ABSTRACT

Title of Thesis: FASTER DISPLAY OF MECHANICAL ASSEMBLIESBY
DETERMINATION OF PART VISIBILITY

Jeremy Ou, Master of Science, 2004
Thesisdirected by: Professor Edward B. Magrab.

Department of Mechanica Engineering

We present algorithms that greatly decrease the time it takes to display a large

number of 3-D mechanical part assemblies by removing all interior parts that cannot be
viewed from any viewing angle. The agorithms are based on the minimum axis-
aligned bounding box of each part, which avoids complicated computations often
needed to determine the interactions of the geometry of the parts. The major
contribution of this work is the use of exterior traces of cross sections of the bounding
boxes to determine the parts visibility. It is shown that the processing time increases
amost linearly with the number of partsin an assembly of parts. A test on an assembly
composed of 490 parts shows that the algorithms decrease the display time by a factor
of two while only incorrectly identifying two of these parts as invisible when they

should have been identified as visible.

FASTER DISPLAY OF MECHANICAL ASSEMBLIESBY DETERMINATION OF
PART VISIBILITY

by

Jeremy Ou

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Master of Science
2004

Advisory Committee:

Professor Edward B. Magrab, Chair
Professor Satyandra K. Gupta
Professor Linda C. Schmidt

©Copyright by
Jeremy Ou

2004

TABLE OF CONTENTS

LISt Of TADIES......coeeeeeiee e n e nne e \Y
LISt OF FIQUIES.... ittt st st be et et esbeenae e e eneeneas Vi
L. INEFOTUCTTION ...ttt nn b nr et 1
2. REGIE WOTK ...ttt 3
2.1, PropoSEA WOTKocueeieiiieie ettt 7

3. Finding the Axis-Aligned Bounding BoX (AABB)cccoiviriineneee e 10
3.1, IGES SPECITICALION.....cueeieeieiiieiee ettt s 11

3.2. AABB Determination AlQOrithmccocceveeieniineneee e 14

3.2.1. AABB of the Trimming EAgeccoooeeiiriineeeeeeee e 16

3.2.2. Examination of asurface’ Sinteriorcccceverereneneneneneeeeens 29

3.3. Verification of AABB Determinationccocoeereeeeieenenenese e 48

34, SUMIMAIY ...ttt sttt e et e st e e ae e s e e e nbe e saseeebeesnneeneesareenns 50

4. Finding CONtaiNEd AABBSooiiei et 51
4.1, DEFINITIONS ..ot 52

4.2. SOrtiNg COOTAINGLES........coiuerieiuieiieeiestee sttt sttt sre e 53

4.3. Determining CONtaiNed DOXES........ccuereerieriiiiierieeie e 56

4.4, Other rel@tioNSNIPS......cccoieriirieieeie e 62

A5, SUMIMEIY ... eteiieeeteeeteeeteeseeeste e s et e saeessee e beesaseesseesseeabeeasseesseesanesaneeanseenseess 67

5. Determining Part VISIDHITYooeeriieiiieiee e 68
5.1. Vigibility determination PrOCESS........ccoierurreererieeseesieeee e e see e seeseesees 70

5.2. Advantages of a cross-section trace for non-contained AABBs................ 72

5.3. Vigihility of non-contained AABBS.........ccoireriineeneee e 74

5.4. Vigibility of contained AABBScccoiiiiiiieneee e s 90

5.5. Validation of the Visibility AlQorithmcccccoeoiiiniiiieeeee e 92

5.6. Limitations of the Current AIQOrthm...........ccooeeiireiinii e 95

5.7. Removal of aLimitation of the Algorithm..........ccoceiiriirinniieeeee 98

5.8. Corollariesto the agorithms...........coceveeiiiii e 102

5.8.1. Using the cross-section trace algorithms on surface AABBSs..... 102

5.8.2. Through HoleS in SUMaCeS........cccovirieiieieereee e 107

5.8.3. Visihility from a specific viewing anglecccceevreereenienenne 113

5.9, SUMIM@IY ...ttt e e n e s ae e e n e e sne e enneesneeas 126

6. AN APPLICATION: SCAMP.......oiieeee e e 127
6.1. Preparation of the MOdEccooiiiinieee e 128

6.2. AABB DEterMINGLioNccoeieeeieiesiesiese e 128

6.3. Relationship Determinalion...........ccoceieerenieneerie e 130

6.4. Object Visibility Determination TraCe........ccoeevereeneenenieeneeee e 133

6.5. Validation of the Visibility Detection Algorithm............ccccoeeevininieennnne. 135

B.6. RESUITS ... 137

B.7. DISCUSSION....cuiiniiieieiteete sttt be st n e r e bt se e 138

5.8, SUMMIBIYeeiiiiiiiieeiei ettt ettt sttt a e e e b e e e sse e sane e sneeenneenneeas 139

7. CONCIUSION.....ititetete sttt e et b e b a e st ae e e e n e b e sn e b e nbeenenan e 141
8. REFEIEINCES ... s 143

List of Tables

Table 3.1. Pseudo code for AABB deterMinNation.......c.oeeeeeeeeeeeeeeeee e eaeaeeeen 16

Table 3.2. Pseudocode for determining the maximum of f(x) on the interval Xyt < X <

Table 4.1. Pseudocode for finding projections found in other projections. 61

Table 4.2. Pseudocode modified to also find projections that intersect other projections.

.. 64
Table 5.1. Finding a rectangle that changes the trace directioncccccveeveeevecenee. 85
Table5.2. Finding arectangle that continues the trace direction...........ccccccvvvervenenee. 86

Table 5.3. Continuing the trace on the current rectangle, but in a different direction. . 87
Table 5.4. Basic steps of the visibility determination algorithm...........cccccveeveieveennee. 92
Table 5.5. Basic steps of the visibility determination algorithm when alowing multiple

AABBS PN PAIT. ..ot e nre e 99
Table 5.6. Basic steps using the visibility determination algorithm on the surfaces of

each part before performing the algorithm on the parts of the assembly 105
Table 5.7. Basic steps of the visibility determination algorithm using surface AABBs

iNStead Of Part AABBS.........oieecece ettt 106

Table 5.8. Basic steps of the visibility determination algorithm (using surface AABBs
instead of part AABBS) accounting for surfaces with holes by treating them as if
thEY @r@ NOL PIrESENT.......eiceee ettt sr e e ae s 110

Table 5.9. Basic steps of the visibility determination algorithm (using surface AABBs

instead of part AABBSs) using multiple AABBs for surfaces with holes.............. 112
Table 5.10. Possible cases for the x-intervals of two rectangles..........cccvceeveeieneenens 119
Table6.1. Rectangles and their COOrdinates...........cooveiiiiieienienie e 135
Table 6.2: Results of simulation and visualization of the SCAMP robot. 138

List of Figures

Figure 3.1. AABB Of @SPhEre.ocueoieeeceeee e 10
Figure 3.2. Examples of trimmed surfacesin grey.........coccevveveeceveere e 12
Figure 3.3. An example of local and global coordinate systems..........c.cccccveveeeeveeennene. 14
Figure 3.4. AABB Determination Algorithm Flow Chart...........cccccvevveceiiecncceeseeen, 15
Figure 3.5. Minimum AABB Of @liNE.ccccceeieieceee e 17
Figure 3.6. 2-D representation of anarcin IGES............cccoveve e, 18
Figure 3.7. Arc (blue) in 3-dimensional space. Arc AABB isinred.cccceeevieneee. 19

Figure 3.8. Rational B-spline curve (blue) and control points, P;. Curve's AABB in red.

.. 22
Figure 3.9. Trimmed surface of atabulated cylinder. AABB isinred.cccccueene.... 30
Figure 3.10. Trimmed Surface on a Surface of Revolution of aLine.cccccevveeee.. 31
Figure 3.11. Rotated arc’s (@) 2-D and (b) 3-D representations.cccceeveveeeereeennenn 34

Figure 3.12. Rotated B-spline curve: (a) 2-D representation; and (b) 3-D representation.

.. 42
Figure 3.13. Rational B-Spline surface and its control POINtS..........cccceevevveeresieeseeennn. 44
Figure 3.14. Trimmed surface of aplane.cccceoeveeiiciesiee e 45
Figure 3.15. Determination of the point G(0.4, 0.7).....ccccceveeveeiereereeeer e 47

Figure 3.16. Orthographic and 3-D views of the part used to verify AABB

AEEEIIMINGLTION 1N, <. ee et e e e e et e e e e e e e e e e e e eeeeeesaaeenneeeeeeeeeeanannnees 49

Vi

Figure 3.17. Part in Figure 3.16 enclosed by the AABB as caculated by the AABB

determination algorithm.ooo i s 49
Figure 4.1. (AABB); contain€d iNn (AABB)k......ccoeririieirineeeese s 51
Figure 4.2. The three extents and projections of (AABB);.......cccoovevriiincinincenee, 52
Figure 4.3. Projections and thelr COOrdiNGaLES.ccevereerierierieseere e e 56

Figure 4.4. Extents and projections of (AABB); and (AABB)«. (AABB); contains

Y =] DO OO R 57
Figure 4.5. Projection *Py containing projection “Py.cc.eevueeeeevereoecreeerseesseesiennens 58
Figure 4.6. Traveling @lONg @N @XIS.cccveeerierierieieerie et 59
Figure 4.7. Example of an “open” and “closed” projection.c.ccccceeeeneerenensieeennn 59
Figure 4.8. Projection *Pj adjacent t0 “Ph........c.oevueveeeeerieeeeeeseesseessessesssessssssseessennens 63
Figure 4.9. Projection P iNterSecting *Ph.c..oevuevvueeeeeeeeesresesseesseessesseessessssssseessnsens 63
Figure 4.10. Projection *P; is digoint With *Pyecueeruereerereeeeesieseecseeseeessees s 65
Figure 4.11. Two digoint AABBs aong with their extents and projections. 66
Figure 4.12. Two adjacent AABBs along with their extents and projections. 67
Figure 5.1. Example of a completely enclosed part.cccceverininiininnence e 70
Figure 5.2. Flow chart for determining of the visibility of an AABB.........ccceoevenee. 71

Figure 5.3 Plane intersecting collections of AABBs. Both configurations are the same

except that (AABB)1 in () isreplaced with (AABB)2in (D)...ccoveeviviiii 75
Figure 5.4. Cross section profiles, *S(c), from (a) Figure 5.3aand (b) Figure 5.3b....... 75
Figure 5.5. View of front (positive Z viewing angle) of AABBsin Figure5.3a. 77

vii

Figure 5.6. The various cross-sections of the AABBs in Figure 5.3a, taken between
(A Xo and Xy, (b) X1 and Xz, () Xz and X3, (d) X3 and X4, (€) X4 and Xs, (f) Xs and
Xe, (9) Xs and X7, (h) X7 and Xg, and (i) Xg and Xo.cccevvrveieriiieeiieeiiieeiee e 78
Figure 5.7. Boundary traces of the profilesin (a) Figure 5.4a, and (b) Figure 5.4b. 80
Figure 5.8. A profile in which rectangle 5 does not appear on the first edge trace.
(D=Y" indicates the current dir€Ction).............cceveeeeccuereieeeececeee e, 82
Figure 5.9. Examples of the occurrence of the three rectangle traversal events.
(1) direction changed by rectangle encountered. (2) trace continued in same

direction on different rectangle, (3) trace continued on next edge of same rectangle.

Figure 5.10. Shell for AABBs in Figure 5.3a. (a) Shell and cross-section plane.
(b) Exploded shell where cross-section istaken..........cccocveceeveeccecvie e, 89

Figure 5.11. Cross-section profiles of (a) shell and (b) AABBs with exterior edge trace.

.. 89
Figure 5.12. Visible part whose AABB is contained in another AABB.ccccc....... 90
Figure 5.13. General shape of partsused intest assembly.ccoooeeiiiiiinienieneene 93
Figure 5.14. Five-sided box assembly created from part shown in Figure 5.11. 93
Figure 5.15. A group Of NESLEA DOXES.......cceeiiiiiiiiireee e e 93

Figure 5.16. Plot of processor time versus number of parts for nested box assemblies. 95
Figure 5.17. Example of parts that will yield incorrect results using the current
algorithms. Part 2 will be marked invisible. ..., 96

Figure 5.18. Partsin Figure 5.15 and their AABBS.ccoooeiirinieeceeee e 97

viii

Figure 5.19. Cross-section profiles of the AABBs in Figure 5.16. (a) AABBs in 3-D

gpace and the locations of the cross-sections taken, (b) cross-section at dy,

(c) cross-section at dxy or dxp, (d) Cross-section at dz.cecvveeveevieenieciiecsee e 98
Figure 5.20. Part with multiple AABBs. (a) one AABB (b) two AABBs.................. 100
Figure 5.21. Partsin Figure 5.15 with multiple AABBs alowed.ccccccooeeinnennee. 101

Figure 5.22. Cross-section profiles of the AABBs in Figure 5.19. (a) AABBsin 3-D
gpace and the locations of the cross-sections taken, (b) cross-section at dy,
(c) cross-section at dx; Or dxp, (d) Cross-section at dz.cccceeecveeveeiiiieseesiieenneans 102
Figure 5.23. A sphere with itstwo surface AABBS. ..o 103
Figure 5.24. Invisible surfaces of two visible parts. (a) view of each individua part.

Invisible surfaces in grey. (b) Exploded side view. (c) Side view of parts

Figure 5.25. Assembly where one part has a hole in it. (a) Origina assembly
(b) Assembly with hole enlarged. (c) Assembly without the part with the hole.. 108
Figure 5.26. Example of edge trace on a profile when the part corresponding to *Ro(dl)
has a through hole. (a) Edge trace encounters rectangle of part with hole.
(b) Rectangle is removed and trace backtracked to previous portion. (c) Trace is
continued on Modified Profile. ... 110
Figure 5.27. Example of (a) a surface with holes and (b) how it would be covered by
MUITIPIE AABBS. ...ttt re e 113
Figure 5.28. Example of the shapes that result from different viewing angles. (a) AABB

of a part. (b) View from a direction paralel to an axis. (c) View from a direction

orthogonal to an axis, but not paralel to an axis. (d) View from a direction not
OrthOgONEl 10 MY @XIS ..e.veiieiieeiie ettt sttt re e 115
Figure 5.29. A rectangle and the two pointsthat defineit.cccoccoveiiiniinnienne 116
Figure 5.30. The four possibilities for R, intersecting R, in both xandy. (a) X1 and
Y1, (b) X2 and Y1, (c) X1 and Y2, (d) X2 and Y2. Dark grey areais kept in L,.
Dotted line splits dark areainto two rectangles..........cccoveneriiieenencenceseeee 121
Figure 5.31. The four possibilities for R intersecting R, in either x or y and R,
contained in R, in the other direction. Examples for when the intersecting
possibility is (a) X1, (b) X2, (c) Y1, (d) Y2. Dark grey areais kept in L,. Dotted
lines split dark areainto three rectangles.ocvveeeeeie e 122
Figure 5.32. The four possibilities for R intersecting R, in either x or y and R. contains
R, in the other direction. Examples for when the intersecting possibility is (a) X1,
(b) X2, (©)Y 1, (d) Y2. Dark grey areaiSKept in Ly......ccveeereeieneeneerieneeseeene 123
Figure 5.33. R contained in R, in both x or y. Dark grey areais kept in L,. Dotted
lines split grey areainto four rectangles.ccocvveereeie e 124
Figure 5.34. The two possibilities for R contained in R, in either x or y and R,

containing R, in the other direction. (a) R contained in R, in x (b) R contained in

R,/iny. Dark grey areas are KEPL iN Ly.oceeiieieiieieeeseeeee e 125
Figure5.35. R, containsS R, iNBOth X OF Y.oooiiiiiice e 125
Figure 6.1. CAD model of SCAMP tel€robOt.coveriiniinieece e 127
Figure 6.2. Interior parts of the SCAMP MOdEl.cccoiirininiine e 128
Figure 6.3. Surface AABBS for thruster duct.cccoveeieneninie e 130
Figure 6.4. AABB for the thruSter dUCL.cocveieiienieee s 130

Figure 6.5. Relationship tree for selected parts of the vehicle. ... 131
Figure 6.6. Side view of the AABBs for the quartz lens (green) and the quartz lens
holder(red) contained in the AABB for Port Cover Pandl 1 (blue)...................... 132

Figure 6.7. AABBSs for the intersection of an outer seal ring (pink) and a battery (grey).

Figure 6.8. The two adjacent AABBs of the mid-section octagon (red) and the motor

ArVE (BIUE). ...ttt 133
Figure 6.9. Parts through which cross-section istaken.ccccocovciveiiennnceneneee 134
Figure 6.10. Visibility exterior edge trace of example cross-section profile. 134

Figure 6.11. One of the pipes that was incorrectly marked invisible, which is circled in

1L [0 2P 135

Xi

1. Introduction®

In computer-aided design (CAD), the display of assemblies of parts is very
important. It allows designers to identify parts and their interactions that could not be
identified by looking at each part individualy. However, this display becomes slow
and unmanageable as the number of parts increases. The need to be able to display
more intricate assemblies that include thousands of complex parts is increasing. Such
assemblies include commercial vehicles, military vehicles, satellites, and machines with
many moving parts. An attempt to view any of these assembliesin their entirety makes
interactive viewing very difficult. It can take hours to bring the model into display for
the first time. If the viewing angle is changed, it can take many minutes for the CAD
program to calculate what is to be displayed in the new view. It is frequently not
feasible to use these CAD programs in these situations. In order to view these
assemblies at an acceptable update rate, it is necessary to reduce the amount of
geometry being displayed. This is usually done manually, with the user removing
subassemblies, surfaces, and polygons that are deemed unimportant. This research
provides a way for the computer to do this automatically, so that it is feasible to display
large assemblies in a shorter amount of time and without using a manual process.

In addition, the need to view these assemblies from data transmitted over the
internet is growing. Allowing people to view assemblies over the web causes the

amount of information needed to become an important consideration for bandwidth

1 This work was carried out under SBIR contract NAS3-00078 and is protected by
SBIR laws. It isaso protected by US patent #6,335,732 B1. Thiswork was performed
by Technology Promation International, College Park, Maryland, 20740

purposes. A further problem is that CAD requires fast processors and large amounts of
memory for the computers that are used for display. Computers with slower processors
are more prevalent. These computers are only able to manageably display and
manipulate simple assemblies. More complex assemblies will cause a display update to
take at least a few seconds after a change in view or configuration, which may be too
dlow for practical use. The idea of making these assemblies available for viewing over
the internet is to give anyone who has access the ability to view them without requiring
aworkstation. This research will allow rather large assemblies to be displayed via the
web by reducing the amount of information that needs to be sent from the server to the
web client. All of this information will need to be stored in the client’s memory. This
reduction of overhead will also allow more commonly used computers to be able to

display these assemblies at an acceptable update rate.

2. Related Work

There have been many approaches to the simplification of models to achieve
acceptable rates of display with a minimal loss of detail. Researchers have given
methods for simplifying geometry for modeling purposes (Brodsky and Watson, 2000;
Armstrong et al., 2000). These methods, however, decrease the geometric accuracy of
the models used. This means that using the simplified models to make measurements or
determine simulation paths will give results that are not as readlistic as those of the
unsimplified model. Another method is a multiresolution approach, where the level of
detail changes as needed based on the distance from the viewer. One such approach is
given by Huerta et al. (1998) and others by Krus et al. (1997). These methods may
increase display speed, but increase overhead, as representations for each level of detall
must be kept in memory. In adistributed environment, this method uses a large amount
of bandwidth because al of this information must be transmitted from the server to the
client.

Visibility determination is required for the computer graphics display of 3D
scenes, which may be composed of any number of objects. Each object is described by
surface polygons or surface representations that are polygonized before display. A
hardware construction known as the Z-buffer computes what the 2D representation of
these objects on the screen from all of the polygons in the 3D scene. It does this by
determining for each polygon the color and distance from the viewpoint of each pixel
for that surface. When the distance at a certain pixel of a polygon is closer than its
previous value, the pixel values are updated with those from the new polygon. In this

way, exact visibility is determined, meaning what is displayed is pixel-for-pixel what

the object would look like if a human being were to look at the object from the same
viewing angle. However, for large scenes with many surfaces, enormous amounts of
time are required to render this view because al surfaces are rendered, even those that
areinvisible. This may be acceptable if a static view is desired, but in smulations and
in computer-aided design environments, objects and viewpoints are constantly
changing. This means that the entire calculation must be performed again to reflect
these changes. One solution to speeding up this process is to reduce the number of
polygons sent to the Z-buffer without affecting what is ultimately displayed. Those that
are not visible are not rendered.

Severa researchers have considered different methods to process the visibility
of surfaces or polygons to speed up their display. The most basic of these is backface
culling, which keeps al polygons that face away from the viewer from being sent to the
Z-buffer, since these polygons will never seen by the viewer. Several researchers have
worked on methods to optimize the backface culling process (Kumar et a., 1996; Levi
et a., 1999; Zhang and Hoff, 1997). Another method is called view-frustum culling.
This involves the use of a rectangular-base pyramid to represent the view of the
observer. All polygons that are not contained in or do not intersect this pyramid are
determined to be invisible and are removed from rendering consideration (Hoff, 1997).
Finaly, a third method is known as occlusion culling. This process removes from
consideration polygons that are “occluded” or entirely covered by polygons in front of
them. Different methods are given by Bittner et al. (1998), Bormann (2001), Hudson et
a. (1997), Mdller and Haines (1999), and Zhang et a. (1997). The advantage of these

methods is that the time it takes to make these calculations is much less than that taken

to render the polygons that have been removed by these methods. However, these
methods are viewing-angle dependent, meaning that if the viewing angle changes,
everything must be recalculated. This calculation will be faster than using the Z-buffer
alone, but view changes will still be slow in those scenes with large polygon counts.
Another weakness of these methods is that they require the same amount of information
to be held in the computer's memory as with the Z-buffer method alone. In a
distributed environment, this is also a problem, because there is no reduction in the
amount of information that needs to be sent from a server to a client. This amount of
information isamgjor concern for bandwidth purposes.

These shortcomings can be alleviated if some visibility preprocessing can be
performed before calculations are made for a specific viewing angle. In thisway, asthe
viewing angle changes, there will be fewer polygons to consider for that view. In
addition, the preprocessing is performed only once, since the results from the
preprocessing can be stored for use in later display. The calculations do not need to be
performed again. Teler and Séquin (1991) offer a solution for axis-aligned
architectura models where al viewpoints will be from the interior. They spatially
divide the model into cells or “rooms.” From each cell, they determine the visibility of
all the other cells. Using this preprocessed information, only the geometry belonging to
the corresponding visible cells will be rendered when a viewpoint is placed in acell. It
is only when the viewpoint moves to another cell that the geometry considered for
display will change. In this way, displaying the entire model is not attempted, only
those cells that are potentially visible from the current viewpoint. This is a good

approach, but only works with axis-aligned architectural models.

Durand et a. (2000) give a preprocessing approach similar to Teller and
Séquin’s, but in a more general manner. Their approach also divides the viewing space
into cells, although this processing does not require an architectural model. Using an
occlusion culling technique, preprocessing is performed to calculate the visibility of
polygons from each cell. This visibility is used at the time of rendering to only process
those polygons that were calculated as visible from the cell that contains the viewpoint.
The drawbacks of this approach are that the preprocessing time can be very lengthy, as
the number of cells impacts heavily on the number of calculations needed. In order to
minimize the number of polygons visible from a cell, it is necessary to make the cell
relatively small in size, resulting in a high number of cells. In addition, the viewing
space must be known ahead of time to ensure that al possible viewpoints have a
corresponding cell. This is not acceptable for interactive applications where the user
must be able to change the viewpoint to any location.

The research described here uses a bounding box approach to calculate
visibility. Martin and Stephenson (1988) have investigated the placement of objects in
boxes. Bounding boxes have been used in computer graphics to speed up visibility, ray
tracing, and collision determinations (lones et al., 1998). They have been used mainly
to speed up intersection detection between entities. Interference or collision between an
object and a view frustum, ray, or other object can first be checked with the bounding
box. There can be no collision with the object if there is no collision with its bounding
box. This saves on the calculation time needed, as collision detection with the box is
simpler, and it eliminates many of the complicated calculations needed to detect

interference between two objects that are not even close to each other. lones et al.

(1998) studied the optimality of using bounding spheres, axis-aligned bounding boxes
(AABBSs), and oriented bounding boxes (OBBSs) in the applications of frustum culling,
ray shooting, and collision detection. The study found OBBs to be the optimum choice;
however, AABBs are used in the current research. The additional benefit of OBBs over
AABBs is unknown for the current application. OBBs have the benefit of more closely
fitting their parts. However, the calculations using OBBs may use enough processing
time to outweigh this benefit. Research has also been done into the properties of
geometry that fare well in bounding box intersection determination and why the
bounding box technique itself fares so well (Suri et a., 1999; Zhou and Suri, 1999).
Sanna and Montuschi (1995) propose the use of bounding box groups instead of one
single bounding box to increase the performance of the bounding box technique. They
also offer ways to limit the number of bounding boxes surrounding an object while
minimizing the volume enclosed. Kitamura (1998), Zachmann (1997), and Yu et al.
(1996) have used the bounding box in collision detection. They have subdivided the
box so that if a collision is detected between boxes, it is known in which subdivision(s)
the interference occurs. Thus, only polygons within these subdivisions need to be

checked for collision, reducing the collision detection process time dramatically.

2.1. Proposed Work

The current research addresses the display and preprocessing speed problems by
adopting a part visibility method for large assemblies. In large complex assemblies,
many parts may be enclosed or hidden by other parts from every viewing angle, making

their inclusion in rendering unnecessary. This method makes use of bounding boxes in

preprocessing to determine the visibility of these parts. Only those parts that are visible
from some viewing angle are included in the rendering of the assembly.

Some of the previously described work has been directed toward the
simplification of models for display. However, this ssimplification modifies the
geometry, making its use less accurate. The current research makes no modification to
part geometry, it only removes from consideration geometry that is not visible from any
angle. In addition, preprocessing is performed that does not require information about
visibility of geometry from different viewpoints. This means that these algorithms can
be applied to assembliesin different CAD packages without having to rewrite any of the
code used for display, as other preprocessing methods (Teller and Séquin, 1991 and
Durand et al., 2000) would require. The main advantage of this research comes through
the advent of the internet and the world wide web. Bandwidth is a major consideration
in the display of assemblies over the internet. This research first reduces the amount of
geometry by removing all parts not visible from any viewing angle. The reduction of
the amount of geometry will reduce the amount of data that needs to be sent and will

allow these models to be viewed more quickly and easily in a distributed environment.

In order to accomplish this task, the following process is used to determine the

visibility of the parts within an assembly.
1. We first determine the minimum axis-aligned bounding box (AABB) for each
part and reason only with the AABBS, not with the actual geometry of the parts .

Thisisdiscussed in Chapter 3.

2. We next find the AABBs that are contained in other AABBs. Parts whose
AABBs are contained in other AABBSs are candidates for being marked invisible
and are analyzed further. Thisisdiscussed in Chapter 4.

3. Next, we determine visibility of the parts whose AABBs are not contained in
other AABBs using a cross-section trace method. This method alows us to
determine which parts can be seen from different viewing angles. This is
discussed in Section 5.1.

4. Finally, we determine the visibility of the parts whose AABBs are contained in
other AABBs. Their visibility is dependent on the visibility of the containing

AABBS parts. Thisisdiscussed in Section 5.3.

3. Finding the Axis-Aligned Bounding Box (AABB)

In this chapter, we describe the methods used to determine the AABB of each
part, which will be used to determine part visibility. The definition of a part is
somewhat arbitrary, as the modeler determines what he wants to use as a part.
However, a part must be geometrically static, meaning that it cannot change in size or
shape throughout its application. An AABB is the minimum surrounding rectangular
parallel epiped whose edges are parallel to the axes of the global coordinate system. An

example of an AABB is shown in Figure 3.1.

Figure 3.1. AABB of asphere.

To find the AABB for a part, the following procedure is used for each surface of
the part. These surfaces can be of many different types, including tabulated cylinders,
surfaces of revolution, and rational B-spline surfaces.

1. Find the AABBs of the surface’s edges. This gives us an initial basis for

finding the AABB of the surface. Thisisdiscussed in Section 3.2.1.

2. Find any interior points of the surfaces that can extend the AABBs of the

edges. To find the AABB of the surface, there may be points within the

surface that lie outside the AABB of the edges. Thus, we need to find these

10

points thatextend the AABB to encompass the surface. Thisis discussed in
Section 3.2.2.
3. If needed, we modify the dimensions of the part AABB to account for the

the current surface. More detail isfound in Section 3.2.

3.1. IGES specification

We require that CAD models be converted to an Initial Graphics Exchange
Specification (IGES) format before each AABB is determined. IGES is a standard
format that is compatible with many commercial CAD systems.

Conversion to IGES changes each part model from a solid model to a surface
model. A solid model is represented as a solid block, cylinder, or other solid entity with
protrusions, cuts, and rounds added to or subtracted from them. However, surface
models use planes and curved surfaces to describe the exterior of the part. After being
converted to the IGES format, the model becomes a collection of trimmed surfaces. A
trimmed surface is a general surface that is represented by lines and curves that define

its edges. Examples of trimmed surfaces are shown in grey in Figure 3.2.

11

~

AN
wmmed Surfaces

Trimming Edges
General Surfaces
Figure 3.2. Examples of trimmed surfacesin grey.

Each trimmed surface is specified by a general surface description and the
trimming edge that defines the borders of the surface. The general surfaces are either
tabulated cylinders, surfaces of revolution, or rational B-spline surfaces. Each of these
surfaces is defined in detail subsequently. Trimming edges are closed curves composed
of lines, arcs, and rational B-spline curves. The specifications for the trimmed surfaces
of apart are used to determine the AABB.

In doing this trandation to IGES, it is necessary that all parts be placed in a
global coordinate system, as the algorithms to be introduced will require that all
AABBSs' coordinate systems be orthogonal to each other. In the modeling of parts, each
part is created in its own local coordinate system, usually the coordinate system that
makes it easy to create the part model. However, when these parts are assembled, even
though each part has its own local coordinate system, there will be only one coordinate

system that pertains to the entire assembly, the global coordinate system. An example

12

is shown in Figure 3.3. This is a two-part assembly, with a smaller rectangular block
part placed on the non-orthogonal face of the larger block part. For the smaller block, it
IS easiest to create this part in a coordinate system whose axes lie along the block’s
edges. When the smaler block is placed in its position in the assembly, its local
coordinate system occurs at (u, v, w). However, the global coordinate system for this
assembly is (X, Y, Z). Therefore, the specifications for the geometry of the block will
use the (X, Y, Z) coordinate system. In addition, the algorithms will determine the
AABBs in the (X, Y, Z) coordinate system as well. Since the smaller block is not
orthogona with the global coordinate system, its AABB (shown in Figure 3.3) does not
have the same dimensions as the rectangular block itself. Since the algorithms require
that the global coordinate system be used, an empty volume in the AABBS results for
those parts that are of a unique shape or are not oriented orthogonal to the global
coordinate axes. This empty volume can affect accuracy, with more empty volume
resulting in less accurate results; that is, in the algorithm incorrectly marking an AABB
invisible when it should be visible and vice versa. There are ways to mitigate these
effects and they are also discussed. However, the problem of empty volume cannot be

completely eiminated.

13

AABB of the smaller block

X

Figure 3.3. An example of local and global coordinate systems.

3.2. AABB Deter mination Algorithm

The AABB determination algorithm calculates in the globa coordinate system
the bounds of the AABB of a part. These bounds consist of the minimum and
maximum coordinates in the three orthogonal directions that are encountered among all
geometric points in the part. The flow chart of the algorithm, which is given in Figure

3.4, is now described.

14

Trimmed
surface

v

Check
edge

No

Y es

Min/M ax from
endpoints

Y es

No

M in/M ax from
transformation
matrix and arc

M in/M ax from
control points of
rational B-spline

Bounds
exceeded?

First edge?

Y es

Record bounds as
trimmed surface

A djust bounds for
trimmed surface

B-spline
surface
flat?

No

Revolved
entity a
line?

Check surface
interior

Any more
trimmed

Y es Bounds

exceeded?

surfaces?

No Adjust bounds for

trimmed surface

End

Figure 3.4. AABB Determination Algorithm Flow Chart.

First, the algorithm determines the AABB of a trimmed surface. Then the next

trimmed surface is retrieved and its AABB is calculated. The values of the previous
box’s bounds are adjusted so that the new bounds contain both boxes. This simply
entails comparing, for each orthogonal direction, the two maximum bounds and taking
the larger of the two as the new maximum bound. Similarly, the lower bounds for each

direction are compared and the lower of the two values is used as the new minimum

15

bound for the direction. This is repeated for all trimmed surfaces until the size of the
fina box is obtained. The final box is then the AABB of the part. The pseudo code for
the above algorithm is given in Table 3.1.

Table 3.1. Pseudo code for AABB
determination

Start with atrimmed surface S1
Determine AABB bounds C1 for S1
AABB =C1
forj=2toN

Take §

Determine Cj for §

AABB = extreme(Cj, AABB)
endfor

The AABB of atrimmed surface is found in two steps. First, the AABB for the
trimming edge isfound. Then, for certain types of surfacesthe AABB is adjusted based
on the interior points of the trimmed surface. AABBs are determined by finding the
coordinates of critical points such as vertices and the maxima and minima of curves and

surfaces.

3.2.1. AABB of the Trimming Edge

The trimming edge of a surface is a closed curve consisting of line, arc, and
rational B-spline curve entities. The approach to finding the AABB is much the same
as that of Table 3.1, but instead of surfaces, edge entities are used. An AABB isfound
for the first entity, then this AABB is expanded, if necessary, to enclose the AABB for
each subsequent entity. These AABBs are found by finding those points of the entities

that have the minimum or maximum coordinate in the three orthogonal axial directions.

16

AABB of aLine

The minimum AABB of a line is determined as a box with the line€'s two
endpoints at opposite corners as shown in Figure 3.5. Since the minimum AABB is
determined by the maximum and minimum coordinates in the three orthogonal

directions, this occurs at the endpoints of the line.

z

Figure 3.5. Minimum AABB of aline.

AABB of an Arc

An arc in IGES is specified by two components. The first is a 2-D
representation of the arc that is parallel to the X-Y plane of the global coordinate system.
This 2-D representation is geometrically congruent to the actual arc in 3-D space. The
2-D representation is specified by the (x, y) coordinates of the center, start, and
terminate points as shown in Figure 3.6, and a displacement from the X-Y plane (the z-
value).

The second component is a transformation matrix that rotates and translates this
arc to its actual placein 3-D space, shown in Figure 3.7. The values X, Ve, Xs, Vs %, and
y: in Figure 3.6, when transformed, could be different from the coordinates of the
corresponding points, and thus do not appear in Figure 3.7. The transformation matrix

R is specified by:

17

Rll R12 R13 Tl
Ry Ry, Ry T

Ry Ry, Ry Tg
O 0O 0 1

R=

where R; are the coefficients that rotate the configuration about an axis through the

They trandate the rotated

origin. The coefficients T; are the trandation factors.

configuration to its desired location. The transformation matrix transforms a point (x;,

Vi, z) on the 2-D arc to another point (Xo, Yo, Zo) 0N the 3-D arc by the following matrix

multiplication
I:'211.1 I:212 R13 Tl XI Xo

T v
Ra Ro Ro T vi|_|Y "

RSl R32 R33 TSZl Zo
0O 0 0 1]1] |1

Y A Terminate (, Vi, z)

[}
\ Center (Xc, Ye, Z)

Start (X, Vs, z) /

(%, Vi, Z)

>
X

Figure 3.6. 2-D representation of an arc in IGES

18

ZA

x AABB determining

—

/ points

Arc projection on
X the XY plane

Figure 3.7. Arc (blue) in 3-dimensional space. Arc AABB isinred.

The minimum and maximum values of X,, Yo, and z, determine the bounds of the
AABB of the arc in its oriented position in space. We first use the endpoints of thisarc
as initial values for the bounds, as they often do turn out to be AABB determination
points. Thus, we use the start and terminate points as (X, Vi, Z).

It is now necessary to compute any interior points on the arc that may require
the bounds of the AABB to be expanded. We consider first the equation for x,; the
equations for y, and z, will be similar. Thus, from Equation (1)

X, = RyX + Ry, +Ryz +T, 2)

The only values of this equation that will change along the arc are x; and y;. We

reguire the minimum and maximum of

f(xilyi):Xo_Rlszi -T, =RuX Ry,

19

If we let x =x +rcosé and y, =y +rsing, where 4 is the angle with
respect to the positive X-axis and r is the radius of the arc, then this expression becomes
f(ri "9i): RuX. + Ry Y, +I’(R11COSHi + R125in‘9i)

To find the minimum and maximum, we determine the values of & that satisfy

df .
9" (-R.Sin6, +R,cos6,)=0

Therefore,

tang, = Re 3

1

This gives two points on the circle of the arc with corresponding angles that
have tangents equa to Ry / Ryi;. One will give the minimum and the other the
maximum value for X, on the circle. However, these points may not actualy lie on the
arc. To determine this, we calculate the angles that correspond to the start and end

points of the arc. To find 6, we have the equations X, =Xx.+rcosd, and

Y, =Y, +rsing,. Thisgives

cosé, =¥ and sind, :g
Thus,
9, =tantYs e
° Xs =X
Similarly, wefind & from
0 = tan—l yt B yc
t X —X¢

20

Thus, we determine each value of & that satisfies Equation (3) to see if 6; <4
<@, which means that the point corresponding to & lies on the arc. If one, or both, of
these values does satisfy this requirement, then the corresponding point(s) causes the
bounds of the AABB to be expanded past those determined by the endpoints. We thus
usetherelationsx, = x, +rcosé¢, and y, =y, +rsing, and Equation (2) to find the value
of X, and the bounds of the box in the X -direction are adjusted accordingly. Similarly,

the minimum and maximum values for y, and z, are obtained when

tan@i :&

1

and

tanHi :&

1
respectively. Thus, we take the corresponding values of & to check if these are on the

arc, and if so, we adjust the bounds accordingly.

AABB of a Rational B-spline Curve

Genera curves are represented as rational B-spline curves. These curves are
obtained by applying a smoothing function to sets of ordered control points as shown in

Figure 3.8.

21

P3(X3,_yf, z)

9. Pi(Xq, Y1, 21)

‘ .
r .
~
"
—_ <
t=0.3 "
L3
3
o a
[

;
v LN
il o
i 3 [
v [
: L -
E il WEDy My a el A L P TN
i P e W N (oo <Lt PR B
mogd VR R PE nE s 0 ksl g P 1
e bn Doz ooy fE Ry ony WL o [
JlllllllllllI 1 LI |
S S L R R e LR T L
Vi T TR vt B e ol - T Y i 1 FedsE b i
||"||"||,,l.|". LR L LR
[T A I ST R LT I R -7 i e - L EY BT O O -
ik e lmaow ol MRS Be JEE EED wEEEES 4 o Mmoo dm oo
[§ LI} (] LI | [1 1
[[o L ST L RO R [
[§ LI} o . I A | LI |
[[[L T T R | 1 1
] [} [} LI LI B 1
P ' uitelfi el R e L ERL G e ol BLGEP E e ad a
0 \20; Y0, T
[§ LI} (] LI LI §
[§ LI} o oy 1 L . | [l
EIN O i 10 e el - - U T L et Ty S A O
L [} [} €
SR o L R T S i P
1 [} [} LI 1 1
[[[| T B | LI R | 1
1 1 1 LA T R T B | 1 Ll
! gt (] [

" Pa(X2, Y2, 22)
X

Figure 3.8. Rational B-spline curve (blue) and control points, P;. Curve’'s AABB in red.

In determining the points on the curve, a parametric value of t is used. In most
CAD systems, 0 <t < 1. This parametric value is used to create a one-to-one mapping
of t in the interval [0, 1] to the points on the curve, with t = 0 mapping to the first
endpoint, and t = 1 mapping to the last endpoint. The curve is calculated as a function

G(t), which is given in the IGES 4.0 Specification (1988) by

> wPHM ()

GM)(t)= =0 - (4)

K

> Wib(t)

i=0
where M is the order of the curve, K is the number of control points minus 1, W, are the
weights of each point, P; are the control points (X, Vi,), and b™(t) is an M™-degree
function determined by a knot sequence in t. The non-decreasing knot sequence int is

t(—M) ’t(—M RITERE ’t(K+1) . In the knot sequence, t(—M) = t(—M +1) =...= tO and

22

ticmaa) = tomaz) = = Lk - In many commercial CAD systems, W =1,

i=01...,K. Thefunction b,(") (t) is arecursive function of degree k and is defined as
follows:

b(©) (t) =1 t <t<t,

! _ i=01...,K (5)
=0 otherwise
(1) = Lt plen)+ b Tt peen) =01,k
6=ty i =l k=123,... 6)

i=0
Using these equations, algebraic expressions for the locations of the minima and

maximafor first to third-order rational B-spline curves are determined.

AABB of afirst-degree curve

First we determine the function bi(l) . From Equation (6), we have

¥ (1) =L i g0 (1) + e Tl poe) =01,k
=ty i =t

or

23

p® (t) oty t <t<t
! t -t . '
i i-1
t. —t .
=i t <t<t,, 1=01...,K
t|+1 _ti .
=0 otherwise

Thus, the B-spline curve function reduces to

t., —t -t .
G(l)(t): P = +P, : t<t<t,, 1=01...,K-1
iy =1 tig =t

This equation results in a straight line from one control point to another, and the

minimum and maximum points will be control points. Therefore, it isonly necessary to

examine the control pointsto determine the AABB.

AABB of a second-degree curve

In this case, Equation (6) becomes

t—t t,, —t .
b?(t) = —— =05 (0)+ —=—bY) i=01..K
ti _ti_z ti+1 _ti—l
or
-t t—t
b.(z) (t) = i-2 i-2 t,<t<t,
G-t N\ —ti,
- t-t, t -t + Gy — 1 t-t, t, <t<g -
t—t, \t—t, t,—t, Nt -t i=01,...,K-1
N T t <t<t,
Ly =ty Ata =t
=0 otherwise

The curve equation then reduces to

24

t|+1 | -1 |+1 i
—) <)
F)I+l|:[t t J(t|+1 t j+[t t J[t tl jj|+ ‘FI _t <t|+l
|+1 t| -1 t|+1 ti ti+2 _ti t,+1 ti 1=01...,K-2
p (1=t) =t
ti+2 _ti ti+1 _ti

To find the minimum and maximum, we set the derivative of G(t) with respect

totto zero. Thus,

do(t) _(1 op[famt)y p [t tta—2) (Lot =2
dt ti+1_ti ti+1_ti—1 t.+1 ti—l ti+2_ti
2Pi+2 i =0
ti+2_ti

Upon solving for t, we obtain the following expression for the extrema, t; ex:.

t — 2Piti+1(ti+2 -t)_ Pi+1[(ti+2 -)(ti+1 +ti—1)+ (ti+1 _ti—l)(ti+2 +)] + 2Pi+2ti (ti+1 _ti—l)
e 2[(P| - Pi+1)(ti+2 -t)+ (R+2 - Pi+l)(ti+l _ti—l)]

i=01...,.K-2
Substituting in the values of the x;, yi, and z coordinates of the control points P;, we

obtain three values for te for each value of i:

oz 2t =) = Xt =t)t) (bt s 8]+ 2000t (t 1)
e [T (Y FE O (W
1=01...,.K-2

t = 2yiti+l(ti+2 —;)_ yi+l[(ti+2 —;)(ti+1 +ti—l)+ (ti+1 _ti—l)(ti+2 +)] +2Y, 51, (ti+1 _ti—l)
e 2[(yi - yi+1)(ti+2 =1)+ (Yi+2 - yi+1)(ti+1 _ti—l)]
i=01...,K-2

t = Zziti+1(ti+2 i) Z|+1[(Lo — |)(ti+1 +ti—l)+ (ti+1 _ti—l)(ti+2 +)] +27,5%, (ti+l _ti—l)
o [(Z| Z|+1)(b =1)+ (Zi+2 —Zn (ti+1 _ti—l)]

i=01....K-2

25

Since each value of i gives a different equation for its respective portion of the
curve G(t), the three values ty e, tyiex, and tyeq correspond to the local minima or
maxima of a curve that is represented by this equation for all values of t. However, the
equation for GA(t) is only valid on the interval t, <t<t,,. Thus, we only consider
those values of tyex tyiew and tieq that are within this interval, as only these
correspond to actual minima and maxima of the spline curve. For all of these valid
values of t, we evaluate the points that correspond to those values through the equation
G@(t). The bounds of the AABB for the second-degree curve are determined as the
minimum and maximum X, y, and z coordinates of all of these points and the curve

endpoints.

AABB of athird-degree curve

For this case, Equation (6) gives

()= 0+ b0 i=oak
i ~li-3 T

or

26

|
VR
| -
| |
[
& e
N
7 N\
—t
—+
|
||
—_
N
N
VR
—
P
|
—~ | |
T —
IR
N

The equation for G®(t) then reduces to

G(3)(t): P| ti+1_t ti+1_t ti+l_t +
ti+1 _ti—2 ti+1 _ti—l ti+1 _ti
P {(-1,](i, —t J(ti+1_t]+
i+1
ti+1 _ti—2 ti+1 _ti—l ti+1 _ti

{ ti+1_t j|:{t_ti2 j{ ti -1 j+(ti+1_t J(t_til J:|
ti+1 _ti—z ti _ti—z ti _ti—l ti+1 _ti—l ti _ti—l

ti+2 —t

igst<t,,

t_, <t<t,

t, <t<t,

ti <t <ti+l

otherwise
i=01....K-2

(ti, —t j|:(t-t, J(tnl_tj_l_(
L=t L=t NG =t

ti+2 —t

ti+2 _ti

[

t—t
Pi+2 i-1
ti+2 _ti—l
t-t) t-t) t-t,
+
ti+3 _ti ti+2 _ti ti+1 _ti
-t -t -t
Pi+3 i i i
ti+3 _ti ti+2 _ti ti+1 _ti

27

ti+2 -t

G O
(

t, <t<t

)

0<i<K

i+l

Again we set the derivative of this equation to zero to determine the maxima and
minima. Thus,

(3) - -
dG(t) (1 3 tg —t |t -t),
dt tig — 1 tig =i N\l — iy
P, Lisg — 1 Ly +24 , -3t + lis, — 1 L + 24 -3t +
a1, i =iy iy =iy Ly =1

3tz B Z(ti+2 +ti+1 +ti—l)t +ti+2ti+l +ti+2ti—l +ti+lti1:| +

(ti+2 - ti—l)(ti+l - ti—l)

P t_ti—l 2ti+1+ti—l_3t + t_ti 2ti+3+ti_3t +
v ti+2 _ti—l ti+l _ti—l ti+3 _ti ti+2 _ti

- 3tz + Z(ti+2 + ti + ti—l)t B ti+2ti+l B ti+2ti—1 B ti+ltil:| +

(ti+2 - ti—l)(ti+2 - ti)

-t t-t, .
3P, -t L |It=0 t, <t<t,, i=01...,.K-2
g =4 \Gia =8

which results in an equation of the form

At2+Bt+C, =0 i=04,..,K-2

B = [6Piti+l - R+l(4ti+l +2,)](ti+3 -1)(ti+2 _ti—l)(ti+2 -t)+
[_ Pi+l(4ti+2 + 2ti)+ 2Pi+2 (ti+2 + o+ ti—l)](ti+3 -)(ti+l —ti,)(ti+1 - ti—l) +
[_ 2F:;+1 (ti+2 + ti+1 + ti—1) + Pi+2 (2ti+1 + 4ti—1)](ti+3 - ti)(ti+1 _ti—z)(ti+2 _ti)+
[R+2 (2ti+3 + 4ti)_ 6Pi+3ti](ti+2 _ti—l)(ti+1 _ti—z)(ti+1 - ti—l)

Ci = [_ 3Piti2+l + Pi+lti+l(ti+l + 2ti—2)](ti+3 _ti)(ti+2 _ti—l)(ti+2 _ti) +
[Pi+1ti+2 (ti+2 + 2ti)_ Pi+2 (ti+2ti+1 oty + ti+1ti—1)](ti+3 -t)(ti+1 -1,)(ti+1 - ti—l) +
[Pi+1 (ti+2ti+1 oty ti+1ti—1) - Pi+2ti—1 (Zti+1 + ti—l)](ti+3 -1)(ti+1 —ti,)(ti+2 -1) +
[_ Pi+2ti (2ti+3 +) + 3Pi+3ti2]

Thus, two values are found:

28

_-B+B’-4AC _~B -JB -4AC,

tiee = 2A and t;, . = 2n i=0l... K-2

These values are candidate values of t that correspond to maximum and minimum
points of a curve given by the equation for the ith section of the spline curve. However,

only those points within the interval, t <t <t,, are actua loca maximum and

minimum points of the spline curve. Therefore, we evaluate the actual coordinates of
the points that correspond to these values of t; e With the curve equation. We then take
the minimum and maximum X, y, and z coordinates of all of these points and the

endpoints of the curve as the bounds of the AABB.

3.2.2. Examination of a surface sinterior

After the AABB of the trimming edge is found, it is necessary to examine the
interior of the trimming surface for extreme points that may lie outside the bounds of
the current AABB. There are three different types of surfaces that are usually exported
in IGES format: tabulated cylinder, surface of revolution, and rational B-spline surface.

The examination of the interiors of these surfaces is now described.

Tabulated cylinders

Tabulated cylinders are surfaces formed by sweeping a line segment called the
generatrix paralel to itself along a curve. Such a surface is shown in Figure 3.9, aong
with atrimming edge on that surface. It will be shown that the AABB of this surfaceis

the same as the AABB of the trimming edges.

29

Tabulated Cylinder Trimming Edge
/

A Trlmmed Surface

/ R |
S
W

«— Generatrix
P

L~ \K

Y CUI’VG

Figure 3.9. Trimmed surface of atabulated cylinder. AABB isin red.

Referring to Figure 3.9, we take any point P in the interior of the trimmed
surface. We then draw aline segment AB through P that is parallel to the generatrix of
the tabulated cylinder. AB intersects the trimmi ng edge at points A’ and B'. Thus, P is
also on segment A'B’. Since Pison this segment, it follows that it is contained in the
AABB of this segment. Since the AABB of a line segment has the endpoints of the
segment on opposite corners, we can deduce that one possible AABB containing P has
A’ and B’ asits opposite corners. Because A’ and B’ are points on the trimming edge,
this AABB is contained in the AABB of the trimming edge, which means that the point
P is contained in the AABB of the trimming edge. Thus, it is unnecessary to examine

the interior of a tabulated cylinder, as all points in the interior are contained in the

AABB of the trimming edge.

30

Surfaces of Revolution

Surfaces of revolution are surfaces formed by revolving a line segment, arc, or
curve around an axis line. Finding the interior of the surface is handled differently for

each of these cases.

Revolution of a line: It will be shown that the AABB of a surface generated by a

revolved lineisthe same as the AABB of the trimming edge.

Surface of Trimming
Revolution
A « Edge
/
' lTrimmed
Surface
Revolved
Line]
AXis
Y ——

Figure 3.10. Trimmed Surface on a Surface of Revolution of aLine.
Referring to Figure 3.10 we take a point P in the interior of the trimmed surface.
We then draw line segment AB through P that coincides with the revolved line as it
passes through point P. AB intersects the trimmi ng edge at points A’ and B'. Thus, Pis

also on segment A'B’. Since P is on this segment, it follows that it is contained in the
AABB of this segment. Since the AABB of a line segment has the endpoints of the

segment on opposite corners, we can deduce that one possible AABB containing P has

31

A’ and B' as its opposite corners. Because A’ and B’ are points on the trimming edge,
this AABB is contained in the AABB of the trimming edge, which means that the point
P is contained in the AABB of the trimming edge. Therefore, it is unnecessary to
examine the interior of the surface formed by the revolution of aline, asal pointsin the

interior are contained in the AABB of the trimming edge.

Revolution of an arc: The revolution of an arc can create points that exceed the bounds
of the trimming edge of a surface. It is, thus, necessary to find these points in order to
calculate the AABB of the trimmed surface. The trimmed surface of revolution of an
arc requires several entities. We start with the specification of a 2-D representation of
an arc and its transformation matrix, given by Equation (1). The line that represents the
revolution axis is given by its two endpoints. The trimming edges are specified in two
forms. The first form is the actual representation of the edge in 3-dimensional space.
However, a second representation of the edges is given in a plane in which one
coordinate represents the angle of the position of a point on the arc, and the other
represents the angles through which this point is revolved. The arc’s angle represents
the angles along the arc in its 2-D representation before it is transformed into 3-D space.
The angle of revolution is measured by specifying the original arc as the point of 0°
revolution. Positive revolution occurs counter-clockwise when looking along the axis
from the axis's second endpoint to its first endpoint. An example of the two
representations is shown in Figure 3.11. The figure gives the representations of two
different trimmed surfaces that are generated from the revolution of the same arc. The

first is represented by a bold trimming edge, the second by darker shading. In both arcs,

32

al of the points on the arc between the arc angles of —45° and 45° are revolved. Inthe
2-D representation, the first surface has a rectangular trimming edge; the second has a
triangular trimming edge. Because the trimming edge for the first surface is
rectangular, each of the points on the arc, including point P, is revolved from an angle
of -60° to 0°. However, for the second surface, the angles of revolution vary according
to the location of the point on the arc. For example, the point P isrevolved from -60° to
-45°, The 3-D representation shows what these surfaces look like in three-dimensional
gpace. We use this 2-D representation to determine the domain in which to search to

find extreme points for the bounds of the AABB.

33

A ¢ (Arcangle)
45°
P
— 601 . » & (Angle of
- 45° 0 rotation)
— 45°
(a

L2 (X2, Y2, 22)
AXis of revolution

 C (X Yer 20)
Rotation

Ot = — 60° ¢ =45° Arc
Radiusr (distance
from Cto P)
P (Xp, Yor Zp)
Rotation
Oeng = 0°

¢=0° Arcangle

Rotation arc
Revolved arc
¢=—45° Arc angle

Z Y
L1 (X1, Y1, 21)

X (b)
Figure 3.11. Rotated arc’s (@) 2-D and (b) 3-D representations.

Consider a point on the revolved arc, which is associated with an angle
measured on the revolved arc. The revolution of this point also forms an arc called the
rotation arc. Consider this point as the 0° point on the circle containing the rotation arc.
The arc’s endpoints are given by the trimming edge. Determining the AABB of the

rotation arc then gives an AABB based on the revolved arc angle. The extremes of this

function are then found using a binary search method to find the AABB of the entire
trimmed surface.

To determine the AABB of therotation arc, it isfirst necessary to find the center
of the arc. IGES specifies the point on the revolved arc, P (X, Yp, Z), and the endpoints

L1 (X1, y1, z1), and L, (X2, ¥2, 2o) of the revolution axis. Using C(X, Y¢, Z) as the center of
rotation, the vector PC must be perpendicular to the vector E , or
(Xc - Xp)(XZ - X1)+ (yc - yp)(yz - y1)+ (Zc - Zp)(zz - Zl) =0 (7)

In addition, C must be on theline L,L, . Thus, C satisfies

X, = % +e(x, —x,)
Ye = y1+e(y2 _yl) ®)
z, =7, +€z,- 7))

where e is a value to be determined. Let d, =x,-x, d, =y,~y,, ad d, =z,-7.
Then Equation (7) becomes

(x1 — X, +edx)dX + (yl -Y, +edy)dy + (z1 -z, +edz)dZ =0
Solving for e, we obtain

(Xp - Xl)dx + (yp - yl)dy + (Zp - Zl)dz
df +d7 +d;

9)

e=

With this value of e, we can find the coordinates of C using Equation (8). Theradiusr

of thisarc is simply the distance between the points C and P, and is given by

1= =% P e —yo S+ -2, f (10)
To find the AABB of the rotation arc, we formulate a 2-D representation of the

arc and a transformation matrix to trandate it into 3-Dimensional space. The 2-D

35

representation is constructed by setting the arc’s z-value to 0 with the point (O, 0) its
center. The beginning and end rotation angles from the 2-D representation of the
trimming edge are used as the start and end angles of the rotation arc; Ggart and Geng,
respectively. The start and end points then have the coordinates

(r cosby,,,rsinf,,,) (12)

and

(r cosd,,,,rsing,,) (12)

end
respectively, wherer istheradius of the arc.

The transformation matrix transforms the point (0, 0, 0) to the point C (X, Ve, Z)
and the 0° point (r, 0, 0) to the point P (X, Yp, Z). A third point out of plane is also
needed to orient this coordinate system, so we aso require the point (0, O, 1) to trandlate
to apoint 1 unit away from C aong the axis line toward the point L,. We use Equation

(1) asthe way we trandate these points. The translation of point (O, O, 0) resultsin

Tl XC
T

2 - yC (13)
T3 Zc

1 1

Equation (13) gives the values of the trandation terms of the transformation matrix in

Equation (1). The transformation of the 0° point, (r,0,0), is

R+ X, X,

R21r + yc — yp
Ryl +z, z,
1 1

Therefore,

36

— P C

Ry =2
yp —Ye

R, =2
_Hh %

To find the point a unit distance away from C toward L,, we find the unit vector

from L; to L,. This is then added to the coordinates of C. We, thus, obtain the

following equation that translates (0, O, 1) to this point:

_ Xt .
R X di +dy+d;

R + Ye Y. dy
= Jdi+d2+d?

Rea * 2, 4

z + z
L1] d +d7+d?

- 1 -
Therefore,
d,
R =

- JaZ+dz+d?

dy
Ry = 2 2 2
Jds +d? +d;

d,

Ry, =

- JdZ+dz+d?

Now we must find the values of Ry», R»», and Rs,. In order to do so, we use the fact that

the vector [Ri2 Ry Rs] is the cross-product of the vectors [Riz Ry R3] and [Riy Ror

Rs1]. Thus, we get

37

Nz -2)-d,(y, - v.)
rydz +d?+d?
z(Xp _Xc)_dx(zp _Zc)

d
Rzz = R11R33 - R13R31 = rm

d
Rsz = R13R21_ R11R23 =—

d
R12 = R23R31 - R21R33 =

ryd; +d; +d;
Then, the transformation matrix becomes
_Xp_xc dy(zp_ZC)_dz(yp_yC) d, X |
r rydZ +d? +d? d2+d2+d?
Yo=Y dz(xp_XC)_dX Zp_zc) dy y
[rl=| rJdZ +d? +d? JdZ+dz+d?z (14)
Z, — 4 dx(yp_yC)_dy(Xp_XC) d, 7
ryd:+d;+d? df +d; +d?
0 0 0 1

With this transformation matrix, the AABB of the rotation arc can be found using the
methods used to find the AABB of an arc, given in Section 3.2.1

Specifying arevolved arc angle results in a specific point being revolved. This
revolution results in a specific rotation arc for which the bounds of its AABB can be
found. Thus, the bounds of the rotation arc AABB are a function of the revolved arc
angle. To find the AABB of the surface, the minimum and maximum bounds of all of
these rotation arcs AABBs must be found. This is done using a binary search
algorithm, which is applied twice for each of the three orthogonal directions, once to
find the minimum and once to find the maximum of the function over a certain interval.

To implement this algorithm, consider the function y = f(x) where we wish to

find the maximum f(x) on the interval Xgat < X < Xeng. First, a fixed number n of

uniformly distributed subintervals is used to determine the intervals between the Xgar
and Xend: AX = (Xend—Xsart) / N. The following pseudocode describes the algorithm.

Table 3.2. Pseudocode for determining the maximum of
f(x) on theinterval Xytat < X < Xend
AX = (Xend - Xsart) / N
Ymax = f(Xstart)
Xe = Xstart
if f(xend) > Ymax
Ymax = f(Xend)
Xe = Xend
endif
fori=1lton-1
X = Xgart +1 ¥ AX

if f(X) > Ymax
Ymax = f(X)
Xe =X
endif
endfor
for i = 1t0 Niter
AX=AX/[2

if f(Xc + AX) > Ymax .and. f(Xc + AX) > f(X; - AX)
Ymax = f(Xc + AX)
X =X + AX

elsaif f(Xc - AX) > Ymax -and. f(X; - AX) > (X + AX)
Ymax = f(X - AX)
Xe = X = AX

endif

endfor

The resulting value ymax 1S approximately the maximum value of the function over the

specified interval. The number of intervals and iterations ultimately determines its

accuracy. The value of x. is accurate within [(Xend — Xgat) / N] / 2Y=. To find the

minimum of afunction, we modify the pseudocode given above as shown below.

39

Table 3.3. Pseudocode for determining the minimum of
f(x) on the interval Xyart < X < Xeng

AX = (Xend - Xsart) / N
Yimin = f(Xmin)
Xe = Xstart
if f(Xend) < Ymin
Ymin = f(xend)
Xe = Xend
endif
fori=lton-1
X = Xgart + 1% AX
if f(X) < Ymin
Ymin = f(X)
Xc =X
endif
endfor
for i = 1t0 Niter
AX=AX/[2
if f(Xc + AX) < Ymin .and. f(Xc + AX) < f(Xc - AX)
Ymin = f(Xc + AX)
Xe =X + AX
elsaf f(X - AX) < Ymin .a@nd. (X - AX) < (X + AX)
Ymin = f(X - AX)
X = Xe - AX
endif
endfor

To find the AABB of the surface, we apply the binary search algorithm to find
the minimum and maximum bounds of the AABBs of al the rotation arcs. Because
these AABBs are a function of the arc angle, we will be using #to find the minimum or
maximum bounds. This determination can be separated into six different functions: one
for the minimum and one for the maximum of each of the X, Y, and Z directions. Each
of these angles is found separately, using @for x. The range of #isfound by taking the
minimum and maximum values of the arc angle from the 2-D representation for the
trimming edge. Thus, six angles will be found: Gmin, Gmax, Gmin, Gmax, Gmin, ANA Gmax.

Each of these angles represents a point on the revolved arc that, when rotated, will yield

40

on its rotation arc the point on the surface with the maximum or minimum coordinate in

thex, y, or zdirection.

Revolution of a B-spline curve: The method used to find the AABB of the trimmed
surface of revolution of a B-spline curve is similar to that of the revolution of an arc.
As discussed previoudly, the rational B-spline curve is expressed as a function of the
control points and a parameter t. The axis line is given by its two endpoints. The
trimming edge is also given in 2-D and 3-D representations. The 3-dimensional
representation is the actual trimming edge in 3-D space. The 2-D representation is very
similar to the 2-D representation of the revolved arc. One coordinate represents the
parameter t corresponding to the points on the curve, and the other represents the angles
through which each point is revolved. An example of the two representations is shown
in Figure 3.12. The 2-D representation shows that the part of the curve represented by t
from 0.25 to 0.75 that are revolved with angles from -60° to 0°. The 3-D representation
shows the entire B-spline curve and the portion corresponding to thet values from 0.25

to 0.75 that are revolved 60° clockwise around the axis line.

41

At

0.75

¢ P (%, Yo,)
0.25

-90° 0 6"(A ngle of rotation)
(a

L2 (X2, Yo, 22)
AXis of revolution

Rotation t=1
ar = 'QOO\A t=075
Rotation
Hend = OO
C (X, Yo, Z) Revolved
curve
P (X, Yp» Z0)
t=0.25
Z

L1 (X1, Y1, z1)

X

(b)
Figure 3.12. Rotated B-spline curve: (a) 2-D representation; and (b) 3-D representation.

The AABB of the trimmed surface is found in a manner similar to that of the
revolved arc. Each point on the spline curve to be revolved corresponds to a value of t.
Given avalue of t, the corresponding point P (X,, yp, Z,) on the curve can be found using
the curve equation, Equation (4). With the point P and endpoints Ly (X1, Y1, 1), and L,
(X2, Y2, 22) of the revolution axis, the center of the rotation arc C (X Yc, Z) is found using

Equations (8) and (9). Equation (10) determines the radius r of the arc. We now

42

construct a 2-D representation of the arc, along with a transformation matrix. The
starting and ending angles, G4t and fag, are obtained from the 2-D representation of
the trimming edge. Thus, for the 2-D representation, the center given by coordinates
(0,0,0), and the start and end points are given by Equation (11) and Equation (12),
respectively. The transformation matrix is determined by Equation (14). The AABB of
the rotation arc can now be determined from the 2-D representation and the
transformation matrix. A binary search, amost identical to that used to find the AABB
of the revolved arc, is employed to determine the bounds for the trimmed surface. The
AABB of therevolved arc is now afunction of t, sincet determines a point on the curve
that, when revolved, gives a rotation arc. Thus, we perform six binary searches for the
six values of t that result in the minimum or maximum values for bounds in the X, Y,
and Z directions will be found. We then compare these bounds with those found for the
AABB of the trimming edge of the surface. If the minimum bounds are lesser in value
than those of the trimming edge’'s AABB, then we make the minimum bounds found in
the binary search the new bound for the entire surface. The same process is used to

determine the maximum bounds.

Rational B-Spline Surfaces

All surfaces not given as tabulated cylinders or surfaces of revolution are
represented as rational B-spline surfaces, including planar surfaces. Planar surfaces are
first degree surfaces and are dealt with separately. All higher-degree surfaces are

determined by applying a smoothing function to arrays of control points. An example

43

of arational B-spline surface is shown in Figure 3.13. We will now give the details for

examining the interior of the trimmed surfaces of rational B-spline surfaces for extrema.

_ Surface

Control Points

Figure 3.13. Rational B-Spline surface and its control points.

Planar Surfaces. We will show that all interior points of a plane are contained in the
AABB of the edges of that plane and, therefore, there is no need to check for interior
extrema points.

Take any point P in the surface as shown in Figure 3.14. Draw aline through P

that lies on the plane. Thislineintersects the trimming edge, which is a closed curve, at

points A and B. Since P is apoint on the line segment AB, it islocated in the AABB
that uses points A and B as its opposite corners. Because A and B appear on the
trimming edge, this AABB is contained in the AABB of the entire trimming edge.
Thus, point P is contained in the trimming edge AABB. Since P can be any point
within the trimmed surface, it is unnecessary to check the interior for points that could

change the trimmed surface’' sAABB.

/

Plane

Z \ — Trimming edge

/>R< Trimmed surface

Figure 3.14. Trimmed surface of aplane.

Higher-degree surfaces: The points on the surface are calculated as functions with two

parametric values, s and t. The function is given in the IGES 4.0 Specification (1988)

asfollows:
K, K,
> W, R bM)(s)o?) (1)
G(Ml)(MZ)(S,t) — '=0Kj=?<
RICER
i=0 j=

where M; and M, are the order of the surface in s and t, respectively, K; and K are the
number of “rows’ minus 1 and the number of “columns’ minus 1, respectively, in the

control point matrix, W ; are the weights of each control point, P;; are the control points,

and b™(t) and b™:)(t) are functions determined by a knot sequences in s and t,
respectively. The non-decreasing knot sequence in Sis Sy}, Sy, +1)s--» Spa)- 1N this

SeqUENCE, S(_y,) = Simpsr) =+-- =S AN Sy w.41) = Sk, mys2) = -+ = S(er) - THE NON-
decreasing knot sequence in t is t_y).t y,u)--te,y. 1IN this sequence,

m,) = temye) =

L=ty and by o) = tkom,e) = =t,er)- 1N Many commercial

45

CAD systems, W, =1 for i =0,...,K,, j=0,...,K,. The functions b™!(s) and

b™=)(t) are defined in Equations (4) and (5). The functions have the property that

i=0 j=0
Thus, the equation reducesto
K, K,
G(Ml)(MZ) (S,t) - z z PI J bl(Ml) (S)bJ(MZ) (t)
i=0 j=0

which is the equation for a spline curve of degree M; with control points Qi(“"z)(t),

where

Q") ()=3" P bI()

j=0

Q.(Mz) (t) is aso the equation for a spline curve of degree M, with control points P;; at a

fixed i. Thus, the points from G™M2)(st) can be calculated by taking, for each value

of i, al control points of that i value and forming a spline curve of degree M, with these
control points. The result is K; curves, each of which isafunction of t. Those points on
each curve corresponding to the desired value of t are then used as control points of
another curve of degree M;, which is a function of s. The given value of s will
determine a point on this curve, which is the desired point on the surface. For example,
in Figure 3.15, we want to determine the point correspondingto s=0.4andt=0.7on a

surface with control pointsP; j,1=0,1,2,3,j=0, 1, 2,3, My =M, =2. Firg, spline

46

curves are created for the control points P, o, Pi 1, Pi 2, P, 3, wherei =0, 1, 2, and 3.

This results in four spline curves, Qi(z) (t),i=0,1,2 and 3. Then wefind the point on

each curve that correspondsto t = 0.7; namely Q®(0.7),i=0, 1, 2, and 3. Wethen use

these four points to construct another spline curve, which is a function of s. All of the

points on this spline curve are points that occur on the surface. The curve is thus

el (s,O.?). The point on this curve corresponding to s = 0.4 is the desired point on

the surface.
t=1
Pos g
P 0.7
D I el
Q707 @)2)
SO: 0 G2 (0 40 7) Pss
Pos * ... P 22 :::: Q gz) (O 7) y
7 o5Qatio0n
AP // Q)
. “. P21
o (2) Py . ‘ P31
Q) —,
QP(t)
P2o
Poo P10 <
t=0

Figure 3.15. Determination of the point G(0.4, 0.7).

To find the AABB, an approach is used that is similar to those used to determine
the surfaces of revolution of arcs and spline curves. For example, in Figure 3.15,
setting t = 0.7 resulted in the curve G@?)(s,0.7). This is analogous to a revolved

surface, where fixing the arc angle or value of t gives the rotation arc of a point. The

47

AABB for this rationa B-spline curve is found as described in Section 3.2.1, and is
anaogous to finding the AABB for the rotation arc for revolved surfaces. Thus, the
result is a function that finds an AABB for a curve based on a value of t. It is then
necessary to find the minimum and maximum bounds of the AABBs occurring for all
values of t that correspond to the surface. Using, again, the binary search method
mentioned previously, we find the six values of t that give the minimum and maximum
bounds of AABBs in the three orthogonal directions. The AABB is defined by these six

bounds.

3.3. Verification of AABB Deter mination

To verify the AABB determination, we applied the AABB determination
algorithm to the part shown in Figure 3.16. In addition to plane surfaces, it includes a
cylindrical surface, a hemispherical surface, and a B-spline surface. Notice that the part
was designed so that the AABB determination must take into account these other types
of surfaces. If the portions of the algorithm that deal with these surfaces are incorrect,
then thiswill be reflected in an incorrect AABB for the part.

Th part was created in Pro/Engineer, converted into the IGES format, and then
input to the AABB algorithm. The coordinates of the resulting AABB were then used
to create a block part in Pro/Engineer to be placed on top of the current part. In this
way, we are able to verify visually that the resulting AABB is correct. The results of
this process are shown in Figure 3.17. In the orthographic views, a correct AABB will
simply look like a rectangle drawn around the part, barely touching on the top, bottom,

left, and right. The figure verifies that the calculated AABB is indeed correct. This

48

AABB was caculated with an average time over ten runs in 0.0155 + 0.0005 seconds
with a Pentium 4 2.4 GHz processor.

I\

Figure 3.16. Orthographic and 3-D views of the part used to verify AABB
determination in.

.l'r T —— e
: I —— g ___._
=, |,u"lll 1= ; -."-: I| II-I:'I ||
(Tt 1)
N =]
| e T ; - ——___Tl.tl'lll-l.f_.l
e i i
= T I'I I'I II I|I £
s _ | l ! I I || : I—l_ <
e N g
Figure 3.17. Part in Figure 3.16 enclosed by the AABB as calculated by the AABB
determination algorithm.

49

3.4. Summary

In this chapter, various methods for finding the AABB for parts composed of
different surfaces were discussed in detail. Pseudocode was given for the determination
of the corners of the AABB of the part based on the AABBs of the part’s surfaces.
Then, the method for determining the surface AABB based on the trimming edge and
surface interior was given. Next, the equations necessary to determine the AABB for
the trimming edge were presented. Finally, equations were given that are used to adjust
the AABB of the trimming edge so that the bounds of the AABB of the surface are
obtained.

In this chapter, we have shown how to find the AABBs for each part in the
assembly. In the next chapter, we present the determination of the relationships

between these AABBS.

50

4. Finding contained AABBs

Now that we have the AABB of each part, we need to do some reasoning on the
AABBs to find part visibility. The first step in this process is to determine the spatial
relationships between these AABBs. The most important relationship between AABBs
isfor an AABB to be completely contained in another AABB, as shown in Figure 4.1.
An AABB that is contained in another AABB is a candidate for being labeled invisible.
Whether or not these candidates are actually invisible, however, is determined from the

criteriadiscussed in Chapter 5.

v

(AABB),

(AABB),

Figure 4.1. (AABB); contained in (AABB)x.

51

4.1. Definitions
In order to describe the algorithm that determines the visibility of AABBs, we
first introduce several terms and symbols. These terms and symbols will then be used
in this algorithm’s description, which is provided in the subsequent sections.
The bounds of the AABB are uniquely determined by the coordinates of two
diagonally opposite corners. Let the coordinates of two diagonally opposite corners of

(AABBY);, shown in Figure 4.2, be (X™ Y™ z™) and (X™,y™ z™) where

X< XMy <Y™ and 2" < Z™.

A
Y (xpv=)
P “Fi
/ |
b=, zp=) ||) |
ij i i (ijax ’ijax ,ermx)
(ijin’ ijin) ’ ,'*" L "___:__ ___________ P, -
e AGED AR A
- anzmm)_ """
ZPJ' YFJ
Z (xp=.z=)

Figure 4.2. The three extents and projections of (AABB);.

We first project each (AABB); onto the XY, ZX, and YZ planes. From these

projections a minimum rectangle (extent) will be determined. As shown in Figure 4.2,

52

the projection of (AABB); onto their respective planes yields three rectangular extents:

*F;, 'F;, and “F;. Consider the extent “F;. The coordinates of its diagonally opposed
corners are (X™ Y™) and (X ™ Y™) in the XY coordinate system. For the extent
YFj, (xm™,zm™) and (X™,z™) in the XZ coordinate system. Finally, for extent
extent *F;, its diagonally opposed corners are (Y™, z™) and (Y™,z™) in the YZ
coordinate system.

Projections of the extent “F; on the X- and Y-axes are *P; and YP;, respectively.
Similarly, projections of the extent YF; on the X- and Z-axes are *P, and ‘P,
respectively. Finally, projections of the extent *F; on the Y- and Z-axes are 'P; and “P,,

respectively. These projections are shown in Figure 4.2.

4.2. Sorting coordinates

The relationships between AABBSs can be determined based on the relationships
between their projections. Thus, we will need to determine these projection
relationships. In order to do this, we shall generate three lists of sorted coordinates, one
in each of the coordinates X, Y, and Z. We will then use these lists to determine the
relationships in a systematic and efficient manner. Afterwards, we determine from

these lists those AABBs that are not completely contained within another AABB.

53

Consider the set of al the AABBs represented in the (X, Y, Z) coordinate
system: (AABB);,] = 0, 1, 2, ..., n — 1. First, we form three lists, one for each
coordinate direction. In the X-direction, we form a list using the pairs (X jm‘” : ijax)
Thislist looks like:

X X X X X X
In a similar manner, we form a second list in the Y- direction using the pairs
(v y™) and athird list in the Z- direction using (™", ™).
Consider thelist in the X-direction. Determination of whether or not one AABB

contains another requires that the list of the val uesX}“i” , X[be sorted in ascending

order, starting with the numerically smallest coordinate value of X}“"‘ and X™,j=0,

1, 2, ..., n—1 and ending with the largest numerical value. If there are any groups of
coordinate points where their values are equal, then the values within these groups must
be arranged so that the relationships between their projections are determined correctly.

To accomplish this, each group of values is separated into two subgroups, one with all
X ™ values and the other with all ij‘” values. Within each of these subgroups, the
values are sorted from greatest value to the least value of the other coordinate in the

projection. Thus, the X ™ values are sorted in descending order of the corresponding

X}“i” values and vice versa. If the values of the other coordinates between two

projections are equal, then the relationship between the two corresponding projectionsis

noted as “same” and it does not matter how these values are arranged with respect to

each other. Finally, the subgroup containing all of the X ™ is placed in the list before

the subgroup containing all the ij‘”. This overal sort results in a sorted list we call

Lx. In the next section, we explain why these groups of values are arranged in this

manner. Note that there are exactly two coordinates from each projection XP,- in the
ordered pair sorted list Lx. The first coordinate is the least coordinate ij‘” and the
second one is its greatest coordinate X ™. These two coordinates are not necessarily
next to each other in the sorted list Lx, and may include between them other coordinate
points. For example, X,"" and/or X;™ of projection *P, may be between X™ and
X ™. This sorting procedure is aso performed on the Y-coordinate list and the Z-

coordinate list, resulting in lists Ly and Lz, respectively.
As an example, consider a collection of projections XP,-, j=0,1, ...,5shownin
Figure 4.3. The projections have been arbitrarily offset from the axis to make their

viewing easier. To start, we have thelist for these projections as
L =X XX XX, X X X X XX X
This list must then be sorted numerically. For those values that are not equal, the

sorting procedure is straightforward. However, we must determine the order of those

values for which the coordinate values are equal. Thus, we have to determine the order
of the groups { X;™, X, X ™ and X} and { X™ and X[™}. Let us start with
the first group. Because X;* is the only maximum coordinate, it is placed first. The
remaining X™" values are sorted based on the corresponding values of X™, X ™ and
Xe®. Inthiscase, wenoticethat X; > X™ = X, . Since X;*isthelargest, itis

the next sorted value. It remains to be determined the order between X™ and X;™ .

55

Since these two values are equal, we find that “P; and *P, are identical in the values of
their endpoints. Thus, we mark these two as “same”, where we keep track of the

relationships between projections. Since we have aready determined the relationship

between these two projections, the order between X,™ and X" does not matter. The
same goes for the order between X™ and X, . We, therefore, assign their orders
arbitrarily. Thus, the first subset has the order X™, XM, X™, and X™. The

second subset will have the order X, and X;™. Asaresult, the sorted list for this
set of projectionsis

L =X X X X, X, X X, X X, X X X

X
min P max
XO - XO
X
min Py max
X, = X,
X", 2 X ™ X
miné X max
’ P3 min i max
X, xp4 X4
Xénm Xénax

XP5

Figure 4.3. Projections and their coordinates.

4.3. Deter mining contained boxes

When one AABB contains another, we have a certain relationship between the
two AABBS' projections. As can be seen in Figure 4.4, to have (AABB); contained in
(AABB)y, *Px must contain *P;, "Px must contain 'P;, and “P, must contain “P;. This

relationship holds true if one or two pairs of projections are the “same” instead of

56

having a containing relationship. When all three projections are identical, the AABBs
are the “same.” We use these rules to determine whether or not (AABB); is contained

inor isthe “same” as (AABB)y.

Ay
ZFj
ZFk
XFJ'
4
P y
R Pk
F |y For ot s . -
AAAEBB)|”
Z/P/ 4 - 7 > (AABB)
Y]
7/ Fi

'
Figure 4.4. Extents and projections of (AABB); and (AABB)x.
(AABB); contains (AABB)x.

To make these determinations, we determine which projections are contained in
other projections. We arbitrarily start in the X-direction. Given two projections XP,- and
*P,, the containing relationship is determined using the following rule:

If both X™ and X™ of *P; lie between X™ and
X ™ of *Py inthelist Ly, and *P; is not the “same” as *P,
then *Py contains *P;.

Thisisshownin Figure 4.5.

57

X xmn P, X X e

Figure 4.5. Projection *Py containing projection *P;.

An efficient algorithm for parsing the list Lx to determine the containing
relationships is needed, since individually checking each pair of projections is an
inefficient process. Most pairs will be digoint, so checking these pairs would be a
waste of processing time. The current research uses a method that involves a one-time
pass through of each list, which only makes necessary comparisons.

In this method, the list Lx is scanned to find projections that contain other
projections. This is much like traveling along the axis and passing through each
projection, as shown in Figure 4.6. This is sufficient because Ly is simply alist of the
endpoints of all of the projections in the order in which they are encountered. For this
method, each projection has two states, “open” and “closed”. An “open” state occurs
when we have traveled to a point in between the endpoints of a projection, or in terms
of Lx , after we have encountered the minimum endpoint of a projection but before we
reach its maximum endpoint. A projection is“closed” for al other cases. For example,

in Figure 4.7, projection *Py is “open” because the current traveled point lies between

X and X™, but projection *P; is“closed” becatise the point is beyond X ™.

58

x;ﬂn X ;nin

Linetraveling
along the axis

Xmin min
ko X

Figure 4.6. Traveling along an axis.

143 Opm”

\ o
X X /‘ Xp,

“closed”

Figure 4.7. Example of an “open” and “closed” projection.

To start, all projections are given a “closed” status. We will be “opening” and

“closing” them as we travel along the axis by going through Lx. Starting from the least

valuein Ly, whenever an X jm‘” value is encountered, the corresponding projection XP,- is

changed to an “open” status. The location in Lx of this endpoint is also recorded. When

an X{™ is encountered, the corresponding projection XP,- is changed to a “closed’

status, since thisisthe end point of the projection. In addition, at this point, we check all
those projections that are “open” to determine their relationships to XP,-. In doing this,
all that is necessary to check is if the “open” projections start point locations precede
the current projection’s start point. Those “open” projections that satisfy this condition

and are not the “same’ as the current projection (determined previously), are noted as

59

containing the current projection. This is because the start points of the “open”
projections are before the current projection’s start point, and because, by the very
nature of the projections being “open”, the end points of those projections come after
those of the current projection. An example of projections that satisfy this condition are

shown in Figure 4.7. Projection XPJ- has just been “closed’, as we have just passed
X ™. Since *Pyis till “open”, we check the order of X[™ and X,™. As X;™ comes
before X ™, we have determined that *P is contained in *P.

For an example of the scanning process, we use the projections in Figure 4.3, the

list Lx for these projections was determined as
L, = {Xmm, X) me,) mn)mn) mnX x mn x me m e mex |

We start with all of the projections “closed”. Then, in order, we open *P3 and *P, and
close *Ps. When *P3 is closed, *P; is the only open projection. However, X follows
XM so there is no containing relationship between *P, and *Ps. Since X™ is
followed by X™, XM and X™, we open *Ps, *P1, and *Ps. Next, we encounter
X therefore, we close *Ps. When we do this, we check all the open projections
minimum coordinates, X,™, X", and X;™, and find that only XJ™ comes before
XM Thus, *Ps is contained in *P,. Proceeding along Ly, we next encounter X" and
X ™ which leads us to open *Py and close *P,. The coordinates of the projections *Ps

and *P, are such that X™ and X™ come before X™. However, *P, and *Ps were

previously determined as the “same”’ in the sorting process, so there can be no

containing relationship between them. Thus, we determine that “Ps is contained in only

60

*P;. Continuing through the rest of the list, we find that the only other containing
relationship is that *P, is contained in *Ps. These are easily verified visually in Figure
4.3.

The pseudocode for this processis givenin Table 4.1.

Table 4.1. Pseudocode for finding projections found in other
projections.

fori=0ton-1
status(*P;) = " closed”
endfor
fori=0to2n-1
if Lx [i] isan Xj”“” for any value of j (j is determined by the
valueof X™ found)
status(*P;) = " open”
place]j] =1
eseif Lx[i] isan X ™ for somevalue of |
status(*P;) = " closed”
fork=0ton-1
if status(*Py) = " open”
if *Py is not the “same” as P,
if place k] < place]j]
*Py contains *P,
endif
endif
endif
endfor
endif
endfor

The preceding process is aso used to parse the lists Ly and Lz. Before doing
this, it is possible to rule out AABBs that will not be able to contain or be contained in
another AABB. In order for an AABB to have one of these relationships, its projections
must contain, be contained in, or be the same as the other AABB’s projections in each
of the three directions. Thus, if we are parsing list Ly after Lx, we can remove all those

projections from Ly that correspond to projections in Ly that do not have any of these

61

relationships with any other projection in Lx. Also, before parsing Lz, we can remove
all projections from Lz that were removed from Ly plus those that were determined not
to have one of these relationships from parsing Ly. However, this elimination processis
not entirely necessary, as the list parsing process is already very fast. Averaging ten
runs, the average time to parse the three lists without elimination for 490 partsis .030 £
.0046 seconds on a Pentium 4 2.4 GHz machine. Although there might be a speed
advantage, it is easier not to do any removal and parse each list independently.

After the “containing” and “same’ relationships between the projections have
been found in the three directions, the “containing” and “same” relationships between
the AABBs are found using the previously discussed requirement. This is the
requirement that a “containing” relationship between AABBs has a “containing” or
“same” relationship between each corresponding pair of the projections, with a “same’
relationship resulting between the AABBs when the relationships in all three directions

between the projections are the “ same.”

4.4. Other relationships

Although this research does not require other relationships, minor additions to
the method presented can be made to find other relationships with a very small increase
in computation time. These relationships include “digoint,” “adjacent,” and
“intersecting”. Digoint AABBs are those that do not share any points in common.
Pairs of AABBs are adjacent if they have common points on their boundaries and share
no interior points. AABBs intersect if they share some common interior points, but also

have points that are not shared with each other.

62

To find these relationships, we must first find the digoint, adjacent, and
intersecting relationships among the projections. Adjacent projections are those that
share a common endpoint, where one projection ends and the other starts, as shown in
Figure 4.8. These adjacent points are found during the sort of the lists Ly, Ly, and L,
where the values that are equal are found. When these equal values are sorted amongst
each other based on the other coordinate values in the projections, the relationships
between all projections that are starting and those that are ending can be marked

“adjacent.” This means that in the X-direction, for example, for al values | and k such

that X ™ = X", P, is adjacent to *P;.

)I(;’nln XPJ XIJmaX
X|£nm ka X ILnax

Figure 4.8. Projection *P; adjacent to *P.

X jmm XPJ_ j
XFin XPk Xlznax

Figure 4.9. Projection *P; intersecting *Py.

Intersecting projections are those that have one projection start after the other
starts, but also end after the other ends, as shown in Figure 4.9. Thisisfound by adding
a conditiona statement to the Lx parsing algorithm shown in Table 4.1. The additions

are shown in bold in the modified pseudocode given in Table 4.2.

63

Table 4.2. Pseudocode modified to also find projections that
intersect other projections.

fori=0ton-1

status(*P;) = " closed”
endfor
fori=0to2n-1

if Ly [i] isan X;“i” for some value of j (j is determined by
thevalue of X™ found)
status(*P;) = ” open”
place]j] =i
elseif L [i] isan X ™ for somevalue of |
status(*P;) = " closed”
for k=0ton-1
if status(*Py) = " open”
if Py is not the “same” as P,
if placek] < place]j]
Py contains P,
elseif place[k] > place[j]
*Py intersects P,
endif
endif
endif
endfor
endif
endfor

When a projection “closes,” the start points of al “open” projections are
checked. All “open” projections will have their end coordinates greater than the
endpoint of the projection that was just “closed.” Those “open” projections that start
earlier enclose the “closed” projection. Those that start later will end up intersecting the
current projection.

The last relationship that can occur between projections is the “digoint”
relationship. This relationship occurs when two projections have no common points as

shown in Figure 4.10. These relationships are determined by default, since any pair of

projections whose relationships have not yet been determined is categorized as

“digoint”. Any pair with at least one point in common has aready been categorized.

X mn X mex
P { |

|
| | o i
X P X

[
»

Figure 4.10. Projection P, is digjoint with *Py

Once all the relationships between all the projections have been determined,
they are used to determine the AABB relationships according to the following rules:

1) If *P; is digoint with *Py, "P; is disoint with YPy, or “P; is digoint with “P,

then (AABB); is disjoint from (AABB)y.

2) If ><P,- is not disjoint (meaning adjacent to, intersecting, containing, contained
in) from *Py, YP; is not disjoint from "Py, and “P; is not digjoint from “Py, and
at least one of these relationships is “adjacent,” then (AABB); is adjacent to
(AABB)k.

3) If *Pintersects, contains, or is contained in *Py, 'P; intersects, contains, or is
contained in Py, “P; intersects, contains, or is contained in “Py, and (AABB),
is not containing or contained in (AABB)k, then (AABB); intersects
(AABB)x.

For AABBs to be digoint, it is only required that one pair of corresponding
projections be digoint. An example of thisis shown in Figure 4.11. Only projections
*P; and Py are disioint. Since each projection represents the X, Y, or Z coordinates of
the points in the AABB, any pair of corresponding projections that are disjoint will
correspond to two AABBSs that have no points with the same coordinates; that is, they
will have no common points.

65

Y F,
P Py “Fy

Figure 4.11. Two digoint AABBs along with their extents and projections.

Two adjacent AABBs are shown in Figure 4.12, where it is seen that the
projections, *P; and *Py are adjacent. Examining the non-disoint AABBS, it is seen that
a pair of corresponding adjacent projections means that all of the common points
between the AABBs will have the same values for one of its coordinates. In other
words, al of the common points will occur on the borders of the AABBs. Thus, the two
AABBs are adjacent.

All other combinations of AABB projection relationships will result in both

common and uncommon interior points. This means that these AABBs intersect.

66

v

ka
(AABB)y

Figure 4.12. Two adjacent AABBs aong with their extents and projections.

4.5. Summary

In this chapter, the procedure for finding which AABBs contain other AABBs
was developed. First, definitions of extents and projections were given. Next, the
manner in which lists of the coordinates of the projections were sorted was detailed.
Then, based on these lists, the determination of AABB containment was performed.
Finally, we presented extensions that can be made to the procedure to detect other
relationships between AABBSs, which may be helpful in other applications.

The next chapter devel ops the algorithm for the determination of the visibility of

parts based on the results of this chapter.

67

5. Determining part visibility

Up to this point, we have determined the minimum AABB around a part and the
relationships between AABBs. We will now use this information to determine part
visibility.

Visibility can be defined in both static and dynamic terms. Static visibility
means that the decision of whether or not to render a part never changes as soon as the
parts are loaded into the computer’s memory to display. In this situation, those parts
that are invisible are those that will not be displayed under any circumstances unless the
configuration of the parts, part geometry or relative positions, are changed. This cuts
down on both memory requirements and processing time. Processing time does
increase because it is necessary to determine which parts are visible when loading the
parts into memory. However, this only happens once, and there can be a much more
substantial savings in processing time during viewing because there are fewer parts to
render.

Dynamic visibility pertains to those situations where the determination of what
to render is determined by changing conditions during display, namely viewing angle.
In this situation, al parts are loaded into memory. The savings occurs in viewing.
When a certain angle for viewing is desired, the computer determines what is visible
from this angle and then displaysit. Processing time increases because of the visibility
determination, but this is far outweighed by the savings that occurs from not having to
render what is determined to be invisible.

A combination of these two approaches is what is most desired and can be

achieved easily, as they are amost entirely independent of each other. The static

68

approach basically eliminates al those parts that are never visible during viewing. The
subset that remains are al those parts that could be visible. At this point, we use the
dynamic approach on the subset, which can greatly reduce processing time.

The following agorithm focuses on the static approach, as that is what will give
the greatest contribution to the viewing of large assemblies. Dynamic (viewing angle)
approaches have already been studied by other researchers (Bittner et a., 1998; Hudson
et a., 1997; Kumar et al., 1996; Levi et a., 1999; Moller and Haines, 1999; Zhang and
Hoff, 1997; Zhang et a., 1997).

The algorithm to be introduced determines the visibility of the AABB. Those
parts that are determined to be visible will be displayed. It is noted that the method
described below can determine whether or not a part is partially or completely
surrounded by other parts. When completely surrounded by other parts, the part is
invisible, as there are no views from which one can see the part. An example is shown
in Figure 5.1, where the interior block is completely enclosed by the other blocks. Real
world examples include the pistons in an engine, the picture tube in atelevision, and the
girders in a skyscraper. These parts in their assemblies are completely hidden, not
being able to be seen from any angle.

Invisibility is determined by examining the AABB of each part. Acknowledging
that there are exceptions to this, we will assume that an AABB that is completely
surrounded by multiple AABBs is invisible. This is not the same as an AABB being
contained in another single AABB, as was determined in Chapter 4. The visbility
determination of these contained AABBs is dedt with separately, as they are not

necessarily invisible.

69

ya

Figure 5.1. Example of a completely enclosed part.

5.1. Visibility determination process

Visibility is determined in two stages. First, the visibility of all AABBs not
contained in another AABB is evaluated. That means that we basically take all those
AABBs determined as contained by the method described in the previous chapter and
remove them from consideration for the first stage. This first stage involves taking
multiple cross sections and tracing around the exterior of each section. Thisis detailed
in the Section 5.3. The second stage is then the visibility determination of these
contained AABBs. Thisisbased on the visibility determinations of the first stage and is
detailed in Section 5.4. The flowchart for the process is given in Figure 5.2 and the

process is described in the subsequent sections.

70

Firgt stage: Consider only
AABBs that are not
contained in other AABBs

Start visibility determination
in X-direction

Determine cross section of
AABBswith intersecting plane

y

at (X + Xj+1)/2 for the X-
direction, (Y; + Yj:1)/2 for Y, and
(Z + Z+1)/2for Z. Thisresults
in a collection of rectangles.

Setj=0

A
Y

Mark visible any boxes
whose edges are the

41

maximum and minimum

A4

edgesin the cross-section
profile.

|

j<m=1?(m=
max subscript of X;)

Starting with one rectangle, trace
the exterior edges of the collection
of rectangles. The AABBs
corresponding to any rectangles
whose edges appear in thistrace
are marked visible.

All three
directions
examined?

Second Stage: Take

Examine next

direction Y then Z.

first AABB contained
in another AABB

Is one of the AABBs
that containsthis
AABB visible?

AABB.

Take next contained

Make contained
AABB visible,

A

Any contained
AABBs
remaining?

Yes

No

End I‘

Figure 5.2. Flow chart for determining of the visibility of an AABB

71

5.2. Advantages of a cross-section trace for non-contained AABBs

The cross-section trace used in the agorithm to be presented has many
advantages over other avenues that were explored during the research for determining
visibility. First, methods were considered that would reason with the complex geometry
of the mechanical parts to determine visibility. However, al of these methods involved
the calculation of intersections of complex surfaces, which required large computation
time. It was, therefore, concluded that determining the AABBs of parts first and then
basing visibility calculations on them would be a much more computationally efficient
approach.

One option for determining visibility is the ray trace. In this method, severa
rays are projected from various points in space. Each point represents a viewpoint, with
the rays representing lines of sight. The first AABB encountered by each ray is
determined to be visible. The main drawback with this method is that a more accurate
result requires more computation time. To increase the accuracy of ray tracing, more
viewpoints are needed and more rays per viewpoint are needed. If there is an AABB
that is visible only from a small region of space at a certain angle, a large number of
rays must be traced from a large number of viewpoints in order to have a good chance
for ray tracing to detect it. However, there is always a possibility that an AABB that
should be detected as visible is not. Thus, to get accurate results, ray tracing can be
computationally costly. It aso does not take advantage of the unique geometry that
AABBSs have when compared to more complex geometries.

To avoid the ray tracing approach, a cross section approach is considered. The

cross section alows us to simplify the visibility calculations to visibility along the

72

outside of a “dlice” of the AABBSs, changing the problem to a two-dimensional one.
Also, the greatest level of accuracy can be attained by a finite number of cross sections;
that is, increasing the number of cross sections after a certain point will not increase
accuracy. Thisis because of the geometry of the AABBs. There can be only a certain
number of cross sections that are distinct from each other. Any more cross sections
taken after this will result in duplicate information. Analyzing identical cross sections
makes no contribution to visibility detection. This is an advantage over ray tracing,
where it is unknown when the results become accurate. The only assurance of accuracy
with ray tracing occurs when al of the AABBs have been detected as visible. In any
other situation, it will be difficult to be sure that an AABB isinvisible.

To analyze a cross section, it is also possible to use a ray tracing approach in a
two dimensional case, tracing rays from exterior points to the configuration of
rectangles that results from a cross section. The first rectangle encountered is marked
visible. However, this approach has the same shortcomings as the three-dimensional
approach, as greater accuracy requires more rays traced from more points. Thus, an
edge trace approach was adopted to take advantage of the rectangular geometry that
results from the cross sections. In addition, the exterior edge trace is an easy way to
determine what boxes would be determined visible through a 2-D ray trace, as al rays
in the ray trace would first intersect exterior edges, which would occur on the exterior
edge trace. In thisway, visibility of the rectangles in a section can be found with greater

accuracy and in less time than with the ray trace.

73

5.3. Visibility of non-contained AABBs

We now describe the determination of the visibility of non-contained AABBS,
which is the first stage. The visbility determination of contained AABBs will be
dependent on the results of this first stage determination.

Consider the set of all AABBs that are not contained in another AABB and call
this set A. Assume that there are n AABBs in this set, and let (AABB); be one of the

members of the set (1 < j < n). As described in Section 4.1, (AABB)j has two

coordinates associated with each direction: X™ and X ™ for the X- direction, Y™
and Y™ for the Y-direction, and ij‘” and Z™ for the Z-direction. The visibility

algorithm uses the sorted lists Ly, Ly, and L that have been determined as described in
Section 4.2.

We start with the X-direction. Consider the list Lx, which is composed of the

sorted values of X™ and X ™ and may contain some groups with equal values. A

new list Ly is created that contains only the distinct values of X. Thus, only one value
from each group of equal values in Lx is included in Lx. Therefore, the new list SLx
consists of only the X values such that SLx = {Xo, X1... Xn}, Where Xo < X3 < ... < X,
m< 2n-1, and misthe number of distinct values.

The method requires that, for the X-direction, we take cross sections of the set A
by sequentialy generating a series of YZ-planes. The location of these planes will be
discussed subsequently. A cross-section is the resulting intersection between each of
these planes and the set A. Taking a cross-section of the AABBSs results in a profile of
rectangles. In Figure 5.3, two configurations of AABBs are each intersected by one

plane. The resulting rectangular profiles *R(c) are shown in Figure 5.4. The numbering

74

of the rectangles in the figure is arbitrary and only for the purposes of explanation. At
each of the YZ planes, the cross-section profiles are *S(c), where c is the X-coordinate
where the cross-section is generated. The profile of each intersected (AABB); is a

rectangle XR,-(c), which has the same coordinates as its extent, XFj, as defined in Section

4.1.

(AABB),

X (AABB\)y
.

c %
Z)Y @ (b) ¥LI/

Partially visible
AABB

Figure 5.3 Plane intersecting collections of AABBs. Both configurations are the same
except that (AABB)1 in (a) isreplaced with (AABB); in (b).

. *Ru(c) *Ru(c)
XRZ(C) /|>//L| L XRZ(C)/"//D \i
ng(C) ~ XXR3(C) v)
v *Ro(C) Ra(c) *Ry(0) Ra(c)
@ (b)

Figure 5.4. Cross section profiles, “S(c), from (a) Figure 5.3aand (b) Figure 5.3b.

We will now discuss the determination of the values of ¢ at which to take cross
sections. To simplify this discussion, we will assume we are taking cross sections
perpendicular to X, but the determination of where to take cross sectionsin Y and Z will

be the same. Thelist SLx we formed represents the list of all of the X coordinates where

75

two cross-section profiles, each immediately taken in opposite directions on the X-axis,
will be different from each other. (Profiles are different when one of the profiles
contains a rectangle from one AABB that is not present in the other one.) Thisleads to
the property that two cross-section profiles that both occur between the same two
successive entities in “Lx will have identical profiles, meaning that the profiles contain
rectangles from the same AABBSs. In other words:
I. Any two cross-section profiles *S(c) and *Y(d) are different when
Xic1 < € < X, Xk < d < X, and X1, Xy, Xis1 are al successive
members of *Ly.
Il. Any two cross-section profiles *(c) and *(d) are identical when X
< ¢, d < Xy, Where Xy and X1 are successive members of “Ly.

To demonstrate this, we take the configuration of boxes shown in Figure 5.3a as
an example. From the front view (the positive Z viewing angle), the AABB
configuration looks as shown in Figure 5.5. The list *Lx for this configuration consists
of the values Xo, X1, Xz, ..., Xo. Taking a cross section in X results in one of the nine
cross sections in Figure 5.6. Notice that it does not matter what the value of c is
between the two values a which a cross-section is taken, since in this range of ¢ the
cross-section is the same. Thus, we will take only one cross-section for each interval
between successive values of SLy. This was the purpose of forming the list 5L, which
tabulates the locations of only the cross-sections that need to be examined. For
convenience, cross sections are taken at the mid-distance of each interval, that is at di =

Xk + Xk+1) / 2, wherek =0, 1, 2, ..., m— 1 and misthe number of entriesin L.

76

X9

Xe
Xs

> Y
Figure 5.5. View of front (positive Z viewing angle) of AABBsin Figure 5.3a.

The algorithm determines visibility of the AABBs using the profiles *S(dy).
Since each rectangle is associated with an AABB, we associate the visibility of the
AABB with the rectangle's visibility. If the rectangle xR,-(dk) is visible, then its
associated (AABB); and corresponding part are also visible. We now give a description
of how to determine the visibility of the rectanglesin aprofile.

A cumulative approach is taken to determine visibility. Initialy, all AABBs are
marked invisible. Then, during the analysis, if an AABB is marked visible at any point,
it is ultimately visible. At no time can an AABB that was marked visible be

subsequently marked invisible.

77

Y Y Y
@ (b) (©
y y Z
L
Y Y Y
(d) C) (f)
y y Z
Y Y Y
(9) (h) (i)

Figure 5.6. The various cross-sections of the AABBs in Figure 5.3a, taken between
(8) Xo and Xy, (b) X1 and Xz, (€) X2 and Xs, (d) Xs and Xa, (€) X4 and Xs, (f) Xs and X,
(9) Xs and X7, (h) X7 and Xg, and (i) Xg and X.

In examining a profile, if all of the AABBs of the rectanglesin that profile were
previously marked visible, no further analysis is needed in that profile. Thisis because
the analysis can only determine if a previoudly invisible AABB should be marked
visible. Analyzing profiles with AABBSs that are all visible is not necessary, and the
analysis moves to the next cross section profile. In addition, in analyzing a profile, it is
necessary to keep track of which rectangles were marked visible. Thus, we create a
separate record of visibility in this profile. In this separate record, we use the same
approach. We start with all the rectangles invisible, and then mark them visible as the

analysis proceeds. When analysis of the profile has finished, we transfer the visibility

78

of the rectangles in the profile to the visibility of the AABBs. This simply involves
making all those AABBS visible whose corresponding rectangles are visible.

A profile is analyzed as follows. Those rectangles with the minimum and
maximum coordinatesin Y and Z are marked visible. For example, in both Figure 5.4a
and Figure 5.4b, *Ry(dy) and *Ry(dl) are marked visible. *Ro(dk) is visible because it has
the minimum value in the Z-direction. *Ry(dk) is visible because it has the minimum
and maximum values in the Y-direction and the maximum value in the Z-direction.

The algorithm determines which rectangles have these properties as follows.

Consider aprofile *(d,). A rectangle XR,-(dk), one of the mrectanglesin this profile, has
diagonal corners of (Y™ ,z™) and (Y™, Zz™). The rectangle R is visible if one of

the following four conditionsis met:

Condition|: Y™ = min(y™)

Condition11: Z™ =min(z™),

Condition I11: Y™ = max(quax),

Condition IV: Z™ :max(Zmax), q=012..,m-1

q
To find which rectangles to make visible, we use the lists Ly and L; (recall
Section 4.2). In each of these lists, the minimum and maximum values in the profile
will occur asthefirst and last terms of the list. Thefirst value, or group of equal values,
pertains to the minimum value. Similarly, the last value, or group of equal values,
pertains to the maximum value. Thus, al of the rectangles corresponding to these

values are marked visible. For example, Figure 5.7a has the sorted list Ly

LY - {Ysmin ’Ylmin ’Yzmin ,Yomin ,Yzmax ’Ysmin ’Yemin ,ngax ,Ysmax ,Y4min ’Yomax ’Y4max ’Yemax ,Ylmax}

79

Only rectangles O through 4 occur in this profile. The order of those values pertaining

to rectangles 5 and 6 are only placed for explanation purposes. Thus, to find the visible

rectangles, we find the first value from the profile. This is Y,"" and, therefore,
(AABB); is visible. If Y,™, the next value, were equal to Y,"", then (AABB), would
aso bevisible. Thelast value from the profileis Y,™ . This value also determines that
(AABB); is visible. Since Y, is not in the profile, if Y, were equa to Y,"™, it

would indicate that (AABB), were visible as well.

A
; "Ry (dk)
Ra(d)
“Ro(d) Y 4 G O P 1
f | J \
Z XRS(dk) XR3(dk) *
X ‘ X \
R | *Rdy RCCI GEEEYS
L1l | | | I S R
I —TT—>Y —‘max—
Yl min ’-YommYzmax Y3m|n Ysmax Yoﬁ\ax Yl max Yo
Y2m|n Y4mIn Y4max
@ (b)

Figure 5.7. Boundary traces of the profilesin () Figure 5.4a, and (b) Figure 5.4b.

For the next stage of the algorithm, an edge trace is performed around the
exterior of the profile *(dy), and any rectangle whose edges coincide with this edge
trace are marked visible. Edge traces are shown in bold in Figure 5.7 for both profilesin
Figure 5.4. Thetraceis performed in a counterclockwise (CCW) manner on the profile

starting with one of the visible rectangles matching Condition 1. In the case shown in

80

the figures, this is “Ri(d). Those rectangles found visible through Conditions | to 1V
aways occur on this exterior edge trace. Thus, we must adways start with an
appropriate corner of one of them.

A trace consists of a series of points with directed lines that connect them. To
designate the trace direction, let Y~ and Y denote the decreasing and increasing Y
directions, respectively. Similarly, we let Z~ and Z* denote the decreasing and
increasing Z directions, respectively. We will choose the starting point of the trace as
follows. We take all the rectangles that meet Condition | and we let XRq(dk) represent

each of these rectangles. Of these rectangles, we find the one rectangle XR,-(dk) that
satisfies Z™ =min(z™), meaning it will have the minimum Z™ of all the rectangles
*Ry(ch). We then use (Y™ ,z™") of the rectangle *R(dy) as the starting point. This

point is chosen because it is guaranteed to occur on an exterior edge trace, no matter
how complex the configuration of rectangles is. The trace then proceeds in the Y*
direction and continues around the rectangles. This trace stops when the starting point is
reached. For example, in Figure 5.7 only *R(d}) satisfies Condition I. Thus, we choose
its bottom left corner as the starting point. If other rectangles also satisfied Condition I,
we would find among these rectangles the one whose bottom edge is furthest beneath
the others and use its lower left hand corner as the starting point. The trace then

proceeds to the right and ends when the starting point is reached.

81

¥ lezdk) Starting point
1T of next trace
sz(dk)\ \\ 4 X
) t 1| R
7 , *Ra(d)
*Ro(dk) Ra(di)
\ 4 A *
> \
Dc =Y *Re(ck)
Y

Figure 5.8. A profile in which rectangle 5 does not appear on the first edge trace.
(D=Y" indicates the current direction)

We will discuss the details of the trace subsequently. For now, let us assume
that the trace has been performed. From the procedure just described, we could have
missed some rectangles in the profile that are visible. An example of thisis shownin
Figure 5.8. Regions *Rs(dy) and *Rs(di) should be marked visible, but in the current
scheme, they are not. To remedy this, we perform additional traces as needed if thereis
arectangle that meets Conditions | to 1V that has not been marked visible in the profile.
For example, in Figure 5.8, “Ry(dy), *Ru(dy), and *Rs(d) satisfy one or more of the
conditions. However, the initial trace does not include *Rs(d), which meets Condition
I1l. Thus, another trace must be performed starting on *Rs, whose starting point is based

on one of the following conditions:

Condition I-A: (X}“‘”,iji“), where *R(dy) is the rectangle where
zm = min(Zc;nin) The rectangles “Ry(dy) are those that do not appear in

the trace that meet Condition |. The trace proceedsin the Y* direction.

82

Condition 11-A: (ijaX,Z?“‘”), where *R(dy) is the rectangle where

Y™ = max(qu""x). The rectangles *Ry(dk) are those that do not
appear in the trace that meet Condition Il. The trace proceeds in
the Z" direction.

Condition 111-A: (ijax Z]’“ax) where *R(dy) is the rectangle where
AL max(Z(;“aX). The rectangles *Ry(dk) are those that do not
appear in the trace that meet Condition I1l. The trace proceeds in

the Y™ direction.

Condition IV-A: (Y™ ,Z™), where *R(dy) is the rectangle where
J J

Y™ =min(v™). The rectangles *Ry(d) are the remaining

rectangles that do not appear in the trace that meet Condition IV.

The trace proceeds in the Z™ direction.

For example, in Figure 5.8, “Rs(d) does not appear on the first trace, but meets

Condition IIl. The next trace would start with the top right corner of *Rs(dy) and
proceed left. Aslong as there is a rectangle that meets one of Conditions | through IV

that is not part of a trace, we continue performing traces using these rectangles as

starting points.

We now discuss the details of how to perform the trace. Let *R.(dy) denote the

current rectangle, D denote the current direction, and (Y, Z,) denote the current point
in the trace. Since this trace occurs in a counter-clockwise manner, the value of either
Y, or Z, corresponds with the current rectangle and the direction traveled. For example,

atrace with D¢ = Y* can only occur on the minimum Z edge of *R.(dy). An example of

83

thisis shown in Figure 5.8. Therefore, Z, is the minimum coordinate of *R(di). One of
the following three events can occur as the algorithm traversesin the current direction:
(1) A rectangle will be encountered that will change the direction of the trace,
(2) The end of the rectangle is reached, but the trace can be continued in the
same direction on a different rectangle, or
(3) The end of the rectangle is reached and the trace is continued on the next
edge of the same rectangle.
We use these events to determine the direction the trace should go. Examples of these

three events are shown in Figure 5.9.

Ll

Y 1)) 3)

Figure 5.9. Examples of the occurrence of the three rectangle traversal events. (1)
direction changed by rectangle encountered. (2) trace continued in same direction on
different rectangle, (3) trace continued on next edge of same rectangle.

We determine the next step of the trace by first searching for a XR(dk) that will
change the trace direction. The conditions used for finding this rectangle and the
actions taken if found are shown in Table 5.1. Thelists Ly and Lz are used to find the
boxes that satisfy the above conditions, so that not all rectangles are checked. For
example, if we are searching in the Y* direction, we start with the current point in Ly and
advance through the list to find the first rectangle that meets the conditions. If no such

rectangle is found when the last bound of the current rectangle is reached in the list, the

search is ended.

Table 5.1. Finding a rectangle that changes the trace direction
D Conditions for the Figure for finding of XR,-(dk) Actions taken if
¢ rectangle “Ri(d) found

Y Of.sfthe \r(ecta\r;%!i Ytnhwaxt XRe(ch)) Y, :Y)j(min,
SAlisly Yp <Y =Y 2 (o Z) TR 4 Re(d) = "R(d),
and ZM<Zz <Z™, Ry(ck andD.=Z
*Ri(d) has the minimum v
ijin

Z" | Of the rectangles that < z,=2"m,
Sa'[ISfy Zp < Z;nln < ZcmaX Rl(dk) XRC(dk) — XR"(dk),
and YmSY, <Y™, 7 | "Re(ck) 4 and D =Y"
XR(dy) has the minimum L (Yo, Zo)
ijin Y

Y Of. the remc"'fanglﬁfsax that R(d) 4 (Yo, Zo) Y, =Y™,
stisty Yo" <Y <Y, I “Re(d) ="R(dW),
and Z™M<z <z™,| Z Re(d) andD.=Z"
*Ri(dk) has the maximum L
y Y

j

Z Of. the rn?iftanglnixe that (Yo, Zo) zZ,=7™,
stisfy Z]" <7 <Z, Ry | | Reld) ="R(dd),
and Y™ <Y, <Y™, | 7z —f and Dc =Y
*Ri(dy) has the maximum L Ri(d
Zm

J

If arectangle is not found that will change the direction of the trace, we search
for arectangle XR,-(dk) that continues the trace in the same direction. The conditions for
finding this rectangle and the actions taken if found are shown in Table 5.2. Again, the
lists Ly and Lz are used to search for this rectangle. For example, if we are searching in
the Y* direction, we start with the current point in Ly and advance through the list to the

first rectangle to meet the conditions stated in Table 5.2 for the Y* direction. If no such

85

rectangle is found when the first Y™ > Y™ is encountered in the current list, then the

search is ended.

Table5.2. Finding arectangle that continues the trace direction

Conditions for the Figure for finding of XR,-(dk) Actions taken
rectangle “Ri(d)

ijin Schax <ijax

v and Zj :Zp . Yo, Z5)

L.

Dec

Y, =Y, then
“Re(dk) = “Ri(ck)

"R | R (ch)

Zmn < zmex < 7 ma Z. =Z™ then
: : ' *R(dy) 4 Xe 11y X
. and Y™ =V, Re(dk) = "Ri(dk)
z Z | *Rydy
L (Yo Zp)
Y
ijin <chin Sijax (Yp, Zp) Yp :chin , then
and 2™ =27 XR(d Re(dk) = "Ri(dk)
Y J p 7 R‘(k) XRC(dk)
L,
Z <z <z (¥ 2 Zp =27, then
min — d = i d
Z_ and Y] Yp XRc(dk) RC(k) RJ(k)

Z

L [Ry(dk)
Y

Finally, if this rectangle is not found, the trace continues on the same rectangle

on its next edge. The direction and current position are changed to reflect this. The

actions taken are shown inTable 5.3.

86

Table5.3. Continuing the trace on the
current rectangle, but in a different direction.
D Actions taken
\4 Y, =Y and D¢ = z
z Z,=2" andDc;=Y"
Y Y, =Y™ andD.=Z
z Z,=Z" andD.=Y"

As the trace is performed, we mark “R(d) visible for each section of the trace.
Once the trace is completed, if needed, other traces are performed as described
previoudly if there are rectangles satisfying any of the Conditions | through 1V that are
not visible. After all traces are performed on the kth profile, for each rectangle that was
marked visible in this profile, the corresponding AABB is marked visible. Then, atrace
is performed on the profile for dys1.

After the traces have been performed on all the profiles in the X-direction, this
procedure is performed, if necessary, in the Y-direction, and then the Z-direction. The
analysis in the Y-direction is necessary only if there are AABBs that are till invisible
after dl of the profiles in the X-direction have been analyzed. Then an analysis for the
Z-direction is performed only if there are still invisible AABBs after the analysis in the
Y-direction. In the Y-direction, an analysis is performed in the same manner as the X-

direction, only using X and Z values for the profilesinstead of Y and Z. Similarly, for

87

the Z-direction, profilesin X and Y are used. Those non-contained AABBSs that were
not marked visible after an analysis in the three directions are marked invisible.

The reason we use this approach is because it guarantees that AABBs that are
wholly enclosed within a group of AABBs will be detected as invisible. To prove this,
consider the following. For the enclosed AABBSs to be invisible, any ray originating
from outside the AABB configuration that intersects one of the enclosed AABBs will
intersect another AABB first. Because the enclosed AABBs will never be the first
AABB intersected by such aray, they will never be visible. Now, because the AABBs
are enclosed, one can also create a shell from the faces of the non-enclosed AABBs
whose interior volume includes the volume of all the AABBs plus any empty volume
that occurs in the enclosure. For example, the shell for the AABBs in Figure 5.3a is
shown in Figure 5.10. Because the points where the rays first intersect the AABB
configuration are the points where they first enter any volume from the AABBS, these
points are al located on this shell. As such, the shell incorporates all the exterior points
of the AABB configuration. Now, let us take any cross-section that goes through an
enclosed AABB, including a cross-section of the shell. In examining, the cross-section
of the shell, it must contain al the exterior points of the cross-section, because the shell
contained al the exterior points of the AABB configuration. However, in our method,
the exterior edge trace also consists of all the exterior points of a cross-section. Thus,
they are essentially the same. For example, a cross-section of the shell in Figure 5.10 is
shown in Figure 5.11a. It can be seen to have al the same points as the exterior edge
trace shown in Figure 5.11b. Because the enclosed AABB was not a part of the shell,

its rectangle does not have any exterior edge points, and thus will not appear in an

88

exterior edge trace. As such, it will not be marked visible for this cross-section.
However, since this is true of any cross-section through an enclosed AABB, it is not
possible for the enclosed AABB to be marked visible in our agorithm and therefore,

will be correctly marked asinvisible.

X)/ ‘)/

/ aed

@ (b)

Figure 5.10. Shell for AABBsin Figure 5.3a. (a) Shell and cross-section plane.
(b) Exploded shell where cross-section is taken.

&

r

(@ (b)
Figure 5.11. Cross-section profiles of (a) shell and (b) AABBs with exterior edge trace.

89

5.4. Visbility of contained AABBs

After all of the cross-sections have been analyzed, the visibility of the AABBs
that were not analyzed previoudly is determined. These are the AABBs that are
contained in other AABBs. This visibility determination is made using the fact that
contained AABBSs do not necessarily belong to objects that are invisible.

In the process of surrounding each object with an AABB, there is empty space
where another object could be located. Thus, this other object's AABB would be
contained in the AABB of the first object, but the object itself could be visible. For
example, consider the objects shown in Figure 5.12. A portion of the screw is contained
in the empty volume of the AABBs for the wedge shaped object and the plate.
However, the screw is visible. This case illustrates that by assuming that a part would

beinvisibleif its AABB is contained in another AABB would yield an incorrect resullt.

Plate

Screw

Figure 5.12. Visible part whose AABB is contained in another AABB.

90

In order to deal with this contingency, the following ruleis applied:
Rule #1: If an AABB is contained in another AABB that is visible, then
the contained AABB isvisible.
With this rule, a conservative visibility approach is used. This means that the set of
objects that are visible to the human eye will be a subset of the objects determined
visible through the entire visibility determination process of the computer program.
The fact remains that a few parts whose AABBs are contained in visible AABBs are
invisible to the human eye. Thus, this rule makes these parts visible when they should
not be. However, this small sacrifice is made so that those AABBSs that are actually
visible can be detected rapidly. A more complex rule could be employed to make these
determinations correctly, but that would require a more intensive computation. In
addition, the only difference would be the visibility of a small number of parts, meaning
only a small increase in performance by marking these parts invisible. It would be
inefficient to have to use a very large calculation time to determine the visibility of
these parts, when it will yield the same results in display with only a small increase in
display performance. Thus, thisrule offers a fast, abeit conservative way to determine
the visibility of parts whose AABBSs are contained in another AABB. For example, the
screw in Figure 5.12 is detected as visible, as its AABB is contained in the AABB of
the plate, which is visible from a previous determination. Once the visbility
determination of the contained AABBS is finished, we have completed the visibility
determination of al the parts. The basic steps of the algorithm are summarized in Table

5.4.

91

Table 5.4. Basic steps of the visibility determination algorithm

1. Determine AABB for each surface.

2. Determine AABB for each part based on the AABBs of its surfaces.

3. Sort the coordinates of the part AABBsin the X, Y, and Z directions.

4. Determine which part AABBs are contained in another single part AABB.

5. Perform cross-section traces to determine visibility of non-contained AABBs.
6. Determine visibility of contained AABBs based on the visibility of the

AABBSs that contain them.

5.5. Validation of the Visibility Algorithm

In order to test the visibility algorithm, a test assembly was created. Several
parts were created with the general shape shown in Figure 5.13. A group of four
congruent parts and a rectangular plate are used to form a box assembly as shown in
Figure 5.14. This box may or may not be closed by adding another plate to the front,
depending on what configuration is to be tested. These boxes are then created in
different sizes and nested within each other, as shown in Figure 5.15. We will use this
to both test the correctness and speed of the algorithms based on different numbers of

boxes and different configurations of open and closed boxes.

92

(Al

Figure 5.13. General shape of parts used in test assembly.

—

e

Figure 5.14. Five-sided box assembly created from part shown in Figure 5.13.

Figure 5.15. A group of nested boxes.

93

In performing the algorithms on any set of open boxes, we find that al of the
parts are determined as visible, as expected. Also, we find that when the outermost box
is closed, only the parts that comprise the outer box are visible. All the rest of the parts
are marked invisible, no matter whether they are closed or open. Also, when mixing
configurations of open and closed boxes, we find that any parts from boxes that are
interior to a closed box are all marked as invisible. Similarly, al the parts that are
exterior to the outermost closed box are marked visible. In addition, the part that closes
the outermost box is also visible. Based on the results of these runs, it is concluded that
the algorithms are working correctly.

The purpose of these runs is also to establish the speed of the algorithms. When
doing these runs on a machine with a Pentium 4 2.4 GHz processor, it was found that
almost the entire CPU time that the computer used to establish the visibility of the parts
was employed in the determination of the AABBs. In fact, using the maximum of 30
parts for five nested closed boxes, the portion of the run time used to determine
vigibility after AABB determination was less than 0.008 seconds. As such, the
determining factor for run time of the algorithms is the AABB determination. The
resulting processor time versus the number of partsis shown in Figure 5.16. The times
measured are the average value of ten runs each, with standard deviation shown with
error bars. The relationship between processor time and number of partsisfairly linear,
mainly due to the similar shape of al the parts and the fact that the determination of the
AABBs for the parts is independent from each other. Therefore, the run time for each
part is approximately 0.005 seconds per part. In actuality, the AABB determination

time for each part is heavily dependent on the types of surfaces that make up the part.

94

The AABB for a part made entirely of plane surfaces will be detected quickly, whereas
a part composed of spline surfaces or revolved spline curves will require more time, as
they require alot more processing in order to find the limits of their AABBs. However,
for relatively simple parts, we know that the visibility determination on a 2.4 GHz
processor is approximately 0.005 seconds per part. The processing time for the
determination of the AABB for the part in Section 3.3, which is a more complex part, is

approximately 0.016 seconds, and is probably a more typical processing time.

Processing Time vs. Number of Parts

o
[
©

o

[

o
—

s

©
[
~

o

i

N}
.

Processing Time (seconds)
o
o o
© L
—

o

o

>
.

o

o

=
.

©

o

Y]
'_

o

10 15 20 25 30 35
Number of Parts

o
(&

Figure 5.16. Plot of processor time versus number of parts for nested box assemblies.

5.6. Limitations of the Current Algorithm

Certain combinations of geometries will be incorrectly marked invisible when
they may be visible. Thisis caused by the empty volume that results from the use of

bounding boxes, which is the volume that is contained in the bounding box that is not

95

occupied by the part. For example, Figure 5.17 shows a simple assembly in which Part
2, which rests on the shelf created by Parts 1 and 3, is detected incorrectly. We now
discuss the reasons for this. Drawing the AABBs around the parts, we get the results
shown in Figure 5.18. Since Part 2 isablock, its AABB isidentical to the block itself.
It is seen that (AABB), is not contained in either (AABB); or (AABB)3. Thus, Rule #1
in Section 5.4 does not apply. Taking cross sections in all three directions, the resulting
profiles that are obtained when the intersecting plane passes through (AABB), are
shown in Figure 5.19. From these profiles, it is seen that any of the rectangles
pertaining to (AABB), will not appear in an exterior edge trace in any of the cross
sections. Thus, the visibility algorithm, as it currently exists, will not detect that Part 2

isvisible.

Figure 5.17. Example of partsthat will yield incorrect results using the current
algorithms. Part 2 will be marked invisible.

96

(AABB); .

Y

(AABB); .

Figure 5.18. Partsin Figure 5.17 and their AABBs.

Upon examining this configuration, we see that Part 2 is determined to be
invisible because (AABB); is contained in the volume created by the union of (AABB);
and (AABB)s;. In fact, any combination of AABBs whose union contains another
AABB will cause that AABB to be marked invisible, whether or not it should be. The
rectangular cross sections of the AABBs creating the union will always have one or
more of its edges marked as an exterior edge during the edge-tracing portion of the
algorithm. This will not aways be true for those AABBs appearing in the volume
created by the union.

The reason why AABBs of parts contained in the volume created by the union
of other AABBSs are visible is that when parts are assembled, the empty volumes from
several AABBs can intersect. The nature of some of these intersecting volumes is such
that anything that is contained in that volume may be visible. Thus, parts whose
AABBs lie within this volume are not contained within a single AABB, where Rule #1
in Section 5.4 would apply. This will cause these parts contained in the intersecting
volumes to be marked invisible. This incorrect invisibility assignment is a function of

the geometry of the parts and how they are assembled. Thus, for more complex

97

assemblies there is an increased possibility of parts being marked invisible when they

should be marked visible.
(AABB);
"Ry(dl)
/'(AABB)Z YRZ(dY) Y%(dy)
(AABB)3
(b)
*Ry(dx1) or *Ra(dxo)
Ri(d
*Ry(dlxq) Or lz(2 :
*Ro(0x) Ro(d) Rs(d2)
(©) (d)

Figure 5.19. Cross-section profiles of the AABBsin Figure 5.18. (8) AABBsin 3-D
space and the locations of the cross-sections taken, (b) cross-section at dy, (C) cross-
section at dx; or dxo, (d) cross-section at d;.

5.7. Removal of a Limitation of the Algorithm

In this section, we propose a scheme that can decrease the amount of empty
volume, without greatly lengthening the amount of computational time needed to
determine the visibility of parts. The basic schemeisto alow more than one AABB per
part, where each AABB only contains a section of the part. We only require that the
part will be contained in the union of these AABBs. This will decrease the amount of
empty space. The basic steps that would be taken with this modification are shown in

Table5.5.

98

Table5.5. Basic steps of the visibility determination algorithm when allowing
multiple AABBs per part.

1. Determine the multiple AABBs for each part based on some kind of
geometric determinations (e. g. surface AABBS)

2. Sort the coordinates of the part AABBsin the X, Y, and Z directions.

3. Determine which part AABBs are contained in another single AABB.

4. Perform cross-section traces to determine visibility of non-contained AABBSs.

5. Determine visibility of contained AABBs based on the visibility of the

AABBSs that contain them.

Consider the part shown in Figure 5.20. The solid-gray figure represents an
arrow-shaped part. Figure 5.20a shows the part with only one AABB. Figure 5.20b
shows the part with two AABBs. The shaded sections are the portions of empty volume
included in (@) that are eliminated by (b). By doing this, we decrease the amount of
empty volume in the AABBs, and thus, increase the visibility/invisibility detection
capability of the algorithm.

How the multiple AABBs are determined is not a part of this research. Research
on this subject can be found, for example, in the work of Sanna and Montuschi (1995).
Thelr research includes the determination of a predetermined number of bounding
boxes for an object given a larger number of bounding boxes. This technique lends
itself well to the bounding box technique described in Section 3, since bounding boxes
are determined for each surface in a part. This collection of AABBs can then be

combined into a predetermined number of AABBSs using their technique.

99

(AABB);

Part

@
Empty
volume
(AABB)14
(AABB)1
Empty
volume
(b)

Figure 5.20. Part with multiple AABBs. (a) one AABB (b) two AABBs

Once the AABBs for each part are determined, the algorithms previously
described can be used without making any major modifications to them. The only
change that needs to be made is to allow more than one AABB to correspond to the
same part. No modifications need to be made because the agorithms determine only
which parts are visible, assuming that those not determined visible are invisible. With

this scheme, when an AABB is encountered in any of the cross-section traces, the

100

corresponding part is automatically determined as visible. There is no agorithm that
makes the part invisible afterwards.

To illustrate how this technique will work, once again consider the parts in
Figure 5.17. Allowing more than one AABB per part, one possible configuration of
AABBs would be to have two AABBs each for parts 1 and 3, as shown in Figure 5.21.
Thetwo AABBsfor Part 1 are labeled 1-1 and 1-2. Similarly, the AABBs for part 3 are
labeled 3-1 and 3-2. The cross sections through (AABB), in al three directions are
shown in Figure 5.22. With these cross sections, the exterior edge traces will detect part

2 asbeing visible.

(AABB)..; (AABB); | |(AABB)s;

(AABB).. (AABB)3.

Figure 5.21. Partsin Figure 5.17 with multiple AABBs allowed.

101

(AABB)11 (AABB)s:
dz
{AABB
y o] /J:AA)2 YRZ(dY)
Y
I | I (AABB)3-2
(AABB):- dxa dxz
5 X YR]_.]_(dy) YR?—l(dY)
(a (b)
ZR]_-]_(dz) ZRB—l(dZ)
sz(dx]_) or
*Ro(dxo)
“Ro(dy)
X
o(d
5%2()&1)22;“ “Ri-2(d7) “Rs.2(d7)
(©) (d)

Figure 5.22. Cross-section profiles of the AABBsin Figure 5.21. (a) AABBsin 3-D
gpace and the locations of the cross-sections taken, (b) cross-section at dy, (C) cross-
section at dx, or dx, (d) cross-section at dz.

5.8. Corollariesto the algorithms

5.8.1. Using the cross-section trace algorithms on surface AABBs

To increase display speed, one can reduce the number of surfaces that are
rendered. One way to accomplish this is to use the cross-section visibility trace
algorithms on the AABBSs of each individua part surface to calculate surface visibility
before using them on the parts themselves. An assembly is a collection of parts placed
together in a certain configuration. A part is a collection of surfaces placed together in
a certain configuration. As such, a part can be seen as an “assembly” of surfaces. To
find the AABB for each part we needed the AABB for each surface. Using the
algorithms on these surface AABBs for each part, the visibility of the surfaces for the

102

part can be determined. This process results in the collection of surfaces that are to be
rendered if this part is found visible and eliminates from rendering any surfaces that are
not visiblein apart. Surfaces not visiblein a part will not be visible in an assembly that
includes the part. The process is summarized in Table 5.6. However, this process will
likely not produce much savings as far as reducing the number of surfaces to be
rendered, as parts are not typicaly modeled with surfaces that will not be visible. An
exampleis shown in Figure 5.23, which is a sphere. Spheres are output as two surfaces.
As such, there are two AABBSs that each correspond with a surface. Obvioudly, the two
surfaces are visible for this part. Performing the cross-section trace algorithm on the
two AABBs will also result in both surfaces as visible. But suppose that performing the
trace algorithm causes the top surface to be marked invisible. The part’'s AABB would
still be the same. ThisAABB is then used as normal in determining the visibility of the
part as normal. However, if the part is determined as visible, we would then only

display the bottom half of the sphere, as the top half was determined invisible earlier.

X

Figure 5.23. A sphere with its two surface AABBs.
Another possibility is to use surface AABBs when analyzing the assembly
instead of part AABBs. The processis given in Table 5.7. This requires a great deal
more processing, but it will reduce the amount of geometry that needs to be rendered

103

even more than simply applying the algorithms on the parts of an assembly. With the
current algorithm, when a part is marked visible, all of its surfaces are rendered.
However, this does not mean that al of the surfaces rendered are visible. Many of these
surfaces may not be visible because of the geometry of the assembly. Those assemblies
that result in some enclosed parts have the most to gain. Those parts that form the
exterior will be visible. However, many of the surfaces of these parts are inside the
assembly, and not visible. These surfaces could be very complicated, as interior parts
could be mounted on them. As such, removing these surfaces could reduce display time
dramatically. A ssimple example is shown in Figure 5.24, which shows an assembly of
two parts that form an enclosed box. The “lid” of the box has a square protrusion that
goes inside the box when the two parts are assembled. Both parts are in fact visible and
should be rendered. However, as an assembly, there are surfaces that make up these
parts that are not visible. These surfaces, shown in grey in Figure 5.24a, are interior to

the assembled box, and thus areinvisible.

104

Table 5.6. Basic steps using the visibility determination agorithm on the surfaces of
each part before performing the algorithm on the parts of the assembly

1. For each part:

a

b.

Determine the AABB for each surface.

Sort the coordinates of the surface AABBsinthe X, Y, and Z
directions.

Determine which surface AABBs are contained in another single
surface AABB.

Perform cross-section traces to determine visibility of non-contained
AABBs.

Determine visibility of contained AABBs based on the visibility of the
AABBs that contain them. Those surfaces determined visible will be

rendered if its corresponding part is marked visible

2. Determine AABB for each part based on the AABBs of its surfaces.

3. Sort the coordinates of the part AABBsinthe X, Y, and Z directions.

4. Determine which part AABBs are contained in another single part AABB.

5. Perform cross-section traces to determine visibility of non-contained AABBSs.

6. Determine visibility of contained AABBs based on the visibility of the

AABBSs that contain them.

105

Table5.7. Basic steps of the visibility determination algorithm using surface AABBs
instead of part AABBs

1. Determine AABB for each surface.

2. Sort the coordinates of the surface AABBsin the X, Y, and Z directions.

3. Determine which surface AABBs are contained in another single surface
AABB.

4. Perform cross-section traces to determine visibility of non-contained AABBSs.

5. Determine visibility of contained AABBs based on the visibility of the

AABBSs that contain them.

In the algorithms' current state, these surfaces would be rendered when they do
not need to be rendered. In order to deal with this, performing the algorithm on AABBs
of surfaces instead of part AABBs will allow those surfaces that are hidden to be
determined as invisible and, thus, not to be rendered. This basically means that we will
find the AABB of each surface, but will not be using them to find the AABB of each
part. We ssimply feed the surface AABBs of al the parts in the assemblies into the
visibility determination algorithm, and let the visibility of each AABB pertain to the
visibility of its corresponding surface, not its part. We are, in effect, viewing

assemblies as collections of surfaces instead of parts.

106

——————————————————————

Figure 5.24. Invisible surfaces of two visible parts. () view of each individua part.
Invisible surfacesin grey. (b) Exploded side view. (c) Side view of parts assembled

5.8.2. Through Holes in Surfaces

Depending on what the models are being used for, holes in surfaces may or may
not be important. Models are often used for collision detection and maintainability
analyses to determine whether parts can be physically removed and replaced. In these
kinds of analyses, visual accuracy is not as important. It does not matter whether parts
can be seen through holes. In fact, small holes can be removed entirely for these types
of analyses, with the results of these analyses being the same as those results that would
be obtained if the analyses were performed with the holes still in place. But, if visual
accuracy is important with small holes, the algorithms as they currently stand are not
equipped to deal with them. Parts that are only visible through holes will be marked
invisible by our algorithms. In addition, if there exist any parts with large holes, such as

the assembly in Figure 5.25b, the hole can be a big factor in any type of analysis and

107

unfortunately cannot be ignored. There are two ways to deal with this, but both are
dependent on the development of the algorithms on surface AABBs mentioned in

Section 5.8.1.

—A| —A| —

l) © | A

@ (b) (©

Figure 5.25. Assembly where one part hasaholein it. (a) Original assembly (b)
Assembly with hole enlarged. (c) Assembly without the part with the hole.

The first proposed method involves treating each surface with a hole in it as if
the surface was not there. Essentially al the surfaces that are visible through the holes
will till be visible if the holes were larger. Therefore, we make the holes the size of the
surface. Thus, those surfaces that should be visible through the holes would be visible
if the surface containing the hole were not there. An example is shown in Figure 5.25a,
where the front part has a hole through it. Through this hole, the interior part of the
configuration isvisible. Figure 5.25b shows that enlarging the hole does not change the
visibility of any parts. What is visible in Figure 5.25a remains visible in Figure 5.25b.
Thus, we enlarge the hole until it encompasses the entire front part, which results in an
assembly where the part no longer exists, as shown in Figure 5.25c. Notice that all
visible parts are still marked visible despite removal of the front part.

Removing the surfaces with holes before performing the cross-section trace
algorithms on the remaining configuration of AABBs is not sufficient, since the

108

visibility of the surfaces with the holes is unknown. Thus, we modify the cross-section
trace algorithm as follows. The traces around the perimeter of the cross-sections are
performed on each cross-section profile until the rectangle for an AABB with aholeis
encountered in the trace. This surface is marked visible. However, we will need the
results of a trace without this rectangle. We could obtain this information by
performing the trace again, but the section of the trace that occurs before the rectangle
in question occurs will be the same. Instead, we backtrack dlightly to the previous
rectangle, and then remove the surface with the hol€'s rectangle from the profile. Then
we resume the trace is as if the rectangle were never there. An example is shown in
Figure 5.26. The part corresponding to *Ro(di) has a hole through it. Thus, when the
edge trace encounters it in Figure 5.26a, we mark it asvisible. Then we return the trace
to its previous segment before *Ry(d) was encountered and remove *Ro(dy) from the
profile, as shown in Figure 5.26b. Then we finally continue the trace without *Ro(dl), as
in Figure 5.26¢. In the end, we have determined visibility for both the surface with the
hole and those surfaces that are visible if the surface were not there. Holes in surfaces

that are invisible are not considered. The approach is summarized in Table 5.8.

109

*Ru(ck) “Ru(dk) “Ru(dk)
AT | R R0 oL o Ly
XRO d i X "
E_ o -(_ |_()- ----- E R4(dk) sz(dk) R4(dk) XRzl(dk) xR4(dk)
Y
@ (b) (©)

Figure 5.26. Example of edge trace on a profile when the part corresponding to “Ry(di)
has athrough hole. (a) Edge trace encounters rectangle of part with hole. (b) Rectangle
isremoved and trace backtracked to previous portion. (c) Traceis continued on
modified profile.

Table 5.8. Basic steps of the visibility determination algorithm (using surface
AABBsinstead of part AABBS) accounting for surfaces with holes by treating them
asif they are not present.

1. Determine AABB for each surface.

2. Sort the coordinates of the surface AABBsin the X, Y, and Z directions.

3. Determine which surface AABBs are contained in another single surface
AABB.

4. Perform cross-section traces to determine visibility of non-contained AABBs.
If the AABB of a surface that has a hole is encountered, mark the surface
visible and then perform the trace without the AABB.

5. Determine visibility of contained AABBs based on the visibility of the

AABBSs that contain them.

110

The second proposed method will provide more accuracy than the first one, as
far as part visibility through holes is concerned. However, it may require more
processing time and may not be worth the small increase in performance that comes
from not rendering those parts that are not visible in the second method, but visible in
the first method. The second method uses multiple AABBs to surround a surface
instead of one AABB, as proposed in Section 5.7 for parts. The difference is that we
will be leaving an empty volume where the hole occurs. This process is summarized in
Table 5.9. For example, take the surface shown in Figure 5.27 for a2¥2 -D example. If
we were to use asingle AABB, it would be the 2v% -D rectangle that is the border of the
surface. However, using multiple AABBs, we are able to cover the surface in a manner
that alows open volume to represent the holes, but still have the surface covered by
AABBs. With this method, the volume from the holes is left open, allowing the
visibility trace to pass through the holes and include those parts that can be seen through
the holes. At the same time, the solid sections will still be accounted for by the AABBS.
This will alow those parts that are truly invisible despite the holes to still be marked

invisible.

111

Table 5.9. Basic steps of the visibility determination algorithm (using surface
AABBsinstead of part AABBS) using multiple AABBs for surfaces with holes

1. Determine AABB for each surface. If the surface has a hole, calculate
multiple AABBs that can be used to allow empty volume for the hole while
still containing the part.

2. Sort the coordinates of the surface AABBsinthe X, Y, and Z directions.

3. Determine which surface AABBs are contained in another single surface
AABB.

4. Perform cross-section traces to determine visibility of non-contained AABBs.

5. Determine visibility of contained AABBs based on the visibility of the

AABBSs that contain them.

The second method should be more accurate than the first method because it
more closely approximates the geometry of the parts. As a result, this method could
cause more invisible parts to be marked visible than the second method. However, the
second method also requires more processing time than the previous method in both
calculating the AABBs to use for the surface and performing the algorithms on more
AABBs. If there are many surfaces with holes, there could be a considerable increase
in computation time. In addition, a surface with larger holes will generally result in
more visible surfaces behind it than a surface with smaller holes. Thus, the benefit of
using the second option over the first is diminished on surfaces with larger holes, as the
results of the second option will be much closer to those of the first option while

requiring more processing time.

112

O O |

€) (b)

Figure 5.27. Example of (a) a surface with holes and (b) how it would be covered by
multiple AABBs.

In dealing with the problem of surface through holes, these two options are good
ways to deal with the problem of visibility through holes. If interior surfaces are ssimple
and easy to render, the first option would be a better choice, as those surfaces that
would be determined visible by the first option but invisible by the second one do not
require much time to render. The additional processing time used to determine their
visibility would not be worth the savings in rendering. In addition, surfaces with large
holes would have a lot of interior surfaces determined visible by the second option
anyway, so it isagood idea to use the first option there as well. 1t would seem that the
only situation where the second option is better is when there are intricate surfaces

behind the holes where their removal would save alot of rendering time.

5.8.3. Visibility from a specific viewing angle
The algorithms we have described so far determine the visibility of parts and

surfaces of an assembly from any angle so those that are invisible are removed from the

assembly, reducing the total number of partsto be displayed. Thisisthe purpose of this

113

study. However, since we are aready using AABBs in our method, then possibilities
for their use in other aspects could be explored to see if they lend an advantage. One
such possibility is visibility determination from a specific viewing angle. Thiswould be
used in the actual display method to determine which surfaces of those determined
visible by the main algorithm are to be rendered from the specific viewpoint determined
by the user. Much research has already been done on viewing angle visibility, but
because the AABBs are already calculated for the algorithms in this research, it may be
advantageous to use them in viewing angle visibility if they result in fast and accurate
algorithms.

This approach is analogous to the use of Z-buffers to determine what is to be
rendered on the display. Z-buffers take the triangles that are tessellated from surfaces
and, going from those triangles furthest from the viewpoint to those that are closest,
determine what should be displayed on the screen. In effect, it keeps track of the visible
parts of each triangle from the chosen viewing angle. In essence, this approach will be
doing the same thing, going from the furthest AABB to the viewpoint to the closest and
keeping track of the visible parts of the AABBs. The only difference being that the
AABBs only determine which parts will be rendered, not what each pixel should be
displaying. The advantage of thisis that the calculation of which parts will be rendered
will save in the rendering process itself, which requires much more processing.

We are only exploring the use of AABBsin aviewing angle that isin adirection
paralel to one of the globa axes. We make this restriction because parallel viewing
directions result in the AABBs becoming rectangles. Non-parallel viewing directions

cause the AABBs to appear as hexagons, whose intersections are much more complex,

114

and would require more research to determine how to compute their intersections.
Example shapes are shown in Figure 5.28. Generalization to the following procedure

could be used for this determination from the non-parallel angles.

Y Y
X X Z X
£ @ (b)
Z X yd X
© (d)

Figure 5.28. Example of the shapes that result from different viewing angles. (a) AABB
of apart. (b) View from adirection paralel to an axis. (c) View from adirection
orthogonal to an axis, but not parallel to an axis. (d) View from adirection not
orthogonal to any axis

From a viewpoint orthogonal to one of the global axes, the AABBs that
surround parts or surfaces appear as rectangles. We will use these rectangles to
represent their corresponding surfaces or parts. As an example, let us assume that the
viewing direction is parallel to the Z-axis. Each rectangle can be specified by two
coordinates, (Xmin, Ymin) @ad (Xmax, Ymax) @ shown in Figure 5.29. Thus, each AABB
has two rectangles associated with it, as there are two faces orthogonal to the viewing
direction. In addition, each rectangle has a z-coordinate associated with the plane of the
face of the AABB from which the rectangle is obtained. The viewpoint also has a z-
coordinate as well. These values will be used to determine the distance between the

point of view and the rectangles. Only those rectangles that have a z-vaue in the

115

direction of the viewpoint are considered for visibility, since those that have az-valuein
the other direction are behind the viewpoint and thus, invisible. For those AABBSs that
have two rectangles in the viewing direction, we only consider the one that is closer to
the viewpoint, as it is the face of the AABB that is visible. Compiling al these
rectangles, we get alist specified by the coordinates of two opposite corners, and their

corresponding z-coordinates.

(Xmax, Ymax, Z)

(Xemin, Ymins Z0)

X

Figure 5.29. A rectangle and the two points that defineit.

To determine the visibility of these rectangles, we determine al portions of the
rectangles that are visible, assuming that portions of rectangles are hidden by those
rectangles closer to the viewpoint that share those portions. To do this, we determine
the visible portions of all rectangles by starting with the farthest rectangle from the
viewpoint and moving forward towards the viewpoint. Beginning with the first
rectangle, we add the next closest rectangle to it. This rectangle may or may not
overlap with the previous rectangle. We keep track of only the portion of the first
rectangle that does not share the same area as the second, the uncovered portion. Then,
we consider the next rectangle, and keep track of the uncovered portions of those

previously uncovered areas of the first two rectangles that do not overlap. We continue

116

until we reach the closest rectangle to the viewpoint. In this way, we will have

determined the visible areas of all the rectangles.

We start by sorting the list of rectangles by their distances from the viewpoint,
with the farthest rectangle(s) occupying the first elements of the list. We will call this
list L;. We then create a separate list L, of al the visible portions of the rectangles.
First, we place the first rectangle from L, into L,. Then, we take the next rectanglein L,.
We call R the current rectangle in L, and R, the current rectangle in L,, which is the
single rectangle that was the first rectangle in L. R is closer to the viewpoint than R,,
and may or may not overlap. If the areaof R, isobscured by R, then R/sentry inL, is
modified to keep track of the area that doesn’'t overlap R.. This area may not be
rectangular. If it is not rectangular, it can always be split into several rectangles based
on its shape, resulting in multiple entriesin L,. Thisisdescribed in further detail below.
It is dso possible that R, is completely overlapped by R, meaning that R, is no longer
visible. In this case R, is removed from L,. If there is no overlap, then R/s entry is
unchanged. Next, we add R, to L, and set R; as the next rectangle in L,. We repesat the
process by cycling through all the rectanglesin L, instead of performing the process on
a single rectangle as R,. We are thus caculating the visible portions of all the
rectangles in L, when R is placed in front of them. This process continues until we
have considered the last rectanglein L,. Thefina resultisalist L, of visible rectangles.
Finaly, we make al the parts or surfaces (depending on what the AABBS pertain to)
whose rectangles appear inlist L, visible as well.

We now describe the method used to determine the portion of R, that is

uncovered. The coordinates that specify R are (X min, Yr.min) @d (X max, Yr.mex) @nd those

117

that specify R, are (Xymin, Yvmin) @d (Xvmax, Yvmex). Each point (X, y) in R satisfies the
conditions X min < X < Xrmax @A Yrmin <Y < Vrmaxe Similarly, each point (x, y) in R,
satisfies the conditions Xy min < X < Xymax @Nd Yy min <Y < Yvmex- The four possibilities for
the x-intervals of the two rectangles are shown in Table 5.10. The same possibilities
apply for the y-intervals of the rectangles as for the x-intervals by simply replacing the x
values in Table 5.10 with y values. The relationships between the coordinates of the
rectanglesin x and y determine the areas of the rectangles that overlap.

Using the relationships in Table 5.10 for x and y, we can determine the area of
R, not shared by R.. If R, and R, are digoint in either x or y, then they do not overlap.
When R, is digoint with every entry in L,, L, is not modified. If the rectangles are not
digoint, then the remaining possibilities are that R, intersects, is contained in, or
contains R, in x and/or y. We will explore each case separately.

The first case is that R, intersects R, in both x and y. Referring to Figure 5.30,
there are two possibilities for the x intervals. Possibility 1, which we will call X1, is
satisfied by X min < Xvmin < X max < Xvmax- POSSIDIlity 2, called X2, has the condition X, min
< Xrmin < Xymex < Xmaxe SiMilarly, the two possibilities for y intervals are Y1: y; pin <
Yomin < Yrmax < Yvmax @d Y20 Yumin < Yemin < Yomax < Yrmaxe These four combinations
leave an L-shaped area of R, uncovered. This shape can be broken into two rectangles,
therefore, we change R,/ s entry in L, to one of these pieces and also add the other piece

to Ly.

Another relationship that could occur is for R, to be intersecting R, in either x or
y, and for R, to be contained in R, in the other direction. There are also four

possibilities for this occurrence shown in Figure 5.31. Each of the four possibilities is

118

specified by which relationship from the previous paragraph is the intersecting one: X1,
X2, Y1, or Y2. In al four possibilities, the non-overlapping portion of R, can be split

into three rectangles.

Table 5.10. Possible cases for the x-intervals of two rectangles

Case x-interval properties x-interval coordinate
properties
Digjoint in x X Xrmax < Xv,min OF Xymax < Xr,min
rle——->»
Vle—»
or
di X | -
o r Ll
Vle——»

Intersecting in x X X min < Xymin < Xr,max < Xv,max

< > or

I le——>»
V — Xy,min < Xrmin < Xy,max < Xr,max
or
d X I
- r Ll
V[e———»
R “contained in” X Xy,min < Xrmin < Xr,max < Xv,max
R,inx rle |
V | >
R “contains” R, in X Xe,min < Xy,min < Xymax < Xr,max
X ‘r I: nl "
Vie——»

119

Another possible relationship is again to have R, intersect R, in either x or y, but
have R contain R, in the other direction. This again has four possibilities, as shown in
Figure 5.32, with each possibility again specified by intersecting in either X1, X2, Y1, or

Y2. Theregion of R, that is not shared thus turns out to ssmply be asingle rectangle.

120

L

~ (Xv,mexs Yv,max) X (Xv,maxs Yv,max)

(Xv,mim Yrrmx) (Xv,max, yrmax)

R
. (Xv,miny Yv,mi
(X, min, Yr.min) (X, maxs Yv,min)
@
(Xv,maxs Yv,max)
(Xv,maxs Yv,max)
_____ R” (X maxs Yr.mex) o Yrmm)
:: o r’n.lax(xr,min, Yr,max)
(Xv,mim Yv,mi n) Rr
(Xr,m'm Yr,min) (Xv,m'na yv,m'n)
(b)
(Xr,max» Yr.max) (Xv,maxs Yv,max)
R (Xe,maxs Yr,min)
(Xv,max, yvrmx) (Xv,n‘ax, Yr,min)

(Xr,mins Yr,min) R, |::>

(Xv,mins Yv,min)

(©)

(Xv,min, yv,r;i n)

(Xe,mins Yv,mex)

(Xr,max, Yr,rmx)

(Xv,rrEx, Yv,mex)

R, R |:ll> (Xv,miny Yr,min) (Xv,maf, Yr min)

(Xe,mins Yr,mir;) [?

(Xv,mins Yv,min)

(Xv,mins Yv,min)

(d)
Figure 5.30. The four possibilitiesfor R, intersecting R, in both x and y.

(@) XL and Y1, (b) X2 and Y1, (c) X1 and Y2, (d) X2 and Y2. Dark grey areaiskept in
L,. Dotted line splits dark areainto two rectangles.

121

Y L
(Xv,maxs Yv,max) X (Xv,mexs Yv,max)

R, X o Yr)

- (Xv,m'm yrrmx)

(Xv,maxs Yr,max)
R —— >
: . _— (Xe,maxs Yr,min)
(X mmins Yr,rin)]'(Xv,max. Yr mmin)
(Xv,mim Yv,mi n)
(a) (Xv,m' n yv,m'n)
(X, max» Yv,mex)
(Xv,maxs Yv,max)
Xr,max; Yr,max v,mins Yrmax
_______ Fgr y) (X s y,) (Xr,max, yrn,ax)
L (Xemins Vemin) | (Xmin, Yr,min) (Kumex, Yrrin)
(Xv,miny Yv,min) (Xv,miny Yv,min) L !
(o) |
(Xoras Yorre) (X, max, Yv,mex)
R (Xr.rpgx_, Yr max)
[> (Xemin, Yr.max) (Xv,max Yr,max)
(Xv,m'm Yv,min q
Re (Xv,mins Yv,min (X mass Yv,min)
(Xr,min, Yr,min)
(©)
(Xr.mexs Yr.max) (ern’ yv,max) (X mex YV,max)
R (X, maxs Yv,mex) '
e (%min, Yrmin) (X mexs Yrmin)

(Xe,min] Yr,min (Xv,max Yr,min)

R —— >

(Xv,m' ny yv,m' n)

(d)

Figure5.31. Thefour possibilitiesfor R, intersecting R, in either x or y and R,
contained in R, in the other direction. Examples for when the intersecting possibility is
(@ X1, (b) X2, (c) Y1, (d) Y2. Dark grey areaiskept inL,. Dotted lines split dark area
into three rectangles.

(Xv, min, yv,m' n)

122

T,

Xr,maxs Yr,max
(i X (Xvmax» Yv,max)
(Xv,mexs Yv,max)
Re R ::
(Xv,:"lin, Yvmin) (X, maxs Yv,min)

(Xr,mins Yr,min)

@
(Xrmexs Yr.max)
R, o(X maxs YVrmx) (Xv,rmx, YVrmx)
(Xv,miny Yv,min) R
(X miny Yr,min) (Xv,min, Yv,min)
(b)
(Xv,mexs Yv,max)
Ry (Xr,rmx, Yr,max) (Xv,max, yvrmx)
(Xv,m'm Yv,min * |::>
R (Xv,min, Yr,max)
(Xr,miny Yr,min)
(©
(Xr.maxs Yr,max)
Rr (Xv,max, yr,m'n)

o (Kymaxs Yv,max)

(Xr,mins Yr,min) |::>

v (Xv,min, YV,m' n)

(Xv,mins Yv,min)
(d)

Figure 5.32. Thefour possibilitiesfor R: intersecting R, in either x or y and R, contains
R, inthe other direction. Examplesfor when the intersecting possibility is
(@ X1, (b) X2, (c) Y1, (d) Y2. Dark grey areaiskeptinL,.

123

Another possibility isfor R, to be contained in R, in both x and y. Thisresultsin
the regions shown in Figure 5.33, with the area of R, to remain surrounding R.. This

area can be split into four rectangles.

YT_> (Ko Yrra)

() 5
Xv,maxs Yv,mex
o e (Xv,mins Yr,max)
(Xr s Yr max) (Xr maxs Yr.max) (Xv,max Yr,mex)
R >
(i, Yrrin) | -“_ (Xvmins Yr min) (X, max» Yr,min)
(Xv,mins Yv.min) (Xv.mexs Yr min)
v,miny Yv,min l]'

(Xv,m' ny yv;"t n)

Figure5.33. R, containedin R, inboth x ory. Dark grey areaiskeptinL,. Dotted
lines split grey areainto four rectangles.

The next possibility is for R to be contained in R, in x and contain R, in y and
vice versa. This results in the two possibilities shown in Figure 5.34. In this case, R

splits R/ s entry in L, into two rectangles.

124

(Xr,maxs Yrmex) YT—>

X (X maxs Yomax) (Xv,mess Yv,mex)
(Xv,mexs Yv,max)
R,
(Xv,mins Yvjnin) l:l>
Rf (Xv,m'm yv,m'n) (Xr,max, yv,m'n)
(Xr,miny Yr,min)
(@
(Xv,rrax, YV,rmx) (Xv,ma{, yv,max)
| Ry T (Xr.maxs Yr.max) J.- T
Rr (Xv,m'm yrrmx) ()(Vors)
(Xr miny Yr min) i | L ’ T |
’ ’ (Xv,min, Yv,mi n) (Xv,m' ns yv,m'n)
(b)

Figure 5.34. Thetwo possibilitiesfor R contained in R, in either x or y and R,
containing R, in the other direction. (a) R contained in R, inx (b) R contained in R, in
y. Dark grey areas are kept in L.

The final possibility for the relationship between R, and R, isthat R, contains R,
in both x and y. When this occurs, we see that R completely overlaps R,, as shown in

Figure5.35. Thus, R/sentryinL, isremoved.

(Xr mes» Yr.max) v
R, ® (Xv,maxs Yv,mex) ‘
°
(Xv,mim YV,m'n X
R

(Xe,miny Yr,min)
Figure5.35. R, containsR, in both x ory.

After the process of analyzing all of the rectanglesin L,, L, becomes alist of all

of the portions of all the rectangles that are visible from the viewpoint.

125

This method has the same shortcomings that the AABB agorithm has. The
empty space contained in a rectangle is treated as a solid and, therefore, it can cause a

portion of arectangle to be marked invisible when it is not.

5.9. Summary

In this section, the details for determining the visibility of an AABB are given.
This is the last process required to determine what the display routines should render.
First, the process for determining the visibility of non-contained AABBs was presented.
Then, arule was applied to determine the visibility of contained AABBs. The rendering
routine uses the visibility of the parts to determine which parts should be displayed.
The next section discusses the verification and validation of the process, from the

determination of the AABBs to the determination of visibility.

126

6. An Application: SCAMP

The verification and validation of the research described in Chapters 3-5 was
performed on CAD models of NASA’s Supplemental Camera And Maneuvering
Platform (SCAMP) telerobot shown in Figure 6.1 and Figure 6.2. This robot is the
result of a joint effort between the Space Systems Laboratory of the University of
Maryland and NASA Johnson Space Center. The SCAMP telerobot is an experimental
neutrally buoyant teleoperated vehicle that is designed to help further space vehicle
research. The model consists of 490 parts, of which 202 are visible from the outside of
the robot and 288 are invisible. Verification and validation were performed for each

stage of the algorithm to ensure that the algorithms functioned as intended.

Lens Thruster ducts

Blades

Figure 6.1. CAD model of SCAMP telerobot.

127

Batteries
Internal Frame

Bob

Figure 6.2. Interior parts of the SCAMP mode!.

6.1. Preparation of the Model

The model existed as parts in the CAD package Pro/Engineer, a software
modeling package. This software package has the capability of trandating models from
its proprietary format to the IGES format. The algorithms described in Chapters 3-5

were then used on the IGES format of these models to determine visibility.

6.2. AABB Deter mination

First, we verify that the determination of AABBs is correct. This determination
begins with the calculation of the AABBs of each surface of a part. To verify that the
surface AABBSs are correct, the validation must be performed manually by looking at
them through a visualization or CAD program. The coordinates of each surface AABB

are output from the developed algorithm. Then, using Pro/Engineer, each AABB is

128

manually created from the coordinates. Once thisis done, each AABB and its original
part are displayed together to verify that the AABB determination was correct. An
example of what is displayed is shown in Figure 6.3 for one of the thruster ducts on the
vehicle. Each surface box is represented by a different color. It was verified that each
of the surface boxes generated was correctly determined for severa randomly selected
parts. (This process was limited by Pro/Engineer’s inability to make parts partially
invisible. This made it hard to visualy confirm that the AABB determination was
correct; hence not all parts were verified). Once the surface AABB determination was
verified, the next step was to confirm the validity of the part AABB that is calculated
based on the surface AABBs. Thus, for each part whose surface AABBs were verified,
the AABB of the entire part, which was determined by the algorithm presented in
Chapter 3, was aso manually created in Pro/Engineer. For example, the resultant
AABB for the thruster duct is shown in Figure 6.4. It was verified that these AABBs
consisted of the extremes of all of the surface AABBs and were the minimum
surrounding AABBSs of these parts. Through Pro/Engineer, the AABBs from several

other components were used to verify that their AABBs were correct.

129

- Two Surfaces
Per Small Hole

Figure 6.3. Surface AABBs for thruster duct.

Figure 6.4. AABB for the thruster duct.

6.3. Relationship Determination

The determination of three classifications of relationships between AABBS, as
described in Chapter 4, has been implemented:

* One AABB contained in another
* One AABB intersecting another
* One AABB adjacent to another

130

Applying the program to the SCAMP model yields relationships between all of
the AABBs. These relationships were output from the algorithm presented in Chapter
4, and a simplified relationship tree was generated manually, which is shown in Figure
6.5. In this example, only interior parts are shown and identical parts have been
grouped together to make it easier to view the relationships. For example, the four

batteries in the vehicle have been grouped together in the figure.

Figure 6.5. Relationship tree for selected parts of the vehicle.

These relationships were verified visually with representations of the AABBs in
the modeling program. For example, Figure 6.5 indicates that the AABB of Port Cover
Panel 1 contains the AABBSs of both the quartz lens and the quartz lens holder. This
was verified using Pro/Engineer, as shown in Figure 6.6. The AABB for the Port Cover

Panel 1 (blue) contains the AABBs for the lens (green) and lens holder (red). Figure 6.5

131

shows that the AABBSs for the batteries intersect the outer seal rings AABBs. Figure
6.7 shows a battery AABB intersecting the AABB for one of the rings. Finaly, the
motor drive AABB is adjacent to a mid-section octagon’s AABB, as shown in Figure

6.8.

Port Cover Pandl 1

Figure 6.6. Side view of the AABBs for the quartz lens (green) and the quartz lens
holder(red) contained in the AABB for Port Cover Panel 1 (blue).

Figure 6.7. AABBsfor the intersection of an outer seal ring (pink) and a battery (grey).

132

Figure 6.8. The two adjacent AABBSs of the mid-section octagon (red) and the motor
drive (blue).

6.4. Object Visibility Determination Trace

Visible objects were computed using a trace around a cross section of the
AABBs as described in Chapter 5. To verify that the trace is correct, avisual validation
was performed using an Excel spreadsheet. For several cross sections, the coordinates
of all of the AABBs encountered were input into the spreadsheet and then used to create
a visua representation of the rectangles in the profile. For an example, consider the
section that goes through the parts shown in Figure 6.9. The corresponding rectangles
have the corner coordinates in Table 6.1, which has the profile shown in Figure 6.10.
Each AABB is represented by a different color rectangle. The coordinates of the trace
generated by the algorithms are used to superimpose a trace on this profile shown by
dotted black lines. Using this method, we visualy and numerically verify that the

exterior edge trace is correct because it does not appear on any of the interior edges.

133

Figure 6.9. Parts through which cross-section is taken.

Figure 6.10. Visibility exterior edge trace of example cross-section profile.

134

Table6.1. Rectangles and their coordinates

Rectangle Part

Lower Left Coordinate

Upper Right Coordinate

(Y™ zm™ (Y™ 7™
CameraMount (4.146, -12.742) (9.663, -7.225)
Port Cover Pandl 1 (3.955, -12.712) (9.625, -7.041)
Port Cover Panel 2 (-9.612, -12.711) (-3.941, -7.041)

Port Cover Pandl 3

(-9.611, 0.855)

(-3.941, 6.526)

Port Cover Panedl 4

(3.955, 0.855)

(9.626, 6.525)

Duct Base Plate 1 (-9.898, -5.843) (-9.143, -0.343)
Duct Base Plate 2 (-2.743, -12.998) (2.757, -12.243)
Duct Base Plate 3 (-2.743, 6.056) (2.757, 6.811)
Duct Base Plate 4 (9.157, -5.843) (9.912, -0.343)
Rectangular Cover Plate 1 (4.138, 1.039) (9.664, 6.565)
Rectangular Cover Plate 2 (-9.65, -12.751) (-4.124, -7.225)
Rectangular Cover Plate 3 (-9.651, 1.038) (-4.125, 6.564)
Internal Frame (-9.532, -12.618) (9.532, 6.437)

Motor Duct Panel 1

(9.537, -7.041)

(9.662, 0.855)

Motor Duct Panel 2

(-3.941, -12.748)

(3.955, -12.623)

Motor Duct Panel 3

(-9.648, -7.041)

(-9.523, 0.855)

Motor Duct Panel 4

(-3.941, 6.437)

(3.955, 6.562)

Figure 6.11. One of the pipes that was incorrectly marked invisible, whichiscircled in

yellow.

6.5. Validation of the Visibility Detection Algorithm

The final verification comes from the overall outcome of the program, which is

the determination of the components that are visible and those that are not.

135

validation is based on the human visual perception of what components are visible from
any viewing angle. Of the 490 parts in the vehicle, 202 of them are visible from the
outside of the vehicle, leaving 288 parts hidden in the interior. The visibility as
determined by the program showed that it was able to correctly mark invisible all 288
parts. Inaddition, it detected as visible 200 of the 202 visible parts on the vehicle. The
2 components that were incorrectly made invisible are 2 of 6 small pipes, each being
contained in one of the 6 exterior thrusters on the vehicle. One of these pipes is shown
circled in yellow in Figure 6.11. These pipes were marked invisible because their
AABBs are contained in a collection of AABBS, but not in any single AABB. Any part
whose AABB fits this criteria will not be detected as visible, as the exterior traces
performed on the cross section profiles will go around the rectangles surrounding the
current part’s rectangle and miss this AABB.

To vaidate the performance advantage that the program provides during
simulation, we created visuaizations and simulations of the underwater vehicle
assembly model. A vehicle visualization shows the transition of the model from awire-
frame view to arendered view. Also, the simulations depicted the actions of the vehicle
flying about in a neutral buoyancy tank in search of alost thruster. One visualization
was created for the original assembly model and for the simplified model. This
visualization simply involved changing from a wire frame view to a solid shaded view.
In addition, one simulation was created for the original assembly model and for the
simplified model; that is, one whose parts were marked visible by the visibility
algorithm. This simulated the process of the robot swimming around an object to scan

it with its camera.

136

The system process time was examined for the simulation program while it was
performing each visualization and each simulation. This process time is a measure of
how much time the CPU spends making calculations necessary for the display of the
assemblies and their movement. Therefore, a comparison between the original and
simplified vehicles can be made to assess the performance benefit of the agorithm

developed in Chapters 3-5.

6.6. Results

The results given in this section are for the SCAMP telerobot model, which will
vary with other assemblies since the values will depend on the specific geometry of the
assemblies. Assemblies that do not have many hidden parts will not exhibit significant
savings, while those with many hidden parts will show dramatic increases in simulation
Speed.

The accuracy rate of the program was found to be 99.6% for this assembly
model, as 488 out of the 490 components' visibilities are correct. However, from a
qualitative standpoint, the two incorrect parts have little practical visual consequencein
the simulation of thisvehicle. Also, interms of calculation time, averaging ten runs, the
time to calculate the AABBs for all 490 components on a Pentium 4 2.4 GHz machine
is 37.375 + 0.0314 seconds, an average of 0.0763 seconds per part. By relative
comparison, the visibility calculation using the AABBs is amost one thousand times
faster, taking only 0.041 seconds to determine the visibility of al the parts.

The results of the created simulations are summarized in Table 6.2. They

indicate that the algorithm increased the simulation and visualization speeds at which

137

the rendered SCAMP robot model is displayed. For visualization, the speed is 2.2 times
faster than that of the original; that is, the original visualization required 2.2 times more
CPU time than the model simplified by the algorithms presented here. Also, for
simulation, the speed of the developed algorithm is 1.8 times faster than that used by the
original method. This verifies the initial intent of the algorithms, which was to provide
faster simulation and visualization times for complex models while maintaining visual
accuracy. Although these results may vary for different assemblies, they show the
potentia that the algorithms have for making the display and simulation of complex

assemblies faster.

Table 6.2: Results of ssmulation and visualization of the SCAMP
robot.

Model Type Visualization Simulation
CPU Time CPU Time
(seconds) (seconds)

Original 33 126

Simplified by Present 15 70

Algorithm

Performance Benefit of

Present Algorithm (Original 29 18

time over Present Algorithm ' '

time)

6.7. Discussion
The results of using the algorithms on a real-world application are promising.
The correctness of the algorithm in determining the visibility of the partsin the SCAMP
robot, while not necessarily indicative of how well the algorithms will perform on other

applications, shows that there is merit to this approach. In addition, the potentia for

138

savings in not rendering invisible parts is a maor benefit for those assemblies that have
numerous interior parts.

One area that may be of concern is the processing time required for the
algorithms. The AABB determination required 37 seconds to complete, which is
somewhat long considering that the time saved for the simulation is 56 seconds.
However, this is a little misleading, as the entire 37 seconds is not needed for further
use of the models. First, thisis the pre-processing time, and thus only needs to be done
once for the same configuration of the model. If the same configuration of the SCAMP
is used several timesin different simulations, or the same simulation is viewed multiple
times, the savings increases dramatically. In addition, since the AABB has already been
found for each part, if the configuration of the model changes, it is only necessary to
calculate the AABBs for the parts that were changed. Thus, the AABB determination
will not require the entire 37 seconds for further iterations of the SCAMP. The whole
process is even benefited more by the fact that the visibility determination after the
AABBs are caculated is extremely fast, using only 0.041 seconds to calculate the
visibility of al 490 parts. As such, a change in configuration will still have nearly
instantaneous results after the AABBs for the changed parts are calculated. Thus, using
the algorithms on models that change frequently is beneficia after using the algorithms
on the first version of the models, as the visibility of subsequent versions can be

determined quickly.

6.8. Summary

This section presented an application of the new algorithms. First, the

determination of the AABBs was verified. Then, we validated the determination of the

139

relationships between the AABBs. Next, the cross-section determination agorithm was
verified. Finally, the visibility determination of the parts in the assembly and the

performance increase that results from the use of the new algorithm wasiillustrated.

140

7. Conclusion

It has been demonstrated that the al gorithms developed in this thesis can be used

to determine the visibility of partsin an assembly. The significant contributions of the

research are asfollows:

1.

The most significant contribution is the use of the cross-section edge trace. It makes
the determination of visibility much faster than ray tracing, which is a standard way
of determining visibility of parts without rendering all of them.

Considerable savings can be made in processor time during the display of large
assemblies, depending on the geometry of the assembly.

The pre-processing nature of the algorithms means that they only need to be done
once for the same configuration of the model, no matter how many timesiit is used
in various simulations or how many times the model is viewed. This can result in
considerable savings in the processing time needed to render the parts.

For subsequent small changes to the models, only the AABBs for the parts that have
been changed need to be found. Thus, the time to process these iterations is even

shorter than theinitial run of the algorithms.

Straightforward Extensionsto the algorithms

1.

2.

The visibility determination agorithms, after the AABBs have been found, are
extremely fast. As such, if the modeling program aready incorporates AABB
determination, or if it can be incorporated easily into the program, then the visibility
algorithms can be performed with virtually no performance degradation.

The current visibility detection scheme can be modified easily to allow for more

accuracy as well asto work on the visibility of surfaces instead of parts.

141

3. Because AABBs are used in these algorithms, one can also make use of them for

other purposes, such as visibility determination based on different viewing angles.

142

8. References

Armstrong, C.G., McKeag, R. M., Ou, H., and Price, M. A. (2000). Geometric
processing for analysis. IEEE Proc. Geometric Modeling and Processing: Theory and
Applications, pages 45-56.

Bittner, J., Havran, V., and Slavik, P. (1998). Hierarchical visibility culling with
occlusion trees. Proc. Computer Graphics International, pages 207-219.

Bormann, K. (2001). Occlusion culling in large virtua environments. Presence:
Teleoperators & Virtual Environments, 10(5): 477-494

Brodsky, D. and Watson, B. (2000). Mode simplification for interactive applications.
Proc. IEEE Virtual Reality, page 286.

Durand, F., Drettakis, G., Thollot, J., and Puech, C. (2000). Conservative visibility
preprocessing using extended projections. Proc. Siggraph, pages 239-248.

Hoff 111, K. E. (1997). Faster 3D game graphics by not drawing what is not seen.
ACM Crossroads, 3(4).

Hudson, T., Manocha, D., Cohen, J.,, Lin, M., Hoff, K., and Zhang, H. (1997).
Accelerated occlusion culling using shadow volumes. Proc. of ACM Symposium on
Computational Geometry.

Huerta, J., Chover, M., Ribelles, J., and Quirds, R. (1998). Multiresolution modeling
using binary space partitioning trees. Computer Networks and ISDN Systems, 30(20-
21): 1941-1950.

IGES/PDES Organization. (1988). IGES 4.0 Specification.

lones, A., Zhukov, S., and Krupkin, A. (1998). On optimality of OBBs for visibility
tests for frustum culling, ray shooting and collision detection. Proc. Computer Graphics
International, pages 256-63.

Kitamura, Y. (1998). A Real-Time Algorithm for Accurate Collision Detection for
Deformable Polyhedral Objects. Presence: Teleoperators & Virtual Environments, 7(1):
36-52.

Krus, M., Bourdot, P., Guisnd, F., Thibault, G. (1997). Level of Detaill & Polygond
Simplification. ACM Crossroads, 3(4).

Kumar, S., Manocha, D., Garrett, W., and Lin, M. (1996). Hierarchical backface
computation. Proc. of 7th Eurographics Workshop on Rendering.

143

Levi, O., Zohar, R., Barad, H., and Klimovitski, A. (1999). A compact method for
backface culling. Gamasutra, 3(31). http://www.gamasutra.com.

Martin, R. R. and Stephenson, P. C. (1998). Putting objects into boxes. Computer
Aided Design, 20(9): 506-514.

Moller, T. and Haines, E. (1999). Occlusion culling agorithms. Gamasutra
http://www.gamasutra.com.

Sanna, A. and Montuschi, P. (1995). Spatia bounding of complex CSG objects. IEEE
Proc. Computers and Digital Techniques. 142(6): 431-439.

Shaikh,S., Magrab, E., Hagner, J., and Ou, J. (2000). Simulation Simplification Tool.
Final Report NAS3-00078. Technology Promotion International, Ltd, College Park,
MD. Report # NASA SBIR 99.1.1. June 2000.

Suri. S., Hubbard. P. M., and Hughes. J. F. (1999). Anayzing bounding boxes for
object intersection. ACM Transactions on Graphics, 18(3): 257-277.

Teller, S. and Séquin, C. (1991). Visihility preprocessing for interactive wakthroughs.
Computer Graphics, 25(4): 61-69.

Yu, Y., Wu, M., and Zhou, J. (1996). An octree agorithm for dynamic interference
detection using space partitioning. Proc. Of the Design Engineering Technical
Conference: Design Automation Conference.

Zachmann, G. (1997). Real-time and exact collision detection for interactive virtual
prototyping. Proc. Of Design Engineering Technical Conferences. Computers in
Engineering.

Zhang, H. and Hoff, K. (1997). Fast backface culling using normal masks. ACM
Symposium on Interactive 3D Graphics.

Zhang, H., Manocha, D., Hudson, T., and Hoff, K. (1997). Visibility culling using
hierarchical occlusion maps. Proc. of Siggraph.

Zhou, Y. and Suri, S. (1999). Anaysis of a bounding box heuristic for object
intersection. Journal of the ACM, 46(6): 833-857.

144

