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ABSTRACT
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and Professor Roald Sagdeev,
Department of Physics, University of
Maryland
In core-collapse supernovae, strong blast waves drive interfaces susceptible to
Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH)
instabilities. In addition, perturbation growth can result from material expansion in
large-scale velocity gradients behind the shock front. Laser-driven experiments are
designed to produce a strongly shocked interface whose evolution is a scaled version
of the unstable hydrogen-helium interface in core-collapse supernovae such as SN
1987A. The ultimate goal of thisresearch isto develop an understanding of the effect
of hydrodynamic instabilities and the resulting transition to turbulence on supernovae
observables that remain as yet unexplained.
In this dissertation, we present a computational study of unstable systems
driven by high Mach number shock and blast waves. Using multi-physics radiation
hydrodynamics codes and theoretical models, we consider the late nonlinear

instability evolution of single mode, few mode, and multimode interfaces. Werely

primarily on 2D calculations but present recent 3D results as well. For planar



multimode systems, we show that compressibility effects preclude the emergence of a
regime of self-similar instability growth independent of the initial conditions (IC’s)
by allowing for memory of the initial conditions to be retained in the mix-width at all
times. The loss of transverse spectral information is demonstrated, however, along
with the existence of a quasi-self-similar regime over short time intervals. Aspects of
the IC’ s are shown to have a strong effect on the time to transition to the quasi-self-
similar regime.

With higher-dimensional blast waves, divergence restores the properties
necessary for establishment of the self-similar state, but achieving it requires very
high initial characteristic mode number and high Mach number for the incident blast
wave. We point to recent stellar calculations that predict IC’ s we find incompatible
with self-similarity, and emphasi ze the consequent importance of devel oping a sound
understanding of the initial modal structure in the supernova progenitor.

For divergent and planar systems, the time-dependence of the drive is shown
to impose an “effective box size” on the systems that limits the inverse cascade to
large-scales. Our model explains the weak 1C-dependence of this scale observed in

some supernova calculations.
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Chapter I: Introduction

|. Motivation

The appearance of Supernova 1987A in the Large Magellanic Cloud marked
the beginning of a change in the way people think about the violent endpoint of
massive stars. Although it had been known for some time that the layered structure of
the progenitor should be hydrodynamically unstable during the explosion,** the
assumption of spherical symmetry was almost always incorporated into models and
otherwise reflected in the paradigm of core-collapse supernovae. Thiswasduein
large part to the practical limitations of multidimensional numerical calculations. But
when heavy elements originating from the core of SN 1987A appeared at the
photosphere six months earlier than predicted by one-dimensional explosion models,
it became clear that something significant was being neglected.® Since then, evidence
that asymmetry is the rule in core-collapse supernovae has continued to accumul ate,**
and multidimensional computer codes have been developed and applied to the
problem in an effort to understand proposed asymmetry mechanisms. Several ideas
have been put forward, and two prominent theories have emerged.

First of all, it has been suggested that the action of a magnetorotational

mechanism during collapse can lead to the formation of energetic jetsin the star’s



central regions.® Asthey race outward, these jets drive shocks that destroy the star
and transport core material much faster than in a spherical explosion.

The second explanation is based on the hydrodynamic instability of perturbed
interfaces when subjected to areversal of pressure and density gradients. Due to
processes such as convective stirring and localized thermonuclear burn, boundaries
between layers of different materials within the star are unlikely to be perfectly
smooth. Even if the shock wave produced as the core rebounds against neutron
degeneracy pressureisinitially spherical, it can drive the amplification of any such
preexisting perturbations. After passage of the shock front, this interface evolves into
a complicated structure of outward-growing spikes of heavier material and infalling
“bubbles’ of lighter elements.”* Late in time, these spikes can move far ahead of
what a 1D model would predict as the interface position and might explain the
anomalously early appearance heavy elements at the photosphere.

Hydrodynamic instabilities have been observed in a variety of astrophysical
systems in addition to core-collapse supernovae. On the earth as well, they are
familiar phenomena. The Rayleigh-Taylor (RT) instability,"-** which results when a
heavier fluid is supported by alighter fluid against gravity, explains the exit of water
from an overturned glass. Velocity shear drives perturbation growth and rollup viathe
Kelvin-Helmholtz (KH) instability, which can be observed in clouds. The Richtmyer-
Meshkov (RM) instability™*** results when a shock wave crosses a perturbed
interface, whether from light to heavy or from heavy to light. The RM instability is
not so apparent in everyday experience, but can be thought of as the impulsive limit

of the RT instability.



When ablast wave crosses an interface from a heavier to alighter material, all
three of these instabilities are typically present. Since thisis the case in core-collapse
supernovae, al three are likely active contributors to accel erated mixing and transport
of material. They come together in the laboratory as well when high-powered lasers
are used to drive the implosion of sub-millimeter capsules of thermonuclear fuel. In
such inertial confinement fusion (ICF) applications, laser energy is converted into
shocks that travel inward from the capsule' s surface.” The resulting implosion is
something like a supernovain reverse. The ultimate goal of this program isto use
these converging shocks to establish conditions at the center capable of temporarily
sustaining thermonuclear reactions, thereby potentially tapping an inexhaustable
source of energy. Material interfaces within the capsule are hydrodynamically
unstable, however, and the instability growth can completely quench the reactions. In
double shell ignition capsules currently under development for the National Ignition
Facility (NIF) laser, this growth might lead to the formation of a turbulent mixing

zone (TMZ) similar to that expected to occur in supernovae.'

1. Combined approach in HED physics

The development of an instability-driven turbulent mixing layer, including the
transition from a more ordered early-time state, is avery complicated problem that is
at best only partially understood. But when it occurs in astrophysical and ICF
applications, it is generally only one part of an immensely complicated system. The

dynamics of these systemsis governed by the nonlinear equations of compressible



hydrodynamics (the Euler or Navier-Stokes equations) in regimes far removed from
linear approximations. Turbulence provides a mechanism for indirect interactions of
the largest scales of interest with the very small dissipative scales. In addition to
instabilities and turbulence, there are shocks of both high and low Mach numbers, as
well as multiple fluid species and contact discontinuities. In many cases, interaction
of radiation with the fluid is important and must also be accounted for. These coupled
radiation hydrodynamics equations must be solved for matter under extreme pressure
and temperature conditions. In this high energy density (HED) regime where thermal
pressures are at least about a million atmospheres, equations of state (EOS) and
opacities are often not well approximated by simple models. Finally, the complex
physics of thermonuclear reactions and burn, laser-plasma interactions, and non-local
thermodynamic equilibrium potentially must also be included.

The complexity of these multi-physics systems has motivated a combined
approach involving the application of computer simulations, laboratory experiments,
simplified models, and astronomical observations. Models of varying complexity are
used to make direct connections between ideas, observations, and experiments on the
one hand and the relevant equations on the other. Simulations are used as platforms
on which questions of multi-physics interactions can be addressed and theoretical
predictions can be tested against experiments and observations. Moreover, they
provide alevel of data not accessible in either experiments or observations. Finaly,
HED laser-driven laboratory experiments provide a means of validating astrophysical
codes and theories under conditions that are otherwise difficult or impossible to

reproduce on earth. The material properties that must be input into the codes,



including EOS data and opacities, can often be obtained only through such

experiments.

[11. Laboratory astrophysics with lasers

A deep connection can be made between laboratory experiments and
astrophysical systems such as supernovae because the governing equations are scale
invariant under certain conditions. Despite huge differences in length and time scales,
scaled versions of some astrophysical systems can be fielded on high energy density
facilities'™'® such as the OMEGA laser at the University of Rochester’s Laboratory
for Laser Energetics (LLE)™ and the NIF laser at Lawrence Livermore National
Laboratory.

In ongoing experiments aimed at studying instability-driven mixing under
supernova-relevant conditions, laser energy is used to drive high Mach number planar
shock and blast waves into one end of millimeter-scale cylindrical targets.** A
typical target consists of a more dense plastic section and a less dense foam section,
with a prescribed perturbation machined into the plastic at the plastic/foam interface.
After the passage of the shock, the interface is unstable and evolves under the
combined influence of RT, RM, and KH instabilities. Additional laser beams directed
on high-Z backlighter foils yield x-rays that pass through the target and are used to
image the developing instability.

There are several advantages of these laser-driven hydro instability

experiments relative to other platforms such as shock tubes. First of al, they involve



Mach numbers that are an order of magnitude higher than those currently possible
with shock tubes. This allows them to access more extreme pressure, density, and
temperature states. In addition, because the target materials typically begin as solids
rather than gases, laser-driven experiments allow for more control over and better
characterization of the initial perturbations without complications from membranes or
retracting plates. Control over the initial conditionsis crucia in studies such as ours
that are aimed at linking the late-time nonlinear interface structure back to the initial

perturbation spectrum.

V. Self-similar RT growth

For classical RT systems comprised of incompressible fluids under constant
acceleration, it iswidely believed that memory of theinitial conditionsislost at late
times after the establishment of a self-similar regime.”* Thisidea ultimately is based
on the ssimple fact that larger bubbles rise faster than smaller bubbles, and can be
explained in terms of bubble competition and merger.®** As alarger bubble rises
above its smaller neighbor, it is free to expand laterally, eventually filling the space
previously occupied by its neighbor. Material flowing around the larger bubble and
into the spikes below sweeps the smaller bubble downstream. This process leads to
the continual generation of larger, faster moving objects and an acceleration of the
bubble and spike fronts. Eventually, the interface is dominated by structures resulting
from many successive generations of bubble merger rather than from the unstable

growth of preexisting perturbations. Loss of memory of theinitial conditions means



that the statistical properties observed in the late-time interface could have arisen
from awide range of initial perturbation spectra. If theinitial conditions are forgotten,
the height of the bubble front as well as the dominant transverse scale must grow in
proportion to gt?, where g is the acceleration and t istime, asthisisthe only length
scale remaining in the problem. The interface can be described in a statistical sense
by abubble-size distribution function. In the self-similar or scale-invariant regime,
this function does not change in time except for a scale factor proportional to the
characteristic bubble size. Thus any initia distribution must evolve in time towards
the scale-invariant distribution.

Although the idea of self-similar RT growth iswell motivated, it has yet to be
demonstrated conclusively. If the self-similar regime does exist, then it is certainly
difficult to reach in simulations and diagnosable experiments. The gt® scaling is
indeed observed, but thereisagreat deal of disagreement and debate about the
constant of proportionality o..* In addition, simulations tend to give avalue for o that
isonly about half as large as values extracted from experiments. This disagreement is
significant because o could in principle be afunction of the initial conditions,
indicating that they are never completely forgotten. Other proposed explanations for
the observed variations in o typically reduce to either limitations in time (not enough
time for complete memory loss) or space (self-similar generation of larger scales
inhibited by walls or by spurious long wavelength modes present in theinitia
conditions).

Despite limited understanding of nonlinear instability evolution in classical

RT systems, the ideas of self-similar growth are sometimes invoked in discussions of



blast-wave-driven instabilities in core-collapse supernovae. Even if valid in the
classical case, one should question to what extent these ideas would apply in the more
complicated blast-wave-driven case, where RM is present, the acceleration istime-

dependent, and the flow is compressible.

V. Transition to turbulence

Whether or not there is atrue self-similar regime, hydrodynamically unstable
systems certainly can undergo atransition from an early time, more ordered structure
to alate time structure that is disordered and appears random. If the Reynolds number
issufficiently high and sufficient time is allotted, this late-time structure will be
turbulent.

Many unanswered questions remain, however, about the requirements for
transition to the turbulent or turbulent-like state and its relationship to loss of memory
of initial conditions. In particular, the effect of theinitial conditions on the transition
isnot well understood. In addition, it is also important to understand what effect the
transition has on the instability growth rate. For 3D systems, it has been noted that
there will be a competition between the continual generation of larger, faster growing
structures and the tendency of increased turbulent dissipation to inhibit the growth.*
To date, 2D simulations of mixing in Type |l supernovae produce spike velocities
about afactor of two smaller than the observed velocities of heavy core elements

beyond the photosphere.® It remains unclear whether or not this discrepancy can be



resolved once 3D effects, including the transition to turbulence, are included in high-

resolution calculations.

V1. Objectives and methodol ogy

In this dissertation, we examine the effect of initial spectral conditions on the
nonlinear instability evolution of an interface driven by a strong blast wave. This
broad objective encompasses four principle goals, each of which will be developed in

subsequent chapters:

(1) Develop avalidated computational platform with which to study nonlinear
blast-wave-driven instability evolution in planar laser-driven systems.

(2) Understand (using simulations, simple models, and comparison with
experiments and observations) similarities and differences between the blast-
wave-driven instability and classical RT.

(3) Understand how the details of the initial spectrum influence the nonlinear
growth of 2D and 3D perturbations, including the transition to turbulence.

(4) Evaluate the relevance of current experiments with respect to supernova
hydrodynamics and suggest directions for future HED experiments that
capture the supernova-relevant phenomena and go beyond the limitations of

current state of the art ssimulations and simple models.



At the heart of this work are multidimensional, high-resolution numerical
simulations performed with two proven radiation hydrodynamics codes called
CALE® and Raptor.* Both were developed at Lawrence Livermore National
L aboratory, with Raptor based on earlier work by Bell et al.*® Both solve the Euler
eguations for multi-fluid systems and have extensive multi-physics capabilities.
CALE isaZ2D arbitrary lagrangian-eulerian finite-differencing code, while Raptor
uses a higher-order Godunov method and adaptive mesh refinement (AMR) in 2 or
3D. Besidesits 3D capability, Raptor benefits from parallelization and was run on as
many as 512 processors simultaneously.

Despite the focus on simulations, we draw extensively on all aspects of the
combined approach described above. We benefit particularly from close ties with
ongoing experiments, and have been able to contribute to the design and analysis of

experiments conducted at the Omega laser facility and planned for the NIF.

VII1. Outline of the remainder and summary of conclusions

Thisintroduction is followed by five additional chapters and one appendix.
The evolution from one chapter to the next follows a natural progression: from 2D
CALE smulations of single and few-mode Omega experiments, to amodel of
multimode interface evolution for blast-wave-driven systems, and finally to 2 and 3D
Raptor simulations of multimode systems under NIF-like drive conditions. Despite
this ordering, each of these sectionsis completely self-contained, so that they canin

principle be read in any order. In particular, those not interested in the necessary but

10



tedious task of detailed code validation against experiment may omit Chapter 11 and
Appendix A. Chapter Il1, which is adescription of our buoyancy-drag model for
blast-wave-driven systems, can certainly be read in isolation. The final two chapters
on multimode simulations also comprise a self-contained story. Together with
Chapter 111, they include our most important scientific results. In our opinion, the only
downside of this approach isthat it leads to some overlap among the chapters,
particularly in the introductory sections and general descriptions of codes and
experiments. Because of the flexibility it offers, we consider this a worthwhile
tradeoff.

With this qualification, we turn to a more detailed outline of the remaining
chapters and a brief summary of our results:

In Chapter |1 and Appendix A, we describe in detail comparisons of CALE
simulations with Omega RM (Appendix A) and blast-driven RT (Chapter I1)
experiments. Through consideration of ahost of physical processes and parameters
including drive details, x-ray preheat, and equation of state, we identify what should
be included in the calculations in order to match the observations. Together with
zoning and convergence studies and code-to-code comparisons, these considerations
represent the establishment of avalidated computational platform that can be used as
atest-bed for related calculations where experimental datais not yet available.

Chapter 111 describes a series of two-mode CALE simulations intended to
study the effect of a single short-wavelength secondary mode on the nonlinear
evolution of along-wavelength primary mode. The simulations predict that the short-

wavelength “noise” has a dramatic impact on the late-time large-scale interface
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structure, and that this effect is very different depending on whether the secondary
mode isin phase or out of phase with the primary mode. For simple two-mode or
few-mode systems, we show that details of the initial conditions can be remembered
well into the deep nonlinear phase. We explain this sensitivity to initial conditionsin
terms of diversion and interactions of developing spikes, which leads to the formation
of fast jets when commensurate modes are in phase and to the breakup of the primary
spikes when they are out of phase.

These predictions |led to the design of short-on-long experiments that were
subsequently carried out at the Omega laser. The experiments confirm that the
presence of the short-wavelength mode can lead to a much more disordered state that
iseasily distinguished from the single-mode case.

In Chapter IV, we develop amodel that describes the evolution of a blast-
wave-driven multimode interface in terms of bubble competition and merger. Our
model goes beyond previous work by including the effects of material decompression
and stretching behind the shock front for both planar and divergent systems. On the
basis of this model, we are able to show that self-similarity and loss of initial
conditions might be possible in divergent systems such as supernovae but not
realizable in planar systems such as most laser-driven experiments intended to study
mixing in supernovae. The difference arises because modes in divergent systems
undergo transverse in addition to radial stretching. Because the time dependence of
the stretching is the same in both directions, the ratio of transverse to parallel scalesis
preserved.

For planar systems, we predict a quasi-self-similar regime during which the

12



instability evolution is approximately self-similar over alimited period of time.
During this regime, the ratio of characteristic wavelength to perturbation amplitude
decreases slowly in time rather than approaching a constant asymptotic value.

Even in the divergent case, loss of initial conditionsis possible only for
systems with very small-scaleinitial conditions driven by very high Mach number
blast waves. Based on recent stellar calculations,*“° we predict that initial mode
numbers present in supernova progenitors are probably not high enough to reach the
self-similar regime. If these predictions are correct, the late-time interface structure
observed in supernova remnants likely depends strongly on the initial conditions
present within the star at the time of explosion.

Finally, we show that the finite duration of the blast-wave drive sets a
maximum scale that can be generated on a given interface. For divergent systems, this
corresponds to a minimum mode number that depends weakly on the incident Mach
number and initial mode number as long as both are sufficiently high.

In Chapters V and VI, we turn our attention from few-mode systems to
broadbanded multimode initial conditions, and from the single processor 2D CALE to
the 2 and 3D parallelized AMR code Raptor. The effect of initial conditions on
nonlinear evolution and transition to turbulence in planar blast-wave-driven systems
isconsidered for 2D perturbations in Chapter V and 3D perturbations in Chapter VI.

In Chapter V, we report on a series of over 70 high-resolution 2D Raptor
simulations of planar blast-wave-driven systems under NIF-like drive conditions. In
agreement with our model, the perturbation growth shows no apparent approach to a

self-similar regime independent of theinitial conditions. We also demonstrate the
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effective box size due to drive decay, which sets a maximum transverse scale that can
be generated, and the quasi-self-similar regime. Thisregime isfound to exist after the
generation of scaleslarger than the initial conditions but before the effective box size
is reached.

The existence of the quasi-self-similar state and the drive-imposed effective
box size make the blast-wave-driven case distinct from classical RT. However, we
show that transition to the quasi-self-similar state is very similar to its classica
counterpart. In both cases, it is marked by an increase in the degree of small-scale
mixing, a decrease in the spike velocity, and often an increase in the bubble vel ocity.
We find some indication that the transition takes place slightly sooner in the blast-
wave-driven case, possibly due to shock-deposited vorticity.

We consider both single component and bi-component (short on long) spectra,
and identify several parameters that classify and characterize the initial conditions. A
subset of these parametersis studied in order to see how they can affect the
observable properties of the deep nonlinear instability evolution. We find, for
example, that along wavelength mode can inhibit the development of small scales
and delay the transition to a turbulent-like state when its amplitude is sufficiently
large.

Significantly, we show that apparently random variations observed in late-
time amplitudes and growth rates are not well correlated with initial spectral shape.
Only the average spectral properties are important, such as the initial rms amplitude
and characteristic wavenumber. This bodes well for simulations of similarly strongly-

driven systems that |eave a portion of the short-wavelength end of the spectrum
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unresolved. Aslong as the system contains some fast-growing and interacting modes
that can be resolved computationally or reproduced experimentally (and has the
correct initial rms amplitude), the late-time instability evolution will likely closely
resemble the fully resolved or complete system. This reaffirms the hope that |aser-
driven experiments can serve as useful and relevant platforms for studying
compressible mixing in supernovae despite their drastically more limited available
range of scales. Similarly, carefully-designed numerical simulations need not
necessarily reproduce the full range of spectral details present in their physical
counterparts in order to reasonably reproduce the late-time large-scale interface
structure. These conclusions apply in particular to systems with long-wavelength
modes large enough in amplitude to reach the nonlinear phase early on.

In Chapter VI, we present results from 3D calculations of systemsthat are
otherwise identical to those discussed in Chapter V. In agreement with 3D classica
RT calculations performed by others, we find more fine-scale mixing in 3D and note
that the post-transition bubble growth is reduced relative to that observed in the 2D
calculations. The spike growth, however, does not appear to be inhibited and might
even be enhanced. Thisis particularly significant in light of the fact that 2D
supernova calculations that invoke instability-driven mixing to explain enhanced
transport of heavy core elements consistently underpredict the late-time spike

velocities by about a factor of two.

VIII. Future work
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We hope to continue this research along several parallel directions directly
applicable to both supernovae and | CF applications. One obvious aspect of this
program is to continue the 3D calculations and analysis described in Chapter VI with
the goal of establishing the process that |eads from spike interaction and breakdown
to the subsequent 3D turbulent mixing transition. In addition, we would like to further
investigate the effect of spike interactions on their velocity distribution in order to
determine the extent to which spike material can be accelerated towards the shock
front. These simulations are important for the planned extension of the existing series
of single and few mode Omega targets to broadbanded NIF experiments. With the
greater energy, temporal, and spatial scales afforded by the NIF laser, these
experiments will potentially be capable of unambiguously demonstrating transition to
3D turbulence, the generation of larger scales through multiple generations of bubble
merger, and the late-time freeze-out stage. Through collaboration with astrophysicists
studying supernova progenitors, we will attempt to incorporate realistic initial spectra
into the experiments.

A paradlé effort would involve the design of planar experiments aimed at
studying turbulent mixing in double-shell ignition targets. One essential aspect of
these experiments would be the presence of multiple unstable interfaces capable of
interacting with one another. Similar interactions are likely important in supernovae,
but have typically not been incorporated into the experiments. We expect that the
planar double-shell targets can be designed so asto be directly relevant to both

systems.
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Planar experiments are particularly valuable because of their improved
diagnosability relative to spherical systems and their ability to better maintain high
energy density in the absence of divergence. However, our buoyancy-drag model has
suggested that the absence of divergence changes the nature of the instability
evolution by ensuring that memory of theinitial conditionsis retained in the
perturbation amplitudes at all times. Consequently, we are interested in developing a
divergent platform for supernova-relevant compressible mixing experiments. Recent
studies at Livermore involving laser-driven spherical blast wavesin gases™ suggest
the lab’ s Janus laser as a promising near-term candidate.

Finally, we note that current ICF diagnostics in general and x-ray radiography
in particular are not optimized for detailed studies of 3D turbulencein laser-drive
targets. The long-term success of this program will ultimately depend on the

development of innovative new experimental techniques.
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Chapter 2: Numerical ssimulation of supernova-relevant

laser-driven hydro experimentson OMEGA

|. Introduction

The basic Rayleigh-Taylor (RT) instability criterion,™ neglecting certain
potentially stabilizing factors such as surface tension®, is the existence of anti-parallel
components of pressure and density gradients (VPeVp < 0). When this condition is
met at an interface between two materials, perturbations on the interface will grow in
time. In theinviscid limit, the instability develops exponentially while the

perturbations remain small (during the linear phase) with a growth rate given by*

| kgA
’ V1+kL'

(1)

where Kk is the perturbation wavenumber, g isthe acceleration, A isthe Atwood
number, and L isthe density gradient scale length at the interface. At later times,
initially sinusoidal perturbations grow into spikes of heavier fluid “faling” into
lighter fluid and bubbles of lighter fluid “rising” into heavier fluid. For A =1, the
bubbles rise with constant (terminal) velocity while spikes fall with constant
acceleration in the nonlinear regime.>® When A < 1, the spike eventually also reaches
terminal velocity.®

There are several important non-gravitational systems that are also strongly

affected by the RT instability. For example, the RT instability has played an
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Figure 1. Density (curve 0) and pressure (curve 1) behind a blast wave that has passed
through amaterial interface from a 1.42 g/cc plastic to a0.1 g/cc foam. The interface
is RT unstable due to the presence of antiparallel density and pressure gradients at the
interface. The dotted line showsthe initial (pre-shock) density profile. The data are
from alD CALE simulation of the experiment-relevant planar hydrodynamics at 14
ns.
important historical rolein the ability to magnetically confine hot plasmas,” where the
plasma serves as the heavier fluid. The confining magnetic field plays the role of the
lighter fluid supporting the plasma against pseudo-gravitational centrifugal forces.

The RT instability criterion can also be satisfied at a material interface
through which a blast wave has been transmitted from a heavier to alighter fluid.? As
isillustrated in Fig. 1, since the pressure behind a blast wave is always falling in time
at any fixed point and in distance behind the shock front (at least in the self-similar
regime’), an interface generally becomes RT unstable when it transmits a blast wave
down adensity gradient (ie from more dense to less dense material).

Ininertial confinement fusion (ICF), pellets containing thermonuclear fuel are
imploded by laser or particle beams or by x-rays generated by the interaction of such

beams with the high-Z walls of a hohlraum.* The driving shock waves pass through

the various material interfaces within the target, resulting in interface accelerations
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and decelerations that can in turn drive the RT instability. These processes tend to
break up material shells and mix cold outer layers with the hot central region
containing the fuel, and the resulting reduction in thermonuclear yield can be
significant or even complete. Consequently, the RT instability has long been
understood to be amajor limiting factor in ICF.

Shock and blast waves are also common participants in astrophysical
processes.’ In a core-collapse supernova, for example, the sudden release of an
enormous amount of energy at the star’ s core drives a strong blast wave that
propagates out through layers of progressively less dense matter."*** Asthe interfaces
between these layers subsequently decelerate in the expansion fan behind the blast
front, they are RT unstable.® The potential significance of this phenomenon was
realized with observations of SN1987A, when it was found that spherically-
symmetric explosion models failed to correctly predict the velocity and arrival time at
the surface of heavy elements originating from the star’s central regions. It has been
suggested that the discrepancy results from the failure of the 1D models to account
for the turbulent (the Reynolds number has been estimated™ to be of order 10'°) RT
mixing that is certainly occurring at unstable interfaces, 41

It has been suggested that, despite the huge difference in length and time
scales, scaled experiments of some astrophysical systems can be fielded on high
energy density (HED) facilities''” such asthe OMEGA laser at the University of
Rochester’s Laboratory for Laser Energetics (LLE)*. Thisfollows from the fact that,
provided that viscosity as well as thermal and radiation transport can be neglected, the

Euler equations are scale invariant. For example, consider two different systems (but
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with matching EOS) driven by strong shocks with velocities v, and v,. If the post-
shock density profiles are identical modulo a scale factor h,/h,, where h, and h, are
characteristic length scales of the two systems, then the two systems will evolve
identically on normalized timescales h,/v; and h,/v,. The degree to which viscous
effects are negligible is of course scale-dependent, and they cannot be ignored in the
vicinity of the Kolmogorov scale. Nevertheless, the hypothesis that scaled
experiments can reproduce phenomenon simulated or observed on larger scales has
been demonstrated for some laminar flows.”>*** Similarity in the structure of
turbulent flows has also been observed across a wide range of scales for systems with
similar characteristics, and appears to be quite general provided each system has
sufficient time and available wave-number space for the development of a broad
inertial range.”** The Reynolds number of the two flows need not be equal aslong as
it isin both cases sufficiently high so that the observable scales of interest are
decoupled from the dissipative scales. Specifically, Dimotakis has shown that many
flows exhibit a turbulent mixing transition at a critical Reynolds number of order 10°,
above which their dependence on the Reis greatly diminished.”

Such a scaling has been set out for the explosion phase of a core-collapse
supernova, and experiments have been designed and conducted to begin to investigate
several relevant issuesin the laboratory."****>* In this paper, we present the results of
numerical simulations of a series of single- and multimode RT experiments carried
out at the OMEGA facility. These are 2D planar experiments for which the gross
hydro is appropriately scaled to be relevant to core-collapse supernovae such as

1987A. For supernovae, characteristic length, pressure, and density scales are of order
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10" cm, 10 g/cc, and 10 Mbar, respectively. The characteristic time scale hV/(P/p) is
thus of order 1000 s. In the experiment, we have h ~ 10° um, p ~ 1 g/cc, and P~ 1
Mbar, which can be combined in the same way to givet ~ 10 ns. The 40 ns
experiment therefore corresponds to the first several thousand seconds of the
supernova s explosion phase.

In the experiment, the Reynolds number at the unstable interface grows up to
be of order 10°. Thisistill far below the value of 10™ estimated for supernova
flows, but significantly higher than Dimotakis suggested sufficient condition for the
turbulent mixing transition (Re,;, ~ 10*).% This suggests that the experiments are
approaching aregime of true relevance to supernovae. During the course of the
experiments, the evolving interface passes almost immediately through the linear
phase of the RT instability and continues well into the deep nonlinear regime. The
eventual goal of thisline of experimentsisto investigate this deep nonlinear phase,
the eventual transition to turbulence, and especially the subsequent turbulent flow.
This phase must be obtained for the development of an experimental test-bed that is
truly representative of supernova hydrodynamics. In general, transition to turbulence
is as yet poorly understood in compressible HED flows.™

We begin with brief descriptions of the experiment (more complete details of
the experiments will be published separately) and the radiation-hydrodynamics code
CALE,* which is used for the simulations. We then present and discuss the
simulation results, beginning with checks of the 1D hydrodynamics and proceeding
on to single-, two-, and eight-mode perturbations. In each case, we demonstrate good

agreement between the simulations and the experimental results. Our analysis shows
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that RM and target decompression effects must be considered in order to accurately
describe the perturbation growth. A buoyancy-drag model is applied to the interface
in each case. The model succeeds qualitatively in predicting the single-mode spike
and bubble behavior. However, despite efforts to include the effects of bubble growth
and merger in the application of the model to the multimode cases, it isthere at best
only partially successful. We also discuss the dependence of the simulated instability
evolution on the laser energy, preheat, and the equation of state model, and show that
the choice of EOS can significantly affect the growth rate and interface structure.

Finally, we conclude with a summary of our results.

1. Experiment

In the experiments, 10 of OMEGA’s beams deliver a1 ns pulse of 1/3 um
laser light at one end of adirectly-driven cylindrical target (shown schematically in
Fig. 2). The average laser intensity on the target is typically 6 x 10** W/cm?. The
laser energy isnominally 5 kJ, but can vary by more than 1 kJ for experiments
performed on different days.

The target consists of a 150 um-long polyimide (C,,H,,N,O,) pusher/ablator
section with adensity of 1.41 g/cc. A single- or multi-mode 2D perturbation is
machined into one end of the polyimide pusher, in which a 200 um-wide 4.3%
brominated polystyrene (Cy,,H,s;Br ;) radiographic tracer is embedded. The tracer

serves to minimize edge and parallax effects during target imaging via side-on x-ray
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Figure 2: Target schematic showing (a) overall experiment configuration, (b) an
exploded view of the target package, and imposed interfacial perturbations for ()
single-mode, (d) two-mode, and (€) eight-mode experiments.
radiography. With a density of 1.42 g/cc, the tracer is very nearly mass-matched to
the pusher so asto minimize any effects of the pusher-tracer boundary on the

instability evolution. A 1.9 mm carbon foam payload (carbonized resorcinol

formaldehyde (CRF) with density 0.1 g/cc) is brought into contact with the pusher,
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and the resulting assembly rests within a cylindrical beryllium shock tube with an
inner radius of 400 um. Because the perturbation is machined into the plastic pusher
but not into the foam payload, the two materials are actually in contact only at the
highest peaks of the perturbation. As aresult, there exists a gap between the two
materials. Since target assembly takes placein air at atmospheric pressure, the gap is
initially air-filled. The extent to which that air subsequently diffuses out of the gap
has not been quantified. The effect of x-ray and electron preheat on the interface has
also not been measured. X-ray preheat has been evaluated by simulations, however,
as discussed below.

Phase plate beam smoothing results in a supergaussian spatial profile
characterized by haf-width r, =412 um and order n = 4.7. This givesfairly uniform
illumination on the target within the 400 um inner radius of the shock tube. Asa
result, the plastic-foam interface and the transmitted shock remain nearly planer
throughout the experiment.

The experiments are diagnosed via side-on and face-on x-ray radiography
throughout their duration of up to 40 ns. Thisis done with titanium back-lighters that
produce 4.7 keV photons for target imaging. The detector is a gated-microchannel -
plate-intensified x-ray camera with spatial resolution of about 10 um, a gating time of
about 250 ps, and a quantum efficiency of 4%. Thefield of view is set by the
backlighter spot size of about 750 um. The effect of the brominated tracer layer is
illustrated by considering the x-ray transmission through the various materials. Using
the densities obtained at 10 nsfrom a 1D simulation, the side-on transmission through

the foam side of the interface is 0.62. Normalized to this value, the transmission
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through the plastic side of the interface is 0.021. Without the tracer layer, it would be
0.18. Thus, the contrast between the spike and bubble is nearly 9 times greater with
the tracer layer than it would be without.

The incident laser pulse drives a strong shock wave (with Mach number M =
15) into the plastic pusher. When the laser pulse is terminated, the target beginsto
expand as a rarefaction wave is launched into the target. By the time the incident
shock has reached the interface, the rarefaction wave has overtaken it, resulting in the
formation of ablast wave. The blast wave crosses the interface at about 2.5 ns,
accelerating it to about 70 um/ns and depositing vorticity that will subsequently drive
Richtmyer-Meshkov®?® (RM) growth. After passage of the blast wave, the interface
begins to decelerate, and continues to do so throughout the remainder of the
experiment. During the deceleration phase, the interface is RT unstable. In addition to
the RM and RT instabilities, target decompression occurs during the experiment, and

isresponsible for about 50% of the total perturbation growth.

[11. Simulation

We use CALE (for C-based Arbitrary Lagrangian Eulerian) to ssmulate the
experiments. CALE isa 2D radiation hydrodynamics code that uses afinite-
differencing method to numerically solve the Euler equations.” As an ALE code, it
mixes elements of Eulerian and Lagrangian techniques in order to inhibit mesh

entanglement. Although we generally run these smulations in ALE mode, some
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Eulerian calculations were also performed for comparison. Unless otherwise stated,
planar symmetry is specified in the direction perpendicular to the computational
domain (i.e. x-y Cartesian rather than axisymmetric), and electron conduction is
included.

Theinitial length of the computational grid istypicaly 2 mm. In the single-
mode simulations, its width is generally 25 um, equal to one half the perturbation
wavelength. However, smulations were also carried out with full wavelengths and
multiple wavelengths. In these cases, as in the half-mode ssimulations, reflection
boundary conditions are specified on the boundaries parall€l to the target’s symmetry
axis, while free boundary conditions are used on the orthogonal boundaries. Finaly,
full-target simulations that include the shock tube were performed to verify that the
large-scale hydrodynamics do not adversely affect the experiment (see Section 1V.B).

Numerical radiographs can be produced by CALE and directly compared with
experimental data. The numerical images, which depend on user-input x-ray opacities
and the backlighter energy, provide an instantaneous snapshot of the system. Because
the 250 ps gating time of the actual detector is short compared to the hydrodynamic
time scales, the approximation of perfect temporal resolution is reasonable. The
numerical radiographs do not account for the finite instrumental resolution or the
statistical noise in the experimental radiography. We therefore always distinguish
them from “simulated” x-ray radiographs, which can be made from the CALE results
by folding in photon statistics and the pinhole resolution of the framing camera,

thereby allowing for more realistic side-by-side comparisons with the data.
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The pusher density in the ssmulationsis 1.42 g/cc — equal to that of the
brominated plastic tracer layer, and the foam density is 100 mg/cc, asin the
experiment. The gap between plastic and foam isincluded in the ssmulations, and its
density istypically set tol mg/cc. This should be considered an upper bound on the
actual gap density, but simulations run with lower values yield virtually identical
results. Although it has been shown that such a gap can have a significant effect in
laser-driven RM instability experiments on the spike and bubble structure as well as
the perturbation amplitude,®” simulations suggest that in these RT experiments, which
involve very strong shocks and initially small-amplitude perturbations, only the
amplitude is significantly affected by the presence of an air-filled gap. Omission of
the gap results in a decrease of up to 10% in the amplitude and amplitude growth rate.
This difference is sufficient to warrant inclusion of the gap in the ssmulations.

In order to investigate the dependence of the instability evolution on the
choice of equation of state (EOS) model, we have run simulations with tabular EOS
aswell as perfect gas with various choices of adiabatic indices for the plastic and
foam. We use two commonly-used sets of EOS tables, called LEOS (derived from
QEOS®) and EOP (used, for example, in Ref. 29), which are both Thomas-Fermi-
like. These models do not take into account the material structure, but we do not
consider this a bad approximation given that the actual foam pore size is no more than
about 0.1 um. Aswill be shown in Section IV.D, the EOS choice can nevertheless
have a significant effect on the instability evolution.

Theinitial material temperaturesin the CALE simulations discussed above are

typicaly 25 meV (290 K). After laser deposition, radiation effects and electron
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preheat are generally not included, so the interface (along with all the pre-shock
target) remains cold until the arrival of the shock. Significant levels of preheat would
cause the interface to move and its perturbation structure to change prior to shock
transmission. If the plastic side of the interface was heated sufficiently to cause melt,
the interface would begin to move away from the laser-end of the target, possibly
driving a shock into the foam, and the perturbation amplitude would decrease
(remaining stable) and possibly become non-sinusoidal.

A 2D LASNEX® calculation including radiation transport predicts that
material at the interface is preheated to a temperature of about 0.4 eV before the
arrival of the shock. In order to estimate the effect this might have on the subsequent
instability evolution, asimulation was run in which the initial temperature of all
materials was increased to 0.4 eV (see Fig. 3). The effect on the spike and bubble
shapeisrelatively small, and the perturbation amplitude is reduced by about 10%. At
the time of shock arrival at the interface, the amplitude has been reduced from 2.5 to
1.9 um, which certainly accounts for some of the subsequent growth reduction. At
later times, the perturbation growth is also inhibited by the increased thermal pressure
of the preheated foam. However, the LASNEX calculation predicts that the level of
preheat islessthan 0.2 eV beyond about 50 um into the foam. Consequently, the
resulting reduction could be considerably less than the 10% seen in the CALE
calculation with unredlistically uniform 0.4 eV preheat. Since the main effect of
preheat isto reduce the initial amplitude, another simulation was run in which the
initial temperature was only 25 meV but the initial amplitude was set to 2.0 um. The

resulting amplitude reduction at later times was never greater than 5%. Beyond 15 ns,
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Figure 3: Estimation of the effect of preheat. LASNEX predicts that the interfaceis
preheated to 0.4 €V before shock refraction. (a) A CALE simulation run with the
initial temperature of all materialsincreased from 25 meV to 0.4 eV yields a
decreased perturbation amplitude. The pre-shock amplitude is reduced from 2.5 um to
1.9 um. A third calculation with alow initial temperature but with the initial
amplitude reduced to 2.0 um does not differ significantly at later times from the
larger initial amplitude case. The results suggest that the effect of preheat on the
amplitude is less than 5% after shock refraction. (b) Numerical radiographs show that
the effect on the shape of the spike and bubble isrelatively small. All three
simulations were run with EOP EOS tables for al materials. The shock is moving
from left to right, the dark region on the left (including the spike) is the plastic pusher
material, the lighter region to the right (including the bubble) is shocked foam, and
the white region on the far right is unshocked foam.

the amplitude histories are virtually identical. Consequently, we do not consider x-ray

preheat to have a significant impact on the instability evolution in these experiments.
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Figure 4: Velocity source: CALE simulations are driven with atime-dependent
velocity source extracted from a2D LASNEX simulation which in turnisdriven by a
3.5kJ 1 nslaser pulse. The curve shown isthe velocity of the on-axis fluid element
initially located 70 um into the plastic pusher (80 um from the plastic-foam
interface). The plastic-foam interface deceleration and Atwood number from a 1D
CALE simulation driven by this velocity source are also shown. The post-shock
Atwood number remains nearly constant at about 0.54.

Three different methods have been used in the simulations to drive the
incident shock. In the first method, a time-dependent velocity source is extracted from
a 2D laser-driven LASNEX simulation and then input into CALE (see Fig. 4). Thisis
usually done with the time-dependent pul se shape from an actual experiment, but we
have found that a simple square pulse gives nearly identical results. In the first step of
the second case, a1 or 2D laser-driven LASNEX or CALE simulation isrun. At the
time that the laser turns off, the density, temperature, velocity, and position of the
resulting shock-compressed dlab is recorded. Thisinformation is then input into the
full-sized 2D CALE simulation as a high-pressure, high-velocity slab, which then

evolvesinto a blast wave and subsequently drives the instability. The velocity driveis

generally used in ALE calculations, while the slab drive is more naturally
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implemented in Eulerian runs. In the third method, CALE’ s laser beam packageis
used to directly drive the simulated target with a square pulse. The three methods
yield virtually identical results (the agreement among the interface trgjectoriesis at all
times better than 2%) when the energy deposition in the laser-driven case is spatialy
uniform. Since thisis aways the case in our half-wavelength smulations, we will in
those cases not specify which mechanism was used. In full-target simulations,
however, the laser-drive has the advantage that it can be applied with the actual
supergaussian intensity profile delivered by OMEGA, and so such cases will be
presented with the drive mechanism used.

A resolution study was performed to ensure an adequate level of convergence
in the ssmulations. In the study, the zero-time cell aspect ratio, defined as the ratio of
the transverse to parallel cell dimensions, was held fixed at 5/3. Amplitude histories
and numerical and simulated radiographs at 8 and 14 ns are shown in Fig. 5 from four
simulations with transverse resolution ranging from 30 to 240 points per perturbation
wavelength (ppw). The interface position (and therefore velocity) shows little
variation from one simulation to another, and the shock position is nearly identical in
al four cases. The variation in amplitude from the mean isin each case less than 6%,
and does appear to vary systematically with resolution. The most significant variation
isin the small-scale details. Specifically, as the resolution increases, more and more
Kelvin-Helmholtz (KH) rollup appears aong the interface, with an increasingly
smaller minimum scale length. The variation of the late-time spike stalk on resolution

is apparent in the simulated radiographs, and the calculation with the lowest
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Figure 5: Resolution study. (a) Amplitude histories and (b) Numerical and ssimulated
radiographs from CALE simulation at 8 and 14 ns. Simulated radiographs include the
effects of the instrumental resolution and noise due to photon statistics. In each case,
the cell dimension aspect ratio is 5/3.

resolution agrees best with the data. Though the increase in KH rollup with resolution

has rather limited impact on experimentally observable scales, the question of its
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Figure 6: ALE/Eulerian comparison for single and two-mode targets. Kelvin-
Helmholtz instability effects are more prominent when CALE isrunin ALE mode
than in Eulerian. In the two-mode case, the T = 13 nsresult from the Eulerian
calculation seems to agree better with the data, suggesting that these effects are
exaggerated in the ALE runs.
veracity should be considered in studies of the approach and transition to turbulence.
Eulerian calculations exhibit less small-scale KH activity than do ALE simulations
run at the same transverse resolution (see Fig. 6). In most cases, the differenceistoo
small to be resolved by the experiment. However, experimental radiography from the
two-mode experiment at 13 ns appears to be better reproduced by the Eulerian
calculation. Though not conclusive, this suggests that the relative increase in KH
activity is perhaps stimulated by the grid motion algorithm selected in the ALE
simulations.

Half-wavelength ssimulations are generally run with atransverse resolution of

60 ppw. This appears to be adequate to provide a sufficient level of convergence on

the experimentally observable scales. The limited numerical resolution corresponds to
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aresulting limitation in Reynolds number. With 60 ppw, the simulation Reynolds
number is about 1200 when the value in the experiment is of order 10°. Thus, we do
not expect the simulations to reproduce the smallest-scale features present in the
experiment. Since these scales are also below the current experimental resolution, this
limitation isimportant only if there is significant coupling between the large and
small scales.

To summarize, abaseline calculation spans the entire target length and one
half of one perturbation wavelength in the transverse direction with resolution of 60
ppw. It includes an air-filled gap where the corrugated plastic interface comes into
contact with the planar surface of the foam payload, and is run with planar symmetry
in the direction perpendicular to the computational domain. The code’s ALE feature
is enabled, electron conduction isincluded, and the initial temperatureis set to 25

meV (no preheat). Finaly, tabular EOS are used for all materias.

V. Simulation results

A. Zero-order hydrodynamics

A 1D simulation is used to investigate the experiment’ s zero-order
hydrodynamics. When the EOP tables are used for all materials, the pressure and

temperature in the pusher behind the incident shock are about 55 Mbar and 25 eV,
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respectively, at the end of the 5 kJ, 1 nslaser pulse (45 Mbar and 20 eV for 3.5 kJ
pulse). Just before the shock reaches the interface, these values have fallen to about
40 Mbar and 20 eV (or 25 Mbar and 16 eV with 3.5 kJ drive). Figure 7 shows the
time dependence of the pressure at the interface, along with the density, temperature,
and sound speed on both sides of the interface. The post-shock pressure at the
interface is about 4.5 Mbar just after shock transmission and falls to about 0.5 Mbar
by 40 ns. Even at late times, the shock pressures are sufficiently high that foam crush
isnot an issue. The pre-shock Atwood number A is0.87, and the post-shock Atwood
number A" is nearly constant at 0.54 (see Fig 4).

The validity of the 1D hydrodynamics was verified by comparing the code's
prediction of the shock and interface trajectories with experimental measurements, as
shown in Fig. 8. The incident shock arrives at the interface rather quickly —in about
2.5 ns, so the extent to which the comparison of the incident shock speed can be made
islimited. Except in full-target ssmulations driven by CALE’ s laser package with the
actual beam spatial profile, the transmitted shock speed is consistently too high for
any reasonable EOS tried. The simulation results begin to deviate substantially from
the data by approximately 15 ns. The three late-time data points (one at 21 ns and two
at 26 ns) show that, after 20 ns, the ssimulated shock has advanced between 120 and
200 um ahead of the actual shock position. Thisis between 9 and 14% of the distance
traveled by the simulated shock at those times, and between 24 and 44% of the shock-
interface separation. Correctly matching the shock-interface separation is important
while the transmitted shock is close enough to the interface to significantly inhibit

perturbation growth. This can happen either due to a shock-proximity effect, when the
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Figure 7: Time-dependence of fluid variables at the plastic-foam interface from a 1D
CALE smulation: (a) Plastic side of the interface (b) Foam side of the interface. The
pressure (solid line) and velocity (not shown) are continuous across the interface.
spike-shock distance is significantly less than the perturbation amplitude, or asa
bounded-flow effect. In our simulations, the ratio (Zy,w — Zgke) / (28), Where zg,,, —
Z 1S the distance from the spike tip to the transmitted shock and 2ais the peak-to-
valley amplitude, grows to 0.80 within 1 ns after shock refraction through the
interface and subsequently climbs monotonically to about 1.20. The experimental

values of thisratio at 8, 12, and 14 nsare 0.91, 0.71, and 0.90, respectively. Hecht et

al.* have considered the problem of abubble rising into afluid that is wall-bounded
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Figure 8: Interface and shock trajectories with (8) ps..m = 100 mg/cc and (b) pseam = 50
mg/cc. In (@), results are included from simulations with both 5.0 kJ drive (upper
curves) and 3.5 kJ drive (lower curves). In (b), the drive energy is 5 kJ. The full-target
simulation includes the Be shock tube and laser spot spatial profile aswell as
consequent edge-effects including divergence and shock curvature. The plastic-foam
interfaceisinitialy planer. All other CALE results are from 1D simulations.
Experimental datais shown with points that are approximately four times the
experimental error. The experimental energies (in kJ) corresponding to each data
point are included in the figures.

from above. They find that the inhibiting effect of the wall on the bubble velocity
decays exponentially with increasing bubble-wall separation as €2, where d and z
are the heights of the wall and bubble, respectively. If we assume for our case that the
transmitted shock acts as a bounding wall and that spike growth suppression follows

the same scaling as found for the bubble, then this effect becomes negligible when

Zgook — Zgike >> 4 um. This condition is satisfied within about 3 nsin the simulations,
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and probably in about 4 nsin the experiment. Consequently, the shock quickly moves
far enough away that its effect on the perturbation growth is small except perhaps
during the first few ns. The difference between measured and simulated shock speeds
nevertheless does indicate that the simulations are missing something. We believe
that that there are two contributing factors. First of all, the EOS tables may under-
predict the foam compressibility in some regions of pressure-volume space. This
point, along with its consequences on accurate modeling of the instability, will be
further discussed in Section 1V.D. Secondly, the artificial planarity of the shock in the
simulations also contributes to its anomalously high speed. Because of lateral
expansion, the actual shock speed on the target axisis less than predicted by the 1D
simulation. The full-target laser-driven simulation significantly over-predicts the
shock curvature, and consequently actually under-predicts the shock speed at late
times [see Fig. 8(a)]. We believe that thisis due to imperfect modeling of the laser
deposition. Since the shock appears nearly planer in the data, shock speed reduction
dueto lateral expansion is probably alesser effect compared to the EOS.

The dependence of the zero-order hydrodynamics on the choice of EOS model
used in CALE isshown in Fig. 9. In the ssimulations, the initial speed of the
transmitted shock in the foam is about 70 + 3 um/ns, and the precise value in that
range depends on both the drive energy and the EOS. The spread in results obtained
with the various EOS models is comparable in magnitude to the variation caused by

varying the drive energy over the range seen in the experiments.
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Figure 9: Interface velocity from a 1D CALE simulation driven by a3.5 kJ 1 nslaser
pulse. The shock induces RM growth, and the interface is RT unstable during
subsequent deceleration phase.

B. Single-mode perturbation

The single-mode perturbation is characterized by a wavelength of 50 um and
an amplitude of 2.5 um. Side-on radiographs of the instability growth were obtained
from 3 separate laser shots at 8, 12, and 14 ns[see Figs. 10(a)-10(c)]. The laser
energies corresponding to the data shown in Figs. 10(a)-10(c) are 4.65, 3.50, and 4.74
kJ, respectively. The CALE-produced interface trgjectoriesin Fig. 9 are from
simulations driven by a 3.5 kJ pulse. When a5 kJ pulse is used instead, the initial
post-shock interface velocity in increased by about 4 um/ns (6%), the displacement of
the interface (at 40 ns) from itsinitial position has also increased by 6% (from 1110
to 1180 um), and the perturbation amplitude at 40 ns has increased by about 4%. At
the times of the three imagesin Fig. 10, the absolute amplitude increase is 3 —5 um
(Even less when the comparison is made at identical interface position rather than

time). Since this value is below the experimental resolution of about 10 um, it isfair
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Figure 10: Single-mode data and simulation. The simulation was run in cylindrical
coordinates (resulting in the unphysical interface asymmetry on axis) and driven by

CALE’s laser beam package with a supergaussian spatial profile characterized by
half-width rp = 412 um and order n = 4.7. These parameters are as in the experiment.

to conclude that, with present diagnostics, the existing uniformity of laser energy is
satisfactory.

Numerical radiographs at the same times, all from one full-target simulation
driven by alaser pulse with the correct supergaussian spatial profile, are shownin
Figs. 10(d)-10(f). The primary effect of the target-scale hydrodynamicsisthe
curvature of the shock and interface. As noted previoudly, the curvature in the
simulation is greater than in the experiment and, as aresult, the transmitted shock
speed on axisistoo low at late times. There is a Mach stem apparent in the
simulations near the edge of the shock-tube, but its presence in the experiment cannot

be confirmed or refuted based on the radiographs available. The resolution in the full-
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target smulation (30 ppw) isonly half that typically used in the half-wavelength
simulation. Nevertheless, the gross features of the experiment are apparent in the
simulation. In particular, the simulation reproduces the rel ease waves originating
from the shock tube walls. These waves do not reach the target axis until about 25 ns,
and so cannot affect the on-axis interface structure until very late times.

The amplitude history produced by a CALE half-wavelength smulation
agrees (to within the experimental resolution of about 10 um) with amplitude data
extracted from the radiographs shown in Fig. 10 (see Fig. 11). Thereason that thisis
true for a single simulation despite the experimental variation in drive energy is that
the incident shock velocity scales as the one-third power of the drive intensity. For
the data points shown, the experimental resolution is between 7 and 15% of the
interpenetration-width. Thus, the apparent agreement in amplitude does not conflict
with the obvious over-prediction of the transmitted shock displacement at |ate times.
The latter is of order 10% after10 ns.

After shock transmission, the instability developing at the interface evolves
amost immediately through the linear regime (in about 1 ns), becomes nonlinear, and
continues well into the deep nonlinear regime. The degree of nonlinearity attained in
the ssmulation is apparent in the amplitude plot [Fig. 11(c)], which shows that ka
reaches a value of about 29 at 40 ns, as well asin the series of density plots shown in
Fig. 11(e). An asymmetric spike and bubble structure, typical of the nonlinear RT and
RM instabilities, has developed by 5 ns (2.5 ns after shock transmission). At later

times, the spike becomes along thin structure and develops prominent rollups at its

tip.
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Figure 11: (a) Single mode perturbation. (b) Comparison of the simulated amplitude
history with the experimental data show good agreement. (c) Comparison of the data
with the experiment and Goncharov’ s potential flow model with decompression. (d)
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development of highly nonlinear spike and bubble structure. The simulation in (b)
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In the nonlinear phase, the amplitude growth is approximately linear in time
despite the fact that the deceleration at the interface, and consequently the RT growth
rate, is approaching zero (see Fig. 4). This behavior can be attributed to the
decompression of the target in the expansion fan behind the shock front. Most
nonlinear RT models are incompressible, and therefore do include perturbation
growth resulting from target decompression. However, Goncharov has developed a
potential flow model with atime-dependent density profile.* The model captures the
general behavior of the perturbation, but typically overpredicts the spike growth and
underpredicts the bubble growth [see Fig. 11(c)]. In order to compare the simulation
results with models of the RT instability that do not include material expansion, we
must first subtract the expansion contribution from the spike and bubble amplitude
histories. Separate spike and bubble amplitudes are obtained by simply subtracting
the interface position, predicted by a 1D simulation, from the spike and bubble
positions. The time-dependent fluid velocities at the spike and bubble positions are
extracted from the same 1D simulation, and are interpreted as the spike and bubble
expansion velocity histories. Integration of these functions yields the expansion
amplitude histories, which are then subtracted from the actual amplitude historiesto
obtain the expansion-corrected RT spike and bubble amplitudes. Even after
subtraction of the decompression effect, the spike and bubble amplitudes grow up to
values of ka= 13 and ka= 9, respectively. In Fig. 12, the decompression-corrected
amplitude curves are compared to the prediction of the buoyancy-drag model of Oron
et al.* The model, which follows earlier work by Hanson et al.** and Dimonte,*

predicts that 2D bubbles “rise” with avelocity determined by
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The equation for the spike velocity is obtained by ssimply interchanging spike and
bubble densities. For 3D spikes and bubbles, the numerical coefficientsin Eq. 2
change from two to one and from six to two. The initial span-wise symmetry might
eventually be broken in the experiments, but the simulations of course remain 2D.
Consequently, the 2D coefficients remain the valid choice for comparison with the
simulation at all times. As noted by Dimonte,* such models tend to overestimate the
spike-bubble asymmetry. This results from their application at early times when the
perturbation has not yet reached its asymptotic state. In our case, it could also result
from our approximate treatment of the RM effects, which dominate the instability
growth early on. In any event, the averaged amplitude is nevertheless well predicted
by the model throughout the simulation and well into the deep nonlinear regime. In
addition, Eq. 2 gives aqualitatively correct description of the spike and bubble

behavior. At late times, the spike and bubble velocities decay along with the driving

45



interface acceleration, with the asymptotic spike amplitude significantly higher than

that of the bubble.

C. RM contribution

In applying the buoyancy-drag model to the simulation results, the effect of
the RM instability was included by initializing the spike and bubble velocities with
the Meyer-Blewett velocity.® The Meyer-Blewett velocity is essentially Richtmyer’s
original impulsive model,” given by

vy =ka A’ u, (3
adapted to the case of a shock passing from a heavier to alighter fluid. Thisis done
by simply replacing the post-shock perturbation amplitude a in the Richtmyer
formulawith the average of the pre- and post-shock amplitudes. In either case, A" is
the post-shock Atwood number and u; is the velocity increase of the interface upon
shock transmission. Evaluation of Eq. 3 for the simulation gives v,z = 6 um/ns.
Interestingly, thisis precisely the early-time peak amplitude growth rate seen in Fig.
11(d), suggesting that the perturbation growth is dominated by the RM instability
during the first couple of nanoseconds.

In order to make some estimate of the RM contribution at all times, we ran a
simulation in which a modified target was driven by a constant velocity (41.5 um/ns)
piston. The piston velocity and pusher thickness were chosen such that the resulting
long, steady shock would accelerate the interface up to the same velocity as that

provided by the blast wave, and then maintain that same velocity without deceleration
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[see Fig. 13(a)]. The amplitude and velocity histories [Figs. 13(b)-13(c)] display
classical RM behavior. The amplitude growth rate quickly climbsto avaluethat is
reasonably well predicted by the Meyer-Blewett formula, and then decays while
undergoing oscillations. Comparison with the amplitude growth rate observed in the
RT simulation shows that the RM contribution, while initially responsible for
virtually all the perturbation growth, falls to half the total after about 3 ns and
becomes relatively insignificant shortly thereafter. Thisis not because the RT
amplitude growth rate, which is proportional to perturbation amplitude in the linear
regime, has grown much larger than the Meyer-Blewett velocity. Indeed, the total
amplitude growth rate never exceeds the Meyer-Blewett velocity. Rather, it results
from the relatively quick decay of the RM driving mechanism. At 30 ns, the spike and
bubble amplitudes in the pure RM simulation are roughly 50% of their
decompression-corrected counterparts in the actual experiment. Despiteitsrelatively
low contribution to the growth rate during most of the experiment, therefore, the RM
instability may contribute up to about half of the decompression-corrected
perturbation growth [see Fig. 13(c)]. An estimate of the RM contribution obtained in
this way should be considered as an upper bound, since the effects of the two
instabilities do not necessarily add up linearly. Such uncertainty does not exist in the
consideration of the combined contribution of the RT and RM instabilities relative to
the total growth including decompression. The RT + RM contribution begins at
100%, falls to 50% at about 20 ns, is between 45 and 50% at 30 ns, and continues to

diminish at still later times.
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Figure 13: Estimation of contribution from RM instability and decompression. (a)
Interface velocities resulting from OMEGA RT (3.5 kJ) and pure RM (24 ns41.5
um/ns) drives. Pure RM (b) amplitude growth rate shows classic RM behavior. The
peak amplitude growth rate is well-predicted by the Meyer-Blewett velocity of 6
um/ns. RT dominates over RM after afew ns. (c) Spike and bubble amplitude
histories from the ssimulation of the experiment, expansion corrected RT + RM
simulation, and the pure RM simulation. Decompression accounts for about 50% of
on growth at late times, and RM accounts for up to 50% of the
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expansion-corrected perturbation growth.

D. Equation of state

The simulation results are sensitive to the choice of EOS model specifiedin
CALE. This sensitivity was investigated through a series of simulations involving
different EOS combinations. The study included the EOP and LEOS tables as well as
perfect gas models with arange of choices for the adiabatic indicesy of the plastic
pusher and foam payload. Relevant portions of the EOP and L EOS shock Hugoniot
curves for the plastic pusher and foam payload are shown in Fig. 14. In regions of the
curves accessed by the incident and transmitted shocks, EOP predicts greater material
compressibility than does LEOS. Thisis particularly true for the foam, where the
resulting limiting compression factor with EOP is about 30% greater than with LEOS.

The choice of EOS affects the interface and shock velocities, perturbation
amplitude, and the spike and bubble shape (see Figs. 15-16). However, the
experimental resolution is insufficient to distinguish between EOS models based on
their predictions of the spike and bubble shape. The perturbation amplitude is
reasonably well predicted by several of the models, which on average vary from the
data by about 10%, but the combination of LEOS for the plastic and EOP for the
foam does the best job. The growth rate decreases as the foam compressibility
increases, and the data are inconsistent with foam modeled as an ideal gas with
adiabatic index less than 1.4. The transmitted shock speed is over-predicted by half-

wavelength simulations using both the EOP and LEOS tables. As noted previously,
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thisis partially due to lateral expansion behind the curved shock front that is not

present in the half-wavelength simulations. However, this effect is small because of
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Figure 14: Tabular EOS shock Hugoniot curvesin relevant ranges for (a) brominated
polystyrene (used for plastic pusher) with p, = 1.42 g/cc, T, = 25meV and (b)
polystyrene (used for foam payload) with p, = 0.1 g/cc, T, = 25meV. In both cases,
EOP is more compressible than LEOS at very high pressures. The differenceis
particularly pronounced for the foam.
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Figure 16: EOS. Choosing a good EOS model isimportant for matching the
experiment. LEOS for the plastic with EOP for the foam is best at getting the
perturbation amplitude. Perfect gas with yasic = 5/3, Ytoam = 1.4 iSbest at getting the
shock position relative to the interface, while perfect gas with vy .ic = 5/3, Yioam = 1.32
isbest at getting the absolute shock position. Differences in spike and bubble shape
are apparent in the simulations, but the data are not good enough to distinguish
between the models on this basis.
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the front’ slarge radius of curvature, and in any event does not explain the EOS model
dependence seen in simulations. The LEOS tables in particular appear to greatly
overstate the foam stiffness. This tendency has been noted in simulations of OMEGA
RM experiments,” but the discrepancy hereis greater than that seen previously.

It is possible to match one or another of the key observable parameters by
resorting to a perfect gas model and adjusting the adiabatic indices, but thisis usually
at the expense of the agreement of some other parameter. For example, we can reduce
the transmitted shock speed by reducing y;..., thereby increasing the compressibility
of the foam. But the resulting amplitude is soon reduced clearly below that seen in the
experiment. At the same time, the interface speed becomes too high. Clearly (and not
surprisingly), the materials in question do not behave as ideal gases at the energy
densities accessed in these experiments and simul ations.

Considering together the dependence of the perturbation amplitude history and the
interface and shock tragjectories found in the single-mode simulations, it seems that
the target materials are best represented by LEOS tables for the plastic pusher and
EOP tables for the carbon foam payload. Similar comparisons made with simulations
of the multimode experiments lead to the same conclusion. Consequently, the

multimode simulations presented in the next sections all use this same combination.

E. Multimode perturbations

Having demonstrated the ability to accurately simulate and model the unstable

evolution of single-mode driven by a strong blast wave, we now turn to the evolution
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of multimode interfaces. Ultimately, we wish to understand the growth of highly
turbulent mixing layers present within supernovae. Rather than beginning with a
broad spectrum, we first consider interfaces that are initially two and eight-mode in
order to investigate the approach and transition to turbulence. Thiswill lay the

groundwork for later studies with many initial modes on awider range of scales.

1. Two-mode

The 2-mode perturbation [see Fig. 17(a)] is characterized by a sum of two
sinusoidal components (in phase) with wavelengths of 40 and 60 um and amplitudes
of 1.25 and 1.5 um, respectively. Thisresultsin aninitial perturbation width that is
very near to the single-mode target value of 5 um.

Asis apparent from the ssmulated radiograph in Fig. 17b, the interface
structure seen in the 2-mode CALE simulation at 13 nsisin strikingly good
agreement with the data. The simulation interpenetration width at this time was 122
um, in agreement with the measured value 130 + 10 um. The code prediction at 26 ns
[see Fig. 17(c)] appearsto be fairly good as well, but is complicated by the
degradation in contrast by that time. It is quite possible that 3D effects have begun to
appear in the experiment, marking close approach to the transition to turbulence and
the limitations of the 2D simulation. The simulated mix width, 307 um, is slightly
larger than the observed value of 294 + 10 um. It is clear from both images that, asin
the single-mode simulations, the code over-predicts the transmitted shock speed.

The qualitative success of the buoyancy-drag model in predicting the single-

mode spike and bubble growth is not apparent when the model is applied to the two-
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Figure 17: Two-mode perturbation simulation and data. (a) Imposed interface
perturbation (b) Again, the spike and bubble size and structure ook good, but the
transmitted shock speed is clearly too high. (c) Comparison of decompression-
corrected simulation results with the buoyancy-drag-model prediction shows only
early-time agreement.
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mode interface [see Fig. 17(d)]. In applying the model to the spike growth, the time-
dependent transverse width of the outlying spike was used in place of the wavelength
in Eg. 2. In the case of the bubble growth, this method would lead to a gross
underprediction of the observed growth at all times. Instead, the model isinitialized at
the largest wavelength in the problem. After the first (and only) bubble merger event
occurs at about 6 ns, this wavelength is replaced by the largest transverse scale
possible in the simulation — twice the 60 um box size. The resulting model -predicted
behavior of the spike and bubble is similar to that observed in the single-mode case.
That is, the spike and bubble velocities begin large and decay smoothly intime. In
this case, however, the spike and bubble are predicted to grow nearly symmetrically.
In the simulation, the bubble growth is consistent with the model description. The
spike velocity, on the other hand, abruptly increases at about 15 ns and subsequently
undergoes a period of growth that is nearly linear in time. This fact, coupled with the
agreement between the simulation and experiment, suggests the significant influence

of compressibility or some other phenomenon outside the model’ s range of validity.

2. Eight-mode

The initial perturbation in the 8-mode targets [see Fig. 18(a)] is defined by the

a(r) = Yyacos ), @
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where the wavelength vector is given by A, =180um/i and the components of the
amplitude vector range in absolute value between 0.4 and 0.7 um. Theinitia
perturbation width is4.9 um - again very close to the single-mode case.

Asin the 2-mode case, the simulation results at 13 ns reproduce most of the
features seen in the experiment, so that the ssmulation isin good qualitative
agreement with the data on arange of scales from the largest down to the
experimental resolution [See Fig.18(b)]. The simulation interpenetration width at this
timeis 134 um, somewhat larger than the observed value of 120 + 10 um.
Comparison with the 26 ns data is even more problematic than was the case with the
2-mode perturbation [Fig. 18(c)]. The numerical radiograph displays a dominant 180
um mode on top of which is overlaid afeathery smaller-scale spike and bubble
structure. The same dominant mode is apparent in the data, but the feathery structure
isnot. In fact, nothing at al is seen to protrude clearly out beyond the dominant
mode. This could simply result from aloss of contrast associated with decreasing
density and the appearance of 3D effects. But it could aso indicate that the smaller-
scale structure has already transitioned to turbulent flow following the generation of
initially laminar 3D structure. Considering both the Reynolds number of the flow and
the time over which it is maintained in these experiments, the evolving interface
could in fact undergo a turbulent mixing transition at as early as about 17 ns.”® The
experimental images of the two-mode interface also show a significant loss of

contrast between 13 and 26 ns, though not so drastic asin the 8-mode case. While
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these data are suggestive, more experiments will be necessary before afirm
conclusion about transition can be made. These experiments may require greater
resolution and contrast between spike and bubble material, and should eventually
explore the dependence on initial dimensionality and modal spectrum.

Our application of the buoyancy-drag model to the 8-mode case is shown in
Fig. 18(d). In contrast with the 2-mode casg, it is now the bubble front that exhibits
anomalous behavior. The bubble’ s amplitude and velocity are both considerably
greater than those of the spike after about 20 ns. Despite our efforts to account for
bubble expansion and merger, we were again unable to show even qualitative

agreement of the model with the simulation.

V. Conclusions

We have presented the results of 2D CALE simulations of blast-wave-driven
hydro experiments performed at OMEGA. Simulations of single-, two-, and eight-
mode targets are in reasonable agreement with experiments on a range of scales from
large down to the experimental resolution. In addition, the single mode evolution is
well predicted by a buoyancy-drag model when the effects of target decompression
are first subtracted away. We were unable, however, to use the model to correctly
describe the evolution of the multimode spike and bubble fronts even when bubble
expansion and merger were accounted for. The partial success of the model will be

further discussed and explained in alater paper.
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Eulerian calculations appear to better reproduce the spike and bubble shapes
than do the ALE runs, but the comparison is limited by the current resolution and the
effect on the perturbation amplitude is negligible. The dependence of the instability
evolution on the laser energy and pulse shape, x-ray preheat, and the EOS model have
also been considered. Thefirst three factors affect the amplitude at or below the 5%
level, but the choice of EOS, from commonly used tables, can significantly affect
both the amplitude growth rate (at about the 10% level) and the interface structure.
All of these factors must be given careful attention in detail-sensitive simulations of
experiments.

Analysis of the simulation data suggests that the RT and RM instabilities
contribute roughly equally to the decompression-corrected perturbation growth, with
RM dominant in the first few nsand RT dominant at later times. Together, the two
instabilities account for about 50% of the total growth, with the remaining half
resulting from target decompression. Consequently, all three effects must be
considered in order to accurately describe the perturbation growth.

Because of limited computational resources, the simulation Reynolds number is
two orders of magnitude smaller than in the experiment (currently Re“*“F ~ 1200
when Re® ~ 10°). The hypothesized critical Re for the mixing transition liesin
between these two values. The inherent 2D nature of the calculations provides an
even more important limitation on their ability to reproduce all aspects of the late-
time instability evolution. Consequently, the simulations cannot reproduce the
smallest-scale features present in the experiment. If we consider structures

computationally unresolved if their spatial scaleislessthan ten grid cells, then all
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unresolved scales are below the current experimental resolution. Therefore, the
limited range of scales present in the ssmulationsis important only when thereis
significant coupling between the large and small scales. Good agreement between
data and simulations indicate that this is not the case until sometime after 14 ns.
Having demonstrated the ability to accurately simulate the late nonlinear stages
of the instability evolution for both single- and multimode perturbations, we can now
with some degree of confidence proceed to model data taken at |ater times, as the
instability approaches and, hopefully, passes through the transition to turbulence. We
can also move to 3D calculations to investigate when and how the 2D symmetry of
the experiments is broken. Since the simulations cannot reach the high Reynolds
numbers present in the experiments, it will be interesting to observe the code
predictions at the transition time as predicted by theory and observed in experiments.
In fact, sudden deviation of simulation from data, after a period of good agreement,
may be the best indication that transition has taken place. Continuing improvement in
experimental resolution will of course also be helpful. With these tools, we intend to
study the dependence of the time to transition on the initial modal spectrum. A key
guestion is how and when will theinitial conditions be “forgotten” and the instability
proceed into a self-similar regime? Finally, what are the absolute limits of current
computer codes and hardware resources in accurately modeling complex high-
Reynolds number flows. These questions must be addressed if areal understanding of

the nonlinear hydrodynamics present in core-collapse supernovae is to be attained.

61



Chapter 3: Theeffect of a short wavelength mode on the
evolution of along wavelength perturbation driven by a

strong blast wave

|. Introduction

In core-collapse supernovae, the sudden release of an enormous amount of
energy near the star’s center drives a strong blast wave out through layers of
progressively less dense material.** The transmission of a blast wave through an
interface from a denser to aless dense material constitutes an unstable system.®
Preexisting perturbations on the interface grow to larger amplitude after passage of
the shock due to two different mechanisms. First, the transmission of a shock through
a perturbed interface resultsin vorticity deposition regardless of whether the traversal
isfrom heavy to light or from light to heavy. The subsequent evolution of the
vorticity field leads to perturbation growth, an effect called the Richtmyer-Meshkov
(RM) instability.*> With the passage of a blast wave, the interface begins to decelerate
after shock refraction. Since the pressure decreases monotonically with distance
behind the shock front, there is an attendant reversal of pressure and density gradients
(VP*Vp <0) in the heavy to light case. Aslong asthis condition is satisfied at the

interface, it is unstable to the Rayleigh-Taylor (RT) instability.®” Under the influence
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of the RM and RT instabilities, interface perturbations grow into spikes of heavier
material “falling into” lighter fluid and bubbles of lighter fluid “rising into” heavier
fluid. Shear that develops aong the growing spikes drives Kelvin-Helmholtz (KH)
growth, which contributes both to the development of characteristic mushroom caps
at the spike tips and to the eventual breakup of the interface into a turbulent flow. In
addition to core-collapse supernovae, these instabilities will be present during the
implosion of inertial confinement fusion (ICF) ignition targets currently being
designed for the National Ignition Facility (NIF). For double-shell targets, the
resulting mixing of hot fuel with cooler shell material can in turn result in significant
reduction or even complete elimination of thermonuclear yield.? Laboratory
astrophysics with lasers, which is motivated by both the diagnostic limitations
inherent in observational astrophysics and the need to validate the codes used to
model astrophysical systems, provides alink between the two classes of applications.
The question of the dependence of RM and RT growth on the initial modal
spectrum is at the heart of both astrophysical and | CF applications of compressible
mix. Thisis particularly true for the deep nonlinear and transitional regimes, where
linear and weakly nonlinear theories have long-since become inapplicable but the
similarity-based scaling arguments commonly applied to the turbulent regime are not
yet necessarily valid. The deep nonlinear and transitional regimes must therefore
bridge the gap between the earlier phases, where initial conditions have a strong and
direct influence on the perturbation growth, and the turbulent regime perhaps
characterized by self-similar growth independent of the initial spectrum. Most

astrophysical systems of interest are not only turbulent but are very highly turbulent
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from very early times. For example, the Reynolds number in core-collapse
supernovae is estimated® to be of order 10", many orders of magnitude above the
value of ~10* suggested by Dimotakis™ as sufficient for the mixing transition.
According to the analysis by Robey et al of transition in non-stationary flows,
transition in supernovae should occur in about 2.8 seconds after the instability
initiation.™ In simulations by Fryxell et al of SN1987A, perturbations on the He/H
interface did not grow to significant amplitudes until times of order 10° seconds after
the explosion while times of interest extend another order of magnitude higher.” If an
initial-condition-independent self-similar regime is ever to be attained at a blast-
wave-driven interface, it must occur virtually instantaneously in a core-collapse
supernovaif theinitial condition are amenable. However, the same cannot be said of
the laser-driven high energy density (HED) experiments designed to study such
astrophysical events. Present-day experiments can be very nonlinear but are often not
turbulent, with Reynolds number much lower than in their astrophysical counterparts
(of order 10° for those designed to study aspects of supernova hydrodynamics') and
time scales that are not long compared to predicted transition times. Even if the 1D
hydrodynamicsis appropriately scaled, the rea relevance of “supernova-relevant”
experimentsis limited by whether or not the level of their dependence on initial
conditionsis similar to the dependence present in actual supernovae. If the complex
nonlinear hydrodynamic mixing in supernovae isin fact initial-condition independent
while current experiments are not, then future experiments should move to higher

Reynolds numbers and longer time scales.
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Our intent is to study the dependence on initial conditions of blast-wave-
driven unstable interface evolution in two phases. In this paper, we consider mostly
two-mode interfaces in the regime of recent and current experiments on OMEGA,*®
and for such cases present a mechanism whereby the unstable evolution of a strongly
driven perturbed interface can depend critically on details of theinitial mode
spectrum. Specifically, we consider how the evolution of along-wavelength modeis
affected by a single short-wavelength component and the dependence of this effect on
the relative phases of the two modes. In the second phase, and in alater paper, we
will present a study of the dependence on initial conditions for many-mode interfaces
under NIF-like drive conditions, in which the degree of phase coherence aswell as
the spectrum is varied.

We begin with brief descriptions of the experimental setup, relevant previous
experiments, the 2D code CALE,* and the simulations. Thisisfollowed by a
description of the new two-mode interfaces and a discussion of model predictions.
The ssimulation results are presented and shown to exhibit complex behavior that is
beyond the reach of existing models. When the drive is sufficiently strong, the
nonlinear evolution of the short-wavelength mode can lead to the formation of jets
that strongly affect the large-scale structure of the interface. This effect represents a
nonlinear coupling between spikes and between spikes and bubbles. We describe the
process of jet formation and itsimpact on the late-time interface evolution, including
a significant dependence on the relative phases of the two modes. We compare the
simulation results with data from recent two-mode experiments and consider earlier

few-mode experiments in the context of these effects. Finally, we conclude with a
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summary of our results and a brief outline of our current work with broadband initial

conditions.

1. Experiments

The experiment (see schematic in Fig. 1), which is described in greater detall
elsewhere,™ uses 10 of the OMEGA laser’'sbeamsin a5 kJ 1 nspulseto drive a

Mach 15 blast wave into one end of acylindrical target. The average laser intensity
on the target is typically 6 x 10% W/cm?. The target consists of a heavier plastic

pusher/ablator section [polyimide (C,,H,,N,O,) with adensity of 1.41 g/cc] and a
lighter foam payload section [carbonized resorcinol formaldehyde (CRF) with density
0.05 g/cc] in contact with one another along a perturbed interface. In order to reduce
lateral expansion, this multicomponent target assembly sits within a Be shock tube.
Because the perturbation is machined into the plastic pusher but not into the foam
payload, the two materials are actually in contact only at the highest peaks of the
perturbation. As aresult, there exists a gap between the two materials.

The interface velocity and deceleration (taken from a 1D CALE simulation)
are plotted as functions of timein Fig. 2. Asthe shock front crosses theinterface at 1
ns and impulsively acceleratesit up to about 70 km/s, it deposits vorticity, which
drives RM growth. The interface then begins to decelerate, and does so for the 40 ns
remainder of the experiment. During the deceleration phase, the interface is RT

unstable. Shock-deposited vorticity (RM) dominates the perturbation growth for the
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Figure 1: Target schematic showing (a) the overall experiment configuration and (b)
an exploded view of the target package.
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Figure 2: Interface velocity and deceleration. The shock induces RM growth. And the
interface is RT unstable during the subs*equent deceleration phase. The post-shock
Atwood number is nearly constant at A" = 0.70.
first couple of nanoseconds, while acceleration-induced (RT) growth dominates at
later times. In addition to the RM and RT instabilities, target decompression occurs
during the experiment, and is responsible for about 50% of the total perturbation
growth at late times.”

The experiments are diagnosed via side-on and face-on x-ray radiography
throughout their duration of up to 40 ns. Thisis done with titanium backlighters that
produce 4.7 keV photons for target imaging. A nearly mass-matched radiographic

tracer is embedded in the plastic pusher in order to reduce edge effects and

concentrate x-ray opacity into arelatively thin slice near the target axis.
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[11. Simulation

The experiments are simulated using the 2D radiation-hydrodynamics code CALE.
CALE isan arbitrary Lagrangian-Eulerian code that uses a second-order (in space and
time) finite differencing method to numerically solve the Euler equations.”* The
relative importance of several numerical and physical factors for achieving good
agreement between simulation and experiment were considered in detail in an earlier
paper.” In accordance with those results, the simulationsin this work are
characterized as follows: The computational grid spans the length of the target, and its
width is generally determined by the minimum allowable considering symmetry
constraints (i.e. one-half wavelength for a single mode simulation). The transverse
resolution is 120 points per perturbation wavelength (ppw) of the longest wavelength
(50 um) mode. The specified boundary conditions (BC's) are reflecting along the
mean flow direction and free along the transverse direction. Simulations arerunin
Eulerian rather than ALE mode in order to avoid spurious KH activity at the evolving
interface. The gap between the plastic and foam sectionsis included and filled with 1
mg/cc air or foam. Electron conduction isincluded, but the effects of x-ray and
electron preheat are not. Tabular equations of state (EOS) are used for all materials,
with LEOS or EOP for the plastic and EOP for the foam. Simulations are initialized
with adriving slab with uniform temperature, density, and velocity taken from a 2D

LASNEX? calculation.
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Such simulations have been shown to agree well, both in interface structure
and spike-bubble averaged perturbation amplitude growth, with experiments
involving single-, two-, and eight-mode interfaces.” For the single-mode simulations,
separate spike and bubble amplitude histories (as well astheir average) were
reasonably well predicted by a buoyancy-drag model when target decompression
effects are first removed. Aside from the initial modal structure, the earlier
experiments differ from those discussed in this work only in the foam density — now

50 rather than 100 mg/cc.

V. New two-mode interface (short on lonq) with varying phase

We now consider the same single-mode perturbation studied previously (with
a 50 um wavelength and 2.5 um initial amplitude), and study the effect of asingle
short wavelength component on its evolution. The scale of the secondary mode (mode
10) is one-tenth that of the primary mode (mode 1), or 5 um in wavelength and 0.25
um ininitial amplitude (see Fig. 3). With 120 ppw in mode 1, mode 10 isresolved in
the simulations to 12 ppw. According to Ofer et al,*’ the finite numerical resolution of
an RT-unstable mode (for incompressible flow under constant acceleration) resultsin
agrowth rate reduction below the theoretical value that is given by

Yett = Yineoretica (1 - 2/PPW). 1)
For mode 10, Eqg. (1) predicts a 17% reduction in growth rate relative to the fully

resolved value.
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Figure 3: Single and two-mode initial interfaces. The short wavelength mode (mode
10) is either in phase or /2 out of phase with the long wavelength mode (mode 1).
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Ofer et al, in their consideration of the effect of a secondary short wavelength
on a primary long-wavelength mode, found that the main effect of the short
wavel ength component was to introduce an effective density gradient that acted to
stabilize the growth of the primary mode.” They used a2D ALE codein their study
and, like us, considered a moderate Atwood number (A = 0.5 compared to our post-
shock A" = 0.7). Their calculations were dightly better resolved than ours, with 17-18
points per wavelength (ppw) in the shortest wavelength mode (compared to our value
of 12 ppw in the shortest wavelength mode). There are, however, severa significant
differences between their study and ours. Theirs was a pure RT system (no RM) with
constant accel eration, while our blast-wave-driven interface is both RM and RT
unstable with decaying acceleration. Our instability Mach number is higher, with M =
0.15- 0.20 in foam and 0.25-0.40 in plastic, than their M < 0.1. It isalso significant

that their long wavelength mode remains linear throughout, while both of our modes
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enter the nonlinear regime early on. Finally, their short wavelength component isin
phase (or 180 degrees out of phase, depending on one’s choice of the positive
direction). In order to investigate the phase dependence of the instability in the deep
nonlinear regime, the relative phase of mode 10 with respect to mode 1 isin our study
either O, /4, or /2.

With a phase difference of 0 or mt, theinitial symmetry allows usto limit the
computational domain to one half of the mode 1 wavelength. Since CALE does not
alow for periodic BC's, areasonable treatment of the out-of-phase case requires that
we include multiple wavelengths. This requirement must be balanced with the need to
run with reasonably high resolution and in a reasonable amount of CPU-time. In light
of these considerations, we include four mode 1 wavelengths in the out-of-phase case.
The two modes are then technically modes 4 and 40, but because the ratio of their
wavelengthsis an integer, no modes lower than 4 can be generated via mode
coupling. Consequently, the system is equivalent to the model/mode 10 system in the
region acoustically isolated from the boundaries (while such aregion exists). Late
time density plots from the out of phase simulation show some competition between
mode 4 bubbles, but not merger and the associated generation of larger, faster

growing structures.

V. Model predictions
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In considering model predictions, we divide the perturbation evolution into
three regimes: linear, early nonlinear, and nonlinear. Simple theory predicts that,
neglecting certain potentially stabilizing factors such as surface tension,*® each RT-
unstable mode grows exponentially in the linear regime (a/A < 0.1) with agrowth rate

given by®

_ | koA
Vi+ kL'

Y (2

where Kk is the perturbation wavenumber 2mt/A, g is the (constant) acceleration, A is
the Atwood number, and L is the density gradient scale length at the interface. Thus
the RT exponentia growth rate (1/a)da/dt for mode 10 is greater than for mode 1 by a
factor of V10 (i.€. Ymoge 10 = V10 Yo 1)- The amplitude growth rate da/dt of mode 10 is
smaller than for mode 1 by the same factor (da/dt,, .10 = da/dt, e 1/V10).

According to Richtmyer’s impulsive RM model* adapted by Meyer and
Blewett for the heavy to light case,* each RM-unstable mode amplitude grows
linearly in time during the linear phase at the Meyer-Blewett velocity, given by

v=ka, A" u. (3)
Here a,is the average of the pre- and post-shock perturbation amplitudes, A’ is the
post-shock Atwood number, and u; is the velocity increase of the interface upon shock
transmission. Because both the amplitude and wavelength of the short-wavelength
mode are scaled in the same way relative to long-wavelength mode, the Meyer-
Blewett velocity is the same for modes 1 and 10.

According to linear modal analysis where modes grow independently without
interacting, mode 10 can have no effect on mode 1 regardless of the relative phase

between the two modes. Ofer et al found that the short wavel ength mode does
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introduce an effective density gradient at the interface that will somewhat stabilize the
primary mode (viaL in Eq. 2)."® According to their analysis, the mode 1 linear RT
growth rate is reduced by 10% when (a&/A),, reaches about 0.3, or about the time mode
10 reaches its saturation velocity.

Because the targets under consideration are driven very strongly and the initial
amplitudes are somewhat large (pre-shock a/A = 0.05 and post-shock a/A =~ 0.02), the
linear approximation is valid for avery short period of time. Considering RT only,
modes 1 and 10 reach the nonlinear threshold value of a/A = 0.1 in about 2t ¥ = 2.0
and 2/3 ns, respectively. For RM only, the linear approximation breaks down in about
T, = 0.5 and 0.05 ns for mode 1 and mode 10, respectively. Thus RM growth,
which dominates for the first couple of ns, provides the stronger limit on the linear
regime. Mode 1 becomes nonlinear within 1 ns (of a40 ns experiment) and mode 10
isnonlinear virtually instantaneously.

At later times, initially sinusoidal perturbations grow into characteristic spikes
and bubbles. In the early nonlinear phase, which is also very short, mode coupling is
present but weak, and Haan’ s spectral model® is valid. Harmonic generation (of
modes 2 and 20) introduces spike-bubble asymmetry, with spikes growing faster than
bubbles. In addition, modes 1 and 10 couple to generate modes 9 and 11.

The saturation velocity of the primary mode can in principle be reduced by the
presence of a second mode where the two interfere constructively.” Mode 10
interferes constructively with mode 1 at each mode 1 bubble tip when the two arein
phase. However, because of their large separation in wave-number space, both modes

should saturate at the single mode terminal velocity. Modes subsequently generated
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by mode coupling should also not reduce the mode 1 saturation time for the same
reason and also because of how quickly mode 1 becomes nonlinear.

The early nonlinear phase ends when third order terms (and soon thereafter
terms of all order) in the perturbation expansion become significant and the bubbles
approach terminal velocity. For constant acceleration RT with A = 1, the bubblesrise
with constant (terminal) velocity while spikes fall with constant acceleration in the
nonlinear regime.*** When A < 1, the spike also reaches terminal velocity.”

Mode coupling between modes 1 and 10 is fairly weak (3" order). In addition,
Ofer et al*’ found that once a mode has reached its saturation amplitude, it no longer
contributes to the growth of longer wavelength modes. Since mode 10 becomes
nonlinear in well under a nanosecond, it does not have time to significantly affect the
interface evolution via mode coupling. During the nonlinear phase, bubbles (and
spikes for A<1) grow at terminal velocity «vA, where A isthe object’ s transverse
size.* Since larger structures grow faster, an inverse cascade driven by bubble
competition and merger setsin and washes small-scal e bubbles downstream.?**

The coupling strength in modal models**" depends on the relative phases of
interacting modes according to cos(g; + ¢, - ¢;) for modei driven by the interaction
of modes and k. The plus sign ismode i generated by shorter wavelength modes
(harmonic generation) while the minus sign isfor mode i generated by the interaction
of longer wavelength modes. Thus the coupling increases with increasing phase
coherence and vanishes for modes that are out of phase.

The late-time scaling is determined by the nature of the time-dependent

acceleration. If g(t) falls off slower than t?, then the instability growth is RT rather
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than RM like.” For an n-dimensional blast wave in the self-similar regime,
dimensional analysis requires that the shock-front deceleration scales like t™/™2),
Away from the shock front, the resulting deceleration of the driven interface scales
like t4=VhAL "wherey isthe adiabatic index. In the infinitely compressible case (y =
1), the exponent is equal to -4/3 when n =1 and is greater than -2 for all positive n.
For any dimension n, the exponent approaches —2 from above as the adiabatic index
becomes large. Consequently, neglecting the true RM component associated with the
passage of the shock front, perturbation growth at a blast-wave-driven interfaceis
aways RT-like. The bubble distribution approaches a scale-invariant attractor and
then the growth of the bubble and spike fronts scales like®* hy,~ a. ., A[ f dt Vg ]?, or
hy,~ o0, At?® for a 1D blast wave (neglecting material decompression). This
follows from the assumption that the height of the front is proportional to the
dominant wavelength or transverse bubble size and gives the well-known quadratic
dependence for constant acceleration.® In experiments and simulations, however, the
inverse cascade to successively larger structuresis limited by the size of the physica
or computational box. In our simulations, which are intended to study the effect of a
high I-mode on a dominant low |-mode, the box size is not large compared to the
wavelength of the lowest | mode with significant initial amplitude (mode 1 for the
single mode and in-phase cases and mode 4 for the out-of-phase case). Once mode 1
becomes the fastest growing mode (which istrue very early on due to itslarge initial
amplitude) a scale-invariant bubble distribution cannot be attained. If we therefore
assume that the dominant wavel ength remains constant and the acceleration falls off

like 2@ then we find that h ~ tY®). This asymptotic behavior is captured by
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buoyancy-drag models such as that of Oron et al, where the spike (s) and bubble (b)

evolution are governed by the equations®

dub,s(t) _
dt

6.
(pb,s + 2psb) (psb - Zpbs)g(t) - %psbutz),s' (5)

In order to make some prediction of the late-time dependence on the initial
phases, we have applied the modal model of Ofer et al'” with some modifications. In
the early nonlinear stage, mode growth and coupling are determined by Haan’s
weakly nonlinear model.” Unlike Haan’s model, modes generated by mode coupling
can couple with each other and with preexisting modes. This amounts to an
approximate inclusion of higher order terms, thereby extending the model’ s range of
validity. Modes saturate according to the Haan criterion® and subsequently do not
contribute to the growth of lower I-modes. Saturated low |-modes can, however,
modify the phases of higher |-modes through harmonic generation as long as the
velocity of the driven mode does not exceed its saturation value. 1n our application of
the model, the time dependence of the acceleration isincluded. In addition, our
treatment of phasesis more general than in the original implementation, which
effectively allowed for cosine modes with phases of only 0 and st. In our case, the
coupling term includes the cos(g, = ¢, - ¢;) term. When the interaction of two modes
generates a new mode, the phase of the new mode is determined by the resonance
condition ¢; = ¢, = ¢,. When an existing mode i is driven by two modes j and K,
producing avelocity increment dv;, the phase of the driven mode is shifted according

to

o = tan™ a'sin(g™) + dvdtsin(e; = ¢,)
| a"" cos(g'™) + dv;dtcos(p; = @) |

(4)
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where n isthe time step and a is the amplitude of modei. This follows from the
requirement that a cos(kx + ¢") = a"*cos(k x + ¢'™) + dv,dtcos((k; = k)X + @, = ¢,)
since, by definition, k = k; = K.

The result is shown in Figure 4. For the bubble amplitude, the model predicts
essentially no late time dependence of the large-scale structure on the initial presence
of mode 10, let alone on its phase relative to that of mode 1. Thereis a strong effect
predicted for the spike amplitude. However, since the spike evolution will clearly be
strongly affected by KH rollup long before it reaches the shape predicted by the
modal model, this prediction should not be taken too serioudly. In fact, if we define
the spike position as the point at which the spike width falls below 2 um
(approximately equal to the width of four computational cells and the minimum spike
width observed in the simulations), then the late-time effect of mode 10 on the spike
amplitude virtually disappears.

In conclusion, the models considered predict that the effect of mode 10 on
mode 1 viamode coupling will be weak at all times. Consequently, the main effect of
mode 10 on the evolution of mode 1 should be areduction of the growth of mode 1
due the effective density gradient provided by mode 10.

There are several other factors not discussed here that could in principle play a
rolein the interface evolution. Of these, we are particularly interested in the late-time
effect of the RM component, material decompression (particularly the resulting
vortex dynamics in experiments that are best only quasi-2D), the relative
contributions of e ectron conduction, viscosity, and finite resolution on stabilization

of high-I modes, reduction of Atwood number in the mixing layer due to the KH

78



Single mode Two modein phase  Two mode out of phase
EET td o b bt o b ot o b bt e Bk e d

Amplitude (um)

=300

—+D':| 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1
100 2010 g0

Transverse position (um)

Figure 4: Modal model prediction of interface at 40 ns. The upper dotted line denotes
the bubble position (57 um), which is approximately equal for all three cases. The
lower doted line (at -165 um ) shows the approximate position at which the predicted
spike widths fall below the minimum value observed in the simulations (about 2 um).
Like the predicted bubble amplitude, the spike amplitude defined in thisway is
virtually the same for all three cases. The Kelvin Helmholtz instability prevents the
spikes from attaining shapes predicted by the model. The model aso does not include
material decompression and RM contribution.

=

instability, and reduction in Atwood number at the spike and bubble tips due to the
large-scale density gradient present behind the shock front. Some of these issues will

be treated in alater paper in the context of broadband initial conditions.
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VI. Simulation results

The averaged amplitude histories for the different phase realizations
(including mode 10 by itself) are shown in Fig. 5. Also included is the mode 1
prediction of Oron et al’s buoyancy-drag model (given in Eq. 5). In order to isolate
the instability effects and facilitate comparison with the model, the effect of target
decompression has been removed from all amplitude plots.” As expected, the linear
phase lasts no more than about 1 ns. Before 10 ns, the overall growth is not strongly
affected by the presence of the short wavelength mode. Consequently, the single-
mode buoyancy-drag model provides a good description of the growth in all three
cases. While the acceleration islarge, Mode 10 remains sufficiently small that the
introduction of its amplitude into the buoyancy-drag model as a stabilizing density
gradient resultsin virtually no change in the predicted mode 1 growth.

At intermediate times (between 10 and 20 ns), the multimode perturbation
amplitude histories reveal abrupt changes in the growth rates. After first falling below
the single mode case, the growth of the in-phase interface suddenly increases, so that
itsfinal amplitude (140 um) is somewhat higher than in the single mode case (133
um). The growth rate in the out-of-phase case also falls below the single mode case
at about 10 ns. At about the time that the in-phase growth rate increases, however, the
out-of -phase growth rate falls still further, so the averaged amplitude reaches only 80

um at 40 ns. Theresult isthat, after 20 ns, the phase-correlated noise leads to some
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Figure 5: Spike-bubble averaged amplitudes corrected for decompression. (a) The
bubble-merger-driven inverse cascade is complete by about 10 ns. (b) Early on, the
growth is not strongly affected by short-A “noise’. (c) For the two-mode cases,
sudden changes in growth rate occur at intermediate times. (d) After 20 ns, the phase-
correlated (decorrelated) noise leads to growth enhancement (suppression) relative to
single mode. The dashed lines show the single-mode saturation values (a/A = 0.4) for
modes 1 (upper) and 10 (lower).
growth enhancement (by about 5%) relative to the single mode while the phase
decorrelated noise leads to tremendous growth suppression (by about 40%).
Additional detail can be obtained from plots of separate spike and bubble
amplitude histories, which are shown in Fig. 6. Without the short wavelength
component, the mode 1 amplitudes are as expected for an interface driven by a
decaying acceleration. The spike and bubble growth rates fall off with the

acceleration, and the amplitudes begin to saturate as the drive strength approaches

zero, with the spike amplitude significantly larger than that of the bubble. The spike-
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Figure 6: Separate spike and bubble amplitudes corrected for decompression. In each
case, the line denotes the spike amplitude. (@) The mode 1 single mode growth is as
expected, with the spike amplitude significantly larger than that of the bubble at late
times. The spike and bubble growth is nearly symmetric in the mode 10 single mode
case because of the effective Atwood number reduction due to the density gradient at
the interface. (b) In the two mode in-phase case, there is some spike growth reduction
relative to the single mode case, and tremendous bubble growth enhancement. (c) In
the two mode out of phase case, there is slight bubble growth enhancement and
tremendous spike growth reduction. (d) A plot of the spike-bubble asymmetry (the
ratio of spike to bubble amplitudes) shows nearly symmetric growth in two mode
cases.

bubble symmetry apparent in the mode 10 simulation likely results from an effective
low Atwood number due to the finite density gradient at the interface, whichis
significant compared to the early-time amplitude of mode 10 but not mode 1. The

two-mode-in-phase case begins similarly, but the bubble growth rate suddenly

increases at about 11 ns. Late in time, the spike amplitude is somewhat reduced
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relative to the single-mode case (by less than 2%), while the bubble shows
tremendous growth enhancement (about 65%). In fact the bubble amplitude is greater
than the spike amplitude until about 25 ns. The out-of-phase case strongly differs
from both the in-phase and the single-mode cases. The bubble growth is again
enhanced, though only slightly (by about 1%), but there is tremendous reduction of
the spike growth (by about 60%). In contrast with the single-mode case, the spike and
bubble growth are nearly symmetric in both of the two-mode cases.

In summary, mode 10 has little effect on mode 1 during the linear and early
nonlinear phases of the instability evolution, but has a strong effect during the deep
nonlinear phase when the driving accel eration has decayed to below 25% of its peak
value. The effect can lead to either reduction or enhancement of the overall amplitude
growth depending on the phase of mode 10 relative to mode 1. In both cases, the short
wavel ength noise has a symmetrizing effect on the spike-bubble growth. The phase-
correlated noise causes some growth enhancement relative to the single-mode case
while the phase-decorrelated noise results in tremendous growth reduction.
Furthermore, this effect does not appear to result from mode 10 providing an effective
density gradient at the mode 1 interface.

The operative mechanism can be understood by observing the interface as it
evolves (see Figs. 7-10). At 2 ns[1 ns after shock refraction — see Fig 7(a)], both
modes are apparent in the two-mode cases, and the effect of mode 10 on mode 1 is
clearly small. At this point mode 1 isjust entering the early nonlinear phase (a/A =
0.1) while mode 10 has already attained a/A = 0.4. In the single-mode case, KH rollup

at the spikesisvisible within 3 ns of the interaction time. In the two-mode cases, the
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Figure 7: Density plotsat (a) 2 ns, (b) 4ns, (c) 6 ns,and (d) 7 ns. At M > 0.1, the

drag force affects not only the saturation velocity, but also the shape of the spike and
bubble.
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Figure 8: Density plotsat (a) 8 ns, (b) 9 ns, (¢) 11 ns, and (d) 12 ns. Deflection of
spikes resultsin colliding spikes, especially for interfaces consisting of periodic
arrays of spikes (phase coherence). Fast colliding spikes drive premature bubble-
merger and produce upwards and downwards-directed jets, with most of the energy
directed down for collision perpendicular to the zero-order flow velocity direction.
Downwards-directed jets strike the inner surface of bubble tips, thereby depositing
energy that accelerates bubble growth.
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Figure 9: Density plots at (a) 16 ns, (b) 26 ns, and (c) 30 ns. Coupling of the spike
interaction process with the KH instability results in additional coupling between and
generation of scales and greatly enhanced mixing in the layer. Thisis a complicated
nonlin. transfer of energy from spikes to bubbles and from transverse to parallel KE.
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Figure 10: Density plots at (a) 34 ns, (b) 38 ns, and (c) 40 ns. The result isthat large-
scale features present during late nonlinear instability evolution are strongly affected
by small-scale details of the initial conditions. In this case, phase coherence resultsin
increased bubble growth while phase decoherence gives spike growth suppression.
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bubble merger process proceeds rapidly. The ten small-scale bubbles per mode 1
wavelength present at 2 ns merge into five by 4 ns, and then into two or three
(depending on the phase) by 6 ns. After one more merger, the process is complete by
10 ns. By 5 ns[see Figs. 7(b)-7(c)] the shape of the primary spikes has been
significantly altered by the presence of mode 10. The remaining secondary spikes
(bubble merger is already underway) near the tips of the primary spikes have acquired
atransverse growth component that is particularly pronounced in the in-phase case
[see Fig. 7(d)]. In the in-phase case, pairs of transversely growing secondary spikes
collide with one another at about 8 ns[Fig. 8(a)], driving premature bubble merger
and producing upstream and downstream-directed jets. Since the collision direction is
nearly perpendicular to the main flow direction, most of the collision energy is
directed downstream. In the out-of-phase case, only a grazing collision occurs
because every other of the secondary spikes (at the primary spike tips) still has a
significant upstream velocity component. As aresult, half of these secondary spikes
are directed downward and eventually strike the primary spike stalks at about 11 ns
[Fig. 8(c)]. Thisin turn causes a sudden reduction in the spike amplitude growth rate
and leads to the large reduction in spike growth relative to the single-mode case
observed at late times. Also at about 11 ns, the downstream-directed jets produced in
the in-phase case strike the inner surface of the primary bubble tips, thereby
depositing energy that suddenly accelerates the bubble growth. At later times, KH
activity near the primary spike tips effectively regenerates the smaller scales lost due
to bubble merger. The process of secondary spike collision and jet formation can then

continue, particularly in the in-phase case. This occurs, for example, between 26 and
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30 ns (see Fig. 9). Each new jet sends more spike material downstream into the
primary bubble region, so that the coupling between KH and secondary spike
interaction results in greatly enhanced mixing in the layer in addition to additional
coupling between and generation of scales.

In the out-of-phase case, alarge-scale vortex beginsto form across severdl
mode 1 wavelengths between 26 and 30 ns. This signifies that the edges of the
computational domain have begun to influence the interface evolution al aong the
transverse direction. By thistime, however, the spike amplitude in the out-of-phase
case has aready been greatly reduced relative to the other cases and has nearly
saturated.

At very late times, there are large differences in the interface structure of all
three similations (see Fig. 10). Thus the large-scale features present during the late
nonlinear instability evolution are strongly affected by the details of the initial
conditions. Not only the presence of the short-wavelength mode, but also its phase,

has a dramatic impact on the final state.

VII. Comparison with experimental data

Two sets of two-mode short on long experiments have been performed at
Omegato investigate the effect of a short wavelength secondary mode on the
evolution of along-wavelength primary mode. The wavelengths and initial

amplitudes of the two modes are the same asin the ssimulations. The first series of
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four targets was shot in April 2003. In an effort to obtain atrue side-by-side
comparison unaffected by shot-to-shot variationsin drive energy, the interface in each
of these targets was divided in two regions — single-mode on one side and two-mode
on the other. Unfortunately, al information on which side of each target was single
mode and which was two-mode was lost. Figure 11(a) shows a radiograph from one
of these shots (half single mode/half two mode in phase) at 25 ns. The spikes
corresponding to the long-wavelength mode are just beginning to break up all along
the interface. Interpretation of the datais difficult because the single-mode side of the
target may have been corrupted by spike breakup on the two-mode side or by the
discontinuity at the boundary between the two sides. In addition, the discontinuity at
the boundary makes observations near the centerline unreliable, and it is precisely this
region that is least affected by interface curvature and therefore generally the source
of the best data.

Because of these factors, the second target series (shot in August 2003)
included two single-mode targets (imaged at 18 and 25 ns) and two two-mode out-of -
phase targets (at 25 and 30 ns). Data obtained at 25 nsis shown in Figs. 11(b)-11(c)
to provide a comparison between the single-mode and the two-mode cases. The
single-mode spike and bubble structure initially present in the single-mode target has
persisted to late times, while any such structure initially present in the two-mode out
of phase target has vanished. Asin the simulation, the presence of the short-
wavel ength mode appears to have completely broken up the primary mode. The
uniformity of the x-ray transmission through the mix layer suggests that 3D structure

has emerged and a transition to turbulence may have taken place.
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Figure 11: Experimental radiographs at 25 ns. (a) A “half and half” target with a
single mode perturbation on one side and two mode in phase on the other exhibits
single-mode-like spike and bubble structure that is just beginning to break down. (b)
The single mode target retains single-mode-like spike and bubble structure, while the
(c) two mode out of phase shows reduced growth and a breakdown of large-scale
structures.

Mix width datafrom all of the shotsis compared in Fig. 12 with the
simulation results, in this case shown without subtraction of the decompression effect.
The data points are shifted by 1 nsto account for the way in which the smulations are
initiated, and the experimental error is given by the height of the data-point boxes.
Two data points are included for each half single-mode/half two-mode — one for each
side of the target. Below 20 ns, all three simulations agree to within the experimental
error, and the data agree with the ssmulations. The single-mode and in-phase
calculations agree with each other above 20 ns as well, while the predicted out-of-

phase amplitude falls significantly lower. Datais available for all three cases at 25 ns,

but the predicted amplitude reduction is still comparable to the measurement
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Figure 12: Comparison of data with simulation without decompression effect
subtraction. The size of the data pointsisthe size of the error bars. Two data points
are included for each “half and half” targets, one from the single mode side and one
from the two mode side. Since it is uncertain which side is which, both points are
labeled either in phase or out of phase. As predicted by the simulations, the two mode
out of phase targets exhibit reduced growth relative to the single mode. The late-time
behavior of the two mode in phase case cannot be resolved by the data.
uncertainty. Above 25 ns, available datais limited to an out-of-phase point at 30 ns,
which agrees with the simulation, and two points from a half single-mode/half out-of-
phase target at 37 ns. The smaller-amplitude side of the target agrees well with the
two-mode out of phase simulation, while the larger-amplitude side falls between the
predicted single mode and out-of-phase amplitudes. A possible explanation is that the
larger-amplitude side is the single mode perturbation corrupted by the out-of-phase
side.

Though the quality and quantity of the data are not sufficient to definitively
validate the simulation results, they do confirm that the presence of the secondary
mode can dramatically alter the evolution of the mix region in the late nonlinear

regime. They also suggest that the breakup of the large-scale spikes, which almost

certainly indicates the presence of 3D flow and might correspond to atransition to
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turbulence, resultsin alarge reduction in the growth of the mix region relative to the
single-mode result. In this case, the reduced amplitude is close to the prediction of the

two-mode out-of -phase simulation.

VIII. Analysis of earlier results

In a previous paper,”™ we presented simulations of two and eight mode
experiments performed on the OMEGA laser. The 2-mode perturbation [see Fig.
13(a)] was characterized by a sum of two sinusoidal components (in phase) with
wavelengths of 40 and 60 um and amplitudes of 1.25 and 1.5 um, respectively. The
wavelengths present in the eight-mode case are given by A, =180um/i with i ranging
from 1 to 8, while the amplitudes range from 0.4 to 0.7 um. Asin the two-mode case,
al modes in the eight-mode case were in phase. We found that CALE simulations
agreed well with the experimental radiography in perturbation amplitude and
interface structure. However, despite efforts to account for bubble merger, we were
unable to successfully apply the buoyancy-drag model that had successfully predicted
the single-mode growth.

In the two-mode case, the bubble growth is consistent with the model
description. The spike velocity, on the other hand, abruptly increases at about 15 ns
and subsequently undergoes a period of growth that is nearly linear in time. This can
now be understood in the context of the secondary spike interaction and jet formation
process. A pair of secondary spikes with both transverse and upstream growth

componentsis clearly visible near the tip of every other primary spike at 13 nsin both
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enhancement due to the interaction of secondary spikes. (a2) Decompression-corrected
spike and bubble amplitudes. The spike velocity increases suddenly at about 15 ns.
(b) Simulated and experimental radiographs at 13 ns, just prior to secondary spike

interaction.
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the ssmulation and experiment (see Fig. 13). In the ssmulation, the sudden increase in
spike velocity occurs when these pairs of secondary spikes strike the intervening
primary spikes, to which some of their upstream energy is transferred. Because the
secondary spikes do not have a downstream growth component, thereis no large
downstream jet production and no consequent bubble growth enhancement.
In the eight-mode case, the collision of pairs of spikes (the distinction between
“primary” and “secondary” is ambiguous because there is less separation of theinitial
modes in wavenumber space) does create downstream-directed jets that strike the
inner bubble surface, resulting in an abrupt increase in bubble velocity at about 18 ns
(see Fig. 14). At late times, the bubble amplitude is significantly greater (by about
30%) than that of the spikes.

In both the two and eight mode cases, spike-spike interactions strongly
influence the late-time amplitude histories. The exact nature of the effect, however,
including the relative influence on spikes and bubbles, depends on the details of the

initial spectrum.

| X. Discussion

The aerodynamic drag pressure acting on the developing spikes not only
determines their terminal velocity, but also affects their shape. Asthe instability
growth rate increases, so too does the transverse velocity of redirected secondary
spikes. The degree to which the large-scale interface structure is influenced when

redirected secondary spikes collide with each other or with primary spikesis
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Figure 14: Previous eight mode experiment and simulation show bubble growth
enhancement due to jet production and interaction with bubbles. (a) Decompression-
corrected spike and bubble amplitudes. (b) Simulated and experimental radiographs at
13 ns showing spike interaction that leads to jet production above the primary bubble

tip.
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determined by their speed. The drag pressureis related to the thermal (or interface)

pressure P, through the expression

PN =y M°P 6)

where M isthe instability Mach number, v, is the spike velocity, and p, and vy, are the
density and adiabatic index of the spike material. When the Mach number is equal to
0.3 (M? = 0.1 isthe threshold for the appearance of compressibility effects®), the drag
pressure is about one-tenth of the thermal pressure. Instability Mach numbersin our
case in fact approach this regime (recall My, = 0.15 - 0.20 and M ;. = 0.25 - 0.40).
The process whereby the local pressure increase in secondary bubble regions results
in partialy redirecting the growth of secondary spikes into the transverse direction is
reminiscent of the pinching effect noted by Li to occur during bubble merger.®
Because the flow velocity into the primary bubble is greater than into the secondary
bubble, Bernoulli’ s equation requires that the pressure there be lower. Consequently,
the spike dividing the two regionsiis redirected towards the primary bubble’s center.
Li hypothesized that the resulting reduction in effective Atwood number would
eventually reduce the velocity of the larger bubble. But in our in-phase case, the head-
on collision of two fast-moving secondary spikes produces an even faster
downstream-directed jet. When it strikes the inner surface of the primary bubble, its
ram pressure in the bubble frame is 0.45 Mbar — roughly equal to the 0.50 Mbar
thermal pressure of the plastic at the bubble position. It istherefore able to penetrate
asignificant distance into the plastic (in a process similar to a cratering event),

thereby enhancing the bubble growth. Although there is no head-on collision of
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secondary spikes in the out-of-phase case, the redirected spikes are still sufficiently
energetic to essentially punch through the primary spike stalks.

Whether or not redirected secondary spikes collide with each other or with
primary spike stalks depends critically on the degree of phase coherence. Interfaces
consisting of periodic arrays of spikes are more likely to evolve into colliding spikes.
For a system such as ours with two commensurate modes, this requirement is satisfied
when the modes are in phase. Of course real physical systems such as interfaces
within supernovae and ICF targets, whether characterized by only afew or by many
modes, are very unlikely to exhibit high degrees of phase coherence. Indeed, the
perfect symmetry enforced by the in-phase calculation is arguably rather unphysical.
Systems comprised of incommensurate modes can, however, have regions of locally
significant phase coherence. Such regions will likely exhibit accelerated growth, but
whether this eventually determines the dominant scales of the mix region remains to
be seen.

In addition, there are important implications for those who wish to model
physical systems. In multimode RT and RM simulations, the domain is often limited
to a subsection or wedge of the full system with reflecting boundary conditions. In
order to avoid unphysical effects at the boundaries, the initial perturbation spectrum
sometimes includes only modes whose wavelengths are integer fractions of the full
domain. The “random phase” assignment then amounts simply to a random
assignment of plus or minus one to the amplitude of each mode. Since such spectra
are actually characterized by a high degree of phase coherence, these ssimulations, if

strongly driven, might significantly over-predict the growth of the mixing layer.

98



Regardless of the degree of phase coherence, the interaction of redirected
spikes represents a coupling between transverse and parallel motionsand a
complicated nonlinear transfer of energy from spikes to other spikes (driving
premature bubble merger) and to bubbles (perhaps resulting in increased spike-bubble
symmetry). Coupling of this process with the KH instability resultsin additional
coupling between and generation of scales and greatly enhanced mixing in the layer.
Since turbulence requires the development of abroad inertial range of scales, this will
likely decrease the time to transition.

The result that large-scale features present during the late nonlinear instability
evolution are strongly affected by details of the initial conditions must be reconciled
with the expectation that, at some point near or after transition, the mixing layer will
begin to grow at arate that is independent of theinitial spectrum. If this expectationis
correct, then the memory of the initial conditions must somehow be erased. The
observed dependence would in that case be atransient phenomenon that would
eventually disappear as the bubble size distribution settlesinto a scale invariant form.
However, this argument requires the continual emergence of larger scales and
depends on the existence of asustained drive. In our case, the acceleration is decaying
as the shock moves continually further away from the interface. At the sametime,
perturbation growth continues because of material decompression. The combination
of adecaying drive and continuing decompression means that transients can

effectively be “frozen in” to the flow and thereby persist to late times.
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X. Conclusions

In conclusion, we have shown one way in which compressibility affects the
2D evolution of hydrodynamically unstable interfaces. When the instability Mach
number is higher than 0.1, the pressure associated with kinematic drag on devel oping
spikes can be sufficient to partialy redirect spike growth into the transverse direction.
For an interface with along-wavelength primary mode and a short wavelength
secondary mode, the interaction of redirected secondary spikes introduces sensitivity
to the initial conditions (both the spectrum and phase distribution). The devel oping
instability then “remembers’ small-scale details of the IC’ swell into the late
nonlinear stage of its evolution. Phase coherence tends to result in increased
perturbation growth - especialy of bubbles, which could lead some “random phase”
multimode simulations to overstate the growth of the modeled physical system.
Phase-decoherent noise generally results in growth suppression. Coupling of this
process with the KH instability resultsin additional coupling between and generation
of scales and greatly enhanced mixing in the layer.

Demonstrating the transition to turbulence in high Mach number experiments
isacrucia step in developing an experiment-based understanding of supernova
hydrodynamics. Nevertheless, in order to truly represent the desired astrophysical
system, future experiments will need to not only reach transition, but to reach it early
on while the acceleration is still large. Thiswill likely require asignificant increase in

the drive intensity, and would also benefit from 3D IC’s consisting of many short
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wavelength modes. With thisin mind, we are beginning to use adaptive mesh
refinement (AMR) simulations with NIF-like drive conditions to investigate the
dependence on the spectrum and degree of phase coherence for interfaces with many
modes over awide range of scales. Finaly, we note that we expect the jet effect to be
significantly smaller, if not altogether absent, in 3D systems with broad spectra.
Consequently, 3D calculations are being planned to study the effect of initial
conditions on determining the time to transition and the properties of the subsequent

turbulent flow.
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Chapter 4: Bubble merger model for the nonlinear

Rayleigh-Taylor instability driven by a strong blast wave

|. Introduction

The basic Rayleigh-Taylor (RT) instability criterion,™ neglecting certain
potentially stabilizing factors such as surface tension®, is the existence of anti-parallel
components of pressure and density gradients (VPeVp < 0). When this condition is
met at an interface between two materials with density ration < 1, perturbations on
the interface will grow in time. In the inviscid limit, the instability develops
exponentially while the perturbations remain small (during the linear phase) with a

growth rate given by*

| kgA
Vi+kL'

Y (1)

where k is the perturbation wavenumber, g is the acceleration, A = (1-n)/(1+n) isthe
Atwood number, and L is the density gradient scale length at the interface. At later
times, initially sinusoidal perturbations grow into spikes of heavier fluid “faling” into
lighter fluid and bubbles of lighter fluid “rising” into heavier fluid. For A =1, the
bubbles rise with constant (terminal) velocity while spikes fall with constant
acceleration in the nonlinear regime.>® When A < 1, the spike eventually also reaches

terminal velocity.®
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Figure 1. Density (curve 0) and pressure (curve 1) behind a blast wave that has passed
through amaterial interface from a 1.42 g/cc plastic to a0.1 g/cc foam. The interface
is RT unstable due to the presence of antiparallel density and pressure gradients at the
interface. The dotted line showsthe initial (pre-shock) density profile. The data are
from alD CALE simulation of the experiment-relevant planar hydrodynamics at 14
ns.

The RT instability criterion can also be satisfied at a material interface
through which a blast wave has been transmitted from a heavier to alighter fluid.? As
isillustrated in Fig. 1, since the pressure behind a blast wave is always falling in time
at any fixed point and in distance behind the shock front (at least in the self-similar
regime’), an interface generally becomes RT unstable when it transmits a blast wave
down adensity gradient (ie from more dense to less dense material).

Shock and blast waves are common participants in astrophysical processes.™
In a core-collapse supernova, for example, the sudden release of an enormous amount
of energy at the star’s core drives a strong blast wave that propagates out through
layers of progressively less dense matter.*** As the interfaces between these layers
subsequently decelerate in the expansion fan behind the blast front, they are RT

unstable.® The potential significance of this phenomenon was realized with

observations of SN1987A, when it was found that spherically-symmetric explosion
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models failed to correctly predict the velocity and arrival time at the surface of heavy
elements originating from the star’ s central regions. It has been suggested that the
discrepancy results from the failure of the 1D models to account for the turbulent (the
Reynolds number has been estimated™ to be of order 10'°) RT mixing that is certainly
occurring at unstable interfaces, *1241°

A great deal of experimental, theoretical, and computational work has been
directed towards understanding the evolution of RT unstable systems, and much
progress has been made in the last fifty years. Much of this effort has focused on the
classical case of incompressible fluidsin a uniform acceleration field. For systems
driven by strong blast waves, such as core-collapse supernovae and the high-energy-
density laser-driven experiments'®* designed to study them, the acceleration is
strongly time-dependent and the flow is compressible. Consequently, ideas and
observations pertaining to classical RT systems do not necessarily apply. The purpose
of this paper isto examine how models of nonlinear RT growth should be modified
when applied to blast-wave-driven systems and what implications these differences
have on self-similarity, loss of initial conditions, and transition to turbulence.

We begin by reviewing the stages of classical RT instability growth, focusing
on the nonlinear regime, and describe the types of models commonly used to predict
the evolution of multimode interfaces. We use a simple version of the Sharp-Wheeler
bubble merger model®* to illustrate the loss of memory of initial conditions and the
hypothesized establishment of a self-similar regime, and discuss their relationship to
the system’ s transition to turbulence. After a brief review of relevant aspects of blast

wave theory, we outline in more detail the peculiarities of blast-wave-driven RT and
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present an appropriately generalized buoyancy-drag model. We discuss bubble
merger for the blast-wave-driven case and the statistical-mechanical merger model
resulting from combining it with the single-mode buoyancy-drag model.

For planar blast-waves, the onset of self-similar instability growth and the loss
of memory of initial conditions do not follow from the model asthey do in the
classical case. Instead, the ratio of mix width to dominant transverse scale grows
slowly in time during what we call a quasi-self-similar regime.

Self-similarity and loss of memory of initial conditions are possible for
divergent systems, but require very high initial characteristic mode numbers and high
incident Mach numbers. This requirement has serious implications for supernovae.
Initial conditions predicted by recent stellar calculations®”?® suggest that initial mode
numbers present in supernova progenitors are not high enough to reach the self-
similar regime. Instead, the late-time instability evolution would depend on the initial
perturbation spectrum.

Finally, we include a generalization of the model for interfaces driven by non-
ideal blast waves and make some comparisons with simulations, experiments, and

observations.

|1. Classical case

In its most basic formulation, the Rayleigh-Taylor instability describes the

evolution of an interface separating a heavier (more dense) fluid supported by a
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lighter (less dense) fluid in auniform acceleration field. In the linear approximation,
which isvalid for ka< 1, pertubation growth is exponential with a growth rate given
by Eqg. (1). When the amplitude becomes comparabl e to the wavelength, the linear
approximation breaks down. Buoyancy-drag models treat bubbles of lighter fluid and
spikes of heavier fluid as the fundamental nonlinear objects. The model of Oron et
al,”® which follows earlier work by Y oungs® and Dimonte and Schneider,* predicts

that 2D bubbles “rise” with avelocity determined by

= (s = py)a(t) - C—AD Py (29)

The equation for the spike velocity is obtained by ssimply interchanging spike and
bubble densities. The added mass coefficient C, equals 2 for 2D perturbationsand 1
for 3D perturbations, while the drag coefficient C, is 6x for 2D perturbations and 23,
~ 7.66 = 1.22 x 2, where 3, isthe first zero of the first-order Bessel function, for 3D
perturbations. Some authors, including Oron et a.,” use C, = 2x for 3D bubbles.
These drag coefficients, originally derived by Layzer® following earlier work by
Davies and Taylor,* apply to A = 1 bubbles rising in tubes of diameter A or 2D flow
between parallel plates. In either case, A istwice the transverse scale of the bubble.
Since spikes at A=1 are infinitely narrow, the transverse scale of the bubble is equal
to the wavelength of a periodic array of bubbles. As A decreases below unity,
however, the width of the spikesincreases until, at A =0, thereis no distinction
between spikes and bubbles. Rather than making the transverse scale in Eqg. (2a) a
function of the perturbation wavelength and Atwood number, we instead redefine the

drag coefficients so that
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D

o |37@+ A) for bubbles
3r(l- A) for spikes

D p(d+ A) for bubbles
p(1-A) for spikes

(2b)

D

With this definition, A is always the perturbation wavelength. Because of Kelvin-
Helmholtz (KH) rollup at the spike tipsfor A < 1, the actual spike width will be
greater than that implied by (2b). The same istrue for bubbles at low Atwood
number. In those cases where KH effects have a significant impact on the spike
and/or bubble width, the drag coefficients should be adjusted accordingly.

Strictly speaking, the valuesin (2a) apply to single bubbles that are laterally
confined or periodic bubble arrays. For chaotic bubble fronts, experiments* and
simulations® suggest that the drag coefficients should be smaller by afactor of about
6, corresponding to asymptotic velocities that are higher by afactor of about 2.5.
Glimm and Li have suggested that thisis because the leading bubbles in chaotic
arrays are laterally less confined by their neighbors then those in periodic arrays.®
Equation (2a) isjust Newton’'s second law, where the inertial term on the left of the
eguals sign contains an added mass coefficient C, and the two forces (per unit
volume) on the right-hand side are buoyancy and drag. Terminal velocity is attained

when the two forces balance one another, and the resulting asymptotic velocity is

Uy, - ““‘|1_ nb’5| Lg= Cb,s\*"/L—g’ o

S ’\“\‘ CD

wheren,s = ppdPsp- N What follows, we typically drop the spike and bubble

subscripts with the understanding that the merger models describe mergers between
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bubbles rather than spikes. Merger models are based on the fact that larger bubbles
rise (or grow) faster than smaller bubbles and the observation that smaller bubbles
“merge” to form larger bubbles. Statistical mechanics merger models for the
Rayleigh-Taylor instability describe the evolution of a bubble size distribution
function g(A,t), which gives the number of bubbles in the system with transverse sizes
between A and A+d\ at time t.2°*® Such models are built out of two main components.
The first component is amodel for the velocity of a single bubble, such as Eqg. (2) or,
more typicaly, Eqg. (3), and the second is arule for the merger of two neighboring
bubbles. Merger rates have been obtained from theory,?**°*% gimulation,”* and
experiments.”® In the very simplest model, the merger rate is a constant independent
of the size of the bubbles involved.* In a more reasonable approach, which we will
adopt, two neighboring bubbles are said to have merged when the larger of the two
has risen above the smaller bubble by a constant fraction of the smaller bubble’'s
transverse size.”**’ In either case, the smaller bubble, observed experimentally* to be
“washed down stream”, is removed from the ensemble. In 2D, the diameter of the
surviving bubble is equal to the sum of the diameters of the two pre-merger bubbles.
In 3D, arearather than diameter is the conserved quantity.

The evolution of the bubble-size distribution g(L ,t) is given by*®

N(t) dgf;'t) - —29(L,t)jg(L’,t)a)(L,L’)dL’ 4 Tg(L’,t)g(L UL, L-LYdL' (4)

where the total number of bubbles N(t) = f g(L,t)dL and the merger rate w(L,L’) is
0

inversely proportional to the time interval required for a merger between two adjacent

bubbles with transverse scalesL and L’. The first term on the right-hand side is the
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rate at which bubbles of size L are lost in merger event, and the second term gives the
rate at which bubbles of size L are generated.

It has been proposed that, at least for the classical case, an RT-unstable system
tends to approach a self-similar (or scale-invariant) regime independent of the initial
conditions after several generations of bubble merger above the largest significant
scales present in the initial spectrum.* Thisistrue of the model given in Eq. (4) for a
wide range of merger rates, and is also supported by alarge body of experimental,*
theoretical,*** and computational* work. L ate-time independence of initial
conditions in hydrodynamically-unstable systems means that two interfaces, even if
characterized by wildly different perturbation spectra at time zero, will eventually
reach aregime in which their perturbation amplitudes, velocities, and statistical
spectral properties (or bubble size distribution functions) will become equalized.
Strictly speaking, we require that the relative difference between the two systems
vanishesin the limit that t goes to infinity. The instability evolution is self-similar if
the shape of the bubble distribution function does not change in time except for a
linear multiplier that increases in proportion with the bubble size expectation value.
In the self-similar regime, the mix width h(t) grows in proportion to the characteristic
bubble size (the bubble size expectation value).

To illustrate the mechanism by which initial conditions might be erased in the
RT instability, consider the following toy model of bubble merger: Assumethereis
only one bubble size (L) at any timet, and that L, is the bubble size at time zero.
Then, at each merger, the bubble size is doubled, so we have

L) =20, )
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where N(t) isthe number of bubbles of size L at timet. Now N(t) is determined by
the requirement that

t=1(Lo) +(2Ly) + ... +T(2"OL,), (6)
where t(L) isthe merger time for abubbles of size L. If we had t(L) =t independent
of L, then N(t) = t/xr, and so L would grow exponentially in time. Loss of initial
conditions is possible because the merger rate is not independent of bubble size.
Instead, larger bubbles take longer to merge than smaller bubbles. For classical RT,
dimensional analysis requires that®

7(L) =\ L/g. (7)
The terminal velocity for bubbles of size L (and spikesfor A < 1) isgiven by Eq. (3).
The coefficient C depends on the dimension of the perturbation and the Atwood
number. Note that Eq. (7) says that the bubble merger time is proportional to the time
it takes the bubble to rise by one bubble diameter. We define the dimensionless
constant C, as the fraction of a bubble diameter the bubble must rise before merger
takes place, so that

(L) = (C,/C)\/L/g = (C,/C) L, /92", 8
wherei isthe bubble generation number. Requirement (6) then becomes

“ N [ JooN/2 _
=8 Loyon G Loi22 -1 (9)

~2 |0 0
C\“‘gi=0 C\‘ g V2-1

from which it follows that

_otod E(vo_1) 1 94,1l
N(t)_2log[C (v2 1)\[0“1} 1. (10)

2

Inserting thisinto (5), we finally get
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L(t) = 03(1- %)@t+\%] . (11)

2

For times such that the inequality

C L
t>> E\Fg = 7(L,), (12

is satisfied, the first term in the square brackets dominates, and we get the limiting
result

L(t) — [3 (1- L)Tgﬁ (13)

C\ 2

That is, the dependence on initial conditions (theinitial bubble size L) islost at times
long compared to the first generation bubble merger time. Consequently, gt®is the
only transverse scale remaining in the problem.

Complete scale invariance follows from a similar argument. If we assume that
the merger process begin only after the L ,-size bubbles have reached their saturation
velocity, then we can express the perturbation height h(t) as the sum of the height at

the saturation time hg, plus the sum of the contributions of each generation:

N
h(t) = hy, + ) U™, = hy, + C,L, (2" -1). (14)

i=0
Using (5) and (9), this can be written as
h(t) - hg, = C,(2L(1) - Ly). (15)

With the solution for L(t) in Eq. (11), this becomes
[~ 2 C2 2 s%
h(t) - hy, =(v2-1) Co C(V2 -1} Logt. (16)
2

When condition (12) is satisfied, we are left with

111



h(t) - hy, = a(A)Agt?, (17)

where we have defined

a(A) = (v2-1) é:; (18)

Since hg, is of order L, it too can be neglected when (12) is satisfied if C, is greater
than or of order unity. Thisyields the familiar result

h(t) = a(A) A g t* (19)

Thus at late timesthe initial scale L,is not retained in the expression for the
perturbation height. Together, Equations (13) and (19) show that gt* emerges asthe
only remaining length scale in the problem. Since L(t) and h(t) have the same
temporal scaling, the perturbation height is proportional to the wavelength, with

h(t) / L(t) = 2C,, (20)
and the system is said to be in the scale invariant regime. Note that asymptotic self-
similarity follows directly from Eq. (15) and, for our general merger model [Eq. (7)],
depends only on the assumption that merger occurs after the bubble has traversed a
constant fraction of its diameter.

The mechanism for the loss of initial conditionsis worth restating and can be
easily visualized as follows. We rewrite Eq. (9) as follows to express the time at

which the scale L is reached:

C, LY 1
t(L)==2 =) — 21
*) C\“‘gi=02”2 =)
where
N =log,(L/L,). (22

For large N, the sum in Eq. (21) is dominated by the first several terms, while the
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Figure 2: Loss of memory of theinitial transverse scale: For a system having
undergone N bubble merger generations, the number of generations n < N necessary
to include in the sum in Eqg. (21) in order to reduce the error relative to the full sum
(from O to N) to 10%. Above N = 10, the sum is dominated by the last seven terms.

later terms are of less relative importance. The relative error of a partial sum fromii

equals zeroto n < N isgiven by

o(N-n)/2 _q

Relative error = (23)

V22N g

Figure 2 isaplot of the n at which the sum is 90% converged, as a function of
N. Above N = 10, the the sum is dominated by the last seven terms. Thusaslong as N
islarge, its precise value is not important in determining t(L). In other words, after
many generations of bubble merger, the time to reach agiven scale is only weakly
dependent on theinitial scale.

Before proceeding, there are afew points worth making. First of al, we note
that we could have arrived at Eq. (19) by assuming from the beginning that the
system eventually becomes self-similar.® That is, we use Eqg. (20) to replace L(t) in
Eq. (3) with h(t) and equate ™™ with dh/dt. The solution of the resulting first-order
ordinary differential equation isagain Eqg. (19), now with

a(A) = (U4) C*/ (C, A). (24)
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This result makes no direct assumption about the form of the merger rate and differs
from Eq. (18) only in the numerical pre-factor, which is now 0.25 instead of ~ 0.1716.
It is not surprising that the exact value of the pre-factor depends on whether the
bubble diameter varies discreetly, asin deriving Eqg. (18), or continuously, as for Eq.
(24).

A second point is that for bubbles a.(A) depends on A like 1/(1+A), and
therefore changes by only afactor of two over the entire range of possible Atwood
numbers (neglecting in this instance the Atwood number dependence of our model’s
drag coefficient). This reasoning does not necessarily apply to spikes, though it must
in the limit of vanishing Atwood number (in which case thereis no difference
between spikes and bubbles). As A approaches unity, a.(A) for spikes must also
approach unity so that spikes freefall with the acceleration of gravity. The model fails
for spikesat A -> 1, whereit predicts that a(A) increases without bound, becauseit is
based on the assumption that the spikes have reached terminal velocity. Putting in
reasonable values for the coefficients and assuming the above scaling for the merger
time, wefind a.(A) = 0.036/[C, (1+A)] for 2D bubbles and a(A) = 0.097/[C, (1+A)]
for 3D bubbles [or 0.053/(C, (1+A)) in 2D and 0.142/(C, (1+A)) in 3D with the pre-
factor in Eq. (24)]. For spikes, the expressions are the same if we make the
substitution A -> -A. Despite the ssmplicity of our model and with C, = 1 as reported
by Glimm and Li,? these expressions agree to within about a factor of two with
experiments and simulations.”

Finally, we consider what a more precise expression for the bubble merger

time might look like. In areal system, merger eventsin genera involve bubbles of
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different size that satisfy a merger criterion that depends on the dimension of the
system. In 2D, the bubble diameter is conserved [L,,, = L; + L; = L; + kL, = (1 + k®)L;
= uL ], while the bubble areaisconserved in3D [L;,,* = L?+ L ?= L+ «"L,* = (1 +
k%) L% = u’L%].” A periodic array of identical bubbles is stable, so the merger time
for two bubbles of equal size should actually be infinite. Finally, the expression for
the merger time should be symmetricin L; and L;. If we again adopt the convention of
Sharp and Wheeler that bubble merger occurs when the height of the larger bubble
above the top of the smaller bubble is a fraction C, of the smaller bubble radius,”
then we find

(L) = (C,/C)\ L /g/(x -1). (24)
where L, isthe smaller of L; and L; and

k=L /L . (25)
This result, which was also derived by Alon et al.* for the Sharp-Wheeler bubble
merger model, satisfies the requirements given above for awell-behaved merger time.
The simple merger mode! discussed above hask = v2, but all of its conclusions
remain qualitatively unchanged for any other constant k. Following the same

procedure outlined above, we find that the transverse scale evolves according to

— 2
- - |
L(t) = k-1 1_# EMQH ﬁ (26)
G AR Vo

The bubble height growth is given by
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h(t) = h, + < (1-1)(L(t)—ﬁ)
1w

- u
1 K- 1- - -l
- O+M’<_1(1_L| Mg 4 2" 1(1-L) ;Mﬂgt (27)
1-Uu C, |7 Ju) G C\ Ju)\ G ou
RTR 1-
L 1-1uk-1 1_# Mgt2
1-1/u C, vu) Gy

if L(t) varies discontinuously, resulting in the similarity parameter

@J_—l(l_i) 28)
h® G, | u
and by
h(t) = 1x-1 1_# Hgﬁ (29)
2 G, vu) Gy

if L(t) varies continuously, in which case we have

ﬂ_}ZK—l
h(t) C,

LL). (30)
N

In conclusion, we have used avery simple model of bubble merger to
illustrate and motivate the general properties of late-time multimode RT instability
evolution. Specifically, we have shown how theinitial conditions are erased from
both the transverse and parallel scales after times much longer than the first
generation of bubble merger. This forces the system into a scale invariant regimein
which the wavelength grows in proportion with the perturbation amplitude, and is
based on the fact that smaller bubbles merge faster than larger bubbles. Loss of initial
condition information is equivalent to the relative loss of importance of increasingly
higher order termsin a converging series expansion. In addition, the model suggests

why a(A) of the bubble might depend weakly, if at al, on the Atwood number.
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[11. Blast-wave-driven interface motion

The term blast wave is generally used to describe the fluid flow resulting from
astrong explosion in a compressible medium, and the relevant scale-invariant
solution to the Euler equations is discussed in the original works of Sedov** and
Taylor®® and in several other excellent references (see, for example, Landau and
Lifshitz,*” Zel’ dovich and Raizer,” and Barenblatt*). Other than the most general
overview of blast waves, it isimportant for our purposes to demonstrate RT
instability due to the transmission of a blast wave through an interface, to determine
the driving deceleration felt by the interface, and consider the effect of the large-scale
fluid gradients on the developing instability. With this information in hand, we will
extend the ideas of buoyancy-drag and stati stical-mechanical merger modelsto the
blast-wave-driven case.

A blast wave results when a large amount of energy isreleased suddenly in a
small volume within a compressible medium, asin an explosion. The expanding
source acts as a piston, driving a shock wave into the surrounding material. Because
of the impulsive nature of the drive, the shock strength decays as the front moves
away from the center. Aslong as the pre-shock pressure can be neglected relative to
the post-shock value (ie while the Mach number M<<1), the blast wave is described
by a self-similar solution to the compressible Euler equations. In thisidealized case,

the only dimensional parametersin the problem are the energy released (E) and the
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pre-shock density (p,) in units of mass per (Iength)® where d is the dimension of the
blast wave. Blast waves can be spherical (d=3) asin the case of supernovae or other
unconfined explosions, cylindrical (d=2), or planar (d=1). The term “planar blast
wave” is often used to describe the flow in impulsively-driven shock tubes, including
the millimeter-scale laser-driven tubes used for laboratory astrophysics experiments
designed to study compressible mixing in supernovae.'** The motion of a gas under
the action of an impulsive load is similar to, but distinct from, the solution for a
planar blast wave. Whereas the position of the planar blast front scales like t?*
independent of material compressibility (see below), the result in the impulsive load
problemist* where . = 0.5 at y = 1 and approaches 2/3 asy tends to infinity.? These
differences can be approximately accounted for by applying the generalized model
discussed below, which allows for arbitrary acceleration profile and velocity gradient.
The d-dimensional “radius’ of the shock front must then be proportional to

(Et?p,)Y2, the only length scale that can be formed from these parameters and time.

We define the constant of proportionality &, so that the shock displacement r,is given

by

Po

Et2 )™
o= Eo(—) : (31)
Thisexpression is differentiated to determine the shock’ s velocity and deceleration as

2\a2
vom (E_t) L2 @)

(33)

The similarity variable
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s L) Gy (34
varies from zero at the center to &, at the shock. Except for atime-dependent scale
factor, the fluid variables must depend only on the similarity variable. The scale
factors are determined by the strong-shock limit of the Rankine-Hugoniot relations,

which for a polytropic equation of state require that the post-shock density, pressure,

and fluid velocity are given by

ps = ﬁpo
T A (35)
Ug = -2V,

When the functions

p(r,) = p(§) = pH(8)
p(r,t) = p(&,1) = py(t) P(E) (36)
u(r,t) = u(&,t) = u(t)G(&)

are inserted into the Euler equations, they reduce to a set of ordinary differential
equations for the dimensionless functions p(&), p(§), and G(§). These equations can
be solved numerically or analytically, and atypical solution is shown in Fig. 3(a).
Because the pressure falls of monotonically behind the shock front, an interface
between two fluids is RT-unstable when it transmits a blast wave from the more
dense to the less dense material.

The velocity of alagrangian fluid element behind the shock front is

determined by
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Figure 3: (a) Typical solution (with y = 5/3) to the self-similar spherical blast wave
problem. (b) Motion of an interface between two identical fluids driven by a planar
blast-wave. The model-predicted shock trgjectory is from the self-similar solution and
the interface trgjectory assumes the asymptotic (linear) post-shock velocity gradient
(see text). The model agrees well with the simulation after the shock has swept up
twice the mass of the driver.
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where the first term describes the decrease in time of the fluid velocity scale factor

(the post-shock fluid velocity) and the second term describes the motion of the fluid
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element along the similarity solution. In obtaining this result, we have used the

evolution equation of the similarity variable, which is given by

d&(r,t) _ d&(r,1) N ua&(r,t)
dt ot or
2 &, 25 0®
d+2t y+1 E )

(38)

Given that the solution to the scale-invariant function G(&) is known, Eq. (38)
can be solved and its solution inserted into Eq. (37). Thisthen givesthe interface
acceleration history g (t) = du(§;(t),t)/dt that drivesthe RT instability.

The full analytic solution to the blast-wave problem with a polytropic EOSis
rather cumbersome, but the asymptotic (€ — 0) form of (&) is quite simple and
given by

q@) - TEE Lo 2 1T
u(g) = 2 & u(r,t) di2yt (39)

In fact, this asymptotic solution is generally a good approximation to the full solution
everywhere except just behind the shock front, where it under-predicts the velocity

gradient. The boundary condition at the shock front is

y 2y 2 1r
Ui, =1=u(r,t)=—"——-=-2, 40
(o) (ry0) +1ds2y t (40)

so the range of validity of the asymptotic solution is extended for more compressible
(y approaching unity) materials.

Equation (39) shows that, away from the shock front, the flow is characterized
by alinear velocity gradient that decaysin time, asin a centered rarefaction wave.

Thus a blast wave can be thought of as a shock wave plus a rarefaction wave.
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If we insert the asymptotic solution Eg. (39) into Eq. (38) and integrate, we

find that

2 y-1

E(t)- s(t?) V (41)

d+2)/

where t, =/ p/E (r,/&,)"*?"? is the time at which the shock reaches the interface.

The corresponding interface deceleration is then

o 2 2t )
907 d+2) [1_ y(d+2>](T) ’ (42

which can be integrated to obtain the interface velocity and position:

L 2 (4 l_y(dz+2)
"0 aal s “)
t y(d+2)
f (t) = ro(t_) . (44)

The position, velocity, and deceleration of the shock are recovered by settingy — 1in
Eqgs. (42)-(44). This means that, for an infinitely compressible medium, the interface
remains at the shock front at all times. Asisthe case of a steady shock, a more
general y describes how quickly the shock pulls away from the interface.

Figure 3(b) shows a comparison of Egs. (31) and (44) with a CALE®
simulation of an interface between two identical fluids driven by a planar blast wave.
The ssimulation isinitiated with a compressed slab at the origin with density and
pressure appropriate for laser-driven experiments.?* When the shock reaches 200um,
it has swept up twice the mass initially present in the driver. At subsequent times, the

model agrees well with the ssmulation.
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V. Buoyancy-drag model for blast-wave-driven case

With expressions for the interface deceleration and velocity gradient in hand
[Eqg.’s (39) and (42)], we now proceed to generalize the simple buoyancy-drag and
merger models presented in Section |1 model to the case of an interface driven by a
strong blast wave. In particular, we consider how compressibility and the time-
dependence of the driving deceleration change the main conclusions of Section Il.
This extension entails three main complications.

First of al, the blast-wave-driven interface is unstable to the Richtmyer-
Meshkov (RM) instability>**! in addition to RT. The RM instability results when a
shock crosses a materia interface, whether from light to heavy or heavy to light. The
shock deposits vorticity viathe baroclinic term in the vorticity equation, and the
evolution of the deposited vorticity field results in perturbation growth. The simplest
mode! of RM growth is the impulsive model, originally presented by Richtmyer,*
which treats the action of the shock as a delta-function acceleration. The impulsive
model predicts that the instability grows linearly in time while the perturbation
amplitude is small compared to its wavelength.

When both RM and RT are present, they do not necessarily add linearly, and
there isto our knowledge no genera (non-phenomenological) model that includes the

effects of both. Simulations of blast-wave-driven laser experiments suggest that, for
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strong blast waves, RM dominates the instability growth very early on while RT
dominates at later times.* Single-mode simulations were well modeled by a
buoyancy-drag model in which RM is approximately accounted for by simply setting
theinitial spike and bubble velocities equal to those predicted by the impulsive
model. In what follows, we assume that the main effect of the RM component isto
decrease the time required for the instability to reach the nonlinear state where the
buoyancy-drag model is applicable, and make no additional accounting for RM
effects.

The second complication is the time-dependence of the driving acceleration.
For an interface driven by a blast wave, the deceleration is greatest just after passage
of the shock front and subsequently decays in time. With a time-dependent
acceleration, the number of possible length scales that can be formed in the problem
independent of the perturbation scalesisinfinite [(fdt" g(t)"?)?" for al positive integer
n]. In the classical case, these collapse into the single scale gt®. If we allow g in Eq.
(3) to vary intime and still assume self-similarity, then we find that the mix width
growth should scale like**

h~ [fdt g*?)? (45)
Generalizing the bubble-merger model presented for the classical case [in particular

Eq. (24)], we find that the merger-time is given by

(k - 1)tfiua-wma') dt’' = (k - 1)C\/fitifwrﬁdt’ =C,L,. (46)

in the time-dependent acceleration case. Strictly speaking, g(t) in Eq. (46) isthe
acceleration at the position of the bubble tip. In compressible systems, thisis not

necessarily the acceleration at the unperturbed-interface location. For the time being,
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we will nevertheless use the interface acceleration gi(t) as the drive for bubble growth,
effectively assuming that the acceleration varies little over the bubble height.
Summing both sides of (46) fromi = 1to N as before, we find that the transverse

scale grows according to

L(t) = K‘l(l—%)f |1C"|g(t)dt } (47)

2 V& \‘ D

and that the late-time bubble amplitude height is given by

h(t)ngl(l—i) [ [ dtat” \/'C |g(t)\

2 M St

[1-n|
G

at") . (48)

The ratio of (47) to (48) gives the same similarity parameter as in the constant g case:

LO L ox-1fy 1 (49)
h G {7 yu
1- 1- 1- i
since tf [ dt’dt”\| U o(t" \/ il g(t") = [ \|CT’| g(t) | . Again, we recover

the [fdt g“?]? scaling for both L(t) and h(t) after several merger generations.
Experimental data obtained on a rocket-rig apparatus by Read* and Dimonte et al.*®
agree with this scaling for both rising and falling accelerations. This suggests that
time dependence alone does not invalidate the ideas of scale invariance and loss of
initial conditions.

However, it isimportant to note that Eq. (42) for the interface deceleration,
though non-zero at all times, is only valid while the Mach number of the shock is
high enough that we can neglect the pre-shock pressure (M? >>1= M 3 3). For a

real blast wave, the Mach number eventually approaches unity and the interface
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Figure 4. Estimated limiting drive time as a function of the average incident Mach
number of the blast wave [r/(ct,/)]. Att =t,, the Mach number predicted by the

model in the strong shock approximation is equal to onein (@) and 3in (b).

acceleration goesto zero. Thusthe interface is driven for afinite time that we can

approximate as

(d+2)/d (d+2)/d
W (2 T _ ( M gve) (50a)
t, \d+2ct, d+2
or
(d+2)/d (d+2)/d
W2 n) (_2 Mgve) | (500)
t, | 3(d+2)ct, 3(d+2)

which isthe time at which Eq. (32) predicts that the shock speed is equal to the pre-

shock sound speed ¢ [Eq. 50(a) and Fig. 4(a)] or three times the sound speed [Eq.
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50(b) and Fig. 4(b)]. In this expression, M, is the average Mach number up to t,. A
significant change in the shock speed due to transmission through the interface can be
approximately accounted for by rescaling t, on the right-hand side of Eq. (50). If the
bubble amplitude grows to the point that it is not small compared to the interface
coordinate r;, then the drive at the bubble tip falls below the interface deceleration and
the value of t,, will consequently be somewhat reduced.

For blast-wave-driven systems, loss of memory of initial conditions can occur
only if the time-dependent term in Eq. (47) becomes large compared to the constant

term, which includes theinitial transverse scae:

—

k-1, 1. -7 'L
Q- [ [ =—"gt)dt'>> |©. (51)
CZ \““un {\ CD \“Au’

Because of the drive decay, this condition must be satisfied in atimet <t,,.

The third complication is the violation of the assumption of incompressibility.
For a blast wave propagating through a single material that isinitially homogeneous
and isotropic, the density falls off monotonically as the material decompresses in the
rarefaction behind the shock front. Because of the density gradient, spikes and
bubbl es experience decreasing Atwood numbers as their amplitudesincrease.® Thisis
arelatively small effect for high Atwood number systems in the nonlinear regime,
and is not accounted for in our model. A more significant effect results from the
velocity gradient associated with the density gradient. In the self-similar regime
(while the blast wave Mach number is large), the post-shock fluid velocity is
approximately proportional to r/t (the § — 0 asymptotic result where € isthe
similarity variable) except for just behind the shock front. Decompression provides

another source of perturbation growth in addition to the RT and RM instabilities. We
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can account for the post-shock material decompression by adding the aterm 3, h, J/t,

where h, is the bubble (spike) amplitude, to Eq. (3) for the terminal velocity of the

bubble or spike:
dhy o (t) (-1 h,
S22 = = Ag(t S 52
w e, 90 h (52)

where again m,s = p,J/Psp- Theterminal velocity now depends explicitly on time and
on the bubble or spike height in addition to the transverse scale and time-dependent

acceleration. The coefficient p isgivenin Eq. (39) as y(d—ﬂz)for the case of anideal

blast wave away from the shock front. Equation (52) isvalid, however, for any RT-
unstable system in avelocity gradient proportional to r/t and interface position that
scaleslike t*. This allows for fitsin systems driven by non-ideal blast waves and
when 3 is different in each of the spike and bubble regions. Thisisthe only
accounting we make within the model for any deviations from the single-materia
blast-wave solution resulting from shock transmission through the interface. Again,
the situation is complicated if we account for the fact that the acceleration at the spike
and bubbletipsis not that same as at the unperturbed interface position. It follows
from Egs. (31), (42), and (44) that g, (1) = g ()[1F h, (1) /. (t) ], where the minus
(plus) sign isfor the bubble (spike). The approximation g, ((t) = g,(t), which we will
aways make, is valid when the perturbation amplitude is small compared to the
interface radius.

Equation (52) can be integrated to yield the perturbation amplitude history for

asingle mode driven by a strong planar blast wave:
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(d+2) ‘ _ (d+2) y(d+2)
h(t) = h(t,) Ly +2r, &M(M_l) Ly Ly 1 d=1
ty \r, Gy 2 t, t,

(53)
The effect of stretching due to material decompression is present both in the first
term, resulting in stretching of the initial perturbation, and in the second term, giving
enhanced stretching as the perturbation grows in amplitude. If we remove the time-
dependent factor in the first term and the first time-dependent factor in the second
term, we recover the result for a perturbation driven by a blast-wave acceleration but
without decompression. In the absence of decompression, the relative importance of
the first term, which includes the initial amplitude of the perturbation, tends to zero as
t tends to infinity. Significantly, the relative importance of theinitial amplitude does
not tend to zero when decompression is present. Asymptotically, the ratio of the first

term in EqQ. (53) to the second approaches a constant value of

hy | Co 1 hy [ o
~ 1n
VA Er-n1-2 [ o,

g where the first factor is for bubbles and the

second for spikes, for a planar blast wave. Thiswill typically be much less than one
even for bubbles, but could be significant for initially nonlinear perturbations on an
interface initially located no more than a few wavelengths away from the center.

For interfaces driven by multidimensional blast waves (d > 1), the wavelength
grows in time due to divergence according to

A(t) =27, (t) /m= A, (t) /1,, (54)
where m=2ar,/ A, isthe perturbation mode number, and Eq. (53) is no longer valid.

Instead, using Eq. (54) in Eq. (52), wefind
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2 2
(d+2) | _ (d+2)
h® =h(t)| L| "+ 2o oft "'(V(d““z)-l) ] ds1
t, yd+2)\r, C, \ 2 {, t,

(55)

Unlike the planar case, the relative contribution of the initial amplitude in diverging
systems tends to zero as late times (though only logarithmically). The continually
increasing wavelength gives a continually increasing growth rate for agiven
acceleration, but the acceleration in higher dimensions falls off much faster than in
1D. The net result isthat at |ate times the instability grows faster in 1D than in higher
dimensions.

Rather than restricting ourselves to ideal blast waves, we also consider the
more general case where we only require that the instability develop in alinear
velocity gradient given by Au = BAr/t, and that the interface trajectory follow

)

r(t) = ro(g) : (56)

The interface is driven by an arbitrary acceleration g(t), and the evolution of asingle

mode is given by

6\ enl( ) YT A ot dt
o-nf] on I RO @

where the wavelength is time-dependence only in diverging systems (d > 1).

This more general version of the model can be applied to laser-driven RT
experiments in which a~ 1 ns pulse from a high-powered laser is used to drive a
decaying shock into a millimeter-scale beryllium shock tube. Though it resembles
(and is often referred to as) a planar blast wave, the drive deviates somewhat from the

self-similar Taylor-Sedov solution discussed above. Figure 5 shows a comparison of
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Figure 5: Application of generalized buoyancy-drag model (Eq. 57) to bubble
amplitude growth in asimulation of aplanar RT experiment in which a high-powered
laser drives a plastic-foam interface with a pre-imposed single-mode perturbation.
The drive resembles alD blast wave with M ¢ = 60. The model curve (dashed line)
with 3 = 0.51 agrees very well with the ssimulation (solid line).

Eq. (57) with an A = 0.7 Raptor® simulation of a proposed experiment in which a1
ns 25 kJ driveis applied to a single mode perturbation with 50 um wavelength and
2.5 uminitia amplitude (The ssimulations and related experiments are discussed in
detail elsewhere'®**?). The model curve (dashed line) with B = 0.51 agrees very well
with the bubble amplitude history predicted by the ssmulation (solid line). A value for
[} can be obtained from the ssmulation either by measuring the velocity gradient,
which gives 3 = 0.61 or plotting the interface trajectory [using EqQ. (56)], which gives
B = 0.42. The average of these two gives the best agreement between model and
simulation. Because the model assumes that spikes and bubbles instantaneously reach
their terminal velocities, it does not accurately describe the spike growth at high
Atwood number. In such cases, one would have to numerically solve the buoyancy-
drag differential equation [Eq. (2a)] for the spike velocity relative to the flow at the
spike-tip position, adding at each time step the decompression velocity phy(t)/t to find

the velocity relative to the unperturbed interface. Thisis not necessary, however, in
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order to qualitatively capture the bubble-front evolution and associated inverse

cascade to larger transverse scales.

V. Merger model for blast-wave-driven case

We now consider how the merger model presented in Section |1 isatered in
the blast-wave-driven case. Rather than assume that the basic tenets of the model are
the same regardless of the relative sizes of the merging bubbles, we again treat the
more general case where abubble of diameter L mergers with alarger bubble with
diameter k°L (x > 1). For amerger event that begins at time t,, the difference in height
between the two bubbles reachesavalue of C,L at timet,, =t + T, wheret isthe
merger time. Equation (57) for motion of asingle bubble is applied to two bubbles of

diameter L and k°L, and the merger time is determined from their difference:
-B -B12 -B -B12
ty ty doidol VL [\ ty
g(t) " ot
f() o)
0 0

In (58), we have defined the parameter o, = (k _1)\f|1_ n|/Cy and Ah, = h, (t)-

(58)

h,(t,) isthe separation between the two bubbles at t,. The distinction betweenthed =1

and d > 1 isimportant because, in the divergent case (d > 1), we require that the
difference in height between the two bubbles reach C,L (t,.,) = C,L(t)(t,,/t )" before

merger.
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Recalling that =1+ x*for 2D perturbationsand u=~1+x"* for 3D

perturbations, we find that

B B
L - {MiLO’Zﬂn(ti)} _ M‘Lo,Zmo(ti)(t—‘) L AT l(t_i) , (59)
LL I Y L) ™ b

Inserting (59) into (58), we find

iz i ti+1 ! Ahi ti ! ti o
SR |1 B BcwE R | B ) B
0 detdot M AL 0 0

\To tf(l)_ﬁ % l(l)_ﬁlz a
C,0, . \To \on t, t

Asin the incompressible case, we wish to sum both sidesin i to find an implicit

relation for L =L (t\)=L,u"=L(t). Carrying out the sum, we find

VN L S S S AV
A ) ! [ - i T ’
i=0 b Nu-1 PP Cu /2'\5 Lo |\ ty

o _ /2 (61)
o ] e fy o) e
C,0, %\ b Vo t t

where the perturbation mode number my, = m,/u" = 27, /(MN LO). An important

consequence follows from the fact that the sum on the left-hand side of Eq. (61)
depends on the drive in the planar case but isindependent of the drive in divergent
systems. The second term on the right-hand side, which dominates at late times, is
independent of the initial conditions. If the left-hand side reduces to a function of L(t)
that is has no explicit dependence on L, inthe limit L(t)/ L, -> infinity, then loss of
memory of initial conditionsis possible. For d = 1, thisis not true in general for

arbitrary g(t), and can only be true for special choices of the merger time such as
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i\ P p
LEYS (LO—“) = (5) for arbitrary p. For planar blast waves, we will show that this
r‘O r‘O

condition is approximately met only within a small region of the parameter space.

For diverging systems, on the other hand, we have

pl2 2 Er—
f( ) Lo dt J Ly
200 1IZJr,u rh t \2aru

At late times, the mode number isindependent of the initial conditions, asisthe

-2

m(t) = d>1 (62)

transverse scale

Sl e

Inserting the time-dependent transverse scale into Eq. (57), we find that the mix width

L(t) =

( ) d>1 (63)

grows according to d>1 (64
( ot \P2 _ 2 r
h,1 L fdt,(t_) 1-n| Gott) | ﬁ
@_J o \/ﬁ\ fo ty VG o {i)
oo ol o) ()7 ol 2oty [\
R i 1(1 —) ) f dt’dt”( ) \/|1 ) tog(t)( ) €¢|1 n| tg(t”) |\
Cz \/7 ty to to CD o to \“ CD f'o J

|1 77|tog(t) \
r0 \M\/:{ (o) ‘ G o {t)ﬂ
1x- 11__)fdt( ) - nItog(t)] t

2(: Co T

In this general form [asin Eqg. (48)], the perturbative nature of the model is apparent.
The last term on the right-hand side, which describes the interaction between two
bubbles, is the first-order nonlinear term in a multi-bubble interaction expansion. In
truncating the series after the first nonlinear term, we are assuming that interactions

between three or more bubbles are insignificant compared to pair interactions. Note
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also that theinitial amplitude appears only in the first term on the right-hand side and
theinitia transverse scale appears only in the second term on the right-hand side. The
third term, which dominates at late times (as long as g(t) falls off Slower than 1/t%) is
again independent of the initial conditions, and we again find an asymptotically-self-
similar state with the same constant ratio of transverse to parallel scalesasin the

incompressible case:

ht G,

1- i) d>1 (65)

Nz

In fact, Egs. (63) and (64) areidentical to Egs. (47) and (48) for the incompressible
case except for the stretching factors (t/t,)f and (t/t,)*? in the integrals. Because of the
(t/t,) P2 factors, the time required for loss of memory of initial conditionsis longer for
systemsin aparallel velocity gradient then it would be in incompressible systems
with the same time-dependent acceleration g(t).

We now summarize the specific results of Egs. (57)-(64) applied to ideal (high
Mach number) blast waves. We first treat the non-divergent (planar) case and then

proceed to consider the effects of divergence on the model. With d = 1, Eq. (58)

where we have defined the parameter

ot =2k -1) \/ |1g ) ( V(d2+ 2) _ 1) . (67)

becomes

2 o
r

Ah [t . \r(@+2) |
C,= 1| +o
ey

1 1
- (d+2) - (d+2)
%JY (%)y 1, d=1 (66)

0
L

Equation (66) isaquadraticin (t,,/t)""""**! that can be solved to yield
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If Ah; iszero or otherwise negligible, then we have the somewhat simpler result
1
t,, @2 1 / 1
L =—|1+,/1+ 40C
( g 2[ A H 2

Together with the Eq. (61), Eq. (68) allows us to determine in what regions of

vLifo

1+ J1+ 4002&(“ oah )] d=1 (683)

\

1+ 1+ doC " \T]. d=1 (68b)

parameter space loss of memory of the initial transverse scale might be possible. The
sum in (61) has the necessary properties for loss of initial conditions as long as the
inequality

4oCu"? |2 <<1=> p' << 1¥2(x -1)" 2 is satisfied. The generalization of Eq. (23)

to arbitrary u suggests that, for classical RT, memory loss of initial conditions

requires that u™ ~ 100, or L = 100L . This suggests that the above inequality is

satisfied if = << A—(K 1)°. In this case, a perturbation expansion of Eq. (68)

400 C

gives t, /t ~1+ M(\ Li /1y = Lo /1, ) which makes the sum in (61) independent

Ju-1
of L, when L/r, becomes large compared to one. However, because our truncation of
the perturbation expansion requires that L, /r, is small, we cannot conclude that
memory of theinitial transverse scaleislost for planar blast waves even if theinitial
scaleisvery small compared tor,,

In general, the temporal evolution of the transverse scale can be determined

by numerically solving the expression

Lot b L
b=t t—=2—N]_[[1+ 1+ 40C,u?\ b d=1 (69)
0
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for N(t) and then evaluating L (t) = L(t\) = L,u"®. Similarly, the evolution of the

bubble height determined from

m=mﬁmm (70)

where, from Eq. (53), we have

1

2 =

) : (d+2) i — . (d+2)

s _ (8 @2y, 2 e /ﬁu(w_l) 1[4 g=1 ()
h- ti h \ ro CD 2 t 1

i i+

Theratio t,,,/t; becomes large compared to unity after many generations of bubble

merger, at which point

2
hi+1 . h y(d+2). d
h t

1 (72)

while L, , /L, = u for al i. Asymptotically, then, the ratio L (t)/h(t) (the similarity

parameter) is bounded by

2

y(d+2) LN—l

hN -1

j— _<M

hN I‘N—l N N-1

2 o N
(d+2) I N-3)/4
<‘uN(ti...£)y ﬁ<5(4oC2, ‘e‘ﬁ,u( ) ]
hO hO \“ r.0

Ly _ Ly o by ty
h t

N-1

, d=1 (73)

tN—l t0
where we have used Egs. (59) and (68) in addition to (72). According to (73), the
similarity parameter decreases with increasing merger generation (or increasing time)
at large N. Thus there is no memory loss of initial conditionsin the d = 1 case and no
self-similar regime in which the mix width grows in proportion to the characteristic
transverse scale. However, numerical evaluation of the model shows that, after about
two generations of bubble merger, the value of the similarity parameter is nearly

independent of the initial conditions (see Fig. 6). We call the quasi-self-similar

137



Liky/hity

.01 L 1 L 1 L 1 ' 1 L
107 107 10+ 108 hlea 1010

100.0F

EUTLI

Figure 6: Quasi-self-similar regime: Rather than approaching a constant, the
similarity parameter h/LL decaysin time. However, the model predicts that, after about
two generations of bubble merger, similarity parameter isindependent of the initial
conditions. In addition, the instability goes through a period of quasi-self-similar
growth during which the similarity parameter changes quite owly. At very late
times, the similarity parameter scales like (t/t,) .

regime and note that there is a period after its establishment when the similarity
parameter is of order unity and changes quite slowly. At very late times, h/L falls off
like (t/t,) ™. During this asymptotic phase, the bubble merger time has become very
long and the instability evolution is dominated by amplitude stretching due to
decompression.

Unless the Mach number of the incident blast wave is very high, however, itis

unlikely that the h/L ~ (t/t,) ™ state will be reached before the strong shock
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approximation is violated and the driving decel eration disappears (see Fig. 3).
Because of this limitation, there is a maximum scale, determined by theinitial
conditions, that can be generated at a given interface. Thus the drive imposes an
“effective box size” on the system that may or may not be smaller than the actual
physical or computational box size.

In the divergent case, the merger time is determined by

-1
c, <A, o [fh k| d>1 (74)
L yd+2VLi |\t

from which it is easy to obtain

J—

titfl - exp{y(d +2)0(C, - il)\L—} - eXp{y(d + 2)0C2J$i;} . d>1 (75)

From Eq. (62) evaluated for d > | with the blast-wave-driven interface deceleration

Eq. (42), we have

-2

m(t) = |—— 1 d>1 (76)
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At late times, the mode number isindependent of the initial conditions, asisthe

transverse scale

12 2
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Inserting the time-dependent transverse scale into Eq. (57), we find that the mix width

grows according to d>1 (78)
2
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d+2)/d .
)( ) for ablast wave, we find

Recalling the limitingtime t., = to(d—f2 M

that there is a minimum mode number m,,, that can be generated in a given divergent

system, corresponding to a maximum transverse scale:

m = 2m| 2 1—JLInth—M?ﬂ+ |2
WdCol  Ju) \d+2 \ umy

For very high Mach numbers and/or very high initial mode numbers, the

-2

d>1 (79)

limiting mode isindependent of the initial mode number [see Fig. 7(a)]. Furthermore,
the dependence of m,,, on the initial Mach number (logarithmic squared) isfairly
weak within the range of reasonable Mach numbers for strong blast waves [see Fig.
7(b)-7(c)]. Above about M ¢ = 20, the m,;,, varies by afactor of only afew when the
Mach number varies by an order of magnitude.

Fryxell et al. have performed ssimulations of SN187A in which the unstable
metal/He and He/H interfaces are seeded by random grid-scale velocity perturbations
behind the shock front.> As the resolution of the calculationsis varied, so too isthe
perturbation wavelength. At low resolution, corresponding to low initial mode
number, the perturbation growth depends strongly on the resolution. At higher
resolution, corresponding to a higher initial mode number of about 75-150, the
authors note that a“ preferred’” mode number in the range of 16-20 emerges at late
times [see Fig. 8(@)]. In comparing with the merger model, we must choose an
appropriate incident mach number M*°. The Mach number of the shock is actually
relatively low before shock breakout into the stellar atmosphere. It isonly afew in the
deep interior and climbs to about M ~ 10-20 at the He/H interface.> After breakout,

the Mach number is of order 10°. Since this higher value determines the lifetime of
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Figure 7: Minimum mode number in spherical-blast-wave-driven system. (@) For a
given Mach number and high enough initial mode number, the dependence of m;;,, on
theinitial mode number isweak. [(b)-(c)] For agiven initial mode number and high
enough M ¢, the minimum mode number depends weakly on the adiabatic index and
the incident Mach number. In (a), v;,, = cand y = 1.5.
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the blast wave, we take M, ~ 100. This suggests that memory of the initial mode
number is likely to be retained until t,, unless m, is greater than about 100 [see Fig.
4(a)]. At M,*° ~ 100, the model predicts alimiting (minimum) mode number m;,,~
20-30, which is comparabl e to the preferred mode number m ~ 16-20 found in the
simulations.

We have performed a CALE* simulation of a hypothetical laser-driven
experiment that exhibits behavior very similar to the SN calculations of Fryxell et
al.> In the simulation [see Fig. 8(b)], we assume that alaser has been used to heat the
interior of a50 mg/cc, 2.5 mm outer diameter, 0.75 mm-thick foam shell to 200 eV.
A high Mach number spherical blast wave is driven through the shell and into the
surrounding 10° g/cc air, driving the foam/air interface RT unstable. No perturbation
IS pre-imposed, but a grid-generated perturbation with m, = 100 has appeared by 5 us.
After alimited merger period, alate-time mode =~ 24 emerges in the freeze-out stage
at about 20 us.

Recent simulations aimed at studying RT at the (C+O)/He layer within core-
collapse supernovae suggest that modes as low as m, = 24 may be present with
significant amplitudes at the pre-shock interface due to neutrino-driven convection
[see Fig. 8(c)].%” According to Eqg. (79), there should likely be no significant
generation of larger scalesin such a system. In fact, the ssimulations show that the
late-time interface structure is dominated by the low-m modes present in the initial
conditions.

Experimental observations of late-time modal structure in RT-unstable,

divergent, blast-wave-driven systems, is rather limited, and we note here only two
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Figure 8: Similarities in asymptotic interface structure appear in a variety of systems
driven by spherical blast waves. (a) Prometheus simulations of SN1987A with
imposed grid-scale velocity perturbations behind the shock [Muller et al., Astron.
Astrophys. 251, 505 (1991)]. When the initial mode number is high, a“preferred”
mode number m ~ 16-20 emerges at late times. (b) CALE simulation of a
hypothetical laser experiment in which a spherical blast wave drives an RT-unstable
foam/air interface. No perturbation is pre-imposed, but a grid-generated perturbation
with m, = 100 has appeared by 5 us. After alimited merger period, alate-time mode
~ 24 emerges in the freeze-out stage. (c) Recent SN simulations including neutrino-
driven convection [Kifonidis et a., Astron. Astrophys. 408, 621 (2003)] show large-
scale early-time perturbations that continue to dominate at late times. (d) X-ray
images of the Cassiopeia A SNR [Credit: NASA/CXC/SAQ] show large-scale
structures corresponding to m ~ 20. (e) Images of high-altitude nuclear detonations
[U.S. Department of Energy Nuclear Testing Archive, Las Vegas, NV] show late-
time freeze-out stage with m ~ 18-36.
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examples. First of all, x-ray images of the Cassiopela A core-collapse supernova
remnant,> obtained via the Chandra X-Ray Observatory,> do appear to show spikes
of core material protruding out from the explosion center [see Fig. 8(d)]. The
explosion does not appear to have been completely isotropic, and the spikes are not
uniform in angular position or transverse scale. Nevertheless, there are several large
spikes visible in one quadrant with transverse scale that corresponds to a mode
number m ~ 20, similar to that seen in both the supernova and laser experiment
simulations. Similarly, film footage of high-altitude nuclear detonations shows
asymptotic modal structure that suggests m ~ 18-36 and is reminiscent of supernova
simulations [see Fig. 8(€)].>"* In both cases, the observed minimum mode number is
in the range of limiting mode numbers predicted by the model for high incident Mach
number and high initial mode number. Alternatively, the late-time structure could
result from low modes (m < 100) of significant amplitude present in theinitia

conditions.

VI. Statistical-mechanics model for blast-wave-driven case

The principle value of the simple two-bubble-size merger model of Section V
isthat, despite its simplicity, it appears to qualitatively capture several of the
important aspects of multimode, nonlinear, blast-wave-driven RT. More quantitative
results can be achieved by applying the same expressions for the asymptotic bubble

velocity [Eq. (52)], merger time [Egs. (58), (68), and (75)], and corresponding
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Figure 9: Time-dependence of the similarity parameter for the planar case. The
prediction of the merger model applied to abroad distribution of bubble sizeis shown
in red, and results from several 2D Raptor simulations with avariety of initial spectra
are shown in black. The model-predicted value of the similarity islower here thanin
the ssmpler two-bubble-size model of Section V (compare Fig. 6), but agrees well
with the ssmulations.

amplitude increments [Egs. (57), (71), and (78)], to adistribution of bubble sizes.
This allows us to follow the model -predicted evolution of the bubble-size distribution
function g(L ,t), which is the solution to the statistical mechanical merger model
equation [EQ. (4)]. Results of the statistical model represent for more sensible
comparisons with experiments and ssimulations. In Fig. 9, we show the time-
dependence of the similarity parameter <L (t)>/h(t) for the planar case as predicted by
the statistical model (shown in red), where <L (t)> is the bubble size expectation value
of g(L,t) (the average bubble size), and h(t) remains the extent of the mix region. For
theinitial conditions, bubbles are selected at random from a uniform probability

distribution from zero to 0.05 L, where L, isthe box size. There are then about 40

bubbles at time zero, and their initial amplitudes are all set equal to r,/200. Because
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the <L (t)> contains contributions from smaller as well as dominant bubbles while h(t)
is set by the largest bubbles, the similarity parameter islower by afactor of afew
than the prediction of the two-bubble-size model (compare Fig. 6). Thislower value
of <L(t)>/h(t) = 0.2-0.4 for t/t, = 10 — 100 is in good agreement with Raptor
simulations (black curvesin Fig. 9), which give <L (t)>/h(t) = 0.1 - 0.4 for the same
t/t, and with analogous initial conditions.> The simulations useinitial spectra of
various shapes (uniform, gaussian, k™, and k) that all include modes of the same size
relative to the computational box asin Fig. 9a. The drive used in the simulationsis
from the same planar laser-driven experiments described in Sec. IV. The agreement
between the model and the simulations is particularly noteworthy in light of the fact
that the interface motion in the simulations deviates somewhat from the ideal planar

blast-wave-drive assumed in the model application.

VII. Conclusion

For blast-wave-driven RT, self-similarity and loss of initial conditions are
violated in the planar case but preserved in higher dimensions where divergenceis
present. The reason for thisresult isthat in divergent systems the stretching factor for
the transverse scales is the same as that of the parallel scales. Behind a planar blast
wave, parallel scales are stretched in the rarefaction fan while transverse scales
remain unaffected. Consequently, L(t)/h(t) decays asymptotically rather than

approaching a constant value. After an early-time transient, the establishment of a
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guasi-self-similar regime is possible in systems driven by planar blast waves. Though
time-dependent, the similarity parameter is nearly independent of the initial
conditions during the quasi-self-similar regime. In addition, there is a period after the
establishment of quasi-self-similarity but before the driving acceleration dies away
during which the similarity parameter is of order unity and changes slowly in time.
The finite duration of the blast-wave drive sets a maximum scale that can be
generated on a given interface. For divergent systems, this corresponds to a minimum
mode number that depends weakly on the incident Mach number and initial mode
number as long as both are sufficiently high. Self-similarity and loss of memory of
initial conditions are in principle possible for divergent systems, but only for high
initial characteristic mode numbers and high incident Mach numbers. This
requirement has serious implications for supernovae. Initial conditions predicted by
recent stellar cal culations™ suggest that initial mode numbers present in supernova
progenitors are not high enough to reach the self-similar regime. If these predictions
are correct, the late-time interface structure observed in supernova remnants likely
depends strongly on theinitial conditions present within the star at the time of

explosion.
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Chapter 5: Effect of Initial Conditions on 2D Rayleigh-
Taylor Instability and Transition to Turbulencein Planar

Blast-wave-driven Systems

|. Introduction

The post-linear evolution of the Rayleigh-Taylor (RT) instability*? remains
incompletely understood. Thisis particularly true for multimode perturbations, which
are also the most important for practical applicationsin inertial confinement fusion
(ICF) and astrophysics. There is some evidence from theoretical,** computational >
and experimental® work that memory of theinitial perturbation spectrum islost as the
interface evolves into a self-similar regime in which the mix width growsin
proportion with the dominant transverse scale length. The existence of such aregime
has yet to be proven, however, even for the most fundamental case of incompressible
fluids in auniform gravitational field. In addition, many physical systems of interest
involve compressible systems undergoing time-varying accelerations, where results
obtained for the idealized case do not necessarily apply. One class of such systems
includes core-collapse supernovae, in which strong blast waves propagate from near
the star’' s core up through layers of progressively less dense material.”® Each driven

interface is susceptible to both RT and Richtmyer-Meshkov®*® (RM) instabilities.** In
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addition, perturbation growth results from material expansion in the large-scale
velocity gradient behind the shock front."*** Understanding the growth of the
resulting turbulent mixing zone may be required to explain the anomalously-fast
transport of core material to the star’s surface.”®*4*

In order to study this problem, a series of laser-driven laboratory experiments
have been designed and conducted on the Nova'® and Omega'’ lasers,****** and
additional experiments are currently being planned for the National Ignition Facility®
(NIF). These experiments are intended in part to study the effect of the initial
conditions on the nonlinear instability growth, the time to transition, and growth of
the post-transition turbulent mixing zone for high Mach number blast-wave driven
systems. In this paper, we present computational results for a planer blast-wave-
driven system under NIF-like drive conditions. Using the multi-physics, AMR, higher
order Godunov Eulerian hydrocode, Raptor,?” we consider the late nonlinear
instability evolution for multiple amplitude and phase realizations of avariety of
multimode spectral types. We show that compressibility leads to a breaking of the
self-similarity and allows for memory of theinitial conditions to be retained in the
mix-width at al times. The loss of transverse spectral information is demonstrated,
however, along with the existence of a quasi-self-similar regime over short time
intervals. Aspects of the initial conditions, including the rms amplitude and
characteristic wavelength, are shown to have a strong effect on the time to transition
to the quasi-self-similar regime. Even different randomized amplitude and phase
realizations of the same initial spectrum develop significantly different late-time

amplitudes and growth rates.
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|1. Code and calculation setup

The simulations are performed in 2D using the multi-physics radiation
hydrodynamics code Raptor, which uses a 2™ order (in space and time) Godunov
method applied to the Euler equations.”” Raptor is parallelized and uses adaptive mesh
refinement (AMR), making it well-suited to problems such as ours that require high
resolution in only a portion of the computational domain. We use the LEOS equation
of state (EOS) tables,?® and include in the cal cul ations electron conduction but not
radiation.

Our hypothetical target [see schematic in Fig. 1(a)] represents an extension of
previous and ongoing decelerating Rayleigh-Taylor experiments performed on the
Omega laser and discussed in detail €lsewhere.”® The cylindrical target consists of a
150 um plastic pusher section (density 1.42 g/cc) in contact with aless dense 2.2 mm
payload section. An initial perturbation is machined onto the contact-surface end of
the pusher. In place of the carbon foam payload used in the Omega experiments, we
assume cryogenic hydrogen with density 0.086 g/cc. We expect that this change,
which is motivated by uncertaintiesin the foam EOS tables,” would not qualitatively
change the resultsif carbon foam was to be used in the actual experiments.

The width the computational domain was typically 200 um, so that the 50 um
wavelength in the previous 2D single-mode experiments corresponds to mode 4. The
typical resolution is 512 cellsin the transverse direction (512 ppb), corresponding to
128 points per wavelength (ppw) in mode 4. Resolution finer and coarser by up to a

factor of four in each direction was used in resolution studies that are detailed below.

150



66 um 2200 um
<« < . >
A
‘ Pusher/payload interface
Ablated A~ Withimposed perturbation
‘ pusher 200 um
material
Payload
H, 0.086 g/cc
v
NIF-like direct drive \ Pusher N
25 kJ 1 ns sguare pulse CHBr 1.42 g/cc Periodic BC's
dri M ~ 25 blast
ir:gﬁ: target wave 27 um-thick Drive dlab
(compressed pusher 4.72 g/cc)
T=65eV,u=96km/s
@
200;}'."'
K ]
Lyt Interface velocity (km/s) ]
00y ]
. Interface Acceleration i
0y (1€9 km/s?) 1
100 H i
50 [} o]
L 4
0
0 10 20 30 40
Time (ns)
(b)

Figure 1: (a) Target schematic (not to scale). (b) Variation in time of

interface velocity and deceleration.
Open boundary conditions are used in the parallel (to the shock) direction while
periodic conditions are specified in the transverse direction.

The end of the pusher opposite the perturbation is driven with al ns laser
pulse, which launches a strong blast wave into the target. We assume a pulse energy
of 25 kJfor the NIF-like drive, which isfive times greater than that used in the

Omega experiments. This higher laser intensity would provide significant drive over a
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longer period of time than that achieved on previous experiments, and would allow
for the generation of larger transverse scales. Thisisimportant in part because
bubble-merger pictures of multimode instability evolution are generally thought to
require multiple merger generations above the largest significant scales present in the
initial conditions before a stationary scale-invariant bubble distribution is attained.> A
systemsis said to have progressed through one merger generation each time the
characteristic transverse scale is doubled, so this corresponds to scales at |east an
order of magnitude larger than the initial conditions.

The ssimulations are initiated with a high-velocity, heated, compressed slab
with characteristics taken from alaser-driven Lasnex® simulation at the end of the
laser pulse.

The Mach numbers of the incident and transmitted blast waves are in the
range of 10-30, where the precise value depends on the degree to which x-ray preheat
can be controlled (the incident Mach number with no preheat would be about 60).
The resulting initial interface speed is about 130 um/ns [see Fig. 1(b)]. Thisis nearly
twice the maximum interface speed obtained in the Omega experiments,™ and the
instability is seen to develop about twice as fast. The post-shock Atwood number
remains nearly constant at about 0.7. The simulations are continued out to a
maximum of 40 ns, which is about the |atest time usable data has been obtained from
the Omega experiments. Throughout the duration of the experiment, the interfaceis
RT unstable due to the reversal there of the pressure and density gradients (typical

pressure, density, and velocity profiles are shown in Fig. 2).
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Figure 2: Pressure, density, and velocity profiles (normalized to their maximum
values) after refraction of a planar blast wave through a heavy-light interface in the
target. The Rayleigh-Taylor instability criterion is satisfied at the post-shock
interface, which is also Richtmyer-Meshkov unstable. The fluid velocity falls off
approximately linearly behind the shock front. The corresponding decompression
resultsin additional perturbation growth.

An estimate of the relative importance of RM to the instability growth is
obtained from “pure RM” simulations driven by a steady shock with the same
strength as that of the blast wave at the time it reaches the interface. In Fig. 3, the
growth rate from a pure RM calculation is compared to a blast-wave driven
simulation. The same initial perturbation — large amplitude mode 4 with a narrow

gaussian small amplitude short wavelength component [Fig. 4(e) and discussion

below] —isused in both cases. The perturbation growth is dominated by RM for
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Figure 3: Comparison of pure RM and blast-wave-driven (RT+RM +decompression)
growth rates suggest that RT+stretching effects dominate after about 1 ns of
instability growth.

about the first ns, while combined RT plus decompression dominate at |ater times as
the interface decelerates in the rarefaction behind the shock front. Thisis consistent
with CALE simulations of Omega-driven systems in which the instability developed

half as fast and RM was found to dominate for twice as long.*

[11. Characterization of initial conditions

When we speak of dependence on initial conditions, we have in mind the
effect of theinitial perturbation spectrum on the observable properties of the mix
region. During the linear regime when mode coupling can be neglected, this can be
determined in a straightforward manner from the linear (possibly time-dependent)
growth rates. Well-established mode coupling models make the weakly nonlinear

regime fairly tractable as well.*** Our interest is the effect of the initial conditions on
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the instability growth in the strongly nonlinear regime; before, during, and after any
transition to a self-similar or turbulent state.

The principle observables during the deep nonlinear phase are the amplitudes
and growth rates of the spike and bubble fonts, and the statistical properties of the
internal structure of the mix region. Theinterna structure of the interface region is
characterized by spectra (density, kinetic energy, velocity, and enstrophy) and by the
degree of small-scale mixing of the two fluids.

The most general distinction we make in classifying initial spectrais between
continuous and bi-component spectra. Bi-component spectrainclude along-
wavelength component and a separated (in k-space) short-wavelength component. In
this study, the long-wavelength component always consists of a single mode (mode 4)
with awavelength of 50 um and initial amplitude that istypically 2.5 um. Thisisthe
same mode used in ongoing Omega experiments that we have previously model ed
extensively.”®* With its nominal initial amplitude, mode 4 is only marginally linear
(&/A = 0.05). The post-shock amplitude, however, is an order of magnitude smaller.
The bi-component spectral classis particularly important for considering potential
effects of short-wavelength “noise” — possibly unresolved in calculations or not
included in simple experiments — on the large-scale interface structure.

Five different spectral shapes were considered for the continuous class, and
four of these were al'so used for the short wavelength component of the bi-component
class. In atypical case, random phases were assigned to each mode and randomized

amplitudes were selected from the given spectrum. For example, aflat spectrum
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included modes 4 to 80 with random phases and amplitudes chosen from a uniform
distribution. After the amplitude assignment, the resulting spectrum is normalized to
give the desired rms amplitude — typically either about 2.5 um (large amplitude case)
or 0.25 um (small amplitude case). The other four spectral types include a short
wavelength component either with or without a single large amplitude long
wavelength mode (mode 4) in order to investigate the effect of short wavelength
noise on along wavelength primary mode. The short wavelength component, which
includes modes 20 to 80, is given by either a narrow gaussian centered at mode 40
with half-width = 4, a broad gaussian centered at mode 40 with half-width 20, a
hyperbolic (1/k) specrum, or a 1/k? spectrum. Examples of initial spectraand
interface profiles are shown in Fig. 4. Multiple randomized amplitude and phase
realizations were generated from each spectral type in order to provide information
about the typical level of fluctuations of measurable quantities within each spectrum.
We can characterize continuous spectra by their initial rms amplitude a,.,, (or
<a>,), their characteristic wavenumber <k> (or characteristic mode number <m>), the
initial degree of linearity <ka>,, the initial spectral shape, and the width of theinitia
spectrum Ak/<k>. For bi-component spectra, we can add to our parameter list the
relative rms amplitudes <a>.J/<a>, the relative widths of the spectral components
AkJAk,, and the separation of the relative two components <k >/<k,> or (<k> -
<k>)/(<k> + <k;>). In the bi-component case, we focus in particular on the relative
rms amplitudes and spectral shape. The ratio of characteristic wavelengthsis only
varied from 9.25 (1/k* spectrum) to 11.30 (broad gaussian), with the two components

aways well-separated in k-space (by an order of magnitude). Since the width of the
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long-wavelength component isin every case asingle mode, all variation of the
relative spectral widthsisleft to the short-wavelength component. The initial spectral
width can be thought of as one aspect of the spectral shape, and was only considered
in this context in the bi-component case.

A list of these parametersis given in Table 1 together with a brief summary of
their effect on the large-scale observables in the simulations. Not surprisingly, we
found alink between the two measures used to characterize the internal structure. The
simulations all exhibit atransition to awell-mixed state (a“2D mixing transition”)
that is correlated with aloss of transverse spectral information. Consequently, the
effect of theinitial conditions on the nonlinear interface structure is represented
simply as their effect on the time to transition. Furthermore, transition resultsin
changes in the spike and bubble growth rates, so anything that affects the transition
time also affects the perturbation amplitudes and velocities. In the next sections, the

information in Table 1 is developed in detail .

V. Results and discussion

A. Growth of the mix layer

Mix width history plots from 52 2D simulations are shown in Fig. 5. Most of
the various trgjectories fall in to one or the other of two families. The upper family
contains the runs with the large amplitude (2.5 um) mode 4 in the initial spectrum
with or without a short wavelength small amplitude component. Short wavelength

components included in the plot are the narrow gaussian, broad gaussian, or
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Range of parameter
\variation and Notes

Effect of parameter
increase on:
Perturbation
amplitudes and

Effect of
par ameter
increase on:

wavelength <k>

Spectral parameters growth rates Timeto transition
Continuous spectra

rms amplitude <a> 0.0025um - 2.5 um Increase Decrease
Characteristic <m> = 4-46 Decrease Decrease

Initial nonlinearity
<ka>

<a/\>=5e-4 - 5e-2
Sets thresholds for
spike interaction and
transition.

Effect contained in
Individual
dependence on <a>
and <k>

Decrease

Spectral shape

Single mode, flat,
narrow gaussian,
broad gaussian,
1/k,1/Kk?

Little effect

Little effect

Spectral width Ak/<k>

0-1.8
Not varied independent of
<k>

Decrease for given
K

min-

Decrease for given
K

min-

Bi-component
spectra (long + shorts)

Shorts/longs rms
amplitude ratio

(<0.001) - 0.1

Effect on bubble growth
may be opposite for
multimode long wavelength

Decrease for spikes
and increase for

Decrease

<a>/<a>, component bubbles
Spectral shape of Narrow gaussian, broad|Little effect Little effect
shorts gaussian, 1/k,1/k?
Spectral shape of longs |Not varied
Ratio of characteristic [9.50-11.30 Little effect over  |Little effect over
wavelengths Not varied range considered  |range considered
<k>/J<k>, independent of shape.
Ratio of spectral Not varied Inconclusive Inconclusive
widths Ak, /Ak, independent of

relative amplitude

and shape

Table 1: List of the parameters used to classify and characterize the initial spectral
conditions and a summary of their effect on the nonlinear instability evolution. See
text for detailed explanation.
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Figure 5: (@) Mix width histories and (b) growth velocities from 52 2D simulations
with different spectral initial conditions. There is no apparent approach to a self-
similar regime independent of the initial conditions. Even when runs with large mode
4 are excluded, o, varies over arange of about 0.035-0.065 for different IC’s, while

o, varies over about 0.050-0.100.

hyperbolic spectrum, or by a single mode 40. The rms amplitude in each case differs
from the mode 4 amplitude by less than 1%. The lower family consists primarily of
runs with the small amplitude short wavelength component, with mean rms amplitude
of about 0.25 um. The standard deviation from the mean rms amplitude is less than
5%, and the maximum deviation is less than 50%. The small amplitude flat spectrum

cases are aso contained within the lower family. The large amplitude flat spectrum
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casesinitialy lie dightly above the upper family, but then fall below it at about 2-3
ns, eventually joining the lower family between 10 and 20 ns. The two curves below
the lower family are from runs with rms amplitude of 0.025 um (upper curve) and
0.0025 um (lower curve).

Within the lower family, the amplitude is not well correlated with initial rms
amplitude variations at the few-percent level. Furthermore, the difference between
runs with different spectral shape (but ssimilar initial rms amplitude) is generally not
much greater than the difference seen between different amplitude and phase
realizations of the same spectrum. Thisisillustrated in Fig. 6, which compares the
bubble amplitude and velocity evolution for several spectral shapes, including two
random phase realizations of the same narrow gaussian distribution without amplitude
randomization (dotted lines). Solid lines show the amplitude from simulations with a
1/k spectrum (upper solid), flat (middle solid), and broad gaussian (lower solid). All
five simulations begin with an rms-amplitude of 0.258 um. After 10 ns, the amplitude
and velocity difference between the two narrow gaussian cases is greater than 25%
and is at least as significant as the differences arising from the various spectral

shapes.

B. Phases of instability growth

In general, the instability evolution can be divided into three phases, as shown
in Figure 7. During the early-time phase (Phase | - which actually included the linear
early nonlinear, and into the nonlinear regimes), the growth rate is determined by the

most unstable mode. RM dominatesinitialy, but only for about 1 ns. During this
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Figure 6: Sengitivity of bubble (a) amplitude and (b) velocity to spectral shape. Solid
lines denote three initial spectra: 1/k [upper solid in (a)], flat [middle solid in (b)], and
broad gaussian [lower solid in (a)]. The dotted lines denote two phase realizations of
the same narrow gaussian spectrum. In each case, the initial rms-amplitude is 0.258

wm.
period, the inverse cascade to larger scalesisinitiated, and there are up to three
generations of bubble merger. The growth rate depends on the rms amplitude, but
does not depend strongly on the spectral details. During Phase I1, there are changesin
the growth rates (sometimes rather abrupt) that result in a strong dependence on the
spectral details aswell astheinitia rms amplitude. Consideration of separate spike
and bubble amplitude histories shows that the spike growth is more sensitive than the

bubble growth to the initial spectrum. These changes appear to be random and are not
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Figure 7: Three phases of instability growth. Phase I: The early-time (linear, early
nonlinear, and into nonlinear) phase is dominated by RM for about 1 ns. The growth
rate is determined by the most unstable mode, and the inverse cascade isinitiated.
Phase |1: Changesin growth rate result in strong dependence on spectral detailsin
addition to the initia a,,.. Phase Ill: Mode 1 emerges as the dominant transverse scale
after up to 5 bubble merger generations. The acceleration profile introduces an
“effective box size’. The asymptotic velocity depends on amplitude, timein addition
to the transverse scale and the degree of mix in the layer.

well correlated with small changesin the initial rms amplitude or with the spectral
shape.
Phase |11 begins when mode 1 emerges as the dominant transverse scale after

up to five bubble merger generations. After this scale is reached, the inverse cascade

is halted and the growth is no longer self-similar-like. One would tend to conclude at
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Figure 8: “Effective box size” imposed by the decaying nature of the drive coupled
with the finite duration of the experiment. With a box-size of L = 200 um, mode 1
emerges as the dominant mode at about t/t, = 60 (24 ns). Even when the width of
computational domain is quadrupled, longer-wavelength modes do not dominate at
late times. After 25 ns, the time required to generate lower |-modes exceeds the time
remaining in the experiment. Both cases use the same narrow gaussian spectral shape.
this point that this signals the end of the calculation’ s range of validity because the
computational box has been “filled” so that end effects corrupt further evolution. In
fact, calculations run with twice or even four times the nominal box size generally
show no significant change in the perturbation growth history and or the late-time

dominant transverse scale (see Fig. 8). We attribute this to the decaying nature of the

driving acceleration. As the accel eration approaches zero, the time to generate larger
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scales (which even with constant acceleration take longer to form than shorter scales)
tends to infinity. Thus the decaying acceleration profile coupled with the finite
experiment duration introduces an “effective box size” even in the absence of an

experimentally or computationally-imposed physical box size.

C. Quasi-sdlf-similar regime

The main point in plotting all the amplitude trajectories together on one plot
(Fig. 5) isto show that they generally diverge in time rather than converge as one
might expect during approach to a stationary self-similar bubble distribution. That is,
there is no apparent approach to a self-similar regime independent of theinitial
conditions. Thisistrue even if one considers only those runs from the lower family
with only the short wavelength component and with initial rms amplitude of about
0.25 um. If one assumes self-similarity (ie that the characteristic transverse scaleisa
constant fraction of the mix-width) and takes into account the time-dependence of the
acceleration and the large-scale velocity gradient present in the zero-order hydro, then
the spike and bubble growth in each run can be characterized by a constant factor o
(the o of h(t) = aAgt*> models). In atrue self-similar regime, the value of this
parameter should be a universal constant with weak (if any) dependence on Atwood
number.® Within the a,,,= 0.25 um, shorts only subgroup, we instead find that o,

varies over arange of about 0.035-0.065 while o, varies over 0.050-0.100. This

spike
nearly covers the entire range of values reported from different experiments and
simulations (see, for example, Ref. 34 and references therein), though it falls

somewhat short of the values reported for spike growth at this Atwood number (as
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Figure 9: Time-dependence of the similarity parameter. Because of decompression,
the similarity parameter decays in time rather than approaching a constant asymptotic
value. This behavior iswell-predicted by a statistical-mechanics bubble merger model
that includes decompression and the time-dependence of the drive.
high as 0.120). Thus the assumption of self-similarity does not lead to a useful means
of characterizing the instability growth. Instead, memory of the initial conditionsis
retained throughout the experiment at least in the mix width. Rather than approaching
aconstant, the similarity parameter (the ratio of characteristic transverse scale to
perturbation amplitude) decays in time. The time dependence of the similarity
parameter is shown in Fig. 9 for various initial conditions, including examples of each
spectral type included in the study, with rms-amplitudes varying over three orders of
magnitude. A narrow gaussian with four times the nominal box width and three flat
spectrum cal culations with twice the nominal box width are included to show that
variations in system size (boundary effects) do not change the general behavior of the
similarity parameter.

Because of decompression and drive decay, the asymptotic bubble and spike

velocities depend on the amplitude and time as well as on the transverse scale and the
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degree of mix in the layer. The amplitude dependence arises because of the velocity
gradient, which is approximately proportional to Ar/t and characteristic of a
rarefaction fan. Here Ar is the distance in the parallel direction between any two
points, in particular the distance from the unperturbed interface to the position of the
spike or bubble tip. Thus the contribution of material decompression and stretching to
the spike or bubble velocity at a given timeis proportional to its amplitude.

We have extended an existing stati stical-mechanics bubble merger model® to
include decompression and the time-dependence of the drive.* Details of the model
are presented in Ref. 36. We note here only that the model prediction (thered linein
Fig. 9) also shows a decaying similarity parameter and agrees well with the
simulations.

However, there is apparently loss of transverse spectral information and a
period of “quasi-self-similar” growth. Thisisillustrated in two ways Fig. 10. Figure
10(a) shows atime series of log density plots from asmall initial amplitude
simulation with aflat spectrum (modes 4-80). During this period, which coversthe
first 10 ns of growth, the inverse cascade to progressively larger scales is apparent. In
Fig. 10(b), the images are rescaled so that the mix-width appears approximately
constant in time. The similarity in interface structure in the rescaled images shows
that the ratio of dominant transverse scale to mix width does not change much over
thistimeinterval. Since the value of this ratio does tend to slowly decrease over time
as the material decompresses, we refer to thisas a*“quasi-self-similar” regime.

Figure 10(c) shows log density plots from simulations with different initial

gpectral types at early and intermediate times (2.4 and 11.5 ns). Early on, the
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Figure 10: Quasi-self-similar regime. (a) A time series of log density plots from a
small initial amplitude simulation with aflat spectrum (modes 4-80) shows the
inverse cascade to progressively larger scales. (b) The same images are rescaled so
that the mix-width appears approximately constant in time. The similarity in interface
structure in the rescaled images shows that the ratio of dominant transverse scale to
mix width does not change much over thistime interval. (c) Theloss of transverse
spectral information isillustrated by log density plots from simulations with different
initial spectral types at early and intermediate times (2.4 and 11.5 ns). Early on, the
interface structure is clearly correlated with theinitial conditions. The later-time
images appear far more similar to one other.
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interface structure is clearly correlated with the initial conditions. In particular, mode
40 is apparent in the early-time narrow gaussian image. The later-time images, on the
other hand, appear far more similar to one other. Aswas noted previoudly, thereisa
wide spread in the late time amplitude growth, but the dependence on spectral type
within that spread is generally not much larger than the variation between different
realizations with the same spectral shape.

The loss of transverse spectral information isillustrated more quantitatively in
Fig. 11, which compares average 1D density fluctuation spectraatt =0andt =10 ns
for avariety of short-wavelength spectral shapes. The density fluctuation is defined
by 6p(2) = p(2) - <p(2)>, where <p(z)> is the z-dependent transverse density average.
Each spectrum shown in Fig. 11 isthe average of severa (typicaly nine) 1D spectra
evenly spaced throughout the interior of the mix region. Despite significant
differencesin the initial spectral shapes and rms-amplitudes, all transverse spectral
information above about mode 10 has been lost by 10 ns, and memory of theinitia
conditionsis retained only in the amplitudes of the long wavelength modes. For runs
with the same initial rms-amplitude, the low-mode end of the spectrum isalso very
similar, suggesting that only memory of the initial amplitude and not the spectral
shape has been retained. An inertial range with Kolmogorov k™? scaling is visible
between modes thirty and eighty.

Transverse and parallel turbulent kinetic energy spectra and velocity
fluctuation spectra from the same simulations are shown in Figs. 12 and 13,
respectively. The fluctuating components of the energy and velocity are defined in the

same way asthe density fluctuation: 8KE, ,(z) = KE,, (2) - < KE,, (2)> and

169



[ — T T T — T

&
=3
S
3 4
W ]
I
o |
N
o1 |
= |
3
G

Noye = 0.0025 um -

sk 10—+

— 10-%

1078

[T v — T T — T T — T T o

107+

107+

1077 10

() fhprms =0.25 um

107+

flat | =

192 L L 197 L e gemny
1 10 100 100G

T T T T QI T T T T T TTTy

100G

a

Figure 11: Loss of transverse spectral information. Density spectraatt=0and t =10
ns for a variety of short-wavelength spectral shapes: (a) Narrow gaussian with hgyms =
0.25 um, (b) narrow gaussian with homs = 0.0025 um, (c) 1/k* spectrum with homs =
0.25 wm, (d) broad gaussian with hoyms = 0.25 um, and (e) flat (modes 4-80) with homs
= 2.5 um. (f) hyperbolic (1/k) spectrum with homs = 0.25. By 10 ns, all transverse
spectral information above about mode 10 has been lost, and memory of the initial
conditions is retained only in the amplitudes of the long wavelength modes. For runs
with the same initial rms-amplitude, the low-mode end of the spectrum is also very
similar, suggesting that only memory of the initial amplitude and not the spectral
shape has been retained. In (f), we include spectra at 25 and 40 ns. After
establishment of the quasi-self-similar regime, there is little change in the spectra
shape except for a steeper slope at the lowest modes.
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Figure 12: Transverse and parallel turbulent kinetic energy spectraat 10 ns. The
upper solid curveisthe paralel directed turbulent kinetic energy and the lower solid
line isthe transverse directed turbulent kinetic energy. (a) Narrow gaussian with hy,,
=0.25 um, (b) narrow gaussian with h,,,, = 0.0025 um, (c) 1/k? spectrum with hy,, =
0.25 um, (d) broad gaussian with h,, = 0.25 um, and (e) flat (modes 4-80) with h,,,
= 2.5 um. By 10 ns, the spectral shape depends weakly on theinitial conditions, and
both transverse and parallel components exhibit alimited k' inertial range. In most
cases, the high-mode end of the spectrum is somewhat steeper than ak™ scaling.
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Figure 13: Transverse and parallel velocity fluctuation spectraat 10 ns. The upper
solid curve isthe parallel velocity fluctuation and the lower solid line is the transverse
velocity fluctuation. (a) Narrow gaussian with h,,, = 0.25 um, (b) narrow gaussian
with hy,,s = 0.0025 um, (c) 1/k? spectrum with h, = 0.25 um, (d) broad gaussian
with hy, = 0.25 um, and (e) flat (modes 4-80) with h,,, = 2.5 um. By 10 ns, the
spectral shape depends weakly on theinitial conditions, and both transverse and
parallel components exhibit alimited k' inertial range.
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[0V, .(2)| = vy, (2) - < V,, (2)>|, where “<>" again denotes transverse average and KE, ,
= pv,,”. In each case, the upper solid curveisthe parallel (z) component and the
lower solid lineisthe transverse (X) component. By 10 ns, the spectral shape depends
weakly on theinitial conditions, and both transverse and parallel components exhibit
alimited k™3 inertial range. In most cases, the high-mode end of the spectrum is
reasonably well approximated by a k™ scaling.

Scaling laws for the energy spectrum of stationary 2D “turbulence” were first
put forward by Kraichnan, who considered an unbounded system into which energy is
uniformly injected at some wavenumber k;;.*" At scaleslarger than the injection
scale, he predicted that an inverse energy cascade driven by vortex merger would
result in a Kolmogorov k*? scaling. Below the injection scale, a forward enstrophy
cascade would give E(K) ~ k™. Recent experiments using flowing soap films agree
with Kraichnan's predictions at both high and low wavenumbers.®

Thus our observation of an inertial range with = —5/3 scaling at lower mode
numbers indicates atransition to 2D turbulence. At higher mode numbers, the energy
spectra are typically fall of somewhat steeper than k=>. After establishment of the
guasi-self-similar regime, there islittle change in the spectra shape except for a
steeper slope at the lowest modes [see Fig. 11(f)].

The RT instability can in principle inject energy into the system at all scalesin
the density spectrum, but the growth of under-resolved modesisinhibited. The upper
end of the inertial range in the energy spectrain Fig. 12 corresponds to injection
scales at modes resolved by 3-8 ppw. Thisis certainly insufficient to resolve the

forward enstrophy cascade, so it is not surprising that the spectratend to fall off
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Figure 14: Degree of mixednessfor al 52 2D simulations included in Fig. 5.
Transition to quasi-self-similar regime results in an increase in mixedness. For a
similar density ratio, Youngs reports® ~ 0.83in3D and ® ~ 0.54in 2D [D.L.
Y oungs, Lasers and Particle Beams, 12(4), 725 (1994)].
somewhat faster than k™ at higher mode numbers.

The degree of “mixedness’, which Y oungs calls the molecular mix fraction,*

provides a good measure of when the transition to the quasi-self-similar regime takes

place. The mixing parameter is defined by

o. J{f@-f))dz
J(f)dz[ (1~ f)dz’

where f is the volume fraction of either of the two fluids, the averaging is done in the

(1)

transverse direction, and the integral is performed in the parallel direction through the
extent of the mix region. The mixing parameter time histories from all 52 2D
simulationsincluded in Fig. 5 are shown in Figure 14. Again, most of the curvesfall

into one of two families. The upper family contains runs without the large amplitude
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mode 4, while the lower family consists of all the runs with the large mode 4. In both
cases, there isa clear transition from a state that is not well mixed to a state with
higher degree of mixedness that tends to an asymptotic value between about 0.6 and
0.8. With no large mode 4, this transition occurs within afew ns, and corresponds to
the transition to the quasi-self-similar regime. The same transition occurs when the
large mode 4 isincluded in theinitial spectrum, but the time to transition is several
times longer. Thus the presence of the long wavelength mode delays the transition to
aturbulent-like state. Comparison of Fig. 14 with amplitude history plots shows that,
in addition to the increase in mixedness, transition to the quasi-self-similar regimeis
marked by a decrease in the spike velocity and often an increase in the bubble
velocity. The spike velocity decreases in particular for the runs with large-amplitude
mode 4, where the transition is associated with the breakup of the primary spikes.
This breakup allows the spikes' parallel energy to be diverted into the transverse
direction and results in a decrease in the effective Atwood number in the mix region.
When the initial spectrum gives an array of nearly identical bubbles, transition can
allow for bubble competition and the generation of larger scales, resulting in an
increase in the velocity of the bubble front.

The effective Atwood number reduction experienced by the spikes due to
increased mixing after their breakup resultsin an increase in the bubble to spike
amplitude ratio, shown in Fig. 15 for several representative cases. In the single-mode

(mode 4) case, the amplitude ratio approaches a value of about 0.48. Thisisjust
dightly higher than the value of ,\f’ Py 1 ps = 0.42 predicted by a buoyancy-drag model

assuming that the spike reaches terminal velocity early on.>* With the spike
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Figure 15: Bubble to spike amplitude ratio: In the single mode 4 case, the amplitude
ratio approaches avalue of about 0.48. Thisisjust dightly higher than the value of
0.42 predicted by a buoyancy-drag model assuming that the spike reaches terminal
velocity early on. With the spike interaction and breakdown associated with transition
to the quasi-self-similar regime, the amplitude ratio is much closer to unity and
typically greater than 0.7 at |ate times.
interaction and breakdown associated with transition to the quasi-self-similar regime,
the amplitude ratio is much closer to unity and typically greater than 0.7 at late times.
The same tendency towards spike-bubble amplitude symmetry due to spike breakup
was reported by Y oungs, who also noted an associated weak dependence of h,/hg on
the density ratio.®

In atrue self-similar regime (at least for the case of incompressible flow, no
RM component, and constant acceleration — all of which are violated here), the post-
transition mixedness should be a universal constant depending only on the Atwood
number.* For a density ratio similar to ours (and with very weak density ratio
dependence), Y oungs found in his 3D calculations that the asymptotic degree of mix
increases at higher resolution where the inertial range is better resolved. Extrapolating

the observed trend to infinite resolution, he reports a value of about 0.83in 3D and

0.54in 2D.” Cook et al. find similar valuesin their high resolution, classical RT
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Figure 16: Ratio of transverse to total kinetic energy, integrated over the mix region,
from the single mode 4 simulation. Below 15 ns, the relative transverse kinetic energy
increases slowly. The breakup of the mode 4 spikes at 15-20 ns corresponds to a
much faster order of magnitude increase.

calculations.” The values we find are distributed throughout this range, and are
consistently higher than the reported 2D value.

Finally, we note that there is no true turbulent mixing transition* in the
simulations. Thisisto be expected due to the low effective Reynolds number and the
2D nature of the ssimulations. Three dimensional turbulence is characterized by a
forward cascade of energy to smaller scales whereit is eventually dissipated. Vortex
stretching, which is the mechanism of coupling to smaller scales, isfundamentally a
3D process and therefore absent in 2D systems. However, the abrupt increase in
mixedness observed in the 2D calculations and associated with the onset of strong
spike interaction and breakup is reminiscent of aturbulent mixing transition. While
spikes grow without interacting with one another, their energy is directed almost
entirely in the parallel direction. When they interact and breakup, a significant

fraction of their energy is diverted into the parallel direction (see Fig. 16) and smaller

scales are generated via the Kelvin Helmholtz (KH) instability.” Because of this
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forward cascade, a 2D system undergoing spike breakup in a sense temporarily

mimics 3D turbulence, and there is an associated “ 2D turbulent mixing transition”.

D. Resolution study

A resolution study was performed in order to verify adequate convergence of
the growth rates and interface structure at the nominal resolution of 512 points across
the computational domain (512 ppb). The resolution was varied from 128 to 2048
cells per box width (ppb), or from four times less than to four times greater than the
nominal resolution. Log density plots[Fig. 17(a)] and perturbation amplitude
histories [Fig. 17(b)] from a series of calculations initialized with the same narrow
gaussian (shorts only) spectrum suggest that the mix width and interface structure are
reasonable well-resolved at 256 ppb. Even at 128 ppb, the mix width is only reduced
by 15-25% relative to the highest resolution case. Thisisimpressive considering that,
at 128 ppb, the initially dominant mode (mode 40) is resolved to only 3.2 points per
wavelength (ppw). Considering the extreme drive strength and only marginally linear
initial conditions, the perturbation becomes nonlinear very quickly and the observed
fast convergence is perhaps due to the fast generation of larger, better resolved scales
due to mode coupling® and nonlinear interactions among spikes.®

A plot of the mixing parameter [Fig. 17(c)] as afunction of time shows that,
in contrast to Y oungs' s 3D calculations,® there is more mixing at lower resolution
where the numerical diffusion is greater. The algorithm used to identify the spike and
bubble positions is based on the product of the volume fractions of the two fluids

averaged over the transverse direction (the mix width is by definition bounded by the
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Figure 17: Resolution study: The resolution is varied from 128 to 2048 cells per box
width (ppb), or from four times less than to four times greater than the nominal
resolution of 512 ppb. (a) Log density plots and (b) perturbation amplitude histories
suggest that the interface structure is reasonable well-resolved at 256 ppb. (c) A plot
of the mixing parameter as afunction of time shows that there is more mixing at
lower resolution where the numerical diffusion is greater.

2.5% points). When the outlying spikes are more diffuse due to decreased resolution,
the algorithm identifies an edge that corresponds to a smaller spike amplitude. Thisis

the primary reason for the correlation between lower resolution and reduced

amplitude.
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Density, directed kinetic energy, and velocity spectra from a calculation at the
highest resolution (2048 ppb) are shown in Fig. 18. Results from asimulation at the
nominal 512 ppb resolution with the same narrow gaussian spectral shape are
included for comparison. For each quantity, the low-k end of theinertial rangeis
about the same at either resolution. The high-k end extends to much higher mode
numbers in the 2048 ppb case, consistent with its higher numerical Reynolds number
and resulting in an inertial range that spans about one decade. The minimum energy
injection scaleis at about mode 500-700, which again says that the driving instability

injects energy into modes resolved by at least 3-5 ppw.

E. Dependence of transition time on initial conditions

We have already seen how several of the factorslisted in Table 1 affect the
large-scale instability evolution. In al stages of the instability, larger initia
amplitudes give larger amplitude later on. Theinitial shape of the short-wavelength
spectral component has little effect on the late-time growth, including the time to
transition to aturbulent-like state. This statement assumes, however, that the initial
spectrum includes multiple modes that are not both commensurate and in phase with
one another. Without numerical or physical sources of random noise, such spectra can
only lead to alimited inverse cascade that gives rise to stable periodic arrays of
bubbles.

We have also seen that there is a correlation between transition to the quasi-
self-similar regime, which is characterized by aloss of transverse spectral

information, and a*“2D mixing transition” to a state characterized by a mixedness of
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Figure 18: (a) Density, (b) directed turbulent kinetic energy, and (c) directed velocity
fluctuation spectraat 0 and 10 nsfor highest resolution (2048 ppb). The initial
spectrum is narrow gaussian with randomized amplitudes and phases. Spectrafrom a
512 ppb case with the same spectral shape are included for comparison. In the energy
spectra, dashed lines denote the k® scaling associated with aforward enstrophy
cascade in 2D turbulence.
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0.6 - 0.8. What remainsis to determine how the various parametersin Table 1 affect
the time to transition.

There are several ways in which we can consider how the transition time to
the quasi-self-similar “turbulent” state depends on theinitial conditions. In this
section, we will consider variations of the rms-amplitude (resulting in variation of
<ka> in addition to <a>), the effect of varying the short wavelength cutoff for aflat
spectrum (variation of <k>, <ka>, and Ak/<k>), the effect short wavelength “noise’
on along wavelength primary mode (variation of spectral shape and <k>/<k>)), and
the effect of along wavelength mode on a short wavelength spectral component

(variation of <a>J<a>)).

1. Initial rms-amplitude and nonlinearity thresholds

In order to quantify the dependence of the transition time on theinitial rms-
amplitude, three simulations were run in which the peak of the narrow gaussian
spectrum (called a,,) was varied over three orders of magnitude. The peaks of the
initial spectra considered were at a,, = 0.001 um, a,, = 0.01 um, and at the nominal
value of a,, = 0.1 um. This correspondsto an initial degree of linearity, expressed as
/My, Of 26-4. 2e-3. and 2e-2, respectively. In each case, the rms-amplitude was
about 2.5 times greater than then a,,.

Results from the calculations are shown in Fig. 19. Regardless of the initial
amplitude, spike interaction begins when h/A, = 2. This nonlinearity threshold for
spike interaction is slightly greater with smaller initial nonlinearity hy/A,. This could

be due to the increased shock-deposited vorticity (RM) or increased instability Mach

182



Growth rate {um/ns)

Spectrum peak (narrow gaussian)

'g- ZDCI_— :
@ g ]
2 g ]
S 0.6 0.001 um 2 ]
>O_ B 0.01 um § 1o i
B 0.1 um r / ]
04 TN [N TR SN TN TR SN TN TR A T | OE :" :--.4’:__ <> h/l}\-o: 2 E
0 10 20 30 40

Time (ns) 2 (9 e o)

0.01 um

[ 01lum /\

6: /'_ﬂ\"—\-,q_ —

B 0.001 um .

i 0.001 um

: Bubble velocity 1/ spikevelocity .

00‘III‘IIII1IDIIIIIIIIIZIOIIIIIIIII-;O”””““‘O 00"H""1ID""""'2|0'"""";0”””"'
(d) Time {ns] (e) Time {ns]

Figure 19: Dependence of amplitude growth and transition time on the initia g, (a)
Log density plots show spike interaction begins when h/A, = 2. (b) The mixing
parameter peaks at |ater times for smaller initial a,,, coincident with the loss of initial
transverse spectral information. (¢) Amplitude histories show transition to the quasi-
self-similar regime when h/A, = 5-6. (d) Bubble and (e) spike velocity histories show
that spike breakup results in areduction in the growth rate followed by accelerated
growth after establishment of the quasi-self-similar regime and the generation of
larger scales. In (b)-(e), the spike interaction threshold h/A, = 2 is denoted by
diamonds and the transition threshold h/A, = 5.5 is denoted by circles.
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number in the larger-amplitude cases, or a combination of the two. At the same time
spike interaction begins, the spike growth rate begins to saturate and the acceleration
of the bubble front begins to decrease. Spike breakup continues until h/A, = 5-6 (again
somewhat greater for perturbationsinitially more linear), at which point the mixing
parameter reaches its maximum value and the transverse density fluctuation spectrum
has reached its asymptotic form. This signifies the loss of initial transverse spectral
information and the emergence of the quasi-self-similar regime. At the same time, the
post-transition amplitudes and velocity is strongly dependent on theinitial rms
amplitude [see Figs. 19(d)-19(e)]. Spike and bubble velocities subsequently increase
again asthe inverse cascade to larger scales progresses. The same sequenceis
followed for broader initial spectra, without significant change in the nonlinearity

thresholds for spike interaction and transition.

2. Effect of short-wavelength mode on lar ge-scale interface structure

We are interested in the effect of short wavelength modes on the global
instability development for three primary reasons. First of all, some RT-unstable
interfacesin rea systems [possibly including the Si/(C+O) interface in core-collapse
supernovae]* are characterized by distinct long and short-wavelength spectral
components. In order to accurately describe the instability development in such

systems, we must first understand the importance of the short-wavelength modes.
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Secondly, simulations typically use initial spectrathat do not extend all the
way down to the viscous cutoffs. If unresolved scales have a significant impact on the
large-scale interface structure, then such simulations are inadequate.

Finally, laser-driven instability experiments designed to study supernova
hydrodynamics are often limited in modal content, typically to no more than afew
prescribed modes plus small-scale noise. Since supernovae are presumably not so
limited, the experiments are not truly representative of their astrophysical
counterpartsif short wavelength modes are important. In both cases, one system (a
simulation or alaboratory experiment) is employed to study a second physical system
that may be less limited in modal content, and it isimportant to understand the effect
of the unresolved scales.

In this section, we consider the effect of short wavelength modes on the global
instability development in two ways. First, we vary the short wavelength cutoff in a
series of five simulations with initially flat spectra and observe the resulting variation
in growth rates and interface structure. The long wavelength cutoff isin each case
mode 4, while the short wavelength cutoffs included in the study are m,,, = {80, 40,
20, 10, 4} (M, = m,,;, = 4 for the single mode calculation). This givesinitia
characteristic mode numbers of <m> = {42, 22, 12, 7, 4}, and relative spectral widths
of Am/<m>={1.8, 1.6, 1.3, 0.9, 0.0}. Theinitia rms-amplitudeisset t0 0.25 umin
each case, giving linearity parameters <a/A> = {0.006, 0.005, 0.004, 0.003, 0.005} .

Log density plots at several times are shown in Fig. 20(a) from all but the
single mode simulation. There is more mixing early on when the initial spectrum

extends to higher mode numbers [see Fig. 20(b)], and the inverse cascade to larger
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Figure 20: Variation of short-wavelength cutoff for flat spectrum fromm,, =4
(single mode) to m,,,, = 80. (8) Log density plots, (b) mixing parameter, and (c)-(d)
amplitude histories show decreased mixing and enhanced growth with lower cutoff
when theinitial rms amplitudeisfixed at 0.25 um. (e) A modified m,,, =80is
constructed in which the the first 7 modes are replaced with the spectrum from the
M.« = 10 calculation. Theinitial rms amplitude isincreased by nearly V2 relative to
the m.,,, = 10, but the amplitude is reduced to below the m,,, = 20 result.
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scales proceeds more rapidly. Amplitude history plots show that higher short-
wavelength cutoff leads to faster growth during the first few ns but reduced growth at
later times [see Figs. 20(c)-20(d)]. The one exception to this pattern isthe m,,, = 80
case, which ends up growing faster asymptotically than the m,,, = 40 case due to the
emergence of alarge single dense spike at about 25 ns.

These observations can be partially explained as follows: Spectra extended to
higher mode numbersinitially give faster growth because of increased shock-
deposited vorticity (RM) and because the RT exponential growth ratey « vk in the
linear regime. The dominance of high modes ends when the low modes become
nonlinear and their velocities begin to saturate at their terminal values. If there were
no low-1 modesin theinitial spectrum, or if their initial amplitudes were sufficiently
small, then the growth of low-lI modes would be dominated by nonlinear interaction
between high-I modes (mode coupling).® In our case, theinitial amplitudes of the
low-I modes are of order a/A ~ 0.05/vVN where the number of modes N varies from 1
to 81. When N isless than or of order 10, the preexisting low-I modes become
nonlinear within afew ns and mode coupling does not play asignificant role. Thisis
evident in the m;,, = 10 and m,;,, = 20 log density time series, in which it is apparent
that the large wavelength structure at 11.4 nsis correlated with that at 2.4 ns. The
difference in the late time growth ratesis partially areflection of the initial
amplitudes of the low-l modes that begin to dominate the growth early on. These
amplitudes are decreased when we increase the relative spectral width Ak/<k> while

holding the initial rms amplitude constant.
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In addition to larger initial amplitudes in the long-wavelength modes, spectra
with lower high-mode cutoff give faster growth because they transition to turbulence
later. Consequently, they experience less of the density-gradient stabilization
associated with enhanced mixing in the post-transition state. A modified m,,, = 80
interface was constructed to isolate the effect of enhanced mixing from the initial-
amplitude effect. In the modified initial spectrum, the first 7 modesin the m,,,, = 80
spectrum were simply replaced with the spectrum from the m,,,, = 10 case. Because
of this change, the initial rms amplitude is just under v2 times greater than in the
other cases, and the low |I-mode amplitudes are the same asin m,,, = 10 case. Despite
theincrease in rms amplitude and alarge increase in the number of unstable modes,
the post-transition growth of the mix region is decreased rather than increased relative
to them,,, = 10 calculation [see Fig. 20(e)]. In fact, the resulting late-time amplitude
history lies below the m,,, = 20 curve and only rises above the m,,, = 40 curve at
about 12 ns. Thus the presence of the short wavelength modes leads to a significant
reduction in the nonlinear growth of the mixing layer.

The opposite effect was found by Milovich et al. in ssmulations of NIF
double-shell ignition target designs.” In the double shell targets, instabilities develop
on a metal/foam interface during capsule implosion. The perturbation spectrum was
taken from measurements of an Omega glass capsule, and a series of calculations was
run in which the number of modes was increased from about 40 up to several
hundred. The angular resolution was determined such that the shortest-wavelength
mode in the initial conditions was resolved to at least 20 ppw, and | ;, was set to 12 in

each case. The |late-time perturbation growth was found to increase with increasing
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e With a particularly dramatic increase when |, was increased from 102 to 204.
There are several differences between their system and ours that might contribute to
this discrepancy. First of all, the number of modesis varied much more widely in
their calculations than in our, and their initial spectrum falls off relatively slowly
above mode 50. Since they do not renormalize the initial spectrum each time, runs
with more modes have greater initial rms amplitudes. Secondly, modesin their initia
spectrum are typically far more linear than ours. This alows more time for short-
wavel ength modes to couple and generate larger scales during the weakly nonlinear
regime before saturation. The most significant difference, however, isthat their low-|
modes do not have time to grow from theinitial conditions up to nonlinear
amplitudes. With |, = 54, the perturbations at ignition time (the end point of the
calculation) remain linear. Even with |, = 102, the low-I modes appear to have
attained a degree of nonlinearity /A ~ 1. When |, isincreased to 204, however, the
|ate-time perturbations are very nonlinear and scales larger than the initial conditions
have been generated. This indicates that significant mode coupling and associated
pumping of large scales to nonlinear amplitudesis possible only with |, > 200. In
our system, the low-I modes do not have to rely on mode coupling in order to reach
large amplitudes on the time-scale of the experiment. Since the addition of shorter
wavelengths does not increase the initial rms amplitude by more than a factor of v2,
its main effect is to hasten the transition to a state with lower effective Atwood
number and greater energy isotropy.

An extensive series of calculations was run to investigate the effect of short

wavel ength modes on the evolution of a single long wavelength mode. The long
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wavelength mode is mode 4, with nominal initial amplitude of 2.5 um. The short-
wavel ength component is bounded by modes 20 and 80, and typically has an rms-
amplitude that is 1/10 that of the nominal mode 4 amplitude. The shape of the short-
wavel ength spectral component was either narrow gaussian, broad gaussian,
hyperbolic (1/k), or 1/k? [see Fig. 4(a)]. A representative initial interface profile (with
a 1/k short wavelength component) is shown in Fig. 4(e). Changes in spectral shape
result in small changes in the characteristic mode number of the short wavelength
component, and hence in the k-space separation parameter <k>/<k>,, which varies
over 9.25-11.30. These simulations make up the upper family of amplitude history
curvesin Figs. 5(a) and 7(a) and the lower family of mixing parameter curvesin Fig.
14. The single-mode amplitude history (no short-wavelength component) isthe
uppermost curve in the large-amplitude family, indicating that the short-wavelength
component reduces the late-time perturbation growth by as much as 20%. Plots of
separate spike and bubble amplitude histories (not included) show that thereistwice
as much variation (about 30%) in the spike amplitudes as there isin the bubble
amplitudes (about 15%).

We found in section IV .A that the location of a given curve within the small-
amplitude family of Figs. 5 and 7 is not well correlated with the spectral shape. The
same istrue for the bi-component upper family. Figure 21 includes amplitude history
plots from the single mode cal culation, mode 4 plus hyperbolic shorts (with <k>/<k>,
=10.75), and mode 4 plus broad gaussian shorts (with <k>/<k> = 11.30). The
difference in amplitude between the two mode-4-plus-shorts cases is characteristic of

the differences seen between different short-wavel ength spectral shapes or different
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randomized amplitude and phase realizations of the same spectral shape. Again, the
shape of theinitial spectrum is not important in determining the late-time large-scale
interface structure.

The principle effects of short wavelength modes on the large-scale interface
structure are to increase the degree of mixing and accelerate the transition to the
guasi-self-similar “turbulent” state [see Fig. 21(a)]. Both of these effectsinvolve the
interaction and breakup of spikes and an associated significant reduction in the
overall growth rate of the spike front [see Fig. 21(b)]. The single mode spikes
eventually break down as well under the influence of a numerical noise that
effectively adds a short wavelength component. This happens later in time though,
indicating that the rms amplitude of the short-wavelength isimportant in determining
its effect on the long-wavelength mode. The late-time growth rate of the bubble front
isincreased if the breakup of spikes allows for bubble competition and merger on
what would otherwise be a stable periodic array of bubbles [see Fig. 21(c)]. Because
of the strong influence of the short-wavelength component on the transition time,
coupled with the strong effect of transition on the global characteristics of the flow,
systems comprised of a single mode or afew commensurate modes make poor
surrogates for real physical systems. For broadband spectra, it appears that the
presence and rms amplitude of the short wavelength component but not its spectral
shape are important. This suggests that computational or experimental surrogates for
systems dominated early on by long-wavel ength modes need not accurately reproduce
the details of the short-wavelength spectral component as long as the low |-modes are

well resolved. Because this scenario might depend on the dimension of the
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perturbation, we will consider in alater paper the effect of unresolved modes on the

evolution of 3D systems capable of undergoing a turbulent mixing transition.

3. Variation of <a>/<a>

Finally, we consider the variations in the relative rms amplitudes of the long
and short-wavelength components. We ran a series of five calculations, each of which

included the same narrow gaussian short-wavelength spectrum plus mode 4 (see Fig.
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22). Therelative amplitude parameter <a>/<a>, was controlled by varying the mode
4 amplitude from 0.0 to 2.5 um, with intermediate values of 0.025, 0.25, and 1.0 um.
When the initial amplitude of mode 4 isless than or equal to the rms amplitude of the
short-wavel ength component (<a>J/<a>, = 1), the instability evolution closely
resembles the shorts-only case. The transition time in particular is not sensitive to the
presence or amplitude of mode 4 as long as its amplitude is small [see Fig. 22(b)].
When the mode-4 amplitude is larger than <a>, there is a qualitative change in the
instability development. Mode 4 begins to dominate the growth within afew ns, in a
time that is roughly equal to or less than the time required for the short-wavelength
modes to reach their nonlinearity thresholds and undergo transition. Shear that
develops along the mode-4 spikes and bubble as they grow into the nonlinear regime
greatly inhibits the development of small-scale structure and delays the time to
transition [see Fig. 22(a)]. This delay contradicts what one would expect based on
transition to shear-layer turbulence, which should appear earlier along larger spikes
dueto their faster terminal velocities and consequently higher Reynolds numbers. The
same stabilizing effect was noted and described by Ofer et al. in their discussion of
the effect of a secondary long-wavelength mode on a short-wavelength primary
mode®, and is also visible in a calculation by Y oungs.® The short-wavelength spectral
component isin large part lost and must be regenerated later after the mode-4 spikes

reach their interaction and transition nonlinear thresholds.

V. Comparison with classical case
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Some of the results we have found in our 2D, high-resolution simulations of
blast-wave-driven systems are applicable to classical RT systems, while others are
not. Potential sources of differences are the time-dependence of the drive and
compressibility. Compressibility effects include the RM contribution, moderately
high instability Mach number (up to M2~ 0.1 in our calculations), stretching of
perturbations due to material decompression, and the associated density gradient
behind the shock front.

Our “effective box size”, which arises because of the decay of the driving
acceleration, is absent in classical systems. However, most if not al multi-merger-
generation experiments and simulations performed to date are affected by a physical
or computational box size at late times.

The process of spike interaction and breakup will likely proceed similarly in
both systems. However, we might expect to find lower nonlinearity thresholdsin our
case due to shock-deposited vorticity and higher instability Mach number. From
classical RT simulations of Ofer et al., it appears that spike interaction begins at about
h/A ~ 2-3.%° This might be slightly higher than our value of h/A ~ 2, but the difference
seems too small to be meaningful.

In planar blast-wave-driven systems, atrue self-similar regime independent of
initial conditionsis not possible due to decompression. We have found in its place a
guasi-self-similar regime that is limited in time and transverse scale due to drive
decay. Self-similarity in classical RT systems remains a possibility (but even there
has not yet been conclusively demonstrated), and we might expect a correspondence

between transition requirements in classical systems and the onset of quasi-self-
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similar growth in blast-wave-driven systems. Early rocket-rig experiments’ and
simulations® suggested self-similar-like growth after about 2.5 generations of bubble
merger. Thisis frequently expressed as the requirement that transverse scales ten
times larger than the most unstable mode or the initial characteristic scale must be
generated in order to transition to take place. More recent water-channel experiments
are also consistent with this requirement.*” After 2.5 merger generations, the initial
characteristic mode 40 in our shorts-only calculations has shifted to mode 7.
According to Fig. 8, thisoccurs at about 6 ns. The observed transition time, based on
the mixing parameter or the loss of transverse spectral information, is at about 3-4 ns
or after just one merger generation. Again, this accelerated transition is likely due to
enhanced vorticity due to RM and very fast spike growth, both of which might
facilitate spike interaction and breakdown. In 2D calculations with instability Mach
number of the same order as ours (but without a shock), Glimm et al. report spike
interaction and transition to a“multiply connected structure” after about 1.5 merger
generations.® The fact that they consider this transition (and the resulting growth rate
reduction) to be an unphysical 2D artifact points to the need for comparison with
highly-resolved 3D calculations.

Despite the decreased drag on 3D objects and the suggestion that the post-
transition growth reduction in 2D calculationsis artificial, early 3D classical RT
calculations by Y oungs show reduced growth relative to the 2D case in the turbulent
regime.* Thisreduction islikely due to increased dissipation in 3D, as suggested by
Y oungs in the same paper. A similar effect has been observed in ongoing state-of-the-

art smulations by Cook et al., who consider the instability growth in terms of four
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evolutionary stages.** After a short period of independent modal growth, a mode-
mode interaction phase begins when h/<)\> ~ 2 (equal to our threshold for spike
interaction). During this “weak turbulence” phase, the mixing parameter reaches a
local maximum at h/<\> = 4.3 (similar to our peak at h/<A> ~5). A second increase
in the mixing parameter occurs between h/<)\> ~ 8-19, which they call the turbulent
mixing transition. The mixing and similarity parameters appear to have reached their
asymptotic values by about h/<)\> = 19, which marks the beginning of a strong
turbulence phase that extends to the end of their calculation at h/<A> = 30. In some of
our 2D calculations, we too see a second peak in the mixing parameter [see Fig. 19(b)
for an example] approached over about h/<A> ~ 14-24. We find these parallels
encouraging in light of the high-resolution, high-order nature of the Cook et al.
calculations along with our expectation that transition should proceed qualitatively
similarly in classical and blast-wave-driven systems. More detailed comparisons,

however, will have to await completion of our 3D blast-wave-driven simulations.

VI. Conclusions

We have presented and discussed results from a series of over 70 2D high-
resolution AMR simulations of hydrodynamically-unstable interfaces driven by a
strong blast wave under NIF-like drive conditions. The mix-width time histories show
no apparent approach to a self-similar regime independent of the initial conditions.

Thisis due to decompression and drive decay, which result in an asymptotic velocity
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that depends on the amplitude and time as well as on the transverse scale and the
degree of mix in the layer. For sufficiently long but finite experiment duration, drive
decay also leads to an effective box size that sets a maximum transverse scale that can
be generated. After this scaleis reached, the inverse cascade is halted and the growth
isno longer self-similar-like. There is, however, a period of quasi-self-similar growth
after generation of scales larger than the initial conditions but before the generation of
the effective-box-size scale.

The existence of the quasi-self-similar state and the drive-imposed effective
box size make the blast-wave-driven case distinct from classical RT. However,
transition to the quasi-self-similar state is very similar to its classical counterpart. In
both cases, transition is marked by an increase in the degree of mixedness, a decrease
in the spike velocity, and often an increase in the bubble velocity.

For continuous and bi-component (short on long) spectra, we have identified
severa parametersthat classify and characterize theinitial conditions. We have
investigated how variations of a subset of these parameters can affect the observable
properties of the deep nonlinear instability evolution. We found, for example, that a
long wavelength mode can inhibit the development of small scales and delay the
transition to a turbulent-like state when its amplitude is larger than the rms amplitude
of the short-wavelength spectral component.

Most notably, apparently random variations observed in late-time amplitudes
and growth rates were not well correlated with initial spectral shape. The presence of
the short wavelength component is important for facilitating the transition to

turbulent-like flow, but its effect on the large scales does not depend strongly on its
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spectral shape. Only the average properties are important, such asthe initial rms
amplitude and characteristic wavenumber. This bodes well for simulations of
similarly strongly-driven systems that leave a portion of the short-wavelength end of
the spectrum unresolved. As long as the system contains some fast-growing and
interacting modes that can be resolved computationally or reproduced experimentally
(and hasthe correct initial rms amplitude), the late-time instability evolution will
likely closely resemble the fully resolved or complete system. This reaffirms the hope
that |aser-driven experiments can serve as useful and relevant platforms for studying
compressible mixing in supernovae despite their drastically more limited available
range of scales. Similarly, carefully-designed numerical simulations need not
necessarily reproduce the full range of spectral details present in their physical
counterparts in order to reasonably reproduce the late-time large-scale interface
structure. These conclusions apply in particular to systems with long-wavelength
modes large enough in amplitude to reach the nonlinear phase early on.

It isimportant to remember that these conclusions are based solely on 2D
calculations and might be altered somewhat in 3D. In alater paper, we will extend the
discussion and analysis to high-resolution 3D simulations currently underway. This
anaysiswill include a discussion of the effects of initial conditions on the turbulent

mixing transition and the nature of the subsequent turbulent flow.
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Chapter 6: Transition to Turbulence and Effect of Initial
Conditionson 3D Compressible Mixing in Planar Blast-

wave-driven Systems

|. Introduction

An interface between two fluids becomes hydrodynamically unstable when it
transmits a blast wave down the density gradient. Perturbations grow under the
combined influence of the Rayleigh-Taylor*? (RT) and Richtmyer-Meshkov** (RM)
instabilities. In addition, material decompression behind the shock front resultsin
amplitude stretching that represents a significant contribution to the growth at late
times.> RM dominates at very early times, but its contribution relative to RT quickly
becomes insignificant as the shock-deposited vorticity spreads out and decays away.>®
In the nonlinear phase, initial perturbations evolve into spikes of denser material
growing in the direction of shock propagation and bubbles of less dense materia
lagging ever further behind the unperturbed interface position. If the interfaceis
driven by a sufficiently strong blast wave, 2D and/or 3D secondary instabilities will
eventually cause nonlinear spikesto interact with one another and break down.

Energy and momentum are thereby diverted into the transverse direction and a

transition to a turbulent or turbulent-like state occurs.
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In a previous paper, we considered the effect of the initial perturbation
spectrum on the nonlinear evolution of a 2D blast-wave-driven system, including
spike interaction.® Based on high-resolution 2D Raptor’ simulations, we concluded
that memory of certain aspects of the initial conditions, such as the rms amplitude, is
retained in the mix-width at all times. Spike interaction and breakup was found to
correspond to an increase in small-scale mixing, a significant reduction in spike
velocity, and aloss of initial transverse spectral information. Consequently, we
referred to it as a 2D turbulent mixing transition. At late times, the inverse cascade
driven by bubble competition and merger was halted due to drive decay, which
imposed an effective box size on the system. After transition but before the
emergence of the effective box size, we observed a quasi-self-similar regime during
which the similarity parameter <A>/h decays slowly in time, with a value only weakly
dependent on theinitial conditions.

In this paper, we extend this study to include 3D calculations of systems that
are otherwise identical to the laser-driven targets described in the 2D paper. Our goal
isto determine how the deep nonlinear instability evolution differsin the 3D case,
where vortex stretching makes transition to full 3D turbulence possible. In particular,
we would like to understand how the initial conditions affect the time to transition
and the nature of subsequent turbulent flow.

We will show that nonlinearity thresholds for spike interaction and breakup
are not significantly changed in 3D, and that the post-transition state is more
thoroughly mixed than in the 2D case. More mix gives alower effective Atwood

number that leads to a large reduction in the bubble growth rate relative to the 2D
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values despite the decreased drag in 3D. Surprisingly, the velocity of the spike front is
not significantly changed when going from 2D to 3D. It is however reduced relative
to its pre-transition value. Thisis particularly interesting in light of the fact that 2D
simulations of blast-wave-driven mixing in core-collapse supernovae consistently
underpredict the asymptotic spike velocities by about afactor of two (see Ref. 8 and
references therein). This problem is not solved by 3D calculations that predict spike
velocitiesthe same asin 2D, suggesting a balance between velocity enhancement due

to decreased drag and reduction due to increased small-scale mixing.

[1. Transition to turbulence in RT-instability-driven systems

Before continuing on with ssimulation results, we wish to clarify what we
mean by turbulence. Thisis particularly important for turbulence in multimode RT
systems because there are at least four ideas of turbulence that appear in the literature,
and they do not all affect the instability growth in the same way.

First of al, RT-unstable systems can exhibit turbulence in the classical fluid
mechanical sense. Unfortunately, there is no universal consensus on what classical
turbulence is either. We describe it as a disordered state that undergoes random
fluctuations in both space and time and is characterized by energy-flow from some
large driving scale down to dissipative scales viathe 3D phenomenon of vortex

stretching. When driven by the RT instability, there is arange of driving scales set by
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the density spectrum or bubble size distribution. When bubble competition and
merger are active, the dominant driving scale for the turbulence growsin time.

Transition to classical turbulence typically requires that the Reynolds number
be greater than some threshold value.® This requirement amounts to sufficient spectral
separation between the driving and dissipative scales. Dimotakis observed that many
systems exhibit atransition to a state of increased molecular mixing, which he called
the turbulent mixing transition, above acritical Re of about 20,000.° This
corresponds to three orders of magnitude separation between the driving and
dissipative scales, alowing for an extended inertial range that is decoupled from both.
Above the critical Re for the mixing transition, the internal structure of the flow is
less Re-dependent than before the transition.

In non-stationary flows, there is atime constraint as well.**** Even if the
Reynolds number is high enough that an inertial range can in principle exist,
transition cannot take place until the inertial range has had time to develop. A final
requirement for transition that is common to both non-stationary and stationary flows
is the existence of some seed perturbation that instabilities can act on. The seed
requirement is often not focused on because it will naturally be satisfied in virtually
every system, whether physical or computational, due if nothing else to thermal or
numerical noise.

The turbulent mixing transition often takes place in flows that have already
undergone atransition from alaminar, ordered state to a disordered, spectrally
complex state.® The term “turbulence” is often also applied to any such system that

appears random, regardless of whether or not there is aforward energy cascade via
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vortex stretching down an inertia range. Thisincludes 3D simulations that leave the
physical dissipation range and much of the inertial range unresolved. The resulting
computational Reis often greatly reduced relative to the actual Re in the modeled
system, even to the point that there is no discernible inertial range and the
computational Reislower than the experimentally observed critical Re. We will refer
to such flows as weakly turbulent or turbulent-like, and to the initiating transition as
the weak transition.

Two-dimensional turbulence is distinct from its 3D counterpart in that it lacks
the vortex stretching and associated forward cascade that are central to 3D turbulence.
Thereis, however, aforward enstrophy cascade and an inverse energy cascade driven
by vortex pairing and merger.”>*® Since 2D simulations are often used to model 3D
turbulent systems, it isimportant in each case to consider whether or not transition in
the 2D system proceeds similarly to transition in the analogous fully resolved 3D
system. Thiswill likely depend on whether or not the latter is driven by instabilities
that are inherently 3D (such as the Widnall vortex ring instability"). In such cases,
2D calculations of course cannot be counted on for predicting the transition time.

Finally, we note that the word turbulence is sometimes used to describe the
inverse cascade, driven by bubble competition and merger in 3D aswell asin 2D, that
is characteristic of nonlinear multimode RT evolution. This continual generation of
successively larger scales leads to acceleration of the bubble front and explains the
conjectured loss of initial conditions and establishment of a self-similar regime.***

Like transition to classical turbulence, transition to the self-similar regime requires

time, space, and a seed. The seed spectrum must contain multiple, incommensurate
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modes that are unstable (ie not so small that they are stabilized by viscosity or other
mechanisms). Otherwise, scales larger than those present in the initial conditions
cannot be generated and the asymptotic state will be characterized by a stable,
periodic array of bubbles. The characteristic wavelength of the spectrum will shift
towards the low-| end of the initial spectrum, but will not pass beyond it. Noise
(including numerical) present in the system can of course serve as the required seed,
eventually triggering the interaction and breakup of spikes, but the transition will be
delayed.®

The space requirement for transition to self-similar “turbulence’ is that the
system or box size be at least several times larger than the longest-wavelength
significant modes present in the initial conditions. There must also be sufficient time
for larger scale to be generated. If the space requirement is not met and until the time
condition is satisfied, the scale-invariant bubble distribution” will not be realized.

In blast-wave-driven systems (or other system with similarly decaying drive),
the effective box size can play the same role as the physical box sizein limiting the
inverse cascade.®* If the drive becomes very small at |ate times but does not vanish,
then thinking in terms of the effective box size amounts to a transformation of the

time requirement into the spatial domain.

[11. Effect of transition on RT instability growth
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The evolution of an RT-unstable interface islikely to be similarly affected by
transition to a classically turbulent or turbulent-like 2D or 3D state. Our previous 2D
simulations agree with 2 and 3D simulations of others that such transitionsleadsto a
higher degree of small-scale “molecular” mixing and typically a reduction of the
growth rate.® We have noted, however, that the velocity of the bubble front can be
increased if the transition leads to bubble competition in what would otherwise be a
stable, periodic array. In that case, transition to a classically turbulent or turbulent-
like state provides the seed requirement for a subsequent transition to quasi-self-
similar “turbulence”. In our simulations, the 2D transition was found to occur when
the dominant modes in the spectrum reached a nonlinearity threshold of about h/A =
5-6. For spectrally complex initial conditions, the 2D and self-similar transitions
occurred virtually ssimultaneously. In single or few-mode systems, the self-similar
transition sometimes occurred significantly later than the 2D transition.

While transition to a classically turbulent or turbulent-like state leads to
enhanced mixing that tends to reduce the RT growth rates,>* transition to a (quasi-
)self-similar regime leads to an inverse cascade that tends to enhance the perturbation
growth.” When both transitions are coincident, the overall effect on the growth rates
depends on which effect wins out. Simulationsin 2 and 3D tend to show an initial
growth rate reduction, especially for the spikes, but the growth must eventually be
enhanced if the system allows for unlimited generation of larger structures with
higher terminal velocities.®**

We now consider the question of coincidence among the various transitions. It

has been proposed that the mixing-transition time in RT-unstable systemsis limited
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by the viscous growth of a shear layer along the spike stalks, and with it the
Liepmann-Taylor scale that sets the low-I end of theinertial range.**** However, for
broadband systemsin a big box at high Reynolds number (ie seed and space
requirements met for both classical and self-similar transitions), the mixing transition
is preceded by nearly coincident weak and self-similar transitions. Once modes
become nonlinear and begin to couple and generate larger scales, marking transition
to self-similar turbulence, spikes soon reach their nonlinearity interaction and breakup
thresholds.® These interactions drive mix-layer-scale vortices, effectively short-
circuiting the process whereby the low-l end of theinertial range islimited by the
viscous growth of a shear layer. Even in 2D, spike interaction and breakup due to
Kelvin-Helmholtz (KH) activity gives an abrupt forward cascade, thereby temporarily
mimicking full 3D turbulence characterized by vortex stretching and the associated
transfer of energy down to the dissipative scales. Diffusive growth of the shear layer
will likely provide the time limitation for transition to classical turbulence only in
single-mode or otherwise spectrally simple systems.

When the mixing transition occurs in a system that has already undergone
transitions to weak and self-similar turbulence, it can only cause areduction of the
growth rates by effectively lowering the Atwood number within the mix layer.

At low Re, the weak and self-similar transitions need not be coincident. For
example, consider that the inverse cascade can occur at any Reynolds number, and in
2D aswell as 3D. Equivalently, the presence of an inverse cascade does not imply
strong interactions between spikes and the associated increase in mixedness. The

Reynolds number will eventually become high if the inverse cascade is allowed to
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continue long enough (Re ~ A¥2gY2if h ~ 1), but the system can be “turbulent” in the
self-similar sense at lower Re as well.

Conversely, a system with simple modal content can exhibit localized
classical turbulence, including the mixing transition, if the Reynolds number is high
enough. For example, in RM shock tube experiments by Jacobs et al.,?® secondary
instabilities lead to transition to classical turbulence within the KH rollups of single-
mode spikes, while the large-scale single-mode structure remains intact and thereis
no bubble competition. Even so, spike interaction and breakup should increase the

extent to which areas of turbulence permeate the mix region.

| V. Effect of decompression and drive decay in classical turbulence

After an initial compression upon passage through he shock front, material in
a blast-wave-driven system undergoes decompression in the post-shock velocity
gradient. This expansion has an effect on any developing turbulence that can be
understood by considering the vorticity equation for compressible fluids:

d—w=w-Vv-w(V-v)+iZVprP+ng+vV2w
“ g ©

+VuxV2v+V1x(Vv~Vu)+EVx(VvVu)
P P

where u and v are, respectively, the dynamic and kinematic viscosities. If we neglect
the baroclinic and viscous terms and assume only conservative forces, then this

becomes
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Z—?=w-Vv—w(V-v). 2

Next, we make the reasonable assumption that decompression inthe u, = § z/t
rarefaction isthe only significant deviation from incompressibility. In that case, we
find

dw w
—=w-Vv-B—. 3
el ﬁt (3)

The first term on the right-hand side describes vortex stretching, and the second
represents the decay of vorticity due to the decompression. Finally, we expand v into
the compressible part u, (which is also irrotational) and the incompressible part v’
which, when inserted into (3), gives

G BB =0 W, ()

where w, isthe transverse vorticity vector. We can draw two conclusions from Eq.
(4) about the effect of the decompression on turbulence. First of all, the vortex
stretching term does not include a contribution from the decompression. Thisis
because any increase in vorticity due to stretching in the rarefaction is exactly
balanced by the vorticity decay term. Thus the parallel (to the shock propagation
direction) component of the vorticity is unaffected by the decompression. The
transverse vorticity, on the other hand, remains “frozen into” the fluid and decays as
the density decreases. If the turbulence was initially isotropic and viscosity not
important, this should lead to an asymmetric vorticity field at |ate times biased in the
parallel direction. In fact, vorticity due to shock deposition and RT strongly favors the
transverse direction, with asignificant parallel component arising only with the onset

of strong spike interaction. Decompression may therefore help drive a post-transition
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vorticity field that is strongly anisotropic at the large scales towards isotropy by
retarding the decay of its parallel component.

For a high Mach number Taylor-Sedov blast wave, we found in an earlier
paper that the interface decel eration scales approximately as g ~ t2+ @21 wherey is
the adiabatic index and d is equal to the dimension of the blast wave (ie three for

spherical and one for planar).? If we neglect for the moment the decompression and
assume that the characteristic wavelength scales like [ f \@dt]z as expected for

incompressible RT in the scale-invariant regime,*** then we find that the Reynolds
number scales like Re ~ t**#%%2) compared to Re ~ t* in the constant g case. Thus the
Reynolds number continues to increase in the blast-wave-driven case, but it does so
much more slowly than with constant acceleration. For a system driven by areal blast
wave, the driving acceleration will eventually vanish and any turbulence will be left

to decay away.

V. Calculation setup and description

The ssimulations are performed using the multi-physics radiation
hydrodynamics code Raptor, which uses a 2™ order (in space and time) Godunov
method applied to the Euler equations.” Raptor is parallelized and uses adaptive mesh
refinement (AMR), making it well-suited to problems such as ours that require high
resolution in only a portion of the computational domain. The calculation setup is

nearly identical to our 2D simulations detailed el sewhere,® and only an abbreviated
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description will be given here. The only difference in the 3D calculationsis that the
initial spectra are now typically 3D, and the nominal resolution is 256 cells across the
computational domain instead of 512. The highest level of refinement is reserved for
the interface region, and the total number of cells grows with the mix width, reaching
(to date) over fifty million.

Our hypothetical target [see schematic in Fig. 1(a)] consists of a 150 um
plastic pusher section (density 1.42 g/cc) in contact with a cryogenic hydrogen
(density 0.086 g/cc) 2.2 mm payload section. An initial perturbation isimposed at the
pusher/payload interface, and the width the computational domain was typically 200
um. Open boundary conditions are used in the parallel (to the shock) direction while
periodic conditions are specified in the transverse direction.

The end of the pusher opposite the perturbation is driven with a25 kJ, 1 ns
laser pulse, which launches a strong planar blast wave into the target. Planar
experiments with these drive properties will be possible within afew years as the
National Ignition Facility?® (NIF) becomes operational. The simulations are initiated
with a high-velocity, heated, compressed slab with characteristics taken from alaser-
driven Lasnex® simulation at the end of the laser pulse. The Mach numbers of the
incident and transmitted blast waves are in the range of 10-30, where the precise
value depends on the degree to which x-ray preheat can be controlled (the incident
Mach number with no preheat would be about 60). The resulting initial interface
speed is about 130 um/ns [see Fig. 1(b)]. The post-shock Atwood number remains
nearly constant at about 0.7.

In this paper, we will present results from four high-resolution (256 ppb)
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Figure 1: (a) Target schematic (not to scale). (b) Variation in time of
interface velocity and deceleration.
multimode runs, one low-resolution (128 ppb) mode 4 “egg-crate” run [given by z, =
(2.5 um) cos(k,x)cos(k,y), where k, corresponds to mode 4], and two runs intended to
test the code. Two of the high-resolution multimode runsinclude only a short
wavel ength spectral component with modes 20-80, given by a narrow gaussian in two
cases and a 1/k* spectrum in the other (see Fig. 2). Each interface was constructed by

determining all modes in the annulus satisfying 20 < sqrt(k,*+k,? ) < 80 (for integer k,
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Figure 2: Initial spectral shapes used for the short-wavelength component in the 3D
calculations.

and k,) and assigning to each arandom phase and randomized amplitude taken from
the prescribed spectrum. Contour plots of the initial conditions are shown in Figs.
3(a)-3(b). The other two multimode calculations include a simple long wavelength
component in addition to the narrow gaussian short wavelength component [see Figs.
3(c)-3(d)]. The long wavelength component is either asingle 2D mode 4 or the 3D
mode 4 “egg crate”.

In estimating the Reynolds number in the calculations, we take Re,(t) =
[2h(t)/AX]*® where 2h(t) is the mix width and Ax isthe cell size. This give atime-
dependent Reynolds number that climbs as high as ~ 5500 in the first 18 ns of a40 ns
experiment. Thisisthe same order of magnitude as the time-independent Reynolds
number based on the width of the computational domain Re, = 1626. If the

perturbation amplitude growth is similar in 2D and 3D, then we expect to find Re, ~
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crate”.

(

11000 at 40 ns. The estimated Re number in the actual experiments s of order 10°, or

two orders of magnitude greater than in the simulations.”® Typical of numerical

simulations of turbulent systems, the dissipative scales are much smaller than the grid

scale. We might expect, however, to qualitatively capture the effect of the turbulence
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on the large scalesif we adequately resolve the lower end of a self-similar inertia
range. According to Dimotakis, this scale can be estimated by the Liepmann-Taylor
scale, which he defines as \ ; = 5LRe, ** where L isthe driving scale.”® With L = 2h,
we find for the experiments A, ; = 3-10 um. In the simulations, there are then about 4-
13 cells per Ligpmann-Taylor scale, which corresponds to mode 67-20. Thus we
estimate that we are beginning to resolve the upper end of the inertial range with 256
ppb. We would feel much more comfortable with another factor of 2-4 in resolution,

but such calculations are for now prohibitively time-consuming.

VI. Simulation results

A. Test calculations

Two calculations were run to test the 3D version of Raptor adapted for usein
this study. In thefirst, an interface was generated from a uniform 2D spectrum
including modes 4 through 80. The purpose of this test was to see when numerical
noise would introduce observable 3D effects into the ssmulation. The problem was
run out to 8.7 ns, at which point the width of the mix region was about 24 times the
initial characteristic wavelength (see Fig. 4). Despite this high degree of nonlinearity
and a complicated interface structure, there were absolutely no indications of 3D flow
even at the end of the calculation. Thus a simulation that begins 2D will remain 2D
well into the nonlinear regime.

Since the first test involved grid-aligned perturbations, we ran in second test

in which a single mode 4 perturbation was set up with its wavevector rotated by 45

215



(@
(b)

Figure 4: Log density slices through a 3D simulation with 2D initial conditions from a
uniform (flat) spectrum including modes 4 through 80. The dark line in (a) denotes
the location of (b) the horizontal slice. Theinitial rms amplitude in this calcul ation
was 0.32 um.

degrees about the vertical axis. The calculation was run out to 14 ns, at which point
the nonlinearity was a/A = 1.27. The flow at the boundaries was corrupted due to the
periodic boundary conditions, but the perturbation away from the walls remained

single mode despite the fact that is was non grid-aligned (see Fig. 5).
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Figure 5: Log density dlices through a 3D simulation with initial conditions given by
asingle mode (mode 4) oriented at 45°. The dark linein (a) denotes the location of
(b) the horizontal slice. The resolution in this calculation was 128 cellsin the
transverse direction and the initial perturbation amplitude was 1.25 um.

B. Effect of dimensionality on single mode growth

In Fig. 6, we compare the growth of the mode 4 “egg-crate” with asingle 2D
mode 4. The 3D spikes and bubbles have the same transverse scale as the 2D spikes
and bubbles, so, during the pre-transition phase, the difference in their growth rates

should be set by theratio of their drag coefficients™***

Usp /Uyp = \/Cyp ICyp = J 67 /(27 -1.22) ~+/2.46 ~1.57. In fact, the 3D growth rate
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Figure 6: Effect of dimensionality on single-mode growth: (a) amplitudes, (b)
averaged growth rate, and (c) log density images. The 3D growth rateinitially
saturates at about V1.5 (rather than v2.5) times the 2D growth rate.

initially saturates at about V1.5 =1.2timesthe 2D growth rate [see Fig. 6(b)],
possibly because the 3D bubbles appear to develop with a dlightly smaller diameter.
A late-time log density image from the mode 4 “egg-carton” interfaceis
shown in Fig. 7. Despite nonlinearity a/A = 7, regular single-scale structure persists
along much of the length of the spikes. However, atransition to turbulence appears to
have occurred in localized regions where shear layers from individual spikes have

merged. An x-ray radiograph at 25 ns from a 2D short-on-long Omega experiment™
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Figure 7: Late-time log density image from mode 4 “egg-carton” interface. Despite
nonlinearity a/A = 7, regular single-scale structure persists along much of the length
of the spikes. However, atransition to turbulence appears to have occurred in
localized regions where shear layers from individual spikes have merged. An x-ray
radiograph at 25 nsfrom a 2D short-on-long Omega target shows indications of
similar localized transitions. The perturbation in the experiment is less nonlinear both
because it is 2D and the drive isfive times less energetic.

shows indications of similar localized transitions. The perturbation in the experiment
isless nonlinear both because it is 2D and the drive isfive times less energetic. Based
on the time required for establishment of an inertial range via the viscous growth of
the Liepmann-Taylor scale, Robey et al. predict that the mixing transition is possible

in the experiments after 17 ns.** This scenario seems appropriate in this spectrally

simple system where there is no weak transition early on.

219



C. Evolution of short-wavelength component

Perturbation amplitude and velocity histories from the two high-resolution 3D
shorts-only cases are shown in Fig. 8. Results from 2D calculations with the same
initial spectral shapes are shown for comparison. In general, the variation between the
3D calculationsis dlightly lessthan in 2D. This could be due at least in part to better
statistics in the identification of the spike and bubble positions.

At early times, 3D bubbles grow faster than 2D bubbles of the same size. This
is expected based on the reduced drag of spherical relative to cylindrical bubbles. At
about 5 ns, however, the 3D bubble velocities begin to drop off rapidly, falling to
about half the 2D bubble velocity by 10 ns.

Within afew ns after shock transmission, atransition begins from a state with
little small-scale mixing to a highly-mixed state [see Fig. 9(a)]. The degree of

“mixedness’ is determined by using Y oungs's “molecular mix”, defined by®

o Jif@-f))dz
J{f)dz[ (1~ f)dz’

where f and 1-f are the volume fractions of the two fluids and the angular brackets

©)

denote averaging over the transverse direction. In the 2D calculations, this“2D
mixing transition” is complete when the mixing parameter beginsto saturate at 4 ns at
alevel of about 0.7. Aswe noted previoudly, thisis noticeably higher than the value
of about 0.54 obtained by Y oungs and Cook et al. from their 2D simulations of
classical, incompressible RT.*** In 3D, the mixing parameter continues to increase
until about 10 ns, when it begins to saturate at a higher value of about 0.90. Again,

thisis higher than the value of about 0.83 reported by Y oungs and Cook et al.***
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shorts-only cases. Results from 2D calculations (resolved to 512 ppb) with the same
spectral shapes are included for comparison.




Three-dimensional Raptor simulations of classical RT do not show this discrepancy,®
suggesting that it results from RM, thermal conduction, decompression, or a
combination of these effects. We have verified that conduction is not responsible, and
do not believe that RM isimportant after the first few ns. This leaves decompression,
which tends to increase the number of mixed zones at material interfaces. We have
not yet determined whether the resulting increase in asymptotic mixednessis a
physical or numerical effect.

By about 10 ns, the simulation appears to have undergone a turbulent mixing
transition (see Fig. 9). Indeed, at 90% mixed, it is difficult to imagine what additional
mixing transition could possibly take place.

Two-dimensional density and energy spectra are integrated over annuli in Kk, -
k, space to give a 1D representation that depends only on the magnitude of the
transverse wavevector. Results from the 3D narrow-gaussian case are shown in Fig.
10. The density fluctuation is defined by dp(z) = p(2) - <p(2)>, where <p(z)> isthe z-
dependent transverse density average. Each spectrum shown in Fig. 10 is the average
of severa (typically four) 1D spectra evenly spaced throughout the interior of the mix
region. The inverse cascade to longer wavelengthsis apparent in the density spectra.
It proceeds rapidly at early times but slows dramatically by 20 ns, indicating the
approach of the asymptotic freeze-out stage. This slowing is more apparent in 3D
than in our earlier 2D calculations, where vortex pairing and merger contributes to the
inverse cascade.

The fluctuating energy components are defined in the same way as the density

fluctuation: 6KE,, ,(2) = KE,,, (2) - < KE,,, (2)>, where “<>" again denotes
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Figure 9: (@) Mixing parameter and (b) log density plots from 2D and 3D ng shorts-
only calculations.

223



1.000F I 7 T T =
P Pk ]
D,‘IDG:— _:
r 25ns ]
- 50ns 1
oI 10.3ns -
E 185ns 1
2001 1 1 LRl
1 1 190 10006
m
@
1000.00§ T T §
. k5/3 25ns ]
eseg P ~ 50ns 3
F - 10.3ns 1
10,001 s oA ; 18.5ns -
1.005— b=
O.IOE— b=
1 113 100 100G
m
(b)
101+ T T T 3
10‘3;— —;
: T=25ns 1
1012 =
- i T=185ns ]
R
10 3
E j"‘:‘j ?3‘(&)’;’?’*&:‘:’” A MN"‘H E
109 jpe i T =
F \“a-\‘ 3
WU‘_ 1 1 j i
1 1a 100 100G
18
(© Parallel
____ Transversex
_____ Transversey

Figure 10: Time evolution of (a) density spectra p,, (b) k*® p,, and (c) turbulent
directed energy spectra.The appearance of an inertial range in the spectra corresponds
to the increase in mixedness apparent in Fig. 9(a).

224



transverse average and KE, ,, = pv,,,”- Aninertial range with Kolmogorov k3
scaling® isvisible by about 10 nsin the density and parallel energy spectra from
about mode 70 out to about 120. The appearance of an inertial range in the transverse
energy spectrais somewhat delayed relative to the parallel component. This effect has
been previoudly noted in 3D classical RT simulations and attributed to the secondary
nature of the transverse flow.** That an inertial range appears at all is at first glance
surprising considering the relatively limited range of scales present in these
simulations and the lack of a sub-grid-scale model. The grid-resolution Reynolds
number, defined by Re,, = (WAX)** ~ 10 is an order of magnitude smaller than the
integral-scale Reynolds number observed by Dimotakis to mark the mixing transition
in many flows." We believe that an inertial range is attainable in our case because the
dissipation range, which is almost imperceptible in the post-transition density and
transverse energy spectra, occupies only afew cells. Because the Kolmogorov scaling
isnot corrupted at the high-k end by dissipation, the effective integral-scale Reynolds
number is much higher than the grid-resolution Reynolds number. Following the
scaling used by Dimotakis, we find that the ratio of the lower end to the upper end of
the inertial range is approximately given by 0.1Re"*. Based on the inertial range
observed in the cal culated spectra, this gives Re =~ 5x10*. As predicted by Dimotakis,
the appearance of the inertial range corresponds with a turbulent mixing transition.

It isimportant to note that the 3D bubble velocity falls off precisely while the

3D mixedness isincreasing above the value seen in the 2D calculations. This suggests
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that the increased mixing in the bubble region has resulted in alower effective
Atwood number and, consequently, alower growth rate.

In this spectrally complex system, the time to transition does not seem to be
limited by the viscous growth of a shear layer as was suggested in the 3D single-
mode calculation. Instead, transition is triggered by strong interactions between
neighboring spikes. When the dominant spikes reach their nonlinear breakdown
thresholds, asignificant fraction of their energy is diverted into the transverse
direction, resulting in forcing of mix-layer-scale vortices. Since this happens earlier
when the characteristic mode number in the spectrum is higher, the transition here
takes place earlier than it does in the single-mode system despite the fact that the

integral scale (the mix width) is much smaller.

D. Effect of shortson long

Two high-resolution, 3D, short on long simulations were run. In each case, the
short wavelength component was the same 3D narrow gaussian shown in Figs. 2 and
3(a) and used in Fig. 9. The long-wavelength component was a 2D mode 4 in one
case and amode 4 “egg carton” (which we will call 3D mode 4) in the other.
Amplitude and velocity histories from these calculations are shown in Fig. 11 along
with results from 2D mode 4, 3D mode 4, and 2D narrow gaussian shorts on a 2D
mode 4. In each case, the amplitude of mode 4 was 2.5 um (a/A = 0.05), and the rms
amplitude of the short wavelength component was ten times smaller.

The large reduction in bubble growth seen with the short-wavel ength

spectrum is not so apparent when mode 4 is present [see Fig 11(b)]. We believe that
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Figure 11: Perturbation amplitude and velocity histories from cal culations with mode
4 (m4) in theinitial conditions. Results from 2D cal culations with the same spectral
shapes are included for comparison.
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Figure 12: Mixing in simulations with mode 4 (m4) in theinitial spectra. The 2D
calculations show evidence of weak transition at around 20 ns. The 3D single-mode
“egg-carton” perturbation also shows atransition at around 20 ns, which is the same
time that log density plots appear to show localized mixing transitions. When 3D
noiseis present, the transition happens much earlier (between 10 and 15 ns).
between 10 and 15 ns (see Fig. 12). Thisis consistent with the conclusion we made
based on our 2D calculations that the presence of along-wavelength mode with
significant initial amplitude can delay the transition to a turbulent-like state.

L og density dlices through the evolving mix layer from the 3D m4 plus 3D
narrow gaussian shorts calculation are shown in Fig. 13. The dominant mode 4 spikes

begin to interact with one another when a/A. = 2. A very clear transition to awell-

mixed state has taken place by 18 ns, at which point a/A = 5. These same nonlinear
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thresholds for spike interaction and breakdown/transition were found in our 2D

calculations.® Thus it appears that, for complex initial spectra, transition in blast-

4.9 ns 8.2 ns 12.0 ns 18.0 ns
alh~1.5 a/h~22 a/h~3.5 a/lh~5.0

Figure 13: Log density plots of the evolving mix layer from the 3D m4 plus 3D
narrow gaussian shorts calculation. Spike interaction (between the mode 4 spikes)
beginswhen a/A. = 2. A very clear transition to awell-mixed state has taken place by
18 ns, at which point &/A = 5.
wave-driven systems proceeds similarly in 2D and 3D, indicating that three-
dimensional secondary instabilities do not play a dominant role in initiating the
transition. Again, the mixing transition corresponds to the loss of transverse spectral
information and the appearance of an inertial range with k™ scaling (see Fig. 14).
The 2D mode 4 plus 3D narrow gaussian shorts evolves similarly, except that
the interior of the mix region remains anisotropic in the transverse plane until the
mixing transition has taken place (see Figs. 15-16). The post-transition mix width

remains somewhat smaller than with the egg-carton perturbation, but the two flows

are otherwise very difficult to distinguish.

229



1.000F T Tt ] T T T =
[ Pk ]
D_1E|C|:— _:
0010 =
49ns f
8.2ns ]
~ 120ns i

~.18.0ns

200 % L

(@ L

o1+

Parallel
____ Transversex
Transversey

1013

1012

IIIIIIIl TT IIIIII'| TTTm

f

T T T W W T T T I
4
4
s
!
4
%
]
i
A i
‘.
g
1
J
fﬁ"

11

10"

Vi
I
£

b
¥
f\.
e
o
e
¥
Y
A
&
i K
Ly
: F
jr
L oo
|- I|l ‘d‘ 3
: : 7
ol vl vl ool el

108

108 L Lol L N |

(b) m

10006

jary
L=
L]
a

Figure 14: (a) Density and (b) energy spectrafrom the 3D m4 plus 3D narrow
gaussian shorts calculation. An inertial range is apparent by the time the mixing
transition has taken place.
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Figure 15:(a) Log density slices of the evolving mix layer from the 2D m4 plus 3D
narrow gaussian shorts calculation. The interior of the mix region remains anisotropic
in the transverse plane until the mixing transition has taken place. (b) Comparison
with the analogous 2D calculation (2D m4 plus 2D narrow gaussian shorts) illustrates
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the importance of 3D effects.
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Figure 16: (a) Density and (b) energy spectrafrom the 2D m4 plus 3D narrow
gaussian shorts calculation. An inertial range is apparent by the time the mixing
transition has taken place. The transverse velocity spectrum is nearly isotropic after
the mixing transition.
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VII. Conclusions

When an RT-unstable interface grows to several times its characteristic
wavelength, it can undergo a“weak transition” to a disordered, apparently random
state. Thistransition proceeds similarly in 3D and 2D systems with approximately
egual nonlinear spike interaction and breakdown thresholds. In the latter case, it can
lead to 2D turbulence with an inverse energy cascade due to vortex pairing and
merger. A separate inverse cascade in 3D aswell as 2D systems follows transition to
the self-similar regime of bubble competition and merger. In systems that are not
spectraly simple, the weak and self-similar transitions are likely to occur nearly
simultaneoudly. In 3D systems, a subsequent mixing transition leads to fully-
developed classical turbulence if the Reynolds number is high enough. Because the
post-transition interface region is more thoroughly mixed in 3D than in 2D, its growth
ismore suppressed relative to the single-mode case.

Each of these transitions has time, space, and seed requirements that must be
met before it can occur. The time requirement for the mixing transition may be given
by aviscous diffusion time for spectrally simple systems, but is more likely to be set
by anonlinearity threshold for strong spike interaction and breakdown when the intial
conditions are spectrally complex.

The weak, 2D, and mixing transitions lead to increased small-scale mixing

that reduces the instability growth rate at least temporarily. Wherever it occurs, the
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self-similar transition will eventually give accelerated growth if it is allowed to
proceed unhindered by system size or drive time constraints. For interfaces that have
aready undergone atransition to self-similar growth, a subsequent mixing transition
can only inhibit future instability growth.

We have considered the effects of decompression and drive decay on 3D
turbulence in blast-wave-driven systems. Decompression leads to decay of vorticity
in the transverse plane but not in the parallel direction. The Reynolds number in a
blast-wave-driven system will continue to increase while the strong-shock
approximation is valid, but eventually the instability drive will vanish and any
turbulence will be left to decay during the freeze-out stage.

These conclusions are in large part born out by 2D and 3D Raptor calculations
of planar blast-wave-driven systems. The 3D calculations have not yet reached the
freeze-out stage, but do appear to exhibit a mixing transition despite a grid-resolution
Reynolds number only of order athousand. We have suggested that this is because
the dissipation range has been collapsed into only afew cells at the highest
wavenumbers, allowing for an effective integral-scale Reynolds number that is at
least an order of magnitude larger than the grid-resolution Reynolds number.

In order to more qualitatively test the effect of the code’ s inherent numerical
dissipation on the inertial range, we are currently planning to run a decaying-
turbulence problem with a known solution. In addition, it would be very useful to do
calculations at twice and four times our current resolution to seeif the effects of the
small scales on the large-scale evolution are altered. Once enough of the inertial range

isresolved, we expect that further increases in resolution will be unnecessary.

234



Whether or not our current resolution is really sufficient remains for now an open
guestion.

The simulations show sensitive dependence on theinitial conditions deep in
the nonlinear post-transition phase of the instability growth. Where the low mode 4 is
included in theinitial conditions, the late-time mix width is much larger. It could be
argued that the boundary conditions are affecting the growth at this stage, but that
effect should be to inhibit the growth rather than suppress it. Perhapsif the transverse
domain could be made arbitrarily large and the drive sustained arbitrarily long, the
shorts only and short-on-long systems would begin to ook very similar. However, at
20 nswe are aready nearing the freeze-out stage, in which differences in perturbation
amplitude will be preserved at later times.

Thus three-dimensional effects do not add anything that will counter the
tendency of blast-wave-driven systems to remember some aspects of the initial
conditions. For supernova calculations, this means that an understanding of the initial
conditions is important for getting that late-time mix width correct. Experiments
should include similar initial conditions in order to be truly relevant to supernova. In
particular, spectrally simpleinitial conditions are of limited utility since even the
process by which they undergo transition may be different than with more realistic

multimode spectra.
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Appendices

Appendix A. CALE simulation of Richtmyer-M eshkov

instability experiments at high Mach number

|. Introduction

The Richtmyer-Meshkov (RM) instability occurs when a shock wave crosses
an interface between two materials of different densities and/or compressibilities.'
During the process of refraction, the shock induces a misalignment of density and
pressure gradients wherever the normal to the interface is not along the direction of
shock propagation. Such a misalignment is a mechanism of vorticity generation.
Vorticity isthereby deposited on the interface by the shock in such away that
perturbations on the interface prior to shock refraction will grow in time after passage
of the shock. In the simplest model, proposed by Richtmyer* (who in the same paper
developed the compressible linear theory of the instability), sinusoidal perturbations
grow linearly in time according to

v=kad A" u, 1)
where k is the perturbation wavenumber, a isthe post-shock perturbation amplitude,
A’ isthe post-shock Atwood number, and u; is the amount by which the interface
velocity increases upon passage of the shock wave (The post-shock interface velocity

for an interface initially at rest).
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In hisoriginal treatment, Richtmyer considered only the case where the shock
moves from alighter to a heavier fluid. In order to bring Richtmyer’simpulsive
formulainto agreement with experiments in which the shock moves from a heavier to
alighter fluid, Meyer and Blewett later suggested in that case replacing the post-
shock amplitude with the average of the pre- and post-shock amplitudes.® The
Richtmyer and Meyer-Blewett formulae have been successfully applied to the linear
phase (in the sense that k a < 1) of a number of experiments** and simulations>®.
These have primarily been low Mach number shock tube experiments in which the
flow is nearly incompressible from just after shock refraction. In addition, a variety of
linear and nonlinear models have been developed and applied, under various
conditions, to both single- and multi-mode RM instability evolution. These include
the compressible linear theory for the case of reflected rarefaction wave™ as well as
potential flow,”® statistical mechanical,"** vortex,****> buoyancy-drag,"*** nonlinear
perturbative,’®'” and phenomenol ogical™® models.

Recently, there has been a great deal of interest in high Mach number RM
instability effects.®? In experiments relevant to inertial confinement fusion research,
high-powered lasers drive shocks up to M = 20 into various targets.”® In this regime,
compressibility effects can be important late into (or even throughout) the
experiment. Many of the models that can correctly predict the instability growth at
low Mach number coincide with the Richtmyer of Meyer-Blewett velocity at t = 0,*"
101218 and therefore must fail when compressibility effects persist long after shock

refraction.
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In some heavy to light experiments of moderate and high Mach number, the
speed of the transmitted shock relative to the unperturbed interface is not substantially
greater, or is even less than the Meyer-Blewett velocity. *#** The transmitted shock
then remains close to the interface long into the experiment, but the spike tips have
not been observed to penetrate ahead into the unshocked material. It istherefore
believed that the proximity of the transmitted shock inhibits the instability growth.
2242 However, because growth rate reduction due to large amplitude effects is often
potentially also present in these experiments, it has proven difficult to conclusively
demonstrate and quantify RM instability growth reduction from shock proximity.”

In this paper, we present the results of numerical simulation of single-mode
RM experiments conducted on the OMEGA laser at the University of Rochester
Laboratory for Laser Energetics. Long into the instability evolution, compressibility
effects are apparent and the transmitted shock remains close to the interface.

We begin by briefly describing the experiment, which is detailed more
completely in arecent article by Glendinning et al.** Next, we describe the code used
to ssimulate the experiments as well asissues of zoning, convergence, and code-to-
code comparison. We demonstrate that the quantity and quality of the data are
sufficient to tightly constrain the simulations. A gap between the plastic and foam,
resulting from the inability to machine the perturbation into the foam (as described in
Section 1), visibly affects the interface evolution and so must be included in the
simulation. Accurate modeling of the experiment also requires that the ssmulated
target be driven by a source that agrees in detail with the actual laser drive. The

results are also shown to be sensitive to the choice of material equation of state
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(EOS). Thisis especially true for the foam, for which the tabular EOS's considered
are shown to be too stiff. Since the proximity of the transmitted shock to the interface
is strongly affected by the foam compressibility, our purposes require an accurate
foam EOS.

After establishing requirements for the simulations, we proceed to quantify
the contribution of the Rayleigh-Taylor (RT) instability and target decompression to
the perturbation growth. Both are shown to be insignificant during all but the very
latest times. By varying theinitial amplitude and considering separate spike and
bubble velocity histories, we are able to give a clear demonstration of perturbation
growth reduction due to shock proximity as opposed to nonlinear (large initial

amplitude) effects. Finally, we close with a brief summary of our results.

1. Experiment

In the experiments, an 11 ns laser pulse nominally of constant intensity | = 2.6
x 10" W/cm? is used in a direct-drive configuration to generate astrong, M = 10
shock wave at one end of an 800 um-diameter cylindrical target. Three sets of three
beams each overlap in time to provide a nearly steady drive. The targets, shown
schematically in Fig. 1, consist of a 20 um-thick 1.2 g/cc polycarbonate ablator, a
1.23 g/cc 170 um-thick brominated polystyrene (C,,H,4Br,) pusher layer, a 50 um-
thick polycarbonate layer in which is embedded a 200 um-wide brominated
polystyrene strip, and a1 mm-thick 0.1 g/cc carbonized resorcinol formaldehyde
foam (CRF) payload. The brominated strip acts as a radiographic tracer in order to

concentrate x-ray opacity into alimited region near the target axis. A single-mode
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Figure 1: Target schematic showing (a) overall experiment configuration and (b) an
exploded view of the target package.
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perturbation is machined into one end of the pusher, but is not machined into the
foam payload. Consequently, there exists agap (initialy air-filled) between the
plastic and foam portions of the target. The perturbation wavelength is 150 um.
Experiments are performed with both large amplitude (22 um, ka= 0.92) and small
amplitude (7 um, ka = 0.29) perturbations.

The incident shock reaches the interface in about 10 ns, after which x-ray
radiographic datais taken over a period of approximately 15 ns. With the passage of
the shock, the perturbation undergoes a direct phase inversion. That is, the phaseis
reversed at the completion of shock refraction. The ratio of the Meyer-Blewett
velocity to the speed of the transmitted shock relative to the unperturbed interface is
0.9 + 0.4 for the large amplitude perturbation and 0.4 + 0.2 for the small amplitude
perturbation. In the large amplitude case, the spikes of heavier material appear

throughout the experiment to be pressed up against the transmitted shock.

[11. Simulation

We use CALE? (for C-based Arbitrary Lagrangian Eulerian) to simulate the
experiments. CALE isa 2D radiation hydrodynamics code that uses afinite-
differencing method to numerically solve the Euler equations. As an ALE code, it
mixes elements of Eulerian and Lagrangian techniques in order to inhibit mesh
entanglement.

The target is driven by atime-dependent velocity source extracted from a

LANSEX calculation. Additional radiation effects are not included in the simulations
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since the preheat shield, described in Glendinning et al.,* effectively eliminates
radiation preheat at the interface. The effect of electron conduction is also small, but
it is nonetheless included in the simulations.

Theinitial length of the computational grid is 700 um. Itswidthis 75 um,
egual to one half the perturbation wavelength. Reflection boundary conditions are
specified on the boundaries parallel to the target’s symmetry axis, while free
boundary conditions are used on the orthogonal boundaries. The pusher density is1.1
g/cc - dlightly lower than in the experiments. We have verified that this difference,
which isintroduced because of details of the EOS tables, has no significant effect on
the ssmulation results. The foam density is 100 mg/cc, asin the experiment. The air
gap between plastic and foam isincluded in the simulations, and its density isset to 1
mg/cc.

Except where otherwise specified, we use the EOP tables® for the EOS of all
three materials. Theinitial temperature of all materialsis set to 25meV (290 K). The
pressure in the pusher behind the incident shock is 2.4 Mbar, and the post-shock
pressure at the interface is about 0.5 Mbar. In order to study the impact of various
EOS models on the instability development, simulations were also performed in
which LEOS tables® or perfect gas models were used for one or more of the target
materials. The time for an acoustic signal to travel one wavelength in the shocked
target is close to the total duration of the experiment: approximately 18 nsin the

plastic and 11 nsin the foam.
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Figure 2: Time-dependent velocity source obtained from 1 and 2D LASNEX
simulations and input into CALE asL1D, L2D, L2Dn as described in the text.

A. Vdocity drive

Rather than the constant velocity piston of an idealized RM experiment, the
actual target is driven by three sets of drive beams overlapping in time.
Unfortunately, deviations of the real drive from the ideal case have a significant
impact on the instability evolution. The simulated laser drive has been continuously
been refined as VISAR characterization of the shock trgectory hasimproved, and the
resulting drive progression serves to illustrate the sensitivity of the experiment to
these details.

A 1or 2D LASNEX?® simulation is used to trand ate the laser pulseinto a
time-dependent pusher velocity (called in what follows L1D, L2D, and L2Dn — see
Fig. 2). The velocity profileisthen input into a CALE simulation as a time-dependent

velocity source, whereit is used to generate the incident shock wave. The interface

243



600 . .

- a3 ¢ ]
E @ 1 z
2500 2 30- =
: s
& 400 12208 :
= E 18 ¢ 3
& o 12 E 3
= 12 ]
= e _:
g | 5 | :
c F =2 ]
= 200¥ = o E
0 15 10 Time (ns) 20 25

T T T — 20, T T T T T
60+ 8 r 1
i © 1 1 (@) 1
| 127 ;
I, 1E I e
E),ZO-_ 1= _1 _ —_ 1D LASNEX v—source
L 7 _E’J.O,_d ]
S I 18 ]
s or 1 b i
L 1251 1
< L f averaged amplitude _ e i ]
'20_{ Pl LAgSIfEX vflstc:rce 40 r B
C __ 1D LASNEX v—source y i 1
L | n 1
-40r L . 7 0 i 1 1
10 . 0 25

10 15 Time (ns) 20 25 Time (ns)

F T T T I*' T E 20 L T ]
30 ¢ ) @i ()
E Ry 1 [ &
E - ;Als L averaged gro rate ]
ol A A _ R s
g i 20f ;
20 ¢ 18 :
[T = r =
E = . averaged amplitude Eg L ) M
0L i 18 5 ]
: ELOJ ]
-10 R L h m w s om o mem o 1 O . ) . 5
10 15 Time (ns) 20 25 10 5 Time (ns) 25

Figure 3: Comparison of simulations driven by velocity source from 1 or 2D
LASNEX caculation (L1D and L2D): Interface (a) position and (b) velocity as
functions of time. (c) Perturbation amplitude and growth rate for perturbations with
initial amplitudes of 22 um [(c) and (d)] and 7 um [(e) and (f)]. Asterisks denote

experimental data.
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velocity obtained from a1D CALE simulation driven by either L1D or L2D is
dightly smaller than in the experiment after about 16ns [see Fig. 3(a)].

Despite the subtleness of the differences between L1D and L2D, they have a
clear effect on observable features of the instability evolution. By the end of the
simulation (at 25 ns) the interface driven by L2D has traveled about 15 um (3%)
further than with L1D. The time-dependent interface velocity [Fig. 3(b)] shows that
the temporary reduction in growth rate that occurs between 17 and 22 ns [Figs. 3(d)-
3(f)] corresponds to the arrival of a second shock at the interface. Investigation of
modified velocity sources has demonstrated that this second shock correspondsin
turn to the third peak in the velocity source.

The average perturbation amplitude a(t) is defined as half the distance from
bubble to spiketip at timet (ie half the mix width). In simulations of experiments
with both large and small amplitude perturbations, the L2D simulation resultsin an
amplitude history that agrees significantly better with the data than do simulations
with L1D [see Fig. 3(c),3(€)]. In going from L1D to L2D, a is reduced from 9.0 to
7.7 um for the 22 um initial amplitude case. The latter isjust above the experimental
error.

The difference in post-shock amplitude between simulations run with L1D
and L2D is not an effect of the absolute value of the pusher velocity. Thisis
demonstrated in Fig. 4, which shows that, in idealized calculations driven by a
constant-velocity piston, the post-shock amplitude is insensitive to the piston velocity
over arange of several um/ns (though the subsequent growth rate is not). For

comparison, the average velocities of the L1D and L2D from 1 - 11 nsare 14.0 and
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13.9 um/ns, respectively. The analogous averages taken from the first to the second
peak in the velocity profiles are 15.0 and 14.1 um/ns.

Separate spike and bubble amplitudes and instability growth rates, shown for
L2D in Fig. 5, are obtained by subtraction of a reference time-dependent interface
position. The reference interface trgjectory is obtained from a 1D simulation
including a22 um gap (equal to the pre-shock perturbation amplitude) separating the

plastic and foam regions. The spike growth rate exceeds that of the bubble during the
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first phase of the instability development. Such behavior is predicted by nonlinear
theory, but here occurs mainly because the incident shock arrives at the spike about
1.5 nsbeforeit arrives at the bubble. By the time the second shock arrives at the
interface, the bubble velocity has grown to nearly that of the spike. After passage of
the second shock, the spike growth rate is reduced while the bubble growth rate is
increased such that the new bubble growth rate is larger than the new spike growth
rate, and the bubble amplitude soon exceeds that of the spike. By the end of the
simulation at 25 ns, the bubble amplitude is about 20% greater than the spike
amplitude.

The reason for the large differencein a between L1D and L2D can be
understood by considering the individual spike and bubble velocity histories. The
initial peak in the spike growth rate provides a measure of the interface velocity
immediately after the incident shock breaks out into the air gap. The subsequent peak
in the bubble growth rate gives the interface velocity just after breakout of the point
on the interface that initially lies at the position of the unperturbed interface. When
L1D isused, these two velocities are nearly the same. With L2D, on the other hand,
the second is nearly 10 um/ns greater than the first [Fig. 5(b)]. This sudden change in
interface velocity marks the arrival of a shock corresponding to the second peak in the
velocity source profile. Thisisthe reason for the relatively large differencein a
between simulations run with L1D and L2D. With L1D, this second shock overtakes
the first just before the interaction begins. Consequently, the shock speed at the

beginning of the interaction is about 15 um/ns. When L2D is used, the second shock
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overtakes the first a couple of tenths of a nanosecond after the interaction begins. At
the beginning of the interaction, the incident shock velocity is only about 12 um/ns.

The perturbation compression factor in the presence of a gap can be ssimply
expressed by

a_ u{i_i) @

a v, U
where u; is the interface velocity, v, isthe shock speed in the plastic, and u, isthe
interface velocity in the gap. This reduces to the usual expression in the absence of a
gap, when u, = u;,. For the reported experimental amplitude and velocity values, this
requires u, = 28.5 + 1.3 um/ns. If theincident shock and interface velocities at the
time of interaction are used (rather than their average values), we find u, = 26.5
uwm/ns. A rough measurement from the data suggests u, = 20 + 10 um/ns. The
analogous calculation for the simulations with an EOP EOS gives u, = 36.0 um/ns
with L1D and u, = 31.8 um/nswith L2D. The actual values from the two simulations
are 34+ 1 and 28 £ 1 um/ns, respectively. The greater discrepancy between the
predicted and observed values of u, for L2D is another indication that, with L2D, the
velocity of the interface in the gap is not constant over the timein which thegap is
being closed.

The shape of the bubble and spike is also affected by the choice of velocity
source. With L2D, the neck of the spike is closer to the spike base and is 15% broader
than with L1D or L2Dn (see Fig. 6). The higher narrower necks more closely
resembl e those observed via side-on radiography (see Fig. 7). In each case, the

experimentally observed transmitted shock is more distorted than that seen in the
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Figure 6: CALE density plotsat 20 nswith (a) L1D, (b) L2D, and ( ¢) L2dn.

Experimental radiographs
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S2ERERS e
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Figuré 7): Comparison of experimental radi(og)raph at 20 nswith CALE simulated ©
radiographs obtained with (&) L1D, (b) L2D, and (c) L2Dn.
simulations, corresponding to an over-prediction of the distance from the bubble to
the transmitted shock. The discrepancy, which is more severe with L2D and L2Dn
than with L1D, appears to be the only significant experimental quantity more closely
predicted by L 1D than by the 2D sources.

Although simulations with either L1D or L2D agree with the general features
observed in the experiments, they share in common four discrepancies. These include
the over-prediction of a" and the bubble-shock proximity distance noted above. In
addition, CALE predicts avalue of da(t)/dt that istoo large for as much as 4 of the

first 6 nsof instability development. Thisisfollowed by period of 2-3 ns during

which the da(t)/dt predicted by CALE istoo small.
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Much of the discrepancy between the simulations and experiments can be
attributed to an incomplete understanding of the details of the velocity drive. We have
aready shown that L2D does not produce the large error in a seen with the L1D. The
early time growth rate is also smaller with L2D than with L1D. In the simulations, the
reduction and subsequent increase in da(t)/dt in the middle phase of the instability
development results from the passage of a shock generated by the third peak in the
velocity source profile. A similar phenomenon is suggested by the data, but occurs
somewhat earlier than in the simulations. The differenceis about 1 nsfor L2D and 2
nsfor L1D.

The observed sensitivity of the instability evolution to details of the velocity
source has prompted efforts to better characterize the drive and, consequently, the
laser pulse shape. Recently improved measurements have produced an improved
pulse shape. A 2D LASNEX simulation run with the improved pulse has been run
and a new velocity source (L2Dn for L2D new) extracted for input into CALE.
Results of CALE simulations run with L2Dn are shown in Fig. 8, where they are
compared with L2D results. As expected, the plot of interface velocity shows that the
second weak shock arrives at the interface a couple of nanoseconds earlier than
predicted by L2D. The resulting amplitude history isin excellent agreement with the
data except for a post-shock amplitude that is5 um too large. The latter fact suggests
that L2Dn misses the subtle timing of the arrival of the first weak shock during the
shock refraction process.

It is clear from these considerations that the instability evolution is quite

sensitive to the details of the velocity drive. The drive L2Dn, obtained from a 2D
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growth rate (um/ns).

LASNEX simulation well-constrained by experimental measurements, is preferable
to either the 1D drive L1D or the less-constrained 2D drive L2D. Despite its over-
prediction of the post-shock amplitude, L2Dn will typically be employed for

subsequent simulations.
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Figure 9: Perturbation amplitude (a) and growth rate (b) with and without air gap
between plastic and foam regions.

B. Gap effects

The perturbation is machined into the plastic pusher but not into the foam
payload. As aresult, there is a gap between the two materials, which are in contact
only at the perturbation peaks. Simulations with and without an air gap show that the
presence of the gap increases the early-time spike velocity (and, consequently, the
post-shock amplitude — see Fig. 9) and affects the shape of the spike and bubble [see

Fig. 10(a)]. However, it does not significantly affect the bubble velocity and the spike
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Figure 10: (a) Density plots (at 20 ns), (b) radiographs, and (c) spike and bubble
velocities for smulations with (right) and without (left) an air gap. The presence of
the gap increases the early-time spike velocity (and, consequently, the post-shock
amplitude) and affects the shape of the spike and bubble, but does not significantly
affect the bubble velocity and the spike saturation velocity.
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saturation velocity [Fig. 10(c)]. Consequently, the effect of the gap isto introduce a
vertical shift of about 5 um to the perturbation amplitude history, which it does not
otherwise significantly affect.

The post-shock amplitude is most easily affected by the structure of the gap
region, to which it is quite sensitive. The foam density is much greater than that
specified for the gap. Consequently, when the gap is not included, there is no spikein
the interface velocity immediately after the incident shock reaches the interface, and
there is a corresponding reduction in a that is sufficient to bring it into agreement
with the experiment. We have also noted that alesser reductionin a results when the
gap ispartidly filled with foam, as might be the case if the foam is partialy crushed
during target assembly.

The increase in perturbation amplitude caused by the presence of the gap
resultsin a corresponding increase in the distortion (non-planarity) of the transmitted
shock. The structure of the perturbation and transmitted shock in simulations with the
gap more closely resemble that seen in x-ray radiographs than do smulationsin
which the gap is not included or isonly partially filled with foam [see Fig. 10(b)].

The degree to which the post-shock amplitude, the spike and bubble shape,
and the shock planarity are affected by the presence of the gap in the calculations

show that the gap must be included if the experiment isto be simulated accurately.

C. Zoning and convergence
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Figure 11: Section of computational domain showing rectangular (a) and conforming
(b) computational mesh. An air (white region) gap separates the CHBr plastic (left)
and CH foam (right) regions.

Two computational mesh configurations were used in the ssmulations (see
Fig. 11). Inthefirst case, a uniform rectangular mesh was specified. The cell
dimensionsin the rectangular mesh were typically 1.25 um in the direction paralel to
the unperturbed interface (corresponding to 120 cells/ perturbation wavelength) and
0.5 um in the direction perpendicular to the unperturbed interface. In the second case,
the mesh in the foam remained rectangular, with cell dimensions 1.25 um x 0.75 um.
In the pusher, however, a curvilinear mesh was used that conformed to the initial
perturbation. A smooth transition between the two configurations was made within
the five rows of cellsin the gap region.

A zoning study was conducted to determine the optimal configuration and
verify convergence in both. In the conforming mesh configuration described above,
the computational cellswere 0.1 um in the direction perpendicular to the interface at
the plastic/void boundary. In a second run, the cells were mass-matched across the
plastic/foam boundary with transverse dimensions of 0.01 um in the plastic and 0.1

um in the foam. This change resulted in a small increase in the post-shock amplitude

a and early-time instability growth rate da(t)/dt. The number of points per

256



S0F B¢
40 £ .
£ 30t =
Q E 3
© i % i
> F Rt 4
= 20F -
£ g = ’,, g % g
< = 2 ,__’_.’--'('2""')’ g* % Averaged amplitude 3
E awli-g 120 ppw rectangular i
10 E '“'J-;EA'K % e BE :sw rectun:ulqr B
o e 30 ppw rectangular o
reeee. 120 ppw conforming 3
Qs g o 15 pom 6 5 & G 0 |5 5 Fom p o a Gd7 G oetw 4w gnd]
12 14 16 18 20 22 24 26

Time (ns)

Figure 12: Amplitude resolution study with rectangular and conforming mesh.
Results from a simulation with 240 ppw rectangular are identical to those obtained
with 120 ppw rectangular, but conforming mesh case converges only at 240 ppw.
perturbation wavelength (ppw) was then increased first to 240 (0.75 um /cell) and
then to 480 (0.375 um/cell). There was no difference in perturbation amplitude
history observed between the two latter cases, suggesting convergence at the large
scales by 240 ppw.

With the rectangular mesh, clear convergence was seen by 120 ppw, as further
increase to 240 ppw produced identical results (see Fig. 12). Results obtained from
the converged rectangular mesh case and the converged conforming case show
reasonably good agreement, with a and the early-time da(t)/dt slightly smaller with
rectangular mesh than with conforming. The differencein a is about 1.5 um. Because
of its faster convergence properties, the rectangular mesh with cell size 1.25 x 0.5 um
was used in all subsequent simulations.

A one-dimensional study of the effects of cell size for zones mass-matched

across the plastic—foam interface was also conducted. Virtually no change in interface
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simulations run in (a) Eulerian mode and (b) ALE mode. ( ¢ ) Comparison of
amplitude histories with experimental data. The ALE calculation exhibits more
Kelvin-Helmholtz rollup at the interface than the Eulerian calculation. However, the
differences between the two appear to be below the level of the experimental
resolution.
trgectory z(t) was observed when the cell sizein the plastic at the plastic-void
interface was varied over the range 0.1 — 0.001 um. Over this same range, z(t) was
also shown to be insensitive to whether CALE isrun in pure Lagrangian or
Lagrangian-Eulerian hybrid mode. In most simulations, the ALE feature of CALE

was enabled, but an Eulerian calculation was also done for comparison (see Fig. 13).

The Eulerian calculation is virtually identical to its ALE counterpart except that it
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exhibits less Kelvin-Helmholtz rollup at the interface. The differences between the

two appear to be on scales below the level of the experimental resolution.

D. Code comparison

The validity of the CALE setup described above was verified in two different
ways. First, CALE simulations of RM experiments reported by Aleshin et al.* were
performed. Asin the case of OMEGA experiments, a rectangular mesh with 120 ppw
was used to simulate one-half perturbation wavelength. The ratio of paralel to
transverse cell dimensions was also the same (2.5) in both cases. Results of the CALE
simulation were compared with those obtained using another ALE code (HY DRA®)
and the Adaptive Mesh Refinement (AMR) code RAPTOR® (see Fig. 14). The
HYDRA and RAPTOR simulations were run with 512 and 2560 ppw, respectively.
Despite the large differences in resolution, all three codes showed excellent
agreement on the perturbation amplitude history. Comparison of density plots
produced by the two ALE codes showed remarkable agreement on al but the smallest
scales.

Since the Aleshin experiments were performed with gasesin a shock tube, a
second test problem was set up to compare the codes’ treatment of the air gap
between the plastic and foam. In these ssimulations, perfect gas EOS swithy = 1.5
were used for all materials. The pusher density was 1.046 g/cc, while the densities of
the foam and gap region, as well as the perturbation wavelength, were the same asin
simulations of the OMEGA experiments. The perturbation amplitude was 22 um. The

instability was driven by a steady shock created by a piston moving with constant
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Figure 14: Code comparison of simulation of Aleshin shock-tube experiment with M
= 4.5 shock across Xe-Ar interface with py, = 2.89 g/l, pa, = 0.89 g/l (pye/ Par =
0.30), ka=1.75. (a) Amplitude histories obtained using RAPTOR, CALE, and
HYDRA. (b) CALE (above) and HY DRA (below) density plots at approximately 80

us. The shock is moving from right to left.

velocity 14.7 um/ns. This piston velocity is nearly equal to the average pusher
velocity predicted by LASNEX calculations for the OMEGA experiments. The test
problem was run using CALE and RAPTOR. The computational mesh used in the
CALE simulation was the same as that used for the Omega experiments. RAPTOR
simulations were performed with resolutions of 256 and 512 ppw. The simulations
were compared up to about 9.5 ns after the beginning of the shock-interface
interaction, beyond which the interface velocities began to decrease (see Figs. 15-16).

Over thisrange, the two codes never differed in their prediction of the perturbation

260



40 T T T T
20+ .
— - |
% B 2
N—r
[0} 0 B
° o ] i
>
= = ’ — GAE — nogap, 120 ppw 4
g— L e . GALE — with gap, 120 ppw ]
< '20 l 3 Raptor — no gap, 256 ppw sl
O Raptor — no gap, 512 ppw i
L ¢ Raptor — with gap, 256 ppe J
L w  Faptor — with gap, 512 ppw 2l
400 0 o o poE e & oW @
10 12 14 16 18 20
Time (ns)

Figure 15: Test problem: Comparison of CALE and RAPTOR simulation amplitude
histories with and without an air gap between the two primary materials. Perfect gas
EOS for all materials (y = 1.5). Constant Piston velocity = 14.7 um/ns. Densities
Ppusner = 1.046 g/CC, Ppayioan = 0.1 0/CC, gy, = 0.001 glce.
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simulation density plots at 20 us with (right) and without (left) an air gap between the
two primary materials. The shock is moving from left to right.
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amplitudes by more than about 3 um. The average difference was lessthan 1 um,

which isin turn less than the average uncertainty in the OMEGA data.

E. Equation of state
We have aso investigated the extent to which EOS issues could be responsible for the
observed discrepancies between the experiments and simulations. Simulations were
run in which LEOS tables were used for all materials and where perfect gas models
with arange of y’swere used for one or more materials. We considered y over arange
from 1.5—-2.2 for the plastic and 1.1 — 1.5 for the foam. Some of the EOS results as
well as velocity source effects are summarized in Figs. 17-18. The post-shock
amplitude depends fairly weakly on the compressibility of the foam (varies by less
than 3% over the range considered). Its dependence on the plastic compressibility is
much stronger, but the effective y .. Would need to be much higher than 2.2 in order
to bring a into agreement with the data, which seems highly unlikely.

The proximity of the transmitted shock to the interface is particularly sensitive
to the foam EOS (and insensitive to drive details), and simulations with both EOP and
LEOS consistently over-predict the bubble-shock proximity. In order to match the
reported bubble-shock data, the foam compressibility would need to be consistent
with about y;.., = 1.3. The spike-shock and shock distortion data, however, are more
consistent with a vy, Of 1.4-1.5. When determined by shock hugoniot curves, the
EOP effective y;o, fallsin this same range (Yioan = 1.46), while the LEOS y;,,, iS
somewhat higher still (v > = 1.54).%

Despite the discrepancy between the time dependence of the experimental and
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simulation bubble-shock proximity, it appears that the simulation does in fact
correctly predict the dependence of the bubble-shock proximity distance on
perturbation amplitude (see Fig. 18). This suggests that the error in the bubble-shock
proximity results from the over-prediction of the post-shock amplitude rather than an
EOS effect. We therefore conclude that the real foam EOS is best represented by the

EOP tables and is most consistent with an adiabatic index of 1.4-1.5. In addition, the
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LEOS tables understate considerably the foam compressibility. Consequently, unless

otherwise stated, we use the EOP tables all subsequent simulations.

F. Basdline calculation

Prior to beginning a discussion of the physicsissues of interest, we here
summarize the above results with a brief description of a baseline calculation. A
baseline calculation includes one half of one perturbation wavelength with a
transverse resolution of 120 ppw. The code’'s ALE feature is enabled, but the mesh is
initially rectangular because a conforming mesh would require greater transverse
resolution for convergence. Radiation effects are not included directly, and the target
isdriven by the planar velocity drive L2Dn, which is extracted from awell-
constrained 2D LASNEX simulation. Electron conduction isincluded, asis the gap,
and the EOP tables are used for all materials. Asis apparent in Figs. 7 and 8, such a
simulation reproduces well the perturbation amplitude history (except for its5 um
overestimate of the post-shock amplitude) and the interface structure. This agreement
depends particularly critically on the inclusion of the gap, the well-constrained

velocity drive, and areasonable EOS.

V. RT and decompression contribution

A perfectly uniform laser drive with an intensity that is nearly stationary (but
dightly increasing in time) might be expected to correspond to a perfectly steady (ie
constant velocity) piston, thereby driving a steady shock into the target. But any real

laser pulse corresponds instead to a time-dependent velocity source - at best driving
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into the target a primary shock followed by a series of weak shock and rarefaction
waves. In our experiments, there is alocal intensity maximum associated with each
set of drive beams. The resulting velocity source (see Fig. 2) consists of three peaks
superimposed on a constant velocity plateau. The first peak drives the primary shock,
and isfollowed by a small rarefaction wave. The second peak drives a second, weak
shock, which overtakes the first immediately before or during shock refraction at the
interface. A second weak shock, corresponding to the third peak in the velocity
source, reaches the interface several nanoseconds after shock refraction. It too is
followed by aweak rarefaction wave followed in turn by a stronger rarefaction wave.
The arrival at the interface of the stronger rarefaction marks the end of the period of
guasi-constant interface velocity, and consequently the end of the RM experiment.
Though nearly constant from the time of arrival of the primary shock at 12 nsto that
of the primary rarefaction at about 25 ns, the interface velocity is actually continually
decreasing throughout the experiment except during transmission of shocks. Asa
result of the weak rarefactions, the interface is weakly unstable to the RT
instability®** throughout most of the experiment. In the simulations, the deceleration
rate ranges between about 0.4 and 1.0 um/ns?, with its precise behavior depending on
the choice of velocity drive. For L2D (the deceleration profile with L2Dn is more
complicated), it begins at 1.0 um/ns’immediately after transmission of the primary
shock and decreases continuously to about 0.5 um/ns’ at 25 ns (Because of its simpler
deceleration profile, L2D rather than L2Dn is used in this section). This corresponds
to aclassical RT growth time, given by T, = (k g A")2, of 7 —9 ns, where the post-

shock Atwood number A™ = 0.54. With an experiment of duration fewer than 2 RT
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growth times, RT effects will be secondary to RM effects throughout the experiment
and utterly insignificant early on, but might become noticeable at |ate times.

Asthe target material decompresses in the weak rarefaction fans, geometrical
stretching produces additional perturbation growth. Points separated by a distance Az
along the symmetry axis move away from one another with a velocity that increases
monotonically with Az in the rarefaction fan.

In order to quantify the contribution of RT and decompression effects to
perturbation growth in the experiment, an idealized set of four simulations was
performed. These simulations were driven by constant velocity “pistons’ of varying
duration (see Fig. 19). The piston velocity is 14 um/ns — chosen to match the
experiment. The longest, a 15 ns pulse, provides a constant interface velocity
throughout the simulation. Asit is consequently free from RT and decompression
effects, thiswill be referred to as the pure RM case. Shorter pulses of 10 and 8 ns
yield a period of constant interface velocity followed by a deceleration phase. With a
6 ns pulse, the rarefaction reaches the interface at about the same time as does the
incident shock, so that RT and decompression effects are present throughout. The
interface deceleration in these smulationsis in the same range as that observed in
simulations of the actual experiment. The 6 ns pulse produces an acceleration profile
that is similar to, but somewhat lower than that obtained with L2D.

In the small initial amplitude pure RM case [Fig. 20(a)-20(b)], the results are
mostly typical of the classical RM instability. The spike and bubble velocities begin
at zero, climb up to amaximum value that is well predicted by the Meyer-Blewett

impulsive model, and then fall off asymptotically as 1/t. The spike and bubble
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Figure 19: RT / decompression effects: Interface velocity (um/ns) obtained (a) with
real drive (L2D) and (b) with a series of constant velocity (14 um/ns) sources of
varying duration. Interface acceleration (wm/ns”) obtained (c) with real drive and (d)
with constant-velocity series. In all cases, the gap is not included. Except in the case
of the 15 nsflat drive (pure RM case), the interface velocity is not perfectly constant.
During the deceleration phase, the perturbation is RT unstable.

velocities are nearly equal throughout, with the spike velocity perhaps sightly higher
than that of the bubble as predicted by nonlinear models.?*'**® When the target is
driven by the 6 ns pulse, the spike and bubble vel ocities asymptote to a constant value
[Fig. 20(c)]. Thisis consistent with classical nonlinear RT evolution, where kinematic
drag alows the spike and bubble to reach terminal velocities. The differencein
averaged amplitude between the two cases does not reach 2 um until about 21 ns, and

isonly 6 um at the end of the simulation. Still, the difference is sufficient to conclude,

based
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Figure 20: RT / decompression effects for small (7 um) initial amplitude driven by
constant velocity (14 um/ns) drive. (a) Perturbation amplitude. RT / decompression
effects areinitially small, but become significant at about the time the peak growth
rate is attained in the pure RM case. (b) Pure RM case (15 ns drive time) spike and
bubble velocities. The asymptotic spike and bubble velocities decay approximately as
1/t. (c) RM + RT case (6 nsdrive time). Interface deceleration yieldsan RT /
decompression contribution and a near constant saturation velocity. In both (b) and
(c), the spike and bubble velocities remain nearly equal throughout, with the spike
velocity perhaps slightly higher than that of the bubble.
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on the data, that RT and expansion effects determine the asymptotic nature of the
instability in the experiment. While these effects are less significant, even at late
times, than in previous laser-driven experiments intended to study the RM instability,
oursremains atrue RM experiment only until shortly after 20 ns.

With aninitial amplitude of 22 um, the bubble behavior mirrorsthat seenin
the 7 um initial amplitude case. Again, its velocity in the pure RM case [Fig. 21(b)]
grows from zero up to a maximum at the Meyer-Blewett velocity and then falls of f
approximately as 1/t. The spike growth, on the other hand, is inhibited by the
proximity of the transmitted shock, as will be discussed later. In the 8 and 10 nsdrive
pulse cases [Figs. 21(c)-21(d)], the point at which deceleration begins and
RT/decompression effects set in is clearly seen in plots of the spike and bubble
velocities. Heretoo, the spike velocity falls clearly below that of the bubble within a
few nanoseconds after shock refraction. Finally, we note that there is very little
variation in averaged amplitude between the 6, 8, and 10 ns cases [Fig. 21(a)]. At
early times, the perturbation growth is dominated by the RM instability — the same for
al cases. At late times, the interface deceleration values are very similar in al three
cases, and therefore so too are the terminal velocities of the spike and bubble
(Actualy, the late-time deceleration with the 6 ns pulse is dlightly lower than in the 8
or 10 ns cases, resulting in alate-time decay of its asymptotic velocity that is slow but
discernable).

In order to estimate the relative contributions of RT and the decompression

effect, the unperturbed fluid velocities at the time-dependant spike and bubble
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Figure 21: RT / decompression effects for large (22 um) initial amplitude driven by
constant velocity (14 um/ns) drive. (a) Perturbation amplitude. RT / decompression
effects areinitially small, but become significant at about the time the peak growth
rate is attained in the pure RM case. (b) Pure RM case (15 ns drive time) spike and
bubble velocities. The asymptotic bubble velocity decays approximately as 1/t. (¢)
10 nsdrivetime. (d) 8 nsdrive time. () 6 nsdrive time. Except with 15 nsdrive
(pure RM case), interface deceleration yields an RT / decompression contribution and
anear constant saturation velocity. The spike velocity is significantly lower than that
of the bubble.
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positions are extracted from a 1D CALE simulation. Spike and bubble decompression
velocities are obtained by subtracting the time dependant interface velocity from the
fluid velocities at the spike and bubble positions. That is,

y pnsion — y flud ()
where v/, js the velocity of the fluid at the position of the spike tip (from a 1D
simulation) and u, is the interface velocity, and analogously for the bubble. An
estimate of the RT contribution is then calculated as

VegTT = Vg - Vg SP0n _ yy Pure R 4)
where v,,™"*™ are the spike and bubble velocities from the 15 ns (pure RM) case.
The time-dependant integrals of the functions v,,"" give the decompression amplitude
histories. The result of this procedure applied to the large amplitude 6 ns pulse case is
shown in Fig. 22, which shows that v.X" = const = 0.2 wm/ns throughout and v, < 0
until after 20 ns. This suggests that RT effects are negligible except for the bubble
after 22 ns.

The same method has been used to subtract the decompression effect from the
simulation of the experiment (see Fig. 23). The process is complicated by the
additional compression resulting from the second small shock from 17 — 20 ns, but
the asymptotic result is still insightful. After removal of expansion effects, the bubble
velocity reaches a peak value equal to (da/dt),,s, and then begins to fall off, though it
does so more slowly than in the pure RM simulation. The asymptotic spike velocity is

down from = 3 um/nsto = 1.5 um/ns. This reduction is approximately equal to that
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Figure 22: RT / decompression effects for large initial amplitude (22 wm) driven by 6
ns constant velocity (14 um/ns) drive: () Decompression-corrected spike and bubble
velocities. (b) RT contribution to spike and bubble vel ocities obtained by subtracting
decompression-corrected curves in (a) and RM-contribution from Figure 22(b) from
observed velocity curvesin Figure 22(e). Note that the RT growth time, with either
square or real pulse, is estimated by T, = (k g A)Y? as about 8 ns (with g = 0.7
um/ns’).

seen when going from the 6 ns square pulse to the 15 ns (pure RM) pulse: = 3.5
um/nsto = 2 um/ns. Asin theidealized case, it appears that target decompression in
the experiment makes a significant contribution to the perturbation growth after 21

ns, and that RT effects become significant for the bubble after 22 ns. Combined,
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Figure 23: RT contribution in simulation with real drive (L2D). After removal of
decompression effects, the bubble velocity reaches a peak value equal to (da/dt),,s,
and then begin to fall off, though it does so more slowly than in the pure RM
simulation. The asymptotic spike velocity is down from = 3 um/nsto = 1.5 um/ns.
This reduction is approximately equal to that seen when going from the 6 ns square
pulse to the 15 ns (pure RM ) pulse: = 3.5 um/nsto = 2 um/ns.

decompression and the RT instability account for about 10% of the growth at 20 ns,

and 20-30% at 25 ns.

V. Compressibility effects

The M = 10 shocks in these experiments and simulations significantly
compress the target materials, and compressibility effects are present long into the
experiment. This situation can be contrasted with most non-high energy density
experiments, including those conducted at shock tube facilities, where post-shock
pressures are far lessthan 1 Mbar. In low Mach number (M < 3) RM experiments, the
peak instability growth rate is reached on atime scale short compared to the growth
time, and the transmitted shock speed relative to the interface is much greater than

perturbation growth rate. In ssimulations of the OMEGA experiments, the growth rate
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isinitially zero, and the time to reach peak growth rate is comparabl e to the time of
the experiment. Thisisillustrated by (for example) Fig. 10, which shows the spike
and bubble velocities as a function of time. Models of the instability that are based on
incompressible flow after shock refraction and therefore give a nonzero growth rate at
zero time are not likely to accurately predict the linear growth rate in such cases. This
isdemonstrated in Fig. 24, which shows several such models compared to the pure
RM CALE simulations for both small and large initial amplitudes. The models
included in Fig. 24(a) are the Meyer-Blewett impulsive model,® the
phenomenological Sadot model,*® which combines an early time linear constant-
velocity stage with an asymptotic, nonlinear, 1/t decay, the arbitrary-Atwood-number
buyonacy-drag model of Oron et al.,"* and Robey’ simage vortex model.™ The
discrepancy is greatest for the large amplitude case for reasons that will be discussed
in the next section. In Fig. 24(b), a comparison is made with the asymptotic (late-
time) buoyancy-drag model prediction. The model predicts asymptotic spike and
bubble velocities of the form v, *° = C,(A)/m Mt. The value of the constant C,(A)
agrees with the potential flow model of Hecht et al.® at A=1 and with the vortex
mode! of Rikanati et al.’® at A=0. It is possible to bring the model into agreement with
the ssmulation asymptotic bubble velocity by introducing a time shift to compensate
for early time compressibility effects, as was done in Figure 24(b). However, such an
ad hoc model, which basically requires that one already know the answer prior to its
application, would be far from compelling. Consequently, only compressible-flow
models can satisfactorily predict RM growth under the conditions present in the

OMEGA experiments and relevant simulations.
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Figure 24: Model predictions and simulations for large and small initial amplitude (a
=22 um->ka=0.92and a=7 um -> ka= 0.29) with pure RM drive (15 nsflat): (a)
Even when the perturbation remainsin the linear regime, models based on
incompressible flow fail when compressibility effects remain important long after
shock refraction. The small amplitude case deviates from the Meyer-Blewett velocity
only in the first couple of nanoseconds. The 22 um initial amplitude case is nowhere
in agreement with the Meyer-Blewett prediction. (b) Spike and bubble velocities for
large amplitude case. Potential flow and vortex models predict an asymptotic bubble
velocity v,,, = Cln Mt. The buoyancy-drag model of Oron et al*” gives C = ( 1/3 + ((1-
A)/(1+A))/6). A time shift introduced into the models to compensate for early time
compressibility effects brings it into agreement with the simulation asymptotic bubble
velocity.
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V1. Shock proximity

In high-Mach-number RM systems, it is possible for the Meyer-Blewett-
predicted velocity to exceed the speed of the transmitted shock relative to the
unperturbed interface. If the perturbation were to nevertheless grow according to the
incompressible-theory prediction, then the spikes would necessarily penetrate ahead
of the zero-order shock position (actually, each spike would a drive afaster shock
into the un-shocked upstream material, effectively driving the preexisting
perturbation in the shock front to larger amplitude). Such behavior has not been
observed. Instead, the perturbation growth rate (or at least that of the spike) appears
instead to be inhibited, while the shock front is perhaps dightly distorted. While this
behavior should be present in the linear and nonlinear™” compressible theories, it has
in the past been incorporated into incompressible flow modelsin a somewhat ad hoc
fashion - by simply limiting the perturbation growth rate to the relative shock-
interface velocity.”* More recently, Robey et al.™ have proposed a compressible
extension to the incompressible vortex model of the RM instability that links growth
reduction due to shock proximity to the boundary condition at the transmitted shock.
They assume a planar shock and invoke aline of “image vortices’ to enforce the
appropriate boundary condition. These image vortices are located on an “image
interface” that moves at twice the shock speed in the interface frame. This ensures
that the parallel (to the shock-propagation direction) flow velocity just behind the

shock front remains zero.
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Figure 25: Shock proximity (15 ns“pure RM” flat drive, v, - u, = 5.4 um/ns): When
the model-predicted RM growth rate is greater than the speed of the transmitted shock
relative to the interface, the spikes grow up to the position of the shock and their
growth isinhibited.

The pure RM CALE simulations described in Section VIII provide a striking
demonstration of spike velocity reduction due to shock proximity. Unlike the
experiments, the ssimulations allow for the extraction of time-dependant separate

spike and bubble velocities. Fig. 25 shows the result for the small initial amplitude

case, in which the ratio of the speed of the transmitted shock relative to the interface
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to the Meyer-Blewett velocity is 3.1. The transmitted shock quickly pulls away from
the evolving perturbation without inhibiting its growth. In the large initial amplitude
case, the analogousratio isonly 1.1, so that the transmitted shock remains close to the
interface. It is clear from Fig. 25 that, while the maximum bubble velocity again
agrees with the Meyer-Blewett prediction (despite the somewhat large amplitude), the
peak spike velocity isreduced to only 0.7 (da/dt) .

Despite the presence of RT effects, the image vortex model predictions arein
good agreement with the data from both small and large initial amplitude experiments
[see Fig. 26(a)]. The agreement with the averaged amplitude in the pure RM CALE
simulationsis better still [see Fig. 24(a)]. Figure 26(b) also shows the image vortex
model predictions of the separate spike and bubble compared to that observed in the
pure RM simulation. The simulation results show that, due to the finite initial
amplitude, spike growth begins 1.3 ns before bubble growth. When thisis taken into
account in initializing the model, it correctly predicts that, though the proximate
shock ultimately affects the spike more strongly than it does the bubble, the spikeis
larger than the bubble for the first several ns. However, the predicted spike and
bubble velocity histories are not in good qualitative agreement with the ssmulation.
The discrepancy likely results from some combination of three model assumptions
that are not satisfied in the ssmulation: an Atwood number of zero, a planar
transmitted shock, and incompressible flow after shock refraction. In order to bring
the model into agreement with the simulation, we must introduce three parameters

that can be motivated, but which have not been justified. Two of the parameters are
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time increments that effectively shift the zero-time for the spike and bubble (back 1.4

ns
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Figure 26: Image vortex model (IVM) prediction: (a) Experiment [from Glendinning
et al., Phys. Plasmas 10(5). 1931 (2003)] (b) pure RM case ( ¢ ) pure RM case with
additional model parameters. In (b) and ( ¢ ), the averaged amplitude is plotted with
negative amplitude to make the plots easier to view. (d) Spike/bubble amplitude
ratios.

for the spike and forward 0.6 ns for the bubble), and the third is a multiplicative factor
of 2/t applied to the circulation that drives the spike growth. The time shifts might

account for the non-planarity of the transmitted shock, which effectively concentrates

image vorticity into the (real) bubble region. Foam compression in the region
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between the spike and the transmitted shock would result in enhanced drag on the
spike, and thisis the motivation for the multiplicative factor. The result is shown in
Fig. 26(c).

Only the image vortex model captures the observed spike-bubble asymmetry
behavior [see Fig. 26(d)]. The spike amplitude is greater than that of the bubble at
early times - primarily because its growth begins 1 ns earlier. But the spike growth is
inhibited, and its amplitude eventually surpassed by the bubble. Linear theories
predict symmetric spike-bubble growth. Incompressible shock proximity model s
incorporate growth reduction but no asymmetry. The Sadot and buoyancy-drag
models, which ignore the transmitted shock, predict that spikes grow faster than
bubbles.

The observed asymmetry between the spike and bubble velocities also points
to alimitation of the compressible linear theories and the compressible nonlinear
theories such as that of Zhang and Sohn."” These theories are based on expansions of
the fluid equations in the small parameter a/A: to first order in the linear theories and
higher order in nonlinear theories. At sufficiently early time, the nonlinear theory will
of course agree with itslinear counterpart. While the boundary condition of the
transmitted shock isincluded in the theory, it must affect the spike and bubblein a
symmetrical fashion aslong as the condition a/A << 1 is satisfied (iein the linear
regime). As a/\ “becomesfinite” and continues to grow, the equality of spike and
bubble velocity will be broken. As previously noted, the Zhang and Sohn theory
actualy predicts that the spike velocity exceeds that of the bubble at all times, in

contrast to what we have observed.
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In the context of the image vortex model, the requirement that a/A is an
infinitesimal means that the spike and bubble are equidistant from the image vortex
line. Consequently, the spike and bubble growth are retarded by the same amount,
and so their amplitudes remain equal to each other. But since the spikeis actually
closer to the image vortex line than is the unperturbed interface while the bubble is
further away, the linear theory (or the nonlinear theory in the linear regime) will
overstate the bubble growth reduction and understate the spike growth reduction. The
net effect on the averaged amplitude might be small, so that the averaged amplitudeis
relatively well predicted by the theory, but the separate spike and bubble velocities
will not be well predicted as long as the transmitted shock remains close to the
interface.

The proximity of the transmitted shock means the introduction of another
length scale into the problem - namely the distance s = v,4 t between the transmitted
shock and the unperturbed interface (where v, is the speed of the transmitted shock
relative to the interface and t is the elapsed time since shock refraction). Since a
perturbation theory cannot be assumed to correctly describe dynamics on scales
smaller than the expansion parameter, the linear theories are not strictly valid when s/
A<allors/a<l Thatis, the perturbation theories are only necessarily valid for t
>> a(t) / v,4. A necessary but not sufficient conditionisthatt >a / v,y = T, Where
Torox 1S Called the proximity time. In those cases where v,4>> max{ da(t)/dt} <
(da(t)/dt),,g, this condition is satisfied very quickly. In other words, if the proximity
time is short compared to both the perturbation growth time and the experiment

duration (and the expansion parameter remains less than unity), then the spike and
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bubble evolution might be well described by perturbation theory. Otherwise, the
asymmetric effect of the transmitted shock on the spike and bubble is significant, and
one must resort to a non-perturbative theory with some provision for compressibility
effects, such as the image vortex model.

Shock proximity reduction has been considered as a possibly significant effect
in previous experiments.”*?° However, the analyses of these experiments have been
complicated by the fact that the reduction was observed at a time when the instability
had aready developed well into the nonlinear stage. Consequently, it has proven
difficult to convincingly separate shock proximity reduction from large amplitude
effects, which also result in reduction of the growth rate below the predictions of
linear theories. In our simulations, however, the observed strength and nature of the
asymmetry between spike and bubble velocities, together with the relatively low
degree of nonlinearity (discussed below), strongly suggest shock proximity reduction

rather than nonlinear effects.

VI1I. Large amplitude effects

The wavenumber-weighted amplitudes (ka) for the large and small initial
amplitude RM simulations are plotted together in dimensionlesstime in Fig. 24(a).
Predictions based on linear analysis are definitely suspect by the time ka has reached
avalue of unity. This does not occur in the small initial amplitude case, and the
Meyer-Blewett velocity prediction agrees well with the data except at very early
times during establishment of the nearly constant growth rate (This early time

discrepancy can in fact also be attributed to the shock proximity effect).
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In the large amplitude case, the perturbation does grow into the nonlinear
phase, though not nearly to the extent seen in earlier similar experiments.'#?#
Nowhere does the Meyer-Blewett prediction agree well with the data, even during the
linear phase. The peak averaged growth rate is 0.85 (da/dt),,s. The perturbative
expansion of Velikovich and Dimonte™ predicts (to 8th order in ka) a reduction factor
of 0.84. The Oron et al. model* predicts aslightly larger value of about 0.9. At first
glance, it appears that large-amplitude effects can in fact explain the observed growth
rate reduction. But again, consideration of separate spike and bubble velocities sheds
additional light. The expansion referred to above gives (also to 8" order in ka)
separate reduction factors of 0.86 for the bubble and 0.82 for the spike. That is, the
higher-order model treats the spike and bubble nearly symmetrically. As previously
mentioned, however, we observe reduction factors of 1.0 for the bubble and 0.7 for
the spike. Furthermore, the reduction on perturbation growth rate is observed from
very early times, when the instability is clearly still in the linear phase. Taken

together, these two facts strongly suggest that the dominant growth rate reduction

mechanism is shock proximity rather than large amplitude effects.

VIlI. Conclusion

We have performed CALE simulations of high Mach number direct drive RM
experiments with single-mode perturbations. The experiments are extremely well
characterized and diagnosed, thereby placing a high level of constraint on the

simulation results. In order to accurately simulate the experiments, the gap must be
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included, and a well-constrained time dependent drive must be employed to correctly
capture the series of weak shock and rarefaction waves that follow the main shock
front. We have shown that avelocity drive extracted from a2D LASNEX simulation
doeswell, but that its 1D analogue is unsatisfactory. The instability evolution is
sensitive to the material EOS, and the EOP tables are preferable to either perfect gas
or LEOS. The long-term bubble-shock proximity observed in the experiments
suggests that the foam may more compressible than predicted by the EOP tables, and
is certainly more compressible than predicted by the LEOS tables. With a rectangular
mesh, convergence is reached in an ALE calculation with a transverse resolution of
120 ppw.

When these conditions are met, the simulations accurately model the
experiments down to the level of the experimental resolution. Where there are
discrepancies, such asin the post-shock amplitude and bubble-shock proximity, the
difference between experiment and ssimulation is relatively small and can be
attributed to imperfect reproduction of small detailsin the velocity drive and perhaps
the EOS. The amplitude history isin excellent agreement with the data (except for its
overprediction of &) throughout the experiment.

The ability to accurately model the experiment allows for analysis of the
important physics issues beyond what can be done based on experimental data alone.
The ability in the ssmulations to follow the spike and bubble evolution separately
allows us to quantify the contribution of target decompression and the RT instability
to the perturbation growth. We have shown that together they contribute about 10%

of the growth at 20 ns, and 20-30% by the end of the experiment at 25 ns.
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Considering the experimental resolution, these effects are significant after about 21
ns.

Shock proximity reduction of the perturbation growth rate is strongly
suggested by the experiments. The ability in the simulations to eliminate RT and
decompression effects has provided the opportunity to clearly demonstrate the shock
proximity effect. In the small amplitude case, the transmitted shock quickly moves far
ahead of the interface, and the spike and bubble growth is nearly symmetric. In the
large initial amplitude case, where the shock remains close to the interface, the final
bubble amplitude is 20% greater than that of the spike. Based on its amplitude, the
perturbation is only weakly nonlinear even at late times. The conclusion that shock
proximity is responsible for the observed growth suppression is strengthened by the
fact that existing nonlinear models predict nearly symmetric reduction of spikes and
bubblesin thisregime.

The same ability has facilitated more relevant comparison with models and,
consequently, demonstration of the inapplicability of incompressible flow models (or
any model that gives a non-zero growth rate at t = 0) for high Mach number RM
experiments. The compressible linear theory has also been shown to be deficient in
this case, while Robey’ simage vortex model qualitatively captures the evolution and

may be more generally applicable.
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