
ABSTRACT

Title of Thesis: FASTER DISPLAY OF MECHANICAL ASSEMBLIES BY
DETERMINATION OF PART VISIBILITY

Jeremy Ou, Master of Science, 2004

Thesis directed by: Professor Edward B. Magrab.
Department of Mechanical Engineering

We present algorithms that greatly decrease the time it takes to display a large

number of 3-D mechanical part assemblies by removing all interior parts that cannot be

viewed from any viewing angle. The algorithms are based on the minimum axis-

aligned bounding box of each part, which avoids complicated computations often

needed to determine the interactions of the geometry of the parts. The major

contribution of this work is the use of exterior traces of cross sections of the bounding

boxes to determine the parts’ visibility. It is shown that the processing time increases

almost linearly with the number of parts in an assembly of parts. A test on an assembly

composed of 490 parts shows that the algorithms decrease the display time by a factor

of two while only incorrectly identifying two of these parts as invisible when they

should have been identified as visible.

FASTER DISPLAY OF MECHANICAL ASSEMBLIES BY DETERMINATION OF
PART VISIBILITY

by

Jeremy Ou

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2004

Advisory Committee:

Professor Edward B. Magrab, Chair
Professor Satyandra K. Gupta
Professor Linda C. Schmidt

©Copyright by

Jeremy Ou

2004

ii

TABLE OF CONTENTS

List of Tables ... iv

List of Figures.. vi

1. Introduction .. 1

2. Related Work.. 3

2.1. Proposed Work .. 7

3. Finding the Axis-Aligned Bounding Box (AABB).. 10

3.1. IGES specification... 11

3.2. AABB Determination Algorithm .. 14

3.2.1. AABB of the Trimming Edge .. 16

3.2.2. Examination of a surface’s interior .. 29

3.3. Verification of AABB Determination ... 48

3.4. Summary.. 50

4. Finding contained AABBs ... 51

4.1. Definitions ... 52

4.2. Sorting coordinates .. 53

4.3. Determining contained boxes .. 56

4.4. Other relationships... 62

4.5. Summary.. 67

5. Determining part visibility ... 68

5.1. Visibility determination process.. 70

iii

5.2. Advantages of a cross-section trace for non-contained AABBs 72

5.3. Visibility of non-contained AABBs .. 74

5.4. Visibility of contained AABBs ... 90

5.5. Validation of the Visibility Algorithm .. 92

5.6. Limitations of the Current Algorithm.. 95

5.7. Removal of a Limitation of the Algorithm.. 98

5.8. Corollaries to the algorithms ... 102

5.8.1. Using the cross-section trace algorithms on surface AABBs..... 102

5.8.2. Through Holes in Surfaces ... 107

5.8.3. Visibility from a specific viewing angle 113

5.9. Summary.. 126

6. An Application: SCAMP.. 127

6.1. Preparation of the Model ... 128

6.2. AABB Determination.. 128

6.3. Relationship Determination... 130

6.4. Object Visibility Determination Trace .. 133

6.5. Validation of the Visibility Detection Algorithm...................................... 135

6.6. Results ... 137

6.7. Discussion.. 138

6.8. Summary.. 139

7. Conclusion.. 141

8. References .. 143

iv

List of Tables

Table 3.1. Pseudo code for AABB determination.. 16

Table 3.2. Pseudocode for determining the maximum of f(x) on the interval xxtart ≤ x ≤
xend .. 39

Table 3.3. Pseudocode for determining the minimum of f(x) on the interval xxtart ≤ x ≤
xend .. 40

Table 4.1. Pseudocode for finding projections found in other projections. 61

Table 4.2. Pseudocode modified to also find projections that intersect other projections.

.. 64

Table 5.1. Finding a rectangle that changes the trace direction 85

Table 5.2. Finding a rectangle that continues the trace direction 86

Table 5.3. Continuing the trace on the current rectangle, but in a different direction. . 87

Table 5.4. Basic steps of the visibility determination algorithm.................................... 92

Table 5.5. Basic steps of the visibility determination algorithm when allowing multiple

AABBs per part. ... 99

Table 5.6. Basic steps using the visibility determination algorithm on the surfaces of

each part before performing the algorithm on the parts of the assembly 105

Table 5.7. Basic steps of the visibility determination algorithm using surface AABBs

instead of part AABBs.. 106

v

Table 5.8. Basic steps of the visibility determination algorithm (using surface AABBs

instead of part AABBs) accounting for surfaces with holes by treating them as if

they are not present... 110

Table 5.9. Basic steps of the visibility determination algorithm (using surface AABBs

instead of part AABBs) using multiple AABBs for surfaces with holes 112

Table 5.10. Possible cases for the x-intervals of two rectangles 119

Table 6.1. Rectangles and their coordinates .. 135

Table 6.2: Results of simulation and visualization of the SCAMP robot. 138

vi

List of Figures

Figure 3.1. AABB of a sphere. .. 10

Figure 3.2. Examples of trimmed surfaces in grey... 12

Figure 3.3. An example of local and global coordinate systems.................................... 14

Figure 3.4. AABB Determination Algorithm Flow Chart.. 15

Figure 3.5. Minimum AABB of a line. .. 17

Figure 3.6. 2-D representation of an arc in IGES... 18

Figure 3.7. Arc (blue) in 3-dimensional space. Arc AABB is in red. 19

Figure 3.8. Rational B-spline curve (blue) and control points, Pi. Curve’s AABB in red.

.. 22

Figure 3.9. Trimmed surface of a tabulated cylinder. AABB is in red. 30

Figure 3.10. Trimmed Surface on a Surface of Revolution of a Line. 31

Figure 3.11. Rotated arc’s (a) 2-D and (b) 3-D representations. 34

Figure 3.12. Rotated B-spline curve: (a) 2-D representation; and (b) 3-D representation.

.. 42

Figure 3.13. Rational B-Spline surface and its control points.. 44

Figure 3.14. Trimmed surface of a plane. .. 45

Figure 3.15. Determination of the point G(0.4, 0.7)... 47

Figure 3.16. Orthographic and 3-D views of the part used to verify AABB

determination in.. 49

vii

Figure 3.17. Part in Figure 3.16 enclosed by the AABB as calculated by the AABB

determination algorithm. .. 49

Figure 4.1. (AABB)j contained in (AABB)k... 51

Figure 4.2. The three extents and projections of (AABB)j... 52

Figure 4.3. Projections and their coordinates. .. 56

Figure 4.4. Extents and projections of (AABB)j and (AABB)k. (AABB)j contains

(AABB)k. .. 57

Figure 4.5. Projection XPk containing projection XPj. ... 58

Figure 4.6. Traveling along an axis. ... 59

Figure 4.7. Example of an “open” and “closed” projection. .. 59

Figure 4.8. Projection XPj adjacent to XPk... 63

Figure 4.9. Projection XPj intersecting XPk. .. 63

Figure 4.10. Projection XPj is disjoint with XPk .. 65

Figure 4.11. Two disjoint AABBs along with their extents and projections. 66

Figure 4.12. Two adjacent AABBs along with their extents and projections. 67

Figure 5.1. Example of a completely enclosed part. .. 70

Figure 5.2. Flow chart for determining of the visibility of an AABB............................ 71

Figure 5.3 Plane intersecting collections of AABBs. Both configurations are the same

except that (AABB)1 in (a) is replaced with (AABB)2 in (b)................................. 75

Figure 5.4. Cross section profiles, XS(c), from (a) Figure 5.3a and (b) Figure 5.3b....... 75

Figure 5.5. View of front (positive Z viewing angle) of AABBs in Figure 5.3a. 77

viii

Figure 5.6. The various cross-sections of the AABBs in Figure 5.3a, taken between

(a) X0 and X1, (b) X1 and X2, (c) X2 and X3, (d) X3 and X4, (e) X4 and X5, (f) X5 and

X6, (g) X6 and X7, (h) X7 and X8, and (i) X8 and X9. ... 78

Figure 5.7. Boundary traces of the profiles in (a) Figure 5.4a, and (b) Figure 5.4b. 80

Figure 5.8. A profile in which rectangle 5 does not appear on the first edge trace.

(Dc=Y+ indicates the current direction)... 82

Figure 5.9. Examples of the occurrence of the three rectangle traversal events.

(1) direction changed by rectangle encountered. (2) trace continued in same

direction on different rectangle, (3) trace continued on next edge of same rectangle.

.. 84

Figure 5.10. Shell for AABBs in Figure 5.3a. (a) Shell and cross-section plane.

(b) Exploded shell where cross-section is taken... 89

Figure 5.11. Cross-section profiles of (a) shell and (b) AABBs with exterior edge trace.

.. 89

Figure 5.12. Visible part whose AABB is contained in another AABB. 90

Figure 5.13. General shape of parts used in test assembly. .. 93

Figure 5.14. Five-sided box assembly created from part shown in Figure 5.11. 93

Figure 5.15. A group of nested boxes... 93

Figure 5.16. Plot of processor time versus number of parts for nested box assemblies. 95

Figure 5.17. Example of parts that will yield incorrect results using the current

algorithms. Part 2 will be marked invisible... 96

Figure 5.18. Parts in Figure 5.15 and their AABBs. .. 97

ix

Figure 5.19. Cross-section profiles of the AABBs in Figure 5.16. (a) AABBs in 3-D

space and the locations of the cross-sections taken, (b) cross-section at dY,

(c) cross-section at dX1 or dX2, (d) cross-section at dZ. .. 98

Figure 5.20. Part with multiple AABBs. (a) one AABB (b) two AABBs 100

Figure 5.21. Parts in Figure 5.15 with multiple AABBs allowed. 101

Figure 5.22. Cross-section profiles of the AABBs in Figure 5.19. (a) AABBs in 3-D

space and the locations of the cross-sections taken, (b) cross-section at dY,

(c) cross-section at dX1 or dX2, (d) cross-section at dZ. .. 102

Figure 5.23. A sphere with its two surface AABBs. .. 103

Figure 5.24. Invisible surfaces of two visible parts. (a) view of each individual part.

Invisible surfaces in grey. (b) Exploded side view. (c) Side view of parts

assembled ... 107

Figure 5.25. Assembly where one part has a hole in it. (a) Original assembly

(b) Assembly with hole enlarged. (c) Assembly without the part with the hole. . 108

Figure 5.26. Example of edge trace on a profile when the part corresponding to XR0(dk)

has a through hole. (a) Edge trace encounters rectangle of part with hole.

(b) Rectangle is removed and trace backtracked to previous portion. (c) Trace is

continued on modified profile. ... 110

Figure 5.27. Example of (a) a surface with holes and (b) how it would be covered by

multiple AABBs. .. 113

Figure 5.28. Example of the shapes that result from different viewing angles. (a) AABB

of a part. (b) View from a direction parallel to an axis. (c) View from a direction

x

orthogonal to an axis, but not parallel to an axis. (d) View from a direction not

orthogonal to any axis .. 115

Figure 5.29. A rectangle and the two points that define it. ... 116

Figure 5.30. The four possibilities for Rr intersecting Rv in both x and y. (a) X1 and

Y1, (b) X2 and Y1, (c) X1 and Y2, (d) X2 and Y2. Dark grey area is kept in Lv.

Dotted line splits dark area into two rectangles.. 121

Figure 5.31. The four possibilities for Rr intersecting Rv in either x or y and Rr

contained in Rv in the other direction. Examples for when the intersecting

possibility is (a) X1, (b) X2, (c) Y1, (d) Y2. Dark grey area is kept in Lv. Dotted

lines split dark area into three rectangles. .. 122

Figure 5.32. The four possibilities for Rr intersecting Rv in either x or y and Rr contains

Rv in the other direction. Examples for when the intersecting possibility is (a) X1,

(b) X2, (c) Y 1, (d) Y2. Dark grey area is kept in Lv.. 123

Figure 5.33. Rr contained in Rv in both x or y. Dark grey area is kept in Lv. Dotted

lines split grey area into four rectangles... 124

Figure 5.34. The two possibilities for Rr contained in Rv in either x or y and Rr

containing Rv in the other direction. (a) Rr contained in Rv in x (b) Rr contained in

Rv in y. Dark grey areas are kept in Lv. .. 125

Figure 5.35. Rr contains Rv in both x or y. ... 125

Figure 6.1. CAD model of SCAMP telerobot. ... 127

Figure 6.2. Interior parts of the SCAMP model. .. 128

Figure 6.3. Surface AABBs for thruster duct. .. 130

Figure 6.4. AABB for the thruster duct. ... 130

xi

Figure 6.5. Relationship tree for selected parts of the vehicle. 131

Figure 6.6. Side view of the AABBs for the quartz lens (green) and the quartz lens

holder(red) contained in the AABB for Port Cover Panel 1 (blue). 132

Figure 6.7. AABBs for the intersection of an outer seal ring (pink) and a battery (grey).

.. 132

Figure 6.8. The two adjacent AABBs of the mid-section octagon (red) and the motor

drive (blue). .. 133

Figure 6.9. Parts through which cross-section is taken. ... 134

Figure 6.10. Visibility exterior edge trace of example cross-section profile. 134

Figure 6.11. One of the pipes that was incorrectly marked invisible, which is circled in

yellow. .. 135

1

1. Introduction1

In computer-aided design (CAD), the display of assemblies of parts is very

important. It allows designers to identify parts and their interactions that could not be

identified by looking at each part individually. However, this display becomes slow

and unmanageable as the number of parts increases. The need to be able to display

more intricate assemblies that include thousands of complex parts is increasing. Such

assemblies include commercial vehicles, military vehicles, satellites, and machines with

many moving parts. An attempt to view any of these assemblies in their entirety makes

interactive viewing very difficult. It can take hours to bring the model into display for

the first time. If the viewing angle is changed, it can take many minutes for the CAD

program to calculate what is to be displayed in the new view. It is frequently not

feasible to use these CAD programs in these situations. In order to view these

assemblies at an acceptable update rate, it is necessary to reduce the amount of

geometry being displayed. This is usually done manually, with the user removing

subassemblies, surfaces, and polygons that are deemed unimportant. This research

provides a way for the computer to do this automatically, so that it is feasible to display

large assemblies in a shorter amount of time and without using a manual process.

In addition, the need to view these assemblies from data transmitted over the

internet is growing. Allowing people to view assemblies over the web causes the

amount of information needed to become an important consideration for bandwidth

1 This work was carried out under SBIR contract NAS3-00078 and is protected by
SBIR laws. It is also protected by US patent #6,335,732 B1. This work was performed
by Technology Promotion International, College Park, Maryland, 20740

2

purposes. A further problem is that CAD requires fast processors and large amounts of

memory for the computers that are used for display. Computers with slower processors

are more prevalent. These computers are only able to manageably display and

manipulate simple assemblies. More complex assemblies will cause a display update to

take at least a few seconds after a change in view or configuration, which may be too

slow for practical use. The idea of making these assemblies available for viewing over

the internet is to give anyone who has access the ability to view them without requiring

a workstation. This research will allow rather large assemblies to be displayed via the

web by reducing the amount of information that needs to be sent from the server to the

web client. All of this information will need to be stored in the client’s memory. This

reduction of overhead will also allow more commonly used computers to be able to

display these assemblies at an acceptable update rate.

3

2. Related Work

There have been many approaches to the simplification of models to achieve

acceptable rates of display with a minimal loss of detail. Researchers have given

methods for simplifying geometry for modeling purposes (Brodsky and Watson, 2000;

Armstrong et al., 2000). These methods, however, decrease the geometric accuracy of

the models used. This means that using the simplified models to make measurements or

determine simulation paths will give results that are not as realistic as those of the

unsimplified model. Another method is a multiresolution approach, where the level of

detail changes as needed based on the distance from the viewer. One such approach is

given by Huerta et al. (1998) and others by Krus et al. (1997). These methods may

increase display speed, but increase overhead, as representations for each level of detail

must be kept in memory. In a distributed environment, this method uses a large amount

of bandwidth because all of this information must be transmitted from the server to the

client.

Visibility determination is required for the computer graphics display of 3D

scenes, which may be composed of any number of objects. Each object is described by

surface polygons or surface representations that are polygonized before display. A

hardware construction known as the Z-buffer computes what the 2D representation of

these objects on the screen from all of the polygons in the 3D scene. It does this by

determining for each polygon the color and distance from the viewpoint of each pixel

for that surface. When the distance at a certain pixel of a polygon is closer than its

previous value, the pixel values are updated with those from the new polygon. In this

way, exact visibility is determined, meaning what is displayed is pixel-for-pixel what

4

the object would look like if a human being were to look at the object from the same

viewing angle. However, for large scenes with many surfaces, enormous amounts of

time are required to render this view because all surfaces are rendered, even those that

are invisible. This may be acceptable if a static view is desired, but in simulations and

in computer-aided design environments, objects and viewpoints are constantly

changing. This means that the entire calculation must be performed again to reflect

these changes. One solution to speeding up this process is to reduce the number of

polygons sent to the Z-buffer without affecting what is ultimately displayed. Those that

are not visible are not rendered.

Several researchers have considered different methods to process the visibility

of surfaces or polygons to speed up their display. The most basic of these is backface

culling, which keeps all polygons that face away from the viewer from being sent to the

Z-buffer, since these polygons will never seen by the viewer. Several researchers have

worked on methods to optimize the backface culling process (Kumar et al., 1996; Levi

et al., 1999; Zhang and Hoff, 1997). Another method is called view-frustum culling.

This involves the use of a rectangular-base pyramid to represent the view of the

observer. All polygons that are not contained in or do not intersect this pyramid are

determined to be invisible and are removed from rendering consideration (Hoff, 1997).

Finally, a third method is known as occlusion culling. This process removes from

consideration polygons that are “occluded” or entirely covered by polygons in front of

them. Different methods are given by Bittner et al. (1998), Bormann (2001), Hudson et

al. (1997), Möller and Haines (1999), and Zhang et al. (1997). The advantage of these

methods is that the time it takes to make these calculations is much less than that taken

5

to render the polygons that have been removed by these methods. However, these

methods are viewing-angle dependent, meaning that if the viewing angle changes,

everything must be recalculated. This calculation will be faster than using the Z-buffer

alone, but view changes will still be slow in those scenes with large polygon counts.

Another weakness of these methods is that they require the same amount of information

to be held in the computer’s memory as with the Z-buffer method alone. In a

distributed environment, this is also a problem, because there is no reduction in the

amount of information that needs to be sent from a server to a client. This amount of

information is a major concern for bandwidth purposes.

These shortcomings can be alleviated if some visibility preprocessing can be

performed before calculations are made for a specific viewing angle. In this way, as the

viewing angle changes, there will be fewer polygons to consider for that view. In

addition, the preprocessing is performed only once, since the results from the

preprocessing can be stored for use in later display. The calculations do not need to be

performed again. Teller and Séquin (1991) offer a solution for axis-aligned

architectural models where all viewpoints will be from the interior. They spatially

divide the model into cells or “rooms.” From each cell, they determine the visibility of

all the other cells. Using this preprocessed information, only the geometry belonging to

the corresponding visible cells will be rendered when a viewpoint is placed in a cell. It

is only when the viewpoint moves to another cell that the geometry considered for

display will change. In this way, displaying the entire model is not attempted, only

those cells that are potentially visible from the current viewpoint. This is a good

approach, but only works with axis-aligned architectural models.

6

Durand et al. (2000) give a preprocessing approach similar to Teller and

Séquin’s, but in a more general manner. Their approach also divides the viewing space

into cells, although this processing does not require an architectural model. Using an

occlusion culling technique, preprocessing is performed to calculate the visibility of

polygons from each cell. This visibility is used at the time of rendering to only process

those polygons that were calculated as visible from the cell that contains the viewpoint.

The drawbacks of this approach are that the preprocessing time can be very lengthy, as

the number of cells impacts heavily on the number of calculations needed. In order to

minimize the number of polygons visible from a cell, it is necessary to make the cell

relatively small in size, resulting in a high number of cells. In addition, the viewing

space must be known ahead of time to ensure that all possible viewpoints have a

corresponding cell. This is not acceptable for interactive applications where the user

must be able to change the viewpoint to any location.

The research described here uses a bounding box approach to calculate

visibility. Martin and Stephenson (1988) have investigated the placement of objects in

boxes. Bounding boxes have been used in computer graphics to speed up visibility, ray

tracing, and collision determinations (Iones et al., 1998). They have been used mainly

to speed up intersection detection between entities. Interference or collision between an

object and a view frustum, ray, or other object can first be checked with the bounding

box. There can be no collision with the object if there is no collision with its bounding

box. This saves on the calculation time needed, as collision detection with the box is

simpler, and it eliminates many of the complicated calculations needed to detect

interference between two objects that are not even close to each other. Iones et al.

7

(1998) studied the optimality of using bounding spheres, axis-aligned bounding boxes

(AABBs), and oriented bounding boxes (OBBs) in the applications of frustum culling,

ray shooting, and collision detection. The study found OBBs to be the optimum choice;

however, AABBs are used in the current research. The additional benefit of OBBs over

AABBs is unknown for the current application. OBBs have the benefit of more closely

fitting their parts. However, the calculations using OBBs may use enough processing

time to outweigh this benefit. Research has also been done into the properties of

geometry that fare well in bounding box intersection determination and why the

bounding box technique itself fares so well (Suri et al., 1999; Zhou and Suri, 1999).

Sanna and Montuschi (1995) propose the use of bounding box groups instead of one

single bounding box to increase the performance of the bounding box technique. They

also offer ways to limit the number of bounding boxes surrounding an object while

minimizing the volume enclosed. Kitamura (1998), Zachmann (1997), and Yu et al.

(1996) have used the bounding box in collision detection. They have subdivided the

box so that if a collision is detected between boxes, it is known in which subdivision(s)

the interference occurs. Thus, only polygons within these subdivisions need to be

checked for collision, reducing the collision detection process time dramatically.

2.1. Proposed Work

The current research addresses the display and preprocessing speed problems by

adopting a part visibility method for large assemblies. In large complex assemblies,

many parts may be enclosed or hidden by other parts from every viewing angle, making

their inclusion in rendering unnecessary. This method makes use of bounding boxes in

8

preprocessing to determine the visibility of these parts. Only those parts that are visible

from some viewing angle are included in the rendering of the assembly.

Some of the previously described work has been directed toward the

simplification of models for display. However, this simplification modifies the

geometry, making its use less accurate. The current research makes no modification to

part geometry, it only removes from consideration geometry that is not visible from any

angle. In addition, preprocessing is performed that does not require information about

visibility of geometry from different viewpoints. This means that these algorithms can

be applied to assemblies in different CAD packages without having to rewrite any of the

code used for display, as other preprocessing methods (Teller and Séquin, 1991 and

Durand et al., 2000) would require. The main advantage of this research comes through

the advent of the internet and the world wide web. Bandwidth is a major consideration

in the display of assemblies over the internet. This research first reduces the amount of

geometry by removing all parts not visible from any viewing angle. The reduction of

the amount of geometry will reduce the amount of data that needs to be sent and will

allow these models to be viewed more quickly and easily in a distributed environment.

In order to accomplish this task, the following process is used to determine the

visibility of the parts within an assembly.

1. We first determine the minimum axis-aligned bounding box (AABB) for each

part and reason only with the AABBs, not with the actual geometry of the parts .

This is discussed in Chapter 3.

9

2. We next find the AABBs that are contained in other AABBs. Parts whose

AABBs are contained in other AABBs are candidates for being marked invisible

and are analyzed further. This is discussed in Chapter 4.

3. Next, we determine visibility of the parts whose AABBs are not contained in

other AABBs using a cross-section trace method. This method allows us to

determine which parts can be seen from different viewing angles. This is

discussed in Section 5.1.

4. Finally, we determine the visibility of the parts whose AABBs are contained in

other AABBs. Their visibility is dependent on the visibility of the containing

AABBs’ parts. This is discussed in Section 5.3.

10

3. Finding the Axis-Aligned Bounding Box (AABB)

In this chapter, we describe the methods used to determine the AABB of each

part, which will be used to determine part visibility. The definition of a part is

somewhat arbitrary, as the modeler determines what he wants to use as a part.

However, a part must be geometrically static, meaning that it cannot change in size or

shape throughout its application. An AABB is the minimum surrounding rectangular

parallelepiped whose edges are parallel to the axes of the global coordinate system. An

example of an AABB is shown in Figure 3.1.

Figure 3.1. AABB of a sphere.

To find the AABB for a part, the following procedure is used for each surface of

the part. These surfaces can be of many different types, including tabulated cylinders,

surfaces of revolution, and rational B-spline surfaces.

1. Find the AABBs of the surface’s edges. This gives us an initial basis for

finding the AABB of the surface. This is discussed in Section 3.2.1.

2. Find any interior points of the surfaces that can extend the AABBs of the

edges. To find the AABB of the surface, there may be points within the

surface that lie outside the AABB of the edges. Thus, we need to find these

X
Y

Z

11

points that extend the AABB to encompass the surface. This is discussed in

Section 3.2.2.

3. If needed, we modify the dimensions of the part AABB to account for the

the current surface. More detail is found in Section 3.2.

3.1. IGES specification

We require that CAD models be converted to an Initial Graphics Exchange

Specification (IGES) format before each AABB is determined. IGES is a standard

format that is compatible with many commercial CAD systems.

Conversion to IGES changes each part model from a solid model to a surface

model. A solid model is represented as a solid block, cylinder, or other solid entity with

protrusions, cuts, and rounds added to or subtracted from them. However, surface

models use planes and curved surfaces to describe the exterior of the part. After being

converted to the IGES format, the model becomes a collection of trimmed surfaces. A

trimmed surface is a general surface that is represented by lines and curves that define

its edges. Examples of trimmed surfaces are shown in grey in Figure 3.2.

12

Figure 3.2. Examples of trimmed surfaces in grey.

Each trimmed surface is specified by a general surface description and the

trimming edge that defines the borders of the surface. The general surfaces are either

tabulated cylinders, surfaces of revolution, or rational B-spline surfaces. Each of these

surfaces is defined in detail subsequently. Trimming edges are closed curves composed

of lines, arcs, and rational B-spline curves. The specifications for the trimmed surfaces

of a part are used to determine the AABB.

In doing this translation to IGES, it is necessary that all parts be placed in a

global coordinate system, as the algorithms to be introduced will require that all

AABBs’ coordinate systems be orthogonal to each other. In the modeling of parts, each

part is created in its own local coordinate system, usually the coordinate system that

makes it easy to create the part model. However, when these parts are assembled, even

though each part has its own local coordinate system, there will be only one coordinate

system that pertains to the entire assembly, the global coordinate system. An example

Trimmed Surfaces

General Surfaces

Trimming Edges

13

is shown in Figure 3.3. This is a two-part assembly, with a smaller rectangular block

part placed on the non-orthogonal face of the larger block part. For the smaller block, it

is easiest to create this part in a coordinate system whose axes lie along the block’s

edges. When the smaller block is placed in its position in the assembly, its local

coordinate system occurs at (u, v, w). However, the global coordinate system for this

assembly is (X, Y, Z). Therefore, the specifications for the geometry of the block will

use the (X, Y, Z) coordinate system. In addition, the algorithms will determine the

AABBs in the (X, Y, Z) coordinate system as well. Since the smaller block is not

orthogonal with the global coordinate system, its AABB (shown in Figure 3.3) does not

have the same dimensions as the rectangular block itself. Since the algorithms require

that the global coordinate system be used, an empty volume in the AABBs results for

those parts that are of a unique shape or are not oriented orthogonal to the global

coordinate axes. This empty volume can affect accuracy, with more empty volume

resulting in less accurate results; that is, in the algorithm incorrectly marking an AABB

invisible when it should be visible and vice versa. There are ways to mitigate these

effects and they are also discussed. However, the problem of empty volume cannot be

completely eliminated.

14

Figure 3.3. An example of local and global coordinate systems.

3.2. AABB Determination Algorithm

The AABB determination algorithm calculates in the global coordinate system

the bounds of the AABB of a part. These bounds consist of the minimum and

maximum coordinates in the three orthogonal directions that are encountered among all

geometric points in the part. The flow chart of the algorithm, which is given in Figure

3.4, is now described.

Z

Y

X

w u

v

AABB of the smaller block

15

E n d

A d ju s t b o u n d s fo r
tr im m e d s u r fa c e

T r im m e d
s u r fa c e

A n y m o r e
tr im m e d
s u r fa c e s ?

S ta r t

C h e c k
e d g e

L in e ? A rc ?

M in /M a x fro m
e n d p o in ts

M in /M a x f ro m
tra n s fo rm a tio n
m a t r ix a n d a rc

M in /M a x f ro m
c o n t ro l p o in ts o f
ra t io n a l B -s p l in e

R e c o rd b o u n d s a s
tr im m e d s u r fa c e

b o u n d s

A d ju s t b o u n d s fo r
tr im m e d s u r fa c e

F ir s t e d g e ?B o u n d s
e x c e e d e d ?

A n y m o r e
e d g e s ?

Y e s

Y e sY e s

N oN o

Y e s

N oN o

N o

Y e s

S u r fa c e o f
re v o lu t io n

R e v o lv e d
e n t i t y a

l in e ?

B -s p l in e
s u r fa c e

f la t?

B o u n d s
e x c e e d e d ?

C h e c k s u r fa c e
in te r io r

Y e s

Y e s

N o

N o

N o

Y e s

N o

Y e s

Y e s

N o

T a b u la te d
C y lin d e r?

Y e s

N o

Figure 3.4. AABB Determination Algorithm Flow Chart.

First, the algorithm determines the AABB of a trimmed surface. Then the next

trimmed surface is retrieved and its AABB is calculated. The values of the previous

box’s bounds are adjusted so that the new bounds contain both boxes. This simply

entails comparing, for each orthogonal direction, the two maximum bounds and taking

the larger of the two as the new maximum bound. Similarly, the lower bounds for each

direction are compared and the lower of the two values is used as the new minimum

16

bound for the direction. This is repeated for all trimmed surfaces until the size of the

final box is obtained. The final box is then the AABB of the part. The pseudo code for

the above algorithm is given in Table 3.1.

Table 3.1. Pseudo code for AABB
determination

Start with a trimmed surface S1
Determine AABB bounds C1 for S1
AABB = C1
for j = 2 to N

Take Sj
Determine Cj for Sj
AABB = extreme(Cj, AABB)

endfor

The AABB of a trimmed surface is found in two steps. First, the AABB for the

trimming edge is found. Then, for certain types of surfaces the AABB is adjusted based

on the interior points of the trimmed surface. AABBs are determined by finding the

coordinates of critical points such as vertices and the maxima and minima of curves and

surfaces.

3.2.1. AABB of the Trimming Edge

The trimming edge of a surface is a closed curve consisting of line, arc, and

rational B-spline curve entities. The approach to finding the AABB is much the same

as that of Table 3.1, but instead of surfaces, edge entities are used. An AABB is found

for the first entity, then this AABB is expanded, if necessary, to enclose the AABB for

each subsequent entity. These AABBs are found by finding those points of the entities

that have the minimum or maximum coordinate in the three orthogonal axial directions.

17

AABB of a Line

The minimum AABB of a line is determined as a box with the line’s two

endpoints at opposite corners as shown in Figure 3.5. Since the minimum AABB is

determined by the maximum and minimum coordinates in the three orthogonal

directions, this occurs at the endpoints of the line.

Figure 3.5. Minimum AABB of a line.

AABB of an Arc

An arc in IGES is specified by two components. The first is a 2-D

representation of the arc that is parallel to the X-Y plane of the global coordinate system.

This 2-D representation is geometrically congruent to the actual arc in 3-D space. The

2-D representation is specified by the (x, y) coordinates of the center, start, and

terminate points as shown in Figure 3.6, and a displacement from the X-Y plane (the z-

value).

The second component is a transformation matrix that rotates and translates this

arc to its actual place in 3-D space, shown in Figure 3.7. The values xc, yc, xs, ys. xt, and

yt in Figure 3.6, when transformed, could be different from the coordinates of the

corresponding points, and thus do not appear in Figure 3.7. The transformation matrix

R is specified by:

X

Y

Z

18














=

1000
3333231

2232221

1131211

TRRR

TRRR

TRRR

R

where Rij are the coefficients that rotate the configuration about an axis through the

origin. The coefficients Tj are the translation factors. They translate the rotated

configuration to its desired location. The transformation matrix transforms a point (xi,

yi, zi) on the 2-D arc to another point (xo, yo, zo) on the 3-D arc by the following matrix

multiplication














=





























111000
3333231

2232221

1131211

o

o

o

i

i

i

z

y

x

z

y

x

TRRR

TRRR

TRRR

(1)

Figure 3.6. 2-D representation of an arc in IGES

Start (xs, ys, zi)

Terminate (xt, yt, zi)

Center (xc, yc, zi)

X

Y

(xi, yi, zi)

19

Figure 3.7. Arc (blue) in 3-dimensional space. Arc AABB is in red.

The minimum and maximum values of xo, yo, and zo determine the bounds of the

AABB of the arc in its oriented position in space. We first use the endpoints of this arc

as initial values for the bounds, as they often do turn out to be AABB determination

points. Thus, we use the start and terminate points as (xi, yi, zi).

It is now necessary to compute any interior points on the arc that may require

the bounds of the AABB to be expanded. We consider first the equation for xo; the

equations for yo and zo will be similar. Thus, from Equation (1)

1131211 TzRyRxRx iiio +++= (2)

The only values of this equation that will change along the arc are xi and yi. We

require the minimum and maximum of

() iiioii yRxRTzRxyxf 1211113, +=−−=

X

Y

Z

Center

(xo, yo, zo)

Arc projection on
the XY plane

AABB determining
points

20

If we let ici rxx θcos+= and ici ryy θsin+= , where θi is the angle with

respect to the positive X-axis and r is the radius of the arc, then this expression becomes

() ()iiccii RRryRxRrf θθθ sincos, 12111211 +++=

To find the minimum and maximum, we determine the values of θi that satisfy

() 0cossin 1211 =+−= ii
i

RRr
d

df θθθ
Therefore,

11

12tan
R

R
i =θ (3)

This gives two points on the circle of the arc with corresponding angles that

have tangents equal to R12 / R11. One will give the minimum and the other the

maximum value for xo on the circle. However, these points may not actually lie on the

arc. To determine this, we calculate the angles that correspond to the start and end

points of the arc. To find θs, we have the equations scs rxx θcos+= and

scs ryy θsin+= . This gives

r

xx cs
s

−=θcos and
r

yy cs
s

−=θsin

Thus,

cs

cs
s xx

yy

−
−= −1tanθ .

Similarly, we find θt from

ct

ct
t xx

yy

−
−= −1tanθ

21

Thus, we determine each value of θi that satisfies Equation (3) to see if θs <θi

<θt, which means that the point corresponding to θi lies on the arc. If one, or both, of

these values does satisfy this requirement, then the corresponding point(s) causes the

bounds of the AABB to be expanded past those determined by the endpoints. We thus

use the relations ici rxx θcos+= and ici ryy θsin+= and Equation (2) to find the value

of xo and the bounds of the box in the X -direction are adjusted accordingly. Similarly,

the minimum and maximum values for yo and zo are obtained when

21

22tan
R

R
i =θ

and

31

32tan
R

R
i =θ

respectively. Thus, we take the corresponding values of θi to check if these are on the

arc, and if so, we adjust the bounds accordingly.

AABB of a Rational B-spline Curve

General curves are represented as rational B-spline curves. These curves are

obtained by applying a smoothing function to sets of ordered control points as shown in

Figure 3.8.

22

Figure 3.8. Rational B-spline curve (blue) and control points, Pi. Curve’s AABB in red.

In determining the points on the curve, a parametric value of t is used. In most

CAD systems, 0 ≤ t ≤ 1. This parametric value is used to create a one-to-one mapping

of t in the interval [0, 1] to the points on the curve, with t = 0 mapping to the first

endpoint, and t = 1 mapping to the last endpoint. The curve is calculated as a function

G(t), which is given in the IGES 4.0 Specification (1988) by

() ()
() ()

() ()∑
∑

=

==
K

i

M
ii

K

i

M
iii

M

tbW

tbPW
tG

0

0 (4)

where M is the order of the curve, K is the number of control points minus 1, Wi are the

weights of each point, Pi are the control points (xi, yi, zi), and () ()tb M
i is an Mth-degree

function determined by a knot sequence in t. The non-decreasing knot sequence in t is

() () ()11 ,,, ++−− KMM ttt … . In the knot sequence, () () 01 ttt MM === +−− … and

P1(x1, y1, z1)

t = 0

t = 0.3

t = 0.7

X

Y

Z

P0 (x0, y0, z0)

t = 1

P2(x2, y2, z2)

P3(x3, y3, z3)

23

() () ()121 ++−+− === KMKMK ttt … . In many commercial CAD systems, 1=iW ,

Ki ,,1,0 …= . The function () ()tb k
i is a recursive function of degree k and is defined as

follows:

() ()
otherwise0

1 1
0

=
<≤= +iii ttttb

Ki ,,1,0 …= (5)

() () () () () ()tb
tt

tt
tb

tt

tt
tb k

i
kii

ik
i

kii

kik
i

1

11

11
1

−

+−+

+−
−

−
−

−
−

+−
−

=
…
…

,3,2,1

,,1,0

=
=

k

Ki
(6)

These functions have the property that

() () …,2,1,01
0

==∑
=

ktb
K

i

k
i

Thus, the curve function reduces to

() () () ()∑
=

=
K

i

M
ii

M tbPtG
0

Using these equations, algebraic expressions for the locations of the minima and

maxima for first to third-order rational B-spline curves are determined.

AABB of a first-degree curve

First we determine the function ()1
ib . From Equation (6), we have

() () () () () () Kitb
tt

tt
tb

tt

tt
tb i

ii

i
i

ii

i
i ,,1,00

1

10
1

1

11 …=−
−

+−
−

=
+

+
−

−
−

or

24

() ()

Kittt
tt

tt

ttt
tt

tt
tb

ii
ii

i

ii
ii

i
i

,,1,0

otherwise0

1
1

1

1
1

11

…=

=

<≤−
−

=

<≤−
−

=

+
+

+

−
−
−

Thus, the B-spline curve function reduces to

() () 1,,1,0,1
1

1
1

11 −=<≤





−
−

+





−
−

= +
+

+
+

+ Kittt
tt

tt
P

tt

tt
PtG ii

ii

i
i

ii

i
i …

This equation results in a straight line from one control point to another, and the

minimum and maximum points will be control points. Therefore, it is only necessary to

examine the control points to determine the AABB.

AABB of a second-degree curve

In this case, Equation (6) becomes

() () () () () () Kitb
tt

tt
tb

tt

tt
tb i

ii

i
i

ii

i
i ,,1,01

11

11
1

2

22 …=−
−

+−
−

=
−+

+
−

−
−

or

() ()

1,,1,0

otherwise0

1
1

1

11

1

1
1

1

11

1

12

2

12
21

2

2

22

−=

=

<≤





−
−







−
−

=

<≤





−
−







−
−

+





−
−







−
−

=

<≤





−
−







−
−=

+
+

+

−+

+

−
−
−

−+

+

−−
−

−−
−−

−
−
−

Ki

ttt
tt

tt

tt

tt

ttt
tt

tt

tt

tt

tt

tt

tt

tt

ttt
tt

tt

tt

tt
tb

ii
ii

i

ii

i

ii
ii

i

ii

i

ii

i

ii

i

ii
ii

i

ii

i
i

…

The curve equation then reduces to

25

() ()







−
−







−
−

+









−
−







−
−

+





−
−







−
−

+





−
−







−
−

=

++
+

++

+

+

+

−+

−
+

+

+

−+

+

ii

i

ii

i
i

ii

i

ii

i

ii

i

ii

i
i

ii

i

ii

i
i

tt

tt

tt

tt
P

tt

tt

tt

tt

tt

tt

tt

tt
P

tt

tt

tt

tt
PtG

12
2

12

2

1

1

11

1
1

1

1

11

12

2,,1,0
1

−=
<≤ +

Ki

ttt ii

…

To find the minimum and maximum, we set the derivative of G(2)(t) with respect

to t to zero. Thus,

()

02

22
2

1

2
2

2

2

11

11
1

11

1

1

=








−
−

+









−
−+

+





−
−+

+









−
−−





−=

+
+

+

+

−+

−+
+

−+

+

+

ii

i
i

ii

ii

ii

ii
i

ii

i
i

ii

tt

tt
P

tt

ttt

tt

ttt
P

tt

tt
P

ttdt

tdG

Upon solving for t, we obtain the following expression for the extrema, ti,ext.

() ()() ()()[] ()
()() ()()[]

2,,1,0

2

22

111221

112211112121
,

−=
−−+−−

−++−++−−−
=

−+++++

−+++−+−+++++

Ki

ttPPttPP

tttPttttttttPtttP
t

iiiiiiii

iiiiiiiiiiiiiiiii
exti

…

Substituting in the values of the xi, yi, and zi coordinates of the control points Pi, we

obtain three values for text for each value of i:

() ()() ()()[] ()
()() ()()[]

2,,1,0

2

22

111221

112211112121
,

−=
−−+−−

−++−++−−−
=

−+++++

−+++−+−+++++

Ki

ttxxttxx

tttxttttttttxtttx
t

iiiiiiii

iiiiiiiiiiiiiiiii
extxi

…

() ()() ()()[] ()
()() ()()[]

2,,1,0

2

22

111221

112211112121
,

−=
−−+−−

−++−++−−−
=

−+++++

−+++−+−+++++

Ki

ttyyttyy

tttyttttttttyttty
t

iiiiiiii

iiiiiiiiiiiiiiiii
extyi

…

() ()() ()()[] ()
()() ()()[]

2,,1,0

2

22

111221

112211112121
,

−=
−−+−−

−++−++−−−
=

−+++++

−+++−+−+++++

Ki

ttzzttzz

tttzttttttttztttz
t

iiiiiiii

iiiiiiiiiiiiiiiii
extzi

…

26

Since each value of i gives a different equation for its respective portion of the

curve G(2)(t), the three values txi,ext, tyi,ext, and tzi,ext correspond to the local minima or

maxima of a curve that is represented by this equation for all values of t. However, the

equation for G(2)(t) is only valid on the interval 1+<≤ ii ttt . Thus, we only consider

those values of txi,ext, tyi,ext, and tzi,ext that are within this interval, as only these

correspond to actual minima and maxima of the spline curve. For all of these valid

values of t, we evaluate the points that correspond to those values through the equation

G(2)(t). The bounds of the AABB for the second-degree curve are determined as the

minimum and maximum x, y, and z coordinates of all of these points and the curve

endpoints.

AABB of a third-degree curve

For this case, Equation (6) gives

() () () () () () Kitb
tt

tt
tb

tt

tt
tb i

ii

i
i

ii

i
i ,,1,02

21

12
1

3

33 …=−
−

+−
−

=
−+

+
−

−
−

or

27

() ()

2,,1,0

otherwise0

1
1

1

11

1

21

1

1
1

1

11

1

12

2

21

1

123

3

12
21

2

2

2

21

1

21

2

221

1

31

3

3

3

23
32

3

31

3

3

33

−=
=

<≤





−
−







−
−







−
−

=

<≤











−
−







−
−

+





−
−







−
−







−
−

+





−
−







−
−







−
−

=

<≤





−
−







−
−







−
−

+











−
−







−
−

+





−
−







−
−







−
−

=

<≤





−
−







−
−







−
−

=

+
+

+

−+

+

−+

+

−
−
−

−+

+

−−
−

−+

+

−−−
−

−−
−−

−
−
−

−+

+

−−
−

−−−
−

−−
−

−
−

−−
−−

−
−−

−
−
−

Ki

ttt
tt

tt

tt

tt

tt

tt

ttt
tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

ttt
tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

ttt
tt

tt

tt

tt

tt

tt
tb

ii
ii

i

ii

i

ii

i

ii
ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii
ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii
ii

i

ii

i

ii

i
i

…

The equation for G(3)(t) then reduces to

() ()

Kittt
tt

tt

tt

tt

tt

tt
P

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt
P

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt
P

tt

tt

tt

tt

tt

tt
PtG

ii
ii

i

ii

i

ii

i
i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i
i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i
i

ii

i

ii

i

ii

i
i

<≤<≤





−
−







−
−







−
−

+








−
−







−
−







−
−

+













−
−







−
−

+





−
−







−
−







−
−

+












−
−







−
−

+





−
−







−
−







−
−

+









−
−







−
−







−
−

+





−
−







−
−







−
−

=

+
+++

+

+++

+

++

+

+

+

−+

−
−+

−
+

++

+

+

+

−+

−
−+

+

+

+

−+

+

−+

−
+

+

+

−+

+

−+

+

0,1
123

3

123

3

12

2

1

1

11

1

12

1
2

12

2

1

1

11

1

12

2

1

1

11

1

21

2
1

1

1

11

1

21

13

28

Again we set the derivative of this equation to zero to determine the maxima and
minima. Thus,

() ()

()
()()

()()

2,,1,0,03

)(23

3232

23

3232

3
1

1
23

3

212

11121212
2

2

3

311

11

12

1
2

1112

111212112
2

2

2

12

2

11

21

21

1
1

11

1

21

1

1

3

−=<≤=






−
−







−
−

+


−−
−−−+++−

+








−
−+







−
−

+





−
−+







−
−

+


−−
+++++−

+








−
−+







−
−

+





−
−+







−
−

+
 





−
−







−
−−





−=

+
++

+

+−+

−+−+++−+

+

+

+−+

−+

−+

−
+

−+−+

−+−+++−++

+

+

−+

+

−+

−+

−+

+
+

−+

+

−+

+

+

Kittt
tt

tt

tt

tt
P

tttt

ttttttttttt

tt

ttt

tt

tt

tt

ttt

tt

tt
P

tttt

ttttttttttt

tt

ttt

tt

tt

tt

ttt

tt

tt
P

tt

tt

tt

tt
P

ttdt

tdG

ii
ii

i

ii

i
i

iiii

iiiiiiiii

ii

ii

ii

i

ii

ii

ii

i
i

iiii

iiiiiiiii

ii

ii

ii

i

ii

ii

ii

i
i

ii

i

ii

i
i

ii

…

which results in an equation of the form

2,,1,002 −==++ KiCtBtA iii …

where

()()()()
() ()()() ()()()[]
()()()()11211223

11213221321

21231

3

3

3

−+−+−+++

−+−+++−++++

+−+++

−−−−
+−−−+−−−−

+−−−−=

iiiiiiii

iiiiiiiiiiiiii

iiiiiiiii

ttttttPP

ttttttttttttPP

ttttttPPA

()[]()()()
() ()[]()()()

() ()[]()()()
()[]()()()112112332

22131121121

1121312221

21232111

642

422

224

246

−+−+−++++

+−++−++−+++

−+−++−++++

+−++−+++

−−−−+
+−−−++++−

+−−−++++−
+−−−+−=

iiiiiiiiiii

iiiiiiiiiiiii

iiiiiiiiiiiii

iiiiiiiiiiii

tttttttPttP

ttttttttPtttP

tttttttttPttP

ttttttttPtPB

()[]()()()
() ()[]()()()

() ()[]()()()
()[]2

332

221311121112121

112131112122221

21232111
2

1

32

2

2

23

iiiiii

iiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiii

iiiiiiiiiiiii

tPtttP

tttttttttPttttttP

ttttttttttttPtttP

tttttttttPtPC

+++

+−++−+−+−+−++++

−+−++−+−+++++++

+−++−++++

++−
+−−−+−++
+−−−++−+

+−−−++−=

Thus, two values are found:

29

i

iiii
exti A

CABB
t

2

42

,1

−+−
= and 2,,1,0

2

42

,2 −=
−−−

= Ki
A

CABB
t

i

iiii
exti …

These values are candidate values of t that correspond to maximum and minimum

points of a curve given by the equation for the ith section of the spline curve. However,

only those points within the interval, 1, +<≤ iextii ttt are actual local maximum and

minimum points of the spline curve. Therefore, we evaluate the actual coordinates of

the points that correspond to these values of ti,ext with the curve equation. We then take

the minimum and maximum x, y, and z coordinates of all of these points and the

endpoints of the curve as the bounds of the AABB.

3.2.2. Examination of a surface’s interior

After the AABB of the trimming edge is found, it is necessary to examine the

interior of the trimming surface for extreme points that may lie outside the bounds of

the current AABB. There are three different types of surfaces that are usually exported

in IGES format: tabulated cylinder, surface of revolution, and rational B-spline surface.

The examination of the interiors of these surfaces is now described.

Tabulated cylinders

Tabulated cylinders are surfaces formed by sweeping a line segment called the

generatrix parallel to itself along a curve. Such a surface is shown in Figure 3.9, along

with a trimming edge on that surface. It will be shown that the AABB of this surface is

the same as the AABB of the trimming edges.

30

Figure 3.9. Trimmed surface of a tabulated cylinder. AABB is in red.

Referring to Figure 3.9, we take any point P in the interior of the trimmed

surface. We then draw a line segment AB through P that is parallel to the generatrix of

the tabulated cylinder. AB intersects the trimming edge at points A′ and B′. Thus, P is

also on segment BA ′′ . Since P is on this segment, it follows that it is contained in the

AABB of this segment. Since the AABB of a line segment has the endpoints of the

segment on opposite corners, we can deduce that one possible AABB containing P has

A′ and B′ as its opposite corners. Because A′ and B′ are points on the trimming edge,

this AABB is contained in the AABB of the trimming edge, which means that the point

P is contained in the AABB of the trimming edge. Thus, it is unnecessary to examine

the interior of a tabulated cylinder, as all points in the interior are contained in the

AABB of the trimming edge.

A

B

A′

B′

Generatrix

Curve

P

Trimmed Surface

Trimming EdgeTabulated Cylinder

Y

Z

X

31

Surfaces of Revolution

Surfaces of revolution are surfaces formed by revolving a line segment, arc, or

curve around an axis line. Finding the interior of the surface is handled differently for

each of these cases.

Revolution of a line: It will be shown that the AABB of a surface generated by a

revolved line is the same as the AABB of the trimming edge.

Figure 3.10. Trimmed Surface on a Surface of Revolution of a Line.

Referring to Figure 3.10 we take a point P in the interior of the trimmed surface.

We then draw line segment AB through P that coincides with the revolved line as it

passes through point P. AB intersects the trimming edge at points A′ and B′. Thus, P is

also on segment BA ′′ . Since P is on this segment, it follows that it is contained in the

AABB of this segment. Since the AABB of a line segment has the endpoints of the

segment on opposite corners, we can deduce that one possible AABB containing P has

Axis

Revolved
Line

B
B′

A′
A

P

Surface of
Revolution

Trimmed
Surface

Trimming
Edge

Y

Z

X

32

A′ and B′ as its opposite corners. Because A′ and B′ are points on the trimming edge,

this AABB is contained in the AABB of the trimming edge, which means that the point

P is contained in the AABB of the trimming edge. Therefore, it is unnecessary to

examine the interior of the surface formed by the revolution of a line, as all points in the

interior are contained in the AABB of the trimming edge.

Revolution of an arc: The revolution of an arc can create points that exceed the bounds

of the trimming edge of a surface. It is, thus, necessary to find these points in order to

calculate the AABB of the trimmed surface. The trimmed surface of revolution of an

arc requires several entities. We start with the specification of a 2-D representation of

an arc and its transformation matrix, given by Equation (1). The line that represents the

revolution axis is given by its two endpoints. The trimming edges are specified in two

forms. The first form is the actual representation of the edge in 3-dimensional space.

However, a second representation of the edges is given in a plane in which one

coordinate represents the angle of the position of a point on the arc, and the other

represents the angles through which this point is revolved. The arc’s angle represents

the angles along the arc in its 2-D representation before it is transformed into 3-D space.

The angle of revolution is measured by specifying the original arc as the point of 0°

revolution. Positive revolution occurs counter-clockwise when looking along the axis

from the axis’s second endpoint to its first endpoint. An example of the two

representations is shown in Figure 3.11. The figure gives the representations of two

different trimmed surfaces that are generated from the revolution of the same arc. The

first is represented by a bold trimming edge, the second by darker shading. In both arcs,

33

all of the points on the arc between the arc angles of –45° and 45° are revolved. In the

2-D representation, the first surface has a rectangular trimming edge; the second has a

triangular trimming edge. Because the trimming edge for the first surface is

rectangular, each of the points on the arc, including point P, is revolved from an angle

of -60° to 0°. However, for the second surface, the angles of revolution vary according

to the location of the point on the arc. For example, the point P is revolved from -60° to

-45°. The 3-D representation shows what these surfaces look like in three-dimensional

space. We use this 2-D representation to determine the domain in which to search to

find extreme points for the bounds of the AABB.

34

Figure 3.11. Rotated arc’s (a) 2-D and (b) 3-D representations.

Consider a point on the revolved arc, which is associated with an angle

measured on the revolved arc. The revolution of this point also forms an arc called the

rotation arc. Consider this point as the 0° point on the circle containing the rotation arc.

The arc’s endpoints are given by the trimming edge. Determining the AABB of the

rotation arc then gives an AABB based on the revolved arc angle. The extremes of this

φ (Arc angle)

θ (Angle of
rotation)0°

45°

– 45°

– 60°
P

– 45°

(a)

L1 (x1, y1, z1)

Axis of revolution

Revolved arc

Rotation
θend = 0°

Rotation
θstart = – 60°

φ = 0° Arc angle

φ = 45° Arc

L2 (x2, y2, z2)

φ = – 45° Arc angle

P (xp, yp, zp)

C (xc, yc, zc)

Rotation arc

(b)

θ Radius r (distance
from C to P)

X

YZ

35

function are then found using a binary search method to find the AABB of the entire

trimmed surface.

To determine the AABB of the rotation arc, it is first necessary to find the center

of the arc. IGES specifies the point on the revolved arc, P (xp, yp, zp), and the endpoints

L1 (x1, y1, z1), and L2 (x2, y2, z2) of the revolution axis. Using C(xc, yc, zc) as the center of

rotation, the vector PC must be perpendicular to the vector 21LL , or

()() ()() ()() 0121212 =−−+−−+−− zzzzyyyyxxxx pcpcpc (7)

In addition, C must be on the line 21LL . Thus, C satisfies

()121 xxexxc −+=
()121 yyeyyc −+=
()121 zzezzc −+=

(8)

where e is a value to be determined. Let 12 xxd x −= , 12 yyd y −= , and 12 zzd z −= .

Then Equation (7) becomes

() () () 0111 =+−++−++− zzpyypxxp dedzzdedyydedxx

Solving for e, we obtain

() () ()
222

111

zyx

zpypxp

ddd

dzzdyydxx
e

++
−+−+−

= (9)

With this value of e, we can find the coordinates of C using Equation (8). The radius r

of this arc is simply the distance between the points C and P, and is given by

() () ()222
pcpcpc zzyyxxr −+−+−= (10)

To find the AABB of the rotation arc, we formulate a 2-D representation of the

arc and a transformation matrix to translate it into 3-Dimensional space. The 2-D

36

representation is constructed by setting the arc’s z-value to 0 with the point (0, 0) its

center. The beginning and end rotation angles from the 2-D representation of the

trimming edge are used as the start and end angles of the rotation arc; θstart and θend,

respectively. The start and end points then have the coordinates

()startstart rr θθ sin,cos (11)

and

()endend rr θθ sin,cos (12)

respectively, where r is the radius of the arc.

The transformation matrix transforms the point (0, 0, 0) to the point C (xc, yc, zc)

and the 0° point (r, 0, 0) to the point P (xp, yp, zp). A third point out of plane is also

needed to orient this coordinate system, so we also require the point (0, 0, 1) to translate

to a point 1 unit away from C along the axis line toward the point L2. We use Equation

(1) as the way we translate these points. The translation of point (0, 0, 0) results in














=















11
3

2

1

c

c

c

z

y

x

T

T

T

(13)

Equation (13) gives the values of the translation terms of the transformation matrix in

Equation (1). The transformation of the 0° point, (r,0,0), is














=















+
+
+

11
31

21

11

p

p

p

c

c

c

z

y

x

zrR

yrR

xrR

Therefore,

37

r

zz
R

r

yy
R

r

xx
R

cp

cp

cp

−
=

−
=

−
=

31

21

11

To find the point a unit distance away from C toward L2, we find the unit vector

from L1 to L2. This is then added to the coordinates of C. We, thus, obtain the

following equation that translates (0, 0, 1) to this point:





















++
+

++
+

++
+

=

















+

+

+

1

1 222

222

222

33

23

13

zyx

z
c

zyx

y
c

zyx

x
c

c

c

c

ddd

d
z

ddd

d
y

ddd

d
x

zR

yR

xR

Therefore,

22233

22223

22213

zyx

z

zyx

y

zyx

x

ddd

d
R

ddd

d
R

ddd

d
R

++
=

++
=

++
=

Now we must find the values of R12, R22, and R32. In order to do so, we use the fact that

the vector [R12 R22 R32] is the cross-product of the vectors [R13 R23 R33] and [R11 R21

R31]. Thus, we get

38

() ()

() ()

() ()
2222311211332

2223113331122

2223321312312

zyx

cpycpx

zyx

cpxcpz

zyx

cpzcpy

dddr

xxdyyd
RRRRR

dddr

zzdxxd
RRRRR

dddr

yydzzd
RRRRR

++

−−−
=−=

++

−−−
=−=

++

−−−
=−=

Then, the transformation matrix becomes

[]

() ()

() ()

() ()





















++++

−−−−
++++

−−−−
++++

−−−−

=

1000

222222

222222

222222

c

zyx

z

zyx

cpycpxcp

c

zyx

y

zyx

cpxcpzcp

c

zyx

x

zyx

cpzcpycp

z
ddd

d

dddr

xxdyyd

r

zz

y
ddd

d

dddr

zzdxxd

r

yy

x
ddd

d

dddr

yydzzd

r

xx

T (14)

With this transformation matrix, the AABB of the rotation arc can be found using the

methods used to find the AABB of an arc, given in Section 3.2.1

Specifying a revolved arc angle results in a specific point being revolved. This

revolution results in a specific rotation arc for which the bounds of its AABB can be

found. Thus, the bounds of the rotation arc AABB are a function of the revolved arc

angle. To find the AABB of the surface, the minimum and maximum bounds of all of

these rotation arcs’ AABBs must be found. This is done using a binary search

algorithm, which is applied twice for each of the three orthogonal directions, once to

find the minimum and once to find the maximum of the function over a certain interval.

To implement this algorithm, consider the function y = f(x) where we wish to

find the maximum f(x) on the interval xstart ≤ x ≤ xend. First, a fixed number n of

39

uniformly distributed subintervals is used to determine the intervals between the xstart

and xend: ∆x = (xend – xstart) / n. The following pseudocode describes the algorithm.

Table 3.2. Pseudocode for determining the maximum of
f(x) on the interval xxtart ≤ x ≤ xend

∆x = (xend - xstart) / n
ymax = f(xstart)
xc = xstart

if f(xend) > ymax

ymax = f(xend)
xc = xend

endif
for i = 1 to n – 1

x = xstart + i * ∆x
if f(x) > ymax

ymax = f(x)
xc = x

endif
endfor
for i = 1 to Niter

∆x = ∆x / 2
if f(xc + ∆x) > ymax .and. f(xc + ∆x) > f(xc - ∆x)

ymax = f(xc + ∆x)
xc = xc + ∆x

elseif f(xc - ∆x) > ymax .and. f(xc - ∆x) > f(xc + ∆x)
ymax = f(xc - ∆x)
xc = xc - ∆x

endif
endfor

The resulting value ymax is approximately the maximum value of the function over the

specified interval. The number of intervals and iterations ultimately determines its

accuracy. The value of xc is accurate within [(xend – xstart) / n] / iterN2 . To find the

minimum of a function, we modify the pseudocode given above as shown below.

40

Table 3.3. Pseudocode for determining the minimum of
f(x) on the interval xxtart ≤ x ≤ xend

∆x = (xend - xstart) / n
ymin = f(xmin)
xc = xstart

if f(xend) < ymin

ymin = f(xend)
xc = xend

endif
for i = 1 to n – 1

x = xstart + i * ∆x
if f(x) < ymin

ymin = f(x)
xc = x

endif
endfor
for i = 1 to Niter

∆x = ∆x / 2
if f(xc + ∆x) < ymin .and. f(xc + ∆x) < f(xc - ∆x)

ymin = f(xc + ∆x)
xc = xc + ∆x

elseif f(xc - ∆x) < ymin .and. f(xc - ∆x) < f(xc + ∆x)
ymin = f(xc - ∆x)
xc = xc - ∆x

endif
endfor

To find the AABB of the surface, we apply the binary search algorithm to find

the minimum and maximum bounds of the AABBs of all the rotation arcs. Because

these AABBs are a function of the arc angle, we will be using θ to find the minimum or

maximum bounds. This determination can be separated into six different functions: one

for the minimum and one for the maximum of each of the X, Y, and Z directions. Each

of these angles is found separately, using θ for x. The range of θ is found by taking the

minimum and maximum values of the arc angle from the 2-D representation for the

trimming edge. Thus, six angles will be found: θxmin, θxmax, θymin, θymax, θzmin, and θzmax.

Each of these angles represents a point on the revolved arc that, when rotated, will yield

41

on its rotation arc the point on the surface with the maximum or minimum coordinate in

the x, y, or z direction.

Revolution of a B-spline curve: The method used to find the AABB of the trimmed

surface of revolution of a B-spline curve is similar to that of the revolution of an arc.

As discussed previously, the rational B-spline curve is expressed as a function of the

control points and a parameter t. The axis line is given by its two endpoints. The

trimming edge is also given in 2-D and 3-D representations. The 3-dimensional

representation is the actual trimming edge in 3-D space. The 2-D representation is very

similar to the 2-D representation of the revolved arc. One coordinate represents the

parameter t corresponding to the points on the curve, and the other represents the angles

through which each point is revolved. An example of the two representations is shown

in Figure 3.12. The 2-D representation shows that the part of the curve represented by t

from 0.25 to 0.75 that are revolved with angles from -60° to 0°. The 3-D representation

shows the entire B-spline curve and the portion corresponding to the t values from 0.25

to 0.75 that are revolved 60° clockwise around the axis line.

42

Figure 3.12. Rotated B-spline curve: (a) 2-D representation; and (b) 3-D representation.

The AABB of the trimmed surface is found in a manner similar to that of the

revolved arc. Each point on the spline curve to be revolved corresponds to a value of t.

Given a value of t, the corresponding point P (xp, yp, zp) on the curve can be found using

the curve equation, Equation (4). With the point P and endpoints L1 (x1, y1, z1), and L2

(x2, y2, z2) of the revolution axis, the center of the rotation arc C (xc, yc, zc) is found using

Equations (8) and (9). Equation (10) determines the radius r of the arc. We now

t

θ (Angle of rotation)0

0.75

0.25

-90°

P (xp, yp, zp)

(a)

Rotation
θstart = -90°

(b)

Axis of revolution

Revolved
curve

Rotation
θend = 0°

t = 0.25
t = 0

t = 0.75

t = 1

P (xp, yp, zp)

L1 (x1, y1, z1)

L2 (x2, y2, z2)

C (xc, yc, zc)

θ

X

YZ

43

construct a 2-D representation of the arc, along with a transformation matrix. The

starting and ending angles, θstart and θend, are obtained from the 2-D representation of

the trimming edge. Thus, for the 2-D representation, the center given by coordinates

(0,0,0), and the start and end points are given by Equation (11) and Equation (12),

respectively. The transformation matrix is determined by Equation (14). The AABB of

the rotation arc can now be determined from the 2-D representation and the

transformation matrix. A binary search, almost identical to that used to find the AABB

of the revolved arc, is employed to determine the bounds for the trimmed surface. The

AABB of the revolved arc is now a function of t, since t determines a point on the curve

that, when revolved, gives a rotation arc. Thus, we perform six binary searches for the

six values of t that result in the minimum or maximum values for bounds in the X, Y,

and Z directions will be found. We then compare these bounds with those found for the

AABB of the trimming edge of the surface. If the minimum bounds are lesser in value

than those of the trimming edge’s AABB, then we make the minimum bounds found in

the binary search the new bound for the entire surface. The same process is used to

determine the maximum bounds.

Rational B-Spline Surfaces

All surfaces not given as tabulated cylinders or surfaces of revolution are

represented as rational B-spline surfaces, including planar surfaces. Planar surfaces are

first degree surfaces and are dealt with separately. All higher-degree surfaces are

determined by applying a smoothing function to arrays of control points. An example

44

of a rational B-spline surface is shown in Figure 3.13. We will now give the details for

examining the interior of the trimmed surfaces of rational B-spline surfaces for extrema.

Figure 3.13. Rational B-Spline surface and its control points.

Planar Surfaces: We will show that all interior points of a plane are contained in the

AABB of the edges of that plane and, therefore, there is no need to check for interior

extrema points.

Take any point P in the surface as shown in Figure 3.14. Draw a line through P

that lies on the plane. This line intersects the trimming edge, which is a closed curve, at

points A and B. Since P is a point on the line segment AB , it is located in the AABB

that uses points A and B as its opposite corners. Because A and B appear on the

trimming edge, this AABB is contained in the AABB of the entire trimming edge.

Thus, point P is contained in the trimming edge AABB. Since P can be any point

within the trimmed surface, it is unnecessary to check the interior for points that could

change the trimmed surface’s AABB.

Surface

Control Points

X

Y

Z

45

Figure 3.14. Trimmed surface of a plane.

Higher-degree surfaces: The points on the surface are calculated as functions with two

parametric values, s and t. The function is given in the IGES 4.0 Specification (1988)

as follows:

()() ()
() () () ()

() () () ()∑∑
∑∑

= =

= ==
1 2

21

1 2

21

21

0 0
,

0 0
,,

,
K

i

K

j

M
j

M
iji

K

i

K

j

M
j

M
ijiji

MM

tbsbW

tbsbPW

tsG

where M1 and M2 are the order of the surface in s and t, respectively, K1 and K2 are the

number of “rows” minus 1 and the number of “columns” minus 1, respectively, in the

control point matrix, Wi,j are the weights of each control point, Pi,j are the control points,

and () ()tb M
i

1 and () ()tb M
j

2 are functions determined by a knot sequences in s and t,

respectively. The non-decreasing knot sequence in s is () () ()11 111
,,, ++−− KMM sss … . In this

sequence, () () 0111
sss MM === +−− … and () () ()121 11111 ++−+− === KMKMK sss … . The non-

decreasing knot sequence in t is () () ()11 222
,,, ++−− KMM ttt … . In this sequence,

() () 0122
ttt MM === +−− … and () () ()121 22222 ++−+− === KMKMK ttt … . In many commercial

Plane

Trimming edge

Trimmed surface
B

A

P

Y

Z

X

46

CAD systems, 1, =jiW for 1,,0 Ki …= , 2,,0 Kj …= . The functions () ()sb M
i

1 and

() ()tb M
j

2 are defined in Equations (4) and (5). The functions have the property that

. () () () ()∑∑
= =

=
1 2

21

0 0

1
K

i

K

j

M
j

M
i tbsb

Thus, the equation reduces to

. ()() () () () () ()∑∑
= =

=
1 2

2121

0 0
,,

K

i

K

j

M
j

M
iji

MM tbsbPtsG

This equation can be written as

()() () () () () ()sbtQtsG M
i

K

i

M
i

MM 1

1

221

0

, ∑
=

=

which is the equation for a spline curve of degree M1 with control points () ()tQ M
i

2 ,

where

() () () ()∑
=

=
2

22

0
,

K

j

M
jji

M
i tbPtQ

() ()tQ M
i

2 is also the equation for a spline curve of degree M2 with control points Pi,j at a

fixed i. Thus, the points from ()() ()tsG MM ,21 can be calculated by taking, for each value

of i, all control points of that i value and forming a spline curve of degree M2 with these

control points. The result is K2 curves, each of which is a function of t. Those points on

each curve corresponding to the desired value of t are then used as control points of

another curve of degree M1, which is a function of s. The given value of s will

determine a point on this curve, which is the desired point on the surface. For example,

in Figure 3.15, we want to determine the point corresponding to s = 0.4 and t = 0.7 on a

surface with control points Pi, j, i = 0, 1, 2, 3, j = 0, 1, 2, 3, M1 = M2 = 2. First, spline

47

curves are created for the control points Pi, 0, Pi, 1, Pi, 2, Pi, 3, where i = 0, 1, 2, and 3.

This results in four spline curves, () ()tQi
2 , i = 0, 1, 2, and 3. Then we find the point on

each curve that corresponds to t = 0.7; namely () ()7.02
iQ , i = 0, 1, 2, and 3. We then use

these four points to construct another spline curve, which is a function of s. All of the

points on this spline curve are points that occur on the surface. The curve is thus

()() ()7.0,22 sG . The point on this curve corresponding to s = 0.4 is the desired point on

the surface.

Figure 3.15. Determination of the point G(0.4, 0.7).

To find the AABB, an approach is used that is similar to those used to determine

the surfaces of revolution of arcs and spline curves. For example, in Figure 3.15,

setting t = 0.7 resulted in the curve ()() ()7.0,22 sG . This is analogous to a revolved

surface, where fixing the arc angle or value of t gives the rotation arc of a point. The

s = 0

P0,0

P0,1

P0,2

P0,3

P1,1

P1,0

P1,2

P1,3 P2,3
P3,3

P2,2

P3,2

P2,1

P3,1

P2,0

P3,0

t = 1

()() ()7.0,4.022G

()() ()7.0,22 sG
() ()7.02
0Q

() ()tQ 2
0

() ()7.02
1Q

() ()7.02
2Q

() ()7.02
3Q

() ()tQ 2
1

() ()tQ 2
2

() ()tQ 2
3

t = 0

s = 1

48

AABB for this rational B-spline curve is found as described in Section 3.2.1, and is

analogous to finding the AABB for the rotation arc for revolved surfaces. Thus, the

result is a function that finds an AABB for a curve based on a value of t. It is then

necessary to find the minimum and maximum bounds of the AABBs occurring for all

values of t that correspond to the surface. Using, again, the binary search method

mentioned previously, we find the six values of t that give the minimum and maximum

bounds of AABBs in the three orthogonal directions. The AABB is defined by these six

bounds.

3.3. Verification of AABB Determination

To verify the AABB determination, we applied the AABB determination

algorithm to the part shown in Figure 3.16. In addition to plane surfaces, it includes a

cylindrical surface, a hemispherical surface, and a B-spline surface. Notice that the part

was designed so that the AABB determination must take into account these other types

of surfaces. If the portions of the algorithm that deal with these surfaces are incorrect,

then this will be reflected in an incorrect AABB for the part.

Th part was created in Pro/Engineer, converted into the IGES format, and then

input to the AABB algorithm. The coordinates of the resulting AABB were then used

to create a block part in Pro/Engineer to be placed on top of the current part. In this

way, we are able to verify visually that the resulting AABB is correct. The results of

this process are shown in Figure 3.17. In the orthographic views, a correct AABB will

simply look like a rectangle drawn around the part, barely touching on the top, bottom,

left, and right. The figure verifies that the calculated AABB is indeed correct. This

49

AABB was calculated with an average time over ten runs in 0.0155 ± 0.0005 seconds

with a Pentium 4 2.4 GHz processor.

Figure 3.16. Orthographic and 3-D views of the part used to verify AABB
determination in.

Figure 3.17. Part in Figure 3.16 enclosed by the AABB as calculated by the AABB
determination algorithm.

50

3.4. Summary

In this chapter, various methods for finding the AABB for parts composed of

different surfaces were discussed in detail. Pseudocode was given for the determination

of the corners of the AABB of the part based on the AABBs of the part’s surfaces.

Then, the method for determining the surface AABB based on the trimming edge and

surface interior was given. Next, the equations necessary to determine the AABB for

the trimming edge were presented. Finally, equations were given that are used to adjust

the AABB of the trimming edge so that the bounds of the AABB of the surface are

obtained.

In this chapter, we have shown how to find the AABBs for each part in the

assembly. In the next chapter, we present the determination of the relationships

between these AABBs.

51

4. Finding contained AABBs

Now that we have the AABB of each part, we need to do some reasoning on the

AABBs to find part visibility. The first step in this process is to determine the spatial

relationships between these AABBs. The most important relationship between AABBs

is for an AABB to be completely contained in another AABB, as shown in Figure 4.1.

An AABB that is contained in another AABB is a candidate for being labeled invisible.

Whether or not these candidates are actually invisible, however, is determined from the

criteria discussed in Chapter 5.

Figure 4.1. (AABB)j contained in (AABB)k.

(AABB)j

(AABB)k

52

4.1. Definitions

In order to describe the algorithm that determines the visibility of AABBs, we

first introduce several terms and symbols. These terms and symbols will then be used

in this algorithm’s description, which is provided in the subsequent sections.

The bounds of the AABB are uniquely determined by the coordinates of two

diagonally opposite corners. Let the coordinates of two diagonally opposite corners of

(AABB)j, shown in Figure 4.2, be ()minminmin ,, jjj ZYX and ()maxmaxmax ,, jjj ZYX , where

maxmin
jj XX < , maxmin

jj YY < , and maxmin
jj ZZ < .

Figure 4.2. The three extents and projections of (AABB)j.

We first project each (AABB)j onto the XY, ZX, and YZ planes. From these

projections a minimum rectangle (extent) will be determined. As shown in Figure 4.2,

ZFj

XFj

YFj

Y

X

Z

(AABB)j

XPj

YPj

ZPj

()minmin , jj YX()maxmax , jj ZY

()maxmax , jj YX

()maxmax , jj ZX

()minmin , jj ZX

()minminmin ,, jjj ZYX

()maxmaxmax ,, jjj ZYX

()minmin , jj ZY

53

the projection of (AABB)j onto their respective planes yields three rectangular extents:

XFj,
YFj , and ZFj. Consider the extent ZFj. The coordinates of its diagonally opposed

corners are ()minmin , jj YX and ()maxmax , jj YX in the XY coordinate system. For the extent

YFj, ()minmin , jj ZX and ()maxmax , jj ZX in the XZ coordinate system. Finally, for extent

extent XFj, its diagonally opposed corners are ()minmin , jj ZY and ()maxmax , jj ZY in the YZ

coordinate system.

Projections of the extent ZFj on the X- and Y-axes are XPj and YPj, respectively.

Similarly, projections of the extent YFj on the X- and Z-axes are XPj and ZPj,

respectively. Finally, projections of the extent XFj on the Y- and Z-axes are YPj and ZPj,

respectively. These projections are shown in Figure 4.2.

4.2. Sorting coordinates

The relationships between AABBs can be determined based on the relationships

between their projections. Thus, we will need to determine these projection

relationships. In order to do this, we shall generate three lists of sorted coordinates, one

in each of the coordinates X, Y, and Z. We will then use these lists to determine the

relationships in a systematic and efficient manner. Afterwards, we determine from

these lists those AABBs that are not completely contained within another AABB.

54

Consider the set of all the AABBs represented in the (X, Y, Z) coordinate

system: (AABB)j, j = 0, 1, 2, ..., n – 1. First, we form three lists, one for each

coordinate direction. In the X-direction, we form a list using the pairs ()maxmin , jj XX .

This list looks like:

{ }max
1

min
1

max
1

min
1

max
0

min
0 ,,,,,, −− nn XXXXXX …

In a similar manner, we form a second list in the Y- direction using the pairs

()maxmin , jj YY and a third list in the Z- direction using ()maxmin , jj ZZ .

Consider the list in the X-direction. Determination of whether or not one AABB

contains another requires that the list of the values min
jX , max

jX be sorted in ascending

order, starting with the numerically smallest coordinate value of min
jX and max

jX , j = 0,

1, 2, ..., n – 1 and ending with the largest numerical value. If there are any groups of

coordinate points where their values are equal, then the values within these groups must

be arranged so that the relationships between their projections are determined correctly.

To accomplish this, each group of values is separated into two subgroups, one with all

max
jX values and the other with all min

jX values. Within each of these subgroups, the

values are sorted from greatest value to the least value of the other coordinate in the

projection. Thus, the max
jX values are sorted in descending order of the corresponding

min
jX values and vice versa. If the values of the other coordinates between two

projections are equal, then the relationship between the two corresponding projections is

noted as “same” and it does not matter how these values are arranged with respect to

each other. Finally, the subgroup containing all of the max
jX is placed in the list before

55

the subgroup containing all the min
jX . This overall sort results in a sorted list we call

LX. In the next section, we explain why these groups of values are arranged in this

manner. Note that there are exactly two coordinates from each projection XPj in the

ordered pair sorted list LX. The first coordinate is the least coordinate min
jX and the

second one is its greatest coordinate max
jX . These two coordinates are not necessarily

next to each other in the sorted list LX, and may include between them other coordinate

points. For example, min
kX and/or max

kX of projection XPk may be between min
jX and

max
jX . This sorting procedure is also performed on the Y-coordinate list and the Z-

coordinate list, resulting in lists LY and LZ, respectively.

As an example, consider a collection of projections XPj, j = 0, 1, …, 5 shown in

Figure 4.3. The projections have been arbitrarily offset from the axis to make their

viewing easier. To start, we have the list for these projections as

{ }max
5

min
5

max
4

min
4

max
3

min
3

max
2

min
2

max
1

min
1

max
0

min
0 ,,,,,,,,,,, XXXXXXXXXXXXLx =

This list must then be sorted numerically. For those values that are not equal, the

sorting procedure is straightforward. However, we must determine the order of those

values for which the coordinate values are equal. Thus, we have to determine the order

of the groups { min
4

max
3

min
1 ,, XXX , and min

5X } and { max
1X and max

4X }. Let us start with

the first group. Because max
3X is the only maximum coordinate, it is placed first. The

remaining Xmin values are sorted based on the corresponding values of max
4

max
1 , XX , and

max
5X . In this case, we notice that max

4
max

1
max
5 XXX => . Since max

5X is the largest, it is

the next sorted value. It remains to be determined the order between max
1X and max

4X .

56

Since these two values are equal, we find that XP1 and XP4 are identical in the values of

their endpoints. Thus, we mark these two as “same”, where we keep track of the

relationships between projections. Since we have already determined the relationship

between these two projections, the order between min
1X and min

4X does not matter. The

same goes for the order between max
1X and max

4X . We, therefore, assign their orders

arbitrarily. Thus, the first subset has the order min
1

min
5

max
3 ,, XXX , and min

4X . The

second subset will have the order max
4X and max

1X . As a result, the sorted list for this

set of projections is

{ }max
0

max
2

max
1

max
4

min
0

max
5

min
4

min
1

min
5

max
3

min
2

min
3 ,,,,,,,,,,, XXXXXXXXXXXXLx =

Figure 4.3. Projections and their coordinates.

4.3. Determining contained boxes

When one AABB contains another, we have a certain relationship between the

two AABBs’ projections. As can be seen in Figure 4.4, to have (AABB)j contained in

(AABB)k,
XPk must contain XPj,

YPk must contain YPj, and ZPk must contain ZPj. This

relationship holds true if one or two pairs of projections are the “same” instead of

X

XP0

XP1

XP2

XP3

XP4

XP5

max
4Xmin

4X
min
5X

min
3X max

3X

max
5X

min
2X max

2X

min
1X max

1X

min
0X max

0X

57

having a containing relationship. When all three projections are identical, the AABBs

are the “same.” We use these rules to determine whether or not (AABB)j is contained

in or is the “same” as (AABB)k.

Figure 4.4. Extents and projections of (AABB)j and (AABB)k.
(AABB)j contains (AABB)k.

To make these determinations, we determine which projections are contained in

other projections. We arbitrarily start in the X-direction. Given two projections XPj and

XPk, the containing relationship is determined using the following rule:

If both min
jX and max

jX of XPj lie between min
kX and

max
kX of XPk in the list LX, and XPj is not the “same” as XPk,

then XPk contains XPj.

This is shown in Figure 4.5.

(AABB)k

(AABB)j

YFj

YFk

ZFj

ZFk

XFk

XFj

X

Y

Z

ZPk

ZPj

XPj

XPk

YPk

YPj

58

Figure 4.5. Projection XPk containing projection XPj.

An efficient algorithm for parsing the list LX to determine the containing

relationships is needed, since individually checking each pair of projections is an

inefficient process. Most pairs will be disjoint, so checking these pairs would be a

waste of processing time. The current research uses a method that involves a one-time

pass through of each list, which only makes necessary comparisons.

In this method, the list LX is scanned to find projections that contain other

projections. This is much like traveling along the axis and passing through each

projection, as shown in Figure 4.6. This is sufficient because LX is simply a list of the

endpoints of all of the projections in the order in which they are encountered. For this

method, each projection has two states, “open” and “closed”. An “open” state occurs

when we have traveled to a point in between the endpoints of a projection, or in terms

of LX , after we have encountered the minimum endpoint of a projection but before we

reach its maximum endpoint. A projection is “closed” for all other cases. For example,

in Figure 4.7, projection XPk is “open” because the current traveled point lies between

min
kX and max

kX , but projection XPj is “closed” because the point is beyond max
jX .

min
kX

XPk

XPj
min
jX max

jX max
kX

X

59

Figure 4.6. Traveling along an axis.

Figure 4.7. Example of an “open” and “closed” projection.

To start, all projections are given a “closed” status. We will be “opening” and

“closing” them as we travel along the axis by going through LX. Starting from the least

value in LX, whenever an min
jX value is encountered, the corresponding projection XPj is

changed to an “open” status. The location in LX of this endpoint is also recorded. When

an max
jX is encountered, the corresponding projection XPj is changed to a “closed”

status, since this is the end point of the projection. In addition, at this point, we check all

those projections that are “open” to determine their relationships to XPj. In doing this,

all that is necessary to check is if the “open” projections’ start point locations precede

the current projection’s start point. Those “open” projections that satisfy this condition

and are not the “same” as the current projection (determined previously), are noted as

XPk

XPj
min
jX max

jX max
kX

X
min
kX

“open”

“closed”

XPk

XPj
min
jX max

jX max
kX

X
min
kX

XPk

XPj
min
jX max

jX max
kX

X
min
kX

XPk

XPj
min
jX max

jX max
kX

X
min
kX

Line traveling
along the axis

60

containing the current projection. This is because the start points of the “open”

projections are before the current projection’s start point, and because, by the very

nature of the projections being “open”, the end points of those projections come after

those of the current projection. An example of projections that satisfy this condition are

shown in Figure 4.7. Projection XPj has just been “closed”, as we have just passed

max
jX . Since XPk is still “open”, we check the order of min

jX and min
kX . As min

kX comes

before min
jX , we have determined that XPj is contained in XPk.

For an example of the scanning process, we use the projections in Figure 4.3, the

list LX for these projections was determined as

{ }max
0

max
2

max
1

max
4

min
0

max
5

min
4

min
1

min
5

max
3

min
2

min
3 ,,,,,,,,,,, XXXXXXXXXXXXLx =

We start with all of the projections “closed”. Then, in order, we open XP3 and XP2 and

close XP3. When XP3 is closed, XP2 is the only open projection. However, min
2X follows

min
3X , so there is no containing relationship between XP2 and XP3. Since max

3X is

followed by min
5X , min

1X , and min
4X , we open XP5,

XP1, and XP4. Next, we encounter

max
5X ; therefore, we close XP5. When we do this, we check all the open projections’

minimum coordinates, min
1X , min

2X , and min
4X , and find that only min

2X comes before

min
5X . Thus, XP5 is contained in XP2. Proceeding along LX, we next encounter min

0X and

max
4X , which leads us to open XP0 and close XP4. The coordinates of the projections XP3

and XP2 are such that min
2X and min

3X come before min
5X . However, XP2 and XP5 were

previously determined as the “same” in the sorting process, so there can be no

containing relationship between them. Thus, we determine that XP5 is contained in only

61

XP3. Continuing through the rest of the list, we find that the only other containing

relationship is that XP2 is contained in XP3. These are easily verified visually in Figure

4.3.

The pseudocode for this process is given in Table 4.1.

 Table 4.1. Pseudocode for finding projections found in other
projections.

for i = 0 to n - 1
status(XPi) = ”closed”

endfor
for i = 0 to 2n - 1

if LX [i] is an min
jX for any value of j (j is determined by the

value of min
jX found)

status(XPj) = ”open”
place[j] = i

else if LX [i] is an max
jX for some value of j

status(XPj) = ”closed”
for k = 0 to n – 1

if status(XPk) = ”open”
if XPk is not the “same” as XPj

if place[k] < place[j]
XPk contains XPj

endif
endif

endif
endfor

endif
endfor

The preceding process is also used to parse the lists LY and LZ. Before doing

this, it is possible to rule out AABBs that will not be able to contain or be contained in

another AABB. In order for an AABB to have one of these relationships, its projections

must contain, be contained in, or be the same as the other AABB’s projections in each

of the three directions. Thus, if we are parsing list LY after LX, we can remove all those

projections from LY that correspond to projections in LX that do not have any of these

62

relationships with any other projection in LX. Also, before parsing LZ, we can remove

all projections from LZ that were removed from LY plus those that were determined not

to have one of these relationships from parsing LY. However, this elimination process is

not entirely necessary, as the list parsing process is already very fast. Averaging ten

runs, the average time to parse the three lists without elimination for 490 parts is .030 ±

.0046 seconds on a Pentium 4 2.4 GHz machine. Although there might be a speed

advantage, it is easier not to do any removal and parse each list independently.

After the “containing” and “same” relationships between the projections have

been found in the three directions, the “containing” and “same” relationships between

the AABBs are found using the previously discussed requirement. This is the

requirement that a “containing” relationship between AABBs has a “containing” or

“same” relationship between each corresponding pair of the projections, with a “same”

relationship resulting between the AABBs when the relationships in all three directions

between the projections are the “same.”

4.4. Other relationships

Although this research does not require other relationships, minor additions to

the method presented can be made to find other relationships with a very small increase

in computation time. These relationships include “disjoint,” “adjacent,” and

“intersecting”. Disjoint AABBs are those that do not share any points in common.

Pairs of AABBs are adjacent if they have common points on their boundaries and share

no interior points. AABBs intersect if they share some common interior points, but also

have points that are not shared with each other.

63

To find these relationships, we must first find the disjoint, adjacent, and

intersecting relationships among the projections. Adjacent projections are those that

share a common endpoint, where one projection ends and the other starts, as shown in

Figure 4.8. These adjacent points are found during the sort of the lists LX, LY, and LZ,

where the values that are equal are found. When these equal values are sorted amongst

each other based on the other coordinate values in the projections, the relationships

between all projections that are starting and those that are ending can be marked

“adjacent.” This means that in the X-direction, for example, for all values j and k such

that max
jX = min

kX , XPj is adjacent to XPk.

Figure 4.8. Projection XPj adjacent to XPk.

Figure 4.9. Projection XPj intersecting XPk.

Intersecting projections are those that have one projection start after the other

starts, but also end after the other ends, as shown in Figure 4.9. This is found by adding

a conditional statement to the LX parsing algorithm shown in Table 4.1. The additions

are shown in bold in the modified pseudocode given in Table 4.2.

XPj

XPk max
kXmin

kX

min
jX max

jX

min
jX XPj

XPk

max
jX

max
kXmin

kX

64

Table 4.2. Pseudocode modified to also find projections that
intersect other projections.

for i = 0 to n - 1
status(XPi) = ”closed”

endfor
for i = 0 to 2n - 1

if LX [i] is an min
jX for some value of j (j is determined by

the value of min
jX found)

status(XPj) = ”open”
place[j] = i

else if LX [i] is an max
jX for some value of j

status(XPj) = ”closed”
for k = 0 to n – 1

if status(XPk) = ”open”
if XPk is not the “same” as XPj

if place[k] < place[j]
XPk contains XPj

else if place[k] > place[j]
XPk intersects XPj

endif
endif

endif
endfor

endif
endfor

When a projection “closes,” the start points of all “open” projections are

checked. All “open” projections will have their end coordinates greater than the

endpoint of the projection that was just “closed.” Those “open” projections that start

earlier enclose the “closed” projection. Those that start later will end up intersecting the

current projection.

The last relationship that can occur between projections is the “disjoint”

relationship. This relationship occurs when two projections have no common points as

shown in Figure 4.10. These relationships are determined by default, since any pair of

65

projections whose relationships have not yet been determined is categorized as

“disjoint”. Any pair with at least one point in common has already been categorized.

Figure 4.10. Projection XPj is disjoint with XPk

Once all the relationships between all the projections have been determined,

they are used to determine the AABB relationships according to the following rules:

1) If XPj is disjoint with XPk,
YPj is disjoint with YPk, or ZPj is disjoint with ZPk,

then (AABB)j is disjoint from (AABB)k.

2) If XPj is not disjoint (meaning adjacent to, intersecting, containing, contained

in) from XPk,
YPj is not disjoint from YPk, and ZPj is not disjoint from ZPk, and

at least one of these relationships is “adjacent,” then (AABB)j is adjacent to

(AABB)k.

3) If XPj intersects, contains, or is contained in XPk,
YPj intersects, contains, or is

contained in YPk,
ZPj intersects, contains, or is contained in ZPk, and (AABB)j

is not containing or contained in (AABB)k, then (AABB)j intersects

(AABB)k.

For AABBs to be disjoint, it is only required that one pair of corresponding

projections be disjoint. An example of this is shown in Figure 4.11. Only projections

XPj and XPk are disjoint. Since each projection represents the X, Y, or Z coordinates of

the points in the AABB, any pair of corresponding projections that are disjoint will

correspond to two AABBs that have no points with the same coordinates; that is, they

will have no common points.

min
jX

min
kX

max
jX

max
kX

XPj

XPk

66

Figure 4.11. Two disjoint AABBs along with their extents and projections.

Two adjacent AABBs are shown in Figure 4.12, where it is seen that the

projections, XPj and XPk are adjacent. Examining the non-disjoint AABBs, it is seen that

a pair of corresponding adjacent projections means that all of the common points

between the AABBs will have the same values for one of its coordinates. In other

words, all of the common points will occur on the borders of the AABBs. Thus, the two

AABBs are adjacent.

All other combinations of AABB projection relationships will result in both

common and uncommon interior points. This means that these AABBs intersect.

(AABB)j
(AABB)k

XFj

XFk

YFkYFj

ZFj
ZFk

YPj YPk

ZPj ZPk

XPj

XPk
 X

 Y

 Z

67

Figure 4.12. Two adjacent AABBs along with their extents and projections.

4.5. Summary

In this chapter, the procedure for finding which AABBs contain other AABBs

was developed. First, definitions of extents and projections were given. Next, the

manner in which lists of the coordinates of the projections were sorted was detailed.

Then, based on these lists, the determination of AABB containment was performed.

Finally, we presented extensions that can be made to the procedure to detect other

relationships between AABBs, which may be helpful in other applications.

The next chapter develops the algorithm for the determination of the visibility of

parts based on the results of this chapter.

(AABB)j

(AABB)k

XFj

XFk

YFkYFj

ZFj
ZFk

YPj YPk

ZPj ZPk

XPj

XPk

68

5. Determining part visibility

Up to this point, we have determined the minimum AABB around a part and the

relationships between AABBs. We will now use this information to determine part

visibility.

Visibility can be defined in both static and dynamic terms. Static visibility

means that the decision of whether or not to render a part never changes as soon as the

parts are loaded into the computer’s memory to display. In this situation, those parts

that are invisible are those that will not be displayed under any circumstances unless the

configuration of the parts, part geometry or relative positions, are changed. This cuts

down on both memory requirements and processing time. Processing time does

increase because it is necessary to determine which parts are visible when loading the

parts into memory. However, this only happens once, and there can be a much more

substantial savings in processing time during viewing because there are fewer parts to

render.

Dynamic visibility pertains to those situations where the determination of what

to render is determined by changing conditions during display, namely viewing angle.

In this situation, all parts are loaded into memory. The savings occurs in viewing.

When a certain angle for viewing is desired, the computer determines what is visible

from this angle and then displays it. Processing time increases because of the visibility

determination, but this is far outweighed by the savings that occurs from not having to

render what is determined to be invisible.

A combination of these two approaches is what is most desired and can be

achieved easily, as they are almost entirely independent of each other. The static

69

approach basically eliminates all those parts that are never visible during viewing. The

subset that remains are all those parts that could be visible. At this point, we use the

dynamic approach on the subset, which can greatly reduce processing time.

The following algorithm focuses on the static approach, as that is what will give

the greatest contribution to the viewing of large assemblies. Dynamic (viewing angle)

approaches have already been studied by other researchers (Bittner et al., 1998; Hudson

et al., 1997; Kumar et al., 1996; Levi et al., 1999; Möller and Haines, 1999; Zhang and

Hoff, 1997; Zhang et al., 1997).

The algorithm to be introduced determines the visibility of the AABB. Those

parts that are determined to be visible will be displayed. It is noted that the method

described below can determine whether or not a part is partially or completely

surrounded by other parts. When completely surrounded by other parts, the part is

invisible, as there are no views from which one can see the part. An example is shown

in Figure 5.1, where the interior block is completely enclosed by the other blocks. Real

world examples include the pistons in an engine, the picture tube in a television, and the

girders in a skyscraper. These parts in their assemblies are completely hidden, not

being able to be seen from any angle.

Invisibility is determined by examining the AABB of each part. Acknowledging

that there are exceptions to this, we will assume that an AABB that is completely

surrounded by multiple AABBs is invisible. This is not the same as an AABB being

contained in another single AABB, as was determined in Chapter 4. The visibility

determination of these contained AABBs is dealt with separately, as they are not

necessarily invisible.

70

Figure 5.1. Example of a completely enclosed part.

5.1. Visibility determination process

Visibility is determined in two stages. First, the visibility of all AABBs not

contained in another AABB is evaluated. That means that we basically take all those

AABBs determined as contained by the method described in the previous chapter and

remove them from consideration for the first stage. This first stage involves taking

multiple cross sections and tracing around the exterior of each section. This is detailed

in the Section 5.3. The second stage is then the visibility determination of these

contained AABBs. This is based on the visibility determinations of the first stage and is

detailed in Section 5.4. The flowchart for the process is given in Figure 5.2 and the

process is described in the subsequent sections.

71

Figure 5.2. Flow chart for determining of the visibility of an AABB

First stage: Consider only
AABBs that are not

contained in other AABBs

Start visibility determination
in X-direction

Set j = 0

Determine cross section of
AABBs with intersecting plane

at (Xj + Xj+1)/2 for the X-
direction, (Yj + Yj+1)/2 for Y, and
(Zj + Zj+1)/2 for Z. This results

in a collection of rectangles.
Mark visible any boxes

whose edges are the
maximum and minimum
edges in the cross-section

profile.

Starting with one rectangle, trace
the exterior edges of the collection

of rectangles. The AABBs
corresponding to any rectangles
whose edges appear in this trace

are marked visible.

j < m – 1? (m =
max subscript of Xj)

All three
directions
examined?

Second Stage: Take
first AABB contained

in another AABB

Is one of the AABBs
that contains this
AABB visible?

Take next contained
AABB.

Make contained
AABB visible.

Any contained
AABBs

remaining?

End

Yes

No

No

Yes

No

Yes

Yes

No

j = j +1

Examine next
direction Y then Z.

Start

72

5.2. Advantages of a cross-section trace for non-contained AABBs

The cross-section trace used in the algorithm to be presented has many

advantages over other avenues that were explored during the research for determining

visibility. First, methods were considered that would reason with the complex geometry

of the mechanical parts to determine visibility. However, all of these methods involved

the calculation of intersections of complex surfaces, which required large computation

time. It was, therefore, concluded that determining the AABBs of parts first and then

basing visibility calculations on them would be a much more computationally efficient

approach.

One option for determining visibility is the ray trace. In this method, several

rays are projected from various points in space. Each point represents a viewpoint, with

the rays representing lines of sight. The first AABB encountered by each ray is

determined to be visible. The main drawback with this method is that a more accurate

result requires more computation time. To increase the accuracy of ray tracing, more

viewpoints are needed and more rays per viewpoint are needed. If there is an AABB

that is visible only from a small region of space at a certain angle, a large number of

rays must be traced from a large number of viewpoints in order to have a good chance

for ray tracing to detect it. However, there is always a possibility that an AABB that

should be detected as visible is not. Thus, to get accurate results, ray tracing can be

computationally costly. It also does not take advantage of the unique geometry that

AABBs have when compared to more complex geometries.

To avoid the ray tracing approach, a cross section approach is considered. The

cross section allows us to simplify the visibility calculations to visibility along the

73

outside of a “slice” of the AABBs, changing the problem to a two-dimensional one.

Also, the greatest level of accuracy can be attained by a finite number of cross sections;

that is, increasing the number of cross sections after a certain point will not increase

accuracy. This is because of the geometry of the AABBs. There can be only a certain

number of cross sections that are distinct from each other. Any more cross sections

taken after this will result in duplicate information. Analyzing identical cross sections

makes no contribution to visibility detection. This is an advantage over ray tracing,

where it is unknown when the results become accurate. The only assurance of accuracy

with ray tracing occurs when all of the AABBs have been detected as visible. In any

other situation, it will be difficult to be sure that an AABB is invisible.

To analyze a cross section, it is also possible to use a ray tracing approach in a

two dimensional case, tracing rays from exterior points to the configuration of

rectangles that results from a cross section. The first rectangle encountered is marked

visible. However, this approach has the same shortcomings as the three-dimensional

approach, as greater accuracy requires more rays traced from more points. Thus, an

edge trace approach was adopted to take advantage of the rectangular geometry that

results from the cross sections. In addition, the exterior edge trace is an easy way to

determine what boxes would be determined visible through a 2-D ray trace, as all rays

in the ray trace would first intersect exterior edges, which would occur on the exterior

edge trace. In this way, visibility of the rectangles in a section can be found with greater

accuracy and in less time than with the ray trace.

74

5.3. Visibility of non-contained AABBs

We now describe the determination of the visibility of non-contained AABBs,

which is the first stage. The visibility determination of contained AABBs will be

dependent on the results of this first stage determination.

Consider the set of all AABBs that are not contained in another AABB and call

this set A. Assume that there are n AABBs in this set, and let (AABB)j be one of the

members of the set (1 ≤ j ≤ n). As described in Section 4.1, (AABB)j has two

coordinates associated with each direction: min
jX and max

jX for the X- direction, min
jY

and max
jY for the Y-direction, and min

jZ and max
jZ for the Z-direction. The visibility

algorithm uses the sorted lists LX, LY, and LZ that have been determined as described in

Section 4.2.

We start with the X-direction. Consider the list LX, which is composed of the

sorted values of min
jX and max

jX and may contain some groups with equal values. A

new list SLX is created that contains only the distinct values of X. Thus, only one value

from each group of equal values in LX is included in SLX. Therefore, the new list SLX

consists of only the X values such that SLX = {X0, X1… Xm}, where X0 < X1 < ... < Xm,

12 −≤ nm , and m is the number of distinct values.

The method requires that, for the X-direction, we take cross sections of the set A

by sequentially generating a series of YZ-planes. The location of these planes will be

discussed subsequently. A cross-section is the resulting intersection between each of

these planes and the set A. Taking a cross-section of the AABBs results in a profile of

rectangles. In Figure 5.3, two configurations of AABBs are each intersected by one

plane. The resulting rectangular profiles XR(c) are shown in Figure 5.4. The numbering

75

of the rectangles in the figure is arbitrary and only for the purposes of explanation. At

each of the YZ planes, the cross-section profiles are XS(c), where c is the X-coordinate

where the cross-section is generated. The profile of each intersected (AABB)j is a

rectangle XRj(c), which has the same coordinates as its extent, XFj, as defined in Section

4.1.

Figure 5.3 Plane intersecting collections of AABBs. Both configurations are the same
except that (AABB)1 in (a) is replaced with (AABB)2 in (b).

Figure 5.4. Cross section profiles, XS(c), from (a) Figure 5.3a and (b) Figure 5.3b.

We will now discuss the determination of the values of c at which to take cross

sections. To simplify this discussion, we will assume we are taking cross sections

perpendicular to X, but the determination of where to take cross sections in Y and Z will

be the same. The list SLX we formed represents the list of all of the X coordinates where

(a) (b)

XR1(c)

XR0(c)
Y

Z

XR2(c)
XR3(c)

XR4(c)

XR1(c)

XR0(c)

XR2(c)
XR3(c)

XR4(c)

Partially visible
AABB

(AABB)1

(b)(a)

c

X

Y

Z

(AABB)2

76

two cross-section profiles, each immediately taken in opposite directions on the X-axis,

will be different from each other. (Profiles are different when one of the profiles

contains a rectangle from one AABB that is not present in the other one.) This leads to

the property that two cross-section profiles that both occur between the same two

successive entities in SLX will have identical profiles, meaning that the profiles contain

rectangles from the same AABBs. In other words:

I. Any two cross-section profiles XS(c) and XS(d) are different when

Xk-1 < c < Xk, Xk < d < Xk+1, and Xk-1, Xk, Xk+1 are all successive

members of SLX.

II. Any two cross-section profiles XS(c) and XS(d) are identical when Xk

< c, d < Xk+1, where Xk and Xk+1 are successive members of SLX.

To demonstrate this, we take the configuration of boxes shown in Figure 5.3a as

an example. From the front view (the positive Z viewing angle), the AABB

configuration looks as shown in Figure 5.5. The list SLX for this configuration consists

of the values X0, X1, X2, …, X9. Taking a cross section in X results in one of the nine

cross sections in Figure 5.6. Notice that it does not matter what the value of c is

between the two values at which a cross-section is taken, since in this range of c the

cross-section is the same. Thus, we will take only one cross-section for each interval

between successive values of SLX. This was the purpose of forming the list SLX, which

tabulates the locations of only the cross-sections that need to be examined. For

convenience, cross sections are taken at the mid-distance of each interval, that is at dk =

(Xk + Xk +1) / 2, where k = 0, 1, 2, ..., m – 1 and m is the number of entries in SLX.

77

Figure 5.5. View of front (positive Z viewing angle) of AABBs in Figure 5.3a.

The algorithm determines visibility of the AABBs using the profiles XS(dk).

Since each rectangle is associated with an AABB, we associate the visibility of the

AABB with the rectangle's visibility. If the rectangle XRj(dk) is visible, then its

associated (AABB)j and corresponding part are also visible. We now give a description

of how to determine the visibility of the rectangles in a profile.

A cumulative approach is taken to determine visibility. Initially, all AABBs are

marked invisible. Then, during the analysis, if an AABB is marked visible at any point,

it is ultimately visible. At no time can an AABB that was marked visible be

subsequently marked invisible.

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

Y

X

78

Figure 5.6. The various cross-sections of the AABBs in Figure 5.3a, taken between
(a) X0 and X1, (b) X1 and X2, (c) X2 and X3, (d) X3 and X4, (e) X4 and X5, (f) X5 and X6,

(g) X6 and X7, (h) X7 and X8, and (i) X8 and X9.

In examining a profile, if all of the AABBs of the rectangles in that profile were

previously marked visible, no further analysis is needed in that profile. This is because

the analysis can only determine if a previously invisible AABB should be marked

visible. Analyzing profiles with AABBs that are all visible is not necessary, and the

analysis moves to the next cross section profile. In addition, in analyzing a profile, it is

necessary to keep track of which rectangles were marked visible. Thus, we create a

separate record of visibility in this profile. In this separate record, we use the same

approach. We start with all the rectangles invisible, and then mark them visible as the

analysis proceeds. When analysis of the profile has finished, we transfer the visibility

Y

Z

Y

Z

Y

Z

Y

Z

Y

Z

Y

Z

Y

Z

Y

Z

Y

Z

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

79

of the rectangles in the profile to the visibility of the AABBs. This simply involves

making all those AABBs visible whose corresponding rectangles are visible.

A profile is analyzed as follows. Those rectangles with the minimum and

maximum coordinates in Y and Z are marked visible. For example, in both Figure 5.4a

and Figure 5.4b, XR0(dk) and XR1(dk) are marked visible. XR0(dk) is visible because it has

the minimum value in the Z-direction. XR1(dk) is visible because it has the minimum

and maximum values in the Y-direction and the maximum value in the Z-direction.

The algorithm determines which rectangles have these properties as follows.

Consider a profile XS(dk). A rectangle XRj(dk), one of the m rectangles in this profile, has

diagonal corners of ()minmin , jj ZY and ()maxmax , jj ZY . The rectangle XRj is visible if one of

the following four conditions is met:

Condition I: ()minmin min qj YY = ,

Condition II: ()minmin min qj ZZ = ,

Condition III: ()maxmax max qj YY = ,

Condition IV: ()maxmax max qj ZZ = , q = 0, 1, 2, … , m - 1

To find which rectangles to make visible, we use the lists LY and LZ (recall

Section 4.2). In each of these lists, the minimum and maximum values in the profile

will occur as the first and last terms of the list. The first value, or group of equal values,

pertains to the minimum value. Similarly, the last value, or group of equal values,

pertains to the maximum value. Thus, all of the rectangles corresponding to these

values are marked visible. For example, Figure 5.7a has the sorted list LY

{ }max
1

max
6

max
4

max
0

min
4

max
5

max
3

min
6

min
3

max
2

min
0

min
2

min
1

min
5 ,,,,,,,,,,,,, YYYYYYYYYYYYYYLY =

80

Only rectangles 0 through 4 occur in this profile. The order of those values pertaining

to rectangles 5 and 6 are only placed for explanation purposes. Thus, to find the visible

rectangles, we find the first value from the profile. This is min
1Y and, therefore,

(AABB)1 is visible. If min
2Y , the next value, were equal to min

1Y , then (AABB)2 would

also be visible. The last value from the profile is max
1Y . This value also determines that

(AABB)1 is visible. Since max
6Y is not in the profile, if max

4Y were equal to max
1Y , it

would indicate that (AABB)4 were visible as well.

Figure 5.7. Boundary traces of the profiles in (a) Figure 5.4a, and (b) Figure 5.4b.

For the next stage of the algorithm, an edge trace is performed around the

exterior of the profile XS(dk), and any rectangle whose edges coincide with this edge

trace are marked visible. Edge traces are shown in bold in Figure 5.7 for both profiles in

Figure 5.4. The trace is performed in a counterclockwise (CCW) manner on the profile

starting with one of the visible rectangles matching Condition I. In the case shown in

(a) (b)

XR1(dk)

XR0(dk)

XR1(dk)

XR0(dk)

Y

Z

max
1Y

max
4Y

max
0Y

min
4Y

max
3Ymin

3Ymax
2Ymin

0Y
min

2Y

min
1Y

XR2(dk)
XR3(dk)

XR4(dk)

XR2(dk)
XR3(dk)

XR4(dk)

max
0Y

81

the figures, this is XR1(dk). Those rectangles found visible through Conditions I to IV

always occur on this exterior edge trace. Thus, we must always start with an

appropriate corner of one of them.

A trace consists of a series of points with directed lines that connect them. To

designate the trace direction, let Y– and Y+ denote the decreasing and increasing Y

directions, respectively. Similarly, we let Z– and Z+ denote the decreasing and

increasing Z directions, respectively. We will choose the starting point of the trace as

follows. We take all the rectangles that meet Condition I and we let XRq(dk) represent

each of these rectangles. Of these rectangles, we find the one rectangle XRj(dk) that

satisfies ()minmin min qj ZZ = , meaning it will have the minimum min
jZ of all the rectangles

XRq(dk). We then use ()minmin , jj ZY of the rectangle XRj(dk) as the starting point. This

point is chosen because it is guaranteed to occur on an exterior edge trace, no matter

how complex the configuration of rectangles is. The trace then proceeds in the Y+

direction and continues around the rectangles. This trace stops when the starting point is

reached. For example, in Figure 5.7 only XR1(dk) satisfies Condition I. Thus, we choose

its bottom left corner as the starting point. If other rectangles also satisfied Condition I,

we would find among these rectangles the one whose bottom edge is furthest beneath

the others and use its lower left hand corner as the starting point. The trace then

proceeds to the right and ends when the starting point is reached.

82

Figure 5.8. A profile in which rectangle 5 does not appear on the first edge trace.
(Dc=Y+ indicates the current direction)

We will discuss the details of the trace subsequently. For now, let us assume

that the trace has been performed. From the procedure just described, we could have

missed some rectangles in the profile that are visible. An example of this is shown in

Figure 5.8. Regions XR5(dk) and XR6(dk) should be marked visible, but in the current

scheme, they are not. To remedy this, we perform additional traces as needed if there is

a rectangle that meets Conditions I to IV that has not been marked visible in the profile.

For example, in Figure 5.8, XR0(dk),
XR1(dk), and XR5(dk) satisfy one or more of the

conditions. However, the initial trace does not include XR5(dk), which meets Condition

III. Thus, another trace must be performed starting on XR5, whose starting point is based

on one of the following conditions:

Condition I-A: ()minmin , jj YX , where XRj(dk) is the rectangle where

()minmin min qj ZZ = . The rectangles XRq(dk) are those that do not appear in

the trace that meet Condition I. The trace proceeds in the Y+ direction.

XR1(dk)

XR0(dk)

XR5(dk)

Y

Z

Starting point
of next trace

Dc = Y+

XR2(dk)

XR3(dk)

XR4(dk)

XR6(dk)

83

Condition II-A: ()minmax , jj ZY , where XRj(dk) is the rectangle where

()maxmax max qj YY = . The rectangles XRq(dk) are those that do not

appear in the trace that meet Condition II. The trace proceeds in

the Z+ direction.

Condition III-A: ()maxmax , jj ZY , where XRj(dk) is the rectangle where

()maxmax max qj ZZ = . The rectangles XRq(dk) are those that do not

appear in the trace that meet Condition III. The trace proceeds in

the Y– direction.

Condition IV-A: ()maxmin , jj ZY , where XRj(dk) is the rectangle where

()minmin min qj YY = . The rectangles XRq(dk) are the remaining

rectangles that do not appear in the trace that meet Condition IV.

The trace proceeds in the Z– direction.

For example, in Figure 5.8, XR5(dk) does not appear on the first trace, but meets

Condition III. The next trace would start with the top right corner of XR5(dk) and

proceed left. As long as there is a rectangle that meets one of Conditions I through IV

that is not part of a trace, we continue performing traces using these rectangles as

starting points.

We now discuss the details of how to perform the trace. Let XRc(dk) denote the

current rectangle, Dc denote the current direction, and (Yp, Zp) denote the current point

in the trace. Since this trace occurs in a counter-clockwise manner, the value of either

Yp or Zp corresponds with the current rectangle and the direction traveled. For example,

a trace with Dc = Y+ can only occur on the minimum Z edge of XRc(dk). An example of

84

this is shown in Figure 5.8. Therefore, Zp is the minimum coordinate of XRc(dk). One of

the following three events can occur as the algorithm traverses in the current direction:

(1) A rectangle will be encountered that will change the direction of the trace,

(2) The end of the rectangle is reached, but the trace can be continued in the

same direction on a different rectangle, or

(3) The end of the rectangle is reached and the trace is continued on the next

edge of the same rectangle.

We use these events to determine the direction the trace should go. Examples of these

three events are shown in Figure 5.9.

Figure 5.9. Examples of the occurrence of the three rectangle traversal events. (1)
direction changed by rectangle encountered. (2) trace continued in same direction on

different rectangle, (3) trace continued on next edge of same rectangle.

We determine the next step of the trace by first searching for a XRj(dk) that will

change the trace direction. The conditions used for finding this rectangle and the

actions taken if found are shown in Table 5.1. The lists LY and LZ are used to find the

boxes that satisfy the above conditions, so that not all rectangles are checked. For

example, if we are searching in the Y+ direction, we start with the current point in LY and

advance through the list to find the first rectangle that meets the conditions. If no such

rectangle is found when the last bound of the current rectangle is reached in the list, the

search is ended.

(1) (2) (3)Y

Z

85

Table 5.1. Finding a rectangle that changes the trace direction

Dc
Conditions for the
rectangle XRj(dk)

Figure for finding of XRj(dk) Actions taken if
found

Y+ Of the rectangles that
satisfy maxmin

cjp YYY ≤<

and maxmin
jpj ZZZ ≤< ,

XRj(dk) has the minimum
min
jY

XRc(dk)

XRj(dk)
(Yp, Zp)

Y

Z

min
jp YY = ,

XRc(dk) = XRj(dk),
and Dc = Z–

Z+ Of the rectangles that
satisfy maxmin

cjp ZZZ ≤<

and maxmin
jpj YYY <≤ ,

XRj(dk) has the minimum
min
jZ

XRc(dk)

XRj(dk)

(Yp, Zp)
Y

Z

min
jp ZZ = ,

XRc(dk) = XRj(dk),
and Dc = Y+

Y– Of the rectangles that
satisfy pjc YYY <≤ maxmin

and maxmin
jpj ZZZ <≤ ,

XRj(dk) has the maximum
max
jY

XRj(dk)

XRc(dk)

(Yp, Zp)

Y

Z

max
jp YY = ,

XRc(dk) = XRj(dk),
and Dc = Z+

Z– Of the rectangles that
satisfy pjc ZZZ <≤ maxmin

and maxmin
jpj YYY ≤< ,

XRj(dk) has the maximum
max
jZ

XRj(dk)

XRc(dk)

(Yp, Zp)

Y

Z

max
jp ZZ = ,

XRc(dk) = XRj(dk),
and Dc = Y–

If a rectangle is not found that will change the direction of the trace, we search

for a rectangle XRj(dk) that continues the trace in the same direction. The conditions for

finding this rectangle and the actions taken if found are shown in Table 5.2. Again, the

lists LY and LZ are used to search for this rectangle. For example, if we are searching in

the Y+ direction, we start with the current point in LY and advance through the list to the

first rectangle to meet the conditions stated in Table 5.2 for the Y+ direction. If no such

86

rectangle is found when the first min
jY > max

cY is encountered in the current list, then the

search is ended.

Table 5.2. Finding a rectangle that continues the trace direction

Dc
Conditions for the
rectangle XRj(dk)

Figure for finding of XRj(dk) Actions taken

Y+

maxmaxmin
jcj YYY <≤

 and pj ZZ =min

XRc(dk) XRj(dk)
(Yp, Zp)

Y

Z

max
cp YY = , then

XRc(dk) = XRj(dk)

Z+

maxmaxmin
jcj ZZZ <≤

 and pj YY =max

XRc(dk)

XRj(dk)

(Yp, Zp)
Y

Z

max
cp ZZ = , then

XRc(dk) = XRj(dk)

Y-

maxminmin
jcj YYY ≤<

and pj ZZ =max XRj(dk) XRc(dk)

(Yp, Zp)

Y

Z

min
cp YY = , then

XRc(dk) = XRj(dk)

Z-

maxminmin
jcj ZZZ ≤<

 and pj YY =min

XRj(dk)

XRc(dk)

(Yp, Zp)

Y

Z

min
cp ZZ = , then

XRc(dk) = XRj(dk)

Finally, if this rectangle is not found, the trace continues on the same rectangle

on its next edge. The direction and current position are changed to reflect this. The

actions taken are shown inTable 5.3.

87

Table 5.3. Continuing the trace on the
current rectangle, but in a different direction.

Dc Actions taken

Y+ max
cp YY = and Dc = Z+

Z+ max
cp ZZ = and Dc = Y–

Y– min
cp YY = and Dc = Z–

Z– min
cp ZZ = and Dc = Y+

As the trace is performed, we mark ZRc(dk) visible for each section of the trace.

Once the trace is completed, if needed, other traces are performed as described

previously if there are rectangles satisfying any of the Conditions I through IV that are

not visible. After all traces are performed on the kth profile, for each rectangle that was

marked visible in this profile, the corresponding AABB is marked visible. Then, a trace

is performed on the profile for dk+1.

After the traces have been performed on all the profiles in the X-direction, this

procedure is performed, if necessary, in the Y-direction, and then the Z-direction. The

analysis in the Y-direction is necessary only if there are AABBs that are still invisible

after all of the profiles in the X-direction have been analyzed. Then an analysis for the

Z-direction is performed only if there are still invisible AABBs after the analysis in the

Y-direction. In the Y-direction, an analysis is performed in the same manner as the X-

direction, only using X and Z values for the profiles instead of Y and Z. Similarly, for

88

the Z-direction, profiles in X and Y are used. Those non-contained AABBs that were

not marked visible after an analysis in the three directions are marked invisible.

The reason we use this approach is because it guarantees that AABBs that are

wholly enclosed within a group of AABBs will be detected as invisible. To prove this,

consider the following. For the enclosed AABBs to be invisible, any ray originating

from outside the AABB configuration that intersects one of the enclosed AABBs will

intersect another AABB first. Because the enclosed AABBs will never be the first

AABB intersected by such a ray, they will never be visible. Now, because the AABBs

are enclosed, one can also create a shell from the faces of the non-enclosed AABBs

whose interior volume includes the volume of all the AABBs plus any empty volume

that occurs in the enclosure. For example, the shell for the AABBs in Figure 5.3a is

shown in Figure 5.10. Because the points where the rays first intersect the AABB

configuration are the points where they first enter any volume from the AABBs, these

points are all located on this shell. As such, the shell incorporates all the exterior points

of the AABB configuration. Now, let us take any cross-section that goes through an

enclosed AABB, including a cross-section of the shell. In examining, the cross-section

of the shell, it must contain all the exterior points of the cross-section, because the shell

contained all the exterior points of the AABB configuration. However, in our method,

the exterior edge trace also consists of all the exterior points of a cross-section. Thus,

they are essentially the same. For example, a cross-section of the shell in Figure 5.10 is

shown in Figure 5.11a. It can be seen to have all the same points as the exterior edge

trace shown in Figure 5.11b. Because the enclosed AABB was not a part of the shell,

its rectangle does not have any exterior edge points, and thus will not appear in an

89

exterior edge trace. As such, it will not be marked visible for this cross-section.

However, since this is true of any cross-section through an enclosed AABB, it is not

possible for the enclosed AABB to be marked visible in our algorithm and therefore,

will be correctly marked as invisible.

Figure 5.10. Shell for AABBs in Figure 5.3a. (a) Shell and cross-section plane.
(b) Exploded shell where cross-section is taken.

Figure 5.11. Cross-section profiles of (a) shell and (b) AABBs with exterior edge trace.

(a)

c

X

Y

Z

(b)

(a) (b)

90

5.4. Visibility of contained AABBs

After all of the cross-sections have been analyzed, the visibility of the AABBs

that were not analyzed previously is determined. These are the AABBs that are

contained in other AABBs. This visibility determination is made using the fact that

contained AABBs do not necessarily belong to objects that are invisible.

In the process of surrounding each object with an AABB, there is empty space

where another object could be located. Thus, this other object's AABB would be

contained in the AABB of the first object, but the object itself could be visible. For

example, consider the objects shown in Figure 5.12. A portion of the screw is contained

in the empty volume of the AABBs for the wedge shaped object and the plate.

However, the screw is visible. This case illustrates that by assuming that a part would

be invisible if its AABB is contained in another AABB would yield an incorrect result.

Figure 5.12. Visible part whose AABB is contained in another AABB.

WedgeScrew

Plate

91

In order to deal with this contingency, the following rule is applied:

Rule #1: If an AABB is contained in another AABB that is visible, then

the contained AABB is visible.

With this rule, a conservative visibility approach is used. This means that the set of

objects that are visible to the human eye will be a subset of the objects determined

visible through the entire visibility determination process of the computer program.

The fact remains that a few parts whose AABBs are contained in visible AABBs are

invisible to the human eye. Thus, this rule makes these parts visible when they should

not be. However, this small sacrifice is made so that those AABBs that are actually

visible can be detected rapidly. A more complex rule could be employed to make these

determinations correctly, but that would require a more intensive computation. In

addition, the only difference would be the visibility of a small number of parts, meaning

only a small increase in performance by marking these parts invisible. It would be

inefficient to have to use a very large calculation time to determine the visibility of

these parts, when it will yield the same results in display with only a small increase in

display performance. Thus, this rule offers a fast, albeit conservative way to determine

the visibility of parts whose AABBs are contained in another AABB. For example, the

screw in Figure 5.12 is detected as visible, as its AABB is contained in the AABB of

the plate, which is visible from a previous determination. Once the visibility

determination of the contained AABBs is finished, we have completed the visibility

determination of all the parts. The basic steps of the algorithm are summarized in Table

5.4.

92

Table 5.4. Basic steps of the visibility determination algorithm

1. Determine AABB for each surface.

2. Determine AABB for each part based on the AABBs of its surfaces.

3. Sort the coordinates of the part AABBs in the X, Y, and Z directions.

4. Determine which part AABBs are contained in another single part AABB.

5. Perform cross-section traces to determine visibility of non-contained AABBs.

6. Determine visibility of contained AABBs based on the visibility of the

AABBs that contain them.

5.5. Validation of the Visibility Algorithm

In order to test the visibility algorithm, a test assembly was created. Several

parts were created with the general shape shown in Figure 5.13. A group of four

congruent parts and a rectangular plate are used to form a box assembly as shown in

Figure 5.14. This box may or may not be closed by adding another plate to the front,

depending on what configuration is to be tested. These boxes are then created in

different sizes and nested within each other, as shown in Figure 5.15. We will use this

to both test the correctness and speed of the algorithms based on different numbers of

boxes and different configurations of open and closed boxes.

93

Figure 5.13. General shape of parts used in test assembly.

Figure 5.14. Five-sided box assembly created from part shown in Figure 5.13.

Figure 5.15. A group of nested boxes.

94

In performing the algorithms on any set of open boxes, we find that all of the

parts are determined as visible, as expected. Also, we find that when the outermost box

is closed, only the parts that comprise the outer box are visible. All the rest of the parts

are marked invisible, no matter whether they are closed or open. Also, when mixing

configurations of open and closed boxes, we find that any parts from boxes that are

interior to a closed box are all marked as invisible. Similarly, all the parts that are

exterior to the outermost closed box are marked visible. In addition, the part that closes

the outermost box is also visible. Based on the results of these runs, it is concluded that

the algorithms are working correctly.

The purpose of these runs is also to establish the speed of the algorithms. When

doing these runs on a machine with a Pentium 4 2.4 GHz processor, it was found that

almost the entire CPU time that the computer used to establish the visibility of the parts

was employed in the determination of the AABBs. In fact, using the maximum of 30

parts for five nested closed boxes, the portion of the run time used to determine

visibility after AABB determination was less than 0.008 seconds. As such, the

determining factor for run time of the algorithms is the AABB determination. The

resulting processor time versus the number of parts is shown in Figure 5.16. The times

measured are the average value of ten runs each, with standard deviation shown with

error bars. The relationship between processor time and number of parts is fairly linear,

mainly due to the similar shape of all the parts and the fact that the determination of the

AABBs for the parts is independent from each other. Therefore, the run time for each

part is approximately 0.005 seconds per part. In actuality, the AABB determination

time for each part is heavily dependent on the types of surfaces that make up the part.

95

The AABB for a part made entirely of plane surfaces will be detected quickly, whereas

a part composed of spline surfaces or revolved spline curves will require more time, as

they require a lot more processing in order to find the limits of their AABBs. However,

for relatively simple parts, we know that the visibility determination on a 2.4 GHz

processor is approximately 0.005 seconds per part. The processing time for the

determination of the AABB for the part in Section 3.3, which is a more complex part, is

approximately 0.016 seconds, and is probably a more typical processing time.

Figure 5.16. Plot of processor time versus number of parts for nested box assemblies.

5.6. Limitations of the Current Algorithm

Certain combinations of geometries will be incorrectly marked invisible when

they may be visible. This is caused by the empty volume that results from the use of

bounding boxes, which is the volume that is contained in the bounding box that is not

Processing Time vs. Number of Parts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25 30 35

Number of Parts

P
ro

ce
ss

in
g

 T
im

e
(s

ec
o

n
d

s)

96

occupied by the part. For example, Figure 5.17 shows a simple assembly in which Part

2, which rests on the shelf created by Parts 1 and 3, is detected incorrectly. We now

discuss the reasons for this. Drawing the AABBs around the parts, we get the results

shown in Figure 5.18. Since Part 2 is a block, its AABB is identical to the block itself.

It is seen that (AABB)2 is not contained in either (AABB)1 or (AABB)3. Thus, Rule #1

in Section 5.4 does not apply. Taking cross sections in all three directions, the resulting

profiles that are obtained when the intersecting plane passes through (AABB)2 are

shown in Figure 5.19. From these profiles, it is seen that any of the rectangles

pertaining to (AABB)2 will not appear in an exterior edge trace in any of the cross

sections. Thus, the visibility algorithm, as it currently exists, will not detect that Part 2

is visible.

Figure 5.17. Example of parts that will yield incorrect results using the current
algorithms. Part 2 will be marked invisible.

1 2 3

97

Figure 5.18. Parts in Figure 5.17 and their AABBs.

Upon examining this configuration, we see that Part 2 is determined to be

invisible because (AABB)2 is contained in the volume created by the union of (AABB)1

and (AABB)3. In fact, any combination of AABBs whose union contains another

AABB will cause that AABB to be marked invisible, whether or not it should be. The

rectangular cross sections of the AABBs creating the union will always have one or

more of its edges marked as an exterior edge during the edge-tracing portion of the

algorithm. This will not always be true for those AABBs appearing in the volume

created by the union.

The reason why AABBs of parts contained in the volume created by the union

of other AABBs are visible is that when parts are assembled, the empty volumes from

several AABBs can intersect. The nature of some of these intersecting volumes is such

that anything that is contained in that volume may be visible. Thus, parts whose

AABBs lie within this volume are not contained within a single AABB, where Rule #1

in Section 5.4 would apply. This will cause these parts contained in the intersecting

volumes to be marked invisible. This incorrect invisibility assignment is a function of

the geometry of the parts and how they are assembled. Thus, for more complex

1 2 3

X

Y

Z

(AABB)1

(AABB)2

(AABB)3

98

assemblies there is an increased possibility of parts being marked invisible when they

should be marked visible.

Figure 5.19. Cross-section profiles of the AABBs in Figure 5.18. (a) AABBs in 3-D
space and the locations of the cross-sections taken, (b) cross-section at dY, (c) cross-

section at dX1 or dX2, (d) cross-section at dZ.

5.7. Removal of a Limitation of the Algorithm

In this section, we propose a scheme that can decrease the amount of empty

volume, without greatly lengthening the amount of computational time needed to

determine the visibility of parts. The basic scheme is to allow more than one AABB per

part, where each AABB only contains a section of the part. We only require that the

part will be contained in the union of these AABBs. This will decrease the amount of

empty space. The basic steps that would be taken with this modification are shown in

Table 5.5.

YR1(dY)
YR2(dY) YR3(dY)

ZR1(dZ)
ZR2(dZ) ZR3(dZ)

(AABB)2

XR1(dX1) or XR3(dX2)

XR2(dX1) or
XR2(dX2)

(AABB)1

(AABB)3

X

Y

Z

dY

dX1 dX2

dZ

(a) (b)

(c) (d)

99

Table 5.5. Basic steps of the visibility determination algorithm when allowing
multiple AABBs per part.

1. Determine the multiple AABBs for each part based on some kind of

geometric determinations (e. g. surface AABBs)

2. Sort the coordinates of the part AABBs in the X, Y, and Z directions.

3. Determine which part AABBs are contained in another single AABB.

4. Perform cross-section traces to determine visibility of non-contained AABBs.

5. Determine visibility of contained AABBs based on the visibility of the

AABBs that contain them.

Consider the part shown in Figure 5.20. The solid-gray figure represents an

arrow-shaped part. Figure 5.20a shows the part with only one AABB. Figure 5.20b

shows the part with two AABBs. The shaded sections are the portions of empty volume

included in (a) that are eliminated by (b). By doing this, we decrease the amount of

empty volume in the AABBs, and thus, increase the visibility/invisibility detection

capability of the algorithm.

How the multiple AABBs are determined is not a part of this research. Research

on this subject can be found, for example, in the work of Sanna and Montuschi (1995).

Their research includes the determination of a predetermined number of bounding

boxes for an object given a larger number of bounding boxes. This technique lends

itself well to the bounding box technique described in Section 3, since bounding boxes

are determined for each surface in a part. This collection of AABBs can then be

combined into a predetermined number of AABBs using their technique.

100

Figure 5.20. Part with multiple AABBs. (a) one AABB (b) two AABBs

Once the AABBs for each part are determined, the algorithms previously

described can be used without making any major modifications to them. The only

change that needs to be made is to allow more than one AABB to correspond to the

same part. No modifications need to be made because the algorithms determine only

which parts are visible, assuming that those not determined visible are invisible. With

this scheme, when an AABB is encountered in any of the cross-section traces, the

(a)

(b)

(AABB)1

(AABB)1a

(AABB)1b

Part

Empty
volume

Empty
volume

101

corresponding part is automatically determined as visible. There is no algorithm that

makes the part invisible afterwards.

To illustrate how this technique will work, once again consider the parts in

Figure 5.17. Allowing more than one AABB per part, one possible configuration of

AABBs would be to have two AABBs each for parts 1 and 3, as shown in Figure 5.21.

The two AABBs for Part 1 are labeled 1-1 and 1-2. Similarly, the AABBs for part 3 are

labeled 3-1 and 3-2. The cross sections through (AABB)2 in all three directions are

shown in Figure 5.22. With these cross sections, the exterior edge traces will detect part

2 as being visible.

Figure 5.21. Parts in Figure 5.17 with multiple AABBs allowed.

X

Y

Z

(AABB)1-1 (AABB)2 (AABB)3-1

(AABB)1-2 (AABB)3-2

102

Figure 5.22. Cross-section profiles of the AABBs in Figure 5.21. (a) AABBs in 3-D
space and the locations of the cross-sections taken, (b) cross-section at dY, (c) cross-

section at dX1 or dX2, (d) cross-section at dZ.

5.8. Corollaries to the algorithms

5.8.1. Using the cross-section trace algorithms on surface AABBs

To increase display speed, one can reduce the number of surfaces that are

rendered. One way to accomplish this is to use the cross-section visibility trace

algorithms on the AABBs of each individual part surface to calculate surface visibility

before using them on the parts themselves. An assembly is a collection of parts placed

together in a certain configuration. A part is a collection of surfaces placed together in

a certain configuration. As such, a part can be seen as an “assembly” of surfaces. To

find the AABB for each part we needed the AABB for each surface. Using the

algorithms on these surface AABBs for each part, the visibility of the surfaces for the

YR1-1(dY)

YR2(dY)

YR3-1(dY)

ZR1-1(dZ)

ZR2(dZ)

ZR3-1(dZ)

ZR1-2(dZ) ZR3-2(dZ)

XR2(dX1) or
XR2(dX2)

XR1-2(dX1) or
XR3-2(dX2)

(AABB)1-1

(AABB)3-2

X

Y

Z

(AABB)2

dY

dX1 dX2

dZ

(AABB)1-2

(AABB)3-1

(a) (b)

(c) (d)

103

part can be determined. This process results in the collection of surfaces that are to be

rendered if this part is found visible and eliminates from rendering any surfaces that are

not visible in a part. Surfaces not visible in a part will not be visible in an assembly that

includes the part. The process is summarized in Table 5.6. However, this process will

likely not produce much savings as far as reducing the number of surfaces to be

rendered, as parts are not typically modeled with surfaces that will not be visible. An

example is shown in Figure 5.23, which is a sphere. Spheres are output as two surfaces.

As such, there are two AABBs that each correspond with a surface. Obviously, the two

surfaces are visible for this part. Performing the cross-section trace algorithm on the

two AABBs will also result in both surfaces as visible. But suppose that performing the

trace algorithm causes the top surface to be marked invisible. The part’s AABB would

still be the same. This AABB is then used as normal in determining the visibility of the

part as normal. However, if the part is determined as visible, we would then only

display the bottom half of the sphere, as the top half was determined invisible earlier.

Figure 5.23. A sphere with its two surface AABBs.

Another possibility is to use surface AABBs when analyzing the assembly

instead of part AABBs. The process is given in Table 5.7. This requires a great deal

more processing, but it will reduce the amount of geometry that needs to be rendered

X
Y

Z

104

even more than simply applying the algorithms on the parts of an assembly. With the

current algorithm, when a part is marked visible, all of its surfaces are rendered.

However, this does not mean that all of the surfaces rendered are visible. Many of these

surfaces may not be visible because of the geometry of the assembly. Those assemblies

that result in some enclosed parts have the most to gain. Those parts that form the

exterior will be visible. However, many of the surfaces of these parts are inside the

assembly, and not visible. These surfaces could be very complicated, as interior parts

could be mounted on them. As such, removing these surfaces could reduce display time

dramatically. A simple example is shown in Figure 5.24, which shows an assembly of

two parts that form an enclosed box. The “lid” of the box has a square protrusion that

goes inside the box when the two parts are assembled. Both parts are in fact visible and

should be rendered. However, as an assembly, there are surfaces that make up these

parts that are not visible. These surfaces, shown in grey in Figure 5.24a, are interior to

the assembled box, and thus are invisible.

105

Table 5.6. Basic steps using the visibility determination algorithm on the surfaces of
each part before performing the algorithm on the parts of the assembly

1. For each part:

a. Determine the AABB for each surface.

b. Sort the coordinates of the surface AABBs in the X, Y, and Z

directions.

c. Determine which surface AABBs are contained in another single

surface AABB.

d. Perform cross-section traces to determine visibility of non-contained

AABBs.

e. Determine visibility of contained AABBs based on the visibility of the

AABBs that contain them. Those surfaces determined visible will be

rendered if its corresponding part is marked visible

2. Determine AABB for each part based on the AABBs of its surfaces.

3. Sort the coordinates of the part AABBs in the X, Y, and Z directions.

4. Determine which part AABBs are contained in another single part AABB.

5. Perform cross-section traces to determine visibility of non-contained AABBs.

6. Determine visibility of contained AABBs based on the visibility of the

AABBs that contain them.

106

Table 5.7. Basic steps of the visibility determination algorithm using surface AABBs
instead of part AABBs

1. Determine AABB for each surface.

2. Sort the coordinates of the surface AABBs in the X, Y, and Z directions.

3. Determine which surface AABBs are contained in another single surface

AABB.

4. Perform cross-section traces to determine visibility of non-contained AABBs.

5. Determine visibility of contained AABBs based on the visibility of the

AABBs that contain them.

In the algorithms’ current state, these surfaces would be rendered when they do

not need to be rendered. In order to deal with this, performing the algorithm on AABBs

of surfaces instead of part AABBs will allow those surfaces that are hidden to be

determined as invisible and, thus, not to be rendered. This basically means that we will

find the AABB of each surface, but will not be using them to find the AABB of each

part. We simply feed the surface AABBs of all the parts in the assemblies into the

visibility determination algorithm, and let the visibility of each AABB pertain to the

visibility of its corresponding surface, not its part. We are, in effect, viewing

assemblies as collections of surfaces instead of parts.

107

Figure 5.24. Invisible surfaces of two visible parts. (a) view of each individual part.
Invisible surfaces in grey. (b) Exploded side view. (c) Side view of parts assembled

5.8.2. Through Holes in Surfaces

 Depending on what the models are being used for, holes in surfaces may or may

not be important. Models are often used for collision detection and maintainability

analyses to determine whether parts can be physically removed and replaced. In these

kinds of analyses, visual accuracy is not as important. It does not matter whether parts

can be seen through holes. In fact, small holes can be removed entirely for these types

of analyses, with the results of these analyses being the same as those results that would

be obtained if the analyses were performed with the holes still in place. But, if visual

accuracy is important with small holes, the algorithms as they currently stand are not

equipped to deal with them. Parts that are only visible through holes will be marked

invisible by our algorithms. In addition, if there exist any parts with large holes, such as

the assembly in Figure 5.25b, the hole can be a big factor in any type of analysis and

(a)

(c)(b)

108

unfortunately cannot be ignored. There are two ways to deal with this, but both are

dependent on the development of the algorithms on surface AABBs mentioned in

Section 5.8.1.

Figure 5.25. Assembly where one part has a hole in it. (a) Original assembly (b)
Assembly with hole enlarged. (c) Assembly without the part with the hole.

The first proposed method involves treating each surface with a hole in it as if

the surface was not there. Essentially all the surfaces that are visible through the holes

will still be visible if the holes were larger. Therefore, we make the holes the size of the

surface. Thus, those surfaces that should be visible through the holes would be visible

if the surface containing the hole were not there. An example is shown in Figure 5.25a,

where the front part has a hole through it. Through this hole, the interior part of the

configuration is visible. Figure 5.25b shows that enlarging the hole does not change the

visibility of any parts. What is visible in Figure 5.25a remains visible in Figure 5.25b.

Thus, we enlarge the hole until it encompasses the entire front part, which results in an

assembly where the part no longer exists, as shown in Figure 5.25c. Notice that all

visible parts are still marked visible despite removal of the front part.

Removing the surfaces with holes before performing the cross-section trace

algorithms on the remaining configuration of AABBs is not sufficient, since the

(a) (b) (c)

109

visibility of the surfaces with the holes is unknown. Thus, we modify the cross-section

trace algorithm as follows. The traces around the perimeter of the cross-sections are

performed on each cross-section profile until the rectangle for an AABB with a hole is

encountered in the trace. This surface is marked visible. However, we will need the

results of a trace without this rectangle. We could obtain this information by

performing the trace again, but the section of the trace that occurs before the rectangle

in question occurs will be the same. Instead, we backtrack slightly to the previous

rectangle, and then remove the surface with the hole’s rectangle from the profile. Then

we resume the trace is as if the rectangle were never there. An example is shown in

Figure 5.26. The part corresponding to XR0(dk) has a hole through it. Thus, when the

edge trace encounters it in Figure 5.26a, we mark it as visible. Then we return the trace

to its previous segment before XR0(dk) was encountered and remove XR0(dk) from the

profile, as shown in Figure 5.26b. Then we finally continue the trace without XR0(dk), as

in Figure 5.26c. In the end, we have determined visibility for both the surface with the

hole and those surfaces that are visible if the surface were not there. Holes in surfaces

that are invisible are not considered. The approach is summarized in Table 5.8.

110

Figure 5.26. Example of edge trace on a profile when the part corresponding to XR0(dk)
has a through hole. (a) Edge trace encounters rectangle of part with hole. (b) Rectangle

is removed and trace backtracked to previous portion. (c) Trace is continued on
modified profile.

Table 5.8. Basic steps of the visibility determination algorithm (using surface
AABBs instead of part AABBs) accounting for surfaces with holes by treating them

as if they are not present.

1. Determine AABB for each surface.

2. Sort the coordinates of the surface AABBs in the X, Y, and Z directions.

3. Determine which surface AABBs are contained in another single surface

AABB.

4. Perform cross-section traces to determine visibility of non-contained AABBs.

If the AABB of a surface that has a hole is encountered, mark the surface

visible and then perform the trace without the AABB.

5. Determine visibility of contained AABBs based on the visibility of the

AABBs that contain them.

Z

XR2(dk)

Y

XR1(dk)

XR0(dk)

XR3(dk)

XR4(dk)

XR1(dk)

XR2(dk)

XR3(dk)

XR4(dk)

XR1(dk)

XR2(dk)

XR3(dk)

XR4(dk)

(a) (b) (c)

111

The second proposed method will provide more accuracy than the first one, as

far as part visibility through holes is concerned. However, it may require more

processing time and may not be worth the small increase in performance that comes

from not rendering those parts that are not visible in the second method, but visible in

the first method. The second method uses multiple AABBs to surround a surface

instead of one AABB, as proposed in Section 5.7 for parts. The difference is that we

will be leaving an empty volume where the hole occurs. This process is summarized in

Table 5.9. For example, take the surface shown in Figure 5.27 for a 2½ -D example. If

we were to use a single AABB, it would be the 2½ -D rectangle that is the border of the

surface. However, using multiple AABBs, we are able to cover the surface in a manner

that allows open volume to represent the holes, but still have the surface covered by

AABBs. With this method, the volume from the holes is left open, allowing the

visibility trace to pass through the holes and include those parts that can be seen through

the holes. At the same time, the solid sections will still be accounted for by the AABBs.

This will allow those parts that are truly invisible despite the holes to still be marked

invisible.

112

Table 5.9. Basic steps of the visibility determination algorithm (using surface
AABBs instead of part AABBs) using multiple AABBs for surfaces with holes

1. Determine AABB for each surface. If the surface has a hole, calculate

multiple AABBs that can be used to allow empty volume for the hole while

still containing the part.

2. Sort the coordinates of the surface AABBs in the X, Y, and Z directions.

3. Determine which surface AABBs are contained in another single surface

AABB.

4. Perform cross-section traces to determine visibility of non-contained AABBs.

5. Determine visibility of contained AABBs based on the visibility of the

AABBs that contain them.

The second method should be more accurate than the first method because it

more closely approximates the geometry of the parts. As a result, this method could

cause more invisible parts to be marked visible than the second method. However, the

second method also requires more processing time than the previous method in both

calculating the AABBs to use for the surface and performing the algorithms on more

AABBs. If there are many surfaces with holes, there could be a considerable increase

in computation time. In addition, a surface with larger holes will generally result in

more visible surfaces behind it than a surface with smaller holes. Thus, the benefit of

using the second option over the first is diminished on surfaces with larger holes, as the

results of the second option will be much closer to those of the first option while

requiring more processing time.

113

Figure 5.27. Example of (a) a surface with holes and (b) how it would be covered by
multiple AABBs.

In dealing with the problem of surface through holes, these two options are good

ways to deal with the problem of visibility through holes. If interior surfaces are simple

and easy to render, the first option would be a better choice, as those surfaces that

would be determined visible by the first option but invisible by the second one do not

require much time to render. The additional processing time used to determine their

visibility would not be worth the savings in rendering. In addition, surfaces with large

holes would have a lot of interior surfaces determined visible by the second option

anyway, so it is a good idea to use the first option there as well. It would seem that the

only situation where the second option is better is when there are intricate surfaces

behind the holes where their removal would save a lot of rendering time.

5.8.3. Visibility from a specific viewing angle

The algorithms we have described so far determine the visibility of parts and

surfaces of an assembly from any angle so those that are invisible are removed from the

assembly, reducing the total number of parts to be displayed. This is the purpose of this

(a) (b)

114

study. However, since we are already using AABBs in our method, then possibilities

for their use in other aspects could be explored to see if they lend an advantage. One

such possibility is visibility determination from a specific viewing angle. This would be

used in the actual display method to determine which surfaces of those determined

visible by the main algorithm are to be rendered from the specific viewpoint determined

by the user. Much research has already been done on viewing angle visibility, but

because the AABBs are already calculated for the algorithms in this research, it may be

advantageous to use them in viewing angle visibility if they result in fast and accurate

algorithms.

This approach is analogous to the use of Z-buffers to determine what is to be

rendered on the display. Z-buffers take the triangles that are tessellated from surfaces

and, going from those triangles furthest from the viewpoint to those that are closest,

determine what should be displayed on the screen. In effect, it keeps track of the visible

parts of each triangle from the chosen viewing angle. In essence, this approach will be

doing the same thing, going from the furthest AABB to the viewpoint to the closest and

keeping track of the visible parts of the AABBs. The only difference being that the

AABBs only determine which parts will be rendered, not what each pixel should be

displaying. The advantage of this is that the calculation of which parts will be rendered

will save in the rendering process itself, which requires much more processing.

We are only exploring the use of AABBs in a viewing angle that is in a direction

parallel to one of the global axes. We make this restriction because parallel viewing

directions result in the AABBs becoming rectangles. Non-parallel viewing directions

cause the AABBs to appear as hexagons, whose intersections are much more complex,

115

and would require more research to determine how to compute their intersections.

Example shapes are shown in Figure 5.28. Generalization to the following procedure

could be used for this determination from the non-parallel angles.

Figure 5.28. Example of the shapes that result from different viewing angles. (a) AABB
of a part. (b) View from a direction parallel to an axis. (c) View from a direction
orthogonal to an axis, but not parallel to an axis. (d) View from a direction not

orthogonal to any axis

From a viewpoint orthogonal to one of the global axes, the AABBs that

surround parts or surfaces appear as rectangles. We will use these rectangles to

represent their corresponding surfaces or parts. As an example, let us assume that the

viewing direction is parallel to the Z-axis. Each rectangle can be specified by two

coordinates, (Xmin, Ymin) and (Xmax, Ymax) as shown in Figure 5.29. Thus, each AABB

has two rectangles associated with it, as there are two faces orthogonal to the viewing

direction. In addition, each rectangle has a z-coordinate associated with the plane of the

face of the AABB from which the rectangle is obtained. The viewpoint also has a z-

coordinate as well. These values will be used to determine the distance between the

point of view and the rectangles. Only those rectangles that have a z-value in the

(a) (b)

(c) (d)

X

Y

Z
X

Y

Z

X

Y

Z X

Y

Z

116

direction of the viewpoint are considered for visibility, since those that have a z-value in

the other direction are behind the viewpoint and thus, invisible. For those AABBs that

have two rectangles in the viewing direction, we only consider the one that is closer to

the viewpoint, as it is the face of the AABB that is visible. Compiling all these

rectangles, we get a list specified by the coordinates of two opposite corners, and their

corresponding z-coordinates.

Figure 5.29. A rectangle and the two points that define it.

To determine the visibility of these rectangles, we determine all portions of the

rectangles that are visible, assuming that portions of rectangles are hidden by those

rectangles closer to the viewpoint that share those portions. To do this, we determine

the visible portions of all rectangles by starting with the farthest rectangle from the

viewpoint and moving forward towards the viewpoint. Beginning with the first

rectangle, we add the next closest rectangle to it. This rectangle may or may not

overlap with the previous rectangle. We keep track of only the portion of the first

rectangle that does not share the same area as the second, the uncovered portion. Then,

we consider the next rectangle, and keep track of the uncovered portions of those

previously uncovered areas of the first two rectangles that do not overlap. We continue

(xmax, ymax, zk)

(xmin, ymin, zk)

X

Y

117

until we reach the closest rectangle to the viewpoint. In this way, we will have

determined the visible areas of all the rectangles.

We start by sorting the list of rectangles by their distances from the viewpoint,

with the farthest rectangle(s) occupying the first elements of the list. We will call this

list Lr. We then create a separate list Lv of all the visible portions of the rectangles.

First, we place the first rectangle from Lr into Lv. Then, we take the next rectangle in Lr.

We call Rr the current rectangle in Lr and Rv the current rectangle in Lv, which is the

single rectangle that was the first rectangle in Lr. Rr is closer to the viewpoint than Rv,

and may or may not overlap. If the area of Rv is obscured by Rr, then Rv’s entry in Lv is

modified to keep track of the area that doesn’t overlap Rr. This area may not be

rectangular. If it is not rectangular, it can always be split into several rectangles based

on its shape, resulting in multiple entries in Lv. This is described in further detail below.

It is also possible that Rv is completely overlapped by Rr, meaning that Rv is no longer

visible. In this case Rv is removed from Lv. If there is no overlap, then Rv’s entry is

unchanged. Next, we add Rr to Lv and set Rr as the next rectangle in Lr. We repeat the

process by cycling through all the rectangles in Lv instead of performing the process on

a single rectangle as Rv. We are thus calculating the visible portions of all the

rectangles in Lv when Rr is placed in front of them. This process continues until we

have considered the last rectangle in Lr. The final result is a list Lv of visible rectangles.

Finally, we make all the parts or surfaces (depending on what the AABBs pertain to)

whose rectangles appear in list Lv visible as well.

We now describe the method used to determine the portion of Rv that is

uncovered. The coordinates that specify Rr are (xr,min, yr,min) and (xr,max, yr,max) and those

118

that specify Rv are (xv,min, yv,min) and (xv,max, yv,max). Each point (x, y) in Rr satisfies the

conditions xr,min < x < xr,max and yr,min < y < yr,max. Similarly, each point (x, y) in Rv

satisfies the conditions xv,min < x < xv,max and yv,min < y < yv,max. The four possibilities for

the x-intervals of the two rectangles are shown in Table 5.10. The same possibilities

apply for the y-intervals of the rectangles as for the x-intervals by simply replacing the x

values in Table 5.10 with y values. The relationships between the coordinates of the

rectangles in x and y determine the areas of the rectangles that overlap.

Using the relationships in Table 5.10 for x and y, we can determine the area of

Rv not shared by Rr. If Rv and Rr are disjoint in either x or y, then they do not overlap.

When Rv is disjoint with every entry in Lv, Lv is not modified. If the rectangles are not

disjoint, then the remaining possibilities are that Rr intersects, is contained in, or

contains Rv in x and/or y. We will explore each case separately.

The first case is that Rr intersects Rv in both x and y. Referring to Figure 5.30,

there are two possibilities for the x intervals. Possibility 1, which we will call X1, is

satisfied by xr,min < xv,min < xr,max < xv,max. Possibility 2, called X2, has the condition xv,min

< xr,min < xv,max < xr,max. Similarly, the two possibilities for y intervals are Y1: yr,min <

yv,min < yr,max < yv,max; and Y2: yv,min < yr,min < yv,max < yr,max. These four combinations

leave an L-shaped area of Rv uncovered. This shape can be broken into two rectangles;

therefore, we change Rv’s entry in Lv to one of these pieces and also add the other piece

to Lv.

Another relationship that could occur is for Rr to be intersecting Rv in either x or

y, and for Rr to be contained in Rv in the other direction. There are also four

possibilities for this occurrence shown in Figure 5.31. Each of the four possibilities is

119

specified by which relationship from the previous paragraph is the intersecting one: X1,

X2, Y1, or Y2. In all four possibilities, the non-overlapping portion of Rv can be split

into three rectangles.

Table 5.10. Possible cases for the x-intervals of two rectangles

Case x-interval properties x-interval coordinate
properties

Disjoint in x xr,max < xv,min or xv,max < xr,min

Intersecting in x xr,min < xv,min < xr,max < xv,max

or
xv,min < xr,min < xv,max < xr,max

Rr “contained in”
Rv in x

xv,min < xr,min < xr,max < xv,max

Rr “contains” Rv in
x

xr,min < xv,min < xv,max < xr,max

r
v

r
v

or

x

x

r
v

r
v

or

x

x

r
v

x

r
v

x

120

Another possible relationship is again to have Rr intersect Rv in either x or y, but

have Rr contain Rv in the other direction. This again has four possibilities, as shown in

Figure 5.32, with each possibility again specified by intersecting in either X1, X2, Y1, or

Y2. The region of Rv that is not shared thus turns out to simply be a single rectangle.

121

Figure 5.30. The four possibilities for Rr intersecting Rv in both x and y.
 (a) X1 and Y1, (b) X2 and Y1, (c) X1 and Y2, (d) X2 and Y2. Dark grey area is kept in

Lv. Dotted line splits dark area into two rectangles.

(a)

(xv,max, yv,max)

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

Rr

Rv

(b)
(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

Rr

Rv

(c)

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

Rv

Rr

(d)

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

Rv
Rr

X

Y

(xv,min, yr,max)

(xr,max, yv,min)

(xv,max, yr,max)

(xv,max, yv,max)

(xv,max, yv,max)

(xv,min, yr,max)
(xr,min, yr,max)

(xv,min, yv,min)

(xv,max, yv,max)

(xr,max, yr,min)
(xv,max, yr,min)

(xv,min, yv,min)

(xv,min, yv,min)

(xv,min, yr,min)

(xr,min, yv,max)

(xv,max, yr,min)

122

Figure 5.31. The four possibilities for Rr intersecting Rv in either x or y and Rr

contained in Rv in the other direction. Examples for when the intersecting possibility is
(a) X1, (b) X2, (c) Y1, (d) Y2. Dark grey area is kept in Lv. Dotted lines split dark area

into three rectangles.

(a)

(b)

(c)

(d)

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

Rr

Rv

(xr,min, yr,min)
(xv,min, yv,min)

(xr,max, yr,max)
(xv,max, yv,max)

RrRv

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

Rr

Rv

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)Rr

Rv

X

Y

(xv,max, yv,max)

(xv,min, yr,max) (xv,max, yr,max)

(xr,max, yr,min)
(xv,max, yr,min)

(xv,min, yv,min)

(xv,max, yv,max)

(xv,min, yr,max)

(xv,min, yv,min)

(xv,min, yr,min) (xv,max, yr,min)

(xr,max, yr,max)

(xv,max, yv,max)

(xv,max, yr,max)(xr,min, yr,max)

(xv,min, yv,min) (xr,max, yv,min)

(xv,max, yv,max)(xr,min, yv,max)

(xv,max, yr,min)

(xv,min, yv,min)

(xv,min, yr,min) (xr,max, yr,min)

123

Figure 5.32. The four possibilities for Rr intersecting Rv in either x or y and Rr contains
Rv in the other direction. Examples for when the intersecting possibility is

(a) X1, (b) X2, (c) Y1, (d) Y2. Dark grey area is kept in Lv.

(a)

(b)

(c)

(d)

(xr,min, yr,min)
(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

Rr Rv

(xr,min, yr,min)
(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

Rr

Rv

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

Rr

Rv

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)Rr

Rv

X

Y

(xv,max, yv,max)

(xr,max, yv,min)

(xv,min, yv,min)

(xv,max, yv,max)

(xv,max, yv,max)

(xv,min, yr,max)

(xv,min, yv,min)

(xv,max, yr,min)

124

Another possibility is for Rr to be contained in Rv in both x and y. This results in

the regions shown in Figure 5.33, with the area of Rv to remain surrounding Rr. This

area can be split into four rectangles.

Figure 5.33. Rr contained in Rv in both x or y. Dark grey area is kept in Lv. Dotted
lines split grey area into four rectangles.

The next possibility is for Rr to be contained in Rv in x and contain Rv in y and

vice versa. This results in the two possibilities shown in Figure 5.34. In this case, Rr

splits Rv’s entry in Lv into two rectangles.

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

Rr

Rv

X

Y
(xv,max, yv,max)

(xv,max, yr,max)

(xv,max, yr,min)

(xr,max, yr,max)

(xv,min, yv,min)

(xv,min, yr,min) (xr,max, yr,min)

(xv,min, yr,max)

125

Figure 5.34. The two possibilities for Rr contained in Rv in either x or y and Rr

containing Rv in the other direction. (a) Rr contained in Rv in x (b) Rr contained in Rv in
y. Dark grey areas are kept in Lv.

The final possibility for the relationship between Rr and Rv is that Rr contains Rv

in both x and y. When this occurs, we see that Rr completely overlaps Rv, as shown in

Figure 5.35. Thus, Rv’s entry in Lv is removed.

Figure 5.35. Rr contains Rv in both x or y.

After the process of analyzing all of the rectangles in Lv, Lv becomes a list of all

of the portions of all the rectangles that are visible from the viewpoint.

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

Rr

Rv

X

Y

(xr,min, yr,min)

(xv,min, yv,min)

(xr,max, yr,max)

(a)

(xr,min, yr,min)
(xv,min, yv,min)

(xr,max, yr,max)

(xv,max, yv,max)

(xv,max, yv,max)

Rr

Rr

Rv

Rv

X

Y

(b)

(xv,min, yv,min) (xr,max, yv,min)

(xr,max, yv,max) (xv,max, yv,max)

(xv,max, yv,max)

(xv,max, yr,min)
(xv,min, yr,max)

(xv,min, yv,min)

126

This method has the same shortcomings that the AABB algorithm has. The

empty space contained in a rectangle is treated as a solid and, therefore, it can cause a

portion of a rectangle to be marked invisible when it is not.

5.9. Summary

In this section, the details for determining the visibility of an AABB are given.

This is the last process required to determine what the display routines should render.

First, the process for determining the visibility of non-contained AABBs was presented.

Then, a rule was applied to determine the visibility of contained AABBs. The rendering

routine uses the visibility of the parts to determine which parts should be displayed.

The next section discusses the verification and validation of the process, from the

determination of the AABBs to the determination of visibility.

127

6. An Application: SCAMP

The verification and validation of the research described in Chapters 3-5 was

performed on CAD models of NASA’s Supplemental Camera And Maneuvering

Platform (SCAMP) telerobot shown in Figure 6.1 and Figure 6.2. This robot is the

result of a joint effort between the Space Systems Laboratory of the University of

Maryland and NASA Johnson Space Center. The SCAMP telerobot is an experimental

neutrally buoyant teleoperated vehicle that is designed to help further space vehicle

research. The model consists of 490 parts, of which 202 are visible from the outside of

the robot and 288 are invisible. Verification and validation were performed for each

stage of the algorithm to ensure that the algorithms functioned as intended.

Figure 6.1. CAD model of SCAMP telerobot.

Thruster ductsLens

Blades

128

Figure 6.2. Interior parts of the SCAMP model.

6.1. Preparation of the Model

The model existed as parts in the CAD package Pro/Engineer, a software

modeling package. This software package has the capability of translating models from

its proprietary format to the IGES format. The algorithms described in Chapters 3-5

were then used on the IGES format of these models to determine visibility.

6.2. AABB Determination

 First, we verify that the determination of AABBs is correct. This determination

begins with the calculation of the AABBs of each surface of a part. To verify that the

surface AABBs are correct, the validation must be performed manually by looking at

them through a visualization or CAD program. The coordinates of each surface AABB

are output from the developed algorithm. Then, using Pro/Engineer, each AABB is

Batteries

Bob

Internal Frame

129

manually created from the coordinates. Once this is done, each AABB and its original

part are displayed together to verify that the AABB determination was correct. An

example of what is displayed is shown in Figure 6.3 for one of the thruster ducts on the

vehicle. Each surface box is represented by a different color. It was verified that each

of the surface boxes generated was correctly determined for several randomly selected

parts. (This process was limited by Pro/Engineer’s inability to make parts partially

invisible. This made it hard to visually confirm that the AABB determination was

correct; hence not all parts were verified). Once the surface AABB determination was

verified, the next step was to confirm the validity of the part AABB that is calculated

based on the surface AABBs. Thus, for each part whose surface AABBs were verified,

the AABB of the entire part, which was determined by the algorithm presented in

Chapter 3, was also manually created in Pro/Engineer. For example, the resultant

AABB for the thruster duct is shown in Figure 6.4. It was verified that these AABBs

consisted of the extremes of all of the surface AABBs and were the minimum

surrounding AABBs of these parts. Through Pro/Engineer, the AABBs from several

other components were used to verify that their AABBs were correct.

130

Figure 6.3. Surface AABBs for thruster duct.

Figure 6.4. AABB for the thruster duct.

6.3. Relationship Determination

The determination of three classifications of relationships between AABBs, as

described in Chapter 4, has been implemented:

• One AABB contained in another
• One AABB intersecting another
• One AABB adjacent to another

Outer
Surfaces

Inner
Surfaces

Two Surfaces
Per Small Hole

Large hole
surface

131

Applying the program to the SCAMP model yields relationships between all of

the AABBs. These relationships were output from the algorithm presented in Chapter

4, and a simplified relationship tree was generated manually, which is shown in Figure

6.5. In this example, only interior parts are shown and identical parts have been

grouped together to make it easier to view the relationships. For example, the four

batteries in the vehicle have been grouped together in the figure.

Figure 6.5. Relationship tree for selected parts of the vehicle.

These relationships were verified visually with representations of the AABBs in

the modeling program. For example, Figure 6.5 indicates that the AABB of Port Cover

Panel 1 contains the AABBs of both the quartz lens and the quartz lens holder. This

was verified using Pro/Engineer, as shown in Figure 6.6. The AABB for the Port Cover

Panel 1 (blue) contains the AABBs for the lens (green) and lens holder (red). Figure 6.5

132

shows that the AABBs for the batteries intersect the outer seal rings’ AABBs. Figure

6.7 shows a battery AABB intersecting the AABB for one of the rings. Finally, the

motor drive AABB is adjacent to a mid-section octagon’s AABB, as shown in Figure

6.8.

Figure 6.6. Side view of the AABBs for the quartz lens (green) and the quartz lens
holder(red) contained in the AABB for Port Cover Panel 1 (blue).

Figure 6.7. AABBs for the intersection of an outer seal ring (pink) and a battery (grey).

Port Cover Panel 1

133

Figure 6.8. The two adjacent AABBs of the mid-section octagon (red) and the motor
drive (blue).

6.4. Object Visibility Determination Trace

Visible objects were computed using a trace around a cross section of the

AABBs as described in Chapter 5. To verify that the trace is correct, a visual validation

was performed using an Excel spreadsheet. For several cross sections, the coordinates

of all of the AABBs encountered were input into the spreadsheet and then used to create

a visual representation of the rectangles in the profile. For an example, consider the

section that goes through the parts shown in Figure 6.9. The corresponding rectangles

have the corner coordinates in Table 6.1, which has the profile shown in Figure 6.10.

Each AABB is represented by a different color rectangle. The coordinates of the trace

generated by the algorithms are used to superimpose a trace on this profile shown by

dotted black lines. Using this method, we visually and numerically verify that the

exterior edge trace is correct because it does not appear on any of the interior edges.

134

Figure 6.9. Parts through which cross-section is taken.

Figure 6.10. Visibility exterior edge trace of example cross-section profile.

Y

Z

Camera Mount

Port Cover Panel 1

Port Cover Panel 2

Port Cover Panel 3

Port Cover Panel 4

Duct Base Plate 1

Duct Base Plate 2

Duct Base Plate 3

Duct Base Plate 4

Rectangular Cover Plate 1

Rectangular Cover Plate 2

Rectangular Cover Plate 3

Internal Frame

Motor Duct Panel 1

Motor Duct Panel 2

Motor Duct Panel 3

Motor Duct Panel 4

Trace

135

Table 6.1. Rectangles and their coordinates

Rectangle Part
Lower Left Coordinate

(Ymin, Zmin)
Upper Right Coordinate

(Ymax, Zmax)
Camera Mount (4.146, -12.742) (9.663, -7.225)

Port Cover Panel 1 (3.955, -12.712) (9.625, -7.041)
Port Cover Panel 2 (-9.612, -12.711) (-3.941, -7.041)
Port Cover Panel 3 (-9.611, 0.855) (-3.941, 6.526)
Port Cover Panel 4 (3.955, 0.855) (9.626, 6.525)
Duct Base Plate 1 (-9.898, -5.843) (-9.143, -0.343)
Duct Base Plate 2 (-2.743, -12.998) (2.757, -12.243)
Duct Base Plate 3 (-2.743, 6.056) (2.757, 6.811)
Duct Base Plate 4 (9.157, -5.843) (9.912, -0.343)

Rectangular Cover Plate 1 (4.138, 1.039) (9.664, 6.565)
Rectangular Cover Plate 2 (-9.65, -12.751) (-4.124, -7.225)
Rectangular Cover Plate 3 (-9.651, 1.038) (-4.125, 6.564)

Internal Frame (-9.532, -12.618) (9.532, 6.437)
Motor Duct Panel 1 (9.537, -7.041) (9.662, 0.855)
Motor Duct Panel 2 (-3.941, -12.748) (3.955, -12.623)
Motor Duct Panel 3 (-9.648, -7.041) (-9.523, 0.855)
Motor Duct Panel 4 (-3.941, 6.437) (3.955, 6.562)

Figure 6.11. One of the pipes that was incorrectly marked invisible, which is circled in
yellow.

6.5. Validation of the Visibility Detection Algorithm

The final verification comes from the overall outcome of the program, which is

the determination of the components that are visible and those that are not. This

136

validation is based on the human visual perception of what components are visible from

any viewing angle. Of the 490 parts in the vehicle, 202 of them are visible from the

outside of the vehicle, leaving 288 parts hidden in the interior. The visibility as

determined by the program showed that it was able to correctly mark invisible all 288

parts. In addition, it detected as visible 200 of the 202 visible parts on the vehicle. The

2 components that were incorrectly made invisible are 2 of 6 small pipes, each being

contained in one of the 6 exterior thrusters on the vehicle. One of these pipes is shown

circled in yellow in Figure 6.11. These pipes were marked invisible because their

AABBs are contained in a collection of AABBs, but not in any single AABB. Any part

whose AABB fits this criteria will not be detected as visible, as the exterior traces

performed on the cross section profiles will go around the rectangles surrounding the

current part’s rectangle and miss this AABB.

To validate the performance advantage that the program provides during

simulation, we created visualizations and simulations of the underwater vehicle

assembly model. A vehicle visualization shows the transition of the model from a wire-

frame view to a rendered view. Also, the simulations depicted the actions of the vehicle

flying about in a neutral buoyancy tank in search of a lost thruster. One visualization

was created for the original assembly model and for the simplified model. This

visualization simply involved changing from a wire frame view to a solid shaded view.

In addition, one simulation was created for the original assembly model and for the

simplified model; that is, one whose parts were marked visible by the visibility

algorithm. This simulated the process of the robot swimming around an object to scan

it with its camera.

137

The system process time was examined for the simulation program while it was

performing each visualization and each simulation. This process time is a measure of

how much time the CPU spends making calculations necessary for the display of the

assemblies and their movement. Therefore, a comparison between the original and

simplified vehicles can be made to assess the performance benefit of the algorithm

developed in Chapters 3-5.

6.6. Results

The results given in this section are for the SCAMP telerobot model, which will

vary with other assemblies since the values will depend on the specific geometry of the

assemblies. Assemblies that do not have many hidden parts will not exhibit significant

savings, while those with many hidden parts will show dramatic increases in simulation

speed.

The accuracy rate of the program was found to be 99.6% for this assembly

model, as 488 out of the 490 components’ visibilities are correct. However, from a

qualitative standpoint, the two incorrect parts have little practical visual consequence in

the simulation of this vehicle. Also, in terms of calculation time, averaging ten runs, the

time to calculate the AABBs for all 490 components on a Pentium 4 2.4 GHz machine

is 37.375 ± 0.0314 seconds, an average of 0.0763 seconds per part. By relative

comparison, the visibility calculation using the AABBs is almost one thousand times

faster, taking only 0.041 seconds to determine the visibility of all the parts.

The results of the created simulations are summarized in Table 6.2. They

indicate that the algorithm increased the simulation and visualization speeds at which

138

the rendered SCAMP robot model is displayed. For visualization, the speed is 2.2 times

faster than that of the original; that is, the original visualization required 2.2 times more

CPU time than the model simplified by the algorithms presented here. Also, for

simulation, the speed of the developed algorithm is 1.8 times faster than that used by the

original method. This verifies the initial intent of the algorithms, which was to provide

faster simulation and visualization times for complex models while maintaining visual

accuracy. Although these results may vary for different assemblies, they show the

potential that the algorithms have for making the display and simulation of complex

assemblies faster.

Table 6.2: Results of simulation and visualization of the SCAMP
robot.

Model Type Visualization
CPU Time
(seconds)

Simulation
CPU Time
(seconds)

Original 33 126
Simplified by Present
Algorithm

15 70

Performance Benefit of
Present Algorithm (Original
time over Present Algorithm
time)

2.2 1.8

6.7. Discussion

The results of using the algorithms on a real-world application are promising.

The correctness of the algorithm in determining the visibility of the parts in the SCAMP

robot, while not necessarily indicative of how well the algorithms will perform on other

applications, shows that there is merit to this approach. In addition, the potential for

139

savings in not rendering invisible parts is a major benefit for those assemblies that have

numerous interior parts.

One area that may be of concern is the processing time required for the

algorithms. The AABB determination required 37 seconds to complete, which is

somewhat long considering that the time saved for the simulation is 56 seconds.

However, this is a little misleading, as the entire 37 seconds is not needed for further

use of the models. First, this is the pre-processing time, and thus only needs to be done

once for the same configuration of the model. If the same configuration of the SCAMP

is used several times in different simulations, or the same simulation is viewed multiple

times, the savings increases dramatically. In addition, since the AABB has already been

found for each part, if the configuration of the model changes, it is only necessary to

calculate the AABBs for the parts that were changed. Thus, the AABB determination

will not require the entire 37 seconds for further iterations of the SCAMP. The whole

process is even benefited more by the fact that the visibility determination after the

AABBs are calculated is extremely fast, using only 0.041 seconds to calculate the

visibility of all 490 parts. As such, a change in configuration will still have nearly

instantaneous results after the AABBs for the changed parts are calculated. Thus, using

the algorithms on models that change frequently is beneficial after using the algorithms

on the first version of the models, as the visibility of subsequent versions can be

determined quickly.

6.8. Summary

This section presented an application of the new algorithms. First, the

determination of the AABBs was verified. Then, we validated the determination of the

140

relationships between the AABBs. Next, the cross-section determination algorithm was

verified. Finally, the visibility determination of the parts in the assembly and the

performance increase that results from the use of the new algorithm was illustrated.

141

7. Conclusion

It has been demonstrated that the algorithms developed in this thesis can be used

to determine the visibility of parts in an assembly. The significant contributions of the

research are as follows:

1. The most significant contribution is the use of the cross-section edge trace. It makes

the determination of visibility much faster than ray tracing, which is a standard way

of determining visibility of parts without rendering all of them.

2. Considerable savings can be made in processor time during the display of large

assemblies, depending on the geometry of the assembly.

3. The pre-processing nature of the algorithms means that they only need to be done

once for the same configuration of the model, no matter how many times it is used

in various simulations or how many times the model is viewed. This can result in

considerable savings in the processing time needed to render the parts.

4. For subsequent small changes to the models, only the AABBs for the parts that have

been changed need to be found. Thus, the time to process these iterations is even

shorter than the initial run of the algorithms.

Straightforward Extensions to the algorithms

1. The visibility determination algorithms, after the AABBs have been found, are

extremely fast. As such, if the modeling program already incorporates AABB

determination, or if it can be incorporated easily into the program, then the visibility

algorithms can be performed with virtually no performance degradation.

2. The current visibility detection scheme can be modified easily to allow for more

accuracy as well as to work on the visibility of surfaces instead of parts.

142

3. Because AABBs are used in these algorithms, one can also make use of them for

other purposes, such as visibility determination based on different viewing angles.

143

8. References

Armstrong, C.G., McKeag, R. M., Ou, H., and Price, M. A. (2000). Geometric
processing for analysis. IEEE Proc. Geometric Modeling and Processing: Theory and
Applications, pages 45-56.

Bittner, J., Havran, V., and Slavik, P. (1998). Hierarchical visibility culling with
occlusion trees. Proc. Computer Graphics International, pages 207-219.

Bormann, K. (2001). Occlusion culling in large virtual environments. Presence:
Teleoperators & Virtual Environments, 10(5): 477-494

Brodsky, D. and Watson, B. (2000). Model simplification for interactive applications.
Proc. IEEE Virtual Reality, page 286.

Durand, F., Drettakis, G., Thollot, J., and Puech, C. (2000). Conservative visibility
preprocessing using extended projections. Proc. Siggraph, pages 239-248.

Hoff III, K. E. (1997). Faster 3D game graphics by not drawing what is not seen.
ACM Crossroads, 3(4).

Hudson, T., Manocha, D., Cohen, J., Lin, M., Hoff, K., and Zhang, H. (1997).
Accelerated occlusion culling using shadow volumes. Proc. of ACM Symposium on
Computational Geometry.

Huerta, J., Chover, M., Ribelles, J., and Quirós, R. (1998). Multiresolution modeling
using binary space partitioning trees. Computer Networks and ISDN Systems, 30(20-
21): 1941-1950.

IGES/PDES Organization. (1988). IGES 4.0 Specification.

Iones, A., Zhukov, S., and Krupkin, A. (1998). On optimality of OBBs for visibility
tests for frustum culling, ray shooting and collision detection. Proc. Computer Graphics
International, pages 256-63.

Kitamura, Y. (1998). A Real-Time Algorithm for Accurate Collision Detection for
Deformable Polyhedral Objects. Presence: Teleoperators & Virtual Environments, 7(1):
36-52.

Krus, M., Bourdot, P., Guisnel, F., Thibault, G. (1997). Level of Detail & Polygonal
Simplification. ACM Crossroads, 3(4).

Kumar, S., Manocha, D., Garrett, W., and Lin, M. (1996). Hierarchical backface
computation. Proc. of 7th Eurographics Workshop on Rendering.

144

Levi, O., Zohar, R., Barad, H., and Klimovitski, A. (1999). A compact method for
backface culling. Gamasutra, 3(31). http://www.gamasutra.com.

Martin, R. R. and Stephenson, P. C. (1998). Putting objects into boxes. Computer
Aided Design, 20(9): 506-514.

Möller, T. and Haines, E. (1999). Occlusion culling algorithms. Gamasutra.
http://www.gamasutra.com.

Sanna, A. and Montuschi, P. (1995). Spatial bounding of complex CSG objects. IEEE
Proc. Computers and Digital Techniques. 142(6): 431-439.

Shaikh,S., Magrab, E., Hagner, J., and Ou, J. (2000). Simulation Simplification Tool.
Final Report NAS3-00078. Technology Promotion International, Ltd, College Park,
MD. Report # NASA SBIR 99.1.1. June 2000.

Suri. S., Hubbard. P. M., and Hughes. J. F. (1999). Analyzing bounding boxes for
object intersection. ACM Transactions on Graphics, 18(3): 257-277.

Teller, S. and Séquin, C. (1991). Visibility preprocessing for interactive walkthroughs.
Computer Graphics, 25(4): 61-69.

Yu, Y., Wu, M., and Zhou, J. (1996). An octree algorithm for dynamic interference
detection using space partitioning. Proc. Of the Design Engineering Technical
Conference: Design Automation Conference.

Zachmann, G. (1997). Real-time and exact collision detection for interactive virtual
prototyping. Proc. Of Design Engineering Technical Conferences: Computers in
Engineering.

Zhang, H. and Hoff, K. (1997). Fast backface culling using normal masks. ACM
Symposium on Interactive 3D Graphics.

Zhang, H., Manocha, D., Hudson, T., and Hoff, K. (1997). Visibility culling using
hierarchical occlusion maps. Proc. of Siggraph.

Zhou, Y. and Suri, S. (1999). Analysis of a bounding box heuristic for object
intersection. Journal of the ACM, 46(6): 833-857.

