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Abstract

Bilingual dictionaries hold great potential as a source of lexical resources for training
and testing automated systems for optical character recognition, machine translation, and
cross-language information retrieval. In this paper, we describe a system for extracting
term lexicons from printed bilingual dictionaries. Our work was divided into three phases
- dictionary segmentation, entry tagging, and generation. In segmentation, pages are
divided into logical entries based on structural features learned from selected examples.
The extracted entries are associated with functional labels and passed to a tagging module
which associates linguistic labels with each word or phrase in the entry. The output of
the system is a structure that represents the entries from the dictionary. We have used
this approach to parse a variety of dictionaries with both Latin and non-Latin alphabets,
and demonstrate the results of term lexicon generation for retrieval from a collection of
French news stories using English queries.
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1 Introduction

1.1 The Problem

In recent years, the demand for tools capable searching written and spoken sources of

multilingual information has increased tremendously. The involvement of multinational

groups in activities all over the world, the proliferation of information on the Inter-

net, and the general explosion of information available in multiple languages have made

cross-language communication essential to many organizations. Typically, access to large

collections of information in another language requires either the assistance of a speaker

of that language to formulate queries and translate the retrieved documents, or an auto-

mated system for Cross-Language Information Retrieval (CLIR) and Machine Translation

(MT). The former is clearly not practical as a general approach for very large collections,

but automated systems for CLIR and MT are rapidly evolving. CLIR systems can, how-

ever, often produce acceptable results by performing term weight translation between the

query and the document languages, thus allowing the use of well developed term-based

search techniques to identify relevant documents. The key enabler for this strategy is to

enable translation at the term level by building lexical resources of term-term translation

pairs.

We can acquire the needed lexical resources in three ways. Many languages now have

a substantial presence on the World Wide Web, and Resnik has shown that substantial

amounts of translation-equivalent documents can be found for many languages and that a

translation lexicon can be constructed from such a collection using automatic techniques

for term-level alignment [33]. As the Web grows, this technique could be extended to

an increasingly large set of languages. Similar corpus-based techniques can also be used

with documents that are available in printed form [13]. Corpus-based approaches are

particularly useful because the learned term-term mappings have associated translation

probabilities, but infrequent terms (which are highly valued by retrieval systems because

of their selectivity) are rarely observed in the training data and thus rarely included in the

learned translation pairs. Hand-built translation lexicons have complementary strengths

and weaknesses; they usually lack translation probabilities, but they typically have far
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better coverage of rare terms that searchers actually use when posing queries.

Sometimes, these translation lexicons are available directly in electronic form. For

example, the translation lexicon in an MT system could be used directly for this pur-

pose. Available MT systems cover fewer than fifty of the world’s thousands of languages,

however. Online dictionaries are another possible source for this information, but again

the number of languages served by such resources is limited. When digital resources are

unavailable, printed dictionaries offer the third source of term-term translations. More-

over, bilingual dictionaries also often contain a wealth of supplemental information about

morphology, part of speech, and examples of usage that can also be useful in CLIR and

MT applications.

The focus of the work reported in this article is on rapid and reliable acquisition of

translation lexicons from printed bilingual dictionaries, with an ultimate goal of support-

ing the development of CLIR systems for languages in which other translation resources

are lacking. Given a bilingual dictionary, with one of the two languages English, a scan-

ner, an optical character recognition (OCR) system that is capable of processing the

character set, and an operator familiar with the language in question, we can train a

retrieval system for the new language in as little as 48 hours. To do this, we have devel-

oped an automated, but user guided approach, to parameterize and learn the physical

structure of the document page and the semantics of the dictionary entries.

Figure 1: Examples of bilingual dictionaries.
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1.2 Background and Approach

Dictionaries are members of a class of documents that are designed for easy search [8].

Their structure is typically regular and repeating, and ”keys” are distinguished as access

points for each entry. Figure 1 shows some common formats for bilingual dictionaries.

The format varies from simple word-to-phrase translation pairs through full descriptions

that contain parts of speech, related forms, and examples of usage. Our goal is to capture

the salient structure of these entries and label each element appropriately. Because of the

regular structure, we are typically able to provide a relatively small number of training

samples for each dictionary, and then have the system learn the features necessary for

correct segmentation and labeling.

Figure 2: System architecture.

A prototypical architecture for a system is shown in Figure 2. The system is broken

up into three main components: Dictionary Parsing, Element Tagging, and Lexicon

Generation. The general philosophy we take with all of the components is to provide

a trainable system that can learn from a limited number of examples. An operator

will identify and tag several dictionary entries, and it is the system’s responsibility to

then learn the parameters necessary to extract and tag the remainder of the dictionary.

Because of the repetitive nature of these documents, a bootstrapping approach where

the system gets some feedback from an operator is appropriate. It may ultimately be

possible to design general document image analysis systems that are capable of learning
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this analysis with unsupervised (or very minimally supervised) techniques, but for now

it remains essential to have an operator who can at least understand both languages

in the bilingual dictionary. We provide an intuitive interface to assist in processing the

dictionary and compilation of results. The use of the resulting translation pairs by a

CLIR system can be completely automated, so the overall system development effort is

very highly leveraged, requiring only a small amount of language-specific human effort.

1.3 Related Work

Work relevant to entry segmentation is typically found in the logical layout analysis

literature ([17] gives an overview of traditional methods), and is often divided into two

tasks: physical segmentation into zones and logical labeling. The structural complexity

of different documents makes it difficult to design a generic document analysis tool that

can be applied to all documents.

In our system, it is essential that we are to learn a dictionary’s structure, since that

structure is typically consistent throughout a given dictionary but varies widely between

dictionaries. Liang et al. [19] presented a probability-based text-line identification and

segmentation approach. Their approach consists of two phases: offline statistical training

and online text-line segmentation. Kopec et al. [15] applied a stochastic approach to

build Markov source models for text-line segmentation under the assumption that a

symbol template is given and the zone (or text columns) had been previously extracted.

Under the assumption that the physical layout structures of document images can be

modeled by a stochastic regular grammar, Mao et al. [24] built a generative stochastic

document model to model a Chinese-English dictionary page. They use a weighted finite

state automaton to model the projection profile at each level of the document’s physical

layout tree, and to segment the dictionary page on all levels. Lee et al. [18] proposed

a parameter-free method to segment document images with various font sizes, text-line

spacing and document layout structures. There are also some rule-based segmentation

methods which perform the segmentation based on rules that are either manually set up

by the user [17] or learned automatically by training [22, 15].

Although numerous techniques have been proposed for both script identification [10,
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35, 34, 39] and font recognition [23, 14, 36, 44, 43], none focused on either word level

classification or on optimizing performance for a given document. For entry-level tagging,

we attach semantic labels to words or phrases. Palowitch and Stewart [29] constructed

a system for automatically identifying structural features in text captured from printed

documents via OCR and applying Standard Generalized Markup Language (SGML)

tagging, based on the Text Encoding Initiative (TEI) Document Type Definition. They

implemented the structural and presentation markup phases as an iterative process.

For tagging, Mao and Kanungo [24] used stochastic language models to automatically

extract bilingual dictionary entries by manually creating a context-free grammar (CFG)

and stochastic production rules for each dictionary. They demonstrated their algorithm

on a Chinese-English dictionary which contained four categories. In the general case,

however, manual grammar-based approaches cannot adequately accommodate the un-

certainty introduced by OCR and by errors in the document analysis. Wilms [41] reports

on an attempt to impose structure on a particular dictionary using a hand-built parser,

adopting a mixed approach based on pattern matching and transition networks. After

extensive hand-tuning, the resulting translation lexicon was 95% accurate, but correcting

the approaches which require that degree of hand tuning would not be suitable for the

rapid application development process that we have in mind.

The remainder of this paper is organized as follows. In Sections 2 and 3, we de-

scribe the dictionary parsing and tagging processes in detail, along with examples and

experimental results. We outline the implementation for the system in Section 5, and we

explain how the resulting translation pairs are used to perform cross-language retrieval

(with further experiment results) in Section 6. We conclude the paper with a discussion

of what we have learned and a few words about our future plans.

2 Dictionary Parsing

The first step in our system involves physically acquiring the page images, segmenting the

images into individual entries, extracting functional characteristics of various elements

of the entry, and labeling the types of extracted entries.
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2.1 Dictionary Acquisition

In our environment, we assume that we have obtained a copy of a printed bilingual

dictionary that can be scanned, either page by page or automatically (after busting the

binding). Clearly, the quality of the resulting image can significantly effect our ability

to analyze the dictionary, so care must be taken to ensure quality. Images are stored

uncompressed at 300dpi, and adjustments are made to accommodate paper thickness

and print intensity in order to optimize contrast, minimize bleed through, and preserve

subtle differences in font properties.

2.2 Entry Segmentation

Entry segmentation addresses the general problem of identifying repeating structures by

learning the physical and semantic features that characterize them. Unlike traditional

page segmentation problems where zones are characterized by spatial proximity, we of-

ten find that publishers of documents with multiple entries (dictionaries, phone books,

and other lists) use different font properties (bold, italics, size etc) and layout features

(indentation, bullets, etc.) to indicate a new entry. Although such characteristics vary

for different documents, they are often consistent within a single document, and hence

the task suggests learning techniques.

2.2.1 Overview

The goal of entry segmentation is to segment each page into multiple (sometimes partial)

entries or alternatively to organize multiple lines of text as a single entry. Since the

extraction of text lines in dictionaries is relatively straightforward, the problem of entry

segmentation can be posed as the problem of finding the first (or last) line of each entry.

A significant contribution to the effectiveness of entry segmentation results from appli-

cation of a bootstrap technique for the generation of new training samples. Bootstrapping

helps to make the segmentation adaptive, progressively improving segmentation accuracy.

Figure 3 illustrates the approach, with each iteration consisting of:

• Feature Extraction and Analysis: extraction of physical characteristics which
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indicate an entry boundary.

• Training and Segmentation: learning the parameters of an entry segmentation

model.

• Correction and Bootstrapping: feedback from an operator, who makes cor-

rections to a small subset of the results that contain errors. Using the corrected

segmentation results, bootstrapping samples are generated and used to retrain the

system.

Figure 3: Entry segmentation system architecture.

2.2.2 Feature Extraction and Analysis

Based on a study of different types of structured documents, the following features have

been found to be useful for both segmentation and, ultimately, for tagging. Examples

are shown in Figure 4.

Special symbols : Punctuation, numbers, and other nonalphabetic symbols are often

used to start a new entry, to end an entry, or to mark the continuation of a text

line.

Word font, face and size: Word font, face and size (especially the features of the

first word in each entry) are often important entry features. On a dictionary page,
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for example, the first word of each entry (typically the headword) can be bold, all

upper case, a different font, or larger than the rest of the entry.

Word patterns : Words often form distinguishable patterns which are used consis-

tently to convey the structure of an entry.

Symbol patterns : Sequences of symbols sometimes form consistent patterns that

represent the beginning or ending of an entry.

Line structures : The indentation, spacing, length, or height of text lines in an

entry are represented within our system as “line structures” that may have different

characteristics at the beginning or end of an entry.

Other features : Additional features such as regularities in the spacing between

adjacent entries, text position on the page, script type, word spacing, and character

case may help with interpretation of the principal features described above.

Figure 4: Examples of features.

Features Weight

First Word Symbol 16.04
Word Style Pattern 10.3

Ending Symbol 15.46
Symbol Pattern 5.77

Word Symbol Pattern 5.77
Line Structure 16.67

Table 1: Features & weights of dictionary in Figure 4.

During the training phase, a Bayesian framework is used to assign and update the prob-

abilities of extracted features. Based on estimated probabilities, each extracted feature
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will be assigned a weight that can be used to compute the entry score from all extracted

features. The detailed procedure is as follows:

(1) Construct a histogram of feature occurrences in the training samples;

(2) Compute the feature occurrence rate as the empirical feature probability. Suppose

there are N training entries, and there are K extracted features. Then for feature

i (1 ≤ i ≤ K), the probability can be computed as: pi = Ki/N , where Ki is the

number of occurrence of feature i;

(3) Assign feature weights based on this empirical probability as follows: wi = pi

A
×100,

where A =
∑K

i=1 pi and 1 ≤ i ≤ K. Consider the extracted features as a formed

feature space, each entry is projected to this space and a “voting score” is computed

as: FV =
∑K

i=1 wiSi, where Si = 1 if feature i appears, otherwise Si = 0;

(4) Obtain the minimum, maximum, and average voting scores of entries; these values

will be used as thresholds in the segmentation stage.

Table 1 shows an example of extracted features and assigned weights, where line

structure (with heaviest weight) is the most important feature.

2.2.3 Training and Segmentation

Because of the complexity of many structured documents, it would be difficult to man-

ually determine the optimal value for some parameters. So, given a small training set,

we attempt to learn appropriate parameters. One way to do that is to extract all pos-

sible features from the training set, segment some pages based on the learned features,

and generate a new training set from the original set plus selected initial segmentation

results. This technique used to generate new ”bootstrap” samples was first proposed by

Efron [9].

Segmentation is an iterative procedure that maximizes the feature voting score of an

entry (computed using the formula described previously) in the feature space. Based on

the features extracted in the feature extraction phase, a document can, in principle, be

segmented into entries by searching for the beginning and ending text-lines of an entry.
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This search operation is a threshold-based iterative and relaxation-like procedure, and

the threshold is estimated from the training set. The segmentation procedure can be

performed as follows:

(1) Search candidate entries for the first text line in one zone by feature matching.

This operation is equivalent to determining whether the first line in one zone is the

beginning of a new entry or a continuation of an entry from the previous zone or

previous page.

(2) Search for the end of an entry. This operation is actually accomplished by searching

for the beginning of the next entry, since the beginning of a new entry ends the

previous entry.

(3) Remove the extracted entries, and iterate until all new entries are identified.

2.2.4 Correction and Bootstrapping

In order to correct a system-hypothesized segmentation, the operator can performing

one or more operations on any segment: split one segment into two or more individual

segments, merge two or more adjacent segments into a single segment, resize a segment

to include or exclude text-lines or columns, move or change the position of a segment

(equivalent to resizing both the beginning and end of a segment, retraining the same

number of text-lines), remove a segment or relabel a segment.

We applied the procedure described in [20] to generate bootstrap samples in such a

way that no entry is selected more than once. Generated bootstrap samples are the linear

combination of the training samples in source, based on random weights. The result is a

set of dictionary entries that represent a physical partition of the page. A similar training

and labeling process is applied to each entry on the page to label, for example, entries

which are a continuation from a previous page or column. Optical Character Recognition

is also applied.
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Figure 5: Entry segmentation results, English-French dictionary.

Document

Page

No
Total

Entries
Correct
Entries Incorrect Entries

False
Alarm

Mislabeled
Entries

Missed Overlapped Merged Split

EnglishFrench 635 20174 96.11% 0.005% 1.00% 2.62% 0.26% 0.21% 0.80%
FrenchEnglish 75 2423 97.90% 0.04% 1.61% 0.25% 0.21% 0.25% 0.49%
EnglishTurkish 96 3517 99.26% 0.00% 0.17% 0.11% 0.45% 0.23% 0.31%
TurkishEnglish 70 2654 98.98% 0.04% 0.26% 0.00% 0.72% 0.08% 0.38%
CebuanoEnglish 50 2152 99.21% 0.00% 0.14% 0.56% 0.00% 0.00% 4.46%

Table 2: Segmentation results.

2.2.5 Experimental Results of Segmentation

Our system have been developed and implemented in C++ with a Java-based interface.

In this section, we highlight entry segmentation results. The segmentation approach

was applied to five dictionaries with different structural characteristics: French-English

(613 pages), English-French (657 pages), Turkish-English (909 pages), English-Turkish

(1152 pages), and Cebuano-English (303 pages). Figure 5 shows the results for the

English-French dictionary. The performance is shown in Table 2, which was based on

the available ground truth for these dictionaries. Figure 6 shows the performance

improvement that results from bootstrapping. The evaluation is performed on 50 pages

from each dictionary. The initial segmentation was based on only four entry samples.

Iterations following the initial segmentation added different numbers of training entries

to generate bootstrap samples. The chart in Figure 6 shows that the segmentation can

be refined step by step by applying the bootstrap technique.
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Figure 6: Progressive performance improvement from bootstrapping.

2.3 Functional Labeling

2.3.1 Trainable Classifier Design

Functional properties are properties of words or groups of words that are often used by

publishers to implicitly label semantic roles. For example, changes in font-face or font-

style are often used to indicate the intended interpretation of specific strings such as

pronunciation information, part of speech, or an example of usage. Similarly, the script

itself can be considered to be a functional property. Working with documents containing

both Latin and non-Latin text requires us to be able to identify scripts before applying

an appropriate OCR algorithm. These types of features prove to be extremely useful for

both entry recognition and for tagging the constituents of an entry.

Unfortunately, most OCR systems are designed to detect standard variation in these

properties. Recognition accuracy depends heavily on the quality of images. Even within

the same dictionary, the bold face text may vary significantly among different images, so

we use a trainable approach to recognize the font face. Because of the limited number

of functional properties, it is very easy for us to provide samples to design an optimal

classifier. It should be noted that all the script identification approaches mentioned in

the related work are at the block or page level, and the font recognition method in [43]

attempts to identify the ”primary” font on the page. Obviously, this does not model

the case of bilingual dictionaries well, since words in different languages are typically
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interspersed; script identification must therefore be done at the word level. In our work,

we perform that classification based on a Gabor filter analysis of texture.

The use of Gabor filters to extracting texture features from images is motivated by:

(1) the Gabor representation has been shown to be optimal in the sense of minimizing the

joint two-dimensional uncertainty in space and frequency [5]; and (2) Gabor filters can

be considered as orientation and scale tunable edge and line detectors, and the statistics

of these micro-features in a given region are often useful for characterizing the underlying

texture information. The system to classify scripts, font-styles and font-faces is shown in

Figure 7.

Figure 7: Flowchart of classification system.

Figure 8: Examples of image replication: (a,c) before; (b,d) after.

We created a set of training samples for each class by randomly picking entries from a

large set of words belonging to that class. Words in different scripts, different font-styles,

and different font-faces in the same script have different dimensions (width & height),

so we use word image replication to generate a new image with predefined size (64x64

pixels in our case), all features are extracted at that image size. For computation, the
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Scripts NNM SVM
Ravg Rmin Rmax Ravg Rmin Rmax

Arabic/Roman 73.27% 67.42% 82.91% 90.43% 85.14% 94.17%
Chinese/Roman 84.08% 73.36% 89.55% 90.10% 82.68% 94.6%
Korean/Roman 83.49% 78.98% 87.03% 90.91% 86.88% 93.57%
Hindi/Roman 92.08% 87.53% 100% 93.28% 87.95% 96.73%

Table 3: Script identification performance comparison.

Normal Bold Italic
Total No 250 40 44
Identified 184 35 39
Accuracy 73.6% 87.5% 88.6%

Table 4: Font-face identification.

Total No Times Arial Detection
Times 39 39 7 100%
Arial 39 7 32 82.1%

Table 5: Font-style identification.

replication is to a power of two such that a Fast Fourier Transform can be applied to

compute the Gabor filter features. Figure 8 shows word replication examples of two

different scripts (Arabic and English).

After generating a word images, multi-channel Gabor filter technique was applied to

extract the texture features of each class. We used the same pairs of isotropic Gabor

filters as in [43] to extract 16 channels of texture information. We implemented two

classifiers, one using Nearest Neighbor Matching (NNM) [21] and one using a support

vector machine (SVM) [3].

2.3.2 Results of Functional Labeling

We applied the script identification approach to Arabic-English, Chinese-English, Hindi-

English, and Korean-English bilingual dictionaries. Features for each script class were

extracted from samples on a single page, and the two classifiers were trained using the

same samples. Table 3 shows the performance comparison, where the results were based

on 20 (32 for Chinese) pages of identification results. The comparison shows the SVM-

based script identification works much better than the NNM-based technique, with the

SVM achieving an average accuracy above 90%. The font-face classification approach

was applied to the identified English (Roman) document images, and one page of the

identification results for the Korean-English dictionary is shown in Table 4. In order

to test the effectiveness of this classifier on font-styles, we applied it to an artificial test

document image. The classifier was trained by words taken from a different document
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Headword (Lexicon) Translation
Pronunciation Tense
Part of speech (POS) Gender
Plural Form Number
Domain Context
Cross reference Language
Antonym Derived word
Synonym Derived word translation
Inflected form Example
Irregular form Example translation
Alternative spelling Idiom
Explanation Idiom translation

Table 6: Some categories typically found in bilingual dictionaries.

(each with 10 training words). Table 5 gives the classification result. Trainable techniques

are also applied to recognize special symbols and to correct symbols the OCR fails on.

3 Tagging

The functional segmentation module provides the entry, entry type, list of tokens1 in the

entry, properties (font, font face, script, etc.) of each token, and OCR results. Once

we have segmented the dictionary into individual entries, we need to tag each token

(or group of tokens) with the role of element in the entry, which we refer to as the

“linguistic category.” As with entry segmentation, tagging relies on the existence of

a repeated semantic structure. Unfortunately, however, the semantic structure of the

entries typically varies a great deal more than the physical structure of the entries.

Our approach to tagging is to use (1) the functional properties of tokens, such as font,

font face, font style and their relationships to each other, (2) keywords (common terms

or symbols, often defined in the preface to the dictionary), and (3) separators (typically

punctuation) to tag the entries in a systematic way. The key is to be able to discover

the regularities in the occurrences of these clues and make use of them to assign each

word to a linguistic category. A list of categories that are commonly found in bilingual

dictionaries is shown in Figure 6. Typically, only a subset of those categories is used

in a given dictionary, but our system is extensible at runtime to add new categories for

additional constructs.

1We define a token as a set of glyphs in the OCR output that is separated by white space. We refer
to a group of one or more tokens as an element.
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Figure 9: French-English dictionary.

Publishers typically use a combination of methods to indicate the linguistic category.

As illustrated in Figure 9, functional properties (changes in font, font style, font-size,

etc.) can be used to implicitly indicate the role of an element, keywords can be used

to make that role explicit, and various separators can be used to organize them. For

instance, headwords may be in bold, examples of usage in italics, the keywords adj, n or

v may be used to explicitly represent the part-of-speech, pronunciation may be offset with

brackets, commas may be used to separate different examples of usage, and a numbering

system may be used to enumerate variant forms.

Since there can be errors in both functional labeling and OCR, we need methods

that are robust to local variations. We have therefore developed two complementary

approaches. The first approach is rule-based, which is instrumental in understanding

the structure of the dictionary (Section 3.1). The second is a Hidden Markov Model

(HMM)-based approach that aids in overcoming errors introduced during segmentation

(Section 3.2). The overall tagging architecture is shown in Figure 10.

3.1 Rule-Based Approach

For the rule-based approach, an operator uses explicit knowledge of the structure of the

dictionary entries to select an inventory of tag types and to indicate how they typically

appear in the scanned dictionary. The operator can select from the pre-defined list of
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Figure 10: Architecture for entry tagging.

possible categories (linguistic meanings), and if a category is found in the dictionary but

not on that list, the new category can be added. Similarly, physical attributes are selected

from a list (normal, bold, italics, etc). Keywords are identified in a table provided by

the operator, typically based on the legend at the beginning of the dictionary. For each

keyword, we associate a single linguistic meaning. Separators (or symbols) and their

functions are defined using the operators shown in (Table 7). Typically InPlaceOf and

Contains operands are sufficient, but in some dictionaries, spatial proximity and relative

position are important, so additional operators are provided for such cases.

The tagging proceeds as follows. Using the font style and separator as dividers, the

tokens in an entry are grouped into elements that will be tagged as a unit. The resulting

elements are spans that are (1) rendered in a consistent font style, (2) identified as one of

the given keywords, and/or (3) delimited by one of the separators from the given set. In

Figure 9, for instance, the tokens to, be, recommended are grouped together as a single

element since there is no separator between them, the token before them ends with the

symbol ’]’, they end with a semi-colon, and they have the same font. Each group of

tokens will be assigned a single linguistic category. Because uncertainty in the document

image analysis process leads to errors in the segmentation, several rules can be created

for each category. For instance, there are some cases where the separators are recognized

incorrectly, so we might choose to indicate the pronunciation begins with either ”(” or

”[”.
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After the tokens in an entry are grouped, the tagging process attempts to associate a

single tag with each group. In this process, we again make use of font styles, keywords,

and separators. We first check to see whether the group we are considering is in the

list of keywords and if it is, we tag it accordingly. Otherwise, we use the separators

and the font information. Here, we arrange the categories in a precedence order, first

checking for translated tokens in the primary language (a derived form of the headword,

an example, or an idiom), then the translations, and finally the supplemental categories,

such as pronunciation, part-of-speech or gender. This order is tuned to our follow-on task,

extracting term-term translation pairs, but it could be adapted for other applications.

Operand Definition Example
¡cat¿ InPlaceOf ¡sym¿ Used as a shortcut for a category InPlaceOf headword ∼
¡cat¿ StartsWith ¡sym¿ Category begins with this separator pronunciation StartsWith [
¡cat¿ EndsWith ¡sym¿ Category ends with this separator translation EndsWith ;

¡cat¿ PreviousEndsWith ¡sym¿

Previous category ends

with this separator translation PreviousEndsWith ¡comma¿
¡cat¿ Contains ¡sym¿ Category contains this separator derived Contains ¡dot¿

Table 7: Operators used to model separators (¡cat¿=category, ¡sym¿=symbol).

When applying operators, all must be valid for the category to be assigned to the

element. This strict approach makes it practical to rapidly write robust rules without

tuning their firing order (e.g., when font is the only feature that distinguishes between

one pair of categories). If no category satisfies all of the constraints, operators are tried

individually until a match is found. If we still cannot decide the category based solely

on the observed features and the available rules we assign a ”miscellaneous” tag to the

element (this tag can also be assigned by a rule if desired). As the last step of the

rule-based tagging process, we apply a cleanup process in which some punctuation and

other nonalphabetic characters are removed by default. The operator can also specify

additional characters to be cleaned if necessary.

3.2 Statistical Learning Approach

For dictionaries with highly regular structures and fairly accurate OCR, the rule based

system effectively leverages human abilities to generalize from a limited number of exam-
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ples. Moreover, the understandable nature of the rules facilitates failure analysis, thus

allowing rapid iteration to an effective rule set. However, it can be difficult to anticipate

the effects of OCR errors, and subtle variations in style can complicate the process of

generating an effective set of rules. Because of this we have also developed a stochastic

learning method using Hidden Markov Models (HMMs).

HMMs have been successfully used in several applications such as speech recogni-

tion [1, 11] and part of speech tagging [16, 40, 26]. An HMM is specified by a five-tuple

(S, O, Π, A,B) which corresponds to hidden states, observable states, initial state proba-

bilities, hidden state probabilities, and symbol emission (transition) probabilities [23]. In

our tagging process, the observable states are the tokens in the dictionary entry, and the

hidden states are the tags for those tokens. Given the observation sequence, we would

like to find a parameter set λ = (Π, A,B) that maximizes the conditional probability,

Pr(O|λ). In our case, each observable state has a feature vector that consists of six fea-

tures that represent the clues that can be useful for determining the linguistic category.

These features and possible values they can take are as follows:

• Content: Category of the keyword if the token is a keyword, SYM if it is a special

symbol, NUM if it is a number, and null otherwise.

• Font: Font style of the token (normal, bold, italic, etc.).

• Starting symbol: Special punctuation mark if the token begins with one, null

otherwise.

• Ending symbol: Special punctuation mark if the last character of the token is one,

null otherwise.

• Second ending symbol: Special punctuation mark if the second to last character of

the token is one, null otherwise.

• Is-first token: True if this is the first token of an entry, false otherwise.

We used an HMM software package developed in our group [6]. For training the HMM

parameters, a hybrid method is applied that uses the Baum-Welch algorithm [2] for the
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first ten iterations and then a segmental K-means algorithm [12, 31] for the remainder.

This hybrid method runs faster than the Baum-Welch approach, and gives comparable

results. The Viterbi algorithm [37] is used for decoding (i.e. determining the sequence

of hidden states that is most likely to have produced an observation sequence).

Each token in the dictionary must be transformed to an observation vector in the

described format before the HMM is run. For that transformation, the list of keywords

and their corresponding categories is needed. The final mapping of hidden states to

categories is done using a small hand-annotated training sample of 400 randomly selected

tokens that are assigned to their correct tags manually. This ground truth is used to find

the category that each state represents. As a final step, the cleaning process described

in Section 3.1 is applied to HMM output.

3.3 Experiments

The purpose of the experiments performed for entry tagging is to show how well the

original dictionary entry structure is captured by the system, independent of other com-

ponents. Precision, recall and F-measure are calculated based on a labeling of each of the

categories described above. Precision (P) measures how accurately we labeled the various

elements. It is computed as Number of correct tags/Number of tags given by the system.

Recall (R) is a measure of coverage. It is computed as Number of correct tags/Number of

tags in the ground truth data. F-measure (F) is a weighted harmonic mean of precision

and recall, which can be computed as F = (β + 1)PR/β(P + R). We took β = 1, giving

recall and precision equal weight.

We performed entry tagging on the first four dictionaries listed in Section 2.2.5 and

evaluated the system by preparing ground truth manually for five selected pages of the

French-English dictionary and English-Turkish dictionary. We performed two experi-

ments. The first was token-based, with each token considered individually, even if it

is part of a larger element. The second was phrase-based, where we treated a tagging

as correct only if the tokens were both segmented correctly into an element and and

that element then tagged correctly. For instance, if the correct translation for the word

récolter is gather in, but the system produces two separate translations gather and in,
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then these two would be counted as correct in token-based evaluation, but as incorrect

in the phrase-based evaluation.

The results in Table 8 were tabulated for two configurations: one in which all linguistic

categories were counted, and a second in which only headwords (or derived words) and

their translations were counted. The first of these models the requirements of a full MT

system, the second the minimal requirements for CLIR.

French-English Dictionary
All categories Hw/Der. Word Trans.

Learning system Evaluation method P R F-m P R F-m
Rule-based Token-based 72.89 72.89 72.89 67.55 77.62 72.23
Rule-based Phrase-based 74.60 75.88 75.23 65.67 76.93 70.86
Stochastic Token-based 77.69 77.69 77.69 70.67 62.35 66.25
Stochastic Phrase-based 69.62 72.25 70.91 70.57 60.63 65.22

English-Turkish Dictionary
All categories Hw/Der. Word Trans.

Learning system Evaluation method P R F-m P R F-m
Rule-based Token-based 86.85 86.85 86.85 84.75 87.74 86.22
Rule-based Phrase-based 88.84 87.96 88.40 83.82 89.17 86.41
Stochastic Token-based 87.55 87.55 87.55 80.06 85.72 82.79
Stochastic Phrase-based 79.43 75.11 77.21 67.33 62.93 65.06

Table 8: Experimental results.

For the French-English dictionary, the stochastic learning method with token-based

evaluation gave the highest precision, with 78% precision and recall when all categories

are considered. For Headword/Derived word translations, the highest precision was 71%

with stochastic learning and token-based evaluation, and the highest recall was 78% with

rule-based learning and token-based evaluation. For this dictionary, the precision range

was 70%-78% and recall range was 72%-78% across all categories.

English-Turkish dictionary tagging yielded substantially better results. The reason

for this is that the dictionary had a simpler structure. The rule-based method with

phrase-based evaluation performed better. The best precision for Headword/Derived

word translations is 85% with rule-based method and token-based evaluation. For all

categories, precision is in the range 79%-89% and recall is in the range 75%-88%. When

only Headword/Derived word translations are considered, precision range is 67%-85%

and recall range is 63%-89%.

One problem with applying HMMs to different dictionaries is finding the correct
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number of states that gives the maximum performance. We tried different number of

states with the two dictionaries. The number of states that gives the best performance

is not the same for the two dictionaries, and we took the best performance for each one

(55 states for French-English and 35 states for the English-Turkish dictionary). As the

dictionary structure becomes more complex, it seems that an HMM with more states

performs better.

The rule-based method usually performs better under phrase-based evaluation. Only

for some Headword/Derived word translations did token-based evaluation perform better

than the phrase-based. The rule-based method is better suited for dictionaries with

simpler structures as well. Stochastic learning method with phrase-based evaluation

gives the lowest precision-recall values for both dictionaries. However, we are considering

some post-processing to HMM-results to improve phrase-based evaluation.

Table 9 shows detailed results for each category of the French-English dictionary. The

example and example translations are the categories that degrade the performance of the

tagging process the most for this particular dictionary. The reason for this is that the

only information to find the separation point between an example and its translation is

the font, which is less reliably extracted. In Figure 9, for instance, the example usage

en recommandè and its translation by registered post are recognized as normal font and

there is no separators between them, therefore there is no way to tell the separation

point between them. As a result, the five tokens were grouped together, and tagged as a

translation. For tags that are represented with keywords, the mistagging occurs because

of spelling errors in the input. The reason that the number of miscellaneous token is so

high is that this particular dictionary has many image icons, and we are tagging them as

miscellaneous. Ideally, the tagging should be optimized to the resulting application. For

example, CLIR should maximize recall to generate a complete term list, while MT will

typically benefit from example/translation pairs.

4 Generation

Generation is the process of producing different derivatives of the basic structure that can

be used in different tasks. One simple output is the lexicon-translation pair (i.e. bilingual
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TAGS Total Produced Correct Precision Recall F-measure
Headword 160 160 157 98 98 98
Pronunciation 272 267 259 97 95 96
POS 115 79 79 100 69 69
Domain 52 47 47 100 90 95
Gender 193 183 178 97 92 95
Number 28 26 25 96 89 93
Headword Translation 396 481 334 69 84 76
Context 65 53 52 98 80 88
Language 9 9 9 100 100 100
Alternative Spelling 32 25 17 68 53 60
Derived Word 115 93 80 86 70 77
Derived Word Translation 271 292 195 67 72 69
Example 117 50 13 26 11 16
Example Translation 130 117 27 23 21 22
Explanation 108 119 107 90 99 94
Abbr. 6 0 0 0 0 0
Misc. 208 314 142 45 68 54

Table 9: Detailed results for each tag of the French-English dictionary using the rule-
based approach

Figure 11: HTML representation and bilingual term list.

term list) used in our CLIR experiments. In general, however, the representation is a

hierarchical nesting of elements and their scope. Each translation for example may

have a POS, or usage associated with it. Figure 11 shows a portion of the derived

representation for the dictionary in Figure 9. Two representations, an HTML-based

showing all information in the dictionary and the bilingual term list, are shown for the

same dictionary portion. The keyword fig. in the original dictionary page was recognized

as two tokens, f and ig., and they are tagged as a POS and a translation, which is wrong.

We did not remove the duplicate translations for the input to CLIR applications,
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since these will not reduce the performance. If the user wants to remove duplicates, this

can be done during the clean-up process.

5 System Implementation

We have implemented the entire system, and integrated it with an interface and third

party software for OCR (Figure 12). For segmentation, it allows the operator to identify

entries on the image for training, trains the system and facilitates manual correction and

bootstrapping, as well as providing tools for evaluation. For tagging, a customizable

interface allows the operator to tailor the configuration for a given dictionary, selecting

valid categories, entering keywords and defining separators. Training data is tagged with

pull down menus configured in the category list. When the system is run, the results are

shown as color-coded boxes overlaid on the original image. The results of generation of

term lexicons are shown on a separate panel.

Figure 12: System implementation.

6 Cross Language Retrieval Applications

The key goal of a cross-language information retrieval system is to identify promising

documents, even if those documents are not written in the language in which the query
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is expressed. As with typical Web search engines, the usual approach is to accept a

query from the user and then return a ranked list of documents that the user might wish

to examine. There are two basic approaches to the cross-language aspect of this task:

translating the queries into the document language or translating the documents into the

query language [27]. Document translation has advantages in high-volume applications

with a single query language; query translation achieves greater flexibility, but at the

expense of somewhat slower processing of each query. We chose a query translation

architecture for our experiments because that allowed us to try several types of translation

resources without reindexing the collection. Figure 13 shows the major steps in our

retrieval experiment.

Figure 13: Test system architecture.

We searched a set of 44,013 French news stories from 1994 editions of Le Monde, for-

mulating queries from 40 written topic descriptions from the Cross-Language Evaluation

Forum (CLEF), a standard information retrieval test collection created for evaluations

in Europe during 2000 [28]. The topic descriptions express the information need in a

few words (referred to as the ”title”), in a sentence (description), and in a very brief

paragraph (narrative). We formed queries of three lengths: title (”T,” which is designed

to be representative of the very terse queries often posed by Web searchers), title and

description (”TD,” similar to a brief statement of interest that might initially be given to

a reference librarian), and title, description and narrative (”TDN,” a fairly complete de-

scription of what the user has in mind). CLEF topic descriptions are available in English

and French; we used the English topics for cross-language retrieval and the French topics
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for a contrastive monolingual condition. This resulted in three sets of 40 French queries

each and three corresponding sets of 40 English queries. As a measure of retrieval effec-

tiveness, we report mean uninterpolated average precision as the expected value (over the

topics) of the average (over the set of relevant document for each topic) of the fraction

of documents at or above that relevant document that are relevant. This models the

case in which a searcher poses a query that is typical of those in the evaluation set and

then chooses to peruse the resulting ranked list down from the top until they have seen

some desired number of relevant documents [38]. Averaging over an ensemble of queries

helps to prevent undue preference for systems that perform well only on a narrow range

of query types (e.g., those that contain proper names).

We use a two-tailed paired t-test, and report statistical significance for p¡0.05. Pirkola’s

method was used for structured query translation, which has been shown to perform well

when translation probability information is not available [30]. We used a simple rule-

based system to split clitics in the French documents and then stemmed the resulting

terms. We used a statistical stemmer to remove endings that were unexpectedly com-

mon, given the observed character co-occurrence statistics of the language [28]. We then

stripped all accents and built a single index of the resulting terms that was used in all

of our experiments.

We embedded query translation in a similar processing stream. Specifically, we auto-

matically performed list-based English stopword removal, query translation into French,

French clitic splitting, French stemming, and accent removal, in that order. For query

translation, we used the term occurrence statistics for every known French translation of

an English query term to compute the statistics for that query term. If no translations

were known, we instead used the term occurrence statistics for all known translations of

any English term that shared a common stem with the query term (using the rule-based

Porter stemmer for English). In earlier work, we have found that this backoff transla-

tion technique achieves a good balance between accuracy (precision) and comprehensive

coverage (recall) [32].

As lower and upper baselines for cross-language retrieval effectiveness, we used wrong-

language and same-language retrieval, respectively. For wrong-language retrieval, we
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omitted the translation stage, and used English queries to search French documents.

This actually works quite well for some queries, since our normalization process results

in some matches on proper names and other cognates. When averaged over a large set

of topics, the retrieval effectiveness of such an approach is poor. This therefore provides

a reasonable lower baseline; if we can’t beat wrong-language retrieval, our translation

technique is not adding value. For same-language retrieval, we use queries formed from

the CLEF French topic descriptions and again omit the translation stage. Since the

CLEF French and English topic descriptions are related by human translation (in one

direction or the other), this provides a reasonable approximate upper bound on cross-

language retrieval effectiveness. The upper bound is only approximate, however, since

this approach does not model the sometimes-beneficial synonym-expansion effects that

are inherent in Pirkola’s structured query translation method.

We obtained the set of known translations for our main experiments by merging trans-

lation lists from the English-to-French and French-to-English portions of our dictionary

into a single bilingual term list containing 145,247 unique translation pairs. We chose

the French-English for our experiments in part because good translation resources exist

for that language pair in electronic form. We have used two such resources to establish

reference points to which our results from the scanned bilingual dictionary can be com-

pared. The most directly comparable translation resource that we used was a manually

created clean bilingual term list obtained from the Internet. That bilingual term list

contains 30,322 unique translation pairs, which several studies have shown to be enough

to approach a point of diminishing returns in cross-language retrieval applications [7].

This bilingual term list thus provides a somewhat tighter upper bound than same-

language retrieval on the retrieval effectiveness that we could reasonably expect from

our query translation architecture if our zoning, OCR and segmentation accuracy were

not limiting factors. Finally, we have previously demonstrated that bilingual term lists

automatically inferred from sets of translation-equivalent Web pages identified by the

STRAND system can also be used as a basis for cross-language information retrieval[32].

We therefore also repeated our experiments with a bilingual term list that we had made

in that way.
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Figure 14: Mean average precision and associated 95% confidence intervals for 15 CLEF
runs.

Figure 14 shows the mean average precision and 95% error bars for the experiments

using 3 types of queries (title, title+description, title+description+narrative) and 5 dif-

ferent versions of each: English queries (ENGLISH), French queries (FRENCH), and

translated English queries using the lexicon extracted from the bilingual dictionaries

(OCR), from parallel text (STRAND) and from the online dictionary (WEB). Imperfect

zoning, OCR and parsing clearly have an adverse effect on retrieval effectiveness when

compared to use of a clean bilingual term list. The differences between OCR/WEB

and OCR/STRAND are statistically significant for all three query lengths. Of course

STRAND and WEB resources may not always be available. Our results suggest that

integrated techniques that draw on both sources of evidence might be beneficial for lan-

guage pairs with a substantial Web presence.

7 Discussion and Conclusion

While the application we have presented in this paper is fairly unique, the underlying

techniques used to solve the problem have great generality. In document analysis, the

problem of bootstrapping a system to rapidly be able to provide segmentation and OCR

for structured documents is of great interest for high volume applications and in the

field of interactive document image analysis. The parsing and labeling of structured

text is a problem that has applications to interpretation of email, forms and business
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correspondence. Furthermore, the problem opens up a wide variety of questions about

how we deal with problems like cross language retrieval in the presence of noisy resources.

As a summary to this paper, we will outline several challenges that lie ahead, and some

of the outstanding research issues this work motivates.

• OCR Error Modeling: At present, when we fail to find any translations for a query

term, we are using any known translations of morphological variants of the term.

An obvious extension to this idea is to use any known translation of the terms that

are related to the query term though plausible OCR errors. We have developed a

fairly sophisticated error model and our next step will be to integrate them in to

our translation process.

• Multiple dictionaries: It is now widely agreed that incorporating evidence of trans-

lation probability can improve cross-language retrieval effectiveness [42]. Some

printed bilingual dictionaries list translations in preference order, and we have

previously demonstrated techniques for inferring translation probability from the

pattern of presence or absence of translations in multiple dictionaries [4]. Perhaps

even more importantly, we expect results from multiple dictionaries to exhibit a

degree of independence, suggesting that merging results from multiple dictionaries

can help to overcome limited extraction recall in any single dictionary.

• Query expansion: Pre-translation query expansion has been shown to be an effective

way of overcoming limitations in bilingual term list coverage [25]. Both knowledge-

based techniques (e.g., thesaurus-based expansion) and statistical techniques (e.g.,

blind relevance feedback) can be used for this purpose, although considerable tuning

is often required to obtain optimal results. Since our focus is on supporting English

queries, it seems likely that the same tuning effort can be leveraged over multiple

language pairs. Post-translation query expansion single words to either single words

or multi-word expressions. Reversing the term list produces some mappings from

multi-word expressions, which can be beneficial since multi-word expressions typ-

ically exhibit little translation ambiguity. Our present translation techniques are

word-based, however, (as a consequence of our approach to pre-translation stop-
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word removal), so we fail to exploit this potential. Moreover, special processing is

required to accommodate multi-word expressions in the document language with

Pirkola’s method, and our handling of that case is not optimal. Both can and will

be improved.
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