

LAMP-TR-108 NOVEMBER 2003
CS-TR-4541
UMIACS-TR-2003-109

THE LINGUIST’S SEARCH ENGINE:
GETTING STARTED GUIDE

Philip Resnik and Aaron Elkiss

Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742-3275

resnik@umd.edu

Abstract

The World Wide Web can be viewed as a naturally occurring resource
that embodies the rich and dynamic nature of language, a data
repository of unparalleled size and diversity. However, current Web
search methods are oriented more toward shallow information retrieval
techniques than toward the more sophisticated needs of linguists.
Using the Web in linguistic research is not easy.

It will, however, be getting easier. This report introduces the
Linguist's Search Engine, a new linguist-friendly tool that makes it
possible to retrieve naturally occurring sentences from the World Wide
Web on the basis of lexical content and syntactic structure. Its aim
is to help linguists of all stripes in conducting more thoroughly
empirical exploration of evidence, with particular attention to
variability and the role of context.

Keywords: Search engines, linguistics, parsing, corpora.

This research sponsored by the National Science Foundation under ITR IIS0113641.

The Linguist’s Search Engine: Getting Started Guide

Philip Resnik1,2 and Aaron Elkiss2

1Department of Linguistics and

2Institute for Advanced Computer Studies
University of Maryland

College Park, MD 20742
resnik@umd.edu

Introduction

A highly influential (some would say dominant) tradition in modern linguistics is built on the use of
linguists' introspective judgments on sentences they have created. The judgment as grammatical or
ungrammatical, the presentation of a minimal pair, whether or not a particular structure is felicitous given
an intended interpretation – these are very often the working materials of the linguist, the data that help to
confirm or disconfirm hypotheses and lead to the acceptance, refinement, or rejection of theories.

Although naturally occurring sentences are currently accorded less emphasis by many linguists, the use of
text corpora has a tradition in the greater linguistic enterprise (e.g., Oostdijk and de Hann, 1994). And with
the emergence of the World Wide Web, we have before us a naturally occurring resource that embodies the
rich and dynamic nature of language, a data repository of unparalleled size and diversity. Unfortunately,
current Web search methods are oriented more toward shallow information retrieval techniques than toward
the more sophisticated needs of linguists. Using the Web in linguistic research is not easy.

The tool introduced in this getting-started guide is designed to make it easier. The Linguist's Search Engine
(LSE) is a new linguist-friendly facility that makes it possible to retrieve naturally occurring sentences from
the World Wide Web on the basis of lexical content and syntactic structure. With the Linguist’s Search
Engine, it will be easier to take advantage of a huge body of naturally occurring evidence – in effect,
treating the Web as a searchable linguistically annotated corpus.

Why should this matter? As Sapir (1921) points out, “All grammars leak.” Abney (1996) elaborates:
“[A]ttempting to eliminate unwanted readings . . . Is like squeezing a balloon: every dispreference that is
turned into an absolute constraint to eliminate undesired structures has the unfortunate side effect of
eliminating the desired structure for some other sentence.” Moreover, Chomsky (1972) remarks that
"crucial evidence comes from marginal constructions; for the tests of analyses often come from pushing the
syntax to its limits, seeing how constructions fare at the margins of acceptability.'' It is not surprising,
therefore, that judgments on crucial evidence may differ among individuals; as linguists we have all shared
the experience of the student in the syntax talk who hears the speaker declare a crucial example
ungrammatical, and whispers to his friend, “Does that sound ok to you?” The fact is, language is variable
(again, Sapir, 1921) – yet in the effort to make the study of language manageable, a dominant
methodological choice has been to place variability and context outside the scope of investigation.
.
While there are certainly arguments to made for focusing theory development on accounting for observed
generalizations, rather than trying to account for individual sentences (perforce including exceptions to
generalizations) as data, an alternative to narrowing the scope of investigation is to make it easier to
investigate a wider scope in interesting ways. A central goal of our work, therefore, is to help theory
development to be informed by a more thoroughly empirical exploration of real-world observable evidence,
an approach that explicitly acknowledges and explores the roles of variability and context, using naturally

occurring examples in concert with constructed data and introspective judgments.1 In short, to make it
easier for more linguists to do the things that some linguists already do with corpora.

Now, as noted above, using corpora in linguistics is not new, and certainly there are quite a few resources
available to the determinedly corpus-minded linguist (and corpus-minded linguists using them). These
include large data gathering and dissemination efforts (such as the British and American National Corpora,
the Linguistic Data Consortium’s Gigaword corpora, CHILDES, and many others), important and highly
productive efforts to annotate naturally occurring language in linguistically relevant ways (from the Brown
Corpus through the Penn Treebank and more recent annotation efforts such as PropBank and FrameNet),
and tools designed to permit searches on linguistic criteria (ranging from concordancing tools such as
Wordsmith, Scott 1999, to tree-based searches such as tgrep, and beyond to grammatical search facilities
such as Gsearch, Corley et al. 2001). When it comes to exploiting linguistically rich annotations in large
corpora for linguistic research, however, Manning (2003) describes the situation aptly, commenting, “it
remains fair to say that these tools have not yet made the transition to the Ordinary Working Linguist
without considerable computer skills.”

Getting Started with the LSE

The LSE is designed to be a tool for the Ordinary Working Linguist without considerable computer skills.
As such, it was designed with the following criteria in mind:2

• Must minimize learning/ramp-up time
• Must have a linguist-friendly “look and feel”
• Must permit real-time interaction
• Must permit large-scale searches
• Must allow search using linguistic criteria
• Must be reliable
• Must evolve with real use

The design and implementation of the LSE, guided by these desiderata, is a subject for another document.
The subject of this document is the first criterion. Since the LSE is a tool designed for hands-on
exploration, we introduce it not by providing a detailed reference manual, but by providing a walk-through
of some hands-on exploration. This is organized as a series of steps for the user to try out himself or
herself – what to type, or click, or open, or close, accompanied by screen shots showing and explaining
what will happen as a result.

Two words of caution. First, the LSE is a work in progress, and as such, parts of it are likely to evolve
rapidly – indeed, feedback from real users trying it out should play a critical role in its further development.
This means that before too long, the screen shots or directions in this guide may be out of date. If the
interface is well enough designed, a user starting with this guide should still be able to explore the LSE’s

1 One can go further, to a more thoroughly probabilistic view of grammar, as suggested by Abney (1996),
Manning (2003), and others. I am sympathetic to that viewpoint, and I like the way Chris Manning (2003)
puts it: “To go out on a limb for a moment, let me state my view: generative grammar has produced many
explanatory hypotheses of considerable depth, but is increasingly failing because its hypotheses are
disconnected from verifiable linguistic data. . . I would join Weinreich, Labov, and Herzog (1968, 99) in
hoping that ‘a model of language which accommodates the facts of variable usage . . . leads to more
adequate descriptions of linguistic competence.’” That said, I would emphasize that the LSE’s main
mission – to permit richer empirical investigation of naturally occurring language data – is at least
compatible with linguists of all (well, most) stripes.
2Also worthy of note: The Robustness Principle (“Be conservative in what you do, be liberal in what you
accept from others,” Jon Postel, RFC 793) and The Principle of Least Astonishment (“A program should
always respond in the way that is least likely to astonish the user”; one Web source attributes this to Grady
Booch. 1987. Software Engineering with Ada. 2nd Ed. Benjamin Cummings, Menlo Park, CA, p. 59).

various features, even if the screen details or the exact operations have changed somewhat. But the reader
should be aware of the potential discrepancies.

Second, no tool can substitute for a researcher’s judgment. The LSE will, one hopes, make it easier to
work with large quantities of naturally occurring data in ways that some linguists will care about. But one
must be aware of all the customary cautions that come to mind when working with naturally occurring data,
or with any search engine, for that matter. Questions that must be asked include things like: Is the source
of this example a native speaker of English? Am I looking at written language or transcribed speech? Are
the data I’m looking at providing an adequate (or adequately balanced, if that matters) sample of the
language with respect to the phenomena I’m investigating? Is any particular “hit” in a search really an
example of the phenomenon I’m looking for, or might it be a false positive?

Rather than ending with caution, though, let me end this introduction with encouragement. The LSE is a
Field of Dreams endeavor, built on faith that “if you build it, they will come.” We’ve built it, or at least a
first version of it. Will it turn out to be a useful tool for studying language? That’s a question for the
readers of this document: the community of users who will, we hope, find ways to employ the LSE with
insight and creativity.

Acknowledgments

It’s traditional to put acknowledgments at the conclusion of a document, but it is to be hoped that
momentarily the reader will be having too much fun with the LSE to pay attention to details placed at the
end.

The LSE is part of a collaboration between the author and Christiane Fellbaum of Princeton University on
using the Web as a source of empirical data for linguistic research, sponsored by NSF ITR IIS0113641; this
collaboration also includes Mari Broman Olsen of Microsoft.

The primary implementor for the LSE is Aaron Elkiss, with contributions by Jesse Metcalf-Burton,
Mohammed “Rafi” Khan, Saurabh Khandelwal, and G. Craig Murray. Critical tools underlying the LSE,
without which this work would be unimaginable, include Adwait Ratnaparhki’s MXTERMINATOR and
MXPOST, Eugene Charniak’s stochastic parser, Dekang Lin’s Minipar parser (searches not currently
available), Douglas Rohde’s tgrep2, and a host of publicly available tools for construction of Web
applications.

The author of this guide appreciates the early efforts and comments of the students in his spring 2003
lexical semantics seminar, which provided early feedback on a rather more preliminary version of the LSE.
I am also grateful for the inspiration and lucid argumentation of empirically minded linguists Steve Abney
and Chris Manning, for stimulating discussions with Bob Frank, Mark Johnson, and Paul Smolensky, and
especially for the staggeringly important work of George Miller, Mitch Marcus, and Brewster Kahle (and
their many collaborators) in producing WordNet , the Penn Treebank, and the Internet Archive.

I’m sure these acknowledgments are incomplete; apologies to anyone I’ve missed. Ditto for relevant
bibliographic citations… all feedback is welcome.

First steps: Logging in and Query By Example

(For the impatient reader: focus on the instructions in bold face type.)

You access the LSE via your Web browser. Although a number of browsers should work, at the moment
Internet Explorer (6 and higher) and Mozilla are most likely to work well. At the entry point to the LSE,
you will be asked for a login and password. These will either have been provided to you in advance,
along with the Web URL to go to, or you will soon be able to create them using a registration form. Enter
your login and password information in your browser in the usual way.

The first example we will work with is from the discussion of Pollard and Sag (1994) in Manning (2003).
The following introspective judgments are given for complements of the verb consider, illustrating the
claim that it cannot take as complements.

1(a) We consider Kim to be an acceptable candidate
 (b) We consider Kim an acceptable candidate
 (c) We consider Kim quite acceptable
 (d) We consider Kim among the most acceptable candidates
 (e) *We consider Kim as an acceptable candidate
 (f) *We consider Kim as quite acceptable
 (g) *We consider Kim as among the most acceptable candidates
 (h) *We consider Kim as being among the most acceptable candidates

Do naturally occurring data support Pollard and Sag’s judgment that 1(e) cannot be used to mean the same
thing as 1(a)?

Once having logged in to the LSE, you will find yourself in (or can easily go to) the Query By Example
(QBE) page. This is designed to make it easy for a linguist to say “Find me more examples like this one”
without having to know the syntactic details underlying the LSE’s annotations. The LSE currently uses a
rather “vanilla” style of syntactic constituency annotation (of the Penn Treebank variety).

Type the sentence “We consider Kim as an acceptable candidate” into the Example Sentence space,
and then click Parse. After a moment, you should see a parse tree for the sentence show up in the Tree
Editor space.

Right-click on the VP node in the parse tree. This will bring up a menu of tree-editing operations.
Select Remove all but subtree. You will see the tree display change so that only the VP subtree remains –
we’re interested in sentences containing this VP structure but we don’t care about what’s in the subject
position, or whether or not it’s a matrix sentence.

Right-click on the NNP above Kim to bring up the same menu. This time, select Remove subtree. This
will leave the NP dominated by VP, removing the unnecessary detail below – we care that the VP have an
NP argument, but not what that NP contains.

Repeat the above remove subtree operation for each of DT, JJ, and NN. (At some point soon, we will
probably add a remove children menu item to make it easier to remove all the children of a node at once.)

At this point, your tree should look like the tree in the screen above. You have specified that you want verb
phrases headed by consider where the VP also dominates an NP and a PP headed by as.

Now click the Update Tgrep2 button. This automatically (re-)generates a query based on the tree structure
you have specified.3

The screen above shows the resulting query in the Tgrep2 query area. The less-than sign (<) encodes the
“immediately dominates” relation; e.g., part of the pattern says that there must be a node labeled with the
nonterminal IN (Penntreebankese for preposition) that immediately dominates a node labeled with the word
as. Notice that the LSE automatically expanded the tree-based pattern to include all grammatical
inflections of the verb, not just present-tense consider. If there had been a lexical noun present, it would
have included both the singular and plural forms. (For future versions of the LSE, we plan to extend the
representation to include feature-based specifications, including not only tense and number features, but
also semantic features such as WordNet class membership, Levin (1993) categories for verbs, etc.)

Advanced users can edit the tgrep2 query here or in the screen that follows. See the “Tips, Hints, and
Advanced Features” section for a detailed example.

Click Proceed to Search to move from Query by Example to the main search interface.

3 The query language tgrep2 is a variation of Rich Pito’s original tgrep, distributed with the Penn Treebank.
The tgrep family of tools lets you specify tree-based patterns to match in a parsed corpus (Rohde, 2001;
http://tedlab.mit.edu/~dr/Tgrep2/).

The Query Interface

Let’s look at the Query screen from top to bottom focusing on the most important pieces.

At the top, Select a Source allows you to choose what collection of sentences to look in. The default is
currently a collection of several hundred thousand sentences collected from Web pages that are stored on
the Internet Archive (www.archive.org). This static resource is a useful starting point for exploration; a
little later you’ll be shown how to create for yourself new collections of sentences from the Web that are
likely to be of interest to you. Leave the source set to the Internet Archive Collection for now.

The Select a Saved Query pull-down allows you to recall queries that you’ve saved using the Save Query
button at the bottom. This can be useful for modifying previous queries, or for trying out a query on a new
source of sentences. Leave this alone for the moment, since we want to execute the query just created via
Query By Example.

In the blue box are the search options when searching the collection of sentences from the Internet Archive.
As we noted above, the query (Tgrep2/Constituency Parse) is expressed in terms of constituency (i.e.
phrase structure) relationships.4 To the left are a number of buttons we needn’t deal with for the moment.
You can click the Offensive Content Filter check box to apply a simple filter that will suppress URLs and
sentences likely to be offensive.5

In the Description box at the bottom, type “consider NP as NP” and then click Save Query.
This saves the query with a readable description to retrieve it by. Then click Submit Query.

4Note for advanced users: these tree search expressions are tgrep2 patterns. Advanced users could go
directly to this page and type in arbitrary tgrep2 queries rather than having Query By Example generate a
valid pattern for you automatically. Also, the Add a Subquery button allows advanced users to specify
secondary filtering criteria, e.g. more tgrep2 patterns that must match. Sentences must match all subqueries
to be returned, i.e. the subqueries are combined via Boolean AND.
5 The Offensive Content Filter is based on a simple word-list approach – imagine George Carlin’s list of
“seven words you can’t say on TV” expanded a great deal based on the sorts of things likely to show up on
Web pornography sites. Please be aware that the filter is not perfect.

Looking at Results Returned by a Query

The screen above shows results of your query. Notice that the “hits” are organized in standard search
engine fashion, showing the number of matching sentences found, the URL of the page where each
sentence was found, the sentence itself, navigation buttons to get to the next and previous twenty hits, etc.
Scroll down to get the view below, showing the first six hits.

Notice that some hits, like the first one, are using “consider NP as NP” in the wrong way, e.g. “consider NP
as a candidate for NP”. But hit number 5 looks like it’s probably a counterexample to the claim in (1e).

Click the Annotation link below hit number 5. This will bring you to a screen like this one.

Notice that this shows the previous and following sentence context, and a number of linguistic annotations
of the sentence, including, for example, the constituency parse. Scroll down to look at the full set of
annotations. Then go back to the list of hits.

Next, click on the Archived link. This brings you to the Web page containing the sentence, as stored on
the Internet Archive:

You can use your Web browser’s “Find” function to find the sentence on the page. You can go back
and click Current to see the current version of the page, which may have changed (and therefore may or
may not still contain the sentence).

Another Query by Example

Let’s try another Query by Example. This time we’ll look for instances of a construction (Goldberg, 1995)
– in this case sentences containing things like “the ADJer the NP the ADJer the NP”. Go back to the
Query by Example page (you can click on it on the navigation bar at the top or bottom of most LSE pages)
and type in, as the example sentence, “The bigger the house the higher the price” (without the double
quotes). Then click Parse.

As an exercise, use the tree editing functionality to modify the parse tree so it looks like the tree on the
screen below.

Remember, you right click on nodes to do things with them. You can also right click on the white space in
the tree editor. Notice that the right-click menu includes Undo, which will undo your last operation if you
make a mistake. You can also select Revert, or click the Cancel button at the bottom, to revert back to
what the tree looked like before you started editing it. If you use the Add Node… option, you’ll get a pop-
up box in which to type the label of the new node you’re adding.

When your tree looks like the tree above, click Update Tgrep2 to re-generate the query pattern. You’ll
have noticed that the parser really didn’t know what to make of this construction. But that doesn’t stop you
from being able to edit the structure to generalize it (even if you don’t know that JJR is the Penn Treebank
symbol for comparative adjective), and it doesn’t matter whether or not you agree with the structure as
long as the resulting pattern can do a reasonable job of locating sentences with the same structure.

Click Proceed to Search.
Then enter the description “The ADJer the NP the ADJer the NP” and click the Save Query button.
Finally, click Submit Query.

Uh oh… You’ll notice that there were no matches for this query in the collection of Internet Archive
sentences. But then, those sentences were collected randomly, and even if several hundred thousand
sentences seems like a large number to search, it’s a fairly small collection relative to the size of the Web.
It’s not surprising that any given construction might not appear in this particular random sample. What you
really want to do is a Web-scale search, so that you can look for your structure on a non-random sample.

Building Your Own Collections

Let’s use the LSE to do a large-scale Web search for instances of the “the ADJer the NP the ADJer the NP”
construction. To start, go to the My Collections page and click on Add New Collection Definition.

The Collection space allows you to give a descriptive name to this collection.6 Type “comparatives” into
the collection box as illustrated above. In the Description area, type “The Xer the NP1 the Yer the
NP2” – this is a short prose description of the collection of sentences you’re building from the Web.

The Add New Search area is the heart of the collection building process. The key idea is (a) to use the
Altavista search engine to find pages that are likely to contain sentences of interest, and then (b) to
automatically extract those sentences of interest into a searchable LSE collection.

The first step is done by opening a new browser window and using Altavista (www.av.com) to search for
pages that are likely to contain sentences of interest. This can take a few iterations; for example, the
screens above show that simply entering “bigger smaller longer poorer…etc.” as an Altavista query won’t
work – it results in pages that contain word lists, rather than pages where those words are used in sentences.

6 For internal bookkeeping, collection names are always prefixed by the user’s login name.

Here’s an illustration of how to refine your Altavista query. Go to Altavista and in the query box type
”the bigger the”. Include the double quotes, which tells Altavista you’re interested in these three
words appearing next to each other. You’ll find that this gets you a lot of pages containing “the bigger the
better”, because it’s such a common phrase. You can tell Altavista to exclude pages containing that phrase
by adding a query term with a minus sign in front of it. Type in this Altavista query:

 ”the bigger the” -”the bigger the better”

It says: get me pages containing “the bigger the” but not containing “the bigger the better”. Submit the
query to Altavista and notice that the hits you get back are indeed pages containing the right sorts of
phrases.

Copy this query from your Altavista page, and then go back to the LSE’s My Collections screen.

Paste or type the query you copied into the LSE’s Altavista Search Terms space. You’ve now told the
LSE that it should automatically retrieve Web pages from Altavista using this query. The Max number of
documents to retrieve defaults to 1000, though you can select a smaller number for testing purposes.

Since the Web pages you retrieve will undoubtedly contain many (mostly) sentences you are not interested
in, there needs to be some way to specify which sentences you are interested in. The box underneath the
Altavista search terms allows you to specify a word or words that must appear in a sentence in order for it
to be interesting. In the box saying I only want sentences that contain at least one of the following
words, type “bigger” (without quotes).

Now click Save Changes. You’ll see that your collection now has a Search 1 with the parameters you’ve
given it.

Add new searches to this collection description by repeating the process above:

- (Optionally) Verify that your Altavista search retrieves the right sorts of pages
- Enter the Altavista search terms
- Enter the words that identify sentences of interest
- Choose the maximum number of documents to retrieve for this search
- Click the Save Changes button.

For example,

- Altavista search terms: ”the wealthier the” (include quotes)
- I only want sentences…: wealthier
- Maximum number of documents: 1000
- Click Save Changes

- Altavista search terms: ”the poorer the” (include quotes)
- I only want sentences…: poorer
- Maximum number of documents: 1000
- Click Save Changes

Go back to the My Collections page. Notice that this collection now appears on your list of collections.
In the lower right corner, the Status line shows the current status of a collection. Possible values include
not yet started, queued (i.e. waiting until the LSE annotator is free to work on it), building/annotating, and
complete. Once the building and annotating process has started, sentences that are found are annotated as
quickly as the LSE can get to them, given its available resources. Note that a collection is searchable as
soon as it contains any annotated sentences, i.e. you don’t have to wait for it to be complete.

At any point, you can click Show Details for a collection – for example, you can go back there to delete the
collection, or to tell the LSE to stop annotating if the build is still in progress but you’ve already found
everything you wanted. You can even add a new search to extend a collection that already exists.

Using Your Collections

The amount of time it takes to build a collection can vary – you can watch the My Collections list to see
how things are progressing. It will show you how many sentences have been found so far that meet your
criteria, and it will also show you how many of those have been linguistically annotated and are therefore
now searchable.

The LSE rotates its efforts among the requests of its various users, so your collection building request will
not need to wait in line behind all the other requests in order for it to get started. Currently, the LSE’s
scheduler places a high priority on quickly getting some sentences into each collection – the first thousand
– so that you can very quickly start searching and discover changes you need to make. (To conserve
resources, please use Delete Collection for collections you’ve decided not to use, and use the Stop
Annotating button for collections once they’ve grown as large as you need them.) After the first thousand
sentences, you may notice that your collection builds up more slowly if other users are also building
collections at the same time. The scheduler also keeps track of which collections have not received any
attention for a while, to make sure that each one gets its fair share.

Let’s return to the search for “The Xer the NP1 the Yer the NP2” constructions, using the collection
you have built. (Remember, you can do this even before the collection is complete.)

Go back to the Query page. At the top, use the pull-down for Select a Source to pick Altavista Corpora.
Notice that the blue box now offers you a new option: use the pull-down menu for Choose Altavista
Collection to select the comparatives collection.

Now use the Select a Saved Query pull-down at the top of the screen to pick the query you saved
before: “The ADJer the NP the ADJer the NP”. Notice that the LSE automatically fills in the query
pattern for you.

Click Submit Query. Depending on how far your collection building has gotten, the results should look
something like this:

Congratulations! You have just searched the entire Web (or at least the portion indexed by
Altavista) using a structural search, and found some examples of the structure you were looking for.

Tips, Hints, and Advanced Features

The examples above have exercised all of the LSE’s basic functionality as of this writing. Here are few
things that may help make it more useful, based on our experience so far:

- Navigation bar. The navigation bar at the top and bottom of most screens makes it easy to jump
back and forth between Query by Example, Query, and My Collections.

- Search this Collection shortcut. When you’re in My Collections, either in the collections list or

in the detailed view of a particular collection, you can click Search this Collection to go to a
version of the Query page where the collection information has already been filled in.

- Tree editing hints. Unless you are particularly interested in your structure’s occurring at the

matrix level, the usual first step will be to right-click on the deepest relevant node and select
Remove all but subtree. If you’re looking at a verb-centered construction and you don’t need a
matrix sentence (and the sentential subject doesn’t matter), it’s usually better to keep just the VP
rather than the whole S dominating it, since Treebank-style parses will occasionally used adjoined
structures (VP dominating VP). On the same note, we recommend being more general rather than
more specific where possible – for example, unless you specifically need a particular NP-internal
structure, we recommend keeping just the NP (as was done in the earlier examples) rather than,
say, using a specification that requires a determiner. It’s always easier to go from more general to
more specific once you’ve seen what the data look like.

- Excluding structure. There are a few simple things you can do to the automatically generated

tgrep2 expression, without learning the whole complicated pattern-matching syntax, that are very
useful; foremost among these is negation. The LSE’s current Query By Example does not provide
a way to say that a part of a structure should be absent rather than present; for example, the tree
editor does not allow you to say that an NP should not contain an adjective, or that a VP should
not have a PP as one of its children. One way to get this behavior is to type in an example
sentence that includes the structure you don’t want, generate the tgrep2 expression automatically,
and then modify it manually to negate the relevant piece of structure. For example, suppose you
want cognate object constructions for the verb live where the direct object does not have an
adjectival modifier (“lived a/the/his/her life”, but not “lived a quiet life”).

o In Query by Example, type “He lived a quiet life”, click Parse, and edit the tree to keep

just the VP. Use remove subtree to delete the DT (determiner) node, but keep the JJ
(adjective) subtree. Click Update Tgrep2.

o In the tgrep2 query, scroll right, if necessary, so you can see the part of the pattern that

specifies the object noun phrase:

(NP < (JJ < quiet) < (/^(NN|NNS)$/ …etc.

The first greater-than sign stands for immediate dominance, so this says that we want an
NP that dominates a JJ node (which itself dominates a node labeled quiet), and that also
dominates a subtree where the root node is labeled NN or NNS, etc. If you put an
exclamation point before the greater-than sign (!<) you change it from dominates to does
not dominate, so if you changed the expression this way

(NP < (JJ !< quiet) < (/^(NN|NNS)$/ …etc.

then you have modified your structure to specify an NP that must contain an adjective
(JJ), but you’ve said that that adjective cannot be the word quiet. And, in fact, you could
say

(NP < (JJ !< quiet|peaceful|good) < (/^(NN|NNS)$/ …etc.

in order to exclude the adjectives quiet, peaceful, and good (the vertical bar means “or”).

This, however, is not quite want we wanted – we wanted to exclude all adjectives. The
way to do this is to change the specification so that the negation applies to the whole JJ
(adjective) and doesn’t care about what’s underneath it:

(NP !< JJ < (/^(NN|NNS)$/ …etc.

o Once you’ve edited the query, you can Proceed to Search, save the query, etc., as usual.
(Note you can edit the tgrep2 expression on the query page, as well.) If you execute this
query in the Internet Archive collection of sentences, you’ll get sentences like “You
might get hurt, but it's the only way to live life completely”, etc.

o Exercise: If you wanted to specify a live-life cognate object construction with no post-

verbal adverb, i.e. excluding the above sentence, what tgrep2 expression would you
come up with? See footnote for one answer.7

- If the LSE gets stuck. If the LSE gets into a strange state that you can’t get out of, the first thing
to try is using your browser to force a reload of the page (in most browsers, hold shift and click the
reload page button). The second thing to try is navigating off the page and then navigating back
to it, again perhaps reloading it when you get there. The third thing to try is quitting out of your
browser entirely, and then starting up the browser again and going to the LSE. As with all things
computational, save frequently (e.g. using the Save Query button) if there’s something that’s
important.

- Logging out. There is currently no functionality for logging out. You can just quit your browser.

- Use the LSE discussion group. A Yahoo group has been set up for LSE users, called

lse_support. Join the group, help each other out, and above all please give us feedback on ways to
improve the LSE and which features are most important to add next.

- Have fun, do good work, and keep us posted! The future of the LSE depends, in part, on

whether or not it turns out to support good linguistics research. We would very much like to keep
track of presentations, papers, articles, and projects where the LSE has played a role.

7 Using Query by Example with the sentence “It’s the only way to live life completely” and editing the tree
and the pattern as recommended, you can get to the expression (VP < (/^(VB|VBD|VBG|VBN|VBP|VBZ)$/ <
/^(lived|lived|lives|living|live)$/) < (NP < (/^(NN|NNS)$/ <

/^(lives|lives's|life's|life)$/)) !< ADVP). Crucially, notice the exclamation point near the end
of the expression, which is saying that the VP should not dominate an ADVP.

Appendix: Citing Data Found Using the LSE

In presentations and publications using Web data, we strongly recommend careful documentation of the
sources of those data – not only as good research practice, but to bolster the credibility of the data, since
anyone who doubts a claim (“Are you sure that sentence came from a page where the person really knew
English?”) can go to the data and decide for himself or herself.

The Internet Archive collection makes this particularly easy: for sentences found in this collection, we
recommend providing the Internet Archive’s URL for the page, which includes the page’s original URL
plus a timestamp identifying the date the page was crawled.8

It’s worth noting that, unlike the collection of Internet Archive sentences, Altavista collection sentences are
taken from current pages on the Web, which might change or cease to exist at any time. This is undesirable
in terms of having persistent data that anyone can return to, but a minimum, the APA style guide
recommends that, “a reference of an Internet source should provide a document title or description, a date
(either the date of publication or update or the date of retrieval), and an address (in Internet terms, a
uniform resource locator, or URL)” (http://www.apastyle.org/elecgeneral.html, retrieved 4 October 2003).

For pages in Altavista-based collections, the LSE will help you find a more permanent citation by making it
easy to locate stored snapshots of this page on the Internet Archive. If you click the Archived link below a
hit, for a sentence that came from an Altavista-based collection, the LSE will look on the Internet Archive
and will show you its list of snapshots for that page.

One of these snapshots may be a permanently archived version of the page that contains the sentence
you’re looking at. In our opinion, it is worth looking for the Internet Archive version of any data that you
consider important.

8 This will very shortly be added to the information available via a sentence’s Annotation link.

Bibliography

 Steven Abney, “Statistical Methods and Linguistics”, in J. Klavans and P. Resnik (eds.), The Balancing
Act: Combining Symbolic and Statistical Approaches to Language, Cambridge, MA: MIT Press, pp. 1-26,
1996.

American National Corpus, http://americannationalcorpus.org/, as of 9 November 2003.

British National Corpus, http://www.natcorp.ox.ac.uk/, as of 9 November 2003.

Child Language Data Exchange System (CHILDES), http://childes.psy.cmu.edu/, as of 9 November 2003.

Corley, S., Corley, M., Keller, F., Crocker, M., & Trewin, S., “Finding Syntactic Structure in Unparsed
Corpora: The Gsearch Corpus Query System”. Computers and the Humanities, 35, 81-94, 2001.

FrameNet, http://www.icsi.berkeley.edu/~framenet/, as of 9 November 2003.

Francis, S. and H. Kučera, Computing Analysis of Present-day American English, Brown University Press,
Providence, RI, 1967.

Goldberg, Adele E. Constructions: A Construction Grammar Approach to Argument Structure, University
of Chicago Press, 1995.

Levin, Beth, English Verb Classes And Alternations: A Preliminary Investigation, Chicago: University of
Chicago Press, 1993.

Linguistic Data Consortium (LDC), http://www.ldc.upenn.edu/, as of 9 November 2003.

Manning, Christopher D. “Probabilistic Syntax”, in Rens Bod, Jennifer Hay, and Stefanie Jannedy (eds),
Probabilistic Linguistics, pp. 289-341. Cambridge, MA: MIT Press, 2003.

Oostdijk, N. & P. de Haan (eds.). Corpus-based research into language. Amsterdam: Rodopi. 1994.

Penn Treebank, http://www.cis.upenn.edu/~treebank/home.html, as of 9 November 2003.

Pollard, C. and I. A. Sag, Head-Driven Phrase Structre Grammar. Chicago: University of Chicago Press,
1994.

PropBank, http://www.cis.upenn.edu/~ace/, as of 9 November 2003.

Rohde, D., Tgrep2, http://tedlab.mit.edu/~dr/Tgrep2/, 2001, page as of 9 November 2003.

Sapir, Edward. Language: An Introduction to the Study of Speech. New York: Harcourt, Brace, 1921;
Bartleby.com, 2000. www.bartleby.com/186/.

Scott, M., Wordsmith Tools version 3, Oxford: Oxford University Press. ISBN 0-19-459289-8, 1999.

