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One of the prominent challenges in deploying Wide Area Applications (WAA) is

scalable performance management. The unpredictable behavior of WAN calls for mod-

els to predict the end-to-end latency between a client and server. Early research in this

area presents the concept of Latency Profiles (iLPs) as a tool to capture the changing la-

tencies experienced by clients when connecting to a server. It also presents a technique

to group iLPs into Aggregate Latency Profiles (aLPs), study the relationships between

iLPs using concepts of Mutual Information and Correlation and managing a large col-

lection of iLPs using Relevance Networks.

Present research in this area, which is also presented in this thesis, deals with a new

method of latency prediction using peers, apart from using aLPs as done earlier. The

method involves identifying a group of peer clients experiencing similar latencies to



servers and building vector of confidence values in peer clients for each client (for each

server). These confidence vectors can be used for latency prediction.

The success of this research on scalable performance monitoring must be validated

against thousands of iLPs. A new experiment on Planet-Lab is designed for this purpose.

PlanetLab is a globally distributed wide area testbed for deploying newtork services at

the Internet scale. The experimentation on Planet-lab involves deploying clients and

server written in Python. This ensures a better control over the working of clients and

servers and also takes care of other details like recording the processor load at both

the client and servers and obtaining AS-level BGP paths between clients and servers.

The additional parameters of processor loads and BGP paths help to better analyse the

relationships between iLPs.
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Chapter 1

Introduction

1.1 Wide Area Application and Challenges

Wide area applications (WAAs) utilize a WAN infrastructure (e.g., the Internet) to con-

nect a federation of hundreds of servers, typically content providers, with tens of thou-

sands of clients. Servers provide services that may range from downloads of digital

content to authentication sessions, involving two or more parties. It is expected that

such applications must scale to tens of millions of resources.

WAAs, while promising in their scope and impact, face significant challenges. A

prominent challenge involves the unpredictable behavior of a dynamic WAN [14, 15]

that results in a wide variability in access latency (end-to-end delay). In [12], latency

profiles is proposed as a conceptual modeling tool for the behavior of sources over a

WAN. Latency profiles are time-dependent latency distributions that capture the chang-

ing latencies clients experience when accessing a server.

Latency profiles [12] can be utilized as a WAA monitoring tool, gathering efficiently

data on access and performance patterns. They can also serve to predict latencies that

clients should expect in response to requests. Therefore, latency profiles can assist in
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personalizing services of WAAs to client’s specific network capabilities, including avail-

able bandwidth and “distance” from server, in order to improve service delivery in a

heterogeneous WAN environment. However, in the presence of hundreds of servers and

tens of thousands of clients, managing millions of latency profiles cannot scale. There-

fore, mutual information and correlation are used to define latency profile similarity,

and use them further to aggregate similar latency profiles. Also to analyze meaning-

ful relationships among iLPs is studied using Relevance Networks (RN) [4]. RN has

been developed for functional genomic clustering to discover non-random associations

between genes on the basis of their biological characteristics. Here RN is used for build-

ing and maintaining aggregate latency profiles.

An experiment is thus designed on PlanetLab to build latency profiles between

client-server pairs, study their relationships and aggregate them into an aggregate la-

tency profile using Relevance networks.

1.2 Overview of Planetlab : An Overlay testbed

Planet-Lab [3] is a globally distributed wide area testbed for deploying various net-

work services at the Internet scale. The services experience all the behaviors of the

real Internet in terms of paths taken, latency, available bandwidth, connection proper-

ties, network presence and geographical location. PlanetLab currently consists of 350

machines, hosted by 150 sites, spanning 20 countries. All the PlanetLab machines run

a common software package that includes a Linux-based operating system, mechanism

for bootstrapping nodes and distributing software updates, a collection of management

tools that monitor node health and facilities for managing user accounts and distributing

keys (Public keys). A Public key/ Private key encryption is needed to set up an ac-

count on PlanetLab. The objective in PalnetLab is to allocate a slice of of network-wide
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resources to an application, allowing it to run across all (or some) of the machines dis-

tributed globally.One of PlanetLab’s main purposes is to serve as a testbed for overlay

networks. A variety of services can be run in the PlanetLab slice like content distribu-

tion networks, routing and multicast overlays and network measurement tools. Using

an overlay as both a testbed and deployment platform has various advantages like ac-

cess to a large set of geographically distributed machines, a realistic network substrate

that experiences congestion, failures and diverse link behaviors and also a potential for

a realistic client workload. Services currently running continuously on PlanetLab in-

clude NetBait (a worm detection and tracking device), CoDeeN (a content distribution

network), ScriptRoute (a programmable network management service), Chord (a scal-

able object location service) and Sophia (a network monitoring service). The various

advantages of using PlanetLab as an overlay testbed combined with some of the use-

ful network monitoring services running on it (which provide useful information about

the BGP paths between any client and server pair and also the continuous ping infor-

mation between them) make it a very apt platform for running the Latency prediction

experiment using client-server Latency profiles.

1.2.1 NIXES ToolSet

Nixes [2] provides a set of bash scripts to install, maintain, control and monitor applica-

tions on PlanetLab. It bootstraps the nodes with yum and installs the required rpms from

PlanetLab distribution. Nixes uses threads to acheive parallelism. The tool is based on

three components: the scripts, a configuration file and a public web repository hosting

the application. The advantages of this tool is that it is fast, bootstraps the nodes with

yum, gzip and python, deploys any kind of directory structure to the nodes and executes

commands on all hosts.
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Tools

All the tooles take as argument a list of nodes, where each node is a fully qualified

Internet address. The tools use public/private key authentication to log on to the

remote nodes via ssh. The private key is specified in the configuration file.� plsetup node-list bootstraps the vserver running on the nodes specified in the

node-list with yum, gzip and python2.3.� plinstall “rpms” node-list installs all the rpms on all the nodes in node-list

(rpms must be a part of the redhat distribution)� pldeploy node-list deploys any file structure to the nodes� plcmd command node-list executes any set of commands on all the nodes.

command refers to an environment variable containing the script to execute.

It is specified in the .nixesrc (see CONFIGURATION). The command is

either a START or STOP command.

All the tools work in parallel with by default 40 processes. they write a log file per

node basis in the directory specified by the TMP environmen variable. Success of

an operation will be notofied by means of no errror, “see the log for more details”,

in case of failure.

Configuration

The “.nixesrc” resides in the user’s home directory and contains the configuration

for all the tools. The plcmd script supports custom options, which specify a script

for an action. A sample .nixesrc file is shown below.

Deployment
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The deployment script is fully configured within .nixesrc in the home directory.

The files are to be stored in a publically available server, and that should be spec-

ified in the .nixesrc file.

Control

Any script or command can be executed on all the nodes in parallel. The two

commands used are START and STOP. If the return code is 255, then the control

script will echo the output of the command to stdout.

1.3 Related Work

There has been considerable work in the area of distributed performance estimation and

monitoring of Internet applications. Commercial solutions which address this issue are

Akamai, Keynote, Appliant etc. Some of the many inteeresting research solutions are

IDMaps, GNP, RON, Internet Iso-bar, Sophia and Ganglia. Below is a brief description

of some of these tools.

IDMaps Internet Distance Measurement Service(IDMaps) [1, 6] is a pioneering work

in the area of internet distance measurement. It provides the distance estimate be-

tween any two hosts connected to the Internet. It comprises of two components,Tracers

and Servers.Tracers measure distances between IP address prefixes and among them-

selves.Servers collect measurement results and answer distance queries. The distances

between two hosts, A and B is the sum of three distances, distance from A to Tracer T 1,

distance B to Tracer T 2, and the shortest distance between T 1 and T 2. Traceroute is

used to know the path between the hosts. Scalability issue is addressed by grouping the

IP addresses into prefixes.
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Global Network Positioning - GNP This approach models the Internet as a geometric

space and computes geometric coordinates to characterize the position of hosts in the

internet. A key feature of mapping the hosts in the geometric space is identifying a

small distributed set of cooperating hosts called Landmarks. The Landmarks compute

their own distances in a chosen geometric space and disseminate to hosts wanting to

compute their own coordinates relatively in the geometric space. Network distances

between the hosts are then predicted by evaluating a distance function (like Euclidean

distance) over their coordinates.

Internet Iso-bar Internet Iso-bar [5] is a scalable overlay distance monitoring system.

It clusters hosts based on the similarity of their perceived netwrok distance. The centers

of these clusters are then used for continous probing and distance estimation. Given

a set of N end hosts that belong to different administrative domains, a subset of those

nodes is selected and an overlay monitoring system is built without any knowledge of

the underlying topology. It is a real-time monitoring system, easy to implement, scal-

able and has small communication and computation cost. Various distance correaltion

metrics are used to determine the correlation distance between pairs of hosts denoted by

cor dist �������	� , such as Network distance correlation, Network similarity in terms of Eu-

clidean distance between network distance vector and vector similarity between network

distance vectors and correlation based on Geographical proximity. Clustering is based

on two methods, the K-center problem, which runs in O � N3 � time, and on minimum set

cover problem. The internet iso-bar can also be used to measure distance between two

hosts in a peer-to-peer system and between a client c and a server s. The performace

of iso-bar is compared with Global Network Positioning (GNP) and the results show

that there is a negligible difference between the two, even though GNP shows a slightly

better performance than iso-bar.
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Sophia Sophia [16] is a distributed system that collects information about the various

elements in the network, evaluates statements and reacts according to the evaluations of

the information collected. The components of Sophia include sensors to collect infor-

mation about the network elements, declarative programming environment to evaluate

logic statements regarding the system and actuators, which perform the local actions.

Explicit notions of time and location are embedded into Sophia making it easy to dis-

tribute expressions across the network and process both past and future information. The

interface to Sophia core is the eval(Term) functor. Metrics involving netwrok parame-

ters like bandwith and latency and logic expressions involving them can be specified

as predicates. The actual values associated with the predicates are returned by the sen-

sors running on nodes throughout the network. Evaluation results including the facts

from the sensors are cached at each node which helps in situations where computation

latency is more important than freshness of data. The other design aspects of Sophia in-

clude Pre-Scheduling, Evaluation planning, which is analogous to query planning and

optimization in databases, Extensibility in terms of adding functionality over time and

using Capabilities to assign and enforce privileges and for module protection. The im-

plemetation of Sophia includes a logic terms database for storing all Terms, a logic

unification engine based on standard logic unification, interfaces with sensors and ac-

tuators which form the I/O of Sophia, remote evaluator for delegating evaluation of

an expression to a particular remote node and an expression scheduling mechanism to

maintain the calendar of evaluations scheduled for the future.

Ganglia Ganglia [10] is a scalable distributed monitoring system for high perfor-

mance computing systems like clusters and Grids. It is a hierarchical design targeted

at federations of clusters. It uses a multicast listen/announce protocol to monitor state

within clusters and uses a tree point-to-point connections among representative cluster
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nodes to aggregate state information from the clusters. It uses XML for data repre-

sentation, XDR for compact portable data transport and RRDtool for data storage and

visualization. Within each cluster, Ganglia uses heartbeat messages on a well-known

multicast address as the basis for a membership protocol. Each node monitors its lo-

cal data and sends the updates on the multicast address. All nodes listen for data on

this address and thus have data about all the other nodes in the cluster. Ganglia federates

multiple clusters using a tree of point-to-point connections. Each leaf node specifies one

node in a cluster and points higher up in the tree specify aggregation points. The mon-

itoring data is represented in XML. Ganglia has been implemented for clusters, grids

and on Planet-Lab. Experimentation on planet-lab has revealed several shortcomings of

Ganglia in terms of assumptions of cheap wide-area bandwidth, large I/O overhead, lack

of hierarchical namespace, lack of timeouts on monitoring data and scalability. Some of

these shortcomings are said to have been modified in the newer versions.
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Chapter 2

Wide Area Performance Monitoring

In this chapter latency profiles [12, 13] is discussed as a conceptual model of client-

server interaction. Latency information between a client and server is maintained in

form of latency profiles. We apply passive information gathering strategies for building

individual latency profiles (iLPs) for client/server pairs. However, managing millions of

individual latency profiles does not scale. Below we consider a method for aggregating

latency profiles that improves scalability of the WAA monitoring.

The main idea of the approach is as follows. Suppose that a client/server pair � c � s �
does not have an associated iLP that can be directly used to optimize access from c to s,

or alternatively, the system does not have sufficient resources to continuously maintain

such a profile. Assume further that there is a well-defined individual latency profile iLP1

associated with a client/server pair � c1 � s � . In addition there are latency profiles iLP2

and iLP3 associated with client/server pairs � c � s1 � and � c1 � s1 � . If there is a non-random

association between iLP1, iLP2 and iLP3, we argue that a reasonable estimate of access

latency for � c � s � can be obtained by grouping iLP1, iLP2 and iLP3 in an aggregate latency

profile aLP.

The general approach is to construct iLPs and aggregate them to improve the overall
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prediction power.

The rest of this chapter gives a formal definition of iLP, grouping of similar (non-

randomly associated) iLPs in aggregate latency profiles, introduce relevance networks

as a tool for constructing aggregate latency profiles amd how aggregate latency profiles

can be used for predicting latencies.

2.1 Individual Latency Profiles

Given a client c, a server s, an object of size b, and a temporal domain T , an individual

latency profile is a function iLPc 
 s : T � b � ℜ ���� TO � . iLP represents the end-to-end

delay for a request from server s at time t. TO represents timeouts. iLPc 
 s comes in two

flavors, similar to [8]. One flavor measures time-to-first, which depends on factors such

as workload at the server and size of the requested object. The other flavor measures

time-to-last, which has a greater dependency on network bounds.

Due to the stochastic nature of the network, iLPc 
 s � t � is clearly a random variable,

yet its specific representation can vary. Below assume iLPc 
 s � t ��� iLPc 
 s for all t, to be

a discrete time-independent random variable, represented as an

��� L

p

���� matrix where�
L ��� �

L1 � L2 � �!�"�!� Ln � is a row matrix of latencies and
�
p ��� �

p1 � p2 � �!�"�!� pn � is a row matrix

of corresponding latency probabilities (∑n
k # 1 pi � 1).

Example 2.1.1 As an example consider the following probability distributions corre-

sponding to two individual latency profiles (X and Y represent specific client/server

pairs):

LDX $&%'( 1 2

0 ) 5 0 ) 5 *�+,.- LDY $&%'( 2 3

0 ) 75 0 ) 25

*�+, /
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2.2 Aggregate Latency Profile

An aggregate latency profile aLPLP combines a set of n individual latency profiles iLP �� LPci 
 si � n
i # 1. Constructing an aLP involves grouping iLPs with similar characteristics in

order to improve overall latency prediction. Apparently, to achieve improvement in the

prediction quality one has to aggregate only iLPs that are non-randomly associated with

each other. Therefore, one should have a methodology to evaluate candidate iLPs for

aggregation purposes. Below is an introduction to the concept of LP similarity that can

be used to provide such evaluation.

We define a similarity function Σ : CS � CS � T � SM, where CS is the set of all

possible client/server pairs, T is a set of finite time regions (possibly intervals), and SM

will be discussed shortly. Σ is a function that measures, given two latency profiles, their

similarity over τ 0 T .

There are two specific measures of latency profile similarity based on mutual infor-

mation [7] and correlation [11]. To estimate the similarity of two iLPs, we consider their

joint behavior described by a joint probability matrix
�
P � X � Y ��� . �

P � X � Y ��� provides the

probabilities of the joint occurrence of two latencies.

Example 2.2.1 Consider X and Y , given in Example 2.1.1. Their joint probability dis-

tribution is given as:

P � X � Y �1� ��� � 1 � 2 � � 1 � 3 � � 2 � 2 � � 2 � 3 �
0 � 5 0 0 � 25 0 � 25

���� /
Mutual information between two random variables MI � X � Y � is defined as

MI � X � Y �2� ∑
i 
 j 3

pi 
 j lg
pi 
 j
pi p j 4 (2.1)

where pi 
 j � pi � p j are joint and individual probabilities of the latencies X and Y , respec-

tively. A higher mutual information between two iLPs means that those iLPs are non-
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randomly associated. Conversely, a mutual information of zero means that the join

distribution of iLPs holds no more information than their individual distributions.

We define correlation between two random variables Corr � X � Y � as follows:

Corr � X � Y �2� 1
n 5 1 ∑

i 
 j 3
xi 5 X̄

SX 4 3
yi 5 Ȳ

SY 4 (2.2)

The correlation coefficient as defined above measures the degree of the linear associ-

ation between two variables. A higher correlation between two iLPs can also indicate

that those iLPs are non-randomly associated. In general, there is no straightforward rela-

tionship between correlation and MI [9]. While correlation captures linear dependence,

mutual information is a general dependence measure.

Example 2.2.2 For the latency distributions of Example 2.1.1 and Example 2.2.1 we

calculate mutual information MI � X � Y � , as follows:

p1 
 2 lg p1 6 2
p1 p2 7 p1 
 3 lg p1 6 3

p1 p3 7 p2 
 2 lg p2 6 2
p2 p2 7 p2 
 3 lg p2 6 3

p2 p3
� 0 � 31

As for correlation, X̄ � 1 � 5 � Ȳ � 2 � 25 � SX � 0 � 58 � SY � 0 � 5, and Corr � X � Y �8� 0 � 57./
2.3 Constructing Aggregate Latency Profiles using Rel-

evance Networks

This section proposes an approach to analyze and visualize meaningful relationships

among iLPs using Relevance Networks (RN) [4]. RN has been developed for functional

genomic clustering to reveal non-random associations between genes on the basis of

their biological characteristics. In this research RN is applied in the context of WAA

12



Figure 2.1: Relevance network example

performance monitoring. In particular, how RN can be used for building and maintain-

ing aggregate latency profiles.

The RN-methodology is based on computing pair-wise relationships (e.g., correla-

tion and mutual information) for all iLP pairs. Consider a graph whose nodes represent

iLPs and edges represent the relationships (associations) between them. Assume that we

compute all pair-wise relationships. By choosing a relationship threshold and displaying

only those edges with a relationship higher then the threshold, then, out of completely

connected network of iLPs, we extract clusters of iLPs whose relationship to each other

is “stronger” than the threshold. Such clusters are called Relevance Networks. Observ-

ing how the threshold increase impacts characteristics of the Relevance Networks (e.g.,

number of edges and number of connected components), one can generate a set of iLP

relationships and aggregate strongly related iLPs. One outcome of this approach is that it

provides us with a natural quality estimation of both aLPs (aggregate only above certain

threshold), and the whole group of candidate LPs (sensitivity to threshold increase).

Example 2.3.1 Figure 2.1 provides an example of a relevance network, as was gener-

ated during the experiments. Each node is a client-server pair (e.g., 9;:=<	>@?�A�BDC ) and an

13



edge between two nodes represent a similarity above the network threshold. The RN in

this example has two connected component (one of size 2 at the top of the figure and the

other of size 8 at the right hand side of the figure. /
To build a Relevance Network, one needs an input feed in the form of E iLP1 � iLP2 � Measure F

and a threshold specification. The measure, in our case,is either the correlation or mutual

information between iLP1 and iLP2.

2.4 Latency Prediction Using Aggregate Latency Pro-

files

After constructing an aLP from a set of iLPs, one can improve prediction quality of an

iLP using observations of iLPs from the same aLP. To demonstrate that the meaningful

relationships between profiles within an aLP discovered in the previous section can be

used to improve the quality of latency prediction we will use latency estimations using

conditional expectation (CE).

A well-known fact from estimation theory is that the expected value E � X � of a ran-

dom variable X minimizes the expected value of the mean-square-error of estimation

E G�� X 5 estX � 2 H [11]. Using an observation of a second random variable Y which is

related to X in some way (e.g., Y is correlated with X ), an optimal mean-square-error

estimator of X given Y is the conditional expectation E � X IY � of X given Y [11]:

estX � E � X IY ��� ∑
xi

� xi p � xi I yi � � (2.3)

where p � xi I yi � is the conditional probability of xi given yi, which can be easily calculated
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from the joint probability distribution pi 
 i, using the following equation:

p � xi I yi �2� pi 
 i
p � yi � (2.4)

Example 2.4.1 Using latency distribution from Example 2.1.1 and Example 2.2.1, we

calculate the following conditional probability distribution:

P � X IY �2� ��� 1 I 2 1 I 3 2 I 2 2 I 3
0 � 67 0 0 � 33 1

���� (2.5)

Then,

E � X IY � 2 �2� 1 � 0 � 67 7 2 � 0 � 33 � 1 � 33

E � X IY � 3 �2� 1 � 0 7 2 � 1 � 2.

It is obvious that conditional expectation based estimation outperform estimation based

on simple expectation, which in this case would be E(X) = 1*0.5+2*0.5=1.5.
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Chapter 3

Experiments

This chapter discusses piror work done in building Latency Profiles, Analysis done on

the data collected and setting up of an experimentation on a larger scale on Planet-Lab.

3.1 Prior Work

The prior work in using Latency Profiles as a tool for Performance Monitoring of Wide

area Applications involved building Latency Profiles, aggregating them and using the

aggregated LP in Latency Prediction. Each step will be described briefly below.

3.1.1 Construction of Latency Profiles

A small scale experiment was conducted between August and December 2002 on the

CNRI handle testbed and involved simulating a Wide Area Application accessing han-

dles maintained by the International Digital Object Identifier (DOI) Foundation (www.

doi.org). The Handle protocol is an emerging IETF J IRTF standard providing a global

name service for use over WANs, a namespace, a name resolution service and protocols

for digital object location and access.
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The data was PDF files got by resolving the handle ids via the Handle Protocol.

Data objects of size varying from 70 to 100 KBytes were identified at the ten most

popular content servers.

The location of clients was dictated by their accessibility. The Clients therefore

included 4 to 8 Handle clients placed in University ASes located across Europe, North

America and Australia. The JAVA Handle client deployed, periodically resolves a group

of Handles and downloads the corresponding PDF files using HT T P requests. The

latency logs of obtaining the files, latency being the sum of Handle resolution time and

the time to contact the repository and downloading the files, was sent to the data analysis

site at the University of Maryland via email using JAVA SMTP libraries.

Data with respect to 22 clients (2 each on 11 client ASes) accessing 10 servers, yield-

ing 22 iLPs was studied. For each pair-wise combination of 2 iLPs, data processing was

performed in terms of Alignment (based on Timestamps and a minimum granularity of

one hour) and Normalization (for statistical comparison). Further Similarity computa-

tion was carried out, the measures being Mutual Information and Correlation. These

similarity measures were then used to identify connected components in Relevance Net-

works.

3.2 Analysis: Buiding Peer Confidence Vectors for La-

tency Prediction

One way to predict latency of a client is to use another peer client as a predictor, a

peer in whose latency the client maintains a high confidence. This involves each client

maintaining a Vector of confidence values with regard to other peers as predictors. The

steps followed in building such a vector along with the mathematical formulae used is
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described below.

Step 1: Identify peers(clients), who share similar latency values and group them for

peer prediction. The experiment conducted earlier on which this analysis is to be

carried out involved 22 clients. Due to the small number of clients, each client

considers all the remaining 21 other clients and builds the confidence vector for

them.

Step 2: Define the Confidence Vector. The confidence vector Conf Vect is built both

at the day-hour level and at the day level for each server. It is a two dimensional

vector having m rows (corresponding to the days of the week, ranging from 0..7)

and n columns (corresponding to the hours of the day, ranging from 0..24). Each

element of the vector Conf Vect[d][h] is a vector of length 21 and stores the confi-

dence values the client has in the other clients for that day and hour. Similarly the

Conf Day Vect is a d dimensional vector (corresponding to the days of the week,

ranging from 0..7) and each element of this day vector is a vector of 21 values,

again corresponding to the confidence values the client has in the other clients for

that day. The data structures for the vectors is shown in figure 3.1 and figure 3.2

respectively .

Step 3: Building the confidence values. Two confidence parameters are introduced

here, Instantaneous Confidence and Aggregated Confidence.

Definition: Instantaneous Confidence /
It is defined as the percentage confidence that a particular client has in the pre-

dicted latency (value returned by a peer client) when compared with its own cor-

rect latency. It is defined by S � t � .
18



days [0 .. 6]

hours [0 .. 23]

............

............

Vector of 21 values corresponding to peer clients

Figure 3.1: Data Structure of Conf Vect

......................

....................

days 0..6

Vector of 21 values corresponding to peer clients

Figure 3.2: Data Structure of Conf Day Vect
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Definition: Aggregated Confidence /
It is defined as the aggregated confidence a client will have in the peer client’s

predicted latencies over a period of time (could be over the entire data set, over a

particular day of the week, etc). It is defined by S � a � t
0.

S � a � t
0 � t

∑
k # 0

S � t �=L αk

∑

t

k # 0
αk 0 Q α Q 1 (3.3)

S � a � t0 � S � t � 7 α L S � a � t N 1
0

1 7 α
(3.4)

The factor α controls the weightage given to previous values. It ranges from 0

to 1, when equal to 1, all values are given equal importance and the aggregated

confidence Sa will be the average of all the instantaneous confidences over the

time.

The data set is organized as follows. There is a separate directory for each server.

Each server directory consists of the log files for all the clients accessing it. The

log files contain the time of access (Day Date Month Hour:Minute:Second Year)

and latency values. Ideally the data set should contain one value for every hour

and values for all days of the experiment. However, the handle client timed out

quite often resulting in multiple downloads happening in the same hour on some
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days and no downloads happening on some other days. Since the data set for

analysis is small, to get better analysis results all the latency values of an hour

were considered. Hence for a particular date and hour, the latency is a group of

values, instead of just one value.

Step 4: Consider the building of the confidence vectors for a client A. A is interested in

obtaining latency values for a particular server X for say, Friday 12 noon and day

Friday. In the data collected for A, Friday falls on three dates, 06, 13 and 20 of

December 2002.

Step 5: Building the Conf Vect[d][h] for Friday 12 noon� A contructs a temp vector with the latency values for 12 noon on these dates.

It then calculates the Instantaneous confidence values for each of the other

clients by passing the temp vector.� At each of the other clients : Lets consider client B. For every element of the

temp vector, B looks up the corresponding (day,date,hour) latency values. If

the data is available then B calls the function to calculate the instantaneous

value. Suppose A has 5 values for the hour and B has 5. For each of the (5*5)

values the Instantaneous Confidence formula is applied and the average of

the 25 values is taken as the Instantaneous value for that (day,date,hour). In

case the client B has no data collected for that time period, the previous data

of B is used to calculate the instantaneous values.� Instantaneous values for all the friday dates are then calculated and the Ag-

gregated Confidence value is calculated over them. This is the confidence

that client A will have in client B for Friday 12 noon. Similarly the values

are calculated for all the other clients.
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� The above steps are applied for all the days*hours cycle and the values are

entered in A’s Conf Vect[m][n]

The above steps are better explained in the figure 3.3.

Client B

FridayFriday

06 13 20 06 13 20

12 12 12 12 12 12

inst_confidence
{

Query − Friday 12 noon

Client A

dates

hour

Aggregated confidence for Friday 12 noon

Figure 3.3: Conf Vect example for Friday 12 noon

Step 6: Calculating the Conf Day Vect values.� Suppose A is interested in building the confidence vector for day Friday. A

temp vector is constructed for the dates on which friday falls in the data set

of A. Each element of the temp vector will correspond to a date, the hours

and the hour latency values. This vector is passed on to the other clients to

calculate the instantaneous confidence values for each date.� At each of the other clients : Consider client B. For every element of the

temp vector, B looks for the corresponding (day, date, hours, hour latencies).

If the data is available, instantaneous confidence values are calculated for all
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the hours, aggregated to obtain the Instantaneous confidence A will have in

B for that date. Similarly instantaneous values are calculated for all the dates

in the temp vector. In case data is unavailable for B for a particular date,

previous date’s data of B will be considered to calculate the instantaneous

confidence for that missing date.� The Instantaneous values obtained above will be aggregated using Aggre-

gated Confidence formula to obtain the aggregated confidence A will have in

B for Friday.

The figure 3.4 better explains the construction of the Conf Day Vect.

Client B

FridayFriday

06 13 20 06 13 20

{
Client A

00 00 00 00 00 00

23 23 23 23 23 23

..........

..........

..........

..........

..........

..........

inst_confidences

Query − Friday 

Aggregated confidence for Friday

{hours

dates

Figure 3.4: Conf Day Vect example for Friday

� Graphs are then plotted to show the distribution of the confidence values for

each client for each of the servers and over the entire dataset. The example

of one such plot for client UMD-1 to server APress is shown in figure 3.5.
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Figure 3.5: Confidence values of client UMD-1 for server APress

3.3 Experimentation on Planet-Lab

3.3.1 Motivation

The experiment conducted earlier during 2002-2003 yielded interesting results based

on a small data set of 220 Client-Server pairs (220 iLPs). However the success of

a scalable performance monitoring system must be set against a resonable size data

set consisting of atleast a 1000 Client-Server pairs. Access to such a large number

of clients and servers is only possible with an overlay testbed like Planet-Lab. The

globally distributed nature of Planet-Lab provides an ideal platform for deploying large

scale network experiments with the experience and perspective of a real Internet, both in

terms of geographic location and connection properties. The experimentation on Planet-

lab involves deploying our own clients and server written in Python. This ensures a

better control over the working of clients and servers and also takes care of other details
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like recording the processor loads at both the client and servers. Also by deploying

Scriproute (a tool by University of Washington), one can obtain the AS-level traceroute

information from servers to clients. This helps in further analysing the relationships

between the iLPs in terms of BGP paths.

3.3.2 Experimental setup

1 Create a slice on Planet-Lab.

2 Choose 40 client nodes and 40 server nodes to add to the slice. The planet-lab sites

usually host more than one node. The planet-lab sites are chosen such that each

of them have atleast two free nodes and among these nodes, one of them is added

as the server node and the other as client node. Thus around 40 planet-lab sites

are chosen.

3 A central node is chosen as the Administrative node to install the appropriate packages

nodes, deploy necessary files, start and stop processes on all the nodes. “Nixes”

is used to perform the above operations at the planet-lab nodes from the central

node.

4 Working of the Client : The client is a python client, operating either in the active

mode or the sleep mode. During the active session, the client contacts a list of

servers and downloads a certain file of size 178KBytes. The client maintains

a log file for each server it contacts. Each time it contacts the server, it ap-

pends to the respective log file, the time-stamp, time for the first set of bytes

to arrive (TTF), the total download time (DL), the processor load at the server

(SERVER LOAD) and the processor load at the client at the time of accessing

the server (CLIENT LOAD). The client also maintains an exception file for each
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server and makes an entry in it in the case of server down or time-outs.

5 Working of the Server : The server is a python server continously accepting client

connections and servicing their requests for file transfer. For each connection by

a client, the server opens a separate thread to service the client. It also maintains

a log file for each client that contacts it, and appends the file with the time the

client contacted it, the transfer time (TRANSFER TIME) and its processor load

at that time (PROCESSOR LOAD). The server also runs scriptroute-rockettrace

periodically to obtain the BGPRoutes to the list of clients which contact it.

6 Working of the Central Node : The central node controls the application running on

the planet-lab nodes. It uses the Nixes tool to perform the following operations:� Bootstrap the nodes with yum, python2.3 and scriptroute among other tools.

“plsetup” command is used for this.� Deploy the necessary files at the client and server nodes using the “pldeploy”

command.� Start the Client and Server programs at the respective nodes using “plcmd

START” command.� The central node collects the log files from the clients and servers each day.

It also starts rockettrace at the server nodes once a day and collects the output

from them. The central node processes the rockettrace output from the server

nodes and builds a file for that server for that day containing all the AS-level

paths to the clients.

The client and server planet-lab nodes along with the BGPRoutes are shown

in figures 3.6, 3.7, 3.8.
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Figure 3.6: PlanetLab Layout 1

27



Figure 3.7: PlanetLab Layout 2
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Figure 3.8: PlanetLab Layout 3
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Chapter 4

Conclusions and Future Work

This research presents the concept of building and maintaining Latency Profiles (iLPs)

as a method for capturing the behavior of client-server interaction over a WAN. It also

proposes a method of aggregating the latency profiles into an Aggregate latency profile

for scalable utilization of latency profiles for latency prediction. Mutual information

(MI), Correlation and Building Peer confidence vectors are used to study the relation-

ships between the latency profiles and visualize these relationships by means of Rele-

vance networks.

Even though the analysis of earlier data set yielded interesting results, it cannot be

validated against thousands of iLPs. The placement of clients and servers was dic-

tated by availability and deployment issues. Hence a new experiment was designed on

Planet-Lab, a globally distributed wide area testbed for deploying network services at

the Internet scale.

The experiment involves deploying 40 clients and 40 servers at 40 sites of Planet-

Lab, yielding 1600 client-server pairs, hence 1600 iLPs to study. Also parameters like

server processor load, client processor load and BGP paths between clients and servers

are looked into in this new experiment. As a result, MI and correlation between iLPs
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can now be studied against BGP paths. Relationships between clients sharing different

lengths of common paths to servers, different client groups against each other can be

looked into.New protocols for online peer confidence buildup, peer-to-peer setup for

sharing latency values can also be studied.
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