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  The collection and characterization of chemical and biological aerosols

is essential to many areas of particle research such as toxicological

studies, pollutant sampling, and biohazard assessment.  This work

presents the simulation of a low cutpoint, high volume aerosol sampling

device known as the “virtual impactor”.  A steady state, three dimensional

RANS type calculation is done using the FLUENTTM computational fluid

dynamics code to predict the turbulent flow field inside the device.

Particle collection efficiency and wall losses are then obtained by solving

the particle equation of motion governed by drag for mono-dispersed

samples of spherical particles in the 0.1-0.4 m diameter range.



  Predictions of the mean fluid velocity field with the incompressible

Reynolds stress model and the compressible k-epsilon turbulence model

are relied upon for conducting particle tracking calculations.  FORTRAN

90 computer code is developed to solve the particle equation of motion

using an implicit second order accurate time integration scheme.  In

addition, a multi-variate, scattered point interpolation method is

implemented to obtain the fluid velocity at a position away from an

Eulerian mesh point.  

  It is found that “adaptive” drag law models are necessary to correctly

account for slip and compressibility.  The results indicate the trends

observed in the experiments, and a 50% cutpoint diameter between 0.250

and 0.275 m.  Recommendations for improved modeling in future work

are made.

      



FLUID AND PARTICLE DYNAMICS IN AN AEROSOL VIRTUAL IMPACTOR

by 

Marwan L. Charrouf

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of 
Master of Science

2004

Advisory Committee:

   Professor Richard V. Calabrese, Chair
   Professor Sheryl H. Ehrman
   Professor Panagiotis Dimitrakopoulos
   Professor James Gentry

            Dr. M. B. (Arun) Ranade





Acknowledgments

  My deepest gratitude goes to my thesis adviser Dr. Richard V.

Calabrese, who warmly welcomed me into his research group, and guided

me in the teachings of fluid mechanics and turbulence.  His

encouragement to switch to Linux, and his generosity in providing top of

the line computers to handle the multitude of computationally intensive

applications performed for this research is greatly appreciated.  I have to

thank Dr. Arun Ranade for getting me started on the virtual impactor

literature, and for involving me in the ongoing experimental side of this

project.

  I would also like to thank my colleague Karl Kevala for his support

during my early days of learning FLUENTTM, and for the valuable

conversations we had about simulations and fluid flow in general.   

  Much appreciation is due to the members of my advisory committee;

thank you for taking the time to critique my work, and for your patience.

  Last but not least, my parents who are the reason I am what I am today.

I am eternally indebted to your endless kindness and noble sacrifices.

Thank you for understanding my quest for knowledge, and for holding

our family together in times of hardship.

ii



Table of Contents

Acknowledgments ..........................................................................     ii

List of Tables ..................................................................................   vii

List of Figures .................................................................................  viii

List of Symbols ................................................................................ xvi

1. Introduction

1.1 Problem Statement ............................................................     1

1.2 Overview of Virtual Impactors ............................................     3

1.3 Contributions ....................................................................     5

1.4 Organization of the Thesis ................................................     6

2. Background and Related Work

2.1 Experimental Investigation of Virtual Impactors ..................    8

2.2 Theoretical and Numerical Studies of Virtual Impactors .......  12

2.3 Approaches to Two Phase Turbulent Flows .........................  14

3. Simulation Components

3.1 Compressibility ..................................................................  19

3.2 Device Geometry ................................................................  19

3.3 Computational Meshes ......................................................   21

3.4 Boundary and Operating Conditions ...................................  24

3.5 Discrete Phase Properties ...................................................  26

4. Governing Equations

4.1 Fluid Flow .........................................................................   27

iii



4.1.1 Reynolds Averaged Navier Stokes Equations ..........   29

4.1.2 The Ҡ-∈ Closure ...................................................   30

4.1.3 The RSM Closure ....................................................   34

4.1.4 The Numerical Scheme ..........................................   36

4.1.4a Discretization ............................................    37

4.1.4b Wall Functions ...........................................   39

4.2 Particulate Flow .................................................................   42

4.2.1 Particle Equation of Motion ....................................   42

4.2.2 The Drag Coefficient .............................................   44

4.2.3 Random Walk Model: Stochastic Tracking ..............   51

4.2.4 Numerical Solution of the Particle Equation ............   54

4.2.4a FLUENT'S Implementation ...........................   54

4.2.4b AeroTrack: The Developed Code .................   55

   4.2.4b.1 Trapezoidal Scheme .............................   55

   4.2.4b.2 Multi-Variate Scattered Interpolation ....   57

   4.2.4b.2-i Motivation ........................................... 57

   4.2.4b.2-ii Theory ............................................... 59

   4.2.4b.2-iii Proposed Algorithm ........................... 63

   4.2.4b.3 Adaptive Drag Coefficient ....................... 70

   4.2.4b.4 AeroTrack Task Flow .............................. 70

5. Discussion of Numerical Approaches

5.1 Convergence of the Fluid Flow Solution ..............................   73

iv



5.2 Accuracy of the Particle Tracking Algorithms .....................   82

5.2.1 Time Stepping .......................................................   83

5.2.2 Number of Particles ...............................................   87

5.2.3 Interpolation Tests ................................................   92

5.2.3a Bi-Variate Functions ...................................   92

5.2.3b Tri-Variate Functions ................................. 102

5.2.3c Prescribed Velocity Field ............................. 104

5.2.3d Virtual Impactor Simulation Data ................ 106

5.3 Summary ........................................................................... 110

6. Simulation Results

6.1 Properties of the Fluid Flow Solution .................................. 111

6.1.1 Ҡ-∊ vs. RSM .......................................................... 112

6.1.2 Incompressible vs. Compressible Flow ................... 124

6.1.3 Coarse vs. Fine Grid .............................................. 131

6.1.4 1st vs. 2nd Order Discretization ..............................  136

6.1.5 Motion of Fluid Particles ........................................ 145

6.1.6 Vorticity ................................................................ 151

6.1.7 Summary .............................................................. 155

6.2 The Discrete Phase Results ................................................ 156

6.2.1 Incompressible Flow Field ..................................... 157

6.2.2 Compressible Flow Field ........................................ 168

6.2.3 The Drag Coefficient Revisited ............................... 180

v



   6.2.3a More Realistic Models for the Drag Coefficient .. 185

6.2.4 Incompressible vs. Compressible Flow ................... 189

6.2.5 Comparison with Experiment ................................. 198

6.2.6 Summary .............................................................. 204

7. Conclusions and Recommendations 

7.1 Summary ........................................................................... 207

7.2 Conclusions ...................................................................... 208

7.3 Recommendations ............................................................. 210

A. Solution of the Particle ODE .......................................................... 212

B. Solution of the Least Squares in 2D ............................................... 215

C. Solution of the Least Squares in 3D ............................................... 217

References ....................................................................................... 221

vi



List of Tables

3.1 Computational mesh statistics      22

4.1 Classification of flow regimes from [1]      45

5.1 Listing of virtual impactor simulations      72

5.2 Mean velocity difference between “converged” and 
      “pre-converged” solutions      82

5.3 Mean and standard deviation of collection efficiency and wall 
      losses for 0.1 m particles using three different sample sizes, 
      simulation 1 FLUENTTM stochastic tracking with 
      Stokes-Cunningham      91

5.4 Interpolation errors for bivariate test functions                              99

5.5 Error Norms for modified Shepard Algorithms on 
      Franke's node set. *Reported in [47]     100

5.6 Interpolation errors for trivariate test functions                            103

5.7 Absolute interpolation errors for numerical data, 
      185 random cells, simulation 4                                                    107

5.8 Relative interpolation errors for numerical data, 
      185 random cells, simulation 4                                                    108

5.9 RMS of relative interpolation error for different Renka 
      parameters, 185 random cells, simulation 4                                 109

6.1 Summary of drag coefficient models                                             157

vii



List of Figures

1.1 Overview of a virtual impactor        3

1.2 Actual and ideal collection efficiency for a virtual impactor              5

2.1 Semi-empirical dependence of St50
1/2 on Qm/QT from [15]                10

2.2 Influential nozzle design parameters                                               11

2.3 Map of regimes of interaction between particles and 
       turbulence from [10]                                                                      16

3.1 Dimensions of simulated virtual impactor (XY plane)                       20

3.2 3D coarse mesh                                                                              22

3.3 Nozzle cross-section (coarse mesh =W/50)                                  23

3.4 Nozzle cross-section (finer mesh =W/100)                                   24

4.1 Drag coefficients for a 0.1 m particle, Stokes = 24/Rep, 
      Oseen =  eqn. 4.2.12, Stokes-Cunningham = eqn. 4.2.6,
     Compressible = eqn. 4.2.9 (insert shows entire y-axis scale)           50

4.2 Drag coefficients for a 0.35 m particle, Stokes = 24/Rep, 
      Oseen = eqn. 4.2.12, Stokes-Cunningham = eqn. 4.2.6,
      Compressible = eqn. 4.2.9 (insert shows entire y-axis scale)          51

4.3 Algorithm for computing dynamic radii                  64

4.4 2x2 cell structure with 7 data nodes & a query point P                    68

4.5 Cell grid on top of computational mesh points                                69

4.6 Flowchart of AeroTrack execution       71

5.1 Convergence of simulation 1                                                          74

5.2 Schematic of “Virtual Impaction Region”       76

5.3 Contours of the norm of velocity difference between the final
       iteration sets (simulation 1)                76

viii



5.4 Convergence of simulation 2                77

5.5 Contours of the norm of velocity difference between the final
       iteration sets (simulation 2)                77

5.6 Convergence of simulation 3                78

5.7 Contours of the norm of velocity difference between the final
       iteration sets (simulation 3)                         78

5.8 Convergence of simulation 4                                                          79

5.9 Contours of the norm of velocity difference between the final
       iteration sets (simulation 4)                                                          80

5.10 Convergence of simulation 5                                                        81

5.11 Contours of the norm of velocity difference between the final
         iteration sets (simulation 5)                                                        81

5.12 Particle paths using L=1.0e-05 (red), 1.0e-06 (blue), 
        and 1.0e-07 m (magenta) {simulation 4}                                        84

5.13 Particle paths using L=1.0e-05 (red), 1.0e-06 (blue), 
        and 1.0e-07 m (magenta) – zoom level 1 - {simulation 4}              85

5.14 Particle paths using L=1.0e-05 (red), 1.0e-06 (blue), 
        and 1.0e-07 m (magenta) – zoom level 2 - {simulation 4}              86

5.15 Particle approaching a wall using L=1.0e-05 (red), 
        1.0e-06 (blue), and 1.0e-07 m (magenta) – zoom level 1 - 
        {simulation 4}       87

5.16 Efficiency and wall losses curve for two sample sizes, 
        simulation 1 FLUENTTM mean tracking with Stokes-Cunningham  89

5.17 Collection efficiency of 0.1 m particles for three different 
        sample sizes, simulation 1 FLUENTTM stochastic tracking with 
        Stokes-Cunningham drag law       90

5.18 Wall losses for 0.1 m particles for three different sample 
        sizes, simulation 1 FLUENTTM stochastic tracking with Stokes-
         Cunningham  drag law       87

ix



5.19 33x33 uniform grid (blue) with a set of 100 random 
         nodes (red)       94

5.20 Bivariate test function F1 (Equation 5.3)                           95

5.21 Bivariate test function F2 (Equation 5.4)       96

5.22 Bivariate test function F3 (Equation 5.5)       97

5.23 Bivariate test function F8 (Equation 5.6)       98

5.24 33x33 uniform grid (blue) with Franke's 100 
        nodes (red)      101

5.25 Interpolation error versus resolution for the interpolation of
         trivariate functions F1 (black), F2 (red), & F3 (blue).  Renka 
         (solid lines), linear (dashed lines)      103

5.26 Interpolation error versus resolution for the interpolation of
         sinusoidal velocity fields using linear, Renka, cubic, 
         & spline interpolation               105

5.27 Random set of interpolation nodes in a virtual impactor grid       109

6.1 Midplane contours of velocity magnitude (m/s), simulation 1        113

6.2 Midplane contours of velocity magnitude (m/s), simulation 2        114

6.3 Schematic of throat cross sections at y=0, y=-0.5W, y=-W, 
      y=-1.5W, and y=-2W (from top to bottom)     115

6.4 Dimensionless streamwise velocity profile in throat, 
simulation 1 (black), simulation (red)              115

6.5 Mean velocity vectors (m/s), flow separation, simulation 1           117

6.6 Mean velocity vectors (m/s), flow separation, simulation 2           117

6.7 Streamwise velocity profile at nozzle and beyond, 
     y=-W, y=-1.5W, y=-2W, simulation no. 1 (solid lines), 
     simulation no. 2 (dashed lines)     118

6.8 Schematic of expansion nozzle cross sections at x = 0.75W,  
      x = 1.125W, and x = 1.5W (from left to right)                              119

x



6.9 Cross-stream velocity profile of exiting fluid, simulation 1            120

6.10 Cross-stream velocity profile of exiting fluid, simulation 2         120

6.11 Contours of the norm of velocity difference between the 
         predictions of simulations 1 and 2, scaled by Uavg                      122

6.12 Absolute pressure as a function of streamwise distance from 
         nozzle at x=0, simulation 2 (insert shows pre-nozzle data)       123

6.13 Absolute pressure as a function of cross-stream distance, 
         midpoint of virtual impaction zone, simulation 2      124

6.14 Midplane contours of velocity magnitude (m/s), simulation 3      126

6.15 Mean velocity vectors (m/s), flow separation, simulation  3         127

6.16 Cross-stream velocity profile of exiting fluid, simulation 3         127

6.17 Streamwise velocity profile at nozzle and beyond, 
     y=-W, y=-1.5W, y=-2W, simulation no. 1 (solid lines), 
     simulation no. 3 (dashed lines)                                                  128

6.18 Dimensionless streamwise velocity profile in throat, 
         simulation 1 (black), simulation 3 (red)                                      129

6.19 Contours of the norm of velocity difference between the 
         predictions of simulations 1 and 3, scaled by Uavg                      130

6.20 Contours of absolute pressure difference between the 
         predictions of simulations 1 and 3, 
         scaled by Pabs of simulation 3                                                     130

6.21 Dimensionless streamwise velocity profile in throat, 
         simulation 3 (red), simulation 5 (blue)                                       132

6.22 Streamwise velocity profile at nozzle and beyond, 
      y=-W, y=-1.5W, y=-2W, simulation 3 (solid lines), 
      simulation 5 (dashed lines)                                                       132

6.23 Cross-stream velocity profile of exiting fluid, simulation 5         134

6.24 Absolute pressure as a function of streamwise distance from 
         nozzle at x=0, simulation 5 (insert shows pre-nozzle data)       135

xi



6.25 Absolute pressure as a function of cross-stream distance, 
         midpoint of virtual impaction zone, simulation 5                       135

6.26 Midplane contours of turbulent kinetic energy (m2/s2), 
        simulation 5                                                                               138

6.27 Midplane contours of absolute pressure (Pa), simulation 5          139

6.28 Midplane contours of temperature (oK), simulation 5                   140

6.29 Temperature as a function of streamwise distance from 
         nozzle at x=0, simulation 5                                 141

6.30 Temperature as a function of cross-stream distance, 
         midpoint of virtual impaction zone, simulation 5                       141

6.31 Contours of the norm of velocity difference between the 
        predictions of simulations 4 and 5                                              143

6.32 Contours of absolute pressure difference between the 
        predictions of simulations 4 and 5, 
        scaled by Pabs of simulation 4                                                      144

6.33 Contours of temperature difference between the 
        predictions of simulations 4 and 5, 
        scaled by T of simulation 4                                                         144

6.34 Contours of turbulent kinetic energy difference between the
        predictions of simulations 4 and 5, 
        scaled by K of simulation 4                                                         145

6.35 Fluid pathlines in simulation 1                                                    147

6.36 Fluid pathlines in simulation 2                                                    148

6.37 Fluid pathlines in simulation 5                                                    149

6.38 Normalized residence time for nozzle fluid particles                   150

6.39 Contours of vorticity magnitude, midplane, simulation 2             153

6.40 Contours of vorticity magnitude, midplane, simulation 5             154

xii



6.41 Collection efficiency (solid lines), and wall loss (dashed lines),
         drag law 2 (red), drag law 1 (black) – simulation 1 – mean fluid

velocity tracking              158

6.42 Collection efficiency (solid lines), and wall loss (dashed lines),
         drag law 2 (blue), drag law 1 (black) – simulation 2 - mean fluid

velocity tracking     159

6.43 Collection efficiency (solid lines), and wall loss (dashed lines),
         drag law 2, simulation 1 (red), simulation 2 (blue) - mean fluid     
         velocity tracking                        160

6.44 Collection efficiency (solid lines), and wall loss (dashed lines),
         drag law 2, mean fluid velocity tracking (red), stochastic  
         tracking (green), simulation 1 - Ҡ-               163

6.45 Collection efficiency (solid lines), and wall loss (dashed lines),
         drag law 2, mean fluid velocity tracking (blue), stochastic  

tracking (green), simulation 2 - RSM                                          163

6.46  Midplane contours of turbulent kinetic energy (m2/s2), 
        simulation 1 – incompressible Ҡ-          164

6.47  Midplane contours of turbulent kinetic energy (m2/s2), 
        simulation 2  – incompressible RSM         165

6.48 Contours of the turbulent kinetic energy difference between the
         predictions of simulations 1 and 2, scaled by ½ U2

avg                 168

6.49 Collection efficiency (solid lines), and wall loss (dashed lines),
         drag law 2, AeroTrack (red), FLUENT (black) – simulation 4    169

6.50 Collection efficiency (solid lines), and wall loss(dashed lines),
         drag law 2, AeroTrack (red), FLUENT (black) – simulation 5        170

6.51 Collection efficiency (solid lines), and wall loss (dashed lines),
         drag law 2, AeroTrack, simulation 4 (red), simulation 5 (blue)    171

6.52 0.1 m particle path, drag law 2, AeroTrack (blue),
         FLUENT (red), simulation 5                                                         172

6.53 0.25 m particle path, drag law 2, AeroTrack (blue),
         FLUENT (red), simulation 5                                                         173

xiii



6.54 0.4 m particle path, drag law 2, AeroTrack (blue),
         FLUENT (red), simulation5                                                          174

6.55 0.1 m particle cross-stream velocity, AeroTrack (blue), 
FLUENT (red), path shown partially in Figure 6.52                      175

6.56 0.1 m particle streamwise velocity, AeroTrack (blue), 
FLUENT (red), path shown partially in Figure 6.52                      176

6.57 0.1 m particle spanwise velocity, AeroTrack (blue), 
FLUENT (red), path shown partially in Figure 6.52                      176

6.58 0.1 m particle time steps, AeroTrack (blue), FLUENT (red)
  path shown partially in Figure 6.52      177

6.59 0.4 m particle time steps, AeroTrack (blue), FLUENT (red)
 path shown partially in Figure 6.54     178

6.60 Dimensionless slip velocity as a function of time, 0.1 m          
particle, drag law 2 – simulation 4     182

6.61 Dimensionless slip velocity as a function of time, 0.25 m        
particle, drag law 2 – simulation 4     182

6.62 Dimensionless slip velocity as a function of time, 0.4 m      
 particle, drag law 2 – simulation 4              183

6.63 Dimensionless particle descent as a function of time, 0.1, 
         0.25, and 0.4 m particle, respectively. 

drag law 2 – simulation 4     183

6.64 Fluid velocity (black) and 0.25 m particle velocity (red),  
drag law 2 – simulation 4               184

6.65 Fluid velocity (black) and 0.4 m particle velocity (red),
drag law 2 – simulation 4                   184

6.66 Collection efficiency (solid lines), and wall loss (dashed lines),
        drag law 2 (red), drag law 3 (blue), drag law 4 (green) – 
        simulation 4                                          186

xiv



6.67 Collection efficiency (solid lines), and wall loss (dashed lines),
        drag law 4, simulation 4 (red), simulation 5 (blue)     187

6.68 Collection efficiency (solid lines), and wall loss (dashed lines),
        drag law 3, simulation 4 (orange), simulation 5 (green)              187

6.69 Collection efficiency (solid lines), and wall loss (dashed lines),
        drag law 4 (red), drag law 3 (blue), simulation 5             189

6.70 0.1 m particle path, simulation 2 (red), simulation 5 (green),     
 drag law 3     190

6.71 0.25 m particle path, simulation 2 (red), simulation 5 (green),   
drag law 3     191

6.72 0.3 m particle path, simulation 2 (red), simulation 5 (green),     
 drag law 3     192

6.73 Collection efficiency (solid lines), and wall loss (dashed lines),
        drag law 3, simulation 2 (blue), simulation 5 (red)                  194

6.74 Normalized residence time for discrete nozzle particles, 
        drag law 3, simulation 2 (blue), simulation 5 (red)     195

6.75 0.4 m particle paths from nozzle, simulation 2, drag law 3       197

6.76 0.4 m particle paths from nozzle, simulation 5, drag law 3       197

6.77 Collection efficiency (solid line), and wall losses (dashed line) vs.
        St50

1/2, drag law 4, simulation 5                                                  199

6.78 Collection efficiency (solid lines), and wall losses (dashed lines),
          Experiment [3] (black), drag law 4 (red),  drag law 3 (blue), 
          simulation 5                                                                             201

6.79 Effect of Re on the collection efficiency of a slit virtual 
          impactor from Ding and Koutrakis [49]            202

6.80 Effect of Qm/QT (≡r) on the particle losses in a slit virtual
          impactor at QT = 50 LPM from Ding and Koutrakis [49]     202

xv



List of Symbols

  Re: Flow Reynolds number at accelerating nozzle

  Ui: Instantaneous fluid velocity component in the i-th direction

Ui : Reynolds-averaged fluid velocity component in the i-th direction

  u: Fluctuating fluid velocity component in the i-th direction

  Up: Particle velocity

  Dh: Hydraulic diameter

  : Kinematic viscosity of fluid

  W: Width of accelerating nozzle

  W1: Width of collection nozzle

  S: Distance from accelerating nozzle to collection nozzle

  T: Length of throat.  In equations, T is temperature

  : Inclination angle of cone inlet 

  Qm: Minor flow rate at STP

  QT: Total flow rate at STP

  p: Particle relaxation time

  p: Particle density

  dp: Particle diameter

  dp 50: Particle diameter at 50% collection efficiency

  Cc: Cunningham slip correction factor

  : Molecular viscosity of fluid 

  : Density of fluid

xvi



  St: Stokes number

  St1/2
50 : Stokes number at 50% collection efficiency

  e: Fluid eddy turnover time

  Φp: Volume fraction of particles

  Ҡ: Turbulent kinetic energy

  : Energy dissipation rate 

  L: Length of device in the spanwise direction

  P: Instantaneous pressure

P : Reynolds-averaged pressure

  p: Fluctuating pressure

  : Viscous stress tensor

  S: Rate of strain tensor

  : Unit tensor

  E: Sensible enthalpy

  keff: Effective thermal conductivity

  eff: Effective stress tensor

  YM: Turbulent Mach number

  vsound: Speed of sound at STP
 
  t: Turbulent viscosity

  : Transported scalar quantity

  Rep: Relative or particle Reynolds number

  Mar: Relative Mach number

xvii



∣U− Up∣: Slip Velocity

  CD: Drag Coefficient

  g: Gravitational acceleration
  
  : Mean free path 3

  Kn: Knudsen number

  : Normally distributed random number
 
  (p,q): Euclidean distance squared between points p and q

  Wk: Inverse distance weight function  

k : Inverse distance weight function  
  
  Rw, Rq: Radii of influence in scattered interpolation

  Nw, Nq, Nb, N: Number of nodes in scattered interpolation

  Qk: Quadratic polynomial

  R: Residual of interpolation

xviii



Chapter 1

Introduction

1.1 Problem Statement  

  Our goal is to employ Computational Fluid Dynamics (CFD) simulations

to design efficient samplers for collecting and concentrating biological

aerosols.  The concept of using computers to design and study such

systems is appealing because numerical solutions serve as a reliable

substitute for often fastidious and expensive experiments, not to

mention the fact that they offer the ability to subject those systems to a

wide range of conditions normally unattainable in the laboratory.  The

problem lends itself to the broad area of multiphase flow which remains

a challenging problem for scientists and engineers despite the notable

achievements in understanding and characterizing single phase flows [1].

Particulate flows are of interest due to their ample abundance in nature,

their appearance in several industrial applications and human health

activities.  This thesis focuses on the subcategory of gas-solid flows as

encountered in an aerosol “virtual impactor” sampling device (Figure 1.1).

A virtual impactor is used to separate particles from the atmosphere

based on their inertia or aerodynamic size. The device also serves as a

concentrator for particles with initially low concentrations. The collection

of particles in high concentrations, and with relatively the same physical
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properties aids real time measurement of aerosol composition in areas

such as toxicological studies, and biological threat assessment

situations.  The need for mobility and versatility in such situations

prompted the integration of virtual impactors into “Personal Aerosol

Samplers” [2], and consequently renewed interest in this classical

engineering problem.

  The underlying framework for designing efficient aerosol samplers

encompasses a multitude of problems concurrently related to physics

and engineering.  The prediction of the carrier fluid flow, especially in the

presence of turbulence, introduces difficulties that are still being studied

and analyzed within the fluid mechanics community.  Furthermore, the

solution of the particle equation of motion and its correct representation

of the dominant physical phenomena remains an active area of research

for many scientists.  Lastly, the computational aspects of modeling such

an intricate dynamic system in an accurate and efficient way also

manifest some challenges.  
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Figure 1.1: Overview of a virtual impactor

1.2 Overview of Virtual Impactors

  The schematic shown in Figure 1.1 is a two dimensional cross-section

of the fully three dimensional virtual impactor under study. The top inlet

cone creates a passage for the particle-laden air to a rectangularly

shaped throat section which in turn converges the flow into the

accelerating nozzle.  The receiving end of the impactor constitutes the

collection nozzle which is slightly larger in width than the accelerating

3
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nozzle. Larger particles cross the fluid streamlines into the collection

probe, while smaller particles move with the majority of fluid as it is

forced to exit into the side passages (vacuumed). Typically, only a small

fraction (10% - 20%) of the inlet flow is allowed to enter into the

collection region normally referred to as the minor flow, whereas the side

effluent is referred to as the major flow.  In reality, the particles exiting

the minor flow are collected on a filter, or in a liquid solution for

experimental evaluation [3], or are passed through a cyclone for further

separation.  Virtual Impactors became a sound replacement for solid

surface inertial impactors due to several advantages [4]; they eliminate

particle bounce and re-entrainment, reduce interstage wall losses, and

prevent large particle breakup due to impaction. Additionally, they allow

the collected aerosol to remain suspended rather than deposited with

more control over its final concentration [5].  The performance of a virtual

impactor is characterized by a collection efficiency and wall losses curve.

The efficiency is defined as the fraction of particles of a given size that

end up in the minor flow.  For an ideal impactor, this is a sharp step

function, however due to the inevitable contamination of the collected

aerosol with the relatively smaller particles, the curve takes on an “S-

shape” (Figure 1.2) [6]. The efficiency curve reveals the 50% cutpoint

diameter indicating that half the particles with the cutpoint diameter is

collected while the other half is forsaken to the major flow.  Wall losses

4



are generally undesirable in virtual impactors, and parametric studies

reported in the literature have been done to minimize them. The majority

of the losses are observed on the inner surfaces of the collection nozzle. 

Figure 1.2: Actual and ideal collection efficiency for a virtual impactor

1.3 Contributions

  This thesis makes the following key contributions:

➢ The simulation of a contentious virtual impactor at high Reynolds

number conditions.

➢ Investigation of the differences in the solutions of the widely used

5



isotropic Ҡ-∊ turbulence model, and the more robust non-isotropic

Reynolds stress model. 

➢ The study of the effect of turbulent particle dispersion on the

impactor's efficiency and wall losses curve.

➢ Development of AeroTrack; an efficient and versatile particle tracking

computer program.

➢ Application of a mathematically commendable multi-variate

interpolation scheme, and the demonstration of its superior accuracy

over commonplace methods.

➢ Analysis of the impact of the drag coefficient formulation on the

particle motion.

➢ Demonstration of the potential of CFD/particle tracking simulations to

design aerosol samplers, and optimize their performance. 

1.4 Organization of the Thesis

  Chapter 2 provides background on virtual impactor studies, both

experimental and numerical.  It helps set the stage for the important

features of a well designed virtual impactor, and also shows the lack of

initiative when it comes to modeling such a system under turbulence

conditions.  Chapter 3 describes the simulation components put together

for the conduction of this research.  Chapter 4 presents the fundamental

theoretical equations and models used to arrive at a fluid flow solution.
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Moreover, the numerical schemes employed are discussed, and a detailed

portrayal of the algorithms developed for the particle tracking code is

adduced.  Chapter 5 deals with the numerical analysis of the

computational methods.  Chapter 6 discusses the simulation results

obtained, and depicts the evaluation of the device performance.  Finally,

Chapter 7 concludes with a summary of the work presented and outlines

future work.  
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Chapter 2

Background and Related Work

2.1 Experimental Investigation of Virtual Impactors

  The vitality of virtual impactors as effective means for sampling

aerosols had been recognized for quite some time.  For this reason, many

experimental studies have been dedicated to evaluating and optimizing

their performance.  A brief review of the main findings and the optimal

set of parameters is presented here.  Chen and Yeh [14] appraise a well-

designed virtual impactor as one with a sharp separation curve, little wall

losses, and minimal fine particle contamination.  To achieve such

objectives they conducted experiments with varying geometrical

dimensions and flow parameters such as the nozzle Reynolds number,

Stokes number, and the minor-to-total flow ratio, Qm/QT.  The Reynolds

number for a rectangular or slit nozzle is defined as:

(2.1.1)

Re=
UDh


=

U2W 


where U is the average fluid velocity at the nozzle, Dh is the hydraulic

diameter,  is the kinematic viscosity of the fluid, and W is the slit width.

The collection efficiency of impactors is conventionally plotted as a

function of the Stokes number, which is defined as the ratio of the
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particle relaxation time, p=
pdp

2Cc

18
to the fluid time scale at the nozzle:

(2.1.2)

St=
p

1/2W
U 

=
pdp

2CcU

9W

where p is the particle density, dp is the particle diameter, Cc is the

Cunningham slip correction factor, and  is the fluid viscosity.  It can be

seen that the square root of the Stokes number acts as a dimensionless

particle diameter, thus to achieve low 50% cutpoints, high velocities and

extremely narrow nozzles are compulsory [3].  Chen et al. [15] conclude

that for a fixed set of geometrical and dynamical configurations,

variations in the Reynolds number between 1000 and 8000 do not

gravely influence the 50% cut-off Stokes number ( St50 ≈ 0.67, for

Qm/QT ~ 11%).  The minor-to-total flow ratio, on the other hand, has

severe consequences on the cutpoint as well as on the wall losses.  As

Qm/QT is increased St50 is decreased.  This can be explained by the fact

that higher ratios allow more small particles to pass through to the

collection nozzle.  Chen et al., arrived at a least-squares polynomial fit

over a range of experimental data using two prototype impactors (Figure

2.1).  The effect of increasing Qm/QT  on the wall losses is also favorable

in a sense that they are decreased.  A typical wall losses curve exhibits a

peak around the 50% cutpoint, and this peak is usually reduced for
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higher Reynolds numbers [16].

Figure 2.1: Semi-empirical dependence of St50
1/2 on Qm/QT from [15]   

  Geometric considerations whose impact on the performance of the

virtual impactor was studied are the throat length (T), the inlet angle of

inclination (), the dimensionless nozzle to probe distance (S/W) and the

dimensionless probe diameter (W1/W).  The value of inlet inclination

angle remained fixed at 30o in all the experiments conducted by Chen et

al., who report slight variations in the 50% cutpoint when their data is

compared to another study in the literature with a value of 45o.  This can
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Figure 2.2: Influential nozzle design parameters

be attributed to a more focused jet where the particles are driven closer

towards the center of the separation zone.  The throat length effect was

investigated with a virtual impactor with no throat which resulted in a

broader slope for the efficiency curve.  Since steep slopes are normally

desirable, impactors with finite throat lengths were also tested, however

increases in the ratio T/W beyond unity did not result in any

improvements.  Much of the pioneering work on virtual impactors was

done with a ratio S/W close to unity.  In the same study [15], experiments

with three different ratios (S/W = 0.53, 1.03, 1.59) revealed similar

characteristics for the efficiency curve with a slim advantage to the

smallest ratio.  Similarly, the ratio W1/W was varied between 1 and 1.5,
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and the measured separation efficiency is identical for small values of the

Stokes number, but develops a slightly steeper slope for the unity ratio at

high Stokes numbers.

  The challenge of designing a virtual impactor suitable for sampling

particles generated by industrial and combustion processes, which are

normally in the fine spectrum of particle diameters (0.2-0.8 m), and at

high sampling flow rates was addressed by Sioutas in his PhD

dissertation [3].  The virtual impactor in that study consisted of a

rectangular jet, with a nozzle width W = 0.33 mm, and a total sampling

flow rate of 225 LPM.  The reported St50 at 20% flow separation is 0.45,

which reflects a 0.12 m cutpoint.  To the knowledge of the author, no

other work has been done to validate or reproduce the Sioutas findings

under those particular conditions.  For this reason, we aim at studying

the characteristics of such an impactor in this work. 

2.2 Theoretical and Numerical Studies of Virtual Impactors

  Using numerical analysis techniques, Marple [6] obtained flow field

information inside a virtual impactor by solving the Navier-Stokes

equations for an axis-symmetric and a two-dimensional jet.  He then

integrated the particle equation of motion governed by Stokes drag with

the Cunningham slip correction factor.  The study was instrumental in
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providing theoretical insight into the effect of the flow and physical

design parameters.  However, judged by today's computational standards

it can be viewed as preliminary especially when it comes to considering

high Reynolds number flows.  The approach was later revised in a

subsequent paper by Rader and Marple [17] where they applied the

technique to study solid surface impactors.  In that paper, the refinement

focused on two main areas, (i) the discretization gird, and (ii) the drag

coefficient.  The flow regime, however, was far from turbulent.  The

premise behind grid refinement is that the numerical solution inherently

carries some errors which can be minimized by reducing the grid

spacing, and, in fact, they observed significantly different results on the

finer grids which yielded efficiency curves with steeper slopes.  In

addition, the drag coefficient formulation was re-written to account for

instances where the particle Reynolds number exceeds unity; in other

words, violates the Stokes drag regime (termed “ultra-Stokesian”).  The

drag coefficient is of primary concern to this research as well, and will be

discussed in detail in a later chapter.  In a more recent study [18],

Asgharian and Godo employed a commercial finite-element fluid

dynamics code to obtain the flow velocity in a two-dimensional

“improved” virtual impactor.  An improved virtual impactor is one with a

clean air core in the center of the inlet to the impaction zone.  Masuda et

al. [19] reported low fine particle contamination in the minor flow by the
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introduction of a clean air core, and from their experimental data

proposed a semi-empirical equation for the prediction of the collection

efficiency.  Chen and Yeh [14], conducted experiments on such an

impactor and arrived at the same conclusions as the original study.  In

the numerical study, Asgharian and Godo re-construct the geometry

proposed by Chen and Yeh, and solve for the incompressible steady-

state flow field at a Reynolds number of 4000 using the standard k-

epsilon turbulence model.  The computational mesh consisted of

approximately 14,000 nodes which is relatively modest compared to

what is used in this research.  The trajectories of solid particles were

obtained by solving the particle equation of motion governed by drag

using a fourth-order Runge-Kutta integration scheme.  The authors

resorted to linear interpolation to obtain the fluid velocity at a position

that does not coincide with a mesh point.  As we shall discuss later in

this thesis, such a methodology introduces additional numerical errors

that can deteriorate the overall accuracy.  Furthermore, the effect of

particle dispersion due to turbulence was not addressed in their paper.

2.3 Approaches to Two Phase Turbulent Flows

  From a more fundamental perspective, the numerical prediction of

turbulent fluid particle flows has been the subject of several

distinguished articles [7,8,9] and reviews [10,11,12].  In this section we
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aim at presenting the two mainstream approaches of Lagrangian and

Eulerian schools of thought, with emphasis on the former since it is the

ideology adopted in this research.  Crowe [11] classifies fluid particle

flows as being either dilute or dense. In a dilute flow, the surface and

body forces dictate the motion of the particle, whereas in a dense flow,

particle-particle collisions play a prominent role.  The philosophy behind

this classification stems from the concept of coupling, which generally

accounts for the dominant physical interactions in the flow.  Two key

scaling parameters prescribe the coupling phenomenon.  The Stokes

number, which is the ratio of particle response time p to a characteristic

time in the fluid itself e, such as large eddy turnover time.  If the particle

response time is much smaller than the fluid time scale then the particle

will most likely align itself with the fluid motion.  On the other hand, if p

is much greater than e then the particle is less likely to respond to fluid

motions whose time scale is reflected by e.  The other scaling parameter

is the volume fraction of the particles Φp, defined as the ratio of the total

particle volume to the volume occupied by the fluid.  According to

Elghobashi [10], insight into the coupling problem is gained by mapping

a certain set of parameters to one of the regions in Figure 1.3.  In the

one-way coupling regime, the particles have negligible effect on the

carrier phase turbulence.  In the two-way coupling regime, particle
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concentrations are high enough to induce momentum transfer to the

fluid thus altering its turbulence properties.  As the volume fraction

increases beyond the limits of dilute suspensions and into the realm of

dense suspensions, the coupling is termed four-way implicating the

effect of particle-particle collisions. 

Figure 2.3: Map of regimes of interaction between particles and
turbulence from [10]  

  The Lagrangian approach computes the trajectories of computational

particles released into the flow field.  Updates to the particles' position

and velocity are acquired by integrating the particle equation of motion

with respect to time.  Historically the equation has been named the
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Basset-Boussinesq-Oseen (BBO) equation after the people who worked on

it.  BBO arrived at the equation by solving the Navier-Stokes equations

without the advective acceleration terms for the unsteady rectilinear

motion of a sphere in a stagnant incompressible creeping fluid [13].

Several subsequent authors have studied and analyzed the individual

terms in the equation and proposed modifications for situations not

considered in the original BBO equation. The form and limitation of the

equation as related to this research will be discussed in a later chapter.  

  The alternative Eulerian or two-fluid approach regards the dispersed

phase as a continuum whose motion is prescribed by transport equations

similar in mathematical form to those of the carrier fluid.  Those

transport equations are associated with a cloud of particles present in a

unit volume as opposed to the single particle Lagrangian equation.  The

Eulerian approach proved to be useful in simple dense flows since it has

built into it quantities that describe particle-particle collisions and the

effect of neighboring particles.  Unfortunately, it suffers from the same

drawbacks encountered in solving single phase flows, namely the resort

to constitutive and empirical models.  For aerosol flows with one-way

coupling, the Lagrangian approach is more suitable since it provides

information specific to each individual particle and allows for the

simulation of poly-dispersed suspensions, as is the case in this work.

  Much of the theoretical work on two-phase flows relies on the Direct
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Numerical Simulation (DNS) of the three-dimensional, time-dependent

Navier-Stokes equations to predict the fluid phase motion. This

technique caters detailed instantaneous information about all the scales

of turbulence, and is a valuable asset in setting the directions for

numerical models that aim at predicting particulate flows.  However, due

to its harsh computational requirements in terms of grid spacing and

time stepping, it is impractical for most engineering applications

(computational effort proportional to Re3).  The workaround to this

problem is to use turbulence closure models which are solved in

conjunction with the Reynolds Averaged Navier Stokes (RANS) equations

to provide the mean quantities of the flow field. The most widely cited

model is the standard Turbulent Kinetic Energy (Ҡ-) model, which

incorporates into its methodology transport differential equations for the

turbulent kinetic energy and dissipation rates.  Particle dispersion can

then be calculated via stochastic methods that rely on the random eddy

representation of the underlying fluid. 
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Chapter 3

Simulation Components

3.1 Compressibility

  Originally the flow was assumed incompressible, however the average

velocity of the fluid at the nozzle is close to the sonic speed (0.61 Mach),

moreover, the discrete phase results, as will be shown in Chapter 6,

revealed wall losses that were beyond what was expected, so it became

obvious that compressibility effects may introduce changes in the flow

which in turn affect the particulate flow, and hence the efficiency curve.

Therefore, simulations were conducted by additionally solving the energy

equation along with the ideal gas law to determine the temperature and

density variations in the flow.

3.2 Device Geometry  

  As mentioned in Chapter 2 the optimal set of dimensions for the virtual

impactor has been established through both experiments and theory.  In

the simulation presented here, we utilize the recommended aspect ratios

for the nozzle geometry as they were reported in the high sampling rate

experiment done by Sioutas [3,51].  The length scales in the remaining

parts of the device are partially based on the design of Asgharian and

Godo [18], and are depicted in Figure 3.1.   
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Figure 3.1: Dimensions of simulated virtual impactor (XY plane)

  The width of the acceleration nozzle is identical to that of Sioutas

(W=0.33mm). The inlet angle of inclination was not reported in his

experiment so we used the canonical value of 30o.  The depth of the

device into the plane of the paper is also taken from Sioutas to be L = 5.6

cm.  The simulations were performed in 3D despite the ratio L/W which is

much greater than one, because it is physically unrealistic to study the

effect of turbulence in two dimensions only.
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3.3 Computational Meshes

  The physical domain is constructed using GAMBIT, which is a subset of

the FLUENTTM CFD package [20].  GAMBIT is a pre-processor for the solver

capable of geometric modeling and mesh generation.  The grid is

generated by first meshing a two-dimensional plane of the device, and

then constructing hexahedral cells in the third dimension via a sweep

operation (Figure 3.2), hence the entire domain is divided into six-faced

elements or control volumes.  The grid is considered structured since it

is formed by a repeated geometric topology, namely the hexahedron.

Structured girds are known to provide accurate calculations of spatial

derivatives, and are most often flow aligned thus yielding greater

accuracy.  Two meshes with varying degrees of resolution were

constructed. The coarse mesh containing 926,̡250 cells (965,̡736 nodes)

was used for the incompressible and compressible flow simulations,

whereas the finer mesh with 2,0̡21,̡600 cells (2,1̡16,̡797 nodes) was only

used for the compressible flow simulation.  The mesh statistics are

summarized in Table 3.1.  Two-dimensional cross-sections of the

meshes in the (XY) plane are shown in Figures 3.3 and 3.4.  In the coarse

mesh the width of the nozzle is discretized by 50 equally spaced nodes,

whereas in the finer mesh 100 nodes are used.  The resolution of the

grid in the nozzle section remained constant away from the wall in order

to maintain the accuracy all the way to the bulk region. 
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Min Face
Area (m2)

Max Face
Area (m2)

Min Cell
Volume

(m3)

Max Cell
Volume

(m3)

No. Cells
in XY Plane

Coarse 3.80E-011 1.20E-007 4.60E-014 6.00E-012 18525

Finer 1.10E-011 1.10E-007 2.20E-014 2.70E-012 72200

Table 3.1: Computational mesh statistics

  

Figure 3.2: 3D coarse mesh
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Figure 3.3: Nozzle cross-section (coarse mesh: =W/50)
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Figure 3.4: Nozzle cross-section (finer mesh: =W/100)

3.4 Boundary and Operating Conditions

  An inlet boundary condition is specified at the top entrance of the

device.  To mimic the experimental setup of Sioutas where the flow rate

was set to QT = 225 liters per minute, we specify a uniform mass flow

rate, m' = QT = 4.59375e-03 Kg/s at STP, which is applicable for both

incompressible and compressible simulations (air density,  = 1.225

Kg/m3).  The flow Reynolds number under these conditions is in the
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turbulent regime (Re ≃ 9169, for  = 1.7894E-05 Kg/m.s).  The

turbulence intensity is thus estimated from an empirical correlation

derived for fully turbulent pipe flows, and is given by: I = u/uavg =

0.16Re-1/8 ≃ 5%, where u is the fluctuating velocity component.  

  The conditions at the inlet are considered ambient, namely the

temperature is set to T = 300oK, and the pressure to atmospheric (gauge

pressure: PG = 0).  At the exit locations of the device, a “pressure-outlet”

boundary condition is used.  The minor flow rate Qm is calculated using

the mass flow rate reported by the simulation, and the density of air at

STP.  To achieve the desired 20% Qm/QT ratio, the minor flow gauge

pressure was fixed at slightly below atmospheric (PG = -100 Pa), and the

major flow gauge pressure was varied over a number of trials to obtain

the desired ratio since the dependence of the flow separation on the

vacuum pressure is not known a priori.  To guide the trials, advantage

was taken of the reported experiment's value for the pressure drop

across the nozzle itself, P  = 30 KPa.  For the incompressible simulation

it was sufficient to use a value of PG = -27.2 KPa to arrive at a minor-to-

total flow ratio close to 20%.  The compressible simulation, however,

demanded a value of PG = -50 KPa at the major flow outlet. 

  The boundary conditions at the walls of the device are taken to be no-

slip for the velocity, and adiabatic for the temperature (no heat flux).

Details of the calculation procedure and the use of “wall functions” will be
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discussed in the next chapter.

3.5 Discrete Phase Properties

  Solid spherical particles were used to simulate the flow of aerosols

through the virtual impactor.  Their density was taken to be that of

Polystyrene Latex microspheres in order to mimic the experiment ( p=

1.047 g/cm3). Eleven mono-disperse samples each with a different

particle diameter (0.1-0.4 m) are separately released from random

locations in the entrance-cone of the device.  The samples were released

in vertical planes away from the front and back walls so that fluid

disturbances in the spanwise direction are negligible.  Details on the

number of particles used, and the confidence limits for the Lagrangian

statistics will be presented in Chapter 5.  Finally, the walls of the device

are treated as perfect collectors or traps.  Thus, when a particle is at a

distance less than or equal to its radius from a wall it is recorded as

deposited and its calculation terminates.
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Chapter 4

Governing Equations

4.1 Fluid Flow  

  According to Panton [21], there are three predominant independent

dynamical laws in continuum mechanics: the continuity equation, the

momentum equation, and the energy equation.  The continuity equation

prescribes the law of conservation of mass and is given by:

(4.1.1)
∂/∂t + ∇•(U) = 0

where  is the density, ∇ is the divergence operator, and U is the fluid

velocity vector.  The physical interpretation of the continuity equation is

understood in reference to a fixed point in space as the balance between

the rate of accumulation of mass per unit volume and the net outflow of

mass per unit volume.  For an incompressible flow, the continuity

equation reduces to ∇•U = 0.

  The momentum equation for a continuum fluid is derived in a manner

similar to Newton's second law of motion, and is essentially a balance

between the rate of change of momentum per unit volume on one hand,

and the pressure, viscous, and body forces in each direction, on the

other.  The differential form of the equation is given by:
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(4.1.2)
∂( )U /∂t + ∇•( )UU  = -∇P + ∇• + F

where P is the pressure, F is the body forces vector, and  is the viscous

stress tensor, given by Newton's law of viscosity as:

(4.1.3)
 = -2/3∇•U +  2S

where S is the rate-of-strain tensor, and  is the unit tensor.

  Lastly, the energy equation represents a balance between the rate of

accumulation of energy (internal and kinetic) per unit volume, and its

convection due to flow on one hand, and the net heat flow, and work due

to surface and body forces on the other.  The differential form of the

equation as it is solved by FLUENTTM is as such:

(4.1.4)
∂(E)/∂t + ∇•( (E+P)U ) = ∇•( keff∇T + eff•  U )

where 

E = h – P/ + U2/2; h is the sensible enthalpy, keff is the effective thermal

conductivity (accounts for turbulent viscosity), and eff is the effective

stress tensor (includes the thermodynamic pressure).

  For incompressible flows with a Newtonian fluid, the continuity equation

along with the three momentum equations in the x, y and z direction

form a closed system of four equations with four unknowns (P,Ux,Uy,Uz),

and are commonly known as the Navier-Stokes equations.  Ideally, one

would like to solve a flow problem directly by integrating the Navier-
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Stokes equations, however, as mentioned in Chapter 2, with the current

computer capabilities this approach is limited to low Reynolds number

flows in simple geometries.  The need to predict turbulent flows in

engineering problems brought about the concept of time averaging, first

pursued by Reynolds in the 19th century.  The theory and models of this

technique as used in this research are presented in the next section. 

4.1.1 Reynolds Averaged Navier Stokes Equations   

  RANS equations are obtained by decomposing the instantaneous flow

variables such as the velocity and pressure into a mean component and a

fluctuating component, as such:          

(4.1.5)
U=Uu

          (4.1.6)
P=Pp

Substituting those expressions into the general Navier-Stokes equations,

neglecting the gravitational body force term, and taking their time or

ensemble average gives in index notation:          

(4.1.7)
∂
∂ t


∂Ui
∂xi

=0

         (4.1.8)

∂Ui
∂ t


∂UiU j

∂x j

=−∂P
∂xi

 ∂
∂x j

[ ∂Ui

∂x j


∂U j

∂xi

−2
3
ij

∂Ul

∂xl

]−∂uiu j
∂x j
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where ij ≡ Kronecker delta .  The last term of the equation uiu j is

referred to as the Reynolds stress tensor and it introduces an additional

unknown that needs to be modeled in order for the system to be fully

closed.  Physically, one can interpret the Reynolds stress as a

supplemental stress acting on the mean field due to the turbulent

velocity fluctuations analogous to the stress exerted on the fluid due to

the velocity fluctuations at the molecular level [22].  This perspective

establishes the foundation for most of the work that aims at postulating

turbulence models that can provide closure to the RANS equations.  The

two models investigated in this thesis are the standard k-epsilon (Ҡ-),

and the Reynolds Stress Model (RSM).

4.1.2 The Ҡ- Closure   

  The k-epsilon model falls within the class of two-equation turbulence

models since it introduces two additional transport equations, one for the

turbulent kinetic energy Ҡ, and one for the dissipation rate .  The Ҡ-

model relies on a constitutive law for the Reynolds stress as means of

providing closure.  This law known as the Boussinesq hypothesis,

although not rigorously justified, builds on the analogy between the

molecular momentum transport and turbulent momentum transport, and

is formulated as such:
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(4.1.9)

uiu j=
2
3
Ҡt

∂Ui

∂xi

ij−t
∂Ui

∂x j


∂U j

∂xi

   

where t > 0 is now a turbulent or eddy viscosity.  An almost automatic

disadvantage of this hypothesis is its incapability of dealing with

anisotropy in the flow, in other words, the fact that t is a scalar quantity,

forces the same constant of proportionality onto the mean rate-of-strain

tensor components.  A particular case where the model fails is in the

basic, yet important, channel flow. The above form of the Boussinesq

hypothesis erroneously predicts equal quantities for the normal

components of the stress tensor, i.e. u1
2=u2

2=u3
2=2

3
Ҡ. As we shall see

later in Chapter 6, this will have tremendous effects on the accuracy of

the stochastic models that are relying on the velocity variances to predict

turbulent particle dispersion. 

  The turbulent kinetic energy in the constitutive model is obtained by

solving the differential equation that governs its transport.  Such an

equation can be easily derived from the Navier-Stokes equation to yield

its exact form, which can then be manipulated by inserting the

constitutive law for the Reynolds stress, and modeling the pressure work

and kinetic energy fluxes via a gradient-like transport law [22]. The

resultant equation as solved by FLUENTTM is given below:              
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(4.1.10)
∂Ҡ
∂ t


∂ҠUi

∂xi

= ∂
∂x j

[ t

k

 ∂Ҡ
∂x j

]t

∂Ui

∂x j


∂Ui

∂x j


∂U j

∂xi

−−YM

where k = 1 is a turbulent Prandtl number.  Naturally, the first term on

the right hand side is the transport of Ҡ, the second term represents the

generation of turbulent kinetic energy caused by mean velocity gradients,

while the third term is the dissipation rate which has its own transport

equation, presented below, and the last term is only applicable for

compressible flows and it represents an additional turbulence

dissipation-like phenomena brought about by compressibility. YM is

modeled through what is called a turbulent Mach number as such:

        (4.1.11)

YM=2 Ҡ
vsound

2

  Despite the existence of an exact transport equation for , solutions to

the kinetic energy equation are most often impeded due to the difficulty

in computing  accurately, primarily because of the tremendous modeling

that goes into the  equation (seven out of eight terms require modeling).

Clearly, some of the physics is captured in these models, in part because

of our understanding of isotropic and homogeneous turbulent shear

flows, however, an implicit leap of faith is presumed when applying such

models to complicated flows.  With that in mind, turbulence models have

gained considerable acceptance in engineering applications, and have
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helped us solve a multitude of real life flow problems.  

  The epsilon equation as solved by FLUENTTM is given by:           

(4.1.12)

∂
∂ t


∂Ui

∂xi

= ∂
∂x j

[ t




∂
∂x j

]C1


Ҡ
t

∂Ui

∂x j


∂Ui

∂x j


∂U j

∂xi

−C2
2

Ҡ

where ∊ = 1.3, C1∊ = 1.44, and C2∊ = 1.92.  These constant have been

calibrated from experimentally well studied turbulent shear flows, and

have been found to be fairly suitable for other types of flows.  

  So far we have seen that the turbulent viscosity t appears in both the Ҡ

and  equations, therefore we now present the final piece that will render

the system of equations to be solved:         

(4.1.13)

t=C
Ҡ2


     

where C = 0.09 is a constant that guarantees consistency with the log-

law of the wall.

  It should be noted that the Ҡ and  equations as presented above are

only applicable at high Reynolds number conditions away from solid

boundaries.  Therefore, modifications ought to be introduced to bridge

the gap between the near-wall regions and the fully turbulent region.

This technique known as “wall-functions” will be discussed in a later

section that deals with the numerical scheme employed by FLUENTTM.
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4.1.3 The RSM Closure   

  A transport equation for the Reynolds stress tensor itself can be derived

by averaging and adding the Navier-Stokes equation one multiplied by

the fluctuating velocity component ui and the other by uj.  This results in

the exact equation given below:         

(4.1.14)

∂uiu j
∂ t


∂Ukuiu j

∂xk

=− ∂
∂xk

[uiu jukpkjuiiku j]
i

 ∂
∂xk

[
∂uiu j
∂xk

]


ii

−uiuk

∂U j

∂xk

u juk

∂Ui

∂xk




iii

p
∂ui

∂x j


∂u j

∂xi




iv

−2
∂ui

∂xk

∂u j

∂xk
v

The terms of the equation assert that the rate of change of Reynolds

stress and its convection per unit volume is respectively balanced by: 

(i) turbulent transport, (ii) viscous diffusion, (iii) stress production, (iv)

pressure strain, and (v) energy dissipation.  This equation is somewhat

appealing for turbulence modeling since only the terms (i), (iv) and (v)

need to be modeled to grant closure to the RANS equations.

  The models implemented in FLUENTTM are: 

- term (i) is re-written in a gradient-like fashion, with k = 0.82:

        (4.1.15)

∂
∂xk


t

k

∂uiu j

∂xk



- term (iv) is taken from the Quadratic Pressure-Strain Model, which
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emerged as superior to the more basic linear model (not discussed here)

particularly in flows with streamline curvature.  This observation was

confirmed in this research as well, since we obtained better convergence

with the quadratic model, hence the RSM results presented in this thesis

are only those of the quadratic model.  The term then becomes:

        (4.1.16)

iv≡−C1C1
' PbijC2bikbkj−

1
3

bmnbmnijC3−C3
' bijbijҠSij

C4ҠbikS jkb jkSik−
2
3

bmnSmnijC5Ҡbik jkb jkik

where 

bij=−−uiu j
2
3
Ҡij

2Ҡ  Reynolds stress anisotropy tensor  (4.1.17)

Sij=
1
2

∂Ui

∂x j


∂U j

∂xi

 Mean rate-of-strain tensor            (4.1.18)

ij=
1
2

∂Ui

∂x j

−
∂U j

∂xi

 Mean rate-of-rotation tensor         (4.1.19)

and the constants: C1 = 3.4, C1' = 1.8, C2 = 4.2, C3 = 0.8, C3' = 1.3,

C4 = 1.25, C5 = 0.4

- finally, term (v) is called the dissipation rate tensor ij and is modeled

as:                                    

(4.1.20)

ij=
2
3
ijYM

with the scalar dissipation rate  evaluated from its own transport
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equation similar to its counterpart in the k-epsilon model.

  As revealed above, the Reynolds Stress model requires the solution of

seven additional differential equations (six for the stresses and one for ),

which when combined with the four standard RANS equations makes the

computational expense even more costly.   

4.1.4 The Numerical Scheme   

  FLUENT's finite volume “segregated” double precision solver was used to

arrive at a steady state solution for the virtual impactor simulations.  The

justification for performing steady state as opposed to transient

calculations stems from the fact that in reality aerosol samplers are

operated for significantly long periods of time, and the analysis of their

performance is not particularly sought during the startup process.

Therefore, the actual equations that are numerically integrated do not

have the time dependent derivative, shown for completeness in the above

equations.   

  The numerical algorithm solves the governing integral equations for

conservation of mass, momentum, energy and turbulence quantities on a

control volume basis for each individual computational cell in the

domain.  The method is called segregated since the equations are solved

separately one at a time in a decoupled iterative procedure to achieve

convergence of the mathematically coupled non-linear equations.  First,
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the momentum equation is solved with the available values of the

unknowns to produce an updated value for the velocity vector.  If the new

velocity vector does not satisfy the continuity equation, a “Poisson-type”

equation is solved for the pressure and velocity corrections so that the

continuity equation is satisfied.  Equations for the energy and turbulence

quantities are subsequently solved and a convergence check with a

specified tolerance is made at the end of the loop.  The algorithm

employs an implicit scheme to linearize the discrete equations, this

results in a system of linear equations that cover all the cells in the

domain, thus allowing the sought after unknown variable to be solved for

simultaneously at all cells.  The details of the algebraic equations solver

will not be discussed here since it is common practice in CFD codes,

however we will discuss some of the methodologies invested in the

intermediate steps presented above, particularly the discretization

scheme, since it was found to have an impact on the final flow field

solution.     

4.1.4a Discretization

  The governing differential equations presented in the previous sections

can also be written in their integral form, simply by derivation from first

principles.  The finite volume method transforms those integral

equations into discrete counterparts so that they can be solved
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numerically.  To illustrate the role of discretization on the method,

consider the steady state transport equation of a scalar quantity  in a

control volume V, with a diffusion coefficient  , and a source term S :

       (4.1.21)
∮Ud A=∮∇d A∫V

SdV

In discrete space, the integrals are replaced by summations, and the

equation is discretized as such [20]: 

       (4.1.22)

∑
f

N

ff
Uf ° A=∑

f

N

∣∇∣n° ASV

where f is the convected quantity through face f, N is the number of

faces per cell, A is the area vector of face f, and ∣∇∣n is the

magnitude of the gradient normal to face f.  The choice of the

discretization scheme enters during the evaluation of the face value f

since its value is only stored at the cell center.  Either a first order or a

second order “upwind” scheme is employed for the task.  The former

scheme assumes that the cell center value represents an average that is

valid anywhere in the cell.  Consequently, values for the face fluxes are

obtained from the cells upstream of the flow direction.  For flows with

streamline curvature this contributes more to the numerical diffusion and

can compromise the overall accuracy.  In the second order scheme, the f

value is computed using a truncated Taylor series expansion about the

cell center as given below:
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       (4.1.23)
f=∇°s     

where  and ∇ are the value of the scalar and its gradient in the

upstream cell center, and s is the displacement vector from the

upstream cell center to the face centroid.  Finally, the gradient is

computed via the discrete form of the divergence theorem as follows:

                (4.1.24)

∇=1
V
∑

f

N

f
A

where f is the average of  from the two cells adjacent to each face. 

  The procedure outlined above can be generalized and applied to the

discretization of the momentum and continuity equation.  As mentioned

before, the equations are solved sequentially, therefore, there has to be a

mechanism to insure that the pressure value obtained from the

momentum equation satisfies continuity.  This pressure-velocity

coupling feature is achieved using the Semi-Implicit Method for Pressure

-Linked Equations (SIMPLE) algorithm [20].     

4.1.4b Wall Functions

  Wall functions are semi-empirical relations used to estimate the mean

velocity and turbulence quantities near the wall in a turbulent flow.  In

essence, they establish a boundary condition for the numerical solution

of the closure equations at the first mesh point away from the wall.
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Experiments have shown that the wall region in a bounded turbulent flow

consists of three layers: a viscous sublayer dominated by viscosity, a

buffer layer where both viscosity and the Reynolds shear stress dominate

the dynamics, and a fully turbulent or logarithmic layer.  In the viscous

sublayer, the mean velocity is characterized by a linear dependence on

the distance from the wall, and from its name, the logarithmic layer

represents the mean velocity by a universal logarithmic law.  No formal

expression of the mean velocity is in existence for the interestingly

arduous buffer layer.  FLUENTTM relies on the value of a dimensionless

wall unit y* to determine the appropriate equations to use. The definition

of y* is given below:        

(4.1.25)

y ∗ =
C

1
4 Ҡ

1
2 y



where y is the distance from a point in the flow to the wall.

  Relying on viscosity predominance, the dimensionless mean velocity

when y* < 11.225 is given by:        

(4.1.26)
U ∗ =y ∗

and for larger values of y* (< 30 to 60), the log-law is used:

                (4.1.27)

U ∗ =1


lnE y ∗ 

where  is the von Karman constant (0.42), and E an empirical constant
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(9.81).  The mean velocity can then be determined from U* using its

definition:        

(4.1.28)

U ∗ =
UC

1
4 Ҡ

1
2

w /

where w= ∂U
∂y

0 is the wall shear stress.  A similar decomposition is

done for the thermal boundary layer to obtain the temperature variation

near the wall in the compressible flow simulation [20].  Turbulence

properties, on the other hand, are determined differently.  The kinetic

energy equation is integrated all the way to include the near wall mesh

points, with an imposed boundary condition on its derivative in the wall

normal direction  ∂Ҡ
∂n

=0. Additionally, the local equilibrium hypothesis

is invoked so that the generation and dissipation of Ҡ are assumed equal.

The epsilon equation is not solved for the near wall cells, but rather  is

computed from:        

(4.1.29)

=
C

3
4 Ҡ

3
2

y

and the generation term in the Ҡ equation is replaced by: w
∂U
∂y

.

  Wall functions have become the de facto for many industrial flow

problems due to their economical savings on the computational cost.
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They are mostly adequate for shear flows with little or no pressure

gradients, however their accuracy breaks down when the flow conditions

depart too much from the ideal circumstances for which they were

derived, such as low Reynolds number effects or boundary layer

separations.  For the sake of this research, such phenomena has been

ruled out as being highly influential, thus justifying their use.

 

4.2 Particulate Flow  

4.2.1 Particle Equation of Motion  

  The first formal derivation of the equation of motion for an isolated

rigid sphere was postulated by Maxey and Riley [23].  The authors

proposed an equation similar to the original BBO equation, but included

extra terms to account for non-uniformity of the flow field, which can be

written as [10]:           

(4.2.1)

mp

d Up

dt
=mp

 U− Up
p

mf
D U
Dt

1
2

mf 
D U
Dt

−
d Up

dt


6dp
2

1
2∫tp0

tp d/dU− Up

t−1/2 dmp−mf g
1
2
dp

2CL
L∣U− Up∣

2

 

where mp and mf are the mass of the particle and fluid respectively, and

g is the gravitational acceleration.  The equation represents a balance

between the forces acting on the particle.  The inertia force on the left

hand side is balanced by, respectively, the viscous and pressure drag,

fluid pressure gradient and viscous stresses, inertia of virtual mass, the
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Basset “history” force, buoyancy, and Saffman's lift force (CL is the lift

coefficient, and L is the direction cosine vector).  Two critical

assumptions went into the derivation of the Maxey and Riley equation:

(1) the particle diameter is small compared to the Kolmogorov length

scale, and (2) the particle or relative Reynolds number Rep is small

compared to 1, where Rep=
dp∣U− Up∣


. The first condition is mostly true

in sub-micron particle-laden flows, however as we shall see in the next

chapter, it is quite often the case that the particle Reynolds number

exceeds one.

  For aerosol flows, where the density of the dispersed phase is

significantly larger than that of the fluid phase ( p/ ≈ 103), the

equation takes on a simpler form [1,12,13,24,25,26,33]:

          (4.2.2)
d Up

dt
=CD

Rep

24

 U− Up
p

g    

where CD is the drag coefficient.  The effect of gravity can be further

neglected considering the sufficiently small size of the particles

(p ≈ 10-7).

  McLaughlin [27] studied the deposition of dense aerosol particles in a

turbulent channel flow.  He confirmed the insignificance of the Basset

force.  In addition, the Saffman force was found to have virtually no effect
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outside the viscous sublayer but contributed to the inertial deposition

and accumulation inside the viscous layer.  Although, such phenomena is

intriguing to investigate in the virtual impactor design, we are currently

limited by the RANS solution to the fluid motion to be able to accurately

resolve the viscous sublayer in order to study such an effect. For the

above reasons, we focus our attention on the particle equation of motion

governed predominantly by the drag force: 

 (4.2.3)
d Up

dt
=CD

Rep

24

 U− Up
p

4.2.2 The Drag Coefficient

  Since the drag force dominates the dynamics of the aerosol particle

motion inside the virtual impactor, it is crucial that an appropriate

formulation for the drag coefficient is used to reliably predict the particle

trajectory.  The particles are expected not to follow the Stokes drag

regime for two main reasons: (i) Their entrapment in a high speed curved

flow structure as they exit the acceleration nozzle, and (ii) their sub-

micron size which makes them susceptible to slip.  The first condition

was confirmed by monitoring the particle Reynolds number for different

size particles during their flight, and will be discussed further in the next

chapter.  The second condition can be understood by looking at the

Knudesn number Kn = /dp, where  is the mean free path of air.  Crowe
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classifies the different particle-fluid flow regimes based on values of the

Knudsen and relative Reynolds and Mach numbers.  The relative Mach

number is defined as the ratio of the magnitude of the slip velocity to the

speed of sound:          

(4.2.4)

Mar=
∣U− Up∣
vsound

.

Continuum Kn < 10-3 Mar < 0.01Rep
1/2

Slip Flow 10-3 < Kn < 0.25 0.01Rep
1/2 < Mar < 0.1Rep

1/2

Transitional Flow 0.25 < Kn < 10 0.1Rep
1/2 < Mar < 3Rep

Free Molecule Flow Kn >10 Mar > 3Rep

Table 4.1: Classification of flow regimes from [1]

The mean free path may be calculated knowing the temperature (oK) and

pressure (KPa) [28]: 

(4.2.5)

=2.15 T1/2

P
(cm)

Evidently, for the particle diameter range (0.1-0.4 m), the Knudsen

number takes on values between 0.65 and 0.16, assuming air at STP.

Clearly, those limits are prone to slightly change in different regions in

the flow, for instance at the high speed nozzle where the pressure is

below atmospheric, and the temperature is lower than ambient, however,

those variations will not alter the underlying flow regimes, which are
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“Slip” and “Transitional”, noting that the relative Mach number, as will be

shown later, is always less than 3Rep.  Unfortunately, the flow in the

transition regime is poorly understood, and traditionally the practice is to

use the same correction to the Stokes drag coefficient, commonly known

as the Cunningham correction factor Cc, to account for such non-

continuum effects. Therefore, the slip CD becomes: 

(4.2.6)

CD=
CD,Stokes

Cc

=
24/Rep

Cc

where Cc is given by:

(4.2.7)
Cc=1Kn[2.5140.8exp−0.55/Kn]

A useful form for the slip correction that shows the dependence on

pressure was given by Hinds [29] as: 

(4.2.8)

Cc=1 2
Pdp

[6.322.01exp−0.1095Pdp]

where P is the absolute pressure in cm Hg, and dp is the particle diameter

in m.  

  Compressibility effects become significant for Mar > 0.2, and we found

that for some of the bigger particles, Mar does in fact exceed this limit in

the virtual impaction region of the device.  Therefore, to account for

compressibility effects we employ a semiempirical expression proposed

originally by Crowe [30], and later validated experimentally in a
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microballistic range [31].  The expression is valid for relative Reynolds

numbers less than 100 and Mach numbers less than 2, which makes it

suitable for use in the virtual impactor, since the observed values for

those two quantities conformed to that range.  The equation for the

“compressible” CD is then given by [1]: 

(4.2.9)

CD=2CDo−2exp−3.07gRepMar /Rep
hMar

Mar

exp
−Rep

2Mar



where  = 1.4 is the ratio of specific heats of the gas, g(Rep) and h(Mar)

are the following functions:

gRep=
1Rep12.2780.548Rep

111.278Rep

, hMar=
5.6

1Mar

1.7 Tp

Tf

 

where Tp and Tf are the particle and fluid temperatures, respectively

(taken to be equal hereinafter).  CDo is the standard drag coefficient for

incompressible flow which can take several forms.  For incompressible

flow, the most widely used correlation is that of Schiller and Nauman,

which fits the standard drag curve with less than 5% error, and is valid

for Rep  800:        

(4.2.10) 
CD=

24
Rep

10.15Rep
0.687  
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FLUENTTM employs a more general correlation applicable to non-spherical

particles but closely matches the above formula when used for spherical

particles, that is given by:        

(4.2.11)

CD=
24
Rep

10.1862Rep
0.6529

0.4373Rep

7185.4Rep

For the flow conditions studied in this thesis, it was found that the

particle Reynolds number does not gravely exceed unity, hence it would

suffice to use the theoretical result of Oseen, who extended Stokes

analysis and arrived at a drag coefficient valid for Rep  5, which is given

by:                 

(4.2.12)

CD=
24
Rep

1 3
16

Rep

The compressible flow results presented in Chapter 6 utilize this Oseen

formulation to substitute for CDo in Equation (4.2.9).  The inadequacy of

the Stokes drag coefficient for large Rep values can be seen in the

following figures.  Figures 4.1 and 4.2 show the dependence of the drag

coefficient on the relative Mach number.  The top axis also shows the

relative Reynolds number which can be computed for a known particle

size.

  First, it is clear that the Stokes regime underpredicts the drag coefficient

beyond Rep = 0.1 for an incompressible flow when compared to the

Oseen curve.  Second, the effect of slip is pronounced as a significant

48



reduction in the drag coefficient.  Also, the compressible curve

remarkably collapses onto the Stokes-Cunningham curve at least for

higher values of the relative Mach number.  This does not remain true for

a bigger particle as shown in Figure 4.2.  As can be seen, for the same

magnitude of the Mach number, a bigger particle will have a higher

magnitude for the Reynolds number, thus a lower drag coefficient

regardless of the formulation used.  Moreover, at high Mach numbers, a

bigger particle will experience a higher drag from the compressible

formulation than from the Stokes-Cunningham correction.  The effect of

the drag coefficient correlation on the particle trajectories and collection

efficiency curve will be discussed in the next chapter.  
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  Figure 4.1: Drag coefficients for a 0.1 m particle, Stokes = 24/Rep,
Oseen = eqn. 4.2.12, Stokes-Cunningham = eqn. 4.2.6, Compressible =

eqn. 4.2.9 (insert shows entire y-axis scale)
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Figure 4.2: Drag coefficients for a 0.35 m particle, Stokes = 24/Rep,
Oseen = eqn. 4.2.12, Stokes-Cunningham = eqn. 4.2.6, Compressible =

eqn. 4.2.9 (insert shows entire y-axis scale)

4.2.3 Random Walk Model: Stochastic Tracking

  Inherent to the RANS solution is the decomposition of the velocity vector

into a mean and fluctuating component.  As shown in the beginning of

the chapter, the mean velocity is directly predicted.  A turbulence closure

model, however, is inevitable to arrive at second moment correlations.

Undoubtedly, the more robust the model, the more accurate those

moments are.  Equation (4.2.3) requires the fluid velocity vector U in

order to integrate and solve for the particle velocity Up . One can neglect
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the fluctuating part and simply set U=U, which is referred to as mean

tracking [18,26].  The alternative, of course, is to include the fluctuating

component, U=Uu, and evaluate it based on the local turbulence

intensity of the fluid.  The first such model engaged in conjunction with

the Ҡ- equations is the “eddy-lifetime” model [32], and is incidentally

the model implemented in FLUENTTM.  The particle is made to interact

with a turbulent eddy over a time interval which is the minimum of a

typical eddy lifetime, e, and a characteristic particle residence time in

the eddy, r.  The eddy lifetime is taken to be a random energy

dissipation time scale:        

(4.2.13)

e=−CL
Ҡ


logr

where r is uniformly distributed in (0,1), and CL is the constant 0.15 or

0.3 for either the Ҡ- or Reynolds stress model, respectively.  The

particle transit time through the eddy is further estimated using the eddy

dissipation length scale Le:        

(4.2.14)

r=−p ln1−
Le

p∣U− Up∣


where Le = C
3/4 Ҡ 3/2/.  Needless to say, when a solution to the above

equation is not feasible, the interaction time is taken to be e.

The fluctuating velocity of the eddy, on the other hand, is assumed to
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satisfy a Gaussian distribution such that:        

(4.2.15)

ui=ui
2

where  is a normally distributed random number, and i=1, 2, or 3 for

each velocity direction.  The same value of  is used for the three

fluctuating components.  As alluded to in a previous section, the Ҡ-

model yields equal quantities for the root-mean-square velocities,

ui
2 =2

3
Ҡ, thus forcing an isotropic condition on the generated

fluctuating velocities ui, which limits the validity of the stochastic

approach.  The Reynolds stress model, however, solves the time averaged

equations for the independent Reynolds stress tensor components, thus

the stochastic method can benefit from the computed normal

components of the stress tensor to generate three distinct velocity

fluctuations.  The methodology described above is still employed, the

only advantage, however, is that the root-mean-square velocities that

enter into Equation (4.2.15) will, by virtue of solving Equation (4.1.14),

have distinct values, which are the outcome of solving their transport

equation.  The supporting argument for the stochastic approach was that

if a statistically large sample of particle trajectories are computed, then

their ensemble average would represent particle dispersion.   
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4.2.4 Numerical Solution of the Particle Equation

4.2.4a FLUENT'S Implementation

  Starting from Equation (4.2.3), and substituting the expressions for the

particle relaxation time, p=
pdp

2

18
and Rep, we can write:         

(4.2.16)
d Up

dt
=

3∣U− Up∣
4pdp

CD U− Up=
1

U− Up

where =
4pdp

3∣U− Up∣CD

.

  The discretized form of Equation (4.2.16) is then taken to be (dropping

the vector notation):

(4.2.17)
Up

n1−Up
n

 t
=1

 U−Up

n1

where U=Un
 t
2

Up
n .∇Un is an estimate or linearly-interpolated value

of the fluid velocity at the particle position, n is the time index, and Un is

the known fluid velocity at an Eulerian mesh point closest to the particle.

The coefficient  is a constant evaluated at the previous time step.  The

discrete equation reveals that the method is a first order accurate, O (t),

“Euler” scheme.  Re-arranging Equation (4.2.17) yields:         

1
t


Up
n1=Up

n
 t


U                  (4.2.18)
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Since the right hand side of Equation (4.2.18) consists only of variables

that are evaluated at time n, the method is deemed explicit, and the

equation can be integrated forward in time from a known initial condition

at n = 0.  

4.2.4b AeroTrack: The Developed Code

  A custom developed FORTRAN 90 code was written to allow for more

control over the accuracy of the numerical algorithm.  The basic features

of the new code are summarized below:

1. Employs a second order accurate trapezoidal integration scheme.

2. Uses a multi-variate scattered point interpolation scheme with third

order precision.

3. Provides more control over the choice of the drag law.

4. Flexibility to work with any exported CFD solution, and allows for “on

the fly” monitoring of critical flow variables such as the slip velocity.

The details of the program are now presented.

4.2.4b.1 Trapezoidal Scheme

  In order to obtain trajectory information, Equation (4.2.16) is integrated

along with the particle position vector to yield the system of Ordinary

Differential Equations:

55



(4.2.19)
d Xp

dt
= Up

        

(4.2.20)
d Up

dt
=1

U− Up

with a known initial condition: Xp
o= Xp0, and Up

o= Up0. The initial

particle velocity is always taken to be that of the fluid at Xp0. To

simplify the notation, the ODE system is written in the general

mathematical form: 

(4.2.21)
dy
dt

=f t , y         

where y is now the vector of unknowns, and f is the vector of functions.

We denote yn = y(tn) and n = 0, 1, 2, ... .  The trapezoidal scheme for

integrating (4.2.21) becomes [52]:

(4.2.22)
yn1−yn

 t
=1

2
[f tn , ynf tn1 , yn1 ]O  t3       

with a global integration error proportional to t2.  Re-arranging and

setting equal to zero:                 

(4.2.23)

yn1−yn−
 t
2

[f tn, ynf tn1 , yn1 ]=0

which results in an algebraic system of equations that is solved by

Newton's method at each time step (See Appendix A).
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4.2.4b.2 Multi-Variate Scattered Interpolation

4.2.4b.2-i Motivation

  The issue of finding the fluid velocity at the position of a traveling

particle in a numerical flow solution always arises because, in general,

the particle can move anywhere in the computational domain, and will

not necessarily coincide with the fixed grid points or cells.  The ideal

solution to this problem is to perform a coupled direct numerical

simulation of the fluid and particle motion that resolves the flow around

each particle by imposing the no-slip boundary condition at its surface,

and including the hydrodynamic forces and torques exerted by the fluid.

Clearly, this approach is far from becoming an engineering tool at this

point due its magnificent computational requirement, but appears to be

the only theoretical tool capable of providing insight into two-way

coupling models [34].  The practical option which is widely used today, is

to employ an interpolation scheme on the Eulerian velocity field that

delivers a fluid velocity to the Lagrangian particle tracking algorithm.     

  A number of studies that deal with the uncertainties associated with

interpolation schemes have been done for direct calculations. Kontomaris

et al. [35] explored the accuracy of various interpolation schemes for the

case of a turbulent channel flow, and made recommendations that were

successfully adopted and used by other researchers [36].  According to

Kontomaris, the interpolation error is, by far, the most serious error
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incurred during a typical particle trajectory calculation.  The magnitude

of the error, of course, is a function of the underlying velocity field, the

grid resolution, and the interpolation method.  The authors confer that

linear interpolation performs the worst when compared to cubic spline or

third order Lagrangian interpolation.  The conclusions reached by

Kontomaris et al. are certainly applicable to this research, however, it

should be noted that their calculations were performed in a Spectral

Simulation environment, and that their trajectory computations were

limited to fluid particles.  Given the nature of a RANS simulation, and the

fact that employing a drag coefficient introduces empirical uncertainties,

we expect the interpolation error to be one among other serious errors.

Typically in a DNS, the geometry is relatively simple (a box to represent a

channel or a boundary layer), so the numerical grid consists of a perfectly

aligned lattice of mesh points, which makes the use of higher order

polynomial interpolation schemes feasible.  Wang & Squires [33], for

instance, utilize a fourth-order Lagrange polynomial, whereas, Ahmed &

Elghobashi [37], make use of a Hermitian cubic interpolation scheme.  In

complex geometries on the other hand, the computational meshes are

often irregularly shaped and the grid points are usually unequally spaced

or scattered, which makes the three dimensional interpolation problem

more difficult [38].  Most recent engineering work that deals with the

simulation of particle-laden flows in real-life equipment, for example, a
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cyclone [39] or a stirred tank [40], relies on linear interpolation.  While

such an approach may present some advantages as far as ease of

implementation and computational speed, it is prone to augment the

numerical error.  For the virtual impactor, we found that linear

interpolation increased the relative error (defined later) in interpolating

the velocity field by one order of magnitude when compared to the

proposed interpolation scheme.

4.2.4b.2-ii Theory

  The problem of fitting a smooth surface to a scattered set of data points

is encountered in many scientific applications such as environmental

modeling, geographical and meteorological studies, and computer aided

design (CAD).  The two mainstream and most accurate interpolation

methods are triangulation-based or weighted-inverse-distance methods.

Triangle based methods appear to work well in interpolating data on a

plane, however their extension to three or more independent variables is

obstructed by the complexity of the algorithms and storage

requirements.  Shepard in 1968 [41] first introduced his inverse distance

bi-variate function as a viable candidate for interpolating sets of

scattered data with local accuracy, and showed the potential of this

method for the tri-variate case.  The original strategy, although

successful in accomplishing its objective, suffered from a number of

shortcomings, which led to a series of modifications and enhancements
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that resulted in the form it is used in this research.  To illustrate the

concepts of modified Shepard's methods, we briefly discuss the theory

behind the original approach.  The discussion is first given for functions

in ℝ2 as it will make the transition to ℝ3 conceptually transparent.

Consider a set of N distinct data nodes pi(xi,yi) where the value of the

function f(pi) is precisely known, and 1≤i≤N.  We seek an interpolant

function F that fits the given nodes exactly.  F is taken to be:

       (4.2.24)

Fp=∑
i=1

N

f piui  

where ui are cardinal functions defined analogous to the Lagrange

interpolating polynomial as:        

(4.2.25)

uip= ∏
j=1, j≠i

N p,p j
pi,p j

In order for ui(pj) to satisfy the cardinality property {ui(pj)=ij},  must

satisfy the condition: (p,q) = 0 if and only if p = q.  Therefore,  is

almost always chosen to be the square of the Euclidean distance between

p and q,  = |p-q|2.  Putting all of this together, the final form for F

becomes:                 

(4.2.26)

Fx,y=∑
i=1

N

f xi , yi ∏
j=1, j≠i

N x−x j
2y−y j

2

xi−x j
2yi−y j

2
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A slight variations to this formulation is given by Kincaid and Cheney

[42], where a new cardinal function is selected.  Their interpolant

function is given by:                 

(4.2.27)

Fp=∑
i=1

N

f pi
vip
v p

where vip= ∏
j=1, j≠i

N

p,p j, and v p=∑
i=1

N

vip. This version of

Shepard's method is more desirable because it attributes to F(p) certain

characteristics of the function being interpolated.  This method is the one

we implemented as a reference point for the other enhanced versions;

namely the Franke-Nielson [43] and the Renka [44] modifications. Franke

and Nielson define the interpolant as:                 

(4.2.28)

Fx, y=∑
k=1

N

Qkx, y
Wk x, y

∑
i=1

N

W ix, y

where the nodal function Qk is a bivariate quadratic polynomial that

reproduces the true value of f at the nodes (xk,yk), and fits the data values

on a set of nearby nodes in a weighted least square sense.  The

unnormalized weights are inverse distance functions evaluated as:

(4.2.29)

Wk x,y =[ Rw−dk
Rwdk

]
2

for Rw−dk = { Rw−dk if dkRw

0 if dk≥Rw   

where dk(x,y) is the Euclidean distance between (x,y) and (xk,yk), and Rw is

61



the radius of influence about node (xk,yk).  The radius of influence insures

that the data at (xk,yk) only influences interpolated values at points that

lie within this radius.  The authors show that not only does F(x,y)

interpolate the data, but also maintains the local shape properties of the

nodal functions (has consistent first partial derivatives) with quadratic

precision.  The nodal function Qk is defined by:                 

(4.2.30)

Qkx,y=ck1x−xk
2ck2x−xky−ykck3y−yk

2ck4x−xkck5y−ykfk

where the coefficients ck1 to ck5 minimize the residual        

(4.2.31)

R2= ∑
i=1, i≠k

N

ixk , yk[Qkxi , yi−f i]
2 for ix,y=[ Rq−di

Rqdi
]
2

     

where di is the distance between nodes i and k, and Rq is another radius

of influence about node k, which limits the contribution to the least

squares fit from nodes that lie further away.  The selection of the radii Rw

and Rq is critical to the level of accuracy achieved by this modified

Shepard's method.  Intuitively, it is desired for Rq to be greater than Rw,

so as to allow the nodal function to approximate as many as the nearby

nodes as possible.  Rather than specifying values for the radii, Franke

and Nielson propose the use of a fixed number of data points, Nq and Nw,

that are anticipated to lie within the radii of influence.  The relations to

compute the radii are then given by:        
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(4.2.32)

Rq=
D
2 Nq

N
, Rw=

D
2 Nw

N
,

where D = maximum distance between any two data points.  The authors

demonstrate the accuracy of the method by conducting a number of

interpolation tests on representative functions, and recommend a value

of Nq = 18 for somewhat uniformly distributed data, and also find that

the ratio Nq/Nw ≈ 2 is useful.

4.2.4b.2-iii Proposed Algorithm

    Renka [44] refined the Franke-Nielson approach to increase accuracy

and reduce the computational cost associated with finding the nearest-

neighbor nodes.  He proposed allowing the radii Rw and Rq to vary with

each node k.  His method also makes use of a fixed number of nodes Nw

and Nq, but the framework with which the radii are computed is

fundamentally different.  Rw is taken to be the distance from node k to

the jth closest node subject to the conditions that j > Nw and the jth node

is significantly more distant than the (j-1)st node.  Renka fails to

elaborate on this idea, or give any details about how it is implemented,

so for the sake of clarity, we present the pseudocode in Figure 4.3 to

depict its implementation in AeroTrack.  Rq is computed in a similar

fashion.  Renka obtained improved accuracy over the traditional Franke-

Nielson method with values of Nq = 13, and Nw = 19. Note that these
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values should not be compared to those of Franke and Nielson, since,

despite their common labels, they are used in a completely different

context. 

Outer Loop: For k = 1 to Nb

Inner Loop: For j = 1 to Nb

Compute distance between node k and all other nodes j → dkj

End Inner Loop

Sort dkj in ascending order → sdkj

Dispose of the distances up to Nw and compute relative distances: 

Inner Loop: For i = Nw+1 to Nb-1
RelD(i) = sdkj(i+1) – sdkj(i)

End Inner Loop

Compute maximum relative distance, note its location in the array: 

mRelD = max (RelD); locm

Define: Rw = sdkj (locm+1) 

End Outer Loop

Figure 4.3: Algorithm for computing dynamic radii

  Perhaps the algorithm for finding the dynamic radii presented above is

not exactly what Renka intended.   Nonetheless, given the circumstances

in which we need to use the interpolation scheme, namely in a

CFD/particle tracking program, we determined that such an algorithm

performs well on both the accuracy and efficiency scale.  This will be

evident in the following chapter where we subject this method to a

number of interpolation tests.  Furthermore, the use of a new variable Nb
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is only pertinent to AeroTrack and not to the Renka implementation.  In a

CFD solution, the number of data points is normally very large (equal to

the number of computational cells), so it would be highly inefficient to

compute the distance from a point where an interpolated value is sought

to all the data points.  Thus, we introduce Nb << N, to limit the scope of

the search loop.  Nb = Nw + 2 is the minimum value required in order for

the second inner loop to execute at least once when computing Rw.  In

the limited number of cases we tried, the minimum value proved to

produce the most accurate results.  In essence, this shows that the

algorithm adheres to the locality guidelines intended for the modified

Shepard's method.  The final step in the computation, after the dynamic

radii and consequently the weights have been found, is the solution of

the least squares problem.  The implementation in AeroTrack relies on

Singular Value Decomposition to solve the linear system of equations

that result from finding the minimum of the residual R2 (See Appendix B).

This is absolutely different from the approach adopted by Renka who

applies Givens rotations.  A  comparison between the two techniques is

beyond the scope of this thesis.  

  A strong virtue of Renka's method is its translucent extension to the

three dimensional case, which is ultimately what we seek in a 3D

simulation.  Renka demonstrates the usefulness of the method and gives

recommendations for the new values of Nq and Nw, based on error
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analysis and parameter optimization mechanisms.  The values for the tri-

variate case are Nw = 32, and Nq = 13 or 17, with marginal improvement

for either depending on the function being interpolated.  For our

purpose, an assessment of both values is done, and the results show that

Nq =13 achieves higher accuracy.  For completeness, we now present the

implementation of the method for three independent variables.

Analogous to the two dimensional case, the interpolant is defined as:

       (4.2.33)

F x,y ,z=∑
k=1

N

Qkx,y ,z
Wk x,y ,z

∑
i=1

N

W ix,y ,z

with the same definition, as before, for the weights Wk.  The nodal

function, however, takes on a trivariate polynomial given by:

       (4.2.34)
Qkx,y ,z=ck1x−xk

2ck2x−xky−ykck3y−yk
2ck4x−xkz−zk

ck5y−ykz−zkck6z−zk
2ck7x−xkck8y−ykck9z−zkfk

and the coefficients ck1 to ck9 minimize the residual 
(4.2.35)

R2= ∑
i=1, i≠k

N

ixk , yk ,zk[Qkxi, yi ,zi−f i]
2

whose solution is given in Appendix C.

  A cell based method for nearest-neighbor searching is implemented to

improve the efficiency of the code, thus speeding its execution time.  The

method will be described for data on a two-dimensional plane, to

facilitate its comprehension.  The dimensions of the smallest rectangle
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containing the data nodes are taken as (XMIN,XMAX) x (YMIN,YMAX).  The

rectangle is then partitioned into an NR-by-NR uniform grid of cells, and

the index of the nodes contained in each cell are stored in a hierarchal

data structure NCELL. Renka uses two elementary data structures to

accomplish the same goal, which introduces additional complications to

the implementation, as well as the need to devise non-natural ways to

perform the search.  The methodology we propose is relatively simpler,

and requires the same number of operations in the preprocessing phase,

O (N).  The choice for NR is based on cell density considerations, since

the cell density (or average number of nodes per cell) is C = N/NR2 (in

three-dimensions, C = N/NR3).  The optimum value for C is taken from

Bentley et al. [46] to be C = 3.  The algorithm for inserting the indices of

the nodes into the data structure is outlined by Renka, the only difference

here is that in AeroTrack, the cells of NCELL are themselves expandable

arrays that hold all the indices to the nodes contained in that cell.  The

following example with N = 7 and NR = 2 demonstrates the concept.

Figure 4.4 shows a 2-by-2 cell data structure whose entries will hold an

index value that references a scattered point. 
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Figure 4.4: 2x2 cell structure with 7 data nodes & a query point P

The internal representation of the data structure NCELL that depicts the

arrangement in Figure 4.4, starting from the top left corner, is: 

NCELL(1,1) = { } ← empty array

NCELL(2,1) = {1,2}

NCELL(1,2) = {3}

NCELL(2,2) = {4,5,6,7}

Once a query for the nearest neighbors of a point P (shown above) is

initiated, the location of P in NCELL is promptly computed with a cost

O (1), thus immediately determining the data nodes coexisting with P in

that particular cell.  The search then proceeds in clockwise layers into the

surrounding cells until Nb nodes are collected.  In cases where the

number of nearby nodes exceeds Nb, which is likely to occur in dense

populations, the nodes are sorted by their respective distance from point

P, and only the first Nb nodes are considered.  To further illustrate the
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concept of overlaying the data grid with a uniform cell grid, Figure 4.4

shows a representative picture of how this is done for a given mesh used

in the simulation of the virtual impactor. 

Figure 4.5: Cell grid on top of computational mesh points

    The extension of this cell method to three dimensions is simply

achieved by constructing a cubical data structure, NCELL(i,j,k), and

performing the search in both in-plane and out-of-plane layers.  For

efficiency reasons, the interpolation process in AeroTrack is designed to

perform the interpolation of the three components of velocity, and the
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value of pressure in one nearest-neighbor search operation.  This is

accomplished by storing the values of velocity and pressure in one matrix

with four columns of data for each of the interpolated variables.  

4.2.4b.3 Adaptive Drag Coefficient

  The need to experiment with different formulations of the drag

coefficient, and more importantly, the need to have the drag coefficient

adapt to changes in the flow regime along the particle path, is another

reason AeroTrack was developed.  In addition to the classical

formulations (incompressible, Stokes-Cunningham), we investigate the

following two cases, which are not readily accessible in FLUENTTM:

– The compressible formulation with a range of lower compressibility

limits.

– The Stokes-Cunningham drag coefficient with a variable pressure

dependent slip correction factor.

4.2.4b.4 AeroTrack Task Flow

  The inner workings of the FORTRAN code and its execution of

commands are summarized in the flow chart below:
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Figure 4.6: Flowchart of AeroTrack execution
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Chapter 5

Discussion of Numerical Approaches

  This chapter covers the numerical tests and methods engaged to arrive

at the simulations of the virtual impactor.  The different simulations

whose solution will be discussed are summarized in Table 5.1:

No. Type Grid Discretization Turbulence Model Qm/QT

1 incompressible coarse 2nd order Ҡ- 19 %

2 incompressible coarse 1st order RSM 22 %

3 compressible coarse 2nd order Ҡ- 16 %

4 compressible fine 1st order Ҡ- 20 %

5 compressible fine 2nd order Ҡ- 22 %

Table 5.1: Listing of virtual impactor simulations

  Simulations number 1 and 2 will be compared to assess the predictions

of the turbulence models, to study the effect of turbulent particle

dispersion, and to assess the usefulness of stochastic tracking within the

framework of the two turbulence models.  Simulations number 1 and 3

will be compared to show the effect of compressibility on the fluid flow

field.  The mesh refinement effect will be discussed in reference to

simulations 3 and 5, and finally the influence of the discretization

scheme will be demonstrated in the context of the last two simulations.

Section 5.1 deals with the convergence criteria for the carrier phase
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solution.  Section 5.2 presents the numerical steps undertaken to insure

the accuracy of the discrete phase results both in FLUENTTM and

AeroTrack.  

5.1 Convergence of the Fluid Flow Solution

  The steady state solution of the fluid phase mean and turbulence

quantities is obtained by an iterative process that starts from an initial

guess of the solution, usually taken from the boundary conditions, and

iterates on the governing equations until a solution that meets a

prescribed convergence criterion is met.  FLUENTTM has its own

mechanism for judging convergence, but it is designed to be general to

insure its functionality in a wide set of problems.  For the virtual impactor

simulations, we establish a specific rule to monitor convergence in

addition to following the guidelines of FLUENTTM.  The magnitude of the

mean velocity vector in the cross-sectional mid-plane of the device are

stored every 500 iterations, and the absolute value of the velocity

difference, ∣Uin−Uin−500∣, at each computational cell is computed

using the current and the previously stored velocity values.  The

maximum, as well as the standard deviation of the absolute error, for

each velocity component are then plotted over the entire span of

iterations.  Furthermore, to assess the quality of the converged solution,

contours of the absolute error norm are plotted for the virtual impaction
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region, which is the critical point in the flow that influences the

separation characteristics of the device.  The convergence behavior plots

are presented below:

Figure 5.1: Convergence of simulation 1

The standard deviation is calculated using the average of the velocity

differences from all the cells in the mid-plane.  The norm of the absolute

error is defined as:

∣Ulast−Ulast−500∣=∑
i=1

3

[Uilast−Uilast−500]2      (5.1)

The error norm plot in Figure 5.3, utilizes the final two iteration data

74



sets, for the mesh cells that constitute the virtual impaction region,

which is the segment of the device between the accelerating and

collection nozzles, as indicated in Figure 5.2.  As can be seen, the mean

velocity difference is zero in most of the region, except in a small area as

the fluid is exiting the nozzle.  Judging by the magnitude of the highest

contour (1.5 m/s), this is negligible considering the high magnitude of

velocity (≈ 203 m/s), which makes the relative error of order 10-2.

  Figure 5.4 shows that for the RSM simulation the maximum error ceases

to change significantly beyond 8000 iterations.  In addition, the error

contours are low in most of the impaction region.  Apparently, the RSM

solution does not have trouble converging close to the nozzles, as we

saw for simulation 1, but continues to iterate to match the velocities at

the side exits, as observed in Figure 5.5.  A more thorough comparison

between the two simulations is presented in Chapter 6.

  Simulation 3 shows a similar convergence behavior to that of simulation

1, as shown in Figure 5.6, which is somewhat expected since they both

use the same turbulence model on the same grid.  The contour plot of

Figure 5.7 also resembles that of simulation 1, in Figure 5.3, but with

higher magnitudes for the velocity difference due to the increased

velocities of the fluid at the nozzle expansion brought about by

compressibility. 
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Figure 5.2: Schematic of “Virtual Impaction Region”

Figure 5.3: Contours of the norm of velocity difference between the final
iteration sets (simulation 1)
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Figure 5.4: Convergence of simulation 2 

 
Figure 5.5: Contours of the norm of velocity difference between the final

iteration sets (simulation 2)
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Figure 5.6: Convergence of simulation 3

Figure 5.7: Contours of the norm of velocity difference between the final
iteration sets (simulation 3)
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Figure 5.8: Convergence of simulation 4

The convergence plot of simulation 4 in Figure 5.8 shows a smooth decay

in the absolute error norm as the number of iterations increases.   The

standard deviation values, however, are not as low as their counterparts

in simulation 3, which can be attributed to more significant changes in

the mean velocity between the cells in the virtual impaction region and

the ones outside.  Interestingly enough, the k-epsilon solution on the

finer gird, depicts convergence difficulties that are more pronounced at

the exits than at the nozzles as shown in Figure 5.9.  This can be

attributed to the ability of the finer gird to better resolve the high

gradients near the nozzles, but appears quite lacking in the high shear
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region close to the wall, which may be caused by a number of reasons,

wall functions being one of them.  Despite this observation, the highest

contour value is still within reasonable limits.

Figure 5.9: Contours of the norm of velocity difference between the final
iteration sets (simulation 4)

Finally, simulation 5, as shown in Figure 5.10, achieves standard

deviation values that are lower than those of simulation 4, and exhibits a

similar contour plot in the virtual impaction region, shown in Figure 5.11.

The scale of the error, however, is reduced by half, clearly due to the

more accurate second order discretization scheme.
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Figure 5.10: Convergence of simulation 5

Figure 5.11: Contours of the norm of velocity difference between the final
iteration sets (simulation 5)
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  In summary, the decrease in the maximum error with iteration number

is a common attribute to all the simulations which is certainly the first

frontier in achieving convergence.  Second, the convergence plots show

that the maximum error remains relatively constant for at least 2000

iterations.  Third, the contour plots resemble reasonable limits for the

absolute error, because the relative error is bounded (<< 1).   

  The standard deviation plots in Figures 5.1, 5.4, 5.6, 5.8, and 5.10, are

calculated using the mean velocity difference values listed in Table 5.2.

The table below summarizes the mean velocity difference of all the mid-

plane cells from the final two iteration sets, so that standard deviation

values can be ascertained.

No. <Ux(last)-Ux(last-500)> <Uy(last)-Uy(last-500)> <Uz(last)-Uz(last-500)>

1 0.148 0.175 0.003

2 0.673 0.522 0.004

3 0.160 0.161 0.002

4 0.440 0.430 0.001

5 0.208 0.196 0.002
  

Table 5.2: Mean velocity difference between “converged” and “pre-
converged” solutions

5.2 Accuracy of the Particle Tracking Algorithms  

  In this section, three aspects that affect the quality of the particle

tracking calculations are discussed, and a description of the methods

employed to guarantee or improve the accuracy is conveyed.  The
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numerical subjects examined are: time stepping, the number of particles

to use, and interpolation.

5.2.1 Time Stepping 

  The numerical solution of the particle equation of motion requires a

value for the time integration step, t.  The choice of t dictates the

upper bound of the numerical error, O (t) or O (t2), depending on the

numerical scheme whether it is 1st or 2nd order respectively.  To avoid

setting either a “too small” or a “too large” fixed time step, the

methodology for computing t relies on a fixed length scale L.  The

dynamic time step is then computed as:

(5.2)

 t=
L

∣UpU∣
.

The choice for fixing L is usually simple knowing how much do we want

the particle to travel in one time step.  For the discrete phase results

presented in Section 6.2, a value of L = 1.0e-06 (m) is used for all the

particle tracking calculations done regardless of the grid resolution.  The

justification for this value is based on the minimum computational cell

dimension.  As shown in Table 3.1 the minimum cell volume is of the

order 1.0e-14, thus its cubic root is of the order 1.0e-05.  A more strict

constraint is the size of the 2D discretization at the nozzle: for the fine
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mesh,  = W/100 = 0.00033/100 = 3.3e-06 (m).  Therefore, we require

the particle to cross a two-dimensional cell in at least 3 time steps.    

  To establish the independence of the particle tracking results from the

length step value, a number of calculations are performed in AeroTrack

with L values of 1.0e-05, 1.0e-06, and 1.0e-07 (m).  Figures 5.12-5.14

show the trajectory of a 0.25 m particle released from the nozzle throat.

From the first figure, it appears that there is very little discrepancy

between the paths followed using any of the L values, however, the

difference is amplified in the the next two figures that reveal the

inadequacy of the largest L value, and the duplicate outcome of the

intermediate and smallest values.

Figure 5.12: Particle paths using L=1.0e-05 (red), 1.0e-06 (blue), and
1.0e-07 m (magenta) {simulation 4}
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Figure 5.13: Particle paths using L=1.0e-05 (red), 1.0e-06 (blue), and
1.0e-07 m (magenta) – zoom level 1 - {simulation 4}
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Figure 5.14: Particle paths using L=1.0e-05 (red), 1.0e-06 (blue), and
1.0e-07 m (magenta) – zoom level 2 - {simulation 4}

The same conclusion is reached by looking at Figure 5.15, which shows

the path of a heavier particle (0.3 m), released from the same location

and approaching the collection nozzle wall.  Clearly, the largest L value

misses the impact location, whereas the other two values hit the same

target with sufficiently small steps in the near wall region.
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Figure 5.15: Particle approaching a wall using L=1.0e-05 (red), 1.0e-06

(blue), and 1.0e-07 m (magenta) – zoom level 1 - {simulation 4}

5.2.2 Number of Particles 

  While the process of calculating the particle paths using the mean

velocity of the carrier fluid (mean tracking) is purely deterministic, the

Random Walk Model, described in Section 4.2.3, relies on the generation

of random numbers, both for calculating the eddy lifetime, and for

yielding fluctuating velocity components.  Therefore, to establish

sufficient accuracy in the stochastic approach, a significantly large

sample of particles must be used.  For mean tracking purposes, we

perform a calculation in FLUENTTM for each of the eleven particle size
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samples using Np = 5043 particles per sample.  The calculation is then

repeated using 10013 particles, and the efficiency and wall losses curves

are compared.  The collection efficiency is defined as:

Eff = (# of particles in minor flow)/(# of particles in minor + major flow)

and the wall losses are computed as:

Loss = (# of particles trapped)/(total # of particles)       

Furthermore, to insure the one-way coupling mode, the volume fraction

of the 10013 particles is calculated for the sample with the largest

particle diameter (0.4 m) to be: 

Φp = volume of particles/(Area of cone x z) ≈ 8.0e-09

where z is the depth of the computational cells from which the particles

are released, and the area is that of the entrance cone section of the

device.  Figure 5.16 shows the efficiency and losses curves obtained from

tracking the mentioned samples in simulation 1 using the Stokes-

Cunningham drag law.  Note that FLUENTTM requires a constant value for

the slip correction factor to be entered as input, so atmospheric pressure

was used to specify Cc.  The plot is only shown to support the argument

that a sample with 5043 particles is sufficient for mean tracking, and not

necessarily to convey the performance of the device, which will be

elaborated upon in Chapter 6.    

88



Figure 5.16: Efficiency and wall losses curve for two sample sizes,
simulation 1 FLUENTTM mean tracking with Stokes-Cunningham

  The question of how many particles for the stochastic tracking is

addressed from a statistical standpoint.  To establish confidence limits,

or standard deviation figures, we conduct trajectory calculations on 0.1

m particles for three sample sizes, Np = 5043, 10,0̡13, and 20,0̡63.

Each calculation is then repeated ten times, and the mean and standard

deviation of the efficiency and wall losses are recorded.  The variability of

the results from each run are shown in Figures 5.17-5.18.   
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Figure 5.17: Collection efficiency of 0.1 m particles for three different
sample sizes, simulation 1 FLUENTTM stochastic tracking with Stokes-

Cunningham drag law

Figure 5.18: Wall losses for 0.1 m particles for three different sample
sizes, simulation 1 FLUENTTM stochastic tracking with Stokes-

Cunningham drag law
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  The mean and standard deviation of the data from the ten stochastic

runs are summarized in Table 5.3.  The mean of the collection efficiency

and wall losses is not altered significantly by the change in the number

of particles, however the standard deviation undoubtedly benefits from

the increased value.  The difference, however, between the intermediate

and the large sample is minimal, therefore, we choose to conduct the

stochastic tracking using a sample size of Np = 20,̡063. 

Np = 5043 Np = 10,0̡13 Np = 20,0̡63

Mean Efficiency 13.47 % 13.61 % 13.60 %

STD Efficiency 0.57 0.41 0.41

Mean Loss 20.76 % 20.71 % 21.13 % 

STD Loss 0.79 0.39 0.29

Table 5.3: Mean and standard deviation of collection efficiency and wall
losses for 0.1 m particles using three different sample sizes, simulation

1 FLUENTTM stochastic tracking with Stokes-Cunningham drag law

The mean values obtained from these calculations do not necessarily

correspond to the actual or physical values.  Clearly, the mean collection

efficiency is flawed based on the simple physical argument that particles

with inertia ought to collect in the minor flow more than the massless

fluid elements.  In other words, the particulate efficiency must be greater

than or roughly equal to Qm/QT.  The cause of this fallacy, of course, is

due to the isotropic nature of the k-epsilon turbulence model, which will

be commented on further in Chapter 6.  Nevertheless, for pure

statistical/numerical reasons, the technique can be relied upon to reveal
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the mandated sample size.  The choice of Np = 20,̡063 was further

validated in simulation 2, by generating a curve similar to Figure 5.16,

with a smaller sample size of 10013 particles, and the results  are

indifferent.     

      

5.2.3 Interpolation Tests

  The purpose of this section is to demonstrate the validity and the

improved accuracy of the multi-variate scattered point interpolation

scheme, presented in Chapter 4, over the “widely used” linear

interpolation method.  The implemented code is subjected to a series of

interpolation tests outlined below:

a. Test functions of two variables studied by Renka and Brown 47 

b. Test functions of three variables used by Renka 44

c. Sinusoidal three dimensional velocity field examined by Kontomaris 35

d. Actual numerical data from the virtual impactor simulations  

5.2.3a Bi-Variate Functions

   Following the approach devised by Renka, a 33-by-33 rectangular grid

of evaluation nodes is constructed on the unit square.  A set of 100

interpolation nodes with randomly assigned locations in the square is

then generated.  Figure 5.19 depicts the described arrangement.

Shepard's method, and its two modified versions of Franke-Nielson and

Renka, were programmed into MATLAB  so as to compare their
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performance to MATLAB's built-in interpolation routines of linear and

cubic interpolation.  The following test functions listed in [47] are used:

(5.3)
F1x,y=0.75exp−9x−229y−22/4

 0.75exp−9x12/49−9y1/10

 0.50exp−9x−729y−32/4

− 0.20exp−9x−42−9y−72

(5.4)

F2x,y=
tanh9 y−9x1

9

(5.5)

F3x,y=
1.25cos5.4y

663x−12

(5.6)

F8x, y=exp−5−10x2

2 0.75exp−5−10y2

2 
 0.75exp−5−10x2

2 exp−5−10y2

2 
These particular functions were chosen from a list of ten functions used

in Renka's accuracy tests paper, simply because they somewhat resemble

a velocity field (See Figures 5.20-5.23).
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Figure 5.19: 33x33 uniform grid (blue) with a set of 100 random nodes
(red) 
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Figure 5.20: Bivariate test function F1; Equation (5.3)
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Figure 5.21: Bivariate test function F2; Equation (5.4)
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Figure 5.22: Bivariate test function F3; Equation (5.5)
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Figure 5.23: Bivariate test function F8; Equation (5.6)

The results of the interpolation tests on the above bivariate functions

with the 100 random nodes set are summarized in Table 5.4.  The

default parameters of Nq and Nw, given in Chapter 4, were utilized for the

modified Shepard's methods.  No attempt has been made to optimize the

parameters at this stage, since we are only after “proof of concept”

results.  Table 5.4 shows the maximum, mean, and the root-mean-

square of the interpolation errors for each of the functions.  It is evident

that linear interpolation is subordinate to either of Franke-Nielson or

Renka.  The results also indicate the comparable accuracy between those

methods and cubic interpolation which is only valid on Cartesian grids.  It

is also interesting to see that the Renka approach is not always superior
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to that of Franke and Nielson.  This, certainly, does not mean that the

Renka claims are unfounded, since algorithmic differences in our

implementation can be the reason. 

MAX MEAN RMS

Function 1: Eqn 5.3

Linear 0.00692   0.00068 0.01250

Cubic 0.00016   0.00004 0.00051

Shepard 0.01603   0.00291 0.04252

Franke-Nielson 0.00032   0.00007 0.00095

Renka 0.00029   0.00006 0.00092

Function 2: Eqn 5.4

Linear 0.00157   0.00031 0.00551

Cubic 0.00014   0.00002 0.00034

Shepard 0.00478   0.00065 0.01336

Franke-Nielson 0.00031   0.00004 0.00070

Renka 0.00043   0.00005 0.00097

Function 3: Eqn 5.5

Linear 0.00095   0.00019 0.00264

Cubic 0.00002   0.00000 0.00007

Shepard 0.00496   0.00095 0.01365

Franke-Nielson 0.00005   0.00001 0.00015

Renka 0.00005   0.00001 0.00014

Function 8: Eqn 5.6

Linear 0.03119   0.00384 0.06402

Cubic 0.00183   0.00027 0.00422

Shepard 0.03557   0.00642 0.09523

Franke-Nielson 0.00279   0.00040 0.00624

Renka 0.00302   0.00044 0.00679

Table 5.4: Interpolation errors for bivariate test functions
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  Lastly, to establish confidence in our implemented versions of modified

Shepard's method, an interpolation test is conducted on Franke's node

set used by Renka to evaluate the accuracy of his “QSHEP2D” scheme

[47].  Franke's 100 node set, depicted in Figure 5.24, includes some

points outside the unit square so as to include the effect of extrapolation.

The results of this comparative test in terms of rms error values are

shown in Table 5.5, which shows favorable similarities in accuracy

between the different approaches.  Despite the slight advantage of the

Franke-Nielson method (on this particular node set, and for these

particular functions) over Renka's method, we only choose to implement

Renka's method for the three dimensional case, since it was proven to

work in the literature.

QSHEP2D* Franke-Nielson Renka

Function 1: Eqn 5.3 0.001029 0.003907 0.004860

Function 2: Eqn 5.4 0.001599 0.005750 0.005052

Function 3: Eqn 5.5 0.000308 0.000769 0.001012

Function 8: Eqn 5.6 0.006639 0.005984 0.007490

Table 5.5: Error Norms for modified Shepard Algorithms on Franke's node
set.  *Reported in [47].
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Figure 5.24: 33x33 uniform grid (blue) with Franke's 100 nodes (red) 
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5.2.3b Tri-Variate Functions

   For the trivariate case, a 20-by-20-by-20 uniform grid of evaluation

points is used in the unit cube, along with 216 randomly assigned

interpolation nodes.  The test functions taken from Renka [44] are:

(5.7)
F1x,y ,z=0.75exp−9x−229y−229z−22/4

 0.75exp−9x12/49−9y1/10−9z1/10

 0.50exp−9x−729y−329z−52/4

− 0.20exp−9x−42−9y−72−9z−52

(5.8)

F2x,y ,z=
tanh9z−9x−9y1

9

(5.9)

F3x,y ,z=
[1.25cos5.4y]cos6z

663x−12

The interpolation errors are shown in Table 5.6 for the linear, cubic, and

Renka methods.  The parameters Nq =13, and Nw = 32 are used for the

latter.  As expected, the linear interpolation errors are an order of

magnitude more than those achieved by Renka's method.  Moreover, it is

comforting to see that the mean errors from cubic and Renka

interpolation are comparable.

  The sensitivity of the interpolation error to the grid resolution is

investigated.  A number of evaluation grids with resolutions varying from

22x22x22 to 88x88x88 are used, and the interpolation is carried out on

102



the same 216 random nodes. Figure 5.25 is a log-log plot showing the

reduction in the rms error as the number of meshpoints is increased.

MAX MEAN RMS

Function 1: Eqn 5.7

Linear 0.01880   0.00103 0.03232

Cubic 0.00148   0.00014 0.00418

Renka 0.00154   0.00014 0.00444

Function 2: Eqn 5.8

Linear 0.00567   0.00074 0.02302

Cubic 0.00123   0.00009 0.00319

Renka 0.00210   0.00020 0.00687

Function 3: Eqn 5.9

Linear 0.00764   0.00086 0.02146

Cubic 0.00029   0.00004 0.00087

Renka 0.00101   0.00007 0.00217

Table 5.6: Interpolation errors for trivariate test functions  

Figure 5.25: Interpolation error versus resolution for the interpolation of
trivariate functions F1 (black), F2 (red), & F3 (blue).  Renka (solid lines),

linear (dashed lines)
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5.2.3c Prescribed Velocity Field

   The performance of the scattered-point interpolation scheme is further

assessed by computing the error incurred by interpolating a random set

of 500 nodes in an analytically known velocity field that qualitatively

resembles a turbulent flow field.  Following Kontomaris [35], the velocity

field is:

(5.10)
Ux,y ,z=sink xk yk z

where k is the component of the wavevector k=k ,k ,k . The evaluation

domain is a cubic box of side length L = 2, gridded with a uniform

mesh spacing h = L/64 in each direction.  The scale of motion is

obviously dictated by the value of the wavenumber k.  Other researchers

have observed that at low wavenumber components (large scales), the

interpolation is carried out with more accuracy than at high

wavenumbers.  Kontomaris plots the root-mean-square of the

interpolation error versus R, where R is the ratio of the scale of motion to

the grid spacing.  R is related to the wavenumber as such:

(5.11)

R=
m

h
=

2
∣k∣h

  

The code is put to the test again, and this time we compare its

performance to linear, cubic, and cubic spline interpolation, which are all

contained in MATLAB.  Figure 5.26 demonstrates the reduction in error as
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the scale of motion is increased regardless of the interpolation scheme.

The rate at which this reduction takes place, however, is severely

influenced by the interpolation scheme. Clearly, linear interpolation is the

least accurate.  The plot is instrumental in showing the relative accuracy

of the Renka approach in comparison to linear and cubic interpolation.

The conclusions that the method achieves third order accuracy, and that

the error decreases with increased resolution at a rate proportional to

that of cubic interpolation can thus be made.  

Figure 5.26: Interpolation error versus resolution for the interpolation of
sinusoidal velocity fields (Eqn 5.10) using: linear, Renka, cubic, & spline

interpolation
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  Lastly, a brief remark about the computational intensity of the above

interpolation methods is deserved.  For the interpolation tests performed

on the sinusoidal velocity fields, the time taken by each method is

monitored over the span of the resolution scale.  The average time is

then computed, and the performance ratios are calculated.  It is found

that linear interpolation requires the shortest time to compute, so its

average time is used as a reference for the other methods.  The

performance ratios are:

Time Cubic / Time Liner  ≈ 11

Time Renka / Time Liner  ≈ 3077

Time Spline / Time Liner  ≈ 7692  

Evidently, the execution speed of linear interpolation is significantly

faster than all other interpolation methods, however that is only possible

at the expense of accuracy.  Furthermore, it is encouraging to see that

the algorithm for scattered interpolation (Renka) executes much faster

than MATLAB's native spline interpolation, which is superbly accurate,

but, as with cubic interpolation, is only limited to Cartesian grids.

5.2.3d Virtual Impactor Simulation Data

  To assess the effectiveness of Renka's interpolation scheme on a truly

scattered computational grid, interpolation tests are conducted on

numerical values from simulation 4 of the virtual impactor.  The tests are

also used to study the effect of the parameters, Nb, Nq, and Nw.  The
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values of the velocity vector in a midplane cross-section of the device are

stored, and a random sample of the stored (known) values is taken to be

the set of interpolation nodes.  The method is then invoked to generate

an interpolated value, which can then be compared to the simulation

value to estimate the error.  The gradient of the velocity vector is also

extracted from the FLUENTTM solution to aid in performing the linear

interpolation.  Figure 5.27 depicts the overall grid, and the location of the

interpolation nodes, which are spread in different regions of the plane.

Tables 5.7 and 5.8 summarize the absolute and relative errors,

respectively.  The absolute error is simply the difference between the

known and interpolated value for each velocity component, whereas the

relative error is the absolute error scaled by the known value.

MAX MEAN RMS

Renka

U1 1.11431 0.01487 1.16472

U2 0.14405 0.00876 0.34413

U3 0.00005 0.00000 0.00007

Linear

U1 1.87153 0.08743 3.43974

U2 0.91095 0.04244 1.38628

U3 0.00014 0.00001 0.00041
   

Table 5.7: Absolute interpolation errors for numerical data, 185 random
cells, simulation 4
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  The outcome of the test confirms that the linear scheme augments the

interpolation error by an order of magnitude.  This can be seen from the

mean values of the U1 and U2 velocity components in Table 5.8.  Clearly,

it is essential to know the magnitude of the error for each velocity

component because such data, for instance, contributes to the

calculation of the particle Reynolds number, which in turn determines the

proper drag coefficient that affects the particle trajectory.  The results are

also beneficial in determining the locations where the maximum

interpolation errors occur, which were found to be in regions of sparse

nodes at exit domains, and near boundaries.

MAX MEAN RMS

  Renka

U1 0.00452 0.00049 0.01515

U2 0.01420 0.00062 0.02546

U3 0.04042 0.00105 0.05568

Linear

U1 0.22279 0.00586 0.30767

U2 0.08227 0.00304 0.11874

U3 0.34183 0.00667 0.42560

Table 5.8: Relative interpolation errors for numerical data, 185 random
cells, simulation 4

  The choice for the parameters of Renka's method that influence its

performance is investigated within the context of the above interpolation

test.  Recall that Nb determines the upper bound on the number of nearby

nodes to include in the scattered interpolation, and Nq is the number of
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nodes used in the least squares fit for the nodal functions.  Table 5.9

compares the rms of the relative error for different parameters.

  Renka
(Nb,Nq,Nw)

(34,13,32) (34,17,32) (40,13,32) (46,13,32)

U1 0.01515 0.01691 0.01795 0.02000

U2 0.02546 0.03310 0.03133 0.03861

U3 0.05568 0.07792 0.09006 0.16747

Table 5.9: RMS of relative interpolation error for different Renka
parameters, 185 random cells, simulation 4

The errors consistently increase from left to right, for all the velocity

components.  Thus, it is preferable to use the values: Nb = 34, Nq =13

and Nw = 32.

Figure 5.27: Random set of interpolation nodes in a virtual impactor grid
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5.3 Summary

  The analysis of the simulations convergence in the beginning of the

chapter revealed the relative computational capacity of each of the

turbulence models employed in terms of number of iterations, and error

norms.  We have seen that the predictions of the Ҡ- model within the

context of simulations 1,3,4 & 5 exhibits the most numerical error in

concentrated regions close to the accelerating nozzle in the virtual

impaction zone (Figures: 5.3, 5.7, 5.9, and 5.11).  On the other hand, the

Reynolds stress model exhibits the highest numerical error close to the

side exits of the virtual impaction zone (Figure 5.5).  Moreover, we were

able to show that the discretization error can be reduced by resorting to

a second order discretization scheme (Figures 5.9 and 5.11).

  In the second part of the chapter, we established the necessary

components needed to conduct accurate particle tracking calculations.

The accuracy of trajectory calculations is more dependent on the number

of particles when stochastic tracking is used rather than tracking solely

with the mean fluid velocity.  Lastly, we presented the outcome of

extensive testing for the multi-variate scattered point interpolation

method.  The tests demonstrated the improved accuracy of this method

over linear interpolation.  We have shown that such a method is capable

of producing third order accuracy in irregular geometry grids.  The only

drawback, however, is its substantial computational cost.  
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Chapter 6

Simulation Results

  The analysis and comparison of the simulations conducted for the

virtual impactor are presented in this chapter.  In Section 6.1, detailed

properties of the fluid flow field are plotted and compared for the

different simulation models.  In Section 6.2, the outcome of the particle

tracking runs is shown, and a brief comparison with experimental data is

exhibited.

6.1 Properties of the Fluid Flow Solution 

  The behavior of the fluid flow inside the device is analyzed for each of

the simulations listed in Table 5.1.  It should be noted that any

simulation by itself does not necessarily provide an accurate picture of

the physical flow dynamics.  For this reason, the approach to modeling

the virtual impactor is refined and “tweaked” from one simulation to the

next so that ultimately we can arrive at a precise and comprehensive

simulation.  Nevertheless, the exploitation of distinct turbulence models,

different discretization schemes and computational meshes, allows us to

discover the necessary components that constitute a successful

simulation.

  In the following sections, we compare and contrast many of the aspects
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that characterize the flow solution.  Contour plots of velocity magnitude,

turbulent kinetic energy, pressure, and temperature are shown.  In

addition, plots of the velocity vectors in the nozzle region are presented.

Profiles of the mean velocity in different sections of the device are also

considered.  

6.1.1 Ҡ-∊ vs. RSM 

  The discussion in this section focuses on the results of the

incompressible flow taken from the numerical data of simulation 1 and 2.

The velocity magnitude contours in the midplane cross-section of the

device are shown in Figures 6.1 and 6.2 for the k-epsilon and the

Reynolds stress models, respectively.  The contours are quite similar in

the entrance section of the device, however, they are quite different

beyond the accelerating nozzle, especially as the fluid is exiting into the

major flow.  To better characterize those differences, the velocity profiles

in the interesting sections are plotted next.
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Figure 6.1: Midplane contours of velocity magnitude (m/s), simulation 1 
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Figure 6.2: Midplane contours of velocity magnitude (m/s), simulation 2

  First, the flow profile in the throat section is analyzed.  Figure 6.4

shows the dimensionless streamwise velocity, U+
y = Uy/U, as a function

of the dimensionless wall unit, x+, at y=-W/2, which is halfway from the

entrance of the throat (y=0), as marked in Figure 6.3.  The “streamwise”

direction is taken in the negative Y-axis, and the “cross-stream” direction

in the positive X-axis.  The friction velocity is U= w


, and the wall unit
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is defined as: x =
Udx


where dx is the distance from the throat wall.

Figure 6.3: Schematic of throat cross sections at y=0, y=-0.5W, y=-W,
y=-1.5W, and y=-2W (from top to bottom)

Figure 6.4: Dimensionless streamwise velocity profile in throat,
simulation 1 (black), simulation 2 (red)
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As can be seen from the figure, and from the contour plots, the Reynolds

stress model predicts a steeper gradient than the k-epsilon model.  This

will eventually influence the behavior of the fluid as it exits the nozzle,

and may account for the increase in the ratio Qm/QT (from 0.19 to 0.22)

despite the use of the same pressure boundary conditions.  The plot is

also useful in revealing the grid resolution next to the wall.  The first

meshpoint (x+ ≈   4 to 5) for each simulation is in the viscous sublayer,

and the linear dependence of mean velocity on the wall unit is depicted.  

  The flow profile at the nozzle, and in the expansion zone (see Figure

5.2) is analyzed by looking at the vector plots.  Figures 6.5 and 6.6 reveal

the flow structure in the separation zone for the two simulations,

respectively.  The behavior of the fluid in the streamwise direction out of

the nozzle is roughly equivalent in each of the simulations, however, the

separation phenomenon into the major flow is predicted differently.  In

the k-epsilon simulation, the flow separates early in the exit stage, which

results in the formation of a relatively large vortex (re-circulation) next to

the upper nozzle wall.  The Reynolds stress model, on the other hand,

predicts a higher entrance velocity to the major flow, thus delays the

formation of the vortex, which occurs further away from the nozzle, and

at a much smaller scale.  To quantitatively verify this observation, the

velocity profiles are plotted for both the streamwise and cross-stream

directions.  
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Figure 6.5: Mean velocity vectors (m/s), flow separation, simulation 1

Figure 6.6: Mean velocity vectors (m/s), flow separation, simulation 2
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Figure 6.7 shows the streamwise velocity scaled by the average velocity,

Uavg, at the nozzle, which is taken to be the ratio of the volumetric flow

rate at STP to the area of the nozzle (LW).  The three horizontal cross-

sections where the profiles are plotted are (see Figure 6.3):  

– at y=-W: nozzle

– at y=-1.5W: halfway to the collection probe

– at y=-2W: collection probe

Figure 6.7: Streamwise velocity profile at nozzle and beyond, 
y=-W, y=-1.5W, y=-2W, simulation 1 (solid lines), simulation 2

(dashed lines)
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Evidently, the fluid is moving faster in the RSM simulation, and this slight

overshoot is sustained all the way to the collection probe.  The flow

behavior to the side of the nozzle is examined through Figures 6.9, and

6.10 which show the cross-stream scaled velocity profile at the following

consecutive locations (Figure 6.8):

– at x = 0.75W: edge of collection probe

– at x = 1.125W: halfway to major flow

– at x = 1.5W: major flow entrance

Figure 6.8: Schematic of expansion nozzle cross sections at x = 0.75W,
x = 1.125W, and x = 1.5W (from left to right)
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Figure 6.9: Cross-stream velocity profile of exiting fluid, simulation 1

Figure 6.10: Cross-stream velocity profile of exiting fluid, simulation 2

120



Two striking dissimilarities are evident from these two plots.  First, the

maximum velocity magnitude of the expanding fluid in the RSM

simulation exceeds that in the k-epsilon simulation.  Second, the location

of the stagnation or inflection point, identified as Ux/Uavg=0, is

consistently moving upwards as predicted by the k-epsilon model,

whereas the RSM prediction shows the opposite behavior, as seen by its

gradual decent from left to right.  The plots are also useful in revealing

the role of the wall functions.  Apparently, the RSM solution is more

inline with the wall function values for the mean velocity, which is

evident by the smooth variation away from the bottom wall. The k-

epsilon predictions, however, are somewhat lagging to those of the wall

function values, which results in a slightly disrupted flow profile next to

the bottom wall (first and third locations).  Recall that the values of the

mean velocity at the first few cells away from the wall are predicted by

the wall functions.

  Lastly, a comprehensive contour plot of the magnitude of the velocity

difference between the two models is shown.  Analogous to what is done

in Section 5.1, the difference norm is defined as:

(6.1)

∣UK−URSM∣=∑
i=1

3

[UiK−UiRSM]2  

The norm is then scaled by the average nozzle velocity (Uavg ≈ 203 m/s),

and plotted for the virtual impaction zone of Figure 5.2 in Figure 6.11.
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The contour plot re-enforces the previous findings that there are

considerable differences as the flow exits the acceleration nozzle, which

can now be quantified as having an upper bound of 60 %.

Figure 6.11: Contours of the norm of velocity difference between the
predictions of simulations 1 and 2, scaled by Uavg

  A similar comparison is done for the pressure field, and it is found that

the discrepancy is minimal, thus we only show the pressure variation in

the virtual impaction zone as predicted by the Reynolds stress model.

Figure 6.12 shows the absolute pressure drop in the streamwise direction

taken at x = 0 (midpoint of nozzle), while Figure 6.13 depicts the

pressure drop in the cross-stream direction taken at y = -1.5W (halfway

to the collection probe, see Figure 6.3).  Both figures show a pressure

behavior consistent with the flow dynamics, and with the pressure
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boundary condition set at the major flow exit.  From Figure 6.12, it is

evident that the flow is gradually compressed in the cone section of the

device, until it approaches the throat at y=0, where it experiences a

significant pressure loss, due to the fluid acceleration.  The flow then

begins to expand out of the accelerating nozzle at y/W = -1, and

gradually regains its ambient pressure at the minor flow exit. 

 Figure 6.12: Absolute pressure as a function of streamwise distance
from nozzle at x=0, simulation 2 (insert shows pre-nozzle data)

Figure 6.13, shows the flow expansion phenomenon in the cross-stream

direction.  The high speed fluid in the middle of the device experiences a

pressure drop equivalent to the major flow outlets pressure boundary

conditions, and consequently reduces its speed.
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Figure 6.13: Absolute pressure as a function of cross-stream distance,
midpoint of virtual impaction zone, simulation 2

6.1.2 Incompressible vs. Compressible Flow

  Simulations 1 and 3 are both performed using the k-epsilon model, on

the same grid.  The only difference, as mentioned before, is that the

compressible form of the RANS equations does not consider the density

of the fluid to remain constant, but allows it to vary with temperature and

pressure as dictated by the ideal gas law.  Additionally, an extra term is

included in the kinetic energy equation as noted in Section 4.1.2.  Both

simulations used the same set of boundary conditions.  It was found that

a higher pressure drop is needed at the major flow exit in order to

achieve close to 20% flow separation in the compressible calculation.
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Figure 6.14 shows the velocity magnitude contours in the midplane

cross-section, and Figure 6.15 is a vector plot of the flow past the

acceleration nozzle for simulation 3.  When compared to their

counterparts of simulation 1 (Figure 6.1 and 6.5), it is evident from the

contour values that the maximum velocity of the compressible flow is

approximately 100 m/s faster than that of the incompressible flow.  This

can be attributed to density variations that lead to more significant

pressure gradients.  The structure of the separation phenomenon in the

post nozzle region is similar to that of simulation 1, understandably,

because the k-epsilon model is used.  To further assess the predictions

of simulation 3, a series of profile plots are shown.  The expansion of the

gas into the major and minor flow is depicted in Figures 6.16 and 6.17,

respectively.  The dimensionless velocity profile in the throat section is

also computed, as before, and compared to that of simulation 1 in Figure

6.18.
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Figure 6.14: Midplane contours of velocity magnitude (m/s), simulation 3
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Figure 6.15: Mean velocity vectors (m/s), flow separation, simulation 3

Figure 6.16: Cross-stream velocity profile of exiting fluid, simulation 3
(locations shown in Figure 6.8)
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Figure 6.17: Streamwise velocity profile at nozzle and beyond, 
y=-W, y=-1.5W, y=-2W, simulation 1 (solid lines), simulation 3

(dashed lines) (locations shown in Figure 6.3)

128



Figure 6.18: Dimensionless streamwise velocity profile in throat,
simulation 1 (black), simulation 3 (red)

  The velocity profiles of the compressible flow clearly indicate the affinity

of the fluid to expand to a much higher velocity out of the accelerating

nozzle.  The separation or recirculation behavior into the major flow also

occurs at a much larger scale as can be seen by the relatively significant

backward motion (Figure 6.16), which will naturally contribute to a much

higher pressure drop.  A comprehensive contour plot of the magnitude of

velocity difference between the incompressible and compressible results

is shown in Figure 6.19, and a similar plot for the pressure difference in

Figure 6.20 for the virtual impaction region of Figure 5.2.
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Figure 6.19: Contours of the norm of velocity difference between the
predictions of simulations 1 and 3, scaled by Uavg

Figure 6.20: Contours of absolute pressure difference between the
predictions of simulations 1 and 3, scaled by Pabs of simulation 3

130



The contour plots clearly reveal the regions where compressibility plays a

prominent role.  It is evident that the fluid expansion right out of the

nozzle, and its divergence into the major flow constitute the fundamental

dynamics that influence the behavior of the fluid motion.  It is interesting

to see that the velocity and the pressure differences are correlated by the

same upper bound of 60 % at the aforementioned locations.  The actual

pressure variation will be shown in the next section using the data from

simulation 5.

6.1.3 Coarse vs. Fine Grid

  The refinement of the computational grid is expected to improve the

accuracy of the calculations, however, it should not alter the underlying

conclusions made about the flow behavior.  As shown in Table 5.1, the

separation ratio Qm/QT, does, however, increase from 16% to 22%.  To

support this argument, velocity profiles obtained for the compressible

flow numerical data of simulations 3 and 5 are compared.  Figure 6.21

shows the streamwise velocity profile in the throat (y=-W/2), while

Figure 6.22 presents the profile at the nozzle and virtual impaction zone

(see Figure 6.3).  Clearly, the first plot indicates an improvement in

resolving the flow close to the wall (first meshpoint at x+ ≈ 2.5).  The

second plot reveals the obvious similarity in the coarse and refined

solutions beyond the nozzle.
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  Figure 6.21: Dimensionless streamwise velocity profile in throat,
simulation 3 (red), simulation 5 (blue)

Figure 6.22: Streamwise velocity profile at nozzle and beyond, 
y=-W, y=-1.5W, y=-2W, simulation 3 (solid lines), simulation 5 (dashed

lines)
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The discrepancy in the magnitude of the dimensionless velocities of

Figure 6.21 is due to the different friction velocities used in the scaling.

The computed values of U are 28.36 and 21.82 m/s for simulation 3 and

5, respectively.  As expected, the refined grid calculation gives a smaller

friction velocity due to the shift of the first mesh point to a closer

position to the wall, thus, better estimating the velocity gradient.  On the

other hand, the differences in Figure 6.22 can be attributed to the change

in Qm/QT ratio from 0.16 for simulation 3 to 0.22 for simulation 5,

therefore, slightly increasing the velocity of the fluid into the minor flow,

despite the identical pressure boundary conditions.

  The expansion of the fluid to the peripheral outlet is depicted in Figure

6.23 for simulation 5.  The profiles at the three vertical cross-sections

(Figure 6.8) are very much similar to the ones shown in Figure 6.16,

judging by their shapes and  velocity scales. 
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Figure 6.23: Cross-stream velocity profile of exiting fluid, simulation 5

  The compressible flow pressure distribution is shown in Figures 6.24

and 6.25 using the numerical data obtained from simulation 5, since no

considerable differences were found to exist between the coarse and fine

mesh results.  As is the case in the incompressible flow simulation, the

variation of the pressure in the streamwise and cross-stream directions

is indicative of the compression and expansion phenomena experienced

by the fluid in the nozzle and post nozzle sections of the device.  The

pressure drop, however, is slightly higher in this case, approximately 0.4

bar, naturally due to the preset major flow boundary conditions.
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Figure 6.24: Absolute pressure as a function of streamwise distance from
nozzle at x=0, simulation 5 (insert shows pre-nozzle data)

Figure 6.25: Absolute pressure as a function of cross-stream distance,
midpoint of virtual impaction zone, simulation 5
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6.1.4 1st vs. 2nd Order Discretization

  The justification for going to a second order discretization lies in the

premise that first order discretization is prone to more numerical

diffusion, especially in flows with streamline curvature.  For this reason,

we compare the results of simulation 4 and 5 which were both conducted

using the same governing equations (compressible flow; Ҡ- turbulence

model), the same operating and boundary conditions, but with different

discretization schemes.  Initially, the goal of this study was purely

numerical, however as it turns out, the second order discretization

scheme does in fact capture some features of the flow that are missed by

the first order scheme, thus influencing the discrete phase results, as will

become evident in Section 6.2.

  The main focus of the comparison between the two simulations deals

with the solution predictions in the virtual impaction zone.  As done in

the previous sections, comprehensive contour plots of the differences in

solution variables will be presented.  To put the difference plots in

perspective, the actual contour plots are first addressed.  The velocity

contours are similar in appearance to those shown for simulation 3

(Figure 6.14) and will not be presented here.  That is, differences due to

grid density can not be distinguished from such a plot.  Figure 6.26

shows the turbulent kinetic energy, Figure 6.27 is the absolute pressure,

and Figure 6.28 is the temperature contours, for the numerical data of
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simulation 5.  The turbulent kinetic energy contour plot reveals the

region with the highest energy generation, which is in the shear layer at

the bottom walls of the nozzle.  The scale of energy generation appears

to be proportional to the square of the cross-stream velocity (≈ ½ U2
x).

The temperature contour plot shows the cooling of the fluid associated

with the high speed regions, as the fluid enters the throat, and as it is

carried into the major flow.  The temperature profile is further depicted

in Figures 6.29 and 6.30, which show the variation in the streamwise and

cross-stream directions, respectively.  The temperature profiles resemble

those of the pressure in Figures 6.24 and 6.25 because of the linear

relationship of the ideal gas law.
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Figure 6.26: Midplane contours of turbulent kinetic energy (m2/s2),
simulation 5 
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Figure 6.27: Midplane contours of absolute pressure (Pa), simulation 5 
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Figure 6.28: Midplane contours of temperature (oK), simulation 5 
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Figure 6.29: Temperature as a function of streamwise distance from
nozzle at x=0, simulation 5

Figure 6.30: Temperature as a function of cross-stream distance,
midpoint of virtual impaction zone, simulation 5
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  The following set of plots is that of the difference between the

predictions of a given quantity from the two simulations.  First, the norm

of the velocity difference between the 1st and 2nd order results, defined

as:

(6.2)

∣U1st−U2nd∣=∑
i=1

3

[Ui1
st−Ui2

nd]2 ,

is shown in Figure 6.31 for the virtual impaction zone (Figure 5.2).  The

contour plot remarkably shows the exact region where the 2nd order

discretization solution gives different velocity values than the 1st order

discretization solution.  The curved streamline region as the fluid exits

the nozzle is clearly where the two solutions conflict.  Judging by the

magnitude of the highest contour, however, the effect of the difference

on the total velocity is small.  The difference contour plots of absolute

pressure, temperature, and turbulent kinetic energy are shown in Figures

6.32, 6.33, and 6.34, respectively.  In this case, the contour values are

scaled by the actual value of the variable using simulation 4 results.

Figure 6.32 exhibits discrepancies in regions other than the curved

outflow region, which suggests that the pressure field is influenced by

the discretization scheme more than the mean velocity field, which is

known to be true in compressible flows. 
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Figure 6.31: Contours of the norm of velocity difference between the
predictions of simulations 4 and 5

    The temperature difference contour plot of Figure 6.33, exhibits low

contour values, indicating minimal offsets between the two solutions.

Finally, the turbulent kinetic energy difference contour plot in Figure 6.34

is reminiscent of that of the mean velocity, showing high contour values

in the curved streamline area, thus implying the close connection

between the computation of mean velocity and turbulent kinetic energy. 
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Figure 6.32: Contours of absolute pressure difference between the
predictions of simulations 4 and 5, scaled by Pabs of simulation 4

Figure 6.33: Contours of temperature difference between the predictions
of simulations 4 and 5, scaled by T of simulation 4
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Figure 6.34: Contours of turbulent kinetic energy difference between the
predictions of simulations 4 and 5, scaled by K of simulation 4

  The impact of the changes in the flow solution on the behavior of the

fluid motion may be hard to assess at this point just by looking at the

difference contour plots.  Nonetheless, it is evident that at least the mean

velocity and pressure field are altered by the higher order discretization

scheme.  The discrete phase results, in Section 6.2, will reveal the impact

of those changes on the performance of the device.

6.1.5 Motion of Fluid Particles

  In this section we present an overview of the effect that the different

simulation conditions have on the motion of fluid elements.  AeroTrack is

used to track massless fluid particles released at the exit of the
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accelerating nozzle of the device.  The trajectories of fluid points are

simply computed by integrating the mean velocity field using the

following differential equation:

(6.3)
d Xfp

dt
=U

where Xfp is the position vector of a fluid element.  The numerical scheme

is very much similar to the one used for tracking discrete particles, and is

explained in Chapter 4.  Figures 6.35-6.37 show the pathlines of 50 fluid

points released from a horizontal line spanning half the nozzle width,

using the flow field information of simulations 1, 2 and 5, respectively

(Table 5.1).  It is clear that the Reynolds stress model predicts

considerably different flow patterns than the k-epsilon model, primarily

in the initial stages of separation, as was seen in Section 6.1.1; and in the

expansion into the major flow as evident from the following pathline

figures. 
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Figure 6.35: Fluid pathlines for simulation 1, incompressible Ҡ- 
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Figure 6.36: Fluid pathlines for simulation 2, incompressible RSM
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Figure 6.37: Fluid pathlines for simulation 5, compressible Ҡ-

  To capture the quantitative aspects of the flow patterns, the residence

time, or the time taken by a fluid point to completely exit the device

(either into the major or minor flow) is recorded for each of the above

simulations.  Figure 6.38 shows the residence time of each fluid particle

divided by the mean nozzle time scale, nozzle = 0.5W/Uavg, versus the

dimensionless starting position of the particle.  
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Figure 6.38: Normalized residence time for nozzle fluid particles

  The plot is instrumental in revealing many key features of the flow

predicted by each simulation.  First, the plot decisively shows the cut-off

distance from the centerline of the device, beyond which the fluid is

bound to diverge into the major flow.  Evidently, fluid particles closer to

the center are destined to exit into the minor flow, at a much slower

pace, thus taking the longest time.  Inversely, fluid particles further away

from the centerline or closer to the nozzle wall, travel with much higher

velocities into the major flow, thus reducing their residence time.  It is
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interesting to note that simulations 2 and 5 slightly shift the cutoff

location to about 10% of the nozzle width, whereas simulation 1 and 4

predict a shorter cutoff.  This is naturally caused by the higher nozzle

velocities achieved by the former two simulations (2 and 5), as we saw in

the profile plots in the previous sections.  The plot is also indicative of

the relative velocity scales predicted by each simulation.  Surprisingly,

the incompressible Reynolds stress model, predicts the highest velocities

in the minor flow, judging by the data points before the cutoff.  For the

major flow fluid particles, it predicts comparable residence times to the

ones predicted by the compressible simulations.  The plot also reassures

that simulations 4 and 5 predict the same velocity field away from the

nozzle. 

6.1.6 Vorticity

  A brief comparison of the vorticity predictions is presented in this

section.  The discussion is limited to the data from simulations 2 and 5.

The aim is simply to provide a qualitative perception of the capacity of

two turbulence models with distinct levels of sophistication, in predicting

vorticity.  A quantitative comparison is not possible, since the two

simulations are computed on different meshes, and using different

discretization schemes. Figures 6.39 and 6.40 show the magnitude of

vorticity contours in the midplane of the device, for simulation 2 and 5,
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respectively.  The two figures are drawn with the same number of

contour levels and ranges, to facilitate the comparison.  It appears that

the two models agree with respect to the level of vorticity generation at

the bottom wall of the virtual impaction zone.  They both appear to

capture relatively high vorticity in the curved flow stream leaving the

nozzle.  The k-epsilon model, however, predicts magnitudes that are in

excess of those shown on the RSM plot, in addition to the discrepancy

near the top wall.  This is consistent with the location of the large vortex

seen in the velocity vector plots of the k-epsilon model.
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Figure 6.39: Contours of vorticity magnitude (1/s), midplane, simulation
2, incompressible RSM
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Figure 6.40: Contours of vorticity magnitude (1/s), midplane, simulation
5, compressible Ҡ-
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6.1.7 Summary

  The highlights of the preceding sections of Chapter 6 are the

comparisons among the numerical results of the different simulations of

the virtual impactor.  The primary parameters or models that constitute

the distinct simulations are (see Table 5.1): (1) turbulence model, (2)

compressibility, (3) grid resolution, and (4) discretization scheme.  

  We have found that for an incompressible flow simulation, the Ҡ-

turbulence model, when compared to the Reynolds stress model, predicts

quite different re-circulation and expansion patterns in the outflow

region of the virtual impaction zone.  

  The compressible flow simulation was only conducted using the Ҡ-

model, which when compared to the incompressible flow results of the

same model, revealed similar separation phenomena but at a much

higher velocity scale.  The mean velocity and pressure differences

between the two types of simulations are both 60% higher than the

incompressible flow Ҡ- predictions.

  The analysis of the results on the finer gird, showed that for the same

set of boundary conditions, the quality of the computational grid

influences the value of the flow separation ratio Qm/QT, however, it does

not significantly alter the behavior of velocity or pressure profiles.

  Lastly, we have found that the second order discretization scheme is

critically essential for accurate mean velocity and turbulent kinetic energy
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predictions in the curvature region of the flow, and generally important

for pressure and temperature everywhere.

6.2 The Discrete Phase Results 

  The motion of discrete particles, or particles with finite mass, is

analyzed in this section.  As mentioned before, the particle diameter

range of interest is between 0.1 and 0.4 m.  The goal of computing the

trajectories of finite size particles is to assess the performance of the

device in collecting or separating particles with a given diameter.  Several

key parameters predispose the accuracy of the particle tracking

calculations.  We already considered some of these influencing

parameters, namely the drag coefficient, and the numerical algorithms.

Needless to say, the underlying fluid velocity field plays the biggest role.

In this section, a detailed discussion of the key parameters that

determine the motion of particles is presented.  The collection efficiency

and wall loss curves are the primary means of analyzing the results.

Secondary, is the analysis of individual particle paths, and the monitoring

of flow variables, such as slip velocity and residence time.  

  The influence of the drag law models presented in Section 4.2.2 will

also be discussed in this section.  We have seen that the drag coefficient

in the particle equation of motion can take several forms, which are

essentially dependent on the governing flow dynamics.  Table 6.1
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summarizes the different drag coefficient models that will be considered

in the analysis of the discrete phase results.

Drag Law # Name Formula

1 Incompressible or
Nonlinear

Equation (4.2.10)

2
Stokes-Cunningham with

constant Cc
Equation (4.2.6)

3 Stokes-Cunningham with
pressure dependent Cc 

Equation (4.2.6)+(4.2.8)

4 Compressible Equation (4.2.9)

  Table 6.1: Summary of drag coefficient models

6.2.1 Incompressible Flow Field

  The performance of the device is first classified within the context of

the incompressible flow field predictions.  This will allow us to assess the

impact that the two turbulence models of simulation 1 and 2 (see Table

5.1) have on the mean particle motion, as well as provide insight into the

effect of turbulent particle dispersion.  The calculations are carried out

using FLUENTTM under the guidelines established in Sections 5.2.1 and

5.2.2.  Figures 6.41-6.42 are the outcome of a study to determine the

appropriate drag coefficient for the incompressible flow field.  The

particle trajectories are first computed using the non-linear drag

formulation (drag law 1), relying solely on the mean velocity field.  The

calculation is repeated using the Stokes-Cunningham drag coefficient

with a constant slip correction factor Cc (drag law 2), evaluated at
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entrance pressure conditions.  

Figure 6.41: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 2 (red), drag law 1 (black) – simulation 1 – mean fluid

velocity tracking
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Figure 6.42: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 2 (blue), drag law 1 (black) – simulation 2 – mean fluid

velocity tracking

It is evident that the nonlinear drag coefficient is not suitable for the

particles in the studied range.  The efficiency curve is greatly shifted to

the right, and the 50% cutpoint diameter is pushed further away from the

experimental value (dp 50 = 0.12 m), which means that more particles

are going into the major flow.  The reason for this decadence can be

drawn from Figures 4.1 and 4.2.  The nonlinear drag coefficient

overpredicts the drag force on the sub-micron particles, thus forcing

them to closely follow the fluid into the major flow, and hence reduce
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their collection in the minor flow.

  The particle data from simulation 1 and 2 are plotted on the same

graph in Figure 6.43, in an effort to evaluate the effect of the mean flow

field of each turbulence model on the efficiency curve and wall losses. 

Figure 6.43: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 2, simulation 1 (red), simulation 2 (blue) - mean fluid

velocity tracking

The efficiency curve naturally benefits from the slightly higher minor-to-

total flow ratio in simulation 2 (see Table 5.1), and is consequently

shifted to the left of the curve given by simulation 1.  It is hard to say at
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this point, how much of this increase in collection efficiency is due to the

Qm/QT ratio, and how much of it is due to the differences in the flow

structure predicted by each simulation.  This issue will be further

addressed later when we consider the data from simulation 5 which has

flow features similar to those of simulation 2, particularly for the velocity

magnitudes in the virtual impaction zone.  The impact on the wall losses

is more pronounced since, despite the shift in the location of the peak,

the losses are much higher in the Reynolds stress model simulation,

reaching a maximum of 30%, as opposed to the 20% peak value given by

the Ҡ- simulation.  Recall that the source of wall losses in the virtual

impactor is the particles that collect on the inner surfaces of the device.

In the current investigation, as mentioned in Section 3.5, we  assume that

an encounter between a particle and a wall terminates the particle's

flight.  The question whether this is realistic requires an incorporation of

deposition models, and accurate experimental results. 

  The validity of the stochastic approach to simulate turbulent particle

dispersion is queried using the flow field information of simulation 1 and

2.  Figures 6.44 and 6.45 show the efficiency and wall loss curves

generated by tracking particles using the Random Walk Model (Section

4.2.3) in each of the aforementioned simulations.  The curves generated

by the mean fluid velocity tracking are also re-drawn for comparison.

Undoubtedly, the inadequacy of the stochastic approach in the Ҡ- model
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is exposed in Figure 6.44.  The stochastic efficiency curve is extremely

low compared to the mean velocity curve, and the wall losses are

unrealistic, with values much higher than the collection efficiency itself.

This fallacy is believed to be due to two basic reasons: (i) the assumption

of isotropy is invalid, and (ii) the turbulent kinetic energy predictions are

possibly unphysical.  Judging by the plot of the Reynolds stress model in

Figure 6.45, which depicts reasonable offsets for the stochastic efficiency

and losses relative to the mean velocity curve, it appears that more

weight should be given to the isotropy assumption, because it is the

fundamental difference between the way the two models produce

turbulent fluid velocity fluctuations.  The issue of judging the turbulent

kinetic energy levels, is considered by looking at the contours of the

turbulent kinetic energy.  A comprehensive contour plot for each of the

Ҡ- and Reynolds stress models is shown in Figures 6.46 and 6.47,

respectively.  As seen from the figures, the turbulent kinetic energy

contours of the Ҡ- model are significantly more intense than those of

the RSM.  Figure 6.46 is reminiscent of Figure 6.26 which was shown for

the compressible Ҡ- model, but with lower values for the turbulent

kinetic energy due to the lower velocity scales in the incompressible

simulation.  Apparently, the Ҡ- model predicts the highest levels of

turbulent kinetic energy at the side walls of the inlet to the collection

nozzle.   
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Figure 6.44: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 2, mean fluid velocity tracking (red), stochastic tracking

(green), simulation 1 - Ҡ-

Figure 6.45: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 2, mean fluid velocity tracking (blue), stochastic tracking

(green), simulation 2 – RSM
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Figure 6.46: Midplane contours of turbulent kinetic energy (m2/s2),
simulation 1 - incompressible Ҡ-
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Figure 6.47: Midplane contours of turbulent kinetic energy (m2/s2),
simulation 2 - incompressible RSM
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  In addition, a considerable  amount of turbulent kinetic energy is

present in the accelerating nozzle, and in the virtual impaction zone.  A

quantitative assessment of the discrepancy in the turbulent kinetic

energy predictions of each model is obtained by looking at the difference

norm defined below:

(6.4)
∣TKE Ҡ−TKE RSM∣.

A difference contour plot is shown in Figure 6.48, for the virtual

impaction region (see Figure 5.2).  It appears that most of the

discrepancy lies near the bottom walls of the nozzle. The Ҡ- model

gives turbulent kinetic energy values that are 60% higher than those

calculated by the Reynolds stress model.  The differences, however, go

down away from the bottom wall, to about 20 to 30% as the fluid exits

into the major flow.  This observation, was also confirmed by monitoring

the number of particles that impact the nozzle walls, and it was

expectedly higher in the Ҡ- stochastic tracking simulation.  Despite the

turbulent kinetic energy deviations between the two models, it is still

believed that the isotropy assumption is the most decapitating

disadvantage of the Ҡ- random walk model.  A comparison between the

turbulent viscosity contours (not shown here) of each model shows

comparable predictions.  In fact, the highest turbulent-to-molecular

viscosity ratios are of the order 102, and are associated with the fluid
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near the bottom of the cone-inlet as it accelerates into the throat.  To

fully settle this problem, it would be beneficial to conduct particle

tracking calculations in a Ҡ- simulation using a more sophisticated

stochastic technique, like the use of Lagrangian correlations with non-

isotropic second moments [9], however, this is not currently feasible in

FLUENTTM, and was not implemented in AeroTrack.  Another simpler

approach that can slightly improve on the total isotropy assumption of

the Ҡ- stochastic model is the use of the turbulent viscosity and the

Boussinesq hypothesis of Equation (4.1.9).  However, it is not very

accurate especially that in a turbulent channel flow where the only mean

velocity gradient is normal to the wall, the full equation will still predict

an isotropic spectrum of normal stresses, which is known to be

unphysical [22].   

  On the other hand, the results of the stochastic Reynolds stress model

of Figure 6.45, despite their agreement with the mean fluid velocity

curve, do not necessarily represent the physical effect of turbulence on

the efficiency and wall loss curve.  In the lack of experimental fluid flow

data, it is hard to affirm the turbulent kinetic energy predictions of the

RSM.  Granted there is some turbulent kinetic energy generation in the

flow field of the this model, the effect of turbulent fluctuations is

manifested as a slight reduction in the collection efficiency of particles in

the higher range of diameters, and a general increase in wall losses. 
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Figure 6.48: Contours of the turbulent kinetic energy difference between
the predictions of simulations 1 and 2, scaled by ½ U2

avg

6.2.2 Compressible Flow Field

  The effect of the compressible flow field is investigated in this section.

For the reasons discussed above, the efficiency and wall loss curves

presented hereinafter all rely on particle tracking using the mean fluid

velocity.  Computations conducted in FLUENTTM as well as AeroTrack will

be discussed, and other models for the drag coefficient will be used.

  The flow field information from simulation 4 is first used to compare

between the particle tracking calculations of FLUENTTM and AeroTrack.

The computations are conducted using the same drag law with the same

number of particles, starting from the same initial conditions, and
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advanced in time by the same stepping technique described in Section

5.2.1.  Figure 6.49 shows the efficiency and wall losses curve obtained by

this study. 

Figure 6.49: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 2, AeroTrack (red), FLUENT (black) – simulation 4

The two tracking routines appear to match almost perfectly for this

particular case, especially in the outcome of the efficiency curve.  The

wall losses, however, are in disagreement for most of the larger particle

sizes, deviating most at the peak value.  To further understand the effect

of the particle tracking numerical scheme, a similar calculation is done

using the flow field of simulation 5.  Figure 6.50 shows the result of such

a run.
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Figure 6.50: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 2, AeroTrack (red), FLUENT (black) – simulation 5

   

The discrepancies in this case are much more pronounced, resulting in a

shift in the efficiency curve, as well as some major differences in the wall

loss values computed by each program.  In addition, the curves

computed by either program are not the same between simulation 4 and

5, as illustrated in Figure 6.51, which shows the AeroTrack results.
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Figure 6.51: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 2, AeroTrack, simulation 4 (red), simulation 5 (blue) 

  Before we consider the causes of the difference between the discrete

phase results obtained using the two flow field solutions, an explanation

of the differences between the results of FLUENTTM and AeroTrack is

sought.  We shall focus our attention on simulation 5 data, since it

displayed more pronounced dissimilarities.  The paths for particles with

diameters equal to 0.10, 0.25 and 0.40 m, computed by each algorithm,

are compared in Figures 6.52-6.54, respectively.  The particles are

released from the same location near the top inlet of the device.  The

motion of the particles in the cone and throat section of the device is
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predicted identically by the two algorithms.  As the particles exit the

acceleration nozzle into the high speed virtual impaction zone,

differences are observed in the particle paths.

Figure 6.52: 0.10 m particle path, drag law 2, AeroTrack (blue), FLUENT
(red), simulation 5
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Figure 6.53: 0.25 m particle path, drag law 2, AeroTrack (blue), FLUENT
(red), simulation 5
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Figure 6.54: 0.40 m particle path, drag law 2, AeroTrack (blue), FLUENT
(red), simulation 5

Recall that the two programs differ in the integration scheme, and in the

interpolation of the fluid velocity to the particle position.  In order to

convey the root of the disagreement between the two programs, despite

the use of the same time stepping technique, we present a series of plots
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that show the particle velocity, and particle travel time.  Figures 6.55-

6.57 show the components of particle velocity as a function of residence

time for the 0.10 m particle path given in Figure 6.52.  At time zero the

particle starts at the top cone inlet, and gradually experiences an

increase in velocity (Figure 6.56).  Approximately 6e-05 seconds later,

the particle reaches the farthest point down into the virtual impaction

zone (lower apex of Figure 6.55) before it starts to deflect sideways into

the major flow, thus increasing its cross-stream velocity.  Figure 6.58 is

a plot of the time step values computed by each program along the

aforementioned path.  

   Figure 6.55: 0.10 m particle cross-stream velocity, AeroTrack (blue),
FLUENT (red), path shown partially in Figure 6.52
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Figure 6.56: 0.10 m particle streamwise velocity, AeroTrack (blue),
FLUENT (red), path shown partially in Figure 6.52

Figure 6.57: 0.10 m particle spanwise velocity, AeroTrack (blue),
FLUENT (red), path shown partially in Figure 6.52
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Figure 6.58: 0.10 m particle time steps, AeroTrack (blue), FLUENT (red)
path shown partially in Figure 6.52

The dynamic time stepping equation in Section 5.2.1, relates the time,

length, and velocity scales by:

(6.5)

 t=
L

∣UpU∣
.

Since the two programs utilize the same L value, and compute identical

particle velocities (Figures 6.55-6.57), it is clear that the fewer number of

time steps taken by the FLUENT tracking program (Figure 6.58) is due to

the difference in interpolating the fluid velocity.  The same stance is

applicable to the other particle paths.  Here, we only show the time steps
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plot for the 0.4 m particle path in Figure 6.59.

  Figure 6.59: 0.4 m particle time steps, AeroTrack (blue), FLUENT (red),
path shown partially in Figure 6.54

The time steps plots are useful in revealing the rate of change of the

dynamic time step t.  It is evident that both programs depict time

stepping profiles consistent with the flow dynamics.  That is, initially the

velocities in the inlet cone are small, so the t values are high until the

particle reaches the virtual impaction zone.  Here, the velocities are high,

so the t values begin to increment very slowly as seen in the plateau

regions of Figures 6.58 and 6.59.  There is, however, a significant

178



difference in the rate of change of t as computed by each program

(slope of the time curves).  It seems that AeroTrack requires twice as

many time steps to arrive at the same final residence time.  Clearly,

FLUENTTM has the advantage of rapidly calculating the overall path, but

that makes it susceptible to producing quite large t values, thus

running the risk of “skipping over” some important features of this

rapidly changing flow field.  Of course, a counter argument may suggest

reducing the fixed length step L.  However, this can result in excessive

or redundant interpolation calls, especially if the grid size is significantly

larger than L.  Albeit, one is still faced with incrementing the numerical

error by resorting to linear interpolation.  The issue of “skipping over” is

most crucial near a solid boundary, and if t is large close to the wall,

then most likely the particle motion in such a region, and consequently

the wall losses, will not be predicted accurately.  Furthermore, since

FLUENT's linear interpolation relies solely on one nearest Eulerian

meshpoint as opposed to the collection of scattered points utilized by

AeroTrack's interpolation scheme, the particle is more susceptible to

experience discontinuities in the fluid velocity in the former method

(node values at the wall carry a zero velocity).  Based on the findings

presented here, on the theoretical results of Section 4.2.4b, and on the

interpolation tests of Section 5.2.3, the remaining work in this study will

only consider discrete phase results computed by AeroTrack.  It will focus
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on a comparison of different drag laws, most of which are not available in

the FLUENTTM program.  

6.2.3 The Drag Coefficient Revisited

  In the previous sections, we adopted the Stokes-Cunningham drag law

(drag law 2 in Table 6.1) to account for “slip” on the sub-micron

particles.  In this section, we investigate the assumption of the constant

slip correction factor incorporated into the aforementioned model.

Moreover, the compressible form of the drag coefficient is assessed.  The

particle Reynolds and Mach numbers are two critical quantities that

project the influence of the slip velocity, and compressibility.  Figures

6.60 to 6.62 show the variation of these two dimensionless variables

along the paths of three particles of size 0.10, 0.25, and 0.40 m,

respectively.  Although the paths were computed using the mean velocity

field of simulation 4, they are very much similar to the ones shown in

Figures 6.52 to 6.54, starting from the same initial position. The plots

are labeled with the locations in the device where those quantities exhibit

peak values.  The two quantities are linearly related due to the constant

physical properties used in their respective definitions (Section 4.2.1).

Not surprisingly, the regions where the most slip occurs are at the

entrance of the throat, at the acceleration nozzle, and at the crucial

moment when the particle makes the turn to either the major or minor
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flow, which is referred to as Virtual Impaction (VI).  What is surprising

however, is the scale of the slip velocity, which yields unimaginably high

particle Reynolds numbers that are in excess of unity for the larger

particles.  The relative Mach numbers are also high, and well into the

realm of compressible particle-fluid flow.  Further insight into the effect

of inertia can be gained by looking at Figure 6.63, which shows the

dimensionless vertical position of the particles as a function of travel

time, and can be used as an indicator of the locations of the peaks in the

Rep and Mar plots.  It is evident that the particle experiences a range of

slip conditions during its flight, and undoubtedly reaches high enough

relative velocities to enter into the compressible regime.  The magnitude

of the fluid velocity, as well as that of the particle along its traveled path,

is shown in Figures 6.64 and 6.65 for the 0.25 and 0.40 m particle,

respectively.  The magnitudes are non-dimensionalized by the speed of

sound at ambient conditions (v sound = 331.4 m/s).  The smaller particle

reaches a Mach number close to one at the exit of the acceleration nozzle

and as it is ejected into the major flow.  The larger particle only reaches

the Mach one condition at the nozzle exit, before it goes into the

relatively stagnant minor flow.
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  Figure 6.60: Dimensionless slip velocity as a function of time, 0.10 m
particle, drag law 2 - simulation 4

Figure 6.61: Dimensionless slip velocity as a function of time, 0.25 m
particle, drag law 2 - simulation 4
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 Figure 6.62: Dimensionless slip velocity as a function of time, 0.40 m
particle, drag law 2 - simulation 4

Figure 6.63: Dimensionless particle descent as a function of time, 0.10,
0.25, and 0.40 m particle, respectively.  drag law 2 - simulation 4 
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Figure 6.64: Fluid velocity (black) and 0.25 m particle velocity (red) 
drag law 2 - simulation 4

Figure 6.65: Fluid velocity (black) and 0.40 m particle velocity (red) 
drag law 2 - simulation 4
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6.2.3a More Realistic Models for the Drag Coefficient 

  Based on the discovered compressibility conditions, the compressible

form of the drag coefficient is employed (drag law 4), and a new

efficiency and wall loss curves are generated.  Furthermore, another form

of the Stokes-Cunningham law is investigated by allowing the slip

correction factor Cc to vary based on the surrounding pressure field (drag

law 3) (see Table 6.1).  Figure 6.66 compares the predicted performance

curves for the three drag laws: Stokes-Cunningham (#2), Stokes-

Cunningham with a pressure dependent Cc (#3), and the compressible

drag coefficient (#4) using the flow field information of simulation 4.

Clearly, the two new formulations of the drag coefficient alter the

efficiency curve by shifting it to the right.  In other words, the collection

efficiency of larger particles is reduced.  This indicates that the particles

are more closely following the fluid for drag law 3 and 4, thus collecting

less in the minor flow.  The increased drag on the particles can also be

concluded from Figure 4.2 which re-enforces the fact that the traditional

Stokes-Cunningham law gives lower drag coefficient values at relative

Mach numbers greater than 0.1 than the compressible law.  We have

demonstrated above that the particles do in fact encounter relatively

higher Mach number conditions (Figures 6.61-6.62).  The adequacy of

the compressible drag coefficient is further emphasized when we

compare the performance curves of simulation 4 and 5, in Figure 6.67.
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In reference to Figure 6.51, the efficiency curves given by the Stokes-

Cunningham drag law contradict what is known experimentally about the

effect of the minor-to-total flow ratio.  The slightly higher Qm/QT ratio of

simulation 5 ought to enhance the collection efficiency and reduce the

wall losses.  This behavior is certainly not depicted in Figure 6.51.

However, it is visibly the case in Figure 6.67.  As mentioned before, the

flow fields of the two simulations are minimally variant, so the outcome

of the efficiency curve should not be expected to differ significantly.

Fortunately, the use of the compressible drag coefficient model was able

to confirm this principle, while the traditional Stokes-Cunningham law

could not.

Figure 6.66: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 2 (red), drag law 3 (blue), drag law 4 (green)–simulation 4
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Figure 6.67: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 4, simulation 4 (red), simulation 5 (blue) 

Figure 6.68: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 3, simulation 4 (orange), simulation 5 (green)
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  The other alternative drag coefficient model, namely the pressure

dependent form of the Stokes-Cunningham law (drag law 3), appears to

produce quite viable results.  The proper influence of the Qm/QT ratio is

predicted correctly, as shown in Figure 6.68.  The collection efficiency

and wall losses are reasonably in agreement with those of the

compressible drag coefficient, as shown in Figure 6.69.  The emergence

of this formulation as a superior substitute to the original formulation

(drag law 2) is surely demonstrated.  After all, keeping the slip correction

factor constant is an assumption that is not universally valid for all types

of flows.  On the other hand, the question of whether this formulation or

the compressible one is superior is not currently addressable, due to the

lack of reliable experimental evidence. 
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Figure 6.69: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 4 (red), drag law 3 (blue), simulation 5 

6.2.4 Incompressible vs. Compressible Flow

  In this section we further analyze the influence of the predicted fluid

velocity field on the particle trajectories, and on the efficiency and wall

loss curves.  The two most prominent candidates for this task are the

results of simulations 2 and 5 of Table 5.1.  The Reynolds stress model

demonstrated interesting flow features that were absent from the

incompressible Ҡ- model simulation, and it appeared to allow the fluid

to flow at comparable velocities to the compressible simulation.  The two
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simulations attained equal flow separation ratios, Qm/QT = 22%, and

exhibited comparable fluid residence times (Figure 6.38).  To obtain a

general view of a characteristic particle motion, Figures 6.70 to 6.72

display the paths undertaken by particles of size 0.10, 0.25 and 0.30 m,

respectively, released from the same location near the inlet of the device,

and tracked on the two mean flow fields using the pressure dependent

Stokes-Cunningham drag coefficient (drag law 3).

Figure 6.70: 0.10 m particle path, simulation 2 (red), simulation 5
(green), drag law 3
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Figure 6.71: 0.25 m particle path, simulation 2 (red), simulation 5
(green), drag law 3
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Figure 6.72: 0.30 m particle path, simulation 2 (red), simulation 5
(green), drag law 3

The motion in the entrance cone section (not shown) is identically

predicted for the two flow fields, until the particle reaches the throat,

where there is an unsubstantial mismatch due primarily to the difference

in the fluid velocity profile in the throat.  Notably, the deflection into the
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major flow is very much alike for the all three particles, despite the

discrepancy in the final fate of the largest particle.  The fact that

simulation 5 forces the 0.30 m particle to hit the collection nozzle wall,

whereas simulation 2 allows it to continue onto the major flow, can be

attributed to numerical error due to the coarseness of the grid in the

latter simulation.  Nonetheless, the two velocity fields seem to have a

comparable influence on the particle motion, and hence are expected to

yield not so different efficiency curves.  In fact, the outcome of tracking

the entire sample of particle sizes is shown in Figure 6.73.  The improved

collection efficiency of simulation 5 is naturally due to the higher

velocities. The wall losses are in disagreement, primarily because of

differences in the flow structure, and possibly because of the numerical

error associated with interpolating on a coarser grid.  Yet they are still

within reasonable limits.  Finally, similar to the analysis done for the

motion of fluid elements from the nozzle in Section 6.1.5, Figure 6.74

presents the normalized residence time in each flow field calculation for

a sample of 50 particles with three characteristic particle sizes of

diameter 0.10, 0.25 and 0.40 m released from the exit of the

accelerating nozzle.  The graphs are labeled from top to bottom with the

the particle size and corresponding square-root Stokes number. 
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Figure 6.73: Collection efficiency (solid lines), and wall loss (dashed
lines), drag law 3, simulation 2 (blue), simulation 5 (red)
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Figure 6.74: Normalized residence time for discrete nozzle particles, drag
law 3, simulation 2 (blue), simulation 5 (red), 

The residence time plot provides a definitive account of the flow

dynamics in the virtual impaction zone.  First, it is evident that the effect

of fluid motion on the particle motion, as predicted by either simulation,

is invariant for small particles (St1/2 ≈ 0.35).  In comparison to the motion

of fluid points in Figure 6.38, the cutoff distance, which marks the

distance from the center of the nozzle beyond which the particles are

bound to deflect into the major flow, is shifted further away from the 10%

position observed for fluid particles.  For the medium size particles (St1/2

195



≈ 0.66), the flow patterns are different for particles entering the virtual

impaction zone between 15 to 20% of the nozzle width.  It is clear that

the flow field of simulation 5 will extend the cutoff distance for these

particles beyond that of simulation 2, thus enhancing their collection

efficiency.  This occurs at the expense of a wall loss, as seen from the

“lonely” particle with the smallest residence time in the middle plot.  This

observation is also conspicuous in Figure 6.73 which shows higher

collection efficiency and losses for the 0.25 m particle diameter.  For

the largest particles (St1/2 ≈ 0.97), the two flow fields predict quite

distant cutoff distances.  However, they both yield equivalent collection

efficiencies (Figure 6.73, 100% data points).  The losses are higher in the

Reynolds stress model simulation, which is indicated by the larger

number of particles with relatively shorter residence times.  The issue of

the losses can be further clarified by looking at the particle trajectories of

0.40 m particles shown in Figures 6.75 and 6.76.  The former figure

reveals that the particles in the collection nozzle closer to the wall have

the tendency to move upwards, therefore, hitting the side walls more

often.  In addition, theres seems to be an accumulation of particles near

the lower boundary of the impaction zone, which also contributes to

higher losses in the Reynolds stress model simulation.    
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Figure 6.75: 0.40 m particle paths from nozzle, simulation 2, drag law 3

Figure 6.76: 0.40 m particle paths from nozzle, simulation 5, drag law 3

197



6.2.5 Comparison with Experiment 

 The lack of reliable experimental data makes the validation of the

numerical results a difficult task.  Despite the existence of preliminary

collection efficiency and wall loss data from the Sioutas' experiments [3],

his claim of a 0.12 m cutpoint was criticized within the aerosol

community as being low [48], and his findings were never reproduced in

a subsequent scientific publication.  In fact, a recent study by Ding and

Koutrakis [49] suggests quite different behavior for the efficiency and

wall loss curves.

  The following facts about virtual impactors were demonstrated in this

research; across all the physically realistic computations:

1. The collection efficiency curve exhibits a steep slope at high enough

Reynolds number conditions (transition to turbulent regimes).

2. Increasing the minor-to-total flow ratio enhances the collection

efficiency and reduces the wall losses.

3. The wall losses curve shows a local maximum at a particle size

corresponding approximately to the 50% cutpoint.

4. The peak value of the particle losses lies between 20% to 30% for a

virtual impactor with similar geometrical and dynamical conditions

[15,49]. 

  To compare the model predictions to literature data, the discrete phase

results from the compressible mean fluid velocity tracking calculation
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(Figure 6.67; simulation 5) are plotted versus St1/2 in Figure 6.77.  This

particular simulation was chosen since it possesses the most accurate

numerical components (fine gird, 2nd order discretization), and employs a

realistic model for the drag coefficient.

Figure 6.77: Collection efficiency (solid line), and wall loss (dashed line)
vs. St50

1/2, drag law 4, simulation 5

The above plot indicates that the 50% cutpoint Stokes number is between

0.66 and 0.71.  The 50% cutpoint diameter, dp 50, is between 0.250 and

0.275 m.  The St50
1/2 is in good agreement with the reported values of
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Ding and Koutrakis [49] who performed experiments on a geometrically

equivalent impactor (W = 0.305 cm, W1 = 0.427 cm, T = 0.330 cm, and S

= 0.457 cm).  Their values are 0.71 and 0.68 for nozzle Reynolds

numbers of 6160 and 10,2̡20 (based on hydraulic diameter)

corresponding to a total flow rate of 30 LPM and 50 LPM, respectively.

The minor-to-total flow ratio was 10%.  Recall that the Reynolds number

in simulation 5 is 9169, and Qm/QT is 22%.  Ding and Koutrakis also

report a St50
1/2equal to 0.47 at 20% flow separation but at a Reynolds

number of 10,̡220.  Granted that the simulation Reynolds number is less

than this value, we expect the St50
1/2 to be slightly higher.  For

completeness, the experimental data of Sioutas is shown in Figure 6.78,

along with the numerical results of simulation 5 as presented in Figure

6.69.  Aside from the obvious shift in the 50% cutpoint, it seems that the

experimental curves do not capture the trends established in the

literature; namely the steepness of the efficiency curve for larger

particles, and the formation of a peak in the wall losses curve.  On the

other hand, the simulation results depict the proper shape for both

curves, and quantitatively capture the upper bound of the wall losses

peak.   Further insight into the influence of the Reynolds number, and the

shape of the efficiency curve is given in Figure 6.79, which shows the

experimental data of Ding and Koutrakis.  In addition, the typical

behavior of the wall loss curve can be seen in Figure 6.80 at increasing
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values of the minor-to-total flow ratio.

  Figure 6.78: Collection efficiency (solid lines), and wall loss (dashed
lines), Experiment [3] (black), drag law 4 (red), drag law 3 (blue),

simulation 5 

  The experimental results of Figure 6.79 clearly show the expected

steepness of the efficiency curve.  As Re increases, the cutpoint size

decreases, and the particle collection efficiency increases.  The curves

show that the 50% cutpoint particle diameter decreases from 5.8 m at

Re = 1500, to 1.8 m at Re = 15,0̡00.  The impact of the Reynolds

number on the square-root of the Stokes number, however, is minimal.  
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Figure 6.79: Effect of Re on the collection efficiency of a slit virtual
impactor from Ding and Koutrakis [49]

Figure 6.80: Effect of Qm/QT (≡r) on the particle losses in a slit virtual
impactor at QT = 50 LPM from Ding and Koutrakis [49]
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This can be explained by the fact that the average nozzle velocity used in

the calculation of the Stokes number is also increased.  It should be

noted that the length scale used in the calculation of the Reynolds

number in the experiments [49] is based on the nozzle width W, whereas

in the simulation we use 2W to be consistent with the hydraulic diameter

definition.  The hydraulic diameter of the slit studied by Ding and

Koutrakis is approximately 1.4W. 

  With respect to wall loss, Figure 6.80 shows a decrease in the observed

peak as the minor-to-total flow ratio is increased.  For ratios between 10

to 20%, the peak value lies between 20 to 30%, and the curve exhibits a

sharp decrease in the wall losses beyond the 50% cutpoint. 

  In summary, judging by the more recent and more admissible

experimental results of Ding and Koutrakis [49] on a large cutoff virtual

impactor, the data from Sioutas [3] can be criticized on two grounds.  We

already alluded to the steepness of the efficiency curve which is missing

from the Sioutas plot.  In addition, the asymptotic behavior towards 100%

collection efficiency at increasing particle size, shown in the Ding and

Koutrakis experiments and in the simulations, is not shown in the

Sioutas experiment.  Lastly, there is a paramount discrepancy in the

particle loss data.  The more recent experiments, the simulations, and

the virtual impactor literature all agree on the appearance of a zenith in

the losses curve.  
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6.2.6 Summary

  The particle tracking results using the incompressible flow simulations

revealed the inadequacy of the nonlinear model of the drag coefficient

(Table 6.1) for the sub-micron particles of interest to this study.  The

model predicted relatively high cutpoint diameters, and low particle

losses.  In addition, the incompressible Reynolds stress model along with

the Stokes-Cunningham drag law gave more realistic predictions for the

efficiency and wall loss curves than the incompressible Ҡ- model.

  The stochastic particle tracking results exposed the incapacity of the

isotropic assumption for the fluctuating fluid velocity components to

predict realistic behaviors for the efficiency and wall loss curves.  This is

an indication of the non-isotropic character of the flow.  On the other

hand, the Reynolds stress model treatment of the fluctuating fluid

velocity components resulted in minimal differences between the

stochastic and mean fluid velocity tracking results.  This is most likely

caused by low levels of turbulent kinetic energy predictions.

  A comparison between the results of the AeroTrack particle tracking

algorithm and those of FLUENTTM revealed the need for a conservative

selection of the integration and interpolation scheme to produce small

enough time steps that can resolve the rapidly changing flow features.

  Furthermore, it was determined that compressibility plays a role in the

governing dynamics of the flow.  This was shown by monitoring the
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relative Mach number along characteristic particle paths.  For this reason,

more realistic models for the drag coefficient were adopted (drag law 3

and 4 in Table 6.1), and consequently, the correct influence of the flow

separation ratio on the efficiency and wall loss curves was predicted.     

  Lastly, a comparison between the improved numerical results and the

experimental data in the literature was presented.  The numerical results

show that the 50% cutpoint diameter is higher than the reported

experimental value for the same virtual impactor, under the same flow

conditions.  Moreover, the particle losses are in disagreement.  A

comparison with a more recent experiment, however, performed on a

geometrically similar virtual impactor (comparable aspect ratios)

highlights key similarities in the steepness of the efficiency curve, and

the shape of the wall loss curve.
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Chapter 7

Conclusions and Recommendations

  This thesis presented the results of simulations to assess the

performance of a low cutpoint, high sampling flow rate aerosol virtual

impactor.  The device has very small physical dimensions which makes it

suitable as a portable “personal” aerosol sampler.  Virtual impactors are

ideal for collecting and concentrating particulate mass from the

atmosphere, since they allow the particles to remain airborne and retain

their physical properties.  The virtual impactor studied in this research is

capable of separating particles in the sub-micron diameter range, thus

making it indispensable for human health studies concerned with the

effects of inhalable fine particle matter (dp ≤ 2.5 m).

  A two tier approach was undertaken to study the flow dynamics and

performance of the virtual impactor.  The first step was the prediction of

the carrier phase fluid flow field influenced by turbulence.  The second

was the decoupled prediction of discrete spherical particle motion as

governed by the fluid drag force.  For the former task, a number of

incompressible and compressible flow simulations with distinct

turbulence models were employed.  For the latter task, two particle

tracking algorithms with varying degrees of accuracy were engaged, and

a number of drag law models were exploited.
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7.1 Summary

  From the numerical analysis of Chapter 5, we have found that a

significant number of iterations is required to dampen the numerical

error across all the fluid flow simulations of Table 5.1.  The highest

iteration error was of the order 10-2.  It was found that a second order

discretization scheme is more appropriate for this curved streamline flow

since it reduced the iteration error by more than one half.  Chapter 5 also

dealt with the accuracy of the interpolation scheme implemented in the

AeroTrack particle tracking code.   The scheme was subjected to a

number of interpolation tests to gauge its performance.  The results

indicate that the method is third order accurate, but computationally

expensive, compared to second order accurate but fast linear

interpolation.

  The main findings of Chapter 6 lie in the comparison between the

incompressible standard Ҡ- turbulence model, the Reynolds stress

model, and the compressible Ҡ- model.  First, the mean velocity field

predictions for the incompressible Ҡ- and RSM are quite distinct

particularly in the virtual impaction region (Figure 5.2), which exhibits

expansion and recirculation phenomena.  The more robust Reynolds

stress model predicts a recirculation vortex of a smaller length scale than

that of the Ҡ- model (Figure 6.6), and an expansion profile with a higher

maximum velocity (Figure 6.10).  This undoubtedly influences the
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particle motion, and thus the efficiency and wall loss curves.  The

compressibility effect, on the other hand, is observed as an increase in

the flow velocities and pressure drop (from 0.3 to 0.4 bar across the

nozzle).  The mean flow structures, however, remained similar to those of

the incompressible Ҡ- model (Section 6.1.2).  

  The motion of fluid elements in the incompressible Reynolds stress

model simulation, and in the compressible Ҡ- model simulation showed

that the residence time of fluid points entering the virtual impaction zone

are comparable (Figure 6.38).  Therefore, those two particular

simulations were later used to study in detail the motion of discrete

particles (Section 6.2.4).

7.2 Conclusions

  The work in this thesis exposed the inadequacy of the stochastic Ҡ-

model in capturing particle dispersion, simply because the turbulence

isotropy assumption is too crude to produce any meaningful results.

When the random walk technique was used with the Reynolds stress

model however, consistent predictions for the efficiency and wall loss

curves resulted.  This was partly due to the non-isotropic nature of the

normal stresses, and partly because the turbulent kinetic energy levels

were much lower than those predicted by the Ҡ- model.  The stochastic
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approach for modeling turbulent dispersion was not explored any

further, and was not implemented in the developed particle tracking

code, because of evidence in the literature which suggests that such

schemes produce nonzero divergence velocity fields [50].  

  The characteristics of the physics involved in a particle-fluid motion

were studied in this thesis.  It was shown that particles with certain

diameters (0.2 to 0.4 m) experience a range of flow regimes that can

significantly affect the mode of interaction between the particle and the

fluid.  Of particular interest is the magnitude of the slip velocity, which

dictates the scales of the particle Reynolds and Mach numbers.  It was

found that the compressible form of the drag law, and the Stokes-

Cunningham drag law with a pressure dependent slip correction factor,

are more suitable for particle tracking calculations under the flow

conditions of this virtual impactor.  

  The analysis of the performance of the virtual impactor, and the

comparison with experimental data was done in the context of the

compressible Ҡ- model (simulation 5 in Table 5.1).  This particular

simulation, other than possessing the most accurate numerical

components (fine grid, 2nd order discretization), gave the lowest 50%

cutpoint diameter, approximately 0.25 m (Figure 6.73).  Despite the

disagreement between this simulation's predictions and the reported
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experimental value of 0.12 m (Figure 6.78), the simulation's efficiency

and wall loss curves are in agreement with classical trends.   

7.3 Recommendations

  To eliminate any uncertainties about the turbulent flow field prediction,

and to minimize modelling errors, a better approach than RANS, that will

be pursued in the future is Large Eddy Simulation (LES).  In LES, the

three-dimensional time dependent details of the large scales of motion

are directly resolved on the numerical grid by solving the filtered Navier-

Stokes equations, while the small turbulent scales (sub-grid), which are

typically believed to be independent of the overall flow geometry, are

modeled.  This approach has been proven to work well for predicting

particle dispersion in one-way coupled flows [10,36].

  Future work will investigate enhancements to the AeroTrack code, with

particular focus on algorithms that reduce the computational cost, and

perhaps parallelization.  The algorithm proposed here, for applying the

multi-variate scattered point interpolation scheme to a CFD simulation,

requires further analysis of the most influencing parameters.  This study

was mainly concerned with accomplishing a working version rather than

optimization.  

  Future work is needed to assess the validity of the classical particle

equation of motion when the underlying dimensionless quantities (Rep
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and Mar) exceed the assumed limits.  Furthermore, future work should be

concerned with sharply resolving the flow structures near solid

boundaries, and the inclusion of other dominant terms in the particle

equation of motion, such as the lift force and Brownian diffusion.   
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Appendix A

Solution of the Particle ODE

  The vector of unknowns in Equation (4.2.21) is taken as:

(A-1)

y = X1p   
U1p

X2p

U2p

X3p

U3p

where (X1p, X2p, X3p) and (U1p,U2p,U3p) are the position and velocity vectors

of a particle in the Cartesian coordinate system, respectively.

The system of ordinary differential equations becomes:

(A-2)
dy1

dt
=y2

(A-3)
dy2

dt
=1

U1−y2

(A-4)
dy3

dt
=y4

(A-5)
dy4

dt
=1

U2−y4

(A-6)
dy5

dt
=y6

(A-7)
dy6

dt
=1

U3−y6
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Applying Equation (4.2.23) to each of the above differential equations,

yields:

(A-8)

yn1
1 −yn

1−
 t
2

[yn
2yn1

2 ]=0

(A-9)

yn1
2 −yn

2−
 t
2 [1 U1−yn

21

U1−yn1

2 ]=0

(A-10)

yn1
3 −yn

3−
 t
2

[yn
4yn1

4 ]=0

(A-11)

yn1
4 −yn

4−
 t
2 [1 U2−yn

41

U2−yn1

4 ]=0

(A-12)

yn1
5 −yn

5−
 t
2

[yn
6yn1

6 ]=0

(A-13)

yn1
6 −yn

6−
 t
2 [1 U3−yn

61

U3−yn1

6 ]=0

where the fluid velocity values U1, U2, and U3 are only interpolated at the

iteration step n.  This is sufficiently accurate granted a small value for t

is used.  Therefore, the problem reduces to finding the root of the

function: 

(A-14)

Fyn1=0

Using the truncated Taylor series expansion, Newton's method iterates

starting from an initial guess, y0
n+1, taken to be the solution of the ODE

from a Forward Euler scheme.  The convergence criteria for Newton's

method is met when either the L2-norm of the vector satisfies the
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tolerance condition: ∣yn1∣≤∣yn1
0 ∣ where =1.0e−6 , or when the loop

exceeds 32 iterations.  The latter condition, it was observed, rarely

occurred and the method converged in two iterations at each time step.

  Finally, the Jacobian matrix was hard-coded, and can be easily shown to

be as such:

J = 1 -t/2 0 0 0 0

0 1+t/(2) 0 0 0 0

0 0 1 -t/2 0 0

0 0 0 1+t/(2) 0 0

0 0 0 0 1 -t/2

0 0 0 0 0 1+t/(2)
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Appendix B

Solution of the Least Squares in 2D

  The residual sum can be written as:

(B-1)

R2= ∑
i=1, i≠k

N

ixk , ykEik
2

where

Eik=ck1xi−xk
2ck2xi−xkyi−ykck3yi−yk

2ck4xi−xkck5yi−yk
fk−f i

The condition for R2 to be a minimum is that its partial derivatives are

zero (it is easily shown that the second derivatives are positive).

Dropping the scripts on the summation sign, we write:

∂R2

∂ck1

=2∑iEikxi−xk
2=0    (B-2)

∂R2

∂ck2

=2∑iEik xi−xkyi−yk=0    (B-3)

∂R2

∂ck3

=2∑iEik yi−yk
2=0    (B-4)

∂R2

∂ck4

=2∑iEik xi−xk=0    (B-5)

∂R2

∂ck5

=2∑iEik yi−yk=0    (B-6)

Substituting Eik in Equations (B-2) to (B-6), we get:
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(B-7)
ck1∑ixi−xk

4ck2∑ixi−xk
3yi−ykck3∑ixi−xk

2yi−yk
2

ck4∑ixi−xk
3ck5∑ixi−xk

2yi−yk=∑if i−fkxi−xk
2

(B-8)
ck1∑ixi−xk

3yi−ykck2∑ixi−xk
2yi−yk

2ck3∑ixi−xkyi−yk
3

ck4∑ixi−xk
2yi−ykck5∑ixi−xkyi−yk

2

=∑if i−fkxi−xkyi−yk

(B-9)
ck1∑ixi−xk

2yi−yk
2ck2∑ixi−xkyi−yk

3ck3∑iyi−yk
4

ck4∑ixi−xkyi−yk
2ck5∑iyi−yk

3=∑if i−fkyi−yk
2

(B-10)
ck1∑ixi−xk

3ck2∑ixi−xk
2yi−ykck3∑ixi−xky i−yk

2

ck4∑ixi−xk
2ck5∑ixi−xkyi−yk=∑if i−fkxi−xk

(B-11)
ck1∑ixi−xk

2yi−ykck2∑ixi−xkyi−yk
2ck3∑iyi−yk

3

ck4∑ixi−xkyi−ykck5∑iyi−yk
2=∑if i−fkyi−yk

In matrix form:

Ac = b

where A is a 5x5 matrix whose rows are the coefficient summations for

each of Equations (B-7) to (B-11), b is a column vector whose rows are

the right hand sides of the equations, and c is the column vector:

        ck1

        ck2

c =   ck3

        ck4

        ck5

The solution to the linear system is obtained by Singular Value

Decomposition using the LAPACK driver routine sgelss [45]. 
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Appendix C

Solution of the Least Squares in 3D

  The residual sum can be written as:

(C-1)

R2= ∑
i=1, i≠k

N

ixk , yk ,zkEik
2

where

Eik=ck1dx2ck2dxdyck3dy2ck4dxdzck5dydzck6dz2ck7dxck8dy
ck9dzfk−f i

such that dx=xi−xk , dy=yi−yk , dz=zi−zk

The condition for R2 to be a minimum is that its partial derivatives are

zero (it is easily shown that the second derivatives are positive).

Dropping the scripts on the summation sign, we write:

∂R2

∂ck1

=2∑iEikxi−xk
2=0   (C-2)

∂R2

∂ck2

=2∑iEik xi−xkyi−yk=0   (C-3)

∂R2

∂ck3

=2∑iEik yi−yk
2=0   (C-4)

∂R2

∂ck4

=2∑iEik xi−xkzi−zk=0   (C-5)

∂R2

∂ck5

=2∑iEik yi−ykzi−zk=0   (C-6)
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∂R2

∂ck6

=2∑iEikzi−zk
2=0   (C-7)

∂R2

∂ck7

=2∑iEik xi−xk=0   (C-8)

∂R2

∂ck8

=2∑iEik yi−yk=0   (C-9)

∂R2

∂ck9

=2∑iEik zi−zk=0 (C-10)

Substituting Eik in Equations (C-2) to (C-10), we get:

(C-11)
ck1∑idx4ck2∑idx3dyck3∑idx2dy2ck4∑idx3dz

ck5∑idx2dydzck6∑idx2dz2ck7∑idx3ck8∑idx2dy

ck9∑idx2dz=∑if i−fkdx2

(C-12)
ck1∑idx3dyck2∑idx2dy2ck3∑idxdy3ck4∑idx2dydz

ck5∑idxdy2dzck6∑idxdydz2ck7∑idx2dyck8∑idxdy2

ck9∑idxdydz=∑if i−fkdxdy

(C-13)
ck1∑idx2dy2ck2∑idxdy3ck3∑idy4ck4∑idxdy2dz

ck5∑idy3dzck6∑idy2dz2ck7∑idxdy2ck8∑idy3

ck9∑idy2dz=∑if i−fkdy2

(C-14)
ck1∑idx3dzck2∑idx2dydzck3∑idxdy2dzck4∑idx2dz2

ck5∑idxdydz2ck6∑idxdz3ck7∑idx2dzck8∑idxdydz

ck9∑idxdz2=∑if i−fkdxdz

(C-15)
ck1∑idx2dydzck2∑idxdy2dzck3∑idy3dzck4∑idxdydz2

ck5∑idy2dz2ck6∑idydz3ck7∑idxdydzck8∑idy2dz

ck9∑idydz2=∑if i−fkdydz
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(C-16)
ck1∑idx2dz2ck2∑idxdydz2ck3∑idy2dz2ck4∑idxdz3

ck5∑idydz3ck6∑idz4ck7∑idxdz2ck8∑idydz2

ck9∑idz3=∑if i−fkdz2

(C-17)
ck1∑idx3ck2∑idx2dyck3∑idxdy2ck4∑idx2dz

ck5∑idxdydzck6∑idxdz2ck7∑idx2ck8∑idxdy

ck9∑idxdz=∑if i−fkdx

(C-18)
ck1∑idx2dyck2∑idxdy2ck3∑idy3ck4∑idxdydz

ck5∑idy2dzck6∑idydz2ck7∑idxdyck8∑idy2

ck9∑idydz=∑if i−fkdy

(C-19)
ck1∑idx2dzck2∑idxdydzck3∑idy2dzck4∑idxdz2

ck5∑idydz2ck6∑idz3ck7∑idxdzck8∑idydz

ck9∑idz2=∑if i−fkdz

In matrix form:

Ac = b

where A is a 9x9 matrix whose rows are the coefficient summations for

each of Equations (C-11) to (C-19), b is a column vector whose rows are

the right hand sides of the equations, and c is the column vector:  

        ck1

        ck2

        ck3

        ck4

c =   ck5

        ck6

        ck7

        ck8

        ck9
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The solution to the linear system is obtained by Singular Value

Decomposition using the LAPACK driver routine sgelss [45]. 
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