is allowed to decrease indefinitely, but is allowed to 

increase only by some non-negative amount ∆g0 (i.e., a one-sided sensitivity). (We 

choose to limit the increase in g, instead of the decrease, to be consistent with our 

constraint notation “ ≤ ”.) For this ∆g0 increase, there is a set of ∆p’s such that: 

{ }000
G

0g g),(g),(g:R)( ∆+≤∆+∈∆= ppppS xxx        (5.1) 

This set of ∆p’s is called the “feasibility sensitivity set” (Sg) of design x0. Notice that the 

feasibility sensitivity set Sg does not have squared terms as in the objective sensitivity set 
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Sf that was presented in Chapters 3 and 4. This is because the feasibility sensitivity set is 

a one-sided sensitivity measure.  

Rearranging the inequality in Eq. (5.1), we obtain:  

g(x0,p+∆p) – g(x0,p) ≤ ∆g0    (5.2) 

∆g(∆p) ≤ ∆g0      (5.3) 

Eq. (5.3) shows an important property of Sg: for all ∆p’s in Sg, the changes in g due to 

∆p’s are always less than or equal to an allowable increase ∆g0. This implies that Sg is an 

indicator of how much ∆p’s design x0 can “absorb” for it to remain within the allowable 

limit. As the number of elements in Sg increases, the design can allow more changes in p. 

So, like the objective Sf, the larger Sg, the more feasibly robust the design, and if we can 

make sure that ∆p is always a member of Sg, then we are guaranteed that ∆g0 will always 

be satisfied.  

Plotting Sg in ∆p-space, we obtain the Feasibility Sensitivity Region (FSR) of the 

design. The size of FSR corresponds to the size of Sg, and therefore FSR size is also a 

measure of a design’s robustness: the larger it is, the more feasibly robust the design. 

Based on Eq. (5.3), a ∆p point inside, outside, and on the boundary of FSR must satisfy 

∆g(∆p) < ∆g0, ∆g(∆p) > ∆g0, and ∆g(∆p) = ∆g0, respectively.  

 

Example 5.1 

Let us demonstrate an application of the above concept with a simple constraint 

function. Suppose we have an inequality constraint: , where 

the parameters are p = [0, -0.5] and the allowable increase for the constraint is 

0)p(),g( 21
2

)p(10
1 ≤+≡ xxpx
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∆g0 = 1.125. If the design of interest is x0 = [1.1, 3.0], determine the feasibility sensitivity 

set Sg for this design, and show its FSR in (∆p1,∆p2)-space.   

Solution 

The nominal value of the constraint is g(x0,p) = -0.125. Using ∆g0 = 1.125, we 

obtain: { }0.2)5.0p()1.1(:)p,p()( 3
2

p10
210g

1 ≤−∆+∆∆= ∆xS . Plotting this inequality in the 

(∆p1,∆p2)-space, we obtain the FSR of the design as shown in Figure 5.1. As a quick 

verification, for (∆p1,∆p2) = (0,0), inside the FSR, the inequality is 0.875 < 2.0. For 

(∆p1,∆p2) = (1.0,1.0), outside the FSR, the inequality is 2.718 > 2.0. For 

(∆p1,∆p2) = (0,1.5), on the FSR boundary, the inequality is 2.0 = 2.0.  
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Figure 5.1: Feasibility Sensitivity Region for the inequality constraint. 

Notice that the FSR in Figure 5.1 is unbounded and only has one boundary. This is in 

contrast to the objective SR where even when it is unbounded, it still has two boundaries 

(recall Chapters 3 and 4). Again, the reason for this difference is because FSR is a one-
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sided sensitivity measure. The FSR boundary corresponds to the ∆g0 allowable increase, 

but since there is no limit for the decrease, there is no other boundary. ♦ 

 

As seen in Figure 5.1, like objective SR, FSR also has a drawback of being 

asymmetric. Because of this asymmetry, the directional sensitivity of a design becomes 

an important issue. To account for this directional sensitivity, we once again use the 

worst-case representation of FSR, hereafter called “Feasibility Worst Case Sensitivity 

Region” (FWCSR), as a measure of a design’s feasibility robustness. Graphically, 

FWCSR of a design is a hyper-sphere inside the FSR of that design that touches the 

boundary at the closest point from the origin in ∆p-space. The FWCSR is typically, but 

not necessarily, tangent to the FSR at the point of contact (e.g., when there is a cusp at the 

point of contact).  

 

Example 5.2 

Using the FSR obtained in Example 5.1, determine the FWCSR of the design 

x0 = [1.1, 3.0] for the constraint .  0)p(),g( 21
2

)p(10
1 ≤+≡ xxpx

Solution 

The FSR of the design is shown in Figure 5.1. The FWCSR of it is simply the 

smallest hyper-sphere inside it that touches it at the point closest to the origin as shown in 

Figure 5.2. In this example, the FWCSR is derived from the non-normalized (∆p1,∆p2)-

space, but it is valid because the scale of ∆p1 and ∆p2 is the same. We will discuss 

normalization in Section 5.3. ♦ 
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Figure 5.2: Feasibility WCSR for the inequality constraint. 

The point of contact between FWCSR and FSR is a point on FSR boundary that is 

closest from the origin. Since the point of contact satisfies ∆g(∆p) = ∆g0, the FWCSR 

radius can be calculated by solving the following optimization problem: 

000

2
1

G
2

g

g),g(),g(:subject to

p)(Rminimize

∆=−∆+









∆=∆ ∑

∆

ppp

p
p

xx
i

i     (5.4) 

Using the radius calculated from Eq. (5.4), we can then calculate the size of FWCSR. 

However, like in the objective robustness case, there is really no need to perform this 

calculation. The Rg value alone is sufficient for calculating the feasibility robustness of 

the design. 

 

Example 5.3 

Use Eq. (5.4) to calculate the Rg in Example 5.2. Compare this value to the FWCSR 

graph shown in Figure 5.2.  
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Solution 

The problem is simple enough to be solved analytically. For ease of differentiation, 

we use  instead of R2
gR g as objective. Taking the first derivative of the Lagrangian with 

respect to ∆p1 and ∆p2, we obtain the following equations (λ is the Lagrange multiplier):  

0.1)λ(0.953)(1p2∆ 1p10∆
1 =+           (5.5) 

0.5)0pλ(∆3p2∆ 2
22 =+ -         (5.6) 

Combined with the equality constraint: ( , we have three 

linearly independent equations with three unknowns (∆p

00.20.5)-p()1.1 3
2

)p(10 1 =−∆+∆

1,∆p2,λ). Solving these 

equations, we obtain the point of contact to be (∆p1,∆p2) = (0.749, 0.147) for a FWCSR 

radius of Rg = 0.763 (the Lagrange multiplier is λ = -0.786). The Hessian of the 

Lagrangian at this (∆p1,∆p2) point is positive definite, so the sufficiency condition is 

satisfied.  

Graphically (see Figure 5.2), the point of contact is approximately at (∆p1,∆p2) 

= (0.75, 0.15) for a FWCSR radius of Rg = 0.765. This value is in agreement with the 

analytic value, thus confirming that solving Eq. (5.4) does indeed give us the FWCSR 

radius that we are looking for. ♦ 

 

5.2.2. Multiple Constraints 

We can easily extend the FWCSR concept described in the last section to measure 

robustness of a design when there are multiple constraints. Let g(x,p) = [g1,…,gJ] be the 

constraint functions of interest, and ∆g0 = [∆g1,0,…, ∆gJ,0] ≥ 0 be the vector of acceptable 

increments. Then there is a set of ∆p’s such that:  
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{ }J,...,1,g),(g),(g:R)( 0,00
G

0g =∀∆+≤∆+∈∆= jjjj ppppS xxx           (5.5) 

{ }J,...,1,g)(g:R)( 0,
G

0g =∀∆≤∆∆∈∆=⇔ jjj ppS x    (5.6) 

This set is the generalized feasibility sensitivity set Sg. Notice how Eq. (5.6) collapses to 

Eq. (5.1) when J=1.  

Recall from Chapter 4 that the generalized Sf is really just the intersection of all Sf,i’s. 

The same property also exists for the generalized Sg. If we let the notation Sg,j be the set 

of ∆p’s such that ∆gj(∆p) ≤ ∆gj,0, then it is easily seen that the overall Sg is simply the 

intersection of all Sg,j’s:  

Sg = Sg,1 ∩ … ∩ Sg,J     (5.7) 

Consequently, the overall FSR of a design is then formed by the intersections of the FSR 

of each constraint, and the overall FWCSR is then defined for this overall FSR.  

Utilizing the fact that the overall FSR is an intersection of all constraints’ FSRs, we 

can define the requirements for a ∆p point to be inside, outside, or on the boundary of the 

overall FSR. Similar to the generalized SR, a point inside the overall FSR satisfies 

∆gj(∆p) < ∆gj,0 for all j=1,…,J. For a point to be outside of the FSR, there must exist at 

least one j such that ∆gj(∆p) > ∆gj,0. A point on the boundary of the FSR satisfies 

∆gj(∆p) ≤ ∆gj,0 with a strict equality for at least one j.  

 

Example 5.4 

Going back to our inequality constraint from Examples 5.1-5.3. Suppose there is a 

second constraint 02)p()471.2(),(g 12
2

5.0p

12

2

≤++−≡






 +

xxpx  with the same parameter 
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values p = [0,-0.5]. If the increment limit for this new constraint is ∆g2,0 = 1.0, determine 

the overall FSR and FWCSR of the design x0 = [1.1, 3.0].  

Solution 

We already have the FSR of the first constraint, so to get the overall FSR we only 

need to calculate FSR of the second constraint and then find the intersection of the two 

FSRs. From previous examples, the feasibility sensitivity set of the first constraint is 

{ }0.2)5.0p()1.1(:)p,p()( 3
2

p10
210g,1

1 ≤−∆+∆∆= ∆xS . The nominal value of the second 

constraint is g2(x0,p) = 0, so the feasibility sensitivity set of the second constraint is 

{ }02)p()718.2(:)p,p()( 1
2/p

210g,2
2 ≤+∆−∆∆≡ ∆xS . Plotting these inequalities in the 

(∆p1,∆p2)-space, we obtain the overall FSR of the design as shown in Figure 5.3.  
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Figure 5.3: Overall FSR and FWCSR for the two constraints.  

As a verification, the point (∆p1,∆p2) = (0,0) is inside the overall FSR, and it satisfies 

both Sg,1 inequality (0.875 < 2.0) and Sg,2 inequality (-1 < 0). The point (∆p1,∆p2) = (1,1) 

is outside the overall FSR. It satisfies Sg,2 inequality (-1.35 < 0), but not Sg,1 inequality 

 136



 

(2.718 > 2.0). The point (∆p1,∆p2) = (0,2) is also outside the overall FSR, but it does not 

satisfy either Sg,1 inequality (4.375 > 2.0) or Sg,2 inequality (0.718 > 0). The point 

(∆p1,∆p2) = (-1,0) is on the boundary of the overall FSR. It satisfies Sg,1 inequality 

(0.26 < 2.0), and satisfies Sg,2 inequality with a strict equality (0 = 0).  

The overall FWCSR of the design is also shown in Figure 5.3. We see in this figure 

that the overall FWCSR is the same as the FWCSR of the first constraint. This is because 

the worst-case scenario for this particular design is governed by the first constraint. ♦ 

 

Using the requirement for a point to be on the overall FSR boundary, the FWCSR 

radius of a multiple-constraint design can be calculated by solving the optimization 

problem shown below (notice again how Eq. (5.8) collapses into Eq. (5.4) when J=1): 

,000

,000

2
1

G
2

g

g),(g),(g:
J,...,1

g),(g),(g:subject to

p)(Rminimize

jjj

jjj

i
i

j
j

∆=−∆+∃
=

∆≤−∆+









∆=∆ ∑

∆

ppp

ppp

p
p

xx

xx         (5.8) 

Notice in Eq. (5.8) that at least one of the J inequality constraints must be active. Based 

on this information, we can simplify these constraints.  

If we rearrange each inequality constraint, we obtain the following: 

J,...,1

01
g

),(g),(g

,0

00

=

≤−
∆

−∆+

j
j

jj ppp xx
    (5.9) 

For a feasible ∆p point, the maximum of each of the modified constraint is 0, and for a 

constraint to be active, it has to be at its maximum. Therefore, for a feasible ∆p point 

with at least one active constraint, Eq. (5.10) below must be satisfied:  
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Substituting Eq. (5.10) into Eq. (5.8), the optimization problem to calculate the FWCSR 

radius of a multiple-constraint design becomes as shown in Eq. (5.11). (Notice again how 

Eq. (5.11) simplifies to Eq. (5.4) when J=1.) 
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The constraint in Eq. (5.11) is identical to the constraint used in calculating the WCSR 

radius of the objective SR (Eq. (4.5)) except that this time we do not take the absolute 

value of the nominator, the ∆gj(∆p) term. This is again because this constraint is for a 

one-sided sensitivity measure. In the objective WCSR, the absolute value is necessary to 

guarantee that the ∆f value is bounded in both increasing and decreasing directions. In the 

feasibility WCSR, we only need to guarantee that the ∆g value is bounded in the 

increasing direction, so there is no need for the absolute value.  

Alternatively, we can also justify the simplified constraint in Eq. (5.11) graphically. 

In the g-space, the quantity ∆g(∆p) is represented as a vector from the point g(x0,p) to the 

point g(x0,p+∆p). Based on the definition of Sg, if a point ∆p is on the FSR boundary, 

then the vector ∆g(∆p) must touch the boundary of ∆g0, which implies that at least one of 

its component vectors must touch this boundary. Coupled with the fact that ∆g0 ≥ 0, this 
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, which is the constraint in Eq. (5.11). Figure 5.4 shows 

an illustration of this derivation.  
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Figure 5.4: Graphical derivation of the simplified constraint. 

Since the single-constraint FSR and FWCSR is just a simplified version of the 

multiple-constraint case, from hereon our discussion will focus only on the multiple-

constraint case.  

 

5.3. ROBUST OPTIMIZATION  

We will now show how to use the sensitivity measure presented earlier in a 

feasibility robust optimization scheme.  

 

5.3.1. Determination of Increment Limit 

In developing the FWCSR concept, we have assumed there exists a quantity ∆g0 that 

defines how much g(x0,p) is allowed to increase, but we have not yet discussed how this 
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quantity is determined. Unlike the objective ∆f0 limit, the ∆g0 limit is not determined by 

the designer. Rather it is determined by the position of the design relative to the 

constraints boundary.  

Suppose a design x0 is feasible, i.e., g(x0,p) ≤ 0. Then the value |g(x0,p)| shows how 

much g(x0,p) must increase for it to become active. In other words, the quantity |g(x0,p)| 

represents the maximum allowable increment in g(x0,p) for the design to remain feasible, 

i.e., ∆g0 = |g(x0,p)|. If x0 is infeasible, then there is no need to calculate the feasibility 

robustness of this design (feasibility cannot be guaranteed). Here, we must use the 

absolute value because we use the convention g(x,p) ≤ 0, i.e., a feasible x has a negative 

g value. If we use the convention g(x,p) ≥ 0 for a feasible design, then the absolute value 

is not necessary (but then we have to limit the decrease in g). 

Substituting ∆g0 = |g(x0,p)| into the constraint in Eq. (5.11), we obtain: 
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Since for a feasible design, we have gj(x0,p) ≤ 0 and |gj(x0,p)| ≥ 0 for all j: 
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Let us assume for a moment that |g(x0,p)| > 0, i.e., when x = x0 no constraint is active. 

Then Eq. (5.13) simplifies into: 

0)],(g[max 0J,...,1
=∆+

=
ppxjj

    (5.14) 

Recall that the constraint in Eq. (5.11) is the requirement for a point ∆p to be on the FSR 

boundary. Eq. (5.14) further simplifies this requirement. Eq. (5.14) states that if a point 
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∆p causes any gj(x0,p+∆p) to be active, then it is on the FSR boundary. This simplified 

requirement is intuitively obvious. Because ∆gj,0 = |gj(x0,p)|, if ∆gj(∆p) = ∆gj,0, then 

gj(x0,p+∆p) = 0. This FSR boundary condition is still valid even when |g(x0,p)| = 0. So, 

Eq. (5.14) is valid for |g(x0,p)| ≥ 0. 

Substituting Eq. (5.14) into Eq. (5.11), the optimization problem to calculate the 

FWCSR radius of a design becomes: 
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5.3.2. Normalization and Feasibility Robustness Index 

To account for the scale difference among the parameters, Eq. (5.15) needs to be 

normalized. Even if the scale of the parameters is the same, we still recommend 

normalizing Eq. (5.15) to help with convergence. As in objective robustness, we use the 

known ranges of variations ∆p0 to normalize Eq. (5.15). Since 
0,p

pp
i

i
i ∆

∆
=∆  for all 

i=1,…,G, then 0,ppp iii ∆⋅∆=∆ ; or in vector notation 0ppp ∆⊗∆=∆ . Substituting this 

equality into Eq. (5.15), the normalized optimization problem to calculate the FWCSR 

radius becomes as follows (for simplicity, we have forgone using the gR  notation).  
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If we define g
21

g R)G( −=η  to be the feasibility robustness index of the design, then 

the value ηg ≥ 1 implies that the design is always feasible even when the variations occur, 

i.e., it is feasibly robust. In contrast, the value ηg < 1 implies that there will be instances 

during the changes in parameters when the design will become infeasible. Adding the 

robustness constraint ηg ≥ 1 to an optimization problem guarantees that the optimum 

design is feasibly robust. Eq. (5.17) shows the overall feasibility robust optimization 

problem. 
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Here ηg(x) is the feasibility robustness index calculated from Eq. (5.16), and ηg,0 is the 

desired level of robustness as determined by the designer.  

There are a few important things needs to be pointed out about Eq. (5.17). First, the 

robustness constraint guarantees feasibility robustness of an optimum design with respect 

to inequality constraints only. Equality constraints are hard constraints in the sense that 

unless ∆p variations are such that h(x,p+∆p) = 0, there is no way to guarantee these 

constraints will always be satisfied. Second, although we have presented our feasibility 

robust optimization for a multi-objective optimization problem, our approach is also 

applicable to single objective problems. The feasibility robustness constraint in Eq. (5.17) 

does not depend on the number of objectives. Third, implementation-wise, solving 

Eq. (5.17) as it is will give us a feasibly robust optimum design(s). However, we can 

improve the efficiency of the approach, i.e., reduce the number of evaluations, simply by 

not calculating the robustness constraint when the other constraints (both equalities and 
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inequalities) are not satisfied. A design can be guaranteed to be always feasible (when 

parameter variations occur) only if it is feasible in the first place (i.e., as a nominal 

design). If a nominal design is infeasible, then it does not even meet our design 

requirements, so there is no need to calculate its robustness.  

 

5.4. COMPARISON STUDY 

As a demonstration of our feasibility robust optimization method, we applied it to 

one numerical and three engineering examples. In the numerical example, we show the 

applicability of our method to problems whose parameter variations are large. In the 

explosive actuator and control valve linkage examples, we provide comparison between 

our method and a probabilistic method. In the Belleville spring example, we compare our 

method to the min-max method developed by Hirokawa and Fujita (2002). 

 

5.4.1. Numerical Example 

For our first example, we solve a two-dimensional numerical example presented in 

Hirokawa and Fujita (2002). The problem is a single objective optimization problem with 

two inequality constraints. The mathematical formulation of the problem is as follows: 
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 (5.18) 

There are no restrictions on the design variables x = [x1,x2], but they observe some 

variations ∆x0 = [0.4,0.4]. Our goal is to obtain a feasibly robust optimum design that will 

always remain feasible when the variations in x occur.  
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Figure 5.5 shows a contour graph for the objective and constraint functions of the 

problem. The two solid lines are the constraint boundaries with the feasible directions 

indicated by the arrows. The dashed ellipses are the contours of the objective function, 

and the arrow on the objective contours indicates the decreasing direction. From this 

graph we can easily see that the nominal optimum of this problem occurs at the point 

where the g2 constraint boundary is tangent to the objective contour (indicated in the 

graph).  
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Figure 5.5: Objective and constraint contours of the numerical example. 

Solving the problem numerically using MATLAB’s fmincon function, the nominal 

optimum is found to be at x* = [-1.825,0.741] and the optimum objective is f* = -3.287. 

The constraint value of the nominal optimum is g* = [-5.919,0]. This solution is obtained 

in 8 iterations. We see that numerically, at the nominal optimum the constraint g2 is 

active just as observed in Figure 5.5.  
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Since the constraint g2 is active, obviously the nominal optimum is not feasibly 

robust. When the variables [x1,x2] vary, the g2 constraint can be violated. Adding the 

feasibility robustness constraint 0
η

)(η

g,0

g ≤−
x

1  to Eq. (5.18) with ηg,0 = 1.0, and then 

solving it using fmincon, we obtain the robust optimum design to be xR* = [-1.394,0.272], 

fR* = -1.552, and gR* = [-6.089,-1.374]. This robust optimum is obtained in 7 iterations. 

The inner optimization problem used to calculate ηg is also solved using fmincon and 

converges on average in 6.28 iterations.  

For comparison, let’s also find the feasibly robust optimum design using the 

conventional robustness methods in the literature. More specifically, let us solve the 

problem for robust optimum using: (1) the worst-case gradient method where the 

constraint  is replaced by 0)(g ≤xj 0
g

)(
N

1
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∂

∂
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=i
i
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j
j x

x
xg , and (2) the moment 

matching method where the analytic constraint is replaced by a probabilistic constraint 

, where the standard deviation of g0g ≤
j

σ)µ(g + kj x j is estimated using a Taylor series 

expansion: 2
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= , where σ  is the variance of x2

ix i. The factor k in the 

probabilistic constraint is specified to be equal to 3.0. According to Parkinson et al. 

(1993), a factor k=3.0 will provide more than 0.99 probability of constraint satisfaction. 

For the probabilistic constraint, the ∆x variation is assumed to be normally distributed 

with a [µx,σx] = [0, 0.4/3].  
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The robust optimum designs obtained using the two methods are shown in Table 5.1. 

For comparison, we have also re-listed the nominal optimum and the robust optimum 

obtained by our method. 

Table 5.1: Optimum designs of the numerical example. 

Nominal Robust 
(FWCSR)

Robust 
(Gradient)

Robust 
(Moment)

x 1 -1.825 -1.394 -1.557 -1.599
x 2 0.741 0.272 0.477 0.517
f -3.287 -1.552 -2.266 -2.419
g1 -5.919 -6.089 -6.077 -6.071
g2 0 -1.374 -0.98 -0.874  

If we consider Table 5.1, we see that the nominal optimum has the smallest f value, while 

our robust optimum has the largest. The other two robust optima have roughly the same f 

value, and they are somewhere between the nominal and our robust optimum. However, 

if we look at the value of the g2 constraint, we also see that our robust optimum provides 

that largest amount of ‘cushion’ for the constraint to vary. The other two robust optima 

provide some amount of variation cushion, while the nominal optimum provides no room 

for variation at all (g2 = 0).  

At a first glance, it might seem that our robust optimum is too conservative and is an 

overly non-optimal design. However, let’s verify the robustness of each of the optimum 

designs in Table 5.1. The variations occur in the design variables, so we can use the 

feasible region graph in Figure 5.5 to see what happens when x varies. For each optimum 

design, we add a rectangle of ±0.4 around it to indicate the ∆x variation. An optimum 

design is truly feasibly robust only if the entire rectangle is inside the feasible region. 

Figure 5.6 shows the plots of the robustness of each optimum design.  
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Figure 5.6: Sensitivity analysis of the optimum designs. 

We see in Figure 5.6 that of the four optimum designs, only our robust optimum can 

completely absorb the ∆x0 variation, i.e., the dashed rectangle is fully inside the feasible 

region. For the other three optima, there are ∆x variations that cause the design to fall into 

the infeasible region. This shows that it is not that our robust optimum is too 

conservative; rather it is the other optima that are not robust enough. This also shows that 

the gradient and moment matching methods do not guarantee a feasibly robust optimum.  

One reason the gradient and moment matching method do not result in a feasibly 

robust optimum in this problem is because the ∆x0 variation is too large for the Taylor 

series expansion to remain valid. This shows the advantage of our robust optimization 

method: it is applicable to problems where the variations are large. Let us verify this 

claim. We re-solve the same problem using four methods: (1) our FWCSR method with 
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ηg,0 = 1.0, (2) our FWCSR method with ηg,0 = 0.8, (3) gradient method, and (4) moment 

matching method. We solve the problem using these methods for 6 increasing amount of 

∆x0 variations (the same for both ∆x1 and ∆x2): [0.01, 0.1, 0.2, 0.4, 0.8, 1.0]. For each 

optimum obtained, we calculate the probability of constraint satisfaction (Ps) of the 

design by performing 1000 runs of Monte Carlo simulation assuming a normal pdf of the 

variations. The plot of the ∆x0 vs. Ps for each method is shown in Figure 5.7 and 5.8.  
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Figure 5.7: Plot of ∆x0 vs. Ps of the FWCSR optima.  
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Figure 5.8: Plot of ∆x0 vs. Ps of the gradient and moment matching optima. 
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We see in Figure 5.7 that for the FWCSR method with ηg,0 = 1.0, Ps is always 1.0 

regardless of how large ∆x0 is. This shows that our method will always obtain a feasibly 

robust optimum even when the variations are large. Similarly, for the FWCSR method 

with ηg,0 = 0.8, Ps is relatively the same (between 0.9995 and 1.0) even as ∆x0 increases. 

This again indicates that our method will still obtain a feasibly robust optimum even as 

the variations grow beyond the linear range (range in which Taylor series expansion is 

valid).  

In contrast, as seen in Figure 5.8, Ps of the gradient method is very high for small 

value of ∆x0, but decreases as ∆x0 increases. This indicates that this method fails to 

obtain a robust optimum as the variations grow large. Even worse behavior is observed 

for the moment matching method. When is ∆x0 small, Ps is high, but it decreases 

dramatically (to as low as 0.954) as ∆x0 increases. This also indicates that this method is 

good only for problems with small variations.  

If we plot the optimum f* value obtained by each method vs. the increasing ∆x0, we 

will obtain a graph as shown in Figure 5.9. We see once again in this figure that for small 

value of ∆x0, the optimum f* of all methods are relatively the same, but they diverge as 

∆x0 increases. The FWSR method with ηg,0 = 1.0 is most conservative, but as shown in 

Figure 5.7 this method guarantees Ps = 1.0. FWSR method with ηg,0 = 0.8 guarantees 

Ps of at least 0.999, and its f* value is better than when ηg,0 = 1.0. The f* value of the 

gradient and moment matching methods are better than the FWCSR method, but this is 

misleading since the Ps of these two methods drops significantly as ∆x0 increases.  
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Figure 5.9: Plot of ∆x0 vs. f* of the four robust optimization methods. 

 

5.4.2. Design of an Explosive Actuated Cylinder 

For our second example, we solve the optimization problem of designing an 

explosive actuated cylinder as formulated by Papalambros and Wilde (1980). In this 

problem, we are interested in optimizing the actuated cylinder shown in Figure 5.10 for 

minimum total length by controlling 5 design variables: the unswept cylinder length (x1 - 

inch), the working stroke of the piston (x2 – inch), the outside diameter of the cylinder (x3 

– inch), the initial pressure of the combustion (x4 – ksi), and the piston diameter (x5 – 

inch). All design variables are restricted to be positive.  
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Figure 5.10: An explosive actuated cylinder. 
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In addition, there are constraints on the kinetic energy produced, the maximum piston 

force, and the stress on the cylinder wall, as well as geometric constraints. The 

mathematical formulation of the problem is as follows: 
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The constants used in the problem are as follows: 

Dmax = maximum allowable cylinder outside diameter (1.0 in) 

Fmax = maximum piston force (700 lb) 

Lmax = maximum cylinder total length (2.0 in) 

Sy = cylinder material yield stress (125 ksi) 

vc = fixed chamber volume (0.084 in3) 

Wmin = minimum kinetic energy for satisfactory performance (600 lb-in) 

γ = specific heat ratio (1.2) 

Solving Eq. (5.19) using MATLAB’s fmincon, we obtain the nominal optimum to be 

x* = [0, 1.042, 1.0, 23.12, 0.196] and f* = 1.042. For this nominal optimum, the 
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constraints g1, g2, g3, and g4 are active. This optimum value is very close to that reported 

in Papalambros and Wilde (1980), f* = 1.036, obtained using monotonicity analysis 

(actually, their optimum point is slightly infeasible. When f* = 1.036, [g1, g2, g3] = 

[0.0026, 0.0017, 0.0049] > 0).  

There are variations in three of the design variables, and they are [∆x3,0, ∆x4,0, ∆x5,0] 

= [0.01, 1.0 , 0.01]. We need to guarantee that the optimum design is feasibly robust with 

respect to these variations. Adding the robustness constraint 0
η

)(η

g,0

g ≤−
x

1  to Eq. (5.19) 

with ηg,0 = 1.0, and then solving it using fmincon, we obtain the robust optimum design to 

be xR* = [0.0097, 1.669, 0.823, 17.8, 0.201] and fR* = 1.679. For this robust optimum, all 

constraints are inactive. The inactivity of the constraints is one indication of the 

feasibility robustness of this optimum. If the constraints are active, then there is no 

‘cushion’ for them to vary as [x3, x4, x5] vary. By moving slightly inside the feasible 

region, our robust optimum design provides some safety margin to absorb the ∆x. The 

inner optimization problem used to calculate the robustness of a design is also solved 

using fmincon, and on average converges in 15 iterations.  

For comparison, we also solved the problem using a probabilistic method (Du and 

Chen, 2000). We replaced all of the constraints in the problem with a probabilistic one 

and constrained it to be greater than some predetermined value (= 0.99 in this case), 

. The probability is calculated using 100,000 runs of the Monte Carlo 

method assuming two different pdf models for the variations: uniform and normal. For 

the uniform model, the pdf is assumed to be uniformly distributed between [-∆x

99.0])([P ≥≤ 0g x

i,0, ∆xi,0]. 

For the normal model, the pdf is assumed to be normally distributed with a mean and 
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standard deviation value of [0, ∆xi,0/3]. Table 5.2 shows the robust optimum designs 

obtained using the probabilistic method. For ease of comparison, we have again listed the 

values of the nominal optimum and our robust optimum with ηg,0 = 1.0, and ηg,0 = 0.8. 

Table 5.3 shows the constraint values of these optimum designs. 

Table 5.2: Optimum designs of the explosive actuated cylinder. 

Nominal Robust 
(Normal)

Robust 
(Uniform)

Robust      
(ηg = 0.8)

Robust     
(ηg = 1.0)

x 1 0 0.025 0.003 0 0.010
x 2 1.042 1.283 1.501 1.580 1.669
x 3 1.000 0.686 0.534 0.507 0.823
x 4 23.123 20.381 16.882 15.963 17.805
x 5 0.196 0.201 0.214 0.218 0.202
f 1.042 1.307 1.505 1.580 1.679  

Table 5.3: Constraints of the optimum designs. 

Nominal Robust 
(Normal)

Robust 
(Uniform)

Robust      
(ηg = 0.8)

Robust     
(ηg = 1.0)

g1 0.0 -0.087 -0.114 -0.126 -0.167
g2 0.0 -0.075 -0.136 -0.150 -0.188
g3 0.0 -0.057 -0.147 -0.168 -0.199
g4 0.0 -0.314 -0.466 -0.493 -0.177
g5 -0.479 -0.346 -0.248 -0.210 -0.160
g6 -0.803 -0.705 -0.598 -0.569 -0.754  

We see in Table 5.2 that the nominal optimum has the lowest f value, while our 

robust optimum with ηg,0 = 1.0 has the highest. The f value of the probabilistic optima 

and that obtained by our method using ηg,0 = 0.8 are in between these two values. 

However, we observe in Table 5.3 that the constraints of the nominal optimum are closest 

to the feasible region boundary (i.e., its constraint values are largest on average) while 

those of our robust ηg,0 = 1.0 optimum are the furthest. The constraints of the other 
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optima are somewhere in between. These constraint values indicate that our robust 

ηg,0 = 1.0 optimum can absorb the most ∆x variation, while the nominal optimum can 

absorb the least. Let us numerically verify the robustness of each of the optimum designs. 

We perturbed the [x3, x4, x5] of each optima 20 times by adding some ∆x value 

randomly sampled from the ∆x0 range, and then calculate the new g(x) value of the 

design. A design is feasibly robust if all the new constraint values are still feasible, i.e., 

g(x) ≤ 0. We performed the analysis only for g1, g2, g3, and g4 constraints because 

constraint g5 is independent of [x3, x4, x5], and it is easily observed from Table 5.2 that 

constraint g6 will always be satisfied for all optima.  

Figures 5.11 – 5.13 show the graphs of the g1, g , g2 3, and g4 constraints of each 

optimum under perturbation. For clarity, but without loss of information, the graphs only 

show the max[g1, g2, g3, g4] of each perturbation. In these graphs, a design is feasibly 

robust if all the bars are below the horizontal axis, i.e., max[gj(x)] ≤ 0.  
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Figure 5.11: Sensitivity analysis of the nominal optimum. 
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Figure 5.12: Sensitivity analysis of the probabilistic optima. 
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Figure 5.13: Sensitivity analysis of the robust optima.  

We see in Figures 5.11 and 5.12 that the nominal optimum becomes infeasible in all 20 

cases, while the probabilistic optima become infeasible in five cases for the robust 

(normal) optimum and in two cases for the robust (uniform) optimum. Our robust 

ηg,0 = 0.8 optimum becomes infeasible in one case, while the robust ηg,0 = 1.0 optimum is 

always feasible. These observations verify that our robust ηg,0 = 1.0 optimum is the only 
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design that is feasibly robust. The robust (uniform) and robust ηg,0 = 0.8 optima are close, 

but not quite feasibly robust.  

To further verify the robustness of the optima, we calculate their probability of 

constraint satisfaction using 100,000 runs of Monte Carlo simulations. The simulations 

are performed using the uniform and normal ∆x pdf models as before. The Ps value of 

each design is shown in Table 5.4.  

Table 5.4: Probability of constraint satisfaction of the optima. 

Uniform pdf Normal pdf
Nominal 0 0
Robust (Normal) 0.815 0.982
Robust (Uniform) 0.983 0.9997
Robust (ηg = 0.8) 0.996 0.9999
Robust (ηg = 1.0) 1.0 1.0

Ps

 

We see in Table 5.4 that the nominal optimum has a Ps = 0, which implies that it has no 

robustness towards variations at all. In contrast, the Ps of our robust ηg,0 = 1.0 optimum is 

1.0 confirming that this optimum design is indeed feasibly robust. The Ps’s of the other 

optima confirm the robustness information shown in Figures 5.12 and 5.13 as well. If we 

compare Table 5.4 with Table 5.2, we also see that Ps increases as f increases (i.e., the 

performance vs. robustness trade-off).  

One last item of interest is the computational efficiency of each method. For the 

nominal optimum, we did not perform any calculation of a design’s robustness at all. For 

our FWCSR method, we solved an inner optimization using fmincon to calculate a 

design’s robustness. On average the optimization converged in about 15 iterations. 

Because fmincon performed some function calls to estimate gradients, the actual number 
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of function calls used by our method is approximately close to 50. The probabilistic 

method calculated the design’s robustness by performing 100,000 runs of Monte Carlo 

simulations. So we see that our robust optimization method is more efficient in terms of 

number of function calls.  

 

5.4.3. Design of a Belleville Spring 

Our third example is the problem of optimizing a Belleville spring originally 

formulated by Siddall (1982), and later modified by Hirokawa and Fujita (2002) as a 

robust optimization problem. The problem presented in this chapter is the one formulated 

by Hirokawa and Fujita (2002).  

P
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h l

t

P

de
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h l

t

 

Figure 5.14: A Belleville spring. 

In this problem, we want to optimize the Belleville spring (made out of steel) shown 

in Figure 5.14 for maximum rated load P. The design variables of the problem are: the 

external diameter (de), the internal diameter (di), the thickness (t), and the free height (h). 

The variables are all continuous, and their units are meter. The optimization is 

constrained by two design constraints, allowable stress and maximum mass, and five 

geometric constraints. The mathematical formulation of the problem is as follows: 
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Here P is the rated load (N), σmax is the maximal stress (Pa), and m is the spring mass 

(kg). The quantities P, σmax, and m are calculated using the following equations.  
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The constants for this problem are: 

dmax = maximum allowable diameter (0.3 m) 

E = Young’s modulus (210 GPa) 

hmin = minimum height (0.005 m) 

l = maximum allowable total height including t (0.02 m) 

mmax = maximum spring mass (2.0 kg) 
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δmax = maximum allowable deflection (= h) 

ν = Poisson’s ratio (0.3) 

ρ = mass density (7850 kg/m3) 

σaw = allowable stress (1200 MPa) 

The nominal optimum of the problem obtained using fmincon is [de, di, t, h]* = [0.3, 

0.211, 7.273, 5.0] and the objective value is (in kN) f* = 42.106. Here the values of the 

variables [t, h] are in mm. The constraints of this optimum are g* = [0, 0, 0, -0.386, 0, 

-0.112, -4.214]. This nominal optimum f value is very close to that obtained by Hirokawa 

and Fuijta (2002), f* = 41.9.  

Due to manufacturing errors, all design variables [de, di, t, h] are subject to 

variations. In addition, two of the material properties [σaw, E] are also subject to 

variations. So there are six uncontrollable parameters in this problem p = [de, di, t, h, 

σaw, E]. The variation ranges of the parameters are ∆p0 = [8.67 x 10-5, 7.67 x 10-5, 

3.33 x 10-5, 3.33 x 10-5, 4.0 x 105, 6.67 x 107] (as given in Hirokawa and Fujita, 2002). 

The ∆p0 values of the variables [de, di, t, h] are in m. The ∆p0 values of the material 

properties [σaw, E] are in Pa.  

To obtain a robust optimum, we added the robustness constraint to Eq. (5.23). The 

addition of this constraint, however, causes the fmincon algorithm to fail to obtain a 

solution. One reason of this failure is because the feasible region of the problem is 

already very small as it is. Adding the robustness constraint reduces the feasible region 

even further, making it very hard for an SQP algorithm to converge. Because fmincon 

failed to obtain a solution, we used a Genetic Algorithm (GA) (Goldberg, 1989) instead. 
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Due to implementation reasons, we used the same GA to solve the inner optimization 

problem. Solving the inner optimization using GA takes ~300 function calls.  

The robust optimum obtained (ηg,0 = 1.0) is shown in Table 5.5. For comparison 

purposes, we have also shown the robust optimum of the problem for ηg,0 = 0.8, 0.6 and 

0.3. Table 5.5 also shows the robust optimum reported by Hirokawa and Fujita (2002). 

Their robust optimum is obtained by a min-max strategy where they use the maximum of 

the constraints within a so-called “variation pattern” of the parameters as the constraints 

of the problem. The constraint values of these optima are shown in Table 5.6.  

Table 5.5: Optimum designs of the Belleville spring. 

Nominal Min-Max Robust 
(0.3)

Robust 
(0.6)

Robust 
(0.8)

Robust 
(1.0)

d e (m) 0 0.300 0.299 0.285 0.298 0.292
d i (m) 0.213 0.212 0.207 0.187 0.208 0.196
t  (mm) 7.273 7.083 6.994 6.938 6.738 6.780
h (mm) 5.0 5.1 5.219 5.063 5.187 5.152
f (kN) 42.106 37.190 37.662 35.677 34.253 33.488
ηg 0.075 0.032 0.248 0.601 0.824 1.430  

Table 5.6: Constraint values of the Belleville spring optima.  

Nominal Min-Max Robust 
(0.3)

Robust 
(0.6)

Robust 
(0.8)

Robust 
(1.0)

g1 0 0 -0.002 -0.017 -0.018 -0.036
g2 0 0 -0.008 -0.006 -0.060 -0.018
g3 0 -0.020 -0.044 -0.013 -0.038 -0.030
g4 -0.386 -0.391 -0.389 -0.400 -0.404 -0.403
g5 0 0 -0.003 -0.049 -0.006 -0.025
g6 -0.112 -0.116 -0.132 -0.181 -0.124 -0.160
g7 -4.214 -4.176 -4.256 -4.834 -4.163 -4.592  
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We see in Table 5.5 that the nominal optimum has a very low ηg, but has the highest 

f value (recall that this is a maximization problem). The value ηg progressively increases 

as f decreases (the performance vs. robustness trade-off). This progressive increase in 

robustness can also be observed in the decrease in the constraint values of the optima, 

Table 5.6 (i.e., the optimum is further away from the constraint boundary).  

One important thing to notice in Table 5.5 is that the min-max optimum of Hirokawa 

and Fujita is inferior to the nominal and robust (0.3) optima (i.e., in terms of ηg and f, it is 

dominated). If we plot the value f vs. ηg, this inferiority is immediately apparent 

(Figure 5.15). The performance vs. robustness trade-off of the optima can also be 

observed in this figure. 
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Figure 5.15: Plot of f vs. ηg of the Belleville spring.  

To verify the robustness of the optima, we performed a numerical sensitivity analysis 

by perturbing the parameter values following the given ranges. A design is feasibly 

robust if all the constraints remain feasible. Figures 5.16, 5.17, and 5.18 show the graphs 
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of the max[g(x,p)] of each optimum. In these graphs, a design is feasibly robust if all the 

bars are below the horizontal axis.  
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Figure 5.16: Sensitivity analysis of the nominal and min-max optima. 
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Figure 5.17: Sensitivity analysis of the robust (0.3) and robust (0.6) optima. 
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Figure 5.18: Sensitivity analysis of the robust (0.8) and robust (1.0) optima. 
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We see in Figures 5.16 – 5.18 that the nominal, min-max, and robust (0.3) optima are not 

feasibly robust. The robust (0.6) optimum is almost feasibly robust except in one case 

where it becomes infeasible. The robust (0.8) and robust (1.0) optima are always feasible 

regardless of the perturbations, thus they are feasibly robust. These observations confirm 

the ηg values of each design shown in Table 5.5.  

 

5.4.4. Design of a Control Valve Actuator Linkage 

For our last example, we applied our feasibility robust optimization method to the 

engineering design of a control valve actuator linkage. This example is adapted from the 

example in Balling et al. (1986) with some modifications. 

The control valve actuator linkage to be designed is shown in Figure 5.19.  
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Figure 5.19: A control valve actuator linkage. 

The linkage mechanism has two members: a crank and a rod that are connected by a pin 

joint. The other end of the crank is held stationary, while the other end of the rod is 

pinned to a slider. Originally the crank was at a 55° angle from the vertical axis as shown 

in Figure 5.19(a). The dimensions of the linkage are shown in Figure 5.19(b).  
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There is a constant force F = 1425.5 lbs (6340 N) acting at the end of the rod that 

causes the mechanism to turn (see Figure 5.20). The design objective is to maximize the 

torque (T) at the end of the crank as it turns from θ = 0° to θ = 90°, averaged over 10° 

interval (Figure 5.20). The weights of the crank and rod are assumed negligible.  
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Figure 5.20: Forces acting on the linkage. 

The design variables in this problem are the crank length (Lc), the rod length (Lr), 

and the center distance (d). The crank length and the rod length are constrained to be 

within 0 and 10 inch (0 and 25.4 cm), while the center distance is constrained to be 

within 5 and 7 inch (12.7 and 17.78 cm). The problem has three design constraints: (1) 

the vertical position of the slider when θ = 0° (h0) is constrained to be less than 6.5 inch 

(16.51 cm), (2) the movement of the slider (s) is constrained to be less than 4.5 inch 

(11.43 cm), and (3) the side force (Fx) averaged over 10° interval is less than 800 lbs 

(3558 N). In addition, the problem has two geometric constraints: (1) the horizontal 

length of the crank (dc) must not be greater than the center distance (d), and (2) the 

difference between d and dc must be less than or equal to the rod length (Lr). The 

mathematical formulation of the problem is shown below (for English units). 
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The quantities T(θ), Fx(θ), s, h0, dc, and dr are calculated as follows: 
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Because of manufacturing tolerances, Lc and Lr vary by ±0.1 inch (±0.254 cm), and 

we need to guarantee the feasibility of the optimum design under these variations. We 

add the sensitivity constraint 0
η

)(η

g,0

g ≤−
x

1  to Eq. (5.29) and then optimize it. In this 

problem ∆p0 = [0.1, 0.1] and ηg,0 = 1.0. For comparison, we also optimize the original 

problem (nominal optimum), and Eq. (5.29) with its constraints replaced by a 

probabilistic constraint P(gj ≤ 0) ≥ 0.99, j=1,…,5. The probabilistic constraint is 
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calculated using Monte Carlo simulation assuming two probability distribution models: 

uniform and normal. For the uniform model, the lower and upper bound of the 

distribution are specified to be –0.1 and 0.1, respectively. For the normal model, the 

distribution is specified to have a mean of 0 and standard deviation of 0.033 (= 0.1/3).  

The results obtained from this comparison study are shown in Table 5.7. In this table 

the quantity Fcall is the number of function evaluations needed per design to calculate its 

feasibility robustness. Table 5.7 also shows the ηg value of each optimum design.  

Table 5.7: Optimum designs of the control valve actuator linkage. 

Nominal Robust Monte Carlo 
(Uniform)

Monte Carlo 
(Normal)

Torque (in.lb) 3592 3363 3429 3453
Lc (in) 3.182 3.03 3.078 3.093
Lr (in) 5.061 5.009 4.994 4.999
d (in) 5.0 5.0 5.0 5.0
Fcall N/A 250 100000 100000
ηg 0.005 1.02 0.73 0.62  

We observe from Table 1 that the nominal optimum has the highest torque but the 

lowest ηg. In contrast, the robust optimum obtained by our method has the lowest torque 

but the highest ηg. The Monte Carlo optima are somewhere in between the two. This 

observation is expected because generally we have to sacrifice some performance to gain 

an increase in robustness. In fact, if we solve the optimization problem as a two-objective 

problem where we maximize both torque and ηg, we will obtain a trade-off frontier as 

shown in Figure 5.21. Notice in this figure how torque decreases as ηg increases. Points 

corresponding to the optima in Table 5.7 are also shown.  
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Figure 5.21: Trade-off frontier of the linkage problem. 

Note also in Table 5.7 that although the two Monte Carlo optima were obtained by 

enforcing a 0.99 probability of constraints satisfaction, their ηg value is less than 1.0. In 

fact, the ηg values of the two optima are quite different. This is because the robustness of 

the optimum design is sensitive to the assumed probability distributions, and the 0.99 

constraints satisfaction probability is valid only if the assumed distribution is valid. We 

will further discuss this important issue next. 

Table 5.7 (and Figure 5.21) also shows that the robust optimum is different than the 

Monte Carlo optimum using a uniform distribution. This shows that our method does not 

presume a uniform probability distribution of the parameters (although it may seem so). 

The fact is our method does not presume any distribution at all, and this is reflected in the 

fact that we cannot provide probability information for the obtained optimum. We lack 

the information to do so. Our robustness constraint guarantees that the optimum design 

will remain feasible if the parameter variations are as specified. If the parameter 
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distribution changes, the probability of constraint satisfaction will change, but this 

guarantee still holds.  

We also observe in Table 5.7 that Monte Carlo method requires 100,000 function 

evaluations to calculate a design’s robustness. In contrast, our method requires only ~250 

evaluations, comparable to those more efficient probabilistic methods (MPP for instance 

– Du and Chen, 2000). It should be noted, however, that this number (i.e., 250) is an 

upper bound value because we used GA to solve the inner optimization problem. GA is 

an optimizer that needs a lot of function evaluation, but it is applicable to a wide range of 

optimization problem and does not require gradient information. If gradient information 

is available, we can use a more efficient optimizer to solve our inner optimization 

problem, and the number of function evaluations our method needs would be much lower 

(in the order of 101).  

To validate the results in Table 5.7, we conducted a sensitivity analysis on each 

optimum design. We performed 100,000 Monte Carlo simulations on each design, and 

based on the result, calculate its probability of constraint satisfaction. The simulations are 

performed using two probability distribution models of the parameters: uniform and 

normal. In the uniform distribution model, ∆Lc and ∆Lr are jointly uniformly distributed 

in the interval [-0.1,0.1]. In the normal distribution model, ∆Lc and ∆Lr are bi-normally 

distributed with a mean and standard deviation of [0, 0.033]. In both models, ∆Lc and ∆Lr 

are assumed independent. The results of this sensitivity study are shown in Table 5.8. For 

comparison purposes, we have also re-listed the ηg value of each optimum. 
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Table 5.8: Sensitivity analysis of the optima. 

Uniform model Normal model
Nominal 0.376 0.381 0.005
Robust 1.0 1.0 1.02
Monte Carlo (Uniform) 0.989 0.999 0.73
Monte Carlo (Normal) 0.925 0.996 0.62

Probability of constraint satisfaction
ηg

 

We observe in Table 5.8 that the nominal optimum has a poor probability of 

constraint satisfaction in both models. This is not surprising since this optimum is 

obtained by strict optimization of the linkage’s torque, neglecting the variations in Lc and 

Lr. The robust optimum obtained by our method, on the other hand, has a 1.0 probability 

of constraint satisfaction in both models, much more robust than the nominal optimum. 

This observation confirms the information provided by the ηg values of the two optima. 

The robust optimum has a much larger ηg value (1.02) than the nominal optimum 

(0.005). 

The Monte Carlo (uniform) optimum has a 0.989 probability of constraint 

satisfaction for the uniform distribution model (same value as imposed by the 

probabilistic constraint). But this probability value increases to 0.999 for the normal 

model. The same pattern is also observed for the Monte Carlo (normal) optimum. It has a 

0.996 probability of constraint satisfaction for the normal model (same as imposed by the 

constraint), but this value reduces to 0.925 for the uniform model. This observation 

shows that the information provided by the probabilistic constraints is dependent on the 

accuracy of the assumed distribution model. As such, unless the distribution of the 

uncertain parameters is known with relative certainty, such probability information must 

be used with utmost caution since it can be misleading.  
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To further validate our method, we calculated and compared the FSR and FWCSR of 

the optima in Table 5.7. For simplicity, we only show the comparison for the nominal and 

robust optima. We form the FSR (Sg) of each design by first forming the FSR of each 

constraint (Sg,j) and then forming the intersection. Sg,j is obtained by constructing the 

difference function ∆gj(∆Lc, ∆Lr) = gj(Lc+∆Lc, Lr+∆Lr) – gj(Lc, Lr) from Eq. (5.29), 

substituting the Lc, Lr, and d values of the design into this function, and then setting it to 

∆gj ≤ ∆gj,0. The ∆gj,0 is obtained by taking the absolute value of the j-th constraint of the 

design. The constraint values of the nominal and robust optima are shown in Table 5.9. 

Table 5.9: Constraint values of the nominal and robust optima.  

Nominal Robust
g1 -0.00026 -0.037
g2 -0.000031 -0.048
g3 -0.173 -0.169
g4 -0.366 -0.396
g5 -0.457 -0.429  

Observe in Table 5.9 that only g1 and g2 are active (or nearly active) for the nominal 

optimum while g3, g4, and g5 are relatively the same for the two optima. This implies that 

the ∆g1 and ∆g2 functions are critical components of Sf, while ∆g3, ∆g4, and ∆g5 are not. 

So, in constructing the FWCSR, using only ∆g1 and ∆g2 suffices. From Eq. (5.29), we 

obtain the ∆g1 and ∆g2 difference functions: 
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Figure 5.22 shows the FSR and FWCSR of the nominal and robust optima. In this 

figure only the critical components, i.e., ∆g1 and ∆g2, are shown. Note that Sg,1 is not a 

linear function (although it may seem so from the figure). Sg,2 is a linear function, while 

Sg,1 is a trigonometric function as shown in Eq. (5.35). Note also that Figure 5.22 shows 

the regions in the non-normalized space (but has same scale). We do so to better relate to 

the actual values of Lc and Lr.  

(a) nominal (b) robust

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

∆Lc

∆Lr

FWCSR

Sg,1

Sg,2

Sg = Sg,1 ∩ Sg,2

∆Lc

∆Lr

FWCSR

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

Sg,1

Sg,2

Sg = Sg,1 ∩ Sg,2

(a) nominal (b) robust

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

∆Lc

∆Lr

FWCSR

Sg,1

Sg,2

Sg = Sg,1 ∩ Sg,2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

∆Lc

∆Lr

FWCSR

Sg,1

Sg,2

Sg = Sg,1 ∩ Sg,2

∆Lc

∆Lr

FWCSR

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

Sg,1

Sg,2

Sg = Sg,1 ∩ Sg,2

∆Lc

∆Lr

FWCSR

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

Sg,1

Sg,2

Sg = Sg,1 ∩ Sg,2

 

Figure 5.22: FSR and FWCSR of nominal and robust optima. 

We observe in Figure 5.22 that the FWCSR of the nominal optimum is very small, 

close to a zero radius. This is because g1 and g2 are almost active for this optimum, and as 

such there is very little “cushion” for Lc and Lr variation (in the worst case sense). In 

contrast, the FWCSR of the robust optimum is much larger (Rg = 1.44), and it allows for 

more variations in Lc and Lr. This is also reflected by the larger g1 and g2 values of the 

robust optimum in Table 5.9. Observe also that the FWCSR of the robust optimum covers 

the area bounded by [-0.1, 0.1] as specified.  
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5.5. SUMMARY 

• The feasibility robustness of a design is indicated by its feasibility sensitivity set (Sg). 

Like the objective sensitivity set (Sf), the feasibility sensitivity set Sg shows how 

much ∆p a design can absorb before it violates a prescribed limit. Thus, the larger Sg, 

the more robust the design.  

• However, unlike Sf, Sg is a one-sided sensitivity measure because we only need to 

limit the increase, but not the decrease, in the constraints.  

• The plot of Sg in the ∆p-space is the Feasibility Sensitivity Region (FSR) of a design. 

To account for directional sensitivity, we use the worst-case estimate of FSR, the 

Feasibility Worst Case Sensitivity Region (FWCSR) as a robustness measure. The 

FWCSR radius (Rg) can be calculated by solving a single-objective optimization with 

one equality constraint.   

• Unlike objective robustness, the increment limits for constraints are determined by 

how far a design is from the constraint boundary, and not by the designer.  

• In addition, a design has to be feasible nominally for the FWCSR measure to make 

sense. If a design is infeasible, then feasibility robustness cannot be guaranteed. 

• The inner optimization to calculate Rg must be normalized if the scale of ∆p is 

different. After the normalization, a design is guaranteed to be feasibly robust if its 

feasibility robustness index, ηg = (G)-1/2Rg, is greater than or equal to 1.0.  
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CHAPTER 6 

DISCUSSIONS 

 

6.1. INTRODUCTION 

In the last three chapters, we presented methods for objective robust optimization 

and feasibility robust optimization separately. The purpose of this chapter is to show how 

to combine these methods for both objective and feasibility robust optimization. In 

addition, this chapter also aims to address those issues in our robust optimization methods 

that we have not yet addressed, or so far only briefly discussed. More specifically, this 

chapter will discuss issues regarding: (i) use of one-sided sensitivity measure for 

objective robustness, (ii) asymmetrical two-sided sensitivity measure, (iii) asymmetrical 

parameter variations, and (iv) a comparison between robustness index and robustness 

probability.  

 

6.2. OBJECTIVE AND FEASIBILITY ROBUST OPTIMIZATION 

In Chapters 3 and 4, we introduced an index η to measure objective robustness of a 

design, where η = (G)-1/2Rf, and Rf calculated by solving an optimization problem in 

Eq. (4.6), restated here for convenience: 
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Similarly, in Chapter 5 we introduced an index ηg to measure feasibility robustness of a 

design, where ηg = (G)-1/2Rg, and Rg calculated by Eq. (5.16), restated below. 
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Adding the constraint 0
η
η

0

≤−1  to an optimization problem guarantees objective 

robustness of an optimum design, while adding the constraint 0
η
η

g,0

g ≤−1  guarantees its 

feasibility robustness. Accordingly, adding both of these robustness constraints to an 

optimization problem will guarantee both objective and feasibility robustness of an 

optimum design. Eq. (6.3) shows the overall formulation of a general robust optimization 

problem, where η and ηg are calculated by Eq. (6.1) and (6.2), respectively.  
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Notice in Eq. (6.1) and (6.2) that Rf and Rg are defined in the same space ( p∆ -space), 

and are of the same scale (normalized by 0p∆ ). Based on this observation, then the two 

robustness constraints in Eq. (6.3) will be satisfied if the larger of the two constraints is 

satisfied, i.e., if 0
η
η

1,
η
η1max
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≤











−− . Using this fact, the robustness constraints in 

Eq. (6.3) can be stated more compactly as: 0
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The advantage of keeping the objective and feasibility robustness constraints 

separate like shown in Eq. (6.3) (they are still separate in the compact form as well) is 

that it provides flexibility for a designer to specify his/her preference towards the two 

types of robustness. By setting different values for η0 and ηg,0, a designer can specify that 

(s)he considers one type of robustness (i.e., objective robustness or feasibility robustness) 

more important than the other type. For example, if a designer specifies η0 = 0.8 but 

ηg,0 = 1.0, then it implies that the feasibility robustness of an optimum design is 

considered to be more important than its objective robustness. 

If a designer is indifferent towards either the objective or the feasibility robustness 

(i.e., η0 = ηg,0), then the robustness constraint 0
η
η

,
η
ηmin

g,0

g
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f . This last inequality is of particular interest to us. In this 

inequality, we only need to determine the smaller of Rf and Rg, but not both. Let’s discuss 

the meaning of min[Rf,Rg] in more detail next.  

Recall from previous chapters that conceptually Rf is the normalized WCSR radius 

of a design, and WCSR is the worst-case estimate of the corresponding SR. Likewise, Rg 

is the normalized FWCSR radius of the design, and FWCSR is the worst-case estimate of 

the FSR. Since SR and FSR are defined in the same p∆ -space and are of the same scale, 

min[Rf,Rg] implies that we are looking for the radius of worst-case estimate of an 

intersection of SR and FSR, as shown in Figure 6.1. In Figure 6.1, the region between the 

two solid lines is the SR, and the region bounded by the dashed line is the FSR. The Rf 
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and Rg of the SR and FSR are also shown in Figure 6.1. The shaded region is the 

intersection of SR and FSR. 

Rg
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Figure 6.1: Intersection of SR and FSR. 

Mathematically, a ∆p point is inside the intersection region if it satisfies all of the 

following inequalities: . A ∆p point is outside the 

intersection region if either [  or 







=∆<∆

=∆<∆

J,...,1gg
M,...,1][][

0,

2
0,

2

j
iff

jj

ii

2
0,

2 ][] ii ff ∆>∆ g j 0,g j∆>∆  is true for at least one 

i = 1,…,M or j = 1,…,J, respectively. For a ∆p point to be on the boundary of the 

intersection region, it needs to satisfy [  and 2
0,

2 ][] ii ff ∆≤∆ 0,g jg j ∆≤∆ , with at least one 

strict equality (one i or j from i = 1,…,M or j = 1,…,J, respectively). Using the simplified 

condition for SR and FSR boundaries developed previously (recall Section 4.3.2 and 

5.2.2), the condition for a ∆p point to be on the boundary of the intersection region can be 

 176



 

simplified into: 01
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fact that ∆gj,0 = |gj(x0,p)|. Notice also that in this simplified condition we have used 
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 instead of gj(x0,p) to define the FSR boundary (recall Section 5.3). Using the 

ratio 
|),(g|
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0 pxj
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 is recommended because we are comparing it to a normalized ∆fi value. 

Using gj(x0,p) in the formulation may create difficulty in terms of numerical comparison.  

 Using the above mathematical definitions, the radius (R) of the worst-case estimate 

of the intersection region can be calculated by solving the following optimization 

problem (normalized): 
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Recall from Figure 6.1 that this radius value (R) is equal to min[Rf,Rg]. So, Eq. (6.4) 

shows that we can find min[Rf,Rg] by solving just one inner optimization problem instead 

of two (i.e., Eq. (6.1) and (6.2)).  

If we define a quantity ηmin = (G)-1/2 min[Rf,Rg], then the overall objective and 

feasibility robust optimization problem becomes as shown in Eq. (6.5) in which 

min[Rf,Rg] is calculated by solving Eq. (6.4). Here, we call ηmin the overall robustness 

index. We have used η0 for the robustness constraint in Eq. (6.5), but since η0 = ηg,0, we 

could have used ηg,0 as well.  
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One advantage of having to solve just one inner optimization problem is that 

practically the optimization algorithm to solve Eq. (6.5) (the outer and inner problems 

and the interface between them) will be much easier to implement. In addition, it helps 

the outer problem to converge faster because it has one fewer constraint to satisfy. 

Solving only one inner problem also helps reduce numerical errors transmitted from the 

inner problem to the outer problem. One potential disadvantage of combining Eq. (6.1) 

and (6.2) into a single inner problem is that solving Eq. (6.4) might be less efficient 

computationally than solving Eq. (6.1) and (6.2) separately. For instance, if Eq. (6.1) and 

Eq. (6.2) can be solved in say T iterations each, it is possible that Eq. (6.4) may need 

more than T iterations to converge because its constraint is more complex.  

Before we continue further, it is important to point out again that Eq. (6.4) and (6.5) 

are valid only if the designer is indifferent to either objective or feasibility robustness 

(i.e., η0 = ηg,0). If one type of robustness is preferred to the other type, then we must 

solve Eq. (6.1) and (6.2) separately. 

 

6.2.1. Design of a Payload for an Undersea Autonomous Vehicle (UAV) 

To demonstrate our combined objective and feasibility robust optimization method, 

we apply it to an engineering example: the design of a UAV payload. The description of 

the problem is as follows.  

 178



 

Typically, the payload of a UAV must be effective in several different uses, called 

“scenarios.” Effectiveness in a scenario is measured by the probability of success, PS, of 

payload delivery in that scenario. The design goal is to simultaneously maximize the 

individual PS’s for all scenarios. The payload design is constrained by upper limits on the 

weight of the payload and on the radiated noise generated by the payload. 

There are six design variables: the payload length (PL), the hull diameter (DH), the 

material of the hull (HM), the payload type (PT), the first inner material type (I1), and the 

second inner material type (I2). Four of the variables are discrete: HM, PT, I1, and I2. 

The choices for HM, PT and I1 are [6061AL, 7075AL], [BULK, MULTI_MISS], and 

[TYPE_1A, TYPE_1B], respectively. For discrete variable I2, the options available are 

[TYPE_2A, TYPE_2B, TYPE_1B], but I2 can be TYPE_1B only if the variable I1 is 

TYPE_1B also. The other two variables are continuous and they are bounded as: 

6.0 ≤ DH ≤ 12.75 and 1.0(DH) ≤ PL ≤ 5.0(DH). In addition to the six design variables, 

there is a fixed continuous design parameter, the maximum depth (= 3000 ft), at which 

the payload operates. Unlike our other design examples, there are no closed-form 

relationships to map the design variables to the constraints and to the PS’s. Rather, we are 

provided with a design analyzer (a computer program) that maps the design variables to 

the payload weight, the radiated noise, and the PS’s for the scenarios.  

In this example, we address a two objective payload design optimization with two 

constraints. The two objectives are to maximize PS1 and PS2 for two different scenarios. 

The two constraints are an 85 lb upper bound on the payload weight and a 0.16 Watt/m2 

upper bound on the radiated noise generated. The problem is mathematically formulated 

as follows. 
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( )

(
( ) 016.0I2I1,PT,HM,DH,PL,Noise

085I2I1,PT,HM,DH,PL,Weight:subject to
I2I1,PT,HM,DH,PL,Pmaximize
I2I1,PT,HM,DH,PL,Pmaximize

S2

S1

≤−
≤−)           (6.6) 

There are some uncertainties in the formulation of the problem, and it is modeled by 

assuming that a parameter (internal to the design analyzer), Ceq, which is used in 

calculating the weight of the payload has an uncontrollable variation. Since the value of 

Ceq depends on the discrete combination of [PT, I1, I2], its variation is taken to be a 

percentage of the actual value: ∆Ceq,0 = (0.10)Ceq. In addition, we also assume that two 

internal parameters [A1, A2] used in calculating PS vary by 0.01 each. The problem we 

are solving, Eq. (6.6), has two PS objectives, so we have a pair of [A1, A2] variations in 

calculating PS. It is also assumed that two of the design variables have uncontrollable 

variations as well: [∆PL0, ∆DH0] = [0.01, 0.01]. In total, there are 7 uncertain parameters 

in this problem: [Ceq, A1,s1, A2,s1, A1,s2, A2,s2, PL, DH]. The maximum allowable 

variations in the PS’s are specified to be [∆PS1,0, ∆PS2,0] = [0.025, 0.025].  

For the designer, the objective and feasibility robustness of the payload designs are 

equally important, and the desired robustness is specified to be: η0 = ηg,0 = 1.0. Since the 

designer is indifferent towards the two types of robustness, we can use the combined 

inner problem, Eq. (6.4), to search for the robust Pareto optima of this problem. Adding 

our overall robustness constraint 0
η
η

0

min ≤−1  to Eq. (6.6) and solving it, we obtain the 

robust Pareto optima of the problem as shown in Figure 6.2. For comparison, Figure 6.2 

also shows the nominal Pareto optima of the problem (i.e., Eq. (6.6) without the 

robustness constraint), and the Pareto optima obtained from solving the problem using a 
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probabilistic approach. In the probabilistic approach, we minimize the worst-case PS of 

each objective in the form of the sum of mean and standard deviation of the PS’s. The 

mean and standard deviation values are calculated by running 10,000 Monte Carlo 

simulations assuming uniform probability distribution.  
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Figure 6.2: Pareto sets of the payload problem. 

We see in Figure 6.2 that overall the robust Pareto optima are inferior to the nominal 

Pareto optima (this is a maximization problem), although there seems to be some overlap 

between the two Pareto frontiers. This observation is expected because there is a trade-off 

between the performance of an optimum and its robustness. We also see that the 

probabilistic Pareto solutions are very close to the nominal Pareto frontier, suggesting 

that these points do not meet our robustness requirement.  

To verify the robustness of the designs, we performed a sensitivity analysis on three 

of the Pareto optimum designs obtained, one each from the nominal, robust, and 
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probabilistic Pareto set (randomly selected). The objective and constraint values of the 

three designs are shown in Table 6.1. Table 6.2 shows their design variable values.   

Table 6.1: Objective and constraint values of the optima. 

Nominal Robust Probabilistic
PS1 0.067 0.295 0.514
PS2 0.695 0.295 0.135
Weight (lb) 85.000 84.433 84.95
Noise (W/m2) 0.158 0.158 0.157  

Table 6.2: Design variables of the optima. 

Nominal Robust Probabilistic
PL (inch) 19.679 24.262 24.237
DH (inch) 9.683 9.048 10.216
HM 7075AL 7075AL 7075AL
PT BULK MULTI_MISS MULTI_MISS
I1 TYPE_1B TYPE_1B TYPE_1B
I2 TYPE_2A TYPE_1B TYPE_2B  

We perform the sensitivity analysis by perturbing the 7 uncertain parameters 

[Ceq, A1,s1, A2,s1, A1,s2, A2,s2, PL, DH] around their original values, and then observing 

the changes in the objective and constraint values of the two designs. The perturbation 

values used in this analysis are randomly sampled from the given ranges of the parameter 

variations. A design meets the robustness criterion if these changes are within the 

specified limits. The results of the analysis are shown in Figure 6.3, 6.4, and 6.5 for the 

nominal, robust, and probabilistic optimum, respectively. In these figures, the dashed 

lines are the variation limits, and a design is robust if the bars do not cross these lines.  
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Figure 6.3: Sensitivity analysis of the nominal optimum payload. 
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Figure 6.4: Sensitivity analysis of the robust optimum payload. 
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Figure 6.5: Sensitivity analysis of the probabilistic optimum payload. 

We observe in Figure 6.3 that the nominal design satisfies both of the objective 

variation limits and the noise constraint. However, it does not satisfy the weight 

constraint. Similarly, the probabilistic design also satisfies the objective and noise 

robustness requirements, but not the weight constraint robustness (Figure 6.5). In 

contrast, we observe in Figure 6.4 that the robust design satisfies the variation limits for 

both objectives and constraints. This shows that the nominal and probabilistic designs do 

not meet the robustness criteria specified while the robust design does. In turn, these 

observations verify that using our robust optimization method to solve Eq. (6.6) indeed 

results in optimum designs that are robust with respect to both objectives and constraints.  
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6.3. ONE-SIDED SENSITIVITY FOR OBJECTIVE ROBUSTNESS 

Up to this point, we have used a two-sided sensitivity measure to calculate objective 

robustness of a design. The comparison studies presented in Chapters 3 and 4 showed 

applications of this two-sided objective robustness measure to several examples. 

However, in some cases it may be more appropriate to use a one-sided sensitivity 

measure to calculate objective robustness of a design. For instance, if the objective of an 

optimization problem is to minimize the total cost of a design, then we are only interested 

in preventing the cost increase, but not the decrease, due to parameter variations. For this 

type of optimization problems, we should use a one-sided sensitivity measure to calculate 

objective robustness of a design alternative, and not a two-sided one.  

A one-sided sensitivity measure for objective robustness is essentially the same as 

the one-sided sensitivity measure for feasibility robustness (recall Chapter 5) except that 

now we are looking at objective functions instead of constraint functions. Suppose ∆f0 = 

[∆f1,0, ∆f2,0, …, ∆fM,0] is the maximum allowable increase in the objective values of a 

design x0 due to parameter variations. The one-sided Sf of x0 is then as follows (notice the 

absence of the square terms): 

{ }
),(),()(:where

M,...,1,)( :R)(

0000

0,
G

0

pppp

ppS

xx
x

iii

if

fff

iffi

−∆+=∆∆

=∀∆≤∆∆∈∆=
  (6.7) 

In Eq. (6.7) we have constrained the increase in ∆fi and not the decrease because we are 

minimizing fi. Since the smaller fi the better, it is only logical that an increase in fi is 

undesirable.  

The plot of this Sf in the ∆p-space is the one-sided SR of x0, and the worst-case 

estimate of this SR is the one-sided WCSR of x0. The radius of this one-sided WCSR 
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( ) is obtained by solving the inner optimization problem shown in Eq. (6.8). Notice 

that Eq. (6.8) is the same as the inner problem to calculate feasibility robustness 

(Eq. (5.11)), except that now the equality constraint involves f

+
fR

i instead of gj.  
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Eq. (6.9) shows the normalized version of Eq. (6.8). 
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Using the R  value obtained from Eq. (6.9), the one-sided objective robustness of x+
f 0 

is then indicated by the one-sided robustness index , where a value 

 shows that x

++ = f
- R(G)η 1/2

0.0.1η ≥+
0 is robust, while a value  shows that x1η <+

0 is not robust. 

Formulating the one-sided objective robustness constraint 0
η
η

0

≤− +

+

1 , where  is the 

desired level of robustness, the optimization problem to obtain an optimum design that is 

objectively robust one-sidedly is as shown in Eq. (6.10). 
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6.4. ASYMMETRICAL TWO-SIDED SENSITIVITY MEASURE 

In calculating the two-sided sensitivity of a design’s objectives, we have used a 

single positive value ∆fi,0 to limit both the increase and decrease in fi, i.e., a symmetrical 

two-sided sensitivity. Sometimes, however, it is desired to have different limits for the 

increase and decrease in fi, i.e., an asymmetrical two-sided sensitivity. The calculation of 

the asymmetrical robustness index of a design is a straightforward extension of the 

symmetrical one.  

Let  and  be the maximum allowable 

decrease and increase in f, respectively. Here we assume that ∆  and 

 for all i=1,…,M. If ∆  then we are essentially looking at a 

symmetrical two-sided sensitivity (recall Chapter 4). Using these two allowable limits, 

the asymmetrical S
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Notice in Eq. (6.11) that the square terms are now replaced by two inequalities.  

The plot of this Sf in the ∆p-space is the asymmetrical SR of x0, while the worst-case 

estimate to this SR is the asymmetrical WCSR. The inner optimization problem to 

calculate the radius of the asymmetrical WCSR ( ) is shown in Eq. (6.12) (this is the 

normalized version).  
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The equality constraint in Eq. (6.12) shows the asymmetry of this two-sided measure. 

The first and second terms in the equality constraint in Eq. (6.12) correspond to the 

decrement and increment limits in fi, respectively.  

The asymmetric robustness index of x0 is then calculated as where 

 is obtained by solving Eq. (6.12). As before, the value  shows that design 

x

+−+− = /1/2/ R(G)η f
-

0.1≥+− /R f η / +−

0 is robust while η  shows that it is not robust. To obtain an optimum design that 

is objectively robust asymmetrically, we only need to add the robustness constraint 

0.1/ <+−

0/

/

≤+

+

η
η1

0

− −

−

 to the optimization problem of interest (  is the desired level of 

robustness, and is specified by the designer).  

+− /
0η

 

6.5. ASYMMETRICAL PARAMETER VARIATIONS 

One of the assumptions of our robust optimization method is that the parameter 

variation ranges are symmetric: -∆p0,i ≤ ∆pi ≤ ∆p0,i, i=1,…,G (∆p0,i > 0). This assumption 

is necessary because we are using a single point normalization to account for the scale 

difference of the ∆p when measuring the robustness of a design. Sometimes, however, 

the variation ranges are not symmetric, and when this occurs, our robustness measure 

must be modified accordingly to account for this asymmetry.  

Let  and  be the lower and upper 

bounds of the parameter variation ranges, respectively. We assume that ∆  

for all i=1,…,G (otherwise it is a symmetric range). The purpose of normalizing ∆p

]p,...,p[ G,01,00
−−− ∆∆=∆p ]p,...,p[ G,01,00

+++ ∆∆=∆p

0pp ,0,0 >∆≠ +−
ii

i is to 

map it to the [-1,1] range. When the parameter variation (∆p0) is symmetric, the 
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normalization 
i

i
i

,0p
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∆
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=∆  provides such a mapping. When ∆p0 is not symmetric, 

however, there are two cases to consider: the negative and positive ∆pi. If ∆pi is negative, 

the normalization must be performed with respect to . If ∆p−∆ 0p

+
0p

i is positive, the 

normalization must be performed with respect to . Based on this fact, the 

normalization for the asymmetric ∆p is then: 
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Because now the ∆p0 ranges have been normalized to be [-1,1], the radius of the 

exterior hyper-sphere of these ranges are still = (G)-1/2. So, the calculation of the objective 

and feasibility robustness index remain the same as before, i.e., η = (G)-1/2Rf and 

ηg = (G)-1/2Rg, respectively. However, the calculation of the radius of the WCSR and 

FWCSR have to be modified as shown in Eq. (6.13) and (6.14), respectively.   
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6.6. ROBUSTNESS INDEX VS. ROBUSTNESS PROBABILITY 

Our robust optimization method measures the robustness of a design based on the 

values of its robustness index: η and ηg for objective and feasibility robustness, 

respectively. The magnitude of a robustness index tells us the degree of robustness of a 

design: the larger η (and/or ηg), the more robust the design. However, since we are only 

provided with ranges of ∆p0, η (and/or ηg) does not tell us the actual robustness 

probability of the design. (For objective robustness, the robustness probability is the 

probability that the objective values of the design stay within the acceptable limits. For 

feasibility robustness, it is the probability of constraint satisfaction of the design.) 

Nevertheless, if we know the probability distribution of ∆p0, we can use the value of 

η and/or ηg to calculate a lower bound on the robustness probability of the design.  

The procedure to calculate the robustness probability is described next. Here we only 

show the calculation for independent uniform and normal distributions. Probability 

calculations for other distributions and when there are correlations will be somewhat 

more involved, but the basic procedure is the same.  

Uniform Distribution 

Suppose ∆p is distributed uniformly within [-1,+1] and there is no correlation among 

its ∆pi components. If the distribution is not within [-1,+1], it can be normalized to fall 

into this range (it has to be normalized anyway since we are going to compare it with the 

normalized robustness index). The probability density function of this distribution is 

fx(∆p) = (2)-G, and the probability that a random variable X is between [∆p1,∆p2] is:  
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Substituting fx(∆p) = (2)-G into Eq. (6.15), P .  )pp()2(][ ,1,2

G

1

G
21 ii

i

∆−∆=∆≤≤∆ ∏
=

−pXp

A value of η = 1.0 indicates that the WCSR of a design encloses the [-1,+1] range in 

∆p-space. (In our discussion we use η, but it is applicable to ηg as well.) More generally, 

a robustness index of η tells us that the WCSR of the design encloses the [-η,+η] range in 

∆p-space. Recall that the ∆p range defined by a WCSR tells us the ∆p that must occur if 

we want the ∆f0 limit to be satisfied, while those ∆p defined by the probability 

distributions are the ∆p that actually does occur. In other words, the probability that the 

design will satisfy the ∆f0 limit is equal to the probability that a random ∆p falls in the 

[-η,+η] range, i.e., ][P ηpη +≤∆≤−

G

1

G )η)(η( =−−∏
=

−

i

. Using the formula obtained previously, the 

probability that a design will satisfy the ∆f0 limit is then: 

. Table 6.3 shows the probability values for 

several instances of η and G.  

Gη)2(][P =+≤≤− ηXη

Table 6.3: Probability values for uniform distribution. 

1 2 3 4
0.01 0.01 0 0 0

0.1 0.10 0.01 0.001 0
0.5 0.5 0.25 0.125 0.063
0.8 0.8 0.64 0.512 0.410
0.9 0.9 0.81 0.729 0.656
1.0 1.0 1.0 1.0 1.0

G
η

 

It is very important to point out that the probability calculation above is valid only if 

each ∆pi is uniformly distributed and they are independent. In addition, the formula 

P[.] = ηG is only a lower bound (worst case) of the actual robustness probability value of 
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the design. This is because we are comparing the uniform distribution (which is a hyper-

cube) with a WCSR (which is a hyper-sphere). So, there are some ∆p values that are part 

of WCSR (and hence η), but are not included in the probability calculation. Another 

reason our probability calculation is only a lower bound is because WCSR is a worst-case 

estimate of the actual SR, so again, there are some ∆p values that in reality the design can 

absorb, but are not included in our calculation.  

 

Normal Distribution 

Suppose ∆p is multi-variate normally and independently distributed with a mean 

µ = 0 and a covariance matrix . We use a standard deviation of 

σ
















=

9/10

09/1

L

MOM

L

Σ

ii = 1/3 so that the range [-1,1] covers 3σii of the distribution. The probability density 

function of this distribution is 





 −∆−∆−




 − )()(
2
1exp 1T

2/1

µpΣµp




=∆

π)2(
1)( G Σ

pxf  

where |Σ| and Σ-1 are the determinant and inverse of Σ, respectively. The probability that a 

random variable X is between [∆p1,∆p2] is obtained by substituting this density function 

into Eq. (6.15) and then performing the integration. There is no closed-form solution to 

this integration, so we must numerically calculate it.  

As with the uniform distribution, given the robustness index η, the robustness 

probability of a design is equal to the probability that a random ∆p falls into the [-η,+η] 

range: . Table 6.4 shows the probability values for several instances of η 

and G (these values are obtained numerically). 

][P ηpη +≤∆≤−
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Table 6.4: Probability values for normal distribution. 

1 2 3 4
0.01 0.024 0 0 0

0.1 0.236 0.056 0.013 0.004
0.5 0.866 0.742 0.639 0.551
0.8 0.984 0.950 0.926 0.903
0.9 0.993 0.968 0.952 0.936
1.0 0.997 0.975 0.963 0.951

G
η

 

Keep in mind again that the values in Table 6.4 are valid only if the ∆p distribution is 

normal. Also, these values are the lower bounds of the actual values of the robustness 

probability of the design. Unlike the uniform distribution, however, the lower bound for 

η = 1.0 is not 1.0, rather it decreases as G increases. The reason for this is because we 

only use σii = 1/3 for the distribution. As G increases, the “tail” region of the normal 

distribution is becoming larger, and this region is not included in our probability 

calculation.  

 

Example 6.1 

Let us revisit the control valve actuator linkage example from Chapter 5. Previously, 

we obtained a set of optimum designs for various values of η (Figure 5.21). Using the 

probability values in Tables 6.3 and 6.4, estimate the probability of constraint satisfaction 

(Ps) of each design assuming uniform and normal ∆p distribution. Calculate the actual Ps 

of the designs, and compare them to the estimated values. 

Solution 

We can easily estimate the Ps of the designs using the strategy explained previously. 

To calculate the actual Ps of the designs, we performed 100,000 runs of Monte Carlo 
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simulations for each design, for each distribution model. Figure 6.6(a) and (b) show the 

plots of the estimate and actual Ps of the designs for the uniform and normal distribution 

models, respectively.  

We see in both Figure 6.6(a) and (b) that the estimate Ps values are always lower 

than the actual Ps values. This is because the estimated values are only a lower bound of 

the actual values. Figure 6.6 also shows that the difference between the estimate and the 

actual Ps values decreases as η increases. Intuitively, this observation is expected. The 

discrepancy between the estimated and the actual values is mainly caused by the fact that 

we have used a worst-case estimate of the FSR to measure a design’s robustness. As the 

actual Ps approaches 1.0, η increases, and the FWCSR of the design will become more 

and more like the actual ∆p distribution. Therefore, as η increases, the lower bound Ps 

will approach that of the actual Ps. ♦ 
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Figure 6.6: Comparison between the estimate and actual Ps. 
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6.7. SUMMARY 

• Adding objective and feasibility robustness constraints to an optimization problem 

results in optimum designs that are robust both objectively and feasibly.  

• The advantage of keeping the objective and feasibility robustness separate is that it 

provides the designer the flexibility to state his/her preference towards either of the 

two types of robustness (i.e., by changing η0 and ηg,0). 

• When a designer is indifferent towards the two types of robustness, the overall 

robustness of the design can be calculated by solving just one inner optimization 

problem instead of two.  

• Practically, it is easier to solve just one inner optimization problem (to calculate the 

design’s robustness) than to solve two inner problems. Also, it helps the outer 

problem converges faster as well as reduces the error transmitted from the inner to the 

outer problem. However, solving two inner problems might be computationally more 

efficient. 

• Sometimes it is more appropriate to use a one-sided sensitivity measure for objective 

robustness. This one-sided measure is the same as the one-sided measure used in 

feasibility robustness, except that in this case we use objective functions instead of 

constraint functions in the formulation. 

• For a two-sided objective robustness, sometimes it is desired to have different 

allowable limits for the decrease and increase in fi, i.e., an asymmetric two-sided 

sensitivity. This asymmetry can be easily incorporated into our robustness 

formulation by changing the square terms in Sf by two inequalities.  
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• In our robust optimization method, we had made a necessary assumption that 

parameter variations are symmetric. However, in the event they are not symmetric, 

our symmetric normalization can be easily modified to account for it. 

• Since our method does not use a presumed probability density function (pdf), the 

value of the robustness index does not provide us with the probability information of 

the degree of robustness of the design. However, if the pdf of ∆p is known, we can 

use the η value to calculate a lower bound of the robustness probability of the design.   
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CHAPTER 7 

CONCLUSIONS 

 

7.1. CONCLUDING REMARKS 

In this dissertation, we have presented a step-by-step development of a novel method 

for robust design optimization. After presenting our research objective and review of 

previous work in Chapters 1 and 2, we developed our method for objective robust 

optimization for a single objective problem in Chapter 3, and then extended it to multi-

objective problems in Chapter 4. In Chapter 5, we developed a method for feasibility 

robust optimization of a design. Chapter 6 presented our combined objective and 

feasibility robust optimization method.  

The essence of our robust optimization method is the robustness measurement of a 

design alternative using a sensitivity region concept. A sensitivity region is an inherent 

property of a design that shows how much parameter variations the design can absorb 

given a limit on its performance variation. The more parameter variations a design can 

absorb (i.e., the more we can allow the parameters to vary), the more robust the design is. 

In the method, we use the worst-case estimate of the sensitivity region as a measure of a 

design’s robustness. Based on this worst-case estimate, we calculate a robustness index 

for the design, which we then constrain and add to the original optimization problem to 

guarantee the robustness of the optimum design solution obtained.  

In Chapters 3-6, we demonstrated the application of our robust optimization method 

to several numerical and engineering examples. For comparison, we also solved some of 

the problems using several other well-known robust optimization methods. We showed in 
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these examples that our method indeed obtains a design that is robust and optimum, and 

that our method is computationally efficient.  

In the next few subsections, we provide some additional concluding remarks 

regarding the results of our research.  

 

7.1.1. Verification 

In Chapters 3 through 6 we solved several numerical and engineering examples and 

analyzed the results obtained to verify our robust optimization methods.  

In the wine-bottle function example (Section 3.4.1), we can graphically verify the 

validity of our robust optimization method. The function has a unique property in that 

there is a flat region around the middle at which the function is insensitive to the variable 

variations, i.e., a robust region. A robust optimization method is valid if its solutions are 

within this flat region. We observe that the solutions from our method indeed fall into the 

flat region, thus verifies that our method is a valid robust optimization method for this 

example.  

For the other comparison studies, graphical verification is difficult or impossible to 

do. So instead, we performed a sensitivity analysis on the results obtained to see if they 

are indeed robust. The results of our sensitivity analysis are summarized in Table 7.1. In 

this table, the symbol “√” means that the optimum designs obtained are robust, while the 

symbol “×” means that they are not. We show in Table 7.1 four categories of robust 

optimization methods. “Nominal” method refers to a regular optimization method 

without robustness consideration. “Robust” method refers to our robust optimization 

method with η0 = ηg,0 = 1.0. “Sampling” method refers to those methods that perform a 
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localized sampling around the nominal parameter values (e.g., Monte Carlo). “Gradient” 

method refers to those methods that use the gradient of the functions in calculating a 

design’s robustness (e.g., worst-case gradient, moment matching).  

Table 7.1: Summary of sensitivity analysis results. 

Nominal Robust Sampling Gradient

Three-bar truss × √ ×
Welded beam × √ ×
Compression spring × √ √
Numerical (multi-objective) × √ ×
Vibrating platform × √ ×
Speed reducer × √ ×
Power electronic module × √ ×
Numerical (feasibility) × √ ×
Explosive actuated cylinder × √ ×
Belleville spring × √ ×
Control valve actuator linkage × √ ×
Payload for an UAV × √ ×  

We see in Table 7.1 that optimum designs obtained by our robust optimization 

method always satisfy the robustness requirements. This observation verifies that our 

method is indeed a valid robust optimization method. In contrast, optimum designs 

obtained by a regular optimization (the “Nominal” method) are not robust for these 

examples. This is expected since this method does not account for a design’s robustness. 

The optima of the “Sampling” method also do not satisfy the robustness requirement. 

This is because the method uses probability to measure a design’s robustness, so there is 

a chance (albeit small) that the optimum design will violate the requirement. In the 

sensitivity analysis, a design is termed robust only if it never violates the requirement. 

The optimum of the “Gradient” method is robust in the compression spring example, but 

it has a very poor objective value (recall Section 3.4.4). In the numerical example in 
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Chapter 5 and Belleville spring design examples, the “Gradient” method fails to obtain a 

robust optimum design.  

 

7.1.2. Computational Efficiency  

Our robust optimization method calculates the robustness of a design by solving an 

inner optimization problem, which is a single objective problem with an equality 

constraint. When the objective/constraint functions of the outer problem (the original 

optimization problem) are simple enough, analytic solutions to the inner problem may be 

possible, in which case our method does not need to perform any function evaluations. 

When analytic solutions are not possible, the inner problem may be solved by a gradient-

based optimization algorithm such as Sequential Quadratic Programming. The 

computational cost of such algorithms is generally in the order of 101. When gradient-

based algorithms are not applicable (e.g., when the functions are non-differentiable), 

stochastic algorithms such as GA may be used instead. For high solution accuracy, the 

computational cost for stochastic algorithms is generally in the order of more than 103. 

However, throughout our comparison studies, we found that GA can solve the inner 

optimization problem using only ~200-300 function evaluations. This is because the inner 

problem is not too difficult an optimization problem to solve. Its objective function is 

convex and unimodal, and the search space is not large.  

Table 7.2 shows a summary of the number of function evaluations (Fcall) performed 

by the four methods to calculate the robustness of one design alternative.  
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Table 7.2: Summary of average number of function evaluations. 

Nominal Robust Sampling Gradient

Wine-bottle N/A 30
Three-bar truss N/A 39 10000
Welded beam N/A 250 100000
Compression spring N/A 250 0
Numerical (multi-objective) N/A 250 100000
Vibrating platform N/A 250 100000
Speed reducer N/A 300 100000
Power electronic module N/A 300 100000
Numerical (feasibility) N/A 24 0
Explosive actuated cylinder N/A 45 100000
Belleville spring N/A 300 0
Control valve actuator linkage N/A 250 100000
Payload for an UAV N/A 300 10000  

In Table 7.2, the Fcall for the “Nominal” method is 0 because this method does not 

calculate the design’s robustness. The Fcall for the “Gradient” method is also 0, but this is 

because the gradient of the functions in the examples are known in closed form. If the 

gradient has to be numerically estimated, the Fcall will be non-zero, depending on the 

dimension of the inner problem. The Fcall of our robust optimization method varies from 

24 to 300. The Fcall is either 250 or 300 when we used GA to solve the inner problem, and 

it is less than 50 when we used fmincon. Overall, the Fcall of our method is much lower 

than the “Sampling” method, whose Fcall ranges from 10,000 to 100,000.  

Table 7.3 shows a summary of the computational cost of the four methods in terms 

of absolute time (“hr” for hour, “m” for minute, and “s” for second), and the 

optimization algorithms used in each problem. These time values are obtained using a 

Pentium III 866 MHz computer with 384 RAM.  
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Table 7.3: Summary of computational time. 

Nominal Robust Sampling Gradient Algorithm

Wine-bottle 2 s 30 m 43 s GA
Three-bar truss 0.25 s 3 s 3 m 17 s fmincon
Welded beam 18 s 8 m 25 s 1 hr 15 m GA
Compression spring 3 s 8 m 14 s 3 s GA
Numerical (multi-objective) 4 s 18 m 3 s 2 hr 3 m NSGA
Vibrating platform 4 s 19 m 8 s 1 hr 32 m MOGA
Speed reducer 5 s 12 m 58 s 1 hr 33 m NSGA
Power electronic module 5 s 33 m 6 s 7 hr 42 m NSGA
Numerical (feasibility) 0.22 s 2.5 s 4 s fmincon
Explosive actuated cylinder 1 s 18 s 1 m 28 s fmincon
Belleville spring 4 s 12 m 47 s N/A GA
Control valve act linkage 11 s 16 m 17 s 2 hr 28 m GA
Payload for an UAV 5 s 22 m 29 s 1 hr 52 m NSGA  

The values in Table 7.3 confirm the data shown in Table 7.2. Overall, the “Nominal” 

method is the fastest, requiring at maximum only 18 sec to solve the problem. This is not 

surprising since this method does not perform any additional function evaluations. The 

“Gradient” method is also very fast since the gradient information is available 

analytically. The “Sampling” method is the slowest and very computationally extensive. 

For the power electronic module example, it took more than 7 hours to complete the 

optimization process. In contrast, the computation time of our robust optimization 

method is much less. It ranges from a few seconds to several minutes depending on the 

algorithms used to solve the inner optimization problem (fmincon and GA, respectively).  

 

7.1.3. Advantages and Disadvantages 

The main difference between our robust optimization method and the other methods 

is that our method calculates the robustness of a design in a “reverse” mode. That is, 
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instead of calculating ∆f (or ∆g for constraints) for a given ∆p, our method calculates ∆p 

for a given ∆f (or ∆g). The advantage of working in this reverse mode is that the 

robustness information provided by our method does not depend on the actual ∆p. Should 

the actual uncontrollable ∆p change, the sensitivity region of the design will not change, 

so we can still use this information to determine the design’s robustness with respect to 

the new ∆p. In contrast, for the conventional “forward” methods, if ∆p changes, then the 

design’s robustness previously calculated is no longer valid, and we will have to re-

evaluate it.  

Because our robustness calculation does not depend on the actual ∆p, our method is 

independent of the probability distribution of ∆p. As long as ∆p falls within the 

sensitivity region of the design, the design is guaranteed to satisfy the ∆f0 (or ∆g0) 

requirement. If the probability distribution of ∆p changes, the robustness probability of 

the design will change, but this guarantee stays the same.  

Another advantage of our method is that it does not use the gradient information of 

the objective/constraint functions. As a result, our robustness calculation is valid even if 

the ∆p variations are large, beyond the linear range in which gradient estimation is valid. 

This is in contrast with those methods that use gradient calculations, such as a Taylor 

series expansion, to calculate a design’s robustness. The numerical example in Chapter 5 

(Section 5.4.1) showed how gradient-based robustness methods fail when ∆p becomes 

large, while our method is still valid. Since our method does not use gradient information, 

it is also applicable to optimization problems whose objective/constraint functions are not 

differentiable everywhere with respect to ∆p. This is demonstrated in the welded beam 
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example in Section 3.4.3, where the objective function of the problem is a step-function 

with respect to ∆p.  

Our method is also computationally efficient. As experimentally showed, the upper 

bound for the number of function evaluations needed by our method is in the order of 102 

when stochastic algorithms are necessary to solve the inner problem. Our method uses 

more Fcall than the gradient-based methods. However, the applications of the gradient-

based methods are limited to small range of ∆p variations. Our method is more efficient 

than sampling-based methods whose Fcall is in the order of 103 or more. Even for the 

more efficient sampling-based methods (such as MPP (Du and Chen, 2000)), the Fcall is 

still in the order of 102 or above. Besides, our method does not need a presumed 

probability distribution to calculate a design’s robustness. 

One shortcoming of our method is that it is conservative because it uses only the 

worst-case estimate of the sensitivity region to determine a design’s robustness. So, there 

are some ∆p variations that in reality the design can absorb, but they are not included in 

the calculations. Our method also does not provide probability information regarding a 

design’s robustness. However, this is not because we cannot calculate the probability, but 

rather because we do not assume a probability distribution of the ∆p.  If the pdf of ∆p is 

known, we can numerically calculate a lower bound of the probability (recall 

Section 6.6). If the actual probability of the design is necessary, it may be interpolated 

experimentally. We first solve the problem for the robust optimum using several values 

of η0, and then calculate the actual probability of these optima. The probability of an 

optimum for other values of η0 can then be interpolated from the results (recall 

Figure 6.5).  
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7.2. CONTRIBUTIONS 

In this dissertation, we have introduced and developed several new and innovative 

concepts for robust optimization of a design. The contributions of the research presented 

in this dissertation are summarized below.  

• Introduced and developed the notion of “reverse” robustness measure of a design 

alternative. This robustness measure does not require a presumed probability 

distribution of parameter variations. It also does not use gradient information so 

that it is valid for large variations of parameters, and is applicable to non-

differentiable objective/constraint functions.  

• Introduced and developed the concept of “one-sided” and “two-sided” 

sensitivity set and sensitivity region of a design alternative for single and 

multiple objective/constraint functions. The concept of an asymmetrical 

two-sided sensitivity of a design has also been introduced and developed.  

• Introduced the notion of directional sensitivity of a design, and developed 

an approach to account for it using the worst-case estimation of sensitivity 

region. 

• Developed a mathematical formulation to calculate the radius of worst-

case sensitivity region, and an approach to normalize the formulation to 

account for scale importance of parameters.  

• Developed an approach to calculate the lower bound of the robustness 

probability of a design when the probability distribution of the uncertain 

parameters is known. 
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• Developed an efficient constraint-based robust optimization method using the 

sensitivity region concept. The method is applicable to both single and multi-

objective optimization problems, and can account for both objective and 

feasibility robustness of an optimum design.  

• Introduced and developed the concept of a robustness index for a design 

alternative, which is a measure of robustness calculated based on the 

radius of worst-case sensitivity region. 

• Developed an inner-outer optimization framework to efficiently search for 

design alternatives that are optimum and robust.  

• Introduced and developed the concepts of multi-objective robustness and 

multi-objective robust optimality of a design alternative.  

 

7.3. FUTURE RESEARCH DIRECTIONS 

The robust optimization method presented in this dissertation addresses many of the 

shortcomings of previous works in robust optimization. However, there are still many 

important research issues left unresolved. In this last section we briefly discuss some of 

these issues and provide some general research directions to address them. Some of the 

discussions presented here are based on our experience during the development of this 

dissertation. Some others are based on the inputs and comments from colleagues and 

active researchers from other institutions.  

• One very important issue that has received little attention so far is in determining 

if a robust optimization is needed in the first place. We have assumed in our 

research that there is a trade-off between performance and robustness of a design. 
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However, it is not uncommon that robustness of a design increases as its 

performance increases. For a situation like this, robust optimization is not needed 

since the optimum design is already guaranteed to be also the most robust. To 

avoid wasting time and resources, we need some sort of indicators that can tell us 

from the beginning if the performance vs. robustness trade-off exists. The 

gradient of a function may be such an indicator. If the gradient of a function is 

monotonically decreasing with the function’s value, then as the function is 

minimized the gradient is minimized as well, so there is no performance-

robustness trade-off. Other inherent properties, such as the concavity or modality 

of the function, may also indicate such a trade-off.  

• One shortcoming of our robust optimization method is that it is conservative. This 

is because we have used the worst-case estimate of the sensitivity region of a 

design as a measure of the overall robustness of the design. If we can incorporate 

those portions of the sensitivity region that are not included in the worst-case 

estimate into our robustness calculations, we can obtain a more accurate 

description of the design’s robustness. An experiment-based regression analysis 

potentially can be used to numerically approximate the sensitivity region of a 

design so that we have the entire region as a robustness measure, and not just the 

worst-case region.  

• In this dissertation, we assume that parameter variations are continuous. In many 

engineering design problems, parameters such as temperature variations or 

dimensional tolerances are continuous. However, in some cases the variations 

might be discrete, and one wants to find a design alternative that is optimum and 
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robust over a range of discrete scenarios. Examples of discrete variations include 

changes in material type, or number of teeth in a gear for a power tool. 

Theoretically, the sensitivity set concept should still be applicable to the discrete 

variations case; however, the notion of a sensitivity region may no longer apply. 

The possibility that the parameter variations have both continuous and discrete 

elements should also be investigated.  

• An important issue that has not been addressed in this dissertation is the fact that 

the notion of a robust design is a subjective matter. A design that is considered 

robust by one designer may not satisfy the robustness preference or requirements 

of another designer. A design that is considered robust for each designer in a 

group may not be robust enough for the group collectively. The topic of 

preferences and decision-making is a very active area of research by itself. 

Nevertheless, if we are somehow able to incorporate some of the preference 

capturing methods into our robust optimization method, it will make the method 

more practical.  

• Practically speaking, design optimization should be fitted within an iterative and 

collaborative process with various disciplines in which the information regarding 

the design is constantly updated and improved after each iteration. The robust 

optimization method presented in this dissertation does not account for this 

collaborative model. Integration of our method with some sort of systematic 

design techniques might be beneficial to improve the applicability of the method 

to more practical and real-world problems.  
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