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Let E m be the family of elliptic curves given by yˆ2=xˆ3-x+mˆ2, which

has rank 2 when regarded as an elliptic curve over Q(m). (Here Q represents

the field of rational numbers.) Brown and Myers show that a certain quadratic

polynomial m(t) has the property that E m(t) contains an additional rational

point that is independent from the two original generators. This implies that

there are infinitely many rational numbers n such that E n(Q) has rank at least

3. We generalize this result, showing that every nonzero rational number n has

the property that E n sits inside such a subfamily of rank 3. Moreover, given

any rational point P in E n, there exists a quadratic polynomial m(t) and a

Q(t)-point R(t) in E m(t) that is independent from the original generators, such

that the specialization to t=0 gives m(0)=n and R(0)=P. Such subfamilies can

be intersected to increase the rank, demonstrating the existence of a rational



subfamily of rank 4 over Q(t), and infinitely many rational numbers n such that

E n(Q) has rank at least 5. Shioda’s theory of Mordell-Weil lattices is used to find

the generators of such E m(t) over both Qbar(t) and Q(t) in these cases. (Here

Qbar represents the algebraic closure of Q.) All quadratic polynomials m(t) are

classified by whether or not E m(t) contains an additional rational point of low

degree. Results similar to these are also obtained for other families of elliptic

curves.



RATIONAL POINTS ON SOME FAMILIES OF ELLIPTIC CURVES

by

Edward Vincent Eikenberg

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:

Professor Lawrence C. Washington, Chairman/Advisor
Professor William Adams
Professor William Gasarch
Professor Niranjan Ramachandran
Professor James Schafer



c© Copyright by

Edward Vincent Eikenberg

2004



DEDICATION

To my parents: Thank you for all the love and support that you have

given me. You made this possible.

ii



ACKNOWLEDGEMENTS

A project of this magnitude could not have been completed with-

out help from many different people. Of course the most significant

contribution came from my advisor Larry Washington in the form

of advice and guidance on this project. Bud Brown is responsible

for giving me a fresh outlook and planting the seed for this project.

Invaluable guidance and support also came from Jim Schatz, Moss

Sweedler, Charlie Toll and Jacquie Holmgren. Thank you all so much

for your help. Also, this would not have been possible without the

constant support of my parents, family, and friends.

iii



TABLE OF CONTENTS

List of Tables vi

1 Introduction 1

1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of Primary Results . . . . . . . . . . . . . . . . . . . . 3

1.3 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background Material 7

2.1 The Canonical Height Pairing . . . . . . . . . . . . . . . . . . . . 7

2.2 Elliptic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Rational Elliptic Surfaces . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Results For Specific Rational Elliptic Surfaces . . . . . . . . . . . 14

2.5 Independence of Points . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Lifting Q-points to Q(t)-points 20

3.1 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 An Example of a Lift . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Finding Another Lift . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Generalizing the Lift . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Subfamilies of Higher Rank . . . . . . . . . . . . . . . . . . . . . 29

iv



4 Classifying Subfamilies of Em by Rank 34

4.1 Parameterizing Points on Em . . . . . . . . . . . . . . . . . . . . 34

4.2 Quadratic Subfamilies of Rank 3 . . . . . . . . . . . . . . . . . . . 36

4.3 Classifying Quadratic Subfamilies By Rank . . . . . . . . . . . . . 39

4.4 Cubic Subfamilies . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Lifts In Another Family 54

5.1 Generators for Cm . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Lifting A Point On Cm . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Parameterizing Points on Cm . . . . . . . . . . . . . . . . . . . . 60

5.4 Generalizing the Lift . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Subfamilies of Higher Rank . . . . . . . . . . . . . . . . . . . . . 65

6 A Double Lift 70

6.1 A New Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Finding a Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A Rank of Em(Q) for m = 1, . . . , 500 74

B Rank of Cm(Q) for m = 1, . . . , 500 76

v



LIST OF TABLES

1.1 Classification of Em by Rank for m = 1, . . . , 500 . . . . . . . . . . 2

2.1 Classification of singular fibers . . . . . . . . . . . . . . . . . . . . 15

3.1 Lifts of the point (−3,−1) on E5 . . . . . . . . . . . . . . . . . . 25

4.1 Points of Minimal Norm on Em1(t)

(

Q(t)
)

(see Theorem 4.3.1) . . . 42

5.1 Minimal Points on Cm : y2 = x3 − m2x + 1 . . . . . . . . . . . . . 55

5.2 Classification of Cm by Rank for m = 1, . . . , 500 . . . . . . . . . . 56

5.3 Lifts of the point (12, 31) on C8 . . . . . . . . . . . . . . . . . . . 59

5.4 Lifts of P4, P5 and P6 on C61 . . . . . . . . . . . . . . . . . . . . . 66

6.1 Lifts of the point (−7, 35) on D14 . . . . . . . . . . . . . . . . . . 72

vi



Chapter 1: Introduction

1.1 History

Elliptic curves are among the most fascinating and widely studied objects in

modern mathematics. The first recorded appearance of an elliptic curve traces

back to Diophantus in his book “Arithmetica,” where he was looking for points

on the elliptic curve (in a slightly different form):

y2 = x3 − x + 9.

Using the modern theory of elliptic curves, it is straightforward to show that the

group of rational points on this curve has rank 2 and trivial torsion subgroup,

generated by the points (0, 3) and (1, 3). This curve sits inside the family Em of

elliptic curves given by

Em : y2 = x3 − x + m2. (1.1)

This relatively simple equation has some obvious solutions for every value of m,

including P = (0, m) and Q = (1, m). Viewing Em as an elliptic curve defined

over the function field Q(m), these become points in the group Em

(

Q(m)
)

. Since

Em is a rational elliptic surface, [Shi3] implies that the points P and Q generate

Em

(

Q(m)
)

(see Theorem 2.4.1). In fact, since the generators are both contained

in Q(m), it follows that P and Q generate Em(Q(m)).
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Table 1.1: Classification of Em by Rank for m = 1, . . . , 500

Rank First few m where Em has this rank #m ≤ 500

1 1 1

2 2, 3, 4, 6, 9, 10, 18, 21, 26, 30, . . . 125

3 5, 7, 8, 11, 12, 13, 14, 15, 16, 17, . . . 240

4 24, 25, 27, 31, 36, 41, 46, 58, 61, 63, . . . 112

5 113, 127, 163, 176, 181, 209, 215, 245, 283, 317, . . . 21

6 337, . . . 1

Brown and Myers [BM] also study this family of elliptic curves, noting that

for many integer values of m, the rank of Em(Q) is often much higher than 2.

For example, m = 765617 gives an elliptic curve of rank at least 10. Table 1.1

lists some small positive integer values of m by the corresponding rank of Em(Q),

as well as a count of how many integers m from 1 to 500 have Em(Q) of a given

rank. See Appendix A for more details. Since the rank of Em

(

Q(m)
)

is 2, one

would expect that the rank of Em0(Q) would be 2 or 3 for most values of m0 ∈ Q.

Note the surprisingly large number of rank 4 curves here.

In addition, Brown and Myers prove that there are infinitely many values of m

such that Em(Q) has rank at least 3. More specifically, if m(t) = 54t2−165t−90,

then the subfamily Em(t)(Q(t)) contains the additional point R = (36t+17, 54t2+

267t + 114), which is independent from P and Q for all but finitely many values

of t ∈ Q. This can be viewed as a “lift” of the point (17, 114) ∈ E90(Q), as this

is the point obtained when specializing to t = 0. (Note that the curves E−90 and

E90 are the same.)
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1.2 Summary of Primary Results

Chapter 3 of this paper generalizes the above result of Brown and Myers. A

general criterion for lifting points on Em is presented (see Theorem 3.4.1). In

particular,

Theorem 1.2.1. For any m0 ∈ Q with m0 6= 0 and any point (p, q) ∈ Em0(Q),

there exists a quadratic polynomial m(t) with m(0) = m0 and a point R(t) with

R(0) = (p, q) such that P = (0, m(t)), Q = (1, m(t)) and R(t) are independent

points in Em(t)(Q(t)).

This implies that for every rational m0 6= 0, the curve Em0 is a member of a

quadratic subfamily which has rank 3, even if Em0(Q) has rank less than 3. For

example, the curve E1, which only has rank 1, is contained in such a family. If

m1(t) = t2 − 3t + 1, then the points

P = (0, m1(t))

Q = (1, m1(t))

R(t) = (2t − 1, t2 + t − 1)

are independent in the group Em1(t)(Q(t)), despite the fact that specializing to

t = 0 gives the curve E1 of rank 1. Here, R(t) is a lift of the point R(0) = (−1,−1)

on the curve E1.

The ideal use of Theorem 1.2.1 would be to apply this simultaneously to

several different points on Em(Q) which are known to be independent. If the

resulting lifts mi(t) are all the same, then Emi(t)(Q(t)) would have high rank.

However, this does not seem to be the case in practice. The next best thing is to

set these mi(t) equal to each other and find the intersection. The intersection of
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two quadratic functions is a conic section, and all rational solutions can be pa-

rameterized by a rational function. The intersection of three quadratic functions

is actually an elliptic curve [W, pp. 39-41]. If this curve has positive rank, then

there are infinitely many points in the intersection. Using this process we get the

following results:

Theorem 1.2.2. There exists a rational function m(t) ∈ Q(t) such that the

group Em(t)(Q(t)) has rank at least 4.

Theorem 1.2.3. There exist infinitely many values of m ∈ Q such that Em(Q)

has rank at least 5. These m can be parameterized by points on an elliptic curve

with positive rank.

For the most part, the results in this paper deal with rational elliptic surfaces

(see Chapter 2). Oguiso and Shioda [OS] have classified rational elliptic surfaces

over an algebraically closed field by the type of lattice associated to the Mordell–

Weil group. For example, the following is a corollary of their work.

Theorem 1.2.4. If m(t) ∈ Q[t] is a quadratic polynomial, then Em(t)

(

Q(t)
)

has

rank 6.

This only gives an upper bound on the rank over Q(t). In Chapter 4, quadratic

subfamilies of Em that contain additional rational generators are found, thus

giving higher rank over Q(t).

Theorem 1.2.5. Let m(t) ∈ Q[t] be a quadratic polynomial, and suppose that a

linear shift of t can change m(t) into one of the following for some c ∈ Q:

m1(t) = ct2 −
64c4 + 1

64c3

m2(t) = ct2 −
16c4 − 24c2 + 1

64c3
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m3(t) = ct2 −
16c4 + 24c2 + 1

64c3

Then Em(t)(Q(t)) has rank 3.

Explicit generators over Q(t) are given for this group, where three of the

independent generators are defined over Q(t) and the other three lie over a finite

extension K(t). We use this to deduce that the rank of Em(t)Q(t) is exactly 3 in

these cases. On the other hand, if m(t) does not fit the criteria of Theorem 1.2.5,

then we conjecture that there should be only 2 independent rational generators.

Conjecture 1.2.6. Let m(t) ∈ Q[t] be a quadratic polynomial. Then the rank

of Em(t)(Q(t)) is either 2 or 3. The rank is 3 if and only if m(t) meets the criteria

of Theorem 1.2.5.

In addition, cubic subfamilies of Em are examined, as these are still rational

elliptic surfaces. Criteria for generating cubic subfamilies of rank at least 3 are

given in Section 4.4.

1.3 Additional Results

The process of lifting points is not restricted to the family Em. Let Cm be the

family of elliptic curves given by

Cm : y2 = x3 − m2x + 1

Then Cm(Q(m)) has rank 3 generated by the points (0, 1), (m, 1) and (−1, m).

The lifting process for a specific point like (12, 31) ∈ C8(Q) works in exactly the

same manner as it did for Em. However, the computations to perform this lift in

general (like Theorem 1.2.1 for Em) are too large for Pari to handle.
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Conjecture 1.3.1. Let m0 ∈ Q with m0 6= 0 and let (p, q) ∈ Cm(Q). Then

there exists a quadratic polynomial M(t) such that M(0) = m0, and a point

R(t) ∈ CM(t)(Q(t)) such that R(0) = (p, q), where the points P1 = (0, 1), P2 =

(M(t), 1), P3 = (−1, M(t)) and R(t) are independent in the group CM(t)(Q(t)).

Even though the above conjecture could not be resolved, we are able to lift

specific points. Thus lifts of several points on the same curve can be intersected

to generate a subfamily of higher rank.

Theorem 1.3.2. There exists a rational function m(t) ∈ Q(t) such that the

group Cm(t)(Q(t)) has rank at least 5.

Theorem 1.3.3. There exist infinitely many values of m ∈ Q such that Cm(Q)

has rank at least 6. These m can be parameterized by points on an elliptic curve

with positive rank.

In Chapter 6, a lift on the curve Dm : y2 = x3 −m2x + m2 is examined. This

family of curves provides a unique result, as one specific lift actually increases

the rank by 2. We have the following:

Theorem 1.3.4. The Mordell–Weil group Dm

(

Q(m)
)

has rank 2 with trivial

torsion subgroup, generated by the points P = (m, m) and Q = (0, m).

Theorem 1.3.5. There exists a quadratic polynomial m(t) such that Dm(t)(Q(t))

contains four independent points. Two of these points can be chosen as lifts of

the point (−7, 35) ∈ D14(Q). In particular, these points generate a subgroup of

finite index in Dm(t)(Q(t)).

This result gives a double lift of the point (−7, 35). The results for Em and

Cm above only increase the rank by 1, whereas this increases the rank by 2.
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Chapter 2: Background Material

2.1 The Canonical Height Pairing

Let E be an elliptic curve defined over Q. Then the canonical height of a point

P ∈ E(Q) is defined as

ĥ(P ) =
1

2
lim

n→∞

1

4n
hx([2

n]P )

where hx is the logarithmic height of the x-coordinate. Among the properties of

this height function are

• ĥ(P ) ≥ 0 for any P ∈ E(Q), and ĥ(P ) = 0 if and only if P ∈ E(Q)tors.

• ĥ(kP ) = k2ĥ(P ) for any k ∈ Z and any P ∈ E(Q).

• ĥ(P + Q) + ĥ(P − Q) = 2ĥ(P ) + 2ĥ(Q) for any P, Q ∈ E(Q).

• For any constant c, the number of points P ∈ E(Q) such that ĥ(P ) < c is

finite.

In addition, the canonical height gives a bilinear pairing on E(Q) called the

canonical height pairing (or Néron–Tate height pairing):

〈P, Q〉 = ĥ(P + Q) − ĥ(P ) − ĥ(Q).

This height pairing can be used to determine whether or not a set of points in

E(Q) are independent.

7



Theorem 2.1.1. Let E be an elliptic curve defined over Q and P1, . . . , Pn ∈

E(Q). Then these points are independent if the n × n determinant

det
(

〈Pi, Pj〉
)

6= 0.

Proof: Suppose that the points are dependent, so there exists a relation of the

form a1P1 + · · · + anPn = ∞ where the ai ∈ Z are not all 0. Without loss of

generality, suppose that a1 6= 0. Since the height pairing is bilinear, a1 times the

first row can be written as a linear combination of the other rows, making the

determinant be 0. �

The matrix
(

〈Pi, Pj〉
)

is referred to as the height matrix. This result is used

freely throughout the paper.

2.2 Elliptic Surfaces

Let k be an algebraically closed field, let C be a smooth projective curve defined

over k, and let K = k(C) be the function field of C. An elliptic surface S over

the curve C is a smooth projective surface along with a morphism f : S → C

which has the following properties:

1. almost all fibers Fv = f−1(v) are elliptic curves,

2. no fiber contains an exceptional curve with self intersection number −1,

3. f has a global section O : C → S called the zero section, and

4. at least one fiber of f is singular.

8



Property 2 is a minimality condition, and property 4 implies that the discriminant

is non-constant. The section O corresponds to the point at infinity on each fiber.

Given irreducible curves Γ1 and Γ2 on S which intersect transversally, we

define Γ1 ·Γ2 to be the number of points where Γ1 and Γ2 intersect. This definition

can be extended to the entire group Div(S) of divisors on S by the following:

Theorem 2.2.1. [Sil2, p. 233], [H, p. 367] There is a unique symmetric bilinear

pairing

Div(S) × Div(S) −→ Z, (D1, D2) 7−→ D1 · D2,

with the following two properties:

(i) If Γ1 and Γ2 are irreducible curves on S that meet everywhere transversally,

then Γ1 · Γ2 = #(Γ1 ∩ Γ2).

(ii) If D, D1, D2 ∈ Div(S) are divisors with D1 ∼ D2, then D · D1 = D · D2.

(Here ∼ represents algebraic equivalence of divisors).

The Néron-Severi group NS(S) is defined as the group of divisors on S modulo

algebraic equivalence. This is a finitely generated group. By property (ii) above,

the intersection pairing on Div(S) is well-defined on NS(S). Thus NS(S) has

the structure of a finite dimensional lattice.

The elliptic surface S can be viewed as an elliptic curve E over K = k(C) with

identity element O. A point P ∈ E(K) corresponds to a section σP : C → S. We

use the notation (P ) to refer to the divisor class of the section σP . To simplify

the notation for the pairing defined in Theorem 2.2.1, we use (PQ) to mean
(

(P ) · (Q)
)

for any points P, Q ∈ E(K) and similar notation for any fibers Fv.

Lemma 2.2.2. Let P ∈ E(K) and let Fv be any fiber of f : S → C. Then we

have

9



(a) (PFv) = (OFv) = 1

(b) (FvFv′) = (Fv
2) = 0.

Proof: It is fairly obvious that any fiber Fv intersects a section in a unique

point by evaluating the section at v. This proves (a). If v 6= v ′ in C, then

clearly Fv and Fv′ are disjoint. Also, since all fibers are algebraically equivalent,

(FvFv′) = (Fv
2), which completes the proof. �

Part (a) of this Lemma implies that for any P ∈ E(K), the divisor (P )− (O)

is orthogonal to any fiber Fv. However, some fibers may be reducible, and there

may be fibral divisors which are not orthogonal to (P ) − (O). Let R = {v ∈

C | Fv is reducible}, and for each v ∈ R let

Fv = f−1(v) = Θv,0 +
mv−1
∑

i=1

µv,iΘv,i (2.1)

where mv is the number of irreducible components of Fv, Θv,0 is the unique irre-

ducible component which intersects the zero section O, and Θv,i are the remaining

irreducible components for 1 ≤ i ≤ mv − 1.

Given a point P ∈ E(K), there exists a fibral divisor ΦP ∈ Div(S) ⊗ Q such

that the divisor

DP = (P ) − (O) + ΦP (2.2)

satisfies DP · F = 0 for all fibral divisors F ∈ Div(S) [Sil2, p. 240]. This allows

for the definition of a pairing on E(K), which gives E(K)/E(K)tor the structure

of a positive-definite lattice.

Theorem 2.2.3 (Manin). The pairing

〈 · , · 〉 : E(K) × E(K) −→ Q 〈P, Q〉 = −DP · DQ.

10



has the following two properties:

(a) 〈 · , · 〉 is bilinear.

(b) 〈P, P 〉 = h(P ) + O(1) for all P ∈ E(K), where h(P ) = h(xP ) is the degree

of the map xP : C → P1.

In addition, this pairing agrees with the canonical height pairing, so for all P ∈

E(K) we have ĥ(P ) = 1
2
〈P, P 〉 ∈ Q.

Let T be the sublattice of NS(S) generated by (O), any fiber (F ), and Θv,i

for all v ∈ R and 1 ≤ i ≤ mv − 1. The rank of T is given by

rk(T ) = 2 +
∑

v∈R

(mv − 1). (2.3)

The map

φ : E(K) −→ NS(S)/T P 7−→ (P ) mod T (2.4)

is an isomorphism. Thus if the rank of NS(S) is known, the structure of reducible

fibers Fv determines the rank of E(K).

2.3 Rational Elliptic Surfaces

For the purposes of this paper, we are mostly concerned with the case where S is

a rational elliptic surface, so we take k = Q and C = P1, which makes K = Q(t).

Equivalently, the associated elliptic curve E(K) can be put in short Weierstrass

normal form:

y2 = x3 + a(t)x + b(t),

where deg(a) ≤ 4 and deg(b) ≤ 6, and the discriminant ∆ 6∈ Q. In this form,

the section O corresponds to the point ∞ ∈ E(K). Now the Néron-Severi group

11



NS(S) is unimodular and has rank 10. Together with (2.3) and (2.4) above, this

implies that

rk(E(K)) = rk(NS(S)) − rk(T )

= 8 −
∑

v∈R

(mv − 1). (2.5)

All rational elliptic surfaces can now be classified according to the lattice

structure of E(K), which depends on the structure of the singular fibers. This

classification is carried out in [OS]. Shioda [Shi2] shows that NS(S)/〈(O), (F )〉 '

E8 and that all possible lattices that occur are sublattices of E8. In particular,

the largest possible rank for E(K) is 8, and this only occurs when all singular

fibers of S have Kodaira type I1, indicating that they have only one irreducible

component. We state what happens in the E8 case explicitly.

Theorem 2.3.1. If S is a rational elliptic surface where all singular fibers have

only one irreducible component, then the Mordell–Weil lattice of the associated

elliptic curve E(K) is of type E8. This lattice has rank 8, and there are 240

vectors of minimal norm 2 which generate the lattice. These correspond to 240

points (x(t), y(t)) ∈ E(K) where deg(x) ≤ 2 and deg(y) ≤ 3, and these points

generate the group E(K).

Sketch of Proof: From (2.5), if all singular fibers of S have only one ir-

reducible component, then rk(E(K)) = 8. In this case, T = 〈(O), (F )〉 and

E(K) ' NS(S)/T ' E8.

Since all fibers of S have only one irreducible component, we can take

DP = (P ) − (O) and ΦP = 0.

12



by Lemma 2.2.2. This gives

〈P, P 〉 = −(DP · DP )

= −
(

(P ) − (O)
)

·
(

(P ) − (O)
)

= −(PP ) − (OO) + 2(PO)

= 2 + 2(PO).

Here we have used the fact that (PP ) = −χ, where χ is the arithmetic genus of

S. In the case where S is a rational elliptic surface, we have χ = 1. Thus 〈P, P 〉

is a positive even integer for all P ∈ E(K), which corresponds to the fact that

E8 is a positive-definite even unimodular lattice.

It is well known [CS, pp. 120-121] that E8 has 240 minimal vectors of length

2. These minimal vectors are the points in E(K) with minimal norm. Suppose

that P = (x(t), y(t)) ∈ E(K) has minimal norm 2. Then (PO) = 0, so P =

(x(t), y(t)) cannot intersect the O section for any t ∈ P1. Using the fact that the

O section is “at infinity,” x(t) and y(t) must be polynomials (otherwise a root of

the denominator would make P intersect O). In addition, at t = ∞ there can be

no intersection. To evaluate at t = ∞, substitute t = 1
s
, multiply through by the

appropriate power of s to clear denominators, and then evaluate at s = 0. If we

have a(t) =
∑4

i=0 ait
i and b(t) =

∑6
i=0 bit

i, then we get

y
(1

s

)2

= x
(1

s

)3

+ a
(1

s

)

x
(1

s

)

+ b
(1

s

)

= x
(1

s

)3

+
(

a0 +
a1

s
+ · · ·+

a4

s4

)

x
(1

s

)

+
(

b0 +
b1

s
+ · · ·+

b6

s6

)

13



Multiply through by s6 to clear denominators. This gives

(

s3y
(1

s

))2

=
(

s2x
(1

s

))3

+ (a0s
4 + a1s

3 + · · · + a4)
(

s2x
(1

s

))

+(b0s
6 + b1s

5 + · · ·+ b6)

y1(s)
2 = x1(s)

3 + (a0s
4 + a1s

3 + · · ·+ a4)x1(s) + (b0s
6 + b1s

5 + · · · + b6)

where y1(s) = s3y
(

1
s

)

and x1(s) = s2x
(

1
s

)

. Now evaluating at s = 0 does not give

∞ since (PO) = 0, so it follows that deg(x) ≤ 2 and deg(y) ≤ 3. �

In general when S is a rational elliptic surface, we have that E(K) is isomor-

phic to a sublattice of E8 determined by the structure of the reducible fibers [OS].

Results similar to Theorem 2.3.1 exist in each possible case. The structure of the

reducible fibers can be determined from Table 2.1 by looking up the behavior of

the discriminant ∆ and the j-invariant in the first two columns.

2.4 Results For Specific Rational Elliptic Sur-

faces

Here we specialize the results of the previous section and those in [OS] to the

specific rational elliptic surfaces that are studied in this paper.

Theorem 2.4.1. The elliptic curve Em : y2 = x3−x+m2 defined over Q(m) has

Mordell–Weil group Em

(

Q(m)
)

∼= Z2, which is generated by the points P = (0, m)

and Q = (1, m).

Proof: We have ∆ = −16(−4 + 27m4), which has four distinct roots in Q. For

each root m0, we have vm0(∆) = 1 and vm0(j) = −1. From Table 2.1, this gives a

14



Table 2.1: Classification of singular fibers

v(∆) j-invariant Kodaira Type Contribution to T

0 v(j) ≥ 0 I0 0

n v(j) = −n In An−1

2 j = 0 II 0

3 j = 1728 III A1

4 j = 0 IV A2

6 v(j) ≥ 0 I∗

0 D4

6 + n v(j) = −n I∗

n Dn+4

8 j = 0 IV ∗ E6

9 j = 1728 III∗ E7

10 j = 0 II∗ E8

reducible fiber of Kodaira type I1, which gives trivial contribution (A0) to T . At

m = ∞, we make the substitution m = 1
s
, and the curve becomes y2 = x3−s4x+s4

which has discriminant ∆ = −16(−4s4 + 27)s8. At s = 0 (m = ∞), we have

v∞(∆) = 8 and j = 0, so from Table 2.1, this reducible fiber has Kodaira type

IV ∗, which contributes a lattice of type E6 to T . From [OS], if the image of T in

NS(S)/〈(O), (F )〉 is a lattice of type E6, then Em

(

Q(m)
)

∼= A∗

2, which has rank

2 and trivial torsion. There are 6 minimal vectors of norm 2
3

in the A∗

2 lattice [CS,

p. 115]. These correspond to points on Em which have deg(x) = 0 and deg(y) ≤ 1

[Shi3], giving ±(0, m), ±(1, m), and ±(−1, m). Since (−1, m) = (0, m) + (1, m),

we can take P = (0, m) and Q = (1, m) as generators. �

Theorem 2.4.2. Let m2(t) ∈ Q[t] be a quadratic polynomial, and let Em2(t) be

15



the elliptic curve y2 = x3 − x + m2(t)
2 defined over Q(t). Then the Mordell–

Weil group Em2(t)

(

Q(t)
)

∼= Z6, which is generated by 54 points (x(t), y(t)), where

deg(x) ≤ 1 and deg(y) ≤ 2.

Proof: We have ∆ = −16(−4 + 27m2(t)
4), which we claim has eight distinct

roots in Q. Any multiple root of ∆ must be a root of both ∆ and ∆′ = −16 ·

27 · 4m2(t)
3m′

2(t). Clearly a root of m2(t) cannot be a root of ∆. Since m2(t) is

quadratic, m′

2(t) is linear and so has a rational root t0. Then m2(t0) is rational,

which will make ∆ 6= 0.

Each of these roots of ∆ gives a reducible fiber of Kodaira type I1, which

gives trivial contribution (A0) to T . At t = ∞, we make the substitution t = 1
s
,

and the curve becomes y2 = x3 − s4x + s2n(s)2 where n(s) = s2m2

(

1
s

)

. This has

discriminant ∆ = −16(−4s8 + 27n(s)4)s4. Note that since m2(t) has degree 2,

n(s) is a polynomial with a nontrivial constant term, which implies n(0) 6= 0. At

s = 0, this reducible fiber has Kodaira type IV , which contributes a lattice of

type A2 to T . From [OS], if the image of T in NS(S)/〈(O), (F )〉 is a lattice of

type A2, then Em2(t)

(

Q(t)
)

∼= E∗

6 , which has rank 6 and trivial torsion. There

are 54 minimal vectors of norm 4
3

in the E∗

6 lattice [CS, pp. 125-126]. These

correspond to points on Em2(t) which have deg(x) ≤ 1 and deg(y) ≤ 2 [Shi3]. �

Theorem 2.4.3. Let m3(t) ∈ Q[t] be a cubic polynomial, and let Em3(t) be the

elliptic curve y2 = x3 − x + m3(t)
2 defined over Q(t). Then the Mordell–Weil

group Em3(t)

(

Q(t)
)

∼= Z8, which is generated by 240 points (x(t), y(t)), where

deg(x) ≤ 2 and deg(y) ≤ 3.

Proof: We have ∆ = −16(−4 + 27m3(t)
4), which we claim has twelve distinct

roots in Q. If t0 is a multiple root of ∆ then it is a root of both ∆ and ∆′ =

16



−16 · 27 · 4m3(t)
3m′

3(t). Any root of m3(t) cannot be a root of ∆, so t0 must be

a root of m′

3(t) which is a quadratic polynomial. Thus m3(t0) generates at most

a degree 2 extension of Q. However, m3(t0) = 4
√

4/27 generates a degree four

extension of Q, so we have a contradiction.

Each of these roots of ∆ gives a reducible fiber of Kodaira type I1, which

gives trivial contribution (A0) to T . At t = ∞, we make the substitution t = 1
s
,

and the curve becomes y2 = x3 − s4x + n(s)2 where n(s) = s3m3

(

1
s

)

. This has

discriminant ∆ = −16(−4s12 + 27n(s)4). Note that since m3(t) has degree 3,

n(s) is a polynomial with a nontrivial constant term, which implies n(0) 6= 0. At

s = 0, we have ∆ 6= 0, so t = ∞ makes no contribution to T . Thus all singular

fibers have only one irreducible component, so Theorem 2.3.1 implies the result.

�

The following results are not proved here since the proofs are very similar to

the ones above.

Theorem 2.4.4. The elliptic curve Cm : y2 = x3−m2x+1 defined over Q(m) has

Mordell–Weil group Cm

(

Q(m)
)

∼= Z4, which is generated by 24 points (x(t), y(t)),

where deg(x) ≤ 1 and deg(y) ≤ 1.

Theorem 2.4.5. Let m(t) ∈ Q[t] be a quadratic polynomial, and let Cm(t) be

the elliptic curve y2 = x3 − m(t)2x + 1 defined over Q(t). Then the Mordell–

Weil group Cm(t)

(

Q(t)
)

∼= Z8, which is generated by 240 points (x(t), y(t)), where

deg(x) ≤ 2 and deg(y) ≤ 3.

The Mordell–Weil groups of Cm

(

Q(m)
)

and Cm(t)

(

Q(t)
)

are of types D∗

4 and

E8 respectively.
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2.5 Independence of Points

The results of this section deal with the effects of specialization on the indepen-

dence of points. Let C be a curve defined over a field k, let S be an elliptic

surface over C, and let K = k(C). Then S can be viewed as an elliptic curve E

over the field K. For any t ∈ C
(

k
)

, let E(t) denote the specialization of E at t.

Theorem 2.5.1 (Silverman). [Sil2, p. 271] The specialization map

σt : E(K) → E(t)

(

k
)

is injective for all but finitely t ∈ C
(

k
)

.

Given a set of independent points on an elliptic surface, this implies that the

points remain independent when specializing to some t ∈ C
(

k
)

with only a finite

number of exceptions.

In addition, a set of points on an elliptic surface E(K) which specialize to

independent points for some t ∈ C(k) must be independent in E(K).

Proposition 2.5.2. Let P1, . . . , Pn be a collection of points in E(K), and sup-

pose that the fiber Et0 is nonsingular, where t0 ∈ C(k). If the images of the

points Pi under the specialization σt0 are independent in E(t0)(k), then the points

Pi must be independent in the group E(K).

Proof: Suppose that the points Pi for i = 1 . . . n are dependent in the group

E(K). Then there exists a relation of the form

∑

i

aiPi = O

where ai ∈ Z, and not all ai are 0. This relation holds under all specializations,

including t0, so the specialized points must be dependent. Thus if the specialized
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points are independent, then the original points in E(k(C)) must be independent

as well. �

This proposition provides a simple technique for proving the independence of

generic sections on an elliptic surface. Simply specialize to any value t0 ∈ C(k),

and check whether or not the resulting points are independent. If they are, then

the generic sections must be independent in E(K). If they are in fact dependent,

no conclusion can be drawn. However, any relation among the generic sections

in E(K) must also hold among the specialized points. This suggests that when

a relation is discovered among the specialized points, it is a good idea to check

whether the corresponding relation holds among the generic sections in E(K).
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Chapter 3: Lifting Q-points to Q(t)-points

3.1 Basic Facts

A parameterized family of elliptic curves can also be viewed as an elliptic curve

over a function field. This often provides insight into the basic properties that

all curves in the family share. For example, [BM] studies the family

Em : y2 = x3 − x + m2.

With very little effort, several “generic” solutions to this equation can be found,

including P = (0, m), Q = (1, m), R = (−1, m) and S = (m2, m3). Solutions

of this type are referred to as generic points on Em, and they exist for every

value of m. Equivalently, treating m as an indeterminate makes Em an elliptic

curve defined over the function field Q(m), and these are points in the group

Em(Q(m)). As such, the addition law on this group can be used to generate

more generic points from these.

For any specific value of m0 ∈ Q, let P |m0 denote the point P evaluated at

m0, and similarly for Q, R, and S. For example, setting m = 2 gives P |2 =

(0, 2) ∈ E2(Q). It is fairly simple to find the relations P |2 + Q|2 + R|2 = ∞ and

P |2 + 2Q|2 + S|2 = ∞. Also, the determinant of the height matrix from P |2 and

Q|2 is 0.3729918, so P |2 and Q|2 are independent. Thus P |2 and Q|2 generate a

rank 2 subgroup of E2(Q), and R|2 and S|2 are in this subgroup.
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By Proposition 2.5.2, P and Q must be independent in Em(Q(m)) since they

are independent under the specialization to m = 2. The two relations found

above when m = 2 suggest the possibility that these relations may hold for the

generic points in Em(Q(m)) as well, and in fact they do:

P + Q + R = ∞

P + 2Q + S = ∞

Thus P and Q generate a subgroup of rank 2 in Em(Q(m)). In fact, using the

methods of Shioda [OS, Shi1, Shi2, Shi3], we have already proven an even stronger

result (see Theorem 2.4.1) about the group Em

(

Q(m)
)

.

Theorem 3.1.1. Em

(

Q(m)
)

has rank 2 generated by P = (0, m) and Q = (1, m).

Since both P and Q are in the field Q(m), we have

Corollary 3.1.2. Em(Q(m)) has rank 2 generated by P = (0, m) and Q =

(1, m).

3.2 An Example of a Lift

A rather interesting result about the family Em is proved in [BM]:

Theorem 3.2.1 (Brown–Myers). There are infinitely many values of m such

that the rank of Em(Q) is at least 3.

This is not a surprising result given the number of small positive integers m ≤

500 for which this is true (see Table 1.1 or Appendix A). What makes it interesting

is the way in which it is proved in [BM]. Suppose we set m(t) = 54t2 − 165t− 90.

Then direct computation verifies that the point R(t) = (36t+17, 54t2+267t+114)
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lies on the curve Em(t). Elementary techniques are used to prove that this point

is independent from the original generators P = (0, m(t)) and Q = (1, m(t)) for

every t ∈ Z. Here we prove a related result:

Theorem 3.2.2. Let m(t) = 54t2 − 165t − 90. Then the points P = (0, m(t)),

Q = (1, m(t)) and R(t) = (36t + 17, 54t2 + 267t + 114) are independent in the

group Em(t)(Q(t)).

Proof: Specializing to t = 0 gives m(0) = −90 and the points P |−90 = (0,−90),

Q|−90 = (1,−90) and R(0) = (17, 114) ∈ E90(Q). The determinant of the

height matrix for these points is 22.684449, so these points are independent in

E90(Q). By Proposition 2.5.2, the Q(t) points P , Q and R(t) are independent in

Em(t)(Q(t)). �

One can view this subfamily as a “lift” of the point (17, 114) on the curve

E90. In general, we define a lift to be an elliptic surface Em(t) that contains

an additional point R(t) = (x(t), y(t)), where this point was derived from a

given point (x0, y0) ∈ Em0(Q). Specializing to t = 0 gives m(0) = m0 and

R(0) = (x0, y0). This is our first concrete example of a lift, which leads to several

questions:

• Given m0 ∈ Q and a point (x0, y0) ∈ Em0(Q), does there exist a lift?

In other words, can we find a nonconstant polynomial m(t) and a point

R(t) ∈ Em(t)(Q(t)) such that m(0) = m0 and R(0) = (x0, y0)?

• Does there exist a lift which has four independent points over Q(t)?

• Are there lifts like this in other families?
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3.3 Finding Another Lift

There are many values of m for which Em has rank 3 or more (see Table 1.1).

Some of these actually fall into the subfamily m(t) = 54t2 − 165t − 90 given in

Theorem 3.2.2. For example, m
(

11
3

)

= 31 is in this subfamily with the extra

point R
(

11
3

)

= (149, 1819). This point turns out to be independent from the

original generators P and Q. Actually, E31(Q) has rank 4 generated by these

three points and the point (−7, 25). Also, m
(

− 1
2

)

= 6 is in this subfamily. In

this case, the additional point R
(

− 1
2

)

= (−1,−6) is not independent from the

original generators, as (−1,−6) = (0, 6) + (1, 6) = P |6 + Q|6.

On the other hand, many values of m do not fall into this subfamily, like

m = 5 for example. An attempt to solve m(t) = 5 gives 54t2 − 165t − 95 = 0,

which has discriminant 32 · 5 · 1061. This is not a perfect square, so there are

no rational roots. Also, setting m(t) = −5 gives a quadratic polynomial with

no rational roots, since its discriminant is 32 · 5 · 1013. This implies that there

is no t ∈ Q such that m(t) = ±5, so 5 does not fall in the subfamily given in

Theorem 3.2.2. We now find such a lift for m = 5.

Example 3.3.1. A quick search for points on E5 gives (−3,−1) as a point

which turns out to be independent from P |5 = (0, 5) and Q|5 = (1, 5). In fact,

E5(Q) has rank 3 generated by these three points. Thus we attempt to find a

quadratic function M5(t) with M5(0) = 5 such that EM5(t)(Q(t)) has an extra

point R5(t) = (x(t), y(t)) ∈ EM5(t)(Q(t)) with R5(0) = (−3,−1). Theorem 2.4.2

implies that generators of this group have deg(x) ≤ 1 and deg(y) ≤ 2, so set

M5(t) = At2 + Bt + 5 R5(t) = (x1t − 3, y2t
2 + y1t − 1)
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Substituting into the equation for EM5(t) gives

(y2t
2 + y1t − 1)2 = (x1t − 3)3 − (x1t − 3) + (At2 + Bt + 5)2 (3.1)

The constant terms cancel out here, leaving five unknowns (x1, A, B, y2, y1) with

four relations given by equating the coefficients of t1 through t4. These relations

are

−2y1 = 10B + 26x1 (t1)

−2y2 + y1
2 = 10A + B2 − 9x1

2 (t2)

2y2y1 = 2AB + x1
3 (t3)

y2
2 = A2 (t4)

If x1 = 0, then the only solution to these equations is A = B = y2 = y1 = 0,

which just gives the point (−3,−1) on E5. Thus x1 6= 0. Now t can be scaled by

a constant multiple to get x1 = 1. This leaves four unknowns and four relations.

The coefficient (t1) is linear in y1 and the coefficient (t2) is linear in y2. Solving

(with x1 = 1) gives

y1 = −5B − 13

y2 = −5A +
1

2

(

y1
2 − B2 + 9

)

= −5A + 12B2 + 65B + 89

Substituting these into the coefficient (t3) leaves a linear function of A, which

can be solved to give

A =
120B3 + 962B2 + 2580B + 2315

48B + 130

Putting all of these into the (t4) term gives

(B + 3)(2B + 5)(3B + 8)(4B + 11)(12B + 29)(12B + 35)

(24B + 65)2
= 0
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Table 3.1: Lifts of the point (−3,−1) on E5

B M5(t) = At2 + Bt + 5 R5(t) = (t − 3, y2t
2 + y1t − 1)

−3 1
2
t2 − 3t + 5 (t − 3,− 1

2
t2 + 2t − 1)

−5/2 1
4
t2 − 5

2
t + 5 (t − 3, 1

4
t2 − 1

2
t − 1)

−8/3 1
6
t2 − 8

3
t + 5 (t − 3, 1

6
t2 + 1

3
t − 1)

−11/4 1
4
t2 − 11

4
t + 5 (t − 3,− 1

4
t2 + 3

4
t − 1)

−29/12 1
3
t2 − 29

12
t + 5 (t − 3, 1

3
t2 − 11

12
t − 1)

−35/12 3
8
t2 − 35

12
t + 5 (t − 3,− 3

8
t2 + 19

12
t − 1)

The roots of this equation give 6 values for B. The results are given in

Table 3.1. Specializing any of these to t = 0 reduces to the point (−3,−1),

which is independent from P |5 and Q|5. So by Proposition 2.5.2, P = (0, M5(t)),

Q = (1, M5(t)) and R5(t) must be independent on EM5(t)(Q(t)). This gives six

different subfamilies of rank at least 3, each of which is a lift of the point (−3,−1)

on E5. �

3.4 Generalizing the Lift

The lifting process described in the previous section can be generalized to work

starting with almost any point on any curve Em.

Theorem 3.4.1. Let m0 ∈ Q, with m0 6= 0 and suppose that (p, q) is a rational

point on Em0 with q 6= m0 and p 6= 0. Let c = q−m0

p
and set

M(t) =
1

2c
t2 +

2p − c2

2c
t + m0

(X(t), Y (t)) =
(

t + p,
1

2c
t2 +

2p + c2

2c
t + q

)

25



Then (X(t), Y (t)) ∈ EM(t)(Q(t)) is a lift of the point (p, q).

Proof: Notice that the equation for Em can be rearranged into the form

(y − m)(y + m) = x(x − 1)(x + 1). (3.2)

Evaluating each factor on the left hand side separately, we get:

Y (t) − M(t) =
( 1

2c
t2 +

2p + c2

2c
t + q

)

−
( 1

2c
t2 +

2p − c2

2c
t + m0

)

= ct + (q − m0)

= c(t + p)

= cX(t)

and

Y (t) + M(t) =
( 1

2c
t2 +

2p + c2

2c
t + q

)

+
( 1

2c
t2 +

2p − c2

2c
t + m0

)

=
1

c
t2 +

2p

c
t + (q + m0)

= c−1(t2 + 2pt + c(q + m0))

= c−1(t2 + 2pt + p2 − 1)

= c−1(t + p + 1)(t + p − 1)

= c−1(X(t) + 1)(X(t) − 1).

Note that c(q + m0) = (q2 −m0
2)/p = (p3 − p)/p = p2 − 1 since (p, q) ∈ Em0(Q).

Multiplying these two equations together completes the proof. �

Remark 3.4.2. Theorem 3.4.1 was originally developed by the rather tedious

process of substituting M(t) = At2+Bt+m0 and (X(t), Y (t)) = (t+p, y2t
2+y1t+

q) into the equation for EM(t) and equating coefficients. (Theorem 2.4.2 implies
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that the generators should have this form.) The form (3.2) of the equation for

Em made this process much easier.

If X(t) = t+p then deg(X3−X) = 3. Since both Y (t) and M(t) are quadratic,

then either Y (t)−M(t) or Y (t)+M(t) must have its leading term vanish so that

both sides of (3.2) have degree 3. Thus one of the factors Y (t) ± M(t) must

be linear in t and must divide X(t)3 − X(t) = (t + p)(t + p − 1)(t + p + 1).

Theorem 3.4.1 corresponds to the case Y (t) − M(t) = cX(t). Here c can be

computed by comparing the constant terms (q − m0 = cp), and Y (t) + M(t) =

1
c
(X(t)−1)(X(t)+1). In all there are 6 cases: two choices of whether Y (t)−M(t)

or Y (t) + M(t) is linear; and three choices of the corresponding linear factor,

namely X(t), X(t) + 1 or X(t) − 1. Here are the results in each case:

Y1 − M1 = c1X c1 =
q − m0

p
M1 =

1

2c1
t2 +

2p − c1
2

2c1
t + m0

Y2 − M2 = c2(X − 1) c2 =
q − m0

p − 1
M2 =

1

2c2
t2 +

2p − c2
2 + 1

2c2
t + m0

Y3 − M3 = c3(X + 1) c3 =
q − m0

p + 1
M3 =

1

2c3

t2 +
2p − c3

2 − 1

2c3

t + m0

Y4 + M4 = c4(X + 1) c4 =
q + m0

p + 1
M4 =

−1

2c4
t2 +

−2p + c4
2 + 1

2c4
t + m0

Y5 + M5 = c5(X − 1) c5 =
q + m0

p − 1
M5 =

−1

2c5
t2 +

−2p + c5
2 − 1

2c5
t + m0

Y6 + M6 = c6X c6 =
q + m0

p
M6 =

−1

2c6
t2 +

−2p + c6
2

2c6
t + m0

For each of these cases, X(t) = t + p, and Y (t) can be computed from the

information given. Note that each case only works if both the numerator and

denominator of the given ci are nonzero. This is why Theorem 3.4.1 contains the

assumptions q 6= m0 and p 6= 0. �

Remark 3.4.3. In Example 3.3.1, six lifts of the point (−3,−1) ∈ E5(Q) were

produced (see Table 3.1). Applying Theorem 3.4.1 produces M(t) = 1
4
t2 − 5

2
t+5,
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which is the second one listed in the table. The six M(t) polynomials in the

remark above correspond to the six lifts in Table 3.1. �

As a consequence of Theorem 3.4.1 and Remark 3.4.2, we have the following

general result that any point on Em can be lifted.

Theorem 3.4.4. For any m0 ∈ Q with m0 6= 0 and any point (p, q) ∈ Em0(Q),

there exists a quadratic polynomial M(t) with M(0) = m0 and a point R(t) with

R(0) = (p, q) such that P = (0, m(t)), Q = (1, m(t)) and R(t) are independent

points in Em(t)(Q(t)).

Proof: First we show that every point in (p, q) ∈ Em0(Q) has a lift. Note that

Theorem 3.4.1 contains the conditions q 6= m0 and p 6= 0. These are included so

that c = q−m0

p
and c−1 do not have 0 in the denominator. Other cases listed in

Remark 3.4.2 have different values of c, and so have different conditions. Overall,

at least two of the six lifts in Remark 3.4.2 are defined for any point (p, q) ∈

Em0(Q). For example, the point (0, m0) has the lifts given by M4(t) and M5(t).

The fact that these points are independent in Em(t)(Q(t)) requires more

work. In Section 4.2, we show that if m(t) ∈ Q[t] is a quadratic polynomial

and Em(t)(Q(t)) contains an additional point (x(t), y(t)) with deg(x) = 1 and

deg(y) = 2, then this point and the points P = (0, m(t)) and Q = (1, m(t)) are

independent in Em(t)(Q(t)). This covers the present situation. �

Remark 3.4.5. The lift given by Brown and Myers [BM] started with the point

(17, 114) ∈ E90(Q). It turns out that E90(Q) has rank 3, and is generated by this

point and the points P = (0, 90) and Q = (1, 90). The above Theorem shows

that they could have started with any rational point on any Em0(Q) with m0 6= 0

and obtained a similar result. �
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3.5 Subfamilies of Higher Rank

A rather interesting result comes from using Theorem 3.4.1 repeatedly on the

same curve. The smallest positive integer m such that Em has rank 5 is m = 113.

The points P |113 = (0, 113), Q|113 = (1, 113), R1 = (−23,−25), R2 = (−19,−77),

and R3 = (−11, 107) are on the curve E113, and are independent since the deter-

minant of the height matrix for these points is 104.60041. Applying Theorem 3.4.1

to each Ri gives a subfamily mi(ti) and a point Di(ti) = (X(ti), Y (ti)) ∈ Emi(ti)

as follows:

m1(t1) =
1

12
t21 −

41

6
t1 + 113 D1(t1) = (t1 − 23,

1

12
t21 −

5

6
t1 − 25)

m2(t2) =
1

20
t22 −

69

10
t2 + 113 D2(t2) = (t2 − 19,

1

20
t22 +

31

10
t2 − 77) (3.3)

m3(t3) =
1

40
t23 −

211

20
t3 + 113 D3(t3) = (t3 − 11,

1

40
t23 +

189

20
t3 − 107)

Ideally, all of these subfamilies would have the same m(t), which would give 5

points on a curve over Q(t). These points would then be independent since they

specialize to independent points on E113. Instead, we need to find the intersection

of these subfamilies.

Setting m1(t1) = m2(t2) gives a conic section which has the obvious solution

t1 = t2 = 0. This can be used to parameterize all solutions. Set t2 = wt1 and

substitute to get:

t1(w) =
414w − 410

3w2 − 5
(3.4)

t2(w) =
414w2 − 410w

3w2 − 5
(3.5)

and m1(t1(w)) = m2(t2(w)) is given by:

M1,2(w) =
1017w4 − 8487w3 + 19298w2 − 14145w + 2825

(3w2 − 5)2
(3.6)
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Note that specializing these to w = 410
414

= 205
207

gives t1
(

205
207

)

= 0 = t2
(

205
207

)

and

M1,2

(

205
207

)

= 113.

Theorem 3.5.1. Let M1,2(w) be as above in (3.6). Then the elliptic surface

EM1,2(w) contains the four Q(w) points P = (0, M1,2(w)), Q = (1, M1,2(w)),

D1(t1(w)) and D2(t2(w)), where the Di(t) and ti(w) are given above. Moreover,

these points are independent in the group EM1,2(w)(Q(w)).

Proof: From Theorem 3.4.1, Di(t) ∈ Emi(t)(Q) for any t. Setting t = ti(w)

implies that D1(t1(w)), D2(t2(w)) ∈ EM1,2(w)(Q(w)). To show that these points

are independent, specialize to w = 205
207

. This gives t1
(

205
207

)

= 0 = t2
(

205
207

)

and

M1,2

(

205
207

)

= 113, which gives:

P |w= 205
207

= P |m=113 = (0, 113)

Q|w= 205
207

= Q|m=113 = (1, 113)

D1

(

t1

(205

207

))

= D1(0) = (−23,−25)

D2

(

t2

(205

207

))

= D2(0) = (−19,−77)

These are independent points on E113(Q). It follows from Proposition 2.5.2 that

the points must be independent on EM1,2(w)(Q(w)). �

The next step is to set all three mi(ti) equal to each other. A solution to this

gives a curve of rank 5. This actually is the intersection of two quadratic surfaces,

which gives an elliptic curve [W, pp. 39-41]. We already have the solutions to

m1(t1) = m2(t2) given by M1,2(w) from (3.6) above. Now we need solutions to

M1,2(w) = m3(t3). Making the substitution

t3 = v/(3w2 − 5) + 211 (3.7)
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and clearing the denominators gives the curve

C ′ : v2 = 400689w4 − 339480w3 − 428110w2 − 565800w + 1113025 (3.8)

This quartic equation has a solution that comes from t1 = t2 = t3 = 0, which

is w = 205
207

and v = −211(3w2 − 5) = −6201290
14283

. This makes C ′ into an elliptic

curve with minimal Weierstrass model

E ′ : y2 = x3 − x2 − 103307652308x + 12301315572924612 (3.9)

The program mwrank yields that E ′(Q) ∼= Z2 ⊕ Z2 ⊕ Z2 and is generated by the

points A = (223142, 18967200), B = (298232, 89537850), T1 = (214182, 0) and

T2 = (155402, 0).

Theorem 3.5.2. Let (w, v) run through the points on C ′ as given by (3.8). Let

M1,2 be given by (3.6) and let S be the elliptic surface over C ′ given by EM1,2 .

Let P, Q, D1, D2 be as in Theorem 5.5.1, and let D3 = D3(t3) where t3 is given

by (3.7) and D3 is given by (3.3). Then P, Q, D1, D2, D3 are independent points

in the Mordell–Weil group of S.

Proof: Let P ′ =
(

410
414

,−6201290
14283

)

∈ C ′. Then specializing the five points to

(v, w) = P ′ gives the original five independent points P |113 = (0, 113), Q|113 =

(1, 113), D1 = (−23,−25), D2 = (−19,−77), and D3 = (−11, 107) in the group

E113(Q). Proposition 2.5.2 implies the desired result. �

Theorem 3.5.3. There are infinitely many values of m such that Em(Q) has

rank at least 5.

Proof: Since C ′(Q) has rank 2, it has infinitely many rational points. Special-

izing the five points in Theorem 3.5.2 to any point P0 = (v0, w0) ∈ C ′(Q) gives
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five rational points in the group EM1,2(w0)(Q). By Theorem 2.5.1 (Silverman’s

Specialization Theorem), these points remain independent under all but finitely

many specializations. �

Remark 3.5.4. Instead of using Silverman’s Specialization Theorem, a weaker

result due to Néron could be used. Néron’s result states that the specialization

map is injective for an infinite number of points, whereas Silverman’s result states

that it is injective for all but finitely many points. �

Example 3.5.5. The generators of the curve E ′(Q) in (3.9) are

A = (223142, 18967200) B = (298232, 89537850)

These correspond to the following points on the quartic C ′(Q) in (3.8):

(wA, vA) =
(139

40
,
6950

17

)

(wB, vB) =
(69

41
,−

1240258

1681

)

Substituting these values of w into (3.6) to compute M1,2 gives

M
(A)
1,2 = −

6263

289
M

(B)
1,2 = 113

Substituting w into (3.4) and (3.5), and (w, v) into (3.7) gives

t
(A)
1 = −

560

17
t
(B)
1 = 82

t
(A)
2 = −

1946

17
t
(B)
2 = 138

t
(A)
3 = −

6950

17
t
(B)
3 = 422

32



This gives the following 5 points on the curve EM1,2 :

P (A) =
(

0,−
6263

289

)

P (B) = (0, 113)

Q(A) =
(

1,−
6263

289

)

Q(B) = (1, 113)

D1(t
(A)
1 ) =

(169

17
,
10975

289

)

D1(t
(B)
1 ) = (59, 467)

D2(t
(A)
2 ) =

(1623

17
,
269647

289

)

D2(t
(B)
2 ) = (119, 1303)

D3(t
(A)
3 ) =

(6763

17
,
2293157

289

)

D3(t
(B)
3 ) = (411, 8333)

The determinants of the height matrices for these points (on the corresponding

minimal models of E
M

(A)
1,2

or E
M

(B)
1,2

) are:

detA = 2680.24718 detB = 104.60041

Since these determinants are nonzero, the points listed above are independent on

the curves E
M

(A)
1,2

(Q) and E
M

(B)
1,2

(Q). Thus each of these curves has rank at least

5. In fact, E
M

(A)
1,2

(Q) actually has rank 6 with additional generator
(

− 63
68

, 50111
2312

)

.

�
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Chapter 4: Classifying Subfamilies of Em by

Rank

4.1 Parameterizing Points on Em

As we have seen above, the elliptic curve Em can be put in the form

(y − m)(y + m) = x(x − 1)(x + 1). (4.1)

View y and m as the variables here and x as a parameter, and set y −m = u. It

follows that y + m = (x3 − x)/u, giving two equations which are linear in y and

m. Solving simultaneously gives:

m(x, u) =
x3 − x

2u
−

u

2
(4.2)

y(x, u) =
x3 − x

2u
+

u

2
(4.3)

For any field K and any x, u ∈ K, this parameterization gives values of m

and y such that Em(K) contains the point (x, y).

Example 4.1.1. Let x = 3 and u = 2. This gives m = 5 and the point

(3, 7) ∈ E5(Q). This point is actually independent from the two known generators

(0, 5) and (1, 5). Thus E5 has rank at least 3 (in fact, exactly 3). �

Example 4.1.2. Let x = 36t + 17 and u = 12(36t + 17). This gives m(t) =

54t2 − 165t− 90 and the point R(t) = (36t+17, 54t2 +267t+114) ∈ Em(t)(Q(t)).
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This is the subfamily used in [BM] to prove that there are infinitely many values

of m such that Em has rank at least 3 (see Theorem 3.2.2). �

There are several symmetries built into the parameterization given by (4.2)

and (4.3). For example,

u 7−→ −u (4.4)

m(x,−u) = −m(x, u)

y(x,−u) = −y(x, u)

Note that Em and E−m are the same curve, so this just gives the point (x,−y)

which is the negative of the point (x, y).

Another symmetry is:

x 7−→ −x, u 7−→ −u (4.5)

m(−x,−u) = y(x, u)

y(−x,−u) = m(x, u)

In other words, if the point (x, y) is on Em, then the point (−x, m) is on Ey. For

example, given the point (m2, m3) ∈ Em(Q(m)), this symmetry gives the point

(−m2, m) ∈ Em3(Q(m)). This leads to the following result:

Proposition 4.1.3. Em3(Q(m)) has rank at least 3, containing the independent

points (−m2, m), P = (0, m3) and Q = (1, m3).

Proof: Clearly Em3(Q(m)) contains the points (−m2, m), P = (0, m3) and

Q = (1, m3). Evaluating at m = 2 gives the points (−m2, m) = (−4, 2),

P = (0, 8) and Q = (1, 8) in E8(Q). The determinant of the height matrix
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for these points is 2.8436, so the points are independent in E8(Q). By Proposi-

tion 2.5.2, (−m2, m), (0, m3) and (1, m3) are independent in Em3(Q(m)). �

A more interesting symmetry is given by:

u 7−→
x3 − x

u
(4.6)

m
(

x,
x3 − x

u

)

= −m(x, u)

y
(

x,
x3 − x

u

)

= y(x, u)

As we demonstrate in the next section and in Section 4.4, this symmetry is of

particular use when searching for m(t) ∈ Q[t] which yield an additional point, as

in Example 4.1.2.

4.2 Quadratic Subfamilies of Rank 3

Suppose we wish to find m(t) ∈ Q[t] of degree 2 such that Em(t)(Q(t)) has

rank at least 3. By Theorem 2.4.2, the points that generate Em(t)

(

Q(t)
)

have

deg(x) ≤ 1 and deg(y) ≤ 2, so it makes sense to look for m(t) which yield an

extra point of this form where x(t) and y(t) have rational coefficients. Much like

in Example 4.1.2, the parameterization given by (4.2) and (4.3) can be used to

search for such m(t).

Given that m(t) is a polynomial of degree 2, this places restrictions on the

choices of x(t) and u. Since m(t) and y(t) are both polynomials, u = y(t)−m(t)

must also be a polynomial. Moreover, u must divide x3 − x to force m(t) and

y(t) to be polynomials in t.

First let deg(x) = 0, so x3 − x is a constant. If x3 − x = 0, we get the points

(0,±m(t)) and (±1,±m(t)), which are already known. If x3 − x 6= 0, then u
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must be a constant since u|x3 − x. This makes m(t) be a constant, which is not

the desired case.

This leaves the case deg(x) = 1, so deg(x3−x) = 3. Since u|(x3−x), the degree

of u can be no more than 3. Let u′ = (x3 − x)/u. Then deg(u′) = 3 − deg(u),

and from the symmetry (4.6), u and u′ generate the same solution (up to the

sign of m(t)). This implies a symmetry in the degrees of u. In particular, the u’s

of degree 1 and the u’s of degree 2 produce the same solutions, as do the u’s of

degree 0 and the u’s of degree 3. Therefore we only need to consider deg(u) = 0, 1.

In fact, if deg(u) = 0, this gives deg(m) = 3 (see Section 4.4). Thus we only need

to consider deg(u) = 1.

Since deg(x) = 1, deg(u) = 1 and u|(x3−x), we see that u must be a constant

multiple of either x, x − 1, or x + 1. In each case, a linear shift of t is made to

put m(t) in the form ct2 + d. Here are the cases:

1. u = kx where k ∈ Q. Equation (4.2) yields m(t) = 1
2k

(x2 − k2x− 1). Since

x is linear in t, an affine shift of t can make x = t+ k2

2
. Setting c = 1

2k
gives:

m1(t) = ct2 −
64c4 + 1

64c3
(4.7)

P1(t) =
(

t +
1

8c2
, ct2 +

1

2c
t −

64c4 − 3

64c3

)

where P1(t) ∈ Em1(t)(Q(t)).

2. u = k(x − 1) where k ∈ Q. Equation (4.2) yields m(t) = 1
2k

(x2 − (k2 −

1)x + k2). Since x is linear in t, an affine shift of t can make x = t + k2
−1
2

.

Setting c = 1
2k

gives:

m2(t) = ct2 −
16c4 − 24c2 + 1

64c3
(4.8)

P2(t) =
(

t −
1

2
+

1

8c2
, ct2 +

1

2c
t −

16c4 + 24c2 − 3

64c3

)
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where P2(t) ∈ Em2(t)(Q(t)).

3. u = k(x + 1) where k ∈ Q. Equation (4.2) yields m(t) = 1
2k

(x2 − (k2 +

1)x − k2). Since x is linear in t, an affine shift of t can make x = t + k2+1
2

.

Setting c = 1
2k

gives:

m3(t) = ct2 −
16c4 + 24c2 + 1

64c3
(4.9)

P3(t) =
(

t +
1

2
+

1

8c2
, ct2 +

1

2c
t −

16c4 − 24c2 − 3

64c3

)

where P3(t) ∈ Em3(t)(Q(t)).

This gives three different families with m(t) quadratic, each of which has an

extra point over Q(t).

Theorem 4.2.1. Let m(t) ∈ Q[t] be a quadratic polynomial, and suppose that a

linear shift of t can change m(t) into one of the following for some c ∈ Q:

m1(t) = ct2 −
64c4 + 1

64c3

m2(t) = ct2 −
16c4 − 24c2 + 1

64c3

m3(t) = ct2 −
16c4 + 24c2 + 1

64c3

Then Em(t)(Q(t)) has rank at least 3.

Proof: It has already been shown above that Pi(t) ∈ Emi(t)(Q(t)) for i = 1, 2, 3,

where the Pi(t) are defined in (4.7), (4.8) and (4.9). Also, we have the points P =

(0, mi(t)) and Q = (1, mi(t)). In Theorem 4.3.1 we shall show that Em1(t)

(

Q(t)
)

is a lattice of rank 6, and the points P (t), Q(t) and P1(t) are three of the gen-

erators. Thus these points must be independent. Since these three points are

rational, Em(t)(Q(t)) must have rank at least 3. The results for m2(t) and m3(t)
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are similar. �

In fact, it is the case that each of these subfamilies can have no more than

rank 3 over Q(t). This is proved in Theorem 4.3.5 in the next section by giving

the explicit generators for Em1(t)

(

Q(t)
)

and showing that no combination of the

non-rational generators can be rational.

4.3 Classifying Quadratic Subfamilies By Rank

Theorem 4.2.1 gives three families of quadratic polynomials mi(t) for i = 1, 2, 3

which each have at least three independent points in Emi(t)(Q(t)). Could any

of these possibly have additional points over Q(t)? In this section, we examine

the case m1(t) with the extra point P1 as given in (4.7). We repeat it here for

convenience:

m1(t) = ct2 −
64c4 + 1

64c3
(4.10)

P1(t) =
(

t +
1

8c2
, ct2 +

1

2c
t −

64c4 − 3

64c3

)

(4.11)

From the proof of Theorem 4.2.1, the group Em1(t)(Q(t)) contains the three

points P = (0, m1(t)), Q = (1, m1(t)) and P1(t) given above. We show that

these points are independent by showing that they are three of the generators

of Em1(t)

(

Q(t)
)

. According to Theorem 2.4.2, since m1(t) ∈ Q[t] is quadratic,

Em1(t)

(

Q(t)
)

has rank 6 with 54 points of the form (x(t), y(t)), where x(t), y(t) ∈

Q(t) with deg(x) ≤ 1 and deg(y) ≤ 2. The goal here is to find all 54 of these

points (27 +/− pairs), and to prove that Em1(t)(Q(t)) has exactly rank 3. Thus

we set x(t) = At + B and y(t) = y2t
2 + y1t + y0 and substitute into the equation

for Em1(t):
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(y2t
2 + y1t + y0)

2 = (At + B)3 − (At + B) +
(

ct2 −
64c4 + 1

64c3

)2

Here we treat c as a constant (c 6= 0) and solve for A and B. The coefficient

of t4 gives y2
2 = c2, so by changing the sign of y if necessary we can take y2 = c.

This leaves the following four relations from the coefficients of t0 through t3 in

four unknowns:

y0
2 = B3 − B +

(64c4 + 1

64c3

)2

(t0)

2y1y0 = 3AB2 − A (t1)

2cy0 + y1
2 = 3A2B −

64c4 + 1

32c2
(t2)

2cy1 = A3 (t3)

The relations (t3) and (t1) are linear in y1 and y0 respectively. Solving gives

y1 =
A3

2c

y0 =
3AB2 − A

2y1
=

c(3B2 − 1)

A2

This leaves the relations (t2) and (t0), both of which are nonlinear polynomials

in A and B. Computing the resultant of these two polynomials with respect to

B gives a degree 32 polynomial in A which factors as

A8(A − 1)(A + 1) · f1(A) · f2(A) · f3(A) · f4(A) · f5(A) = 0 (4.12)
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where the fi(A) are polynomials given by:

f1(A) = A4 − 2A3 + 2A2 − (8c2 + 1)A + 4c2

f2(A) = A4 − 2A3 + 2A2 + (8c2 − 1)A − 4c2

f3(A) = A4 + 2A3 + 2A2 − (8c2 − 1)A − 4c2

f4(A) = A4 + 2A3 + 2A2 + (8c2 + 1)A + 4c2

f5(A) = A6 + A4 + A2 − 64c4

We shall prove that for any 0 6= c ∈ Q, all of these fi are irreducible, and in fact

generate the same S4 extension of Q (see Proposition 4.3.2 and Proposition 4.3.4).

For the present, these facts are assumed.

Theorem 4.3.1. Let c ∈ Q, c 6= 0, and let f1(x) = x4−2x3+2x2−(8c2+1)x+4c2.

Let K/Q be the splitting field of f1. Let α be a root of f1, and set β = α4

8c2
− 1

2

and

R =
(

αt + β, ct2 +
α3

2c
t − c +

3α2β

2c
−

8α6 + 1

64c3

)

.

Then R ∈ Em1(t)

(

Q(t)
)

, where m1(t) = ct2 − 64c4+1
64c3

. Moreover, if R1, R2, R3,

R4 correspond to the four possible choices of α ∈ K, then R1 + R2 + R3 + R4 ∈

Em1(t)(Q(t)). The group Em1(t)

(

Q(t)
)

has rank 6 and is generated by P = (0, m1),

Q = (1, m1), P1 =
(

t + 1
8c2

, ct2 + 1
2c

t − 64c4−3
64c3

)

, and any three of the Ri’s.

Proof: The fact that R ∈ Em1(t)

(

Q(t)
)

can be verified by direct computation.

By Theorem 2.4.2, Em1(t)

(

Q(t)
)

has rank 6 generated by 54 points (27 pairs of

points) of the form (x(t), y(t)), where deg(x) ≤ 1 and deg(y) ≤ 2. For each of

these points, if x(t) = At + B, then A must be a root of (4.12). These 27 pairs

of points were computed using Pari, and one member of each pair is given in
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Table 4.1: Points of Minimal Norm on Em1(t)

(

Q(t)
)

(see Theorem 4.3.1)

A = 0 P = (0, m) −P − Q = (−1, m) Q = (1, m)

A = 1 P1 =
(

t + 1
8c2

, ct2 + 1
2c

t − 64c4−3
64c3

)

A = −1 P1 + P =
(

− t + 1
8c2

, ct2 − 1
2c

t − 64c4−3
64c3

)

f1(A) = 0 R1 R2 R3 R4

f2(A) = 0 R1 − P − P1 R2 − P − P1 R3 − P − P1 R4 − P − P1

f3(A) = 0 R1 + Q − P1 R2 + Q − P1 R3 + Q − P1 R4 + Q − P1

f4(A) = 0 R1 + Q R2 + Q R3 + Q R4 + Q

R1 + R2 + Q − P1 R1 + R3 + Q − P1

f5(A) = 0 R1 + R4 + Q − P1 R2 + R3 + Q − P1

R2 + R4 + Q − P1 R3 + R4 + Q − P1

Table 4.1. For each factor of (4.12), the corresponding points are listed next to

the factor. For example, f1(A) is one factor, and the points which have a root of

f1(A) as the lead coefficient of their x coordinate are R1, R2, R3 and R4. Since all

27 of these minimal points and their negatives are written in terms of the points

P , Q, P1, and the four Ri’s, this implies that these points generate Em1(t)

(

Q(t)
)

.

Let S = R1 +R2 +R3 +R4, and let τ ∈ Gal(K/Q). Then τ permutes the Ri,

and so must fix S. Since this is true for any τ in the Galois group, it follows that

S must lie in the fixed field of the Galois action, so S ∈ Em1(t)(Q(t)). In fact,

direct computation shows that S = P − 2Q + 2P1, which gives the dependency

relation:

R1 + R2 + R3 + R4 − P + 2Q − 2P1 = ∞. (4.13)

This implies that P , Q, P1, and any three of the four Ri’s generate the group

Em1(t)

(

Q(t)
)

. �
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We now prove that f1, . . . , f4 are irreducible and generate the same S4 exten-

sion of Q. First, note that f1(A) = f2(1−A) = f3(A− 1) = f4(−A). This shows

that f1, . . . , f4 all generate the same extension of Q. Also, if α is a root of f1

and σ is any Galois element with ασ 6= α, then f5(α + ασ − 1) = 0. Thus the

splitting field of f5 is contained in the splitting field of f1. Now we prove that f1

is irreducible, and that its splitting field is an S4 extension of Q. For convenience,

we work with the linear shift of f1 given by

f(x) = 16f1

(x + 1

2

)

= x4 + 2x2 − 64c2x − 3.

Proposition 4.3.2. Let c ∈ Q, c 6= 0, and let f(x) = x4 + 2x2 − 64c2x − 3.

Then f is irreducible over Q.

Proof: First, suppose f factors as a product of two quadratics, so

f(x) = x4 + 2x2 − 64c2x − 3 = (x2 + a1x + a2)(x
2 + b1x + b2).

Equating coefficients of x3 and of x2, we get that b1 = −a1, and that b2 =

a2
1 − a2 + 2. Equating the constant terms gives a2

2 − (a2
1 + 2)a2 − 3 = 0. This

quadratic polynomial in a2 has a rational root if and only if its discriminant is

a square: (a2
1 + 2)2 + 12 = a4

1 + 4a2
1 + 16 = v2. This quartic has the rational

point (a1, v) = (0, 4). Making the birational transformation x = 2(v + 4)/a2
1,

y = (8(v + 4) + 4a2
1)/a

3
1 (with inverse transformation a1 = 4(x + 1)/y, v =

−4 + a2
1x/2) gives the elliptic curve E: y2 = x3 + x2 − 4x − 4. This curve

has conductor 48, and has rank 0. The only rational points on E are (±2, 0),

(−1, 0), and ∞. These points correspond to (a1, v) = (0,±4) and the two points

at infinity on the quartic, so these are the only rational points on the quartic.

Thus a1 = 0 is the only possibility for this factorization of f(x), which leads to
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c = 0, a contradiction. This implies that f(x) cannot factor as a product of two

quadratics.

Note that f(x) cannot have 2 rational roots, otherwise it would factor as a

product of two quadratics. The only remaining factorization of f is for it to have

one rational root and an irreducible cubic factor. In this case, rewrite f(x) = 0

as 64c2x = x4 +2x2−3. Multiply through by x and set y = 64cx to get the genus

2 hyperelliptic curve:

y2 = x5 + 2x3 − 3x = x(x − 1)(x + 1)(x2 + 3) (4.14)

By Faltings’ Theorem, this can only have finitely many rational points, but in

this case we can find them explicitly. A few are obvious: (0, 0), (1, 0), and (−1, 0).

These last two of these come from c = 0, which cannot happen, and (0, 0) is an

extraneous solution which comes from multiplying through by x.

Mirroring the method of descent on an elliptic curve, we set

x(x − 1)(x + 1) = dv2 (4.15)

x2 + 3 = dw2, (4.16)

where v, w ∈ Q and d is a squarefree integer. Let p be a prime dividing d. We

claim that p must be either 2 or 3. Suppose that p divides the denominator of x.

Then the valuation vp(x
2 + 3) must be a negative even integer, but the valuation

vp(dw2) must be odd since p|d and d is squarefree. This cannot happen, so p

cannot divide the denominator of x, and x can be considered as a p-adic integer.

This implies that the denominators of v and w cannot be divisible by p either.

Reducing (4.15) mod p implies that x ≡ 0, 1,−1 mod p. Substituting these into

(4.16) gives 3 ≡ 0 mod p or 4 ≡ 0 mod p. This implies that p must be either 2

or 3, so the only possible values for d are {±1,±2,±3,±6}.

44



For d = ±1,±2,±3, (4.15) is an elliptic curve of rank 0, and the only rational

points have x = 0,±1. These points correspond to the points on (4.14) that were

already known. For d = ±6, the elliptic curve (4.15) has rank 1, but equation

(4.16) has no 2-adic solutions, and hence no rational solutions. Therefore, we

have already listed all rational points on (4.14). So f(x) has no rational roots,

and therefore is irreducible for all rational c 6= 0. �

Proposition 4.3.3. Let f(x) be an irreducible polynomial of degree n over a

field F , and let K be the splitting field of f . Then Gal(K/F ) ⊆ An if and only if

disc(f) = D is the square of an element of F .

For a proof of this, see [DF, pp. 587-598].

Proposition 4.3.4. Let c ∈ Q, c 6= 0, and let f(x) = x4 + 2x2 − 64c2x− 3. Let

K/Q be the splitting field of f . Then Gal(K/Q) = S4.

Proof: Since deg(f) = 4, we have that G = Gal(K/Q) ⊂ S4. From the previous

proposition, f is irreducible. This implies that only conjugates of the following

subgroups are possible [DF, pp. 587-598]:

S4

A4

D4 = {1, (1234), (12)(34), (1432), (13)(24), (14)(23), (12), (34)}

V = {1, (12)(34), (13)(24), (14)(23)} (the Klein 4-subgroup)

C = {1, (1234), (12)(34), (1432)} (the cyclic group of order 4)

Since disc(f) = D = −4096(110592c8 + 896c4 + 3) < 0 can never be a square

in Q, we have that G 6⊂ A4 for any c ∈ Q. The resolvent cubic of f is

r(x) = x3 − 4x2 + 16x + 4096c4. This generates a subfield of K, so if this is
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irreducible then order of G = Gal(K/Q) must be divisible by 3, leaving G = S4

as the only possibility. Note that a cubic polynomial is irreducible if it has no

rational root, so it suffices to show that r(x) = 0 has no rational solutions. Sup-

pose there exists a c 6= 0 for which r has a rational root x. After the substitutions

v = 8c2 and u = −x/4, we get v2 = u3 + u2 + u. This is an elliptic curve of

conductor 48, which has rank 0. (Note that this elliptic curve is not isogenous

to the one of conductor 48 in the proof of Proposition 4.3.2.) The only finite

rational point is (u, v) = (0, 0), which comes from c = 0. Thus r(x) is irreducible

for all c ∈ Q except c = 0, and so Gal(K/Q) = S4. �

Using these facts, we can prove the following:

Theorem 4.3.5. Let c ∈ Q, c 6= 0, and let m1 = ct2 − 64c4+1
64c3

. Then Em1(Q(t))

has rank 3, generated by the points P = (0, m1), Q = (1, m1) and P1 =
(

t +

1
8c2

, ct2 + 1
2c

t − 64c4−3
64c3

)

.

Proof: From Theorem 4.3.1, we know that P , Q, P1, R1, R2 and R3 form a

basis for Em1(t)

(

Q(t)
)

. Suppose that some linear combination of R1, R2 and R3

is in Em1(t)(Q(t)), so we have

S = a1R1 + a2R2 + a3R3 ∈ Em1(t)(Q(t)) (4.17)

By Proposition 4.3.4, the Galois group Gal(K/Q) is transitive on the Ri’s, so

there exists σ ∈ Gal(K/Q) such that R1
σ = R2, R2

σ = R1, and σ fixes R3 and

R4. Then σ fixes S, and subtracting gives

O = S − Sσ = (a1 − a2)R1 + (a2 − a1)R2 = (a1 − a2)(R1 − R2)

Notice that R1 6= R2 since the leading coefficients of the x coordinates are distinct.

Since there is no torsion in Em1(t)

(

Q(t)
)

, it follows that a1 = a2 and similarly

46



that a1 = a2 = a3 = a. From (4.13), we have

S = a(R1 + R2 + R3) = a(P − 2Q + 2P1 − R4) ∈ Em1(t)(Q(t)).

Since S, P , Q and P1 are rational, it follows that aR4 must be rational.

Let τ ∈ Gal(K/Q) have nontrivial action on R4, say R4
τ = R1. Then since

aR4 is rational, we have

O = aR4 − (aR4)
τ = aR4 − a(R4)

τ = a(R4 − R1)

Since R4 6= R1, it follows that a = 0. This gives S = O is the only linear combi-

nation of R1, R2 and R3 which is rational, so Em1(t)(Q(t)) must be generated by

P , Q and P1. �

All of the results thus far have been restricted to the m1(t) case. Analogous

results for the m2(t) and m3(t) case can be proved using the same techniques.

These are not stated here.

In Section 4.2, we found quadratic m(t) such that Em(t) contains an additional

rational generator (x(t), y(t)) with deg(x) ≤ 1 and deg(y) ≤ 2. This process

exhausted every possible case with a third rational generator satisfying these

inequalities, which leads to the following:

Conjecture 4.3.6. Let m(t) ∈ Q[t] by a quadratic polynomial. Then the rank

of Em(t)(Q(t)) is either 2 or 3. The rank is 3 if and only if m(t) meets the criteria

of Theorem 4.2.1.

The only way that this conjecture is false is if there exists a quadratic poly-

nomial m(t) with the following properties:

• m(t) cannot be changed into one of the mi(t) polynomials by a linear shift

of t, and
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• some nontrivial linear combination of the four non-rational generators of

Em(t)

(

Q(t)
)

must add up to a rational point.

4.4 Cubic Subfamilies

Suppose we wish to find cubic subfamilies of Em which have higher rank. If m(t)

is cubic in t, then Em(t) is still a rational elliptic surface. By Theorem 2.4.3, the

generators of Em(t)

(

Q(t)
)

are points of the form (x(t), y(t)) where deg(x) ≤ 2

and deg(y) ≤ 3. Much like in Section 4.2, the parameterization given by (4.2)

and (4.3) can be used to search for cubic m(t) where Em(t) has an extra point of

the appropriate form with rational coefficients. The parameterization (4.2) of m

in terms of x and u is repeated here for convenience:

m(x, u) =
x3 − x

2u
−

u

2
(4.18)

Given that m(t) is a polynomial of degree 3, this places restrictions on the

choices of x and u. Since m(t) and y(t) are both polynomials, u = y(t) − m(t)

must also be a polynomial. Moreover, u must divide x3 − x to force m(t) and

y(t) to be polynomial in t.

If deg(x) = 0 and x 6= ±1, then u must also be a constant since u|x3 − x.

This forces m(t) to be constant rather than cubic, which is not the desired case.

We are left with the following cases:

A. deg(x) = 1.

B. deg(x) = 2 and one of x, x − 1, x + 1 divides u.

C. deg(x) = 2 and none of x, x − 1, x + 1 divides u.
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Case A: Suppose deg(x) = 1. If deg(u) = 1, 2 and u|x3 − x, then m(t) is

quadratic. This leaves deg(u) = 0, 3. Suppose deg(u) = 0 and let u′ = (x3−x)/u.

Then deg(u′) = 3. Moreover, by the symmetry (4.6), u and u′ generate the same

solution (up to the sign of m(t)). Thus we only need to consider deg(u) = 0.

Since deg(x) = 1, we can perform a linear shift so that x = 2ut. Substituting

into (4.18) gives

mA = 4u2t3 − t −
u

2

which yields EmA
with the additional point PA = (2ut, 4u2t3 − t + u/2).

Case B: When x(t) is quadratic in t, the situation is much more complicated.

The degree of x3 − x is 6, so we must have deg(u) = 3 in order for m(t) to have

degree 3. Since u must divide x(x− 1)(x+1) and each of x, x− 1 and x+1 have

degree 2, at least one of these quadratics must factor into two linear terms. With

a linear shift of t, the term that factors can be written as either a(t − 1)(t + 1)

or at2. Then u must have a linear factor from this term and a quadratic factor

from one of the other terms. (The case where u has one linear factor from each of

the three quadratic terms is Case C.) This gives three cases depending on which

term factors, and each of these gives two cases depending on whether or not the

quadratic that factors happens to be a perfect square.

Here are the cases. In each case, the x-coordinate of the additional point is

specified, and the y-coordinate can be calculated from x and u using (4.3).

1a. x = a(t − 1)(t + 1). Take u = k(t − 1)(x − 1) = k(t − 1)(a(t2 − 1) − 1).

m1a =
a(a − k2)

2k
t3 +

a(a + k2)

2k
t2 −

a2 − (k2 + 1)a − k2

2k
t

−
a2 + (k2 − 1)a + k2

2k
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Similarly, choosing u = k(t + 1)(x − 1), u = k(t − 1)(x + 1) or u = k(t +

1)(x + 1) produces the same results up to a change in the sign of t or the

sign of m1a. This same phenomenon occurs in cases 2a and 3a below.

1b. x = at2. Take u = kt(x − 1) = kt(at2 − 1).

m1b =
a(a − k2)

2k
t3 +

a + k2

2k
t

Similarly, choosing u = kt(x + 1) produces the same results up to changing

the sign of m1b. This same phenomenon occurs in cases 2b and 3b below.

2a. x − 1 = a(t − 1)(t + 1). Take u = k(t − 1)x = k(t − 1)(a(t2 − 1) + 1).

m2a =
a(a − k2)

2k
t3 +

a(a + k2)

2k
t2 −

a2 − (k2 + 2)a + k2

2k
t

−
a2 + (k2 − 2)a − k2

2k

2b. x − 1 = at2. Take u = ktx = kt(at2 + 1).

m2b =
a(a − k2)

2k
t3 +

2a − k2

2k
t

3a. x + 1 = a(t − 1)(t + 1). Take u = k(t − 1)x = k(t − 1)(a(t2 − 1) − 1).

m3a =
a(a − k2)

2k
t3 +

a(a + k2)

2k
t2 −

a2 − (k2 − 2)a − k2

2k
t

−
a2 + (k2 + 2)a + k2

2k

3b. x + 1 = at2. Take u = ktx = kt(at2 − 1).

m3b =
a(a − k2)

2k
t3 −

2a − k2

2k
t

Remark 4.4.1. Some of these expressions are rather complicated. They all

simplify nicely in the case where a = −k2. Even the coordinates of the additional
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point simplify nicely. After making the change of variables t → t/k, we are left

with:

m1a′ = t3 − k2t − k P1a′ = (−t2 + k2, kt2 − t − k3)

m1b′ = t3 P1b′ = (−t2,−t)

m2a′ = t3 −
(

k2 +
3

2

)

t −
1

2
k P2a′ =

(

− t2 + k2 + 1, kt2 −
1

2
t − k3 −

3

2
k
)

m2b′ = t3 −
3

2
t P2b′ =

(

− t2 + 1,−
1

2
t
)

m3a′ = t3 −
(

k2 −
3

2

)

t +
1

2
k P3a′ =

(

− t2 − k2 − 1, kt2 +
1

2
t − k3 +

3

2
k
)

m3b′ = t3 +
3

2
t P3b′ =

(

− t2 − 1,
1

2
t
)

Note that 1b’ here is the negative of the point given in Proposition 4.1.3 at the

beginning of this chapter. �

Case C: The only remaining case is where each of x, x−1, and x+1 factor, and

u contains one linear term from each. Using the same reasoning as above, x can be

written in the form a(t−1)(t+1) or at2. In fact, x = at2 cannot happen because

both x−1 and x+1 must factor, and one of these will have negative discriminant.

This implies that x = a(t− 1)(t+ 1), x− 1 = at2 − a− 1 and x +1 = at2 − a +1,

and both of these must factor as well. Thus t2 − (1 + 1
a
) = (t − v)(t + v), which

means that 1
a

= v2−1. Also, t2 − (1− 1
a
) = (t−w)(t+w), so 1

a
= 1−w2. Setting

these equal to each other gives v2 + w2 = 2, which has solutions parameterized

by

v =
z2 − 2z − 1

z2 + 1
and w =

−z2 − 2z + 1

z2 + 1
.

This implies that

a =
−z4 − 2z2 − 1

4z3 − 4z
.
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Now u contains a linear factor from each of x, x − 1, and x + 1, so choose

u = k(t − 1)(t − v)(t − w). Actually, any choice of one factor from each term

produces equivalent results, as in Case B above. The parameterization (4.18)

gives

mC =
( a3

2k
−

1

2
k
)

t3 +
z2 − 4z + 1

z2 + 1

( a3

2k
+

1

2
k
)

t2

−
z4 + 4z3 − 6z2 + 4z + 1

(z2 + 1)2

( a3

2k
−

1

2
k
)

t + vw
(a3

2k
+

1

2
k
)

where a, v and w are all in terms of z as above.

Remark 4.4.2. In all of the B cases above, the results could be simplified sig-

nificantly if we could set a = −k2. However, this cannot happen here. Since

a =
−(z2 + 1)2

4(z3 − z)

the only way that −a can be a square is if the denominator z3 − z is a square,

which implies that y2 = z3 − z must have a rational solution with y 6= 0. This

is an elliptic curve with rank 0 whose only finite rational points are the three

2-torsion points (0, 0) and (±1, 0). Thus −a cannot be a square in this case. �

Here we have exhausted every possible way to obtain an extra rational point

on Em(t)(Q(t)) where m(t) is a cubic polynomial and the extra point is of the

form (x(t), y(t)) where deg(x) ≤ 2 and deg(y) ≤ 3. This leads one to believe the

following:

Conjecture 4.4.3. Let m(t) ∈ Q[t] by a cubic polynomial. Then the rank of

Em(t)(Q(t)) is 3 or more if and only if a linear shift of m(t) meets the criteria of

either A, B, or C above. Otherwise the rank of Em(t)(Q(t)) is 2.

The steps above were used to construct a point on Em(t)(Q(t)) other than

P = (0, m(t)) and Q = (1, m(t)). In every case investigated thus far, these 3
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points have been independent. However, we do not have a general proof of this

yet.

Also, we have not been able to rule out the possibility that there exists a cubic

polynomial m(t) for which no linear shift meets the criteria of A, B, or C above,

and some combination of the non-rational generators forms a rational point.
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Chapter 5: Lifts In Another Family

The lifting process demonstrated above is not unique to the family Em. Let Cm

be the family of elliptic curves given by

y2 = x3 − m2x + 1. (5.1)

This chapter examines how lifts work in the Cm family.

5.1 Generators for Cm

As with the curve Em studied earlier, there are several obvious points on Cm,

including (0, 1), (m, 1) and (−1, m). These points actually generate the group

Cm(Q(m)):

Theorem 5.1.1. Let ω be a primitive third root of unity, so ω2 + ω + 1 = 0.

Then the group Cm

(

Q(m)
)

is generated by the points P1 = (0, 1), P2 = (m, 1),

P3 = (−1, m) and P4 = (−ω, ω2m). Moreover, the group Cm(Q(m)) is generated

by P1, P2 and P3.

Proof: By Theorem 2.4.4, Cm has rank 4 over Q(m) generated by 24 points

(12 pairs of points) of the form (x(m), y(m)) where deg(x) ≤ 1 and deg(y) ≤ 1.

These 24 points are listed in Table 5.1 along with their relations. Thus P1, P2,

P3 and P4 generate Cm

(

Q(m)
)

.
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Table 5.1: Minimal Points on Cm : y2 = x3 − m2x + 1

deg(x) = 0 deg(x) = 1

P1 = (0, 1) P2 = (m, 1)

P3 = (−1, m) −P1 − P2 = (−m, 1)

P1 + P2 − P3 = (m + 2, 2m + 3)

P2 − P3 = (−m + 2, 2m − 3)

P4 = (−ω, ω2m) P1 + P2 − P4 = (m + 2ω, 2ω2m + 3)

P2 − P4 = (−m + 2ω, 2ω2m − 3)

P1 + 2P2 − P3 − P4 −P2 + P3 + P4 = (m + 2ω2, 2ωm + 3)

= (−ω2, ωm) −P1 − P2 + P3 + P4 = (−m + 2ω2, 2ωm − 3)

Here ω2 + ω + 1 = 0, so ω is a primitive third root of unity

It is obvious that Cm(Q(m)) contains the points P1, P2 and P3 and so has

rank at least 3. It is also clear that P4 6∈ Cm(Q(m)). All that remains to be

shown is that no power of P4 can be in Cm(Q(m)). If such a power does exist,

say aP4 ∈ Cm(Q(m)) for some a ∈ Z, then it must be fixed by the Galois action.

In particular, if σ is the nontrivial element of the Galois group Gal(Q(ω)/Q),

then aP4 = (aP4)
σ = a(P4

σ), so a(P4−P4
σ) = O. Since this curve has no torsion,

it follows that P4 = P4
σ, which implies that P4 ∈ Cm(Q(m)), giving a contradic-

tion. Thus P1, P2 and P3 generate Cm(Q(m)). �

As the case with Em, Table 5.2 shows that there are many values of m for

which the rank of Cm(Q) is larger than 3. (See Appendix B for more details.)

Thus it seems reasonable to believe that the lifting process may work in a similar

manner (see Theorem 3.4.1).
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Table 5.2: Classification of Cm by Rank for m = 1, . . . , 500

Rank First few m where Cm has this rank #m ≤ 500

1 1 1

2 2, 3 2

3 4, 5, 6, 7, 9, 10, 11, 12, 15, 18, . . . 121

4 8, 13, 14, 16, 19, 20, 22, 23, 26, 27, . . . 209

5 17, 25, 36, 41, 42, 46, 53, 59, 70, 73, . . . 135

6 61, 107, 124, 128, 146, 148, 178, 199, 253, 262, . . . 30

7 347, 443, . . . 2

5.2 Lifting A Point On Cm

Before attempting to prove that every point on Cm has a lift, we first give an

example of a lift. The first positive integer such that Cm has rank 4 is m = 8.

The group C8(Q) is generated by the points P1 = (0, 1), P2 = (8, 1), P3 = (−1, 8)

and Q = (12, 31). Here we show that there exists a quadratic subfamily of Cm

which contains a lift of the point Q.

Proposition 5.2.1. Let

M(t) =
2

75
t2 + t + 8

Q(t) =
( 4

75
t2 +

8

5
t + 12,

4

375
t3 +

34

75
t2 +

32

5
t + 31

)

.

Then CM(t)(Q(t)) has rank at least 4, with independent points P1(t) = (0, 1),

P2(t) = (M(t), 1), P3(t) = (−1, M(t)) and Q(t). This is a lift of the point

(12, 31) ∈ C8(Q).

Proof: Direct computation verifies that Pi(t), Q(t) ∈ CM(t)(Q(t)). To show

that these points are independent, specialize to t = 0. This gives the four points
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P1(0) = (0, 1), P2(0) = (8, 1), P3(0) = (−1, 8) and Q(0) = (12, 31) listed above,

which are independent on C8(Q). By Proposition 2.5.2, the points Pi(t), Q(t)

must be independent in CM(t)(Q(t)). �

Given that such a lift exists, how does one go about finding it? Suppose that

M(t) ∈ Q(t) is quadratic. By Theorem 2.4.5, the generators of CM(t)

(

Q(t)
)

have

the form (x(t), y(t)) where deg(x) ≤ 2 and deg(y) ≤ 3. Thus a lift of the point

(12, 31) ∈ C8(Q) to a point over Q(t) should have the form

M(t) = At2 + Bt + 8 R(t) = (x2t
2 + x1t + 12, y3t

3 + y2t
2 + y1t + 31).

Substituting this into the equation (5.1) for Cm gives the following 6 relations

from the coefficients of t1 through t6 in 7 unknowns:

62y1 = −192B + 368x1 (t1)

y1
2 + 62y2 = 36x1

2 − 16Bx1 + 368x2 − 192A − 12B2 (t2)

2y2y1 + 62y3 = x1
3 + 72x1x2 − 16Ax1 − B2x1 − 16Bx2 − 24AB (t3)

2y3y1 + y2
2 = 3x1

2x2 − 2ABx1 + 36x2
2 − 16x2A − x2B

2 − 12A2 (t4)

2y3y2 = 3x1x2
2 − A2x1 − 2ABx2 (t5)

y3
2 = x2

3 − A2x2 (t6)

Note that the coefficient of t0 vanishes since we have (12, 31) ∈ C8(Q). Comparing

this with the analogous situation for Em in Section 3.3, it is immediately obvious

that things are now much more complicated since there are more unknowns and

more relations. However, it is still possible to proceed.

If B = 0, this forces all of the other coefficients to be 0, which does not really

give a lift. Thus we can assume that B 6= 0. Notice that a linear shift of t would
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affect the constant terms, but changing t by a constant multiple would not. This

can be used to make B = 1. Now there are 6 relations and 6 unknowns. Solving

(t1) for y1, (t2) for y2 and (t3) for y3 gives:

y1 =
184

31
x1 −

96

31

y2 = −
96

31
A +

184

31
x2 +

370

313
x2

1 +
9976

313
x1 −

10374

313

y3 =
9976

313
x1A −

20748

313
A +

740

313
x1x2 +

9976

313
x2 +

787361

2 · 315
x3

1 −
1800064

315
x2

1

+
4809503

2 · 315
x1 −

995904

315

Substituting these into (t4) through (t6) leaves 3 polynomial relations in 3 un-

knowns, namely A, x1 and x2. Let pn denote the result of substituting the yi’s

into the relation (tn). None of these relations are linear, but resultants can be

used to find solutions. The basic process is to compute resultants as follows:

R1 = resA(p4, p5)

R2 = resA(p4, p6)

R3 = resx2(R1, R2)

where resv(pi, pj) denotes the resultant of the polynomials pi and pj with respect

to the variable v. Then R1 and R2 are polynomials in x1 and x2, and R3 is a

polynomial in x1 (of degree 60). Using Pari to factor R3 gives 6 linear factors, 9

irreducible quadratic factors, and two higher degree irreducible factors of degrees

6 and 30. Since rational points are desired here, only the 6 linear factors are used.

These give 6 distinct rational values of x1, each of which can be substituted back

into R1 and R2 to find x2 and into the pn’s to find A. This gives 6 lifts of the

point (12, 31) on C8, which are listed in Table 5.3.

Each row of Table 5.3 gives a subfamily CM(t) that has four independent points

P1 = (0, 1), P2 = (M(t), 1), P3 = (−1, M(t)) and R(t) in CM(t)(Q(t)). The first
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Table 5.3: Lifts of the point (12, 31) on C8

M(t) = At2 + t + 8 R(t) = (x2t
2 + x1t + 12, y3t

3 + y2t
2 + y1t + 31)

2
75

t2 + t + 8 ( 4
75

t2 + 8
5
t + 12, 4

375
t3 + 34

75
t2 + 32

5
t + 31)

6
132 t

2 + t + 8 ( 18
132 t

2 + 27
13

t + 12, 72
133 t

3 + 12
13

t2 + 120
13

t + 31)

210
892 t

2 + t + 8 (490
892 t

2 + 161
89

t + 12, 9800
893 t3 + 4620

892 t2 + 680
89

t + 31)

5814
5592 t

2 + t + 8 (6498
5592 t

2 + 665
559

t + 12, 233928
5593 t3 + 41724

5592 t2 + 2216
559

t + 31)

155610
14332 t2 + t + 8 (212940

14332 t2 + 2392
1433

t + 12, 67076100
14333 t3 + 1285830

14332 t2 + 9760
1433

t + 31)

101010
22672 t2 + t + 8 (112554

22672 t2 + 2691
2267

t + 12, 16657992
22673 t3 + 698412

22672 t2 + 8952
2267

t + 31)

row is the same as the lift in Proposition 5.2.1. To verify the independence,

specialize to t = 0. In each of the 6 cases, this gives M(0) = 8 and the four

points (0, 1), (8, 1), (−1, 8) and R(0) = (12, 31). These are independent in C8(Q)

since the determinant of the height matrix for these four points is nonzero. By

Proposition 2.5.2, the four points P1 = (0, 1), P2 = (M(t), 1), P3 = (−1, M(t))

and R(t) are independent in CM(t)(Q(t)) for each of the 6 cases.

The major differences between the results here and the lifts on Em are the

number of relations and the number of unknowns. With fewer unknowns in the

Em case, things just work out much nicer. For example, the top coefficient (t4) in

the Em case is A2−y2
2, which has the rather nice solutions A = y2 and A = −y2.

In the Cm case, the top coefficient (t6) is y3
2 = x2

3−A2x2, which is itself a family

of elliptic curves. These are the congruent number curves [K, Ch. 1].
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5.3 Parameterizing Points on Cm

In Section 4.1, the curve Em was rearranged into a very nice form (4.1) which

allowed for the parameterization of y and m in terms of x and an additional

parameter u. The curve Cm again has an analogous result, but as above the

situation is a bit more complicated.

Consider the equation (5.1) for Cm in terms of the variables y and m, with x

treated as a fixed constant:

y2 + xm2 = x3 + 1 (5.2)

This is now a quadratic equation for each x, and any one solution (y0, m0) for a

given x0 can be used to parameterize all solutions (y, m) for x0. Fortunately, for

every x, there is a solution (y, m) = (1, x). Making the substitution

y = k(m − x) + 1 (5.3)

leads to the parameterization

m(x, k) =
xk2 − 2k − x2

k2 + x
(5.4)

y(x, k) =
−k2 − 2x2k + x

k2 + x
(5.5)

This parameterization for Cm is not nearly as nice as the one for Em given

by (4.2) and (4.3). There were obvious symmetries in the Em parameterization,

and none appear to be obvious here. Thus the task of constructing lifts is much

more difficult.

Suppose we wish to use this parameterization to find m(x, k) such that Cm(x,k)

contains an additional rational generator, where m(x, k) is a quadratic polynomial

in t. By Theorem 2.4.5, we search for points (x(t), y(t)) that have deg(x) ≤ 2 and
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deg(y) ≤ 3. But what form should k have as a function of t to make m(x(t), k(t))

be a quadratic polynomial in t? It is not clear that this is even possible. From

(5.3), it seems like a good choice would be to take k(t) as a linear polynomial.

However, k(t) could also be a rational polynomial with numerator of degree 3

and denominator of degree 2. This case becomes much too complicated, so the

only case considered here is where k(t) is linear. In this case, a linear shift of t

can make k(t) = t. Set x(t) = x2t
2 + x1t + x0, substitute into m(x(t), k(t)), and

perform the long division to compute the quotient and remainder:

m(x(t), t)

=
−x2(x2 − 1)t4 − x1(2x2 − 1)t3 − (2x0x2 + x2

1 − x0)t
2 − 2(x0x1 + 1)t − x2

0

(x2 + 1)t2 + x1t + x0

=
−x2(x2 − 1)

x2 + 1
t2 −

x1(x
2
2 + 2x2 − 1)

(x2 + 1)2
t −

x0(x
3
2 + 3x2

2 + x2 − 1) + 2x2
1

(x2 + 1)3

−
2((x2 + 1)3 + 2x0x1(x2 + 1) − x3

1)t + 2(x2
0(x2 + 1) − x0x

2
1)

(x2 + 1)3((x2 + 1)t2 + x1t + x0)

To make m be a polynomial in t, the remainder term above must be zero.

This gives

(x2 + 1)3 + 2x0x1(x2 + 1) − x3
1 = 0

x2
0(x2 + 1) − x0x

2
1 = 0.

Computing the resultant of these two polynomials with respect to x0 gives

(x2 + 1)
(

(x2 + 1)3 − x3
1

)(

(x2 + 1)3 + x3
1

)

= 0.

The only rational solutions to this are x2 +1 = 0 and x2 +1 = ±x1, giving several

cases:

(1.) x2 + 1 = −x1 6= 0. This leads to x0 = −x1. Setting c = x1 gives x(t) =

(−c− 1)t2 + ct− c, giving a quadratic family of lifts parameterized by c as
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follows:

m(t) =
(c + 2)(c + 1)

c
t2 −

c2 − 2

c
t + c (5.6)

(x, y) =
(

(−c−1)t2+ct−c,
2(c + 1)2

c
t3−

2(c − 1)(c + 1)

c
t2+2ct+1

)

(5.7)

This is a lift of the point (−c, 1) ∈ Cc(Q).

(2.) x2 + 1 = x1 6= 0. This leads to x0 = 0. Making the substitution c = − 2
x1

gives:

m(t) =
(c + 2)(c + 1)

c
t2 −

c2 − 2

c
t + c (5.8)

(x, y) =
(

(

−
2

c
− 1

)

t2 −
2

c
t,

c2 + 4c + 4

c
t3 −

c2 − 4

c
t2 + ct + 1

)

(5.9)

This is a lift of the point (0, 1) ∈ Cc(Q).

(3.) x2 = −1 and x1 6= 0. This actually makes the leading term in the de-

nominator of m(x(t), t) vanish, and the polynomial division above must be

redone.

m(x(t), t) =
−2t4 + 3x1t

3 + (3x0 − x2
1)t

2 − 2(x0x1 + 1)t − x2
0

x1t + x0

= −
2

x1
t3 +

3x2
1 + 2x0

x2
1

t2 −
x4

1 + 2x2
0

x3
1

t −
x0x

4
1 + 2x3

1 − 2x3
0

x4
1

+
2x0(x

3
1 − x3

0)

x4
1(x1t + x0)

The last term here must vanish to make m(t) a polynomial, which gives the

cases x1 = x0 and x0 = 0:

(a.) x1 = x0 = −c. This gives x(t) = −t2 − ct − c, which gives the lift

m(t) =
2

c
t3 +

3c − 2

c
t2 +

c2 + 2

c
t + c

(x, y) =
(

− t2 − ct − c,
2

c
t4 +

4c − 2

c
t3 +

2c2 + 2

c
t2 + 2ct + 1

)

This is a (cubic) lift of the point (−c, 1) ∈ Cc(Q).
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(b.) x0 = 0, so we set c = − 2
x1

. This gives the lift

m(t) = ct3 + 3t2 +
2

c
t + c

(x, y) =
(

− t2 −
2

c
t, ct4 + 4t3 +

4

c
t2 + ct + 1

)

This is a (cubic) lift of the point (0, 1) ∈ Cc(Q).

(4.) x2 = −1 and x1 = 0. Now the denominator of m(x(t), t) is reduced to just

x0, giving a quartic lift. Setting c = −x0 gives:

m(t) =
2

c
t4 + 3t2 +

2

c
t + c

(x, y) =
(

− t2 − c,
2

c
t5 + 4t3 +

2

c
t2 + 2ct + 1

)

This is a (quartic) lift of the point (−c, 1) ∈ Cc(Q).

Only the first two lifts here are quadratic; the others are included for com-

pleteness. Notice that (5.6) and (5.8) are identical. In fact, the sum of the points

(5.7) and (5.9) is the point (m(t),−1) ∈ Cm(t)(Q(t)), giving a dependency relation

between these points.

Thus when k(t) is linear in t, the only points that we get lifts of are (0, 1) and

(−m, 1) in Cm(Q). For all other lifts, k(t) is a rational polynomial. For example,

take the first lift in Table 5.3 of the point (12, 31) ∈ C8(Q). Substituting into

equation (5.3) and solving for k, we get

k(t) =
4t3 + 170t2 + 2400t + 11250

−10t2 − 225t − 1500

Working with a general k(t) of this form is very cumbersome.
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5.4 Generalizing the Lift

In Section 5.2, a technique was demonstrated which lifts a specific point on Cm

yielding a quadratic subfamily of rank 4. This section outlines a few attempts

to generalize this lifting process, analogous to the one for the family Em given in

Theorem 3.4.1.

Fix m0 ∈ Q and a point (p, q) ∈ Cm0(Q). The goal is to find a quadratic

polynomial M(t) and a point R(t) ∈ CM(t)(Q(t)) of the form

M(t) = At2 + Bt + m0

R(t) = (x2t
2 + x1t + p, y3t

3 + y2t
2 + y1t + q).

As before, a linear shift of t changes the constant terms, but changing t by a

constant multiple does not. Thus if B 6= 0 we can take B = 1 by this technique.

Treating p, q and m0 as constants, we are left with 6 relations from the coefficients

of t1 through t6 and 6 variables. (Note that the coefficient of t0 merely implies

that (p, q) lies on the curve Cm0 .)

As in Section 5.2, the coefficients of t1 through t3 are linear in the yi’s. Solving

and substituting leaves 3 relations in the unknowns A, x1 and x2. However, all

coefficients of these unknowns are now in terms of p, q and m0:

y1 =
3p2 − m0

2

2q
x1 −

m0p

q

y2 =
3p2 − m0

2

2q
x2 +

12q2p − (3p2 − m0
2)2

8q3
x2

1 +
(3p2 − m0

2)m0p − 2q2m0

2q3
x1

−
m0p

q
A −

m0
2p2

2q3
−

p

2q

The y3 term is not printed here, as the equation would take up about 5 lines. The

remaining 3 relations in 3 unknowns would take up several pages. Attempting

64



to compute just one of the resultants from here using Pari causes a memory

overflow.

The situation is almost identical when p, q and m0 are replaced by the pa-

rameterization x, y(x, k) and m(x, k) given in (5.4) and (5.5). The coefficients

become so large that they overflow the memory. All that is left is the belief that

the lift exists.

Conjecture 5.4.1. Let m0 ∈ Q and (p, q) ∈ Cm0(Q). Then there exists a

quadratic polynomial M(t) such that M(0) = m0, and a point R(t) ∈ CM(t)(Q(t))

such that R(0) = (p, q), where the points P1 = (0, 1), P2 = (M(t), 1), P3 =

(−1, M(t)) and R(t) are independent in the group CM(t)(Q(t)).

If the calculations outlined in this section could be completed, this should lead

to a proof of the above conjecture. Proposition 5.2.1 shows that this conjecture

is true for the point (12, 31) ∈ C8(Q). Given that the degrees of the polynomials

are the same as in Section 5.2, there should actually be 6 distinct quadratic lifts.

5.5 Subfamilies of Higher Rank

As in Section 3.5, lifts on Cm can be intersected to give curves of higher rank.

The smallest integer m such that Cm(Q) has rank 6 is m = 61. In this case, the

group C61(Q) is generated by the points P1 = (0, 1), P2 = (61, 1), P3 = (−1, 61),

P4 = (65, 181), P5 = (−9, 181), and P6 = (−11, 199). Each of the points P4, P5

and P6 can be lifted using the methods described in Section 5.2, and one lift for

each point is given in Table 5.4. (In each case, t has been changed by a constant

multiple to make the coefficients become integers.)

Setting m4(t4) = m5(t5) gives a conic section which contains the obvious
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Table 5.4: Lifts of P4, P5 and P6 on C61

P4 = (65, 181) m4(t4) = 2730t24 + 743t4 + 61

R4(t4) = (3150t24 + 825t4 + 65, 88200t34 + 31920t24 + 4130t4 + 181)

P5 = (−9, 181) m5(t5) = 30t25 + 87t5 + 61

R5(t5) = (−6t25 − 15t5 − 9, 72t35 + 300t25 + 408t5 + 181)

P6 = (−11, 199) m6(t6) = 84t26 + 137t6 + 61

R6(t6) = (−12t26 − 23t6 − 11, 288t36 + 744t26 + 656t6 + 199)

solution t4 = 0 = t5. Substituting t5 = kt4 yields the following parameterization:

t4 =
−87k + 743

30(k2 − 91)
(5.10)

t5 = kt4 =
−87k2 + 743k

30(k2 − 91)
(5.11)

and m4(t4) = m5(t5) is given by:

M4,5 =
1830k4 − 64641k3 + 907768k2 − 5882331k + 15154230

30(k2 − 91)2
(5.12)

Theorem 5.5.1. Let M4,5 be as defined in (5.12). Then the elliptic curve

CM4,5 contains the five Q(k)-rational points R1 = (0, 1), R2 = (M4,5, 1), R3 =

(−1, M4,5), R4(t4) and R5(t5), where R4, R5, t4 and t5 are given above. Moreover,

these points are independent in the group CM4,5(Q(k)).

Proof: Specializing to k = 743
87

gives t4 = 0 = t5 and M4,5 = 61. This reduces

R1, . . . , R5 to the points P1, . . . , P5 above, which are independent on C61(Q). By

Proposition 2.5.2, the Ri must be independent in CM4,5(Q(k)). �

Now we intersect all three subfamilies. This amounts to setting m6(t6) = M4,5.

As in Section 3.5, making an appropriate change of variables gives a quartic
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equation which can be changed into an elliptic curve. Set

t6 =
v

840(k2 − 91)
−

137

168
. (5.13)

This gives the quartic equation

C ′ : v2 = 469225k4 − 18099480k3 + 262032890k2 − 1647052680k + 623352 (5.14)

which can be transformed by a rational change of variables into an elliptic curve

with minimal Weierstrass model

E ′ : y2 = x3 − x2 − 23078881317508x + 11109083924058691012. (5.15)

The program mwrank indicates that this elliptic curve has rank 4 generated by

the points A = (−4187772, 5857933334), B = (−3680063, 6797221200), C =

(−2533218, 7301833000) and D = (−1678052, 6716508546), and also has torsion

subgroup isomorphic to Z2 × Z2.

Theorem 5.5.2. Let (k, v) run through the points on C ′ as given by (5.14). Let

M4,5 be given by (5.12) and let S be the elliptic surface over C ′ given by EM4,5 .

Let R1, . . . , R5 be as in Theorem 5.5.1, and let R6 = R6(t6) where t6 is given by

(5.13) and R6 is given in Table 5.4. Then R1, . . . , R6 are independent points in

the Mordell–Weil group of S.

Proof: Let P ′ = (k, v) =
(

743
87

,−93660050
7569

)

∈ C ′. Then specializing the six

Ri to P ′ gives the original six independent points P1 = (0, 1), P2 = (61, 1),

P3 = (−1, 61), P4 = (65, 181), P5 = (−9, 181), and P6 = (−11, 199) in the group

C61(Q). Proposition 2.5.2 implies the desired result. �

Theorem 5.5.3. There are infinitely many values of m ∈ Q such that Cm(Q)

has rank at least 6.
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Proof: Since C ′(Q) has rank 4, it has infinitely many rational points. Special-

izing the six points in Theorem 5.5.2 to any point P0 = (k0, v0) ∈ C ′(Q) gives six

rational points in the group CM4,5(k0)(Q). By Theorem 2.5.1 (Silverman’s Special-

ization Theorem), these points remain independent under all but finitely many

specializations. �

Example 5.5.4. Two of the generators of the curve E ′(Q) in (5.15) are

A = (−4187772, 5857933334) B = (−3680063, 6797221200)

These correspond to the following points on the quartic C ′(Q) in (5.14):

(kA, vA) =
(455

44
,−

29049475

1936

)

(kB, vB) =
(16653

1520
,−

7328930609

462080

)

Substituting these values of k into (5.12) to compute M4,5 gives

M
(A)
4,5 =

2989

27
M

(B)
4,5 =

14301877

351649

Substituting k into (5.10) and (5.11), and (k, v) into (5.13) gives

t
(A)
4 = −

1342

4095
t
(B)
4 = −

39064

161889

t
(A)
5 = −

61

18
t
(B)
5 = −

15677

5930

t
(A)
6 = −

122

63
t
(B)
6 = −

3477

2372
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This gives the following 6 points on the curve CM4,5:

R
(A)
1 = (0, 1) R

(B)
1 = (0, 1)

R
(A)
2 =

(2989

27
, 1

)

R
(B)
2 =

(14301877

351649
, 1

)

R
(A)
3 =

(

− 1,
2989

27

)

R
(B)
3 =

(

− 1,
14301877

351649

)

R
(A)
4 =

(202199

1521
, −

151018411

177957

)

R
(B)
4 =

(2932164465

59428681
,

−
89889542839591

458135701829

)

R
(A)
5 =

(

−
731

27
, −

45241

81

)

R
(B)
5 =

(

−
99156231

8791225
,

−
3420802919897

26065982125

)

R
(A)
6 =

(

−
15163

1323
, −

10356559

27783

)

R
(B)
6 =

(

−
1079585

351649
,

−
14819160517

208527857

)

The determinants of the height matrices for these points (on the corresponding

minimal models of C
M

(A)
4,5

or C
M

(B)
4,5

) are:

detA = 26076.7371 detB = 1495320.1665

Since these determinants are nonzero, the points listed above are independent on

the curves C
M

(A)
4,5

(Q) and C
M

(B)
4,5

(Q) respectively. Thus each of these curves has

rank at least 6. �
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Chapter 6: A Double Lift

6.1 A New Family

Given that lifts can be computed on both the Em and Cm families of elliptic

curves, it makes sense to at least take a quick look at another family. Consider

the following family of elliptic curves:

Dm : y2 = x3 − m2x + m2 (6.1)

The classification of rational elliptic surfaces [OS] implies the following:

Theorem 6.1.1. The Mordell–Weil group Dm

(

Q(m)
)

has rank 2 with trivial

torsion subgroup, generated by the points P = (m, m) and Q = (0, m).

Since both of the generators for this group are rational, the entire group must

be defined over Q.

Corollary 6.1.2. Dm(Q(m)) has rank 2 generated by the points P = (m, m)

and Q = (0, m).

6.2 Finding a Lift

The first positive integer m0 such that Dm0(Q) has rank 3 or more is m0 = 14. The

generators for the group D14(Q) are P = (14, 14), Q = (0, 14) and R = (−7, 35).
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Using the same process described in Section 5.2, we now attempt to lift the third

generator R = (−7, 35) to a quadratic subfamily.

If m(t) is quadratic, then Dm(t)(Q(t)) is a rational elliptic surface with Mordell–

Weil group isomorphic to a lattice of type A∗

2 ⊕ A∗

2, which has rank 4. The gen-

erators of this lattice are points (x(t), y(t)) with deg(x) ≤ 2 and deg(y) ≤ 3, so

we will search for the following:

m(t) = At2 + Bt + 14 R(t) = (x2t
2 + x1t − 7, y3t

3 + y2t
2 + y1t + 35)

Substituting this into (6.1) and equating coefficients gives:

70y1 = −49x1 + 224B (t1)

70y2 + y1
2 = −21x1

2 − 49x0 − 28Bx1 + 8B2 + 224A (t2)

70y3 + 2y1y2 = x1
3 − 42x1x0 − 28Bx0 − B2x1 − 28Ax1 + 16ABx0 (t3)

y2
2 + 2y1y3 = 3x1

2x0 − 21x0
2 − B2x0 − 2ABx1 − 28Ax0 + 8A2 (t4)

2y2y3 = 3x1x0
2 − 2ABx0 − A2x1 (t5)

y3
2 = x0

3 − A2x0 (t6)

Again B 6= 0, otherwise all other coefficients are 0. Thus changing t by a con-

stant multiple can make B = 1. Solving and computing resultants as described

in Section 5.2 gives rather interesting results. The final resultant polynomial in

x1 (of degree 60) factors into seven linear factors (6 of them to the 3rd power

and one of them to the 9th power), and irreducible factors of degrees 3 and 30.

Recall that in Section 5.2 there were only 6 linear factors, none of which were

multiple roots.

Using these linear terms to solve for the remaining coefficients gives the seven

lifts of R = (−7, 35) given in Table 6.1. Let mi(t) and Ri(t) denote the values in
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Table 6.1: Lifts of the point (−7, 35) on D14

m(t) = At2 + t + 14 R(t) = (x2t
2 + x1t − 7, y3t

3 + y2t
2 + y1t + 35)

3
200

t2 + t + 14
(

− 3
400

t2 − 1
2
t − 7, 9

8000
t3 + 9

80
t2 + 71

20
t + 35

)

30
2023

t2 + t + 14
(

− 12
2023

t2 − 8
17

t − 7, 36
34391

t3 + 222
2023

t2 + 60
17

t + 35
)

30
2023

t2 + t + 14
(

− 15
1156

t2 − 13
17

t − 7, 225
275128

t3 + 825
8092

t2 + 127
34

t + 35
)

15
841

t2 + t + 14
(

− 15
3364

t2 − 11
29

t − 7, 225
195112

t3 + 375
3364

t2 + 201
58

t + 35
)

30
1681

t2 + t + 14
(

− 20
1681

t2 − 24
41

t − 7, 100
68921

t3 + 210
1681

t2 + 148
41

t + 35
)

20
1849

t2 + t + 14
(

− 16
1849

t2 − 32
43

t − 7, 48
79507

t3 + 164
1849

t2 + 160
43

t + 35
)

660
37303

t2 + t + 14
(

− 240
37303

t2 − 32
73

t − 7, 3600
2723119

t3 + 60
511

t2 + 256
73

t + 35
)

the ith row of this table. Notice that m2(t) = m3(t). Hence there are still only 6

distinct subfamilies to which this point can be lifted, but one of these contains two

different lifts of the point. Each lift also contains the points Pi(t) = (mi(t), mi(t))

and Qi(t) = (0, mi(t)). For any i = 1, . . . , 7, specializing Pi(t), Qi(t) and Ri(t)

to t = 0 gives three independent points on D14(Q). However, there is actually a

stronger result here.

Theorem 6.2.1. The points P2(t), Q2(t), R2(t), R3(t) ∈ Dm2(t)(Q(t)) are inde-

pendent. Therefore, these points form a subgroup of finite index in the Mordell–

Weil group.

72



Proof: Specializing these points at t = 1 gives m2(1) = 30375
2023

and the points:

P2(1) =
(30375

2023
,

30375

2023

)

Q2(1) =
(

0,
30375

2023

)

R2(1) =
(

−
15125

2023
,

1328875

34391

)

R3(1) =
(

−
8991

1156
,

10685439

275128

)

The determinant of the height matrix for these points (after changing to the

minimal model for D 30375
2023

) is 168.098, so these four points are independent. By

Proposition 2.5.2, the points P2(t), Q2(t), R2(t) and R3(t) are independent in

Dm2(t)(Q(t)). As mentioned above, the Mordell–Weil group has rank 4. There-

fore these points generate a subgroup of finite index. �

This result is a bit different than any of the results for Em or Cm. For Em,

which has rank 2 over Q(m), Theorem 3.4.1 yields a subfamily Em(t) of rank

3 over Q(t). Similarly for Cm, the rank was increased by 1. Here, the rank is

increased by 2. It is not clear exactly what caused this double lift to occur. In

a separate example, starting with the point (−9, 39) ∈ D15(Q) (which has rank

3) produced seven distinct polynomials m(t). For each of these, the rank is only

increased by 1.

Remark 6.2.2. For Em, we could try to generate a similar double lift by setting

two distinct lifts from Section 3.4 (Remark 3.4.2 on p. 26) equal to each other.

However this should not work, because all points of minimal degree over Q(t)

have already been found (see Theorem 4.3.1). If any of these could be equal to

each other, this would produce too many points of minimal degree. �
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Appendix A: Rank of Em(Q) for m = 1, . . . , 500

Let Em be the elliptic curve given by y2 = x3 − x + m2. The program mwrank

was used to compute the rank of Em(Q) for integer values of m from 1 to 500.

The results are summarized in the table below.

For some elliptic curves, mwrank gives a range of possible values for the rank.

In particular, for m = 234, 494, mwrank gives the range 2 to 4. In these cases

(indicated by numbers in italics) the lower bound on the rank has been used.

Values of m for which Em(Q) has rank 1: 1

Values of m for which Em(Q) has rank 2: 2, 3, 4, 6, 9, 10, 18, 21, 26, 30,

32, 34, 35, 38, 52, 54, 56, 68, 69, 72, 76, 78, 79, 81, 84, 91, 95, 104, 105, 106,

115, 126, 130, 132, 133, 135, 137, 138, 143, 144, 147, 149, 156, 158, 168, 170,

171, 172, 174, 191, 205, 208, 212, 217, 219, 220, 224, 229, 234, 243, 247, 250,

256, 257, 258, 260, 267, 270, 272, 280, 285, 288, 299, 301, 306, 308, 315, 319,

322, 333, 336, 339, 340, 342, 348, 351, 353, 356, 360, 361, 362, 363, 364, 369,

373, 376, 378, 382, 384, 389, 390, 397, 403, 410, 415, 420, 425, 438, 450, 451,

453, 454, 458, 459, 460, 470, 476, 477, 484, 485, 487, 492, 494, 496, 498

Values of m for which Em(Q) has rank 3: 5, 7, 8, 11, 12, 13, 14, 15, 16,

17, 19, 20, 22, 23, 28, 29, 33, 37, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53,

55, 57, 59, 60, 62, 64, 65, 66, 67, 73, 75, 77, 80, 82, 86, 87, 88, 89, 90, 93, 94,
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96, 98, 99, 100, 101, 103, 108, 109, 110, 111, 114, 117, 118, 119, 120, 121, 122,

123, 129, 134, 136, 140, 141, 142, 148, 150, 151, 152, 153, 154, 155, 157, 161,

162, 164, 166, 167, 169, 177, 178, 180, 183, 185, 186, 187, 188, 189, 192, 193,

194, 195, 196, 197, 198, 200, 201, 202, 203, 206, 211, 216, 218, 223, 226, 227,

228, 231, 232, 235, 237, 238, 239, 241, 242, 244, 249, 252, 253, 254, 259, 261,

262, 265, 266, 268, 273, 274, 276, 281, 282, 284, 289, 293, 294, 295, 296, 297,

298, 300, 302, 303, 307, 309, 310, 313, 314, 320, 321, 323, 324, 327, 328, 330,

332, 334, 338, 341, 344, 345, 346, 354, 355, 357, 358, 359, 366, 367, 368, 370,

374, 375, 377, 381, 383, 387, 388, 392, 393, 395, 396, 401, 402, 404, 406, 407,

412, 413, 414, 416, 418, 422, 423, 424, 426, 427, 429, 432, 433, 435, 436, 437,

440, 441, 442, 444, 446, 447, 448, 455, 456, 464, 465, 466, 468, 471, 472, 474,

475, 478, 479, 480, 482, 483, 486, 488, 490, 491, 495, 497

Values of m for which Em(Q) has rank 4: 24, 25, 27, 31, 36, 41, 46, 58,

61, 63, 70, 71, 74, 83, 85, 92, 97, 102, 107, 112, 116, 124, 125, 128, 131, 139,

145, 146, 159, 160, 165, 173, 175, 179, 182, 184, 190, 199, 204, 207, 210, 213,

214, 221, 222, 225, 230, 233, 236, 240, 246, 248, 251, 255, 263, 264, 269, 271,

275, 277, 278, 279, 286, 287, 290, 291, 292, 304, 305, 311, 313, 316, 318, 325,

326, 329, 331, 335, 343, 347, 349, 352, 371, 372, 379, 391, 398, 399, 400, 405,

408, 409, 417, 419, 421, 428, 430, 434, 439, 443, 445, 449, 457, 461, 462, 463,

467, 469, 473, 481, 489, 499

Values of m for which Em(Q) has rank 5: 113, 127, 163, 176, 181, 209,

215, 245, 283, 317, 350, 365, 380, 385, 386, 394, 411, 431, 452, 493, 500

Values of m for which Em(Q) has rank 6: 337
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Appendix B: Rank of Cm(Q) for m = 1, . . . , 500

Let Cm be the elliptic curve given by y2 = x3 − m2x + 1. The program mwrank

was used to compute the rank of Cm(Q) for integer values of m from 1 to 500.

The results are summarized in the table below.

For some elliptic curves, mwrank gives a range of possible values for the

rank. In particular, for m = 285, 455, mwrank gives the range 3 to 5, and for

m = 210, 375 it gives the range 4 to 6. In these cases (indicated by numbers in

italics) the lower bound on the rank has been used.

Values of m for which Cm(Q) has rank 1: 1

Values of m for which Cm(Q) has rank 2: 2, 3

Values of m for which Cm(Q) has rank 3: 4, 5, 6, 7, 9, 10, 11, 12, 15, 18,

21, 24, 30, 33, 34, 35, 38, 39, 43, 50, 54, 60, 64, 65, 76, 84, 87, 90, 91, 96, 97,

100, 104, 108, 109, 126, 136, 145, 150, 154, 165, 167, 173, 176, 181, 183, 187,

194, 195, 200, 202, 205, 213, 221, 231, 234, 237, 242, 245, 246, 247, 252, 255,

267, 273, 275, 276, 281, 283, 285, 290, 294, 298, 300, 304, 305, 306, 309, 315,

319, 321, 323, 325, 326, 329, 333, 339, 344, 357, 362, 366, 381, 386, 387, 392,

404, 412, 414, 415, 419, 422, 435, 436, 438, 449, 451, 455, 459, 460, 462, 465,

468, 470, 471, 477, 481, 482, 484, 485, 486, 494

Values of m for which Cm(Q) has rank 4: 8, 13, 14, 16, 19, 20, 22, 23, 26,
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27, 28, 29, 31, 32, 37, 40, 44, 45, 47, 48, 49, 51, 52, 55, 56, 57, 58, 62, 63, 66,

67, 68, 69, 71, 72, 74, 75, 77, 79, 81, 82, 85, 88, 89, 92, 95, 101, 103, 105, 106,

110, 111, 112, 114, 115, 117, 118, 120, 121, 122, 123, 125, 129, 130, 133, 135,

138, 139, 141, 142, 143, 144, 149, 153, 155, 156, 159, 161, 162, 163, 169, 171,

172, 174, 175, 177, 180, 182, 185, 186, 189, 190, 198, 201, 203, 204, 207, 208,

209, 210, 214, 215, 216, 218, 219, 223, 227, 228, 229, 230, 235, 240, 244, 248,

249, 250, 254, 256, 258, 260, 263, 265, 266, 268, 269, 270, 277, 278, 282, 284,

286, 289, 292, 293, 297, 299, 301, 303, 312, 313, 316, 318, 320, 322, 324, 327,

330, 331, 334, 338, 340, 341, 342, 345, 348, 350, 351, 354, 355, 358, 360, 361,

364, 368, 369, 371, 373, 375, 377, 378, 379, 380, 382, 384, 390, 391, 397, 400,

403, 407, 408, 409, 411, 413, 416, 417, 421, 424, 425, 429, 432, 433, 437, 440,

441, 442, 448, 457, 461, 467, 472, 478, 480, 488, 491, 492, 493, 495, 499

Values of m for which Cm(Q) has rank 5: 17, 25, 36, 41, 42, 46, 53, 59,

70, 73, 78, 80, 83, 86, 93, 94, 98, 99, 102, 113, 116, 119, 127, 131, 132, 134,

137, 140, 147, 151, 152, 157, 158, 160, 164, 166, 168, 170, 179, 184, 188, 191,

192, 193, 196, 197, 206, 211, 212, 217, 220, 222, 224, 225, 226, 232, 233, 236,

238, 239, 241, 243, 251, 257, 259, 261, 271, 272, 274, 279, 287, 288, 291, 296,

302, 307, 310, 311, 314, 317, 328, 336, 337, 343, 346, 349, 352, 353, 356, 363,

367, 370, 372, 374, 383, 385, 388, 389, 395, 396, 401, 402, 405, 406, 410, 420,

423, 426, 427, 428, 430, 434, 439, 444, 445, 446, 450, 453, 454, 456, 458, 463,

464, 466, 469, 473, 475, 476, 483, 487, 489, 490, 497, 498, 500

Values of m for which Cm(Q) has rank 6: 61, 107, 124, 128, 146, 148,

178, 199, 253, 262, 264, 280, 295, 308, 332, 335, 359, 365, 376, 393, 394, 398,

399, 418, 431, 447, 452, 474, 479, 496

Values of m for which Cm(Q) has rank 7: 347, 443
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