
Adaptive Pull-Based Data Freshness Policies for Diverse
Update Patterns

Laura Bright
OGI/OHSU

Beaverton, OR 97006
bright@cse.ogi.edu

Avigdor Gal
Technion - IIT

Haifa 32000 Israel
avigal@ie.technion.ac.il

Louiqa Raschid
University of Maryland

College Park MD 20742
louiqa@umiacs.umd.edu

ABSTRACT
An important challenge to e�ective data delivery in wide
area environments is maintaining the data freshness of ob-
jects using solutions that can scale to a large number of
clients without incurring signi�cant server overhead. Poli-
cies for maintaining data freshness are traditionally either
push-based or pull-based. Push-based policies involve push-
ing data updates by servers; they may not scale to a large
number of clients. Pull-based policies require clients to con-
tact servers to check for updates; their e�ectiveness is lim-
ited by the diÆculty of predicting updates. Models to pre-
dict updates generally rely on some knowledge of past up-
dates. Their accuracy of prediction may vary and determin-
ing the most appropriate model is non-trivial. In this paper,
we present an adaptive pull-based solution to this challenge.
We �rst present several techniques that use update history
to estimate the freshness of cached objects, and identify up-
date patterns for which each technique is most e�ective. We
then introduce adaptive policies that can (automatically)
choose a policy for an object based on its observed update
patterns. Our proposed policies improve the freshness of
cached data and reduce costly contacts with remote servers
without incurring the large server overhead of push-based
policies, and can scale to a large number of clients. Using
trace data from a data-intensive website as well as two email
logs, we show that our adaptive policies can adapt to diverse
update patterns and provide signi�cant improvement com-
pared to a single policy.

1. INTRODUCTION
An important challenge to e�ective data delivery in wide
area environments is maintaining the data freshness of local
copies of objects using solutions that can scale to a large
number of clients without incurring signi�cant server over-
head. In between client connections, object copies may be-
come stale due to updates at the origin server. The challenge
of keeping cached data fresh with respect to updates at re-
mote servers despite periodic connectivity has been studied
considerably in many di�erent contexts, e.g., web caching

([5, 9, 12, 18]), mobile computing, and caching at database-
driven websites ([3, 16]). At the heart of the problem is the
inability of cache managers to accurately predict when the
next update will occur. Therefore, either servers must no-
tify caches of updates (push-based), or caches must contact
servers to validate cached objects before delivering them to
clients (pull-based). Using push-based policies, servers can
provide guarantees with respect to the freshness of the data
in a client's cache. However, these guarantees come at the
cost of increased server overhead, e.g., keeping information
on clients and the content of their cache. Push-based solu-
tions can work well on �xed networks when the number of
caches is relatively small, e.g., caching at a reverse proxy of
a website that delivers dynamic content [3, 16]. However,
they may not scale to a large number of clients.

In contrast, pull-based policies do not require servers to store
any information about clients. Instead, clients or servers
typically use heuristics to estimate how long the object will
remain fresh in the cache. If an object is requested after
this time expires, the cache must contact the remote server
to check for updates. The advantage of pull-based policies
is their straightforward implementation. However, the e�ec-
tiveness of pull-based policies is limited by the diÆculty of
estimating the freshness of cached objects. Inaccurate esti-
mates may cause the cache to validate objects that are still
fresh (i.e., objects that have not been updated), or to serve
stale data from the cache, both of which may reduce the ben-
e�ts of caching. Research reported in [9] shows that as many
as 30-50% of cache hits may result in unnecessary validations
(freshness misses), so reducing the number of validations
could signi�cantly reduce access latencies and improve the
e�ectiveness of caching. For mobile clients, excessive valida-
tions are particularly costly because they consume wireless
bandwidth and battery power. However, these clients may
require fresh data in many cases. Thus, an important chal-
lenge for caching with limited connectivity is how to keep
cached data fresh with minimal contact with remote servers.

Existing heuristics to estimate the freshness of cached ob-
jects typically rely on update histories. The pull-based pol-
icy that is most commonly used in practice is Time-to-Live
(TTL), which estimates an expiration time for an object as
a function of the time it was last modi�ed. This policy as-
sumes that objects that were recently updated in the past
are more likely to be updated in the near future, and does
not consider earlier updates to an object. The TTL policy
works well for objects that experience bursts of updates that

occur close together. However, this policy may not work well
for objects with more regular and predictable behavior.

Other works, e.g., [6, 7, 17] have proposed using more de-
tailed information of past updates to an object to predict
when it is likely to be updated in the future. These tech-
niques use update histories to estimate the frequency of up-
dates to an object. Such techniques may work better than
TTL for objects with cyclic behavior. However, the use of
update histories to estimate the freshness of objects is non-
trivial. For example, an object may be more likely to be
updated in the morning than in the afternoon or evening, so
its update probability would vary at di�erent times of day.
On the other hand, if there is limited history available for an
individual object, the object may experience updates that
cannot be accurately predicted by its history. Thus, there
are many challenges to e�ectively using object update histo-
ries. There is a need for techniques that can better exploit
update history, as well as a need for solutions that are able
to choose the most appropriate technique.

In this paper, we present a
exible approach to improve
pull-based policies that relies on exploiting update histories
of objects. We �rst introduce two techniques, IndHist and
AggHist, that use update histories to estimate the fresh-
ness of cached objects. IndHist uses the update history of
an individual object and can capture the behavior of a sin-
gle object when suÆcient history is available. AggHist uses
an aggregate history aggregated over multiple objects with
similar behavior, modeled as a recurrent piecewise constant
model [11] and provides an approximation of an individual
object's update history. It is useful when there is insuÆ-
cient history for a single object. It also reduces storage and
computational overhead for servers. We compare IndHist
and AggHist to the widely used TTL [5, 12] and identify
situations where each policy is most e�ective.

A key challenge to the e�ective exploitation of update histo-
ries is choosing the most appropriate technique to estimate
the freshness of a given object. We present adaptive policies
that can choose among IndHist, AggHist, and TTL accord-
ing to client needs and object behavior. This enables cache
managers to improve the accuracy of freshness estimates of
cached objects by choosing the technique that is likely to
perform best based on available history, and requires no a
priori classi�cation of an object's update patterns. An adap-
tive policy can o�er signi�cant improvements over using any
one of the techniques alone.

This paper makes two contributions. First, we show that
IndHist and AggHist can improve the accuracy of clients'
estimates of the freshness of cached objects compared to
TTL (for all TTL parameter settings) for many objects with
cyclic update patterns. This, in turn, reduces the number
of cached objects that need to be validated, thus reducing
access latencies as well as the number of messages between
caches and servers. Thus, for cyclic objects, we exploit his-
tory to reduce the number of contacts with servers. In com-
parison existing approaches to reduce the number of fresh-
ness misses [9] require validating objects o�ine and thus
increase the total number of messages between clients and
servers. Second, we introduce a class of adaptive policies
that can choose among policies according to the behavior

of individual objects. These policies have the advantage of
adapting to individual objects, without requiring any a pri-
ori classi�cation of the object's update pattern. We show
the following key results:

� For objects with cyclic behavior, using history can re-
duce up to 60% of validations while providing compa-
rable freshness to TTL for all TTL parameter settings.

� Aggregate history over multiple objects provides a good
approximation when individual history is insuÆcient,
and has reduced storage overhead.

� Adaptive policies can choose policies appropriate to
individual objects based on update patterns and can
improve on using a single policy. Further, they require
no a priori classi�cation of object behavior. These poli-
cies can also be tuned to meet preferences of diverse
clients.

� We show that an adaptive IndHist/AggHist outper-
forms either IndHist or AggHist alone for objects with
a cyclic update pattern, and an adaptive IndHist/TTL
outperforms either IndHist or TTL for objects with a
bursty update pattern. Cyclic and bursty patterns are
described in Section 3.

Our policies have the advantage of being completely pull-
based. Servers piggyback update history information on
their responses to client requests, so servers need not push
any information to clients or store any information about
clients. Our solution does not require changing web servers
or underlying protocols. Rather, it provides new technique
for servers to improve the freshness of data copies and reduce
the number of validation requests they receive.

The paper is organized as follows: Section 2 surveys related
work. We classify update patterns and policies for modeling
them in Section 3. We present several pull-based policies
using update histories in Section 4, and compare these dif-
ferent policies in Section 5 using trace data from a data in-
tensive website and two email logs. We present two adaptive
policies in Section 6, and conclude in Section 7.

2. RELATED WORK
There has been a considerable amount of research in both
pull-based and push-based freshness policies. A widely used
pull-based policy is to assign each object a Time-to-Live
(TTL) [5, 12], and validate any cached object whose TTL
has expired. More recently, work in [17] aims to improve
upon this by estimating TTL values based on the probabil-
ity that an object will be updated within a time interval.
Several works, including [11, 6, 17] have suggested model-
ing updates as a Poisson model. Work in [6, 17] assumes a
model that is homogeneous over time, while our proposed
model assumes a time varying update intensity, which was
shown to work better in [11].

Research reported in [9] considers pre-validation policies to
validate cached objects whose TTLs have expired before
clients request them, which can reduce the client-perceived
latency caused by unnecessary validations (freshness misses).

These policies can reduce the number of validations in re-
sponse to client requests, however, they increase the total
number of contacts with the server because objects must
be validated o�ine. In contrast, the policies we present in
Sections 5 and 6 can reduce the number of unnecessary val-
idations and total contacts with servers for cyclic objects
while providing comparable recency to TTL.

Pull-based freshness has also been addressed in the context
of synchronizing a large collection of objects, e.g., improv-
ing the performance of web crawlers [4, 6, 8]. Updates
are detected by periodically prefetching objects from remote
sources to maximize the freshness of cached objects. These
pull-based policies are not based on complete update histo-
ries and therefore may be less accurate.

There has also been much work in push-based freshness [10,
18, 23]. Work reported in [18, 23] shows that push-based
freshness is feasible and works well in many cases. How-
ever, servers must store information about clients, which
may not scale well. Work in [10] proposes an adaptive push-
pull scheme where servers can adaptively push updates to
some clients and require others to use a pull-based policy.
Server driven freshness in the context of caching dynamic
web content is considered in [3, 16].

There is also work in push-based freshness that allows cached
objects to deviate from objects at the remote server [1, 14,
19, 20]. Servers need to store the inventory of objects in
a client's cache and the client's tolerance towards deviation
of object values in the cache from that stored on the server
side. This may not scale well to a large number of clients.

Piggybacking to improve cache freshness was proposed in
[15]. In this work, clients piggyback a list of potentially
stale cached objects when they contact a server. Servers
piggyback the subset of those objects that have been up-
dated on their responses. This work is orthogonal to ours
and is not concerned with estimating the freshness of cached
objects, but rather how to eÆciently refresh cached objects.

3. MODELING OF UPDATES
In this section, we provide a classi�cation of update patterns
and discuss how accurately we can model them, based on an
object's update history.

3.1 Update Patterns: An Overview
In general, objects can be classi�ed by the regularity and
predictability of their update patterns. At one extreme are
objects updated at regular times; at the other extreme are
objects with completely unpredictable updates. In this sec-
tion we present examples of real objects between these ex-
tremes. We consider more predictable (cyclic) objects that
are updated at similar times each day, but not necessarily
at the exact same time each day, so they are not completely
predictable. We also consider less predictable (bursty) ob-
jects that experience periods with a large number of updates
that are not consistent with earlier update patterns. While
updates to these objects are not completely random, the
bursts are diÆcult to predict. We analyzed data from the
1998 World Cup website [2] as well as two email logs. We
report on the details of these datasets in Section 5.

3.1.1 World Cup
Our analysis of the World Cup data shows that many ob-
jects exhibited either cyclic or bursty update patterns. We
discuss how we classi�ed objects as cyclic or bursty in Sec-
tion 6.2. Note that this classi�cation is only for the purpose
of reporting our results; our adaptive policies do not require
any a priori classi�cation of cyclic or bursty patterns.

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

120

140

160

180

O
bj

ec
t I

D

Day

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

O
bj

ec
t I

D

Day

Figure 1: Updates to (a) Cyclic and (b) bursty ob-
jects in the World Cup trace

Figure 1 plots the updates to cyclic and bursty objects in
the World Cup trace that were updated at least 10 times
in a 15-day trace period. In these �gures, the x-axis is the
time of day within a 15 day window, and each value on the
y-axis represents a distinct object. An � in the graph at
point (x,y) denotes an update to object y at time x.

Figure 1(a) shows objects that exhibit cyclic behavior that
is repeated daily. For example, we observe in Figure 1(a)
that many of the objects are updated at the beginning of
each day, although not necessarily at the same time. These
objects may correspond to pages that provided daily updates
on World Cup scores and events. Cyclic update patterns
commonly occur at websites, for example a weather site that
updates the temperature at regular times every day.

Figure 1(b) shows objects with bursts of updates. In this
trace, these are objects where most of the updates occurred
on the same day, and few updates occurred before or after
the burst. These objects may correspond to a speci�c World
Cup event such as the score of a match. Many updates to
the object occur on the day of the match, but few updates
occur on other days. Bursty updates also occur at other
web sites, such as news web site that frequently updates an
article on the day of a breaking news event.

3.1.2 Email Traces
(a)

 Sat Sun Mon Tue Wed Thu Fri
0

10

20

30

40

50

60
DBWORLD trace

Day

W
ee

k

(b)

 Sat Sun Mon Tue Wed Thu Fri
0

10

20

30

40

50

60
INBOX trace

Day

W
ee

k

Figure 2: Updates to two email traces

We also considered two di�erent email traces (labeled DB-
WORLD and INBOX). Figure 2 plots the arrival of email
messages in these two traces. In each graph, the x axis
shows the day of the week (and relative time of day), and
each value on the y axis is a distinct week of the trace. An �
value at point (x,y) indicates that an email message arrived
in the client's mailbox at time x during week y. The �rst
observation is that both mailboxes exhibit fairly regular be-
havior from week to week, again showing cyclic update pat-
terns. However, both traces also exhibit occasional bursts
of updates (for example, on Sunday around week 50 of the
INBOX trace).

3.1.3 Updates to Cyclic Objects

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
24

22

20

18

16

14

12

10

 8

 6

 4

 2

 0

Update times and dates of three World Cup Objects, June 1998

Date

H
ou

r

Figure 3: Updates to three distinct cyclic objects in
World Cup trace

Figure 3 shows the times of updates to three distinct cyclic
objects in the World Cup trace, denoted by three di�erent
shapes. The important observation is that they are cyclic

(a)

(c)

(b)

(d)

0

50

100

150

200

250

300

350

400

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Time of Day

E
x
p

e
c
te

d
N

u
m

b
e
r

o
f

U
p

d
a
te

s

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

0

5

10

15

20

25

30

1
: 0

0

3
: 0

0

5
:0

0

7
: 0

0

9:
0
0

1
1
: 0

0

1
3
: 0

0

1
5
: 0

0

1
7
:0

0

1
9
: 0

0

2
1:

0
0

2
3
: 0

0

Time of Day

U
p

d
a

te
In

te
n

s
it

y
(p

e
r

h
o

u
r)

Time of Day

0

5

10

15

20

25

30

U
p

d
a

te
In

te
n

s
it

y
(p

e
r

h
o

u
r)

1
: 0

0

3
: 0

0

5
:0

0

7
: 0

0

9:
0
0

1
1
: 0

0

1
3
: 0

0

1
5
: 0

0

1
7
:0

0

1
9
: 0

0

2
1:

0
0

2
3
: 0

0

0

50

100

150

200

250

300

350

400

E
x
p

e
c
te

d
N

u
m

b
e
r

o
f

U
p

d
a
te

s

Time of Day

Figure 4: Homogeneous vs. nonhomogeneous up-
date patterns

because they are updated with similar intensity each day at
approximately the same time. However, they are not up-
dated at exactly the same time every day, so history infor-
mation may not accurately predict updates. For example,
the object denoted by a � is updated three times on June
13 and 15, but at di�erent times on each of these days. Fur-
ther, an object may need a suÆciently long history in order
to accurately predict updates. For example, the object de-
noted by a
 is updated once between 3:00-4:00 and once
between 4:00 and 5:00 on June 10. This history alone would
not predict the update that occurs between 12:00-13:00 on
June 12. Thus, the e�ectiveness of update history may be
limited by both the amount of history information available
and the predictability of updates.

To summarize, objects may exhibit more regular or less reg-
ular update patterns. Objects may experience bursts, where
a larger number of updates than expected occurs in a given
time window. Further, even objects that do not experience
bursts may require long individual histories to accurately
model updates.

3.2 Modeling Update Patterns
The modeling of update patterns is based on recurrent piece-
wise constant update intensities, as suggested in [11]. The
underlying assumption of such models is that there is a
time period, e.g., a day, whose update pattern is repeti-
tive. Therefore, one can partition an update history into
equal time periods with similar update pattern. To repre-
sent update patterns we use a time-varying parameter �(t),
representing the intensity of updates over time.

A basic model of update patterns that assumes a homo-
geneous update intensity (�) over time is inadequate for
many applications. Therefore, we present a more re�ned
analysis of �. Within a given repetitive time cycle, � may
vary, representing, for example, change of intensities be-
tween work hours and after hours. Therefore, � becomes
time-dependent. To simplify calculations, one may assume

that while � changes over time, it may be represented as a
combination of intervals, in which � is constant, hence the
term piecewise constant. To demonstrate the di�erences be-
tween homogeneous and time-dependent �, consider Figure
4. Figure 4(a) shows the changes to the intensity of up-
dates over a period of one day, using a piecewise-constant
model. Figure 4(b) corresponds to a constant arrival rate of
updates. Figure 4(c) and Figure 4(d) demonstrate the accu-
mulation of � (representing, in the case of a Poisson model,
the expected number of updates in the corresponding time
period) over a period of one day for the time-dependent and
homogeneous �, respectively. While the accumulation for
the homogeneous model is linear over time, the accumula-
tion rate of the time-dependent � changes with
uctuations
in the update intensity �(t).

Formally, given a time interval Q, suppose that the update
rate �(t) repeats every Q time units, that is, �(t) = �(t+Q)
for all t. Furthermore, the interval [0; Q) is partitioned into
a �nite number of subsets J1; : : : ; JK , with �(t) constant
throughout each Jk, k = 1; : : : ; K. Finally, each Jk is in
turn composed of a �nite number of half-open intervals of
the form [s; f). For instance, in Figure 4(a) k = 7, with
J1 = [0:00; 7:00); J2 = [7:00; 10:00); etc.

We next de�ne a speci�c recurrent piecewise constant model.
The model is stochastic since the repetitive nature of up-
dates in a distributed autonomous environment cannot be
modeled in a deterministic fashion. We use a nonhomoge-
neous Poisson process [21, 22] with instantaneous update
rate � : < ! [0;1) to model the occurrence of update
events. Each update event possibly consists of multiple up-
dates (possibly to di�erent data objects) aggregated over an
interval in time. The number of update events occurring
in any interval (s; f] is a Poisson random variable with ex-

pected value �(s; f) =
R f
s
�(t)dt: When � is constant over

time � = ��(f�s). Using the notation given above, each in-
terval Ji will be modeled by a homogeneous Poisson process
with its own �i.

The expected number of updated objects during (s; f] may
be computed as: Z f

s

�(t)dt = �(s; f) (1)

3.3 Individual and Aggregate History
One may model either individual object history or aggregate
history (over a set of objects with similar update patterns).
The use of individual history assists in forecasting future
updates more accurately, but is costly. A server must main-
tain the individual history for a potentially large number
of objects, as well as indices to rapidly access the history.
In addition, accumulating suÆcient training data for mod-
eling individual object history may take much longer than
the time required for modeling aggregate history. Aggregate
history is a less costly alternative in which aggregated data
of the update patterns of multiple objects with common up-
date patterns at a site is used to obtain a model of aggregate
update patterns that is sent to the client.

3.3.1 Aggregate History

Time � per hour
0-7 23:81
7-10 52:07
10-14,22-23 83:40
14-15 98:53
15-17 65:23
17-19 84:27
19-22,23-24 35:40

Table 1: Aggregate Update History (~Hag = (~T ;~�))
for the World Cup trace

We illustrate how to model aggregate history using theWorld
Cup trace data. We constructed a nonhomogeneous Pois-
son process to model the update pattern aggregated over all
cyclic objects in a training set of eight days of data (from
June 10, 1998 to June 17, 1998). 10,074 update times of
4,405 objects were analyzed. While this is a relatively low
number of objects, these objects were requested by many
clients, and pushing updates to all these clients could be
very expensive. We note that the log does not explicitly
indicate the time an object is updated. In Appendix A, we
describe how we detect updates.

We used a \bulk update" to aggregate updates within 30
seconds of each other into a single event. To simplify pre-
sentation, we ignore bulk updates in this work. Assuming a
cyclic behavior that repeats daily, we have identi�ed seven
distinct segments. Table 1 provides the aggregate history

(~Hag = (~T ;~�)), a vector representing the e�ective � value
for each time interval. To interpret this history, each row
gives the expected number of events per hour during the
time interval. For example, between 0:00 and 7:00, there
are 23.81 expected updates every hour. To estimate the
number of updates to an individual object O in each inter-
val, we scale the � value by fo, the fraction of all updates at
the server that occurred to object O.

It is important to note that in general, models are an ideal-
ized representation of a process. It is well known that Pois-
son processes model a world where updates are independent
from one another. Therefore, models such as the one pre-
sented above need to be veri�ed. Using veri�cation methods,
as suggested in [13], it becomes clear that the World Cup
data cannot be accurately modeled using a Poisson model,
most likely due to correlations of update events. However,
as we show in Section 5, even an \inaccurate" model that
considers aggregation over multiple objects can provide a
bene�t over using only the last modi�ed times of an indi-
vidual object, and performs on average almost as good as
using individual object's history with less overhead.

3.3.2 Individual History
We construct individual history (~Hind = (~T ;~�)) in the same
manner as we construct aggregate history. However, the
relatively small number of updates per object makes any
segment analysis error prone. For individual object his-
tory we partition the day into 24 equal size intervals, and
assume a constant � within each one hour interval. As
an example, we consider updates to a single object in the
World Cup trace over the 8 day period from June 10- June
17. During this 8 day period, the object had 4 updates in

the time period [10:00, 11:00) (which corresponds to �=0.5,
i.e., 0.5 updates/day), 1 update in the time period [11:00,
12:00) (�=0.125), 1 update in the time period [12:00, 13:00)
(�=0.125), 3 updates in [13:00, 14:00) (�=0.375), 2 updates
in [14:00, 15:00) (�=0.25). No updates occurred between
[17:00, 22:00). Thus, this object experienced a period of high
update activity in the morning, moderate activity around
noon, another period of high activity in the afternoon, and
no activity in the evening.

4. PULL-BASED FRESHNESS POLICIES
We describe three policies that can be used by clients or
servers to estimate when objects will be updated, depend-
ing on the available history. We note that the focus of this
paper is on the policies, and we do not consider the details
of where the computation is performed. In general, update
history information can be used by either caches or servers
to estimate the expiration times of objects, and there is a
tradeo� in terms of both
exibility and computational over-
head. If clients or caches perform the computation locally,
it reduces the load on the server and gives clients greater

exibility in tuning the freshness of their data. However,
if the computation is performed at a server or intermediate
site, e.g., a proxy, this can reduce computational overhead
for clients; this is important when the clients are mobile
devices with limited battery power.

4.1 Time-to-Live (TTL)
Using only the time an object was last modi�ed, clients or
caches can use TTL, a pull-based policy widely used in prac-
tice. TTL estimates how long an object remains fresh in the
cache as a function of its last modi�cation time. Any object
that is estimated to be stale must be validated. TTL can be
tuned using a parameter �, which is typically a real number
between 0 and 1. If an object is cached at time tcache and
was last modi�ed at time tlastmod, its TTL is estimated as:

TTL = tcache + � � (tcache � tlastmod)

The TTL policy works as follows: If a cached object is
requested before the TTL time expires, it is served from
the cache without validation (i.e., contact with the remote
server). If the object is requested after the TTL time expires,
the cache validates the object at the remote server before de-
livering the object.

Note that smaller values of � generate more conservative
TTL estimates, which improve data freshness, but increase
the number of validations.

4.2 Aggregate History Based Policy (AggHist)
The aggregate history based policy (AggHist) uses the ag-

gregate history (~Hag = (~T ;~�)) that is learned from the past
updates to a set of objects. Table 1 gives an example aggre-
gated over all objects in the World Cup trace. Recall that
for a given interval, � denotes the update intensity.

To estimate the update pattern of an individual object from
the aggregate update history, servers scale the aggregate �
values by the relative fraction of server updates fo that oc-
curred to that object. Without loss of generality, assume
that time s falls in interval 0 and time f falls in interval n.

Therefore, whenever n > 0, we can rewrite Equation 2 to be

E[B(s; f)] =
(U (T (0))� s)� (0)+Pn�1

i=1 (U (T (i))� L (T (i)))�(i)+
(f � L (T (n)))�(n)

(2)

where U (T (i)) and L (T (i)) represent the upper bound
and lower bound of T (i), respectively.

The AggHist policy works as follows: Given an initial time

tm, an aggregated update history ~Hag = (~T ;~�), the fraction
of updates of an object O with respect to the total number of
updates at the server fo calculate the expected number of up-
dates. If the expected number of updates exceeds a threshold
�, then validate the object at the server.

We illustrate with an example from the World Cup trace.
Suppose an object O is cached at 1:00 and requested at 8:00.
We use the � values from Table 1. If 1% of all updates at
the World Cup site occur to object O, i.e. fo= 0.01, the
corresponding � values for the intervals from 1:00 to 8:00 in
Table 1 are scaled as follows:

Time [1:00 - 7:00]: 23.81 * 0.01 = 0.2381

Time [7:00 - 8:00]: 52.07 * 0.01 = 0.5207

The expected number of updates is:

ExpUpd(1; 7)+ExpUpd(7; 8) = (0.2381 * 6 hours) + (0.5207
* 1 hour) = 1.95

4.3 Individual History Based Policy (IndHist)
The individual history policy (IndHist) uses the individual

history (~Hind = (~T ;~�)) to estimate the freshness of a cached
object.

The IndHist policy works as follows: First, use ~Hind to es-
timate the expected number of updates to the cached object.
Use formula 2 to compute the expected number of updates.
If the expected number of updates exceeds a threshold �, val-
idate the object.

Using our example object from Section 3.3.2, if the object
was cached at 11:30 and is requested at 14:00, its expected
number of updates is 1

2
ExpUpd(11; 12)+ExpUpd(12; 13)+

ExpUpd(13; 14) = 1
2
� 0:125 + 0:125 + 0:375 = 0.5625.

5. COMPARISON OF TTL, INDHIST, AND
AGGHIST

We now evaluate the AggHist, IndHist, and TTL policies
on data traces that exhibit both cyclic and bursty behavior.
We �rst compare TTL and IndHist on the two email traces,
which exhibited cyclic update patterns. We then compare
TTL, AggHist, and IndHist on both cyclic and bursty ob-
jects in the World Cup trace, and motivate the need for a
new class of adaptive policies that can choose among policies
according to an object's update patterns.

5.1 Data Traces
5.1.1 World Cup Data

The trace data from the 1998 World Cup Web Site [2] con-
tains a log of all requests to the site. The World Cup site
had servers in four di�erent geographical locations: Paris,
France; Herndon, VA; Santa Clara, CA; and Plano, TX.
The entire trace consists of 1.3 billion requests made from
May 1, 1998 to July 23, 1998. In our experiments we used
a 15-day subset of this trace from June 10, 1998 to June 25,
1998. This corresponds to the �rst 15 days of the World Cup
event and includes about 333 million requests. In our ex-
periments, we report separate results for cyclic and bursty
objects, although our policies do not require this classi�-
cation. To identify objects in each category, we classi�ed
objects o�ine using the update histories from all 15 days of
the trace, using the techniques to be described in Section
6.2.

For each request, the trace contains the following:

� ClientID: Unique ID of the client making the request.
Note that this may be a proxy.

� ObjectID: Unique ID of the requested object.

� Timestamp: The time the request was made.

� Size: Size of the object in bytes.

The trace does not explicitly give information on updates
to objects, however, we can infer updates when an object
changes size as described in Appendix A.

In the 15-day trace, 42 million requests were for cyclic ob-
jects and 11 million requests were for bursty objects. If all
clients had suÆcient cache space (see Section 5.2), 9 million
of the requests for cyclic objects would be cache hits (but not
necessarily up to date in the cache), as would be 1 million
of the requests for bursty objects. Note that the percentage
of requested bursty objects that are in the cache (�11%) is
smaller than for cyclic objects (�21%). This is because the
bursty objects are most interesting to clients during a short
interval (during the bursty period), so they are less likely to
be cached prior to the update burst.

5.1.2 Email Data
Our �rst email trace (DBWORLD) includes email noti-
�cations of postings to the DBWORLD electronic bulletin
board and other messages. The data were collected over
seven months and consists of more than 6400 insertions,
from November 9, 2000 through June 17, 2001. Our second
email trace (INBOX) is taken from messages to a client's
inbox from March 3, 2001 - May 24, 2002 and consists of
about 10,000 insertions. We collected the data for both
these traces using a capture program (similar to the way
the vacation program works on Unix) to capture messages
and process them.

5.2 Setup
5.2.1 World Cup Experiments
Our experiments with the World Cup trace model a tradi-
tional web caching scenario. When a client requests a cached
object, the cache uses the policy to determine whether or not
to validate the object. Using TTL, an object is validated if

it is requested after it expires. Using IndHist and AggHist,
it is validated if the expected number of updates exceeds a
speci�ed threshold �.

We maintained separate caches for each client ID, which may
correspond to either an individual client or a proxy. For each
client ID, we assumed an initially empty cache. To simplify
our presentation, we assume all clients had suÆcient space
to cache their objects and no objects were evicted from client
caches during the trace period. This is a reasonable model
because cache size a�ects only the hit rate of the cache.
Therefore, a limited cache would have equal impact on the
performance of all estimation policies, and would not change
their relative accuracy. Each experiment included a training
period to gather object update history information, followed
by a test period during which we collected data. We give
the length of the training and test periods when reporting
the results of each experiment.

Most bursty objects in the World Cup trace had a \burst" of
updates on a single day, and few (if any) updates on other
days, as shown in Figure 1(b). For these objects (or any
object with no history available), TTL is likely to provide
more accurate freshness estimates compared to the IndHist
based policy. A more interesting case occurs when an ob-
ject that normally has cyclic update patterns experiences a
burst in updates. This could occur at a news web site that
is normally updated at regular intervals but experiences a
burst of updates during a breaking news event. For these
objects, IndHist is likely to do well during cyclic periods,
but TTL may do better during a burst.

Few objects in the World Cup trace exhibited this behavior
of cyclic patterns and bursts. We modi�ed the trace data
as follows to generate such objects. We randomly selected
55 of the most popular bursty objects with respect to client
requests and mapped them to 55 of the most popular cyclic
objects. In our experiments on bursty World Cup objects,
we treated each bursty/cyclic pair as a single object. These
55 merged objects exhibited cyclic update patterns for most
of the 8 days, but experienced bursts of updates on one day.
These were used for the experiments in Sections 5.3.2.2 and
6.2.

5.2.2 Email Experiments
Our experiments with the email traces model a scenario
where a client has a locally cached mailbox, e.g., on their
mobile device, that needs to be refreshed in the background
to promptly notify the client of new messages. The goal is
to minimize the time elapsed between when a new message
arrives and when it appears in the client's mailbox. This dif-
fers from the above web caching application where objects
are refreshed only when they are requested (and the cached
copy is not suÆciently fresh). We note that web caching
with prefetching to refresh cached objects is similar to the
email case.

For the email application, we compare the TTL and IndHist
policies. After each refresh, for the TTL policy, we com-
puted the time of the next refresh as a function of the time
the last message arrived. For the IndHist policy, after each
refresh we computed the time of the next refresh as the time
that the expected number of updates (i.e., new messages)

would exceed some threshold �. We used the �rst week of
each trace as a training period to gather a history, and con-
tinuously updated the history during the experiments.

5.2.3 Metrics
We use the following metrics:

� Total Validations: This is the number of times re-
quested objects that were in the cache needed to be
validated at the remote server.

� Stale Hits: For the World Cup trace, this is the num-
ber of objects that were served from the cache with-
out validation but had actually been updated at the
remote server.

� Average Delay: For the email traces, this is the av-
erage amount of time elapsed between the arrival of
a new message and the time it appears in the client's
mailbox.

5.3 Results
Our experiments show that using either IndHist or AggHist
for cyclic objects can signi�cantly improve the accuracy of
estimates of an object's freshness. In web caching, this can
increase the number of objects served from the cache with-
out validation, which reduces costly remote server accesses
for clients and reduces unnecessary contacts with servers,
which can be as high as 30-50% of all cache hits [9]. In
email applications, this can reduce the delay of new mes-
sages appearing in a client's mailbox without increasing the
mailbox refresh rate, which is of particular importance to
mobile devices.

5.3.1 Accuracy of Estimates
5.3.1.1 World Cup Trace
We �rst compare the accuracy of estimating the number
of updates to cyclic objects in the World Cup Trace using
TTL, IndHist, and AggHist. Each time a client requests a
cached object, we compare the actual number of updates to
the object against the estimated number using each policy.
Using TTL, we estimate the number of updates to an object
at time t as (t� tlastmod)=(TTL� tlastmod), where tlastmod

is the last modi�ed time of the object, and use an � value of
0.05, which is typical of values used in practice. We note that
other values of � do not show signi�cantly di�erent results.
For IndHist and AggHist, we calculate the estimated number
of updates to an object as described in Section 4.

Figure 5 compares the estimated updates to the actual value
for each policy. A value of 0 means the estimate was accu-
rate. A positive error value means the actual value exceeded
the estimated value, and a negative value means the actual
value was less than estimated. AggHist and IndHist have
nearly twice as many accurate estimates as TTL. This shows
that using histories can signi�cantly improve the accuracy
of freshness estimates for cyclic objects.

5.3.1.2 Email Traces
We next consider the accuracy of the IndHist policy for the
email application. We do not consider AggHist for this ap-
plication because the trace consists of a single object (the

−3 −2 −1 0 1 2 3
0

2

4

6

8

x 10
6

Actual updates − estimated updates

N
um

be
r

of
 o

bj
ec

ts

TTL
AggHist
IndHist

Figure 5: Comparison of three policies for Cyclic
objects in the World Cup Trace

expected actual
0.1 0.098
0.2 0.196
0.5 0.493
0.7 0.691
1.0 0.980

Table 2: Comparison of the expected and actual
number of updates using IndHist

mailbox). Recall that for the email application, using Ind-
Hist we refreshed the mailbox whenever the expected num-
ber of updates (new messages) exceeded �. In Table 2 we
compare the expected number of these updates per valida-
tion against the actual number of updates per validation.
We report results for the DBWORLD trace (results for the
INBOX trace were comparable). The expected number and
actual number of updates are very close and shows that In-
dHist accurately estimates the number of updates.

5.3.2 Number of Validations
We now report on the number of validations required to
maintain a given level of freshness.

5.3.2.1 Email Traces
We �rst consider the DBWORLD and INBOX traces. Re-
call that we use the average delay as our metric. We tune
TTL by varying � between 0 and 1 and IndHist by vary-
ing � between 0 and 1. We plot the number of validations
against the average delay for TTL (for di�erent � values)
and IndHist (for di�erent � values) in Figure 6. As ex-
pected, as the number of validations increases, the average
delay decreases. The key observation is that for a given av-
erage delay, IndHist performs signi�cantly fewer validations
than TTL. For example, in Figure 6(a), to provide an aver-
age delay of about 500 seconds, TTL must perform about
170,000 refreshes while IndHist performs about 80,000, i.e.,
a 47% reduction in the number of validations. Similarly,
in Figure 6(b), to provide an average delay of 500 seconds
TTL performs about 50,000 validations while IndHist per-
forms about 20,000, i.e., a 60% reduction. Thus, IndHist
can reduce the total number of refreshes by more than half.
This can provide signi�cant savings in terms of both power
and bandwidth to clients who read email on their mobile
devices. Recall that the email traces generally exhibited

(a)

 100000 200000 300000 400000
0

1000

2000

3000

4000

5000

6000

7000

Number of Validations

A
ve

ra
ge

 D
el

ay
 (

se
c)

INBOX trace

TTL
IndHist

(b)

 100000 200000 300000
0

500

1000

1500

2000

2500

Number of Validations

A
ve

ra
ge

 D
el

ay
 (

se
c)

DBWORLD trace

TTL
IndHist

Figure 6: E�ect of Tuning TTL and IndHist on av-
erage delay and validations

cyclic behavior. These results show that IndHist can indeed
perform better than TTL for cyclic objects.

5.3.2.2 World Cup Trace
Next, we compare the TTL, IndHist, and AggHist in terms
of both number of validations and data freshness of both
cyclic and bursty objects in the World Cup trace. In the
experiments for cyclic objects, we used all 15 days of trace
data. We used the �rst 8 days to construct histories, and ran
the experiments on the next 7 days. In the experiments for
bursty objects, we used 8 days of trace data and performed
preprocessing as described in Section 5.2.1. We used the �rst
4 days to construct individual update histories, and ran the
experiments on the last 4 days. For all three policies, we
varied the tuning parameter from 0.05 to 0.7.

In Figure 7 we report on the number of stale hits given sim-
ilar levels of total validations. Note that for all values of
�, IndHist did not go beyond 2,500,000 validations and Ag-
gHist did not go beyond 3,500,000 validations. For all three
policies, increasing the total number of validations reduces
the number of stale hits. Given the same number of valida-
tions, both AggHist and IndHist deliver signi�cantly fewer
stale objects than TTL. This is because the improved accu-
racy of the freshness estimates of objects reduces the number
of unnecessary validations, and shows once again that using
histories can perform better than TTL for cyclic objects.
This is especially true when there are relatively few vali-
dations, i.e., higher values of � and �. For example, when
each of the policies has about 1,500,000 total validations,
TTL (� �0.5) provides �800,000 stale hits while AggHist

1 2 3 4
6

0

5

10

15
x 10

5

 number of validations

S
ta

le
 H

its

AggHist
TTL
IndHist
Adaptive AggHist/IndHist

Figure 7: E�ect of Tuning TTL, AggHist, and In-
dHist on data freshness and validations for cyclic
World Cup objects

provides �500,000 stale hits and IndHist provides �300,000
stale hits.

A key observation is that IndHist o�ers an overall improve-
ment over AggHist because it can model the individual up-
date patterns of objects that may di�er from the average
behavior. However, as shown in Figure 3, individual his-
tory is not always a good predictor of updates for cyclic
objects. If there is insuÆcient history information available,
the IndHist policy may not be able to accurately predict
when updates will occur. In contrast, since AggHist cap-
tures the behavior of objects with similar update patterns,
it is better suited to deal with new objects whose history is
too short to yet be stable. Figure 7 compares an adaptive
IndHist/AggHist policy (described in detail in Section 6)
that can combine the bene�ts of both policies. This adap-
tive policy performs better than either policy alone. The
adaptive IndHist/AggHist policy chooses between IndHist
and AggHist based on the available history information, as
described in the next section.

0.5 1 1.5
6

0

1

2

3

4
x 10

5

Number of Validations

S
ta

le
 H

its

TTL
IndHist
Adaptive TTL/IndHist

Figure 8: E�ect of Tuning TTL and IndHist on data
freshness and validations for bursty World Cup ob-
jects

Figure 8 compares TTL and IndHist on the bursty objects
in the World Cup trace. AggHist performed signi�cantly
worse than both of these and we do not show these results.
As expected, TTL performs better than IndHist (yet not

signi�cantly better) because it can more accurately predict
when updates occur during bursty periods. However, we
expect that IndHist is more e�ective in non-bursty periods.
To illustrate, an adaptive TTL/IndHist policy is shown in
Figure 8; it can perform better than TTL alone because it
uses IndHist to estimate updates during non-bursty periods.
In Section 6 we evaluate this adaptive TTL/IndHist policy
on both cyclic and bursty objects.

6. ADAPTIVE PULL-BASED POLICIES
Figures 7 and 8 illustrate that adaptive policies that can
choose among multiple techniques outperform a less
exible
policy limited to one technique. There are several challenges
in developing an e�ective adaptive policy. One is choos-
ing the individual techniques. The second is choosing the
criteria to choose techniques, and the third is making sure
the choice is bene�cial. We present two adaptive policies,
Adaptive IndHist/AggHist and Adaptive IndHist/TTL. We
note that there are many other adaptive policies that could
be used, and we do not claim that these two are the best.
Rather, our contribution is in motivating the use of adaptive
policies, and illustrating their use and bene�ts.

6.1 Adaptive IndHist/AggHist
We have observed that for cyclic objects, IndHist works well
when there is suÆcient individual history available to pre-
dict when the object is likely to be updated. In contrast,
AggHist works well for objects with cyclic behavior, but
whose histories are too short to be stable. An adaptive pol-
icy can exploit both the aggregate and individual behavior
for cyclic objects.

6.1.1 Policy
We present a criteria for adaptive IndHist/AggHist to choose
between IndHist and AggHist. Note that there may be many
such criteria.

Suppose NumHours is the number of distinct hourly inter-
vals when the object had an update. Intuitively, if the to-
tal number of updates to the object NumUpdates is equal
to NumHours, i.e., the ratio NumHours/NumUpdates = 1,
then the object was updated at di�erent times each day.
This suggests that there is insuÆcient history available to
accurately model updates using IndHist, and AggHist may
give a better approximation of the object's behavior. On the
other hand, if the object was updated repeatedly in the same
(hourly) interval, then NumHours/NumUpdates < 1. This
suggests that there is suÆcient history available to model
the object accurately using IndHist.

The Adaptive IndHist/AggHist policy is as follows: Given
an individual history and a parameter T � 1, we compute the
ratio NumHours/NumUpdates. If NumHours/NumUpdates
> T, AggHist is used; else IndHist is used.

Note that for T=1, IndHist is always selected, and for T=0
AggHist is selected. Clients can more aggressively choose
AggHist or IndHist by varying the value of T ; this is dis-
cussed in the experiments.

6.1.2 Results

1 1.5 2 2.5 3 3.5 4 4.5
6

0

5

10

15
x 10

5

 number of validations

S
ta

le
 H

its

AggHist
TTL
IndHist
IndHist − 10 day
Ind/Agg T=0.10
Ind/Agg T=0.50
Ind/Agg T=0.85

Figure 9: Comparison of Adaptive IndHist/AggHist
to TTL, IndHist, and AggHist

We report on Adaptive IndHist/AggHist for di�erent T val-
ues for cyclic objects in the World Cup Trace.

Figure 9 plots the number of validations compared to the
number of stale hits. Each curve is a di�erent value of T . We
�rst consider the impact of using a shorter update history or
limited update information on the accuracy of the IndHist
policy. We limited the length of the history to 10 days prior
to the time the object was cached (labeled IndHist- 10 day in
Figure 9). Note that in contrast, the policy labeled IndHist
includes all prior updates to an object in the trace, up to all
15 days. For many objects, the IndHist-10 day policy does
worse than TTL and AggHist. This motivates the need
for suÆcient history for IndHist, and shows the bene�ts of
AggHist when there is insuÆcient history available for an
individual object.

Next, we compare the performance of the Adaptive Ind-
Hist/AggHist policy to IndHist (with complete update his-
tories) and AggHist alone. Adaptive IndHist/AggHist with
T ranging from 0.50 to 0.85 outperforms TTL, IndHist, and
AggHist. When T= 0.1, the policy performs closer to Ag-
gHist as expected. These results suggest that Adaptive In-
dHist/AggHist is not very sensitive to the selection of T
and any value around 0.5 that allows the adaptive policy to
switch is e�ective.

6.2 Adaptive IndHist/TTL
For bursty objects, the IndHist policy performs best during
the non-bursty periods, but performs poorly when objects
experience bursts. Further, when it uses a full update his-
tory, including bursty periods, it may estimate updates less
accurately after the bursty period. In contrast, TTL per-
forms best during bursty periods because it assumes that
objects that were recently updated are likely to be updated
again soon. An adaptive IndHist/TTL policy presented in
Figure 8 combines the best features of both policies.

Our adaptive IndHist/TTL policy can detect bursts and dy-
namically chooses between IndHist and TTL. Thus, it can
generalize well to di�erent types of update patterns, and re-
quires no prior knowledge of whether an object is cyclic or
bursty. We �rst describe how we identify bursts. We then
describe the adaptive policy (Adaptive IndHist/TTL) which

dynamically chooses between the IndHist and TTL policies
depending on whether or not an object exhibits bursty be-
havior. Thus, for objects with no bursts, it has comparable
performance to IndHist.

6.2.1 Identifying Bursts
We use the term burst to refer to the case where the number
of actual updates to an object is considerably higher than
that approximated by IndHist. Consider an object that is
cached at time t and created at time t0. We estimate that a
burst occurs when the actual number of updates in a window
of sizeW prior to t, i.e., all updates in the interval [t�W , t],
exceeds the expected number of updates. The expected num-
ber of updates is estimated by IndHist, using only updates
that occurred in [t0, t�W] prior to the current cycle.

The adaptive history policy works as follows: Given an in-
tensity function � for the interval (t0, t - W), and �� for
the interval (t � W , t), a distance function f(�; ��), and
a threshold T , Adaptive IndHist/TTL identi�es a burst if
f(�; ��) � T . On each request, if f(�; ��) � T , Adaptive In-
dHist/TTL assumes a burst is occuring and uses TTL. Else,
if f(�; ��) < T , Adaptive IndHist/TTL assumes a burst is
not occuring and uses the IndHist policy.

We next provide a distance measure f . This was empirically
evaluated to provide a good estimation of bursty periods in
the World Cup trace data. We note that more research
is needed to identify distance measures that will work on
several traces. Let the expected number of updates (�) in
[t�W , t] with respect to time t be �(W; t), and the actual
number of updates (��) in [t�W , t] be ��(W; t). Then,

f(�; ��) =

8<
:

��(W;t)
�(W;t)

if �(W; t) > 0 (a)

T if �(W; t) = 0 and ��(W; t) > 0 (b)
0 otherwise (c)

Intuitively, condition (a) covers the case when at least one
update was expected (�(W; t) > 0). A burst occurs when
the ratio of observed updates to expected updates exceeds
T . Condition (b) covers the case when no updates were ex-
pected (�(W; t) = 0) and at least one update occurs. Note
that when T=0, this policy is identical to TTL, and when
T=1, this policy is identical to IndHist, thus, it is a gener-
alization of these two policies.

6.2.2 Policies
We compare TTL, IndHist, and Adaptive IndHist/TTL. We
evaluate the policies on both the \combined" trace of 55
merged objects and on the remaining cyclic objects. We ran
these experiments on the �rst 8 days of our 15 days of trace
data. We used the �rst 4 days to gather history information,
and report results on the remaining 4 days. For comparison
purposes, we also report on results for the cyclic objects
during the same period.

For Adaptive IndHist/TTL, recall that we estimate when a
burst occurred by considering the number of updates in a
window W . Adaptive IndHist/TTL will use TTL whenever
f(�; ��) in a window of size W exceeds the threshold T .
In our experiments, we report results for W = 1 hour and
W = 24 hours, and T= 2.

6.2.3 Results

(a)

0.4 0.6 0.8 1 1.2 1.4 1.6
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Number of Validations

S
ta

le
 H

its

TTL
IndHist
TTL/IndHist W=1hr
TTL/IndHist W=24hr
TTL/IndHist W=1hr 3day
TTL/IndHist W=1hr 5day

(b)

0.5 1 1.5 2 2.5 3
6

1

2

3

4

5

6
x 10

5

Number of Validations

S
ta

le
 H

its

TTL
IndHist/TTL W=1 hr
IndHist/TTL W=24 hr
IndHist

Figure 10: E�ect of Tuning TTL, IndHist, and
Adaptive IndHist/TTL on data freshness for (a)
bursty and (b) cyclic objects

We compare the performance of TTL, IndHist, and Adap-
tive IndHist/TTL. For all policies, we varied the tuning pa-
rameter from 0.02 to 0.7. We plot the number of stale hits
versus the total number of validations in Figure 10(a). As
expected, TTL outperforms IndHist for the bursty objects.
This is because TTL assumes that objects that have been
updated recently are more likely to be updated soon, so it
is well-suited during bursty periods. In contrast, IndHist
assumes that an object's update patterns will be consistent
with its past update history, so it cannot handle bursts as
well. However, Adaptive IndHist/TTL o�ers improvement
over IndHist, especially as the total number of validations
increases. This shows that Adaptive IndHist/TTL can de-
tect some bursts in updates and chooses TTL when appro-
priate. Adaptive IndHist/TTL with W=24 provides fewer
stale hits, and in most cases provides fresher data than TTL
for the same number of validations. This suggests that larger
values of W may be more e�ective at detecting bursts.

We also consider the e�ects of truncating update histories
for bursty objects. We consider maintaining a sliding win-
dow of individual update histories and ignoring updates that
occured outside this window. We consider windows of both
3 days and 5 days prior to the time an object was cached.
We show these results in Figure 10 (a) for Adaptive Ind-
Hist/TTL with W=1hr. The interesting observation is that
using shorter update histories makes the adaptive policy per-
form better than TTL. This contrasts with the results in
Figure 9, which showed that shorter update histories caused
IndHist to perform worse than TTL for cyclic objects.

We hypothesize that shorter update histories perform well
for objects that experience bursts because they allow ignor-
ing the bursty period. This improves the accuracy of the
IndHist policy. In contrast, shorter update histories make
IndHist perform worse for cyclic objects because they de-
crease the amount of available history information.

Thus, our results show that (1) Adaptive IndHist/TTL per-
forms better than either TTL or IndHist alone for objects
with both cyclic and bursty periods and (2) when using his-
tories to predict updates, it is important to ignore bursty
periods that are not consistent with the rest of the history.
Ignoring bursty periods (by using shorter histories) signi�-
cantly improves the accuracy and e�ectiveness of Adaptive
IndHist/TTL. Developing techniques to detect bursts, and
to ignore them is an area for future work.

We also compare the performance of IndHist and Adaptive
IndHist/TTL on the cyclic objects over the same 8-day pe-
riod. Our goal is to ensure that Adaptive IndHist/TTL
performs as well as IndHist on cyclic objects. We plot these
results in Figure 10 (b). The key observation is that Adap-
tive IndHist/TTL has comparable performance to IndHist
for cyclic objects, so it can generalize to both cyclic and
bursty objects without requiring any a priori classi�cation
of an object's behavior.

7. CONCLUSIONS
The growing popularity of wide area applications requires
freshness solutions that can provide fresh data for objects
with a wide variety of update patterns in the presence of lim-
ited connectivity. In this paper, we have presented a class of
adaptive solutions that use object update histories to choose
the most appropriate freshness policy for an object. Our so-
lutions require no a priori classi�cation of objects and can
automatically adapt to changes in object behavior. Further,
since our solutions do not require servers to store any infor-
mation about clients and their caches, they can scale to a
large number of clients. We have evaluated the e�ectiveness
of using update histories and adaptive policies on trace data
from two di�erent applications, and shown that both update
histories and adaptive policies are e�ective ways to improve
the accuracy of pull-based data freshness policies. In future
work, we plan to design a general framework for evaluating
the eÆciency of various adaptive policies.

8. REFERENCES
[1] R. Alonso, D. Barbara, and H. Garcia-Molina. Data

caching issues in an information retrieval system.
ACM. TODS Vol. 15, no. 3, 1990.

[2] M. Arlitt and T. Jin. 1998 world cup web site access
logs. Available at http://www.acm.org/sigcomm/ITA/,
1998.

[3] K.S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and
D. Agrawal. Enabling dynamic content caching for
database-driven web sites. Proc. SIGMOD, 2001.

[4] D. Carney, S. Lee, and S. Zdonik. Scalable
application-aware data freshening. Proc. ICDE, 2003.

[5] V. Cate. Alex - a global �lesystem. Proc. USENIX
File System Workshop, 1992.

[6] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. Proc. ACM SIGMOD
Conf., 2000.

[7] J. Cho and H. Garcia-Molina. Estimating frequency of
change. ACM. TOIT, 3(3), 2003.

[8] J. Cho and A. Ntoulas. E�ective change detection
using sampling. Proc. VLDB Conf., 2002.

[9] E. Cohen and H. Kaplan. Refreshment Policies for
Web Content Caches. Proceedings of IEEE
INFOCOM, 2001.

[10] P. Deolasee, A. Katkar, P. Panchbudhe,
K. Ramamritham, and P. Shenoy. Adaptive push-pull:
Disseminating dynamic web data. Proc. 10th WWW
Conf., 2001.

[11] A. Gal and J. Eckstein. Managing periodically
updated data in relational databases: a stochastic
modeling approach. Journal of the ACM,
48(6):1141{1183, 2001.

[12] J. Gwertzman and M. Seltzer. World wide web cache
consistency. Proc. USENIX Technical Conference,
1996.

[13] R.V. Hogg and E.A. Tanis. Probability and Statistical
Inference. MacMillan, New York, second edition, 1983.

[14] Y. Huang, R. Sloan, and O. Wolfson. Divergence
caching in client-server architectures. Proc. PDIS,
1994.

[15] B. Krishnamurthy and C. Wills. Study of piggyback
cache validation for proxy caches in the world wide
web. Proc. USENIX Symposium on Internet
Technologies and Systems, 1997.

[16] A. Labrinidis and N. Roussopoulos. Update
propagation strategies for improving the quality of
data on the web. Proc. VLDB, 2001.

[17] J.-J. Lee, K.-Y. Whang, B. S. Lee, and J.-W. Chang.
An update-risk based approach to ttl estimation in
web caching. Proc. Conference on Web Information
Systems Engineering (WISE), 2002.

[18] C. Liu and P. Cao. Maintaining strong cache
consistency on the world wide web. Proc. ICDCS,
1997.

[19] C. Olston, B.T. Loo, and J. Widom. Adaptive
precision setting for cached approximate values. Proc.
ACM SIGMOD Conference, 2001.

[20] C. Olston and J. Widom. Best-e�ort cache
synchronization with source cooperation. Proc. ACM
SIGMOD Conference, 2002.

[21] S. Ross. Stochastic Processes. Wiley, second edition,
1995.

[22] H.M. Taylor and S. Karlin. An Introduction to
Stochastic Modeling. Academic Press, 1994.

[23] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar.
Engineering server-driven consistency for large scale
dynamic web services. Proc. 10th WWW Conf., 2001.

Appendix A: Preparation of World Cup Data

In the World Cup trace, we detected an update whenever an
object's size changed in the trace. However, some changes
to an object's size were not due to updates. Many appar-
ent changes in an object's size were caused by temporary
inconsistencies at servers in di�erent geographic locations.
Our solution to this problem was to only consider an object
changed when the majority of requests to the object had the
new size, and when the object had this size for at least two
minutes. This allowed enough time for updates to propa-
gate to servers in all four locations, to eliminate the e�ects
of false changes due to server inconsistencies.

