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ABSTRACT
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In core-collapse supernovae, strong blast waves drive interfaces susceptible to

Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH)

instabilities. In addition, perturbation growth can result from material expansion in

large-scale velocity gradients behind the shock front. Laser-driven experiments are

designed to produce a strongly shocked interface whose evolution is a scaled version

of the unstable hydrogen-helium interface in core-collapse supernovae such as SN

1987A. The ultimate goal of this research is to develop an understanding of the effect

of hydrodynamic instabilities and the resulting transition to turbulence on supernovae

observables that remain as yet unexplained.

In this dissertation, we present a computational study of unstable systems

driven by high Mach number shock and blast waves. Using multi-physics radiation

hydrodynamics codes and theoretical models, we consider the late nonlinear

instability evolution of single mode, few mode, and multimode interfaces. We rely

primarily on 2D calculations but present recent 3D results as well. For planar



multimode systems, we show that compressibility effects preclude the emergence of a

regime of self-similar instability growth independent of the initial conditions (IC’s)

by allowing for memory of the initial conditions to be retained in the mix-width at all

times. The loss of transverse spectral information is demonstrated, however, along

with the existence of a quasi-self-similar regime over short time intervals. Aspects of

the IC’s are shown to have a strong effect on the time to transition to the quasi-self-

similar regime.

With higher-dimensional blast waves, divergence restores the properties

necessary for establishment of the self-similar state, but achieving it requires very

high initial characteristic mode number and high Mach number for the incident blast

wave. We point to recent stellar calculations that predict IC’s we find incompatible

with self-similarity, and emphasize the consequent importance of developing a sound

understanding of the initial modal structure in the supernova progenitor.

For divergent and planar systems, the time-dependence of the drive is shown

to impose an “effective box size” on the systems that limits the inverse cascade to

large-scales. Our model explains the weak IC-dependence of this scale observed in

some supernova calculations.
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Chapter I: Introduction

I. Motivation

The appearance of Supernova 1987A in the Large Magellanic Cloud marked

the beginning of a change in the way people think about the violent endpoint of

massive stars. Although it had been known for some time that the layered structure of

the progenitor should be hydrodynamically unstable during the explosion,1,2 the

assumption of spherical symmetry was almost always incorporated into models and

otherwise reflected in the paradigm of core-collapse supernovae. This was due in

large part to the practical limitations of multidimensional numerical calculations. But

when heavy elements originating from the core of SN 1987A appeared at the

photosphere six months earlier than predicted by one-dimensional explosion models,

it became clear that something significant was being neglected.3 Since then, evidence

that asymmetry is the rule in core-collapse supernovae has continued to accumulate,4,5

and multidimensional computer codes have been developed and applied to the

problem in an effort to understand proposed asymmetry mechanisms. Several ideas

have been put forward, and two prominent theories have emerged.

First of all, it has been suggested that the action of a magnetorotational

mechanism during collapse can lead to the formation of energetic jets in the star’s
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central regions.6 As they race outward, these jets drive shocks that destroy the star

and transport core material much faster than in a spherical explosion.

The second explanation is based on the hydrodynamic instability of perturbed

interfaces when subjected to a reversal of pressure and density gradients. Due to

processes such as convective stirring and localized thermonuclear burn, boundaries

between layers of different materials within the star are unlikely to be perfectly

smooth. Even if the shock wave produced as the core rebounds against neutron

degeneracy pressure is initially spherical, it can drive the amplification of any such

preexisting perturbations. After passage of the shock front, this interface evolves into

a complicated structure of outward-growing spikes of heavier material and infalling

“bubbles” of lighter elements.7-10 Late in time, these spikes can move far ahead of

what a 1D model would predict as the interface position and might explain the

anomalously early appearance heavy elements at the photosphere.

Hydrodynamic instabilities have been observed in a variety of astrophysical

systems in addition to core-collapse supernovae. On the earth as well, they are

familiar phenomena. The Rayleigh-Taylor (RT) instability,11,12 which results when a

heavier fluid is supported by a lighter fluid against gravity, explains the exit of water

from an overturned glass. Velocity shear drives perturbation growth and rollup via the

Kelvin-Helmholtz (KH) instability, which can be observed in clouds. The Richtmyer-

Meshkov (RM) instability13,14 results when a shock wave crosses a perturbed

interface, whether from light to heavy or from heavy to light. The RM instability is

not so apparent in everyday experience, but can be thought of as the impulsive limit

of the RT instability.
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When a blast wave crosses an interface from a heavier to a lighter material, all

three of these instabilities are typically present. Since this is the case in core-collapse

supernovae, all three are likely active contributors to accelerated mixing and transport

of material. They come together in the laboratory as well when high-powered lasers

are used to drive the implosion of sub-millimeter capsules of thermonuclear fuel. In

such inertial confinement fusion (ICF) applications, laser energy is converted into

shocks that travel inward from the capsule’s surface.15 The resulting implosion is

something like a supernova in reverse. The ultimate goal of this program is to use

these converging shocks to establish conditions at the center capable of temporarily

sustaining thermonuclear reactions, thereby potentially tapping an inexhaustable

source of energy. Material interfaces within the capsule are hydrodynamically

unstable, however, and the instability growth can completely quench the reactions. In

double shell ignition capsules currently under development for the National Ignition

Facility (NIF) laser, this growth might lead to the formation of a turbulent mixing

zone (TMZ) similar to that expected to occur in supernovae.16

II. Combined approach in HED physics

The development of an instability-driven turbulent mixing layer, including the

transition from a more ordered early-time state, is a very complicated problem that is

at best only partially understood. But when it occurs in astrophysical and ICF

applications, it is generally only one part of an immensely complicated system. The

dynamics of these systems is governed by the nonlinear equations of compressible
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hydrodynamics (the Euler or Navier-Stokes equations) in regimes far removed from

linear approximations. Turbulence provides a mechanism for indirect interactions of

the largest scales of interest with the very small dissipative scales. In addition to

instabilities and turbulence, there are shocks of both high and low Mach numbers, as

well as multiple fluid species and contact discontinuities. In many cases, interaction

of radiation with the fluid is important and must also be accounted for. These coupled

radiation hydrodynamics equations must be solved for matter under extreme pressure

and temperature conditions. In this high energy density (HED) regime where thermal

pressures are at least about a million atmospheres, equations of state (EOS) and

opacities are often not well approximated by simple models. Finally, the complex

physics of thermonuclear reactions and burn, laser-plasma interactions, and non-local

thermodynamic equilibrium potentially must also be included.

The complexity of these multi-physics systems has motivated a combined

approach involving the application of computer simulations, laboratory experiments,

simplified models, and astronomical observations. Models of varying complexity are

used to make direct connections between ideas, observations, and experiments on the

one hand and the relevant equations on the other. Simulations are used as platforms

on which questions of multi-physics interactions can be addressed and theoretical

predictions can be tested against experiments and observations. Moreover, they

provide a level of data not accessible in either experiments or observations. Finally,

HED laser-driven laboratory experiments provide a means of validating astrophysical

codes and theories under conditions that are otherwise difficult or impossible to

reproduce on earth. The material properties that must be input into the codes,
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including EOS data and opacities, can often be obtained only through such

experiments.

III. Laboratory astrophysics with lasers

A deep connection can be made between laboratory experiments and

astrophysical systems such as supernovae because the governing equations are scale

invariant under certain conditions. Despite huge differences in length and time scales,

scaled versions of some astrophysical systems can be fielded on high energy density

facilities17,18 such as the OMEGA laser at the University of Rochester’s Laboratory

for Laser Energetics (LLE)19 and the NIF laser at Lawrence Livermore National

Laboratory.

In ongoing experiments aimed at studying instability-driven mixing under

supernova-relevant conditions, laser energy is used to drive high Mach number planar

shock and blast waves into one end of millimeter-scale cylindrical targets.20-28 A

typical target consists of a more dense plastic section and a less dense foam section,

with a prescribed perturbation machined into the plastic at the plastic/foam interface.

After the passage of the shock, the interface is unstable and evolves under the

combined influence of RT, RM, and KH instabilities. Additional laser beams directed

on high-Z backlighter foils yield x-rays that pass through the target and are used to

image the developing instability.

There are several advantages of these laser-driven hydro instability

experiments relative to other platforms such as shock tubes. First of all, they involve
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Mach numbers that are an order of magnitude higher than those currently possible

with shock tubes. This allows them to access more extreme pressure, density, and

temperature states. In addition, because the target materials typically begin as solids

rather than gases, laser-driven experiments allow for more control over and better

characterization of the initial perturbations without complications from membranes or

retracting plates. Control over the initial conditions is crucial in studies such as ours

that are aimed at linking the late-time nonlinear interface structure back to the initial

perturbation spectrum.

IV. Self-similar RT growth

For classical RT systems comprised of incompressible fluids under constant

acceleration, it is widely believed that memory of the initial conditions is lost at late

times after the establishment of a self-similar regime.29-31 This idea ultimately is based

on the simple fact that larger bubbles rise faster than smaller bubbles, and can be

explained in terms of bubble competition and merger.32,33 As a larger bubble rises

above its smaller neighbor, it is free to expand laterally, eventually filling the space

previously occupied by its neighbor. Material flowing around the larger bubble and

into the spikes below sweeps the smaller bubble downstream. This process leads to

the continual generation of larger, faster moving objects and an acceleration of the

bubble and spike fronts. Eventually, the interface is dominated by structures resulting

from many successive generations of bubble merger rather than from the unstable

growth of preexisting perturbations. Loss of memory of the initial conditions means
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that the statistical properties observed in the late-time interface could have arisen

from a wide range of initial perturbation spectra. If the initial conditions are forgotten,

the height of the bubble front as well as the dominant transverse scale must grow in

proportion to gt2, where g is the acceleration and t is time, as this is the only length

scale remaining in the problem. The interface can be described in a statistical sense

by a bubble-size distribution function. In the self-similar or scale-invariant regime,

this function does not change in time except for a scale factor proportional to the

characteristic bubble size. Thus any initial distribution must evolve in time towards

the scale-invariant distribution.

Although the idea of self-similar RT growth is well motivated, it has yet to be

demonstrated conclusively. If the self-similar regime does exist, then it is certainly

difficult to reach in simulations and diagnosable experiments. The gt2 scaling is

indeed observed, but there is a great deal of disagreement and debate about the

constant of proportionality α.34 In addition, simulations tend to give a value for α that

is only about half as large as values extracted from experiments. This disagreement is

significant because α could in principle be a function of the initial conditions,

indicating that they are never completely forgotten. Other proposed explanations for

the observed variations in α typically reduce to either limitations in time (not enough

time for complete memory loss) or space (self-similar generation of larger scales

inhibited by walls or by spurious long wavelength modes present in the initial

conditions).

Despite limited understanding of nonlinear instability evolution in classical

RT systems, the ideas of self-similar growth are sometimes invoked in discussions of
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blast-wave-driven instabilities in core-collapse supernovae. Even if valid in the

classical case, one should question to what extent these ideas would apply in the more

complicated blast-wave-driven case, where RM is present, the acceleration is time-

dependent, and the flow is compressible.

V. Transition to turbulence

Whether or not there is a true self-similar regime, hydrodynamically unstable

systems certainly can undergo a transition from an early time, more ordered structure

to a late time structure that is disordered and appears random. If the Reynolds number

is sufficiently high and sufficient time is allotted, this late-time structure will be

turbulent.

Many unanswered questions remain, however, about the requirements for

transition to the turbulent or turbulent-like state and its relationship to loss of memory

of initial conditions. In particular, the effect of the initial conditions on the transition

is not well understood. In addition, it is also important to understand what effect the

transition has on the instability growth rate. For 3D systems, it has been noted that

there will be a competition between the continual generation of larger, faster growing

structures and the tendency of increased turbulent dissipation to inhibit the growth.35

To date, 2D simulations of mixing in Type II supernovae produce spike velocities

about a factor of two smaller than the observed velocities of heavy core elements

beyond the photosphere.36 It remains unclear whether or not this discrepancy can be
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resolved once 3D effects, including the transition to turbulence, are included in high-

resolution calculations.

VI. Objectives and methodology

In this dissertation, we examine the effect of initial spectral conditions on the

nonlinear instability evolution of an interface driven by a strong blast wave. This

broad objective encompasses four principle goals, each of which will be developed in

subsequent chapters:

(1) Develop a validated computational platform with which to study nonlinear

blast-wave-driven instability evolution in planar laser-driven systems.

(2) Understand (using simulations, simple models, and comparison with

experiments and observations) similarities and differences between the blast-

wave-driven instability and classical RT.

(3) Understand how the details of the initial spectrum influence the nonlinear

growth of 2D and 3D perturbations, including the transition to turbulence.

(4) Evaluate the relevance of current experiments with respect to supernova

hydrodynamics and suggest directions for future HED experiments that

capture the supernova-relevant phenomena and go beyond the limitations of

current state of the art simulations and simple models.
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At the heart of this work are multidimensional, high-resolution numerical

simulations performed with two proven radiation hydrodynamics codes called

CALE37 and Raptor.38 Both were developed at Lawrence Livermore National

Laboratory, with Raptor based on earlier work by Bell et al.39 Both solve the Euler

equations for multi-fluid systems and have extensive multi-physics capabilities.

CALE is a 2D arbitrary lagrangian-eulerian finite-differencing code, while Raptor

uses a higher-order Godunov method and adaptive mesh refinement (AMR) in 2 or

3D. Besides its 3D capability, Raptor benefits from parallelization and was run on as

many as 512 processors simultaneously.

Despite the focus on simulations, we draw extensively on all aspects of the

combined approach described above. We benefit particularly from close ties with

ongoing experiments, and have been able to contribute to the design and analysis of

experiments conducted at the Omega laser facility and planned for the NIF.

VII. Outline of the remainder and summary of conclusions

This introduction is followed by five additional chapters and one appendix.

The evolution from one chapter to the next follows a natural progression: from 2D

CALE simulations of single and few-mode Omega experiments, to a model of

multimode interface evolution for blast-wave-driven systems, and finally to 2 and 3D

Raptor simulations of multimode systems under NIF-like drive conditions. Despite

this ordering, each of these sections is completely self-contained, so that they can in

principle be read in any order. In particular, those not interested in the necessary but
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tedious task of detailed code validation against experiment may omit Chapter II and

Appendix A. Chapter III, which is a description of our buoyancy-drag model for

blast-wave-driven systems, can certainly be read in isolation. The final two chapters

on multimode simulations also comprise a self-contained story. Together with

Chapter III, they include our most important scientific results. In our opinion, the only

downside of this approach is that it leads to some overlap among the chapters,

particularly in the introductory sections and general descriptions of codes and

experiments. Because of the flexibility it offers, we consider this a worthwhile

tradeoff.

With this qualification, we turn to a more detailed outline of the remaining

chapters and a brief summary of our results:

In Chapter II and Appendix A, we describe in detail comparisons of CALE

simulations with Omega RM (Appendix A) and blast-driven RT (Chapter II)

experiments. Through consideration of a host of physical processes and parameters

including drive details, x-ray preheat, and equation of state, we identify what should

be included in the calculations in order to match the observations. Together with

zoning and convergence studies and code-to-code comparisons, these considerations

represent the establishment of a validated computational platform that can be used as

a test-bed for related calculations where experimental data is not yet available.

Chapter III describes a series of two-mode CALE simulations intended to

study the effect of a single short-wavelength secondary mode on the nonlinear

evolution of a long-wavelength primary mode. The simulations predict that the short-

wavelength “noise” has a dramatic impact on the late-time large-scale interface
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structure, and that this effect is very different depending on whether the secondary

mode is in phase or out of phase with the primary mode. For simple two-mode or

few-mode systems, we show that details of the initial conditions can be remembered

well into the deep nonlinear phase. We explain this sensitivity to initial conditions in

terms of diversion and interactions of developing spikes, which leads to the formation

of fast jets when commensurate modes are in phase and to the breakup of the primary

spikes when they are out of phase.

These predictions led to the design of short-on-long experiments that were

subsequently carried out at the Omega laser. The experiments confirm that the

presence of the short-wavelength mode can lead to a much more disordered state that

is easily distinguished from the single-mode case.

In Chapter IV, we develop a model that describes the evolution of a blast-

wave-driven multimode interface in terms of bubble competition and merger. Our

model goes beyond previous work by including the effects of material decompression

and stretching behind the shock front for both planar and divergent systems. On the

basis of this model, we are able to show that self-similarity and loss of initial

conditions might be possible in divergent systems such as supernovae but not

realizable in planar systems such as most laser-driven experiments intended to study

mixing in supernovae. The difference arises because modes in divergent systems

undergo transverse in addition to radial stretching. Because the time dependence of

the stretching is the same in both directions, the ratio of transverse to parallel scales is

preserved.

For planar systems, we predict a quasi-self-similar regime during which the
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instability evolution is approximately self-similar over a limited period of time.

During this regime, the ratio of characteristic wavelength to perturbation amplitude

decreases slowly in time rather than approaching a constant asymptotic value.

Even in the divergent case, loss of initial conditions is possible only for

systems with very small-scale initial conditions driven by very high Mach number

blast waves. Based on recent stellar calculations,36.40 we predict that initial mode

numbers present in supernova progenitors are probably not high enough to reach the

self-similar regime. If these predictions are correct, the late-time interface structure

observed in supernova remnants likely depends strongly on the initial conditions

present within the star at the time of explosion.

Finally, we show that the finite duration of the blast-wave drive sets a

maximum scale that can be generated on a given interface. For divergent systems, this

corresponds to a minimum mode number that depends weakly on the incident Mach

number and initial mode number as long as both are sufficiently high.

In Chapters V and VI, we turn our attention from few-mode systems to

broadbanded multimode initial conditions, and from the single processor 2D CALE to

the 2 and 3D parallelized AMR code Raptor. The effect of initial conditions on

nonlinear evolution and transition to turbulence in planar blast-wave-driven systems

is considered for 2D perturbations in Chapter V and 3D perturbations in Chapter VI.

In Chapter V, we report on a series of over 70 high-resolution 2D Raptor

simulations of planar blast-wave-driven systems under NIF-like drive conditions. In

agreement with our model, the perturbation growth shows no apparent approach to a

self-similar regime independent of the initial conditions. We also demonstrate the
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effective box size due to drive decay, which sets a maximum transverse scale that can

be generated, and the quasi-self-similar regime. This regime is found to exist after the

generation of scales larger than the initial conditions but before the effective box size

is reached.

The existence of the quasi-self-similar state and the drive-imposed effective

box size make the blast-wave-driven case distinct from classical RT. However, we

show that transition to the quasi-self-similar state is very similar to its classical

counterpart. In both cases, it is marked by an increase in the degree of small-scale

mixing, a decrease in the spike velocity, and often an increase in the bubble velocity.

We find some indication that the transition takes place slightly sooner in the blast-

wave-driven case, possibly due to shock-deposited vorticity.

We consider both single component and bi-component (short on long) spectra,

and identify several parameters that classify and characterize the initial conditions. A

subset of these parameters is studied in order to see how they can affect the

observable properties of the deep nonlinear instability evolution. We find, for

example, that a long wavelength mode can inhibit the development of small scales

and delay the transition to a turbulent-like state when its amplitude is sufficiently

large.

Significantly, we show that apparently random variations observed in late-

time amplitudes and growth rates are not well correlated with initial spectral shape.

Only the average spectral properties are important, such as the initial rms amplitude

and characteristic wavenumber. This bodes well for simulations of similarly strongly-

driven systems that leave a portion of the short-wavelength end of the spectrum
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unresolved. As long as the system contains some fast-growing and interacting modes

that can be resolved computationally or reproduced experimentally (and has the

correct initial rms amplitude), the late-time instability evolution will likely closely

resemble the fully resolved or complete system. This reaffirms the hope that laser-

driven experiments can serve as useful and relevant platforms for studying

compressible mixing in supernovae despite their drastically more limited available

range of scales. Similarly, carefully-designed numerical simulations need not

necessarily reproduce the full range of spectral details present in their physical

counterparts in order to reasonably reproduce the late-time large-scale interface

structure. These conclusions apply in particular to systems with long-wavelength

modes large enough in amplitude to reach the nonlinear phase early on.

In Chapter VI, we present results from 3D calculations of systems that are

otherwise identical to those discussed in Chapter V. In agreement with 3D classical

RT calculations performed by others, we find more fine-scale mixing in 3D and note

that the post-transition bubble growth is reduced relative to that observed in the 2D

calculations. The spike growth, however, does not appear to be inhibited and might

even be enhanced. This is particularly significant in light of the fact that 2D

supernova calculations that invoke instability-driven mixing to explain enhanced

transport of heavy core elements consistently underpredict the late-time spike

velocities by about a factor of two.

VIII. Future work
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We hope to continue this research along several parallel directions directly

applicable to both supernovae and ICF applications. One obvious aspect of this

program is to continue the 3D calculations and analysis described in Chapter VI with

the goal of establishing the process that leads from spike interaction and breakdown

to the subsequent 3D turbulent mixing transition. In addition, we would like to further

investigate the effect of spike interactions on their velocity distribution in order to

determine the extent to which spike material can be accelerated towards the shock

front. These simulations are important for the planned extension of the existing series

of single and few mode Omega targets to broadbanded NIF experiments. With the

greater energy, temporal, and spatial scales afforded by the NIF laser, these

experiments will potentially be capable of unambiguously demonstrating transition to

3D turbulence, the generation of larger scales through multiple generations of bubble

merger, and the late-time freeze-out stage. Through collaboration with astrophysicists

studying supernova progenitors, we will attempt to incorporate realistic initial spectra

into the experiments.

A parallel effort would involve the design of planar experiments aimed at

studying turbulent mixing in double-shell ignition targets. One essential aspect of

these experiments would be the presence of multiple unstable interfaces capable of

interacting with one another. Similar interactions are likely important in supernovae,

but have typically not been incorporated into the experiments. We expect that the

planar double-shell targets can be designed so as to be directly relevant to both

systems.
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Planar experiments are particularly valuable because of their improved

diagnosability relative to spherical systems and their ability to better maintain high

energy density in the absence of divergence. However, our buoyancy-drag model has

suggested that the absence of divergence changes the nature of the instability

evolution by ensuring that memory of the initial conditions is retained in the

perturbation amplitudes at all times. Consequently, we are interested in developing a

divergent platform for supernova-relevant compressible mixing experiments. Recent

studies at Livermore involving laser-driven spherical blast waves in gases41 suggest

the lab’s Janus laser as a promising near-term candidate.

Finally, we note that current ICF diagnostics in general and x-ray radiography

in particular are not optimized for detailed studies of 3D turbulence in laser-drive

targets. The long-term success of this program will ultimately depend on the

development of innovative new experimental techniques.
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Chapter 2: Numerical simulation of supernova-relevant

laser-driven hydro experiments on OMEGA

I. Introduction

The basic Rayleigh-Taylor (RT) instability criterion,1,2 neglecting certain

potentially stabilizing factors such as surface tension3, is the existence of anti-parallel

components of pressure and density gradients (∇P•∇ρ < 0). When this condition is

met at an interface between two materials, perturbations on the interface will grow in

time. In the inviscid limit, the instability develops exponentially while the

perturbations remain small (during the linear phase) with a growth rate given by4

γ =
+
kgA

kL1
, (1)

where k is the perturbation wavenumber, g is the acceleration, A is the Atwood

number, and L is the density gradient scale length at the interface. At later times,

initially sinusoidal perturbations grow into spikes of heavier fluid “falling” into

lighter fluid and bubbles of lighter fluid “rising” into heavier fluid. For A = 1, the

bubbles rise with constant (terminal) velocity while spikes fall with constant

acceleration in the nonlinear regime.5,6 When A < 1, the spike eventually also reaches

terminal velocity.6

There are several important non-gravitational systems that are also strongly

affected by the RT instability. For example, the RT instability has played an
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Figure 1: Density (curve 0) and pressure (curve 1) behind a blast wave that has passed
through a material interface from a 1.42 g/cc plastic to a 0.1 g/cc foam. The interface
is RT unstable due to the presence of antiparallel density and pressure gradients at the
interface. The dotted line shows the initial (pre-shock) density profile. The data are
from a 1D CALE simulation of the experiment-relevant planar hydrodynamics at 14
ns.

important historical role in the ability to magnetically confine hot plasmas,7 where the

plasma serves as the heavier fluid. The confining magnetic field plays the role of the

lighter fluid supporting the plasma against pseudo-gravitational centrifugal forces.

The RT instability criterion can also be satisfied at a material interface

through which a blast wave has been transmitted from a heavier to a lighter fluid.8 As

is illustrated in Fig. 1, since the pressure behind a blast wave is always falling in time

at any fixed point and in distance behind the shock front (at least in the self-similar

regime9), an interface generally becomes RT unstable when it transmits a blast wave

down a density gradient (ie from more dense to less dense material).

In inertial confinement fusion (ICF), pellets containing thermonuclear fuel are

imploded by laser or particle beams or by x-rays generated by the interaction of such

beams with the high-Z walls of a hohlraum.4 The driving shock waves pass through

the various material interfaces within the target, resulting in interface accelerations
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and decelerations that can in turn drive the RT instability. These processes tend to

break up material shells and mix cold outer layers with the hot central region

containing the fuel, and the resulting reduction in thermonuclear yield can be

significant or even complete. Consequently, the RT instability has long been

understood to be a major limiting factor in ICF.

Shock and blast waves are also common participants in astrophysical

processes.10 In a core-collapse supernova, for example, the sudden release of an

enormous amount of energy at the star’s core drives a strong blast wave that

propagates out through layers of progressively less dense matter.11,12 As the interfaces

between these layers subsequently decelerate in the expansion fan behind the blast

front, they are RT unstable.8 The potential significance of this phenomenon was

realized with observations of SN1987A, when it was found that spherically-

symmetric explosion models failed to correctly predict the velocity and arrival time at

the surface of heavy elements originating from the star’s central regions. It has been

suggested that the discrepancy results from the failure of the 1D models to account

for the turbulent (the Reynolds number has been estimated13 to be of order 1010) RT

mixing that is certainly occurring at unstable interfaces. 11,12,14,15

It has been suggested that, despite the huge difference in length and time

scales, scaled experiments of some astrophysical systems can be fielded on high

energy density (HED) facilities16,17 such as the OMEGA laser at the University of

Rochester’s Laboratory for Laser Energetics (LLE)18. This follows from the fact that,

provided that viscosity as well as thermal and radiation transport can be neglected, the

Euler equations are scale invariant. For example, consider two different systems (but
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with matching EOS) driven by strong shocks with velocities v1 and v2. If the post-

shock density profiles are identical modulo a scale factor h1/h2, where h1 and h2 are

characteristic length scales of the two systems, then the two systems will evolve

identically on normalized timescales h1/v1 and h2/v2. The degree to which viscous

effects are negligible is of course scale-dependent, and they cannot be ignored in the

vicinity of the Kolmogorov scale. Nevertheless, the hypothesis that scaled

experiments can reproduce phenomenon simulated or observed on larger scales has

been demonstrated for some laminar flows.15,19-21 Similarity in the structure of

turbulent flows has also been observed across a wide range of scales for systems with

similar characteristics, and appears to be quite general provided each system has

sufficient time and available wave-number space for the development of a broad

inertial range.22,23 The Reynolds number of the two flows need not be equal as long as

it is in both cases sufficiently high so that the observable scales of interest are

decoupled from the dissipative scales. Specifically, Dimotakis has shown that many

flows exhibit a turbulent mixing transition at a critical Reynolds number of order 104,

above which their dependence on the Re is greatly diminished.22

Such a scaling has been set out for the explosion phase of a core-collapse

supernova, and experiments have been designed and conducted to begin to investigate

several relevant issues in the laboratory.12,13,15,19 In this paper, we present the results of

numerical simulations of a series of single- and multimode RT experiments carried

out at the OMEGA facility. These are 2D planar experiments for which the gross

hydro is appropriately scaled to be relevant to core-collapse supernovae such as

1987A. For supernovae, characteristic length, pressure, and density scales are of order
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1011 cm, 10-2 g/cc, and 10 Mbar, respectively. The characteristic time scale h/√(P/ρ) is

thus of order 1000 s. In the experiment, we have h ~ 102 um, ρ ~ 1 g/cc, and P ~ 1

Mbar, which can be combined in the same way to give τ ~ 10 ns. The 40 ns

experiment therefore corresponds to the first several thousand seconds of the

supernova’s explosion phase.

In the experiment, the Reynolds number at the unstable interface grows up to

be of order 105.  This is still far below the value of 1010 estimated for supernova

flows, but significantly higher than Dimotakis’ suggested sufficient condition for the

turbulent mixing transition (Remix ~ 104).22 This suggests that the experiments are

approaching a regime of true relevance to supernovae. During the course of the

experiments, the evolving interface passes almost immediately through the linear

phase of the RT instability and continues well into the deep nonlinear regime. The

eventual goal of this line of experiments is to investigate this deep nonlinear phase,

the eventual transition to turbulence, and especially the subsequent turbulent flow.

This phase must be obtained for the development of an experimental test-bed that is

truly representative of supernova hydrodynamics. In general, transition to turbulence

is as yet poorly understood in compressible HED flows.10

We begin with brief descriptions of the experiment (more complete details of

the experiments will be published separately) and the radiation-hydrodynamics code

CALE,24 which is used for the simulations. We then present and discuss the

simulation results, beginning with checks of the 1D hydrodynamics and proceeding

on to single-, two-, and eight-mode perturbations. In each case, we demonstrate good

agreement between the simulations and the experimental results. Our analysis shows
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that RM and target decompression effects must be considered in order to accurately

describe the perturbation growth. A buoyancy-drag model is applied to the interface

in each case. The model succeeds qualitatively in predicting the single-mode spike

and bubble behavior. However, despite efforts to include the effects of bubble growth

and merger in the application of the model to the multimode cases, it is there at best

only partially successful. We also discuss the dependence of the simulated instability

evolution on the laser energy, preheat, and the equation of state model, and show that

the choice of EOS can significantly affect the growth rate and interface structure.

Finally, we conclude with a summary of our results.

II. Experiment

In the experiments,23 10 of OMEGA’s beams deliver a 1 ns pulse of 1/3 µm

laser light at one end of a directly-driven cylindrical target (shown schematically in

Fig. 2). The average laser intensity on the target is typically 6 x 1014 W/cm2. The

laser energy is nominally 5 kJ, but can vary by more than 1 kJ for experiments

performed on different days.

The target consists of a 150 µm-long polyimide (C22H10N2O4) pusher/ablator

section with a density of 1.41 g/cc. A single- or multi-mode 2D perturbation is

machined into one end of the polyimide pusher, in which a 200 µm-wide 4.3%

brominated polystyrene (C500H457Br43) radiographic tracer is embedded. The tracer

serves to minimize edge and parallax effects during target imaging via side-on x-ray
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Figure 2: Target schematic showing (a) overall experiment configuration, (b) an
exploded view of the target package, and imposed interfacial perturbations for (c)
single-mode, (d) two-mode, and (e) eight-mode experiments.

radiography. With a density of 1.42 g/cc, the tracer is very nearly mass-matched to

the pusher so as to minimize any effects of the pusher-tracer boundary on the

instability evolution. A 1.9 mm carbon foam payload (carbonized resorcinol

formaldehyde (CRF) with density 0.1 g/cc) is brought into contact with the pusher,
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and the resulting assembly rests within a cylindrical beryllium shock tube with an

inner radius of 400 µm. Because the perturbation is machined into the plastic pusher

but not into the foam payload, the two materials are actually in contact only at the

highest peaks of the perturbation. As a result, there exists a gap between the two

materials. Since target assembly takes place in air at atmospheric pressure, the gap is

initially air-filled. The extent to which that air subsequently diffuses out of the gap

has not been quantified. The effect of x-ray and electron preheat on the interface has

also not been measured. X-ray preheat has been evaluated by simulations, however,

as discussed below.

Phase plate beam smoothing results in a supergaussian spatial profile

characterized by half-width r0 = 412 µm and order n = 4.7. This gives fairly uniform

illumination on the target within the 400 µm inner radius of the shock tube. As a

result, the plastic-foam interface and the transmitted shock remain nearly planer

throughout the experiment.

The experiments are diagnosed via side-on and face-on x-ray radiography

throughout their duration of up to 40 ns. This is done with titanium back-lighters that

produce 4.7 keV photons for target imaging. The detector is a gated-microchannel-

plate-intensified x-ray camera with spatial resolution of about 10 µm, a gating time of

about 250 ps, and a quantum efficiency of 4%. The field of view is set by the

backlighter spot size of about 750 µm. The effect of the brominated tracer layer is

illustrated by considering the x-ray transmission through the various materials. Using

the densities obtained at 10 ns from a 1D simulation, the side-on transmission through

the foam side of the interface is 0.62. Normalized to this value, the transmission
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through the plastic side of the interface is 0.021. Without the tracer layer, it would be

0.18. Thus, the contrast between the spike and bubble is nearly 9 times greater with

the tracer layer than it would be without.

The incident laser pulse drives a strong shock wave (with Mach number M ≈

15) into the plastic pusher. When the laser pulse is terminated, the target begins to

expand as a rarefaction wave is launched into the target. By the time the incident

shock has reached the interface, the rarefaction wave has overtaken it, resulting in the

formation of a blast wave. The blast wave crosses the interface at about 2.5 ns,

accelerating it to about 70 µm/ns and depositing vorticity that will subsequently drive

Richtmyer-Meshkov25,26 (RM) growth.  After passage of the blast wave, the interface

begins to decelerate, and continues to do so throughout the remainder of the

experiment. During the deceleration phase, the interface is RT unstable. In addition to

the RM and RT instabilities, target decompression occurs during the experiment, and

is responsible for about 50% of the total perturbation growth.

III. Simulation

We use CALE (for C-based Arbitrary Lagrangian Eulerian) to simulate the

experiments. CALE is a 2D radiation hydrodynamics code that uses a finite-

differencing method to numerically solve the Euler equations.24 As an ALE code, it

mixes elements of Eulerian and Lagrangian techniques in order to inhibit mesh

entanglement. Although we generally run these simulations in ALE mode, some
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Eulerian calculations were also performed for comparison.  Unless otherwise stated,

planar symmetry is specified in the direction perpendicular to the computational

domain (i.e. x-y Cartesian rather than axisymmetric), and electron conduction is

included.

The initial length of the computational grid is typically 2 mm. In the single-

mode simulations, its width is generally 25 µm, equal to one half the perturbation

wavelength. However, simulations were also carried out with full wavelengths and

multiple wavelengths.  In these cases, as in the half-mode simulations, reflection

boundary conditions are specified on the boundaries parallel to the target’s symmetry

axis, while free boundary conditions are used on the orthogonal boundaries. Finally,

full-target simulations that include the shock tube were performed to verify that the

large-scale hydrodynamics do not adversely affect the experiment (see Section IV.B).

Numerical radiographs can be produced by CALE and directly compared with

experimental data. The numerical images, which depend on user-input x-ray opacities

and the backlighter energy, provide an instantaneous snapshot of the system. Because

the 250 ps gating time of the actual detector is short compared to the hydrodynamic

time scales, the approximation of perfect temporal resolution is reasonable. The

numerical radiographs do not account for the finite instrumental resolution or the

statistical noise in the experimental radiography. We therefore always distinguish

them from “simulated” x-ray radiographs, which can be made from the CALE results

by folding in photon statistics and the pinhole resolution of the framing camera,

thereby allowing for more realistic side-by-side comparisons with the data.
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The pusher density in the simulations is 1.42 g/cc – equal to that of the

brominated plastic tracer layer, and the foam density is 100 mg/cc, as in the

experiment. The gap between plastic and foam is included in the simulations, and its

density is typically set to1 mg/cc. This should be considered an upper bound on the

actual gap density, but simulations run with lower values yield virtually identical

results. Although it has been shown that such a gap can have a significant effect in

laser-driven RM instability experiments on the spike and bubble structure as well as

the perturbation amplitude,27 simulations suggest that in these RT experiments, which

involve very strong shocks and initially small-amplitude perturbations, only the

amplitude is significantly affected by the presence of an air-filled gap. Omission of

the gap results in a decrease of up to 10% in the amplitude and amplitude growth rate.

This difference is sufficient to warrant inclusion of the gap in the simulations.

In order to investigate the dependence of the instability evolution on the

choice of equation of state (EOS) model, we have run simulations with tabular EOS

as well as perfect gas with various choices of adiabatic indices for the plastic and

foam. We use two commonly-used sets of EOS tables, called LEOS (derived from

QEOS28) and EOP (used, for example, in Ref. 29), which are both Thomas-Fermi-

like. These models do not take into account the material structure, but we do not

consider this a bad approximation given that the actual foam pore size is no more than

about 0.1 µm. As will be shown in Section IV.D, the EOS choice can nevertheless

have a significant effect on the instability evolution.

The initial material temperatures in the CALE simulations discussed above are

typically 25 meV (290 K). After laser deposition, radiation effects and electron
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preheat are generally not included, so the interface (along with all the pre-shock

target) remains cold until the arrival of the shock. Significant levels of preheat would

cause the interface to move and its perturbation structure to change prior to shock

transmission. If the plastic side of the interface was heated sufficiently to cause melt,

the interface would begin to move away from the laser-end of the target, possibly

driving a shock into the foam, and the perturbation amplitude would decrease

(remaining stable) and possibly become non-sinusoidal.

A 2D LASNEX30 calculation including radiation transport predicts that

material at the interface is preheated to a temperature of about 0.4 eV before the

arrival of the shock. In order to estimate the effect this might have on the subsequent

instability evolution, a simulation was run in which the initial temperature of all

materials was increased to 0.4 eV (see Fig. 3). The effect on the spike and bubble

shape is relatively small, and the perturbation amplitude is reduced by about 10%. At

the time of shock arrival at the interface, the amplitude has been reduced from 2.5 to

1.9 µm, which certainly accounts for some of the subsequent growth reduction. At

later times, the perturbation growth is also inhibited by the increased thermal pressure

of the preheated foam. However, the LASNEX calculation predicts that the level of

preheat is less than 0.2 eV beyond about 50 µm into the foam. Consequently, the

resulting reduction could be considerably less than the 10% seen in the CALE

calculation with unrealistically uniform 0.4 eV preheat. Since the main effect of

preheat is to reduce the initial amplitude, another simulation was run in which the

initial temperature was only 25 meV but the initial amplitude was set to 2.0 µm. The

resulting amplitude reduction at later times was never greater than 5%. Beyond 15 ns,
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Figure 3: Estimation of the effect of preheat. LASNEX predicts that the interface is
preheated to 0.4 eV before shock refraction. (a) A CALE simulation run with the
initial temperature of all materials increased from 25 meV to 0.4 eV yields a
decreased perturbation amplitude. The pre-shock amplitude is reduced from 2.5 µm to
1.9 µm. A third calculation with a low initial temperature but with the initial
amplitude reduced to 2.0 µm does not differ significantly at later times from the
larger initial amplitude case. The results suggest that the effect of preheat on the
amplitude is less than 5% after shock refraction. (b) Numerical radiographs show that
the effect on the shape of the spike and bubble is relatively small. All three
simulations were run with EOP EOS tables for all materials. The shock is moving
from left to right, the dark region on the left (including the spike) is the plastic pusher
material, the lighter region to the right (including the bubble) is shocked foam, and
the white region on the far right is unshocked foam.

the amplitude histories are virtually identical. Consequently, we do not consider x-ray

preheat to have a significant impact on the instability evolution in these experiments.
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Figure 4: Velocity source: CALE simulations are driven with a time-dependent
velocity source extracted from a 2D LASNEX simulation which in turn is driven by a
3.5 kJ 1 ns laser pulse. The curve shown is the velocity of the on-axis fluid element
initially located 70 µm into the plastic pusher (80 µm from the plastic-foam
interface). The plastic-foam interface deceleration and Atwood number from a 1D
CALE simulation driven by this velocity source are also shown. The post-shock
Atwood number remains nearly constant at about 0.54.

Three different methods have been used in the simulations to drive the

incident shock. In the first method, a time-dependent velocity source is extracted from

a 2D laser-driven LASNEX simulation and then input into CALE (see Fig. 4). This is

usually done with the time-dependent pulse shape from an actual experiment, but we

have found that a simple square pulse gives nearly identical results. In the first step of

the second case, a 1 or 2D laser-driven LASNEX or CALE simulation is run. At the

time that the laser turns off, the density, temperature, velocity, and position of the

resulting shock-compressed slab is recorded. This information is then input into the

full-sized 2D CALE simulation as a high-pressure, high-velocity slab, which then

evolves into a blast wave and subsequently drives the instability. The velocity drive is

generally used in ALE calculations, while the slab drive is more naturally

Time (ns)
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implemented in Eulerian runs. In the third method, CALE’s laser beam package is

used to directly drive the simulated target with a square pulse. The three methods

yield virtually identical results (the agreement among the interface trajectories is at all

times better than 2%) when the energy deposition in the laser-driven case is spatially

uniform. Since this is always the case in our half-wavelength simulations, we will in

those cases not specify which mechanism was used. In full-target simulations,

however, the laser-drive has the advantage that it can be applied with the actual

supergaussian intensity profile delivered by OMEGA, and so such cases will be

presented with the drive mechanism used.

A resolution study was performed to ensure an adequate level of convergence

in the simulations. In the study, the zero-time cell aspect ratio, defined as the ratio of

the transverse to parallel cell dimensions, was held fixed at 5/3. Amplitude histories

and numerical and simulated radiographs at 8 and 14 ns are shown in Fig. 5 from four

simulations with transverse resolution ranging from 30 to 240 points per perturbation

wavelength (ppw). The interface position (and therefore velocity) shows little

variation from one simulation to another, and the shock position is nearly identical in

all four cases. The variation in amplitude from the mean is in each case less than 6%,

and does appear to vary systematically with resolution. The most significant variation

is in the small-scale details. Specifically, as the resolution increases, more and more

Kelvin-Helmholtz (KH) rollup appears along the interface, with an increasingly

smaller minimum scale length. The variation of the late-time spike stalk on resolution

is apparent in the simulated radiographs, and the calculation with the lowest
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Figure 5: Resolution study. (a) Amplitude histories and (b) Numerical and simulated
radiographs from CALE simulation at 8 and 14 ns. Simulated radiographs include the
effects of the instrumental resolution and noise due to photon statistics. In each case,
the cell dimension aspect ratio is 5/3.

resolution agrees best with the data. Though the increase in KH rollup with resolution

has rather limited impact on experimentally observable scales, the question of its

ka

Time (ns)

*  Experiment
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Figure 6: ALE/Eulerian comparison for single and two-mode targets. Kelvin-
Helmholtz instability effects are more prominent when CALE is run in ALE mode
than in Eulerian. In the two-mode case, the T = 13 ns result from the Eulerian
calculation seems to agree better with the data, suggesting that these effects are
exaggerated in the ALE runs.

veracity should be considered in studies of the approach and transition to turbulence.

Eulerian calculations exhibit less small-scale KH activity than do ALE simulations

run at the same transverse resolution (see Fig. 6). In most cases, the difference is too

small to be resolved by the experiment. However, experimental radiography from the

two-mode experiment at 13 ns appears to be better reproduced by the Eulerian

calculation. Though not conclusive, this suggests that the relative increase in KH

activity is perhaps stimulated by the grid motion algorithm selected in the ALE

simulations.

Half-wavelength simulations are generally run with a transverse resolution of

60 ppw. This appears to be adequate to provide a sufficient level of convergence on

the experimentally observable scales. The limited numerical resolution corresponds to

     ALE
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    ALE
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a resulting limitation in Reynolds number. With 60 ppw, the simulation Reynolds

number is about 1200 when the value in the experiment is of order 105. Thus, we do

not expect the simulations to reproduce the smallest-scale features present in the

experiment. Since these scales are also below the current experimental resolution, this

limitation is important only if there is significant coupling between the large and

small scales.

To summarize, a baseline calculation spans the entire target length and one

half of one perturbation wavelength in the transverse direction with resolution of 60

ppw. It includes an air-filled gap where the corrugated plastic interface comes into

contact with the planar surface of the foam payload, and is run with planar symmetry

in the direction perpendicular to the computational domain. The code’s ALE feature

is enabled, electron conduction is included, and the initial temperature is set to 25

meV (no preheat).  Finally, tabular EOS are used for all materials.

IV. Simulation results

A. Zero-order hydrodynamics

A 1D simulation is used to investigate the experiment’s zero-order

hydrodynamics. When the EOP tables are used for all materials, the pressure and

temperature in the pusher behind the incident shock are about 55 Mbar and 25 eV,



36

respectively, at the end of the 5 kJ, 1 ns laser pulse (45 Mbar and 20 eV for 3.5 kJ

pulse). Just before the shock reaches the interface, these values have fallen to about

40 Mbar and 20 eV (or 25 Mbar and 16 eV with 3.5 kJ drive). Figure 7 shows the

time dependence of the pressure at the interface, along with the density, temperature,

and sound speed on both sides of the interface. The post-shock pressure at the

interface is about 4.5 Mbar just after shock transmission and falls to about 0.5 Mbar

by 40 ns. Even at late times, the shock pressures are sufficiently high that foam crush

is not an issue. The pre-shock Atwood number A is 0.87, and the post-shock Atwood

number A* is nearly constant at 0.54 (see Fig 4).

The validity of the 1D hydrodynamics was verified by comparing the code’s

prediction of the shock and interface trajectories with experimental measurements, as

shown in Fig. 8. The incident shock arrives at the interface rather quickly – in about

2.5 ns, so the extent to which the comparison of the incident shock speed can be made

is limited. Except in full-target simulations driven by CALE’s laser package with the

actual beam spatial profile, the transmitted shock speed is consistently too high for

any reasonable EOS tried. The simulation results begin to deviate substantially from

the data by approximately 15 ns. The three late-time data points (one at 21 ns and two

at 26 ns) show that, after 20 ns, the simulated shock has advanced between 120 and

200 µm ahead of the actual shock position. This is between 9 and 14% of the distance

traveled by the simulated shock at those times, and between 24 and 44% of the shock-

interface separation. Correctly matching the shock-interface separation is important

while the transmitted shock is close enough to the interface to significantly inhibit

perturbation growth. This can happen either due to a shock-proximity effect, when the
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Figure 7: Time-dependence of fluid variables at the plastic-foam interface from a 1D
CALE simulation: (a) Plastic side of the interface (b) Foam side of the interface. The
pressure (solid line) and velocity (not shown) are continuous across the interface.

spike-shock distance is significantly less than the perturbation amplitude, or as a

bounded-flow effect. In our simulations, the ratio (zshock – zspike) / (2a), where zshock –

zspike is the distance from the spike tip to the transmitted shock and 2a is the peak-to-

valley amplitude, grows to 0.80 within 1 ns after shock refraction through the

interface and subsequently climbs monotonically to about 1.20. The experimental

values of this ratio at 8, 12, and 14 ns are 0.91, 0.71, and 0.90, respectively. Hecht et

al.16 have considered the problem of a bubble rising into a fluid that is wall-bounded

Time (ns)

Time (ns)

Plastic

Foam

(a)

(b)



38

Figure 8: Interface and shock trajectories with (a) ρfoam = 100 mg/cc and (b) ρfoam = 50
mg/cc. In (a), results are included from simulations with both 5.0 kJ drive (upper
curves) and 3.5 kJ drive (lower curves). In (b), the drive energy is 5 kJ. The full-target
simulation includes the Be shock tube and laser spot spatial profile as well as
consequent edge-effects including divergence and shock curvature. The plastic-foam
interface is initially planer. All other CALE results are from 1D simulations.
Experimental data is shown with points that are approximately four times the
experimental error. The experimental energies (in kJ) corresponding to each data
point are included in the figures.

from above. They find that the inhibiting effect of the wall on the bubble velocity

decays exponentially with increasing bubble-wall separation as e-2k(d-z), where d and z

are the heights of the wall and bubble, respectively. If we assume for our case that the

transmitted shock acts as a bounding wall and that spike growth suppression follows

the same scaling as found for the bubble, then this effect becomes negligible when

zshock – zspike  >> 4 µm. This condition is satisfied within about 3 ns in the simulations,
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and probably in about 4 ns in the experiment. Consequently, the shock quickly moves

far enough away that its effect on the perturbation growth is small except perhaps

during the first few ns. The difference between measured and simulated shock speeds

nevertheless does indicate that the simulations are missing something. We believe

that that there are two contributing factors. First of all, the EOS tables may under-

predict the foam compressibility in some regions of pressure-volume space. This

point, along with its consequences on accurate modeling of the instability, will be

further discussed in Section IV.D. Secondly, the artificial planarity of the shock in the

simulations also contributes to its anomalously high speed. Because of lateral

expansion, the actual shock speed on the target axis is less than predicted by the 1D

simulation. The full-target laser-driven simulation significantly over-predicts the

shock curvature, and consequently actually under-predicts the shock speed at late

times [see Fig. 8(a)]. We believe that this is due to imperfect modeling of the laser

deposition. Since the shock appears nearly planer in the data, shock speed reduction

due to lateral expansion is probably a lesser effect compared to the EOS.

The dependence of the zero-order hydrodynamics on the choice of EOS model

used in CALE is shown in Fig. 9. In the simulations, the initial speed of the

transmitted shock in the foam is about 70 ± 3 µm/ns, and the precise value in that

range depends on both the drive energy and the EOS. The spread in results obtained

with the various EOS models is comparable in magnitude to the variation caused by

varying the drive energy over the range seen in the experiments.
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Figure 9: Interface velocity from a 1D CALE simulation driven by a 3.5 kJ 1 ns laser
pulse. The shock induces RM growth, and the interface is RT unstable during
subsequent deceleration phase.

B. Single-mode perturbation

The single-mode perturbation is characterized by a wavelength of 50 µm and

an amplitude of 2.5 µm. Side-on radiographs of the instability growth were obtained

from 3 separate laser shots at 8, 12, and 14 ns [see Figs. 10(a)-10(c)]. The laser

energies corresponding to the data shown in Figs. 10(a)-10(c) are 4.65, 3.50, and 4.74

kJ, respectively. The CALE-produced interface trajectories in Fig. 9 are from

simulations driven by a 3.5 kJ pulse. When a 5 kJ pulse is used instead, the initial

post-shock interface velocity in increased by about 4 µm/ns (6%), the displacement of

the interface (at 40 ns) from its initial position has also increased by 6% (from 1110

to 1180 µm), and the perturbation amplitude at 40 ns has increased by about 4%. At

the times of the three images in Fig. 10, the absolute amplitude increase is 3 – 5 µm

(Even less when the comparison is made at identical interface position rather than

time). Since this value is below the experimental resolution of about 10 µm, it is fair
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Figure 10: Single-mode data and simulation. The simulation was run in cylindrical
coordinates (resulting in the unphysical interface asymmetry on axis) and driven by
CALE’s laser beam package with a supergaussian spatial profile characterized by
half-width r0 = 412 µm and order n = 4.7. These parameters are as in the experiment.

to conclude that, with present diagnostics, the existing uniformity of laser energy is

satisfactory.

Numerical radiographs at the same times, all from one full-target simulation

driven by a laser pulse with the correct supergaussian spatial profile, are shown in

Figs. 10(d)-10(f). The primary effect of the target-scale hydrodynamics is the

curvature of the shock and interface. As noted previously, the curvature in the

simulation is greater than in the experiment and, as a result, the transmitted shock

speed on axis is too low at late times. There is a Mach stem apparent in the

simulations near the edge of the shock-tube, but its presence in the experiment cannot

be confirmed or refuted based on the radiographs available. The resolution in the full-

t = 8 ns t = 12 ns  t = 14 ns

2a  =  75 µm          115 µm           144 µm
Pulse energy: 4.65 kJ       3.51 kJ          4.74

2a  =   68 µm       121 µm            150 µm

(a)      (b)           ( c)

(d)             (e)                         (f)

Shock tube Mach stem
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target simulation (30 ppw) is only half that typically used in the half-wavelength

simulation. Nevertheless, the gross features of the experiment are apparent in the

simulation. In particular, the simulation reproduces the release waves originating

from the shock tube walls. These waves do not reach the target axis until about 25 ns,

and so cannot affect the on-axis interface structure until very late times.

The amplitude history produced by a CALE half-wavelength simulation

agrees (to within the experimental resolution of about 10 µm) with amplitude data

extracted from the radiographs shown in Fig. 10 (see Fig. 11). The reason that this is

true for a single simulation despite the experimental variation in drive energy is that

the incident shock velocity scales as the one-third power of the drive intensity. For

the data points shown, the experimental resolution is between 7 and 15% of the

interpenetration-width. Thus, the apparent agreement in amplitude does not conflict

with the obvious over-prediction of the transmitted shock displacement at late times.

The latter is of order 10% after10 ns.

After shock transmission, the instability developing at the interface evolves

almost immediately through the linear regime (in about 1 ns), becomes nonlinear, and

continues well into the deep nonlinear regime. The degree of nonlinearity attained in

the simulation is apparent in the amplitude plot [Fig. 11(c)], which shows that ka

reaches a value of about 29 at 40 ns, as well as in the series of density plots shown in

Fig. 11(e). An asymmetric spike and bubble structure, typical of the nonlinear RT and

RM instabilities, has developed by 5 ns (2.5 ns after shock transmission). At later

times, the spike becomes a long thin structure and develops prominent rollups at its

tip.
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Figure 11: (a) Single mode perturbation. (b) Comparison of the simulated amplitude
history with the experimental data show good agreement. (c) Comparison of the data
with the experiment and Goncharov’s potential flow model with decompression. (d)
Spike, bubble, and averaged amplitude growth rates. (e) Density plots show the
development of highly nonlinear spike and bubble structure. The simulation in (b)
and (e) use LEOS for the plastic and EOP for the foam and a 3.5 kJ drive, while (c)
and (d) use EOP for both materials and a 5 kJ drive.
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In the nonlinear phase, the amplitude growth is approximately linear in time

despite the fact that the deceleration at the interface, and consequently the RT growth

rate, is approaching zero (see Fig. 4). This behavior can be attributed to the

decompression of the target in the expansion fan behind the shock front. Most

nonlinear RT models are incompressible, and therefore do include perturbation

growth resulting from target decompression. However, Goncharov has developed a

potential flow model with a time-dependent density profile.31 The model captures the

general behavior of the perturbation, but typically overpredicts the spike growth and

underpredicts the bubble growth [see Fig. 11(c)]. In order to compare the simulation

results with models of the RT instability that do not include material expansion, we

must first subtract the expansion contribution from the spike and bubble amplitude

histories. Separate spike and bubble amplitudes are obtained by simply subtracting

the interface position, predicted by a 1D simulation, from the spike and bubble

positions. The time-dependent fluid velocities at the spike and bubble positions are

extracted from the same 1D simulation, and are interpreted as the spike and bubble

expansion velocity histories. Integration of these functions yields the expansion

amplitude histories, which are then subtracted from the actual amplitude histories to

obtain the expansion-corrected RT spike and bubble amplitudes. Even after

subtraction of the decompression effect, the spike and bubble amplitudes grow up to

values of ka ≈ 13 and ka ≈ 9, respectively. In Fig. 12, the decompression-corrected

amplitude curves are compared to the prediction of the buoyancy-drag model of Oron

et al.32 The model, which follows earlier work by Hanson et al.33 and Dimonte,34

predicts that 2D bubbles “rise” with a velocity determined by
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Figure 12: Comparison of the simulation results with the buoyancy-drag model of D.
Oron et al. [Phys. Plasmas 8, 2883 (2001)]. The simulation is driven by a 3.5 kJ pulse
and uses EOP for all materials
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The equation for the spike velocity is obtained by simply interchanging spike and

bubble densities. For 3D spikes and bubbles, the numerical coefficients in Eq. 2

change from two to one and from six to two. The initial span-wise symmetry might

eventually be broken in the experiments, but the simulations of course remain 2D.

Consequently, the 2D coefficients remain the valid choice for comparison with the

simulation at all times. As noted by Dimonte,36 such models tend to overestimate the

spike-bubble asymmetry. This results from their application at early times when the

perturbation has not yet reached its asymptotic state. In our case, it could also result

from our approximate treatment of the RM effects, which dominate the instability

growth early on. In any event, the averaged amplitude is nevertheless well predicted

by the model throughout the simulation and well into the deep nonlinear regime. In

addition, Eq. 2 gives a qualitatively correct description of the spike and bubble

behavior. At late times, the spike and bubble velocities decay along with the driving
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interface acceleration, with the asymptotic spike amplitude significantly higher than

that of the bubble.

C. RM contribution

In applying the buoyancy-drag model to the simulation results, the effect of

the RM instability was included by initializing the spike and bubble velocities with

the Meyer-Blewett velocity.35 The Meyer-Blewett velocity is essentially Richtmyer’s

original impulsive model,25 given by

vMB = k a* A* ui, (3)

adapted to the case of a shock passing from a heavier to a lighter fluid. This is done

by simply replacing the post-shock perturbation amplitude a* in the Richtmyer

formula with the average of the pre- and post-shock amplitudes. In either case, A* is

the post-shock Atwood number and ui is the velocity increase of the interface upon

shock transmission. Evaluation of Eq. 3 for the simulation gives vMB = 6 µm/ns.

Interestingly, this is precisely the early-time peak amplitude growth rate seen in Fig.

11(d), suggesting that the perturbation growth is dominated by the RM instability

during the first couple of nanoseconds.

In order to make some estimate of the RM contribution at all times, we ran a

simulation in which a modified target was driven by a constant velocity (41.5 µm/ns)

piston. The piston velocity and pusher thickness were chosen such that the resulting

long, steady shock would accelerate the interface up to the same velocity as that

provided by the blast wave, and then maintain that same velocity without deceleration
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[see Fig. 13(a)].  The amplitude and velocity histories [Figs. 13(b)-13(c)] display

classical RM behavior. The amplitude growth rate quickly climbs to a value that is

reasonably well predicted by the Meyer-Blewett formula, and then decays while

undergoing oscillations. Comparison with the amplitude growth rate observed in the

RT simulation shows that the RM contribution, while initially responsible for

virtually all the perturbation growth, falls to half the total after about 3 ns and

becomes relatively insignificant shortly thereafter. This is not because the RT

amplitude growth rate, which is proportional to perturbation amplitude in the linear

regime, has grown much larger than the Meyer-Blewett velocity. Indeed, the total

amplitude growth rate never exceeds the Meyer-Blewett velocity. Rather, it results

from the relatively quick decay of the RM driving mechanism. At 30 ns, the spike and

bubble amplitudes in the pure RM simulation are roughly 50% of their

decompression-corrected counterparts in the actual experiment. Despite its relatively

low contribution to the growth rate during most of the experiment, therefore, the RM

instability may contribute up to about half of the decompression-corrected

perturbation growth [see Fig. 13(c)]. An estimate of the RM contribution obtained in

this way should be considered as an upper bound, since the effects of the two

instabilities do not necessarily add up linearly. Such uncertainty does not exist in the

consideration of the combined contribution of the RT and RM instabilities relative to

the total growth including decompression. The RT + RM contribution begins at

100%, falls to 50% at about 20 ns, is between 45 and 50% at 30 ns, and continues to

diminish at still later times.
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Figure 13: Estimation of contribution from RM instability and decompression. (a)
Interface velocities resulting from OMEGA RT (3.5 kJ) and pure RM (24 ns 41.5
µm/ns) drives. Pure RM (b) amplitude growth rate shows classic RM behavior. The
peak amplitude growth rate is well-predicted by the Meyer-Blewett velocity of 6
µm/ns. RT dominates over RM after a few ns. (c) Spike and bubble amplitude
histories from the simulation of the experiment, expansion corrected RT + RM
simulation, and the pure RM simulation. Decompression accounts for about 50% of
the total perturbation growth at late times, and RM accounts for up to 50% of the
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expansion-corrected perturbation growth.

D. Equation of state

The simulation results are sensitive to the choice of EOS model specified in

CALE. This sensitivity was investigated through a series of simulations involving

different EOS combinations. The study included the EOP and LEOS tables as well as

perfect gas models with a range of choices for the adiabatic indices γ of the plastic

pusher and foam payload. Relevant portions of the EOP and LEOS shock Hugoniot

curves for the plastic pusher and foam payload are shown in Fig. 14. In regions of the

curves accessed by the incident and transmitted shocks, EOP predicts greater material

compressibility than does LEOS.  This is particularly true for the foam, where the

resulting limiting compression factor with EOP is about 30% greater than with LEOS.

The choice of EOS affects the interface and shock velocities, perturbation

amplitude, and the spike and bubble shape (see Figs. 15-16). However, the

experimental resolution is insufficient to distinguish between EOS models based on

their predictions of the spike and bubble shape. The perturbation amplitude is

reasonably well predicted by several of the models, which on average vary from the

data by about 10%, but the combination of LEOS for the plastic and EOP for the

foam does the best job. The growth rate decreases as the foam compressibility

increases, and the data are inconsistent with foam modeled as an ideal gas with

adiabatic index less than 1.4. The transmitted shock speed is over-predicted by half-

wavelength simulations using both the EOP and LEOS tables. As noted previously,
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this is partially due to lateral expansion behind the curved shock front that is not

present in the half-wavelength simulations. However, this effect is small because of

Figure 14: Tabular EOS shock Hugoniot curves in relevant ranges for (a) brominated
polystyrene (used for plastic pusher) with ρ0 = 1.42 g/cc, T0 = 25meV and (b)
polystyrene (used for foam payload) with ρ0 = 0.1 g/cc, T0 = 25meV. In both cases,
EOP is more compressible than LEOS at very high pressures. The difference is
particularly pronounced for the foam.
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Figure 15: EOS sensitivity. (a) Amplitude histories from CALE simulations run with
several different EOS combinations. For perfect gas models, the amplitude increases
with decreasing foam compressibility. (b) Numerical radiographs at 12 ns. The
combination of LEOS for the plastic and EOP for the foam provides the best
agreement with the data. Simulations run with either LEOS or EOP over-predict the
transmitted shock speed.
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Figure 16: EOS. Choosing a good EOS model is important for matching the
experiment.  LEOS for the plastic with EOP for the foam is best at getting the
perturbation amplitude. Perfect gas with  γplastic = 5/3, γfoam = 1.4 is best at getting the
shock position relative to the interface, while perfect gas with  γplastic = 5/3, γfoam = 1.32
is best at getting the absolute shock position. Differences in spike and bubble shape
are apparent in the simulations, but the data are not good enough to distinguish
between the models on this basis.
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the front’s large radius of curvature, and in any event does not explain the EOS model

dependence seen in simulations. The LEOS tables in particular appear to greatly

overstate the foam stiffness. This tendency has been noted in simulations of OMEGA

RM experiments,27 but the discrepancy here is greater than that seen previously.

It is possible to match one or another of the key observable parameters by

resorting to a perfect gas model and adjusting the adiabatic indices, but this is usually

at the expense of the agreement of some other parameter. For example, we can reduce

the transmitted shock speed by reducing γfoam, thereby increasing the compressibility

of the foam. But the resulting amplitude is soon reduced clearly below that seen in the

experiment. At the same time, the interface speed becomes too high. Clearly (and not

surprisingly), the materials in question do not behave as ideal gases at the energy

densities accessed in these experiments and simulations.

Considering together the dependence of the perturbation amplitude history and the

interface and shock trajectories found in the single-mode simulations, it seems that

the target materials are best represented by LEOS tables for the plastic pusher and

EOP tables for the carbon foam payload. Similar comparisons made with simulations

of the multimode experiments lead to the same conclusion. Consequently, the

multimode simulations presented in the next sections all use this same combination.

E. Multimode perturbations

Having demonstrated the ability to accurately simulate and model the unstable

evolution of single-mode driven by a strong blast wave, we now turn to the evolution
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of multimode interfaces. Ultimately, we wish to understand the growth of highly

turbulent mixing layers present within supernovae. Rather than beginning with a

broad spectrum, we first consider interfaces that are initially two and eight-mode in

order to investigate the approach and transition to turbulence. This will lay the

groundwork for later studies with many initial modes on a wider range of scales.

1. Two-mode

The 2-mode perturbation [see Fig. 17(a)] is characterized by a sum of two

sinusoidal components (in phase) with wavelengths of 40 and 60 µm and amplitudes

of 1.25 and 1.5 µm, respectively. This results in an initial perturbation width that is

very near to the single-mode target value of 5 µm.

As is apparent from the simulated radiograph in Fig. 17b, the interface

structure seen in the 2-mode CALE simulation at 13 ns is in strikingly good

agreement with the data. The simulation interpenetration width at this time was 122

µm, in agreement with the measured value 130 ± 10 µm. The code prediction at 26 ns

[see Fig. 17(c)] appears to be fairly good as well, but is complicated by the

degradation in contrast by that time. It is quite possible that 3D effects have begun to

appear in the experiment, marking close approach to the transition to turbulence and

the limitations of the 2D simulation. The simulated mix width, 307 µm, is slightly

larger than the observed value of 294 ± 10 µm. It is clear from both images that, as in

the single-mode simulations, the code over-predicts the transmitted shock speed.

The qualitative success of the buoyancy-drag model in predicting the single-

mode spike and bubble growth is not apparent when the model is applied to the two-
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Figure 17: Two-mode perturbation simulation and data. (a) Imposed interface
perturbation (b) Again, the spike and bubble size and structure look good, but the
transmitted shock speed is clearly too high. (c) Comparison of decompression-
corrected simulation results with the buoyancy-drag-model prediction shows only
early-time agreement.
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mode interface [see Fig. 17(d)]. In applying the model to the spike growth, the time-

dependent transverse width of the outlying spike was used in place of the wavelength

in Eq. 2. In the case of the bubble growth, this method would lead to a gross

underprediction of the observed growth at all times. Instead, the model is initialized at

the largest wavelength in the problem. After the first (and only) bubble merger event

occurs at about 6 ns, this wavelength is replaced by the largest transverse scale

possible in the simulation – twice the 60 µm box size. The resulting model-predicted

behavior of the spike and bubble is similar to that observed in the single-mode case.

That is, the spike and bubble velocities begin large and decay smoothly in time. In

this case, however, the spike and bubble are predicted to grow nearly symmetrically.

In the simulation, the bubble growth is consistent with the model description. The

spike velocity, on the other hand, abruptly increases at about 15 ns and subsequently

undergoes a period of growth that is nearly linear in time. This fact, coupled with the

agreement between the simulation and experiment, suggests the significant influence

of compressibility or some other phenomenon outside the model’s range of validity.

2. Eight-mode

The initial perturbation in the 8-mode targets [see Fig. 18(a)] is defined by the

sum

a r a
r

i
ii

( ) cos( )=
=

∑ 2

1

8 π
λ

, (4)
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Figure 18: Eight-mode perturbation simulation and data. (a) Imposed interface
perturbation. (b) CALE results are qualitatively in good agreement with the 8-mode
data. (c) Comparison of decompression-corrected simulation results with the
buoyancy-drag-model prediction shows only early-time agreement.
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where the wavelength vector is given by λ µi m i=180 /  and the components of the

amplitude vector range in absolute value between 0.4 and 0.7 µm. The initial

perturbation width is 4.9 µm - again very close to the single-mode case.

As in the 2-mode case, the simulation results at 13 ns reproduce most of the

features seen in the experiment, so that the simulation is in good qualitative

agreement with the data on a range of scales from the largest down to the

experimental resolution [See Fig.18(b)]. The simulation interpenetration width at this

time is 134 µm, somewhat larger than the observed value of 120 ± 10 µm.

Comparison with the 26 ns data is even more problematic than was the case with the

2-mode perturbation [Fig. 18(c)]. The numerical radiograph displays a dominant 180

µm mode on top of which is overlaid a feathery smaller-scale spike and bubble

structure. The same dominant mode is apparent in the data, but the feathery structure

is not. In fact, nothing at all is seen to protrude clearly out beyond the dominant

mode. This could simply result from a loss of contrast associated with decreasing

density and the appearance of 3D effects. But it could also indicate that the smaller-

scale structure has already transitioned to turbulent flow following the generation of

initially laminar 3D structure. Considering both the Reynolds number of the flow and

the time over which it is maintained in these experiments, the evolving interface

could in fact undergo a turbulent mixing transition at as early as about 17 ns.23 The

experimental images of the two-mode interface also show a significant loss of

contrast between 13 and 26 ns, though not so drastic as in the 8-mode case. While
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these data are suggestive, more experiments will be necessary before a firm

conclusion about transition can be made.  These experiments may require greater

resolution and contrast between spike and bubble material, and should eventually

explore the dependence on initial dimensionality and modal spectrum.

Our application of the buoyancy-drag model to the 8-mode case is shown in

Fig. 18(d). In contrast with the 2-mode case, it is now the bubble front that exhibits

anomalous behavior. The bubble’s amplitude and velocity are both considerably

greater than those of the spike after about 20 ns.  Despite our efforts to account for

bubble expansion and merger, we were again unable to show even qualitative

agreement of the model with the simulation.

V. Conclusions

We have presented the results of 2D CALE simulations of blast-wave-driven

hydro experiments performed at OMEGA. Simulations of single-, two-, and eight-

mode targets are in reasonable agreement with experiments on a range of scales from

large down to the experimental resolution. In addition, the single mode evolution is

well predicted by a buoyancy-drag model when the effects of target decompression

are first subtracted away. We were unable, however, to use the model to correctly

describe the evolution of the multimode spike and bubble fronts even when bubble

expansion and merger were accounted for. The partial success of the model will be

further discussed and explained in a later paper.
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Eulerian calculations appear to better reproduce the spike and bubble shapes

than do the ALE runs, but the comparison is limited by the current resolution and the

effect on the perturbation amplitude is negligible. The dependence of the instability

evolution on the laser energy and pulse shape, x-ray preheat, and the EOS model have

also been considered. The first three factors affect the amplitude at or below the 5%

level, but the choice of EOS, from commonly used tables, can significantly affect

both the amplitude growth rate (at about the 10% level) and the interface structure.

All of these factors must be given careful attention in detail-sensitive simulations of

experiments.  

Analysis of the simulation data suggests that the RT and RM instabilities

contribute roughly equally to the decompression-corrected perturbation growth, with

RM dominant in the first few ns and RT dominant at later times. Together, the two

instabilities account for about 50% of the total growth, with the remaining half

resulting from target decompression. Consequently, all three effects must be

considered in order to accurately describe the perturbation growth.

Because of limited computational resources, the simulation Reynolds number is

two orders of magnitude smaller than in the experiment (currently ReCALE ~ 1200

when Reexp. ~ 105). The hypothesized critical Re for the mixing transition lies in

between these two values. The inherent 2D nature of the calculations provides an

even more important limitation on their ability to reproduce all aspects of the late-

time instability evolution. Consequently, the simulations cannot reproduce the

smallest-scale features present in the experiment. If we consider structures

computationally unresolved if their spatial scale is less than ten grid cells, then all
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unresolved scales are below the current experimental resolution. Therefore, the

limited range of scales present in the simulations is important only when there is

significant coupling between the large and small scales. Good agreement between

data and simulations indicate that this is not the case until sometime after 14 ns.

Having demonstrated the ability to accurately simulate the late nonlinear stages

of the instability evolution for both single- and multimode perturbations, we can now

with some degree of confidence proceed to model data taken at later times, as the

instability approaches and, hopefully, passes through the transition to turbulence. We

can also move to 3D calculations to investigate when and how the 2D symmetry of

the experiments is broken. Since the simulations cannot reach the high Reynolds

numbers present in the experiments, it will be interesting to observe the code

predictions at the transition time as predicted by theory and observed in experiments.

In fact, sudden deviation of simulation from data, after a period of good agreement,

may be the best indication that transition has taken place. Continuing improvement in

experimental resolution will of course also be helpful. With these tools, we intend to

study the dependence of the time to transition on the initial modal spectrum. A key

question is how and when will the initial conditions be “forgotten” and the instability

proceed into a self-similar regime? Finally, what are the absolute limits of current

computer codes and hardware resources in accurately modeling complex high-

Reynolds number flows. These questions must be addressed if a real understanding of

the nonlinear hydrodynamics present in core-collapse supernovae is to be attained.
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Chapter 3: The effect of a short wavelength mode on the

evolution of a long wavelength perturbation driven by a

strong blast wave

I. Introduction

In core-collapse supernovae, the sudden release of an enormous amount of

energy near the star’s center drives a strong blast wave out through layers of

progressively less dense material.1,2 The transmission of a blast wave through an

interface from a denser to a less dense material constitutes an unstable system.3

Preexisting perturbations on the interface grow to larger amplitude after passage of

the shock due to two different mechanisms. First, the transmission of a shock through

a perturbed interface results in vorticity deposition regardless of whether the traversal

is from heavy to light or from light to heavy. The subsequent evolution of the

vorticity field leads to perturbation growth, an effect called the Richtmyer-Meshkov

(RM) instability.4,5 With the passage of a blast wave, the interface begins to decelerate

after shock refraction. Since the pressure decreases monotonically with distance

behind the shock front, there is an attendant reversal of pressure and density gradients

(∇P•∇ρ < 0) in the heavy to light case. As long as this condition is satisfied at the

interface, it is unstable to the Rayleigh-Taylor (RT) instability.6,7  Under the influence
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of the RM and RT instabilities, interface perturbations grow into spikes of heavier

material “falling into” lighter fluid and bubbles of lighter fluid “rising into” heavier

fluid. Shear that develops along the growing spikes drives Kelvin-Helmholtz (KH)

growth, which contributes both to the development of characteristic mushroom caps

at the spike tips and to the eventual breakup of the interface into a turbulent flow. In

addition to core-collapse supernovae, these instabilities will be present during the

implosion of inertial confinement fusion (ICF) ignition targets currently being

designed for the National Ignition Facility (NIF). For double-shell targets, the

resulting mixing of hot fuel with cooler shell material can in turn result in significant

reduction or even complete elimination of thermonuclear yield.8 Laboratory

astrophysics with lasers, which is motivated by both the diagnostic limitations

inherent in observational astrophysics and the need to validate the codes used to

model astrophysical systems, provides a link between the two classes of applications.

The question of the dependence of RM and RT growth on the initial modal

spectrum is at the heart of both astrophysical and ICF applications of compressible

mix. This is particularly true for the deep nonlinear and transitional regimes, where

linear and weakly nonlinear theories have long-since become inapplicable but the

similarity-based scaling arguments commonly applied to the turbulent regime are not

yet necessarily valid. The deep nonlinear and transitional regimes must therefore

bridge the gap between the earlier phases, where initial conditions have a strong and

direct influence on the perturbation growth, and the turbulent regime perhaps

characterized by self-similar growth independent of the initial spectrum. Most

astrophysical systems of interest are not only turbulent but are very highly turbulent
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from very early times. For example, the Reynolds number in core-collapse

supernovae is estimated9 to be of order 1010, many orders of magnitude above the

value of ~104 suggested by Dimotakis10 as sufficient for the mixing transition.

According to the analysis by Robey et al of transition in non-stationary flows,

transition in supernovae should occur in about 2.8 seconds after the instability

initiation.11 In simulations by Fryxell et al of SN1987A, perturbations on the He/H

interface did not grow to significant amplitudes until times of order 103 seconds after

the explosion while times of interest extend another order of magnitude higher.12 If an

initial-condition-independent self-similar regime is ever to be attained at a blast-

wave-driven interface, it must occur virtually instantaneously in a core-collapse

supernova if the initial condition are amenable. However, the same cannot be said of

the laser-driven high energy density (HED) experiments designed to study such

astrophysical events. Present-day experiments can be very nonlinear but are often not

turbulent, with Reynolds number much lower than in their astrophysical counterparts

(of order 105 for those designed to study aspects of supernova hydrodynamics11) and

time scales that are not long compared to predicted transition times. Even if the 1D

hydrodynamics is appropriately scaled, the real relevance of “supernova-relevant”

experiments is limited by whether or not the level of their dependence on initial

conditions is similar to the dependence present in actual supernovae. If the complex

nonlinear hydrodynamic mixing in supernovae is in fact initial-condition independent

while current experiments are not, then future experiments should move to higher

Reynolds numbers and longer time scales.
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Our intent is to study the dependence on initial conditions of blast-wave-

driven unstable interface evolution in two phases. In this paper, we consider mostly

two-mode interfaces in the regime of recent and current experiments on OMEGA,13

and for such cases present a mechanism whereby the unstable evolution of a strongly

driven perturbed interface can depend critically on details of the initial mode

spectrum. Specifically, we consider how the evolution of a long-wavelength mode is

affected by a single short-wavelength component and the dependence of this effect on

the relative phases of the two modes. In the second phase, and in a later paper, we

will present a study of the dependence on initial conditions for many-mode interfaces

under NIF-like drive conditions, in which the degree of phase coherence as well as

the spectrum is varied.

We begin with brief descriptions of the experimental setup, relevant previous

experiments, the 2D code CALE,14 and the simulations.  This is followed by a

description of the new two-mode interfaces and a discussion of model predictions.

The simulation results are presented and shown to exhibit complex behavior that is

beyond the reach of existing models. When the drive is sufficiently strong, the

nonlinear evolution of the short-wavelength mode can lead to the formation of jets

that strongly affect the large-scale structure of the interface. This effect represents a

nonlinear coupling between spikes and between spikes and bubbles. We describe the

process of jet formation and its impact on the late-time interface evolution, including

a significant dependence on the relative phases of the two modes. We compare the

simulation results with data from recent two-mode experiments and consider earlier

few-mode experiments in the context of these effects. Finally, we conclude with a
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summary of our results and a brief outline of our current work with broadband initial

conditions.

II. Experiments

The experiment (see schematic in Fig. 1), which is described in greater detail

elsewhere,11 uses 10 of the OMEGA laser’s beams in a 5 kJ 1 ns pulse to drive a

Mach 15 blast wave into one end of a cylindrical target. The average laser intensity

on the target is typically 6 x 1014 W/cm2. The target consists of a heavier plastic

pusher/ablator section [polyimide (C22H10N2O4) with a density of 1.41 g/cc] and a

lighter foam payload section [carbonized resorcinol formaldehyde (CRF) with density

0.05 g/cc] in contact with one another along a perturbed interface. In order to reduce

lateral expansion, this multicomponent target assembly sits within a Be shock tube.

Because the perturbation is machined into the plastic pusher but not into the foam

payload, the two materials are actually in contact only at the highest peaks of the

perturbation. As a result, there exists a gap between the two materials.

The interface velocity and deceleration (taken from a 1D CALE simulation)

are plotted as functions of time in Fig. 2. As the shock front crosses the interface at 1

ns and impulsively accelerates it up to about 70 km/s, it deposits vorticity, which

drives RM growth. The interface then begins to decelerate, and does so for the 40 ns

remainder of the experiment. During the deceleration phase, the interface is RT

unstable. Shock-deposited vorticity (RM) dominates the perturbation growth for the
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Figure 1: Target schematic showing (a) the overall experiment configuration and (b)
an exploded view of the target package.
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Figure 2: Interface velocity and deceleration. The shock induces RM growth. And the
interface is RT unstable during the subsequent deceleration phase. The post-shock
Atwood number is nearly constant at A* = 0.70.

first couple of nanoseconds, while acceleration-induced (RT) growth dominates at

later times. In addition to the RM and RT instabilities, target decompression occurs

during the experiment, and is responsible for about 50% of the total perturbation

growth at late times.15

The experiments are diagnosed via side-on and face-on x-ray radiography

throughout their duration of up to 40 ns. This is done with titanium backlighters that

produce 4.7 keV photons for target imaging. A nearly mass-matched radiographic

tracer is embedded in the plastic pusher in order to reduce edge effects and

concentrate x-ray opacity into a relatively thin slice near the target axis.
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III. Simulation

The experiments are simulated using the 2D radiation-hydrodynamics code CALE.

CALE is an arbitrary Lagrangian-Eulerian code that uses a second-order (in space and

time) finite differencing method to numerically solve the Euler equations.14 The

relative importance of several numerical and physical factors for achieving good

agreement between simulation and experiment were considered in detail in an earlier

paper.15 In accordance with those results, the simulations in this work are

characterized as follows: The computational grid spans the length of the target, and its

width is generally determined by the minimum allowable considering symmetry

constraints (i.e. one-half wavelength for a single mode simulation). The transverse

resolution is 120 points per perturbation wavelength (ppw) of the longest wavelength

(50 µm) mode.  The specified boundary conditions (BC’s) are reflecting along the

mean flow direction and free along the transverse direction. Simulations are run in

Eulerian rather than ALE mode in order to avoid spurious KH activity at the evolving

interface. The gap between the plastic and foam sections is included and filled with 1

mg/cc air or foam. Electron conduction is included, but the effects of x-ray and

electron preheat are not. Tabular equations of state (EOS) are used for all materials,

with LEOS or EOP for the plastic and EOP for the foam. Simulations are initialized

with a driving slab with uniform temperature, density, and velocity taken from a 2D

LASNEX16 calculation.
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Such simulations have been shown to agree well, both in interface structure

and spike-bubble averaged perturbation amplitude growth, with experiments

involving single-, two-, and eight-mode interfaces.15 For the single-mode simulations,

separate spike and bubble amplitude histories (as well as their average) were

reasonably well predicted by a buoyancy-drag model when target decompression

effects are first removed. Aside from the initial modal structure, the earlier

experiments differ from those discussed in this work only in the foam density – now

50 rather than 100 mg/cc.

IV. New two-mode interface (short on long) with varying phase

We now consider the same single-mode perturbation studied previously (with

a 50 µm wavelength and 2.5 µm initial amplitude), and study the effect of a single

short wavelength component on its evolution. The scale of the secondary mode (mode

10) is one-tenth that of the primary mode (mode 1), or 5 µm in wavelength and 0.25

µm in initial amplitude (see Fig. 3). With 120 ppw in mode 1, mode 10 is resolved in

the simulations to 12 ppw. According to Ofer et al,17 the finite numerical resolution of

an RT-unstable mode (for incompressible flow under constant acceleration) results in

a growth rate reduction below the theoretical value that is given by

γeff = γtheoretical (1 - 2/ppw). (1)

For mode 10, Eq. (1) predicts a 17% reduction in growth rate relative to the fully

resolved value.
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Figure 3: Single and two-mode initial interfaces. The short wavelength mode (mode
10) is either in phase or π/2 out of phase with the long wavelength mode (mode 1).

Ofer et al, in their consideration of the effect of a secondary short wavelength

on a primary long-wavelength mode, found that the main effect of the short

wavelength component was to introduce an effective density gradient that acted to

stabilize the growth of the primary mode.18 They used a 2D ALE code in their study

and, like us, considered a moderate Atwood number (A = 0.5 compared to our post-

shock A* = 0.7). Their calculations were slightly better resolved than ours, with 17-18

points per wavelength (ppw) in the shortest wavelength mode (compared to our value

of 12 ppw in the shortest wavelength mode). There are, however, several significant

differences between their study and ours. Theirs was a pure RT system (no RM) with

constant acceleration, while our blast-wave-driven interface is both RM and RT

unstable with decaying acceleration. Our instability Mach number is higher, with M =

0.15 - 0.20 in foam and 0.25-0.40 in plastic, than their M <  0.1.  It is also significant

that their long wavelength mode remains linear throughout, while both of our modes
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enter the nonlinear regime early on. Finally, their short wavelength component is in

phase (or 180 degrees out of phase, depending on one’s choice of the positive

direction). In order to investigate the phase dependence of the instability in the deep

nonlinear regime, the relative phase of mode 10 with respect to mode 1 is in our study

either 0, π/4, or π/2.

With a phase difference of 0 or π, the initial symmetry allows us to limit the

computational domain to one half of the mode 1 wavelength. Since CALE does not

allow for periodic BC’s, a reasonable treatment of the out-of-phase case requires that

we include multiple wavelengths. This requirement must be balanced with the need to

run with reasonably high resolution and in a reasonable amount of CPU-time. In light

of these considerations, we include four mode 1 wavelengths in the out-of-phase case.

The two modes are then technically modes 4 and 40, but because the ratio of their

wavelengths is an integer, no modes lower than 4 can be generated via mode

coupling. Consequently, the system is equivalent to the mode1/mode 10 system in the

region acoustically isolated from the boundaries (while such a region exists). Late

time density plots from the out of phase simulation show some competition between

mode 4 bubbles, but not merger and the associated generation of larger, faster

growing structures.

V. Model predictions
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In considering model predictions, we divide the perturbation evolution into

three regimes: linear, early nonlinear, and nonlinear. Simple theory predicts that,

neglecting certain potentially stabilizing factors such as surface tension,19 each RT-

unstable mode grows exponentially in the linear regime (a/λ < 0.1) with a growth rate

given by20

γ =
+
kgA

kL1
, (2)

where k is the perturbation wavenumber 2π/λ, g is the (constant) acceleration, A is

the Atwood number, and L is the density gradient scale length at the interface. Thus

the RT exponential growth rate (1/a)da/dt for mode 10 is greater than for mode 1 by a

factor of √10 (i.e. γmode 10 = √10 γmode 1). The amplitude growth rate da/dt of mode 10 is

smaller than for mode 1 by the same factor (da/dtmode 10 = da/dtmode 1/√10).

According to Richtmyer’s impulsive RM model4 adapted by Meyer and

Blewett for the heavy to light case,21 each RM-unstable mode amplitude grows

linearly in time during the linear phase at the Meyer-Blewett velocity, given by

v = k a0 A
* ui. (3)

Here a0 is the average of the pre- and post-shock perturbation amplitudes, A* is the

post-shock Atwood number, and ui is the velocity increase of the interface upon shock

transmission. Because both the amplitude and wavelength of the short-wavelength

mode are scaled in the same way relative to long-wavelength mode, the Meyer-

Blewett velocity is the same for modes 1 and 10.

According to linear modal analysis where modes grow independently without

interacting, mode 10 can have no effect on mode 1 regardless of the relative phase

between the two modes. Ofer et al found that the short wavelength mode does
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introduce an effective density gradient at the interface that will somewhat stabilize the

primary mode (via L in Eq. 2).18 According to their analysis, the mode 1 linear RT

growth rate is reduced by 10% when (a/λ)10 reaches about 0.3, or about the time mode

10 reaches its saturation velocity.

Because the targets under consideration are driven very strongly and the initial

amplitudes are somewhat large (pre-shock a/λ = 0.05 and post-shock a*/λ ≈ 0.02), the

linear approximation is valid for a very short period of time. Considering RT only,

modes 1 and 10 reach the nonlinear threshold value of a/λ = 0.1 in about 2τ RT ≈ 2.0

and 2/3 ns, respectively. For RM only, the linear approximation breaks down in about

τ nl
RM ≈ 0.5 and 0.05 ns for mode 1 and mode 10, respectively. Thus RM growth,

which dominates for the first couple of ns, provides the stronger limit on the linear

regime. Mode 1 becomes nonlinear within 1 ns (of a 40 ns experiment) and mode 10

is nonlinear virtually instantaneously.

At later times, initially sinusoidal perturbations grow into characteristic spikes

and bubbles. In the early nonlinear phase, which is also very short, mode coupling is

present but weak, and Haan’s spectral model22 is valid. Harmonic generation (of

modes 2 and 20) introduces spike-bubble asymmetry, with spikes growing faster than

bubbles. In addition, modes 1 and 10 couple to generate modes 9 and 11.

The saturation velocity of the primary mode can in principle be reduced by the

presence of a second mode where the two interfere constructively.23 Mode 10

interferes constructively with mode 1 at each mode 1 bubble tip when the two are in

phase. However, because of their large separation in wave-number space, both modes

should saturate at the single mode terminal velocity. Modes subsequently generated
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by mode coupling should also not reduce the mode 1 saturation time for the same

reason and also because of how quickly mode 1 becomes nonlinear.

The early nonlinear phase ends when third order terms (and soon thereafter

terms of all order) in the perturbation expansion become significant and the bubbles

approach terminal velocity. For constant acceleration RT with A = 1, the bubbles rise

with constant (terminal) velocity while spikes fall with constant acceleration in the

nonlinear regime.24,25 When A < 1, the spike also reaches terminal velocity.25

Mode coupling between modes 1 and 10 is fairly weak (3th order). In addition,

Ofer et al17 found that once a mode has reached its saturation amplitude, it no longer

contributes to the growth of longer wavelength modes. Since mode 10 becomes

nonlinear in well under a nanosecond, it does not have time to significantly affect the

interface evolution via mode coupling. During the nonlinear phase, bubbles (and

spikes for A<1) grow at terminal velocity ∝√λ, where λ is the object’s transverse

size.24 Since larger structures grow faster, an inverse cascade driven by bubble

competition and merger sets in and washes small-scale bubbles downstream.26,27

The coupling strength in modal models22,17 depends on the relative phases of

interacting modes according to cos(ϕj ± ϕk - ϕi) for mode i  driven by the interaction

of modes j and k. The plus sign is mode i generated by shorter wavelength modes

(harmonic generation) while the minus sign is for mode i generated by the interaction

of longer wavelength modes. Thus the coupling increases with increasing phase

coherence and vanishes for modes that are out of phase.

The late-time scaling is determined by the nature of the time-dependent

acceleration. If g(t) falls off slower than t-2, then the instability growth is RT rather
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than RM like.28 For an n-dimensional blast wave in the self-similar regime,

dimensional analysis requires that the shock-front deceleration scales like t-2(n+1)/(n+2).

Away from the shock front, the resulting deceleration of the driven interface scales

like t-2{1-1/[γ(n+2)]}, where γ is the adiabatic index. In the infinitely compressible case (γ =

1), the exponent is equal to -4/3 when n = 1 and is greater than –2 for all positive n.

For any dimension n, the exponent approaches –2 from above as the adiabatic index

becomes large. Consequently, neglecting the true RM component associated with the

passage of the shock front, perturbation growth at a blast-wave-driven interface is

always RT-like. The bubble distribution approaches a scale-invariant attractor and

then the growth of the bubble and spike fronts scales like29,30  hs,b ~ α s,b A[ ∫ dt √g ]2, or

hs,b ~ α s,b At2/(3γ) for a 1D blast wave (neglecting material decompression). This

follows from the assumption that the height of the front is proportional to the

dominant wavelength or transverse bubble size and gives the well-known quadratic

dependence for constant acceleration.31 In experiments and simulations, however, the

inverse cascade to successively larger structures is limited by the size of the physical

or computational box. In our simulations, which are intended to study the effect of a

high l-mode on a dominant low l-mode, the box size is not large compared to the

wavelength of the lowest l mode with significant initial amplitude (mode 1 for the

single mode and in-phase cases and mode 4 for the out-of-phase case). Once mode 1

becomes the fastest growing mode (which is true very early on due to its large initial

amplitude) a scale-invariant bubble distribution cannot be attained. If we therefore

assume that the dominant wavelength remains constant and the acceleration falls off

like t-2[1-1/(3γ)], then we find that h ~ t1/(3γ). This asymptotic behavior is captured by
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buoyancy-drag models such as that of Oron et al, where the spike (s) and bubble (b)

evolution are governed by the equations32

ρ ρ ρ ρ
π
λ

ρb s s b
b s

s b b s s b b s

du t

dt
g t u, ,

,
, , , ,

( )
( )+( ) = −( ) −2 2

6 2 . (5)

In order to make some prediction of the late-time dependence on the initial

phases, we have applied the modal model of Ofer et al17 with some modifications. In

the early nonlinear stage, mode growth and coupling are determined by Haan’s

weakly nonlinear model.22 Unlike Haan’s model, modes generated by mode coupling

can couple with each other and with preexisting modes. This amounts to an

approximate inclusion of higher order terms, thereby extending the model’s range of

validity. Modes saturate according to the Haan criterion23 and subsequently do not

contribute to the growth of lower l-modes. Saturated low l-modes can, however,

modify the phases of higher l-modes through harmonic generation as long as the

velocity of the driven mode does not exceed its saturation value.  In our application of

the model, the time dependence of the acceleration is included. In addition, our

treatment of phases is more general than in the original implementation, which

effectively allowed for cosine modes with phases of only 0 and π. In our case, the

coupling term includes the cos(ϕj ± ϕk - ϕi) term. When the interaction of two modes

generates a new mode, the phase of the new mode is determined by the resonance

condition ϕi = ϕj ± ϕk. When an existing mode i is driven by two modes j and k,

producing a velocity increment dvi, the phase of the driven mode is shifted according

to
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where n is the time step and ai is the amplitude of mode i. This follows from the

requirement that a k x a k x dv dt k k xi i i
n

i
n

i i
n

i j k j kcos( ) cos( ) cos(( ) )+ = + + ± + ±− −ϕ ϕ ϕ ϕ1 1

since, by definition, k k ki j k= ± .

The result is shown in Figure 4. For the bubble amplitude, the model predicts

essentially no late time dependence of the large-scale structure on the initial presence

of mode 10, let alone on its phase relative to that of mode 1. There is a strong effect

predicted for the spike amplitude. However, since the spike evolution will clearly be

strongly affected by KH rollup long before it reaches the shape predicted by the

modal model, this prediction should not be taken too seriously. In fact, if we define

the spike position as the point at which the spike width falls below 2 µm

(approximately equal to the width of four computational cells and the minimum spike

width observed in the simulations), then the late-time effect of mode 10 on the spike

amplitude virtually disappears.

In conclusion, the models considered predict that the effect of mode 10 on

mode 1 via mode coupling will be weak at all times. Consequently, the main effect of

mode 10 on the evolution of mode 1 should be a reduction of the growth of mode 1

due the effective density gradient provided by mode 10.

There are several other factors not discussed here that could in principle play a

role in the interface evolution. Of these, we are particularly interested in the late-time

effect of the RM component, material decompression (particularly the resulting

vortex dynamics in experiments that are best only quasi-2D), the relative

contributions of electron conduction, viscosity, and finite resolution on stabilization

of high-l modes, reduction of Atwood number in the mixing layer due to the KH
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Figure 4: Modal model prediction of interface at 40 ns. The upper dotted line denotes
the bubble position (57 µm), which is approximately equal for all three cases. The
lower doted line (at -165 µm ) shows the approximate position at which the predicted
spike widths fall below the minimum value observed in the simulations (about 2 µm).
Like the predicted bubble amplitude, the spike amplitude defined in this way is
virtually the same for all three cases. The Kelvin Helmholtz instability prevents the
spikes from attaining shapes predicted by the model. The model also does not include
material decompression and RM contribution.

instability, and reduction in Atwood number at the spike and bubble tips due to the

large-scale density gradient present behind the shock front. Some of these issues will

be treated in a later paper in the context of broadband initial conditions.
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VI. Simulation results

The averaged amplitude histories for the different phase realizations

(including mode 10 by itself) are shown in Fig. 5. Also included is the mode 1

prediction of Oron et al’s buoyancy-drag model (given in Eq. 5).32 In order to isolate

the instability effects and facilitate comparison with the model, the effect of target

decompression has been removed from all amplitude plots.15 As expected, the linear

phase lasts no more than about 1 ns. Before 10 ns, the overall growth is not strongly

affected by the presence of the short wavelength mode. Consequently, the single-

mode buoyancy-drag model provides a good description of the growth in all three

cases. While the acceleration is large, Mode 10 remains sufficiently small that the

introduction of its amplitude into the buoyancy-drag model as a stabilizing density

gradient results in virtually no change in the predicted mode 1 growth.

At intermediate times (between 10 and 20 ns), the multimode perturbation

amplitude histories reveal abrupt changes in the growth rates. After first falling below

the single mode case, the growth of the in-phase interface suddenly increases, so that

its final amplitude (140 µm) is somewhat higher than in the single mode case (133

µm).  The growth rate in the out-of-phase case also falls below the single mode case

at about 10 ns. At about the time that the in-phase growth rate increases, however, the

out-of-phase growth rate falls still further, so the averaged amplitude reaches only 80

µm at 40 ns. The result is that, after 20 ns, the phase-correlated noise leads to some
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Figure 5: Spike-bubble averaged amplitudes corrected for decompression. (a) The
bubble-merger-driven inverse cascade is complete by about 10 ns. (b) Early on, the
growth is not strongly affected by short-λ “noise”. (c) For the two-mode cases,
sudden changes in growth rate occur at intermediate times. (d) After 20 ns, the phase-
correlated (decorrelated) noise leads to growth enhancement (suppression) relative to
single mode. The dashed lines show the single-mode saturation values (a/λ = 0.4) for
modes 1 (upper) and 10 (lower).

growth enhancement (by about 5%) relative to the single mode while the phase

decorrelated noise leads to tremendous growth suppression (by about 40%).

Additional detail can be obtained from plots of separate spike and bubble

amplitude histories, which are shown in Fig. 6. Without the short wavelength

component, the mode 1 amplitudes are as expected for an interface driven by a

decaying acceleration. The spike and bubble growth rates fall off with the

acceleration, and the amplitudes begin to saturate as the drive strength approaches

zero, with the spike amplitude significantly larger than that of the bubble. The spike-

(a)

(b)

(c)

(d)
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Figure 6: Separate spike and bubble amplitudes corrected for decompression. In each
case, the line denotes the spike amplitude. (a) The mode 1 single mode growth is as
expected, with the spike amplitude significantly larger than that of the bubble at late
times. The spike and bubble growth is nearly symmetric in the mode 10 single mode
case because of the effective Atwood number reduction due to the density gradient at
the interface. (b) In the two mode in-phase case, there is some spike growth reduction
relative to the single mode case, and tremendous bubble growth enhancement. (c) In
the two mode out of phase case, there is slight bubble growth enhancement and
tremendous spike growth reduction. (d) A plot of the spike-bubble asymmetry (the
ratio of spike to bubble amplitudes) shows nearly symmetric growth in two mode
cases.

bubble symmetry apparent in the mode 10 simulation likely results from an effective

low Atwood number due to the finite density gradient at the interface, which is

significant compared to the early-time amplitude of mode 10 but not mode 1. The

two-mode-in-phase case begins similarly, but the bubble growth rate suddenly

increases at about 11 ns. Late in time, the spike amplitude is somewhat reduced

Two mode in phase

Two mode out of phase

Single mode

Mode 1

Mode 10

(a) (b)

(c) (d)

Spike-bubble
asymmetry
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relative to the single-mode case (by less than 2%), while the bubble shows

tremendous growth enhancement (about 65%).  In fact the bubble amplitude is greater

than the spike amplitude until about 25 ns. The out-of-phase case strongly differs

from both the in-phase and the single-mode cases. The bubble growth is again

enhanced, though only slightly (by about 1%), but there is tremendous reduction of

the spike growth (by about 60%). In contrast with the single-mode case, the spike and

bubble growth are nearly symmetric in both of the two-mode cases.

In summary, mode 10 has little effect on mode 1 during the linear and early

nonlinear phases of the instability evolution, but has a strong effect during the deep

nonlinear phase when the driving acceleration has decayed to below 25% of its peak

value. The effect can lead to either reduction or enhancement of the overall amplitude

growth depending on the phase of mode 10 relative to mode 1. In both cases, the short

wavelength noise has a symmetrizing effect on the spike-bubble growth. The phase-

correlated noise causes some growth enhancement relative to the single-mode case

while the phase-decorrelated noise results in tremendous growth reduction.

Furthermore, this effect does not appear to result from mode 10 providing an effective

density gradient at the mode 1 interface.

The operative mechanism can be understood by observing the interface as it

evolves (see Figs. 7-10). At 2 ns [1 ns after shock refraction – see Fig 7(a)], both

modes are apparent in the two-mode cases, and the effect of mode 10 on mode 1 is

clearly small. At this point mode 1 is just entering the early nonlinear phase (a/λ =

0.1) while mode 10 has already attained a/λ = 0.4. In the single-mode case, KH rollup

at the spikes is visible within 3 ns of the interaction time. In the two-mode cases, the
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Figure 7: Density plots at (a) 2 ns, (b) 4 ns, (c) 6 ns, and (d) 7 ns. At M  > 0.1, the
drag force affects not only the saturation velocity, but also the shape of the spike and
bubble.
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Figure 8: Density plots at (a) 8 ns, (b) 9 ns, (c) 11 ns, and (d) 12 ns. Deflection of
spikes results in colliding spikes, especially for interfaces consisting of periodic
arrays of spikes (phase coherence). Fast colliding spikes drive premature bubble-
merger and produce upwards and downwards-directed jets, with most of the energy
directed down for collision perpendicular to the zero-order flow velocity direction.
Downwards-directed jets strike the inner surface of bubble tips, thereby depositing
energy that accelerates bubble growth.
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Figure 9: Density plots at (a) 16 ns, (b) 26 ns, and (c) 30 ns. Coupling of the spike
interaction process with the KH instability results in additional coupling between and
generation of scales and greatly enhanced mixing in the layer. This is a complicated
nonlin. transfer of energy from spikes to bubbles and from transverse to parallel KE.
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Figure 10: Density plots at (a) 34 ns, (b) 38 ns, and (c) 40 ns. The result is that large-
scale features present during late nonlinear instability evolution are strongly affected
by small-scale details of the initial conditions. In this case, phase coherence results in
increased bubble growth while phase decoherence gives spike growth suppression.
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(c) 40 ns
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bubble merger process proceeds rapidly. The ten small-scale bubbles per mode 1

wavelength present at 2 ns merge into five by 4 ns, and then into two or three

(depending on the phase) by 6 ns. After one more merger, the process is complete by

10 ns. By 5 ns [see Figs. 7(b)-7(c)] the shape of the primary spikes has been

significantly altered by the presence of mode 10. The remaining secondary spikes

(bubble merger is already underway) near the tips of the primary spikes have acquired

a transverse growth component that is particularly pronounced in the in-phase case

[see Fig. 7(d)]. In the in-phase case, pairs of transversely growing secondary spikes

collide with one another at about 8 ns [Fig. 8(a)], driving premature bubble merger

and producing upstream and downstream-directed jets. Since the collision direction is

nearly perpendicular to the main flow direction, most of the collision energy is

directed downstream. In the out-of-phase case, only a grazing collision occurs

because every other of the secondary spikes (at the primary spike tips) still has a

significant upstream velocity component. As a result, half of these secondary spikes

are directed downward and eventually strike the primary spike stalks at about 11 ns

[Fig. 8(c)]. This in turn causes a sudden reduction in the spike amplitude growth rate

and leads to the large reduction in spike growth relative to the single-mode case

observed at late times. Also at about 11 ns, the downstream-directed jets produced in

the in-phase case strike the inner surface of the primary bubble tips, thereby

depositing energy that suddenly accelerates the bubble growth. At later times, KH

activity near the primary spike tips effectively regenerates the smaller scales lost due

to bubble merger. The process of secondary spike collision and jet formation can then

continue, particularly in the in-phase case. This occurs, for example, between 26 and
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30 ns (see Fig. 9). Each new jet sends more spike material downstream into the

primary bubble region, so that the coupling between KH and secondary spike

interaction results in greatly enhanced mixing in the layer in addition to additional

coupling between and generation of scales.

In the out-of-phase case, a large-scale vortex begins to form across several

mode 1 wavelengths between 26 and 30 ns. This signifies that the edges of the

computational domain have begun to influence the interface evolution all along the

transverse direction.  By this time, however, the spike amplitude in the out-of-phase

case has already been greatly reduced relative to the other cases and has nearly

saturated.

 At very late times, there are large differences in the interface structure of all

three similations (see Fig. 10). Thus the large-scale features present during the late

nonlinear instability evolution are strongly affected by the details of the initial

conditions. Not only the presence of the short-wavelength mode, but also its phase,

has a dramatic impact on the final state.

VII. Comparison with experimental data

Two sets of two-mode short on long experiments have been performed at

Omega to investigate the effect of a short wavelength secondary mode on the

evolution of a long-wavelength primary mode. The wavelengths and initial

amplitudes of the two modes are the same as in the simulations. The first series of
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four targets was shot in April 2003. In an effort to obtain a true side-by-side

comparison unaffected by shot-to-shot variations in drive energy, the interface in each

of these targets was divided in two regions – single-mode on one side and two-mode

on the other. Unfortunately, all information on which side of each target was single

mode and which was two-mode was lost. Figure 11(a) shows a radiograph from one

of these shots (half single mode/half two mode in phase) at 25 ns. The spikes

corresponding to the long-wavelength mode are just beginning to break up all along

the interface. Interpretation of the data is difficult because the single-mode side of the

target may have been corrupted by spike breakup on the two-mode side or by the

discontinuity at the boundary between the two sides. In addition, the discontinuity at

the boundary makes observations near the centerline unreliable, and it is precisely this

region that is least affected by interface curvature and therefore generally the source

of the best data.

Because of these factors, the second target series (shot in August 2003)

included two single-mode targets (imaged at 18 and 25 ns) and two two-mode out-of-

phase targets (at 25 and 30 ns). Data obtained at 25 ns is shown in Figs. 11(b)-11(c)

to provide a comparison between the single-mode and the two-mode cases. The

single-mode spike and bubble structure initially present in the single-mode target has

persisted to late times, while any such structure initially present in the two-mode out

of phase target has vanished. As in the simulation, the presence of the short-

wavelength mode appears to have completely broken up the primary mode. The

uniformity of the x-ray transmission through the mix layer suggests that 3D structure

has emerged and a transition to turbulence may have taken place.
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Figure 11: Experimental radiographs at 25 ns. (a) A “half and half” target with a
single mode perturbation on one side and two mode in phase on the other exhibits
single-mode-like spike and bubble structure that is just beginning to break down. (b)
The single mode target retains single-mode-like spike and bubble structure, while the
(c) two mode out of phase shows reduced growth and a breakdown of large-scale
structures.

Mix width data from all of the shots is compared in Fig. 12 with the

simulation results, in this case shown without subtraction of the decompression effect.

The data points are shifted by 1 ns to account for the way in which the simulations are

initiated, and the experimental error is given by the height of the data-point boxes.

Two data points are included for each half single-mode/half two-mode – one for each

side of the target. Below 20 ns, all three simulations agree to within the experimental

error, and the data agree with the simulations. The single-mode and in-phase

calculations agree with each other above 20 ns as well, while the predicted out-of-

phase amplitude falls significantly lower. Data is available for all three cases at 25 ns,

but the predicted amplitude reduction is still comparable to the measurement
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Figure 12: Comparison of data with simulation without decompression effect
subtraction. The size of the data points is the size of the error bars. Two data points
are included for each “half and half” targets, one from the single mode side and one
from the two mode side. Since it is uncertain which side is which, both points are
labeled either in phase or out of phase. As predicted by the simulations, the two mode
out of phase targets exhibit reduced growth relative to the single mode. The late-time
behavior of the two mode in phase case cannot be resolved by the data.

uncertainty. Above 25 ns, available data is limited to an out-of-phase point at 30 ns,

which agrees with the simulation, and two points from a half single-mode/half out-of-

phase target at 37 ns. The smaller-amplitude side of the target agrees well with the

two-mode out of phase simulation, while the larger-amplitude side falls between the

predicted single mode and out-of-phase amplitudes. A possible explanation is that the

larger-amplitude side is the single mode perturbation corrupted by the out-of-phase

side.

Though the quality and quantity of the data are not sufficient to definitively

validate the simulation results, they do confirm that the presence of the secondary

mode can dramatically alter the evolution of the mix region in the late nonlinear

regime. They also suggest that the breakup of the large-scale spikes, which almost

certainly indicates the presence of 3D flow and might correspond to a transition to

Single
In phase
Out of phase
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turbulence, results in a large reduction in the growth of the mix region relative to the

single-mode result. In this case, the reduced amplitude is close to the prediction of the

two-mode out-of-phase simulation.

VIII. Analysis of earlier results

In a previous paper,15 we presented simulations of two and eight mode

experiments performed on the OMEGA laser. The 2-mode perturbation [see Fig.

13(a)] was characterized by a sum of two sinusoidal components (in phase) with

wavelengths of 40 and 60 µm and amplitudes of 1.25 and 1.5 µm, respectively. The

wavelengths present in the eight-mode case are given by λ µi m i=180 /  with i ranging

from 1 to 8, while the amplitudes range from 0.4 to 0.7 µm. As in the two-mode case,

all modes in the eight-mode case were in phase. We found that CALE simulations

agreed well with the experimental radiography in perturbation amplitude and

interface structure. However, despite efforts to account for bubble merger, we were

unable to successfully apply the buoyancy-drag model that had successfully predicted

the single-mode growth.

In the two-mode case, the bubble growth is consistent with the model

description. The spike velocity, on the other hand, abruptly increases at about 15 ns

and subsequently undergoes a period of growth that is nearly linear in time. This can

now be understood in the context of the secondary spike interaction and jet formation

process. A pair of secondary spikes with both transverse and upstream growth

components is clearly visible near the tip of every other primary spike at 13 ns in both
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Figure 13: Previous two mode simulation and experiment show spike growth
enhancement due to the interaction of secondary spikes. (a) Decompression-corrected
spike and bubble amplitudes. The spike velocity increases suddenly at about 15 ns.
(b) Simulated and experimental radiographs at 13 ns, just prior to secondary spike
interaction.
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the simulation and experiment (see Fig. 13). In the simulation, the sudden increase in

spike velocity occurs when these pairs of secondary spikes strike the intervening

primary spikes, to which some of their upstream energy is transferred. Because the

secondary spikes do not have a downstream growth component, there is no large

downstream jet production and no consequent bubble growth enhancement.

In the eight-mode case, the collision of pairs of spikes (the distinction between

“primary” and “secondary” is ambiguous because there is less separation of the initial

modes in wavenumber space) does create downstream-directed jets that strike the

inner bubble surface, resulting in an abrupt increase in bubble velocity at about 18 ns

(see Fig. 14). At late times, the bubble amplitude is significantly greater (by about

30%) than that of the spikes.

In both the two and eight mode cases, spike-spike interactions strongly

influence the late-time amplitude histories. The exact nature of the effect, however,

including the relative influence on spikes and bubbles, depends on the details of the

initial spectrum.

IX. Discussion

The aerodynamic drag pressure acting on the developing spikes not only

determines their terminal velocity, but also affects their shape. As the instability

growth rate increases, so too does the transverse velocity of redirected secondary

spikes. The degree to which the large-scale interface structure is influenced when

redirected secondary spikes collide with each other or with primary spikes is
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Figure 14: Previous eight mode experiment and simulation show bubble growth
enhancement due to jet production and interaction with bubbles. (a) Decompression-
corrected spike and bubble amplitudes. (b) Simulated and experimental radiographs at
13 ns showing spike interaction that leads to jet production above the primary bubble
tip.
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determined by their speed. The drag pressure is related to the thermal (or interface)

pressure Pi through the expression

where M is the instability Mach number, vs is the spike velocity, and ρs and γs are the

density and adiabatic index of the spike material. When the Mach number is equal to

0.3 (M2 ≈ 0.1 is the threshold for the appearance of compressibility effects33), the drag

pressure is about one-tenth of the thermal pressure. Instability Mach numbers in our

case in fact approach this regime (recall Mfoam = 0.15 - 0.20 and Mplastic = 0.25 - 0.40).

The process whereby the local pressure increase in secondary bubble regions results

in partially redirecting the growth of secondary spikes into the transverse direction is

reminiscent of the pinching effect noted by Li to occur during bubble merger.34

Because the flow velocity into the primary bubble is greater than into the secondary

bubble, Bernoulli’s equation requires that the pressure there be lower. Consequently,

the spike dividing the two regions is redirected towards the primary bubble’s center.

Li hypothesized that the resulting reduction in effective Atwood number would

eventually reduce the velocity of the larger bubble. But in our in-phase case, the head-

on collision of two fast-moving secondary spikes produces an even faster

downstream-directed jet. When it strikes the inner surface of the primary bubble, its

ram pressure in the bubble frame is 0.45 Mbar – roughly equal to the 0.50 Mbar

thermal pressure of the plastic at the bubble position.  It is therefore able to penetrate

a significant distance into the plastic (in a process similar to a cratering event),

thereby enhancing the bubble growth. Although there is no head-on collision of

ρ γs s s iv M P* 2 2= ( )6
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secondary spikes in the out-of-phase case, the redirected spikes are still sufficiently

energetic to essentially punch through the primary spike stalks.

Whether or not redirected secondary spikes collide with each other or with

primary spike stalks depends critically on the degree of phase coherence. Interfaces

consisting of periodic arrays of spikes are more likely to evolve into colliding spikes.

For a system such as ours with two commensurate modes, this requirement is satisfied

when the modes are in phase. Of course real physical systems such as interfaces

within supernovae and ICF targets, whether characterized by only a few or by many

modes, are very unlikely to exhibit high degrees of phase coherence. Indeed, the

perfect symmetry enforced by the in-phase calculation is arguably rather unphysical.

Systems comprised of incommensurate modes can, however, have regions of locally

significant phase coherence. Such regions will likely exhibit accelerated growth, but

whether this eventually determines the dominant scales of the mix region remains to

be seen.

In addition, there are important implications for those who wish to model

physical systems. In multimode RT and RM simulations, the domain is often limited

to a subsection or wedge of the full system with reflecting boundary conditions. In

order to avoid unphysical effects at the boundaries, the initial perturbation spectrum

sometimes includes only modes whose wavelengths are integer fractions of the full

domain. The “random phase” assignment then amounts simply to a random

assignment of plus or minus one to the amplitude of each mode. Since such spectra

are actually characterized by a high degree of phase coherence, these simulations, if

strongly driven, might significantly over-predict the growth of the mixing layer.
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Regardless of the degree of phase coherence, the interaction of redirected

spikes represents a coupling between transverse and parallel motions and a

complicated nonlinear transfer of energy from spikes to other spikes (driving

premature bubble merger) and to bubbles (perhaps resulting in increased spike-bubble

symmetry). Coupling of this process with the KH instability results in additional

coupling between and generation of scales and greatly enhanced mixing in the layer.

Since turbulence requires the development of a broad inertial range of scales, this will

likely decrease the time to transition.

The result that large-scale features present during the late nonlinear instability

evolution are strongly affected by details of the initial conditions must be reconciled

with the expectation that, at some point near or after transition, the mixing layer will

begin to grow at a rate that is independent of the initial spectrum. If this expectation is

correct, then the memory of the initial conditions must somehow be erased. The

observed dependence would in that case be a transient phenomenon that would

eventually disappear as the bubble size distribution settles into a scale invariant form.

However, this argument requires the continual emergence of larger scales and

depends on the existence of a sustained drive. In our case, the acceleration is decaying

as the shock moves continually further away from the interface. At the same time,

perturbation growth continues because of material decompression. The combination

of a decaying drive and continuing decompression means that transients can

effectively be “frozen in” to the flow and thereby persist to late times.
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X. Conclusions

In conclusion, we have shown one way in which compressibility affects the

2D evolution of hydrodynamically unstable interfaces. When the instability Mach

number is higher than 0.1, the pressure associated with kinematic drag on developing

spikes can be sufficient to partially redirect spike growth into the transverse direction.

For an interface with a long-wavelength primary mode and a short wavelength

secondary mode, the interaction of redirected secondary spikes introduces sensitivity

to the initial conditions (both the spectrum and phase distribution). The developing

instability then “remembers” small-scale details of the IC’s well into the late

nonlinear stage of its evolution. Phase coherence tends to result in increased

perturbation growth - especially of bubbles, which could lead some “random phase”

multimode simulations to overstate the growth of the modeled physical system.

Phase-decoherent noise generally results in growth suppression. Coupling of this

process with the KH instability results in additional coupling between and generation

of scales and greatly enhanced mixing in the layer.

Demonstrating the transition to turbulence in high Mach number experiments

is a crucial step in developing an experiment-based understanding of supernova

hydrodynamics. Nevertheless, in order to truly represent the desired astrophysical

system, future experiments will need to not only reach transition, but to reach it early

on while the acceleration is still large. This will likely require a significant increase in

the drive intensity, and would also benefit from 3D IC’s consisting of many short
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wavelength modes. With this in mind, we are beginning to use adaptive mesh

refinement (AMR) simulations with NIF-like drive conditions to investigate the

dependence on the spectrum and degree of phase coherence for interfaces with many

modes over a wide range of scales. Finally, we note that we expect the jet effect to be

significantly smaller, if not altogether absent, in 3D systems with broad spectra.

Consequently, 3D calculations are being planned to study the effect of initial

conditions on determining the time to transition and the properties of the subsequent

turbulent flow.
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Chapter 4: Bubble merger model for the nonlinear

Rayleigh-Taylor instability driven by a strong blast wave

I. Introduction

The basic Rayleigh-Taylor (RT) instability criterion,1,2 neglecting certain

potentially stabilizing factors such as surface tension3, is the existence of anti-parallel

components of pressure and density gradients (∇P•∇ρ < 0). When this condition is

met at an interface between two materials with density ratio η < 1, perturbations on

the interface will grow in time. In the inviscid limit, the instability develops

exponentially while the perturbations remain small (during the linear phase) with a

growth rate given by4

γ =
+
kgA

kL1
, (1)

where k is the perturbation wavenumber, g is the acceleration, A = (1-η)/(1+η) is the

Atwood number, and L is the density gradient scale length at the interface. At later

times, initially sinusoidal perturbations grow into spikes of heavier fluid “falling” into

lighter fluid and bubbles of lighter fluid “rising” into heavier fluid. For A = 1, the

bubbles rise with constant (terminal) velocity while spikes fall with constant

acceleration in the nonlinear regime.5,6 When A < 1, the spike eventually also reaches

terminal velocity.6
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Figure 1: Density (curve 0) and pressure (curve 1) behind a blast wave that has passed
through a material interface from a 1.42 g/cc plastic to a 0.1 g/cc foam. The interface
is RT unstable due to the presence of antiparallel density and pressure gradients at the
interface. The dotted line shows the initial (pre-shock) density profile. The data are
from a 1D CALE simulation of the experiment-relevant planar hydrodynamics at 14
ns.

The RT instability criterion can also be satisfied at a material interface

through which a blast wave has been transmitted from a heavier to a lighter fluid.8 As

is illustrated in Fig. 1, since the pressure behind a blast wave is always falling in time

at any fixed point and in distance behind the shock front (at least in the self-similar

regime9), an interface generally becomes RT unstable when it transmits a blast wave

down a density gradient (ie from more dense to less dense material).

Shock and blast waves are common participants in astrophysical processes.10

In a core-collapse supernova, for example, the sudden release of an enormous amount

of energy at the star’s core drives a strong blast wave that propagates out through

layers of progressively less dense matter.11,12 As the interfaces between these layers

subsequently decelerate in the expansion fan behind the blast front, they are RT

unstable.8 The potential significance of this phenomenon was realized with

observations of SN1987A, when it was found that spherically-symmetric explosion

0       Density (g/cc)
1       Pressure (Mbar)
…..   Initial density

Shock

Interface

Less dense

More dense

Position in cm (arbitrary origin)
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models failed to correctly predict the velocity and arrival time at the surface of heavy

elements originating from the star’s central regions. It has been suggested that the

discrepancy results from the failure of the 1D models to account for the turbulent (the

Reynolds number has been estimated13 to be of order 1010) RT mixing that is certainly

occurring at unstable interfaces. 11,12,14,15

A great deal of experimental, theoretical, and computational work has been

directed towards understanding the evolution of RT unstable systems, and much

progress has been made in the last fifty years. Much of this effort has focused on the

classical case of incompressible fluids in a uniform acceleration field. For systems

driven by strong blast waves, such as core-collapse supernovae and the high-energy-

density laser-driven experiments16-24 designed to study them, the acceleration is

strongly time-dependent and the flow is compressible. Consequently, ideas and

observations pertaining to classical RT systems do not necessarily apply. The purpose

of this paper is to examine how models of nonlinear RT growth should be modified

when applied to blast-wave-driven systems and what implications these differences

have on self-similarity, loss of initial conditions, and transition to turbulence.

We begin by reviewing the stages of classical RT instability growth, focusing

on the nonlinear regime, and describe the types of models commonly used to predict

the evolution of multimode interfaces. We use a simple version of the Sharp-Wheeler

bubble merger model25,26 to illustrate the loss of memory of initial conditions and the

hypothesized establishment of a self-similar regime, and discuss their relationship to

the system’s transition to turbulence. After a brief review of relevant aspects of blast

wave theory, we outline in more detail the peculiarities of blast-wave-driven RT and
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present an appropriately generalized buoyancy-drag model. We discuss bubble

merger for the blast-wave-driven case and the statistical-mechanical merger model

resulting from combining it with the single-mode buoyancy-drag model.

For planar blast-waves, the onset of self-similar instability growth and the loss

of memory of initial conditions do not follow from the model as they do in the

classical case. Instead, the ratio of mix width to dominant transverse scale grows

slowly in time during what we call a quasi-self-similar regime.

Self-similarity and loss of memory of initial conditions are possible for

divergent systems, but require very high initial characteristic mode numbers and high

incident Mach numbers. This requirement has serious implications for supernovae.

Initial conditions predicted by recent stellar calculations27.28 suggest that initial mode

numbers present in supernova progenitors are not high enough to reach the self-

similar regime. Instead, the late-time instability evolution would depend on the initial

perturbation spectrum.

Finally, we include a generalization of the model for interfaces driven by non-

ideal blast waves and make some comparisons with simulations, experiments, and

observations.

II. Classical case

In its most basic formulation, the Rayleigh-Taylor instability describes the

evolution of an interface separating a heavier (more dense) fluid supported by a
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lighter (less dense) fluid in a uniform acceleration field. In the linear approximation,

which is valid for ka < 1, pertubation growth is exponential with a growth rate given

by Eq. (1). When the amplitude becomes comparable to the wavelength, the linear

approximation breaks down. Buoyancy-drag models treat bubbles of lighter fluid and

spikes of heavier fluid as the fundamental nonlinear objects. The model of Oron et

al,29 which follows earlier work by Youngs30 and Dimonte and Schneider,31 predicts

that 2D bubbles “rise” with a velocity determined by

ρ ρ ρ ρ
λ

ρb a s
b

s b
D

s bC
du t

dt
g t

C
u+( ) = −( ) −

( )
( ) 2 (2a)

The equation for the spike velocity is obtained by simply interchanging spike and

bubble densities. The added mass coefficient Ca equals 2 for 2D perturbations and 1

for 3D perturbations, while the drag coefficient CD is 6π for 2D perturbations and 2β1

≈ 7.66 ≈ 1.22 x 2π, where β1 is the first zero of the first-order Bessel function, for 3D

perturbations. Some authors, including Oron et al.,29 use CD = 2π for 3D bubbles.

These drag coefficients, originally derived by Layzer32 following earlier work by

Davies and Taylor,33 apply to A = 1 bubbles rising in tubes of diameter λ or 2D flow

between parallel plates. In either case, λ is twice the transverse scale of the bubble.

Since spikes at A=1 are infinitely narrow, the transverse scale of the bubble is equal

to the wavelength of a periodic array of bubbles. As A decreases below unity,

however, the width of the spikes increases until, at A = 0, there is no distinction

between spikes and bubbles. Rather than making the transverse scale in Eq. (2a) a

function of the perturbation wavelength and Atwood number, we instead redefine the

drag coefficients so that
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(2b)

With this definition, λ is always the perturbation wavelength. Because of Kelvin-

Helmholtz (KH) rollup at the spike tips for A < 1, the actual spike width will be

greater than that implied by (2b). The same is true for bubbles at low Atwood

number. In those cases where KH effects have a significant impact on the spike

and/or bubble width, the drag coefficients should be adjusted accordingly.

Strictly speaking, the values in (2a) apply to single bubbles that are laterally

confined or periodic bubble arrays. For chaotic bubble fronts, experiments34 and

simulations35 suggest that the drag coefficients should be smaller by a factor of about

6π, corresponding to asymptotic velocities that are higher by a factor of about 2.5.

Glimm and Li have suggested that this is because the leading bubbles in chaotic

arrays are laterally less confined by their neighbors then those in periodic arrays.26

Equation (2a) is just Newton’s second law, where the inertial term on the left of the

equals sign contains an added mass coefficient Ca and the two forces (per unit

volume) on the right-hand side are buoyancy and drag. Terminal velocity is attained

when the two forces balance one another, and the resulting asymptotic velocity is

u
C

Lg C Lgb s
asym b s

D
b s,

,
,=

−
≡

1 η
, (3)

where ηb,s = ρb,s/ρs,b. In what follows, we typically drop the spike and bubble

subscripts with the understanding that the merger models describe mergers between
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bubbles rather than spikes. Merger models are based on the fact that larger bubbles

rise (or grow) faster than smaller bubbles and the observation that smaller bubbles

“merge” to form larger bubbles. Statistical mechanics merger models for the

Rayleigh-Taylor instability describe the evolution of a bubble size distribution

function g(λ,t), which gives the number of bubbles in the system with transverse sizes

between λ and λ+dλ at time t.26,36 Such models are built out of two main components.

The first component is a model for the velocity of a single bubble, such as Eq. (2) or,

more typically, Eq. (3), and the second is a rule for the merger of two neighboring

bubbles. Merger rates have been obtained from theory,26,32,36-39 simulation,26,40 and

experiments.26 In the very simplest model, the merger rate is a constant independent

of the size of the bubbles involved.36 In a more reasonable approach, which we will

adopt, two neighboring bubbles are said to have merged when the larger of the two

has risen above the smaller bubble by a constant fraction of the smaller bubble’s

transverse size.26,37 In either case, the smaller bubble, observed experimentally34 to be

“washed down stream”, is removed from the ensemble. In 2D, the diameter of the

surviving bubble is equal to the sum of the diameters of the two pre-merger bubbles.

In 3D, area rather than diameter is the conserved quantity.

The evolution of the bubble-size distribution g(L,t) is given by36

N t
dg L t

dt
g L t g L t L L dL g L t g L L t L L L dL( )

( , )
( , ) ( , ) ( , ) ( , ) ( , ) ( , )= − ′ ′ ′+ ′ − ′ ′ − ′ ′

∞ ∞

∫ ∫2
0 0

ω ω (4)

where the total number of bubbles N t g L t dL( ) ( , )=
∞

∫
0

 and the merger rate ω(L,L’) is

inversely proportional to the time interval required for a merger between two adjacent

bubbles with transverse scales L and L’. The first term on the right-hand side is the
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rate at which bubbles of size L are lost in merger event, and the second term gives the

rate at which bubbles of size L are generated.

It has been proposed that, at least for the classical case, an RT-unstable system

tends to approach a self-similar (or scale-invariant) regime independent of the initial

conditions after several generations of bubble merger above the largest significant

scales present in the initial spectrum.41 This is true of the model given in Eq. (4) for a

wide range of merger rates, and is also supported by a large body of experimental,34

theoretical,37,42 and computational41 work. Late-time independence of initial

conditions in hydrodynamically-unstable systems means that two interfaces, even if

characterized by wildly different perturbation spectra at time zero, will eventually

reach a regime in which their perturbation amplitudes, velocities, and statistical

spectral properties (or bubble size distribution functions) will become equalized.

Strictly speaking, we require that the relative difference between the two systems

vanishes in the limit that t goes to infinity. The instability evolution is self-similar if

the shape of the bubble distribution function does not change in time except for a

linear multiplier that increases in proportion with the bubble size expectation value.

In the self-similar regime, the mix width h(t) grows in proportion to the characteristic

bubble size (the bubble size expectation value).

To illustrate the mechanism by which initial conditions might be erased in the

RT instability, consider the following toy model of bubble merger: Assume there is

only one bubble size (L) at any time t, and that L0 is the bubble size at time zero.

Then, at each merger, the bubble size is doubled, so we have

L(t) = 2N(t) L0, (5)
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where N(t) is the number of bubbles of size L at time t. Now N(t) is determined by

the requirement that

t = τ(L0) + τ(2L0) + … + τ(2N(t)L0), (6)

where τ(L) is the merger time for a bubbles of size L. If we had τ(L) = τ independent

of L, then N(t) = t/τ, and so L would grow exponentially in time. Loss of initial

conditions is possible because the merger rate is not independent of bubble size.

Instead, larger bubbles take longer to merge than smaller bubbles. For classical RT,

dimensional analysis requires that25

τ( ) /L L g∝ . (7)

The terminal velocity for bubbles of size L (and spikes for A < 1) is given by Eq. (3).

The coefficient C depends on the dimension of the perturbation and the Atwood

number. Note that Eq. (7) says that the bubble merger time is proportional to the time

it takes the bubble to rise by one bubble diameter. We define the dimensionless

constant C2 as the fraction of a bubble diameter the bubble must rise before merger

takes place, so that

τ( ) ( / ) / ( / ) / /L C C L g C C L g i= =2 2 0
22 , (8)

where i is the bubble generation number. Requirement (6) then becomes

t
C

C

L

g

C

C

L

g
i

i

N N

= =
−

−=

∑2 0 2

0

2 0
2

2
22 1

2 1
/

/

, (9)

from which it follows that

N t
C

C

g

L
t( ) log= −( ) +












−2 2 1 1 1

2 0

. (10)

Inserting this into (5), we finally get
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L t
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2
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2 2
. (11)

For times such that the inequality

t
C

C

L

g
L>> ≡2 0

0τ( ), (12)

is satisfied, the first term in the square brackets dominates, and we get the limiting

result

L t
C

C
gt( ) → −





















2

2

21
1

2
(13)

That is, the dependence on initial conditions (the initial bubble size L0) is lost at times

long compared to the first generation bubble merger time. Consequently, gt2 is the

only transverse scale remaining in the problem.

Complete scale invariance follows from a similar argument. If we assume that

the merger process begin only after the L0-size bubbles have reached their saturation

velocity, then we can express the perturbation height h(t) as the sum of the height at

the saturation time hsat plus the sum of the contributions of each generation:

h t h u h C Lsat i
asym

i
i

N

sat
N( ) ( )= + = + −

=

+∑ τ
0

2 0
12 1 . (14)

Using (5) and (9), this can be written as

 h t h C L t Lsat( ) ( ( ) )− = −2 02 . (15)

With the solution for L(t) in Eq. (11), this becomes

h t h
C

C
gt C L gtsat( ) − = −( ) + −( )2 1 2 1

2 2

2

2
0 . (16)

When condition (12) is satisfied, we are left with
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h t h A Agtsat( ) ( )− =α 2 , (17)

where we have defined

α( )A
C

C A
= −( )2 1

2 2

2

. (18)

Since hsat is of order L0, it too can be neglected when  (12) is satisfied if C2 is greater

than or of order unity. This yields the familiar result

h(t) = α(A) A g t2. (19)

Thus at late times the initial scale L0 is not retained in the expression for the

perturbation height. Together, Equations (13) and (19) show that gt2 emerges as the

only remaining length scale in the problem. Since L(t) and h(t) have the same

temporal scaling, the perturbation height is proportional to the wavelength,  with

h(t) / L(t) = 2C2, (20)

and the system is said to be in the scale invariant regime. Note that asymptotic self-

similarity follows directly from Eq. (15) and, for our general merger model [Eq. (7)],

depends only on the assumption that merger occurs after the bubble has traversed a

constant fraction of its diameter.

The mechanism for the loss of initial conditions is worth restating and can be

easily visualized as follows. We rewrite Eq. (9) as follows to express the time at

which the scale L is reached:

 t L
C

C

L

g i
i

N

( ) /=
=

∑2
2

0

1
2

(21)

where

 N = log2(L/L0). (22)

For large N, the sum in Eq. (21) is dominated by the first several terms, while the
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Figure 2: Loss of memory of the initial transverse scale:  For a system having
undergone N bubble merger generations, the number of generations n < N necessary
to include in the sum in Eq. (21) in order to reduce the error relative to the full sum
(from 0 to N) to 10%. Above N = 10, the sum is dominated by the last seven terms.

later terms are of less relative importance. The relative error of a partial sum from i

equals zero to n < N is given by

Relative error =  
2 1

22 1

2

2

( )/

/

N n

N

− −

−
. (23)

Figure 2 is a plot of the n at which the sum is 90% converged, as a function of

N. Above N = 10, the the sum is dominated by the last seven terms. Thus as long as N

is large, its precise value is not important in determining t(L). In other words, after

many generations of bubble merger, the time to reach a given scale is only weakly

dependent on the initial scale.

Before proceeding, there are a few points worth making. First of all, we note

that we could have arrived at Eq. (19) by assuming from the beginning that the

system eventually becomes self-similar.43 That is, we use Eq. (20) to replace L(t) in

Eq. (3) with h(t) and equate uasym with dh/dt. The solution of the resulting first-order

ordinary differential equation is again Eq. (19), now with

α(A) = (1/4) C2
 / (C2 A). (24)
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This result makes no direct assumption about the form of the merger rate and differs

from Eq. (18) only in the numerical pre-factor, which is now 0.25 instead of ≈ 0.1716.

It is not surprising that the exact value of the pre-factor depends on whether the

bubble diameter varies discreetly, as in deriving Eq. (18), or continuously, as for Eq.

(24).

A second point is that for bubbles α(A) depends on A like 1/(1+A), and

therefore changes by only a factor of two over the entire range of possible Atwood

numbers (neglecting in this instance the Atwood number dependence of our model’s

drag coefficient). This reasoning does not necessarily apply to spikes, though it must

in the limit of vanishing Atwood number (in which case there is no difference

between spikes and bubbles). As A approaches unity, α(A) for spikes must also

approach unity so that spikes freefall with the acceleration of gravity. The model fails

for spikes at A -> 1, where it predicts that α(A) increases without bound, because it is

based on the assumption that the spikes have reached terminal velocity. Putting in

reasonable values for the coefficients and assuming the above scaling for the merger

time, we find α(A) = 0.036/[C2 (1+A)] for 2D bubbles and α(A) = 0.097/[C2 (1+A)]

for 3D bubbles [or 0.053/(C2 (1+A)) in 2D and 0.142/(C2 (1+A)) in 3D with the pre-

factor in Eq. (24)]. For spikes, the expressions are the same if we make the

substitution A -> -A. Despite the simplicity of our model and with C2 ≈ 1 as reported

by Glimm and Li,26 these expressions agree to within about a factor of two with

experiments and simulations.43

Finally, we consider what a more precise expression for the bubble merger

time might look like. In a real system, merger events in general involve bubbles of
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different size that satisfy a merger criterion that depends on the dimension of the

system. In 2D, the bubble diameter is conserved [Li+1 = Li + Lj ≡ Li + κ2Li = (1 + κ2 )Li

≡ µLi], while the bubble area is conserved in 3D [Li+1
2 = Li

2 + Lj
 2 ≡ Li

2 + κ4Li
 2 = (1 +

κ4 ) Li
2 ≡ µ2Li

2].25 A periodic array of identical bubbles is stable, so the merger time

for two bubbles of equal size should actually be infinite. Finally, the expression for

the merger time should be symmetric in Li and Lj. If we again adopt the convention of

Sharp and Wheeler that bubble merger occurs when the height of the larger bubble

above the top of the smaller bubble is a fraction C2 of the smaller bubble radius,25

then we find

τ κ( ) ( / ) / /( )L C C L gi i= −2 1 . (24)

where Li is the smaller of Li and Lj and

κ = L Lj i/ . (25)

This result, which was also derived by Alon et al.36 for the Sharp-Wheeler bubble

merger model, satisfies the requirements given above for a well-behaved merger time.

The simple merger model discussed above has κ = √2, but all of its conclusions

remain qualitatively unchanged for any other constant κ. Following the same

procedure outlined above, we find that the transverse scale evolves according to

L t
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The bubble height growth is given by
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if L(t) varies discontinuously, resulting in the similarity parameter

L t
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and by
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if L(t) varies continuously, in which case we have
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In conclusion, we have used a very simple model of bubble merger to

illustrate and motivate the general properties of late-time multimode RT instability

evolution. Specifically, we have shown how the initial conditions are erased from

both the transverse and parallel scales after times much longer than the first

generation of bubble merger. This forces the system into a scale invariant regime in

which the wavelength grows in proportion with the perturbation amplitude, and is

based on the fact that smaller bubbles merge faster than larger bubbles. Loss of initial

condition information is equivalent to the relative loss of importance of increasingly

higher order terms in a converging series expansion. In addition, the model suggests

why α(A) of the bubble might depend weakly, if at all, on the Atwood number.
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III. Blast-wave-driven interface motion

The term blast wave is generally used to describe the fluid flow resulting from

a strong explosion in a compressible medium, and the relevant scale-invariant

solution to the Euler equations is discussed in the original works of Sedov44,45 and

Taylor46 and in several other excellent references (see, for example, Landau and

Lifshitz,47 Zel’dovich and Raizer,9 and Barenblatt48). Other than the most general

overview of blast waves, it is important for our purposes to demonstrate RT

instability due to the transmission of a blast wave through an interface, to determine

the driving deceleration felt by the interface, and consider the effect of the large-scale

fluid gradients on the developing instability. With this information in hand, we will

extend the ideas of buoyancy-drag and statistical-mechanical merger models to the

blast-wave-driven case.

A blast wave results when a large amount of energy is released suddenly in a

small volume within a compressible medium, as in an explosion. The expanding

source acts as a piston, driving a shock wave into the surrounding material. Because

of the impulsive nature of the drive, the shock strength decays as the front moves

away from the center. As long as the pre-shock pressure can be neglected relative to

the post-shock value (ie while the Mach number M<<1), the blast wave is described

by a self-similar solution to the compressible Euler equations. In this idealized case,

the only dimensional parameters in the problem are the energy released (E) and the
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pre-shock density (ρ0) in units of mass per (length)d where d is the dimension of the

blast wave. Blast waves can be spherical (d=3) as in the case of supernovae or other

unconfined explosions, cylindrical (d=2), or planar (d=1). The term “planar blast

wave” is often used to describe the flow in impulsively-driven shock tubes, including

the millimeter-scale laser-driven tubes used for laboratory astrophysics experiments

designed to study compressible mixing in supernovae.16-24 The motion of a gas under

the action of an impulsive load is similar to, but distinct from, the solution for a

planar blast wave. Whereas the position of the planar blast front scales like t2/3

independent of material compressibility (see below), the result in the impulsive load

problem is tα where α = 0.5 at γ = 1 and approaches 2/3 as γ tends to infinity.9 These

differences can be approximately accounted for by applying the generalized model

discussed below, which allows for arbitrary acceleration profile and velocity gradient.

The d-dimensional “radius” of the shock front must then be proportional to

(Et2/ρ0)
1/(d+2), the only length scale that can be formed from these parameters and time.

We define the constant of proportionality ξ0 so that the shock displacement rs is given

by

r
Et

s

d

=










+

ξ
ρ0

2

0

1
2

. (31)

This expression is differentiated to determine the shock’s velocity and deceleration as
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The similarity variable
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varies from zero at the center to ξ0 at the shock. Except for a time-dependent scale

factor, the fluid variables must depend only on the similarity variable. The scale

factors are determined by the strong-shock limit of the Rankine-Hugoniot relations,

which for a polytropic equation of state require that the post-shock density, pressure,

and fluid velocity are given by

ρ ρ

ρ
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γ
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When the functions

ρ ρ ξ ρ ρ ξ

ρ ξ ξ

ξ ξ

( , ) ( ) ˜( )

( , ) ( , ) ( ) ˜( )

( , ) ( , ) ( ) ˜( )
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p r t t p t p

u r t u t u t u

s

s

s

= =

= =

= =

(36)

are inserted into the Euler equations, they reduce to a set of ordinary differential

equations for the dimensionless functions ˜( ), ˜( ), ˜( ).ρ ξ ξ ξ  and p u  These equations can

be solved numerically or analytically, and a typical solution is shown in Fig. 3(a).

Because the pressure falls of monotonically behind the shock front, an interface

between two fluids is RT-unstable when it transmits a blast wave from the more

dense to the less dense material.

The velocity of a lagrangian fluid element behind the shock front is

determined by
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Figure 3: (a) Typical solution (with γ = 5/3) to the self-similar spherical blast wave
problem. (b) Motion of an interface between two identical fluids driven by a planar
blast-wave. The model-predicted shock trajectory is from the self-similar solution and
the interface trajectory assumes the asymptotic (linear) post-shock velocity gradient
(see text). The model agrees well with the simulation after the shock has swept up
twice the mass of the driver.
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where the first term describes the decrease in time of the fluid velocity scale factor

(the post-shock fluid velocity) and the second term describes the motion of the fluid

r/rs

u/us

P/Ps

ρ/ρs

Time (ns)

r 
(µ

m
)

Shock

Interface

Sim.
Model

(a)

(b)
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element along the similarity solution. In obtaining this result, we have used the

evolution equation of the similarity variable, which is given by

  

d r t

dt

r t

t
u

r t

r

d t
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(38)

Given that the solution to the scale-invariant function ˜( )u ξ  is known, Eq. (38)

can be solved and its solution inserted into Eq. (37). This then gives the interface

acceleration history g t du t t dti i( ) ( ( ), ) /= ξ  that drives the RT instability.

The full analytic solution to the blast-wave problem with a polytropic EOS is

rather cumbersome, but the asymptotic (ξ → 0) form of ˜( )u ξ  is quite simple and

given by

˜( ) ( , )u u r t
d

r

t
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γ
γ

ξ
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=
+

⇒ =
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2

2
2

1

0

. (39)

In fact, this asymptotic solution is generally a good approximation to the full solution

everywhere except just behind the shock front, where it under-predicts the velocity

gradient. The boundary condition at the shock front is

˜( ) ( , )u u r t
d

r

ts
sξ

γ
γ γ0 1
2

1
2

2
1

= ⇒ =
+ +

, (40)

so the range of validity of the asymptotic solution is extended for more compressible

(γ approaching unity) materials.

Equation (39) shows that, away from the shock front, the flow is characterized

by a linear velocity gradient that decays in time, as in a centered rarefaction wave.

Thus a blast wave can be thought of as a shock wave plus a rarefaction wave.
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If we insert the asymptotic solution Eq. (39) into Eq. (38) and integrate, we

find that

ξ ξ

γ
γ

i

d
t
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where t E r
d

0 0 0

2 2
= ( ) +( )ρ ξ/ /

/
 is the time at which the shock reaches the interface.

The corresponding interface deceleration is then
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which can be integrated to obtain the interface velocity and position:
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The position, velocity, and deceleration of the shock are recovered by setting γ → 1 in

Eqs. (42)-(44). This means that, for an infinitely compressible medium, the interface

remains at the shock front at all times. As is the case of a steady shock, a more

general γ describes how quickly the shock pulls away from the interface.

Figure 3(b) shows a comparison of Eqs. (31) and (44) with a CALE49

simulation of an interface between two identical fluids driven by a planar blast wave.

The simulation is initiated with a compressed slab at the origin with density and

pressure appropriate for laser-driven experiments.24 When the shock reaches 200µm,

it has swept up twice the mass initially present in the driver. At subsequent times, the

model agrees well with the simulation.



123

IV. Buoyancy-drag model for blast-wave-driven case

With expressions for the interface deceleration and velocity gradient in hand

[Eq.’s (39) and (42)], we now proceed to generalize the simple buoyancy-drag and

merger models presented in Section II model to the case of an interface driven by a

strong blast wave. In particular, we consider how compressibility and the time-

dependence of the driving deceleration change the main conclusions of Section II.

This extension entails three main complications.

First of all, the blast-wave-driven interface is unstable to the Richtmyer-

Meshkov (RM) instability50.51 in addition to RT. The RM instability results when a

shock crosses a material interface, whether from light to heavy or heavy to light. The

shock deposits vorticity via the baroclinic term in the vorticity equation, and the

evolution of the deposited vorticity field results in perturbation growth. The simplest

model of RM growth is the impulsive model, originally presented by Richtmyer,50

which treats the action of the shock as a delta-function acceleration. The impulsive

model predicts that the instability grows linearly in time while the perturbation

amplitude is small compared to its wavelength.

When both RM and RT are present, they do not necessarily add linearly, and

there is to our knowledge no general (non-phenomenological) model that includes the

effects of both. Simulations of blast-wave-driven laser experiments suggest that, for
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strong blast waves, RM dominates the instability growth very early on while RT

dominates at later times.24 Single-mode simulations were well modeled by a

buoyancy-drag model in which RM is approximately accounted for by simply setting

the initial spike and bubble velocities equal to those predicted by the impulsive

model. In what follows, we assume that the main effect of the RM component is to

decrease the time required for the instability to reach the nonlinear state where the

buoyancy-drag model is applicable, and make no additional accounting for RM

effects.

The second complication is the time-dependence of the driving acceleration.

For an interface driven by a blast wave, the deceleration is greatest just after passage

of the shock front and subsequently decays in time. With a time-dependent

acceleration, the number of possible length scales that can be formed in the problem

independent of the perturbation scales is infinite [(∫dtn g(t)n/2)2/n for all positive integer

n]. In the classical case, these collapse into the single scale gt2. If we allow g in Eq.

(3) to vary in time and still assume self-similarity, then we find that the mix width

growth should scale like34,43

h ~ [∫dt g1/2]2 (45)

Generalizing the bubble-merger model presented for the classical case [in particular

Eq. (24)], we find that the merger-time is given by
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. (46)

in the time-dependent acceleration case. Strictly speaking, g(t) in Eq. (46) is the

acceleration at the position of the bubble tip. In compressible systems, this is not

necessarily the acceleration at the unperturbed-interface location. For the time being,
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we will nevertheless use the interface acceleration gi(t) as the drive for bubble growth,

effectively assuming that the acceleration varies little over the bubble height.

Summing both sides of (46) from i = 1 to N as before, we find that the transverse

scale grows according to
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and that the late-time bubble amplitude height is given by
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The ratio of (47) to (48) gives the same similarity parameter as in the constant g case:
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the [∫dt g1/2]2 scaling for both L(t) and h(t) after several merger generations.

Experimental data obtained on a rocket-rig apparatus by Read34 and Dimonte et al.43

agree with this scaling for both rising and falling accelerations. This suggests that

time dependence alone does not invalidate the ideas of scale invariance and loss of

initial conditions.

However, it is important to note that Eq. (42) for the interface deceleration,

though non-zero at all times, is only valid while the Mach number of the shock is

high enough that we can neglect the pre-shock pressure ( M M2 1 3>> ⇒ >̃ ). For a

real blast wave, the Mach number eventually approaches unity and the interface
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Figure 4: Estimated limiting drive time as a function of the average incident Mach
number of the blast wave [r0/(ct0/)]. At t = tm, the Mach number predicted by the
model in the strong shock approximation is equal to one in (a) and 3 in (b).

acceleration goes to zero. Thus the interface is driven for a finite time that we can

approximate as
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which is the time at which Eq. (32) predicts that the shock speed is equal to the pre-

shock sound speed c [Eq. 50(a) and Fig. 4(a)] or three times the sound speed [Eq.

d = 1

d = 2

d = 3

d = 1

d = 2

d = 3

(a)

(b)
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50(b) and Fig. 4(b)]. In this expression, M0
ave is the average Mach number up to t0. A

significant change in the shock speed due to transmission through the interface can be

approximately accounted for by rescaling t0 on the right-hand side of Eq. (50). If the

bubble amplitude grows to the point that it is not small compared to the interface

coordinate ri, then the drive at the bubble tip falls below the interface deceleration and

the value of tm will consequently be somewhat reduced.

For blast-wave-driven systems, loss of memory of initial conditions can occur

only if the time-dependent term in Eq. (47) becomes large compared to the constant

term, which includes the initial transverse scale:
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g t dt
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Dt

t

( ) ( ) . (51)

Because of the drive decay, this condition must be satisfied in a time t < tm.

The third complication is the violation of the assumption of incompressibility.

For a blast wave propagating through a single material that is initially homogeneous

and isotropic, the density falls off monotonically as the material decompresses in the

rarefaction behind the shock front. Because of the density gradient, spikes and

bubbles experience decreasing Atwood numbers as their amplitudes increase.40 This is

a relatively small effect for high Atwood number systems in the nonlinear regime,

and is not accounted for in our model. A more significant effect results from the

velocity gradient associated with the density gradient. In the self-similar regime

(while the blast wave Mach number is large), the post-shock fluid velocity is

approximately proportional to r/t (the ξ → 0 asymptotic result where ξ is the

similarity variable) except for just behind the shock front. Decompression provides

another source of perturbation growth in addition to the RT and RM instabilities. We
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can account for the post-shock material decompression by adding the a term βb,shb,s/t,

where hb,s is the bubble (spike) amplitude, to Eq. (3) for the terminal velocity of the

bubble or spike:

dh t

dt C
g t

h

t
b s b s

D
b s

b s, ,
,

,( )
( )=

−
+

1 η
λ β , (52)

where again ηb,s = ρb,s/ρs,b. The terminal velocity now depends explicitly on time and

on the bubble or spike height in addition to the transverse scale and time-dependent

acceleration. The coefficient β is given in Eq. (39) as 2
2γ d +( ) for the case of an ideal

blast wave away from the shock front. Equation (52) is valid, however, for any RT-

unstable system in a velocity gradient proportional to r/t and interface position that

scales like tβ. This allows for fits in systems driven by non-ideal blast waves and

when β is different in each of the spike and bubble regions. This is the only

accounting we make within the model for any deviations from the single-material

blast-wave solution resulting from shock transmission through the interface. Again,

the situation is complicated if we account for the fact that the acceleration at the spike

and bubble tips is not that same as at the unperturbed interface position. It follows

from Eqs. (31), (42), and (44) that g t g t h t r tb s i b s i, ,( ) ( ) ( ) / ( )= [ ]1m , where the minus

(plus) sign is for the bubble (spike). The approximation g t g tb s i, ( ) ( )≈ , which we will

always make, is valid when the perturbation amplitude is small compared to the

interface radius.

Equation (52) can be integrated to yield the perturbation amplitude history for

a single mode driven by a strong planar blast wave:
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(53)

The effect of stretching due to material decompression is present both in the first

term, resulting in stretching of the initial perturbation, and in the second term, giving

enhanced stretching as the perturbation grows in amplitude. If we remove the time-

dependent factor in the first term and the first time-dependent factor in the second

term, we recover the result for a perturbation driven by a blast-wave acceleration but

without decompression. In the absence of decompression, the relative importance of

the first term, which includes the initial amplitude of the perturbation, tends to zero as

t tends to infinity. Significantly, the relative importance of the initial amplitude does

not tend to zero when decompression is present. Asymptotically, the ratio of the first

term in Eq. (53) to the second approaches a constant value of

h
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,
, where the first factor is for bubbles and the

second for spikes, for a planar blast wave. This will typically be much less than one

even for bubbles, but could be significant for initially nonlinear perturbations on an

interface initially located no more than a few wavelengths away from the center.

For interfaces driven by multidimensional blast waves (d > 1), the wavelength

grows in time due to divergence according to

λ π λ( ) ( ) / ( ) /t r t m r t ri i= =2 0 0 , (54)

where m r= 2 0 0π λ/  is the perturbation mode number, and Eq. (53) is no longer valid.

Instead, using Eq. (54) in Eq. (52), we find
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Unlike the planar case, the relative contribution of the initial amplitude in diverging

systems tends to zero as late times (though only logarithmically). The continually

increasing wavelength gives a continually increasing growth rate for a given

acceleration, but the acceleration in higher dimensions falls off much faster than in

1D. The net result is that at late times the instability grows faster in 1D than in higher

dimensions.

Rather than restricting ourselves to ideal blast waves, we also consider the

more general case where we only require that the instability develop in a linear

velocity gradient given by ∆u = β∆r/t, and that the interface trajectory follow

r t r
t
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The interface is driven by an arbitrary acceleration g(t), and the evolution of a single

mode is given by
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where the wavelength is time-dependence only in diverging systems (d > 1).

This more general version of the model can be applied to laser-driven RT

experiments in which a ~ 1 ns pulse from a high-powered laser is used to drive a

decaying shock into a millimeter-scale beryllium shock tube. Though it resembles

(and is often referred to as) a planar blast wave, the drive deviates somewhat from the

self-similar Taylor-Sedov solution discussed above. Figure 5 shows a comparison of
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Figure 5: Application of generalized buoyancy-drag model (Eq. 57) to bubble
amplitude growth in a simulation of a planar RT experiment in which a high-powered
laser drives a plastic-foam interface with a pre-imposed single-mode perturbation.
The drive resembles a1D blast wave with M0

ave ≈ 60. The model curve (dashed line)
with β = 0.51 agrees very well with the simulation (solid line).

Eq. (57) with an A = 0.7 Raptor52 simulation of a proposed experiment in which a 1

ns 25 kJ drive is applied to a single mode perturbation with 50 µm wavelength and

2.5 µm initial amplitude (The simulations and related experiments are discussed in

detail elsewhere16-24,53). The model curve (dashed line) with β = 0.51 agrees very well

with the bubble amplitude history predicted by the simulation (solid line). A value for

β can be obtained from the simulation either by measuring the velocity gradient,

which gives β ≈ 0.61 or plotting the interface trajectory [using Eq. (56)], which gives

β ≈ 0.42. The average of these two gives the best agreement between model and

simulation. Because the model assumes that spikes and bubbles instantaneously reach

their terminal velocities, it does not accurately describe the spike growth at high

Atwood number. In such cases, one would have to numerically solve the buoyancy-

drag differential equation [Eq. (2a)] for the spike velocity relative to the flow at the

spike-tip position, adding at each time step the decompression velocity βhs(t)/t to find

the velocity relative to the unperturbed interface. This is not necessary, however, in

Bubble amplitude
Raptor simulation
Buoyancy-drag
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order to qualitatively capture the bubble-front evolution and associated inverse

cascade to larger transverse scales.

V. Merger model for blast-wave-driven  case

We now consider how the merger model presented in Section II is altered in

the blast-wave-driven case. Rather than assume that the basic tenets of the model are

the same regardless of the relative sizes of the merging bubbles, we again treat the

more general case where a bubble of diameter L mergers with a larger bubble with

diameter κ2L (κ > 1). For a merger event that begins at time ti, the difference in height

between the two bubbles reaches a value of C2L at time ti+1 = ti + τi, where τ is the

merger time. Equation (57) for motion of a single bubble is applied to two bubbles of

diameter L and κ2L, and the merger time is determined from their difference:
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In (58), we have defined the parameter σ κ η0
1 1 1− ≡ − −( ) /CD  and ∆hi = hκL(ti)-

hL(ti) is the separation between the two bubbles at ti. The distinction between the d = 1

and d > 1 is important because, in the divergent case (d > 1), we require that the

difference in height between the two bubbles reach C2L(ti+1) = C2L(ti) t ti i+( )1 /
β

 before

merger. 
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Recalling that µ κ≡ +1 2for 2D perturbations and µ κ≡ +1 4  for 3D

perturbations, we find that
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Inserting (59) into (58), we find
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As in the incompressible case, we wish to sum both sides in i to find an implicit

relation for LN=L(tN)=L0µ
N≡L(t). Carrying out the sum, we find
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where the perturbation mode number m m r LN
N N= = ( )0 0 02/ /µ π µ . An important

consequence follows from the fact that the sum on the left-hand side of Eq. (61)

depends on the drive in the planar case but is independent of the drive in divergent

systems. The second term on the right-hand side, which dominates at late times, is

independent of the initial conditions. If the left-hand side reduces to a function of L(t)

that is has no explicit dependence on L0 in the limit L(t)/ L0 -> infinity, then loss of

memory of initial conditions is possible. For d = 1, this is not true in general for

arbitrary g(t), and can only be true for special choices of the merger time such as
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 for arbitrary p. For planar blast waves, we will show that this

condition is approximately met only within a small region of the parameter space.

For diverging systems, on the other hand, we have
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At late times, the mode number is independent of the initial conditions, as is the

transverse scale
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Inserting the time-dependent transverse scale into Eq. (57), we find that the mix width

grows according to d > 1 (64)
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In this general form [as in Eq. (48)], the perturbative nature of the model is apparent.

The last term on the right-hand side, which describes the interaction between two

bubbles, is the first-order nonlinear term in a multi-bubble interaction expansion. In

truncating the series after the first nonlinear term, we are assuming that interactions

between three or more bubbles are insignificant compared to pair interactions. Note
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also that the initial amplitude appears only in the first term on the right-hand side and

the initial transverse scale appears only in the second term on the right-hand side. The

third term, which dominates at late times (as long as g(t) falls off slower than 1/t2) is

again independent of the initial conditions, and we again find an asymptotically-self-

similar state with the same constant ratio of transverse to parallel scales as in the

incompressible case:
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In fact, Eqs. (63) and (64) are identical to Eqs. (47) and (48) for the incompressible

case except for the stretching factors (t/t0)
β and (t/t0)

-β/2 in the integrals. Because of the

(t/t0)
-β/2 factors, the time required for loss of memory of initial conditions is longer for

systems in a parallel velocity gradient then it would be in incompressible systems

with the same time-dependent acceleration g(t).

We now summarize the specific results of Eqs. (57)-(64) applied to ideal (high

Mach number) blast waves. We first treat the non-divergent (planar) case and then

proceed to consider the effects of divergence on the model. With d = 1, Eq. (58)

becomes
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where we have defined the parameter
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Equation (66) is a quadratic in t ti i

d

+
+( )1

1 2
/

/[ ( )]γ
 that can be solved to yield
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If ∆hi is zero or otherwise negligible, then we have the somewhat simpler result
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Together with the Eq. (61), Eq. (68) allows us to determine in what regions of

parameter space loss of memory of the initial transverse scale might be possible. The

sum in (61) has the necessary properties for loss of initial conditions as long as the

inequality
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/ << ⇒ << −( )−  is satisfied. The generalization of Eq. (23)

to arbitrary µ suggests that, for classical RT, memory loss of initial conditions

requires that µN ~ 100, or L = 100L0. This suggests that the above inequality is

satisfied if L
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, which makes the sum in (61) independent

of L0 when LN/r0 becomes large compared to one. However, because our truncation of

the perturbation expansion requires that LN/r0 is small, we cannot conclude that

memory of the initial transverse scale is lost for planar blast waves even if the initial

scale is very small compared to r0.

In general, the temporal evolution of the transverse scale can be determined

by numerically solving the expression
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for N(t) and then evaluating L(t) = L(tN) = L0 µ
N(t). Similarly, the evolution of the

bubble height determined from

h h
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where, from Eq. (53), we have
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The ratio ti+1/ti becomes large compared to unity after many generations of bubble

merger, at which point
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while L Li i+ =1 / µ for all i. Asymptotically, then, the ratio L(t)/h(t) (the similarity

parameter) is bounded by
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where we have used Eqs. (59) and (68) in addition to (72). According to (73), the

similarity parameter decreases with increasing merger generation (or increasing time)

at large N. Thus there is no memory loss of initial conditions in the d = 1 case and no

self-similar regime in which the mix width grows in proportion to the characteristic

transverse scale. However, numerical evaluation of the model shows that, after about

two generations of bubble merger, the value of the similarity parameter is nearly

independent of the initial conditions (see Fig. 6). We call the quasi-self-similar
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Figure 6: Quasi-self-similar regime: Rather than approaching a constant, the
similarity parameter h/L decays in time. However, the model predicts that, after about
two generations of bubble merger, similarity parameter is independent of the initial
conditions. In addition, the instability goes through a period of  quasi-self-similar
growth during which the similarity parameter changes quite slowly. At very late
times, the similarity parameter scales like (t/t0)

-β/2.

regime and note that there is a period after its establishment when the similarity

parameter is of order unity and changes quite slowly. At very late times, h/L falls off

like (t/t0)
-β/2. During this asymptotic phase, the bubble merger time has become very

long and the instability evolution is dominated by amplitude stretching due to

decompression.

Unless the Mach number of the incident blast wave is very high, however, it is

unlikely that the h/L ~ (t/t0)
-β/2 state will be reached before the strong shock
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approximation is violated and the driving deceleration disappears (see Fig. 3).

Because of this limitation, there is a maximum scale, determined by the initial

conditions, that can be generated at a given interface. Thus the drive imposes an

“effective box size” on the system that may or may not be smaller than the actual

physical or computational box size.

In the divergent case, the merger time is determined by
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from which it is easy to obtain
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From Eq. (62) evaluated for d > l with the blast-wave-driven interface deceleration

Eq. (42), we have
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At late times, the mode number is independent of the initial conditions, as is the

transverse scale
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Inserting the time-dependent transverse scale into Eq. (57), we find that the mix width

grows according to d > 1 (78)
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Recalling the limiting time t t Mm d
ave d d

= ( )+

+

0
2

2 0

2( )/
 for a blast wave, we find

that there is a minimum mode number mlim that can be generated in a given divergent

system, corresponding to a maximum transverse scale:
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For very high Mach numbers and/or very high initial mode numbers, the

limiting mode is independent of the initial mode number [see Fig. 7(a)]. Furthermore,

the dependence of mlim on the initial Mach number (logarithmic squared) is fairly

weak within the range of reasonable Mach numbers for strong blast waves [see Fig.

7(b)-7(c)]. Above about M0
ave = 20, the mlim varies by a factor of only a few when the

Mach number varies by an order of magnitude.

Fryxell et al. have performed simulations of SN187A in which the unstable

metal/He and He/H interfaces are seeded by random grid-scale velocity perturbations

behind the shock front.54 As the resolution of the calculations is varied, so too is the

perturbation wavelength. At low resolution, corresponding to low initial mode

number, the perturbation growth depends strongly on the resolution. At higher

resolution, corresponding to a higher initial mode number of about 75-150, the

authors note that a “preferred” mode number in the range of 16-20 emerges at late

times [see Fig. 8(a)]. In comparing with the merger model, we must choose an

appropriate incident mach number M0
ave. The Mach number of the shock is actually

relatively low before shock breakout into the stellar atmosphere. It is only a few in the

deep interior and climbs to about M ~ 10-20 at the He/H interface.54 After breakout,

the Mach number is of order 102. Since this higher value determines the lifetime of
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Figure 7: Minimum mode number in spherical-blast-wave-driven system. (a) For a
given Mach number and high enough initial mode number, the dependence of mlim on
the initial mode number is weak. [(b)-(c)] For a given initial mode number and high
enough M0

ave , the minimum mode number depends weakly on the adiabatic index and
the incident Mach number. In (a), vlim = c and γ = 1.5.
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the blast wave, we take M0
ave ~ 100. This suggests that memory of the initial mode

number is likely to be retained until tm unless m0 is greater than about 100 [see Fig.

4(a)]. At M0
ave ~ 100, the model predicts a limiting (minimum) mode number mlim ~

20-30, which is comparable to the preferred mode number m ~ 16-20 found in the

simulations.

We have performed a CALE49 simulation of a hypothetical laser-driven

experiment that exhibits behavior very similar to the SN calculations of Fryxell et

al.54 In the simulation [see Fig. 8(b)], we assume that a laser has been used to heat the

interior of a 50 mg/cc, 2.5 mm outer diameter, 0.75 mm-thick foam shell to 200 eV.

A high Mach number spherical blast wave is driven through the shell and into the

surrounding 10-5 g/cc air, driving the foam/air interface RT unstable. No perturbation

is pre-imposed, but a grid-generated perturbation with m0 ≈ 100 has appeared by 5 µs.

After a limited merger period, a late-time mode ≈ 24 emerges in the freeze-out stage

at about 20 µs.

Recent simulations aimed at studying RT at the (C+O)/He layer within core-

collapse supernovae suggest that modes as low as m0 ≈ 24 may be present with

significant amplitudes at the pre-shock interface due to neutrino-driven convection

[see Fig. 8(c)].27 According to Eq. (79), there should likely be no significant

generation of larger scales in such a system. In fact, the simulations show that the

late-time interface structure is dominated by the low-m modes present in the initial

conditions.

Experimental observations of late-time modal structure in RT-unstable,

divergent, blast-wave-driven systems, is rather limited, and we note here only two
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Figure 8: Similarities in asymptotic interface structure appear in a variety of systems
driven by spherical blast waves.  (a) Prometheus simulations of SN1987A with
imposed grid-scale velocity perturbations behind the shock [Muller et al., Astron.
Astrophys. 251, 505 (1991)]. When the initial mode number is high, a “preferred”
mode number m ~ 16-20 emerges at late times. (b) CALE simulation of a
hypothetical laser experiment in which a spherical blast wave drives an RT-unstable
foam/air interface. No perturbation is pre-imposed, but a grid-generated perturbation
with m0 ≈ 100 has appeared by 5 µs. After a limited merger period, a late-time mode
≈ 24 emerges in the freeze-out stage. (c) Recent SN simulations including neutrino-
driven convection [Kifonidis et al., Astron. Astrophys. 408, 621 (2003)] show large-
scale early-time perturbations that continue to dominate at late times. (d) X-ray
images of the Cassiopeia A SNR [Credit: NASA/CXC/SAO] show large-scale
structures corresponding to m ~ 20. (e) Images of high-altitude nuclear detonations
[U.S. Department of Energy Nuclear Testing Archive, Las Vegas, NV] show late-
time freeze-out stage with m ~ 18-36.
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examples. First of all, x-ray images of the Cassiopeia A core-collapse supernova

remnant,55 obtained via the Chandra X-Ray Observatory,56 do appear to show spikes

of core material protruding out from the explosion center [see Fig. 8(d)]. The

explosion does not appear to have been completely isotropic, and the spikes are not

uniform in angular position or transverse scale. Nevertheless, there are several large

spikes visible in one quadrant with transverse scale that corresponds to a mode

number m ~ 20, similar to that seen in both the supernova and laser experiment

simulations. Similarly, film footage of high-altitude nuclear detonations shows

asymptotic modal structure that suggests m ~ 18-36 and is reminiscent of supernova

simulations [see Fig. 8(e)].57,58 In both cases, the observed minimum mode number is

in the range of limiting mode numbers predicted by the model for high incident Mach

number and high initial mode number. Alternatively, the late-time structure could

result from low modes (m < 100) of significant amplitude present in the initial

conditions.

VI. Statistical-mechanics model for blast-wave-driven  case

The principle value of the simple two-bubble-size merger model of Section V

is that, despite its simplicity, it appears to qualitatively capture several of the

important aspects of multimode, nonlinear, blast-wave-driven RT.  More quantitative

results can be achieved by applying the same expressions for the asymptotic bubble

velocity [Eq. (52)], merger time [Eqs. (58), (68), and (75)], and corresponding
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Figure 9: Time-dependence of the similarity parameter for the planar case. The
prediction of the merger model applied to a broad distribution of bubble size is shown
in red, and results from several 2D Raptor simulations with a variety of initial spectra
are shown in black. The model-predicted value of the similarity is lower here than in
the simpler two-bubble-size model of Section V (compare Fig. 6), but agrees well
with the simulations.

amplitude increments [Eqs. (57), (71), and (78)], to a distribution of bubble sizes.

This allows us to follow the model-predicted evolution of the bubble-size distribution

function g(L,t), which is the solution to the statistical mechanical merger model

equation [Eq. (4)]. Results of the statistical model represent for more sensible

comparisons with experiments and simulations. In Fig. 9, we show the time-

dependence of the similarity parameter <L(t)>/h(t) for the planar case as predicted by

the statistical model (shown in red), where <L(t)> is the bubble size expectation value

of g(L,t) (the average bubble size), and h(t) remains the extent of the mix region. For

the initial conditions, bubbles are selected at random from a uniform probability

distribution from zero to 0.05 Lbox, where Lbox is the box size.  There are then about 40

bubbles at time zero, and their initial amplitudes are all set equal to r0/200. Because

simulation

1                      10                   100t/t0

100

 1.0

  0.1

0.01

L
(t

)/
h(

t)

simulation

Statistical



146

the <L(t)> contains contributions from smaller as well as dominant bubbles while h(t)

is set by the largest bubbles, the similarity parameter is lower by a factor of a few

than the prediction of the two-bubble-size model (compare Fig. 6). This lower value

of <L(t)>/h(t) = 0.2-0.4 for t/t0 = 10 – 100 is in good agreement with Raptor

simulations (black curves in Fig. 9), which give <L(t)>/h(t) ≈ 0.1 - 0.4 for the same

t/t0 and with analogous initial conditions.53 The simulations use initial spectra of

various shapes (uniform, gaussian, k-1, and k-2) that all include modes of the same size

relative to the computational box as in Fig. 9a. The drive used in the simulations is

from the same planar laser-driven experiments described in Sec. IV. The agreement

between the model and the simulations is particularly noteworthy in light of the fact

that the interface motion in the simulations deviates somewhat from the ideal planar

blast-wave-drive assumed in the model application.

VII. Conclusion

For blast-wave-driven RT, self-similarity and loss of initial conditions are

violated in the planar case but preserved in higher dimensions where divergence is

present. The reason for this result is that in divergent systems the stretching factor for

the transverse scales is the same as that of the parallel scales. Behind a planar blast

wave, parallel scales are stretched in the rarefaction fan while transverse scales

remain unaffected. Consequently, L(t)/h(t) decays asymptotically rather than

approaching a constant value. After an early-time transient, the establishment of a
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quasi-self-similar regime is possible in systems driven by planar blast waves. Though

time-dependent, the similarity parameter is nearly independent of the initial

conditions during the quasi-self-similar regime. In addition, there is a period after the

establishment of quasi-self-similarity but before the driving acceleration dies away

during which the similarity parameter is of order unity and changes slowly in time.

The finite duration of the blast-wave drive sets a maximum scale that can be

generated on a given interface. For divergent systems, this corresponds to a minimum

mode number that depends weakly on the incident Mach number and initial mode

number as long as both are sufficiently high. Self-similarity and loss of memory of

initial conditions are in principle possible for divergent systems, but only for high

initial characteristic mode numbers and high incident Mach numbers. This

requirement has serious implications for supernovae. Initial conditions predicted by

recent stellar calculations27.28 suggest that initial mode numbers present in supernova

progenitors are not high enough to reach the self-similar regime. If these predictions

are correct, the late-time interface structure observed in supernova remnants likely

depends strongly on the initial conditions present within the star at the time of

explosion.
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Chapter 5: Effect of Initial Conditions on 2D Rayleigh-

Taylor Instability and Transition to Turbulence in Planar

Blast-wave-driven Systems

I. Introduction

The post-linear evolution of the Rayleigh-Taylor (RT) instability1,2 remains

incompletely understood. This is particularly true for multimode perturbations, which

are also the most important for practical applications in inertial confinement fusion

(ICF) and astrophysics. There is some evidence from theoretical,3,4 computational,5

and experimental6 work that memory of the initial perturbation spectrum is lost as the

interface evolves into a self-similar regime in which the mix width grows in

proportion with the dominant transverse scale length. The existence of such a regime

has yet to be proven, however, even for the most fundamental case of incompressible

fluids in a uniform gravitational field. In addition, many physical systems of interest

involve compressible systems undergoing time-varying accelerations, where results

obtained for the idealized case do not necessarily apply. One class of such systems

includes core-collapse supernovae, in which strong blast waves propagate from near

the star’s core up through layers of progressively less dense material.7,8 Each driven

interface is susceptible to both RT and Richtmyer-Meshkov9,10  (RM) instabilities.11 In
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addition, perturbation growth results from material expansion in the large-scale

velocity gradient behind the shock front.12,13 Understanding the growth of the

resulting turbulent mixing zone may be required to explain the anomalously-fast

transport of core material to the star’s surface.7,8,14,15

In order to study this problem, a series of laser-driven laboratory experiments

have been designed and conducted on the Nova16 and Omega17 lasers,12,13,18-25 and

additional experiments are currently being planned for the National Ignition Facility26

(NIF). These experiments are intended in part to study the effect of the initial

conditions on the nonlinear instability growth, the time to transition, and growth of

the post-transition turbulent mixing zone for high Mach number blast-wave driven

systems. In this paper, we present computational results for a planer blast-wave-

driven system under NIF-like drive conditions. Using the multi-physics, AMR, higher

order Godunov Eulerian hydrocode, Raptor,27 we consider the late nonlinear

instability evolution for multiple amplitude and phase realizations of a variety of

multimode spectral types. We show that compressibility leads to a breaking of the

self-similarity and allows for memory of the initial conditions to be retained in the

mix-width at all times. The loss of transverse spectral information is demonstrated,

however, along with the existence of a quasi-self-similar regime over short time

intervals. Aspects of the initial conditions, including the rms amplitude and

characteristic wavelength, are shown to have a strong effect on the time to transition

to the quasi-self-similar regime. Even different randomized amplitude and phase

realizations of the same initial spectrum develop significantly different late-time

amplitudes and growth rates.
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II. Code and calculation setup

The simulations are performed in 2D using the multi-physics radiation

hydrodynamics code Raptor, which uses a 2nd order (in space and time) Godunov

method applied to the Euler equations.27 Raptor is parallelized and uses adaptive mesh

refinement (AMR), making it well-suited to problems such as ours that require high

resolution in only a portion of the computational domain. We use the LEOS equation

of state (EOS) tables,28 and include in the calculations electron conduction but not

radiation.

Our hypothetical target [see schematic in Fig. 1(a)] represents an extension of

previous and ongoing decelerating Rayleigh-Taylor experiments performed on the

Omega laser and discussed in detail elsewhere.25 The cylindrical target consists of a

150 µm plastic pusher section (density 1.42 g/cc) in contact with a less dense 2.2 mm

payload section. An initial perturbation is machined onto the contact-surface end of

the pusher. In place of the carbon foam payload used in the Omega experiments, we

assume cryogenic hydrogen with density 0.086 g/cc. We expect that this change,

which is motivated by uncertainties in the foam EOS tables,13 would not qualitatively

change the results if carbon foam was to be used in the actual experiments.

The width the computational domain was typically 200 µm, so that the 50 µm

wavelength in the previous 2D single-mode experiments corresponds to mode 4. The

typical resolution is 512 cells in the transverse direction (512 ppb), corresponding to

128 points per wavelength (ppw) in mode 4. Resolution finer and coarser by up to a

factor of four in each direction was used in resolution studies that are detailed below.
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Open boundary conditions are used in the parallel (to the shock) direction while

periodic conditions are specified in the transverse direction.

The end of the pusher opposite the perturbation is driven with a 1 ns laser

pulse, which launches a strong blast wave into the target. We assume a pulse energy

of 25 kJ for the NIF-like drive, which is five times greater than that used in the

Omega experiments. This higher laser intensity would provide significant drive over a

Figure 1: (a) Target schematic (not to scale). (b) Variation in time of
interface velocity and deceleration.
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longer period of time than that achieved on previous experiments, and would allow

for the generation of larger transverse scales. This is important in part because

bubble-merger pictures of multimode instability evolution are generally thought to

require multiple merger generations above the largest significant scales present in the

initial conditions before a stationary scale-invariant bubble distribution is attained.5 A

systems is said to have progressed through one merger generation each time the

characteristic transverse scale is doubled, so this corresponds to scales at least an

order of magnitude larger than the initial conditions.

The simulations are initiated with a high-velocity, heated, compressed slab

with characteristics taken from a laser-driven Lasnex29 simulation at the end of the

laser pulse.

The Mach numbers of the incident and transmitted blast waves are in the

range of 10-30, where the precise value depends on the degree to which x-ray preheat

can be controlled (the incident Mach number with no preheat would be about 60).

The resulting initial interface speed is about 130 µm/ns [see Fig. 1(b)]. This is nearly

twice the maximum interface speed obtained in the Omega experiments,13 and the

instability is seen to develop about twice as fast. The post-shock Atwood number

remains nearly constant at about 0.7. The simulations are continued out to a

maximum of 40 ns, which is about the latest time usable data has been obtained from

the Omega experiments. Throughout the duration of the experiment, the interface is

RT unstable due to the reversal there of the pressure and density gradients (typical

pressure, density, and velocity profiles are shown in Fig. 2).
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Figure 2: Pressure, density, and velocity profiles (normalized to their maximum
values) after refraction of a planar blast wave through a heavy-light interface in the
target. The Rayleigh-Taylor instability criterion is satisfied at the post-shock
interface, which is also Richtmyer-Meshkov unstable. The fluid velocity falls off
approximately linearly behind the shock front. The corresponding decompression
results in additional perturbation growth.

An estimate of the relative importance of RM to the instability growth is

obtained from “pure RM” simulations driven by a steady shock with the same

strength as that of the blast wave at the time it reaches the interface. In Fig. 3, the

growth rate from a pure RM calculation is compared to a blast-wave driven

simulation. The same initial perturbation – large amplitude mode 4 with a narrow

gaussian small amplitude short wavelength component [Fig. 4(e) and discussion

below] – is used in both cases. The perturbation growth is dominated by RM for
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Figure 3: Comparison of pure RM and blast-wave-driven (RT+RM+decompression)
growth rates suggest that RT+stretching effects dominate after about 1 ns of
instability growth.

about the first ns, while combined RT plus decompression dominate at later times as

the interface decelerates in the rarefaction behind the shock front. This is consistent

with CALE simulations of Omega-driven systems in which the instability developed

half as fast and RM was found to dominate for twice as long.13

III. Characterization of initial conditions

When we speak of dependence on initial conditions, we have in mind the

effect of the initial perturbation spectrum on the observable properties of the mix

region. During the linear regime when mode coupling can be neglected, this can be

determined in a straightforward manner from the linear (possibly time-dependent)

growth rates. Well-established mode coupling models make the weakly nonlinear

regime fairly tractable as well.30-32 Our interest is the effect of the initial conditions on
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Figure 4: (a) Initial spectral shapes and typical interface profiles: (b) hyperbolic (1/k),
(c) flat, (d) narrow gaussian, (e) and narrow gaussian with large-amplitude mode 4.
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the instability growth in the strongly nonlinear regime; before, during, and after any

transition to a self-similar or turbulent state.

The principle observables during the deep nonlinear phase are the amplitudes

and growth rates of the spike and bubble fonts, and the statistical properties of the

internal structure of the mix region. The internal structure of the interface region is

characterized by spectra (density, kinetic energy, velocity, and enstrophy) and by the

degree of small-scale mixing of the two fluids.

The most general distinction we make in classifying initial spectra is between

continuous and bi-component spectra. Bi-component spectra include a long-

wavelength component and a separated (in k-space) short-wavelength component. In

this study, the long-wavelength component always consists of a single mode (mode 4)

with a wavelength of 50 µm and initial amplitude that is typically 2.5 µm. This is the

same mode used in ongoing Omega experiments that we have previously modeled

extensively.13 With its nominal initial amplitude, mode 4 is only marginally linear

(a/λ = 0.05). The post-shock amplitude, however, is an order of magnitude smaller.

The bi-component spectral class is particularly important for considering potential

effects of short-wavelength “noise” – possibly unresolved in calculations or not

included in simple experiments – on the large-scale interface structure.

Five different spectral shapes were considered for the continuous class, and

four of these were also used for the short wavelength component of the bi-component

class. In a typical case, random phases were assigned to each mode and randomized

amplitudes were selected from the given spectrum. For example, a flat spectrum
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included modes 4 to 80 with random phases and amplitudes chosen from a uniform

distribution. After the amplitude assignment, the resulting spectrum is normalized to

give the desired rms amplitude – typically either about 2.5 µm (large amplitude case)

or 0.25 µm (small amplitude case). The other four spectral types include a short

wavelength component either with or without a single large amplitude long

wavelength mode (mode 4) in order to investigate the effect of short wavelength

noise on a long wavelength primary mode. The short wavelength component, which

includes modes 20 to 80, is given by either a narrow gaussian centered at mode 40

with half-width ≈ 4, a broad gaussian centered at mode 40 with half-width 20, a

hyperbolic (1/k) specrum, or a 1/k2 spectrum. Examples of initial spectra and

interface profiles are shown in Fig. 4. Multiple randomized amplitude and phase

realizations were generated from each spectral type in order to provide information

about the typical level of fluctuations of measurable quantities within each spectrum.

We can characterize continuous spectra by their initial rms amplitude arms (or

<a>0), their characteristic wavenumber <k> (or characteristic mode number <m>), the

initial degree of linearity <ka>0, the initial spectral shape, and the width of the initial

spectrum ∆k/<k>. For bi-component spectra, we can add to our parameter list the

relative rms amplitudes <a>0s/<a>0l, the relative widths of the spectral components

∆ks/∆kl, and the separation of the relative two components <ks>/<kl> or (<ks> -

<kl>)/(<ks> + <kl>). In the bi-component case, we focus in particular on the relative

rms amplitudes and spectral shape. The ratio of characteristic wavelengths is only

varied from 9.25 (1/k2 spectrum) to 11.30 (broad gaussian), with the two components

always well-separated in k-space (by an order of magnitude). Since the width of the
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long-wavelength component is in every case a single mode, all variation of the

relative spectral widths is left to the short-wavelength component. The initial spectral

width can be thought of as one aspect of the spectral shape, and was only considered

in this context in the bi-component case.

A list of these parameters is given in Table 1 together with a brief summary of

their effect on the large-scale observables in the simulations. Not surprisingly, we

found a link between the two measures used to characterize the internal structure. The

simulations all exhibit a transition to a well-mixed state (a “2D mixing transition”)

that is correlated with a loss of transverse spectral information. Consequently, the

effect of the initial conditions on the nonlinear interface structure is represented

simply as their effect on the time to transition. Furthermore, transition results in

changes in the spike and bubble growth rates, so anything that affects the transition

time also affects the perturbation amplitudes and velocities. In the next sections, the

information in Table 1 is developed in detail.

IV. Results and discussion

A. Growth of the mix layer

Mix width history plots from 52 2D simulations are shown in Fig. 5. Most of

the various trajectories fall in to one or the other of two families. The upper family

contains the runs with the large amplitude (2.5 µm) mode 4 in the initial spectrum

with or without a short wavelength small amplitude component. Short wavelength

components included in the plot are the narrow gaussian, broad gaussian, or
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Spectral parameters
Range of parameter
variation and Notes

Effect of parameter
increase on:
Perturbation
amplitudes and
growth rates
\

Effect of
parameter
increase on:

Time to transition

Continuous spectra

rms amplitude <a> 0.0025µm - 2.5 µm Increase Decrease

Characteristic
wavelength <k>

<m> = 4-46 Decrease Decrease

Initial nonlinearity
<ka>

<a/λ> = 5e-4 - 5e-2
Sets thresholds for
spike interaction and
transition.

Effect contained in
Individual
dependence on <a>
and <k>

Decrease

Spectral shape
Single mode, flat,
narrow gaussian,
broad gaussian,
1/k,1/k2

Little effect Little effect

Spectral width ∆k/<k>
0 - 1.8
Not varied independent of
<k>

Decrease for given
kmin.

Decrease for given
kmin.

Bi-component
spectra (long + shorts)

Shorts/longs rms
amplitude ratio
<a>s/<a>l

(< 0.001) - 0.1
Effect on bubble growth
may be opposite for
multimode long wavelength
component

Decrease for spikes
and increase for
bubbles

Decrease

Spectral shape of
shorts

Narrow gaussian, broad
gaussian, 1/k,1/k2

Little effect Little effect

Spectral shape of longs Not varied

Ratio of characteristic
wavelengths
<k>s/<k>l

9.50-11.30
Not varied
independent of shape.

Little effect over
range considered

Little effect over
range considered

Ratio of spectral
widths ∆ks /∆kl

Not varied
independent of
relative amplitude
and shape

Inconclusive Inconclusive

Table 1: List of the parameters used to classify and characterize the initial spectral
conditions and a summary of their effect on the nonlinear instability evolution. See
text for detailed explanation.
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Figure 5: (a) Mix width histories and (b) growth velocities from 52 2D simulations
with different spectral initial conditions. There is no apparent approach to a self-
similar regime independent of the initial conditions. Even when runs with large mode
4 are excluded, αb varies over a range of about 0.035-0.065 for different IC’s, while
αs varies over about 0.050-0.100.

hyperbolic spectrum, or by a single mode 40. The rms amplitude in each case differs

from the mode 4 amplitude by less than 1%. The lower family consists primarily of

runs with the small amplitude short wavelength component, with mean rms amplitude

of about 0.25 µm. The standard deviation from the mean rms amplitude is less than

5%, and the maximum deviation is less than 50%. The small amplitude flat spectrum

cases are also contained within the lower family. The large amplitude flat spectrum

(b)

Mode 4 included

(a)
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cases initially lie slightly above the upper family, but then fall below it at about 2-3

ns, eventually joining the lower family between 10 and 20 ns. The two curves below

the lower family are from runs with rms amplitude of 0.025 µm (upper curve) and

0.0025 µm (lower curve).

Within the lower family, the amplitude is not well correlated with initial rms

amplitude variations at the few-percent level. Furthermore, the difference between

runs with different spectral shape (but similar initial rms amplitude) is generally not

much greater than the difference seen between different amplitude and phase

realizations of the same spectrum. This is illustrated in Fig. 6, which compares the

bubble amplitude and velocity evolution for several spectral shapes, including two

random phase realizations of the same narrow gaussian distribution without amplitude

randomization (dotted lines). Solid lines show the amplitude from simulations with a

1/k spectrum (upper solid), flat (middle solid), and broad gaussian (lower solid). All

five simulations begin with an rms-amplitude of 0.258 µm. After 10 ns, the amplitude

and velocity difference between the two narrow gaussian cases is greater than 25%

and is at least as significant as the differences arising from the various spectral

shapes.

B. Phases of instability growth

In general, the instability evolution can be divided into three phases, as shown

in Figure 7. During the early-time phase (Phase I - which actually included the linear

early nonlinear, and into the nonlinear regimes), the growth rate is determined by the

most unstable mode. RM dominates initially, but only for about 1 ns. During this
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Figure 6: Sensitivity of bubble (a) amplitude and (b) velocity to spectral shape. Solid
lines denote three initial spectra: 1/k [upper solid in (a)], flat [middle solid in (b)], and
broad gaussian [lower solid in (a)]. The dotted lines denote two phase realizations of
the same narrow gaussian spectrum. In each case, the initial rms-amplitude is 0.258
µm.

period, the inverse cascade to larger scales is initiated, and there are up to three

generations of bubble merger. The growth rate depends on the rms amplitude, but

does not depend strongly on the spectral details. During Phase II, there are changes in

the growth rates (sometimes rather abrupt) that result in a strong dependence on the

spectral details as well as the initial rms amplitude. Consideration of separate spike

and bubble amplitude histories shows that the spike growth is more sensitive than the

bubble growth to the initial spectrum. These changes appear to be random and are not

Bubble amplitude

1/k, flat, bg
ng

(a)

(b)

bg

1/k flat
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Figure 7: Three phases of instability growth. Phase I: The early-time (linear, early
nonlinear, and into nonlinear) phase is dominated by RM for about 1 ns. The growth
rate is determined by the most unstable mode, and the inverse cascade is initiated.
Phase II: Changes in growth rate result in strong dependence on spectral details in
addition to the initial arms. Phase III: Mode 1 emerges as the dominant transverse scale
after up to 5 bubble merger generations. The acceleration profile introduces an
“effective box size”. The asymptotic velocity depends on amplitude, time in addition
to the transverse scale and the degree of mix in the layer.

well correlated with small changes in the initial rms amplitude or with the spectral

shape.

Phase III begins when mode 1 emerges as the dominant transverse scale after

up to five bubble merger generations. After this scale is reached, the inverse cascade

is halted and the growth is no longer self-similar-like. One would tend to conclude at

I

II

III

I
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Figure 8: “Effective box size” imposed by the decaying nature of the drive coupled
with the finite duration of the experiment. With a box-size of L = 200 µm, mode 1
emerges as the dominant mode at about t/t0 = 60 (24 ns). Even when the width of
computational domain is quadrupled, longer-wavelength modes do not dominate at
late times. After 25 ns, the time required to generate lower l-modes exceeds the time
remaining in the experiment. Both cases use the same narrow gaussian spectral shape.

this point that this signals the end of the calculation’s range of validity because the

computational box has been “filled” so that end effects corrupt further evolution. In

fact, calculations run with twice or even four times the nominal box size generally

show no significant change in the perturbation growth history and or the late-time

dominant transverse scale (see Fig. 8).  We attribute this to the decaying nature of the

driving acceleration. As the acceleration approaches zero, the time to generate larger
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scales (which even with constant acceleration take longer to form than shorter scales)

tends to infinity.  Thus the decaying acceleration profile coupled with the finite

experiment duration introduces an “effective box size” even in the absence of an

experimentally or computationally-imposed physical box size.

C. Quasi-self-similar regime

The main point in plotting all the amplitude trajectories together on one plot

(Fig. 5) is to show that they generally diverge in time rather than converge as one

might expect during approach to a stationary self-similar bubble distribution. That is,

there is no apparent approach to a self-similar regime independent of the initial

conditions. This is true even if one considers only those runs from the lower family

with only the short wavelength component and with initial rms amplitude of about

0.25 µm. If one assumes self-similarity (ie that the characteristic transverse scale is a

constant fraction of the mix-width) and takes into account the time-dependence of the

acceleration and the large-scale velocity gradient present in the zero-order hydro, then

the spike and bubble growth in each run can be characterized by a constant factor α

(the α of h(t) = αAgt2 models). In a true self-similar regime, the value of this

parameter should be a universal constant with weak (if any) dependence on Atwood

number.33 Within the arms = 0.25 µm, shorts only subgroup, we instead find that αbubble

varies over a range of about 0.035-0.065 while αspike varies over 0.050-0.100. This

nearly covers the entire range of values reported from different experiments and

simulations (see, for example, Ref. 34 and references therein), though it falls

somewhat short of the values reported for spike growth at this Atwood number (as
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Figure 9: Time-dependence of the similarity parameter. Because of decompression,
the similarity parameter decays in time rather than approaching a constant asymptotic
value. This behavior is well-predicted by a statistical-mechanics bubble merger model
that includes decompression and the time-dependence of the drive.

high as 0.120).  Thus the assumption of self-similarity does not lead to a useful means

of characterizing the instability growth. Instead, memory of the initial conditions is

retained throughout the experiment at least in the mix width. Rather than approaching

a constant, the similarity parameter (the ratio of characteristic transverse scale to

perturbation amplitude) decays in time. The time dependence of the similarity

parameter is shown in Fig. 9 for various initial conditions, including examples of each

spectral type included in the study, with rms-amplitudes varying over three orders of

magnitude. A narrow gaussian with four times the nominal box width and three flat

spectrum calculations with twice the nominal box width are included to show that

variations in system size (boundary effects) do not change the general behavior of the

similarity parameter.

Because of decompression and drive decay, the asymptotic bubble and spike

velocities depend on the amplitude and time as well as on the transverse scale and the

simulation
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degree of mix in the layer. The amplitude dependence arises because of the velocity

gradient, which is approximately proportional to ∆r/t and characteristic of a

rarefaction fan. Here ∆r is the distance in the parallel direction between any two

points, in particular the distance from the unperturbed interface to the position of the

spike or bubble tip. Thus the contribution of material decompression and stretching to

the spike or bubble velocity at a given time is proportional to its amplitude.

We have extended an existing statistical-mechanics bubble merger model35 to

include decompression and the time-dependence of the drive.36 Details of the model

are presented in Ref. 36. We note here only that the model prediction (the red line in

Fig. 9) also shows a decaying similarity parameter and agrees well with the

simulations.

However, there is apparently loss of transverse spectral information and a

period of “quasi-self-similar” growth. This is illustrated in two ways Fig. 10. Figure

10(a) shows a time series of log density plots from a small initial amplitude

simulation with a flat spectrum (modes 4-80). During this period, which covers the

first 10 ns of growth, the inverse cascade to progressively larger scales is apparent. In

Fig. 10(b), the images are rescaled so that the mix-width appears approximately

constant in time. The similarity in interface structure in the rescaled images shows

that the ratio of dominant transverse scale to mix width does not change much over

this time interval. Since the value of this ratio does tend to slowly decrease over time

as the material decompresses, we refer to this as a “quasi-self-similar” regime.

Figure 10(c) shows log density plots from simulations with different initial

spectral types at early and intermediate times  (2.4 and 11.5 ns). Early on, the
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Figure 10: Quasi-self-similar regime.  (a) A time series of log density plots from a
small initial amplitude simulation with a flat spectrum (modes 4-80) shows the
inverse cascade to progressively larger scales. (b) The same images are rescaled so
that the mix-width appears approximately constant in time. The similarity in interface
structure in the rescaled images shows that the ratio of dominant transverse scale to
mix width does not change much over this time interval. (c) The loss of transverse
spectral information is illustrated by log density plots from simulations with different
initial spectral types at early and intermediate times  (2.4  and 11.5 ns). Early on, the
interface structure is clearly correlated with the initial conditions. The later-time
images appear far more similar to one other.
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interface structure is clearly correlated with the initial conditions. In particular, mode

40 is apparent in the early-time narrow gaussian image. The later-time images, on the

other hand, appear far more similar to one other. As was noted previously, there is a

wide spread in the late time amplitude growth, but the dependence on spectral type

within that spread is generally not much larger than the variation between different

realizations with the same spectral shape.

The loss of transverse spectral information is illustrated more quantitatively in

Fig. 11, which compares average 1D density fluctuation spectra at t = 0 and t = 10 ns

for a variety of short-wavelength spectral shapes. The density fluctuation is defined

by δρ(z) = ρ(z) - <ρ(z)>, where <ρ(z)> is the z-dependent transverse density average.

Each spectrum shown in Fig. 11 is the average of several (typically nine) 1D spectra

evenly spaced throughout the interior of the mix region. Despite significant

differences in the initial spectral shapes and rms-amplitudes, all transverse spectral

information above about mode 10 has been lost by 10 ns, and memory of the initial

conditions is retained only in the amplitudes of the long wavelength modes. For runs

with the same initial rms-amplitude, the low-mode end of the spectrum is also very

similar, suggesting that only memory of the initial amplitude and not the spectral

shape has been retained. An inertial range with Kolmogorov k-5/3 scaling is visible

between modes thirty and eighty.

Transverse and parallel turbulent kinetic energy spectra and velocity

fluctuation spectra from the same simulations are shown in Figs. 12 and 13,

respectively. The fluctuating components of the energy and velocity are defined in the

same way as the density fluctuation: δKEx,z(z) = KEx,z (z) - < KEx,z (z)> and
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Figure 11: Loss of transverse spectral information. Density spectra at t = 0 and t = 10
ns for a variety of short-wavelength spectral shapes: (a) Narrow gaussian with h0rms =
0.25 µm, (b) narrow gaussian with h0rms = 0.0025 µm, (c) 1/k2 spectrum with h0rms =
0.25 µm, (d) broad gaussian with h0rms = 0.25 µm, and (e) flat (modes 4-80) with h0rms

= 2.5 µm. (f) hyperbolic (1/k) spectrum with h0rms = 0.25. By 10 ns, all transverse
spectral information above about mode 10 has been lost, and memory of the initial
conditions is retained only in the amplitudes of the long wavelength modes. For runs
with the same initial rms-amplitude, the low-mode end of the spectrum is also very
similar, suggesting that only memory of the initial amplitude and not the spectral
shape has been retained. In (f), we include spectra at 25 and 40 ns. After
establishment of the quasi-self-similar regime, there is little change in the spectra
shape except for a steeper slope at the lowest modes.
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Figure 12: Transverse and parallel turbulent kinetic energy spectra at 10 ns. The
upper solid curve is the parallel directed turbulent kinetic energy and the lower solid
line is the transverse directed turbulent kinetic energy. (a) Narrow gaussian with h0rms

= 0.25 µm, (b) narrow gaussian with h0rms = 0.0025 µm, (c) 1/k2 spectrum with h0rms =
0.25 µm, (d) broad gaussian with h0rms = 0.25 µm, and (e) flat (modes 4-80) with h0rms

= 2.5 µm. By 10 ns, the spectral shape depends weakly on the initial conditions, and
both transverse and parallel components exhibit a limited k-5/3 inertial range. In most
cases, the high-mode end of the spectrum is somewhat steeper than a k-3 scaling.
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Figure 13: Transverse and parallel velocity fluctuation spectra at 10 ns. The upper
solid curve is the parallel velocity fluctuation and the lower solid line is the transverse
velocity fluctuation. (a) Narrow gaussian with h0rms = 0.25 µm, (b) narrow gaussian
with h0rms = 0.0025 µm, (c) 1/k2 spectrum with h0rms = 0.25 µm, (d) broad gaussian
with h0rms = 0.25 µm, and (e) flat (modes 4-80) with h0rms = 2.5 µm. By 10 ns, the
spectral shape depends weakly on the initial conditions, and both transverse and
parallel components exhibit a limited k-5/3 inertial range.
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|δvx,z(z)| = |vx,z (z) - < vx,z (z)>|, where “<>” again denotes transverse average and KEx,z

= ρvx,z
2. In each case, the upper solid curve is the parallel (z) component and the

lower solid line is the transverse (x) component. By 10 ns, the spectral shape depends

weakly on the initial conditions, and both transverse and parallel components exhibit

a limited k-5/3 inertial range. In most cases, the high-mode end of the spectrum is

reasonably well approximated by a k-3 scaling.

Scaling laws for the energy spectrum of stationary 2D “turbulence” were first

put forward by Kraichnan, who considered an unbounded system into which energy is

uniformly injected at some wavenumber kinj.
37 At scales larger than the injection

scale, he predicted that an inverse energy cascade driven by vortex merger would

result in a Kolmogorov k-5/3 scaling. Below the injection scale, a forward enstrophy

cascade would give E(k) ~ k-3. Recent experiments using flowing soap films agree

with Kraichnan’s predictions at both high and low wavenumbers.38

Thus our observation of an inertial range with ≈ –5/3 scaling at lower mode

numbers indicates a transition to 2D turbulence. At higher mode numbers, the energy

spectra are typically fall of somewhat steeper than k–3. After establishment of the

quasi-self-similar regime, there is little change in the spectra shape except for a

steeper slope at the lowest modes [see Fig. 11(f)].

The RT instability can in principle inject energy into the system at all scales in

the density spectrum, but the growth of under-resolved modes is inhibited. The upper

end of the inertial range in the energy spectra in Fig. 12 corresponds to injection

scales at modes resolved by 3-8 ppw. This is certainly insufficient to resolve the

forward enstrophy cascade, so it is not surprising that the spectra tend to fall off
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Figure 14: Degree of mixedness for all 52 2D simulations included in Fig. 5.
Transition to quasi-self-similar regime results in an increase in mixedness. For a
similar density ratio, Youngs* reports Θ ≈ 0.83 in 3D and Θ ≈ 0.54 in 2D [D.L.
Youngs, Lasers and Particle Beams, 12(4), 725 (1994)].

somewhat faster than k–3 at higher mode numbers.

The degree of “mixedness”, which Youngs calls the molecular mix fraction,33

provides a good measure of when the transition to the quasi-self-similar regime takes

place. The mixing parameter is defined by

Θ ≡
−

−

∫
∫ ∫

f f dz

f dz f dz

( )1

1
, (1)

where f is the volume fraction of either of the two fluids, the averaging is done in the

transverse direction, and the integral is performed in the parallel direction through the

extent of the mix region. The mixing parameter time histories from all 52 2D

simulations included in Fig. 5 are shown in Figure 14. Again, most of the curves fall

into one of two families. The upper family contains runs without the large amplitude

Youngs’ Θ

Youngs’ 3D

Youngs’ 2D

Time (ns)



175

mode 4, while the lower family consists of all the runs with the large mode 4.  In both

cases, there is a clear transition from a state that is not well mixed to a state with

higher degree of mixedness that tends to an asymptotic value between about 0.6 and

0.8. With no large mode 4, this transition occurs within a few ns, and corresponds to

the transition to the quasi-self-similar regime. The same transition occurs when the

large mode 4 is included in the initial spectrum, but the time to transition is several

times longer. Thus the presence of the long wavelength mode delays the transition to

a turbulent-like state. Comparison of Fig. 14 with amplitude history plots shows that,

in addition to the increase in mixedness, transition to the quasi-self-similar regime is

marked by a decrease in the spike velocity and often an increase in the bubble

velocity. The spike velocity decreases in particular for the runs with large-amplitude

mode 4, where the transition is associated with the breakup of the primary spikes.

This breakup allows the spikes’ parallel energy to be diverted into the transverse

direction and results in a decrease in the effective Atwood number in the mix region.

When the initial spectrum gives an array of nearly identical bubbles, transition can

allow for bubble competition and the generation of larger scales, resulting in an

increase in the velocity of the bubble front.

The effective Atwood number reduction experienced by the spikes due to

increased mixing after their breakup results in an increase in the bubble to spike

amplitude ratio, shown in Fig. 15 for several representative cases. In the single-mode

(mode 4) case, the amplitude ratio approaches a value of about 0.48. This is just

slightly higher than the value of ρ ρb s/ .≈ 0 42  predicted by a buoyancy-drag model

assuming that the spike reaches terminal velocity early on.5,39 With the spike
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Figure 15: Bubble to spike amplitude ratio: In the single mode 4 case, the amplitude
ratio approaches a value of about 0.48. This is just slightly higher than the value of
0.42 predicted by a buoyancy-drag model assuming that the spike reaches terminal
velocity early on. With the spike interaction and breakdown associated with transition
to the quasi-self-similar regime, the amplitude ratio is much closer to unity and
typically greater than 0.7 at late times.

interaction and breakdown associated with transition to the quasi-self-similar regime,

the amplitude ratio is much closer to unity and typically greater than 0.7 at late times.

The same tendency towards spike-bubble amplitude symmetry due to spike breakup

was reported by Youngs, who also noted an associated weak dependence of hb/hs on

the density ratio.33

In a true self-similar regime (at least for the case of incompressible flow, no

RM component, and constant acceleration – all of which are violated here), the post-

transition mixedness should be a universal constant depending only on the Atwood

number.33 For a density ratio similar to ours (and with very weak density ratio

dependence), Youngs found in his 3D calculations that the asymptotic degree of mix

increases at higher resolution where the inertial range is better resolved. Extrapolating

the observed trend to infinite resolution, he reports a value of about 0.83 in 3D and

0.54 in 2D.40 Cook et al. find similar values in their high resolution, classical RT

Single mode 4 (m4)

m4+1/k
1/k

1/k
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Figure 16: Ratio of transverse to total kinetic energy, integrated over the mix region,
from the single mode 4 simulation. Below 15 ns, the relative transverse kinetic energy
increases slowly. The breakup of the mode 4 spikes at 15-20 ns corresponds to a
much faster order of magnitude increase.

calculations.41 The values we find are distributed throughout this range, and are

consistently higher than the reported 2D value.

Finally, we note that there is no true turbulent mixing transition42 in the

simulations. This is to be expected due to the low effective Reynolds number and the

2D nature of the simulations. Three dimensional turbulence is characterized by a

forward cascade of energy to smaller scales where it is eventually dissipated. Vortex

stretching, which is the mechanism of coupling to smaller scales, is fundamentally a

3D process and therefore absent in 2D systems. However, the abrupt increase in

mixedness observed in the 2D calculations and associated with the onset of strong

spike interaction and breakup is reminiscent of a turbulent mixing transition. While

spikes grow without interacting with one another, their energy is directed almost

entirely in the parallel direction. When they interact and breakup, a significant

fraction of their energy is diverted into the parallel direction (see Fig. 16) and smaller

scales are generated via the Kelvin Helmholtz (KH) instability.43 Because of this
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forward cascade, a 2D system undergoing spike breakup in a sense temporarily

mimics 3D turbulence, and there is an associated “2D turbulent mixing transition”.

D. Resolution study

A resolution study was performed in order to verify adequate convergence of

the growth rates and interface structure at the nominal resolution of 512 points across

the computational domain (512 ppb). The resolution was varied from 128 to 2048

cells per box width (ppb), or from four times less than to four times greater than the

nominal resolution. Log density plots [Fig. 17(a)] and perturbation amplitude

histories [Fig. 17(b)] from a series of calculations initialized with the same narrow

gaussian (shorts only) spectrum suggest that the mix width and interface structure are

reasonable well-resolved at 256 ppb. Even at 128 ppb, the mix width is only reduced

by 15-25% relative to the highest resolution case. This is impressive considering that,

at 128 ppb, the initially dominant mode (mode 40) is resolved to only 3.2 points per

wavelength (ppw). Considering the extreme drive strength and only marginally linear

initial conditions, the perturbation becomes nonlinear very quickly and the observed

fast convergence is perhaps due to the fast generation of larger, better resolved scales

due to mode coupling30 and nonlinear interactions among spikes.43

A plot of the mixing parameter [Fig. 17(c)] as a function of time shows that,

in contrast to Youngs’s 3D calculations,33 there is more mixing at lower resolution

where the numerical diffusion is greater. The algorithm used to identify the spike and

bubble positions is based on the product of the volume fractions of the two fluids

averaged over the transverse direction (the mix width is by definition bounded by the
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Figure 17: Resolution study: The resolution is varied from 128 to 2048 cells per box
width (ppb), or from four times less than to four times greater than the nominal
resolution of 512 ppb. (a) Log density plots and (b) perturbation amplitude histories
suggest that the interface structure is reasonable well-resolved at 256 ppb. (c) A plot
of the mixing parameter as a function of time shows that there is more mixing at
lower resolution where the numerical diffusion is greater.

2.5% points). When the outlying spikes are more diffuse due to decreased resolution,

the algorithm identifies an edge that corresponds to a smaller spike amplitude. This is

the primary reason for the correlation between lower resolution and reduced

amplitude.
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Density, directed kinetic energy, and velocity spectra from a calculation at the

highest resolution (2048 ppb) are shown in Fig. 18. Results from a simulation at the

nominal 512 ppb resolution with the same narrow gaussian spectral shape are

included for comparison. For each quantity, the low-k end of the inertial range is

about the same at either resolution. The high-k end extends to much higher mode

numbers in the 2048 ppb case, consistent with its higher numerical Reynolds number

and resulting in an inertial range that spans about one decade. The minimum energy

injection scale is at about mode 500-700, which again says that the driving instability

injects energy into modes resolved by at least 3-5 ppw.

E. Dependence of transition time on initial conditions

We have already seen how several of the factors listed in Table 1 affect the

large-scale instability evolution. In all stages of the instability, larger initial

amplitudes give larger amplitude later on. The initial shape of the short-wavelength

spectral component has little effect on the late-time growth, including the time to

transition to a turbulent-like state. This statement assumes, however, that the initial

spectrum includes multiple modes that are not both commensurate and in phase with

one another. Without numerical or physical sources of random noise, such spectra can

only lead to a limited inverse cascade that gives rise to stable periodic arrays of

bubbles.

We have also seen that there is a correlation between transition to the quasi-

self-similar regime, which is characterized by a loss of transverse spectral

information, and a “2D mixing transition” to a state characterized by a mixedness of
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Figure 18: (a) Density, (b) directed turbulent kinetic energy, and (c) directed velocity
fluctuation spectra at 0 and 10 ns for highest resolution (2048 ppb). The initial
spectrum is narrow gaussian with randomized amplitudes and phases. Spectra from a
512 ppb case with the same spectral shape are included for comparison. In the energy
spectra, dashed lines denote the k-3 scaling associated with a forward enstrophy
cascade in 2D turbulence.
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0.6 - 0.8. What remains is to determine how the various parameters in Table 1 affect

the time to transition.

There are several ways in which we can consider how the transition time to

the quasi-self-similar “turbulent” state depends on the initial conditions. In this

section, we will consider variations of the rms-amplitude (resulting in variation of

<ka> in addition to <a>), the effect of varying the short wavelength cutoff for a flat

spectrum (variation of <k>, <ka>, and ∆k/<k>), the effect short wavelength “noise”

on a long wavelength primary mode (variation of spectral shape and <k>s/<k>l), and

the effect of a long wavelength mode on a short wavelength spectral component

(variation of <a>s/<a>l).

1. Initial rms-amplitude and nonlinearity thresholds

In order to quantify the dependence of the transition time on the initial rms-

amplitude, three simulations were run in which the peak of the narrow gaussian

spectrum (called a40) was varied over three orders of magnitude. The peaks of the

initial spectra considered were at a40 = 0.001 µm, a40 = 0.01 µm, and at the nominal

value of a40 = 0.1 µm. This corresponds to an initial degree of linearity, expressed as

a40/λ40, of 2e-4. 2e-3. and 2e-2, respectively. In each case, the rms-amplitude was

about 2.5 times greater than then a40.

Results from the calculations are shown in Fig. 19. Regardless of the initial

amplitude, spike interaction begins when h/λ0 ≈ 2. This nonlinearity threshold for

spike interaction is slightly greater with smaller initial nonlinearity h0/λ0. This could

be due to the increased shock-deposited vorticity (RM) or increased instability Mach
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Figure 19: Dependence of amplitude growth and transition time on the initial arms:  (a)
Log density plots show spike interaction begins when h/λ0 ≈ 2. (b) The mixing
parameter peaks at later times for smaller initial arms, coincident with the loss of initial
transverse spectral information. (c) Amplitude histories show transition to the quasi-
self-similar regime when h/λ0 ≈ 5-6. (d) Bubble and (e) spike velocity histories show
that spike breakup results in a reduction in the growth rate followed by accelerated
growth after establishment of the quasi-self-similar regime and the generation of
larger scales. In (b)-(e), the spike interaction threshold h/λ0 ≈ 2 is denoted by
diamonds and the transition threshold h/λ0 = 5.5 is denoted by circles.
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number in the larger-amplitude cases, or a combination of the two. At the same time

spike interaction begins, the spike growth rate begins to saturate and the acceleration

of the bubble front begins to decrease. Spike breakup continues until h/λ0 ≈ 5-6 (again

somewhat greater for perturbations initially more linear), at which point the mixing

parameter reaches its maximum value and the transverse density fluctuation spectrum

has reached its asymptotic form. This signifies the loss of initial transverse spectral

information and the emergence of the quasi-self-similar regime. At the same time, the

post-transition amplitudes and velocity is strongly dependent on the initial rms

amplitude [see Figs. 19(d)-19(e)]. Spike and bubble velocities subsequently increase

again as the inverse cascade to larger scales progresses. The same sequence is

followed for broader initial spectra, without significant change in the nonlinearity

thresholds for spike interaction and transition.

2. Effect of short-wavelength mode on large-scale interface structure

We are interested in the effect of short wavelength modes on the global

instability development for three primary reasons. First of all, some RT-unstable

interfaces in real systems [possibly including the Si/(C+O) interface in core-collapse

supernovae]44 are characterized by distinct long and short-wavelength spectral

components. In order to accurately describe the instability development in such

systems, we must first understand the importance of the short-wavelength modes.
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Secondly, simulations typically use initial spectra that do not extend all the

way down to the viscous cutoffs. If unresolved scales have a significant impact on the

large-scale interface structure, then such simulations are inadequate.

Finally, laser-driven instability experiments designed to study supernova

hydrodynamics are often limited in modal content, typically to no more than a few

prescribed modes plus small-scale noise. Since supernovae are presumably not so

limited, the experiments are not truly representative of their astrophysical

counterparts if short wavelength modes are important. In both cases, one system (a

simulation or a laboratory experiment) is employed to study a second physical system

that may be less limited in modal content, and it is important to understand the effect

of the unresolved scales.

In this section, we consider the effect of short wavelength modes on the global

instability development in two ways. First, we vary the short wavelength cutoff in a

series of five simulations with initially flat spectra and observe the resulting variation

in growth rates and interface structure. The long wavelength cutoff is in each case

mode 4, while the short wavelength cutoffs included in the study are mmax = {80, 40,

20, 10, 4} (mmax =  mmin = 4 for the single mode calculation). This gives initial

characteristic mode numbers of <m> = {42, 22, 12, 7, 4}, and relative spectral widths

of ∆m/<m> ≈ {1.8, 1.6, 1.3, 0.9, 0.0}. The initial rms-amplitude is set to 0.25 µm in

each case, giving linearity parameters <a/λ> ≈ {0.006, 0.005, 0.004, 0.003, 0.005}.

Log density plots at several times are shown in Fig. 20(a) from all but the

single mode simulation. There is more mixing early on when the initial spectrum

extends to higher mode numbers [see Fig. 20(b)], and the inverse cascade to larger
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Figure 20: Variation of short-wavelength cutoff for flat spectrum from mmax = 4
(single mode) to mmax = 80. (a) Log density plots, (b) mixing parameter, and (c)-(d)
amplitude histories show decreased mixing and enhanced growth with lower cutoff
when the initial rms amplitude is fixed at 0.25 µm. (e) A modified mmax = 80 is
constructed in which the the first 7 modes are replaced with the spectrum from the
mmax = 10 calculation. The initial rms amplitude is increased by nearly √2 relative to
the mmax = 10 , but the amplitude is reduced to below the mmax = 20 result.
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scales proceeds more rapidly. Amplitude history plots show that higher short-

wavelength cutoff leads to faster growth during the first few ns but reduced growth at

later times [see Figs. 20(c)-20(d)]. The one exception to this pattern is the mmax = 80

case, which ends up growing faster asymptotically than the mmax = 40 case due to the

emergence of a large single dense spike at about 25 ns.

These observations can be partially explained as follows: Spectra extended to

higher mode numbers initially give faster growth because of increased shock-

deposited vorticity (RM) and because the RT exponential growth rate γ ∝ √k in the

linear regime. The dominance of high modes ends when the low modes become

nonlinear and their velocities begin to saturate at their terminal values. If there were

no low-l modes in the initial spectrum, or if their initial amplitudes were sufficiently

small, then the growth of low-l modes would be dominated by nonlinear interaction

between high-l modes (mode coupling).30 In our case, the initial amplitudes of the

low-l modes are of order a/λ ~ 0.05/√N where the number of modes N varies from 1

to 81. When N is less than or of order 10, the preexisting low-l modes become

nonlinear within a few ns and mode coupling does not play a significant role. This is

evident in the mmin = 10 and mmin = 20 log density time series, in which it is apparent

that the large wavelength structure at 11.4 ns is correlated with that at 2.4 ns. The

difference in the late time growth rates is partially a reflection of the initial

amplitudes of the low-l modes that begin to dominate the growth early on. These

amplitudes are decreased when we increase the relative spectral width ∆k/<k> while

holding the initial rms amplitude constant.
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In addition to larger initial amplitudes in the long-wavelength modes, spectra

with lower high-mode cutoff give faster growth because they transition to turbulence

later. Consequently, they experience less of the density-gradient stabilization

associated with enhanced mixing in the post-transition state. A modified mmax = 80

interface was constructed to isolate the effect of enhanced mixing from the initial-

amplitude effect. In the modified initial spectrum, the first 7 modes in the mmax = 80

spectrum were simply replaced with the spectrum from the mmax = 10 case. Because

of this change, the initial rms amplitude is just under √2 times greater than in the

other cases, and the low l-mode amplitudes are the same as in mmax = 10 case. Despite

the increase in rms amplitude and a large increase in the number of unstable modes,

the post-transition growth of the mix region is decreased rather than increased relative

to the mmax = 10 calculation [see Fig. 20(e)]. In fact, the resulting late-time amplitude

history lies below the mmax = 20 curve and only rises above the mmax = 40 curve at

about 12 ns. Thus the presence of the short wavelength modes leads to a significant

reduction in the nonlinear growth of the mixing layer.

The opposite effect was found by Milovich et al. in simulations of NIF

double-shell ignition target designs.45 In the double shell targets, instabilities develop

on a metal/foam interface during capsule implosion. The perturbation spectrum was

taken from measurements of an Omega glass capsule, and a series of calculations was

run in which the number of modes was increased from about 40 up to several

hundred. The angular resolution was determined such that the shortest-wavelength

mode in the initial conditions was resolved to at least 20 ppw, and lmin was set to 12 in

each case. The late-time perturbation growth was found to increase with increasing
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lmax, with a particularly dramatic increase when lmax was increased from 102 to 204.

There are several differences between their system and ours that might contribute to

this discrepancy. First of all, the number of modes is varied much more widely in

their calculations than in our, and their initial spectrum falls off relatively slowly

above mode 50. Since they do not renormalize the initial spectrum each time, runs

with more modes have greater initial rms amplitudes. Secondly, modes in their initial

spectrum are typically far more linear than ours. This allows more time for short-

wavelength modes to couple and generate larger scales during the weakly nonlinear

regime before saturation. The most significant difference, however, is that their low-l

modes do not have time to grow from the initial conditions up to nonlinear

amplitudes. With lmax = 54, the perturbations at ignition time (the end point of the

calculation) remain linear. Even with lmax = 102, the low-l modes appear to have

attained a degree of nonlinearity a/λ ~ 1. When lmax is increased to 204, however, the

late-time perturbations are very nonlinear and scales larger than the initial conditions

have been generated. This indicates that significant mode coupling and associated

pumping of large scales to nonlinear amplitudes is possible only with lmax > 200. In

our system, the low-l modes do not have to rely on mode coupling in order to reach

large amplitudes on the time-scale of the experiment. Since the addition of shorter

wavelengths does not increase the initial rms amplitude by more than a factor of √2,

its main effect is to hasten the transition to a state with lower effective Atwood

number and greater energy isotropy.

An extensive series of calculations was run to investigate the effect of short

wavelength modes on the evolution of a single long wavelength mode. The long
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wavelength mode is mode 4, with nominal initial amplitude of 2.5 µm. The short-

wavelength component is bounded by modes 20 and 80, and typically has an rms-

amplitude that is 1/10 that of the nominal mode 4 amplitude. The shape of the short-

wavelength spectral component was either narrow gaussian, broad gaussian,

hyperbolic (1/k), or 1/k2 [see Fig. 4(a)]. A representative initial interface profile (with

a 1/k short wavelength component) is shown in Fig. 4(e). Changes in spectral shape

result in small changes in the characteristic mode number of the short wavelength

component, and hence in the k-space separation parameter <k>s/<k>l, which varies

over 9.25-11.30. These simulations make up the upper family of amplitude history

curves in Figs. 5(a) and 7(a) and the lower family of mixing parameter curves in Fig.

14. The single-mode amplitude history (no short-wavelength component) is the

uppermost curve in the large-amplitude family, indicating that the short-wavelength

component reduces the late-time perturbation growth by as much as 20%. Plots of

separate spike and bubble amplitude histories (not included) show that there is twice

as much variation (about 30%) in the spike amplitudes as there is in the bubble

amplitudes (about 15%).

We found in section IV.A that the location of a given curve within the small-

amplitude family of Figs. 5 and 7 is not well correlated with the spectral shape. The

same is true for the bi-component upper family. Figure 21 includes amplitude history

plots from the single mode calculation, mode 4 plus hyperbolic shorts (with <k>s/<k>l

= 10.75), and mode 4 plus broad gaussian shorts (with <k>s/<k>l = 11.30). The

difference in amplitude between the two mode-4-plus-shorts cases is characteristic of

the differences seen between different short-wavelength spectral shapes or different
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randomized amplitude and phase realizations of the same spectral shape. Again, the

shape of the initial spectrum is not important in determining the late-time large-scale

interface structure.

The principle effects of short wavelength modes on the large-scale interface

structure are to increase the degree of mixing and accelerate the transition to the

quasi-self-similar “turbulent” state [see Fig. 21(a)]. Both of these effects involve the

interaction and breakup of spikes and an associated significant reduction in the

overall growth rate of the spike front [see Fig. 21(b)]. The single mode spikes

eventually break down as well under the influence of a numerical noise that

effectively adds a short wavelength component. This happens later in time though,

indicating that the rms amplitude of the short-wavelength is important in determining

its effect on the long-wavelength mode. The late-time growth rate of the bubble front

is increased if the breakup of spikes allows for bubble competition and merger on

what would otherwise be a stable periodic array of bubbles [see Fig. 21(c)]. Because

of the strong influence of the short-wavelength component on the transition time,

coupled with the strong effect of transition on the global characteristics of the flow,

systems comprised of a single mode or a few commensurate modes make poor

surrogates for real physical systems. For broadband spectra, it appears that the

presence and rms amplitude of the short wavelength component but not its spectral

shape are important. This suggests that computational or experimental surrogates for

systems dominated early on by long-wavelength modes need not accurately reproduce

the details of the short-wavelength spectral component as long as the low l-modes are

well resolved. Because this scenario might depend on the dimension of the
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Figure 21: Effect of shorts on long:  (a) Breaks the single-mode symmetry, resulting
in (b) reduction in late-time spike growth and (b) enhancement of the late-time bubble
velocity. (d) The net effect is an increase in the growth of the averaged amplitude.
Amplitude plots include single mode 4, mode 4 with hyperbolic shorts, and mode 4
with broad gaussian shorts.
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Figure 22: Effect of long on shorts. (a) Suppresses early-time growth of small-scale
structure  and (b)  delays the transition to “turbulence”.

perturbation, we will consider in a later paper the effect of unresolved modes on the

evolution of 3D systems capable of undergoing a turbulent mixing transition.

3. Variation of <as>/<al>

Finally, we consider the variations in the relative rms amplitudes of the long

and short-wavelength components. We ran a series of five calculations, each of which

included the same narrow gaussian short-wavelength spectrum plus mode 4 (see Fig.
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22). The relative amplitude parameter <a>s/<a>l was controlled by varying the mode

4 amplitude from 0.0 to 2.5 µm, with intermediate values of 0.025, 0.25, and 1.0 µm.

When the initial amplitude of mode 4 is less than or equal to the rms amplitude of the

short-wavelength component (<a>s/<a>l ≥ 1), the instability evolution closely

resembles the shorts-only case. The transition time in particular is not sensitive to the

presence or amplitude of mode 4 as long as its amplitude is small [see Fig. 22(b)].

When the mode-4 amplitude is larger than <a>s, there is a qualitative change in the

instability development. Mode 4 begins to dominate the growth within a few ns, in a

time that is roughly equal to or less than the time required for the short-wavelength

modes to reach their nonlinearity thresholds and undergo transition. Shear that

develops along the mode-4 spikes and bubble as they grow into the nonlinear regime

greatly inhibits the development of small-scale structure and delays the time to

transition [see Fig. 22(a)]. This delay contradicts what one would expect based on

transition to shear-layer turbulence, which should appear earlier along larger spikes

due to their faster terminal velocities and consequently higher Reynolds numbers. The

same stabilizing effect was noted and described by Ofer et al. in their discussion of

the effect of a secondary long-wavelength mode on a short-wavelength primary

mode46, and is also visible in a calculation by Youngs.5 The short-wavelength spectral

component is in large part lost and must be regenerated later after the mode-4 spikes

reach their interaction and transition nonlinear thresholds.

V. Comparison with classical case
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Some of the results we have found in our 2D, high-resolution simulations of

blast-wave-driven systems are applicable to classical RT systems, while others are

not. Potential sources of differences are the time-dependence of the drive and

compressibility. Compressibility effects include the RM contribution, moderately

high instability Mach number (up to M2 ~ 0.1 in our calculations), stretching of

perturbations due to material decompression, and the associated density gradient

behind the shock front.

Our “effective box size”, which arises because of the decay of the driving

acceleration, is absent in classical systems. However, most if not all multi-merger-

generation experiments and simulations performed to date are affected by a physical

or computational box size at late times.

The process of spike interaction and breakup will likely proceed similarly in

both systems. However, we might expect to find lower nonlinearity thresholds in our

case due to shock-deposited vorticity and higher instability Mach number. From

classical RT simulations of Ofer et al., it appears that spike interaction begins at about

h/λ ~ 2-3.46 This might be slightly higher than our value of h/λ ~ 2, but the difference

seems too small to be meaningful.

In planar blast-wave-driven systems, a true self-similar regime independent of

initial conditions is not possible due to decompression. We have found in its place a

quasi-self-similar regime that is limited in time and transverse scale due to drive

decay. Self-similarity in classical RT systems remains a possibility (but even there

has not yet been conclusively demonstrated), and we might expect a correspondence

between transition requirements in classical systems and the onset of quasi-self-
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similar growth in blast-wave-driven systems. Early rocket-rig experiments6 and

simulations5 suggested self-similar-like growth after about 2.5 generations of bubble

merger. This is frequently expressed as the requirement that transverse scales ten

times larger than the most unstable mode or the initial characteristic scale must be

generated in order to transition to take place. More recent water-channel experiments

are also consistent with this requirement.47 After 2.5 merger generations, the initial

characteristic mode 40 in our shorts-only calculations has shifted to mode 7.

According to Fig. 8, this occurs at about 6 ns. The observed transition time, based on

the mixing parameter or the loss of transverse spectral information, is at about 3-4 ns

or after just one merger generation. Again, this accelerated transition is likely due to

enhanced vorticity due to RM and very fast spike growth, both of which might

facilitate spike interaction and breakdown. In 2D calculations with instability Mach

number of the same order as ours (but without a shock), Glimm et al. report spike

interaction and transition to a “multiply connected structure” after about 1.5 merger

generations.48 The fact that they consider this transition (and the resulting growth rate

reduction) to be an unphysical 2D artifact points to the need for comparison with

highly-resolved 3D calculations.

Despite the decreased drag on 3D objects and the suggestion that the post-

transition growth reduction in 2D calculations is artificial, early 3D classical RT

calculations by Youngs show reduced growth relative to the 2D case in the turbulent

regime.49 This reduction is likely due to increased dissipation in 3D, as suggested by

Youngs in the same paper. A similar effect has been observed in ongoing state-of-the-

art simulations by Cook et al., who consider the instability growth in terms of four
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evolutionary stages.41 After a short period of independent modal growth, a mode-

mode interaction phase begins when h/<λ> ~ 2 (equal to our threshold for spike

interaction). During this “weak turbulence” phase, the mixing parameter reaches a

local maximum at h/<λ> = 4.3 (similar to our peak at h/<λ> ~ 5). A second increase

in the mixing parameter occurs between h/<λ> ~ 8-19, which they call the turbulent

mixing transition. The mixing and similarity parameters appear to have reached their

asymptotic values by about h/<λ> = 19, which marks the beginning of a strong

turbulence phase that extends to the end of their calculation at h/<λ> = 30. In some of

our 2D calculations, we too see a second peak in the mixing parameter [see Fig. 19(b)

for an example] approached over about h/<λ> ~ 14-24. We find these parallels

encouraging in light of the high-resolution, high-order nature of the Cook et al.

calculations along with our expectation that transition should proceed qualitatively

similarly in classical and blast-wave-driven systems. More detailed comparisons,

however, will have to await completion of our 3D blast-wave-driven simulations.

VI. Conclusions

We have presented and discussed results from a series of over 70 2D high-

resolution AMR simulations of hydrodynamically-unstable interfaces driven by a

strong blast wave under NIF-like drive conditions. The mix-width time histories show

no apparent approach to a self-similar regime independent of the initial conditions.

This is due to decompression and drive decay, which result in an asymptotic velocity
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that depends on the amplitude and time as well as on the transverse scale and the

degree of mix in the layer. For sufficiently long but finite experiment duration, drive

decay also leads to an effective box size that sets a maximum transverse scale that can

be generated. After this scale is reached, the inverse cascade is halted and the growth

is no longer self-similar-like. There is, however, a period of quasi-self-similar growth

after generation of scales larger than the initial conditions but before the generation of

the effective-box-size scale.

The existence of the quasi-self-similar state and the drive-imposed effective

box size make the blast-wave-driven case distinct from classical RT. However,

transition to the quasi-self-similar state is very similar to its classical counterpart. In

both cases, transition is marked by an increase in the degree of mixedness, a decrease

in the spike velocity, and often an increase in the bubble velocity.

For continuous and bi-component (short on long) spectra, we have identified

several parameters that classify and characterize the initial conditions. We have

investigated how variations of a subset of these parameters can affect the observable

properties of the deep nonlinear instability evolution. We found, for example, that a

long wavelength mode can inhibit the development of small scales and delay the

transition to a turbulent-like state when its amplitude is larger than the rms amplitude

of the short-wavelength spectral component.

Most notably, apparently random variations observed in late-time amplitudes

and growth rates were not well correlated with initial spectral shape. The presence of

the short wavelength component is important for facilitating the transition to

turbulent-like flow, but its effect on the large scales does not depend strongly on its



199

spectral shape. Only the average properties are important, such as the initial rms

amplitude and characteristic wavenumber. This bodes well for simulations of

similarly strongly-driven systems that leave a portion of the short-wavelength end of

the spectrum unresolved. As long as the system contains some fast-growing and

interacting modes that can be resolved computationally or reproduced experimentally

(and has the correct initial rms amplitude), the late-time instability evolution will

likely closely resemble the fully resolved or complete system. This reaffirms the hope

that laser-driven experiments can serve as useful and relevant platforms for studying

compressible mixing in supernovae despite their drastically more limited available

range of scales. Similarly, carefully-designed numerical simulations need not

necessarily reproduce the full range of spectral details present in their physical

counterparts in order to reasonably reproduce the late-time large-scale interface

structure. These conclusions apply in particular to systems with long-wavelength

modes large enough in amplitude to reach the nonlinear phase early on.

It is important to remember that these conclusions are based solely on 2D

calculations and might be altered somewhat in 3D. In a later paper, we will extend the

discussion and analysis to high-resolution 3D simulations currently underway. This

analysis will include a discussion of the effects of initial conditions on the turbulent

mixing transition and the nature of the subsequent turbulent flow.



200

Chapter 6: Transition to Turbulence and Effect of Initial

Conditions on 3D Compressible Mixing in Planar Blast-

wave-driven Systems

I. Introduction

An interface between two fluids becomes hydrodynamically unstable when it

transmits a blast wave down the density gradient. Perturbations grow under the

combined influence of the Rayleigh-Taylor1,2 (RT) and Richtmyer-Meshkov3,4 (RM)

instabilities. In addition, material decompression behind the shock front results in

amplitude stretching that represents a significant contribution to the growth at late

times.5 RM dominates at very early times, but its contribution relative to RT quickly

becomes insignificant as the shock-deposited vorticity spreads out and decays away.5,6

In the nonlinear phase, initial perturbations evolve into spikes of denser material

growing in the direction of shock propagation and bubbles of less dense material

lagging ever further behind the unperturbed interface position. If the interface is

driven by a sufficiently strong blast wave, 2D and/or 3D secondary instabilities will

eventually cause nonlinear spikes to interact with one another and break down.

Energy and momentum are thereby diverted into the transverse direction and a

transition to a turbulent or turbulent-like state occurs.
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In a previous paper, we considered the effect of the initial perturbation

spectrum on the nonlinear evolution of a 2D blast-wave-driven system, including

spike interaction.6 Based on high-resolution 2D Raptor7 simulations, we concluded

that memory of certain aspects of the initial conditions, such as the rms amplitude, is

retained in the mix-width at all times. Spike interaction and breakup was found to

correspond to an increase in small-scale mixing, a significant reduction in spike

velocity, and a loss of initial transverse spectral information. Consequently, we

referred to it as a 2D turbulent mixing transition. At late times, the inverse cascade

driven by bubble competition and merger was halted due to drive decay, which

imposed an effective box size on the system. After transition but before the

emergence of the effective box size, we observed a quasi-self-similar regime during

which the similarity parameter <λ>/h decays slowly in time, with a value only weakly

dependent on the initial conditions.

In this paper, we extend this study to include 3D calculations of systems that

are otherwise identical to the laser-driven targets described in the 2D paper. Our goal

is to determine how the deep nonlinear instability evolution differs in the 3D case,

where vortex stretching makes transition to full 3D turbulence possible. In particular,

we would like to understand how the initial conditions affect the time to transition

and the nature of subsequent turbulent flow.

We will show that nonlinearity thresholds for spike interaction and breakup

are not significantly changed in 3D, and that the post-transition state is more

thoroughly mixed than in the 2D case. More mix gives a lower effective Atwood

number that leads to a large reduction in the bubble growth rate relative to the 2D
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values despite the decreased drag in 3D. Surprisingly, the velocity of the spike front is

not significantly changed when going from 2D to 3D. It is however reduced relative

to its pre-transition value. This is particularly interesting in light of the fact that 2D

simulations of blast-wave-driven mixing in core-collapse supernovae consistently

underpredict the asymptotic spike velocities by about a factor of two (see Ref. 8 and

references therein). This problem is not solved by 3D calculations that predict spike

velocities the same as in 2D, suggesting a balance between velocity enhancement due

to decreased drag and reduction due to increased small-scale mixing.

II. Transition to turbulence in RT-instability-driven systems

Before continuing on with simulation results, we wish to clarify what we

mean by turbulence. This is particularly important for turbulence in multimode RT

systems because there are at least four ideas of turbulence that appear in the literature,

and they do not all affect the instability growth in the same way.

First of all, RT-unstable systems can exhibit turbulence in the classical fluid

mechanical sense. Unfortunately, there is no universal consensus on what classical

turbulence is either. We describe it as a disordered state that undergoes random

fluctuations in both space and time and is characterized by energy-flow from some

large driving scale down to dissipative scales via the 3D phenomenon of vortex

stretching. When driven by the RT instability, there is a range of driving scales set by
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the density spectrum or bubble size distribution. When bubble competition and

merger are active, the dominant driving scale for the turbulence grows in time.

Transition to classical turbulence typically requires that the Reynolds number

be greater than some threshold value.9 This requirement amounts to sufficient spectral

separation between the driving and dissipative scales. Dimotakis observed that many

systems exhibit a transition to a state of increased molecular mixing, which he called

the turbulent mixing transition, above a critical Re of about 20,000.10 This

corresponds to three orders of magnitude separation between the driving and

dissipative scales, allowing for an extended inertial range that is decoupled from both.

Above the critical Re for the mixing transition, the internal structure of the flow is

less Re-dependent than before the transition.

In non-stationary flows, there is a time constraint as well.11-14 Even if the

Reynolds number is high enough that an inertial range can in principle exist,

transition cannot take place until the inertial range has had time to develop. A final

requirement for transition that is common to both non-stationary and stationary flows

is the existence of some seed perturbation that instabilities can act on. The seed

requirement is often not focused on because it will naturally be satisfied in virtually

every system, whether physical or computational, due if nothing else to thermal or

numerical noise.

The turbulent mixing transition often takes place in flows that have already

undergone a transition from a laminar, ordered state to a disordered, spectrally

complex state.10 The term “turbulence” is often also applied to any such system that

appears random, regardless of whether or not there is a forward energy cascade via
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vortex stretching down an inertial range. This includes 3D simulations that leave the

physical dissipation range and much of the inertial range unresolved. The resulting

computational Re is often greatly reduced relative to the actual Re in the modeled

system, even to the point that there is no discernible inertial range and the

computational Re is lower than the experimentally observed critical Re. We will refer

to such flows as weakly turbulent or turbulent-like, and to the initiating transition as

the weak transition.

Two-dimensional turbulence is distinct from its 3D counterpart in that it lacks

the vortex stretching and associated forward cascade that are central to 3D turbulence.

There is, however, a forward enstrophy cascade and an inverse energy cascade driven

by vortex pairing and merger.15,16 Since 2D simulations are often used to model 3D

turbulent systems, it is important in each case to consider whether or not transition in

the 2D system proceeds similarly to transition in the analogous fully resolved 3D

system.  This will likely depend on whether or not the latter is driven by instabilities

that are inherently 3D (such as the Widnall vortex ring instability17). In such cases,

2D calculations of course cannot be counted on for predicting the transition time.

Finally, we note that the word turbulence is sometimes used to describe the

inverse cascade, driven by bubble competition and merger in 3D as well as in 2D, that

is characteristic of nonlinear multimode RT evolution. This continual generation of

successively larger scales leads to acceleration of the bubble front and explains the

conjectured loss of initial conditions and establishment of a self-similar regime.18-20

Like transition to classical turbulence, transition to the self-similar regime requires

time, space, and a seed. The seed spectrum must contain multiple, incommensurate
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modes that are unstable (ie not so small that they are stabilized by viscosity or other

mechanisms). Otherwise, scales larger than those present in the initial conditions

cannot be generated and the asymptotic state will be characterized by a stable,

periodic array of bubbles. The characteristic wavelength of the spectrum will shift

towards the low-l end of the initial spectrum, but will not pass beyond it. Noise

(including numerical) present in the system can of course serve as the required seed,

eventually triggering the interaction and breakup of spikes, but the transition will be

delayed.6

The space requirement for transition to self-similar “turbulence” is that the

system or box size be at least several times larger than the longest-wavelength

significant modes present in the initial conditions.19 There must also be sufficient time

for larger scale to be generated. If the space requirement is not met and until the time

condition is satisfied, the scale-invariant bubble distribution21 will not be realized.

In blast-wave-driven systems (or other system with similarly decaying drive),

the effective box size can play the same role as the physical box size in limiting the

inverse cascade.6,22 If the drive becomes very small at late times but does not vanish,

then thinking in terms of the effective box size amounts to a transformation of the

time requirement into the spatial domain.

III. Effect of transition on RT instability growth
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The evolution of an RT-unstable interface is likely to be similarly affected by

transition to a classically turbulent or turbulent-like 2D or 3D state. Our previous 2D

simulations agree with 2 and 3D simulations of others that such transitions leads to a

higher degree of small-scale “molecular” mixing and typically a reduction of the

growth rate.6 We have noted, however, that the velocity of the bubble front can be

increased if the transition leads to bubble competition in what would otherwise be a

stable, periodic array. In that case, transition to a classically turbulent or turbulent-

like state provides the seed requirement for a subsequent transition to quasi-self-

similar “turbulence”. In our simulations, the 2D transition was found to occur when

the dominant modes in the spectrum reached a nonlinearity threshold of about h/λ ≈

5-6. For spectrally complex initial conditions, the 2D and self-similar transitions

occurred virtually simultaneously. In single or few-mode systems, the self-similar

transition sometimes occurred significantly later than the 2D transition.

While transition to a classically turbulent or turbulent-like state leads to

enhanced mixing that tends to reduce the RT growth rates,23,24 transition to a (quasi-

)self-similar regime leads to an inverse cascade that tends to enhance the perturbation

growth.25 When both transitions are coincident, the overall effect on the growth rates

depends on which effect wins out. Simulations in 2 and 3D tend to show an initial

growth rate reduction, especially for the spikes, but the growth must eventually be

enhanced if the system allows for unlimited generation of larger structures with

higher terminal velocities.6,24

We now consider the question of coincidence among the various transitions. It

has been proposed that the mixing-transition time in RT-unstable systems is limited
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by the viscous growth of a shear layer along the spike stalks, and with it the

Liepmann-Taylor scale that sets the low-l end of the inertial range.13,14 However, for

broadband systems in a big box at high Reynolds number (ie seed and space

requirements met for both classical and self-similar transitions), the mixing transition

is preceded by nearly coincident weak and self-similar transitions. Once modes

become nonlinear and begin to couple and generate larger scales, marking transition

to self-similar turbulence, spikes soon reach their nonlinearity interaction and breakup

thresholds.6 These interactions drive mix-layer-scale vortices, effectively short-

circuiting the process whereby the low-l end of the inertial range is limited by the

viscous growth of a shear layer. Even in 2D, spike interaction and breakup due to

Kelvin-Helmholtz (KH) activity gives an abrupt forward cascade, thereby temporarily

mimicking full 3D turbulence characterized by vortex stretching and the associated

transfer of energy down to the dissipative scales. Diffusive growth of the shear layer

will likely provide the time limitation for transition to classical turbulence only in

single-mode or otherwise spectrally simple systems.

When the mixing transition occurs in a system that has already undergone

transitions to weak and self-similar turbulence, it can only cause a reduction of the

growth rates by effectively lowering the Atwood number within the mix layer.

At low Re, the weak and self-similar transitions need not be coincident. For

example, consider that the inverse cascade can occur at any Reynolds number, and in

2D as well as 3D. Equivalently, the presence of an inverse cascade does not imply

strong interactions between spikes and the associated increase in mixedness. The

Reynolds number will eventually become high if the inverse cascade is allowed to
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continue long enough (Re ~ λ3/2g1/2 if h ~ λ), but the system can be “turbulent” in the

self-similar sense at lower Re as well.

Conversely, a system with simple modal content can exhibit localized

classical turbulence, including the mixing transition, if the Reynolds number is high

enough. For example, in RM shock tube experiments by Jacobs et al.,26 secondary

instabilities lead to transition to classical turbulence within the KH rollups of single-

mode spikes, while the large-scale single-mode structure remains intact and there is

no bubble competition. Even so, spike interaction and breakup should increase the

extent to which areas of turbulence permeate the mix region.

IV. Effect of decompression and drive decay in classical turbulence

After an initial compression upon passage through he shock front, material in

a blast-wave-driven system undergoes decompression in the post-shock velocity

gradient. This expansion has an effect on any developing turbulence that can be

understood by considering the vorticity equation for compressible fluids:

d

dt
P g

ω
ω ω

ρ
ρ ν ω

υ
ρ

µ
ρ

µ

= ⋅ ∇ − ∇ ⋅( ) + ∇ ×∇ + ∇ × + ∇

+ ∇ ×∇ + ∇ × ∇ ⋅∇ + ∇ × ∇ ⋅∇

v v

                v v v

1

1 1

2
2

2 ( ) ( )
, (1)

where µ and ν are, respectively, the dynamic and kinematic viscosities. If we neglect

the baroclinic and viscous terms and assume only conservative forces, then this

becomes
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d

dt
v v

ω
ω ω= ⋅ ∇ − ∇ ⋅( ). (2)

Next, we make the reasonable assumption that decompression in the uz ≈ β z/t

rarefaction is the only significant deviation from incompressibility. In that case, we

find

d

dt t

ω
ω β

ω
= ⋅ ∇ −v . (3)

The first term on the right-hand side describes vortex stretching, and the second

represents the decay of vorticity due to the decompression. Finally, we expand v into

the compressible part uz (which is also irrotational) and the incompressible part v’,

which, when inserted into (3), gives

d

dt
z

t t t
zω

ω β
ω

β
ω

ω β
ω

= ⋅ ∇ + − = ⋅ ∇ − ⊥v' v'ˆ , (4)

where ω⊥ is the transverse vorticity vector. We can draw two conclusions from Eq.

(4) about the effect of the decompression on turbulence. First of all, the vortex

stretching term does not include a contribution from the decompression. This is

because any increase in vorticity due to stretching in the rarefaction is exactly

balanced by the vorticity decay term. Thus the parallel (to the shock propagation

direction) component of the vorticity is unaffected by the decompression. The

transverse vorticity, on the other hand, remains “frozen into” the fluid and decays as

the density decreases. If the turbulence was initially isotropic and viscosity not

important, this should lead to an asymmetric vorticity field at late times biased in the

parallel direction. In fact, vorticity due to shock deposition and RT strongly favors the

transverse direction, with a significant parallel component arising only with the onset

of strong spike interaction. Decompression may therefore help drive a post-transition
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vorticity field that is strongly anisotropic at the large scales towards isotropy by

retarding the decay of its parallel component.

For a high Mach number Taylor-Sedov blast wave, we found in an earlier

paper that the interface deceleration scales approximately as g ~ t-2[1-1/(γ(d+2))] where γ is

the adiabatic index and d is equal to the dimension of the blast wave (ie three for

spherical and one for planar).22 If we neglect for the moment the decompression and

assume that the characteristic wavelength scales like g t dt( )∫[ ]2
 as expected for

incompressible RT in the scale-invariant regime,19,27 then we find that the Reynolds

number scales like Re ~ t1+2/(γ(d+2)), compared to Re ~ t3 in the constant g case. Thus the

Reynolds number continues to increase in the blast-wave-driven case, but it does so

much more slowly than with constant acceleration. For a system driven by a real blast

wave, the driving acceleration will eventually vanish and any turbulence will be left

to decay away.

V. Calculation setup and description

The simulations are performed using the multi-physics radiation

hydrodynamics code Raptor, which uses a 2nd order (in space and time) Godunov

method applied to the Euler equations.7 Raptor is parallelized and uses adaptive mesh

refinement (AMR), making it well-suited to problems such as ours that require high

resolution in only a portion of the computational domain. The calculation setup is

nearly identical to our 2D simulations detailed elsewhere,6 and only an abbreviated
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description will be given here. The only difference in the 3D calculations is that the

initial spectra are now typically 3D, and the nominal resolution is 256 cells across the

computational domain instead of 512. The highest level of refinement is reserved for

the interface region, and the total number of cells grows with the mix width, reaching

(to date) over fifty million.

Our hypothetical target [see schematic in Fig. 1(a)] consists of a 150 µm

plastic pusher section (density 1.42 g/cc) in contact with a cryogenic hydrogen

(density 0.086 g/cc) 2.2 mm payload section. An initial perturbation is imposed at the

pusher/payload interface, and the width the computational domain was typically 200

µm. Open boundary conditions are used in the parallel (to the shock) direction while

periodic conditions are specified in the transverse direction.

The end of the pusher opposite the perturbation is driven with a 25 kJ, 1 ns

laser pulse, which launches a strong planar blast wave into the target. Planar

experiments with these drive properties will be possible within a few years as the

National Ignition Facility28 (NIF) becomes operational. The simulations are initiated

with a high-velocity, heated, compressed slab with characteristics taken from a laser-

driven Lasnex29 simulation at the end of the laser pulse. The Mach numbers of the

incident and transmitted blast waves are in the range of 10-30, where the precise

value depends on the degree to which x-ray preheat can be controlled (the incident

Mach number with no preheat would be about 60). The resulting initial interface

speed is about 130 µm/ns [see Fig. 1(b)]. The post-shock Atwood number remains

nearly constant at about 0.7.

In this paper, we will present results from four high-resolution (256 ppb)
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multimode runs, one low-resolution (128 ppb) mode 4 “egg-crate” run [given by z0 =

(2.5 µm) cos(k4x)cos(k4y), where k4 corresponds to mode 4], and two runs intended to

test the code. Two of the high-resolution multimode runs include only a short

wavelength spectral component with modes 20-80, given by a narrow gaussian in two

cases and a 1/k2 spectrum in the other (see Fig. 2). Each interface was constructed by

determining all modes in the annulus satisfying 20 ≤ sqrt(kx
2+ky

2 ) ≤ 80 (for integer kx

Figure 1: (a) Target schematic (not to scale). (b) Variation in time of
interface velocity and deceleration.
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Figure 2: Initial spectral shapes used for the short-wavelength component in the 3D
calculations.

and ky) and assigning to each a random phase and randomized amplitude taken from

the prescribed spectrum. Contour plots of the initial conditions are shown in Figs.

3(a)-3(b). The other two multimode calculations include a simple long wavelength

component in addition to the narrow gaussian short wavelength component [see Figs.

3(c)-3(d)]. The long wavelength component is either a single 2D mode 4 or the 3D

mode 4 “egg crate”.

In estimating the Reynolds number in the calculations, we take Reh(t) ≡

[2h(t)/∆x]4/3 where 2h(t) is the mix width and ∆x is the cell size. This give a time-

dependent Reynolds number that climbs as high as ~ 5500 in the first 18 ns of a 40 ns

experiment. This is the same order of magnitude as the time-independent Reynolds

number based on the width of the computational domain ReL = 1626. If the

perturbation amplitude growth is similar in 2D and 3D, then we expect to find Reh ~

Mode number

Z
m
 (

µ
m

)
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10                                                100
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Figure 3: Initial interface contour plots: (a) narrow gaussian (ng), (b) 1/k2, (c) narrow
gaussian shorts plus 2D mode 4, and (d) narrow gaussian shorts plus mode 4 “egg
crate”.

11000 at 40 ns. The estimated Re number in the actual experiments is of order 105, or

two orders of magnitude greater than in the simulations.13 Typical of numerical

simulations of turbulent systems, the dissipative scales are much smaller than the grid

scale. We might expect, however, to qualitatively capture the effect of the turbulence

20
0 

µ
m

(a) (b)
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on the large scales if we adequately resolve the lower end of a self-similar inertial

range. According to Dimotakis, this scale can be estimated by the Liepmann-Taylor

scale, which he defines as λLT = 5LReh
-3/4 where L is the driving scale.10 With L = 2h,

we find for the experiments λLT ≈ 3-10 µm. In the simulations, there are then about 4-

13 cells per Liepmann-Taylor scale, which corresponds to mode 67-20. Thus we

estimate that we are beginning to resolve the upper end of the inertial range with 256

ppb. We would feel much more comfortable with another factor of 2-4 in resolution,

but such calculations are for now prohibitively time-consuming.

VI. Simulation results

A. Test calculations

Two calculations were run to test the 3D version of Raptor adapted for use in

this study. In the first, an interface was generated from a uniform 2D spectrum

including modes 4 through 80. The purpose of this test was to see when numerical

noise would introduce observable 3D effects into the simulation. The problem was

run out to 8.7 ns, at which point the width of the mix region was about 24 times the

initial characteristic wavelength (see Fig. 4). Despite this high degree of nonlinearity

and a complicated interface structure, there were absolutely no indications of 3D flow

even at the end of the calculation. Thus a simulation that begins 2D will remain 2D

well into the nonlinear regime.

Since the first test involved grid-aligned perturbations, we ran in second test

in which a single mode 4 perturbation was set up with its wavevector rotated by 45



216

Figure 4: Log density slices through a 3D simulation with 2D initial conditions from a
uniform (flat) spectrum including modes 4 through 80. The dark line in (a) denotes
the location of (b) the horizontal slice. The initial rms amplitude in this calculation
was 0.32 µm.

degrees about the vertical axis. The calculation was run out to 14 ns, at which point

the nonlinearity was a/λ = 1.27. The flow at the boundaries was corrupted due to the

periodic boundary conditions, but the perturbation away from the walls remained

single mode despite the fact that is was non grid-aligned (see Fig. 5).

T = 8.7 ns
(a)

(b)
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Figure 5: Log density slices through a 3D simulation with initial conditions given by
a single mode (mode 4) oriented at 45°. The dark line in (a) denotes the location of
(b) the horizontal slice. The resolution in this calculation was 128 cells in the
transverse direction and the initial perturbation amplitude was 1.25 µm.

B. Effect of dimensionality on single mode growth

In Fig. 6, we compare the growth of the mode 4 “egg-crate” with a single 2D

mode 4. The 3D spikes and bubbles have the same transverse scale as the 2D spikes

and bubbles, so, during the pre-transition phase, the difference in their growth rates

should be set by the ratio of their drag coefficients25,30,31

u u C CD D D D3 2 2 3 6 2 1 22 2 46 1 57/ / / . . .= ≈ ⋅( ) ≈ ≈π π . In fact, the 3D growth rate

(a)

(b)

T = 14 ns
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Figure 6: Effect of dimensionality on single-mode growth: (a) amplitudes, (b)
averaged growth rate, and (c) log density images. The 3D growth rate initially
saturates at about √1.5 (rather than √2.5) times the 2D growth rate.

initially saturates at about 1 5 1 2. .≈ times the 2D growth rate [see Fig. 6(b)],

possibly because the 3D bubbles appear to develop with a slightly smaller diameter.

A late-time log density image from the mode 4 “egg-carton” interface is

shown in Fig. 7. Despite nonlinearity a/λ = 7, regular single-scale structure persists

along much of the length of the spikes. However, a transition to turbulence appears to

have occurred in localized regions where shear layers from individual spikes have

merged. An x-ray radiograph at 25 ns from a 2D short-on-long Omega experiment32
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Figure 7: Late-time log density image from mode 4 “egg-carton” interface. Despite
nonlinearity a/λ = 7, regular single-scale structure persists along much of the length
of the spikes. However, a transition to turbulence appears to have occurred in
localized regions where shear layers from individual spikes have merged. An x-ray
radiograph at 25 ns from a 2D short-on-long Omega target shows indications of
similar localized transitions. The perturbation in the experiment is less nonlinear both
because it is 2D and the drive is five times less energetic.

shows indications of similar localized transitions. The perturbation in the experiment

is less nonlinear both because it is 2D and the drive is five times less energetic. Based

on the time required for establishment of an inertial range via the viscous growth of

the Liepmann-Taylor scale, Robey et al. predict that the mixing transition is possible

in the experiments after 17 ns.13   This scenario seems appropriate in this spectrally

simple system where there is no weak transition early on.
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C. Evolution of short-wavelength component

Perturbation amplitude and velocity histories from the two high-resolution 3D

shorts-only cases are shown in Fig. 8. Results from 2D calculations with the same

initial spectral shapes are shown for comparison. In general, the variation between the

3D calculations is slightly less than in 2D. This could be due at least in part to better

statistics in the identification of the spike and bubble positions.

At early times, 3D bubbles grow faster than 2D bubbles of the same size. This

is expected based on the reduced drag of spherical relative to cylindrical bubbles. At

about 5 ns, however, the 3D bubble velocities begin to drop off rapidly, falling to

about half the 2D bubble velocity by 10 ns.

Within a few ns after shock transmission, a transition begins from a state with

little small-scale mixing to a highly-mixed state [see Fig. 9(a)]. The degree of

“mixedness” is determined by using Youngs’s “molecular mix”, defined by33

Θ ≡
−

−

∫
∫ ∫

f f dz

f dz f dz

( )1

1
, (5)

where f and 1-f are the volume fractions of the two fluids and the angular brackets

denote averaging over the transverse direction. In the 2D calculations, this “2D

mixing transition” is complete when the mixing parameter begins to saturate at 4 ns at

a level of about 0.7. As we noted previously, this is noticeably higher than the value

of about 0.54 obtained by Youngs and Cook et al. from their 2D simulations of

classical, incompressible RT.24,34  In 3D, the mixing parameter continues to increase

until about 10 ns, when it begins to saturate at a higher value of about 0.90. Again,

this is higher than the value of about 0.83 reported by Youngs and Cook et al.24,34
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Figure 8: Perturbation amplitude and velocity histories from narrow gaussian and 1/k2

shorts-only cases. Results from 2D calculations (resolved to 512 ppb) with the same
spectral shapes are included for comparison.

3D ng
3D 1/k2

2D 1/k2

2D ng

Averaged

Bubble

Spike

(a)

(c)

(b)

3D ng
3D 1/k2

2D 1/k2

2D ng

3D ng
3D 1/k2

2D 1/k2

2D ng



222

Three-dimensional Raptor simulations of classical RT do not show this discrepancy,35

suggesting that it results from RM, thermal conduction, decompression, or a

combination of these effects. We have verified that conduction is not responsible, and

do not believe that RM is important after the first few ns. This leaves decompression,

which tends to increase the number of mixed zones at material interfaces. We have

not yet determined whether the resulting increase in asymptotic mixedness is a

physical or numerical effect.

By about 10 ns, the simulation appears to have undergone a turbulent mixing

transition (see Fig. 9). Indeed, at 90% mixed, it is difficult to imagine what additional

mixing transition could possibly take place.

Two-dimensional density and energy spectra are integrated over annuli in kx-

ky space to give a 1D representation that depends only on the magnitude of the

transverse wavevector. Results from the 3D narrow-gaussian case are shown in Fig.

10. The density fluctuation is defined by δρ(z) = ρ(z) - <ρ(z)>, where <ρ(z)> is the z-

dependent transverse density average. Each spectrum shown in Fig. 10 is the average

of several (typically four) 1D spectra evenly spaced throughout the interior of the mix

region. The inverse cascade to longer wavelengths is apparent in the density spectra.

It proceeds rapidly at early times but slows dramatically by 20 ns, indicating the

approach of the asymptotic freeze-out stage. This slowing is more apparent in 3D

than in our earlier 2D calculations, where vortex pairing and merger contributes to the

inverse cascade.

The fluctuating energy components are defined in the same way as the density

fluctuation: δKEx,y,z(z) = KEx,y,z (z) - < KEx,y,z (z)>, where “<>” again denotes
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Figure 9: (a) Mixing parameter and (b) log density plots from 2D and 3D ng shorts-
only calculations.
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Figure 10: Time evolution of (a) density spectra ρk, (b) k5/3 ρk, and (c) turbulent
directed energy spectra.The appearance of an inertial range in the spectra corresponds
to the increase in mixedness apparent in Fig. 9(a).
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transverse average and KEx,y,z = ρvx,y,z
2. An inertial range with Kolmogorov k-5/3

scaling36 is visible by about 10 ns in the density and parallel energy spectra from

about mode 70 out to about 120. The appearance of an inertial range in the transverse

energy spectra is somewhat delayed relative to the parallel component. This effect has

been previously noted in 3D classical RT simulations and attributed to the secondary

nature of the transverse flow.24 That an inertial range appears at all is at first glance

surprising considering the relatively limited range of scales present in these

simulations and the lack of a sub-grid-scale model. The grid-resolution Reynolds

number, defined by Re∆x ≡ (h/∆x)4/3 ~ 103, is an order of magnitude smaller than the

integral-scale Reynolds number observed by Dimotakis to mark the mixing transition

in many flows.10 We believe that an inertial range is attainable in our case because the

dissipation range, which is almost imperceptible in the post-transition density and

transverse energy spectra, occupies only a few cells. Because the Kolmogorov scaling

is not corrupted at the high-k end by dissipation, the effective integral-scale Reynolds

number is much higher than the grid-resolution Reynolds number. Following the

scaling used by Dimotakis, we find that the ratio of the lower end to the upper end of

the inertial range is approximately given by 0.1Re1/4.  Based on the inertial range

observed in the calculated spectra, this gives Re ≈ 5x104. As predicted by Dimotakis,

the appearance of the inertial range corresponds with a turbulent mixing transition.

It is important to note that the 3D bubble velocity falls off precisely while the

3D mixedness is increasing above the value seen in the 2D calculations. This suggests
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that the increased mixing in the bubble region has resulted in a lower effective

Atwood number and, consequently, a lower growth rate.

In this spectrally complex system, the time to transition does not seem to be

limited by the viscous growth of a shear layer as was suggested in the 3D single-

mode calculation. Instead, transition is triggered by strong interactions between

neighboring spikes. When the dominant spikes reach their nonlinear breakdown

thresholds, a significant fraction of their energy is diverted into the transverse

direction, resulting in forcing of mix-layer-scale vortices. Since this happens earlier

when the characteristic mode number in the spectrum is higher, the transition here

takes place earlier than it does in the single-mode system despite the fact that the

integral scale (the mix width) is much smaller.

D. Effect of shorts on long

Two high-resolution, 3D, short on long simulations were run. In each case, the

short wavelength component was the same 3D narrow gaussian shown in Figs. 2 and

3(a) and used in Fig. 9. The long-wavelength component was a 2D mode 4 in one

case and a mode 4 “egg carton” (which we will call 3D mode 4) in the other.

Amplitude and velocity histories from these calculations are shown in Fig. 11 along

with results from 2D mode 4, 3D mode 4, and 2D narrow gaussian shorts on a 2D

mode 4. In each case, the amplitude of mode 4 was 2.5 µm (a/λ = 0.05), and the rms

amplitude of the short wavelength component was ten times smaller.

The large reduction in bubble growth seen with the short-wavelength

spectrum is not so apparent when mode 4 is present [see Fig 11(b)]. We believe that
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this is because it takes much longer for mode 4 to grow up to its nonlinear interaction

and breakdown thresholds. Consequently, the mixing transition does not occur until
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Figure 11: Perturbation amplitude and velocity histories from calculations with mode
4 (m4) in the initial conditions. Results from 2D calculations with the same spectral
shapes are included for comparison.

Figure 12: Mixing in simulations with mode 4 (m4) in the initial spectra. The 2D
calculations show evidence of  weak transition at around 20 ns. The 3D single-mode
“egg-carton” perturbation also shows a transition at around 20 ns, which is the same
time that log density plots appear to show localized mixing transitions.  When 3D
noise is present, the transition happens much earlier (between 10 and 15 ns).

between 10 and 15 ns (see Fig. 12). This is consistent with the conclusion we made

based on our 2D calculations that the presence of a long-wavelength mode with

significant initial amplitude can delay the transition to a turbulent-like state.

Log density slices through the evolving mix layer from the 3D m4 plus 3D

narrow gaussian shorts calculation are shown in Fig. 13. The dominant mode 4 spikes

begin to interact with one another when a/λ ≈ 2.  A very clear transition to a well-

mixed state has taken place by 18 ns, at which point a/λ ≈ 5. These same nonlinear

2D
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thresholds for spike interaction and breakdown/transition were found in our 2D

calculations.6 Thus it appears that, for complex initial spectra, transition in blast-

Figure 13: Log density plots of the evolving mix layer from the 3D m4 plus 3D
narrow gaussian shorts calculation. Spike interaction (between the mode 4 spikes)
begins when a/λ ≈ 2.  A very clear transition to a well-mixed state has taken place by
18 ns, at which point a/λ ≈ 5.

wave-driven systems proceeds similarly in 2D and 3D, indicating that three-

dimensional secondary instabilities do not play a dominant role in initiating the

transition. Again, the mixing transition corresponds to the loss of transverse spectral

information and the appearance of an inertial range with k-5/3 scaling (see Fig. 14).

The 2D mode 4 plus 3D narrow gaussian shorts evolves similarly, except that

the interior of the mix region remains anisotropic in the transverse plane until the

mixing transition has taken place (see Figs. 15-16). The post-transition mix width

remains somewhat smaller than with the egg-carton perturbation, but the two flows

are otherwise very difficult to distinguish.
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Figure 14: (a) Density and (b) energy spectra from the 3D m4 plus 3D narrow
gaussian shorts calculation. An inertial range is apparent by the time the mixing
transition has taken place.
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Figure 15:(a) Log density slices of the evolving mix layer from the 2D m4 plus 3D
narrow gaussian shorts calculation. The interior of the mix region remains anisotropic
in the transverse plane until the mixing transition has taken place. (b) Comparison
with the analogous 2D calculation (2D m4 plus 2D narrow gaussian shorts) illustrates
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the importance of 3D effects.

Figure 16: (a) Density and (b) energy spectra from the 2D m4 plus 3D narrow
gaussian shorts calculation. An inertial range is apparent by the time the mixing
transition has taken place. The transverse velocity spectrum is nearly isotropic after
the mixing transition.
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VII. Conclusions

When an RT-unstable interface grows to several times its characteristic

wavelength, it can undergo a “weak transition” to a disordered, apparently random

state. This transition proceeds similarly in 3D and 2D systems with approximately

equal nonlinear spike interaction and breakdown thresholds. In the latter case, it can

lead to 2D turbulence with an inverse energy cascade due to vortex pairing and

merger. A separate inverse cascade in 3D as well as 2D systems follows transition to

the self-similar regime of bubble competition and merger. In systems that are not

spectrally simple, the weak and self-similar transitions are likely to occur nearly

simultaneously. In 3D systems, a subsequent mixing transition leads to fully-

developed classical turbulence if the Reynolds number is high enough. Because the

post-transition interface region is more thoroughly mixed in 3D than in 2D, its growth

is more suppressed relative to the single-mode case.

Each of these transitions has time, space, and seed requirements that must be

met before it can occur. The time requirement for the mixing transition may be given

by a viscous diffusion time for spectrally simple systems, but is more likely to be set

by a nonlinearity threshold for strong spike interaction and breakdown when the intial

conditions are spectrally complex.

The weak, 2D, and mixing transitions lead to increased small-scale mixing

that reduces the instability growth rate at least temporarily. Wherever it occurs, the
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self-similar transition will eventually give accelerated growth if it is allowed to

proceed unhindered by system size or drive time constraints. For interfaces that have

already undergone a transition to self-similar growth, a subsequent mixing transition

can only inhibit future instability growth.

We have considered the effects of decompression and drive decay on 3D

turbulence in blast-wave-driven systems. Decompression leads to decay of vorticity

in the transverse plane but not in the parallel direction. The Reynolds number in a

blast-wave-driven system will continue to increase while the strong-shock

approximation is valid, but eventually the instability drive will vanish and any

turbulence will be left to decay during the freeze-out stage.

These conclusions are in large part born out by 2D and 3D Raptor calculations

of planar blast-wave-driven systems. The 3D calculations have not yet reached the

freeze-out stage, but do appear to exhibit a mixing transition despite a grid-resolution

Reynolds number only of order a thousand. We have suggested that this is because

the dissipation range has been collapsed into only a few cells at the highest

wavenumbers, allowing for an effective integral-scale Reynolds number that is at

least an order of magnitude larger than the grid-resolution Reynolds number.

In order to more qualitatively test the effect of the code’s inherent numerical

dissipation on the inertial range, we are currently planning to run a decaying-

turbulence problem with a known solution. In addition, it would be very useful to do

calculations at twice and four times our current resolution to see if the effects of the

small scales on the large-scale evolution are altered. Once enough of the inertial range

is resolved, we expect that further increases in resolution will be unnecessary.
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Whether or not our current resolution is really sufficient remains for now an open

question.

The simulations show sensitive dependence on the initial conditions deep in

the nonlinear post-transition phase of the instability growth. Where the low mode 4 is

included in the initial conditions, the late-time mix width is much larger. It could be

argued that the boundary conditions are affecting the growth at this stage, but that

effect should be to inhibit the growth rather than suppress it. Perhaps if the transverse

domain could be made arbitrarily large and the drive sustained arbitrarily long, the

shorts only and short-on-long systems would begin to look very similar. However, at

20 ns we are already nearing the freeze-out stage, in which differences in perturbation

amplitude will be preserved at later times.

Thus three-dimensional effects do not add anything that will counter the

tendency of blast-wave-driven systems to remember some aspects of the initial

conditions. For supernova calculations, this means that an understanding of the initial

conditions is important for getting that late-time mix width correct. Experiments

should include similar initial conditions in order to be truly relevant to supernova. In

particular, spectrally simple initial conditions are of limited utility since even the

process by which they undergo transition may be different than with more realistic

multimode spectra.
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Appendices

Appendix A. CALE simulation of Richtmyer-Meshkov

instability experiments at high Mach number

I. Introduction

The Richtmyer-Meshkov (RM) instability occurs when a shock wave crosses

an interface between two materials of different densities and/or compressibilities.1,2

During the process of refraction, the shock induces a misalignment of density and

pressure gradients wherever the normal to the interface is not along the direction of

shock propagation. Such a misalignment is a mechanism of vorticity generation.

Vorticity is thereby deposited on the interface by the shock in such a way that

perturbations on the interface prior to shock refraction will grow in time after passage

of the shock. In the simplest model, proposed by Richtmyer1 (who in the same paper

developed the compressible linear theory of the instability), sinusoidal perturbations

grow linearly in time according to

v = k a* A* ui, (1)

where k is the perturbation wavenumber, a* is the post-shock perturbation amplitude,

A* is the post-shock Atwood number, and ui is the amount by which the interface

velocity increases upon passage of the shock wave (The post-shock interface velocity

for an interface initially at rest).
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In his original treatment, Richtmyer considered only the case where the shock

moves from a lighter to a heavier fluid. In order to bring Richtmyer’s impulsive

formula into agreement with experiments in which the shock moves from a heavier to

a lighter fluid, Meyer and Blewett later suggested in that case replacing the post-

shock amplitude with the average of the pre- and post-shock amplitudes.3 The

Richtmyer and Meyer-Blewett formulae have been successfully applied to the linear

phase (in the sense that k a < 1) of a number of experiments2-4 and simulations5,6.

These have primarily been low Mach number shock tube experiments in which the

flow is nearly incompressible from just after shock refraction. In addition, a variety of

linear and nonlinear models have been developed and applied, under various

conditions, to both single- and multi-mode RM instability evolution. These include

the compressible linear theory for the case of reflected rarefaction wave5,6 as well as

potential flow,7-9 statistical mechanical,7,9-12 vortex,4,10,15 buoyancy-drag,12,14 nonlinear

perturbative,16,17 and phenomenological18 models.

Recently, there has been a great deal of interest in high Mach number RM

instability effects.19-22 In experiments relevant to inertial confinement fusion research,

high-powered lasers drive shocks up to M ≈ 20 into various targets.23 In this regime,

compressibility effects can be important late into (or even throughout) the

experiment. Many of the models that can correctly predict the instability growth at

low Mach number coincide with the Richtmyer of Meyer-Blewett velocity at t = 0,4,7-

10,12,18 and therefore must fail when compressibility effects persist long after shock

refraction.
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In some heavy to light experiments of moderate and high Mach number, the

speed of the transmitted shock relative to the unperturbed interface is not substantially

greater, or is even less than the Meyer-Blewett velocity. 20,21,24 The transmitted shock

then remains close to the interface long into the experiment, but the spike tips have

not been observed to penetrate ahead into the unshocked material.  It is therefore

believed that the proximity of the transmitted shock inhibits the instability growth.

21,24,25   However, because growth rate reduction due to large amplitude effects is often

potentially also present in these experiments, it has proven difficult to conclusively

demonstrate and quantify RM instability growth reduction from shock proximity.26

In this paper, we present the results of numerical simulation of single-mode

RM experiments conducted on the OMEGA laser at the University of Rochester

Laboratory for Laser Energetics. Long into the instability evolution, compressibility

effects are apparent and the transmitted shock remains close to the interface.

We begin by briefly describing the experiment, which is detailed more

completely in a recent article by Glendinning et al.24 Next, we describe the code used

to simulate the experiments as well as issues of zoning, convergence, and code-to-

code comparison. We demonstrate that the quantity and quality of the data are

sufficient to tightly constrain the simulations. A gap between the plastic and foam,

resulting from the inability to machine the perturbation into the foam (as described in

Section II), visibly affects the interface evolution and so must be included in the

simulation. Accurate modeling of the experiment also requires that the simulated

target be driven by a source that agrees in detail with the actual laser drive. The

results are also shown to be sensitive to the choice of material equation of state



239

(EOS). This is especially true for the foam, for which the tabular EOS’s considered

are shown to be too stiff. Since the proximity of the transmitted shock to the interface

is strongly affected by the foam compressibility, our purposes require an accurate

foam EOS.

After establishing requirements for the simulations, we proceed to quantify

the contribution of the Rayleigh-Taylor (RT) instability and target decompression to

the perturbation growth. Both are shown to be insignificant during all but the very

latest times. By varying the initial amplitude and considering separate spike and

bubble velocity histories, we are able to give a clear demonstration of perturbation

growth reduction due to shock proximity as opposed to nonlinear (large initial

amplitude) effects. Finally, we close with a brief summary of our results.

II. Experiment

In the experiments, an 11 ns laser pulse nominally of constant intensity I = 2.6

x 1013 W/cm2 is used in a direct-drive configuration to generate a strong, M ≈ 10

shock wave at one end of an 800 µm-diameter cylindrical target. Three sets of three

beams each overlap in time to provide a nearly steady drive. The targets, shown

schematically in Fig. 1, consist of a 20 µm-thick 1.2 g/cc polycarbonate ablator, a

1.23 g/cc 170 µm-thick brominated polystyrene (C50H48Br2) pusher layer, a 50 µm-

thick polycarbonate layer in which is embedded a 200 µm-wide brominated

polystyrene strip, and a 1 mm-thick 0.1 g/cc carbonized resorcinol formaldehyde

foam (CRF) payload. The brominated strip acts as a radiographic tracer in order to

concentrate x-ray opacity into a limited region near the target axis. A single-mode
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Figure 1: Target schematic showing (a) overall experiment configuration and (b) an
exploded view of the target package.

Drive beams

Backlighter
targets

Payload
Ablator/pusher

Ablator (C16H16O4, ρρρρ=1.2 g/cc)

Pusher/preheat
shield/tracer (C50H48Br2,
ρρρρ    = 1.22 g/cc)

Payload (C, ρρρρ    = 0.1 g/cc)

Shock tube (Be)

Ripples at interface

(a)

(b)



241

perturbation is machined into one end of the pusher, but is not machined into the

foam payload. Consequently, there exists a gap (initially air-filled) between the

plastic and foam portions of the target. The perturbation wavelength is 150 µm.

Experiments are performed with both large amplitude (22 µm, ka = 0.92) and small

amplitude (7 µm, ka = 0.29) perturbations.

The incident shock reaches the interface in about 10 ns, after which x-ray

radiographic data is taken over a period of approximately 15 ns. With the passage of

the shock, the perturbation undergoes a direct phase inversion. That is, the phase is

reversed at the completion of shock refraction. The ratio of the Meyer-Blewett

velocity to the speed of the transmitted shock relative to the unperturbed interface is

0.9 ± 0.4 for the large amplitude perturbation and 0.4 ± 0.2 for the small amplitude

perturbation. In the large amplitude case, the spikes of heavier material appear

throughout the experiment to be pressed up against the transmitted shock.

III. Simulation

We use CALE27 (for C-based Arbitrary Lagrangian Eulerian) to simulate the

experiments. CALE is a 2D radiation hydrodynamics code that uses a finite-

differencing method to numerically solve the Euler equations. As an ALE code, it

mixes elements of Eulerian and Lagrangian techniques in order to inhibit mesh

entanglement.

The target is driven by a time-dependent velocity source extracted from a

LANSEX calculation. Additional radiation effects are not included in the simulations
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since the preheat shield, described in Glendinning et al.,24 effectively eliminates

radiation preheat at the interface. The effect of electron conduction is also small, but

it is nonetheless included in the simulations.

The initial length of the computational grid is 700 µm.  Its width is 75 µm,

equal to one half the perturbation wavelength. Reflection boundary conditions are

specified on the boundaries parallel to the target’s symmetry axis, while free

boundary conditions are used on the orthogonal boundaries. The pusher density is 1.1

g/cc - slightly lower than in the experiments. We have verified that this difference,

which is introduced because of details of the EOS tables, has no significant effect on

the simulation results. The foam density is 100 mg/cc, as in the experiment. The air

gap between plastic and foam is included in the simulations, and its density is set to 1

mg/cc.

Except where otherwise specified, we use the EOP tables28 for the EOS of all

three materials.  The initial temperature of all materials is set to 25meV (290 K). The

pressure in the pusher behind the incident shock is 2.4 Mbar, and the post-shock

pressure at the interface is about 0.5 Mbar. In order to study the impact of various

EOS models on the instability development, simulations were also performed in

which LEOS tables28 or perfect gas models were used for one or more of the target

materials. The time for an acoustic signal to travel one wavelength in the shocked

target is close to the total duration of the experiment: approximately 18 ns in the

plastic and 11 ns in the foam.
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Figure 2: Time-dependent velocity source obtained from 1 and 2D LASNEX
simulations and input into CALE as L1D,  L2D, L2Dn as described in the text.

A. Velocity drive

Rather than the constant velocity piston of an idealized RM experiment, the

actual target is driven by three sets of drive beams overlapping in time.

Unfortunately, deviations of the real drive from the ideal case have a significant

impact on the instability evolution. The simulated laser drive has been continuously

been refined as VISAR characterization of the shock trajectory has improved, and the

resulting drive progression serves to illustrate the sensitivity of the experiment to

these details.

A 1 or 2D LASNEX29 simulation is used to translate the laser pulse into a

time-dependent pusher velocity (called in what follows L1D, L2D, and L2Dn – see

Fig. 2). The velocity profile is then input into a CALE simulation as a time-dependent

velocity source, where it is used to generate the incident shock wave. The interface
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Figure 3: Comparison of simulations driven by velocity source from 1 or 2D
LASNEX calculation (L1D and L2D): Interface (a) position and (b) velocity as
functions of time. (c) Perturbation amplitude and growth rate for perturbations with
initial amplitudes of 22 µm [(c) and (d)] and 7 µm [(e) and (f)]. Asterisks denote
experimental data.
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velocity obtained from a 1D CALE simulation driven by either L1D or L2D is

slightly smaller than in the experiment after about 16ns [see Fig. 3(a)].

Despite the subtleness of the differences between L1D and L2D, they have a

clear effect on observable features of the instability evolution. By the end of the

simulation (at 25 ns) the interface driven by L2D has traveled about 15 µm (3%)

further than with L1D. The time-dependent interface velocity [Fig. 3(b)] shows that

the temporary reduction in growth rate that occurs between 17 and 22 ns [Figs. 3(d)-

3(f)] corresponds to the arrival of a second shock at the interface. Investigation of

modified velocity sources has demonstrated that this second shock corresponds in

turn to the third peak in the velocity source.

The average perturbation amplitude a(t) is defined as half the distance from

bubble to spike tip at time t (ie half the mix width). In simulations of experiments

with both large and small amplitude perturbations, the L2D simulation results in an

amplitude history that agrees significantly better with the data than do simulations

with L1D [see Fig. 3(c),3(e)]. In going from L1D to L2D, a* is reduced from 9.0 to

7.7 µm for the 22 µm initial amplitude case. The latter is just above the experimental

error.

The difference in post-shock amplitude between simulations run with L1D

and L2D is not an effect of the absolute value of the pusher velocity. This is

demonstrated in Fig. 4, which shows that, in idealized calculations driven by a

constant-velocity piston, the post-shock amplitude is insensitive to the piston velocity

over a range of several µm/ns (though the subsequent growth rate is not). For

comparison, the average velocities of the L1D and L2D from 1 - 11 ns are 14.0 and
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Figure 4: Effect of velocity source details on amplitude history. (a) - (b) The post-
shock amplitude is insensitive to the pusher velocity over a range of several µm/ns.
Note that, in (a) and (b), all three cases have the same absolute amplitude shift. ( c )
Aside from absolute shifts in time and amplitude, the instability develops initially as
if driven by a constant velocity (about 12-13 µm/ns) piston. The histories diverge
significantly only upon the arrival of the second shock at the bubble.
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Figure 5: Separate spike and bubble (a) amplitudes and (b) growth rates obtained with
L2D.

13.9 µm/ns, respectively. The analogous averages taken from the first to the second

peak in the velocity profiles are 15.0 and 14.1 µm/ns.

Separate spike and bubble amplitudes and instability growth rates, shown for

L2D in Fig. 5, are obtained by subtraction of a reference time-dependent interface

position. The reference interface trajectory is obtained from a 1D simulation
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first phase of the instability development. Such behavior is predicted by nonlinear

theory, but here occurs mainly because the incident shock arrives at the spike about

1.5 ns before it arrives at the bubble. By the time the second shock arrives at the

interface, the bubble velocity has grown to nearly that of the spike. After passage of

the second shock, the spike growth rate is reduced while the bubble growth rate is

increased such that the new bubble growth rate is larger than the new spike growth

rate, and the bubble amplitude soon exceeds that of the spike. By the end of the

simulation at 25 ns, the bubble amplitude is about 20% greater than the spike

amplitude.

The reason for the large difference in a* between L1D and L2D can be

understood by considering the individual spike and bubble velocity histories. The

initial peak in the spike growth rate provides a measure of the interface velocity

immediately after the incident shock breaks out into the air gap. The subsequent peak

in the bubble growth rate gives the interface velocity just after breakout of the point

on the interface that initially lies at the position of the unperturbed interface. When

L1D is used, these two velocities are nearly the same. With L2D, on the other hand,

the second is nearly 10 µm/ns greater than the first [Fig. 5(b)]. This sudden change in

interface velocity marks the arrival of a shock corresponding to the second peak in the

velocity source profile. This is the reason for the relatively large difference in a*

between simulations run with L1D and L2D. With L1D, this second shock overtakes

the first just before the interaction begins. Consequently, the shock speed at the

beginning of the interaction is about 15 µm/ns. When L2D is used, the second shock
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overtakes the first a couple of tenths of a nanosecond after the interaction begins. At

the beginning of the interaction, the incident shock velocity is only about 12 µm/ns.

The perturbation compression factor in the presence of a gap can be simply

expressed by

a

a
u

v ui
g

*

= −










1 1

1

(2)

where ui is the interface velocity, v1 is the shock speed in the plastic, and ug is the

interface velocity in the gap. This reduces to the usual expression in the absence of a

gap, when ug = ui. For the reported experimental amplitude and velocity values, this

requires ug = 28.5 ± 1.3 µm/ns.  If the incident shock and interface velocities at the

time of interaction are used (rather than their average values), we find ug = 26.5

µm/ns. A rough measurement from the data suggests ug = 20 ± 10 µm/ns. The

analogous calculation for the simulations with an EOP EOS gives ug = 36.0 µm/ns

with L1D and ug = 31.8 µm/ns with L2D. The actual values from the two simulations

are 34 ± 1 and 28 ± 1 µm/ns, respectively. The greater discrepancy between the

predicted and observed values of ug for L2D is another indication that, with L2D, the

velocity of the interface in the gap is not constant over the time in which the gap is

being closed.

The shape of the bubble and spike is also affected by the choice of velocity

source. With L2D, the neck of the spike is closer to the spike base and is 15% broader

than with L1D or L2Dn (see Fig. 6). The higher narrower necks more closely

resemble those observed via side-on radiography (see Fig. 7). In each case, the

experimentally observed transmitted shock is more distorted than that seen in the
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Figure 6: CALE density plots at 20 ns with (a) L1D, (b) L2D, and ( c) L2dn.

Figure 7: Comparison of experimental radiograph at 20 ns with CALE simulated
radiographs obtained with (a) L1D, (b) L2D, and (c) L2Dn.

simulations, corresponding to an over-prediction of the distance from the bubble to

the transmitted shock. The discrepancy, which is more severe with L2D and L2Dn

than with L1D, appears to be the only significant experimental quantity more closely

predicted by L1D than by the 2D sources.

Although simulations with either L1D or L2D agree with the general features

observed in the experiments, they share in common four discrepancies. These include

the over-prediction of a* and the bubble-shock proximity distance noted above. In

addition, CALE predicts a value of da(t)/dt that is too large for as much as 4 of the

first 6 ns of instability development. This is followed by period of 2-3 ns during

which the da(t)/dt predicted by CALE is too small.
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Much of the discrepancy between the simulations and experiments can be

attributed to an incomplete understanding of the details of the velocity drive. We have

already shown that L2D does not produce the large error in a* seen with the L1D. The

early time growth rate is also smaller with L2D than with L1D. In the simulations, the

reduction and subsequent increase in da(t)/dt in the middle phase of the instability

development results from the passage of a shock generated by the third peak in the

velocity source profile. A similar phenomenon is suggested by the data, but occurs

somewhat earlier than in the simulations. The difference is about 1 ns for L2D and 2

ns for L1D.

The observed sensitivity of the instability evolution to details of the velocity

source has prompted efforts to better characterize the drive and, consequently, the

laser pulse shape. Recently improved measurements have produced an improved

pulse shape. A 2D LASNEX simulation run with the improved pulse has been run

and a new velocity source (L2Dn for L2D new) extracted for input into CALE.

Results of CALE simulations run with L2Dn are shown in Fig. 8, where they are

compared with L2D results. As expected, the plot of interface velocity shows that the

second weak shock arrives at the interface a couple of nanoseconds earlier than

predicted by L2D. The resulting amplitude history is in excellent agreement with the

data except for a post-shock amplitude that is 5 µm too large. The latter fact suggests

that L2Dn misses the subtle timing of the arrival of the first weak shock during the

shock refraction process.

It is clear from these considerations that the instability evolution is quite

sensitive to the details of the velocity drive. The drive L2Dn, obtained from a 2D



252

Figure 8: Results with new source (L2Dn) from 2D LASNEX simulation with
improved laser pulse shape compared to corresponding results with L2D: (a) Interface
position (b) Interface velocity ( c ) Perturbation amplitude (µm) (d) perturbation
growth rate (µm/ns).

LASNEX simulation well-constrained by experimental measurements, is preferable

to either the 1D drive L1D or the less-constrained 2D drive L2D. Despite its over-

prediction of the post-shock amplitude, L2Dn will typically be employed for

subsequent simulations.
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Figure 9:  Perturbation amplitude (a) and growth rate (b) with and without air gap
between plastic and foam regions.

B. Gap effects

The perturbation is machined into the plastic pusher but not into the foam

payload. As a result, there is a gap between the two materials, which are in contact

only at the perturbation peaks. Simulations with and without an air gap show that the

presence of the gap increases the early-time spike velocity (and, consequently, the

post-shock amplitude – see Fig. 9) and affects the shape of the spike and bubble [see

Fig. 10(a)]. However, it does not significantly affect the bubble velocity and the spike
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Figure 10: (a) Density plots (at 20 ns), (b) radiographs, and (c) spike and bubble
velocities for simulations with (right) and without (left) an air gap. The presence of
the gap increases the early-time spike velocity (and, consequently, the post-shock
amplitude) and affects the shape of the spike and bubble, but does not significantly
affect the bubble velocity and the spike saturation velocity.
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saturation velocity [Fig. 10(c)]. Consequently, the effect of the gap is to introduce a

vertical shift of about 5 µm to the perturbation amplitude history, which it does not

otherwise significantly affect.

The post-shock amplitude is most easily affected by the structure of the gap

region, to which it is quite sensitive. The foam density is much greater than that

specified for the gap. Consequently, when the gap is not included, there is no spike in

the interface velocity immediately after the incident shock reaches the interface, and

there is a corresponding reduction in a* that is sufficient to bring it into agreement

with the experiment. We have also noted that a lesser reduction in a* results when the

gap is partially filled with foam, as might be the case if the foam is partially crushed

during target assembly.

The increase in perturbation amplitude caused by the presence of the gap

results in a corresponding increase in the distortion (non-planarity) of the transmitted

shock. The structure of the perturbation and transmitted shock in simulations with the

gap more closely resemble that seen in x-ray radiographs than do simulations in

which the gap is not included or is only partially filled with foam [see Fig. 10(b)].

The degree to which the post-shock amplitude, the spike and bubble shape,

and the shock planarity are affected by the presence of the gap in the calculations

show that the gap must be included if the experiment is to be simulated accurately.

C. Zoning and convergence
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Figure 11: Section of computational domain showing rectangular (a) and conforming
(b) computational mesh. An air (white region) gap separates the CHBr plastic (left)
and CH foam (right) regions.

Two computational mesh configurations were used in the simulations (see

Fig. 11).  In the first case, a uniform rectangular mesh was specified. The cell

dimensions in the rectangular mesh were typically 1.25 µm in the direction parallel to

the unperturbed interface (corresponding to 120 cells / perturbation wavelength) and

0.5 µm in the direction perpendicular to the unperturbed interface. In the second case,

the mesh in the foam remained rectangular, with cell dimensions 1.25 µm x 0.75 µm.

In the pusher, however, a curvilinear mesh was used that conformed to the initial

perturbation. A smooth transition between the two configurations was made within

the five rows of cells in the gap region.

A zoning study was conducted to determine the optimal configuration and

verify convergence in both.  In the conforming mesh configuration described above,

the computational cells were 0.1 µm in the direction perpendicular to the interface at

the plastic/void boundary. In a second run, the cells were mass-matched across the

plastic/foam boundary with transverse dimensions of 0.01 µm in the plastic and 0.1

µm in the foam. This change resulted in a small increase in the post-shock amplitude

a* and early-time instability growth rate da(t)/dt. The number of points per
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Figure 12:  Amplitude resolution study with rectangular and conforming mesh.
Results from a simulation with 240 ppw rectangular are identical to those obtained
with 120 ppw rectangular, but conforming mesh case converges only at 240 ppw.

perturbation wavelength (ppw) was then increased first to 240 (0.75 µm /cell) and

then to 480 (0.375 µm/cell).  There was no difference in perturbation amplitude

history observed between the two latter cases, suggesting convergence at the large

scales by 240 ppw.

With the rectangular mesh, clear convergence was seen by 120 ppw, as further

increase to 240 ppw produced identical results (see Fig. 12). Results obtained from

the converged rectangular mesh case and the converged conforming case show

reasonably good agreement, with a* and the early-time da(t)/dt slightly smaller with

rectangular mesh than with conforming. The difference in a* is about 1.5 µm. Because

of its faster convergence properties, the rectangular mesh with cell size 1.25 x 0.5 µm

was used in all subsequent simulations.

A one-dimensional study of the effects of cell size for zones mass-matched

across the plastic–foam interface was also conducted. Virtually no change in interface

Time (ns)
12       14        16         18         20         22         24        26

A
m

pl
itu

de
 (

µ
m

)

50

40

30

20

10

 0



258

Figure 13: Eulerian / ALE comparison: Density plots at 20 ns from CALE
simulations run in (a) Eulerian mode and (b) ALE mode. ( c ) Comparison of
amplitude histories with experimental data. The ALE calculation exhibits more
Kelvin-Helmholtz rollup at the interface than the Eulerian calculation. However, the
differences between the two appear to be below the level of the experimental
resolution.

trajectory zi(t) was observed when the cell size in the plastic at the plastic–void

interface was varied over the range 0.1 – 0.001 µm. Over this same range, zi(t) was

also shown to be insensitive to whether CALE is run in pure Lagrangian or

Lagrangian-Eulerian hybrid mode. In most simulations, the ALE feature of CALE

was enabled, but an Eulerian calculation was also done for comparison (see Fig. 13).

The Eulerian calculation is virtually identical to its ALE counterpart except that it
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exhibits less Kelvin-Helmholtz rollup at the interface. The differences between the

two appear to be on scales below the level of the experimental resolution.

D. Code comparison

The validity of the CALE setup described above was verified in two different

ways. First, CALE simulations of RM experiments reported by Aleshin et al.30 were

performed. As in the case of OMEGA experiments, a rectangular mesh with 120 ppw

was used to simulate one-half perturbation wavelength. The ratio of parallel to

transverse cell dimensions was also the same (2.5) in both cases. Results of the CALE

simulation were compared with those obtained using another ALE code (HYDRA33)

and the Adaptive Mesh Refinement (AMR) code RAPTOR34 (see Fig. 14). The

HYDRA and RAPTOR simulations were run with 512 and 2560 ppw, respectively.

Despite the large differences in resolution, all three codes showed excellent

agreement on the perturbation amplitude history. Comparison of density plots

produced by the two ALE codes showed remarkable agreement on all but the smallest

scales.

Since the Aleshin experiments were performed with gases in a shock tube, a

second test problem was set up to compare the codes’ treatment of the air gap

between the plastic and foam. In these simulations, perfect gas EOS’s with γ = 1.5

were used for all materials. The pusher density was 1.046 g/cc, while the densities of

the foam and gap region, as well as the perturbation wavelength, were the same as in

simulations of the OMEGA experiments. The perturbation amplitude was 22 µm. The

instability was driven by a steady shock created by a piston moving with constant
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Figure 14: Code comparison of simulation of Aleshin shock-tube experiment with M

= 4.5 shock across Xe-Ar interface with ρXe = 2.89 g/l, ρAr = 0.89 g/l (ρXe / ρAr =

0.30), ka = 1.75. (a) Amplitude histories obtained using RAPTOR, CALE, and

HYDRA. (b) CALE (above) and HYDRA (below) density plots at approximately 80

µs. The shock is moving from right to left.

velocity 14.7 µm/ns. This piston velocity is nearly equal to the average pusher

velocity predicted by LASNEX calculations for the OMEGA experiments. The test

problem was run using CALE and RAPTOR. The computational mesh used in the

CALE simulation was the same as that used for the Omega experiments. RAPTOR

simulations were performed with resolutions of 256 and 512 ppw.  The simulations

were compared up to about 9.5 ns after the beginning of the shock-interface

interaction, beyond which the interface velocities began to decrease (see Figs. 15-16).

Over this range, the two codes never differed in their prediction of the perturbation
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Figure 15: Test problem: Comparison of CALE and RAPTOR simulation amplitude
histories with and without an air gap between the two primary materials. Perfect gas
EOS for all materials (γ = 1.5). Constant Piston velocity = 14.7 µm/ns. Densities
ρpusher = 1.046 g/cc, ρpayload = 0.1 g/cc, ρgap = 0.001 g/cc.

Figure 16: Test problem. Comparison of CALE (above) and RAPTOR (below)
simulation density plots at 20 µs with (right) and without (left) an air gap between the
two primary materials. The shock is moving from left to right.
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amplitudes by more than about 3 µm. The average difference was less than 1 µm,

which is in turn less than the average uncertainty in the OMEGA data.

E. Equation of state

We have also investigated the extent to which EOS issues could be responsible for the

observed discrepancies between the experiments and simulations. Simulations were

run in which LEOS tables were used for all materials and where perfect gas models

with a range of γ’s were used for one or more materials. We considered γ over a range

from 1.5 – 2.2 for the plastic and 1.1 – 1.5 for the foam. Some of the EOS results as

well as velocity source effects are summarized in Figs. 17-18. The post-shock

amplitude depends fairly weakly on the compressibility of the foam (varies by less

than 3% over the range considered). Its dependence on the plastic compressibility is

much stronger, but the effective γ plastic would need to be much higher than 2.2 in order

to bring a* into agreement with the data, which seems highly unlikely.

The proximity of the transmitted shock to the interface is particularly sensitive

to the foam EOS (and insensitive to drive details), and simulations with both EOP and

LEOS consistently over-predict the bubble-shock proximity. In order to match the

reported bubble-shock data, the foam compressibility would need to be consistent

with about γfoam = 1.3. The spike-shock and shock distortion data, however, are more

consistent with a γfoam of 1.4-1.5. When determined by shock hugoniot curves, the

EOP effective γfoam falls in this same range (γfoam
EOP = 1.46), while the LEOS γfoam is

somewhat higher still (γfoam
LEOS = 1.54).28

Despite the discrepancy between the time dependence of the experimental and
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Figure 17:  Effect of equation of state, drive, and gap on transmitted shock proximity
and shape. (a) Distance from spike tip to transmitted shock. (b) Distance from bubble
tip to transmitted shock. (c) Shock distortion. (d) Numerical radiographs at 20 ns.

L2dn and EOP EOS unless otherwise specified
    EOP                          γfom = 1.1
    x      LEOS                        γfom = 1.2
            no gap                      γfom = 1.3
    *      L2D                          γfom = 1.4
           Data                          γfom = 1.5
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Figure 18: Distance from (a) bubble and (b) spike to transmitted shock vs.
perturbation amplitude.

simulation bubble-shock proximity, it appears that the simulation does in fact

correctly predict the dependence of the bubble-shock proximity distance on

perturbation amplitude (see Fig. 18). This suggests that the error in the bubble-shock

proximity results from the over-prediction of the post-shock amplitude rather than an

EOS effect. We therefore conclude that the real foam EOS is best represented by the

EOP tables and is most consistent with an adiabatic index of 1.4-1.5. In addition, the
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LEOS tables understate considerably the foam compressibility. Consequently, unless

otherwise stated, we use the EOP tables all subsequent simulations.

F. Baseline calculation

Prior to beginning a discussion of the physics issues of interest, we here

summarize the above results with a brief description of a baseline calculation. A

baseline calculation includes one half of one perturbation wavelength with a

transverse resolution of 120 ppw. The code’s ALE feature is enabled, but the mesh is

initially rectangular because a conforming mesh would require greater transverse

resolution for convergence. Radiation effects are not included directly, and the target

is driven by the planar velocity drive L2Dn, which is extracted from a well-

constrained 2D LASNEX simulation. Electron conduction is included, as is the gap,

and the EOP tables are used for all materials. As is apparent in Figs. 7 and 8, such a

simulation reproduces well the perturbation amplitude history (except for its 5 µm

overestimate of the post-shock amplitude) and the interface structure. This agreement

depends particularly critically on the inclusion of the gap, the well-constrained

velocity drive, and a reasonable EOS.

IV. RT and decompression contribution

A perfectly uniform laser drive with an intensity that is nearly stationary (but

slightly increasing in time) might be expected to correspond to a perfectly steady (ie

constant velocity) piston, thereby driving a steady shock into the target. But any real

laser pulse corresponds instead to a time-dependent velocity source - at best driving
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into the target a primary shock followed by a series of weak shock and rarefaction

waves. In our experiments, there is a local intensity maximum associated with each

set of drive beams. The resulting velocity source (see Fig. 2) consists of three peaks

superimposed on a constant velocity plateau. The first peak drives the primary shock,

and is followed by a small rarefaction wave. The second peak drives a second, weak

shock, which overtakes the first immediately before or during shock refraction at the

interface. A second weak shock, corresponding to the third peak in the velocity

source, reaches the interface several nanoseconds after shock refraction. It too is

followed by a weak rarefaction wave followed in turn by a stronger rarefaction wave.

The arrival at the interface of the stronger rarefaction marks the end of the period of

quasi-constant interface velocity, and consequently the end of the RM experiment.

Though nearly constant from the time of arrival of the primary shock at 12 ns to that

of the primary rarefaction at about 25 ns, the interface velocity is actually continually

decreasing throughout the experiment except during transmission of shocks. As a

result of the weak rarefactions, the interface is weakly unstable to the RT

instability33,34 throughout most of the experiment. In the simulations, the deceleration

rate ranges between about 0.4 and 1.0 µm/ns2, with its precise behavior depending on

the choice of velocity drive. For L2D (the deceleration profile with L2Dn is more

complicated), it begins at 1.0 µm/ns2 immediately after transmission of the primary

shock and decreases continuously to about 0.5 µm/ns2 at 25 ns (Because of its simpler

deceleration profile, L2D rather than L2Dn is used in this section). This corresponds

to a classical RT growth time, given by τRT = (k g A*)-1/2, of 7 – 9 ns, where the post-

shock Atwood number A* = 0.54. With an experiment of duration fewer than 2 RT
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growth times, RT effects will be secondary to RM effects throughout the experiment

and utterly insignificant early on, but might become noticeable at late times.

As the target material decompresses in the weak rarefaction fans, geometrical

stretching produces additional perturbation growth. Points separated by a distance ∆z

along the symmetry axis move away from one another with a velocity that increases

monotonically with ∆z in the rarefaction fan.

In order to quantify the contribution of RT and decompression effects to

perturbation growth in the experiment, an idealized set of four simulations was

performed. These simulations were driven by constant velocity  “pistons” of varying

duration (see Fig. 19). The piston velocity is 14 µm/ns – chosen to match the

experiment. The longest, a 15 ns pulse, provides a constant interface velocity

throughout the simulation. As it is consequently free from RT and decompression

effects, this will be referred to as the pure RM case. Shorter pulses of 10 and 8 ns

yield a period of constant interface velocity followed by a deceleration phase. With a

6 ns pulse, the rarefaction reaches the interface at about the same time as does the

incident shock, so that RT and decompression effects are present throughout. The

interface deceleration in these simulations is in the same range as that observed in

simulations of the actual experiment. The 6 ns pulse produces an acceleration profile

that is similar to, but somewhat lower than that obtained with L2D.

In the small initial amplitude pure RM case [Fig. 20(a)-20(b)], the results are

mostly typical of the classical RM instability. The spike and bubble velocities begin

at zero, climb up to a maximum value that is well predicted by the Meyer-Blewett

impulsive model, and then fall off asymptotically as 1/t. The spike and bubble
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Figure 19: RT / decompression effects: Interface velocity (µm/ns) obtained (a) with
real drive (L2D) and (b) with a series of constant velocity (14 µm/ns) sources of
varying duration. Interface acceleration (µm/ns2) obtained (c) with real drive and (d)
with constant-velocity series. In all cases, the gap is not included. Except in the case
of the 15 ns flat drive (pure RM case), the interface velocity is not perfectly constant.
During the deceleration phase, the perturbation is RT unstable.

velocities are nearly equal throughout, with the spike velocity perhaps slightly higher

than that of the bubble as predicted by nonlinear models.8,9,16-18 When the target is

driven by the 6 ns pulse, the spike and bubble velocities asymptote to a constant value

[Fig. 20(c)]. This is consistent with classical nonlinear RT evolution, where kinematic

drag allows the spike and bubble to reach terminal velocities. The difference in

averaged amplitude between the two cases does not reach 2 µm until about 21 ns, and

is only 6 µm at the end of the simulation. Still, the difference is sufficient to conclude,
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Figure 20: RT / decompression effects for small (7 µm) initial amplitude driven by
constant velocity (14 µm/ns) drive. (a) Perturbation amplitude. RT / decompression
effects are initially small, but become significant at about the time the peak growth
rate is attained in the pure RM case. (b) Pure RM case (15 ns drive time) spike and
bubble velocities. The asymptotic spike and bubble velocities decay approximately as
1/t. (c) RM + RT case (6 ns drive time). Interface deceleration yields an RT /
decompression contribution and a near constant saturation velocity. In both (b) and
(c), the spike and bubble velocities remain nearly equal throughout, with the spike
velocity perhaps slightly higher than that of the bubble.
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on the data, that RT and expansion effects determine the asymptotic nature of the

instability in the experiment. While these effects are less significant, even at late

times, than in previous laser-driven experiments intended to study the RM instability,

ours remains a true RM experiment only until shortly after 20 ns.

With an initial amplitude of 22 µm, the bubble behavior mirrors that seen in

the 7 µm initial amplitude case. Again, its velocity in the pure RM case [Fig. 21(b)]

grows from zero up to a maximum at the Meyer-Blewett velocity and then falls off

approximately as 1/t. The spike growth, on the other hand, is inhibited by the

proximity of the transmitted shock, as will be discussed later. In the 8 and 10 ns drive

pulse cases [Figs. 21(c)-21(d)], the point at which deceleration begins and

RT/decompression effects set in is clearly seen in plots of the spike and bubble

velocities.  Here too, the spike velocity falls clearly below that of the bubble within a

few nanoseconds after shock refraction. Finally, we note that there is very little

variation in averaged amplitude between the 6, 8, and 10 ns cases [Fig. 21(a)]. At

early times, the perturbation growth is dominated by the RM instability – the same for

all cases. At late times, the interface deceleration values are very similar in all three

cases, and therefore so too are the terminal velocities of the spike and bubble

(Actually, the late-time deceleration with the 6 ns pulse is slightly lower than in the 8

or 10 ns cases, resulting in a late-time decay of its asymptotic velocity that is slow but

discernable).

In order to estimate the relative contributions of RT and the decompression

effect, the unperturbed fluid velocities at the time-dependant spike and bubble
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Figure 21: RT / decompression effects for large (22 µm) initial amplitude driven by
constant velocity (14 µm/ns) drive. (a) Perturbation amplitude. RT / decompression
effects are initially small, but become significant at about the time the peak growth
rate is attained in the pure RM case. (b) Pure RM case (15 ns drive time) spike and
bubble velocities. The asymptotic bubble velocity decays approximately as 1/t. ( c )
10 ns drive time. (d) 8 ns drive time. (e) 6 ns drive time. Except with 15 ns drive
(pure RM case), interface deceleration yields an RT / decompression contribution and
a near constant saturation velocity. The spike velocity is significantly lower than that
of the bubble.
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positions are extracted from a 1D CALE simulation. Spike and bubble decompression

velocities are obtained by subtracting the time dependant interface velocity from the

fluid velocities at the spike and bubble positions. That is,

vs
expansion = vs

fluid - ui, (3)

where vs
fluid is the velocity of the fluid at the position of the spike tip (from a 1D

simulation) and ui is the interface velocity, and analogously for the bubble. An

estimate of the RT contribution is then calculated as

vs,b
RT = vs,b - vs,b

expansion - vs,b
Pure RM (4)

where vs,b
Pure RM are the spike and bubble velocities from the 15 ns (pure RM) case.

The time-dependant integrals of the functions vs,b
RT give the decompression amplitude

histories. The result of this procedure applied to the large amplitude 6 ns pulse case is

shown in Fig. 22, which shows that vs
RT ≈ const = 0.2 µm/ns throughout and vb

RT < 0

until after 20 ns. This suggests that RT effects are negligible except for the bubble

after 22 ns.

The same method has been used to subtract the decompression effect from the

simulation of the experiment (see Fig. 23). The process is complicated by the

additional compression resulting from the second small shock from 17 – 20 ns, but

the asymptotic result is still insightful. After removal of expansion effects, the bubble

velocity reaches a peak value equal to (da/dt)MB, and then begins to fall off, though it

does so more slowly than in the pure RM simulation. The asymptotic spike velocity is

down from ≈ 3 µm/ns to ≈ 1.5 µm/ns. This reduction is approximately equal to that
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Figure 22: RT / decompression effects for large initial amplitude (22 µm) driven by 6
ns constant velocity (14 µm/ns) drive: (a) Decompression-corrected spike and bubble
velocities. (b) RT contribution to spike and bubble velocities obtained by subtracting
decompression-corrected curves in (a) and RM-contribution from Figure 22(b) from
observed velocity curves in Figure 22(e). Note that the RT growth time, with either
square or real pulse, is estimated by τRT = (k g A)-1/2 as about 8 ns (with g = 0.7
µm/ns2).

seen when going from the 6 ns square pulse to the 15 ns (pure RM) pulse: ≈ 3.5

µm/ns to ≈ 2 µm/ns. As in the idealized case, it appears that target decompression in

the experiment makes a significant contribution to the perturbation growth after 21

ns, and that RT effects become significant for the bubble after 22 ns. Combined,
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Figure 23: RT contribution in simulation with real drive (L2D). After removal of
decompression effects, the bubble velocity reaches a peak value equal to (da/dt)MB,
and then begin to fall off, though it does so more slowly than in the pure RM
simulation. The asymptotic spike velocity is down from ≈ 3 µm/ns to ≈ 1.5 µm/ns.
This reduction is approximately equal to that seen when going from the 6 ns square
pulse to the 15 ns (pure RM ) pulse: ≈ 3.5 µm/ns to ≈ 2 µm/ns.

decompression and the RT instability account for about 10% of the growth at 20 ns,

and 20-30% at 25 ns.

V. Compressibility effects

The M ≈ 10 shocks in these experiments and simulations significantly

compress the target materials, and compressibility effects are present long into the

experiment. This situation can be contrasted with most non-high energy density

experiments, including those conducted at shock tube facilities, where post-shock

pressures are far less than 1 Mbar. In low Mach number (M ≤ 3) RM experiments, the

peak instability growth rate is reached on a time scale short compared to the growth

time, and the transmitted shock speed relative to the interface is much greater than

perturbation growth rate. In simulations of the OMEGA experiments, the growth rate
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is initially zero, and the time to reach peak growth rate is comparable to the time of

the experiment. This is illustrated by (for example) Fig. 10, which shows the spike

and bubble velocities as a function of time. Models of the instability that are based on

incompressible flow after shock refraction and therefore give a nonzero growth rate at

zero time are not likely to accurately predict the linear growth rate in such cases. This

is demonstrated in Fig. 24, which shows several such models compared to the pure

RM CALE simulations for both small and large initial amplitudes. The models

included in Fig. 24(a) are the Meyer-Blewett impulsive model,3 the

phenomenological Sadot model,18 which combines an early time linear constant-

velocity stage with an asymptotic, nonlinear, 1/t decay, the arbitrary-Atwood-number

buyonacy-drag model of Oron et al.,12 and Robey’s image vortex model.15 The

discrepancy is greatest for the large amplitude case for reasons that will be discussed

in the next section. In Fig. 24(b), a comparison is made with the asymptotic (late-

time) buoyancy-drag model prediction. The model predicts asymptotic spike and

bubble velocities of the form vasy 
s/b = Cs/b(A)/π λ/t. The value of the constant Cb(A)

agrees with the potential flow model of Hecht et al.8 at A=1 and with the vortex

model of Rikanati et al.10 at A=0. It is possible to bring the model into agreement with

the simulation asymptotic bubble velocity by introducing a time shift to compensate

for early time compressibility effects, as was done in Figure 24(b). However, such an

ad hoc model, which basically requires that one already know the answer prior to its

application, would be far from compelling. Consequently, only compressible-flow

models can satisfactorily predict RM growth under the conditions present in the

OMEGA experiments and relevant simulations.
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Figure 24: Model predictions and simulations for large and small initial amplitude (a
= 22 µm -> ka = 0.92 and a = 7 µm -> ka = 0.29) with pure RM drive (15 ns flat): (a)
Even when the perturbation remains in the linear regime, models based on
incompressible flow fail when compressibility effects remain important long after
shock refraction. The small amplitude case deviates from the Meyer-Blewett velocity
only in the first couple of nanoseconds. The 22 µm initial amplitude case is nowhere
in agreement with the Meyer-Blewett prediction. (b) Spike and bubble velocities for
large amplitude case. Potential flow and vortex models predict an asymptotic bubble
velocity vasy = C/π λ/t. The buoyancy-drag model of Oron et al12 gives C = ( 1/3 + ((1-
A)/(1+A))/6 ). A time shift introduced into the models to compensate for early time
compressibility effects brings it into agreement with the simulation asymptotic bubble
velocity.
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VI. Shock proximity

In high-Mach-number RM systems, it is possible for the Meyer-Blewett-

predicted velocity to exceed the speed of the transmitted shock relative to the

unperturbed interface. If the perturbation were to nevertheless grow according to the

incompressible-theory prediction, then the spikes would necessarily penetrate ahead

of the zero-order shock position (actually, each spike would a drive a faster shock

into the un-shocked upstream material, effectively driving the preexisting

perturbation in the shock front to larger amplitude). Such behavior has not been

observed. Instead, the perturbation growth rate (or at least that of the spike) appears

instead to be inhibited, while the shock front is perhaps slightly distorted. While this

behavior should be present in the linear and nonlinear17 compressible theories, it has

in the past been incorporated into incompressible flow models in a somewhat ad hoc

fashion - by simply limiting the perturbation growth rate to the relative shock-

interface velocity.21,25 More recently, Robey et al.15 have proposed a compressible

extension to the incompressible vortex model of the RM instability that links growth

reduction due to shock proximity to the boundary condition at the transmitted shock.

They assume a planar shock and invoke a line of “image vortices” to enforce the

appropriate boundary condition. These image vortices are located on an “image

interface” that moves at twice the shock speed in the interface frame. This ensures

that the parallel (to the shock-propagation direction) flow velocity just behind the

shock front remains zero.
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Figure 25: Shock proximity (15 ns “pure RM” flat drive, vt - ui = 5.4 µm/ns): When
the model-predicted RM growth rate is greater than the speed of the transmitted shock
relative to the interface, the spikes grow up to the position of the shock and their
growth is inhibited.

The pure RM CALE simulations described in Section VIII provide a striking

demonstration of spike velocity reduction due to shock proximity. Unlike the

experiments, the simulations allow for the extraction of time-dependant separate

spike and bubble velocities. Fig. 25 shows the result for the small initial amplitude

case, in which the ratio of the speed of the transmitted shock relative to the interface
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to the Meyer-Blewett velocity is 3.1. The transmitted shock quickly pulls away from

the evolving perturbation without inhibiting its growth. In the large initial amplitude

case, the analogous ratio is only 1.1, so that the transmitted shock remains close to the

interface. It is clear from Fig. 25 that, while the maximum bubble velocity again

agrees with the Meyer-Blewett prediction (despite the somewhat large amplitude), the

peak spike velocity is reduced to only 0.7 (da/dt)MB.

Despite the presence of RT effects, the image vortex model predictions are in

good agreement with the data from both small and large initial amplitude experiments

[see Fig. 26(a)]. The agreement with the averaged amplitude in the pure RM CALE

simulations is better still [see Fig. 24(a)]. Figure 26(b) also shows the image vortex

model predictions of the separate spike and bubble compared to that observed in the

pure RM simulation. The simulation results show that, due to the finite initial

amplitude, spike growth begins 1.3 ns before bubble growth. When this is taken into

account in initializing the model, it correctly predicts that, though the proximate

shock ultimately affects the spike more strongly than it does the bubble, the spike is

larger than the bubble for the first several ns. However, the predicted spike and

bubble velocity histories are not in good qualitative agreement with the simulation.

The discrepancy likely results from some combination of three model assumptions

that are not satisfied in the simulation: an Atwood number of zero, a planar

transmitted shock, and incompressible flow after shock refraction. In order to bring

the model into agreement with the simulation, we must introduce three parameters

that can be motivated, but which have not been justified. Two of the parameters are
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time increments that effectively shift the zero-time for the spike and bubble (back 1.4

ns

Figure 26: Image vortex model (IVM) prediction: (a)  Experiment [from Glendinning
et al., Phys. Plasmas 10(5). 1931 (2003)]  (b) pure RM case ( c ) pure RM case with
additional model parameters. In (b) and ( c ), the averaged amplitude is plotted with
negative amplitude to make the plots easier to view. (d) Spike/bubble amplitude
ratios.

for the spike and forward 0.6 ns for the bubble), and the third is a multiplicative factor

of 2/π applied to the circulation that drives the spike growth. The time shifts might

account for the non-planarity of the transmitted shock, which effectively concentrates

image vorticity into the (real) bubble region. Foam compression in the region
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between the spike and the transmitted shock would result in enhanced drag on the

spike, and this is the motivation for the multiplicative factor. The result is shown in

Fig. 26(c).

Only the image vortex model captures the observed spike-bubble asymmetry

behavior [see Fig. 26(d)]. The spike amplitude is greater than that of the bubble at

early times - primarily because its growth begins 1 ns earlier. But the spike growth is

inhibited, and its amplitude eventually surpassed by the bubble. Linear theories

predict symmetric spike-bubble growth. Incompressible shock proximity models21,25

incorporate growth reduction but no asymmetry. The Sadot and buoyancy-drag

models, which ignore the transmitted shock, predict that spikes grow faster than

bubbles.

The observed asymmetry between the spike and bubble velocities also points

to a limitation of the compressible linear theories and the compressible nonlinear

theories such as that of Zhang and Sohn.17 These theories are based on expansions of

the fluid equations in the small parameter a/λ: to first order in the linear theories and

higher order in nonlinear theories. At sufficiently early time, the nonlinear theory will

of course agree with its linear counterpart. While the boundary condition of the

transmitted shock is included in the theory, it must affect the spike and bubble in a

symmetrical fashion as long as the condition a/λ << 1 is satisfied (ie in the linear

regime). As a/λ “becomes finite” and continues to grow, the equality of spike and

bubble velocity will be broken. As previously noted, the Zhang and Sohn theory

actually predicts that the spike velocity exceeds that of the bubble at all times, in

contrast to what we have observed.
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In the context of the image vortex model, the requirement that a/λ is an

infinitesimal means that the spike and bubble are equidistant from the image vortex

line. Consequently, the spike and bubble growth are retarded by the same amount,

and so their amplitudes remain equal to each other. But since the spike is actually

closer to the image vortex line than is the unperturbed interface while the bubble is

further away, the linear theory (or the nonlinear theory in the linear regime) will

overstate the bubble growth reduction and understate the spike growth reduction. The

net effect on the averaged amplitude might be small, so that the averaged amplitude is

relatively well predicted by the theory, but the separate spike and bubble velocities

will not be well predicted as long as the transmitted shock remains close to the

interface.

The proximity of the transmitted shock means the introduction of another

length scale into the problem - namely the distance s = vrel t between the transmitted

shock and the unperturbed interface (where vrel is the speed of the transmitted shock

relative to the interface and t is the elapsed time since shock refraction). Since a

perturbation theory cannot be assumed to correctly describe dynamics on scales

smaller than the expansion parameter, the linear theories are not strictly valid when s /

λ < a / λ or s / a < 1. That is, the perturbation theories are only necessarily valid for t

>> a(t) / vrel. A necessary but not sufficient condition is that t  > a* / vrel ≡ τprox, where

τprox is called the proximity time. In those cases where vrel>> max{da(t)/dt} ≤

(da(t)/dt)MB, this condition is satisfied very quickly. In other words, if the proximity

time is short compared to both the perturbation growth time and the experiment

duration (and the expansion parameter remains less than unity), then the spike and
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bubble evolution might be well described by perturbation theory. Otherwise, the

asymmetric effect of the transmitted shock on the spike and bubble is significant, and

one must resort to a non-perturbative theory with some provision for compressibility

effects, such as the image vortex model.

Shock proximity reduction has been considered as a possibly significant effect

in previous experiments.21,22,26 However, the analyses of these experiments have been

complicated by the fact that the reduction was observed at a time when the instability

had already developed well into the nonlinear stage.  Consequently, it has proven

difficult to convincingly separate shock proximity reduction from large amplitude

effects, which also result in reduction of the growth rate below the predictions of

linear theories. In our simulations, however, the observed strength and nature of the

asymmetry between spike and bubble velocities, together with the relatively low

degree of nonlinearity (discussed below), strongly suggest shock proximity reduction

rather than nonlinear effects.

VII. Large amplitude effects

The wavenumber-weighted amplitudes (ka) for the large and small initial

amplitude RM simulations are plotted together in dimensionless time in Fig. 24(a).

Predictions based on linear analysis are definitely suspect by the time ka has reached

a value of unity. This does not occur in the small initial amplitude case, and the

Meyer-Blewett velocity prediction agrees well with the data except at very early

times during establishment of the nearly constant growth rate (This early time

discrepancy can in fact also be attributed to the shock proximity effect).



284

In the large amplitude case, the perturbation does grow into the nonlinear

phase, though not nearly to the extent seen in earlier similar experiments.19,20,22

Nowhere does the Meyer-Blewett prediction agree well with the data, even during the

linear phase.  The peak averaged growth rate is 0.85 (da/dt)MB. The perturbative

expansion of Velikovich and Dimonte16 predicts (to 8th order in ka) a reduction factor

of 0.84. The Oron et al. model12 predicts a slightly larger value of about 0.9. At first

glance, it appears that large-amplitude effects can in fact explain the observed growth

rate reduction. But again, consideration of separate spike and bubble velocities sheds

additional light. The expansion referred to above gives (also to 8th order in ka)

separate reduction factors of 0.86 for the bubble and 0.82 for the spike. That is, the

higher-order model treats the spike and bubble nearly symmetrically. As previously

mentioned, however, we observe reduction factors of 1.0 for the bubble and 0.7 for

the spike. Furthermore, the reduction on perturbation growth rate is observed from

very early times, when the instability is clearly still in the linear phase. Taken

together, these two facts strongly suggest that the dominant growth rate reduction

mechanism is shock proximity rather than large amplitude effects.

VIII. Conclusion

We have performed CALE simulations of high Mach number direct drive RM

experiments with single-mode perturbations. The experiments are extremely well

characterized and diagnosed, thereby placing a high level of constraint on the

simulation results. In order to accurately simulate the experiments, the gap must be
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included, and a well-constrained time dependent drive must be employed to correctly

capture the series of weak shock and rarefaction waves that follow the main shock

front. We have shown that a velocity drive extracted from a 2D LASNEX simulation

does well, but that its 1D analogue is unsatisfactory. The instability evolution is

sensitive to the material EOS, and the EOP tables are preferable to either perfect gas

or LEOS. The long-term bubble-shock proximity observed in the experiments

suggests that the foam may more compressible than predicted by the EOP tables, and

is certainly more compressible than predicted by the LEOS tables. With a rectangular

mesh, convergence is reached in an ALE calculation with a transverse resolution of

120 ppw.

When these conditions are met, the simulations accurately model the

experiments down to the level of the experimental resolution. Where there are

discrepancies, such as in the post-shock amplitude and bubble-shock proximity, the

difference between experiment and simulation is relatively small and can be

attributed to imperfect reproduction of small details in the velocity drive and perhaps

the EOS. The amplitude history is in excellent agreement with the data (except for its

overprediction of a*) throughout the experiment.

The ability to accurately model the experiment allows for analysis of the

important physics issues beyond what can be done based on experimental data alone.

The ability in the simulations to follow the spike and bubble evolution separately

allows us to quantify the contribution of target decompression and the RT instability

to the perturbation growth. We have shown that together they contribute about 10%

of the growth at 20 ns, and 20-30% by the end of the experiment at 25 ns.
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Considering the experimental resolution, these effects are significant after about 21

ns.

Shock proximity reduction of the perturbation growth rate is strongly

suggested by the experiments. The ability in the simulations to eliminate RT and

decompression effects has provided the opportunity to clearly demonstrate the shock

proximity effect. In the small amplitude case, the transmitted shock quickly moves far

ahead of the interface, and the spike and bubble growth is nearly symmetric. In the

large initial amplitude case, where the shock remains close to the interface, the final

bubble amplitude is 20% greater than that of the spike. Based on its amplitude, the

perturbation is only weakly nonlinear even at late times. The conclusion that shock

proximity is responsible for the observed growth suppression is strengthened by the

fact that existing nonlinear models predict nearly symmetric reduction of spikes and

bubbles in this regime.

The same ability has facilitated more relevant comparison with models and,

consequently, demonstration of the inapplicability of incompressible flow models (or

any model that gives a non-zero growth rate at t = 0) for high Mach number RM

experiments. The compressible linear theory has also been shown to be deficient in

this case, while Robey’s image vortex model qualitatively captures the evolution and

may be more generally applicable.
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