

ABSTRACT

Title of dissertation: CASE STUDIES OF FIFTH-GRADE STUDENT MODELING IN

SCIENCE THROUGH PROGRAMMING: COMPARISON OF

MODELING PRACTICES AND CONVERSATIONS

Loucas Louca, Doctor of Philosophy, 2004

Dissertation directed by: Associate Professor David Hammer.

Department of Physics and Department of Curriculum &

Instruction.

This is a descriptive case study investigating the use of two computer-based

programming environments (CPEs), MicroWorldsTM (MW) and Stagecast CreatorTM

(SC), as modeling tools for collaborative fifth grade science learning. In this study I

investigated how CPEs might support fifth grade student work and inquiry in science.

There is a longstanding awareness of the need to help students learn about models

and modeling in science, and CPEs are promising tools for this. A computer program can

be a model of a physical system, and modeling through programming may make the

process more tangible: Programming involves making decisions and assumptions; the

code is used to express ideas; running the program shows the implications of those ideas.

In this study I have analyzed and compared students’ activities and conversations

in two after-school clubs, one working with MW and the other with SC. The findings

confirm the promise of CPEs as tools for teaching practices of modeling and science, and

they suggest advantages and disadvantages to that purpose of particular aspects of CPE

designs.

MW is an open-ended, textual CPE that uses procedural programming. MW

students focused on breaking down phenomena into small programmable pieces, which is

useful for scientific modeling. Developing their programs, the students focused on

writing, testing and debugging code, which are also useful for scientific modeling. SC is

a non-linear, object-oriented CPE that uses visual program language. SC students saw

their work as creating games. They were focused on the overall story which they then

translated it into SC rules, which was in conflict with SC’s object-oriented interface.

However, telling the story of individual causal agents was useful for scientific modeling.

Programming in SC was easier, whereas reading code in MW was more tangible. The

latter helped MW students to use the code as the representation of the phenomenon rather

than merely as a tool for creating a simulation.

The analyses also pointed to three emerging “frames” that describe student’s work

focus, based on their goals, strategies, and criteria for success. Emerging “frames” are the

programming, the visualization, and the modeling frame. One way to understand the

respective advantages and disadvantages of the two CPEs is with respect to which frames

they engendered in students.

CASE STUDIES OF FIFTH-GRADE STUDENT MODELING IN SCIENCE

THROUGH PROGRAMMING: COMPARISON OF MODELING PRACTICES AND

CONVERSATIONS

by

Loucas Louca

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisor Committee:
 Associate Professor David Hammer, Chair/Advisor
 Assistant Professor Allison Druin
 Professor Edward Redish
 Associate Professor Emily van Zee

Associate Professor Jeremy Price

©Copyright by

Loucas Louca

2004

 ii

TABLE OF CONTENTS

TABLE OF CONTENTSLIST OF TABLES... ii

LIST OF TABLES.. x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS... xii

1. INTRODUCTION .. 1

1.1. Overview.. 1

1.2. Topic and purpose.. 2

1.3. Research questions... 3

1.3.1. How do fifth graders use CPEs in learning science? .. 3

1.3.2. What are the characteristics of student thinking in science that are supported
by CPEs?... 3

1.3.3. What are the characteristics of CPEs that support collaborative modeling
practices among fifth grade student in science? ... 4

1.4. Theoretical framework... 4

1.4.1. Models and modeling in science education .. 5

Classifications of student-constructed models in science....................................... 9

1.4.2. The model-based learning cycle ... 11

The model formulation stage .. 11

The model deployment stage .. 12

1.4.3. Views about student’s use of prior knowledge and thinking strategies.......... 13

1.4.4. Computer programming tools as means for developing modeling skills 16

Differences between CPEs and prepackaged computer simulations 21

1.4.5. Difficulties derived from the modeling process.. 22

1.4.6. Different types of program languages... 26

2. METHODOLOGY ... 32

2.1. Methodological approach... 32

2.1.1. Characteristics of qualitative research .. 32

 iii

2.1.2. Case study tradition... 34

2.2. Study setting... 37

2.2.1. Site of investigation .. 37

2.2.2. Study participants.. 38

2.2.3. Study’s computer-based programming environments 40

2.2.4. Purpose of the study.. 43

2.3. Study phases... 43

2.3.1. Study phase one .. 43

Stagecast Creator group .. 44

Microworlds Logo group .. 45

2.3.2. Study phase two .. 46

2.4. Data sources ... 47

2.4.1. Identification of groups that were videotaped .. 47

2.4.2. Reviewing video and audio data and transcribing .. 49

2.4.3. Secondary data source... 50

2.5. Data analysis .. 51

2.5.1. Contextual inquiry .. 52

Development of codes... 54

Separated coding for activities and conversations .. 57

Presentation of findings .. 60

Emerging types of activities and conversations.. 60

2.5.2. Analysis of student conversation .. 61

Mapping relations between content and context... 62

Discourse as the primary source of data ... 63

Mapping relations between talk (discourse) and student thinking........................ 64

Analysis of text (conversations) in science education .. 65

2.5.3. Artifact analysis for the designed microworlds .. 67

 iv

2.5.4. Use of secondary data source: my journals... 68

2.6. Researcher’s role & ethical issues ... 68

2.6.1. Researcher’s role... 68

2.6.2. Risks for participants .. 70

2.6.3. Confidentiality .. 71

2.7. Limitations ... 71

3. MICROWORLDS LOGO FINDINGS: CONTEXTUAL INQUIRY & ANALYSIS OF
STUDENT CONVERSATIONS.. 74

3.1. Clarifications of terms and presentation of findings.. 75

3.1.1. Sequence of appearance.. 78

3.1.2. Shared characteristics.. 78

3.1.3. Shared context... 79

3.2. Types of conversations .. 81

3.2.1. Conversation type I: Talking about their program’s structure............................ 82

Use of program language as the communication medium.. 82

Avoid talking about details of their programs .. 83

Talk about ways of representing the main ideas in their program............................ 83

Talk about how the simulation would look to support program decisions 84

Episode MW1, Discussion before programming, 13 November 2002..................... 85

3.2.2. Conversation type II: Talking about program details ... 90

Conversation type II is a prompted conversation ... 91

How to program a specific idea .. 92

Using the simulation to support their program ideas .. 93

Episode MW2, Preparing to write a program, 13 November 2002, Joe & Samir 94

3.2.3. Conversation type III: Talking while programming ... 99

Limited conversation while programming.. 100

Conversation while programming was about (program) primitives 101

 v

Episode MW3, Conversation while programming, 13 November 2002, Joe & Samir
... 102

3.2.4. Conversation type IV: Talking about how the simulation looks 104

Focus on how the simulation looked .. 104

References to everyday experiences ... 105

Episode MW4, Conversation about how their program looks, 13 November 2002,
Aaron & Richard... 106

3.2.5. Conversation type V: Talking about what happens in the simulation. 107

Talk about what happens .. 108

Code was used as a tool to create a simulation... 109

3.3. Types of activities .. 111

3.3.1. Dealing with characters and backgrounds of their designs............................... 112

Short time dealing with characters.. 113

Students would return later to deal with characters .. 114

3.3.2. Program strategies I: Writing & debugging new code...................................... 116

Writing new code (Uninterrupted work & limited conversations) 117

Running and debugging new code.. 118

Create a button .. 118

Switch back and forth between the program and the simulation windows......... 119

Episode MW5, Conversation while programming, 13 November 2002, Richard &
Aaron... 120

3.3.3. Program strategies II: Correcting depiction.. 122

Correcting Depiction... 123

Fine tuning .. 124

Conversations.. 124

Episode MW6, Correcting depiction, 13 November 2002, Joe & Samir 126

3.3.4. Program strategies III: Modifying code to change the science that represented
... 132

 vi

Episode MW7, Changing code to represent a new phenomenon, Joe &Nick, 4
December 2002 ... 133

3.4. Summary of MW findings ... 137

4. STAGECAST CREATOR FINDINGS: CONTEXTUAL INQUIRY & ANALYSIS
OF STUDENT CONVERSATIONS.. 139

4.1. Types of conversations .. 139

4.1.1. Conversation type I: Talking about the overall story line of their games......... 140

Story details may not be useful for programming per se .. 141

Viewing their work as creating games.. 141

Episode SC1, Presenting ideas to whole group, Annie & Bryan, 18 November 2002
... 143

4.1.2. Conversation type II: talking about the overall story in front of the computers145

Shift in context of work did not seem to cause a shift in early conversations........ 145

Talking mostly about their game scenario .. 146

Episode SC2, Talking about their simulation and their story, Annie & Bryan, 18
November 2002... 147

4.1.3. Conversation type III: Translating the story into code/rules 152

Focused on programming ... 153

Using the program language ... 153

Making references to experiences... 154

Episode SC3, Debating program ideas, Annie & Bryan, 25 November 2002........ 155

Episode SC4, Two different conversation modes, Zen & Seth, 18 November 2002
... 158

4.1.4 Conversation type IV: Talking while programming.. 162

4.2. Program strategies.. 165

4.2.1 Dealing with characters and backgrounds of their designs................................ 165

4.2.2. Program strategies I: Creating and changing programs.................................... 168

Creating rules .. 169

Changes in the programs... 170

 vii

Episode SC5, Program strategies I, Annie & Bryan, 18 November 2002 172

4.2.3. Program strategies II: “Reading” and modifying rules..................................... 174

4.3. Summary of SC findings.. 176

5. COMPARISON AND DISCUSSION OF FINDINGS FROM MW AND SC 178

5.1. Students’ activities and conversations while developing representations of physical
phenomena .. 179

5.1.1. Different approaches to planning.. 179

5.1.2. Differences in writing and debugging code .. 185

5.1.3. Differences in using code as a representation of the phenomenon............... 190

5.2. Productive conversations for modeling in science... 198

5.2.1. Conversations about causal mechanisms in SC.. 201

5.2.2. Conversations about causal mechanism in MW ... 203

5.2.3. Code as a mechanism representation .. 205

5.3. States of minds: writing a program vs. writing a game 206

5.4. Assigning behaviors vs. giving instructions .. 208

6. STEPS TOWARDS MODELING.. 215

6.1. Frames that describe student activities and conversation 217

6.1.1. The programming frame ... 218

6.1.2. The visualization frame... 219

6.1.3. The modeling frame.. 220

6.1.4. Possible implications of multiple frames.. 222

6.2. Shifts between different “frames”.. 226

6.2.1. MW: Moving from the visual to modeling frame: from a simulation to the
code ... 227

Part 1: Focused on visualization ... 228

Part 2: Nick’s focus shifted towards the code as a representation of the
phenomenon.. 230

Part 3: Samir started thinking about two dimensions in projectile motion......... 234

 viii

6.2.2. SC: From a descriptive to a causal model: from multiple rules to a general rule
... 238

Part 1: Creating a descriptive model... 239

Part 2: Refining their initial model: working towards representing causality 241

6.3. SC: Possible difficulties for modeling dynamics... 245

6.4. MW: Distinguishing between programming and modeling................................. 254

6.5. MW: Code as the representation of the mechanism of the phenomenon 259

6.6. Summary .. 265

7. IMPLICATIONS FOR SCIENCE TEACHING AND SOFTWARE DEVELOPMENT
... 268

7.1. Microworlds Logo: Students’ activities and conversations 269

7.2. Stagecast Creator: Students’ activities and conversations 270

7.3 Possible advantages and disadvantages of Microworlds Logo and Stagecast Creator
... 271

7.3.1. Microworlds Logo .. 271

7.3.2. Stagecast Creator .. 273

7.4. Implications for science education: Modeling in science with young learners: how
does it look and why is it important.. 275

7.4.1. Focusing on the objects’ behaviors and on behavior changes 277

7.4.2. Telling a story…. .. 278

7.4.3. The importance of reading the code for modeling.. 279

7.4.4. Different uses of code: code as the mechanism that causes the phenomenon
vs. code that creates a simulation.. 282

7.4.5. Descriptive vs. causal models of natural phenomena 283

7.5. Implications for developing software packages of CPE for young learners........ 284

7.5.1. Write a program vs. write a game... 285

7.5.2. Object oriented vs. procedural programming ... 286

7.5.3. Easier programming vs. easier program representation................................ 290

7.6. Significance and implications of this study ... 290

 ix

7.6.1. Better understanding of how young learners construct knowledge in the form
of models in science education. .. 291

7.6.2. Change in the way computer-based programming tools are used for teaching
science education. ... 291

7.6.3. Change in the development of software programming tools for young learners.
... 292

8. REFERENCES ... 293

9. Appendix... 300

9.1. IRB approval for the study... 300

 x

LIST OF TABLES

Table 2.1. Categories used in the contextual inquiry.. 57

Table 6.1. Summary of students’ designs during the second phase of the study.......... 2166

 xi

LIST OF FIGURES

Figure 1.1. Program example from Stagecast Creator: If-then rule...27

Figure 1.2. Program example from Microworlds Logo: Textual program language is used...29

Figure 2.1. Example of the matrix used for contextual inquiry ...53

Table 2.1. Categories used in the contextual inquiry...57

Figure 3.1. Joe & Samir’s program structure...87

Figure 3.2. Joe’s idea for the program ...90

Figure 3.3. Conversation type II (Source Samir & Joe group, 13 November 2002)94

Figure 3.4. Conversation type III (Source Aaron & Richard group, 13 November 2002)101

Figure 3.5. Conversation type IV (Source Aaron & Richard group, 13 November 2002)....105

Figure 3.6. Conversation type V (Source Joe & Samir, 4 December 2002)..........................110

Figure 3.11: Comparison between Joe & Samir’s plans and first program...........................131

Figure 4.1. Conversation type II ..147

Figure 4.2. Conversation type II ..155

Figure 4.3. Bryan’s and Annie’s idea about the motion of the dart.......................................158

Figure 4.4. Students’ activities in the beginning of their work..166

Figure 4.5. Program strategies I...171

Figure 4.6. Program strategies I...172

Figure 4.7. Program strategies III ..175

Table 6.1. Summary of students’ designs during the second phase of the study...................216

Figure 6.1. Nick and Joe’s revisions..234

Figure 6.2. Aaron and Richard’s programs..256

Figure 6.3. The code that Jiana was referring to, and the subsequent modifications264

Figure 7.1. Example of rules for a falling ball in SC...274

 xii

LIST OF ABBREVIATIONS

CPEs: Computer-based programing media

MW: Microworlds Logo

SC: Stagecast Creator

 1

1. INTRODUCTION

1.1. Overview

A physical system can be modeled by identifying the objects (or the variables)

that characterize the system, the functions of each object and the relationships among

these objects (Krajcik, Soloway, Blumenfeld & Mary, 1998). Science proceeds through

the construction and refinement of models, and learning science entails learning how this

happens, in addition to learning particular models scientists have constructed (Bell, 1995;

Constantinou, 1996; Golin, 1997). That is, learning in science largely entails learning the

process of developing and refining models (National Research Council, 1990; White and

Frederiksen, 1998).

Understanding how to help students accomplish learning about the process of

developing models has been one of the central challenges in science education, and a

difficult one because learners often view science as a body of factual knowledge and

learning science as a matter of receiving information (Hammer, 1994). The challenge is

to develop understanding about the modeling process itself as a learning tool as well as

accomplishing learning through the modeling process. Research has shown (Louca &

Constantinou, 2002) that learning about models and modeling can be accomplished in

early middle school ages by guiding students through a process of developing and

refining models about natural phenomena.

Various studies (e.g. Louca, Hammer & Bell, 2002; Samarapungavan, 1992)

suggest that children do have and can deploy intellectual resources for scientific thinking,

in order, for example, to coordinate different perspectives in science in the light of new

 2

evidence and experiences. Students can be observed using these thinking resources in

group settings while they have conversations about physical phenomena (whereas

individual formal interviews seem not to tap into these resources (e.g. Kuhn, 1989)). Data

from children’s conversations in science can be used to refine our understanding about

their ways of learning for, about and with models and modeling in science.

In this chapter, I start by stating the research question that guided this study,

which focused on how might computer-based programming environments support fifth

grade student inquiry in science. Then I provide a theoretical framework to situate the

study in the research of science education (models and modeling in science), technology

(views about computer programming tools as means for developing models and modeling

skills), and psychology (views about students abilities for scientific inquiry).

1.2. Topic and purpose

The purpose of this case study is to describe and analyze the use of computer-

based programming environments (CPEs) by 18 fifth graders as a tool for developing

models of natural phenomena. I investigated the use of two different CPEs, in order to

develop descriptions of the students’ use of these tools. These descriptions include cases

of different ways that these fifth graders used CPEs when developing models in science,

and cases where these students used the two different CPEs to communicate their ideas in

science. Using descriptions of the different ways that these students used CPEs, I provide

descriptions of students’ activity and conversation patterns that are supported – or not –

by the different CPEs. Based on the students’ use of the CPEs, I describe the

characteristics of CPEs that support student inquiry in science.

 3

1.3. Research questions

The central research question for this study is “how might computer-based

programming environments support fifth grade student inquiry in science?” To provide a

collection of descriptive cases that seek to answer the central research question for this

study, the following subsidiary questions were investigated.

1.3.1. How do fifth graders use CPEs in learning science?

In investigating the (potential) role of CPES in supporting thinking and learning

in science at the elementary level, I provide detailed descriptions of how fifth graders use

features of CPEs to learn in science. Given the specific characteristics of different types

of CPEs, it is possible that different programming environments promote/support

different ways of learning science and as such, provide unique learning environments for

students. I describe the ways that students use CPEs including the process of

programming for developing representations of natural phenomena.

1.3.2. What are the characteristics of student thinking in science that are supported by

CPEs?

In this study I investigated student inquiry that takes place in the context of using

CPEs for developing models in science. Given the idea that the use of prior knowledge,

experiences and thinking strategies can be context dependant (as I justify in the

theoretical framework of this proposal), and given the particular characteristics of CPEs, I

provide descriptions of student thinking while working with CPEs.

 4

1.3.3. What are the characteristics of CPEs that support collaborative modeling practices

among fifth grade student in science?

My third goal in this study was to provide descriptions of two different CPEs,

including descriptions of the characteristics of the process of programming in these

environments. In the theoretical framework of this report I provide descriptions of several

characteristics of different CPEs. In most of these cases, these characteristics have not

been explicitly investigated with users to determine their effectiveness for young learners.

In this study, I seek to provide descriptions of the characteristics of CPEs that support

collaborative modeling practices among fifth graders, in the context of developing

models in science.

1.4. Theoretical framework

In the theoretical framework of the study, I provide a discussion about models in

general, specifically distinguishing the differences of conceptual and mental models. I

then provide some discussion about the use of modeling in science education and present

several classifications of models that have been proposed by various studies of modeling

in science. I then provide an overview of a modeling cycle in science, followed by views

about students’ abilities for thinking in science. I describe challenges of traditional

studies that claim that students lack abilities, with findings from recent studies that view

students having abilities that need to be activated based on the immediate learning

context.

I then turn to the idea of using CPEs as a modeling media in science and discuss

their advantages over traditional modeling media and prepackaged computer simulations.

 5

This is followed by a discussion about possible difficulties for students’ views of

modeling media. Lastly I provide a discussion about differences among CPEs, which was

the basis for choosing the software used in this study.

1.4.1. Models and modeling in science education

Models are systematic representations of a system, or some simplified aspect of a

system (Glynn and Duit, 1995), that include rules and relations between concepts and

objects. They are used to describe, represent and explain the mechanisms underlying

natural phenomena. Good models extend across individual systems and are complete

descriptions of our understanding of fundamental mechanisms in nature. Although such

models can be expressed in a number of communication media (verbal, graphical,

mathematical), they are essentially conceptual in nature (Hestenes, 1997; Driver and

Oldham, 1986). Conceptual models are epistemological constructs of the natural sciences

aiming to provide operational descriptions of natural systems, i.e., they are interpretive

representations with predictive capability.

In contrast, mental models are epistemological constructs of the psychological

sciences. They do not seek to describe the underlying mechanism of natural phenomena

(what, why and how it happens) but rather they seek to describe the structure and content

of one’s own knowledge about natural phenomena. In our current understanding of the

human mind, concepts are coded into networks in the long-term memory. These networks

are called mental models and although they often relate to specific situations (including,

but not restricted to physical phenomena), they tend to be transient in nature (Anderson,

Howe & Tolmie, 1996; Johnson-Laird, 1990).

 6

In the physical sciences, science educators seek to establish a permanent status to

conceptual models. Even though they are constantly put to the experimental test and are

usually open to falsification, the more widely accepted models are established as rigorous

and reliable descriptors of fundamental physical mechanisms that can be used to make

valid predictions in relation to system behavior and changes (Duschl, 1990).

Nevertheless, a conceptual model of a physical phenomenon, for example, is thought to

represent the physical phenomenon until new evidence indicates a mismatch between the

model and the physical situation, or when the model becomes non productive for

supporting understanding of the phenomenon. At that point, the learner’s epistemological

stances should permit revision of the model to account for the new evidence.

There has been a longstanding interest in investigating the role of conceptual

models and the process of constructing them in the context of science learning (Bell,

Davis and Linn, 1995; Gilbert and Boulter, 1995; Kindfield, 1995; White and

Frederiksen, 1998). Active construction of self-formulated models is thought to help

children come to an understanding of the nature of scientific inquiry and, in particular, to

appreciate the role of modeling as an ever-evolving activity of core importance to the

scientific enterprise (diSessa, Abelson, & Ploger, 1991; Redish & Wilson, 1993; Sherin,

1996; Sherin, diSessa, & Hammer, 1993; White & Frederiksen, 1998; Wilensky &

Resnick, 1999).

More recently, computer-based modeling media have been recognized as

potentially powerful tools for implementing a modeling approach to learning in science.

Several programs (for example Model-based Analysis and Reasoning in Science

Curriculum project (MARS)), tried to develop curriculum aiming to develop physical

 7

concepts among students and, simultaneously, develop the abilities necessary for

constructing models of physical phenomena (Raghavan & Glaser, 1995).

From these efforts, an interesting situation has emerged. Models can play a dual

role in science learning: they can be both tools for learning and learning outcomes.

Science proceeds through the construction and refinement of models, and learning

science should include developing understanding about natural phenomena by

constructing models (Constantinou, 1996; Golin, 1997), as well as learning the process of

developing and refining those models (National Research Council, 1990; White &

Frederiksen, 1998). Models and modeling processes can provide an approach, a

scaffolding, that can guide the actual process of science learning. In this context, it is

thought that the development and refinement of models can achieve better quality

outcomes (in terms of fundamental understanding of concepts, operational understanding

of the nature of science and the ability to employ procedural and reasoning skills) than

are currently possible in many educational systems (Harrison & Treagust, 1998; Bell,

1995; Grosslight, Unger, Jay & Smith, 1991). At the same time, since models are thought

to be the way we construct understanding about the physical world, they are also an

anticipated result of teaching about science. As constructs of the physical sciences, they

serve as free-standing learning objectives in themselves. In other words, they can be

sought after as worthy learning outcomes, the end result of science education (Golin,

1997; Wells, Hestenes & Swackhamer, 1995).

Models can be used to capture students’ conceptualization of natural phenomena

(Penner, 2001), especially when they provide open ended, unbiased ways to talk and

think about natural phenomena. They also can be “tools to think with and to reflect upon”

 8

(Penner, 2001, p. 2), because they are representations of natural phenomena, including

representations of physical and conceptual values that are not usually represented in

“concrete” forms (Penner, 2001) that cannot be otherwise observed in the natural world.

Thus, when a computer program procedure, for example, becomes a “thing” that is

named, it can be readily manipulated and recognized by students (Papert, 1980).

In addition to being used to capture students’ ideas about natural phenomena,

models can be also used as tools for constructing understanding about natural

phenomena. They can help students to design (that is construct) their own representations

of natural phenomena and not just to show natural phenomena. Constructing

representations in the form of models in science has the advantage of putting students in a

mode of work which requires them to break their understanding about what happens in a

natural system into small pieces that will subsequently use to build a model of the natural

system. Research (Penner, 2001) indicates that the level of observation affects one’s

perception of the phenomenon: it is one thing to focus on individual objects their

properties and their behavior, a different thing if you focus on two or three objects (which

can possibly lead to a discussion about relationships between the objects) and yet another

if you thinking about the whole system/phenomenon. Simulations, for example, provide

both a view of the whole in the simulation, in addition to the parts of the model/program

(Penner, 2001) and a simulation can just be described as the result of the behaviors of and

interactions among several objects.

 9

Classifications of student-constructed models in science

Models that scientists or learners construct can be classified in a variety of ways.

Below I discuss three different classifications of models that are useful for studying ways

that students use CPEs and the kinds of models that they construct.

Penner (2001) suggests that one way of viewing models is to distinguish between

physical and conceptual models. Physical models have some kind of “external

manifestation” (Penner, 2001, p.9-10) i.e., a computer-generated model of a tornado.

Conceptual models on the other hand “do not depend on concrete representations”

(Penner, 2001, p.10). They usually consist of laws (e.g., Newton’s law) or theories (e.g.,

plate tectonic theory). In this sense, conceptual models are used to support physical

models and physical models are built to reflect (or at least to show) conceptual models. In

this sense, as I have previously discussed physical models (e.g., paper-and-pencil

drawings, 3-D structures and computer programs) are student-constructed models in an

effort to construct (or capture) conceptual models of natural phenomena.

In a different classification of models, Collela, Klopfer & Resnick (2000) suggest

that models can be distinguished between illustrative models, analytical models and

simulations. Illustrative models provide visualizations of scientific processes or systems,

without any reference to how these processes happen or what causes them. That is, even

if there is always a mechanism underlying or causing the phenomenon, illustrative

models do not provide any access to that. Analytical models on the other hand are usually

based on mathematical equations that describe the phenomenon represented and they are

meant to enable exploration of a variety of scenarios. In this sense, analytical models tend

to generate solutions that predict behaviors of the system based on a given set of

 10

conditions. In this sense, analytical models include mathematical representations of the

mechanisms of the phenomena. Lastly, simulations are models that include descriptions

of the underlying mechanism that users can create or explore. In this sense, the primary

goal is not only to show how the phenomenon looks (as illustrative models do), or to

develop a model that can account for a variety of conditions (by enabling alterations of

inputs, as analytical models do), but rather to have a model that includes the mechanism

that causes and can explain the phenomenon. The difference between the analytical

model and the simulation is that the analytical model utilizes abstract mathematical

language, which in many cases is simply too complicated for learners to follow.

Analytical models usually include some representation of the mechanism that underlies

the phenomenon, and even if this might be accessible to the users, mathematical language

could simply make it difficult to read. In a way, analytical models may be seen as similar

to prepackaged computer simulations which are not meant to give access to the code that

generates the simulation.

A third possibly useful classification of models is provided from Löhner & van

Joolinger (2002), who talk about different ways that students use CPEs to develop models

of natural phenomena. According to their classification modeling can be expressive and

explorative. In expressive modeling learners externalize their thoughts about a particular

domain (e.g., of science) or a phenomenon by creating a model. The focus is on

communicating ideas about the phenomenon, rather than constructing detailed models of

the phenomenon or understanding in detail what is the mechanism that causes the

phenomenon. For instance, expressive modeling can be used when talking about

molecular systems in biology, in which general rules apply and can roughly describe the

 11

process that take place, without getting into the specifics. In explorative modeling

learners try to develop a specific model of a given domain (e.g., of a particular

phenomenon), seeking to find the rules that govern the phenomenon. In explorative

modeling learners seek to develop representations of the phenomenon under study, and

they are meant to “demonstrate” a detail understanding of the phenomenon.

1.4.2. The model-based learning cycle

One approach to engage students in the practice of constructing and refining

models is the "model-based learning cycle" (Constantinou, 1996; Louca & Constantinou

1999; Louca & Constantinou, 2002). This has two major stages: the model formulation

stage, and the model deployment stage.

The model formulation stage

During the model formulation stage, the learner develops a model (Constantinou,

1996) by studying the natural phenomenon and collecting evidence from the real world

(Bell, 1995). Prior experiences are crucial for this stage, as well as the ability of the

learner to identify and use those experiences that are relevant with the particular

phenomenon under study. Once students have constructed a model, they are asked to

examine the relation between the model and the real world. The comparison of the model

with the real life situation is the driving force for its iterative refinement (Bell, 1995) and

it is an important part of the cycle (Louca & Constantinou, 2002).

The model formulation stage of the model-based learning cycle is equivalent to

the first couple of “model phases” as described by a number of researchers (Penner,

2001; Penner, Lehrer, & Schauble, 1998; Schecker, 1993). They indicate that a first

 12

crucial step is the identification of the need to describe, predict and explain a natural

phenomenon, which will then guide the learners to investigate the phenomenon and

develop a model to represent it. Then, as Constantinou (1996) indicates, the learners use

their current understanding (such as observations from everyday or lab-based

experiences) to simplify the natural world into objects and their interactions to be

represented in a model. This leads to the construction of a model and it is an important

step because it includes identification of the model’s components, and relation between

the components (Schecker, 1993)

The model deployment stage

The second stage of the model-based learning cycle, model deployment, begins

after students have constructed what they consider a satisfactory model. In this stage,

students attempt to apply their model to new situations. This process requires them to use

the model to interpret some phenomena, and also to make predictions about others. If the

model is not successful in deployment, students return to the development stage.

The deployment process also requires that students use the model not only in

interpreting phenomena, but also in making predictions about other ones. The modeling

process does not end here. So far, students have been developing simple models –

interpreting parts of the physical phenomenon. This implies a step-by-step development

of the model from a simpler stage to a more advanced level (Golin, 1997). “…complex

theories in science are developed through a process of successive elaboration and

refinement in which scientific models are created and modified to account for new

phenomena that are uncovered in exploring a domain” (White and Frederiksen, 1998,

 13

p.7). The idea is to keep the model-based learning cycle going with testing, revising and

re-evaluating the constructed models (Bell et al, 1995).

Penner (2001), Penner, Lehrer, & Schauble (1998) and Schecker (1993) indicate

that after the development of the first model, the learner needs to evaluate it by

comparing its behaviors with the phenomenon under investigation. The purpose of the

evaluation is not to identify whether the model is right or wrong but whether it accurately

represents the behavior of the phenomenon. Evaluation of the model leads to subsequent

modification of the model.

Data from a previous study (Louca & Constantinou, 2002) indicate that students

come to understand the purpose of the model-based cycle as a process of development

and continuous refinement of their understanding. Findings from that study suggest that

both stages of the model-based learning cycle are important for learning in science

through the modeling process as well as learning about the process itself. However, in

that study, the researchers did not focus on the process of using the modeling procedures;

our focus was primarily on the importance of such learning for children’s understanding

in physical science. It is equally important, however, to study the characteristics of

children’s work while using modeling as the learning process.

1.4.3. Views about student’s use of prior knowledge and thinking strategies

Modeling as a learning process in science requires a variety of inquiry strategies

among learners. Developing a representation of the mechanism that underlies a physical

phenomenon is central to the process of learning with models. This mechanism should

provide an explanation of what is happening in the situation and more importantly how it

 14

happens and what are the elements of the phenomenon’s underlying mechanism. To do

that - as identified in the model-based learning cycle - students are expected to use

relevant prior experiences (from a repertoire of experiences that they have both from

science classes and the real world) specifically to reconcile different points of view as

well as different models about physical phenomena. Learners should also be able to use

prior experiences to support or contrast models developed about natural phenomena as

part of the process of model deployment and model evaluation. Thus, theoretical

argumentation is another important thinking strategy for modeling practices. Lastly, the

ability to develop or select a theory that would explain a natural phenomenon is another

inquiry strategy that seems to be important for modeling practices.

There is currently a debate about whether students are developing such thinking

strategies as part of their cognitive development (Kuhn, 1989), or whether Piagetian

accounts of these abilities underestimate students’ thinking strategies (Metz 1995). The

first view, which follows a developmental perspective, suggests that students are

expected to develop particular abilities as part of their cognitive development; thus there

are ages that students should not be expected to have and use particular thinking

strategies. In the second view, students are thought to have a repertoire of thinking

strategies that are seem to be dependant on several factors (including context) and as such

would not be used in every learning situation (Louca, Hammer & Bell, 2002;

Samarapungavan, 1992).

One perspective for studying student thinking has been provided by Deanna

Kuhn’s work (1989, 1993, 2001). Kuhn (1989) has called attention to inquiry as an

essential objective for science education. She particularly called attention to

 15

argumentation as an inquiry strategy in science itself and as an objective for science

learning.

In that perspective, Kuhn (1989) argues that there is ample evidence that students

lack thinking abilities about argumentation in science. For instance, students below 6th

grade seem to be unable to differentiate between theory and evidence in science. They

have been observed to fail to coordinate different perspectives about scientific evidence

of particular phenomena, and thus fail to differentiate between different and sometimes

contradictory theories. In this view, 9th grade students have been reported to fail to make

distinctions of covariation or non-covariation of evidence with a theory (Kuhn, 1989).

The explanation that Kuhn (1989) provides about the differences of students’ and

adults’ thinking abilities is based on the notion that these abilities are developmental in

nature and thus young students (of the elementary school for instance) have not yet

developed those abilities. Kuhn (1989) suggests that it is rather a matter of waiting for (or

in another view perhaps accelerating) the development of these abilities among students

before they would be able to use them.

It is possible that the above view of developmental limitations in student thinking

abilities may underestimate student’s inquiry strategies in science (Metz, 1995; Louca,

Hammer & Bell, 2002; Samarapungavan, 1992). “Recent studies have shown that when

tested with tasks that are simple and meaningful, children demonstrate an impressive

array of skills related to scientific reasoning” (Samarapungavan, 1992, p. 3). These skills

would include abilities to think causally, analogically and inductively (Brown, 1990;

Vosniadou, 1989; Gelman & Markman, 1986). Similarly, data from other studies (Louca,

 16

Hammer & Bell, 2002; Karmiloff-Smith & Inhelder, 1974) indicate that given enough

time, students can use a variety of thinking strategies that developmental views would fail

to attribute to students of that age. In this sense, Samarapungavan (1992) argues, these

research findings “demonstrate the importance of tasks that tap into children’s knowledge

of the world” in an attempt to activate thinking resources that might be readily available

but inactivated. Further, findings from her study (Samarapungavan, 1992) suggest that

when metaconceptual criteria for evaluating explanations are made “salient” to students,

they can use them successfully. Whether this use can be spontaneous, still remains an

open question – and an important one.

In this study, I share the assumption that students have a repertoire of thinking

abilities that they can use when learning in science, depending on the particular context

of the learning situation. Since modeling practices require abilities like the ones

aforementioned, it is reasonable to argue that students may have sophisticated inquiry

strategies for modeling that science educators need to tap into when using modeling

practices as means for learning. Starting from that assumption, I seek to describe what

thinking strategies students might use during modeling in science using CPEs and what

tools provided or working contexts supported by CPEs can tap into abilities, for example

for theoretical inquiry or modeling.

1.4.4. Computer programming tools as means for developing modeling skills

In modeling practices as means for learning in science, the process of model

development and deployment may be compared to the process of writing and

implementing a computer program. Most powerfully, it can be carried out through a

computer program, when the program itself becomes the scientific model. In this way,

 17

the program language becomes the design medium for the scientific mode and the

program (outcome) becomes a way of clearly articulating one’s understanding about

scientific phenomena. This has been the approach of a number of educators interested in

computer-based modeling and science education (diSessa, Abelson, Ploger, 1991; Louca

& Constantinou, 2002; Redish & Wilson, 1993; Sherin, 1996; Sherin, diSessa, &

Hammer, 1993; White & Fredriksen, 1998; Wilensky & Resnick, 1999).

Programs in CPEs produce a computer microworld which is a structured

environment that learners can use to explore and manipulate a rule-generated universe,

subject to particular assumptions and constraints that serve as analogical representations

of aspects of the natural world (Pea, 1984). Computer microworlds are idealized

environments composed of objects, relationships among objects and operations that

transform the objects and their relationships (Thompson, 1985). diSessa (1982, 1988)

indicates that microworlds can provide learners with opportunities to manipulate realities

in ways that learners cannot do in reality.

One of the difficulties that students confront is understanding the relationship

between a scientific model and "reality." Inevitably, scientific models neglect aspects of

the physical world, which troubles students who expect that scientific models are "true."

Students confront difficulties in accepting that the media they use for modeling

representation require them to develop models that include part of the physical reality.

However, in the context of writing a computer program, including a program to simulate

the physical world, students tend much more easily to accept the notion that the program

cannot reproduce everything, and thus the programmer must select which aspects of the

world to represent and which to ignore (Sherin, diSessa & Hammer, 1993). The

 18

computer programmer usually starts with an environment that has no rules and follows no

physical laws; the programmer has to identify and create them. The microworld will then

function according to the designed rules that represent physical laws. In representing

those aspects, it is necessary to make idealized assumptions and approximations, and

much of the challenge lies in judging what assumptions are possible and useful. In this

way, the task of writing a computer program consists of creating an idealized "possible

world," as Medawar (1987) described the process of constructing scientific models.

The activity of programming may also bring the constraint of formal precision.

Students learning science often struggle with terms such as "force" or "acceleration" that

have everyday, context-dependent meanings. Science students need to learn new, more

refined meanings of these terms, but, as importantly (and as difficult to accomplish), they

also need to learn the practice of quantitative precision: For an idea to be useful in

physical science, it should be made sufficiently precise in order to maintain consistent

meaning across different contexts. That would also enable the idea to constrain

interpretation sufficiently, so that different people who apply the idea in different

contexts will arrive at the same result (Hammer & Elby, 2003). In this sense, it is possible

to argue that the process of programming can enhance the development of refined

meanings of physical concepts and also can promote the use of precise language to

provide explanations about natural phenomena. The importance of this precision also lies

on the fact that it is related to students’ understanding about the mechanism that underlies

the physical situation under study. For instance, students may often have difficulty

articulating orally the mechanism that underlies a physical situation. This is not to be

interpreted as a lack of this ability. Rather, it is possible that these thinking resources are

 19

context dependant. Through this study I investigated whether and how modeling through

programming might serve as a learning environment where children can use reasoning

resources, and thus examined what are the characteristics of such learning environments.

Having to design a microworld to illustrate for instance the concept of speed of a

particular object, students have to deconstruct their understanding of the particular

physical mechanism into small programmable pieces of knowledge. Pieces may include

the mechanism that makes changes to the speed of the object (i.e., acceleration), speed’s

relation with the motion of the object (speed can he related with the amount of <forward>

in a program) and possible relations between one object’s speed to another’s (e.g., in a

relative motion situation). The necessity of this deconstruction is created by the need to

transform an idea in science into specific, technically precise programming code. To do

that, they need to use precise “program language”. In this sense, program language can be

a useful tool for understanding and thinking about science. Programming like

mathematics (which is a principle tool in science as it provides a language for formal,

technical precision and consistency) can be an alternative language for using in

developing understanding in science (Sherin, 1996).

Programming has at least two important advantages over any other written form

of language such as mathematics. First, unlike mathematics, a program can be run on a

computer and its results observed, allowing an iterative process of testing and debugging

that may be more tangible and accessible for young learners than the iterative process of

developing and deploying a scientific model expressed in other ways. Second, the code

itself can be more easily read and explained than algebra for instance. Rather than

equations depicting relations among quantities, lines of code represent procedural

 20

instructions that, given a sufficiently accessible language, students can read and follow,

step by step, thinking through what the computer is being told to do. Towards this end,

students can use the program language as a clear and precise way of developing

understanding in physical science and also communicating their ideas with others.

Using programming tools for constructing models in physical science has also

several other advantages. CPEs encourage exploration and “exploratory” learning

(Smith & Cypher, 1999). Providing an open-ended programming environment, in which

students can easily investigate different possibilities and different combination of things,

programming tools promote creativity (Smith & Cypher, 1999). In fact computer

capabilities can offer students various possible ways to provide answers to their

questions; that is, to construct several models (that differ in type and complexity) that

will provide explanations for the natural phenomena.

The use of CPEs may also have another advantage over other modeling media in

helping to tap productive resources among learners. Since CPEs can be viewed as

learning environments, it is possible that as such they can tap particular thinking

resources among students. One example is debugging, which is a characteristic of

programming that is important for learning in science in the following sense. Debugging

in the programming process mainly consists of the identification of the reason(s) that

programs do not function the way the learners think they have developed them. Thus, in

order to debug, programmers/learners have to coordinate two different perspectives: their

own (that would be what they intended to accomplish by the particular code they wrote)

and the ones actually represented by the programs they wrote. The flaws can be either

due to typos or to mismatches between the students’ ideas and the programming codes

 21

that the students used to represent their ideas. For debugging, students will have to

identify the typo or the mismatch. In this sense, programming as a learning environment

supports by default the process of debugging and thus programming as a learning tool can

tap into useful and productive thinking resources that are possibly otherwise inactivated.

Differences between CPEs and prepackaged computer simulations

Programming tools that I investigated in this study differ from prepackaged

computer simulations of natural phenomena in the following sense. In prepackaged

computer simulations, students are provided with an already constructed simulation

(without any access to its code) of which they can explore and possibly alter some of its

parameters. However learners do not deal with neither the development of the simulation

nor with what concepts are embedded and how are represented in the simulation.

Penner (2001) indicates that pre-structured simulations are biased ways of

providing students with learning opportunities to investigate natural phenomena, because

they already have a particular structure, are meant to be used in particular ways and

students do not have access to the code that creates the simulation (as opposed to open-

ended CPEs where students can develop their own representations of natural

phenomena). There is an assumption that underlies the above idea of providing students

with pre-constructed “experimental apparatus” in science education (including hands-on

experiments and simulations) (Penner, 2001), that science thinking, as it is partly

described by NSES (1990) and theories of cognitive development, is a set of “semi-

independent cognitive skills” (Penner, 2001, p. 9) that students need to develop, such as

hypothesis generation, experimental design, hypothesis revision etc. This view

 22

contradicts recent views about students already having developed abilities for theoretical

reasoning, or argumentation in science, that only require activation.

The programming tools of the type that I used in this study, in contrast, require

that the learners participate in developing and debugging the code to generate a

simulation. That is, rather than provide them with a model to explore, these tools engage

students in the process of developing the models themselves. “Research has shown that

the process of creating models (as opposed to simply using models built by someone else)

not only fosters model-building skills but also helps develop greater understanding of the

concepts embedded in the models” (Collela, Klopfer & Resnick, 2000, p.1)

1.4.5. Difficulties derived from the modeling process

Modeling media may contain at least one common limitation that can pose

possible difficulties to the learners. Students may be more inclined to use the particular

media in ways with which they are familiar, which are different from using those media

for modeling purposes. Many of the modeling tools that research in science has used for

teaching about and with models are tools that children are usually familiar with in other

settings. These would be paper-and pencil tools (diSessa, Hammer, Sherin &

Kolapakowski, 1991; Louca & Constantinou, 2002), 3-D structures (Penner, Giles,

Lehrer and Schauble, 1997), which may include physical experimental settings (Louca &

Constantinou, 2002), and CPEs. The challenge lies in getting students to use these media

as modeling tools and not as simple visualization tools. Previous research in

science/model-based learning has not documented this as a difficulty. More importantly

this issue has not been identified as a possible limitation of computer-based modeling,

despite the fact that such difficulties have been identified in a number of modeling studies

 23

with young learners, with a variety of modeling media (for example see diSessa,

Hammer, Sherin & Kolapakowski, 1991; Penner, Giles, Lehrer & Schauble, 1997).

In their research, Penner et al (1997) asked students to design 3-D models that

would represent the function of a human elbow. In the beginning of the study, students

were focused on how to design their 3-D models to look like the real human elbow rather

than function like the human elbow. In this case, modeling media were perceived and

used as ways to represent reality and not to represent the function underlying that reality.

Similarly, in their study, diSessa et al (1991) asked students to draw a representation of

an incident in which a person while driving in a desert passes a cactus. She then stops,

turns back, drinks some water from the cactus and resumes her trip. Students’ initial

drawings were showing only a desert and the cactus, capturing the visual context of the

situation and failing to represent the actual motion of the driver in her car, which was the

purpose of the activity. In a way, it can be argued that students perceived and used

modeling media in this case (paper and pencil) in a familiar way, to represent still

pictures rather than represent processes.

In both the above cases, students were using modeling media in ways they were

accustomed, rather than using media to develop a model that would represent the physical

situation. Activities in these cases were perceived to have the goal of making visual

representations of the reality and not representing the function(s) of objects in the

phenomenon under study. Students, I am arguing, may not be accustomed to using

particular modeling media for modeling purposes, even if they might be familiar with

modeling practices. Thus, they are inclined to use the media in ways with which they are

familiar with and they have used before.

 24

However, it would be naïve to argue that students lack the appropriate resources

for using modeling media (such as 3-D structures, paper and pencil media or CPEs) for

designing, constructing and evaluating models, simply because this would underestimate

students’ abilities for reasoning and thinking in science. In fact, the aforementioned

studies have shown that tapping into students’ particular resources that support modeling

practices is an easy agenda. Recent findings about student abilities (see section 1.4.3)

suggest that students may have a repertoire of abilities to think e.g. in science; their

abilities however are context dependent and need to be activated to be used.

For example in the above modeling studies (diSessa, et al, 1991; Penner, et al,

1997), students failed to spontaneously use modeling media for constructing models of

physical phenomena. For example, For instance in their research, Penner et al (1997)

asked from students to design 3-dimensional models of a human elbow. In the beginning,

students were focused on how their model looked like (and thus how to make it look more

like the real human elbow) than on how to design a model that would function like the

human elbow. Similarly, in their study, diSessa, et al (1991) asked their students to draw

a picture representing an incident in which a driver while driving in a dessert passes a

cactus. She then stops, returns back, drinks some water from the cactus and resumes her

trip. Students’ initial drawings were showing the dessert and the cactus, and were not a

representation of the actual motion of the driver in her car that was the purpose of the

activity. However, when this issue was addressed, students could use media for modeling

purposes in both above cases. This is a limitation, I argue, of the modeling media,

especially for the media that are not specifically designed to be modeling tools. However,

for CPEs that are designed to be used as modeling tools, it is reasonable to expect that

 25

they should be designed in ways that can tap into abilities for scientific inquiry that are

useful for modeling natural phenomena. This would provide CPEs with an important

advantage over other modeling media: the advantage of being easily perceived as

modeling tools.

However, whether we should aim to design CPEs to easily tap into these kinds of

modeling resources among learners is still an open question. In the previously discussed

modeling studies, (Penner et al, 1997; diSessa, et al, 1991; Louca & Constantinou, 2002),

researchers used modeling practices as simple as questions to guide students towards the

modeling process, that would include designing, evaluating and then improving a model.

These modeling practices can help students to conceptualize modeling media as the tools

for the modeling process. An approach that includes instruction about the modeling

practices themselves provides an additional opportunity of learning about the process of

modeling itself, in addition to providing children with the tools to tap into their modeling

resources by themselves.

There are two important issues that stand out from this discussion. First, the need

for modeling media that would easily promote modeling thinking strategies to be

activated by the students is apparent. Students, I have argued, are reasonably expected to

be familiar with some of the processes of modeling, especially if the processes are related

to a context with which students have extended experiences. Secondly, it is equally

important that students not only use modeling practices but also that they are aware that

they use them. Investigating whether programming environments designed for children

can support collaborative modeling practices is still an open question that I partly

investigated in this study.

 26

1.4.6. Different types of program languages

Currently there are a number of software programming environments available for

children. CPEs that have been developed for young children share several common

characteristics. They also include a number of features that are different among different

environments. Programming environments of the type that I used in this study differ in

the program strategies the user is required to use, the program language that they use, the

representation of the objects, and the representation of the physical values. Below I

discuss some of the better-known applications focusing on their basic characteristics.

As mentioned before, computer applications developed for making programming

easier for children share similar characteristics designed to promote modeling and

thinking strategies for students. Research (Smith & Cypher, 1999; Sherin, diSessa &

Hammer, 1993; Louca & Constantinou, 2002) has provided examples of students using

CPEs to construct models in science: children explore the programming tools available to

them in order to find solutions for their program goals. In this light, programming for

young learners can be an exploratory experience, which promotes creativity.

However, different types of programming require different types of program

strategies. Programming can be done by demonstration (such as in Stagecast Creator)

(Smith and Cypher, 1999) using “click-and-drag” techniques. The user creates a script

that the computer can monitor and model so that it can be performed later. Figure 1.1

provides an example of such program techniques. Rules in this software are visual “if-

then rules” rules (Smith & Cypher, 1999). That is, the user can design rules in the form of

“if-then rules”. For a given situation, an action can be determined.

 27

In a more advanced programming environment, children can create more general

scripts by choosing either language or demonstration as a medium for programming.

Students can also create variables indicating the different behavior they expect to observe

in different situations. An example of this kind of programming can be found in Toontalk

(Kahn, 1999). This programming environment is “a video game for making video

games”. In this case, the user designs what is considered to be virtual worlds in which

children can reassemble situations from real worlds: learning here is by playing.

Figure 1.1. Program example from Stagecast Creator: If-then rule

Program language also varies among different programming environments.

Microworlds Logo, for example, (a revised version of Logo (Papert, 1993)) uses formal

program language as the medium of expressing relationships about (virtual) objects. As

indicated before, a formal program language provides the means for designing very

accurate mathematical models of the physical world. Microworlds Logo also includes

more graphical representations, the capability of multiple characters simultaneously

running under the program; interactions between characters and among characters and the

mouse are also possible. Figure 1.2 provides an example of programming in Microworlds

Logo. Further, Microworlds Logo includes the capability of easily importing sound,

movies, pictures as well as different characters and the feature of easily creating

animations as part of the programming process. However, the visual capabilities of the

Microworlds Logo programming environment are limited to the outcome and not the

 28

programming process itself. For instance, programming a simple code that would enable

a character to walk requires entirely formal program language: graphical representation is

not a part of the programming process. On the other hand, the same code in Stagecast

Creator is entirely based on graphically represented language. Other programming

environments enable a combination of formal program and graphically represented

language.

The process of programming in Microworlds Logo is procedural: the user needs

to write instructions, one after the other for the turtle (character) to follow when the

program is executed. On the other hand, programming in Stagecast Creator is object

oriented: the user has to assign each character with rules that define its behaviors, which

the program would execute when the conditions of each rule are met.

The representation of objects also varies. Stagecast Creator uses analogical

representation: an object is represented in the same way in all different levels of the

programming environment (the program level, the outcome level etc). This way, the

graphical environment that is used allows direct manipulation of the represented objects

and easy assignment of rules to each object (Smith & Cypher, 1999). On the other hand,

in Microworlds Logo objects are represented by an image in the output window and by a

“name” in the program window. For this reason, even though most programming

applications are object oriented (that is every object has its own identity and thus can be

manipulated by the programmer independently), the way of creating, running and

debugging program varies both in difficulty and complexity.

 29

The representation of physical values also varies. In Stagecast Creator the

programmer can create boxes named after variables (such as “energy level” of the

characters) and design rules to add to or subtract from these variables depending on the

behavior of the characters. In addition, in the same software package, the programmer

does not have to set the rate of any action (such as velocity of motion) because rate is set

as an external characteristic of the programming process, pre-set to depend on the speed

of the microprocessor cycle in microcomputers. Of course there are several ways that the

programmer can write a code for identifying velocity, but this is not the easy default way

that the software was designed to work. On the other hand, in Microworlds Logo for

example, the changes in a particular variable are a result of a mathematically precise code

that is expressed in the program languages. Further, in Boxer (diSessa, Abelson, &

Ploger, 1991) the same code is represented by a combination of the two different ways.

Figure 1.2. Program example from Microworlds Logo: Textual program language is used

In Stagecast Creator, for instance, if the programmer places a character releasing a

ball in the output window of the software, the program will not “know” what to do with

the released ball. As a first step, a rule can be created that would enable the ball to fall

towards the ground. As discussed before, programming here is done by indicating to the

 30

software that in every “cycle” the ball should be moved a “distance unit” towards the

ground. Further, the time for each action (i.e., time that a particular action is carried out)

is set by default to be the rate of the cycle that the Stagecast Creator utilizes and thus

different speeds (rates of motion) should be explicitly defined as different distances

traveled in the same time. This however, can have implications for further steps in

programming. One way to make a ball falling to speed up, is to simply create a number of

rules that will be executed sequentially; each subsequent rule will result a larger distance

traveled in the same time. Instead of this, however, in a second step, the programmer can

develop a variable “velocity of the ball” and create a mathematical relationship for the

distance falling in each rule with the total time of the motion, such as increasing distance

traveled in each cycle by 5 units every cycle (or “second”) of the program. In sum, it is

possible that the design of the software does not prompt students to specifically identify

the rate of the speed, (but rather making it easier to create a number of independent rules

that can simply recreate the phenomenon) leading to inaccurate representation simply

because students have just not considered to use.

In Microworlds Logo, however, in creating a rule, the programmer has to provide

information about the velocity of the action. Similarly to Stagecast Creator, the program

runs the rule in cycles (e.g., the character will move the defined distance every cycle), but

in Microworlds Logo, only the rate of the cycle is defined – not the rate of the actions

themselves. Therefore, in this case students need to provide the speed of the motion, or

the mathematical function that would describe the change in the velocity of the falling

ball. I argue that because the programming environment does not provide the speed of the

actions, students are prompted to provide that information.

 31

Given the differences in the ways that CPEs have been developed to be used by

young learners and the different characteristics that they have, it is necessary to define

which characteristics are useful for young learners in science. It is necessary to define

those characteristics (that such software titles may share or not) that address particular

programming needs and learning habits of students in science and how different

characteristics of different software enhance scientific visualization. It is equally

important to learn how the limitations of the available software programming tools affect

learning in science. Finally it is necessary to understand the ways that those programming

environments provide metacognitive knowledge to the students using them.

 32

2. METHODOLOGY

2.1. Methodological approach

This study has followed the qualitative research tradition for classroom based

studies for two major reasons. First, the study is based on the idea that research in the

form of clinical interviews and pre and post-test designs fails to capture the dynamics of

the regular (science) classroom. It also fails to focus on students’ activities and

conversations during the process of learning, because the focus is on what students can

re-produce during interviews and testing. On the other hand, qualitative research

methodologies focus on the collection and analysis of large amounts of data that can

derive from the actual learning process and can be analyzed using a variety of methods.

In this way, the focus is on the activities during the learning process.

Second, the purpose of this study is to develop detailed descriptions of students’

work with computer-based programming environments (CPEs), and the ways that

students may or may not use CPEs to support their learning needs. In addition, the focus

of the study is on students working patterns with CPEs in school settings. For all these

reasons, this research follows the qualitative research tradition.

2.1.1. Characteristics of qualitative research

Qualitative research methods share common characteristics about the nature of the

data sources and the way researchers develop their understanding of them.

Qualitative research is naturalistic (Bogdan & Bilken, 1998). It is focused on the

natural settings where the phenomenon or the situation under study takes place, rather

 33

than recreating those settings in the controlled environment of a laboratory (Bogdan &

Bilken, 1998). Being naturalistic, qualitative research addresses two major concerns.

First, the focus of the study is the actual setting in which the phenomenon under study

takes place. Context is believed to be an important factor of the situation and without

that, parts of the phenomenon’s complexity may not be captured or recreated. Second, the

behaviors of study participants are believed to be related to its natural context where the

phenomena of interest usually take place. Researcher-controlled situations may fail to

accurately and successfully recreate the natural behavior that is intended to be studied

and thus natural situations are chosen to be studied by qualitative researchers (Bogdan &

Bilken, 1998).

Qualitative research is descriptive (Bogdan & Bilken, 1998). Both data collected

and reports developed are rich descriptions of the situation or phenomenon under study

(Bogdan & Bilken, 1998). Being naturalistic, qualitative research seeks to develop

detailed holistic descriptions of the field and the phenomenon/situation studied. The focus

being on the whole situation under study, qualitative researchers try to provide rich

descriptions of the situation. For this reason, considerable time is spent in describing the

context of particular setting of the situation under study (Creswell, 1988). It is important

to describe the larger picture in detail, which would provide important information to

situate the situation/phenomenon within its context.

“Qualitative researchers are concerned with the process rather than simply with

outcomes or products” (Bogdan & Bilken, 1998, p. 6). The purpose of qualitative

research is to describe and document the process that takes places within a

 34

phenomenon/situation in its natural environment. Outcomes of the process can be parts of

the data, but are not the major purpose of qualitative studies.

Qualitative research is inductive (Bogdan & Bilken, 1998). Data of qualitative

research are analyzed in inductive ways; researchers seek to develop claims about the

phenomenon/situation under study that can be justified by their data (Bogdan & Bilken,

1998). The purpose of qualitative research is to provide a possible theoretical perspective

that would be grounded in the collected data. As Bogdan & Bilken (1998) indicate,

qualitative researchers do not put together puzzles whose pictures they already know

rather they are constructing pictures that take shape as they collect and examine pieces of

data.

Qualitative research is concerned with meaning (Bogdan & Bilken, 1998).

Qualitative researchers “are interested in how different people make sense of their lives”

(Bogdan & Bilken, 1998, p.7) or more generally how they experience the

phenomenon/situation under study. In this sense, qualitative research seeks to capture the

views of people in the study about the phenomenon and how they live the situation that is

being studied. Without limiting qualitative research in investigating the sense that people

develop or have about different situations, and while being interested in the process and

not the outcome, qualitative research also seeks to develop descriptions of the ways

people make sense of the phenomenon/situation under study.

2.1.2. Case study tradition

This qualitative study follows the case study tradition. A case study examines a

particular phenomenon, situation or event, concentrating on as many as possible variables

 35

that are involved in the particular case (Creswell, 1988; Merriam, 1988). Being holistic in

nature (Merriam, 1988), a case study seeks to define, intensively describe and interpret

the case under study, using as much detail as possible and available, so that the picture

provided would be full and holistic.

Case study research requires identification of the “case” that is under study. As

such, the qualitative case study research method focuses on a “bounded system”

(Creswell, 1988; Merriam, 1988). Boundaries are of time and place. That is, the case

should be defined within particular time frames and be in a particular place (Creswell,

1988). The focus of the study is on the phenomenon on its whole, and studying it does

not consist of a linear model of inquiry. This is to stress that there are complex

relationships within phenomena, that taking them apart may result in losing some of their

important aspects.

Qualitative case study research addresses “how” and “why” research questions

(Creswell, 1988; Merriam, 1988; Yin, 1994). It tries to provide a detailed description and

analysis of the observed case. Case study is also naturalistic in the sense that it studies

cases in their physical context, in which the researcher is also interested (Merriam, 1988).

For this reason, the case study method requires the study of the “environment” that

constitutes the “bounded system” and thus, the researcher has limited or in some cases no

control over the case of study (Merriam, 1988; Yin, 1994). Case study method also

requires the study of a contemporary phenomenon or situation within its real-life context,

so that the researcher can be the primary observer (Yin, 1994).

 36

Overall, this study is an interpretive case investigating “how do fifth grade

students use CPEs?” The study includes investigation of conceptual categories (i.e.,

student thinking strategies) and theoretical assumptions (i.e., students have a repertoire of

resources that they can use when talking and thinking about physical phenomena). For

this reason I have provided a theoretical framework that situates this study in the area of

research in science education and model-based learning. Further, I describe in detail how

fifth grade students use CPEs in the context of learning about physical science, following

and analyzing almost two months of weekly afternoon meetings. I then use these

descriptions to analyze students’ work characteristics while using CPEs as learning tools.

One of the important issues that influenced my decision to use qualitative case

study methodology for this research is that there is not sufficient foundation yet for more

quantitative research in the area of studying students’ use of CPEs in science. There has

been a long history of interest in the use of models in science (diSessa, Abelson, &

Ploger, 1991; Redish & Wilson, 1993; Sherin, 1996; Sherin, diSessa, & Hammer, 1993;

White & Frederiksen, 1998; Wilensky & Resnick, 1999). Most of these studies, however,

investigated the use of CPEs with older students. Further, traditional research with

programming media (usually investigating the use of Logo) studied the development and

transferability (to other domains) of skills such as problem solving skills, planning skills

(e.g., Orhun, 1993; De Corte et al, 1993; Enkenberg, 1989; Verschsffel et al, 1989). Some

studies have also focused on cognitive issues that derive from the use of Logo, but

studied the difficulties that students encounter with the Logo program language (e.g., Fay

& Mayer, 1987). In these studies, however, researchers were focused on students’

“misconceptions” about Logo program primitives and used pre/post test designs to

 37

investigate how students, for example, predicted the output of particular programs in

Logo.

In this study, I seek to contribute to our understanding about how students work

with CPEs in the context of developing models/representations of natural phenomena.

Specifically, I wanted to investigate the ways that students use tools available in CPEs,

and what kind of thinking might those tools support among young learners. Due to the

limited research foundation around this area of research, studying cases in a qualitative

way enabled me to discover aspects of the phenomenon I would not have through more

narrow, instrument-based data collection. Further, one of my goals was to provide

detailed descriptions of students’ work with CPEs, and a qualitative research approach

provided me with the tools to collect, analyze and present such descriptions of students’

work with CPEs in science.

2.2. Study setting

2.2.1. Site of investigation

This study took place at a suburban elementary School in Montgomery County,

Maryland. In collaboration with the school principal, and after getting approval from the

University IRB and Montgomery County, I set up an afternoon science/computer club for

fifth graders, where students learnt and used Microworld Pro and Stagecast Creator for

developing models of physical and/or biological phenomena.

In February 2002, I contacted the school’s principal, asking for his possible

interest in my study and for setting up an afternoon science/computer club for four

months at his school. The school principal indicated his interest in the study and in March

 38

2002 we finalized the setup of the study. In June of 2002 the school distributed

information for the club for the following year, asking parents who would be interested in

having their children participate to inform the school administration. In September 2002,

the same information was redistributed and additional students indicated their interest in

participating. The school administration formed a list of the interested students, and the

first 30 students were selected to participate in the study.

Because of the nature of the study and my goal to study the use of two separate

CPEs, I formed two separate teams of students that met in different days (one team on

Mondays and the other on Wednesdays). Each team of students was taught and used one

of the two CPEs: the Monday team used Stagecast Creator (SC team) and the Wednesday

team used Microworlds Logo (MW team).

2.2.2. Study participants

Students selected for participation were divided into the two teams based on their

indicated preference of the day that they wanted to participate in the study. The teams

were representative of the population/cultural diversity of the school, and they included

five1 African-American students (three girls and two boys), two Latino students (one girl

and one boy), one Chinese student (boy) and 11 Caucasian students (two girls and nine

boys), a total of 19 students, six of which were girls and 13 were boys.

Students in the school that the study took place had some experience with

computers, even though none of the participants had previously used either software that

were used in the study. The school has a computer lab, and a designated computer teacher

1 Numbers reflect students that remained until the end of the study.

 39

with a teacher assistant. Students in the school regularly visit the computer lab, where the

computer teacher in coordination with the students’ regular teacher prepare lessons in

particular subjects (e.g., American history, social sciences, etc) that involve the use of

computer applications (e.g., PowerPoint presentations, search over the Internet etc.). In

this sense, students participated in the study had previously (in some cases quite

extensive) used computer applications within the school and were accustom of using

mouse, navigating in the world wide web, retrieving documents from and sending

documents to my (teacher’s) account. Further, during their work in with the computers,

students were following guidelines that were established by their computer teacher for

work with computers (such as, logging in with their own personal password, always log

off before leaving, and take turns in using the computers).

The club met with me once a week on Mondays or Wednesdays, for one hour

after the school ended (from 3:30pm – 4:30pm), from September 9 through December 16,

2002. During the first phase of the study (see description later in this chapter) students

worked in 5 groups of 3 students each. Around mid October, several students from both

groups stopped showing up for the afternoon club. There was no formal communication

(from neither the students nor their parents) about the reasons that students stopped

coming to the club, but their classmates indicated that some had conflicting schedules or

switched to other clubs in the school.

For the SC team 10 students in total remained until the end of the study; 2 of them

however were not participating regularly and were also not providing any justification as

to why they were missing the meetings. For the second phase of the study (see

description later in this chapter), for the SC team, I divided all regularly participating

 40

students in 4 groups and the 2 students that were not participating regularly in 2 of the

above groups. Thus, 2 groups had 2 students and another 2 groups had 3 students. In the

MW team, 9 students remained and were attending regularly until the end of the study.

Therefore, for the second phase of the study, I divided them in 4 new groups: 3 groups

had 2 students each, and one group had 3 students. In all the cases, the distribution

reflected both cultural and gender diversity among the groups. However, the most

important factor for putting students into groups was to have groups of students who

could work together and communicate successfully. Thus, during the first phase of the

study, I switched groups of students quite regularly (usually twice a month) in order to

find out about possible combinations of groups that could have been productive. In the

second phase of the study, depending on their ability to work with others, some groups

had members of different gender and in other groups the members were of the same

gender.

2.2.3. Study’s computer-based programming environments

For this study I used two different CPEs designed for young learners. These are:

Stagecast Creator and Microworlds Logo. Given the large numbers of available

programming environments that have been specifically designed for young learners, I

came across the challenge of choosing what software packages to use in this study. For

this reason, I established several criteria for choosing the two software packages for the

study. The first criterion was based on the existing literature and research about

programming environments in general, and programming environments for young

learners in particular. Most literature, however, does not document in detail the particular

ways that students use the different programming environments (for example see

 41

Underwood et al, 1996; Rader, Brand & Clayton, 1997; Singh, 1992; Pea, Krland &

Hawkins, 1987; Leher, Lee & Jeong, 1999). Traditional studies usually study the effects

of using programming for developing abilities such as for problem solving among

learners using pre/post tests designs. However, there is some literature that provides

descriptions of the characteristics and capabilities of software, mostly derived from the

process of developing and testing prototype systems (i.e., Smith, Cypher & Telser, 2000;

Cypher & Smith, 1995; Rader, Brand & Lewis, 1997).

Singh & Chignell (1992) provide a discussion about programming media and

suggest that there are two major types of programming media. Their differentiation is

based on the type of programming language that CPEs use. The two major types of CPEs

are those that use traditional textual programming language and those that use visual

programming language. The type of the programming language has implications on the

programming process: textual language is a more open system, enabling users to create

many kinds of routines, whereas visual language restricts users to pre-defined scaffolding

for creating programs. This was my first criterion: investigate the use of two different

types of programming environments.

My second criterion was based on my previous experience in using CPEs with

young learners. I did not want to start with this study without having any idea of how

students would use them or what the study would look like. Both in my pilot study

(findings reported in Louca et al, 2003) and a previous study in Cyprus (Louca &

Constantinou, 2002), I had used SC and MW successfully with 5th and 7th graders for

developing models of physical phenomena.

 42

In my previous studies (Louca & Constantinou, 2002; Louca et al, 2003) SC was

easy to learn and used for developing programs as models of physical phenomena. For

instance in the first study, learners were able to recognize the usefulness of the software

for modeling in science, while developing, testing and revising models of the linear

propagation of light. In that study, students who were simply learning to use SC as part of

a science club, identified SC as a tool for better representing a model of the linear

propagation of light. SC is also accompanied by a tutorial, which consists of a sequence

of interactive activities which I found to be successful in teaching students how to use SC

in both previous studies.

I chose Microworlds Logo to be the textual-language programming software.

During my pilot study (Louca et al, 2003) students easily learnt to use this software.

Microworlds Logo is a version of Logo (Papert, 1980) designed for developing

microworlds. It has the capability of graphical representations, and enabling objects’

interactions. Programmable objects can be represented by actual pictures of the objects.

Animation is easy to accomplish and the user can import graphics and sound. These

features can make the outcome of the programming process to look similar with the

outcome of the Stagecast Creator’s programming process, which can be used for

comparing different programs that result in the same outcomes in the different CPEs

Prior to the study, the school’s County tested and approved Stagecast Creator and

Microworlds Logo software to be used at the school’s computer network by students. The

company that produces Stagecast Creator software granted me 5 computer licenses of the

software for the duration of the study. For the MW, I purchased 5 licenses for use at the

school.

 43

2.2.4. Purpose of the study

The central research question for this study is how might computer-based

programming environments support fifth grade student inquiry in physical science? For

this purpose, I have three subsidiary goals. (1) In investigating the (potential) role of

CPEs in supporting thinking and learning in science at the elementary level, I describe

how fifth graders use CPEs, and the process of programming to develop models of

physical and/or biological phenomena. (2) To investigate student inquiry, I investigate

how students use their prior knowledge, experiences and thinking strategies within the

context of working with CPEs in science. (3) Finally, I provide descriptions of

Microworlds Logo and Stagecast Creator, including descriptions of the characteristics of

the process of programming that support student thinking at the fifth grade, in the context

of developing models in science.

2.3. Study phases

The study was divided into two phases. The first phase was devoted to learning

the program language and some modeling procedures and the second part was devoted to

exploring ideas in science with the use of the programming environments. The data

analysis for this study is based on the data that I collected during the second phase of the

study.

2.3.1. Study phase one

The first phase of this study took place during the first 6 meetings (September

2002 through late October 2002). Its purpose was to teach students to use the

 44

programming environment to which they were assigned, and to introduce them to some

modeling practices.

Stagecast Creator group

During the first sessions, students in the SC team familiarized themselves with the

environment using the software tutorial that was previously demonstrated to be a

successful tutor for this software (Louca & Constantinou, 2001; Louca et al, 2003). The

tutorial is an interactive environment presenting the capabilities of the software (e.g. that

you can have characters move, go into different backgrounds, have multiple rules etc)

and showing the user how programming is done,(e.g. how creation of rules happens). The

tutorial breaks up a desired microworld into small pieces, each of them being a potential

rule, and guides students through the process of developing rules. At the beginning it

shows them how the rules are created, then it guides them through the process of creating

individual rules. The focus of the tutorial is on the process (steps) of creating rules that

would assign characters with particular behaviors.

After going through the tutorial, I introduced students to several examples of

ready-made microworlds in order to investigate their design, and practice their

programming skills by altering features of the microworlds. These activities were based

on the idea of asking students to figure out how the simulation is created, that is, what

kinds of rules would create the visual results on the screen, and asking them to make

changes in the simulation such as double the speed, change the direction, or add simple

behaviors to the characters. This approach helps students to focus on the rules that create

the simulation and to think of these as the mechanism of creating the simulation. Towards

the end of this phase, I presented students with a task that required them to develop

 45

microworlds of their own, without providing them with any pre-programmed parts. In

those cases I usually had a conversation with students in a whole team setting, in which

they exchanged ideas about how to program this situation, what kinds of rules were

needed and for what behavior.

Microworlds Logo group

Given the different type of programming language that MW uses, the focus of

teaching students to use it was different from the focus of the SC tutorial. My teaching

focus with the MW team was on teaching students programming primitives that are

required for developing simple programs, and on basic program structure (e.g., a program

starts with “to <program_name>, ends with “end”, needs to have a “talkto

<turtle’s_name> etc).

Teaching, however, was done in a similar way with SC, by presenting students

with several simple pre-programmed microworlds, asking students to figure out how the

behavior of the characters was created and how to modify that behavior. These activities

provided students the opportunity to investigate the capabilities of the programming

environment, to develop an understanding about the function of programs in MW and

familiarize themselves with the programming primitives. Towards the end of phase one, I

asked students to develop their own simple programs. Students were allowed to use code

from programs that they previously had seen or used. During that time, we usually had a

conversation in a whole team setting, for exchanging ideas about what kinds of behaviors

to assign to characters (such as, should the ball move with the same speed or should its

speed change over time?) and for talking about how to write programs to represent and

create those behaviors.

 46

In both groups, students did not have the opportunity to learn every primitive or

rule type. However, by the end of October, they had some sense of what it was like to

create programs. Primitives or rule capabilities were presented later in the study too,

when students had particular ideas about programming something, but did not know how

to write them into programs (e.g., a sub-routine for running two programs at the same

time in MW or a rule for giving priority for running a number of rules over all the others

in SC).

2.3.2. Study phase two

During the second phase of this study, students worked on developing a model of

a physical or biological phenomenon. Prior to any work, I asked students to decide what

each group of 2or 3 students would like to program, as their final project. The only

requirement was that their programs should be related with science. Each group in both

teams had some time to think about their ideas and how they would program them.

Students spent a meeting brainstorming ideas and looking through other students’

programs related to science and mathematics (that are readily available on the websites of

the companies that created the software of the study).

In proposing this study, my initial plan was to have students investigate a question

framed around a physical phenomenon within students’ experiences that would require

children to explain what they think was going to happen and what would cause it to

happen the way they thought. However, during the first phase of the study, when I

presented students with similar (but smaller) tasks, some students were not as engaged as

they were in other days of the study. For this reason, I decided to provide students with

the ability to choose their own ideas to program, but provide them with criteria about

 47

choosing among their ideas. The criteria included that their programs should include or

show a phenomenon from science, and that (for educational purposes) their programs

should not include killings, or bombs, which apparently are very interesting topics for 5th

graders! Therefore, some students working with SC, for instance, decided to create games

that include physical phenomena (balloons with helium flying) and some others to create

games using biological phenomena (ecosystems of fish in a small pond).

2.4. Data sources

Three primary sources of data were used in this study. First, videotaped students’

group work with SC and MW that includes both their interactions with peers and myself.

Second, discussions that I facilitated in whole class about the phenomena under study

were videotaped and used as a primary source of data. Third, students’ programs (the

outcomes of students’ work with SC and MW) were also a primary source of data for this

study.

2.4.1. Identification of groups that were videotaped

During weekly meetings, students’ discussions within their groups, while working

with computers were audiotaped. Two video cameras were also used for videotaping two

of the groups during individual group work. For this reason, during phase one of the

study, I chose the groups to be videotaped during the second phase of the study. My

decision was based on the ability of students in the group to collaborate. Data sources and

subsequent data analysis for this study focused on the conversations that students had

during their work with computers. For this reason, it was important that I collected

 48

conversational data from teams that could collaborate, have conversations about their

work and during their work.

For the SC team, Annie & Bryan (group) and Zen & Seth (group) seemed to be

two focused groups that regularly participated in the club, and thus I chose to videotape

them. Those students were also comfortable in communicating with one another in their

groups while exchanging ideas about programming. Sean & Tyra (group) was the third

group from which I used transcripts of their conversations during analysis (see

description later) Similarly, Joe & Samir (group) and Aaron & Richard (group) were the

two of the groups working with MW that I chose to videotape during the second phase of

the study. These students were participating on a regular basis in the club and their group

collaboration was usually adequate. Jiana & Gabriella (group) was the third group

working with MW, from which I used transcribed conversations during analysis. The rest

of the groups were simply audiotaped.

A possible concern is that the number of girls that was included in the groups that

I used for analysis was low. Having groups with rich conversational data was my first

priority, and in case of MW, Jiana and Gabriella were the only regularly attending girls

for the team. An additional girl was not participating regularly. In the case of SC team,

all-girls groups seem not to work very well, despite several combinations that I tried.

Thus, I chose one group with one girl to be videotaped and used transcribed

conversations from another group with one girl during analysis.

 49

2.4.2. Reviewing video and audio data and transcribing

Reviewing video and audio data was done in two major phases. During the data

collection period, after every session with each group, I watched all available video,

which included any whole class discussions and the work of the two individual groups

per software team. I did this in part for planning for next sessions, in order to review the

individual group work, see what students had accomplished and prepare my teaching

agenda and focus for the next session. While reviewing the videos I took notes about

what was going on in the videos, with a focus on student thinking.

After the end of the collection period of the study, all videotaped conversations

were transcribed, including conversations of the whole team and small group work.

Transcripts of group conversations were analyzed using contextual inquiry (see section

below for details) developing codes for emerging patterns of students’ activities and

conversations. For each software, students’ work was analyzed separately. For initial

analysis, I used transcripts of group work from the transcribed videotaped conversations

(two groups per software team). Analysis revealed emerging types of students’ activities

and conversations, which consisted of particular combinations of emerging patterns,

observed in both groups that I analyzed. At that time, I reviewed available audio from a

third group from each software group, looking in particular for supportive evidence for

the emerging types of students’ activities and conversations (instances that those patterns

occurred) or possible counter evidence (instances that in similar contexts such as typing a

program, a different emerging type of students’ activities or conversations could have

occurred). Those instances were also transcribed and analyzed.

 50

In reviewing and transcribing video and audio data, I excluded instances in which

students were taking time off to discuss issues unrelated with the study (such as talk

about their homework, events that happened during the school day). Those instances were

noted in the data presentation as gaps in students’ conversations.

2.4.3. Secondary data source

My journals during the data collection period of the study were used as a

secondary data source. I kept daily journals before and after each session. Before each

session I summarized my goals for the upcoming meeting with students and the activities

that I planned to use, as well as the rationale behind them. The journals that I kept after

the sessions had two parts. I wrote the first part of the journals immediately after the

sessions, before reviewing and/or transcribing any conversation. In that part, I

documented my experience and my observations from the meeting. For this purpose, I

took approximately one hour after each session to describe in writing all the activities that

I used during the meeting with the students, and how students responded to these

activities. I also made logs of any piece of student inquiry that I observed or any

interesting student comments and/or contribution during individual group work, or whole

group discussions. I wrote the second part of my journals after I reviewed and/or

transcribed segments of students’ videotaped conversations, and possible student work

with CPEs. In this part of my journal I documented instances of students’ inquiry and

particular use(s) of CPEs that I had identified from the videotapes. That was also a partial

guide for organizing the next sessions’ activities.

 51

2.5. Data analysis

This case study research seeks to investigate and document students’ work with

two CPEs while developing models of physical phenomena. For analysis purposes, each

CPE team was treated as a separate Case (a total number of two cases: SC and MW). The

case units for this study were the different student groups working with CPEs. The

subunits of this case study were the weekly meetings with the students. For this purpose,

analysis and presentation of findings were based on three groups from each software

group (case study units) following their work in detail for almost two months of meetings

(case study sub-units). After analyzing and presenting the findings for each Case

(software), I compared findings from the two different Cases, isolating their differences

and similarities for students’ activities and conversations. Then, I combined the findings

from both Cases to discuss emerging themes about student thinking, student work with

programming media and student computer-based modeling.

For the data analysis I used three different types of analysis: contextual inquiry,

analysis of student conversation, and artifact analysis of the designed microworlds

(programs). I used contextual inquiry in conjunction with analysis of student

conversation in order to gain better insight in students’ activity and conversation patterns

while working with CPEs. Using the same source of data, (students’ conversations while

working with CPEs) I analyzed them from two different perspectives. Findings are results

of the triangulation (Stake, 2000) between different sources of data and different ways of

analyzing these sources. Below I provide detailed descriptions of the three types of

analysis.

 52

2.5.1. Contextual inquiry

I analyzed video and conversational data of children’s work with CPEs using a

modified version of Contextual Inquiry (Druin, et al, 1999). Contextual Inquiry is a

method of collecting and analyzing data of children’s activities and conversations, which

can be used when children work with technology. Adults are usually part of the working

group that is using technology in a specific situation. In my modified version of

contextual inquiry, my role (as usually the only adult in the room) was minimized to the

role of the facilitator: I was walking around the different groups and asking students

clarification questions about their work, in addition to providing any help that students

requested.

Contextual inquiry involves the analysis of student work in a particular macro-

context such as using technology and computer media. However, contextual inquiry does

not involve description or analysis of the micro-context2 in which student activities take

place (that is, particular situations that possibly students put themselves in while working

with technology), because despite the fact that the context is important, the focus of

contextual inquiry is on people’s activities (Druin, et al, 1999) and communication.

Analysis of student conversation and the accompanying narrative involve description of

the particular micro-context of students’ activities during their work with CPEs. For the

purpose of this study, I used contextual inquiry for analyzing students’ activities and

conversations in small groups, while programming.

2 With macro-context I mean the particular environment that student learning takes place, whereas with
micro-context I refer to particular student activities within the learning environment. An example that is
relevant with this study is MW as the macro-context, and the activity of debugging that puts students in a
mode of seeing the code as causing a phenomenon, as the micro-context

 53

After videotaped conversations were transcribed, transcripts were transferred in a

cell-based diagram (matrix) with three columns for analysis, as indicated in Figure 2.1.

The first column included the transcript of the conversation. I placed every student

utterance in a different cell (decision adopted from a study investigating student

interactions while working with SC (Underwood, et al, 1996)). In that study, researchers

were investigating whether students’ work in small groups with CPEs was related to their

performance. For analysis, they used an interaction process analysis (Bales Interaction

Process Analysis) which required that each utterance of student conversation was

classified into one of the categories used for the analysis.

During contextual inquiry, moments of silence were represented in separate cells,

and were added after reviewing the video. In the second column I coded students’

activities during each utterance, after reviewing in detail the screen-capture videos. In the

third column I coded the type of the conversation that students had. In the case they were

having a conversation, mostly about what they were talking about and how, following the

analysis of the pilot study (partly reported in Louca, et al, 2003). In cases that students

were silent, I coded whether they were just silent or whether the rest of the students were

not at their group.

Transcript Activity Conversation

Figure 2.1. Example of the matrix used for contextual inquiry

 54

Development of codes

Codes for students’ activities and conversations were, (1) directly adopted from

my pilot study without any modification, (2) adopted from my pilot study and then

refined into more detailed categories, or (3) developed as new categories.

Codes used for activity and conversation patterns were partly adopted from my

pilot study (Louca, et al, 2003), that investigated similar issues with students using SC

and MW for developing models in science. However, that study was a small scale

descriptive study, and findings were not intended to be highly detailed. Some categories

for coding in that study were more general, and some of the findings were not very

detailed, which was an indication for the need for developing either subcategories or

more detailed categories. For instance, “programming” was a category coding activities

that included the activities of both typing new code and correcting existing code.

However, findings did not reflect the difference of typing new code or correcting existing

code (which might be considered as possible sub-categories). Thus, I decided to create

more categories that would be more descriptive. For instance, categories a2, a3, a4, a5

(see Table 2.1) were developed using the findings from the pilot study. Other categories

such as b1, b2, b8 were directly adopted from that study without any modifications.

Several categories were created during the coding process of the transcripts. For

this purpose I adopted an analytic procedure from grounded theory for developing new

categories: the process of open coding (Strauss & Corbin, 1998). I began coding of a

transcript with the categories that I transferred or developed from the pilot study, and

when I reached an utterance that would not fit into one of those categories, I developed a

new code. I continued this process for all the sessions of one group per software (usually

 55

4-5 meetings). After that, I reviewed the categories, made decisions to drop (or group)

categories that were not often in the transcript and that could be summarized under a

different category (e.g., a9, and b10). Then I reviewed once again the coded transcript,

making sure that codes were reflecting my final decisions. During coding the rest of the

data however, there were instances where I had to redefine the meanings of several codes,

and in some cases add a few more codes of activity or conversation patterns. Therefore,

after finishing coding all the transcripts, I double checked all the transcripts, making sure

that the codes assigned to each utterance were consistent with the final list of codes.

At that point, I gave all transcripts and a list of all the codes with their definitions

and one or two examples to a second coder, who went over and re-coded the transcripts.

She did not have access to my analysis (the codes that I assigned to each utterance). The

second coder was partly involved in the study by visiting on Wednesdays and helping

with the club logistics (setting up equipment, helping student groups with their work

etc.). After she finished coding all the transcripts, we both went through the transcripts

comparing the codes that we had assigned to each utterance. When we isolated

differences in codes, we talked about them and resolved the differences. The second

coder has a background in quantitative research methodology and with teaching

mathematics and science at the elementary level, which provided her with a critical view

of my assignment of codes, in the cases of disagreements.

Table 2.1 provides a summary of the categories that I used for coding students’

activities and conversations, with examples from coded transcripts for each category.

Several categories are descriptive of students’ activities (such as write code), some of

which happened during moments of silence, and thus are not accompanied by examples.

 56

Categories B8 (describe their program (what they did already)) and B9 (describe

what to program in future) are listed and have been used as categorizations for student

activities because, when a utterance was coded with one of the two codes, students were

not working on their computers, but were simply talking about what they had

programmed or what they were planning to program. Their conversations were further

coded for the kind of conversation: whether students talked about depicting details in

their program (C1), about the overall story of what they were designing (C4), whether

they used the program language to talk about their program (C3), or about the program

language itself (C4).

Activities Examples of coded utterance
A1-read code from screen
A2-type code from scratch
A3-correct code for depiction
A4-correct code for science
A5-correct code (the program was not working)
A6-correct code to fit their story
A7-delete code
A8-create variables
A9-other logistical issues (save their programs etc)
A10-whole line inaudible
A11-debug code sequence
A12-gap

No examples are provided for these categories, because
they were used to code solely activities that were not
necessarily accompanied by any conversation. Videos of
students’ work was primarily used for assignment of
these codes

B1-run the program
B2-read feedback from the computer Richard: <reading from feedback> I don’t know how to a

in shoot.
B3-get/deal with characters of their programs Joe: we need to get a target as well.
B5-get/deal with backgrounds of their programs3 Seth: we need like a map [for background], like a cross

section.
B6-make buttons for their programs Samir: we need to name this [button]! <while typing>

Arrow.
B7-explore the program windows/capabilities Zen: please, please, please, I’ll, I’ll, I’ll just gonna… Let

me see. Ok. There aren’t any stages. Now, are there any
specials?

B8-describe their program (what they did already) Samir: […] So I had to make this [amount of forward] a
bit higher for do like this <gestures>. I just didn’t seem
to like this. SO I changed it to <inaudible>. The angles,
it’s going up
Zen: so this guy knows how to walk right. He walks
right, he walks 2 spaces…

3 Category B4 was left out by mistake and was never used as a code.

 57

B9-describe what to program Joe: well, we would probably like, we probably need to
put at the beginning right, in front of that, so that the
angle changes, because if we start with the fd and and
then if you do the right, it would go like this
Seth: we have to make his energy speed start at 30 or
something.

B10-interruption Seth: what’s wrong? It’s [is the rule] first?
Zen: No, see it’s adding that's why. See!

B11-talk to find bugs in their programs Samir: that was way too many repeats [for right 0.5].
Joe: I know what we have to do, we have to do seth 90.

B12-contol-F (switch programming and simulation
windows, applicable only for MW)

Conversation (talk about…)
C1-depiction Zen: … whow! It’s [this character] huge!

Seth: Do they [the characters] have different
appearances?

C2-what to program/the program itself Richard: um, we just need to make something that does
listen to the sliders instead to the fds. So it goes fd the
amount of the slider is on.
Seth: no, we have to make a new one, we have to make a
new rule.

C3-how to program/ what code to write Aaron: yea make it a bit more ….the first one is fd 2…2
wait 4. So we need to double all of that.
Zen: … our bottle 1 is gonna be full of Gatorade. And
that’s gonna depend, depending on how much Gatorade
you have in your runner is how fast they go.

C4-about their story (not referring to code) Aaron: ‘cause there’s less, see <showing the
simulation>, this [the astronaut on the moon] goes up and
way, way higher… [then the boy jumping on the earth]
Zen: …ok, one [character] is bigger … but has to slow
down a lot.

C5-silence
C6-one leaves the group/does not pay attention
C7-“click here” Zen: […] hold on let me show you just need to… It’s so

easy. No, no, no, don't do that, don't do that. You just
need to <takes the mouse and shows on the screen>

C9-make references to experiences Seth: yea, it’s just like, I think it kind of make sense that
0 would mean, like when you are running really fast,
sometimes when you chasing someone you don’t stop
running, stop during and starting slowing down.

C10-“how do we do that?” Richard: ok, we have no clue how to make the jump
moon together, see look what happened. How do we do
that?

C11-“now, I click here!” (talk their way through
programming)

Richard: I have an idea <starts changing the numbers in
the program> I ….2, 3, 4, 5, 6 and then…

C12-“-what are you doing?
 -something!”

Aaron: I have an idea, I have an idea. Get off [the
keyboard], get off.
Aaron: what are you doing?
Richard: wait, wait I am doing something, guy…

Table 2.1. Categories used in the contextual inquiry

Separated coding for activities and conversations

Contextual inquiry does not necessarily separate students’ activities and

conversations. Findings from the pilot study (Louca et al, 2003) comparing the

communication within small groups of students, showed differences in the activity and

 58

communication patterns between students working with SC and students working with

MW. Thus, it was important to steer this investigation towards those differences, making

sure that additional possible differences would be captured by analysis. This required

separating coding for student conversation and for student activities.

Coding activities and conversation separately was one of the first issues that came

up during coding of the conversational data in the study. As the following example

indicates, 10 utterances of conversation might have been coded with the same activity

pattern but different conversation pattern and vice versa.

In lines 1 through 5 students were talking about their plans for programming (b9

refers to “talking about what to program”). For lines 1 and 3 Joe was not using any

program language while describing his ideas. In line 5, however, he stared talking about

the kinds of programs that they needed to create, talking about having separate programs

Transcript Activity Conversation

1. Joe: the problem with this is that we have to make the arrow go like
that <showing on the screen the motion of the arrow>

b9 c4

2. Samir: let’s make <inaudible> b9
3. Joe: like that <showing the first half of the motion to the top of the

trajectory> and then when it turns it goes like uuuuuuuuuuu
<gestures showing the direction of the arrow changing from going up
to going down> b9 c4

4. <silence while clicking/typing/looking on the screen> c5
5. Joe: see if you try to program from <inaudible> you need to program

this part first, separately from the <inaudible> going like this. b9 c2
6. <silence while clicking/typing/looking on the screen> c5
7. Joe: we need to get a target as well. b3 c4
8. Samir: we need to name this! Arrow b6 c11
9. Control - F b12
10. Samir: to arrow. Um, I will call it….. a2 c11
11. interruption b10
12. Samir: talk to arrow… what is it called? It is called t, t what? a2 c3
13. Joe: yes it's called t1, because a2 c3
14. Samir: not it's called t3 b9 c3
15. Joe: no, it is t1 because we haven't made programs the other 2 ones b9 c3

 59

for probably particular parts of the phenomenon (which is coded as c2: “talking about the

program/code”). After that there is a brief moment of silence and then the next nine

utterances are coded with seven different categories of activities, but the conversation is

only coded with two categories (c11: “talking their way through programming” and c3:

“talk about how to program”). In other words, even in cases where students’ activities

were coded with the same category, their conversations were not necessarily the same,

and in cases where student conversations were the same, their activities were not

necessarily similar. This supported my decision of coding activities and conversations

separately.

Findings derived from analysis with separately-coded activities and

conversations, have the possible advantage of being independent from each other (no a

priori decision was made about developing or adopting codes for analysis that would

account for both activities and conversations at the same time). This can support later any

efforts to explain or relate findings about conversations with findings about activities,

grounding such relation in the data themselves. In this way, any possible relations

between activities and conversations are not caused by the analysis, since the data were

analyzed separately with respect to conversations and activities.

Lastly, as I indicate below under “development of codes”, some codes that were

developed during analysis in the pilot study were general and were not differentiating

between sub-categories. This was another indication for the need to have more analytical

codes, supporting the idea of having separate codes for activities and conversations.

 60

Presentation of findings

Students’ activities and conversations patterns are presented in time-line graphs,

following the approach that Schoenfeld (1989) has used in presenting findings from

analysis of student work on problem solving in mathematics education. I transferred

students’ activity and conversation patterns on graphs (see chapters 3 and 4 for analytic

presentation and summary of findings), presenting separately activities and conversations

that students in the study used while working with CPEs. I analyzed four student groups

(that is, four units), two from each software team (that is, two cases). For each student

group (unit of the cases) two graphs were produced. Instead of using time on the x-axis of

the graphs, I used the numbered utterances, because the purpose of the presentations was

to reveal particular combinations of the activity and conversation patterns.

Emerging types of activities and conversations

After transferring all data on graphs, graphs from units of the same Case (groups

from the same software team) were compared to isolate any similarities in the

combinations of the patterns of students’ activities and conversations. All combinations

that were similar among all 3 analyzed groups for each software, were then combined

with the analysis of conversation (see description below) to link combinations of activity

or conversation patterns with the particular (micro)context in which they happened and

with students’ purpose during that part of their work. From this combination of

contextual inquiry and analysis of student conversation, activity and conversation types

emerged.

 61

Activity and conversation types are specific combinations of student’s work or

conversations, that were identified from graphing patterns of students’ work and

conversations in graphs of patterns vs. utterance. In this sense, these types of activities or

conversations emerged from the data, and are descriptive of the kind of work or

conversations in which students were involved. The act of coding a student conversation,

for instance, is used to provide some analytic perspective of what students are saying in

that conversation. Because of the nature of the activity of coding to break down the

conversation into small pieces to be coded, codes and coded transcript can only give us

limited information such as the number of total times that students used particular

conversation patterns. Graphing, however, coded transcript with respect to time (or the

sequence in which they happen), can provide an overview of the students’ conversation

patterns which can possibly lead into grouping these based on groups with similar

characteristics. Thus, activity types, for instance, are combinations of students’ activity

patterns during particular parts of their work, which unless stated otherwise were found in

all groups more than once. In this way, findings from contextual inquiry (patterns and

types of activity and conversations) can be combined with analysis of conversation

mostly for the purpose of linking activity and conversation types with the (micro-)

context in which they occurred (see description of emerging themes below).

2.5.2. Analysis of student conversation

Analysis of student conversation was the second type of analysis that I used in

this study. It is a multidisciplinary approach of analyzing text (in the case of this study,

transcribed student conversation) as a gateway to student thinking and experience.

Patterns of students’ conversations (revealed by contextual inquiry) and analysis of

 62

student conversation are presented together to triangulate findings. Analysis of student

conversation provides in detail the particular context in which students’ work (activities

and conversations) took place, the content of the conversation and possible relations

between the content and the context of the conversation. Finally, analysis of student

conversation seeks to identify possible student thinking patterns that are evident in the

conversation.

Mapping relations between content and context

Analysis of conversation seeks to describe the context in which students’

conversations took place, situate the activity or conversation types that were observed in

that context and describe students’ conversation in those details that were possibly lost

from contextual inquiry. In contextual inquiry, analysis was based on coding for students’

activities and conversations. However, the conversations, for example, happened in a

variety of situations (micro-contexts) that contextual inquiry does not account for, such as

while students were away from the computers, while programming, while debugging,

while changing how their simulation looked etc. Therefore, the purpose of the analysis of

student conversation was to map possible relations between the conversations and the

context in which they happened. In this sense, presenting a description of a conversation

includes what was said, how this was said, for what possible reason this was said and in

what particular context.

Analysis of student conversation is multidisciplinary because it uses research

techniques and approaches originated from linguistics, educational psychology and

educational research (Edwards & Mercer, 1995). The analysis of student conversation

also follows examples of such approaches for analyzing student conversation in science

 63

and mathematics (e.g. Ball, 1993; Gallas, 1995). In their work, Ball (1993) and Gallas

(1995) analyzed student thinking in mathematics and science, using the communication

among students and the teacher in regular classrooms. They used transcripts of students’

conversations to isolate students’ ideas for the topic under investigation and tried to

identify students’ reasoning behind these ideas and the different ways students articulate

the ideas.

In the analysis of student conversation that I used in this study, I also aimed to

isolate, describe and analyze instances where students have conversations, use CPEs’

tools and use nascent abilities they have that can be supportive for modeling in science.

Possible examples are the ability to provide descriptions of the underlying mechanism of

the physical phenomena, the ability to make references to experiences, the ability to make

distinctions between different types of knowledge, and the ability to use code (programs,

rather than simulations) as representations of physical phenomena.

Discourse as the primary source of data

Analysis of student conversation is different from discourse analysis (Sinclair &

Coulthard, 1975), which is an analytic approach in linguistics focused on exploring how

language (in text format) is organized in units larger than the sentence (Edwards &

Mercer, 1995). The purpose of discourse analysis is to analyze text in a way that would

reveal the structure of what is said rather than the content of what is said.

Even though discourse analysis and analysis of conversation use the same type of

data, analysis of conversation does not seek to reveal the structure of the talk. It is rather

focused on the context in which the conversation takes place and in the content of the

 64

conversation (Edwards & Mercer, 1995). For this reason, in analysis of student

conversation I did not follow a process of coding text with particular codes (I did that for

contextual inquiry), but I provide detailed descriptions and possible interpretations of the

conversation, that are meant to be read in parallel with the transcript. In this sense, I

follow the research approach of educational research (Edwards & Mercer, 1995), which

seeks to develop a sense of what takes place in the classroom in an effort to map possible

relations between the learning processes and the discourse.

Mapping relations between talk (discourse) and student thinking

In describing what is said and how it is said, I also seek to build interpretations

about students’ thinking abilities in the conversation. This approach shares some

similarities with psychological approaches for research in educational settings (Edwards

& Mercer, 1995). Research on classroom interactions have been mostly concerned with

the identification and modification of patterns of activities by, for example, the use of

positive or negative reinforcement (Edwards & Mercer, 1995). More generally, research

approaches in educational psychology have focused primarily on the identification, study,

and measurement of abilities and behaviors of individuals rather than the origin and ways

of using those abilities. Often, research in psychology that is less individualistic has a

developmental approach for explaining the use of abilities in the student population.

My approach for analyzing conversation shares the interest of educational

psychology research, which investigates the abilities of student population. In my

approach, however, I do not use a developmental approach for studying student abilities.

Nor am I focused on the study and modification of behaviors. Analysis of student

conversation that I used in this study uses transcribed conversations (discourse) as the

 65

data source. This is another difference with psychological research because discourse, is

not usually its focus. The purpose of analysis of student conversation was to identify

thinking and working abilities that students use in their conversation, and describe them

through the particular conversation (context). For this purpose, I provide raw transcript

data of students’ conversations, and possible explanations of what kind of thinking is

taking place in the conversation, as a possible gateway in student thinking.

Analysis of text (conversations) in science education

A current emphasis in science education research is the use of discourse as a

primary source of data. This has been the approach for a variety of studies: Kurth, et al

(2002) investigated the narrative and paradigmatic expression in elementary science

discourse, van Zee et al (2001), reported case studies documenting and interpreting

student and teacher questions during science discourse and van Zee (2000) analyzed

student-generated inquiry discussions. Hogan, Natasi & Pressley (2000) examined

discourse components, interaction patterns and reasoning in open-ended student

conversations with their peers about science, focusing on “the nature and sophistication

of collaborative scientific reasoning with and without teacher guidance” (Hogan, Natasi

& Pressley, 2000, p.380), stressing the importance of research in naturalistic settings

(rather than research in laboratory settings). Their analysis captured interactive protocols

among students in small groups, which are records of purposeful conversation events in

small groups while working. The student conversations in this study were mostly about

experimental data that students had collected.

van Zee (2000) provides a comprehensive description of research in science

education that has used classroom and/or small group discourse as primary data sources

 66

analyzed in a variety of ways is provided by. These different ways of discourse analysis

in science education include argument analysis (Toulmin, 1958), analysis of the

development of common knowledge (Edwards & Mercer, 1987), examination of types of

warrants that students used to justify claims based on collected data (Kelly et al, 1998),

tracing conceptual change as an interactive social process (Rochelle, 1992) and analysis

of “reflective discourse” (van Zee & Minstrell, 1997).

Research in science education, however, has not widely used analysis of students’

theoretical conversations (that is conversations about natural phenomena without any

experimental data available, like conversations that Gallas (1995) provided and

analyzed), because, traditionally, the focus has been on experimental science. Children,

like scientists, (should learn to) design experiments, collect and analyze data, and develop

or modify ideas (theories) based on the experimental results. Research in science

education has focused on students’ abilities to design, carry out experiments and interpret

results and the development of those abilities through science education, following

recommendations of the NSES (1990), which place emphases in early grades on science

as empirical inquiry, to help students develop abilities for observation, experimentation,

forming conclusions based on evidence they obtain through experimentation, and on the

logico-mathematical abilities for controlling variables and organizing data.

The focus of the analysis of student conversation in this study was on theoretical

conversations that students had while trying to represent physical phenomena with CPEs.

During this study, students did not have access to any empirical evidence, and thus they

were engaged in conversations about natural phenomena, during which they turned to

experiences that they had from their everyday lives. That is, without any empirical

 67

evidence available, students can still make progress by e.g., referring to everyday

experiences. This was one of the purposes of this study: to study what kind of

conversations students would have during developing representations of natural

phenomena, without any experimentation involved.

2.5.3. Artifact analysis for the designed microworlds

For the purposes of the artifact analysis, I reviewed students’ programs. For the

second phase of the study, each group developed several models of particular

phenomena, each revised from a previous one. Findings from contextual inquiry and

analysis of student conversation guided the process of analyzing student’s

programs/models. Artifact analysis focused on two issues: the differences of sequential

programs that students developed during the study and on the particular ways that

students represented phenomena.

During their work with CPEs students develop a number of programs, during

iterations of writing programs, running them, talking about their programs or their

simulations) and then making revisions. Partly, artifact analysis was used to identify the

modifications of what students did in their programs, relating those with findings from

contextual inquiry and analysis of student conversations. For this purpose, I did not

present findings from artifact analysis separately, but rather I refer to students’ program

characteristics as support to arguments about their work with CPEs.

Artifact analysis also investigated the kinds of representations that students used

in the study to represent physical phenomena with CPEs. For this purpose I investigated

issues related to whether students’ programs were used to create a simulation, simple

 68

descriptions of the phenomenon or constructed models of natural phenomena, whether

programs included relations between physical values represented in the programs or not

and whether programs represented the mechanism that causes the phenomena.

2.5.4. Use of secondary data source: my journals

I used my journals in conjunction with the other data to support the patterns that

were revealed. Mainly, my journals were logs of the meetings I had with students during

the study (data collection period). I made entries about episodes of students’

conversations or work with computers that could have been modeling conversations and

activities or triggered these. During data analysis, I used my notes as a guide to episodes

of students’ work and conversations with CPEs that I analyzed using analysis of student

conversations.

2.6. Researcher’s role & ethical issues

2.6.1. Researcher’s role

I was the primary researcher for this study and also the teacher of the

science/computer club that was the source of the data for this study. During the study, I

was playing both roles, although it was important to have them separated. During the data

collection period, when preparing for the daily session and while working with children I

was undertaking the role of the teacher of the club. At the end of each session and usually

the day that followed, I was undertaking the role of researcher, watching and transcribing

videos and reflecting on the sessions. After the end of the data collection period, I took

the role of the researcher, transcribed all the materials analyzed in this study and analyzed

them.

 69

Separating the two roles (teacher and researcher) was important partly because in

this study my goal was not to study my personal teaching practices. My purpose was to

investigate how students used the study’s CPEs to develop models of physical

phenomena. However, I found that the two roles often contradicted one another. As a

teacher I followed an approach in which students are provided with the freedom to work

in an open-ended learning environment. In this way, it is possible to study different ways

that students are inclined to use CPEs, without the teacher prompting those uses.

On the other hand, however, I was also struggling with my role as a researcher

who expected to see a number of particular uses of CPEs from students that are

productive for science. In fact in the first two months of the study, I sometimes “pushed”

students in a direction which might have been toward what I thought of being productive,

but at the same time I was not giving students the chance to find their own productive

ways for thinking about science.

At some point prior to phase two of the study, I decided that I could not separate

enough the role of the teacher and the role of the researcher and I stopped working on

researcher tasks such as transcribing, analyzing student thinking etc. My focus was then

solely on teaching and providing students with enough “freedom” to use their abilities for

productive thinking in science.

In a way, it seemed that the conflict that I experienced between the two roles

(teacher and researcher) was a conflict in my conceptualization of the two roles.

“Pushing” students into a particular direction (as a teacher) because (as a researcher) I

wanted to start “doing some modeling” so that I have enough data for the study, was

 70

aligned with a view of a teacher focused on where he wants students to be rather than

assessing deeply where they are and providing the appropriate learning environment and

experiences to help them move on. Most probably the conflict was on the ways in which

my role of researcher interfered with my views of teaching.

This unique experience as a teacher and as the primary researcher in the study, as

well as the combination of those two roles, changed my view of teaching science to

young children. I have previously worked as “researcher” in other studies with similar

approaches, but since my first year of teaching 5th graders (back in 1999) I did not have

the experience of teaching. One of the contributions of this experience involved my views

for scaffolding in teaching and learning. In one view that has been demonstrated to be

important in this study, effective teaching is providing learners with the appropriate

learning environment. The teacher’s role is partly to provide that appropriate context

where productive science conversations and modeling in science can happen. The

descriptions that I provide for findings later on in this report are in one way an effort to

capture what seemed to be productive scaffolding for students and possibly to explore

how far that scaffolding should go.

2.6.2. Risks for participants

Students participating in the study may appear in segments of videotape that are

available as a collection of case studies for this dissertation study and in the future as

published case studies. It is possible that students might be recognized by someone using

or reviewing these materials. For this purpose, students’ full names were not used at any

time during the study, and any reference to them in this report or any subsequent

 71

publication was and will be by their first name only. All other information about students

(excluding their first name) is confidential and will not be identified at any time.

2.6.3. Confidentiality

All the students’ work with computers and their discussions in whole class

settings were videotaped. Children’s work on the computer applications were also

collected as part of the data. For the duration of the study, all videotapes and audiotapes

were kept in locked storage at the University of Maryland. Students’ saved work with

computers were kept in secure accounts on the school’s computer network that were

created for the purpose of this study, following the security protocols of the school’s

county for students’ work with computers. Backups of students’ computer work were

also kept in a locked storage at the University of Maryland.

After the end of the study, the students’ work from the school’s computers was

removed and stored with the videotapes and the students’ journals in locked storage at the

University of Maryland. The data of this study will be destroyed by erasing the

videotapes and the computer disks of students’ work after the data are no longer of any

use for this study.

2.7. Limitations

Limitations of this study include (1) the small number of participants and (2) the

short duration of the study. Also (3) gender differences were not the focus of the study,

(4) during analysis unfocused work was omitted from data, and (5) patterns of activities

and conversations did not reflect the time that students spent on each activity.

 72

This study was a small scale descriptive study, aiming to provide some

descriptions of how students use CPEs as tools for developing models of natural

phenomena. Students who participated in the study were divided into two teams (based

on their preference for the day of their participation). For each team, 15 students were

selected to participate, but only 9 remained in the MW team until the end of the study and

10 in the SC team. Thus, the small number of the students and the short duration of the

study (from September 2002 until December 2002) are limitations for the study’s claims.

Of course, my presentation of the findings from this study had a “tone of promising

possibilities” of using CPEs in particular ways with students, because findings were

isolated from a total of 19 fifth-graders who were involved in the study.

An additional limitation for this study was the fact that it had the form of an

afternoon science/computer club. This had several implications for the study. First,

students did not view their participation in the club in a similar way that they viewed their

participation in their morning classes. The study was for them an afternoon activity, and

in several occasions were acting in this way, adding difficulties to my role as the teacher

to use activities and topics of investigation that would keep them focused and excited.

Second, students in the study did not see me as a regular teacher of the club, and in some

cases 2 particular students were calling me by my first name only. This also added the

difficulty of managing this group of students, keeping them focused on topics that

included investigations of natural phenomena, and at the same time provide them with

enough “room” to work in their own ways (that was one of the purposes of this study, to

study how students use CPEs).

 73

Even if there was not intentional effort to exclude any gender group from the

study and the focus groups, investigation of the gender differences was not the focus of

this study. Because of that, and given the priority in putting students in groups of two, in

which they could collaborate and communicate, in some cases the groups were of mixed

gender and in other were of the same gender. In choosing groups for the analysis, in both

SC and MW teams, I included at least one group with one or two girls.

During analysis, unfocused students’ work was omitted. Therefore, conversations

that were analyzed with contextual inquiry and analysis of student conversations did not

take into consideration rather large amounts of conversations in which students did not

work with CPEs but talked or dealt with other issues related to their homework, their

school day etc.

Patterns of activities and conversations that are presented in the figures in

chapters 3 and 4 do not reflect the time that students spent on a particular activity because

coding was done for each student utterance. For instance, moments of silence were

usually longer than other codes used during analysis. For this reason, claims about

emerging themes are strictly descriptive of student’s work, in the sense of showing how

work and conversations looked like in the study, while students were developing models

of natural phenomena.

 74

3. MICROWORLDS LOGO FINDINGS:

CONTEXTUAL INQUIRY & ANALYSIS OF STUDENT

CONVERSATIONS

In this section I present and discuss findings from contextual analysis of students’

work (activity patterns) and conversations (conversation patterns) while working with

Microworlds Logo. The presented findings were common among the three groups that

were selected and analyzed for this study. Except when noted, similar types of activities

and conversations were identified in all three groups that were analyzed in detail.

I start with a discussion about the differences between the activity and

conversation patterns and types. Then I turn to a discussion about the different possible

ways that I could have presented the findings of this study accompanied by a description

of the challenge that I faced for deciding which way of presenting findings would have

been the most appropriate for this study. Then, in two subsequent sections, I present the

different types of conversations and activities of students’ work with MW. Conversation

types (CT) include CT I: Talking about their program’s structure, CT II: Talking about

program details, CT III: Talking while programming, CT IV: Talking about how the

simulation looks, and CT V: Talking about what happens in the simulation. Activity

types (program strategies (PI)) include a description of how students dealt with characters

and backgrounds of their designs, PI I: Writing & debugging new code, PI II: Correcting

depiction and PI III: Modifying code to change the science that represented.

 75

3.1. Clarifications of terms and presentation of findings

For presentation purposes, I need to clarify three terms that I will be using. First,

activity and conversation patterns refer to the codes of students’ work and conversations

that were developed during analysis, using grounded theory techniques (as discussed in

the methodology chapter). Activity patterns for instance are students’ activities (such as

reading code, deleting code, changing code etc.) that were repeatedly observed. All these

patterns emerged from the data.

Second, activity and conversation types refer to specific combinations of students’

work or conversations, that were identified from graphing patterns of students’ work and

conversations in graphs of patterns vs. time/utterance. These types of activities or

conversations also emerged from the data and are descriptive of the kind of work or

conversations in which students were involved. coding student conversations, for

instance, is used to provide some analytic perspective of what students are saying in that

conversation. Because of the nature of the activity of coding to break down the

conversation into small pieces to be coded, codes and coded transcript can only give us

information about aspects such as the number of total times that students used a particular

conversation pattern. Graphing, however, coded transcript with respect to time can

provide an overview of the students’ conversation patterns, which can possibly lead into

grouping these based in groups with similar characteristics. Thus, activity types, for

instance, are combinations of students’ activity patterns during particular parts of their

work, which unless stated otherwise were found in all groups more than once. In this

way, findings from contextual inquiry (patterns and types of activity and conversations)

can be combined with analysis of conversation mostly for the purpose of linking activity

 76

and conversation types with the context in which they occurred (see description of

emerging themes below).

Lastly, emerging themes refer to possible emerging relations among different

activity or conversation types that were revealed by the study’s findings. Emerging

themes are also supported by findings from analysis of conversations, in particular by

descriptions of the context in which related types of work and conversations took place.

For instance, working to fix depicting details in a program, and working to fix the science

represented by a program are two different activity types (which are combinations of

particular activity patterns). An emerging theme of possible student abilities to change

(shift) their working focus was identified when students in the study repeatedly moved

from the first type of activity to the second, shifting radically their work and conversation

focus, based on the need of the particular context of their work.

In presenting activity and conversation types, I provide graphs that summarize

student’s actions and/or conversations during their work with computers (contextual

inquiry findings) accompanied by episodes of students’ work and conversations (analysis

of student conversations). To support activity and conversation types, findings from

contextual inquiry are coupled with discussion of findings from analysis of student

conversations. In these cases, findings from both analyses were derived from the same

data. Contextual inquiry provides a summary of the students’ work and conversation

patterns that make up the activity and conversation types, whereas analysis of student

conversations provides details for the micro-context in which those patterns occurred

with examples of student conversation and work. For example, a working pattern that I

provide later consists of students going back and forth, from the programming window

 77

(where they type code) to the simulation window (where they run their program) and vice

versa (pattern provided by the contextual inquiry). To fully understand this activity

pattern, one needs to see in what particular micro-context were students doing this: in this

case they were debugging, by making small changes to their code, trying them out,

making some more changes and trying them out. This micro-context is provided by the

analysis of student conversations.

Emerging types of students’ activities and conversations that I present in

contextual analysis fall under two major categories: student actions during their work

with computers and student conversations before, during and after their work with

computers. Presentation and discussion of the emerging themes follow that categorization

in that order.

Students’ activity and conversation types are related in two important ways.

Firstly, some activities were observed in parallel with some conversation types. For

instance program strategies that I present (activity types) are accompanied by

conversation types (conversations during programming) and together they fully describe

students’ work with computers. Secondly, in different parts of their work, students may

have been using the same conversation type with a different activity type, or similar

program strategies with different conversation types. As I discuss in further detail later, I

believe that this supports and justifies a separate presentation and analysis of activity and

conversation types, showing that they might not simply depend on each other. In

addition, and pending further investigation, these data might support a hypothesis that

suggests that students have a collection of nascent abilities of scientific inquiry that they

can activate in different situations, based on the situational needs. For example in one

 78

situation students might “see” that it is appropriate to use a particular program strategy

with a particular conversation type whereas in a similar situation they use a different

program strategy with the same conversation type.

In presenting the different types of activities and conversation, I across the

challenge of choosing a presentation order. This challenge was an important one, because

it was based on the key characteristics of the activity and conversation types: Should they

be presented 1) based on the sequence of “appearance” in student work, 2) based on those

characteristics that they share, or 3) based on the type of work during which they occur?

3.1.1. Sequence of appearance

Most of the activity and conversation types occurred in subsequent time periods,

as successive events, e.g., students first set up the characters of their designs, then they

wrote code, they debugged their programs etc. Presenting findings in this way may

provide a better and possibly richer description of students’ work, because it simply

follows them in time. However, this kind of presentation may imply that each different

group of activities (e.g., debugging) depends on a previous one, possibly not focusing on

other factors that actually cause that sequence of events.

3.1.2. Shared characteristics

A second possible way of presenting findings is based on their shared

characteristics. In this way, I could group types of program strategies by those

characteristics they share, even though they might have occurred in different times and

possibly in different parts of students’ work. For example, consider two episodes of

students’ conversation that occurred immediately after students finished typing a

 79

program: in the first situation students presented their program to a student from another

group and in the second situation students debated on whether their program represented

the phenomenon under study accurately. Even though both conversations occurred after

some programming, the context and the focus of the conversations were totally different.

In fact, as I discuss later, the two episodes were radically different from each other in the

conversation patterns that analysis revealed. In addition, presentation of findings based

on shared characteristics may fail to highlight small differences that are important to

students’ work, or overemphasize differences that are not important for using CPEs as

modeling tools in science.

3.1.3. Shared context

A third way of presenting findings is based on the context of each type. Each type

would be presented individually, supported by examples in the context in which it

occurred. In this sense, activity and conversation types can be grouped in a variety of

ways, even the ones aforementioned. In addition, findings can also be presented in

several non-traditional ways, as the one supported by the hypothesis that I have

developed during the analysis of data: do students in the study use a variety of thinking

and program strategies/resources depending on the context of each situation? And if so,

what is the context of such situations?

Presenting activity and conversation types independently of each other and within

the context they occurred provides an additional advantage, this time methodological: the

activity and conversation types can be used as starting points of emerging themes that can

explain findings and possibly combine them in a united theory. Even though I do not

claim that I am developing a theory (given the particular methodology that I use, the

 80

small scale and the short duration of the study), it is important that I present the findings

in ways that future research can use them to design studies that can further investigate

and possibly unite findings and emerging themes into a theory. Therefore, I have decided

to follow this third type of presentation.

The presentation of students’ activity and conversation types below is a

description of the characteristics of students’ work with CPEs. In this sense, it is a

discussion of students’ tendencies and abilities of use MW and SC in particular ways that

may or may not be supportive for modeling in science. An important part of this

presentation is whether students can switch focus in their work, and while using a

particular type of conversation or activity, start using another. I have deferred this

discussion for later, when I discuss shifts in students’ work and conversations that

occurred due to shifts in student focus. I have restricted the presentation of findings

below to the characteristics of student work in different contexts, in an effort to highlight

the fact that in the context of using CPEs to develop models of natural phenomena,

students can use a variety of activities and conversation types.

Another important decision that I had to make was related to naming different

types of students’ conversations and activities. I was initially inclined to name the

different types of conversations with the particular “mode of student engagement”

because it was providing some information about the context in which the conversation

or activity types took place. For instance, the CT I occurred in the context of presenting

ideas to be programmed, and naming that way (e.g., present ideas to be programmed)

supports my purpose to describe these types of conversation and activities in detail,

including the context in which they occurred. On the other hand, however, different

 81

conversations and activity types can be named based on their characteristics. I decided to

try to follow the second way of naming conversation and activity types following their

characteristics, even though it was adding the difficulty of having to find an appropriate

“name” that would represent the different activity and conversation types. In a few cases,

I used the context in which the conversation/activity happened (e.g., conversations while

programming) because it highlighted the importance of the context in which the activities

or conversations occurred.

3.2. Types of conversations

Contextual analysis of student conversations revealed several different types of

conversations that were commonly found in all three groups that were analyzed in detail.

In the case of MW, the different types of conversations that I discuss below seem not to

appear in any kind of hierarchy: for instance the first type wouldn’t necessarily be found

before the second type of conversation. Rather, students seemed to be able jump from one

type to another according to their conversation needs. A possible assertion is that given

the different needs for communication, students use different parts of their program (the

simulation, the code that created the simulation) to fit those needs. This brings up two

interesting points: (i) students can navigate between those conversation types and adjust

them accordingly to their needs; and (ii) MW has a variety of different tools that students

can use in different situations.

The focus of the presentation and description of the conversation (and later

action) types below is not on students’ ability to make shifts among different kinds of

conversations. Rather, it is on the context in which these conversations happened in

addition to the descriptions of their characteristics. This is not to underestimate any

 82

possible implication for students’ abilities to “sense” what kinds of conversations or

actions are more appropriate for a situation and start using them or what makes particular

conversations and actions “more appropriate” for students. On the contrary, the focus in

this chapter is on students’ abilities to use particular types of conversations and actions

consistently in particular contexts. This presentation and discussion is perhaps as

important as the discussion about abilities to make shifts in their work with CPEs,

because it highlights possible different ways that students can or tend to use CPEs in the

context of modeling natural phenomena.

3.2.1. Conversation type I: Talking about their program’s structure

Prior to any work with computers, the students and I had conversations about their

program ideas. In some cases the whole class had the same situation to think about and in

other cases different groups of students were presenting their own situations and what

programs they were thinking about writing. In these cases, the conversation was in a

whole class format and all students were participating.

During conversation type I, I have identified several characteristics that were

common among all groups and in all of our discussions of this type. i) Students used the

program language as a communication medium, ii) students avoided talking about details

of their programs, iii) students talked about ways of representing the main ideas in their

program and iv) students described the simulation to support their program decisions.

Use of program language as the communication medium

In these early discussions, students saw their role as building computer programs

rather than as building models. They talked about their program plans using the program

 83

language as a communication medium. They used known primitives such as forward,

backwards right, left repeat etc, to describe how their program would be (see episode

MW1).

Avoid talking about details of their programs

The students did not talk, however, about details such as the amount of forward or the

degrees of a turning angle. Even when some students started talking about such details,

someone would indicate that this was not the purpose of the discussion. For example,

Samir chastised Aaron for providing the amounts forward and waiting:

124. Richard: the program was talkto, to jump2 talkto t2…
125. Richard: yea, yea, yea.
126. Aaron: fd 0.5 wait 1, fd 1 wait 0.5.
127. Samir: you were supposed to make a picture not write the program!
128. Aaron: wait.
129. Richard: but wait, Aaron, look, look, see what I, wait Aaron I want to show you guys what I did

in mine. I did, less waits and the same fd, but less waits, to have, to look like they’re <inaudible>
gravity. So, when it jumps on moon he’ll go <gestures showing someone jumping> instead of
<gesture showing someone jumping quicker>

(excerpt taken from Aaron & Richard whole
class presentation, 13 November 2002)

Talk about ways of representing the main ideas in their program

As briefly shown in the above excerpt (lines 124-129), a third characteristic of the

conversation type I is that students talked about ways of representing the main ideas in

their programs. Aaron and Richard’s group, for example, talked about their program of

having a boy jump on the earth and an astronaut jump on the moon. They talked about

how they decided to keep the same amount of forward throughout their program but

decrease the amount of waits, which was a representation of what jumping (in both the

earth and the moon) is like. They did not talk about the decrease rate or pattern of waits

nor did they talk about why that change occurred. Interestingly, Aaron and Richard did

 84

not talk about the differences between the program for jumping on the earth and the

program for jumping on the moon. They preferred to talk about the similarities of their

programs, which were similarities in their programs’ structures: both programs were

representations of “jumping motions”, which have the particular characteristic of slowing

down, as the distance from the ground becomes bigger.

Similarly, in presenting their ideas for representing an arrow traveling in the air,

Joe and Samir talked about having 3 subprograms, each one representing a different part

of the arrow’s motion. They also talked about why it would make sense to write a number

of smaller programs instead of a single one to represent a shooting arrow. Joe and Samir

also talked about the structure of their programs, without providing any details about the

specifics of their subprograms (see episode MW1).

Talk about how the simulation would look to support program decisions

Students also talked about how the simulation they wanted to develop would look.

Talking about the simulation had a different focus from talking about their program,

although it was meant to support their program ideas: students talked about how specific

program ideas (mostly regarding program structure) would result in a particular

simulation, mostly providing a description of their simulation. Students described their

simulation in order to support their program decisions. For example in line 129 above,

Richard talked about the structure of their program, and then supported it by talking

about the simulation it would result. The way their simulation would look was a result of

the particular code that created it. Therefore, if the simulation looked “realistic”, then

their program would be appropriate for representing the phenomenon. Similarly, Joe and

Samir indicated that three different (sub)programs would result in a simulation where the

 85

motion of the arrow would have 3 distinct “parts”: one going upwards, one traveling

horizontally and another one traveling downwards.

Below I present an episode from the whole class conversation that we had at the

beginning of phase II of the study, focusing on Joe and Samir’s group presentation. I

present some transcript and some analysis of student conversations to illustrate the

aforementioned characteristics of the conversation type I.

Episode MW1, Discussion before programming, 13 November 2002

Episode MW1 took place during the second meeting of phase II of the study.

During the previous meeting students played around with various programs available on

the MW website and brainstormed about possible ideas they would like to program. I told

students that the only requirement was to build a program that would represent a

phenomenon from science, to show to their classmates and other people.

The discussion below was about Joe and Samir’s program ideas and it started

while we waited for all the students to arrive in the computer lab. Joe and Samir arrived

early and we started talking about what they were about to start working on. Like all the

others, they had previously talked about several possible ideas and I wanted them to start

thinking about a single one.

130. Samir: What if we show a throwing knife, or an arrow going through the air.
131. Loucas: an arrow going throw the air?
132. Samir: to a target, like there is a target and should the <inaudible>
133. Aaron: yea it’s like a target practice game um, a <inaudible> game like …. Your archer…..
134. Samir: wait, no, no, this is me and Joe’s idea. Me and Joe we must <inaudible> Ok, they have

like, you have like a <inaudible>
135. Aaron: cut through air….
136. Samir: <inaudible>and threw <inaudible>and it powers <inaudible>first time this thing goes like

this and chose direction in aiming your bow.
137. Loucas: ok.

 86

138. Samir: and then when you click first click is stops there. I know how you can do it. And then I
will have <inaudible>we have like a bar <interruption from speakers> or we can do it.. we can
<inaudible> stop <inaudible>going back and harder is gonna shoot, I mean straight <inaudible>

139. Joe: me and Samir.
140. Loucas: now that, to program that is quite difficult.
141. Samir: so that could we just program an arrow from the internet?
142. Loucas: right, so what would be, what would that show, just, I mean, …
143. Samir: just this, the idea of if you shot an arrow it wouldn’t go, um, and then it’s, um, cutting

through the air.
144. Loucas: ok. And Samir how would you program it though? It’s, it’s not fd, it’s not, how, are you,

do you have an idea, if you have an idea….
145. Joe: at the beginning it has to do right something, so that it….
146. Samir: so that the arrow doesn’t go like this.
147. Loucas: so do you want….
148. Joe: at the very beginning, at the very first fd <inaudible> right something so that <inaudible>

Joe and Samir seemed ready to start thinking about the specifics of their

programs. The conversation thus far was full of ideas about parts of a possible program,

expressed specifically in code, using the various tools that are available in MW (e.g.,

sliders – what Samir referred to as bars). Some of the conversation was about how the

simulation would look, but their focus was on how the motion of the arrow would be as a

result of their proposed program.

After providing some time for individual group work, I asked each group to

present their ideas to the rest of the class. The conversation below resumes when Joe and

Samir started talking about their program.

175. Samir: ok, what we’re gonna have is an archer who’s, you could do this later <gestures showing
changing the angle of the shooting arrow>, first we just want to make it so that when you click the
archer shoots the arrow and we’re gonna make, we can make one big program and all of
<inaudible> stop it, or we can make a bunch of little programs to make it, cause that wouldn’t be
as realistic or we, I had an idea of making….

176. Loucas: wait, why wouldn’t a bunch of small programs be realistic?
177. Samir: because when you have to do…
178. Joe: because the arrow would go hum, hum, hum. <gestures showing an upward motion of the

arrow, a horizontal motion, and a downward motion>
179. Samir: … you can’t make it turn. So it’ll be like this dat, dat, dat.
180. Richard: no, if you had no waits it wouldn’t be!
181. Samir: yea, but it wouldn’t be…
182. Richard: or you can have small waits and it’ll just look, <gestures>…. And not go …<gestures>.

You can have .0001.

 87

Part 1 Part 3

Part 2

Joe and Samir started their presentation by talking about the structure of their

program. They talked about clicking the archer to shoot and indicated that they thought

about changing the angle during flight – but they would talk about it later. They also

talked about the structure of their programs, indicating that they could either write a large

program that would take care of the whole trajectory of the arrow or several smaller

programs, each one during a different part of the arrow’s trajectory (line 178): one during

the upward motion, one during the horizontal motion and one during the downward

motion (see figure 3.1).

Figure 3.1. Joe & Samir’s program structure

When Richard jointed the discussion, he focused on how the simulation would

look (adding small waits so that one can actually observe the different parts of the

programs – lines 180 & 182), whereas Joe and Samir were talking about the structure of

the code, based on what happens in real life or how they wanted their simulation to look.

In line 175 Samir argued that writing a single program “…wouldn’t be realistic” and Joe

justified Samir’s argument by comparing the output of the simulation of one program to

the simulation of several small programs.

 88

Joe and Samir started to represent different parts of the motion of the arrow in

their program, as parts of their program. In this sense, they started thinking about ways to

program an arrow moving in the air by breaking the phenomenon into parts that shared

common characteristics about the arrow’s trajectory. Of course, one can argue that those

differences are not related with the actual mechanism that underlies the phenomenon. Nor

do they reflect any changes in the science that they represent; they only represent changes

in the direction of the arrow, which are changes of how the physical phenomenon looks.

186. Samir: …we had this really good idea that we want to share with the two programs. What we can
do is that we’re thinking that we can make a little <inaudible> you know how this <inaudible>, we
can make something to adjust instead of the wait, or the fd, we can adjust the angle, so that makes
more and more and more and more, and then we can stop it when it’s about to go down, and then
make a program, minus-ing it…

187. Richard: bk
188. Samir: … so it goes down, down, down, down.
189. Richard: or bk. The, um, run the program backwards.
190. Loucas: (to Richard) no, but they are talking about the angle.
191. Samir: no, but then the arrow would be like this Richard.
192. Loucas: you’re talking about the angle of the, of the arrow.
193. Samir: yea, cause if there’s something that change the angle so that it gets <gesture> and then it’ll

go…
194. Loucas: do you agree, do you agree Joe? Do you agree with that?
195. Joe: yea, that, that …
196. Samir: and then also Joe has this idea of making an oval and then stopping it like right there, so

that it would be half an oval and then it’ll be like …
197. Joe: see, since we can make an oval, we can probably make half an oval. And…
198. Aaron: yea, and then half an oval would be the curve of the arrow.
199. Loucas: oh, you’re, ok. By oval you mean that, the, the, the um, the direction of the, of the arrow,

right?
200. Joe: yea, I mean, I mean like the arrow makes it that shape and then it goes from that point to

target.
201. Loucas: right, ok. Ok. Good.
202. Joe: and then I was also thinking, if we had extra time we could try and make it so that the

program throwing the arrow hits the um target, it might be able to make half of the arrow
disappears so it’s like it was stuck in the target.

203. Loucas: ok.
204. Joe: to make it more realistic.
205. Aaron: and also part of the arrow to disappear, maybe cause just the <inaudible>
206. Loucas: um, Joe, we are gonna have plenty of time because we are not finishing them today.

We’re gonna have next time and the time after that. So don't worry about having time. Ok?

As their presentation continued, Samir got into more details about their program,

talking about writing code for changing the direction of the motion of the arrow (angle).

 89

He avoided, however, to talk about details of their code (how much the angle would

change in each program, or how much forward would the arrow move before slightly

changing angle).

As the conversation continued though, Samir talked about Joe’s idea of making a

program that would “do” half an oval, to resemble the trajectory of the arrow (see figure

3.2). They probably took this idea from a previous session (three weeks earlier), when

students discovered how they could write code that makes circles and ovals. They

adjusted that idea to their program needs, indicating that they only needed half of the

oval. This idea contradicted their initial idea about several small programs, because a

single program can create an oval-shaped trajectory. However, this idea was another

representation of a possible program’s structure. Unlike their first idea, in presenting the

oval trajectory the students talked about a single program that can create the motion of

the arrow. The essence of a program that creates an oval shape is a mechanism of

changing the turtle’s (arrow’s) direction. In the case of the arrow, that particular

mechanism can be a representation of the mechanism that is causing the change of the

direction of the arrow moving in the air. While focused on creating a simulation that

would look like having an oval-shaped trajectory, the students were including, most

probably unconsciously, a representation of the mechanism of the change in the arrow’s

direction.

 90

Figure 3.2. Joe’s idea for the program

Towards the end of this conversation (line 104), Joe indicated that if time permits

he would like to write code that would make the arrow’s front disappear when it hit the

target, in order to look more realistic. Like he said, he was thinking to pursue this concern

only if there was enough time, possibly indicating that it was not a major issue. As he

noted in line 106, this was to make their program more realistic, possibly indicating that

the depiction was one of the factors that concerned them.

3.2.2. Conversation type II: Talking about program details

The second type of conversation occurred in small groups, while students were

sitting in front of the computers. It was a conversation that I usually prompted, with a

similar question that I use to prompt the previous type of conversation: “what are you

thinking of programming?” Students however, responded differently to my question, and

in all cases our conversation was more like a preparation for programming. Instead of

talking about the structure of their programs, students talked about writing code to

represent particular programming ideas.

The second conversation type was a “logistical” but still a “technical”

conversation. It was “logistical” because students were focused on transferring their ideas

 91

into specific code. It was technical, because students’ communication was based on the

exchange of ideas expressed in the program language. During this conversation, students

started to talk about some the details of their program, even though once again they

seemed reluctant to talk about their program in that kind of detail.

That students were in front of the computers seemed to be an important change of

context, because students were not simply planning their programs: they were about to

start typing. During conversation type II, they were talking about different ways of

programming particular programming ideas. Type II conversation i) was usually a

prompted conversation, ii) was about how to write a program, and iii) included references

to how the simulation would look.

Conversation type II is a prompted conversation

Conversation type II occurred only when I prompted a discussion about students’

work. As I discuss in the conversation type III (talking while programming), students

usually deferred discussions about their programs and program details after they had

some code written down. I had a conversation about a future program with all individual

groups at some point, but in all cases I prompted the conversation. In fact, during analysis

of student conversations and contextual inquiry, I could not find any conversation in a

small group about a program to be written; all such conversations were either after a

program was typed or prompted by me. Even within the context of type II conversations,

there were instances were students thought of an idea, and started typing instead of

sharing first, as the following excerpt shows:

58. Samir: how do we make it go fd that many times and then done that?
59. Loucas: I’ll show you.

 92

60. Joe: you just keep going fd, but you change the angle right here, so change the angle to be like 1
point….

61. Samir: oh, I have an idea! Ok, repeat … <Samir started typing>
62. Loucas: wait, wait, tell us! Tell Joe!

(excerpt taken from Joe & Samir group
conversation, 13 November 2002)

Given the fact that I usually prompted this kind of conversation, I do not claim

that students could initiate this of conversation by themselves or that they were unable to

have such a conversation. Rather, I argue that students were capable of such a

conversation, in which they talk about their particular program ideas, including ideas

about the structure of their programs but mostly about the details of the code in their

programs. In both conversation type I and II students were talking about their program

plans. However, in this second type, students seemed to be a step closer to the process of

typing up their program.

How to program a specific idea

Students’ concern during type II conversation was how to program a specific idea,

which resulted in students talking mostly about what code to write. Students were mostly

using the program language to communicate ideas, even though as figure 3.3 shows, there

were some conversations about the code itself and some without any use of the program

language. Students were now more specific about the details of their code and as shown

in figure 3.3, they both talked while using the code and talked about the code.

In one way, students that previously (conversation type I) were concerned about

the structure of their program were now concerned about the details of the code in each of

their programs. What had possibly caused this difference? It is possible to suggest that

 93

since students were now sitting in front of the computers, they probably had started

thinking about specific ways that they could write their programs.

Using the simulation to support their program ideas

All these conversations were also accompanied by some discussion about how

they wanted their simulations to look, in an effort to justify all their program decisions.

Students talked, for instance, about how they expected the arrow to travel in the air or

how they expected jumping on the moon or on the earth to look, in order to justify

particular and detailed decisions they were making about their programs.

There is an important distinction between using the code to justify a proposed

program (e.g., this is what is going to happen as a result of these particular lines of code)

and describing the scenario and trying to translate it into code (e.g., we will have balloons

flying up, so we would have a rule (code) that would make the balloons move upwards).

Line 63 from Joe and Samir conversation is a representation of this type of conversation:

63. Samir: ok, repeat, repeat 5 time with the angle going up by let’s say 10, so that will be 60, so then
it’ll be 55, then it’ll be 65, so we’re going like this <gestures> and it’ll stop here and then make
another program that says repeat 5 but it’s going down by 10, so it’ll be like this <gestures>

Samir presented details of what he thought of typing, talking about what that

program would do by referring to how it would look on the screen (describing the

“scenario” of the simulation) and then continued talking about the rest of the program. He

also indicated that he was talking about two programs, utilizing their previous ideas about

the structure of their program. Below I present the episode represented in figure 3.3, as an

example of type II conversation (Episode MW2).

 94

Figure 3.3. Conversation type II

(Source Samir & Joe group, 13 November 2002)

Episode MW2, Preparing to write a program, 13 November 2002, Joe & Samir

Episode 2 presents a conversation that I facilitated in Joe and Samir’s group. The

conversation started when I joined the group. Joe and Samir had just started typing some

code for their program. I asked them about what they were planning to type.

18. Samir: um, what we were thinking goes like this…<gestures showing the motion of the arrow>
19. Joe: we were thinking, ok, making a half oval shape.
20. Loucas: ok
21. Joe: go like that <gestures>
22. Loucas: so, so how would you start?
23. Joe: well, we would probably like we probably <inaudible> at the beginning right, in front of that,

so that the angle changes, because if we start with the fd and then fd and then if you do the right,
right something like <inaudible>it would go like this.

24. Samir: well, is there, I have a question, is there a way to say, make is so that the angle goes higher
and higher and higher, and then stop and then done with that?

Once again, from the beginning of our conversation, Joe and Samir were specific

about the particular programs they were thinking to write. They presented their ideas as if

they were filling in blanks in their programs: they already had talked about the structure

of their programs, specifically talked about different programs for the different directions

that the arrow would move. Now they were talking about how to write those separate

 95

programs. They even asked me about a way they could have the program change the

angle that the arrow travels, possibly indicating that they started to think about the motion

of the arrow in terms of step-by-step changes in the arrow’s position and angle.

Despite of the fact that students were now talking about particular code to use in

parts of their programs, in some cases they seemed to prefer typing that code instead of

talking about it.

54. Samir: repeat like 5 times, cause it’ll, we want it to stop half way. Or do we want it to all the
way? ‘Cause we can’t really make it go down and up.

55. Loucas: what do you think Joe, do you want to stop half way, or do you want to go all the way?
56. Samir: if we go all the way it’ll be like this <gestures> and <inaudible>again because we can’t…
57. Loucas: why not?
58. Samir: how do we make it go fd that many times and then done that?
59. Loucas: I’ll show you.
60. Joe: you just keep going fd, but you change the angel right here, so change the angle to be like 1

point….
61. Samir: oh, I have an idea! Ok, repeat … <Samir started typing>
62. Loucas: wait, wait, tell us! Tell Joe!

This was a familiar mode of work. Students working with MW preferred to talk

about already typed programs instead of talking about programs that they were thinking

of programming. As I discuss later, choosing to talk about a written program had the

advantage of having something written down that they could talk about (possibly making

it easier to have a conversation about something specific), but at the same time the

disadvantage of making the action of typing a “lonely process”: one student would type

and the other member(s) of the group would just watch or even leave the group and return

later.

The conversation continued in another familiar way:

63. Samir: ok, repeat, repeat 5 time with the angle going up by let’s say 10, so that will be 60, so then
it’ll be 55, then it’ll be 65, so we’re going like this <gestures> and it’ll stop here and then make
another program that says repeat 5 but it’s going down by 10, so it’ll be like this >

 96

64. Joe: the only thing is that is coming here <gestures showing to the horizontal portion of the
motion> then it kind of <inaudible> <gestures>

65. Samir: well, let’s just try it so…
66. Joe: ok.

Joe and Samir had a disagreement about a particular piece of their program that

Samir was proposing; or at least they were not sure which of the two possible ways to

use. Samir suggested writing two programs, one for the upward motion and another for

the downward motion. The first program would stop as soon as the arrow becomes

horizontal and the second program would start at that point. Joe was concerned about

what would happen when the arrow reaches the point that becomes horizontal. Earlier, he

suggested a third program for the horizontal part of the arrow’s motion (line 178 in

Episode MW1).

Instead of further debating this, Joe and Samir thought that they could simply try

their idea and then decide whether one was better than the other. This was a common

reaction: students in the study preferred writing and testing code to see how it looks

rather than reading and talking their way through the code.

As the conversation proceeded, Samir talked about writing one program until the

arrow reaches the top of its projectile and then another program for its downward motion.

Joe, on the other hand, started thinking about having two programs while the arrow was

moving upwards, one while the arrow would be moving horizontally and another two

programs coming down, showing with his hand that there were 5 different directions in

the arrow’s motion.

Thus far, the conversation was about two different things: about the structure of

their program and about some details of the code of their programs. In talking about the

 97

structure of their programs, students talked about specific numbers of programs (rather

sub-programs or sub-routines) to represent particular parts of the arrow’s motion.

However, the parts of the phenomenon that they were talking about were simply “visual

parts” of the phenomenon: they were identified by the changes in the visual

characteristics of the direction of the arrow’s motion.

In talking about the details of their programs, students had barely started talking

about the particulars of each of their proposed subroutines, possibly helping them to think

about the science of the phenomenon and what it was causing it. Of course, in several

occasions they talked about specific number of repeats, or amounts of forward (e.g., line

63), but they seemed to use those numbers as examples of ideas: whether it was going to

be forward 5 or forward 8 it did not seem to be important. In fact, as soon as students

started talking about the particular code of their programs, I surprisingly found out that

students were not clear about the number of repeats, the amount of forward or how much

the direction of the angle would change in their programs.

82. Loucas: so, I’m gonna put something there and we can, how much [number of repeat times] do
you want to put for a start? 10? 5?

83. Joe: yea, 10.
84. Loucas: so, <inaudible> what we should write?
85. Samir: um , fd, I don't know you decide the numbers.
86. Joe: fd goes like about um…
87. Loucas: I just put it randomly.
88. Joe: oh, ok, fd 15, well then it’s going to stop every 15.
89. Loucas: ok.
90. Joe: it should be a large fd, like…
91. Loucas: a larger one? Why?
92. Joe: like <inaudible> so that it’ll go like this <gestures> because if, if it just go straight <gestures

showing more fd but smaller distance>, well, that would, yea, that would work.

Samir did not seem to care about the numbers, referring the decision to Joe (line

85). Joe was not clear either. A larger number of smaller forwards seemed to make more

sense to him at the time, but he was ok with the larger number of forwards that I

 98

suggested earlier. Earlier (in episode MW1), the same students were arguing about the

structure of their programs, documenting their decisions using observations from

everyday experiences of how things look in real life. I was wondering whether they could

have a similar conversation about the code of their programs.

At the time I thought that the above was a matter of perspective. Joe and Samir

were in a “state of mind” focusing on their program’s structure and not on the details of

the code. Minutes ago, Aaron and Richard were having a conversation about their code

and I asked them to join Joe and Samir’s group to help in a discussion about the arrow’s

program.

99. Loucas: Joe and Samir want to write a program that an arrow would go like that.
100. Richard: yours so easy!
101. Loucas: tell us!
102. Richard: ok, you guys know how we made the circle! You go fd 1 then you go wait, or um what

was it? Fd 1 right 1 fd 1 right 1 fd so on and so on, so when you got here you go, you keep on
going, you keep on going.

103. Joe: so right here you go repeat 100…
104. Loucas: so Richard, if I want
105. Joe: and then it’ll go like this.
106. Richard: there’s no waits!
107. Loucas: Richard, if I want to make a, to circle, how what should I put?
108. Richard: fd, right, repeat, repeat 1, repeat 100, 100, 100, um [fd 1 right 1]. We did that to make a

circle! Look, what it does!
109. Loucas: so, this makes a circle, Now they need to make this kind of shape, though, it’s not a

circle, what do you call this shape, oval?
110. Many: oval.
111. ?: football!
112. Richard: when you go fd .5 and then right .5,
113. Loucas: to oval
114. Richard: or you go fd 1, um repeat 100 fd .5
115. Loucas: why less?
116. Richard: ok, fd 1!
117. Loucas: why, why? So, come on, because I am not sure what Richard is saying.
118. Richard: fd 1, ok, fd 1, then right um .5.
119. Loucas: .5?
120. Richard: yes.
121. ?: and then 200 won’t do it.
122. Loucas: ok. I say, I say, please don't do that, do you agree with him? What, what this would

make? What would this program make?
123. Richard: remember of, what is me and you or was it just me by myself that made the weird

<inaudible>
124. Aaron: it was you and Joe
125. Joe: it was me and you!

 99

126. Richard: remember when we made the <inaudible>
127. Joe: yea.
128. Richard: we did this, to make a circle.
129. Joe: no, no, that weird oval shape that was the circle shape.
130. Richard: oh yea, I know, but we had the .5, Aaron, Joe, Joe, we, I put .5 and it said it won! It will

go less every turn, you could do that.
131. Loucas: let me ask you this.
132. Joe: well, yea, maybe.
133. Samir: can we just try to see…

This last part of the conversation was different from the previous one. Right away

Richard and Aaron started talking about how to write a program that would give them the

particular trajectory that Joe and Samir were thinking. Richard and Aaron were also

talking in detail about the specifics in the program: number of repeats, amount of

forward, amount of turning angles etc.

While reviewing the conversation, however, I asked my self: is this conversation

really different from the previous one? The goal of the conversation was to write a

program that would result a half oval shape, the trajectory of the arrow moving in the air.

Students were not concerned about the structure of the program any more; they just

wanted a program that would result something that would look ok, the way they thought

the arrow would move on the air.

3.2.3. Conversation type III: Talking while programming

For a large amount of their time, students in the study were typing and testing

code, to write programs that would represent natural phenomena. Typing code was an

important part of student work for this study, because it provided information about the

actual use of the CPEs’ tools by students while modeling. Conversation type III describes

students’ conversation during programming. During programming: i) the conversations

 100

were limited, ii) students talked about code and primitives, iii) students did not talk about

the phenomenon under study, or how their simulation would/should look.

Limited conversation while programming

While typing code of a new program, students’ conversations were very limited.

As figure 3.4 shows, most of the time, only one student was at the group (indicated by

category “one leaves the group”), typing code, whereas the other(s) (usually the groups

consisted of 2 students each) would leave the group for a short time and then returned.

There are at least two possible reasons that this was happening. First, students did not

share and discuss particular program ideas in such detail that they could follow their

fellow student who was responsible for typing the code. Because of that, the student that

was not typing did not have anything to do during that time, and leaving the group might

had been a more exciting thing to do that just sitting and looking at the code the other

student was typing. This might be possibly supported by the fact that when both students

were at the group, the student who was typing the code would talk out loud while typing,

probably giving some idea of what he was thinking and doing at the time (this was

observed in all three groups). Even though this might be an unusual phenomenon to

observe, it seemed to help the other student follow what the first was typing.

A second possible reason would be that the process of typing code requires only

one person at the keyboard. The process is so straight forward that the only thing that

students need to do is typing up code. In fact, it is possible that talking during the time

might be a distraction: code needs to be precise without any typos.

 101

The student who was typing seemed to undertake the role of “a typist,” with at

least one group (Aaron and Richard’s) explicitly specifying who the typist was each time.

This could possibly add more pressure on the other group member not to interfere with

the typist’s work.

Conversation while programming was about (program) primitives

During the act of typing code, students talked only to provide each other with help

with the language primitives, correct typos and give directions as to where and what to

type, in those cases that the student who was typing did not know. There was no

conversation about what the simulation was, or about the particular details of the

program. In this sense, their conversation was strictly technical, and only when some kind

of help was needed. In all the other cases, students let the “typist” type their program.

Figure 3.4. Conversation type III
(Source Aaron & Richard group, 13 November 2002)

Before presenting an episode of conversation type III, I would like to highlight

one of the points that I mentioned earlier. During programming, students were not talking

 102

about their programs; rather their conversations were about writing up a program with no

typos. However, as seen in previous types of conversations, students could have

conversations about their programs by describing program ideas, describing their

program’s structure and supporting program decisions by referring to the simulation and

to experiences they had from everyday life. Thus, it is possible to suggest that students

had abilities to have different types of conversations based on the need of their current

actions. Typing code is the process of typing correct primitives, and students seemed to

let one handle the task. As I discuss later, after typing a program, students talked about

details of their programs, what the simulation looked like and what changes to make in

their program to represent more accurately the phenomenon.

Episode MW3, Conversation while programming, 13 November 2002, Joe & Samir

Episode MW3 is a continuation of episode MW2. In this episode Joe, Samir and

Richard were typing code in MW. While typing code, students became less vocal than

before, leaving most of the work to the “typist.” The transcript below starts while Samir

was typing.

161. Richard: right 0.5 End of quote.
162. Samir: now watch Richard.
163. <silence while typing>
164. Samir: Shoot! <testing their program>
165. <silence while looking at their code>
166. Richard: how do you talk to, are you talking to a?
167. Joe: yea, we named it a, as opposed to t1 or t3
168. <silence while looking at their code>
169. Richard: turtle!
170. <silence while running the simulation>
171. Richard: I don’t know how to a in shoot.
172. Samir: quiet!
173. <silence while looking/changing their code>
174. Samir: yea!
175. Richard: do you want it to turn?
176. Samir: we want it to go like this. Ou!
177. Richard: it’s forward, I can do that. I can do that! Yea!
178. Samir: o ho! Richard can do it, Richard can do it! Richard’s doing it! Richard’s doing it!

 103

179. <silence while typing>
180. Samir : <inaudible>
181. Richard: weeeeee! And may the <inaudible> (Richard leaves the group)
182. <silence while clicking/typing/looking on the screen>

During programming, students avoided interaction. When there was some

interaction, students were focused on writing a program that would run. This was

probably the reason that students mostly had technical conversations about typing

something that would have been more appropriate than typing something else. For

instance in line 166 where Richard questioned Joe and Samir’s program using a name for

a turtle instead of the default t1. This had nothing to do with the phenomenon

represented; rather, it was related with the logistics of getting a program to run. During

these conversations, students were not concerned about the phenomenon they were trying

to represent. Neither their program’s structure nor how the simulation looked was part of

their conversations.

In addition to their limited conversations, students were using “trial and error”

techniques: they typed a program, tried it out, then went back to the program window to

see what was causing the bugs, made changes and then went back and tried it and so on,

until the program successfully ran. Running their program was a quick way of finding out

whether their program was running successfully.

During this part of their work, Samir was mostly the “typist” and Joe had limited

involvement in the group. This was another familiar theme in students’ work with MW.

Students, as in this case, tended not to share the details they were thinking of

programming (Samir told Richard to be quiet – line 172). Instead, they tended to work

alone, type the program and then talk about it. This was also supported by Joe’s actions

 104

during typing code. He did not participate in this process. He would sit for a few seconds

and then leave the group, to come back later and see what Samir was doing. Even though

students started typing code around line 159 (with some of the utterances being a few

minutes long while students were simply not talking) only in line 207 Joe, while looking

at the code, indicated: “Oh, I get it, we are making a circle shape than an oval shape. Plus

the oval shape is going like that <gesture> not like that <gesture showing on the

computer screen>”. At that point, Joe could read the code that Samir wrote and could

understand what kind of program Samir was writing.

3.2.4. Conversation type IV: Talking about how the simulation looks

As soon as students had a program that was successfully running, they started

having conversations about their program. This is the fourth type of conversation, during

which students talked about a program they had already written, whether it represented

the particular phenomenon in an accurate way. During this conversation, students i)

talked about how the simulation looked, and ii) made references to everyday experiences.

Focus on how the simulation looked

During this type of conversation, students were not concerned about the actual

code of the software, possibly because this type of conversation was carried out after they

successfully wrote and debugged the code for their programs. Rather, their concern was

whether the simulation was representing the phenomenon accurately. Their focus was on

how the simulation looked, and most of the conversation, as figure 3.5 shows, was coded

as talking about the simulation without the use of the program language. However, the

 105

focus was not on the actual appearance of the objects, background etc of the simulation,

but on describing how different parts of the simulation looked or should look.

This new focus was probably a result of their work during the debugging of their

program as I discuss later (see program strategies II: correcting depiction). After students

successfully created a program that would run on the computer screen, they shifted their

focus on making their simulation look “better,” to look much more like the phenomenon.

During debugging their focus was on the code; now that they had a program that ran,

their focus was on the depiction.

Figure 3.5. Conversation type IV
(Source Aaron & Richard group, 13 November 2002)

References to everyday experiences

During this type of conversation students used experiences from everyday life to

debate whether or not their simulation was showing what really happens in the physical

world. It seems that their goal during this phase of their work was to make sure that their

code created a simulation that correctly depicts the phenomenon they chose. Because of

 106

this, their focus was on comparing their simulation with experiences they had had, in an

effort to decide about possible changes to their program.

Episode MW4, Conversation about how their program looks, 13 November 2002, Aaron

& Richard

This short episode of student conversation, starts just after Richard and Aaron had

finished debugging their two programs: one for a person jumping on the Earth and

another for an astronaut jumping on the Moon. They then asked me to join their group to

see what they had. They ran their programs, and the differences of the two persons

jumping were rather small, so I asked whether they could change them so that they would

be more obvious. That, sparked a conversation about how their programs looked and

should look, which is basically a conversation about whether their simulations looked ok.

224. Richard: Aaron, you need to change, I told you to change the waits to wait less in the others (on
Earth), and you’ve made them longer, because their wait should be way less because he jumps on
the moon.

225. Aaron: he's on earth, so it would be way more than wait.
226. Richard: so it’ll going like zink! <gestures showing quick>
227. Aaron: the wait.
228. Richard: tink, tink <gestures showing quick>
229. Aaron: no, Richard, the moon has way less gravity.
230. Richard: I know, the wait, how long it waits. So it’s like toush! <gestures showing quick>
231. Aaron: it has less gravity. So that the moon has…
232. Richard: the moon has more wait, I mean the moon has less wait that this thing [Earth] has. So

this guy waits until he’s coming slowly…
233. Aaron: stop talking in the computer language. Does the moon have way more gravity? Um less

gravity?
234. Richard: yea.
235. Aaron: and the earth has way more gravity.
236. Richard: yea.
237. Aaron: so the moon is like 4 times smaller than the Earth. Ok?
238. Richard: ok
239. Aaron: so, it would be, so on earth …..
240. Joe: so Richard, <inaudible>
241. Richard: Joe, he [Aaron] is making the guy on earth going ouuuuu <gestures showing quickly>,

and the guy on moon go ou. <gestures showing slowly>
242. Aaron: that's… it makes sense!
243. Richard: no he is making the guy on earth going like (slowly) and the guy on moon go like (fast).

 107

The purpose of this conversation was whether their simulation showed accurately

the phenomenon they wanted to represent. In this case Richard disagreed with Aaron’s

program, because his program was showing the boy on the Earth jumping much slower

than the astronaut on the Moon. Richard was suggesting that their simulation should

show the astronaut jumping slower than the boy on the Earth, showing with gestures how

that motion should be. Aaron on the other hand was thinking that because of the more

gravity on the Earth, their simulation should show the boy jumping slower (more waits in

the earth program). To support their ideas, Aaron and Richard talked and compared their

simulation with how the phenomenon in real life looked like. They were also referring to

particular lines of code to suggest possible changes they thought and to real life

experiences to support their ideas.

Usually, this kind of conversation was short, because students moved on to

different kinds of conversations in order to resolve their differences. Had they decided to

make the changes, they usually started a conversation while making changes in their

program, as I discuss later in the program strategies III.

3.2.5. Conversation type V: Talking about what happens in the simulation.

A fifth type of conversation was identified when students were showing their

simulation to others. This conversation was not observed on a regular basis; it was only

observed when one student was absent from the group at a time and the rest were

showing what they did, or when students were presenting to each other their final

products. I saw two groups of students presenting their programs to others (Joe & Samir,

Jiana & Gabriella) and for this reason, I do not present this type of conversation as an

 108

emerging type of student conversation, but rather as a possible conversation that can

occur in this particular context.

During conversation type V students talked about what happens in their

simulation, and made no references to the code that created the simulation.

Talk about what happens

This type of conversation was characterized mostly by talking about what is going

on in the simulation, without much reference to the code that generated the simulation.

Students talked about their simulation, and in particular what was showing, in a way that

resembled telling the story of what happens in their simulation (similar to conversation

type I in SC findings, see section 4.1.1). As figure 3.6 shows, there was only minor use of

the program language.

This is interesting, because students’ work and conversation with MW included a

variety of foci, and during parts of their work were focused on the structure of their code

as representation of the phenomenon (conversation type I, section 3.1.1), focused on the

code that created a program that could successfully run (conversation type III, section

3.1.3 and program strategies I, section 3.2.2), focused on the simulation and its depicting

details (conversation type IV, section 3.1.4) and focused on the code as a representation

of the phenomenon under study (program strategies III, section 3.2.4).

In the two situations that students presented their designs to others, they had

finished typing and debugging their code, dealt with depicting details and had some

discussion about how their code could be/was representing the phenomenon under study.

 109

Still, in presenting their programs/simulations students chose to talk about what was

going on in their simulation and run their program to show others.

Code was used as a tool to create a simulation

A possible hypothesis that data from the study seem to support is that students can

use tools that CPEs provide in a variety of ways. For instance, code was used by students

to create a simulation, to communicate ideas or to represent a phenomenon. It is possible

that in this case, students viewed the code only as a tool for creating the simulation, and

not as a tool for further communication or for showing to each other. It was easier to

show the simulation rather than reading and explaining the code.

In fact students’ references to the code below were references to what particular

programs or lines of code responded to in the simulation. As it can be seen in the

following excerpt, Joe was talking about what different programs do (thus there is

“some” reference to their programs) but mostly describe the simulation that the programs

create.

175. Joe: well we made, um, a whole bunch of stuff, like, we made a program for a shoot1; shoot 2 is
slightly different…

176. Loucas: tell him what shoot 1 is because he doesn’t know what you talked about, and then we
can…

177. Joe: shoot 1, shoot 1 makes the arrow to go straight forward because. It doesn’t go up, but it
moves down, like…

178. Samir: what’s up with all the humps [refers to a stamp technique that I helped students add in
their program that can make a dot on the screen for every position of the turtle in every tick of the
program]?

179. Joe: the humps?
180. Samir: do, do, do, do
181. Joe: oh, they estimated this, what shape does it make.
182. […]
183. Joe: and then, um and then make it eventually, but we, at shoot 1 like it’s, it’s now, it is straight

<showing the simulation> and you can’t really see that it drops at all. Um, you can’t really see that
it kind of drops but um…

(excerpt taken from Joe & Samir
group, 4 December 2002)

 110

Figure 3.6. Conversation type V
(Source Joe & Samir, 4 December 2002)

That students seemed to use code as a tool for creating the simulation while

presenting their programs/simulations, might have two implications for using CPEs in

science for developing models of natural phenomena. MW is considered to be a

traditional CPE that uses textual programming language as means for developing

programs. As seen in previous types of conversations, there were cases in which students

had very technical conversations about and with the program language (code). As soon as

programming was done, students shifted their focus on the simulation (e.g., during the

phase of correcting depiction and presenting their programs to the others). A first major

implication is related with the iterative process of developing models, testing them and

refining them. When students’ focus after the first debugging shifts from the program to

the simulation and depiction, the teacher might need to help students focus on the code

again, in an effort to develop models that would show the mechanism that causes the

phenomenon represented.

 111

A second implication is that it not might be productive for modeling in science to

have students present their programs to each other, especially if the only way students see

this presentation is simply to show their simulation to the others. Findings from a pilot

study (Louca, unpublished report) showed that when students presented to others working

with a different CPE, they took them through their code talking about what each line

represents. In that case, it is possible that it can be more helpful to have conversations

about how different lines of code represent particular ideas. On the other hand, it is

possible that the only thing that needs to happen is to provide students with extended

experience with programming, which might make them more comfortable talking about

their code in addition to talking about their simulation. However, this cannot be justified

from results from this study and further investigation is necessary.

3.3. Types of activities

Students’ work with computer was also analyzed for their activities while

developing models of natural phenomena. Unlike conversational patterns, development

of activity patterns was largely supported by watching students’ work with the computers

through their videotaped work and video-captured screens.

Three major types of activities were identified and are presented below. These

include program strategies I: writing & debugging code, program strategies II: correcting

depiction and program strategies III: correcting represented science. I also present a

fourth activity type that was common among all analyzed groups, which, however, is not

a program strategy: it includes students’ activities when they started working on a new

program, including dealing with the characters and backgrounds of their simulation.

 112

The different program strategies that I identify and highlight below were possibly

created by particular needs while programming. In different parts of their work (type a

new program, debug their program, make corrections to depiction of their program or

make changes in the code to represent the science of the phenomenon) students seemed to

use particular programming strategies that were useful for that part of their work. For

instance, to write a program and successfully run it is one task, and an important one,

especially if you have no program or your program does not work. As soon as students

successfully debugged their program, they could then turn to fixing the depiction of their

simulation. This was a different task: students were not concerned about the code of their

program any more, but they were attending to the depicting details of their simulation.

The two processes (write and debug a program, and dealing with depiction) required

different activity patterns and different focuses. It is not clear, however, whether the shift

of focus occurred by the students who were ready to change mode of work, or by the

different task.

In my effort to report the activity patterns, I present and describe them along with

the context in which they occurred, provide details about student conversations and

activities in the form of student conversations (transcript) and accompanied narrative.

This is an effort to document different uses of the CPEs by the students and possible

implications of such use for developing models/representations of natural phenomena.

3.3.1. Dealing with characters and backgrounds of their designs

Although programming in MW can include a range of activities, it can be mainly

characterized as the process of typing instructions in code for characters (turtle(s)) to

follow. The process of typing code is different from the process of running the

 113

simulation. The two processes require different actions: one is typing of one dimensional

code and the other is running that code to create 2 or 3-dimensional graphical results.

Students can also type code without having a character in place, even though you need

one in order to run the code.

When students started working on a new microworld, they first spent some time

designing or finding appropriate characters for their programs. Unlike students working

with SC (see chapter 4), students working with MW did not spend a considerable amount

of time setting up characters, and they returned later to deal with characters and

backgrounds.

Short time dealing with characters

The time that students spent early in their work to find appropriate characters and

backgrounds for their programs was relatively short: Joe and Samir spent about 15

minutes 4, looking for an archer on the web and then decided to draw one from scratch.

Aaron and Richard spent about 7 minutes setting up their characters (see figure 3.7),

since they found what they were looking in the character window of MW and Gabriella

and Jiana spent 9 minutes looking for characters and then agreed to continue without any,

until our next meeting (I promised to provide them with the characters they wanted).

During the time that students spent dealing with characters and backgrounds, they

were focused on a single character, which they wanted to be perfect. Samir and Joe

wanted to get an archer and they probably surfed on the Internet among 30-50 archers

4 The time provided excludes the portions of their work that students were doing off-task activities. It only
includes those times that they were engaged in the activity of finding and placing characters and
backgrounds.

 114

before deciding to draw one from scratch. As soon as they had something in place they

moved on to type their code, even though there were some more characters to be included

in other parts of their programs (a target for instance).

This is an important distinction from SC students’ work. Students working with

MW spent most of their time creating characters rather than looking around (in MW or

on the web) in search for appropriate characters for their designs. Also, they could easily

start writing some code, even though they did not have all the characters or the

background that they wanted. Also, conversations about how their characters and their

simulation’s background looked were limited. Students working with MW did not seem

to be concerned about how their characters looked. Even in the case that they were

deciding to draw their own characters, their drawings were very limited in how realistic

they were.

Students would return later to deal with characters

To finish setting up their characters and backgrounds, students returned in later

parts of their work (during the same day or during the following meetings), while

programming, usually after finishing a new program. Again, in those cases, students

spent short periods of times (20-30 utterances, as the example in figure 3.8 shows) and

returned to writing and debugging code. Before the break in timeline in figure 3.8,

students were debugging their code.

Data from student activities during programming shows that students did not

spend much time at the beginning of their work to deal with characters and backgrounds.

More importantly, students did not seem to feel the need to have a complete set of

 115

characters for all aspects of their programs. Gabriella and Jiana had no problem

continuing with writing some code without having any characters in place. Joe and Samir

proceed to programming having a simple straight line with a pointing edge (representing

their arrow), deferring for later drawing a better arrow and a target. While writing and

testing their code, students usually returned to finish working with their characters,

possibly when they needed to test their programs.

Figure 3.7. Student’s actions in the beginning of their work
(Source Aaron & Richard group, 13 November 2002)

Another possibility that these findings may suggest is that students working with

MW could break the process of developing representations of natural phenomena into

small manageable pieces, even though those pieces were related to each other. For

instance Aaron and Richard chose and added a character for jumping on the earth, went

to write some code for that character to jump on the earth, and only when they finished

debugging that code did they return to set up the character that would jump on the moon

 116

and then continued typing the program for the character jumping on the moon. They

seemed to be comfortable finishing their program piece by piece.

Figure 3.8. Students dealing with characters and backgrounds during the process of writing code

(Source Aaron & Richard group, 13 November 2002)

3.3.2. Program strategies I: Writing & debugging new code

The first type of program strategies includes two distinct activities, writing and

debugging code, which shared a common focus: writing a new program. Program

strategies I, were usually observed when students started a brand new program which

they typed from scratch. Generally speaking there were two major activities during this

type of work: during the first one, students were typing code in the program window.

During the second phase students were testing and debugging the code they wrote.

Writing and debugging code were rather “technical” activities and students’ focus

was on the code itself. This means that students were only concerned about the code and

their conversations were about using the right program primitives. This is important

 117

because during this part of their work students were simply trying to write a program and

then successfully run it. Because of that they were not using the code as a tool for either

creating a simulation or for representing a natural phenomenon.

Writing new code (Uninterrupted work & limited conversations)

As soon as students started writing a new program, they spent several minutes in

the program window typing up code. During that time they did not interrupt typing for

either testing the programs, or even for talking about the program they were typing. As I

indicated earlier in “conversations while programming” (section 3.1.3) students did not

talk much during that time: one was typing and the other was waiting for the “typist” to

finish her work.

Three possible reasons might have caused this. Students were accustomed of

writing a large program instead of breaking it into small sub-routines, even though when

they talked about their program plans they talked about different parts of their program to

represent parts of the phenomenon. Instead, different lines of code within one single

program, were representing those different parts of the phenomenon. In this sense,

students were having different lines within one single routine, to correspond to different

parts of the phenomenon or their program that they talked about.

Second and related, typing long programs, takes time and in addition you cannot

run them unless you have completed the program. The latter is a structural characteristic

of programming in MW: a program in MW has to start with a “to” and ends with an

“end” in order to run. Students usually started from the beginning and continued until

they finished all the code for their program. A third possibility is that the beginning of a

 118

program in MW has to include several lines of code that are not important for what the

program does, but are needed for the program to run. That code is similar to all the

programs in MW: students need to identify the turtle that the code is for, setup its shape

and size and if necessary create variables to be used in the program.

In this sense, writing new code is a rather technical activity, which has little to do

with developing models, in addition to adding the “stress” of writing a program that is

bugs-free. Probably because of this, students’ conversations were limited during the time,

and their focus was on the code it self.

Running and debugging new code

Create a button

As soon as a first draft program was ready to be tested, students switched

windows (category “switch windows” on figure 3.9 represents such switch from the

program window to the simulation window and vise versa) and created a button for their

new program. Creating a button is basically a shortcut for running a program in MW, and

it is done by assigning a button to a particular program. In this way, a simple mouse click

initiates that program.

Creating buttons was probably a way of helping students to move quickly through

this phase of their work, given the fact that during debugging, they usually ran their

programs frequently. On the other hand, however, it is not clear what would have

happened if it were harder to run their programs during debugging: would students still

run them many times or would they take their time and read through their programs

trying to find any bugs?

 119

Creating buttons had another interesting role, this time methodological. In most

cases, the act of creating a button in MW was an indication of a new code that students

had just finished writing, which I used during analysis to identify what students were

doing. In addition, students in all groups did not usually create a button prior to writing

their program. This was possibly because students needed to type the program’s name in

the button, which they could not do successfully unless they had written that program.

Switch back and forth between the program and the simulation windows

During debugging, students went back and forth between the program and

simulation window, ran their program, read any possible feedback provided by the

software, identified bugs in their code and then fixed them. This pattern is shown in

figure 3.9 below. (Note that the dots represented in figure 3.9 are not equivalent to the

amount of time that a particular activity took place. During parts without any

conversation, work is represented by a single dot.)

In general, throughout program strategies I, students were code-oriented. They

were typing code, trying and debugging it as their goal was to create a program that

would run successfully. Of course their ultimate goal was to create a simulation of a

natural phenomenon, but a first important step was to create one that runs!

 120

Figure 3.9. Program strategies I

(Source Aaron & Richard group, 13 November 2002)

Episode MW5, Conversation while programming, 13 November 2002, Richard & Aaron

This episode is an excerpt from Richard and Aaron’s work. For the first time, in

line 33 Aaron started writing their first line of their program. For most of the

conversation that I present below, Aaron was the group’s “typist”.

33. Richard: to…
34. Aaron: enter, then talkto…
35. <silence while clicking/typing/looking on the screen> (Richard leaves the group)
36. Loucas: ok, I want to help you to….let me see. Oh!
37. Aaron: here’s fd 1 wait 2 fd (Richard back in the group)
38. Loucas: so, make to jump moon and to jump earth.
39. Aaron: ok. (Richard is back at the group)
40. Richard: change to jump to moon, to jump moon.
41. Aaron: ok, this, yea, this was the moon, to jump, this is moon.
42. <silence while typing> (Richard leaves the group)
43. Aaron: … fd
44. <silence while clicking/typing/looking on the screen> (Richard back in the group)
45. Aaron: …bk 2 wait …bk 2 wait
46. Richard: isn’t it 2.5
47. Aaron: yes, it’s 2.5.
48. <silence while typing >
49. Aaron: .5 wait…. All right, control F, make a little button…jump moon
50. <silence while typing>
51. Richard: jump moon, jump moon!
52. Aaron: ok, hey!

 121

53. Richard: I don't know how to move (reading from the feedback trying to run the program)
54. <silence while clicking/typing/looking on the screen> (Richard leaves the group) (Richard back

in the group)
55. Aaron: hey, why is it so tiny?
56. Richard: what, what, control V (he presses control F)
57. Aaron: control V?
58. Richard: jump moon. Edit copy paste. No, no, they can’t be spaces. They can’t be spaces
59. Aaron: oh, ok, I get it.
60. Richard: you need to delete the button and you need to delete the thing <inaudible>
61. <silence while clicking/typing/looking on the screen> (Richard leaves the group) (Aaron clicks

the mouse about 20 times probably trying to run the program which does not) (Richard back in the
group)

62. Richard: Aaron, go back (presses control- F, Richard shows Aaron something on the screen
possibly the space between jump_moon) backspace

63. <silence while clicking/typing/looking on the screen> Aaron presses Control F and tries the
program again.

64. Richard: he is jumping!… we made him jump. Mr. Loucas Louca! (Richard leaves the group) we
made him jump.

65. Loucas: ok, I am coming!
66. Aaron: he's jumping! Yea! Let’s go!
67. Richard: go back and change it a bit. After fd 2…
68. Aaron: yea make it a bit more ….the first one is fd 2…2 wait 4. So we need to double all of that.
69. Richard: wait 3, wait 3.
70. Aaron: co, cause see, we double this so we double that…(Richard leaves the group) so now fd

… no,
71. <silence while clicking/typing/looking on the screen>
72. Aaron: all right. You were right Richard, we should do it fd um wait 3 (Richard back in the

group) and this is fd 3 (Richard leaves the group) wait 4, now
73. <silence while clicking/typing/looking on the screen>

In the above conversation, Aaron typed their first program for an astronaut to

jump on the moon. During this time, from a total of 41 utterances, 10 of them indicate no

conversation between Aaron and Richard (and they were usually longer than the other

utterances). Richard left the group 6 times and returned shortly to see what Aaron had

typed. Aaron made all the typing and one possible interpretation of Richard’s action was

to provide Aaron with “the space and quiet” to finish typing up their program.

Students’ conversations were technical, mostly about the code that Aaron was

writing, typos he made, and possible bugs. Aaron quickly typed their first program and

tested it. Then he returned several times to the program window to identify the bugs that

were preventing their program from running. Changes during that time were only meant

 122

to make the program run, without paying any attention to e.g., the structure of their

program, on which they seemed to be focused on during planning.

Surprisingly, as soon as their program was successfully running, Richard asked

Aaron to go back in their code. They then talked about making some changes, mostly in

the amounts of forward and wait instructions. In line 68 and 70, it started sounding like

Aaron was thinking about the program structure again, talking about keeping a particular

pattern with their numbers in the two parts of their program. They had two parts in each

jumping program: the first part was for the upwards motion and the second for the

downward motion. They seemed to want the numbers in these parts of the programs to be

consistent with each other. However, there was not much justification of why this should

be (other than being consistent) and especially Richard did not pay much attention to the

argument that Aaron started to make. That they had a program that was running

successfully was enough to celebrate and call me to show me their simulation.

3.3.3. Program strategies II: Correcting depiction

As soon as the students had a program that ran smoothly, they started correcting

how the simulation looked. This seemed not to be a difficult transition from program

strategies I, and it usually occurred as soon as students had a program that ran

successfully. A few minutes earlier students were focused on the code and how to write

up a program that ran successfully. Now they switched their focus on how to change their

program to improve the simulation. In this sense, students used the code as a tool for

improving depiction in their simulation.

 123

I would like to pause here and note that the ultimate goal in this research study

was to investigate ways, like the ones I am reporting here, that students used CPEs in the

context of writing programs that created simulations presenting natural phenomena. One

of my expectations during this study was to see students using the code to construct

programs that would include the mechanism of what is actually causing the phenomenon.

Prior to this study, I was not sure about the different possible ways that students can or

tend to use CPEs as modeling media. It is possible to suggest that there is more than one

way that students can use the code: during program strategies I students were using the

code to create a simulation that runs. In program strategies II students were using the

code to change their simulation to depict more accurately how the phenomenon looked.

Within program strategies II there were two distinct major activities: correcting

depiction of their simulation and doing some fine tuning in their programs, playing

around with mostly numbers and to see possible results in the simulation. In both cases

similar activity patterns were isolated, as shown in the figures 3.9 and 3.10, and the

difference in the purpose of their work was identified from the transcript of their

conversations.

Correcting Depiction

To correct the depiction of their simulation, students were making changes in

their code to change what the simulation was showing. Their focus was on the simulation

itself and their goal was to change the code in such a way that would create a better

simulation. Most of this work was based on trial and error techniques, since the code of

their programs sometimes did not reflect their program plans (see episode MW6 and

 124

figure 3.11). Students were making changes to their programs and testing them, trying to

create the best possible simulation.

Fine tuning

In fine tuning, students had a program that was running ok with no major

problems in depiction. They “played around” with the numbers in their program, trying to

improve the simulation. For example, Aaron and Samir had two programs that simulated

an astronaut jumping on the moon and a boy jumping on the Earth. Their first program

resulted a simulation that was not showing jumping higher on the moon than on the

Earth, as they wanted. When they fixed that (corrected the depiction), Richard changed a

few numbers in their programs so that the differences could be seen more clearly in the

simulations (fine tuning).

Conversations

Another characteristic of program strategies II is that students started becoming

more vocal in their interactions and started having conversations about their programs.

Now that the concern of getting their program to run was gone, students were starting to

have conversations about their simulation. Their focus during their conversations as

described in part in conversation type IV was on how their simulation looked and how to

change it to result a more accurate or appropriate simulation: that is, a simulation that

would look better. Because of that, students also started using references to experiences

they had in their conversations, supported their ideas and suggested changes for the code

of their program. The simulation triggered conversations that would include episodes of

students looking around in their experiences for instances where their ideas were easily

 125

found and observed, in an effort to convince others about the changes they were

suggesting. During this time however, the use of code was minimal, and used to indicate

only how to make those suggested changes. Even though the changes that students were

talking about had to be done in code, students would only talk about the simulation and

what was the phenomenon like.

Still, during this part of their work, students did not talk about the mechanism that

was causing the phenomenon, which could have supported their discussion about

changing how the simulation looked. Students were talking about the simulation, and in

particular how the simulation looked. This kind of conversation did not necessarily need

any reference to the code, and because of that students did not use the code or use it to

talk for the suggested changes.

Figure 3.10. Program strategies II

(Source Joe & Samir, 13 November 2002)

 126

Episode MW6, Correcting depiction, 13 November 2002, Joe & Samir

This episode starts after Joe and Samir had successfully debugged their first

program. Now that they had a program that worked, they started making changes, mostly

concerned with how the simulation looked.

213. Samir: that was way too many repeats, that was….
214. Joe: do it again, do it again!
215. <laughter>
216. Samir: we have way too many repeats.
217. <silence while clicking/typing/looking on the screen>
218. Samir: I know what we have to do, we have to do seth 90.
219. <silence while clicking/typing/looking on the screen> - Joe left the group
220. Samir: I got it!
221. Richard: hey, you got it,
222. Samir: well, it’s <inaudible>
223. Richard: hey Joe look what Samir got.
224. Samir: heeeeeey!, I got it somewhat!
225. Richard: you got it down, look, Joe, look!
226. <silence while clicking/typing/looking on the screen>

In the above conversation, students were focused on changing their program in

such a way that the simulation would look better. In the conversation excerpts above and

below, students were concerned about how their simulation looked; they were making

small changes mostly to numbers, (amounts of forward, waits, directions etc) and then

they tried them out. They were not concerned about their program or their program

structure.

Samir continued for another 10 minutes to work on these changes, while almost

the rest of the class had a conversation about another’s group program. Samir decided to

stay and “fix” their program because the arrow was “not working too well” (line 228).

Richard would occasionally visit Samir and they would briefly exchange a few ideas –

but still Samir was the typist and he was not very vocal.

227. Loucas: Samir do you want to come here?

 127

228. Samir: I am trying to make the arrow to move, it’s not working too well.
229. <silence while clicking/typing/looking on the screen>
230. Samir: Oh, I missed!
231. Richard: put it like there with the arrow.
232. Samir: well, that wouldn’t look well, I need to <inaudible>
233. <silence while clicking/typing/looking on the screen>
234. Samir: look, watch!
235. Richard: it’s going up!
236. Samir: I guess it’s going up like 50, see like <inaudible>
237. <silence while clicking/typing/looking on the screen>
238. Richard: make it go down then, go right, go left.
239. Samir: I should repeat a few more times.
240. <silence while clicking/typing/looking on the screen>

After they fixed their program, I had the opportunity to have a look at it. When I

first approach the group, Joe and Samir showed me the simulation. It looked ok, mostly

what they talked about before: the arrow traveling first upwards, then horizontal for a

while and then downwards, stopping on the target. Their code, however, did not reflect

any of their ideas. As figure 3.11b shows, they had two separate repeat lines, possibly

representing the structure of two programs, one for the upward motion and another for

the downward motion. In addition, even if they set the angle of the direction of the arrow

to be 45 degrees to begin with, they used seth 90 instead, which sets the direction of the

arrow to be horizontal, turning it for 0.5 degrees left for the half of the motion and right

0.5 degrees for the other half of the motion.

As important, their first program departed significantly from at least one of the

ways they were thinking during planning, which is resented in figure 3.11a,c,e. (Joe and

Samir talked about two possible plans, one being about a program that would have

several smaller subroutines, and another in which the arrow would follow a half oval

trajectory, as presented in FIGURES 11a,c,e). Their first program may have been resulted

a similar simulation with what they were thinking during planning, but the code of their

programs was significantly different. When later asked about this, Samir suggested that

 128

he was aware that their program was different from their plans and that reading the code

(figure 3.11d) resulted something different than what their simulation was showing.

However, he indicated that this was the only way that they could make that simulation

look ok.

As the conversation continued, I asked Joe and Samir about the code of their

program, because I was not sure why they had abandoned their initial ideas. It almost

seemed as they had started thinking about this in a variety of useful ways, but they

sacrificed everything for how their simulation looked.

279. Loucas: so Joe, come here. I don’t understand this.
280. Samir: we did, like we think it did, see when we had the same it just looked like it was doing this

<gestures>. So I had to make this a bit higher for do like this <gestures>. I just didn’t seem to like
this. So I changed it to <inaudible>. The angle, it’s going up and <inaudible> found it and changed
it to <inaudible>.

281. Loucas: Joe, Joe I want you to explain because I can’t understand your program.
282. Samir: well, I wrote this.
283. Loucas: but, so, so tell me. So you have local angle, and then you make that 45 degrees because

you want to start 45
284. Samir: u ha.
285. Loucas: and then what happens?
286. Samir: and then…
287. Joe: then…
288. Samir: then repeats, then repeats by 30, as angles going up by 0.5, 0.5, 0.5 …
289. Loucas: so, but you are not this angle.
290. Samir: and that would be <inaudible> then we can just <inaudible> that angle out.
291. <silence while clicking/typing/looking on the screen>
292. Samir: or we can just make this we can take that out and make it 45, 45.
293. Loucas: ok, I, so, I was thinking something else, that you were saying…
294. Samir: I know, I completely understand what I was doing, but that’s the only way that worked

out. I tried to make it the way we had it, and it did like this. <gestures> the arrow went like this.

In line 294 Samir indicated something that made the situation clearer. Indeed they

had some initial ideas about how to start programming, but after trying them, this was

“the only way that worked out.” And he continued: “I tried to make it the way we had it

and it did like this …” indicating that their ideas had outputs that were not those that they

expected.

 129

The focus of the conversation and their work had shifted from the program

structure (conversation type I), to the details of the code they would use (conversation

type II), to write a program without bugs (program strategies I), and finally on how the

simulation looked (program strategies II). Even though that before students were seen to

think and talk about the structure of their programs, referring to the different “parts” of

the phenomenon they were modeling, they were now focused on simply getting a

simulation that would just show what happens, without any references to their initial

plans.

There is, however, a possible contradiction for the above argument: one can

possibly argue that students’ focus was depiction all along. When they were concerned

about the structure of the program, they suggested that “… we can make a bunch of little

programs to make it, ‘cause that [one single program] wouldn’t be as realistic […]

because the arrow would go hum, hum, hum, hum <gestures indicating different

directions of the arrow>.” (lines 77-80 from the whole group conversation on 13

November 2002). At that point students were referring to how the arrow traveling in the

air looks, and were using that information to support their idea of writing several small

programs. In the last part of the conversation, students were again concerned about how

the phenomenon looks, but now they were using that to write a program that would create

a simulation that would look like that.

It is possible, however, that talking about their future program may have been

more useful for making progress in developing a model of the phenomenon than their

first attempts to write a program. When they talked about program ideas, their focus was

on the program structure, thinking about how to divide their programs in ways that made

 130

sense to them. Thinking about the structure of their programs was helpful partly because

it helped students to break the phenomenon into small discrete programmable pieces that

have similar characteristics. When, on the other hand, students started writing the code,

they used trial and error techniques to write a program that would simply result in a

simulation depicting the phenomenon.

An additional possibility is that students started with particular ideas about what

and how to program. While typing code, they were also trying their code, a very easy

way to make sure that their program worked. It is possible that because they were trying

their program, they started thinking about how it looked (and not what the code

represented about the phenomenon); they wanted to get their program to create a

simulation that would look a particular way, without worrying about their code itself. In

fact, the last 10 minutes of the video of that day, while talking with me, seemed to have

captured students’ effort to fit their program into a theory they were creating on the spot.

They were using (fancy) words that they possibly heard before (e.g., momentum, line

325), without being clear how these were related with the situation.

322. Loucas: is that what happens in reality, it changes from an oval to…
323. Joe: I think yea, I think because um, <inaudible> because you <inaudible> straight up, but if you

put the bow like that it will go at an oval shape, but then near the end it will start to go down like a
circle shape.

324. Samir: yea because it’s, it is after it runs out of the …. It’s not like the <inaudible>
325. Joe: it runs out of momentum.
326. Samir: yea, it <inaudible> it goes really fast but then it starts to lose the power of <inaudible>

The difference in the fds of their two subroutines was due, as they indicate above,

to the fact that the arrow at the second half of its trajectory runs out of “momentum”,

which maybe a possible explanation for the program, but it came up as an explanation

 131

only when they have created a program that looked ok (using trial and error) and had to

justify it.

Figure 3.11: Comparison between Joe & Samir’s plans and first program5

5 The simulation on the screen in MW is different from what actually the program reads because when
turtles are replaced with characters such as an arrow, MW does not turn the picture of the characters when
there is code saying e.g., right 90.

to shoot
talkto "a
local "angle
make "angle 45
repeat 90 [seth :angle fd 5 make "angle :angle +
1 wait 0.1]
end

to shoot
talkto "a
seth 90
repeat 30 [fd 5 left 0.5 wait 0.1]
repeat 40 [fd 5 right 1 wait 0.1]
end

a. Joe & Samir’s (possible) proposed
program

c. Their simulation plans

e. How their simulation would have looked
on the screen

b. Joe & Samir’s first program

d. How their code reads

f. How their simulation looked
on the screen

 132

3.3.4. Program strategies III: Modifying code to change the science that represented

A third type of program strategies was characterized by students’ efforts to make

corrections to their code to represent correctly the phenomenon under study. This was

different from prior activities that were focused on writing and debugging code to make

their program to run. Rather, students’ focus during program strategies III was on

modifying the code to represent the phenomenon (in code) in addition to creating a

simulation of the phenomenon.

Students’ activities in program strategies III were different from program

strategies II, where students were making corrections to the depiction of the simulation.

In program strategies III, students’ focus was on how the phenomenon was represented in

code. For students to attend to the code and talk about how the code represented the

phenomenon, they needed to read the code instead of simply running it, and in this way

students started using the code to talk about the simulation. This is why this conversation

was only observed in 2 groups out of the total 4 that were using the MW. Due to this, I

only suggest that program strategies III shows a particular possible way of working with

CPEs rather than a well documented emerging theme of the study.

I do not suggest that this type of programming is an emerging pattern because it

was not observed in all groups. However, it indicates the potential use of the combination

of code and simulation to trigger conversations about how natural phenomena are caused.

That the students were indicating that the code was not ok, even though the simulation

looked ok, is a possible indication of thinking about using the code to read how the

phenomenon happens and possibly what might be causing it.

 133

An important implication of this type of conversation is that this is probably a

useful way of using CPEs for talking and developing models as representations of natural

phenomena. In this way, students used the code of the simulation to talk about the natural

phenomenon, and about the reasons why the code was not accurately representing the

phenomenon. Students conversations during this type of work was about and with the

code and in addition students were making references to experiences they had to support

their ideas, comparing code with simulation results and real-life experiences they had

about natural phenomena.

Episode MW7, Changing code to represent a new phenomenon, Joe &Nick, 4 December

2002

This episode describes the first 30 or so minutes of the meeting on the 4th of

December 2002. The meeting started with Joe and Nick, since Samir was late. The

conversation was about the program that Joe and Samir wrote during the previous

sessions. Even though their program resulted in a simulation that looked ok, the code of

their program was not in sync with what students seemed to have talked about during

their planning session.

3. Loucas: here is what I see. Repeat 30 fd powers and then left 0.5. so… if it is left 0.5 then you
start like that, and then you go like that, little bit, little bit like that. So you go left, left, left and
then repeat 40 right. So then it’s right, something like that.

4. Joe: yea, that’s right, that’s the, that’s what it does.
5. Loucas: ok, so you wanted to do that, and you didn’t what to do like a thing like that.
6. Joe: yea, we did want it to do that, but, um, like, actually I think what Samir um, like, control –F

place, this what it does.
7. Loucas: I understand, I understand Joe that it looks ok, but I am asking…
8. Joe: no, wait. Let me to, um, here 10, place, …um see what it seems to make is the shape is kind

of like that.
9. Loucas: ok. But if you look closely on your program, the program says that right? Because it’s

going left, left, left, and at some point it’s going right, right, right. So if it’s left it’s going like that,
and then … I understand that it looks like that, but the program actually does this, right?

10. Nick: but that looks ok.

 134

11. Loucas: I understand that, but there are two different things: how it looks and what the program
tells right?

12. Nick: but, well, what are, our purpose now is to show someone science, only, we are not showing
then science by them going on this, to this thing (the code window) and…

13. Loucas: why not?
14. Nick: because when we’re playing the games we can’t go into that control-f!

My first attempt to have a conversation about the code had similar effects as

before. When I draw their attention to the fact that their code said something different

from what actually seemed to happen in the simulation, their response was “But that

looks ok!” (line 10); their focus was on what the simulation looked like (line 4 & 6) and

not on what one could read from their code (line 12). Students seemed to use MW as

depiction medium, as a means that creates a simulation that shows how reality looked.

During that part of their work, their focus was on what they saw on the simulation screen

and whether that looked ok. Code in this case was only used to make the simulation look

as good as possible.

Nick, however, indicated something interesting. Even though he seemed to be

aware of the ability to read the code and figure out what the program did, instead of just

running the simulation, he indicated that there was no point for that: “when we’re playing

the games we can’t go into that control-f!” (line 14) meaning that the code was used to

write a program that creates the simulation, but after that is done, the code is basically

useless for the user.

To spark a conversation around the code, I suggested students to write a program

that would represent throwing a rock, hoping that the differences in the code between the

two programs (arrow vs. rock) would help students talk about what their code was

representing. Instead of writing new code, students decided to copy the existing code and

 135

modify it to fit the new phenomenon. This sparked a new kind of conversation! Nick

carefully read the program and indicated that “this program isn’t what an arrow does!”

(line 28).

28. Nick: no, actually this program isn’t what an arrow does! But anyway. An arrow actually, wait,
sorry, but…

29. Loucas: hold on. What’s that?
30. Joe: that throwing a rock it would make a shape.
31. Nick: ok, that’s what a rock does. What the program is doing that would what a rock does. This is

what an arrow does. An arrow drops just like a gun bullet does! A gun, like when you shoot a gun,
the bullet would drop.

The new discussion had two new characteristics. First, with Nick’s contribution

the focus on the discussion was on the code itself. Nick indicated that the first part of

their program (that resulted in the upward motion of the arrow in the air) was not what it

should have been. Things that are shot straight (like the arrow here – since the code

indicate a horizontal direction at the beginning of the program – and a gun bullet)

continue to move straight and “drop a little” (line 31). Second, Nick initiated a

conversation in which he made references to experiences from other situations that were

more clear: the case of a gun bullet was probably for Nick a clearer situation of what

happen in cases that things are thrown straight in the air: they move horizontally and fall

towards the ground.

32. Loucas: that’s not what happens here though!
33. Nick: yea, but that's what a real arrow does.
34. Joe: no, no, not really, a real arrow usually goes like that or something.
35. Nick: no! I’ve seen one.
36. Joe: yea, actually…
37. Nick: look, instead of going, they go like this.
38. Joe: and the arrow is just goes like that?
39. Nick: yea, and when it drop a little bit and then it hit.
40. Joe: …but amazing.
41. Nick: its power

 136

Now students started talking again about parts of their program, but the focus was

on the behavior of objects in their simulation, as this was reflected in the code. They were

talking about how the actual motion should look and what the arrow would do during its

motion. I need, however, to note that “how the phenomenon looked” was still part of their

conversations, even though, they were using it to support their ideas about how the code

should have to be. The focus, though, was on the code.

An interesting point about this conversation is that 18 lines before line 28 (in line

10) Nick suggested that the simulation looked ok. Now, in lines 28, 31 and 45, he

suggested that this was not what an arrow was/should be doing. Most probably, the

change in his thinking occurred due to his reading of the code – the simulation itself was

not helpful in really thinking what the arrow was doing.

45. Nick: it’s not what an arrow does! Unless you’re going like this <gestures>, but the <inaudible>
is going like this.

46. Loucas: but Joe, but why (Nick) do you say that? Because Joe is saying this is what happens.
47. Joe: Well, I mean. Yea, we can try and do that. But...
48. Nick: yea, but what I think if you want to make it more realistic then you can drop. You should

drop doing a little bit up.
49. Joe: well, we could do that, but …
50. Nick: cause, cause that would make it look more realistic but if you wanted to, if you wanted to

look realistic going like that, then make it go like this and then it, and then it will go…

Nick and Joe spent several minutes in changing the copied program according to

their new ideas. The focus of their work during that time was changing the code of their

simulation so that it represented more accurately the new phenomenon. In this group and

in others, too, this occurred after students had an initial program that they debugged, and

had a conversation about what it represented. The interesting thing here is that Nick and

Joe wanted to write a new program that would be similar to the one they had, but

different in the science that it represented. Instead of going through the process of writing

 137

new code, debugging it, then possibly fixing the depiction represented by the program

(that is what usually students did), they started with the program that it was running ok

and showing ok, to change the science it represented.

Among the characteristics of having simply to modify new code is the speed of

having a final product, that the focus is now on the science that the program represents

and not on the code itself or on how the simulation looks and also the fact that students

interact during their work. As indicated before (see section 3.1.4 & 3.2.2) during typing

new code, interactions between students are very limited, with only one student typing

and the other simply watching, leaving the group and coming back. While modifying

their code, however, students’ interactions were increased (in this case about 50 utterance

of a total 2 minutes of work!)

3.4. Summary of MW findings

Contextual analysis and analysis of student conversation revealed several

different types of conversation and activities for students working with MW. During

planning of their work (conversation type I), students working with MW mostly talked

about the structure of their program, breaking down the phenomenon they wanted to

represent in small programmable pieces that share common characteristics in the way the

phenomenon looked. During that time, students used the program language as their

communication medium and they talked about how their simulation would look in order

to support their program decisions. In conversations II, students talked about their

program details and how to program specific ideas. During writing and debugging their

programs, however, students working with MW focused on writing programs.

Conversation type III, which occurred during writing and debugging, and included

 138

limited interactions between students, which were strictly technical, i.e., about the code

and program primitives. In conversation type IV, students talked about how their

simulation looked, making references to everyday experiences, while debating whether

their simulation was “realistic.” Lastly, in conversation type V, students described what

happened in the in their simulations, using code as a tool for creating their simulation.

Early in their work with MW, students dealt with the characters (objects) and the

background(s) of their designs. In program strategies I, students were observed to write

and debug new code, while having limited conversations and trying to get their program

to run successfully without paying any attention to their program structure that they had

talked during planning their work. Program strategies II, include student efforts to correct

depiction of their simulation, fine tuning details of their simulations, and were starting to

have more verbal interactions about their work. I classified program strategies III as

efforts to modify code to change the science that representing, seeing the program as a

representation of the phenomenon. In this sense, modifying code however, to match, i.e. a

slightly different phenomenon or idea, seemed to be a more productive context for

modeling in science. Students were reading their program in detail and identifying what

each line of code represented, in order to make appropriate modifications. In this way,

students did not have to deal with any technical issues to make their program run – but,

they had to think of ways to represent the phenomenon in code.

 139

4. STAGECAST CREATOR FINDINGS:

CONTEXTUAL INQUIRY & ANALYSIS OF STUDENT

CONVERSATIONS

Contextual analysis of students’ work with SC revealed several common types of

students’ activities and conversations. Similar types have been identified in all three

groups whose work was analyzed and unless otherwise noted, examples of types of

students’ activities and communications were found in all groups.

Below, in separate sections I present conversation types (combinations of

conversation patterns that were common among groups that I analyzed) and activity types

(combinations of activity patterns). Conversation types (CT) include CT I: Talking about

the overall story line of their games, CT II: talking about the overall story in front of the

computers, CT III: Translating the story into code/rules, and CT IV: Talking while

programming. Program strategies (PS) (activity types) include students activities while

dealing with characters and backgrounds of their designs, PS I: Making and changing

programs and PS II: “Reading” and modifying rules.

4.1. Types of conversations

Findings from contextual inquiry and analysis of student conversation revealed

several different types of conversation that students had in different parts of their work

with SC. Below I present and discuss the different conversation types, providing

examples of student episodes.

 140

4.1.1. Conversation type I: Talking about the overall story line of their games

The first type of conversation that was common among the groups occurred in the

context of talking in whole class, talking about future work. This was a common theme

that I ran across every time I presented a new situation to students and asked for possible

ways for programming. It is important to note that this type of conversation followed

planning sessions that children had every time they were starting to work on a new

design, and thus it is possible to suggest that their presentation also reflects their planning

work.

When presenting their ideas for programming, students were talking about two

things. Firstly, they usually talked about the setting of their game/simulation that included

possible background, characters and possible details about the characters’ behaviors.

Secondly, students were talking about the overall story of what they were planning to

represent with SC, describing in details “scenes” of their story which would happen one

after another in their simulations. For instance, when we had a conversation about a ball

falling off a cliff, students would describe what is going to happen to the ball at the

beginning, how the ball was then going to have a faster speed, thirdly how that speed was

going to increase once more and so on, almost describing the motion of the ball frame by

frame. Unless I provided them access to a computer, students did not talk about ways to

program such motion. In a different group, students were talking about creating a game

(see episode SC1) in which balloons full of helium would fly with different speeds in the

air and a boy would shoot them down with darts, gaining points for each balloon that he

would shoot. It almost seemed that students were describing the overall story of what was

going to happen in their designs: I decided to refer to this as the scenario of their designs.

 141

Story details may not be useful for programming per se

Students were also very descriptive about the details of their scenario that might

have been not useful for programming their ideas per se. Being descriptive about details

of the overall story is more useful for making better and more “realistic”

games/simulations, simply because these details are probably important characteristics of

video games. These details included the kinds of the objects to use in their games, their

colors, etc. However, in many cases, students were not talking about the natural

phenomena in their designs, such as why and how different balloons (with different

amount of helium) travel with different speeds or how the darts for shooting the balloons

would travel after leaving the boy’s hand. A requirement for their work with SC in the

second phase of the study was to include in their designs things that happen in real life

and are related with science. Despite the fact that students were aware that for instance

the above two physical phenomena were parts of their designs, they did not talk about

details that were related with how that phenomena would happen and how they were

going to program them in their designs.

Viewing their work as creating games

Students working with SC seemed to view their work not as programming per se,

but rather as creating games. Programming in SC is the process of creating rules for

assigning behaviors to the objects of the simulation. Students were not concerned about

the development of particular rules, even though it was the only tool they could use to

develop their simulation. They seemed to view their work with SC as a process of

creating games, and this was reflected in their work during planning when they talked

about their plans for programming.

 142

Viewing their work with SC as the process of creating games, at least for the early

parts of their work, students were dealing with the details of their games rather than

thinking about the details of creating the program/rules that would create their

game/simulation. This seemed to add the difficulty of having to translate all the details

about the scenario of their game to programmable rules in SC (see discussion later about

their work during programming).

There is, however, a potential advantage of such thinking. Thinking about a series

of sequential events, which make a story, might be a productive way of analyzing natural

phenomena, breaking them in pieces that are meaningful for understanding and possibly

studying. This is in fact a known way of studying molecular phenomena in biology, such

as a series of events caused by one protein, which leads to the production of another

protein that causes an action (or reaction) leading to a change of a third protein and so on.

Even though thinking for natural phenomena (in the context of representing them with

SC) in such a way might not include any information about what is actually causing the

phenomenon, this might be a way that could possibly lead to, for example, a conversation

about combining scenes of the story in a rule that creates different scenes instead of

simply presenting each one independently. That is, rather that having three rules

representing three subsequent scenes of the falling ball, each one with a different speed,

students could have a single rule that would cause the change of the speed during the

motion of the ball. However, at this point of their work, students did not use any of their

ideas about their scenario to talk about how to program them.

 143

Episode SC1, Presenting ideas to whole group, Annie & Bryan, 18 November 2002

Episode SC1 took place during the second phase of the study. During the previous

meeting, students spent their time brainstorming ideas about their final project. The only

requirement was that their programs should include phenomena of science that happen in

everyday life. Each group had some time to think and talk about their ideas and how to

put them in a program. Students spent the meeting brainstorming ideas, looking at other

students’ programs related to science and mathematics (that were available on SC

website), and talking about whether their ideas were appropriate and easy to program.

During that meeting, students agreed that their programs would implement some kind of

a game that would include ideas from science.

The transcript below starts after students had some time to talk in more details

about their plans for their game. The excerpt is taken from Annie and Bryan’s

presentation.

51. Annie: we, the name that we end up deciding to call our game balloon shoot-out and the idea
is that are series of colored balloons and the different colors make them bigger. And…

52. Bryan: for example like the less point there, the bigger balloons are.
53. Annie: yea, like gold is to be tiny but it’s worth 50 points. And there’s different ones with

<inaudible> but gray we got a gray balloon and it’ll be a wipe-out and like the points will be
gone. And through deciding may, we don't know how many levels we’re gonna make, and we
decided that 3 wipe-outs is the end of that level. And if you are like level 2, you have to go
down to go to the bottom.

54. Loucas: what do you mean by wipe-outs?
55. Annie: like if…
56. Jeremy: deleted!
57. Annie: it’s like a <inaudible>
58. Bryan: no, you’re on a balloon and then, you are on a balloon and then you like flowing up

with a balloon except like if you pop into a greater balloon it will pop and fall back again.
59. Annie: but if you, if you, if you like we’re gonna have pots at the bottom, and you can

<inaudible> and aim it somehow, anything should be below<inaudible> The gray balloon the
all your points will just be deleted.

Thus far students talked about different details of the overall story of their game.

They presented them mostly in a visual manner, describing the story of their game and

 144

giving details about different characters (balloons) in their game. They were very

descriptive and as the conversation continued provided more and more details about

aspects such as the colors of the balloons, the size of the balloons and the speed of the

balloons, because those characteristics were important for their game: the “gold” balloon

worth more points, ought to be faster and if possible smaller so that it was going to be

difficult to shoot it down.

Being focused on the overall story of their game, students were not talking about

the parts in their game that were related with science (which in the previous meeting they

had discussed). Neither did they talk about how to implement all their ideas about their

game into code, a conversation that required talking about rules and how to translate an

idea (e.g., a faster balloon) into a rule in SC. As the conversation continued, I asked to

talk about their idea of the helium being the cause of the balloon’s speed.

12. Loucas: ok. Ok, ok. Um, are you thinking of making, are you thinking of what we talked
about like if a balloon has more helium it goes up faster, like this?

13. Annie: our balloons will go around the screen.
14. Loucas: but see, if a balloon, a balloon doesn’t, doesn’t go back and forth, it only go up, goes

up. Right?
15. Bryan: yea, that’s what, yea, that’s what we were saying.
16. Annie: but it wouldn’t go in straight path exactly.
17. Bryan: see, it will be like in the air and it will go like <inaudible> and it couldn’t go up with

the balloon, ‘cause then it could just like, let’s say there’s a gold balloon which worths more
points and then if you’re going up with it will be easy to shoot at that, if you only stay at one
position and then it, you can’t <inaudible>

18. Loucas: where are you going to put the person that shoots balloon? Where he or she’s going
to be?

19. Bryan: <inaudible> she is going to be in the sky, and there are gonna be this giant ball of
balloon or something.

20. Jeremy: oh my God!
21. Bryan: well I said there might be!
22. Seth: he should be on the side.
23. Loucas: so Bryan let’s, let’s focus on, on one balloon, let’s say one balloon, let’s take the red

one, ok? What’s, how do you program that balloon? So you have a balloon. What do you
want to do with that balloon?

24. Bryan: well, it says, if you go to the right one of those moving <inaudible> things, it says at
the bottom, it says that slow, fast, like it says like slow, kind of slow, fast, very fast. We could
like program the balloons and see like for make a gold balloon if we can put like first very
fast, but not, I mean fast but not really fast.

 145

25. Loucas: right, I know what you mean, you want to make each balloon to go fast, or faster…
26. Bryan: or slower
27. Loucas: …depending on something, right? But that you’re referring to you can’t change for

each balloon. It’s like changing it for the whole game. So you can’t make it faster or slow it
with that. You want to make a balloon faster, there are other ways to make that ok?
Remember like you made the ball coming down going faster? That way! Ok? So, we’re, we’re
gonna work on that. Good.

At the end of the conversation, Bryan started talking about a possible way of

programming the balloons’ speed, even though he did not seem to be really interested

about how to program their ideas. In addition, it was not clear whether Bryan was certain

about how to program balloons with different speeds, and his idea in line 24 possibly

indicates that Bryan and Annie did not talk about that before. Later in their work, Bryan

would bring up this idea again, and Annie would disagree, because Bryan in line 24 was

referring to the speed of the whole simulation and not to the speed of particular objects.

It is possible that Bryan in line 24 was just thinking of that idea, simply in response to my

question, and thus suggests that students did not think about those kinds of details

(programming details) during planning. They only talked about story details.

4.1.2. Conversation type II: talking about the overall story in front of the computers

Conversation type II was a conversation among students and myself, and

happened early during their work with computers. In conversation type II students were

sitting in front of a computer and in some cases, including the case in episode SC2 below,

students had started working with their designs. In all cases the conversation was

prompted by asking students what they were doing or what they were planning to do.

Shift in context of work did not seem to cause a shift in early conversations

Despite the change in the context of their work (in conversation type I students

were not sitting in front of a computer) students did not seem to have a much different

 146

conversation from before. Students talked about the simulation that they had already

developed and about the pieces of their story that were left to be incorporated in the

simulation. One could expect that, like students working with MW, the context of

actually programming with CPEs, can shift students’ focus to become more technical:

students had now the new task of putting rule or code together to implement their plans.

However, at this point of their work, students were still focused on their overall story that

they wanted to represent or parts of it that they had already represented and wanted to

modify or improve.

Talking mostly about their game scenario

During this type of conversation, students started to use SC’s programming

language. As figure 4.1 shows, however, talking with the PL was not as often as talking

about the story to be programmed. It is possible to suggest, as illustrated and in episode

SC2, that students were still in the “mode” of designing and talking about the scenario of

their games and in some cases overwhelmed by the details they wanted to include.

Programming language started to be used as a way of being more precise while talking

about their game scenario, possibly using it as the tool to create their game/simulation

and not as a tool to represent mechanisms that cause physical phenomena.

 147

Figure 4.1. Conversation type II

Episode SC2, Talking about their simulation and their story, Annie & Bryan, 18

November 2002

This episode is an excerpt from the conversation from Annie and Bryan’s group.

They had just spent some time developing a few rules for balloons to fly with different

speeds on the screen, and they wanted me to have a look at it. Their rules were simply

descriptive of the behaviors of the balloons without any explanation included about how

different speeds were caused. Their focus, however, was on the simulation and how that

looked and when I jointed their group, they first ran their simulation for me.

245. Annie: so, let’s, let’s get Mr. Loucas to look at this.
246. Bryan: ok. Mr. Loucas can you look at this?
247. Annie: ok plus, press play. The gold is fastest, then blue, then red.
248. Loucas: ok.
249. Annie: but, I’m gonna have more of these colors, but for now…
250. Loucas: so, ok, yea. So stop it. Let’s, let’s so, what, what do you need to do next?
251. Bryan: we just, we just.
252. Annie: it goes up and stops, it goes up and stops, it goes up and stops.
253. Bryan: we should, we should.
254. Loucas: ok, here it is. Here there is something running, moving at the same time. So now it

should look…
255. Bryan: oh, that's so cool!
256. Annie: yea, it’s perfect.
257. Loucas: ok, we’re getting better.

 148

258. Annie: but wait, if we add more balloons with the same color, will the same rule apply to
them?

259. Loucas: yep!
260. Bryan: yea! Cool!
261. Loucas: so, another question. What still needs to be changed?
262. Bryan: first we need to make the character, like a kid.

During the above 18 utterances, I asked them twice what needs to be changed in

their design, hoping to get into some conversation about things that were not depicting

physical phenomena (balloons traveling up, reaching the top of the computer screen,

disappear and re-appear at the bottom of the screen) or about ways to improve the rules

they had, in order to include the amount of helium causing the different speeds of the

different balloons, as they suggested earlier.

In both cases, their responses were directly related with the scenario of their game

and how their simulation looked. Annie in line 252 identified a depicting detail that

changing would result the simulation running more smoothly, focusing on details that had

to do with how their game looked. Bryan in line 262 talked about adding another

character for collecting the balloons that would fall, after they were shot down, focusing

on keep working to add the other parts of their game scenario.

Despite their focus on depiction, and using the simulation to create a game, Annie

and Bryan did not seem to be bothered by the motion of the balloons in their simulation

which disappeared from the top and reappeared from the bottom. From a science point of

view this was a (depicting) “malfunction”; balloons should either disappear from the

screen (i.e., keep flying up) or stay on the top of the screen if there was a roof. From a

game point of view, this was not a problem; not everything in games has to have a

 149

tangible scientific mechanism that can explain them, as long as they fit the game scenario

and have nice graphics.

As the conversation continued, I brought this to their attention, hoping to be a

starting point for thinking about physical phenomena and representing things that occur

in everyday life.

263. Loucas: here is what I see. I see balloons going up, and then coming from the bottom?
264. Annie: oh we need to stop, stop that, we need to stop, delete themselves at the top.
265. Loucas: ok
266. Bryan: yea, that’s, um …
267. Annie: but then how do we on going if the levels are going on?
268. Loucas: I know what we can do, I’m going back to the screen. We can, …
269. <silence while clicking/typing/looking on the screen>
270. Loucas: Oh, I think it’s on “stages”
271. Annie: no.
272. Loucas: yea, yea, yea. See? If I turn this off,…
273. <silence while clicking/typing/looking on the screen>
274. Loucas: <inaudible>
275. Bryan: yea, the person can’t move any more, like so, the person will always stays in one

place. It can’t like go up and it can’t…
276. Loucas: right, right, and he can… so you can make the person like being on a mountain,

being like here, so he’s gonna shoot the balloons going up, he can’t shoot them up there.
277. Annie: what would happen if they’re all filling and then like he’s …..

Instead of helping them to start thinking about what was causing things or at least

whether things that they had in their simulation happened in real life, talking about

making a change with balloons, got Annie and Bryan worried about their game: how this

change would affect their game story? Annie for instance indicated that she was worried

about what would happen if the balloons started piling up at the top of the screen (line

277).

278. Loucas: ooooooh, ok. So what, so what we can do is we can put either doors up there like,
magic doors that take the balloons somewhere else, or…

279. Bryan: that one would be, that wouldn’t be um science.
280. Loucas: ok
281. Bryan: we can make like the balloons pop, or be, or be deleted. Because…
282. Annie: or…
283. Loucas: because they’re off the sky.
284. Bryan: yea, they are out, well,

 150

285. Annie: or we can
286. Bryan: it can still, it can still be, like in the ozone layer but still pop because they pressure.
287. Annie: I have an idea. After they get to the top, like we can have a bird or a character,

regularly swimming around and as we have the farmer collecting the eggs, like the bird can go
past the balloons and then would…

288. Loucas: oh, there would be a bird flying, and the bird pops them?
289. Annie: yea, and it regular flies across the top
290. Bryan: yea like it has <inaudible>
[…]
298. Annie: you have to make, it would make sense for it to go regularly around and pop balloons,

and then there wouldn’t be at the top any more.

An acceptable solution was to add a character of a bird that would fly back and

forth on the top of the screen and pop the balloons that were “hanging in” there. Bryan

suggested to have the balloons pop when they reach the top of the screen, and supported

his idea by providing a possible explanation that the balloons would pop because they

would reach the ozone layer in the sky and the air pressure would pop them (line 286).

Annie did not seem to take Bryan’s idea into consideration and she suggested adding the

bird character.

Interestingly Bryan’s suggestion included an idea from science (air pressure pops

the balloons), even though his idea was far from being accurate. However, it seemed that

the “idea from science” simply fit their game scenario and provided an easy way out of a

situation that students did not like in their game. In this sense, students continued to be

focused on their game scenario, making sure that each detail was figured out.

I wanted to try once more to get them to talk about causality instead of simply

describing what happens in their game. It seemed that students were not talking about

“science” because at that point of their work it did not seem to be meaningful: why talk

about what was causing the balloons to fly in different speeds, when it is easy to assign

them with a simple rule that does just that without any need for explanation? However,

students could possibly talk about mechanism by talking about the story of the balloon

 151

which loses helium because the bird made a hole in it. Losing helium could have been

part of their scenario, but at the same time it was a mechanism that could account for the

change in the balloon’s behavior: at some point it would cause the balloon to start falling

towards the ground

308. Loucas: Bryan, what if we do now, what if you, instead of having different rules of this kind
[causing the balloons to move in different speed based on their color], what if you say, you
know, the gold balloon has 50 helium. And as of a more of the helium it has, the faster it goes.

309. Bryan: right.
310. Loucas: right? So that when, when the bird pops it, will start, will not like pop, it will just get

a hole loosing helium,
311. Annie: oh yea.
312. Loucas: so be coming right down, so the other person will have a second chance to shoot it,

that balloon. What do you think about that?
313. Bryan: and then the, um the like points, it cuts in half…
314. Annie: oh, oh!
315. Bryan: because like, it’s like helium inside it coming down.
316. Annie: but we could just have like a whole rule so that it could say anyone put down, but

what it would happen when it will make it to bottom, like a girl would run across.
317. Loucas: they could stay on the bottom.
318. Bryan: they’d just be on the bottom.
319. Annie: but they will pile up!

Once again, Annie and Bryan were focused on the overall story and whether the

new addition to their game would fit with the rest of their game scenario. Annie

suggested that the balloons would pile up at the bottom, unless a character ran across the

bottom of the screen and picked them up. Bryan, on the other hand, was thinking about

how balloons with holes losing helium would affect their scoring system for their game.

Students were very precise about details of their story, such as what would happen

to the balloons going up and then coming down, how to avoid them piling up on the top

or on the bottom of the screen. Despite that, students did not refer to any details of how

they were going to create rules that would result in such a story that they were talking

about. Their focus was to have a complete story, with all the characters and details in

place.

 152

Because of that, as I discuss later in students’ activity patterns, when they started

programming their game, students working with SC were focused on the whole, that is on

the “system” that they were designing and not on individual objects and their

characteristics and behaviors, as well as on what was happening instead of how that was

happening. Focused on the whole, Annie and Bryan wanted a program that would result

in a game with different colored balloons moving in the air with different speeds. The

mechanism of the balloons’ motion, and in more general the mechanism that actually

causes the different speeds in each balloon was not their concern. In addition, they were

interested to show what was actually happening in their design and not necessarily to

reflect how their rules created particular behaviors (blue balloon moved slow) and system

characteristics (e.g., a combination of three balloons moving with different speeds created

a particular pattern on the screen) . If depiction criteria were met, there was no further

need for any other kind of rule or any conversation about existing rules.

4.1.3. Conversation type III: Translating the story into code/rules

In this third type of conversation, students’ focus shifted to talking about the ideas

to be programmed using the program language. Their conversation became more

detailed: students started talking about how to implement their plans using SC’s

programming capabilities.

These conversations usually occurred well after students started working on a new

design. This might have been a possible shift in the context in which the conversation

occurred. The most important difference in the context in which conversation type III

took place is that students had already developed a number of rules for a number of

characters (objects) in their simulations. Now that students had spent some time

 153

programming, when talking about future work they seemed to talk about what rules to

make and what behavior each rule to cause.

Focused on programming

During conversation type III students were more focused on programming. As

figure 4.2 shows, their conversations were mostly coded as exchanges of talking with the

program language and talking about their scenario, in an effort to translate their ideas into

rules/code to add in the simulation. In this sense, students were talking about one idea,

and then talk about how to write a rule for representing that idea in the simulation. This

was an important characteristic of their conversations and it was different from talking

about how the phenomenon looks. Their focus before was on the scenario that they were

about to use in their programs. Here, in this third type of conversation, most of their

discussion about how to use SC’s program capabilities, probably suggesting students’

efforts to identify the most appropriate way of representing their characters’ behaviors.

The scenario of their game was still their concern, but their conversations seemed to

become more technical and focused was now on what kinds of rules to create.

Using the program language

An important characteristic of conversation type III is that students used the

program language. Students seemed to use the program language for two purposes: (1) to

tell their story, possibly utilizing the SC’s program language as a communication medium

to share and communicate their ideas, and (2) to be precise. As a communication

medium, program language can be more precise because it is used to develop instructions

for the objects to follow in the program. In this sense, a conversation about a

 154

disagreement about the motion of a dart (see episode SC3 for details) may better be

supported by the use of the program language, which can provide students with the clear

ways of talking about their ideas. In the case of a dart thrown horizontally, different

speeds of dropping while the dart moves, are important issues related to the mechanism

that causes the dropping to happen in the first place. The use of program language may

help students to have a productive conversation about the actual mechanism that causes

the phenomenon.

Making references to experiences

A second characteristic of this type of conversation is that students started making

references to experiences (this was not observed in the previous types of conversation),

referring mostly to known everyday experiences in order to convince each other about

how to program specific ideas in their games. Interestingly this mostly happened in the

context of debating about particular details of the rules (such as how many squares should

the dart fall towards the ground, or how many squares should the speed of a falling ball

change etc).

Now that students started debating about the details of their rules, they had to

support their ideas. To do so, they turned to experiences from their everyday lives, to

support their ideas with related phenomena that they observed daily. This might have

been the beginning of a conversation about the mechanism that caused the phenomenon

under study. Differences in the behavior of objects, discussed in the context of talking

about particular programming ideas, may or could have led to a conversation about what

actually is causing the phenomenon.

 155

Figure 4.2. Conversation type II

Episode SC3, Debating program ideas, Annie & Bryan, 25 November 2002

This conversation took place during the last 20 minutes of our meeting on the 25th

of November. The excerpt below is taken from a conversation that I had with Bryan and

Annie about the motion of the darts that a character in their game would throw in order to

pop balloons and gain points. The conversation focused on programming the motion of

the darts, a topic that students did not talk about before.

184. Bryan: ok, the character has like darts, like some darts in her pocket and the balloon start
rises and then she got to aim at a balloon and then throw. But she can’t … if you , if you
expect the dart to hit the balloon right when it’s aligned with you, that won’t happen because
you obviously miss because the balloon will still going up.

185. Loucas: ok.
186. Bryan: can I see the balloon for a sec? Let’s say, here is the dart like this, when it comes up,

something like this, and you aim right when in ….
187. Annie: but then again, if you’re going that slow, it has a chance of getting it, if going like

this, then it (the dart) starts it has a chance of making it. You shouldn’t…well, the dart, the
dart is really, really tricky.

188. Loucas: no, so let’s make the dart. So the dart, if you throw out, how would it go? Will it
keep going on a straight line?

189. Bryan: it will drop faster like after 7 squares.
190. Loucas: why do you think that?
191. Bryan: because if a dart it won’t stand, it won’t stand like at first it will go, yea, it first will

go (showing with his hands straight) and <inaudible>

 156

The first to talk about the motion of the darts was Bryan, who in a “story-telling

mode” talked about how darts were part of their game scenario. After adding a character

for a dart in SC, Bryan started talking about its motion. He suggested that after seven

squares of traveling horizontally, the dart would start falling (line 189) in addition to keep

moving horizontally. As I had seen before, Bryan was still talking about their story

scenario, but this time, he was talking about the story of the dart, starting to talk in detail

about its behavior.

Two different things in the above discussion are important to highlight. First,

Bryan started talking about individual objects. He was still talking about the story of

those objects but he was using the program language to refer to the details of the objects’

behavior: the dart would “drop faster like after seven squares” referring now to the

motion of the dart. This was probably a useful thing to be happening. Even though it is

possible to suggest that Bryan was still just telling a story, rather than focusing on the

overall story of the game, he was now telling the story of a particular object. He was also

referring to details of the objects’ behaviors (changes in the motion of the dart) for which

it might have been at least useful to use the program language for communication.

Second, as Bryan suggested (line 186), the dart’s motion could be getting in the

way of their game story, making it more complicated because, and as Annie indicated

(line 187), the user should shoot the dart(s) well before the balloon was aligned with her

in order to get it. From the perspective of science, students might have started attending

to some physical mechanism that would explain the motion. The actual motion of the

dart, however, seemed to interfere with the scenario of their game and at least in part, it

might had been counter-productive for their progress with this program.

 157

206. Bryan: it [the dart] will go like this. <showing on the screen that the dart moves on a straight
line for a few grid squares and then start falling down>

207. <silence while clicking/typing/looking on the screen>
208. Annie: no, but that’s unusual.
209. Bryan: It’s not like going straight out.
210. Loucas: what do you mean Annie?
211. Annie: it actually, it wouldn’t; it just look realistic if it went straight and then move like that.
212. Loucas: so, what she, what should it look like.
213. Annie: I think that the idea that going diagonally, I think that it would be exactly in straight

line <gestures indicating with her hands that the line would look downwards but should be
straight line> it just, it had to show these squares <inaudible>

As the conversation continued, Annie disagreed with what Bryan was suggesting,

specifically about the motion of the dart independent of their story, indicating that Bryan

was showing a rather unusual motion for the dart (line 208). When I asked Annie what

she meant by unusual, she indicated that she was concerned about the arrow going first

straight and then start dropping. She suggested that the dart should move diagonally from

the beginning. Figure 4.3 shows their different ideas.

For the next 50 utterances, Annie and Bryan continued to debate between the two

ideas, trying to state clearly their ideas and talk about which of the two ways was making

sense to represent the motion of the dart. Most of their effort was to show clearly to each

other the differences between their ideas. In line 274, Bryan started arguing against

Annie’s idea, indicating that if they used Annie’s ideas, the balloons that would be on the

other side of the screen would be difficult to be shot down, due to the distance from the

shooter. Annie was quick to indicate that that concern should not affect how they would

program the dart, even though Bryan seemed not to be satisfied with that.

Even though it was not clear whether both students were thinking in terms of the

particular motion of the arrow, without being concerned about their overall story of their

game, they seemed to have started attending to a discussion about the mechanism that

was causing the motion. They started referring to everyday experience to support their

 158

arguments about the characteristics of the motion, they were using the program language

to be precise about their ideas, and debated about an idea being “unusual” for

representing a motion. However, it is important to indicate that neither the conversation

continued to become a conversation about what actually was causing the motion, nor both

ideas were scientifically accurate. They just seemed to be changing focus, from the

overall story to the story of individual objects.

Figure 4.3. Bryan’s and Annie’s idea about the motion of the dart

Episode SC4, Two different conversation modes, Zen & Seth, 18 November 2002

This episode presents a conversation I had with Zen and Seth on the 18th of

November about their program. Zen and Seth were making a game in which two people

would compete in a race. Before I jointed their group, Zen and Seth were dealing with

characters and backgrounds for their game and they had also created one rule for one of

their characters to run.

This episode illustrates two different conversational types (II and III) which

occurred within a few minutes one from each other. It shows the shift from one type of

conversation to the other, as well as a shift in the focus of the conversation. When the

Bryan’s idea Annie’s idea

 159

conversation began, students started talking about their game, referring to details of their

story, without being specific about the program details. After a short prompt, students

started talking about developing rules for their characters to move and lose energy

because of moving, providing details about how their rules would look and what to

include.

155. Zen: um our bottle 1 is gonna be full of Gatorade. And that’s gonna depend, depending on
how much Gatorade you have in your runner is how fast they go. BUT, for every like certain
amount of vertical they’ll lose.

156. Seth: horizontal!
157. Zen:…horizontals they lose Gatorade, power. And so…
158. Loucas: ok. So, if a person stops, would he, would he or she be, um, getting energy up?
159. Seth: yea, yea, if you stop
160. Zen, no, no, no, but if they, if you couldn’t, I don’t.
161. Seth: we can’t just control them.
162. Zen: I want to make it so that you can control them, like, because I want to be like , there is a

long, long race and when it get close to like the end of the stage, it’ll move, automatically
move the whole stage over, you can do that I know! But, so like…

163. Loucas: yea, I know how you can do something different, but um along with those line…
164. Zen: yea, pretty much close, and so, you walk, you walk across and you see what’s in front of

you, after you are near like the end of the stage. And then so can we make it so that there is
like, um,

165. Seth: make a <inaudible>
166. Zen: there is Gatorade bottles that are just kind aligned around
167. Seth: no, no, <inaudible>
168. Zen: you have to drive it or you fall down a hole or something. You make him drive across

obstacles and if you hit an obstacle you like lose Gatorade power.
169. Seth: what I was thinking you’ve got Gatorade, is just like, it makes you, it makes you r

power go up and it’ll go up faster.

Zen and Seth were doing a nice job describing what they wanted to program. In

those descriptions, they were using the program language, a possible indication that, in

addition to thinking about what to program, they were thinking about how to program it.

For instance in line 155 and 157 Zen indicated that for a certain amount of horizontal

distance their runners move, they would lose power (which at the time was a variable that

they were thinking of creating). However, in their descriptions they were also providing

many details about different characters and parts of their story, possibly overwhelming

themselves with the details of their story. In a way, they were just telling me a story, with

 160

almost too many things happening at the same time. In line 157 Zen talked about

characters in the story to lose power when moving, in line 162 he talked about being able

to control the characters (make them move using the keyboard, maybe), in line 164 he

talked about having multiple stages that the race is going to take place, etc.

170. Loucas: so, let’s, why don’t you start with a person. Let’s program a person to walk.
171. Seth: we already have one.
172. Zen: you HAD a person to walk.
173. Seth: get them back in, no, no, no, they’re not in here.
174. Zen: yea, I just want to look, I just want to see if there is any people….
175. Seth: <inaudible>
176. Loucas: no, I put the person, the people are all in the other….
177. Zen: Yea, I don’t want to use those people cause it doesn’t look right with stage. Like… I just

wanna, I mean, I guess we can do this one, but it just looks kind of…
178. Loucas: ok Zen don’t worry about that. We can change the looks later. Let’s focus on the

person, the people now. So…
179. Zen: yea, let’s change it back to the one we had. Ok.
180. Seth: we already have one
181. Zen oh, yea. What did I have, cats?
182. Seth: no, you had Milo, which is already there. We already had it in there, we’re just putting

it over and over.
[…]

188. Zen: I don't want those people.
189. Loucas: you don't want them? Why not?
190. Zen: just cause they’re, I mean even though they have those like different positions so it looks

like they’re running, I just don’t really want them, you know? Like kind of funnier people to
look interesting….

Without any success, in the last 20 utterance I tried twice to make them start

thinking about how to program their runners! Students were still focused on depicting

details of their story. Zen did not like any of the characters available in SC to use for their

race – and also they were unsuccessful to find new ones (lines 177 & 190). Even though

in line 190 Zen did recognize that the characters that I prepared for them had several

positions (that is different pictures that can be used to animate the characters using 2-3

simple rules in SC), he indicated that he wanted “funnier people” that look interesting. I

was going to try once more, specifically to ask them to start with programming.

191. Loucas: sure. So let’s program though these people and then we can change their shape and
we can, we can import whatever picture you want.

 161

192. Zen: yea!
193. Loucas: but I want you to do some programming.
194. Zen: so this guy knows how to walk right. He walks right, he walks 2 spaces…
195. Seth: he goes, we have to make his energy speed at 30 or something.
196. Zen: no their energy speed has to be like 5. No, no, no their energy speed should be like 10
197. Seth: 10
198. Zen: 10, yea, 10 and then you lose energy speed,
199. Seth: no we should make…wait, go down…
200. Zen: you lose 2 energy speed every time…
201. Seth: no he loses 3, the other guy loses maybe….

Now their conversation shifted to describing more specific, programmable details

about their runners. They agreed that their starting power/energy was going to be 10 and

they started to debate about the amount of energy that the faster runner was going to lose

every time he walked 2 spaces. In this conversation, they were using “energy/speed” to

refer to a variable that was basically an indication of the runner’s energy. Gatorade, that

came up in the conversation earlier, seemed to be connected with the runners’ energy,

because they seemed to think of Gatorade as the drink which would restore original levels

of energy for their runners. As I found out later, they decided to name that variable

energy/speed because the speed of their characters was based on that variable.

202. Loucas: so where, where every, your rule here, click on the rule, that is saying that it loses
energy?

203. Seth: no, no we haven’t said that yet.
204. Loucas: ok, so you need to do that.
205. Seth: click it twice, click it twice.
206. Zen: no, I mean is it gonna be another rule that says for every [vertical motion he loses

energy], or that has to be the same rule [with the motion]?
207. Seth: no, no, no, that’s yea….
208. Loucas: well if you’re walking and you’re loosing energy because you’re walking, what do

you think?
209. Zen: no I think it’s not, he’s loosing, loosing energy, he slows down and then he has to go

again. But then, um I think that, I think it should be like you can <inaudible> walk but then
the more like, the more Gatorade bottles you got the faster you can go. Or….

As the conversation continued, Zen asked me a question about a rule. Not only

did they talk about how to program different characters’ behaviors, but Zen asked

whether a rule could cause two related behaviors: one being moving and the other being

 162

losing energy because of moving. This was a possible indication that Zen was thinking

about the program language itself and not simply about how to implement his ideas with

SC. In addition, the question was touching on one of the basic characteristics of SC.

Rules in SC cannot have relationships between them (that is you cannot “call” a

subroutine (rule) from within another rule, a technique frequently used in formal textual

program languages). A way out of this was that you can create separate rules for the

different behaviors and place them under a “do-all-and-continue” subroutine. In this case

SC runs them both before moving to other rules. Another way (which was the way that

Zen and Seth decided to follow) is to have both actions on the same rule: moving and

losing energy.

Even though the conversation started to become technical, students were basically

telling their story using the programming language. Like Annie and Bryan, the

conversation continued with being about translating a story to rules so that it could be

programmed in SC. In many cases that resulted in students talking about one idea (talk

about their story) and then debating different ways of programming that idea (talk about

what code to use).

4.1.4 Conversation type IV: Talking while programming

Students working with SC continued to talk and exchange ideas during

programming too. However, other than talking during the process of creating rules, there

was not a specific “type of conversation” in their communication during programming.

During programming, however, students usually stayed in their groups and the process of

creating rules did not seem to hamper their interaction. Unlike students working with

 163

MW, students working with SC continued to talk during programming, in part debating

about details of the rules they were making.

There were, of course, small pieces of conversations for different purposes such

as short conversations similar to type II conversation, where students were trying to

translate their story into program in SC. Also, there small pieces of conversations where

students were giving directions to each other about particular ways of programming.

Students first talked about the part of the story that they would program and then

suggested possible rules to assign to the characters that would result in that part of the

story, like Seth and Zen in the following excerpt:

210. Seth: remember when you stop and the energy going up again? Remember? Remember?
211. Zen: yea.
212. Seth: So we have to do that.
213. <silence while clicking/typing/looking on the screen>
214. Seth: now we have to make it [the rule] when it’s, when it [the runner’s energy] gets to 0 it

goes up. <inaudible>

Seth reminded Zen about making their runner to re-gain energy after he stopped

and when Zen agreed, Seth indicated that they had to make a rule in which when the

energy level is 0 (and the runner would stop running), the energy level would start going

up.

During programming students also had conversations in which they gave direction

to each other, about how to create rules for particular behaviors. This conversation was

more technical than the previous conversation of translating a story to programmable

rules, because students talking about particular actions (click here, drag this in this square

etc) for developing rules, giving each other directions as where to click and what to type.

 164

The following is an excerpt from a conversation between Seth and Zen on the 25th

of November 2002, and happened during programming.

96. Seth: now we have to make that his energy goes down. No, make a rule, make a rule.
97. <silence while clicking/typing/looking on the screen>
98. Seth oh, yea, make a rule. <inaudible> move it down.
99. Zen: this gonna go…
100. Seth: wrong one, wrong one.
101. <silence while clicking/typing/looking on the screen>
102. Seth put 10. ‘Cause remember?
103. Zen: 10.
104. Seth: remember he has more energy.
105. Zen: So? He doesn’t stop as much.
106. Seth: oh, because he <inaudible>
 […]
112. Zen: now what?
113. Seth: oh, we did "and if.." wrong <inaudible> hit the other one.
114. <silence while clicking/typing/looking on the screen>
115. Zen: we need another variable.
 […]
152. Seth: no, make a new rule.
153. Loucas: why make a new rule?
154. Zen: because he has to <inaudible>
155. Seth: click that, double click that.
156. <silence while clicking/typing/looking on the screen>
157. Seth click that, click that.
158. Zen: it has to be, ok. This…
159. Seth: click that. Energy. Subtract, this <inaudible> what energy is.
160. Zen: from….
161. Seth: energy.

In the excerpt above, Zen was holding the mouse and Seth was providing Zen

with directions of what and how to program based on the plans that they had previously

discussed. In the conversation, Seth was providing step-by-step instructions of how to

create rules for particular behaviors, and he was also showing to Zen parts of rules that

they created which were “wrong” (line 113).

Generally speaking, in their conversations during programming, students were

neither talking about different ideas to program nor debating about how a particular

behavior should be programmed (how much did the speed of the ball change during

 165

motion, for instance). Rather their conversations were about translating their story into

code and giving directions to each other for creating rules.

4.2. Program strategies

Contextual inquiry also focused on students’ activity patterns during their work

with SC. There were several combinations of activity patterns that were consistent among

all three groups that were analyzed. These are presented and discussed below. They

include students’ activities while dealing with characters and backgrounds in their

designs, creating and changing rules, and students’ activities while “reading” and

modifying their programs.

4.2.1 Dealing with characters and backgrounds of their designs.

When starting a new project with SC, students spent the first 20-30 minutes

dealing with their designs’ characters and backgrounds. During that time, their activities

were coded mostly as finding and placing characters and backgrounds. Students were

trying to identify those characters that would be more appropriate for their games. Figure

4.4 is an example from Annie and Bryan’s group.

Figure 4.4 shows students actions during the first 20 minutes of their work with

SC. As soon as students started working with SC, they spent the first 50 utterances

browsing through characters. They briefly talked about their program plans, and about the

characters that would have been appropriate for their design. For that purpose they

“explored” different possibilities available through SC, looking specifically for characters

and backgrounds for their program.

 166

Figure 4.4. Students’ activities in the beginning of their work

During the last 50 utterances presented in figure 4.4, I came to their group and

asked them what they were doing. The conversation mostly revolved around their

characters and backgrounds that they would like to use or started to use for their design.

Students were talking about what characters they found and how they have modified their

scenario based on the available characters in SC. They also talked about the part that each

character would “play” in their game scenario, in addition to being detailed about how

their characters and backgrounds looked.

Students’ early work with SC had two important characteristics. First, students

were only concerned about how their backgrounds and characters looked, dealing with

depicting details of their characters and backgrounds. For instance, Zen and Seth were

also looking around for characters for their race game, and were talking in detail about

how their characters looked and whether they were appropriate for their game, as shown

in the small excerpt below.

 167

16. Zen: please, please, please, I’ll, I’ll, I’ll just gonna, <inaudible> stages. Ok. There aren’t any
stages. Now, are there any specials?

17. (few seconds looking on computer without talking)
18. Seth: well, we don't need jar.
19. Zen: that’s what I was thinking. Ok, now, characters,…
20. Seth: do they have different appearances?
21. Zen: I exactly….
22. Seth: he’s way too big.
23. Zen: it’s ok, one is bigger because he runs faster but has to slow down a lot.
24. Seth: which one?
25. Zen: ou! That’s interesting. Ok. Smaller one goes slower, but he doesn’t slow down as lot.
26. Zen: no, it has to be like a brown <inaudible> here. He’s running.
27. Seth: we just say go and he trippers, and he slows.
28. Zen: no, no
29. Leaving from Stagecast, going to Internet Explorer, Google, to find characters for their

design. They come back after about 10 minutes.
30. Zen: Ok, they’re both stupids.
31. Seth: you once click on one guy.
32. Zen: ok. <laughter> ……
33. (few seconds looking on computer without talking)
34. Zen: oh, big boy can go…, whow! It’s huge!

(excerpt taken from Zen & Seth
 group, 18 November 2002)

In the above excerpt, Zen and Seth were trying to find characters for their game,

in which two boys would run in a race. In the first few lines (16-18) students were

“exploring” SC’s windows, in a search for stages and in line 20 they entered the

characters’ window. During the next few lines their conversation was about how the

available characters looked (one was “way too big” – line 22 – and the other was smaller,

but they were both “stupid” – line 30). They talked about details of the characters, that

were not necessarily important about programming in SC, but they were rather important

for their game and how it looked.

A difference with students working with MW is that students working with SC

did not try to create a character from scratch, as some of the groups in MW did. Rather,

students working with SC were willing to change their overall story in order to use the

available characters to fit their story. It is possible that in creating games, visualization is

a very important factor, because it is used to “tell” and “show” the overall story of the

 168

game. Despite the importance of the overall story to students working with SC (supported

by their planning sessions and a big part of their work, as presented later in this chapter),

and despite the rather user-friendly interface of SC (including tools for drawing

characters) students were willing to change their story to fit the available characters. In

one view, students were telling a story with their simulation, and depiction was an

important part of that simulation.

A second important characteristics of students early work with SC, is that students

wanted to make sure that they had all of the characters for their story in place (or at least

most of them) before starting programming. After having them in place, students started

creating rules for their behaviors. Unlike students working with MW, most of the

students using SC did not return to deal with characters later in their work.

Characters were so important in their work, that during this exploration phase of

their work, students would easily change their plans, due to what was readily available in

SC. In fact many of their ideas in their stories derived from the software availability. Zen

and Seth for instance talked about using a character of a bottle as Gatorade for their

runners, to help them restore their lost energy.

4.2.2. Program strategies I: Creating and changing programs

Program strategies I, is a combination of activity patterns while students were

creating rules for their games/designs. In the first type of program strategies, students

were making rules, running their programs and then making changes in their original

programs as a result of what they saw on the screen.

 169

Creating rules

As with students working with MW, students working with SC were making rules

and then they were trying each rule. The difference, however, with program strategies in

SC is that students were running their program (rules) very frequently, at least more

frequently than students working with MW. This might have been caused by the fact that

rules in SC are independent programming units that SC can run individually. Every time

students developed a new rule, they usually ran it to check it out. Figure 4.5 shows how

this rule creation and testing looked.

That rules, however, are small independent units of programming in SC had a

clear disadvantage. In all three groups that were analyzed for this study, students at some

point were confused with the large numbers of rules that their programs included. Annie

and Bryan for example could not understand why the fishes in their program could not

eat other fishes when facing to the left, whereas they could eat other fishes when facing

the right. At that point, their program included eight rules for the motion of the fishes

(including four rules for diagonal movement) and another rule for eating other fish when

facing to the left. Even though they tried going over their rules, they did not seem to be

able to identify the missing rules. Similarly, in more that one occasion, Seth and Zen

decided to simply delete all of their rules and reconstruct them from the beginning,

instead of trying to figure out what was wrong or missing with their program (this

happened while creating a program that had a ball falling, discussed in 6.2.2., and once

while working on their race game)

 170

Changes in the programs

Making changes in the programs was in most cases the process of deleting a rule

and creating a new one. This was also an important characteristic of the students’ work at

that time, because they did not seem to try to identify what was wrong with their rules

and to make changes in a rule. Instead, they preferred deleting a rule and re-writing it.

Figure 4.5 shows the combination of activity patterns for program strategies I.

It is important to note that rules in SC cannot have syntactical errors, which can

cause a bug and prevent the rule from running successfully. Due to the scaffolding that

SC provides for programming, the only thing that can go wrong is to create a rule that

causes a behavior that is different from the one intended.

Thus, an important issue is what a new rule looked like as opposed to the old rule

that students deleted. As I discuss in episode SC5, in most of the cases students did not

try to see what was wrong with the old rule (later in the chapter I provide some evidence

from a single group in which students were reading and modifying their rules). However,

early in their work, when their programs consisted of only a few rules that were relatively

simple (did not include a lot of behaviors or any variables) students seemed to know what

was wrong with particular rules but preferred to simply recreate them rather than edit

them and make corrections.

This is not to suggest that students were deleting their rules without being sure

what was wrong with them, because there is some evidence (that I provide below) of the

contrary. At least in some cases students were talking about what was wrong with their

programs (in some cases they specifically talked about particular rules) and simply

 171

instead of editing and making changes in their rules they deleted their rules and created

new ones. Being accustomed to deleting rules instead of making changes in their rules,

can become problematic for modeling. Instead of trying to read their programs, students

may simply try to re-create rules without always being clear about what they were

making differently.

Figure 4.5. Program strategies I

In addition to writing rules and running their programs, students also had brief

conversations about what was “wrong” with the rule they just created and what their

actual intentions to program were, in an effort to identify what was wrong with their

programs and fix them. This is represented in figure 4.6

 172

Figure 4.6. Program strategies I

Episode SC5, Program strategies I, Annie & Bryan, 18 November 2002

This episode took place at the beginning of Annie and Bryan’s work with their

new game. So far they were dealing with characters and backgrounds in their designs and

in line 205 they started making rules.

205. Annie: all right. Let’s make it move, um 2 boxes, at a time.
206. Bryan: like, why not 1?
207. Annie: cause that would be so easy to shoot.
208. <silence while clicking/typing/looking on the screen>
209. Annie: done. Now let’s play. Right.
210. <silence while clicking/typing/looking on the screen>
211. Annie: stop! Ok, give me 3.
212. Bryan: No, that should be the gold.
213. Annie: yea. That's too fast.
214. Bryan: never mind, change the rule and make it one square, instead.
215. <silence while deleting the rule and making a new one>

Students began working with creating rules for the balloons. They first worked

with the slow balloon, creating a rule to move the balloon two grid squares every

machine cycle, because it would have been “too easy to shoot” (Annie, line 207).

However, after trying their first rule, Annie and Bryan thought that it was too fast.

 173

Despite Bryan’s suggestion to change their rule, Annie deleted the rule and created a new

one that had the balloon move slowly.

After that, they continued working with the blue balloon, making a rule for

moving two squares at a time, and then continued with making a rule for the gold one. In

every case they made a rule, and then tested it right away. While testing it, they talked

about whether it looked ok (that is, was it too fast, or too slow?) and whether it would be

ok for their game. For instance, in line 243, Annie indicated that it was just too easy to

shoot their gold balloon, because it was moving slow. Bryan disagreed with her (line

244), indicating that how easy to shoot a balloon was not only based on the balloon’s

speed, but also on the trajectory of the dart that would shoot the balloon.

227. Annie: perfect. Now blue is next. It should go 2 squares. And then….
228. Bryan: 2 squares, but still slow.
229. Annie: yea, ok.
230. <silence while clicking/typing/looking on the screen>
231. Annie: I don’t know this kind of square <singing a song>… and move 2
232. <silence while clicking/typing/looking on the screen>
233. Bryan: and then gold should just be one but make it fast.
234. Annie: and then how we would do that?
235. Bryan: oh, (showing the frame speed on the program)
236. Annie: that looks wrong. That cleared; it’s pretty good.
237. Bryan: yea, I, I think so.
238. Annie: ok. Now let’s do gold. Let’s make gold 3. Just to see what it looks like and then if we

don't like it we can delete the rule.
239. <silence while clicking/typing/looking on the screen>
240. Annie: ready?
241. Bryan: yea.
242. <silence while clicking/typing/looking on the screen>
243. Annie: why don’t; we make it go a little bit faster? It’s just less easy to shoot. Ok?
244. Bryan: um, ok. See like, it won’t go like, it won’t, like a dart will go like this. It will go like

do, do, do, do so it may not be like that.

During program strategies I, students started to develop rules for their designs,

focused on the overall story of their games. They were trying to create a simulation that

was aligned with the story underlying their game, and in some cases they modified that

story to fit the programming capabilities of SC. Despite the fact that programming in SC

 174

requires from the user to think about individual objects and their behaviors, students

seemed to keep thinking in terms of the overall story and how rules were creating parts of

their story.

In addition, during their early work with new designs (as the episode here shows)

students did not have any conversation about what might have been causing the different

phenomena in their game (e.g., what was causing the different speed for their balloons).

Students were creating simple rules that created a simulation of how the phenomenon

looked, and did not include in their rules anything about what the mechanism that was

causing different objects’ behaviors. In this sense, their models were simply descriptive

of the phenomena they were representing.

4.2.3. Program strategies II: “Reading” and modifying rules

A second type of program strategies occurred later in only two of the groups (Zen

& Seth and Sean & Tyra, could not be confirmed by findings in the third group). In those

instances, students were not running their programs in order to identify flaws; rather, they

started “reading” their rules and were having conversations about what their rules were

doing and how should they change them. I do not use program strategies II as an

emerging type of activities but rather as a possible way in which students (as partly seen

in the study and) can use SC’s tools for developing representations of natural phenomena.

Figure 4.7 shows typing, deleting, reading and changing rules.

 175

Figure 4.7. Program strategies III

That reading code did not occur in frequently, could suggest two possible things.

First, as additional findings suggest (see discussion in the chapter 5), it might be difficult

to read actual code in the form of rules in SC. Programming in SC is object-oriented.

Code is written for particular objects and it is physically linked with the objects (“hidden”

in windows that can only be seen if you double-click on characters). In addition, the

activity of programming is a dynamic activity. Basically, the user needs to click on the

program button and on the character that she is about to program, which launches a sub-

application within SC. This takes the system into programming mode, which basically is

a recording mode of changes. The programming mode is terminated when the user clicks

on a “check” button. However, when the process of programming is done, programs are

presented graphically to the user by beginning and ending states (Smith, Cypher, &

Tesler, 2000). Thus, it seems that there is a gap between how programming is done and

how it is represented – Smith (1994) refers to this as the programming-by-demonstration

problem – whereas in traditional programming media, that is not the case: programming

 176

is done by typing, and reading the program, or just reading the already typed code.

Graphical rewrite rules in SC serve as graphical reminders of the programs and they are

not full representations. Rather they are hints of the rules (Myers, 1986). However, for

debugging, the user needs to go to the appropriate character’s window to locate the

existing code. This is different from MW, where all the code for every object is located in

the same window, where new code can be written or existing code can be changed.

Second, it is also possible that extensive experience with SC might help students

overcome this problem of reading code in the forms of rules, as it possibly happened in

this case, and as such students can debug their programs without necessarily running

them. I highlight this finding because it is rather important for using programming in

science. One of the advantages of programming is that one can read students’ code and

see how they represented the phenomenon. More importantly, students can read their own

programs, which can possibly help them focus on the structure and mechanism that is

causing the phenomenon, rather than the function and depiction of the simulation. In this

case, by focusing on the code (or rules in this case) it might be much easier to focus on

representing the causal mechanism of the phenomenon in the programs and not just

writing rules that simply show what is happening.

4.3. Summary of SC findings

Contextual analysis and analysis of student conversation revealed several

different types of conversation and activities for students working with SC. In planning

their work, students working with SC talked in detail about the overall story of their

games (conversation type I), describing a succession of events that would happen in

sequence, one after another. That is the way they though of using SC, to represent a series

 177

of events, even in the cases of developing games. Their programs usually consisted of a

large number of rules (as opposed to the single routine that early programs in MW

consisted of) that were meant to be run by SC in sequence. In conversations II, students

continued to talk about the story of their game, even thought they were sitting in front of

their computers, ready to start developing their games. In conversation type III students

were trying to translate their story into rules, were focused on programming and used the

program language in their interactions. They were also making some references to

experience to support their proposed ideas for their programs. Conversations type IV was

coded as the conversations that students had while programming.

Early in their work with SC, students dealt with the characters (objects) and the

background(s) of their designs, spending much more time with how their designs looked

that the time that students working with MW did. In program strategies I, students were

observed to create rules for their programs, with changes being made in the form of

deleting rules and making new ones. During program strategies II students were reading

and modifying rules of their programs. During creating and debugging their rules,

students working with SC were focused in translating their story or game into rules that

could be used to program a simulation. Their focus was on creating a simulation that

would depict reality as well as possible, in addition to meet several criteria of good

computer games (i.e. visualization, story plot, scoring system, levels of difficulty).

 178

5. COMPARISON AND DISCUSSION OF FINDINGS

FROM MW AND SC

The purpose of this chapter is to summarize and compare findings between

students’ work and their conversations with MW and SC, mostly from the second phase

of this study. The purpose of this study was to investigate in detail the potential use of

CPEs by young learners for modeling in science. The discussion below is based on the

approach of using CPEs as modeling media in science. However, and as important,

during the study, students worked within a framework of using CPEs to represent

physical phenomena. In this sense, students were not using CPEs exclusively as modeling

media. Students working with MW, for instance, tended to see their work as the process

of writing sequential programs or representing phenomena with simulations. On the other

hand students working with SC tended to see their work as developing games, and, at

least in some cases, developing games was in conflict with development of models in

science.

I also isolate and discuss the characteristics of CPEs that were supportive (or not)

for collaborative modeling practices in science. The summary and comparison includes a

discussion of several emerging themes about students’ work with CPEs in science. I start

with a comparison of students’ activities and conversation with respect to their

approaches to planning, writing and debugging code and using code as a representation of

the phenomenon. In this discussion I summarize findings from the two previous chapters

and highlight differences in students’ activities and conversations that can support

collaborative modeling behavior in science. (Characteristics of students’ modeling

practices are discussed in the next chapter). Then I turn to a discussion about what a

 179

productive conversation about modeling in science looked like in this study, and what

were the characteristics of modeling conversations in the context of using CPEs for

developing representations of physical phenomena. In the third section of this chapter I

summarize prior discussions about students’ activities and conversation in a different

way, to talk about different approaches for using the two CPEs in the study. Finally, I

include a discussion about the nature of different program strategies in MW and SC.

5.1. Students’ activities and conversations while developing representations of physical

phenomena

In this section I compare student behavior with the two CPEs with respect to (1)

approaches to planning, (2) approaches to writing and debugging code, and (3)

approaches to using the code of their programs as representations of the phenomenon.

5.1.1. Different approaches to planning

While planning their work with MW, students talked about the structure of their

programs (see section 3.2.1). Like Joe and Samir who talked about having 3 sub-

programs to represent the different parts of the phenomenon, and Aaron and Richard who

talked about 2 sub-programs to represent jumping, students were breaking down the

phenomenon under study into small pieces, based on the behavior(s) of the program’s

objects. Parts of the program in which an object had similar behavior were grouped

together (e.g., the object moved in the same direction). Students avoided providing any

details about the code of their programs, even though they seemed to have an idea of how

their programs would be (see episode MW1). Samir for instance talked about that they

wanted to have a routine for changing the angle of the moving arrow, but he did not talk

 180

about how much they wanted the angle to change. While planning their programs,

Richard and Aaron started writing programs that included details such as amounts of

forwards in their programs etc, but when they started talking about them, they talked

about how their programs (that represent jumping on the moon and jumping on the earth)

had combinations of forwards and waits with different amounts to result in different

“speeds” of the jumping person. They also talked about the structure of their programs,

but did not talk about the details of each program. In many cases they preferred to start

typing code instead of talking about what they were thinking to type (see episode MW2).

They also talked about the possible results of their program ideas (simulation) to support

their program decisions. The simulation as an outcome of their proposed program was

used to support their program ideas: a proposed subroutine would result in a particular

simulation which would represent a particular part of the phenomenon under study.

Conversations about the structure of their program were starting points of

productive conversations in science. MW students working with MW were breaking

down phenomena into (programmable) pieces based on the identification of the parts of

the phenomenon that shared similar objects’ characteristics. In doing so, students had to

start thinking about possible similarities and differences between the different parts of

phenomena. The subsequent development of programs was based on the differences of

the objects’ behaviors (parts of the phenomenon with similar object behavior were

represented by the same subroutine), even though students were not representing what

was causing those changes in the objects’ behaviors. For instance, Joe and Samir

developed a program to represent an arrow flying in the air. Their program had two lines

of code that corresponded to the two parts of the phenomenon that they identified: one

 181

while the arrow was moving upwards and one while the arrow was moving downwards.

Each line of code was an independent subroutine that created a particular motion, without

any relationship between the two subroutines. In a way, their program was “suggesting”

that at some point of the arrow’s trajectory, the arrow switched from going upwards to

going downwards. Students did not talk nor did they represent in their program what was

actually causing the arrow’s behavior: one way could have been to have a particular

subroutine that would make changes to the arrow’s direction. That is, rather than simply

showing what happens in a sequence of events, students could have had code that could

cause those events.

On the other hand, students working with SC were planning their work by talking

about the story (scenario) they were about to program. Rather than talking about

program ideas, students tended to focus on the overall story line and talked about what

their simulation would look like (see section 4.1.1). Annie and Bryan for instance talked

about their game being about shooting down helium balloons that travel at different

speeds. They indicated that the player would use darts to shoot down the balloons, they

talked about how scoring would be done and what the player was supposed to do, and

after what score would she move to the next level. Zen and Seth, on the other hand talked

about what was going to happen in a game about two boys running in a race, how one

would run faster than the other, but have to stop more frequently to get some rest. The

conversation was about a sequence of events that students would show through their

simulation. Unlike students working with MW, students working with SC were providing

a lot of details about their scenario, including details about the settings, the

 182

objects/characters in the story and how they looked, in addition to details about the

scenario (for one example see episode SC1).

In talking about their scenario, students were breaking down ideas, in a number

of sequential events: what would happen first, second, third and so on. It was almost like

students were describing a movie, talking about each scene one by one. Simulation was

used to justify their program decisions rather than used to support their program

decisions, as in the case of students working with MW. Students needed to design a

particular simulation, so they were talking about ways to develop programs that would

cause that simulation. Thus, students working with SC talked about their simulation as a

sequence of events that each one happens after another. Code was used to create this

simulation.

Talking about representing scenes of a scenario is not a productive conversation

for modeling in science. As previous research about the use of CPEs as modeling media

suggests (Colella, Klopfer & Resnick, 2000), students working with SC were talking

about the system (overall story line) they wanted to program and about the system

characteristics and system changes. System behaviors and changes are caused by object

behaviors, and more importantly modeling the system requires modeling objects’

behaviors that would subsequently cause system behaviors, especially if you are using a

CPE – like SC – which uses object oriented interfaces for programming. This means that

the user cannot model a system behavior simply because a system is not an object, but

consists of a number of objects. The programmer needs to think about the objects of the

system and the objects’ behavior that cause system behaviors and system changes.

Students’ stories were made up of a number of characters (objects) that had particular

 183

behaviors and interactions. Those object behaviors and interactions caused the system’s

(story’s) characteristics and behaviors: talking about the system characteristics is easier

then representing them, because they are caused by the behaviors of individual objects.

This seems to create a paradox: students were using an object oriented medium,

which is based on the idea of directly programming characters with behaviors, but on the

other hand, students were planning their work thinking about the system and not about

the characters, possibly due to how a simulation looks in SC. A simulation in SC can

easily be seen as a presentation of a story, e.g., of a race, even though what is going on in

the race is based on how the runners act (one can run faster, but needs to stop frequently

to get some rest). In this sense, talking about the system and the system changes was not

a productive conversation in modeling, because students were then required to translate

those ideas into rules about the system’s object behaviors. Students working with MW,

however, were planning their work by talking about their program’s structure based on

the objects’ characteristics and not on the overall phenomenon.

These findings suggest that students were engaged in different “states of mind”

(MW: talking about their program structure, SC: talking about an overall story line).

Students working with MW were having an authorship relationship with MW: their work

and conversations reflected an effort to write a program. Students in SC, however, were

rather in a mode of creating a visual simulation with SC that would show their story.

It only makes sense that students would take these different approaches to

planning, if you think about it, because they were using two radically different

programming environments. Creating programs that run was an added difficulty for

 184

students working with MW, which students working with SC did not have because the

act of programming in SC is much easier.

MW is a textual-based CPE, which requires particular program language for

writing programs that create simulations (Papert, 1980). MW is an open-ended

environment and does not provide any scaffolding for writing programs, which adds to

the difficulty of having to write a program that can run successfully. This is also

supported by the fact, that as soon as students got a program that runs (see discussion

below) they shifted their focus on the simulation and its depiction. In sum, creating a

simulation in MW has to go through the process of writing a program with no bugs.

On the other hand SC is a CPE that has a programming-by-demonstration

interface, including a lot of scaffolding for rule creation (Kiper, et al, 1997). Scaffolding

for programming may limit some programming capabilities but it makes the process of

programming simple situations (such as uniform motion) very easy. Assigning behaviors

to objects is as easy as turning the system into programming mode, in which SC records a

desired behavior. In addition and as important, rules in SC cannot include bugs, but they

can result in a non-desired behavior, and thus in most cases there is no need for

debugging. Further, programming-by-demonstration enables students to “program” a

cartoon-like simulation with no awareness that they are programming (Rader, Brad &

Lewis, 1997), and thus students do not have to be concerned about the details of

programming. Since students’ purpose was to create a simulation, they were concerned

with the details of their story line that would be represented in the simulation.

 185

In the context of preparing to write a program to represent a phenomenon, MW

seemed to be more supportive for ways that could trigger modeling conversations and

practices than the way (visual relationship) that students had with SC. I do not suggest,

however, that SC was a non-productive tool for this modeling in science. Rather, the way

that students were inclined to use it early in their work was not supportive of ways that

could trigger conversations, students’ thinking and activities for modeling physical

phenomena.

5.1.2. Differences in writing and debugging code

Students working with MW maintained an authorship relationship with MW

during the early phases of programming. Their goal was to type programs that would run

(see sections 3.3.2 & 3.2.3). Samir for instance, undertook the role of the “typist” and

started typing their program whereas Joe was simply watching. Richard had a few brief

conversations with Samir, only to indicate or talk about typos in the program and

program primitives. When Samir asked me to see their program, several minutes later,

their simulation looked ok (showing an arrow moving in the air) but their code was

structured very differently from what they had talked about before.

At the beginning of their work, programming was the act of typing long lines of

code which in addition to giving instructions about the object’s behavior(s) had to include

code for the program itself (e.g., a program in MW has to start with a “to

<name_of_the_program> <variable’s_name_if_any>, identify for which object was the

program). Students in SC were simply assigning behaviors, mostly by demonstrating

them to the system. Students’ program in MW consisted mostly of a single subroutine,

with a number of instructions of what the object would do sequentially. For instance, a

 186

program of a falling ball would look like forward 1 forward 2 forward 3 forward 4

forward 5 forward 6, and a program for jumping looked like forward 5 forward 4 forward

3 forward 2 forward 1, and then forward 1 forward 2 forward 3 forward 4 forward 5.

These instructions seemed to have an underlying mechanism that was causing the change

in the behavior of the object (in the above examples the speed of the falling ball and the

jumping boy), but it was not represented in the program. Lastly, during typing, students’

conversations were limited, and happened only in cases that the “typist” mistyped a

primitive or was not sure about one.

Unlike typing, debugging was a process of going from the program window to the

simulation window to run the program, and back to the program window to fix any bugs

and so on (see section 3.3.2). Conversations during this time were also limited and

students were focused on getting the simulation to run (see section 3.2.3). In this sense,

the code was used by students as a tool, but in a rather non productive way at least for

scientific thinking, since the goal was to get a simulation that runs (not a simulation that

shows or represents a phenomenon or even as a communication device). However, it is

important to note that to talk about how a simulation or a particular program represents a

physical phenomenon (see discussion below about productive conversations for

modeling), students need to have a program that runs and creates a simulation. It seems to

be rather unlikely for students to have such a conversation if the program does not run,

based on fact that as soon as they had a program that ran successfully, they started having

a conversation about the simulation and/or the code as representation of the phenomenon.

On the other hand, students working with SC did not have this added task, to get a

 187

program that runs. They had, however, the task of translating a story into rules for

individual objects, which students working with MW were doing during planning.

The two problems, however, (1) type and debug code to get a program that runs in

MW, and (2) translate a story line about what happens into individual rules in SC are

different kinds of problems. The first is adding more work to students; before they can

have a conversation about a simulation and its program they need to get the simulation to

run. The second problem however, is more of a perspective issue: had students in the

study seen planning as talking about the behaviors of individual objects, then they would

not have any trouble during this phase of their work. Of course, there are possible ways

that can make this part of students’ work easier, such as providing students working with

MW with some scaffolding for code writing. It is also possible that as more experienced

with programming students get, they would move through this part of their work more

quickly. The latter can possibly apply for students working with SC, too, whose

experience with programming in SC may help them to think from the beginning in terms

of the objects’ behaviors. In addition, as I discuss in the following chapter, it is possible

that there are phenomena in science that are based on the behavior of a single object (e.g.,

a ball falling), in which cases it is productive to think about the story for modeling the

object’s behavior, because the overall story line of the system being modeled is the story

of the object.

When their program was bug-free, students working with MW started talking

about the resulting simulation. They were concerned about how the simulation looked

and as important whether it looked realistic (see section 3.3.3 and 3.2.4). Their focus

shifted to getting a simulation that looked “realistic”. For instance, Richard disagreed

 188

with Aaron’s program, because his program was showing the boy on the Earth jumping

much slower than the astronaut on the Moon. Richard was suggesting that their

simulation should show the astronaut jumping slower than the boy on the Earth. Aaron on

the other hand was thinking that because of the greater gravity on the Earth, their

simulation should show the boy jumping slower (more waits in the earth program).

The MW students’ conversations during this time were about what possible

changes could be made to refine their simulation. For this reason they were supporting

their ideas using observations and experiences from their everyday life. Once again, the

code was used as a tool, to modify their programs to result in better simulations.

The structure of their program was not a concern any more, but rather, MW

students were making any necessary changes to improve their simulation. In several cases

(e.g., Joe and Samir’s program, Nick and Tilson’s program), changes departed

significantly from their plans, indicating that the students were focused entirely on how

the simulation looked and not on how to represent the phenomenon they were studying.

When students working with SC moved from planning to start programming, they

talked about details of their scenario in an effort to translate them into programmable

rules (see section 4.1.2). For instance, just before starting to make rules, Annie and Bryan

were talking about their game (e.g., have balloons that move in different speeds) and then

talked about how to make that happen (create a rule for the red balloon to move quicker

and a rule for the blue balloon to move slower). Unlike students working with MW (who

were typing and debugging code to make their program run), programming with SC was

an interactive process of work and conversations among students, probably due to the

 189

dynamic process of programming. Students did not have any clear plans about how

exactly to create rules in their designs, nor did they work alone as students working with

MW did. Rather, while working, SC students tried to translate all the details of their story

into rules. Their focus was on creating a simulation that would show their story. During

this part of their work, SC students wrote, deleted, and re-wrote rules in an effort to

create a simulation of their story. The code is solely used to create a simulation that

would demonstrate their story, as a succession of events, one following another. In this

sense, students maintained the focus on an overall story line, which they had during

planning, to tell a story as a succession of events.

Because of the students’ focus, programs in SC were successions of rules

representing “scenes” from their story, which SC was running in sequence. Also, unlike

students working with MW, SC students wrote each rule and tried it immediately before

moving to the next. If a rule did not have the expected results, students did not spend any

time figuring out what was wrong. Rather, they deleted the rule and created a new one

(see section 4.2.2).

There is not conclusive evidence about whether students deleted a rule only to

recreate the same one or whether they specifically knew what to do differently in the new

rule. In most of the cases students did not try to see what was wrong with the old rule (see

episode SC5 in chapter 4). Early in their work (when most of the rule changes take

place), when their programs consisted of only a few rules that were relatively simple (did

not include a lot of behaviors or any variables) students seemed to know what was wrong

with particular rules but still preferred to simply recreate them rather than edit them and

make corrections.

 190

This is not to suggest, however, that students were deleting their rules without

being sure what was wrong with them, because there is some evidence of the contrary

(see section 4.2.3). At least in some cases, students were talking about what was wrong

with their programs (in some cases they specifically talked about particular rules) and

simply instead of editing and making changes in their rules they deleted their rules and

created new ones.

In addition, debugging was only in the form of deleting rules that had unwanted

effects or changing the rule sequence. Syntactical bugs are almost impossible to be found

in SC programs because the software provides a lot of scaffolding for creating new rules.

The user has simply to fill in blanks about the conditions of each rule (when SC will run

it) and the effect of the rule (desired behavior). In fact, in some cases, programming was

simply done by demonstrating to the system the desired behavior.

Once again students using different CPEs in the study were seen to operate in

different states of mind. Students working with MW seemed to have shifted their focus to

having a visual relationship with MW, focusing on getting a simulation that would look

realistic. On the other hand, the act of developing rules, caused students working with SC

to shift into having an authorship relationship in an effort to write a program that would

show their story, similar to what students working with MW had during writing and

debugging their code.

5.1.3. Differences in using code as a representation of the phenomenon

There was a third shift in student focus during their work with CPEs that was

mostly observed with students using MW. This was a shift to use CPEs as modeling

 191

media. For this shift to occur, students working with MW had to start reading their code,

instead of simply running it to see the resulted simulation. In some cases this shift

happened when a student was looking at another group’s code.

When students working with MW started reading and talking about the code in

their programs, students referred to code as a representation of the phenomenon (e.g.,

representation of the behavior of the objects in the simulation), using mathematically

precise code to talk about how the phenomenon occurred. They also used experiences

they had from everyday observations, in order to support ideas about how the

phenomenon occurs. Debates, such as whether jumping on the moon is slower vs. higher

than jumping on the earth, or whether an arrow would travel in an oval shape or not were

supported by experiences that students had from similar phenomena.

Conversations about the representation of the phenomena in MW code resulted in

iterations of model refinements, mostly in an effort to include a mechanism of how the

phenomenon happened. Rather than seeing code in the programs as a tool that creates a

simulation, students started seeing them as a representation itself. Therefore, rather than

seeing programs as simple descriptions of the phenomena, students started seeing them as

causal models that caused the phenomenon. When Nick, for instance, saw Joe and

Samir’s simulation about the moving arrow, he indicated that it looked fine. As soon as

he saw the code that created the phenomenon, he indicated his puzzlement: “[…] actually

this program isn’t what an arrow does! […] that’s what a rock does. What the program is

doing that would what a rock does. This isn’t what an arrow does. An arrow drops just

like a gun bullet does.”

 192

Because students’ focus was now on the code as a way of representing the

phenomenon (simulation was another way that a phenomenon can be represented)

students also started to talk about how the phenomenon happens. For Nick to identify that

“this is not what an arrow does” required him to see in the code something different than

what he expected to see in the case of an arrow moving in the air. Even though the

simulation looked “fine” the code in the program did not. This possibly suggests that

what Nick was seeing between the lines of code in the program was a causal mechanism,

different from the one he expected. He was expecting to see one kind of causal

mechanism to represent the phenomenon but instead the code was reading something

else. That is why he suggested that the program was representing a moving rock rather

than a moving arrow. In this sense, starting to read code (instead of simply running the

program) helped students focus on the code as a representation of the phenomenon and

also make them look for a casual mechanism of the phenomenon.

It is important to note, however, that this kind of conversation is still far from a

conversation about the underlying mechanism of the phenomenon. Students working with

MW at this point were developing descriptive models (for a detail discussion see next

chapter), of what happens in the phenomenon. They were not developing models in

which the code was a representation of the causal mechanism of the phenomenon. In the

above example, the conversation led Nick to propose a different program that “better”

represented the motion of the arrow. That program however, was still lines of code of

successive events rather than a mathematical mechanism that would change the angle of

the moving arrow while moving in the air. What had changed, however, from before was

that students were now more consciously looking for the causal mechanism that was

 193

underlying the phenomenon in the code that represented the phenomenon. The focus on

the code seemed to be more likely to trigger conversations about what was actually

causing the phenomenon.

Talking about causal mechanisms, students working with SC had to shift their

focus from showing a story through the simulation (that is assigning behaviors to objects

in the story) to talking about concepts (variables) in the story that affected object

behavior such as food energy or speed. Like students working with MW, students

working with SC were having conversations about how things happen in their simulation,

utilizing the scaffolding of programming of SC to talk about the causal mechanism of the

phenomenon. Zen and Seth for instance, were using the number of Gatorade bottles that

their runners can find and collect while running (they created a variable to account for the

number of Gatorade bottles) to represent and talk about the “energy levels” of their

runners. Later, they added rules for subtracting from their “Gatorade” variable depending

on the runner’s speed and slowly adding to the “Gatorade” variable when their runner

was not moving.

Scaffolding that SC provides for rule creation seemed to support conversations

about the mechanism; the difficulty however was to start such a conversation. Students

seemed to see their work with SC as developing games (see discussion later) and

focusing on the overall story, which seemed to get in the way of modeling, partly because

to have a modeling conversation students had to talk about what was causing changes in

the behaviors of the objects in their game scenario, as I indicate below.

 194

To illustrate that difficulty of focusing the conversation on causality, I am

presenting an episode of a conversation. This example is not included in the findings

from SC chapter because it does not support a claim about programming strategies or

types of conversation. Rather, I am using it below to illustrate a particular difficulty of

using available tools to talk about a causal mechanism. This is an episode from a

conversation I had with Annie and Bryan on the 2nd December. 2002. Annie and Bryan

had started developing a microworld in which fishes were swimming around in a lake,

with bigger fishes eating smaller fishes. The excerpt starts at a point where students

wanted to create a mechanism that could account for and limit the number of fishes that

bigger fishes eat. Part of this mechanism would enable each fish to start eating again,

when the food was digested. Bryan was finding the solution he was thinking amusing.

The fish at some point was going to “blast” out the bones of the fish it ate and thus it

would be able to eat some more.

245. Annie: we want the limit [of the number of fishes it can it] to be 3. And then, after 3 it will stop
for a few seconds and then, we don't know where it would come out, but then the, like bone
figures would come down to the ground.

246. Bryan: it will blast and it will be bones in it.
[…]

236. Loucas: […]. Bryan what happens if you eat something?
237. Bryan: it, um ….it depends. Oat meal, rice…
238. Loucas: ok, Bryan let’s, let’s think, let’s think you’re hungry, and you eat something. What

happens after you eat that?
239. Bryan: um, I am not hungry any more, <inaudible> a couple of stuff and then …
240. Annie: you have more energy!
241. Bryan: oh, yea, you have more energy, and if I have to I need to go… [to the bathroom].

When I initially asked what happens after you eat something, Bryan was

suggesting that there is at least something coming out of your body when you go to the

bathroom. As much amusing as this conversation was (!), Annie did bring up the idea of

 195

energy, suggesting that when you eat, your energy goes up and when you are hungry it

gets low.

247. Bryan: when you’re hungry you’re…
248. Annie: your energy is lower.
249. Loucas: ok
250. Annie: because you don't have any <inaudible>
251. Loucas: ok, when you eat what happens to the energy?
252. Annie: um, the stuff from the food going to go to your blood stream and make your energy go up

<inaudible>
253. Loucas: ok so your energy goes up?
254. Annie: yes, cause that <inaudible>
255. Loucas: how does your energy go down?
256. Annie: cause you, …
257. Bryan: you’re hungry…
258. Annie: or the food that …
259. Loucas: how do you get hungry though?
260. Annie: the food, you have an upset stomach.
261. Bryan: um, how does it get empty?
262. Loucas: right, how does it get empty?
263. Bryan: yea seriously, how does it get empty?

As the conversation continued, Annie suggested that one feels hungry because she

has an upset stomach, and when you eat the food gets in your stomach and then somehow

energy gets into your blood stream, having possibly heard or read the latter. Bryan,

however, indicated with puzzlement: “yea seriously, how does it [your stomach] get

empty?”

As the conversation proceeded it turned to become about the mechanism of

hunger and food digestion and I indicated that to Annie and Bryan. Annie then suggested

the idea of nutrients in the blood stream, and Bryan indicated that you need those because

you are getting bigger – the need for nutrients makes you feel hungry. Bryan continued to

talk about that if something gets in your body (food) it needs to get out (“come out of the

pores of your body” or “go to the bathroom”). He seemed to think in terms of a

succession of events about hunger, almost like a succession of scenes that happen over

 196

time: first, one is hungry, then she eats, then food gets into her stomach, then it comes out

of the stomach (through the body pores), and then she gets hungry again. Bryan was

talking about the overall story line of getting hungry, giving facts about what seems to be

happening. However he could neither talk nor be clear about what was causing the

“scenes” in the story he was suggesting.

Even though the conversation was about hunger and despite their willingness to

develop rules to account for eating limits and for enabling eating again, using SC to tell

the story of hunger was evidently getting into their way of thinking about the mechanism

that was causing the phenomenon. This was because representing events related to

hunger could not represent what was causing the hunger in the first place. Further, there

was not a clear connection between the successive events, other than their sequence. For

instance, when they were modeling the motion of a falling ball, in each subsequent rule

students increased the ball’s speed by one, using (without necessarily representing) a

relation between the different rules. Representing that relation in their program was a step

closer to representing the mechanism that was causing the phenomenon.

283. Loucas: how do they get hungry though?
284. Bryan: when there are no stuff in their stomach. They need because they’re growing.
285. Annie: cause they digested the rest of the nutrients and so ….
286. Loucas: so, if your stomach is full how does it get empty, […]?

[…]
290. Annie: because the nutrients in the food helps your blood stream.
291. Loucas: but why, would, what, if I’m not using, if I am not using the nutrients why, why do I need

to eat?
292. Annie: to keep growing. To keep healthy.
293. Bryan: yea, so like there ….ooooooou
294. Annie: it’s hard to explain.
295. Bryan: I know. But go like to McDonalds, he’s hungry so he’s ordering <inaudible> pizza,

<inaudible> as he eats it goes down to your body and then it charges up the cells and then the
stomach (I am not sure) pores so that he won’t have to starve, so that he won’t have to like starve
any more. If you starve, you really, really need to have food again, you can’t like run for 2 miles if
you starve. So it’s something about…

 197

As the conversation proceeded, it started to become apparent that it was rather

possible that Annie and Bryan did not have any experiences that they can use to talk

about what exactly was going on in one’s stomach. Even though Annie and Bryan were

attempting to find an explanation for how that consumption occurred, they did not seem

to have much experience with biological mechanisms. Bryan in line 295 started talking

about a possible biological mechanism, but still he was trying to justify how one stops

feeling hungry. However, the purpose of the conversation was to relate hunger (fishes

cannot eat as many fish available) with energy consumption (at some point fishes can

start eating again). I felt like they should have been able to talk about ideas related to

energy storage and depletion. I decided to make an analogy to fuel consumption.

298. Loucas: Now think of this example. Let’s say I have a car. Ok? And when the car, the car needs
gas, right?
[…]

305. Loucas: so, if I put gas in my car, how does my car move?
306. Bryan: it’ll like, there is like.
307. Annie: the gas goes into the engine …
308. Loucas: so the car uses up some of the gas to move.
309. Bryan & Annie: yea!
310. Loucas: so if I have at the beginning of my journey I have 100 gas, at the end of my journey I will

have like I don't know 30, depending on the distance that I travel.
[…]

322. Annie: thanks. Food is like the fuel, and like the fish is like car. I mean it uses some of the food
to keep going and then rest stays <inaudible>

The analogy of the gas consumption seemed to help them start thinking about

food digestion. Food can be like gas, Annie indicated, which is consumed when the fish

moves. Students stopped talking about events of hunger, and started talking about events

that can happen to “energy”. They were most likely in the same “state of mind” of telling

a story, but this time their story was about energy, how it is regulated and how it is

consumed. Moving consumes energy and eating adds to the energy levels.

 198

Telling “the story of the energy”, a particular concept and a potential variable in

this case, is very different from telling the story of a system that consists of multiple

characters. The story of the system is a succession of events, which in order to be

programmed one needs to identify objects’ behaviors that cause them and program those

particular behaviors. Telling “the story of the energy” was using a “story-telling”

approach in a productive way, putting together the pieces of the story about energy. This

was productive, partly because different behaviors of “energy” (e.g., consumption,

enrichment etc) can easily be different programmable pieces that can be represented in

rules. In this sense, the story was (partly) the causal mechanism of a living fish, and

thinking in that way was productive for developing representations of that mechanism.

Had students continued to think in terms of a succession of events for the fish in the lake

(eating, moving, etc) they might not have moved into productive modeling of the living

fishes.

In part, it is possible to suggest that modeling, which involves representation of

causal mechanisms, can start from telling a story of the “behaviors” of what is causing

the phenomenon, whether that is gravity, change of speed, or energy. In one way, hunger

in the above example can be explained by the behavior of the energy, the levels of which

gets “higher” when nutritious food is consumed and “lower” when e.g., the person

moves. In a different example, gravity may affect the angle of a moving arrow, or the

vertical part of its motion without affecting its horizontal motion.

5.2. Productive conversations for modeling in science

In the context of developing representations of physical phenomena, students in

the study had many conversations while working (or not) with CPEs. Some of their

 199

conversations, as previously described were more “productive” than others. In this

section, I demonstrate how productive conversations look, within the context of

developing models of physical (and other) phenomena.

Conversations as a data source for research related to educational settings have

been the focus of linguistic approaches of analysis (Edwards & Mercer, 1995).

Traditionally however, research in education has not used conversations among students

as a data source, partly because these kinds of data can provide less information (than

clinical interviews for instance) about students’ abilities for argumentation, abilities for

coordination between theory and evidence (Kuhn, 1989), controlling variables etc. As I

discuss in Methodology, investigating student abilities in science, such as those that I

previously mentioned, has traditionally been the focus of research of educational

psychology, which does not use classroom conversations as a data source. Indeed,

classroom conversations are open-ended exchanges of ideas and arguments, where adults

are hardly (or at least they should be) part of the conversation. Thus, students

conversations are thought to be unstructured general conversations (something however

that I will try to argue against).

Research in science education has not used widely analysis of students’

theoretical conversations (that is conversations about a phenomenon without any

experimental data available), because a popular approach for teaching science has been

coupled with “hands-on science.” That implies that successful approaches for teaching

science should have students manipulating experimental apparatus, and carrying out

experiments. Traditionally, the core of science learning has been the experimentation:

children (like scientists) design experiments, collect and analyze data, and develop or

 200

modify ideas (theories) based on the experimental results. Research in science education

has focused on students’ abilities to design, carry out experiments and interpret results.

However, student conversations are usually the core of the everyday learning:

students spend most of their days in schools: when the teacher does not lecture, and

students are not writing, they talk to each other. Even when students talk about results of

their experiments, analysis of their conversations has much to say about their abilities for

scientific inquiry (Louca, Hammer, & Bell, 2002). More importantly, students’

conversations can serve as sources for teacher diagnosis (e.g., Bell, to appear) for

students’ actions and student thinking during the process of learning. I address this issue

on the next chapter entitled “Steps towards modeling.”

In traditional views of science education, the approach that I have followed in this

study was to engage students in theoretical science. Students did not have any

experiments to perform and nor any results to interpret. They were simply asked to

develop representations of physical phenomena. A common reaction to such approaches,

following in part “The National Science Education Standards (NSES, 1990)”, is that

students are doomed to fail. According to the NSES, in early grades, the emphases are on

science as empirical inquiry, to help students develop abilities for observation,

experimentation, forming conclusions based on evidence they obtain through

experimentation, and on the logico-mathematical abilities for controlling variables and

organizing data. Only at grades 9-12 do the standards emphasize theoretical inquiry in

addition to empirical, such as in the expectation that students should "formulate and

revise scientific explanations and models using logic and evidence" (NSES, 1990, p.

175).

 201

However, as I discuss below, analysis of student conversations from this study

indicates that there are instances where students’ conversations are productive even

without any empirical evidence available. Productive conversations in science can take

several forms, e.g., focused on argumentation (Louca, Hammer, & Bell, 2002), and on

abilities for coordination between theory and evidence (Kuhn, 1989). What do productive

conversations for modeling in science in this study look like? That is, when developing

models of physical phenomena, what do productive conversations look like?

In the discussion that follows, I talk about what kinds of conversations are

supportive of collaborative modeling practices, in the sense that they can (or do) get

students to talk about modeling physical phenomena.

5.2.1. Conversations about causal mechanisms in SC

Let’s consider two different situations, taken from the same students from this

study (students working with SC). In one situation, students were presenting their ideas to

be programmed. They were focused on the story of a game that they decided to create

and they provided details about that story. They decided to create a game in which

different-colored balloons would fly in the air, some faster than others (for details and

transcript see episode SC1). The player would shoot down the balloons using darts and

she would gain points: faster balloons would be worth more points than slower balloons.

Balloons that would not be shot down would stay on the top of the screen and a bird

would fly around to pop them. They then would fall on the floor and a girl would walk

around to pick them up.

 202

This was a description of what would happen in a game. It was a description of a

scenario to be programmed because students, following a narrative perspective, talked

about things that would happen in the scenario of their game without any reference to

how they would program them or what was causing different things to happen.

A few meetings later, the same students were talking about their balloons. They

were also telling a story, but this time their story was more specific (for more details and

transcript see episode SC2). Balloons, they indicated, would travel in different speeds

based on the amount of helium inside them. The more the helium they had, the bigger the

balloons would get. When a dart pops a balloon, the balloon would quickly start losing

helium, to distinguish between losing helium when real world balloons have a hole and

when real world balloons are intact (balloons with no holes would lose their helium in a

few days).

In both cases, students were presenting or telling a story. In the first case the story

was about their game, and in the second case the story was about a character/object in

their game. The first story was a general story about what one would see in their game; it

was the story of the simulation that they would design. The second story was a much

more detailed one, about a single balloon. Students were talking about the different

properties of the balloon (amount of helium), the relations between entities (helium and

balloons) and different behaviors of balloons (rates of losing helium).

Unlike the first one, the second conversation was more supportive for modeling in

science: this kind of conversation could make it more possible to trigger conversations

about modeling parts of phenomena. Students were focused on a single object, telling a

 203

story about that object. In this way, they were breaking down the behavior and

characteristics of the object (balloon) in small meaningful programmable pieces of

knowledge, which can be easily translated into code for SC. The difference between the

details in the first conversation from those in the second made the second conversation

more likely to trigger modeling conversations: in the first story, different colored

balloons would travel at different speeds while in the second story, balloons with more

helium would travel faster. Details in the first conversation were about depicting details

of their games, whereas details in the second conversation were details of the behavior of

different objects.

5.2.2. Conversations about causal mechanism in MW

The essence of modeling is developing representations of phenomena that include

or are the mechanism that causes the phenomenon (see introduction and discussion of

next chapter). In this sense productive conversations for modeling physical phenomena

are conversations about the mechanism that causes (and can explain) the phenomenon.

How the difference of “gravity” on the moon and on the earth affects jumping of the

same person, and how that can be represented in code, for example, was a conversation

about a mechanism of what causes different “types” of jumping on different planets with

different gravity (example taken from Aaron and Richard conversation, partly presented

in episode MW4).

Conversations about causal mechanisms occurred specifically in the context of

modifying programs. To move from a program that was simply showing different object

states or object behaviors, to a different program that included a relation between these

different behaviors or states, required students to think and talk about what was causing

 204

the phenomenon. Different speeds for example are caused by “gravity”. Describing

different speeds is different from showing how different speeds are caused. Students

usually started by writing programs that showed what the objects were doing first,

second, third etc., usually applying ideas about what was causing the difference in that

behavior, without representing them. This was usually a descriptive program,

representing the different object states or behaviors in subsequent times.

One implication is that conversations that were supportive for modeling in science

took place in a particular context, the context of moving from a descriptive model to a

causal model. This is to stress that an interpretation about students’ abilities following a

developmental perspective might be invalid: if students were not put in that particular

context they would not be seen as having those abilities. This is also to support the

importance of iterations during the process of developing models: if students are using a

software that for instance makes it difficult to read and modify their code, this might not

be an appropriate context for triggering modeling conversations. It is also important to

stress that students were able to have such conversations. In fact, as I discuss later, in one

group students had difficulty identifying the mechanism of the phenomenon, and they

decided not to continue on working on that program! Not only were students able to have

conversations about causality in physical phenomena, but they also had the ability to

decide not to proceed, when they were not sure about what was causing the phenomenon.

According to NSES (1990) students in early ages should have conversations about

forming hypotheses and later drawing conclusions based on evidence they obtain through

experimentation. This suggests that students need to or at least should use empirical data

to guide their interpretations of results and their conclusions about physical phenomena.

 205

Without any empirical evidence readily available, when engaged in conversations

about objects’ behaviors and what was causing the phenomenon, students in the study

turned to experiences that they had from their everyday life and the simulation of their

programs. Usually conversations about physical mechanisms were conversations about

detailed program decisions: should we have the person on the moon jumping lower or

higher from a person jumping on Earth; should a dart travel for a short distance before

starting to fall while moving, or should it start falling while moving from the beginning

of its motion. In other words, students were debating different ways of representing

behaviors of objects and in that sense, they had to support those ideas in ways that they

could convince the others. Thus, they turned to whatever experiences they had.

Students were also able to distinguish between direct experience and logical

conclusions. In the next chapter, I discuss the case of Annie and Bryan, in which Annie

was suggesting that balloons with more helium can fly faster in the air. Bryan could not

accept this, indicating that this was not necessarily true. Rather, he indicated, the more

helium the balloon had the bigger it gets – this was a direct experience. But what the

speed of balloons with different amounts of helium would be, at least for Bryan, was not

a direct experience, and he couldn’t “necessarily” agree with Annie – also indicating that

her idea might have been plausible.

5.2.3. Code as a mechanism representation

Reading the code of their programs (rather than simply running the program and

watching the simulation) seemed to be supportive of conversations about modeling

physical phenomena. Reading the code, MW students had to follow instructions or rules

for each objects in order to understand what the program was about. In this sense, code

 206

was a detailed representation of the phenomenon that students could see, talk about and

refer to (rather than talking about ideas that they were thinking of programming). For

instance, different ways of jumping caused by the difference of gravity on different

planets had to be represented in particular ways, with some mathematical precision.

Jumping higher vs. jumping slower had different code, and MW students could read and

talk about that code. In other words, because of the act of reading code, students were

putting themselves into a mode of talking and responding to each other about it.

5.3. States of minds: writing a program vs. writing a game

One of the differences in the way that students used MW and SC is the way

students conceptualized their work with the programming environment. Students working

with MW saw their work more like formal programming, whereas students working with

SC saw their work as making games. This is an important distinction, because it was

related with the ways students used available tools in MW and SC while developing

representations of physical phenomena.

Generally speaking, students working with MW had more technical

conversations. When presenting their program ideas, they talked about the structure of

their program (e.g., Joe and Samir talking about their programs having different “parts”),

the number of subroutines in their programs and how that would fit with a possible

simulation as a result of the program, and about the code that they would use in their

programs.

Students working with SC, on the other hand, saw their work as making games.

They talked about a game scenario, what their game would include, how scoring would

 207

be done and what the player was supposed to do (e.g., during planning Annie and Bryan

were talking about the details of their balloon game and Zen and Seth were talking about

what was going to happen in a game about two boys running in a race). In doing so,

students talked about the overall scenario of their game, following the order of what

would happen first, second third and so on while their game continued.

Programs written by students working with SC usually consisted of a number of

independent rules, one for each “scene” of their game. Students were breaking their

programs based on the ideas they wanted to show in those scenes (e.g., a ball falling with

a different rule for its different speeds) whereas students in MW were breaking their

programs down in segments that were meaningful for what they represented: jumping

consisted of two subroutines, one for the boy going up and another for the boy coming

down.

During their work with SC, students’ program decisions were also based on

features of their games. Students were not concerned with science as much as they were

concerned about whether the behavior of different objects would fit in their game

scenario. For instance, while Annie and Bryan were talking about programming darts to

shoot balloons down, Bryan suggested that if they had the darts to drop while moving (an

idea suggested by Annie) then darts would not be able to shoot down balloons on the

other side of the screen (because it was too far for the darts to travel). In this sense, there

were cases in which “game” and “science” were in conflict.

 208

5.4. Assigning behaviors vs. giving instructions

One of the differences between MW and SC is the way programming is done. In

this section I discuss implications from the study’s findings about how students used the

different ways of programming and what effects they had on student modeling of

physical phenomena.

Programming in MW is done by writing instructions for turtles to follow (Papert,

1980). Students have to utilize program primitives in order to develop programs. This

programming process makes MW an open-ended CPE, where students are not given any

scaffolding while programming. Programs in MW have, however, to start and end in

particular ways, that are not important for the program as a model representation, but are

important for the program to run successfully.

On the other hand, programming in SC is done by assigning behaviors to objects

in the form of rules (Cypher & Smith, 1999). Each rule usually has to create one

behavior. SC provides some scaffolding for programming, presenting to students screens

where the system records the desired behavior that is exhibited by the student or where

students can manually assign the conditions and the actions for each rule (Smith, Cypher

& Tesler, 2000). In addition, and in contrast with MW, SC also provides some

scaffolding for adding and using variables and object characteristics, which students

could use for programming ideas such as “energy points”, number of fishes eaten, speed,

vertical and horizontal position etc. Programs in MW can also include variables, but

students have to include them in the code of their programs, without any special

separation of turtle instructions from variables.

 209

Due to the different ways of programming in MW and SC, several differences

were detected about the models that students developed and about the ways that students

used programming. Surprisingly, there are a few similarities, too.

Early programs. Students working with SC, usually started their programs with a

number of rules that assigned different behaviors to objects in subsequent times. In Zen

and Sean’s program about a dropping ball that was speeding up (see detailed discussion

in the next chapter), each subsequent rule had the ball to move a longer distance. In this

sense, programs were collections of different rules, that were not (and could not be)

related between them. Rules in SC cannot have relationships among them, other than

having SC to run a number of rules one after another. Thus, accelerated motion was

represented by a number of rules that had different ball speed in different parts of its

motion. The program was simply a collection of snapshots in which the ball had a

different speed.

Students’ programs in MW included a number of instructions that resulted, for

instance, in accelerated motion. Instructions however did not include the mechanism that

was causing the change in the speed of the object. For instance, a program for jumping

looked like forward 5 forward 4 forward 3 forward 2 forward 1, and then backward 1

backward 2 backward 3 backward 4 backward 5. Jumping begins with a larger motion at

the beginning, slows down and then accelerates again while the person jumping comes

back to the ground. Despite of the fact that these instructions seemed to have an

underlying mechanism that was causing the change in the behavior of the object (in the

above example the speed the jumping boy, and how it changes), the mechanism was not

represented in the program. In a way, students started by creating simple descriptive

 210

models for the phenomena under study. The difference with SC was that programs in

MW usually consisted of one sub-routine causing different events in a sequence, whereas

in SC programs consisted of multiple rules.

As I indicated before, students working with SC started planning by focusing on

the overall story that they would program, whereas students working with MW were

breaking down the phenomena in small pieces that shared similar, most of the times

visual characteristics. However, it is possible that it was easier for students working with

SC to make the move towards a single rule that would include a mechanism which would

cause a change for example in the speed of the ball, because their previous act of writing

rules possibly made them think in a way to break the motion of the ball into small pieces:

the first rule has the initial speed of the ball, the second rule has an increased speed of the

ball and so on. To proceed with a program that would include a variable that would

reflect such idea, programming in MW was rather harder for students, possibly because

of the lack of any scaffolding from the environment.

In a way, planning for programming and programming with CPEs seemed to be

two very different processes. Unlike what one would expect, to see students plan in the

ways that they can later use to program, students’ actions during programming were

departing from what they planned doing or at least of what they talked during planning.

This suggests a possible implication about the mental models that students developed

about the phenomena they were representing. Because of the way programming is done

in SC, students may be more likely to develop mental models of a series of semi-

independent parts of the phenomenon, whereas students working with MW seemed to

create only one subroutine because it was easier and faster. They were also grouping

 211

together (e.g., on the same line) instructions about their different parts of the

phenomenon, but this was just for visual purposes: in those parts the ball was moving

upwards, or the arrow was moving horizontally.

On the other hand, programs in SC that students created were less advanced than

the programs written by students working with MW. This was possibly caused by the fact

that SC makes simple programming easier for students, but complex programming

harder, sacrificing at the same time advanced programming capabilities for the sake of

ease for programming. When students started thinking for ways to include causal

relationship between snapshots of their program, they usually started to think about

having 1 or 2 rules that would create such behaviors (and include a causal mechanism

that would modify that behavior). At the same time, they would shortly find out that a

single rule cannot include many different behaviors or a complicated causal mechanism,

whereas there was not such a limitation with programming in MW.

There was another major difference in the programming with the two CPEs in the

study that affected the ways students used them. Program representation in SC is done by

graphical representations of the rules. These representations are simply reminders of what

the rule does, because it is difficult to represent the dynamic process of the simulation

into a static graphical representation. This representation was designed to avoid adding

the difficulty of learning a program language to read and write program. On the other

hand, programs in MW are written in one dimensional written program language, that

students need to read in order to understand what the program is doing.

 212

This seems to create a paradox: the process of programming in MW is more

formal and thus possibly more difficult, because students have to manipulate a symbolic

language in order to write instructions for the objects in their microworlds, whereas

programming in SC is much easier and tangible because students are assigning behaviors

to characters by simply demonstrating the desired behavior to the system. On the other

hand, program representation in MW seemed to be much more meaningful, because

students could simply read the code to understand the program, whereas program

representation in SC was more abstract. Students in SC had to figure out what each rule

was doing, by interpreting graphical reminders of the actions of each rule. Thus, reading

their code in MW was much more often observed and it seemed to be related with

different tasks by the students.

Debugging in SC was usually done by deleting a rule and creating another one in

its place. Most of the times students did not try to identify what was wrong with one of

their rules and then try to revise it. Of course there were some cases were students at

some point were reading their programs in trying to fix the science they represented.

Debugging in SC was not done in an effort to get a program to run, because programs in

SC cannot have syntactical errors.

Debugging in MW had several different types. Students would debug their code to

make their program run, they would change their code to correct depicting details in their

program and would change their code in order to change the science represented by their

program. The first two types of debugging were not related with modeling: in the first

type students were trying to fix syntactical errors in the primitives they used and in the

 213

second type, students were focused in changing depicting details of their simulation, to

make it look better or more “realistic”.

The third type of debugging, had been a source of productive conversations in

science, where students were using the written code as the basis of their conversations. A

ball can accelerate by adding 1 to its speed or by doubling its speed: these are two

different ways of representing the cause of the speed change, and students had to talk

about them to decide on which of the two ways to proceed.

Conversations about programming were also different. Prior to any programming,

students working with MW would talk about their program structure and program details

e.g., talk about breaking a motion into several meaningful pieces and talk about how to

program those pieces. While programming, however, conversations were limited and

usually programming was carried out by one student. After students had a program that

would successfully run, they would have conversations about the science that was

represented in their program.

Conversations among students using SC were less technical. Prior to any

programming, students would talk about the scenario of their game or phenomenon they

would program, without, however, providing any details about how they would program

them. During programming, students had extended conversations in an effort to translate

the scenario into programmable pieces and rules. Still however, their conversations were

not about the mechanism of the phenomenon.

Interpretation of findings, however, cannot be conclusive about students’ work

being more useful with one CPE over the other. Rather, I am suggesting that features of

 214

the one software seem to be useful in one context and features of the other software seem

to be useful elsewhere. For instance, having conversations about the structure of a

program, might sound technical and with little relation with science. It might however be

more related to modeling than talking about different “scenes” of the phenomenon.

Rather than breaking programs to pieces that were as small as “snapshots”, students in

MW were breaking down their programs in ways more related to the phenomenon. For

instance, to have 3 programs, each for a different part of the motion of an arrow (one

while the arrow moves upwards, on while the arrow moves horizontally and one while

the arrow moves downwards), is a representation of how students think of representing

the particular phenomenon. Their program structure was related to different phases of the

phenomenon they were representing.

Subprograms as small as subsequent “scenes” of the phenomenon were also a

possibly meaningful representation for developing a model for the phenomenon. This is

actually one of the first steps in modeling of biological phenomena. Phenomena in

biology usually consist of a series of events that happen one after the other in sequence.

To make sense of the mechanism that underlies the phenomenon, one needs to see all of

these events and try to summarize them in a way that would result in a causal relationship

among them. Using a number of subsequent scenes, students could easily craft a

relationship among them and then create a program that represented that relationship

causing the different scenes. In a sense, it was going from a descriptive model to a causal

model.

 215

6. STEPS TOWARDS MODELING

The purpose of this study was to investigate how students use CPEs for

developing models in science. This study was based on the idea that the program

language can become a design medium for developing models of (natural) phenomena.

Students can use the tools that different CPEs provide to develop scientific models that

go beyond simple description of the phenomenon, to include representations of the

mechanism that causes the phenomenon.

In preparing for this study, the initial plan was to have students working with both

CPEs to develop models of physical phenomena, mostly related with kinematics. During

the first phase of the study however, some of the students seemed to lose interest while

working with particular tasks with computers, whereas in other cases they were very

enthusiastic about what they were doing. Thus, at the beginning of the second phase of

the study, I decided to frame their work in an open-ended way: I decided to let them work

on making representations of whatever natural phenomenon they wanted, in an effort to

get them excited about their work with CPEs. As I describe in methodology, students

were left to decide what they wanted to work with, with the requirement that their designs

should include something from science (e.g., a phenomenon). Because of that, some of

the groups chose to model a phenomenon that did not belong to physical science. Below,

table 6.1 provides a summary of students’ designs during the second phase of the study.

 216

SC groups Designs Natural phenomenon
Annie & Bryan (1) Game: “Balloon shoot-out”6 - Balloons traveling with helium

- Darts to shoot balloons
Annie & Bryan (2) Game: “Fish pond” Regulation of eating & digestion
Seth & Zen Game: “Race” Energy consumption in humans

while moving
Tyra & Sean Raining Rain cycle
Sean & Zen A ball falling of a cliff7 Accelerated motion

MW groups

Joe & Samir Jumping on the Moon vs.
jumping on the Earth

Accelerated motion

Aaron & Richard An Archer Projectile motion
Nick & Tilson & LJ A boy on a train Relative motion
Jiana & Gabriella Meteors Collisions

Table 6.1. Summary of students’ designs during the second phase of the study

In previous chapters (chapter 3 & 4) I have provided descriptions of how students

use CPEs and in what particular context. In addition, I have provided some discussion

about what productive conversations for modeling in science looked like in the context of

developing models in science with CPEs in this study. In this chapter, I talk about the

idea of using programming as modeling, highlighting instances of student’s activities and

conversations, during which students were engaged in modeling practices.

Although programming media can be used as modeling media, students in this

study were not always using them as such. In fact, as previously discussed in the

differences in students’ approaches to planning, writing and debugging code and using

code as a form of phenomenon representation (chapter 5, section 5.1), students used

CPEs in a variety of ways: as depicting tools, simulation tools, programming tools or

modeling tools. This is also a known theme in science education research community that

investigates modeling (diSessa, et al, 1991; Louca & Constantinou, 2002; Penner, et al,

6 During the third meeting of the second phase of the study, Annie & Bryan decided to abandon their
balloon game and start working on game with fishes in a pond.
7 Students worked on this during phase I. Reference to this episode is meant to illustrate modeling
practices.

 217

1997). Students can be seen as having abilities to use modeling media, including

computer-based programming environments in a variety of ways that may or may not

include using them as modeling tools. In part, the problem may be that children are

usually familiar using the modeling tools in other settings, e.g., paper-and pencil tools

(diSessa, et al, 1991; Louca & Constantinou, 2002), 3-D structures (Penner, et al, 1997),

which may include physical experimental settings (Louca & Constantinou, 2002) and

computer-based programming environments are some examples of media that can be

used as modeling tools. Students may be accustomed to use the particular media for

purposes other than modeling – usually as simple visualization tools – and thus they need

to perceive these media as modeling tools before they will use them as such.

In this chapter, I start by describing the three emerging frames that describe

students work with CPEs in this study: the programming frame, the visualization frame

and the modeling frame. Then, I provide some discussions about shifts of students work

and focus from one frame to another, following and analyzing two conversations that

happen with students working with CPEs in the study: one conversation with MW and

another with SC. Then I present three model episodes of student conversations. The first

involves possible difficulties for modeling dynamics, the second involves distinguishing

between programming and modeling and the third provides data from a conversation in

which students treat code as a representations of the mechanism that causes the

phenomenon.

6.1. Frames that describe student activities and conversation

Throughout this study, I have identified three different ways that students used

CPEs. This identification was based on the different activities and conversation types that

 218

were revealed by analysis, and that can describe students’ work with CPEs in the study.

To describe these different ways, I introduce the term frame, to describe student activity

and conversation focus during the study. By frame, I specifically mean a mode of

reasoning with its own goals, strategies (including ways of using CPEs), and criteria for

success. Students in the study were in a situation in which they had to use CPEs to make

representations of physical (and in some cases biological) phenomena. In this context, the

study’s findings suggest that students were using MW and SC in several ways, possibly

caused by their goals in each part of their work. These are the programming frame, the

visualization frame and the modeling frame.

6.1.1. The programming frame

In the programming frame students were focused on the code itself. While

working through this frame, MW students were focused on getting a bug-free program

(their goal). Their work was not related with the actual phenomenon representation

because they were concerned about how to program a specific idea, talking mostly about

what code to write.

To write a bug-free program, especially in MW’s open-ended programming

environment, students were turning all of their focus on the program language and how to

use it to create a program that runs. Students were concerned about the details of the code

in each of their programs, and their conversations were about those details and in

particular about what program primitives to use in each part of their program (their

strategies). Despite their plans about their program’s structure and their program plans,

and despite any issues that were previously discussed about the simulation that their

 219

program would create, their focus was only on typing up a program that can run (criterion

for success).

An example of students working within the programming frame can be seen in

episode MW5 in chapter 3, which presents a conversation between Aaron and Richard

during programming with MW. Their conversation was technical, mostly about the code

that Aaron was writing, typos he made, and possible bugs. In the episode Aaron quickly

typed their first program and tested it. He went from the program window to the

simulation window several times, trying to identify the bugs that were preventing their

program from running. Changes during that time were only meant to make the program

to run, without paying any attention to the structure of their program.

6.1.2. The visualization frame

In the visualization frame students used CPEs to develop simulations that show

physical (and biological) phenomena. Their goal was to use the available tools (such as

program language, debugging tools etc) to create a picture, or a number of successive

pictures (like in cartoons) that were produced by the program code. Students were not

concerned about the structure of their code, but only about the simulation and how it

represented the phenomenon and its visual details (criteria for success), even though they

might not be related to the phenomenon (e.g., include a person that would drop a ball off

a cliff, in a simulation that seeks to show how a falling ball moves). Students were using

the code/rules as a tool to create a simulation (strategies).

An example of students’ work within the visualization frame can be seen in

episode SC2 in chapter 4, which includes a conversation from Annie and Bryan’s group.

 220

In the conversation, students’ focus was on the simulation and how that looked. During

the conversation, students talked about their simulation and things to add to it, focusing

on details that had to do with how their game looked. They also talked about adding new

characters and how those would fit with the rest of the underlying story of their game,

indicating once more that their focus was on using SC to show what they had in mind

(e.g., a story or a game) rather than model physical phenomena that they included in the

game.

Students were very precise about details of their story, e.g., what would happen to

the balloons going up and then coming down, how to avoid them piling up on the top or

on the bottom of the screen. Despite that, students did not refer to any details of how they

were going to make rules that would result in a story like the one they were discussing.

Their focus was to have a complete story, with all the characters and details in place, and

not on the mechanism that causes the different speeds in each balloon. In addition, they

were interested in showing what was actually happening in their design and not

necessarily in showing how their rules created particular behaviors (e.g., blue balloon

moved slow) and system characteristics (e.g., a combination of three balloons moving

with different speeds created a particular pattern on the screen) . If depiction criteria were

met, there was no further need for any other kind of rule or any conversation about

existing rules.

6.1.3. The modeling frame

In the modeling frame students were focused on the development of programs that

are representations of the mechanism that cause and can explain physical phenomena. In

this sense, students seem to use the code and its structure are a representation of the

 221

phenomenon itself, rather than simply causing a simulation or being descriptive of what

happens in the phenomenon.

The difference between the visualization and modeling frame is rather important:

showing something that looks like the phenomenon, for example, a number of successive

scenes in which the ball had different speed, can be described as work within a

visualization frame whereas showing something that models the mechanism of the

phenomenon, for example, a rule that changes the speed of a falling ball, can be described

as work within a modeling frame. This distinction between the two frames has also been

identified by Penner et al (1997) who asked students to design 3-D models that would

represent the function of a human elbow. In the beginning of the study, students were

focused on how to design their 3-D models to look like the real human elbow (focusing

on depicting details such as skin color etc) rather than representing/modeling the function

of the human elbow (focusing on the role of each part of the elbow for its function),

which students did later in that study.

An example of a beginning of students’ work within the modeling frame is

represented in episode MW7, where Nick and Joe and later Samir had a conversation

about how the code of a program was not representing the actual phenomenon (an arrow

moving in the air) for which it created a simulation. In the beginning of that episode Nick

was working within a visualization frame and had no problem with how the simulation

looked. When later he had a look at the code that created the simulation, he indicated that

it was the code for representing the motion of a rock that was thrown rather than an arrow

moving that the simulation was showing. From a modeling frame, the program was not

ok. Later, when Samir joined the group, students have a conversation about two programs

 222

that represented the same phenomenon differently and Samir started talking about the

relation between the horizontal and the vertical motion in a projectile motion (Samir’s

contribution to the conversation is not discussed in MW7 and is presented in this

chapter).

6.1.4. Possible implications of multiple frames

That students in the study were seen to work within different frames, having

different goals for their work and different working strategies has several implications for

using CPEs as modeling media in science education. Implications that I discuss below are

related to teaching practices, to views about student abilities to use programming media

in a variety of ways, and to methodological issues.

Due to a number of possible factors such as the short duration of the study,

modeling instances (students’ work within the modeling frame) were limited. However,

when looking closely at the data, one is able to find brief instances when students

attempted to use programming in ways that can be characterized as attempts to model

physical phenomena. This, however, should not be interpreted as a failure of the CPEs to

be perceived as modeling media. Throughout this chapter I highlight the use of CPEs as

modeling tools, which seems to be associated with ways of thinking in science that are

useful for focusing on the mechanism that causes phenomena in science.

Related and as important, the distinction between using programming for

scientific visualization (visualization frame) and using programming for modeling

(modeling frame) might be hard to detect. This distinction specifies when does

programming stop being about writing programs that run, and starts being about writing

 223

programs that are representations of the phenomenon’s causal mechanism(s). Being hard

to distinguish can also suggest that it is possible that the two might blend into one

another, and students may be seen working within one frame, but in some cases

functioning within the other frame. In this chapter I seek to provide some descriptions of

this distinction, in the form of detailed descriptions of modeling, and in the form of

descriptions of shifts in students’ thinking and work towards modeling practices.

If we want to promote student modeling, it is important to be able to notice the

beginnings of modeling. Because they are hard to be detected, teachers need to be

careful. They need to know how modeling conversations look and how the particular use

of CPEs as modeling media look in order to be able to make the right diagnosis and

promote productive student thinking for modeling. Partly, this chapter also seeks to

provide and describe these “modeling instances” as examples of activities and

conversations within a “modeling frame”. In addition, following analysis of student

conversations, I seek to provide some analysis of those “modeling instances”, discussing

their features and their importance for modeling in science.

A fourth implication for this chapter is a methodological one: due to the small

number and brief duration of modeling instances that I present and analyze, the purpose

of the chapter is not to describe any general emerging themes about modeling with CPEs.

That is, I do not seek to make generalized claims about the “modeling work” of students

in this study. Rather, it is a presentation of “modeling instances,” in a way that they might

be considered as possible contributions to a descriptive theory of modeling in science

with the support of programming media.

 224

A large body of literature and research has highlighted the importance of using

modeling for learning about natural phenomena (e.g., Penner, 2001; Penner, Lehrer, &

Schauble, 1998; Schecker, 1993; Constantinou,1996), and using CPEs as modeling tools

in science, to provide learners with the appropriate tools to develop models of natural

phenomena (diSessa, Abelson, & Ploger, 1991; Redish & Wilson, 1993; Sherin, 1996;

Sherin, diSessa, & Hammer, 1993; White & Frederiksen, 1998; Wilensky & Resnick,

1999) and thus help learners develop some understanding about the natural phenomena in

addition to learning about the modeling process it self. These studies have in most cases

illustrated the importance of using CPEs in science through studies with students (e.g.,

Louca & Constantinou, 2002; diSessa, et al, 1991; Penner, et al, 1997). Another body of

literature has discussed the implications of using programming media – mostly Logo-like

media – for developing and transferring abilities (e.g., abilities for problem solving) to

other domains of learning (e.g., Orhun, 1993; De Corte et al, 1991; Enkenberg, 1989;

Verschsffel et al, 1989; Fay & Mayer, 1987). A third body of literature has documented

the characteristics of different CPEs that have been developed to support young learners’

needs (e.g., Smith, Cypher & Telser, 2000; Cypher & Smith, 1995; Rader, Brand &

Lewis, 1997).

The above three bodies of research and literature have been using a variety of

approaches to research but mostly have been conducted through particular research

communities. The first through the research community of science education, the second

mostly through the community of educational psychology (cognitive effects) and the

third mostly represents a part of educational technology research community. Prior

research however, has failed to talk about issues that are related with the synergy of the

 225

research in the above communities and are related with the particular ways that students

use different CPEs in the context of modeling natural phenomena: (1) the increasing

interest in developing computer programming environments for young children,

motivated on general principle by the increasing role of computers in society; (2) the

interest in children's science education, including helping children to come to understand

the nature of scientific understanding and in particular the role of models in science. This

has been a goal of this study, to investigate and document activity and conversation

patterns of fifth grade students while using CPEs in science and describe how modeling

can occur in this particular context.

Lastly, I would like to refer to a point made in a previous chapter about nascent

student abilities for theoretical inquiry in science. The fact that there are many different

ways that students can use CPEs in the context of developing programs/models

representing physical phenomena, has a possible “psychological” implication: students

seem to have abilities of different modes of engagement and thinking as well as abilities

to make shifts between those modes of thinking and engagements. In addition, in the

modeling episodes that I provide and analyze below, students were seen to make shifts in

their activity and conversation focus, that was not facilitated by myself. Students started

to operate within a modeling frame, possibly suggesting that they had the (nascent)

abilities of thinking and working within different types of frames including a “modeling

frame”. More importantly, one can hypothesize that students have abilities to detect

different needs during their work and make shifts in their activities and conversations

based on these needs.

 226

6.2. Shifts between different “frames”

In section 6.1 I have talked about the different frames that students in the study

have been working through, while using MW and SC to develop representations/models

of natural phenomena. Because of the different ways that students used CPEs in the

study, there were instances that students made shifts in the ways they used CPEs.

Changing, for instance, “mode of work” from using MW as a visualization tool to using it

as a modeling tool is important to highlight for three major reasons. First, that students

can make those shifts based on the micro-context of their work (e.g., situation needs, their

goals, the way they interpreted a task or a question), suggests that it is possible to argue

that students have abilities not only to work within different frames, but also for changing

their own work mode. Second, and related, it is important to study those instances when

shifts happen, because they contribute to a body of literature and research that suggests

that seeing students having or not abilities based on their “developmental stage” may

underestimate what students can do (Metz, 1995). Students have abilities to work within

different “frames” and with different modes of work, and studying them in only one

context may suggest that students lack abilities that they otherwise can use (Louca,

Hammer & Bell, 2002). Lastly, a third implication is for modeling in science. For

modeling to take place, and given the difficulties that students may encounter for using

CPEs as modeling media (see introduction for a justification), it is important that

educators detect moments that shifts towards modeling, in order to promote them and

support students thinking and student work towards modeling.

 227

6.2.1. MW: Moving from the visual to modeling frame: from a simulation to the code

This discussion is about a group conversation between Joe and Nick and later

Samir (for details and transcript see episode MW7 in chapter 3). The conversation was

about Joe and Samir’s program of an arrow traveling in the air to hit a target. During the

conversation, I highlight two instances in which at least one student started to think in a

modeling frame, with a focus on what seemed to cause the shift in students’ thinking. In

one Nick was seeing code as a representation of the phenomenon and in the other, after

comparing two different programs, Samir was suggesting a possible relation between the

horizontal and the vertical motion of the arrow. In the discussion that follows, I do not

seek to claim that all students started to work within a modeling framework, but rather, to

highlight beginnings of possible conversations and work within the modeling frame.

I started the conversation by asking about the code of the program, specifically

pointing out to the students that I was not sure about whether their code represented the

ideas that they had previously considered. The students, however, responded in a

familiar way: they answered my question regarding their code by talking about how the

simulation looked.

To help start a conversation about the code, I asked Joe and Nick to write a new

program to represent throwing a rock, hoping that writing a slightly different program

would provide a context for a discussion about code as representation of the

phenomenon. The students decided to use a copy of the arrow program and modify it to

match the new phenomenon. Even though this decision was unexpected, it had a very

important implication. Instead of putting themselves in a situation where they had to

 228

write a new program from scratch, these students put themselves in a situation where they

simply had to modify existing code.

Reading the actual code of the program, Nick, started talking about how the

program was not representing the motion of a moving arrow. Nick, and partly Joe, talked

about what in the code seemed to correspond to different situations and they started

talking about what to change to make the code be more realistic. They subsequently

modified the code to include Nick’s idea about the motion of the arrow. Even though,

conversational data do not support a firm claim about both students changing focus and

see code as the representation of the phenomenon, this was a possible beginning of a

modeling conversation and subsequent work in developing a model that would represent

the phenomenon.

When Samir joint the group later, and after Joe talked about the two different

simulations caused by the two programs, Samir started to talk about the dependency of

the speed of the arrow to its motion. Due to the two different programs available, Samir

started to think towards a direction of studying projectile motion, in which he seemed to

suggest that how much the arrow would drop during its motion depended on the speed

and the distance traveled in the horizontal direction.

Part 1: Focused on visualization

In the beginning of the conversation, students were responding to my question

about their code, within a visualization frame, talking about how their simulation looked.

There are two possibilities that this could have happened: the first is that students did not

understand, or simply misunderstood my question to ask about their simulation. The

 229

second is that they understood my question, but they choose to respond within a different

frame, with a statement that had a different focus from that of my question.

The distinction between the two possibilities is important for its implications for

both instructional approaches and for student thinking. Understanding what the question

was asking about, requires the ability to understand the focus of the question. I was

asking about their code, but the students were responding by indicating their puzzlement:

the simulation looked ok, why was I asking about it?

Another possibility is the students’ failure to detect the differences between

talking about code, and talking about the simulation. Students working within a

visualization frame were focused on creating simulations that “looked ok,” and

represented the phenomenon they were intending. The code was simply used as a tool for

developing the simulation, and students were focused on fixing depicting details of their

simulation. One possibility is that working within a visualization frame, students could

not detect the difference between a question asking about the code and a question asking

how the simulation looked. They understood my question within the visualization frame.

As I have presented earlier, one of the emerging themes for students’ thinking

from this study, is that students may have nascent abilities for thinking in different ways.

This, in conjunction with the data from episode MW7 may suggest that students were

able to detect the difference between talking about code and talking about the simulation.

Nick in line 10 suggested that “but that [the simulation] looks ok” indicating that there

was no purpose to talk about the code of a simulation that looked ok.

 230

247. Loucas: here is what I see. Repeat 30 fd powers and then left 0.5. so… if it is left 0.5 then you
start like that, and then you go like that, little bit, little bit like that. So you go left, left, left and
then repeat 40 right. So then it’s right, something like that.

248. Joe: yea, that’s right, that’s the, that’s what it does.
[…]

9. Loucas: ok. But if you look closely on your program, the program says that right? Because it’s
going left, left, left, and at some point it’s going right, right, right. So if it’s left it’s going like that,
and then … I understand that it looks like that, but the program actually does this, right?

10. Nick: but that looks ok!
11. Loucas: I understand that, but there are two different things: how it looks and what the program

tells right?
12. Nick: but, well, what are, our purpose now is to show someone science, only, we are not showing

then science by them going on this, to this thing (the code window) and…

As it can be seen from the conversation later on, students could work from

different frames that have different foci, and responding to my question required a

response within a different frame. Rather than seeing students to lack abilities for the

different kinds of conversation in which I wanted them to be engaged, it is possible to

suggest that we can see students being able to activate abilities to work and respond

within different frames. In this sense, my question posed while students were in the

modeling frame would be enough to have them start talking about their code as

representing the phenomenon.

Part 2: Nick’s focus shifted towards the code as a representation of the phenomenon

Following my prompt about writing a second program, students’ decision to copy

and modify the existing program (rather than working from scratch on a new program)

put students in a different mode: they now had to read the code closely, trying to identify

what and how to change. This led to a change in Nick’s focus, from being on the

simulation to be about the code. Nick, who had indicated earlier that their simulation

looked ok, now indicated that the first part of their program (that resulted the upward

motion of the arrow in the air) was not what it should had been. He suggested that things

 231

(like the arrow) that are shot horizontally continue to move straight and “drop a little”

(line 31).

31. Nick: ok, that’s [the code] what a rock does. What the program is doing that would what a rock
does. This is what an arrow does. An arrow drops just like a gun bullet does! A gun, like when you
shoot a gun, the bullet would drop.

Writing and modifying code seemed to be associated with different modes of

engagement: writing a new program in MW is a process usually taken care only by one

student, group conversations were limited and students’ focus was on writing a program

that runs (and not one that creates a simulation or represents the mechanism that causes

the phenomenon). Modifying a program to fit science was associated with another mode

of engagement: conversations were about the mechanism that was causing the

phenomenon, and students supported their ideas for programming with experiences and

observations of physical phenomena from their everyday life.

In the new mode of conversation, Nick followed partly by Joe’s contribution

started talking about parts of their program, but the focus was on the function of the

arrow and how it was represented by the program’s code. Reading the code of the

program, possibly helped Nick to talk about the behavior of different objects in the

simulation, and supported that by experiences that he had from everyday life. They talked

about how the actual motion should look and what the arrow would do during its motion.

At least in one way, the simulation was not a context that would support a

modeling conversation about the mechanism of the phenomenon, possibly because a

simulation simply showed how the phenomenon looked. The code of the simulation,

however, seemed to be a context in which a conversation about the mechanism of the

 232

phenomenon could take place. Of course, there was another important contribution, that

of the “incorrect” code of the program which seemed to spark a conversation about two

different versions of the motion of the arrow: the one that was represented by Joe and

Samir and the one that Nick was suggesting, similar to the motion of a gun bullet.

Due to the disagreement, students resorted to supporting their ideas using

experiences from the physical world, and inevitably the conversation was about details of

the motion of different objects. Nick made an analogy to the motion of a gun bullet in an

effort to distinguish it from the motion of a thrown rock. He was arguing that when shot

in a horizontal direction, a gun bullet and an arrow keep moving straight and might fall a

little; but they would not start going upwards as Joe and Samir’s program indicated. Of

course if the arrow was aimed upwards then it would probably follow the direction that

Joe and Samir’s program was suggesting. However, the code in their program had the

arrow to start moving in horizontal direction, which was in conflict with arrow’s

movement in the rest of their program (see figure 6.1 for details of their code).

Why Nick was a step closer to modeling? Nick was focused on the behavior of the

arrow, talking about how the arrow would travel and about possible changes in its

direction. His contribution to the discussion seemed to have been triggered by his reading

of the code. From talking about the simulation in general, or talking about visual details

of the simulation in particular (that he was doing before), he started to talk about the

motion of the arrow represented in code.

In addition, in order to support his ideas, Nick used observations he had from

similar phenomena, such as the motion of a gun bullet, that were possibly easier to

 233

understand and could be used to support their arguments. A possibility is that Nick

assumed that making an analogy to the motion of a gun-bullet would have been easier to

show why the arrow should move straight.

Similar to what SC students were seen doing in this study, Nick and Joe were

telling the story of the arrow, from the particular point of view of the arrow, instead of

simply describing the simulation or the phenomenon. As I indicated earlier, this kind of

conversation could more easily lead to a conversation about the mechanism, in the

context of creating a single program that would result in all the different steps of the

arrow.

Following their conversation about writing a different program, students started

working on changing the code to resemble Nick’s idea about the arrow. Their short

conversation became more technical. Reflecting an effort to modify the code to fit

Nick’s idea, students talked about lines of code that represented parts of the phenomenon.

As figure 6.1 shows, their revised program had the arrow follow a curved motion,

falling slowly towards the ground. It is possible to suggest that this was just a revised

program that created a better simulation, a better cartoon about the phenomenon.

However, prior to reading the code, Nick did not have any issues with the simulation, and

only after he read the code, he indicated that he disagreed with the simulation. Further,

the code fixed issues that, even though they did not seem to change the simulation itself,

they were incorrectly representing the phenomenon in code. Nick and Joe’s revised

program was in sync with the direction in which the arrow was moving (seth 90 equals a

horizontal direction) whereas in the old program the arrow seemed to be shot horizontally

 234

but started moving upwards for a while. This is evidence for a possible shift in students’

(or at least Nick’s) view of the code not simply as the tool for creating the simulation, but

also as a representation of the phenomenon.

Why this is a step towards modeling? The program language had now the

potential of being used as a modeling medium. Few minutes earlier students were

debating about the arrow’s trajectory, trying to “develop” and agree on the story of how

the arrow would move in the air. Having agreed on the “arrow’s story”, students could

start a conversation about how to program that story, in a conversation that was about

changing the code to “fix” the science represented. Most of the changes in the program

were done by Nick, but Joe in line 70 indicated to Nick: “Instead of left [in the first part

of the program], just do fd. Don’t do left, do fd. No, no, no keep right, keep right, then do

fd.”, suggesting changes in the code to reflect Nick’s idea.

Figure 6.1. Nick and Joe’s revisions

Part 3: Samir started thinking about two dimensions in projectile motion

When Samir joint the group, 20-25 minutes later, I asked Joe to tell him about the

new program that he wrote with Nick. Joe talked about the differences in the simulations

as results of the two different programs, without any reference to the code in the

simulations and how that was representing the phenomena, a possible indication that Joe

might have been all along thinking within the visualization frame.

to shoot
talkto "a
seth 90
repeat 30 [fd 5 lt 0.5 wait 0.1]
repeat 40 [fd 5 rt 1 wait 0.1]
end

to shoot1
talkto "a
seth 90
repeat 70 [fd Powers rt 0.1 wait 0.1]
end

Old program Revised program

 235

That was not surprising, even if there was a possibility that at some point during

his work with Nick, Joe was partly working within a modeling frame. Here, Joe was in a

situation where I asked him to present a program to a fellow student who had no idea

about the program. In such cases, students tended to talk about the simulation, giving a

whole picture of what was going to happen. This was different from their conversation

with Nick earlier: telling the story of the arrow in detail was much different from giving

an overview of the simulation. The first seeks to reconstruct a succession of instances

representing the motion of the arrow in detail whereas the second provides a general

picture of the phenomenon (the arrow’s trajectory looks like half an arch).

I wanted to turn their attention once more to the code, giving Samir the

opportunity to hear what Joe and Nick’s prior conversation concerned. Thus, I asked

which of the two programs was more appropriate for this situation. The first to respond to

my question was Aaron who had just seen the simulations of the two programs. He

indicated that the second program (arrow traveling straight) was problematic because the

archer would “never get the bull’s eye” (line 183), indicating that as a program where an

archer shoots an arrow to hit a target, would not work properly. Joe was quick to dismiss

his concern, indicating that this was a minor one! By simply changing the target’s

position, the problem would be eliminated. The real issue was which of the two programs

would be more realistic, and Joe indicated that if the archer was aiming the arrow up,

their original program was appropriate, but if she was aiming at the target then the new

program made more sense.

Samir, then (and later supported by Aaron) indicated a new factor: the results

depended on the speed of the arrow and how far it would go before hitting the target. His

 236

point was interesting: of course the arrow would fall a little towards the ground, like

correctly both programs indicated, but how much it would fall depended on how much

actual time the arrow traveled in the air. Samir said that if the target was far (e.g., 200

feet) the archer would not get the target using the second program, because the arrow

would drop a lot during its motion. On the other hand, Aaron suggested that if the archer

is “a strong enough guy” he could shoot the arrow so fast that it can travel for a while

before dropping in the air.

200. Samir: it depends, it, depending how far it is. If you are, normally it says it’s going, ‘cause then it
kind of go down a bit, if it hit them the great <inaudible> here and over here, but if you kind of
shoot up <inaudible> it be see, somewhat like, um, it will be somewhat like this, because you
can’t, you be kind of aiming up. You really go, ok, it’ll be like this, ou, instead of rating
<inaudible>

201. Joe: if you aim straight……
202. Aaron: depend on how fast
203. Samir: it’s gonna go down <inaudible> down. But you never shoot like guys like 200 feet away,

so it’ll be like this, instead of putting here, it hit me all the way down to his leg. Take that as where
you’re aiming for, like see that's like his stomach.

Samir turned the conversation into a new direction, as he started talking about

dependencies. He talked about the dependency of how much the arrow would fall during

its trajectory based on the distance traveled and the time of that motion.

Students were now referring to their everyday experiences, in order to talk in

detail about the motion of the arrow. The comparison of the two programs helped Samir

to identify an important difference: the amount that the two programs had the arrow fall

towards the ground while moving. The first program (oval-shaped trajectory) was

probably a better option for long distances: in longer distances the arrow would fall more

towards the ground and the second program was more appropriate for shorter distances

(the arrow would fall with less speed towards the ground while moving).

 237

This was also a conversation about the possible mechanism under study. Students

looking at the two different programs started to argue that, how much the arrow would

drop towards the ground depended on how far and in what speed it would travel,

indicating a possible relation of the arrow’s vertical motion during flight with the

duration of the motion. With obviously no prior experience with studying projectile

motions, students attempted to analyze the motion they programmed as such! Samir was

attempting to “break down” the motion of the arrow into two distinct motions that

seemed to happen at the same time: a horizontal motion (how far it would go) and a

vertical motion (how much it would drop). Also he seemed to start thinking about how

the two motions do not depend on each other.

The time for dismissal was close and we had to wrap up the conversation. It is

important to indicate that the claim here is not that students actually started to have

conversations about the physics of projectile motion. However, in this conversation

Samir seemed to start thinking in a modeling frame, possibly towards a causal

mechanism of the phenomenon. In one way, students were ready to move into another

cycle of refinements for their models (programs), specifically using a more analytic

perspective about the motion of the arrow. The conversation could have led to the

construction of a program that has separate subroutines of those two programs, reflecting

students refined ideas. In addition, it is possible that if students were to write such a

program, they would have found that they did not need two separate programs for two

different distances, but a variable for the distance could have been used to account for

both situations.

 238

The last conversation was not a prompted conversation. Students, and specifically

Samir, seemed to put himself (and possibly started to help others towards this end too)

into a kind of conversation about modeling physical phenomena, possibly as a result of

the new programs they were looking at. In one way, it was simply the comparison of two

different programs meant to account for the same phenomenon that let to a conversation

that could have resulted in refined ideas about the phenomenon. For the first time,

students were starting to talk about what was causing different parts of the phenomenon,

a direction that could lead into both a conversation about the mechanism of the

phenomenon and a model (program) that is a representation of the mechanism that causes

the phenomenon.

6.2.2. SC: From a descriptive to a causal model: from multiple rules to a general rule

Modeling in science is the process of developing representations of (physical)

phenomena (models). This process is carried out by an iterative process of developing,

testing and revising models. As such, modeling is a process of refining models of

physical phenomena.

It has been highlighted (Louca & Constantinou, 2002) that one of the advantages

of using modeling to learn in science, is teaching the process of model development in

addition to refining students’ understanding about physical phenomena. For this to

happen, modeling media that students use should provide them with tools that can

support iterations of developing, testing and refining models. In this section, I describe

and discuss an episode from a SC group, where students developed a model for a falling

ball. I highlight how students can move from one model to another, by using SC’s

available tools. Prior to any student work, the same phenomenon was introduced to all

 239

groups and students had a class conversation about possible ideas to represent the

phenomenon with SC.

Part 1: Creating a descriptive model

When I presented the task, all students agreed that a falling ball speeds up while

falling (line 178 below, 186, 193). Zen decided to approach this situation by “marking

each vertical point of the ball’s motion with its own speed.” In a sense, Zen (and his

group mate Sean) developed a program that included a separate rule for each vertical

position of the ball’s motion, assigning each position with a particular speed for the ball.

This resulted in a number of rules, each associated with a particular position of the ball

and with a particular speed. The following excerpt is taken from the class conversation

prior to any group work, while students were talking about their program ideas.

178. Bryan: Well maybe, I don’t know whether this is possible, but first once someone toss it, once
someone tosses it off, it should go slow and fast as it gain speed, once it comes down. Because it
wouldn’t be very realistic, if it, if it goes the same speed over and over once it starts.

179. Loucas: so how do we do that?
180. Bryan: that’s what I don’t know, how can you make it to go slower and then faster.
181. Jeremy: that is the question
182. Loucas: so, what…
183. Bryan: Oh, I know, I know.
184. Loucas: ok
185. Bryan: first you could um, ok, get get the um rule bar and then you click on the bar and first you

move it one down square, but then the next time you bring it down two squares because then it
would go faster, <inaudible>

186. Jeremy: so we can take the dude, right, and we can make him kick the ball up in the air, so, so , so
it wouldn’t make the ball to go this way and then fall straight down. So if you kicked it up it will
look like it, it doing it and then fall, and then we can be, and then we can do Bryan’s idea and
make it do one square and two squares and three squares.

187. Loucas: so Bryan how would the ball know when to use the rule of one square and then use the
rule of the second square, um of the two squares?

188. Jeremy: it’s special…
189. Bryan: well <inaudible> Instead of making it like, it will, oh here’s a plan I just figured It out.

Instead of like once it gains speed it won’t like stay at that speed for a very long time, it will go
down faster, so each time you stretch the box farther and farther and so it will go faster and faster
and faster.
[…]

193. Zen: oh, oh! He like saying, when the, when the vertical is for instance 34 then it’ll go 1 square,
when it is 29 it will go 2 squares and when it’s 19 it’ll go 3 squares. When it’s 9 it’ll go 4 squares.
So faster and faster and faster.

 240

[…]
196. Loucas: So we have 2 different ideas. One it’s Bryan’s that says the first will make the ball to go

1 square, the second, the second time the ball goes 2 squares, … 3 squares.
197. Zen: it’s the same as him except I’m, I’m just making it so that there’s a certain time to use the

rules where see how it’s vertical now, just move the ball down…
198. Bryan: I got it, ok…. and then you go…
199. Zen: every, every like 9 squares it will go, it’ll skip another, it will skip another <inaudible>every

9 vertical numbers it going down, it’ll skip a square.
(excerpt taken from class conversation,

21 October 2002)

Is this modeling? In one way, Zen decided to make a movie of the ball’s motion,

that included a snapshot for each position that the ball was “changing” speed. His

intention was to recreate the ball’s motion on the computer screen. He knew that the ball

changes speed while moving, even though he did not show in their program how does the

speed change. Zen and Sean’s first program included several different rules, each one

assigning the ball with a new speed for different heights.

Sean and Zen’s program was a sequence of events which happened one after

another, by specifying for which vertical position each rule would get “fired” (run) by

SC. In each rule, students were specifying how many squares the ball would move. They

were not providing any information about what was the ball’s speed and what was the

mechanism that changed its speed. The first was avoided because rules in SC can easily

represent motion. Students were inclined to specify how many grid squares would the

ball move, rather than have a variable that would specify that number. As for the rate of

the change of the speed, students manually added 1 square in every subsequent rule, and

thus in every “tick” of the program, the speed of the ball was increasing by 1.

To create this program, students seemed to have a particular plan in their minds:

they were adding 1 grid square per software tick to the speed of the ball. Students also

created a program that represented the phenomenon in small pieces, each piece (rule)

 241

showing the position and the speed of the ball in every tick of the software. Despite the

fact that this might be a simple secession of pictures (that describe the story of a falling

ball), students were representing changes in the motion of the ball that happened in

sequence.

What was missing from their model was a representation of the relation between

the different snapshots, which is the rate of the change of the speed. Because of the

absence of the representation of that relation in their program, one may argue that this

was not a model, but rather a simple representation of the phenomenon made up of

different scenes that one follows another. At the same time, however, this program was a

great opportunity for students to discover the need for inventing a concept such as speed

or velocity and using it in the program.

Part 2: Refining their initial model: working towards representing causality

One of the problems that Sean and Zen encountered with their initial model was

that it was specifically written to work in one particular situation, and as importantly only

if the ball fell from a height of 30 vertical. It did not work when the ball would let fall

from 28 or 31 for instance, because there was no rule for motion at that vertical.

Additionally, if the ball started falling form vertical 27, it would start with a speed of 3

grid squares per tick.

264. Loucas: This rule will fire only if the vertical is 30. Where is the rule for when the vertical is 29?
This one? This is for 27.

265. Zen: oh, I just deleted the rule that was for 29.
266. Loucas: ok, do you want to make one?
267. Zen: yea. So,
268. <silence while clicking/typing/looking on the screen>
269. Sean: not is working <inaudible>
270. Zen: 29, I just need to make one more rule.
271. <silence while clicking/typing/looking on the screen>

 242

272. Zen: this is the 29. so click on this, click on this , click on this, click here, and then I go here and
1 down. Thank you very much. Now this will work. This will go second from last. So it goes
here…

273. <silence while clicking/typing/looking on the screen>
274. Zen: yes. Thank you. Now watch.
275. <silence while clicking/typing/looking on the screen>
276. Zen: o, oh!
277. Sean: it’s stopping at 28.
278. Zen: ok. Please! What’s wrong with it?
279. Loucas: let’s think about it a little. Fro which vertical do you have rule?
280. Zen: here is for 30, this is for 29, 27, 24, and 20.
281. Sean: no it goes 1 when it’s 30.
282. Zen: yea, exactly, it falls 2 when it reaches 29.
283. Loucas: ok. What would happen if you let the ball fall from 31?
284. Sean: it will not work!

This led to a conversation that I started about what is going on in the

phenomenon. During that conversation, Zen indicated that what was changing in every

rule was how many squares would the ball move. The relation between their rules (in

every subsequent rule, the ball was moving an additional square) made Zen to start

thinking about the idea of having one rule that would do just this.

297. Loucas: so how can we make the program that no matter where you let the ball go, it works?
298. Sean: have rules for every vertical!
299. Loucas: right, but then how much are they going to move? Like, if I let it go from 30, at 29 is

going to move, how much?
300. Zen: 1
301. Loucas: and if I let it go from 31…
302. Zen: then it’s probably going to have a different speed…..
303. Loucas: so what is changing in your program?
304. Zen: what do you mean?
305. Loucas: what is different between this rule and this rule?
306. Sean: the vertical
307. Zen: and how much moves
308. Loucas: right, so what I see your rules doing is in every next vertical, you are adding 1 to how

many squares your ball moves. Here you have one, then 2, then 3.
309. Zen: oh, for every time it falls it gains 1. I should just have done that! So have a rule that every

time it falls it gains 1. I was thinking about that but then I didn’t know how.

Zen now started to talk about the mechanism of the phenomenon, in the context of

a possible rule that could simply add 1 to the number of squares that the ball would move

next. In this sense, instead of having multiple rules that SC would simply run sequentially

 243

showing the phenomenon, students could have one rule that could create the

phenomenon.

My claim here is not that students could make such moves by themselves (even

though it is not unlikely). Rather, I highlight the role of the different rules that Zen and

Sean had created for the simulation, to start thinking about the mechanism that causes the

phenomenon. Looking at what they had each subsequent rule to do, Zen indicated that

they could have one rule that would increase the number of grid squares that the ball

would move.

Of course, Zen and Sean asked for my help for creating this rule (this

conversation was taken in October, rather early in the study), particularly for creating a

variable that could account for the number of squares. Then they created a new rule in

which SC would add 1 to the variable and then subtract that variable from the vertical

position of the ball.

This rule had two advantages over their previous program. First, one “general”

rule could account for and create the whole motion of the falling ball. Second, the refined

model could also be used with balls that were let to fall from any height.

From a modeling point of view, their new rule included a representation of

acceleration (the mechanism that was causing the change of speed), even though, it

wasn’t clear that students thought about it. However, from this point on, students could

be in a position to possibly have conversations about that mechanism, for example, to.

compare it with a mechanism that multiplies speed.

 244

Why thinking about the code is important for modeling in science and how that is

different from thinking about the simulation? Modeling physical phenomena is the act of

developing representations of physical phenomena. The purpose is solely the study of the

phenomenon and more importantly the development of an understanding of the

mechanism that creates the phenomenon. Having rules that simply assign different speeds

to a falling ball based on its position from the starting point is one “model” very different

from one that includes a variable that causes a change in the ball’s speed while dropping.

The second model provides a possible explanation of the mechanism that causes the

phenomenon, giving students the ability to represent in a concrete way ideas such as

gravity (which causes the change of the speed of the falling ball), velocity and

acceleration. The first program is a descriptive model that creates instances with different

speeds for the ball, without providing any possible explanation about what might be

causing it.

There is, however, a more important distinction between the two models. The first

model seeks to simply create a simulation of the phenomenon that is being represented,

whereas the second model can be also seen as the mechanism that causes the

phenomenon. Thus, the second model is not just a representation of the phenomenon, is a

representation of the mechanism that causes it.

Modeling is about understanding the mechanism(s) that cause(s) the phenomenon

and then it is about representing that/those mechanism(s) using the available modeling

media. Therefore, modeling requires students to see the act of creating programs as the

act of developing representations that include how the phenomenon is caused. I suggest

that seeing programming as creating simulations with good depiction, and seeing

 245

programming as modeling require different foci from learners. When seeing

programming as the process of developing simulations, their focus is on the depiction. On

the other hand, when seeing programming as modeling, their focus is on the code that

creates the simulation.

6.3. SC: Possible difficulties for modeling dynamics

Models of physical phenomena can be descriptive, simply showing or describing

what the phenomenon looks like. Models can also be causal, which are representations of

what is causing the phenomenon. Causal models can also differ in the type of mechanism

represented. For instance, motion can be represented by a kinematics model (a model that

would include a mechanism of the speed change during motion), but it can be also

represented by a dynamics model, which would include a mechanism that would explain

and cause the change of the speed (it will include representation of the forces that act on

the object and cause change in its speed). The models that students created in the above

episode were models of mechanics and MW seemed to support representation of such

models. However, a model of dynamics could have also be an appropriate model for that

case, even though it might have been more difficult for students to think and talk about

such a model, especially given the fact that forces are not daily observed.

I use this episode (Annie & Bryan group, 25th November 2002) to suggest the

possibility that dynamics may be not be supported by the tools available from at least SC

in the study, even though MW also does not seem to have any tools to support

representation of dynamics. This is an episode from a SC group, while students were

having conversations and were working to represent motions of balloons with helium.

Annie and Bryan had already developed a model in SC that had three different balloons

 246

traveling with different speeds. Annie and Bryan had previously indicated that the

different speeds were caused by the different amounts of helium in each of them, even

though that was not represented in their program: their programs consisted of rules

assigning different colored balloons with different speeds. In the meeting that this

episode took place, I wanted to help Annie and Bryan to refine their program to include a

causal relationship between the amount of helium and the balloons’ different speeds.

Students’ program was based on the idea that the larger amounts of helium in balloons

caused higher speed. However, students did not represent that in their program.

Identifying that disadvantage of their program sparked a conversation about their

programs.

310. Loucas: so let’s run it. It’s really good actually. So remember, so what, what, what, why each
balloon goes differently?

311. Bryan: cause …
312. Annie: of the amount of helium.
313. Loucas: ok.
314. Bryan: and how many points there <inaudible>
315. Loucas: ok, but what causes them to go….
316. Bryan: helium.
317. Loucas: helium, ok? Now, here is what, when I was looking at your game last night, so if I go

here, I can see that the red has helium 3 now. And, but if I, if I made the helium 0 the balloon
would still be able to move up there. And now the helium is 0 though….

318. <silence while clicking/typing/looking on the screen>
319. Loucas: what do you think about this?
320. Bryan: <inaudible>
321. Annie: we need to make a rule so that the helium, that the more helium it has, the faster it goes,

and if it hasn’t any it stops and falls.

Annie suggested that they would need to make a rule relating the amount of

helium in a balloon with the balloon’s speed. The rule that Annie suggested creating was

starting to craft a relation between a variable and an object’s behavior, possibly leading to

a refined model of the behavior of the helium in the balloons. This would probably be the

beginning for developing a program that would include the mechanism of causing the

phenomenon.

 247

As the conversation continued, Annie’s contribution and Bryan’s response

sparked a conversation about helium and balloon experiences from their everyday life.

Bryan suggested that in real life helium does not necessarily make a balloon go faster, it

just makes it get bigger. This was an interesting point: Bryan seemed to be unsure about

the speed of the helium balloons, and definitely he was not sure about the relation

between the balloon’s speed and the amount of helium. He seemed, however, sure about

the effect of the amount of helium on the balloon’s size.

322. Bryan: well, in real life helium doesn’t really, yea it makes it go up but it can’t really make it go
up faster, it would just make the balloon bigger.

323. Annie: not necessarily
324. Bryan: kind of necessarily…
325. Annie: I mean …

Bryan was not comfortable with Annie’s idea. Even though he said that “yea, we

can do that…” (line 16), he suggested that in real life helium does not necessarily make a

balloon go faster, it just make it go bigger.

29. Annie: see, but if it had any less helium, and it was running out the it would go….<showing the
balloon getting to the ground>

30. Bryan: oh, yes, that's true
31. Annie: it will like go up to here and then it will go that far <inaudible> and more. ‘Cause the

more helium it has the higher up it will go.
32. Loucas: so what kind of rule are you going to write about that? Can you think about that and I

will come back, I need to go around the other groups?
33. Bryan: maybe we should like, um like have a start up with an amount of helium ‘cause like…

well, when the balloons are up you won’t have the same amount of helium, for <inaudible> they
will all lose helium so, you’ll put the helium in like up a 100 but it will subtract really, really fast.
Like, …

34. Annie: that doesn’t make sense ‘cause it wouldn’t to go like this it would go like <showing the
balloon going up and coming down fast>.

35. Bryan: when it reaches the top, when it reaches the top… then and then it goes yea….
36. Annie: I know but it won’t just go immediately down, remember, it goes up, it stays at the top,

and then a bird comes by and it <inaudible> and then it starts coming down.

Bryan was indicating that he did not share Annie’s experience about the relation

between the amount of helium in a balloon and the speed of that balloon. If one thinks

 248

about it, there are not many ways to compare balloons’ speed through everyday

experiences and definitely this is not an everyday “experiment.” Children may have

experiences with helium balloons, but most of the balloons are more or less of the same

size with similar amounts of helium. Also, balloons fly up on the sky usually by accident;

they are not usually meant to be let go. In that sense, Bryan had probably no experience

of comparing balloons’ speed based on the amount of the helium, even though it might

have been reasonable for one to think that if the reason that was causing the balloon’s

motion is the helium, the more helium the balloon has, the faster it would go. That

however, was not a direct experience, nor did Bryan seem to have any experiences that

could have helped him to make such conclusion.

Modeling is (and should be) a conscious effort of building representations causal

relationships between physical values, that not only can provide possible explanations

about physical phenomena, but also that it can be supported by observations from

everyday experiences. In this sense, even though Annie and Bryan turned to their

experiences from everyday life to look for instances that can help them, they were also

careful to distinguish between experiences that they had (more helium makes the balloon

bigger, line 18) and logical arguments (if the balloons are moving due to the helium,

balloons without any helium would fall on the ground (line 29) and the more the helium

the faster they would go, (line 31)). In this sense, having to modify their programs to

include some type of causal relationship, students started to look for examples that could

have supported Annie’s proposed mechanism.

 249

As the conversation continued, instead of talking about what helium might cause,

Bryan started talking about helium’s behavior. He suggested modifying their program so

that it would have helium to be subtracted from the balloons really, really fast (line 33).

Bryan was not sure about the relation between the helium and the balloon’s speed, but he

was certain that balloons lose some helium. That was probably a direct observation he

had, and he started talking about that helium’s behavior. Bryan was still talking about a

mechanism that was related to helium, even though it was not related to the speed of the

balloons.

Right away, Annie disagreed with Bryan’s ideas, because “the balloon would go

up and then come down quickly”. She indicated that in their game scenario each balloon

“goes up, it stays at the top, and then a bird comes by and it pops it and then it starts

coming down” (line 34). It is not clear whether Annie was concerned about the physical

mechanism of the helium (what Bryan was suggesting would not resemble what happens

in real life) or whether she was concerned about their game scenario (Bryan’s suggestion

would change their game scenario).

What would a conversation about the relationship between helium and balloon

speed look like? The conversation could have taken two different directions. In the first

direction, students could have simply considered the effects of helium without necessarily

understanding or talking about the exact mechanism that was causing those effects. This

would have been a theoretical conversation, with a need for logical thinking that would

suggest that if a particular amount of helium in a balloon results in the movement of a

balloon in the air, a bigger amount of helium in the balloon would have possibly resulted

in a faster motion. This could have been easily turned into a rule for assigning behavior to

 250

helium. Each “point” of helium would result, for example, in 1 grid square of position

change per tick of the program, as the way of thinking I tried to encourage:

81. Loucas: do you want to do that [add a relationship between the amount of helium and the
balloons’ speed}?

82. Annie: yea…
83. Loucas: but?
84. Bryan: we are confused.
85. Loucas: you were confused. Ok, so let’s first start with the red one. And if I double click on the

red one there is the rule and there is a helium. So, right now, here, the red has 0. If the helium is 0
what should be happening?

86. Annie: it would just stay on the ground.
87. Loucas: ok, ok. So,
88. Bryan: if it’s going up <inaudible> it’s the air pressure.
89. Loucas: so, let’s let’s talk about helium here. Now, this, let’s suppose this has 30 helium you said,

and the red has 30? Ok, and because, when it has 30 it’s starting going up, ok? And you also said,
so why, why doesn’t go up. Why does it go up when you have 30 helium?

In a second direction, students could have had a conversation about the actual

mechanism of the helium that is causing such motion. In addition to a relationship

between helium and speed, a subsequent model could include a representation of the

mechanism that causes this particular relationship. This second conversation might have

been less theoretical but it would require experience that would support some

understanding about the mechanism of the phenomenon. Further, it would also require a

scaffolding structure from SC to support rules that represent ideas from dynamics, e.g.,

forces. During the conversation, students seemed to wanting to understand what the

helium was doing to the balloon, rather than simply show the effects of different amounts

of helium. In this sense, rather than talking about a “motion model” they wanted to talk

about a “dynamics model”.

98. Loucas: ok. When the helium is 0 what’s, what’s gonna happen.
99. Annie: it will fall on the ground.
100. Bryan: <inaudible> won’t go anywhere.
101. Loucas: and why doesn’t go down to the ground, when, when there is helium.
102. Bryan: because…
103. Annie: helium lives.
104. Bryan: and then it loses cause like …

 251

105. Loucas: what do you mean? Lives?
106. Annie: I am not exactly sure what helium is….
107. Bryan: it makes light objects.
108. Annie: if it’s inside of them.
109. Loucas: ok, how? How does helium…
110. Annie <gesture that she has no clue!>
111. Bryan: like it is some kind of gas, that is, like it’s like it wishes like the air pressure and it makes

it like rise. Like heat it rises from <inaudible>

Despite my efforts to focus the discussion on what the helium was causing the

balloons to do, Annie and Bryan were thinking about how does helium cause the balloon

to move. Very soon Annie indicated that she had no clue (line 110)! They might have

been sure and specific about operationalizing a definition of what helium does: it makes

an object light (Bryan, line 107), when it is inside of them (Annie, line 108), but they

were not sure what the helium actually makes that to happen (Annie: I am not exactly

sure what helium is…, line 106). Bryan also started to make an analogy with “heat

rising” (line 111), even though he was using several terms such as air pressure and gas in

ways that was not clear if he was making meaningful uses of them.

During the conversation, Annie started becoming uncomfortable. It seemed as if

she had lost interest for the topic and was not sure how to continue. She seemed to be

puzzled about what helium was doing to produce the motion in the balloon (line 106),

and that might have made her uncomfortable continuing the discussion. In other words,

students were starting to think about making rules that showed how helium caused

balloons to be “light” and thus fly (lines 12, 34, 60 (indicating to each other that they

needed to create the rules for helium), but at the same time they were not sure about what

a possible mechanism might be.

At that point I decided to change the conversation a little. Instead of talking about

how does helium makes objects light (for which students were not sure), we started

 252

talking about what is different between 2 balloons with different amount of helium. In

that sense, I was not asking about a mechanism of how helium works in the balloon, but

what motion different amounts of helium are causing.

112. Loucas: so, ok, so we don't know that, so if, so if I had a blue balloon, a red and a blue balloon,
the difference between them is that the blue one will have more helium.

113. Bryan: and it will go faster.
114. Loucas: so, how can you make a program to show that depending on the helium, because this one

has double one, double helium, it’s going faster. Because, …tell me.
115. Bryan: um, let’s say like …each, each one of these [grid] squares are, it’s <inaudible> 3, so if

you press play and then you press stop this would, the rule would move the balloon 3.

Comparing two different balloons with different amounts of helium did not seem

to help students talk about what was different between the two balloons. As Bryan

suggested in line 115, it was a simple matter of assigning the balloon with the larger

amount of helium, a higher speed, without any need to include a relation with the helium

in the rule. I was hoping that the comparison might help them to start thinking about the

relation between helium amount and the speed, but Bryan responded thinking only about

one of the two balloons. A possibility is that rules are assigning behaviors to individual

objects, and thus creating rules about different balloons were different processes.

In their conversation, Annie and Bryan had been use the programming language

to refer to balloon’s actions (e.g., line 115) and possible relation of motion with the

helium (e.g., lines 33). If they were in a “mode” of communicating ideas using SC as the

tool and medium of communication, then there was a constraint of talking about what

helium does that results in the motion. Talking about how helium works, requires a

conversation about forces. There is something pushing the balloon towards the sky,

because usually, a balloon without helium stays on the ground. It is possible that a

conversation about forces could not have happened in the context of SC, because SC

 253

programming language does not support representation of dynamics as opposed to

representation of motion. That is another way of explaining my intervention in line 112. I

wanted students to talk about the motion of the system instead of dynamics, simply

because SC is mostly developed to represent motion and not forces that cause that

motion.

To talk about how helium makes the balloons to fly in the air, requires a

conversation about dynamics (forces). There is something pushing the balloon towards

the sky, because usually, a balloon without helium (or with air) stays on the ground. This

conversation is a difficult one because students have to use concepts such as forces that

are abstract and cannot really be observed in everyday life (students may understand the

concept of force, for example, when pushing a toy-car, but not necessarily in the case of

pushing a balloon to the sky). Further, students were having this conversation in the

context of writing programs (rules) with SC. It is possible to suggest that SC does not

have any tools that can easily support representation of dynamics as opposed to

representation of motion. Variables such as speed are easier to “invent” because they are

representations of physical values and they can be identified during the act of writing

programs. Forces, on the other hand, require multiple pieces of information about their

magnitude, direction and on which object they act.

Of course, students could simply have thought about identifying a parameter of

“helium” and scaled the vertical speed by that parameter, developing a relation between

helium and vertical speed. In fact, this is an easy thing to do in SC, because rules can

include speed in ways that are “operationally defined”: a rule for a particular object can

consist of the direction of the motion, and the amount of grid squares that the object

 254

would move (magnitude). However, despite my efforts, and particularly showing children

how they could create rules in that way (I showed them how to program a balloon to

move 3 squares when the helium was 30), students could not proceed. When I asked them

why they wouldn’t proceed they indicated that they were confused as to what the helium

was doing.

In the following 5 minutes, the students decided to start working on a different

program. They were unsure about how to continue with this one, and more importantly

they were not sure what rules to create. A possible interpretation is that the students

wanted to develop a model that included a causal mechanism of the phenomenon, but

they were not sure about that mechanism. Thus, they decided to work on a different

phenomenon!

6.4. MW: Distinguishing between programming and modeling

As I indicated in the beginning of this chapter, the distinction between

programming and modeling frame is important. Can students, however, distinguish

between using CPEs as programming tools and as modeling media? And more

importantly, can they use programming for modeling purposes or just for creating

simulations that show physical phenomena?

In the short excerpt of student conversation presented in episode MW4 (see the

transcript of this episode in chapter 3), Richard and Aaron had just finished debugging

their two programs: one for a person jumping on the Earth and another for an astronaut

jumping on the Moon. Their programs consisted of a number of instructions that

represented the motion of each person jumping. Their programs consisted of two parts,

 255

one representing the upwards motion when jumping and the other was representing the

downwards motion of the person jumping (see figure 6.2 for details of their code).

However, students did not explicitly include aspects such as the mechanism for the

change of each persons’ speed while moving in the air. Rather, their programs were

sequential representations of what students thought would happen in each “moment” of

the person’s movement: first she would move fd10, then fd9, then fd8 etc. In other words,

students had developed descriptive models that included a sequence of instructions about

motion of the characters, with one instruction following the other with changes in the

speed.

Students then considered the possibility of modifying their programs to make the

differences of the two persons jumping easier to be observed in the simulation. That

sparked a conversation about how their programs looked and what possible changes to

include. Even though the conversation started from looking at their simulations, very

soon students started talking about the code of their programs.

Richard disagreed with Aaron’s program (Aaron had typed the first two

programs), because Aaron’s program was showing the boy on the Earth jumping much

slower than the astronaut on the Moon. Richard was suggesting that the astronaut should

jump slower than the boy on the Earth, showing with gestures how that motion should be.

Aaron, on the other hand, was thinking that because of the greater gravity on the Earth,

their program should show the boy jumping slower.

 256

Figure 6.2. Aaron and Richard’s programs

The conversation quickly turned into talking about specifics of their code, talking

about what their current code was showing and suggesting possible alterations. Their

focus was specifically on the “wait” primitive that they had in their programs and they

were disagreeing about which of the two programs should have the more wait. However,

talking about what their program should have been, did not seem to be a useful

conversation, at least for thinking within a modeling frame about the phenomenon.

Students seemed to agree on the difference of gravity in the two situations, but they were

disagreeing on the effects of the difference of gravity for a person jumping on the moon

and on the earth. Because of that they did not seem to agree on the changes for their code,

too. Aaron and Richard were talking about the specifics of the code, making references to

their sense of how the real world works, but they weren’t using the code as modeling,

because it was simply used to show what happens.

It is important to note that prior to this conversation, and before deciding to make

a change in their code, students did not have any specific issues with their programs.

to jumpmoon
talkto "t1
fd 8 wait .2
fd 7 wait .5
fd 6 wait 1
fd 5 wait 2
fd 4 wait 3
fd 3 wait 4
fd 0 wait 3
bk 3 wait 2
bk 4 wait 3
bk 5 wait 4
bk 6 wait 5
bk 7 wait 6
bk 8 wait 7
end

to jumpearth
talkto "t2
fd 5 wait 4.4
fd 4 wait 3.2
fd 3 wait 2.4
fd 0 wait 2
bk 3 wait 2.4
bk 4 wait 3.2
bk 5 wait 4.4
end

 257

However, they were using the code to simply create a simulation of two characters

jumping on different planets. A discussion about phenomenon representation with code,

seemed to support a conversation about the use of code as a modeling tool, representing

the phenomenon. Soon, Aaron made an interesting move in the conversation:

244. Aaron: [to Richard] Stop talking in the computer language! Does the moon have way more
gravity? I mean less gravity?

Aaron tried to change the focus of the conversation, from the code to the

phenomenon itself. He seemed to want to talk about the actual mechanism that was

causing the difference in jumping on the two planets, before continuing the conversation

about the code.

What made Aaron change the conversation? Maybe he sensed that the

conversation was about changes in the code that reflected the causal mechanism of the

phenomenon, that he identified in line 233 as gravity. Students were talking about those

changes without talking about the actual mechanism that was causing the phenomenon.

Before moving on, Aaron wanted to have a conversation about that mechanism, and more

specifically about gravity. The conversation, however, that they had thus far was within a

visualization frame, as they wanted to improve the depiction of their simulation. Thus,

Aaron made the move to take the conversation away from using the code as a

visualization tool, and talking about gravity on the moon and on the Earth, seemed (at

least to Aaron) to be an appropriate choice.

Of course, students could have had a conversation about the mechanism

underlying the phenomenon using the program language, as I had seen (and discussed in

this chapter) in other cases. However, in this case Aaron wanted to have a conversation

 258

about what was causing the phenomenon, in order to resolve the differences they had

about what changes to make in their program. At that point in the conversation, students

were using the program language as a tool for creating a simulation (working within a

visualization frame), and the conversation that Aaron wanted to have was about the

mechanism that was causing the phenomenon, and needed an approach from within the

modeling frame. For this reason, Aaron probably wanted to make sure that the

conversation would be about gravity and not about code as a representation of the

phenomenon or about the code that creates a simulation.

That Aaron made a move initiating a conversation about what ultimately made the

difference between jumping on the moon and on the earth, was a move towards modeling

for at least two important reasons. First, he wanted to have a more useful conversation

that would help students to make progress in developing some agreement about the

representation of the phenomenon. For this reason he chose a conversation about gravity

on different planets and its effects on jumping, which was a conversation away from

talking about or with the program language.

Second, because students (like Aaron here) can realize the need for such a

conversation, then teachers can have possibly prompt them to turn their program into a

representation of gravity (which would have created a causal model instead of a

descriptive one). Students were already having a conversation about what was causing

the phenomenon, and using those ideas to develop a representation of the phenomenon

would have probably been an easy step towards modeling.

 259

6.5. MW: Code as the representation of the mechanism of the phenomenon

In this episode, two groups of students working with MW were sharing their

programs with each other. I have isolated the conversation that they had about the

program that Tilson and LJ started to develop, about a person walking on a moving train,

in the direction of the motion of the train. Tilson and LJ wanted to make a scene in which

a person would arrive via helicopter on the train, and then walk towards the front of the

moving train. Because LJ did not make it to the club the time before the meeting, all of

them (but Tilson) had never seen this program before.

In describing and analyzing this conversation, I focus on the use of code as a

medium for communicating the mechanism that underlies relative motion. As in the

previous section, students here started talking about the mechanism, but unlike Aaron and

Richard, Jiana started talking about what was causing the phenomenon by using code.

At the point that the conversation took place, the program was incomplete: the

train was following a program that had it accelerate, then decelerate and then stop, but the

boy was programmed to simply stand on the train (that is to move with the same speed of

the train so that it would look like it was moving with the train). Because their goal was

to make the person walk on the train, during the previous meeting Nick and Tilson had

also programmed a routine which was animating the boy so that it looked like he was

moving his legs while walking.

Among the first things that students in the study (and in this case) were inclined to

do, was to run the program and see what was about. This was definitely a much easier

way to figure out what the program was about, rather than reading the code and trying to

 260

figure it out. Also, it is much more fun to see the animations, and the different characters’

behaviors, rather than trying to figure them out through reading the code. However, when

students turned to talking about the code that created the simulation, the conversation

became much more focused and specific. Students could be specific about things like

speed, that it was difficult to figure out from the simulation itself. That conversation also

helped students to focus on the mechanism that was creating the phenomenon.

When they first saw the simulation, students were focused on issues like the size

of the train, the animation of the person walking, and the position of the boy on the train.

They were also focused on the simulation itself, talking about what it seemed to

represent.

26. Loucas: […] So, what do you think the boy is doing on the train, right now? What it looks like?
27. Jiana: it looks like he’s riding.
28. Gabriella: he’s walking in his place.
29. LJ: walking in place
30. Jiana: I think he should be like going forward.
31. Loucas: what do you do?
32. Gabriella: I’m trying to get the um…this…
33. Jiana: either the train can be longer and he can be walking forward.
34. Gabriella: yea, it looks like he’s on the, you know one the treadmill or something. That look’s like a

train, a big treadmill that looks like a train.
35. LJ: but he’s going slow…
36. Loucas: I don’t understand that (what G said).
37. Gabriella: because he said, he’s walking …
38. Jiana: it’s like a train slipping out under him; he’s walking along the train
39. Gabriella: he’s going like this.
40. Jiana: cause as long as he was one foot down, um he’ll be staying on the train. Because it’s um like

if he jump off, the train would go further ahead of him but because he’s walking he’ll be going
further along the train.

41. Loucas: ok. But what I’m asking is what exactly is the boy doing.
42. LJ: which one is the boy [t1 or t2]? <LJ switches to program window>

Students in the previous excerpt were quick to identify that the boy on the train

was doing something unusual. He seemed to walk in place (Gabriella, line 28), riding on

the train (Jiana, line 27) or the train seemed to be slipping under him (Jiana, line 38) or he

was on a treadmill (Gabriella). All interpretations of what was going on in the simulation

 261

were accurate, even though they were interpretations from different perspectives: the

boy’s perspective who seemed to walk in place and the train’s perspective which seemed

to be sliding under the boy.

When I asked students about ways to “fix” the simulation, students started

providing general ideas, such as “the boy needs to move forward” or “the train needs to

be longer” so that the boy won’t fall while walking.

It was only when I asked once again what exactly was the boy doing on the train

that LJ went into the program screen and started reading the code that created the

simulation. Now students started a different kind of conversation. Instead of trying to

guess what the simulation what doing, they were trying to find the part of the program

that was about the boy and then figure out what the program had the boy doing. In that

sense, students probably started to see the program as the mechanism that was causing

the behavior of the boy. They spent some time figuring what each routine of the program

did and then they tried to figure out what the boy was doing on the train.

244. Gabriella: the train is t2?
245. Loucas: yea.
246. Tilson: oh, you mean right here?
247. Loucas: no that’s to set place…
248. LJ: oh!
249. Gabriella: But it doesn’t say, um it doesn’t say that here how much the cat equals.
250. LJ: same speed…
251. Tilson: it adds 2!!!!
252. LJ: No it doesn’t!
253. Gabriella [the speed is]: 2
254. LJ: no it doesn’t! See, is it…
255. Tilson: yea it does.
256. Loucas: guys, hold on. Why do….
257. Gabriella: it goes by 2
258. Tilson: 2 4 6 8…
 […]
279. Gabriella: […] Well, whatever it still goes by 2s. it goes 2, 4, 6, 8, 10, 12, 14, 16, 18.
280. Jiana: and then it subtracts.

 262

Their effort to figure out what code was doing, had two characteristics that were

unique for their conversation. First, that for most of them this was the first time that they

saw the program, it probably helped students to closely read the code and try to figure out

what it was doing. Students were not concerned about the simulation any more, even

though they were using it to understand the code. For them, the code was causing the

simulation: for instance the train was moving and students expected to see a program

primitive like “forward <something>” for the train to move.

This characteristic was an important distinction between their conversation

previously and their present conversation. Students were not trying to guess what the boy

was doing any more. They knew that the “mechanism” of what the boy was doing in the

simulation was somewhere in the code and they were looking for it. In many ways, this

distinction between the two conversations (trying to guess from the simulation and try to

read from the program) is a distinction between describing a phenomenon and trying to

figure out what was causing the phenomenon or how it happened.

Second, the program that Nick and Tilson started to write included code that

created relationships between subroutines. For instance they were using a variable for the

train’s speed (which it started from 0, it increased for some time and the decreased to

become 0 again), which they were also using for the motion of the boy. Even though the

boy was not actually walking on the train, for the boy to stay on the train, they had to

write code to move the boy with the train. This added a difficulty to students who had not

seen the program before, probably because it was more complicated than a simple

program: the boy was moving forward as much as the train was and thus, the boy in the

simulation was staying on the train.

 263

As soon as they figured out what each line of code was doing in the program, I

asked them once more what we needed to do in order to make the boy move on the train,

as LJ’s original idea was.

This context put students into a situation where they had to modify code to fit the

science of the phenomenon represented. As I previously noted this seemed to be the most

productive context of modeling conversations, where students were using the code as a

very specific design medium to re-create a phenomenon. Equally important, the program

that was required for representing the relative motion in this case, was also the

mechanism of the phenomenon and it required a detailed understanding of what was

going on. Students for instance had to understand why when a car moves next to a truck,

it sometimes feel like the car is moving backwards (as Gabriella indicated in the

conversation).

Students were quick to identify that they needed to have a fd amount for the boy

to move, but they also considered the fact that the speed of the train was changing all the

time and thus a simple number assigned to that fd would not work. This was making the

program more complicated. They also noticed that the boy already had a fd that was the

same with the train. For that, Gabriella indicated that they should add some more so that

the boy would move fd. Jiana then made a nice interpretation of the situation (referring to

the code shown in figure 6.3): the train was pulling the boy (that’s why the boy was

moving fd the same amount as the train) and in order to walk the boy had to pull himself

too!

Jiana: because, if um, if he’s going same speed [with the train], he’s just gonna, it’s kind look he is
doing this again [staying in place on the moving train]. And if he’s doing that, that’s not right.

 264

‘Cause he is um actually moving fd like his <inaudible>it’ll go fd and he should be pulling himself
along, but instead he’s doing this! […] ‘cause the train is pulling him and he is pulling himself too.

Jiana’s interpretation of the situation was both a programming suggestion and an

explanation of relative motion. Interpreting the situation into a programming suggestion,

Jiana gave a description of the relative motion from the point of view of the boy on the

train. This was an important step, because as I have indicated before, talking about

system changes is not productive for developing representations of phenomena with

CPEs. However, talking about particular objects in the phenomena (like the boy and its

motion) could be much more productive.

Figure 6.3. The code that Jiana was referring to, and the subsequent modifications

More importantly, however, is how Jiana’s contribution was also a contribution to

developing understanding for the relative motion. In this case, the code was used as a

communication device of that understanding in the context of trying to modify a program

in MW. In a way that seemed to make sense as both a programming suggestion and as a

possible analysis of what was going on in relative motion, Jiana described a possible

to main
main1 main2 changecat
end

to main1 (for the train)
forever [t1, fd :cat wait 1]
end

to main2 (for the boy)
forever [t2, fd :cat wait 1]
end

to changecat
make "cat 0
repeat 20 [make "cat (:cat + 2) wait 1 settrain.speed
:cat]
repeat 20 [make "cat (:cat - 2) wait 1 settrain.speed :cat]
end

to main2
forever [t2, fd (:cat + 3) wait 1]
end

 265

change in the program. The code was used to clearly represent the mechanism of the

phenomenon.

6.6. Summary

The purpose of this chapter was to provide a description of the three proposed

“frames” that seem to describe students’ work (conversations, activities, focus and work

goals) with MW and SC, provide descriptions of shifts of students’ work towards

modeling in science by using the CPEs and describe episodes of modeling work and

conversation with CPEs to indicate several promising possibilities for using CPEs for

modeling in science.

In this chapter, I have also provided some description about possible shifts in

students focus during their work, based on the micro-context of their work (e.g., specific

goals, ways of interpreting questions etc). Based on the data presented, I have argued

about the promising possibilities in which CPEs can support students’ thinking and work

with modeling in science. MW, which uses textual-based language, can possibly serve as

a modeling medium that students can use to read and write code as a way of representing

the mechanism of what causes natural phenomena. In sections 6.2.1 and 6.5 I have

highlighted two instances in which some of the students saw and interpreted the code of

the simulation to cause the simulation and subsequently the phenomenon it represented.

In section 6.2.2 I have presented an episode which suggests that SC, which uses rules that

assign objects with behaviors, could possibly serve as a tool for making generalizations to

objects behavior, by representing a sequence of otherwise related behaviors (such as a

behavior that keeps changing) and helping students to see ways to create rules that cause

the sequential behaviors.

 266

Shift in student focus and thinking in the context of working with CPEs in science

may be related to shifts in student thinking (Louca, Hammer & Bell, 2002) and shifts in

students’ views of knowledge in science (Louca, Elby, Hammer & Kagey, in press). In

this study, students work and focus changed in a matter of minutes, probably based on the

context of students’ work at those particular moments. Students who were using CPEs as

programming or visualization tools, were seeing to change focus from simply viewing

code as a tool for creating simulation that shows what happens in the phenomenon, to

using code or rules as the representation of the (mechanism of the) phenomenon. In

modeling this implies a difference in the type of model that students created or started to

create: a descriptive model (before) and a causal model (afterwards). For cognitive

science this implies that students have abilities for using program code as the

representation of the phenomena, despite the large amount of data in this study where

students were seen to use CPEs as visualization tools.

Viewing students as having abilities that are (micro)context dependant, is very

different from views of children’s abilities as developed in concrete stages

(developmental views). In other studies (Louca, Hammer & Bell, 2002; Louca, et al, in

press) researchers have started crafting a possible usefulness in the first view, particularly

in respect to teaching practices. Rather than seeing students as needing to develop

abilities, seeing them as having abilities to for example use program code as a

representation of a natural phenomenon (as data from this study may suggest), or for

argumentation in science (Louca, Hammer & Bell, 2002), or that students are able to

respond to explicit epistemological instructions (Louca, Hammer & Kagey, 2003) has

important implications for instruction. An early agenda in science education is to help

 267

students come to enter and work within more sophisticated modes of scientific inquiry

more reliably, to see them as part of what “doing science” entails, and from there to

develop greater facility. Rather than expect early development in scientific inquiry means

forming new abilities, educators might better see it as a matter of applying and refining

abilities students already have.

Finally, findings from this descriptive study, as presented and discussed in this

chapter, do not seek (and cannot support) claims about student modeling, partly due to

the small duration of the study and to the small number of students involved. Rather,

findings suggest promising ways that CPEs can be used to support student thinking for

modeling in science.

 268

7. IMPLICATIONS FOR SCIENCE TEACHING AND SOFTWARE

DEVELOPMENT

The purpose of this study was to investigate and document the use of two

computer-based programming media (CPEs) (Microworlds Logo (MW) and Stagecast

Creator (SC)) by fifth grade students for modeling natural phenomena. The central

research question focused on how might CPEs support fifth grade student inquiry in

science, and specifically (i) how fifth grade students might use MW and SC for

developing models of natural phenomena, (ii) what were the characteristics of student

thinking that were supported by the two CPEs used in the study and (iii) what were the

characteristics of those CPEs that (could) support collaborative modeling among fifth

grade students in science.

In chapters 3 through 6 I have presented and discussed findings for the three

above subsidiary research questions. In this chapter, I summarize findings and their

implications in a way that can be useful to science educators and software developers. I

discuss issues related to how modeling with fifth graders can look like and in particular

how productive thinking and productive conversations can look like for modeling among

young learners. I also summarize possible relations of findings with the characteristics of

the software that (could) support collaborative modeling practices among fifth grade

students and implications of those software characteristics for building models of and

learning about natural phenomena. I start with a brief summary of students’ activity and

conversation patterns with each of the two CPEs.

 269

7.1. Microworlds Logo: Students’ activities and conversations

During planning, students working with MW primarily talked about the structure

of their program, breaking natural phenomena down into small programmable pieces that

share common characteristics, particularly in the way individual phenomena looked.

During that time, students used the program language as a communication medium to talk

about how their simulation would look in order to support their programming decisions.

During writing and debugging their programs, however, students working with MW

focused on writing programs. Their conversations were limited and strictly technical,

i.e., about the code and program primitives. In a different “mode” of conversation, after

their programs were successfully running, students were reading code and using their

programs as representations of natural phenomena. During that time, students used the

code of their programs (and not the resulting simulations) to talk about the representation

of a phenomenon in code.

Early in their work with MW, students dealt with the characters (objects) and the

background(s) of their designs. During writing and debugging code they were focused on

getting a program to run successfully without paying any attention to their program’s

structure which they had discussed during planning. After getting their program to run

successfully, students changed their focus to modifying and improving depicting details

and fine tuning the details of their simulations. Lastly, when students modified code to

match, for example, a slightly different phenomenon, they focused on changing the

science that was represented, which allowed them to see the program as a representation

of the phenomenon rather than seeing it as the tool to create a simulation. Students read

their programs in detail, tried to identify what each line of code represented, in order to

 270

make appropriate modifications. In this way, students did not deal with any technical

issues, but they were thinking of ways to represent the phenomenon in code.

7.2. Stagecast Creator: Students’ activities and conversations

During planning of their work, students using SC talked about the overall story of

their games in detail, describing a succession of events that would happen in sequence,

one after another. During programming, students tried to translate their story into rules.

They were focused on programming and used the program language in their interactions,

which were more extensive than the conversations that MW students had during

programming. Students working with SC were also making some references to

experiences and observations of natural phenomena from their everyday life to support

their program ideas.

Early in their work with SC, students dealt with the characters (objects) and the

background(s) of their designs, spending much more time on how their designs looked

than the time MW students did. Debugging was in the form of deleting rules and making

new ones. While creating and debugging their rules, students working with SC were

focused on translating their story or game into rules; thus translating their game plot into

programmable pieces in SC. They were focused on creating a simulation that would

depict reality as well as possible, in addition to creating “cool” games that met several

criteria (i.e., visualization, story plot, scoring system, levels of difficulty). Lastly, in a few

cases, students improved their programs by replacing their rules with more general ones

(and subsequently more complex). Rather than having multiple rules subsequently

assigning the object with different states of behavior (i.e., different speeds), SC students

 271

replaced them with fewer rules that affected/altered the properties of the objects (i.e., the

speed of an object) see discussion below and section 6.2.2 for more details).

7.3 Possible advantages and disadvantages of Microworlds Logo and Stagecast Creator

7.3.1. Microworlds Logo

A large part of MW students’ work and conversations was technical, concerning

the program primitives and structure. Conversations about the structure of their programs

put students into a mode of thinking about the code, instead of thinking of code as a tool

for representing natural phenomena. This had both an advantage and a disadvantage. The

disadvantage was that students entered a technical mode of work, during which they were

concerned only with creating programs that ran successfully.

On the other hand, however, from as early as their planning sessions, students

working with MW started to think about possible ways of breaking up their phenomenon

into pieces, based on shared characteristics of parts of the phenomenon. Modeling in

science is developing representations of the natural phenomena that include the

mechanism of what is causing the phenomena, and similarities among object behavior(s)

in a phenomenon can help students to focus on what is causing that behavior(s) and how

to represent it. Code, like mathematics, can be used as a way to represent natural

phenomena clearly and precisely. Additionally, code, unlike mathematics, can be

understood more easily as the cause that actually creates (not simply shows) the

phenomenon represented in a simulation (Sherin, 1996). Breaking down phenomena

based on object behaviors and what is causing them can be a step towards scientific

modeling.

 272

During writing and debugging their programs, students working with MW tended

to work through a “programming frame,” focused on writing programs. Their actions

and conversations were about the code and the correct program primitives, putting them

into a “technical mode of work.” This had both advantages and disadvantages. The

disadvantage was that this technical mode of work seemed to shift their focus from the

program’s structure, to the syntax of their program, resulting in early programs that

consisted of a single routine that had little to do with students’ initial plans. Rather than

using their plans and focusing on writing programs that would represent a phenomenon,

students created programs that could run successfully and create a simulation that looked

as realistic as possible.

On the other hand, working through a “programming frame”, students saw their

work as writing, testing and correcting code, which is useful for scientific modeling.

Thus, students working with MW started using iterative debugging which is another

feature of scientific modeling. However, the technical mode of work shifted their

attention to a different objective - instead of focusing on the representation of science,

they turned their attention on technical details of their code: they used their program to

depict reality instead of developing representations of natural phenomena in code. This

was a disadvantage.

Modifying code to match, for example, a slightly different phenomenon or idea,

seemed to be a more productive context for modeling in science. Students were now

working from a different frame, with different characteristics and focus. To modify their

code, students had to read it carefully and identify what each line of code represented. In

this way, students did not have to deal with any technical issues to make their program

 273

run – but, they had to think of ways to represent the phenomenon in code. Therefore,

unlike the “programming” and the “visualization frames”, the act of modifying one’s

program put students into a productive mode of work for scientific modeling (“modeling

frame”).

7.3.2. Stagecast Creator

During planning, students working with SC talked in detail about the overall story

of their games, describing a succession of events that would happen in sequence, one

after another, with emphasis on creating “a cool game.” Their programs usually consisted

of a large number of rules (as opposed to a single routine that early programs in MW

consisted of) that were meant to be executed by SC sequentially. Despite the

disadvantage of using a “non-linear” CPE (see discussion in the following sections) in a

“linear way” – which resulted in thinking about the system changes while having to

program object behaviors – there might have been an advantage. A descriptive program

of an accelerated motion, for instance, that one group developed with SC (see section

6.2.2 for details) included a number of rules that assigned a falling ball with higher speed

in each subsequent rule. This was not modeling the phenomenon because it provided no

information about what was causing the changes in the ball’s speed. It provided students,

however, with the opportunity to realize the relation between the subsequent rules and

replace them with others that would re-create each “scene” – which is a representation of

the mechanism that underlies the changes in each subsequent rule. Just as figure 7.1

shows, it is possible to realize that what is changing in each subsequent rule is the

distance that the ball moves (which is the relationship among the rules) and create (a) a

 274

variable for the distance that continuously changes, and (b) another rule that instructs the

ball to move that distance.

During creating and debugging their rules, students working with SC were

focused on translating their story or game into rules that could be used to program a

simulation. They were concerned about depiction in their simulation, in addition to

meeting several criteria of good computer games (e.g., visualization, story plot, scoring

system, levels of difficulty).

Figure 7.1. Example of rules for a falling ball in SC

Modifications of descriptive programs were also a productive context for

modeling in science, because students could talk about a visually represented program

and decide about ways to improve it. In one case, improvements started in an effort to

make their program more general which led to creating a single rule that affected the

speed of the object, rather than having a rule for each different speed value of the

 275

character (figure 7.1). In this sense, students started to work toward a direction of

representing the causal mechanism of the phenomenon.

7.4. Implications for science education: Modeling in science with young learners: how

does it look and why is it important

This study was based on the idea that programming can be used as a tool for

scientific modeling, that is, for developing models of natural phenomena (diSessa,

Abelson, Ploger, 1991; Louca & Constantinou, 2002; Redish & Wilson, 1993; Sherin,

1996; Sherin, diSessa, & Hammer, 1993; White & Fredriksen, 1998; Wilensky &

Resnick, 1999). Learners can use CPEs for developing representations of natural

phenomena in the form of programs, which can produce simulations of the natural

phenomena. Throughout this study, the focus was neither on the students’ knowledge (or

ideas) nor on the knowledge that they gained. Rather, the focus was specifically on the

ways that students constructed models of natural phenomena with computer-based

programming tools designed for young learners and the types of programs that they

created. In this sense, the focus was on students’ activity and conversation patterns, as

well as on the way they viewed the programming process as expressed through their

work. This kind of focus can be of particular interest to at least two communities: (1) to

teachers, who might be interested in what fifth graders’ modeling can look like and (2) to

software developers who might be interested in the features of CPEs that are more

appropriate (or productive) for young learners, specifically for scientific modeling.

In previous chapters I have documented the different ways that students in this

study used different CPEs, talked about their programs/models, the different ways that

they saw their work with CPEs, and the different frames within which they worked while

 276

developing representations of natural phenomena. Those findings have implications for

teaching and learning in science, because this study primarily involved documentation

and analysis of actual student work with computers as tools for learning. For this reason,

in this section I highlight findings that are related with what modeling can look like in

science.

Through this study, it has been partially demonstrated that modeling started when

students’ focus was on developing programs that include code that causes changes of the

behavior of the different “objects” involved in the phenomenon. This was observed

during shifts of student focus from creating descriptive representations of natural

phenomena to creating programs that caused the phenomena. In fact, during this study,

students did not always see their work as developing representations of the causal

mechanism(s) of the natural phenomena (also see section below about the different ways

that students used code in the study). Thus, having a stance of seeing students as being

able to work within different frames, requires that a teacher should be able to detect

collaborative modeling practices from practices that are not supportive for modeling and

promote them. Teachers should be looking for instances during which students take this

particular stance, that is, seeing code as a tool for developing programs that create a

phenomenon rather than creating programs that show different “scenes” of a

phenomenon. For this reason, I have gathered below features of modeling with young

learners, taken from instances from the study during which students were modeling,

instead of developing simulations, writing programs, etc.

 277

7.4.1. Focusing on the objects’ behaviors and on behavior changes

Modeling natural phenomena by developing programs that are representations of

the phenomena, requires that students break down their knowledge about how the system

functions into small pieces that are programmable (Constantinou, 1996; Louca &

Constantinou, 2002). Students in this study, at some point in their work, undertook this

task. Students working with MW started planning their work by talking about the

structure of their program (i.e., the different pieces of their program) that reflected

different parts of the phenomenon they were modeling. Students working with SC,

however, carried out this task later when they were actually developing rules in SC

translating their story or game into rules of behavior for each object in the game.

Students working with MW planned their work by breaking down the phenomena

into programmable pieces in which objects had similar behavior. The subsequent

development of programs was partly reflecting their planning, even though students were

not representing what was causing those changes in the objects’ behavior. The latter was

common in this study and has important implications for young students learning

modeling: students working with MW and SC initially did not see their programs as

representations of the mechanism that was causing the change in objects behavior, but

they saw them as tools for creating simulated representations of natural phenomena. In

this sense, they developed lines of code or created rules that reflected the objects

behavior without any representation of what caused the changes in that behavior. In some

cases in MW, different lines of code were representing altered behaviors, whereas in SC

subsequent rules were causing different behaviors. In both cases there was no

representation of what was actually causing those changes.

 278

The important point here is that in this study, given a new situation/phenomenon

to program, I anticipated that students would develop programs descriptive of the object

behavior and not descriptive of the mechanism(s) causing those changes (see later

discussion about descriptive vs. causal models of natural phenomena). One interpretation

is that modeling natural phenomena with young learners starts with the development of

descriptive models of the phenomena, before students can read, evaluate and

subsequently revise their models to become causal (see discussion about descriptive and

causal models below).

For the latter to happen, however, it is important for students to be able to read

their programs, seeing them as representations of the phenomenon’s underlying

mechanism. In this case, the simulation simply shows what the phenomenon looks like.

Having different lines of code represent different object behaviors can help students to

see or identify relations between different subroutines. In turn, a descriptive model of a

phenomenon can help students to talk and subsequently develop a causal model of the

phenomenon by writing code that actually creates those different behaviors. Students

using MW and SC were observed in this study to do so, even though reading code in MW

seemed to be more tangible than reading rules in SC (see discussion below about

different uses of code). In the study, shifts towards developing causal models happened in

the context of reading and talking about the programs themselves and not about the

simulation that then resulted.

7.4.2. Telling a story….

Students working with SC saw their work as developing games that reflected or

followed some natural phenomena, e.g., balloons with helium, objects falling due to

 279

gravity, etc. Telling the story of their game, and subsequently trying to create their game

on SC was not productive for modeling in science, partly because by telling a story

students were focused on the system behaviors and changes whereas modeling with SC

can only be done with programming individual object behaviors (see later discussion

about object oriented programming, and write a story vs. write a program).

For SC students, telling a story of individual objects or causal agents (such as

velocity, acceleration, hunger etc.), however, and subsequently focusing on what causes

the changes of the object behaviors was more productive for developing models of

natural phenomena. That is, it was more productive for modeling in science to “tell the

story” of acceleration, which was altering the speed of a dropping ball, rather than having

a number of subsequent rules that assigned different speeds to the dropping ball (see

example in section 6.2.2). For this to happen students did not have to change their

particular view of seeing SC as a tool that would represent a story. Rather, they were

changing their focus, from telling a story of the overall phenomenon (system) to telling a

story about causal agents including how these were causing the objects’ behaviors.

Teachers can help students use this telling-a-story approach for talking and representing

causal agents in their models and thus use a non-productive approach in one case (for

system behavior and changes) in a productive way in another case (for talking about

causal agents).

7.4.3. The importance of reading the code for modeling

As I have indicated before, the process of model development and model

deployment can be compared to the process of writing and implementing a computer

program. In this sense, modeling natural phenomena can be carried out through a

 280

computer program, when the program itself becomes the scientific model. Developing a

model is similar to writing a program using CPEs; model deployment is similar to testing

a program and watching the simulation. The program language becomes the design

medium for the scientific mode and the program (outcome) becomes a way of clearly

articulating one’s understanding about scientific phenomena. The simulation only

supports modeling (programming), providing an immediate way of testing one’s model

(program).

Students in this study were often observed to work through a visualization frame,

during which they used the CPEs to create simulations that were visually pleasing and

looked like observations from the real-life phenomena. Working through a visualization

frame, students used the code as a tool to create and refine the visual characteristics of

their simulations and their programs did not represent their ideas about the structure of

their programs. Their programs were simply descriptive of the phenomenon and not

descriptive of the mechanism causing the phenomenon.

Working within a programming frame, students were focused on how to represent

the phenomenon in code. They read, talked about and modified their code. Because of

this, students started seeing the code as a representation of the phenomenon. In the case

of MW, students read lines of code (which were instructions for the different behaviors of

the turtle), and talked about how and why to change code to represent the phenomenon

better. In this sense, code can be a powerful means for modeling in science, because it is

a precise way of representing one’s ideas about a phenomenon.

 281

Working within a modeling frame, students in the study were debating about

replacing code with more appropriate code, despite the fact that both resulted in the same

simulation. Their focus was on what the code was saying and whether that was

representing the phenomenon, rather than creating a simulation that looked “ok”. Debates

about jumping higher vs. jumping faster as a result of the difference between the gravity

on the moon and the gravity of the earth, reflected exactly this: what was the precise

mechanism causing the difference in the behaviors (see episode MW4 and section 6.4).

When students used the code itself to represent a phenomenon (instead of simply

using code as a tool to create a simulation of the phenomenon), their programs started to

become causal models of the phenomena. Students replaced lines of code that represented

different “scenes” of the phenomena with code that actually created those “scenes” by

causing changes in the objects’ behaviors. Thus, the code was becoming the actual

mechanism of the phenomenon. For instance, as presented in section 6.5 reading the code

made Jiana indicate that a boy on a train was moving along the moving train because in

the code, the train’s speed was affecting the boy’s speed. This made her indicate that for

the boy to move on a moving train, he had to pull himself in addition to the train pulling

him. This was a result of carefully reading the code about the motion of two objects and

interpreting how the speed of the train affected the motion of the boy on the train.

Reading and making subsequent modifications in the code can lead to iterations

for model refinement, a feature of scientific modeling. Working within the modeling

mode, students in this study justified changes they were proposing for their programs by

talking about similar phenomena where the same behaviors or what was causing them

were easier to see. This was useful for modeling, because students were justifying the

 282

need for changes in the code. For example in episode MW 7 Nick indicated that the

program he was reading was not actually representing the motion of an arrow in the air

but rather the motion of a rock that was thrown. Because this difference was not reflected

in the simulation, Nick was suggesting that what the code was reading was a different

kind of motion than the one the program was meant to represent. And he went on to

explain why the program was representing the motion of a rock.

7.4.4. Different uses of code: code as the mechanism that causes the phenomenon vs.

code that creates a simulation

Students in the study used the code (the textual programming language (MW) or

the rules (SC)) in a variety of ways. When they focused on the code itself, students were

using the code to write programs that would run (working through a programming frame

- see episode MW5 for an example, during which Aaron was typing their first program

and Richard was making suggestions about the primitives he used). When they focused

on creating a simulation, being particularly interested in depicting details in their

simulation, students were using the code to create visual representations that realistically

depicted natural phenomena (see episode SC2, where Annie and Bryan had a

conversation about how their simulation looked, what details to change to make it look

better as a game, and represent the game’s underlying story). Lastly, working through a

modeling frame, students used the code as a way of representing natural phenomena

(rather than simply creating visual simulations – see section 6.3, where Zen and Sean

were modifying a descriptive program of a ball falling towards the ground to represent

causality of the movement).

 283

To model natural phenomena, students need to see the code as a representation of

the mechanism that causes the phenomenon, rather than as a tool for creating a simulation

that would simply show how the phenomenon looks. Simulations created from models

that are representations of the causal mechanism of the phenomenon, should simply

support the models (programs), in being quick ways to show how particular models work,

rather than being the focus of students’ work. In this study, I have highlighted instances

where students started seeing their programs as the models, suggesting that despite their

possible disadvantages, SC and MW can be used as modeling tools in science.

7.4.5. Descriptive vs. causal models of natural phenomena

Models of physical phenomena can be descriptive, simply showing or describing

what the phenomenon looks like. Students’ early programs in MW included a number of

instructions that resulted, for instance, in an accelerated motion. Instructions however did

not include the mechanism that was causing the changes in the speed of the object.

Despite the fact that their instructions seemed to have an underlying mechanism that was

causing the change in the behavior of the object (e.g., in subsequent lines of code, the

speed was increasing in a particular pattern), the actual mechanism was not represented in

the program. In a way, students were creating simple descriptive models. Students’ early

programs in SC included a number of subsequent “scenes” of the phenomenon by

creating rules that simply assigned different behaviors to objects. In SC, descriptive

models of this sort were usually longer than causal models (whereas in MW descriptive

programs were usually longer than causal models).

Models can also be causal, which are representations of what is causing the

phenomenon. A descriptive model is a program that includes a succession of behaviors of

 284

an object, whereas a causal model is a program that includes code that represents the

mechanism that causes the changes in the object’s behaviors. Thus, a causal model can

(re)create (instead of just showing) a number of subsequent “scenes.”

In this study, what was missing from students’ descriptive models in SC was a

representation of the relation between the different snapshots, such as the rate of the

change of the speed. Because of that, one may argue that SC students’ early programs

were not scientific models, but rather simple representations of the phenomenon made up

of different scenes that follow each other. At the same time, however, this kind of

program could provide students with the opportunity to discover the need for “inventing”

a concept such as speed or velocity and using it in the program. SC students started

creating causal models as soon as they identified a relationship between their subsequent

rules and tried to represent it in their programs. Students working with MW started to

work towards the creation of a causal model as soon as they started reading and talking

about the code as the representation of the phenomenon.

7.5. Implications for developing software packages of CPE for young learners

In this study, I have investigated and reported the different ways that fifth grade

students used two different CPEs (MW and SC) for developing representations of natural

phenomena. The software packages used in this study were chosen based on their

characteristics, mainly representing two different programming paradigms (Kiper,

Howard, & Ames, 1997): textual and visual programming. Of course, due to the different

interface that MW and SC use, they also have additional differences in the way that

programming and debugging is done.

 285

In several cases, findings regarding students’ work and conversations were related

to characteristics of the software that students used. Below, I summarize the main

characteristics of the two CPEs that are possibly related with the observed student use of

the CPEs, providing a possible framework for development of new software packages for

young learners. In doing so, I follow research (e.g., Druin, et al, 1999) in the field that

investigates usability issues of software packages and their implications for software

development. The discussion below focuses on the different ways that students saw their

work with CPEs, on differences related with the object-oriented vs. procedural

programming interface, and the difficulties of programming vs. the difficulties of reading

a program (program representation).

7.5.1. Write a program vs. write a game

Students working with MW saw their work as formal programming. Their

conversations were most of the time technical. During planning they talked about the

structure of their programs, the number of subroutines in their programs, the code they

would use and how all that would fit with a proposed simulation. During programming,

they focused on writing programs without bugs. Students working with MW broke their

programs down in segments that were meaningful for the phenomenon they wanted to

represent: jumping consisted of two subroutines, one for the boy going up and another for

the boy coming down.

Students working with SC saw their work as creating games. They talked about a

game scenario, what their game would include, how scoring would be done and what the

player was supposed to do. Early programs consisted of a number of independent rules,

which were each responding to a “scene” of their game. Students broke down their

 286

programs based on the ideas they wanted to show in those scenes (e.g., a ball falling with

a different rule for its different speeds). During planning and subsequently trying to

develop a game in SC, students seemed to have “quality” criteria that were related to the

characteristics of computer games. Those criteria included depiction, scoring rules, and

“a purpose for their game”. Students’ program decisions were based on features of their

games, and they were not concerned with science as much as they were concerned with

whether the behavior of different objects would fit in their game scenario.

Due to students’ focus on the overall story/game, there were cases in which

“game” and “science” were in conflict. Of course, there were cases in which a “story

approach” for using SC was useful in telling a story of a “causal agent” or a variable in

their models (such as acceleration, gravity etc), very similar to developing a program that

is the cause of the phenomenon represented in the simulation. Students using different

CPEs saw their work differently. Seeing it as writing programs, may have been more

productive for getting into modeling easily whereas creating games through easier

programming, was steering students into the direction of creating “quality” games which

are not necessarily “quality” models of natural phenomena.

7.5.2. Object oriented vs. procedural programming

The CPEs that were used in this study were in some aspects fundamentally

different. MW is a procedural programming environment that uses textual program

language (Papert, 1993). SC is an object oriented programming environment, which uses

visual if-then rules (Smith & Cypher, 1999). In this sense, SC can be considered a “non-

linear” program environment, as opposed to MW, which can be considered a “linear”

program environment, since instructions are written in a one-dimensional pattern.

 287

Object oriented media are based on the idea of enabling the user to directly

manipulate objects in the program (Smith & Cypher, 1999). Therefore, code (rules) and

variables of each object are physically linked to the character, and represented as such

through the media. Writing and reading a character’s rules is as simple as double clicking

on the character. Rather than writing all their entire code in one window in a one-

dimensional fashion, SC stores the rules “behind” each character. Unless otherwise

indicated, in a given microworld, multiple copies of a character automatically share the

same rules of behavior.

A simulation in SC is a result of the characters’ individual actions or changes

(Ruder, Brand, & Lewis, 1997) that create system actions or system changes (Colella,

Klopfer, & Resnick, 2000). This has an important implication for programming: to

program a system in SC, one would expect students to identify and subsequently program

the behaviors of individual objects which in turn would create the system’s actions and

changes. This might be an advantage, helping young learners to focus on individual

objects and their actions, behaviors and interactions. On the other hand, it could place a

possible difficulty in abstracting the desired system action and translating it into specific

rules assigned to characters. For instance, developing a simulation of how traffic patterns

occur in a highway during rush hours is a matter of creating a set of rules for the cars that

would create those patterns (Colella, Klopfer, & Resnick, 2000). That the traffic builds

up and moves backwards (assuming that the cars move forward) would not be reflected in

the code for the individual cars; it is just a desired “side effect” of the car’s rules of

behavior.

 288

When working with SC, however, students were planning their work thinking

about the system, its behaviors and characteristics, and not about the individual systems’

objects. In this sense, talking about the system and the system changes was not

productive for modeling in science because students needed to translate their ideas about

the system into rules for the individual objects’ behaviors. This seems to be a possible

paradox: instead of thinking in terms of individual objects, which one would expect

because that would be supported by the way modeling is done in SC, students working

with SC were planning for the overall story/system actions and changes.

Students working with MW, however, were planning their work by talking about

their program’s structure based on the objects’ characteristics. Having to write

instructions about objects, students were developing programs that consisted of a

sequence of instructions of what each object would do.

What do these findings suggest about the characteristics of programming

environments for young learners? One of the most important points illustrated from this

study is that students may not use a software package in a way its creators intended while

developing it. More precisely, object oriented programming in SC was not used by

students in a way that would support modeling, at least for most of their work. Even

though object-oriented interface is used to make programming easier, and thus may be

considered more appropriate for young learners, students using SC were not using it

productively. Furthermore, programs that students created with SC were successions of

rules representing “scenes” from their story, which SC was running in sequence. There

seems to be an additional possible paradox: students were using a non-linear program

 289

environment to represent successive linear events, instead of e.g., using the environment

to represent mechanisms that cause the change in the objects’ behaviors.

Another difference between SC and MW is the program language they use.

Programming in SC is done by demonstration (programming by example) using “drag-

and-click” techniques (Smith & Cypher, 1999; Cypher & Smith, 1995). To assign a rule

of behavior to a character, the user demonstrates the objects’ behavior to the computer by

“operating the computer interface” (Smith, Cypher, & Tesler, 2000, p76). “The computer

records the user’s actions and can then re-execute them later on different inputs” (Smith,

Cypher, & Tesler, 2000, p76). All interactions with SC are by direct manipulation, with

no need to use a keyboard. The appearance of the microworld, of the objects within the

microworld and the appearance of the objects are all under the control of the children

through simple drawing tools (Underwood, et al, 1996).

In developing SC, the intention was to create a programming environment that

would not require any knowledge of a programming language. What exists is a

programming syntax (Smith, 1994). Smith, et al, (2000) claim, that this was an effort to

bring the software programming environment closer to the user rather than bring the user

closer to the programming environment (by learning the program language of the

environment). This was also an effort to eliminate the gap between one’s mental

representation of what is wanted and the computer’s representation (Smith, et al, 2000;

Smith, 1994), assuming that the visual nature of the code would make the programs

easier to understand (Singh, & Chignell, 1992). Because of their choice of ease, SC’s

designers sacrificed generalizability and programming power. (Smith, et al, 2000)

 290

The process of programming in MW is more formal and thus possibly more

difficult because students have to manipulate a symbolic language to write instructions

for the objects in their microworlds, whereas programming in SC is much easier and

tangible because students are assigning behaviors to characters by simply demonstrating

the desired behavior to the system.

7.5.3. Easier programming vs. easier program representation

However, program representation in MW seemed to be much more meaningful,

because students could simply read the code to understand the program, whereas program

representation in SC was more abstract. Students in SC had to figure out what each rule

was doing by interpreting graphical reminders of the actions of each rule. Thus, reading

code in MW was much more frequently observed and it seemed to be related to different

tasks by the students. It seems that there is a gap between how programming is done and

how it is represented. Smith (1994) refers to this as the programming-by-demonstration

problem). Traditionally, in textual CPEs programming is done by typing in the code, and

reading the program would be simply reading what had been typed. Graphical rewrite

rules in SC serve only as graphical reminders of the programs. This leads to a possible

paradox: creating rules (programming) in SC is supposed to be much easier than writing

code in SC, but reading rules is much more difficult.

7.6. Significance and implications of this study

This study is a demonstration of the possible pedagogical value of technology

used in science education. It offers possible ways to implement technological tools in

conceptual understanding in science education, including presentation of promising

 291

possibilities for using CPEs as modeling media in science education. I believe that this

study can benefit two different research communities. It can provide feedback

information and new ideas to developers of software applications for young children and

it can provide science educators with new information that can enhance their

understanding of young students as programmers while they develop understanding in

science. In this sense there are three major outcomes of this study:

7.6.1. Better understanding of how young learners construct knowledge in the form of

models in science education.

Future science educators may use data and results from this study to realize how

constructing understanding of the physical world can be thought of as constructing simple

models of the physical phenomena and making links among these phenomena. They may

also understand that constructing models of the physical world can be an open-ended

process where young learners search for a suitable model that simulates real life.

7.6.2. Change in the way computer-based programming tools are used for teaching

science education.

This study can provide future researchers and educators with a better

understanding of how children use technology tools in the classroom for learning. Future

researchers and educators may understand that computer-based tools can enable students

to construct powerful models of dynamic systems and use them to make predictions in

unknown contexts. They also may come to understand that there are different ways of

using different types of CPEs for enhancing scientific visualization for young learners

 292

and most importantly may understand the different ways that young learners use different

types of technological tools of the kind that I have investigated in this study.

7.6.3. Change in the development of software programming tools for young learners.

Future researchers and developers of modeling software applications for young

children may come to understand that computer-based tools can serve young learners as a

cognitive tool for modeling and learning. They also may realize that there are specific

characteristics and features of applications of this kind that are more appropriate for

young learners than other characteristics. In this sense, future researchers may use results

from this study to inform the characteristics they build into their CPEs, referring to the

characteristics of student thinking and learning in science that are supported by different

modeling applications.

 293

8. REFERENCES

Anderson, T., Howe, Chr., and Tolmie, A. (1996) Interaction and mental models of
physics phenomena: Evidence form dialogues between learners. In J. Oakhill & A.
Garnham (Eds.), Mental Models in Cognitive Science (pp. 247-273). UK: Psychology
Press.

Ball, L., D. (1993). With an eye on the mathematical horizon: dilemmas of teaching
elementary school mathematics. The elementary school journal, 93 (4), 373-397.

Bell, Ph. (1995, April). How far does light go? : Individual and collaborative sense-
making of scientific evidence. AERA, p. 1-36.

Bell, Ph., Daris, E., A., and Linn, M., C. (1995). The knowledge integration environment:
Theory and design. Proceedings of Conference of Computer Support for Collaborative
Learning, 1-8.

Bogdan, R., C. & Bilken,S., K. (1998). Qualitative research for education: An
introduction to theory and methods. MA: Allyn & Bacon.

Brown, A., L. (1990). Domain-specific principles affect learning and transfer in children.
Cognitive Science, 15, pp. 107-134.

Colella, V., A., Klopfer, E., & Resnick, M. (2000). Adventures in modeling: Exploring
Complex, Dynamic systems with Starlogo. NY: Teachers College Press.

Constantinou, C., P. (1996). The Cocoa microworld as an environment for modeling
physical phenomena. International Journal of Continuing Education and Life-Long
Learning, 8 (2), 65 - 83.

Creswell, W. J. (1988). Qualitative inquiry and research design: Choosing among five
traditions. Thousands Oaks, CA: Sage Publications, Inc.

Cypher, A., & Smith, D. (1995). KidSim: End user programming of simulations. In
Proceedings of CHI’ 95, ACM Press, NY, p. 27-34.

De Corte E., Verschaffel, L., Schrooten, H., Olivie, H., & Vansina, A. (1993). A Logo-
based tool-kit and computer coach to support the development of general thinking skills.
In T. M. Duffy, J. Lowyck, D. H. Joassen (Eds.), Designing environments for
constructive learning (p. 109-124). NY: Springer-Verlag.

diSessa, A. A., Abelson, H., & Ploger, D. (1991). An overview of Boxer. Journal of
Mathematical Behavior, 10, 3-15.

diSessa, A., A. (1982). Understanding Aristotelian physics: A study of knowledge-based
learning. Cognitive Science, 6, 37-75.

diSessa, A., A. (1988). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.),
Constructivism in the computer age. Hillsdale, NJ: Lawrence Erlbaum Associates.

 294

diSessa, A., A., Hammer, D., Sherin, Br., & Kolapakowski, T. (1991). Inventing
graphing: Meta-representational Expertise in Children. Journal of Mathematical
Behavior, 10, pp.117-160.

Driver, R. and Oldham, V. (1986) A constructivist approach to curriculum development
in science. Studies in Science Education, 13, 105-122.

Druin, A., Bederson, B., Boltman, A., Miura, A., Knotts-Callahn, D. & Plat, M. (1999).
Children as our technology design partners. In A. Druin (Ed.). The Design of Children’s
Technology. San Francisco: Morgan Kaufmann Publishers, Inc.

Duschl, R. A. (1990). Restructuring science education: The importance of theories and
their development (New York: Teachers College Press).

Edwards, D. & Mercer, N. (1995). Common knowledge: The development of
understanding in the classroom. NY: Routtedge.

Enkenberg, J. (1989). Computer programming, Logo and development of thinking. In G.
Schuyten & M. Valcke (Eds.), Teaching and learning in Logo-based environments:
Proceedings of the Eurologo 1989 Conference (pp. 150-165) Washington DC: IOS.

Fay, S., L., & Mayer, R., M. (1987). Children’s naïve conceptions and confusions about
Logo graphic commands. Journal of Educational Psychology, 79 (3), 254-268.

Gallas, K. (1995). Talking their way into science: hearing children’s questions and
theories, responding with curricula. NY: Teachers College Press.

Gelman S., A., & Markman, E., M. (1986). Categories and induction in young children.
Cognition, 23, pp. 183-208.

Gilbert, J., K. and Boulter, C. (1995). The role of models and modeling in some
narratives of science learning. Paper presented at the Annual Conference of the American
Educational Research Association (San Francisco, CA).

Glynn, S. M. and Duit, R. (1995) Learning science meaningfully: Constructing
conceptual models. In S., M. Glynn & R. Duit (Eds.), Learning science in the schools:
Research reforming practice. NJ: Lawrence Erlbaum Associates.

Golin, G. (1997). Structure of scientific knowledge and curriculum design. Interchange,
28 (2,3), 159-169.

Grosslight, L., Unger, Chr., Jay, E. and Smith, C., L. (1991) Understanding models and
their use in science: Conceptions of middle and high school students and experts. Journal
of Research in Science Teaching, 28 (9), 799-822.

Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and
Instruction, 12 (2),151-183.

Hammer, D. M., & Elby, A. (2003). Tapping epistemological resources for learning
physics. Journal of the Learning Sciences, 12(1), 53-90.

 295

Harrison, A., G. and Treagust, D., F. (1998) Modeling in science lessons: Are there better
ways to learn with models? School Science and Mathematics, 98 (8), 420-429.

Hestenes, D. (1997) Modeling methodology for physics teachers. In E.F. Redish and J.S.
Rigden (Eds.), The changing role of physics departments in modern universities:
Proceedings of International Conference on Undergraduate Physics Education (p. 935-
957). NY: The American Institute of Physics.

Hogan, K., Natasi, B., K., & Pressley, M. (2000). Discourse patterns and collaborative
scientific reasoning in peer and teacher-guided discussions. Cognition and Instruction,
17(4), 379–432

Johnson-Laird, P. N. (1990). Mental Models: Towards a cognitive science of language,
inference and consciousness. Cambridge: University Press.

Kahn, K. (1999). Helping children learn hard thinks: Computer programming with
familiar objects and actions. In A. Druin (Ed.), The design of children’s technology. San
Francisco: Morgan Kaufmann Publishers, Inc.

Karmiloff-Smith, A., & Inhelder, B. (1974). “If you want to get ahead, get a theory.”
Cognition, 3, pp. 195-212.

Kelly G., J., Druker, S. & Chen, D. (1998). Students’ reasoning about electricity:
combining performance assessments with argumentation analysis. International Journal
of Science Education, 20, 849-871.

Kindfield, A., C., H. (1995) Constructing models of biological processes through
reasoning and diagrams. Paper presented at the Annual Conference of the American
Educational Research Association (San Francisco, CA).

Kiper, S., D., Howard, E., & Ames, Ch. (1997). Criteria for evaluation of visual
programming languages. Journal of Visual Languages and Computing, 8, 175-192.

Krajcik, S., Soloway, E., Blumenfeld, Ph., & Mary, R. (1998). Scaffolded Technology
tools to promote teaching and learning in Science. In Ch. Dede (Ed.). Learning with
Technology (p. 31-45). Alexandria, VA: Association for Supervision & Curriculum
Development.

Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96 (4),
pp. 674-689.

Kuhn, D. (2001). How do people know? Psychological Science, 12 (1), pp. 1-8.

Kurth, A. L., Kidd, R., Gardner, R., & Smith, Ed. L. (2002). Student use of narrative and
paradigmatic forms of talk in elementary science conversations. Journal of research in
science teaching, 39 (9), 793-818.

Lehrer, R., Lee, M., & Jeong, A. (1999). Reflective teaching of Logo. The Journal of the
Learning Sciences, 8(2), 245-289.

 296

Löhner, S., & van Joolinger, W. (2002). The effects of representations on communication
and product during collaborative modeling. In G. Stahl (Ed.), Proceedings of Conference
of Computer Support for Collaborative Learning (CSCL) (pp. 463-471). NJ: Lawrence
Erlbaum Associates, Inc.

Louca, L. & Constantinou, C. Using computer-based microworlds for constructing
modeling skills in physical science: an example from light. Manuscript submitted for
publication.

Louca, L. & Constantinou, C. (1999, June). The use of Stagecast Creator in constructing
modeling skills in physical science: The case of the single lens camera. Proceedings of
the Forth International Conference on Computer-Based Learning in Science, University
of Twente, Enschede, The Netherlands.

Louca, L., Druin, A., Hammer, D., & Dreher, D. (2003). Students' collaborative use of
computer-based programming tools in science: A Descriptive Study. In B. Wasson, St.
Ludvigsen, & Ul. Hoppe (Eds.). Designing for Change in Networked Learning
Environments: Proceedings of the International Conference on Computer Support for
Collaborative Learning 2003 (CSCL) (pp. 109-118) The Netherlands: Kluwer Academic
Publishers.

Louca, L., Hammer, D., & Bell, M. (2002). Developmental versus context-dependant
accounts of abilities for scientific inquiry: A case study of 5-6th grade student inquiry
from a discussion about a dropped pendulum. In P. Bell, R. Stevens & T. Satwicz (Eds.),
Keeping Learning Complex: The Proceedings of the Fifth International Conference of the
Learning Sciences (ICLS) (pp. 261-267) Mahwah, NJ: Erlbaum.

Louca, L., Hammer, D., & Kagey, T. (2003). Specificity of epistemological knowledge:
Context dependencies of epistemological resources. An example from a science
discussion in a 3rd grade. Paper presented in AERA 2003 conference, Chicago, IL.

Louca, L., Elby, A., Hammer, D. & Kagey, T. (2003). Epistemological resources:
Applying a new epistemological framework to science instruction. Manuscript accepted
for publication.

Medawar, P. (1987). Pluto’s Republic. Oxford: Oxford University Press.

Merriam, B. S. (1988). Case studies research in education. A qualitative approach. San
Francisco, CA: Jossey-Bass, Inc., Publishers.

Metz, K. (1995). Reassessment of developmental constraints on children’s science
instruction. Review of Educational Research, 65 (2), pp. 93-127.

National Research Council. (1990). National Science Education Standards. Washington,
DC: National Academy.

Orhun, E. (1993). Learning problem solving through computer programming. In D. L.
Ferguson (Ed.). Advanced educational technologies for mathematics and science (p. 339-
362). NY: Springer-Verlag.

 297

Papert, S. (1980). Mindstorms. Children, Computers & Powerful Ideas. NY: Basic
Books, Inc. Publishers.

Papert, S. (1993). The Children’s machine: Rethinking school in the age of the computer.
NY: Basic Books.

Pea, R. (1984). Intergrading human and computer intelligence. Technical Report no. 32.
Banks Street College of Education: New York, NY.

Pea, R., D., Kurland, M. D., & Hawkins, J. (1987) Logo and the development of thinking
skills. In R. D. Pea & K. Sheingold (Eds.). Mirrors of minds: Patterns and experience in
educational computing (p. 178-197). Norwood, N.J.: Ablex Publishing Corporation.

Penner, D. (2001). Cognition, Computers and synthetic science: Building knowledge and
meaning through modeling. In Walter G. Secada (Ed.). Review of Research in Education.
AERA: Washington, DC.

Penner, D., E., Giles, N., D., Lehrer, R., & Schauble, L. (1997). Building functional
Models: Designing an Elbow. Journal of Research in Science Teaching, 34 (2), pp. 125-
143.

Penner, D., Lehrer, R., Schauble, L. (1998). From physical models to biomechanics: A
design-based modeling approach. The Journal of the Learning Sciences, 7(3&4), 429-
449.

Rader, C., Brand, C., & Lewis, Cl. (1997). Degrees of comprehension: children's
understanding of visual programming environment, Communications of the ACM, 351-
358.

Raghavan, K. and Glaser, R. (1995) Model-based analysis and reasoning in science: The
MARS curriculum. Science Education, 79 (1), 37-61.

Redish, E. F. & Wilson, J. M. (1993). Student programming in the introductory physics
course: M.U.P.P.E.T. American Journal of Physics, 61 (3), 222-232.

Rochelle, J. (1992). Learning by collaborating: convergent conceptual change. The
Journal of the Learning Sciences, 2, 235-276.

Samarapungavan, A. (1992). Children’s judgments in theory choice tasks: Scientific
rationality in childhood. Cognition, 45, p. 1-32.

Schecker, H., P. (1993). The didactic potential of computer aided modeling for physics
education. In D.L. Ferguson (Ed.). Advanced Educational Technologies for Mathematics
and Science. NY: Springer-Verlag (NATO series)

Schoenfeld, A. H. (1989). Teaching mathematical thinking and problem solving. In L. B.
Resnick & B. L. Klopfer (Eds.), Towards the thinking curriculum: Current cognitive
research (pp. 83-103). Washington DC: ASCD.

 298

Sherin, Br. (1996). The Symbolic Basis of Physical Intuition. A Study of Two Symbol
Systems in Physics Instruction. Unpublished dissertation Thesis.

Sherin, Br., diSessa, A. A., & Hammer, D. (1993). Dynaturtle revisited: Learning physics
through collaborative design of a computer model. Interactive Learning Environments, 3
(2), 91-118.

Sinclair J. McH., & Coulthard, R., M. (1975). Towards an analysis of discourse: The
English used by teachers and pupils. London: Oxford University Press.

Singh, G., & Chignell, M., H. (1992). Components of the visual computer. The Visual
Computer, 9, 115-142.

Singh, J., K. (1992). Cognitive effects of programming in Logo: A review of literature
and synthesis of strategies for research. Journal of Research in Computing in Education,
25(1), 88-104.

Smith, D., C. & Cypher, Al. (1999). Making programming easier for children. In A.
Druin (Ed.). The Design of Children’s Technology. San Francisco: Morgan Kaufmann
Publishers, Inc.

Smith, D., C., Cypher, A., & Telser, L. (2000). Novice programming comes of Age.
Communications of the ACM, 43 (3), 75-81.

Stake, R. E. (2000) Case Studies. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of
qualitative research. (435-454). Thousand Oaks, CA: Sage.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research. Techniques and
procedures for developing grounded theory. Thousand Oaks, CA: SAGE Publications.

Thompson, P., W. (1985, September). A Piagetian approach to transformation geometry
via microworlds. Mathematics Teacher, 465-471.

Toulmin, S. (1958). The Uses of Argument. Cambridge: Cambridge University Press).

Underwood, G., Underwood, J., Pheasey, K., & Gilmore, D. (1996). Collaboration and
discourse while programming the KidSim microworld simulation. Computers &
Education, 26, 143-151.

van Zee, E., (2000), Analysis of a student-generated inquiry discussion. International
Journal of Science Education, 22 (2), 115-142.

van Zee, E., and Minstrell, J. (1997) Reflective discourse: developing shared
understandings in a physics classroom. International Journal of Science Education, 19,
209- 228.

van Zee, E., Iwasyk, M., Kurose, A., Simpson, D., & Wild, J. (2001). Student and teacher
questioning during conversations about science. Journal of research in science teaching,
38 (2), 159-109.

 299

Verschsffel, L., De Corte, E., Schrooten, H., Ondemans, R. & Hoedemaekers, E. (1989).
Cognitive effects of programming and instruction in sixth grades. In G. Schuyten & M.
Valcke (Eds.), Teaching and learning in Logo-based environments: Proceedings of the
Eurologo 1989 Conference (pp. 150-165). Washington DC: IOS.

Vosniadou, S. (1989). Analogical reasoning and knowledge acquisition. In S. Vosniadou
& A. Ortony (Eds.) Similarity and analogical reasoning (p. 413-437). Cambridge:
Cambridge University Press.

Wells, M, Hestenes, D. and Swackhamer, G. (1995) A modeling method for high school
physics instruction. American Journal of Physics, 63 (7), 606-619.

White, B. Y. and Frederiksen, J. R. (1998). Inquiry, modeling and metacognition: Making
science accessible to all students. Cognition and Instruction, 16 (11), 3-118.

Wilensky, Ur., & Resnick, M. (1999). Thinking in Levels: A Dynamic Systems Approach
to Making Sense of the World. Journal of Science Education and Technology, 8 (1), 3-
19.

Yin, K. R. (1994). Case study research: design and methods. Thousands Oaks, CA: Sage
Publications, Inc.

 300

9. APPENDIX

9.1. IRB approval for the study

