
XSQ: A Streaming XPath EngineFENG PENGSUDARSHAN S. CHAWATHEDepartment of Computer SieneUniversity of Maryland, College ParkWe have implemented and released the XSQ system for evaluating XPath queries on streamingXML data. XSQ supports XPath features suh as multiple prediates, losures, and aggregation,whih pose interesting hallenges for streaming evaluation. Our implementation is based on usinga hierarhial arrangement of pushdown transduers augmented with bu�ers. A notable feature ofXSQ is that it bu�ers data for only as long as it must be bu�ered by any streaming XPath queryengine. We present a detailed experimental study that haraterizes the performane of XSQ andrelated systems, and illustrates the performane impliations of XPath features suh as losures.Categories and Subjet Desriptors: H.2.4 [Database Management℄: Systems|query proess-ingGeneral Terms: Experimentation, PerformaneAdditional Key Words and Phrases: XPath, streaming proessing1. INTRODUCTIONThe XSQ system is an XPath engine for streaming XML data. We begin thissetion by desribing the harateristis and soures of streaming XML data. Weintrodue XPath using a simple example and briey touh on some prior work inthe area. We then outline the distinguishing features of XSQ and the ontributionsof this paper. Next, we present some examples that illustrate some of the hallengesfaed by an XPath query engine that operates in a streaming environment. We endthe setion with a map of the rest of the paper.The Extensible Markup Language (XML) has beome a well-established dataformat and an inreasing amount of information is beoming available in XML form[Bray et al. 1998℄. The term streaming data is used to desribe data items that areavailable for reading only one and that are provided in a �xed order determined bythe data soure. Appliations that use suh data annot seek forward or bakwardin the stream and annot revisit a data item seen earlier unless they bu�er iton their own. Examples of data that our naturally in streaming form inludereal-time news feeds, stok market data, sensor data, surveillane feeds, and datafrom network monitoring equipment. One reason for some data being available inThis material is based upon work supported by the National Siene Foundation under grantsIIS-9984296 (CAREER) and IIS-0081860 (ITR).Permission to make digital/hard opy of all or part of this material without fee for personalor lassroom use provided that the opies are not made or distributed for pro�t or ommerialadvantage, the ACM opyright/server notie, the title of the publiation, and its date appear, andnotie is given that opying is by permission of the ACM, In. To opy otherwise, to republish,to post on servers, or to redistribute to lists requires prior spei� permission and/or a fee. 20YY ACM 0362-5915/20YY/0300-0001 $5.00ACM Transations on Database Systems, Vol. V, No. N, Month 20YY, Pages 1{0??.



2 � F. Peng and S. S. Chawatheonly streaming form is that the data may have a limited lifetime of interest to mostonsumers. For example, artiles on a topial news feed are not likely to retain theirvalue for very long. Another reason for suh data is that the soure of data may lakthe resoures required for providing non-streaming aess to data. For example, anetwork router that provides real-time paket ounts, error reports, and seurityviolations is typially unable to ful�ll the proessing or storage requirements ofproviding non-streaming (so-alled random) aess to suh data. Similar onernsmay lead servers hosting large �les to o�er only streaming network aess to dataeven though the data is available internally in non-streaming form. Finally, sinesequential aess to data is typially orders of magnitude faster than random aess,it is often bene�ial to use methods for streaming data on non-streaming data aswell. In what follows, we fous on streaming data that is in XML form and use theterm streaming XML to refer to XML data in all of the above senarios.There have been a number of reent proposals on query languages for XMLand XML-like data models [Abiteboul et al. 1996; Fernandez et al. 1997; Bune-man et al. 1996; Deutsh et al. 1998; Clark and DeRose 1999; Boag et al. 2002℄.Of these proposals, XPath and XQuery have emerged as the standards reom-mendations that are likely to reeive broad support. In this paper, we fous onXPath. However, sine XPath forms an important ore of XQuery, the methodswe desribe are useful not only for XPath engines, but also for XQuery engines.An XPath query onsists a loation path and an output expression. Wemay think of the loation path as a seletion operator and the output expres-sion as a projetion operator. The former selets a set of XML elements andthe latter determines the parts, or funtions, of those elements that form the re-sult. While the projetion operator in XPath is quite simple, the seletion op-erator is fairly omplex beause it permits prediates on all elements that lie onthe path from the doument root to the seleted element. For example, the lo-ation path of the query //book[year>2000℄/review[�soure="BN"℄/text() is//book[year>2000℄/review[�soure="BN"℄. This loation path mathes the re-view elements that have a soure attribute with value BN and that are hildren ofbook elements that have year subelements with values greater than 2000. Inter-preting the loation path as a path expression, the / onnetive denotes a hild andthe // onnetive denotes a desendant. The output expression, text(), indiatesthat the result onsists of the text ontents of reviews mathing the loation path.(Further details on XPath appear in Setion 2.3.)Automaton-based methods for proessing streaming data are attrative due totheir eÆieny and lean design. An important task in building suh systems forXPath queries is the generation of the automaton from the query. The diÆulties(explained further by the examples below) are due to XPath features suh as lo-sures and prediates in onjuntion with the read-one nature of streaming data.Briey, when the automaton enounters an item in the stream, the data requiredto determine whether this item is in the query result may be unavailable. The un-avoidable bu�ering introdues omplexities of bu�er management suh as aggingbu�ered data based on subsequent satisfation or falsi�ation of prediates, anddupliate avoidane.There has been a onsiderable amount of work on stream proessing and XMLACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 31. <root>2. <pub>3. <book id="1">4. <prie> 12.00 </prie>5. <name> First </name>6. <author>A </author>7. <prie type="disount"> 10.00 </prie>8. </book>9. <book id="2">10. <prie> 14.00 </prie>11. <name> Seond </name>12. <author> A </author>13. <author> B </author>14. <prie type="disount"> 12.00 </prie>15. </book>16. <year> 2002 </year>17.</pub>18. </root>Fig. 1: Input data for Example 1

1. <root>2. <pub>3. <book>4. <name> X </name>5. <author> A </author>6. </book>7. <book>8. <name> Y </name>9. <pub>10. <book>11. <name> Z </name>12. <author> B </author>13. </book>14. <year> 1999 </year>15. </pub>16. </book>17. <year> 2002 </year>18. </pub>19. </root>Fig. 2: Input data for Example 2query proessing, and some reent work on query proessing for streaming XMLas well. Below, we touh on only on reent work that is most losely relatedto our work, deferring a longer disussion to Setion 7. Muh of the previouswork on proessing streaming XML data fouses on �ltering a olletion of XMLdouments using restrited XPath expressions [Altinel and Franklin 2000; Diaoet al. 2002; Chan et al. 2002℄. Sine XPath expressions without prediates areessentially regular expressions, they an be transformed into �nite state automatathat aept exatly the douments that satisfy the expressions. If the automatonaepts the doument, the �ltering system returns the identi�er of the urrentdoument to the user. Suh systems do not need to bu�er individual elementsof the douments. However, as we shall explain shortly, general XPath queriesannot be evaluated in a streaming system that laks bu�ering apabilities. TheXMLTK system [Avila-Campillo et al. 2002℄ is a loser math to our work, beauseit supports XPath expressions that retrieve only parts of a doument. However,XMLTK does not support prediates in XPath expressions. Therefore, wheneverit enounters an element that mathes the path expression in a query, it an writeit diretly to output and no bu�ering is needed. In ontrast, if the query inludesprediates, the membership of an element in the query result annot be deidedimmediately in general. The XSM system [Ludasher et al. 2002℄ handles prediatesin the query but it does not handle the losures and aggregations. (It assumes thatthe query does not ontain the losure axis //). As we desribe below, losurespose signi�ant hallenges to query evaluation.We note that XPath features suh as (multiple) prediates, losures, and aggre-gations are important usability advantages, espeially if the data is semistruturedor has a struture unknown to the query formulator. Closures, in partiular, areindispensable in queries on data whose struture is partly unknown. For example,the query //book[author="Adams"℄//prie returns the pries of books by Adamsin a variety of likely struturing of bibliographi data, regardless of whether bookACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



4 � F. Peng and S. S. Chawatheours at the top level in the doument or several levels deep and, similarly, regard-less of whether the prie element is a hild of the book element or a desendantseparated by intervening bookstore elements. Similarly, prediates permit a moreaurate delineation of the data of interest, leading to smaller, and more usable,results. The hallenges posed by these features are exaerbated by data that has areursive struture, as explained below. (A reent survey of 60 real datasets found35 to be reursive [Choi 2002℄.)The major ontributions of this paper may be summarized as follows:1|To the best of our knowledge, our method for evaluating XPath queries overstreaming data is the �rst one that handles losures, aggregations, and multipleprediates (together). As the examples below illustrate, these features, espeiallyin onjuntion, pose signi�ant implementation hallenges.|Our methods use a very lean design based on a hierarhial arrangement ofpushdown transduers augmented with bu�ers. The system is easy to under-stand, implement, and expand to more omplex queries. Further, this methodprovides a lean separation between high level design and lower-level implemen-tation tehniques. For example, it is easy to use our methods in a query enginethat implements our automaton independently.|We present a detailed experimental study of XSQ and several related systems inSetion 9. In addition to providing a omprehensive evaluation of the methodswe propose, our study also illustrates the osts and bene�ts of di�erent XPathfeatures and implementation trade-o�s as embodied by di�erent systems.|All the methods desribed in this paper are fully implemented in the XSQ sys-tem, whih has been publily released under the GNU GPL liense [Peng andChawathe 2002; GNU 1991℄. The Java-based implementation should work onany platform for whih a Java virtual mahine is available. In addition to servingas a testbed for further work on this topi, our system should be useful to anyonebuilding systems for languages that inlude XPath (e.g., XQuery, XSLT).Example 1. Consider the following query for the XML stream depited in Fig-ure 1: /pub[year>2000℄/book[prie<11℄/author. When we enounter the �rstauthor element in the stream, we know that it satis�es the path /pub/book/author.However, the prediate in the �rst loation step, [year > 2000℄, annot be eval-uated yet beause we have not enountered any year subelements and qualifyingelements may our later. We have enountered the �rst prie subelement of thebook element. This element does not satisfy the prediate [prie < 11℄. However,we annot onlude that the book element of line 3 fails to satisfy the prediateon prie beause there may be additional prie subelements later in the stream.Therefore we must to bu�er the book element. Indeed, when we enounter theseond prie element (line 7) of this book element, we determine that the bookelement satis�es the prediate on prie. At this point, we still do not know whetherthe pub element of line 2 satis�es the prediate on year. Consequently we do notknow whether the author element of line 6 belongs to the result. Therefore, we1A brief outline of our methods and the results of a preliminary experimental study of XSQ appearin [?℄.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 5must ontinue to bu�er the pub and author elements. When we enounter the twoauthor subelements of the seond book (lines 12 and 13), we need to bu�er themas well. Now there are three author elements in the bu�er: two with value A andone with value B. Next, we enounter the seond prie element (line 14) of theseond book and �nd that it does not satisfy the prediate. However, only whenwe enounter the end tag of the seond book element, an we onlude that thisbook element fails to satisfy the prediate [prie < 11℄. Consequently, the twoauthor elements of the seond book should be removed from the bu�er. Note thatone author with value A should remain in the bu�er beause it belongs to the �rstbook. When we enounter the year element on line 16, we determine that the pubelement satis�es the �rst prediate. Realling that the author element remaining inthe bu�er has already satis�ed the other prediate, we determine that this authorelement should be sent to the output.The above example, although quite simple, illustrates some of the intriaiesthat we must handle: First, we may enounter data that is potentially in theresult before we enounter the items required to evaluate the prediates to deideits membership in the result. We need to bu�er suh potential result items. InExample 1, we bu�ered three author elements as well as the pub and book elementsfor this reason. Seond, items in the bu�er have to be marked separately so that,after the evaluation of a prediate, we an proess only the items that are a�eted bythe prediate. In Example 1, for instane, we needed to delete the author elementsbelonging to the seond book while retaining the author element for the �rst bookin the bu�er. Third, in order to bu�er items for the least amount of time possible,we need to enode the impliit existential quanti�ation within prediates: Whena single item satisfying a prediate is found, we must hek whether the elementswithin the sope of the newly satis�ed prediate an be sent to the output. On theother hand, we annot delete items from the bu�er until we enounter the end tagof the appropriate element. In the above example, for instane, only we reah theend of the seond book element may we onlude that it fails to satisfy the prediateon prie. Finally, prediates aess di�erent portions of the data. Some should beevaluated when the begin tag is enountered, while others should be evaluated uponenountering the text ontent. There are other forms of prediates, are disussedin detail later.Let us now onsider a slightly more omplex example, featuring losures in thequery and reursive struture in the input stream. We say an XML stream hasreursive struture if it ontains anestor-desendant pairs of elements that havethe same tag. Figure 2 depits an example of suh data: the pub element in line2 has a grandhild named pub in line 9. As the following example illustrates,suh reursive struture in the input poses additional hallenges to XPath queryproessing.Example 2. Consider the following query for the XML data of Figure 2: //pub[year>2000℄//book[author℄//name. (The prediate [author℄ heks for theexistene of an author hild.) This example introdues some new problems inaddition to those disussed in the previous example. Sine the losure axis // isused in the query, a node and its desendants may math the same loation step.For instane, the pub elements in both line 1 and line 9 math the node test inACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



6 � F. Peng and S. S. Chawathethe �rst loation step. Consider the name element in line 11. There are three waysin whih it mathes the main trunk of the query (ignoring prediates) and eahmathing yields a di�erent result for the prediates in the query. The situationis summarized by the following table, whih indiates the truth value of the twoprediates for eah mathing (ombination of pub and book elements) that leads tothe name element of line 11:pub book [year > 2000℄ [author℄ nameline 2 line 7 true false line 11line 2 line 10 true true line 11line9 line 10 false true line 11As indiated by the table, only the math in the seond row results in bothprediates evaluating to true. When we enounter the end tag of the pub elementof line 15, we know that the pub element of line 9 fails the prediate [year >2000℄. However, we annot remove the name Z from the bu�er beause it is stillpossible that this item satis�es the query due to a subsequent year element. Asimilar situation ours when we enounter the end tag of the book element in line16. Only when all the possible mathes have evaluated the prediates to false anwe remove the item from the bu�er. We need to be areful with the other aseswhere multiple mathes evaluate all prediates to true. For example, if there werean additional author element between lines 8 and 9, the math indiated by the�rst row of the above table would also result in both prediates being satis�ed. Insuh ases, we must avoid dupliates (outputting the same element twie).These examples illustrate the diÆulties enountered in designing an automatonfor evaluating XPath queries systematially. Briey, diÆulties arise due to the fatthat elements in an XML stream may arrive in an order that does not math theorder of the prediates that use them in the query, and due to reursive struturein the data, whih leads to multiple mathings for an input item. When the queryontains the losure axis and multiple prediates, it is even more diÆult to keeptrak of all the information needed for proper bu�er management.The rest of this paper is organized as follows. Some preliminaries, inludingthe DOM and SAX models for XML, and the XPath language, are overed in Se-tion 2. Setion 3 desribes the use of pushdown automata for doument �lteringand ontrasts the task of �ltering with the task of querying streams. Setion 4 in-trodues an extended pushdown transduer that provides a onvenient method forkeeping trak of multiple mathing paths. A bu�ered version of these automata isdesribed in Setion 5, and a hierarhial arrangement of suh automata is desribedin Setion 6. Related work is disussed in Setion 7. We desribe the arhitetureand implementation of the XSQ system in Setion 8. Setion 9 presents our exper-imental study of XSQ and related systems. We onlude in Setion 10.2. PRELIMINARIESIn this Setion, we provide brief desriptions of the DOM and SAX models forparsed XML, and of XPath. We fous on the features that are essential for under-standing our methods presented in subsequent setions and do not provide ompre-hensive desriptions, whih may be found elsewhere [Bray et al. 1998; XSL WorkingACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 3: The DOM tree for the data in Figure 1Group and the XML Linking Working Group 2000; Megginson et al. 2002; Clarkand DeRose 1999℄.2.1 Data Model for XMLXML data is usually modeled as an edge-labeled or node-labeled tree [Abiteboulet al. 2000℄. In the ommonly used Doument Objet Model (DOM) [XSL WorkingGroup and the XML Linking Working Group 2000℄, an XML doument is modeledas a node-labeled tree. Eah element in the doument is mapped to a subtree inthe tree, whose root node is labeled with the tag of the element. Although elementE is mapped to a subtree of the DOM tree, it is onvenient to refer to the rootof this subtree as the node E. The subelements of an element E are mapped tosubelements of the node E that have node type of element. The attributes andtext ontents of element E are also mapped to subelements of node E, but withnode types Attr and Text, respetively. Figure 3 depits the DOM tree of the XMLdoument in Figure 1. In the �gure, the nodes with dotted boxes are Attr nodesand the nodes without boxes are Text nodes.2.2 Data Model for XML StreamsFor streaming data, building a DOM tree in memory is not usually desirable beausethe data may be unbounded. Further, we may not need all of the DOM tree toproess the given query. Therefore, streaming data is better modeled using theSAX (Simple API of XML) model [Megginson et al. 2002℄. Parsers based on theSAX Appliation Programming Interfae proess an XML doument and generatea sequene of SAX events. For eah opening and losing tag of an element, theSAX parser generates, respetively, a begin and end event. The begin event of anelement omes with an attribute list that enodes the names and values of attributesassoiated with the element. (Sine the XML standard does not allow an element tobe assoiated with multiple attributes with the same name, this list is omposed ofpairs that are uniquely identi�ed by their �rst element.) The text ontents enlosedby the opening and losing tag result in the SAX parser generating a text event.Essentially, the sequene of the SAX events orresponds to a pre-order traversal ofACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



8 � F. Peng and S. S. Chawathethe DOM tree of the data in whih the attribute nodes are ombined with theirparents. The SAX events generated by a SAX parser given the data of Figure 1 asinput are disussed in Example 3 below.The SAX API does not expliitly assoiate events with the depth of the orre-sponding elements in the doument tree. However, this information is easily addedto SAX events by maintaining a ounter that is inremented and deremented bythe handlers for the begin and end events, respetively. Our system makes useof suh a ounter. For modularity of the ode, this ounter is stored separately,outside the SAX parser. However, in the desriptions that follow, it is onvenientto regard the depth information as part of the SAX event. In more detail, wemodel the input as a sequene of SAX events, where eah event is a quadruple(tag; attrs; type;depth) where:|tag is a string that orresponds the name of the element that generates the SAXevent.|attrs is the attribute list of this element. That is, it is a list of elements of theform (a; v) indiating that the element has attribute a with value v. Reall thatsine elements do not have multiple attributes with the same name, there is atmost one pair of the form (a; v) in the attribute list of any element, for all a. Weuse the notation e:a to refer to the value of the a attribute of element e; if e doesnot have an attribute a, e:a is null.|type is B for a begin event, E for an end event, and T for a text event. Eventsof type E have an empty attribute list, while events of type T have an attributelist ontaining the single pair (text ; t), indiating that t is the text ontent of theelement.|depth is the depth of the element in the doument tree. The attr and text nodeshave the same depth as their parent node.Example 3. Using the notation desribed above, we list below the �rst ten eventsgenerated by a SAX parser given the input of Figure 1.(1 ) (root ; �; B; 0): the begin event of root element.(2 ) (pub; �; B; 1): the begin event of pub element.(3 ) (name; f(is ; "1")g; B; 2): the begin event of book element. The name-value listf(id,"1")g is assoiated with the event.(4 ) (prie ; �; B; 3): the begin event of prie element.(5 ) (prie ; f(text; "12:00")g; T; 3): text event of prie element. The text "12.00" isassoiated with the event.(6 ) (prie ; �; E; 3): the end event of prie element.(7 ) (name; �; B; 3): the begin event of name element.(8 ) (name; f(text ; "First")g; T; 3): the text event of name element. The text "First"is assoiated with the event.(9 ) (name; �; E; 3): the end event of name element.(10 ) (author ; �; B; 3): the begin event of author element.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 9Q ::= N+[=O℄N ::= [=j==℄tag [F℄F ::= [FO[OP onstant℄℄FO ::= �attribute j tag[�attribute℄j text()O ::= �attribute j text()jount()jsum()OP ::= > j � j = j < j � j 6= jontainsFig. 4: EBNF for ore XPath2.3 XPathA simpli�ed grammar for XPath is depited in Figure 4. An XPath query isan expression of the form of N1N2 : : : Nn=O, whih onsists of a loation path,N1N2 : : :Nn, and an output expression O. Eah loation step Ni in the loationpath is in the form /a::n[p℄ where a is an axis, n is a node test, and p is anoptional prediate that is spei�ed syntatially using square brakets. A loationstep mathes a node in the doument tree. The axis spei�es the relation betweenthe previous node and the urrent node. In the simpli�ed grammar, / is shorthandfor the /hild:: axis, whih selets the hildren of the urrent node. Similarly, //is shorthand for the /desendant-or-self::node()/ axis, whih selets the ur-rent node and its desendants. We use the simpli�ed grammar in our desriptionsin this paper. If no axis is spei�ed, the default axis is the hild axis. However,if the axis before the �rst loation step is omitted, the default axis is //, not thehild axis. For example, expression title/text() returns the text ontent of alltitle desendants of the doument root.An element mathes a loation path if the path from the doument root tothat element mathes the sequene of labels in the loation path, and satis�esall prediates. For eah mathing element, the result of evaluating the outputexpression on the element is added to the query result. The output expression mayspeify an attribute of the element, or its text value. It may also use an aggregationfuntion suh as sum() and ount(). If no output expression is spei�ed in the query,the query returns all the elements in the result set.The following queries, evaluated on the data of Figure 2 or Figure 1, illustratesome of the key features of XPath.|//author/ount(): This query returns the number of author elements in thedoument. The �rst loation step is //author, whih onsists of the losure axis//, and the node-test author; it does not inlude a prediate. This loation stepmathes all desendants of the doument root that have tag author. The outputexpression, ount() is applied to all qualifying elements to produe the queryresult. The result is 2 for the data of Figure 2. We note that this query may alsobe expressed as author/ount() beause a missing axis in the �rst loation stepdefaults to losure.|//pub[book℄//year: This query returns the year elements that have pub an-estors that have at least one book subelement eah. Here, the prediate ofthe �rst loation step requires the existene of a book subelement. We notethat both loation steps in this query use the losure axis. Further, there isno expliit output funtion, implying that the elements that math the loa-ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



10 � F. Peng and S. S. Chawathetion path onstitute the query result. The result for the data of Figure 2 is<year>1999</year><year>2002</year>. Although the <year>1999</year>element in line 14 has two pub anestors, both of whih satisfy the prediate[book℄, the year element appears in the result only one.|/pub[book℄/year/text(): This query returns the text ontents of the yearelements that have a pub parent that ours at the top level. We note thatthis query does not use the losure axis; thus the depth of elements mathingthe loation path is �xed at 2. Further, the use of the text() output funtionindiates that only the text ontents of mathing elements are inluded in theresult, without the enlosing tags. The result for the data of Figure 2 is 2002.|//pub/book[�id>1℄/prie[�type="disount"℄/text(): This query returns thetext ontents of the prie elements that have a type attribute with value disount.The prie element must have a book parent, whih in turn has a pub parent. Theid attribute of the book element must be greater than 1. The result for the dataof Figure 1 is 12.00. Though the id attribute and the disount attribute aredisplayed both as strings in the doument, the id attribute is ompared using itsnumerial value sine it is ompared to a numerial value. If the value of an at-tribute annot be onverted to a number suessfully, the operation returns false.(Suh impliit type oerion semantis provide intuitive results on semistrutureddata and have been used in other languages, suh as Lorel [Abiteboul et al. 1996℄.)We note that all the above queries are supported by XSQ, as are other, more om-plex queries, involving several losures and prediates. The e�et of suh featureson the running time and memory usage of XSQ is disussed in Setion 9.5.3. PUSHDOWN AUTOMATON FOR FILTERING XML STREAMSIn this setion, we will �rst briey desribe pushdown automata and pushdowntransduers. Next, we desribe the simple relationship between these automataand the XML streams they aept. Systems for �ltering XML douments makeuse of this relationship [Diao et al. 2002; Altinel and Franklin 2000℄. We disusswhy this simple relationship annot be diretly used for the purpose of queryingXML data. We use the term �ltering to refer to the task of �nding the douments(from a given set) that satisfy a given prediate and the term querying to mean thetask of extrating relevant portions of data from one or more douments, or fromstreaming XML.A pushdown automaton (PDA) [Hopraft and Ullman 1979℄ is a �nite-stateautomaton that operates on both an input tape and a stak. It has a �nite set ofstates, inluding one start state and one or more aepting states, a set of inputsymbols, and a set of stak symbols. At eah step, a PDA onsumes a symbolfrom the input. A PDA's transition funtion determines, as a funtion of theinput symbol, the urrent state, and the stak, the next state and the operationperformed on the stak. A PDA is said to aept an input string if, when the inputis onsumed, it is in one of its aepting states.A pushdown transduer (PDT) is a PDA with ations de�ned along thetransition ars on the automaton. The transition funtion of a PDT spei�es anoptional output operation as a funtion of the urrent state, input symbol, andstak (in addition to speifying the next state and the stak operation). When aACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 11$1 $2 $3
$4 $5
$6 $7
$8

$9
<root> <=root>< pub >Q1 < =pub >< year >Q2<=year>< book >Q3 < =book >
< name >Q6 < =name >< prie >Q4<=prie> < author >Q5<=author>

Fig. 5: A simple PDA for the XMLstream in Figure 1

$1 $2 $3$4$6$8

<root> <=root>< pub > < =pub >< book > < =book >< name > < =name >< name:text() >output(name:text())Fig. 6: A simple PDTstate transition ours, suh an operation results in some items being appended tothe output of the PDT. A PDT is de�ned to aept an input string in a manneranalogous to a PDA. However, a more ommon use of a PDT is to transform databy using a state transition funtion with output operations.It is easy to devise a PDA that aepts XML douments that have a spei�edstruture. One may begin with an automaton that intuitively traes the desireddoument struture. For example, Figure 5 depits an automaton that outlinesdouments with struture similar to that of the doument of Figure 1. The startstate is $1 and the only aepting state is $3. This automaton aepts a doumentthat has, at the top level, a pub element that has a year element as hild andthat also has a book subelement that, in turn, has subelements with labels prie,name, and author. It also aepts a muh simpler doument that only has a pubelement without any subelements. However, it will not aept a doument with abook element at the top level. In more detail, for eah of the SAX events generatedfor the XML stream in Figure 1, the PDA in Figure 5 makes a state transitionaording to the state transition diagram. For eah begin event, it also puts the tagof the element into the stak. For eah end event, it ompares the tag of the urrentelement and the tag on the top of the stak. If these two tags math, it pops thetag o� the stak. Otherwise the XML stream is not well-formed and an error isagged. For aeptane, when the PDA has proessed all the events generated fromthe stream, it should be in the �nal state $3. It implies that the stak should beempty sine the stak operations have a bijetive mapping to the state transitions(e.g., pushing pub onto the stak orresponds to the transition on the <pub> event).In the following disussion, we assume the XML stream is always well-formed.The skeleton PDA desribed above an be adapted to �ltering XML douments asfollows: Suppose we wish to �nd all the douments that ontain at least one elementmathing the pattern //pub//book//name. We may use the simple automatonACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



12 � F. Peng and S. S. Chawathesuggested by Figure 5. Here and in what follows we shall assume that if there isno ar (transition) mathing an input symbol then the automaton remains in theurrent state. Whenever this simple automaton transitions from state $6 to state$8, we know that the urrent XML doument ontains an element that satis�esthe �lter expression //pub//book//name and we an return the doument to theuser. The PDA in Figure 5 an be further used for simultaneously �ltering an XMLstream using multiple queries. When a transition marked with Qi is triggered byan event in the inoming XML �le, the PDA reports to the user that the doumentsatis�es query Qi. For example, Q2 is //pub//year, Q6 is //pub//book//name,and the other queries an be inferred similarly. Of ourse, in many real appliations,the queries do not have suh onvenient similarities. Combining suh queries thenrequires more sophistiated tehniques [Altinel and Franklin 2000; Diao et al. 2002;Chan et al. 2002℄.The PDA an also be modi�ed into a PDT that answers simple queries. Forexample, if we remove the branhes of the PDA in Figure 5 and put an outputoperation on a self-transition from state $8, we get the PDT depited in Figure 6.This PDT evaluates the XPath query //pub//book//name/text().However, it is not straightforward to extend this simple idea for building PDAsand PDTs to more general XPath queries. The main reason is that the PDA annotbu�er previously proessed data. (The stak of the PDA is used exlusively to en-sure proper nesting of begin and end tags.) Suh bu�ering is required for answeringXPath queries that have prediates beause the data required for evaluating theseprediates for a given XML element (that satis�es the rest of the XPath query) mayappear at various points in a stream. In partiular, the data required to evaluatea prediate for an element may appear long after (muh farther downstream from)the element itself. A naive solution is to reord the urrent results for every pred-iate, and mark every item in the bu�er with ags that indiate whih prediateshave been satis�ed and whih have not yet been satis�ed. Every time we evaluatea prediate, suh a method would need to hek if some items are a�eted by itsresult, resulting in poor performane. Further, as queries get more omplex, suh amethod would soon beome too unwieldy as it uses ad-ho methods to keep trakof all the neessary information. In Example 1, if the �rst year element has satis-�ed the prediate [year > 2000℄, the other year element of the same pub elementshould not be tested. If there are losures in the query and the data is reursive,suh ags need to be set on a per-mathing basis, not just for eah item. Theseand other diÆulties are explored in more detail when we desribe our methods inthe following setions.4. EXTENDED PUSHDOWN TRANSDUCERSThe traditional PDT and PDA are not suitable for streaming XML proessingsine the states in the PDT and PDA do not enode enough information about thepatterns they math. For example, when the PDT of Figure 6 is in state $6, weknow only that the urrent element satis�es the pattern //pub//book. We do notknow the depths of the pub and book elements that math this pattern. Further,when there are multiple mathes between the pattern and the data, these mathingsannot be distinguished. However, reall from Example 2 that if the path from theACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 13$1 $2 $3<pub><=pub> <book><=book>� �Fig. 7: A PDT with Kleene stardoument root to an item mathes a path in a query in multiple ways, we mustonsider eah mathing; the item belongs in the query results if any one of thesemathings satis�es the prediates in the query.Another problem with PDTs is that the semantis of losures (Kleene losure, ?)in these automata do not map easily to the semantis of losures in XPath (desen-dant axis, //). For example, the query //pub//bookmay suggest the PDT depitedin 7, with the transition from $2 to $3 generating output for the result. However,in addition to mathing book elements that are desendants of pub elements, suha PDT also produes output for book elements that our anywhere after a pubelement in doument order. For example, it erroneously produes output for thebook element in the XML input <pub>p1</pub><book>b1</book>.To address the above problems, we de�ne an extended PDT (XPDT) byaugmenting a PDT with a stak (separate from the main stak) alled the depthstak and modifying the transition funtion to take this stak into aount. Wealso permit transitions to be onditional on the evaluation of a prediate adorningthe transition. We show that the XPDT is a useful extension of the PDT thatpermits onvenient proessing of depth information in XML streams.An XPDT is spei�ed by means of a 7-tuple (�;�; Q; P; Æ; F; s0), indiating theinput alphabet �, the stak alphabet �, the set of states Q, the set of prediatesP , the transition funtion Æ, the set of operations F , and the start state s0 2 Q.We desribe these omponents in more detail below.|The input alphabet � may be in�nite and is omposed of input symbols, whihare SAX events of the form (tag; attrs; type; depth). (Reall the SAX model fromSetion 2.2.)|The stak alphabet � onsists of stak symbols of the form of (tag; depth). Onenountering an input symbol of type B (begin element; see Setion 2.2), the tagand depth of the element is pushed on to the stak. This stak item is removedfrom stak when the orresponding end element event (type E) is enountered.The stak is subjet to the standard operations: push(x), whih pushes x ontothe stak; pop(), whih removes and returns the element at the top of the stak;and peek(), whih returns the top element without displaing it.|States in Q are of the form (i; d), where i, alled the base ID, is a unique iden-ti�er and d, alled the depth stak, is a stak of integers. We may think of i asthe traditional state ID for an automaton. However, it forms only one dimensionof the two dimensional state identi�ers in XPDTs. The seond dimension, thedepth stak, is used to distinguish between di�erent paths that lead to stateswith the same base ID, orresponding to di�erent mathings between the queryand an input item. This two-dimensional naming sheme for states is onvenientfor desribing the operation of the XPDT. (See Example 4 below.)|Eah prediate in the set P is of the form of attr op lit and ompares the valueACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



14 � F. Peng and S. S. Chawatheof the named attribute with the provided literal using the operator op (hosenfrom the list in Figure 4, with the usual semantis). The prediate assoiatedwith a transition is evaluated on input symbols that trigger that transition; thetransition is taken if and only if the prediate evaluates to true.|The set F ontains the operations that are assoiated with the transitions. If anoperation f is assoiated with a transition, the operation f will be exeuted whenthe transition happens. Choies for the operation inlude the null operation thatdoes nothing, printing the urrent input symbol, and displaying a prede�nedmessage based on the ontent in the stak. Operations form the interfae formore omplex transduers to extend the funtion of an XPDT. For example, theBPDT desribed in Setion 5.1, de�nes a set of bu�er operations that operate onthe augmented bu�er.|The transition funtion Æ is a mapping from Q����� to P(P �Q����F ),where P(X) denotes the power set of X and �� denotes the stak as a stringover the stak alphabet. We may think of Æ as de�ning, for eah state in Q, aset of outgoing transitions based on the state of the stak and the input symbol.Eah transition is desribed by a prediate, a destination state, a new stak state,and an operation from F . The semantis of the transition funtion are explainedfurther below.|The start state q0 is simply the initial state of the automaton. The automatonommenes exeution by evaluating the transition funtion for this state, withan empty stak, and with the �rst symbol in the input.In the following disussion, we use the term urrent element to refer to the in-put element that generated the SAX event urrently being proessed by the XPDT.The depth stak is used to reord the run-time information of whih elements inthe input lead to the urrent state. The begin events of all anestors of the urrentelement are proessed before the urrent element; however, not all of them result ina state hange during this proess. The XPDT only needs to reord the anestorsthat lead to state hanges. In the appliation of evaluating XPath queries, onlythese anestors take part in the mathings between the XPath query and the result.For example, suppose we wish to evaluate the query //book//pub//name on theinput listed in Figure 2. Although the name element in line 11 has �ve anestors,in lines 1, 2, 7, 9, and 10, we need to reord only the two anestors in lines 7 andline 9. Although the other three elements may math a single step in the query(and may be involved in the mathing for other name elements), we do not needthe results of prediate evaluations at these elements when we proess the nameelement in line 11.The depth stak ontains the integer i if only if the urrent element's anestorat depth i produed a state hange in the sequene of transitions leading from thestart state to the urrent state. The depth stak essentially reords the states ofthe main stak in the states leading to the urrent state. We de�ne the depth ofa state (i; d) to be the integer at the top of the stak d. That is, the depth of (i; d)is d:peek (). In addition to the standard stak operations (push, pop, and peek), wede�ne the operation remove(k) on depth staks to result in the removal of the topk elements of the stak. We say two depth staks are equal if they have the samenumber of elements and the orresponding elements are equal.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 15We now desribe the semantis of the transition funtion Æ : Q � � � �� !P(P �Q� �� � F ) in more detail. The XPDT maintains a set of urrently ativestates 	, whih initially is f(q0; ())g, where we use () to denote an empty depthstak. When the XPDT reads the input symbol e, it omputes, for every state(n; d) 2 	, the set of transitions Æ((n; d); e;K), where K denotes the stak. Foreah transition (p; (n0; d0);K 0; f) in this set, the XPDT evaluates the prediate p.If p evaluates to true, the XPDT replaes (n; d) with (n0; d0) in 	 and updates thestak from K to K 0. Further, the operation f assoiated with the transition isperformed. If p evaluates to false for all transitions, (n; d) remains in 	 and nofurther ation is taken. A speial ase is when Æ((n; d); e;K) is empty, i.e., whenthere are no transitions from (n; d) on e. We ontrast this onvention for unde�nedtransitions with that used in many traditional automata, whih report an errorif suh a situation ours. This onvention allows us to simplify the de�nition ofautomata for XPath queries. For example, given a query /A/B, the automaton needonly onsider the B subelements of the A elements. All the other subelements of Aan be ignored. In the state orresponding to A in the automaton, we may ahievethis behavior by de�ning only one transition, on B.The above de�nition of an XPDT permits arbitrary transitions and arbitrarymodi�ations to the depth stak at eah transition. However, we fous our atten-tion on the XPDTs used by XSQ to proess XPath queries. In suh XPDTs, thetransitions may be lassi�ed as desribed below and the depth stak is modi�ed inonly a few di�erent ways. In the following desription of transitions, we onsideran input symbol e, soure state q = (n; d) and target state q0 = (n0; d0).Self-losure transition:. Suh a transition is taken for an input symbol e of typeB (begin element) that has depth greater than the depth of the urrent state. Thesoure state of the transition remains in the set of urrent states, and no new stateis added. That is, for a self-losure transition, if e:type = B and e:depth > d:peek ()then q0 = q. In state transition diagrams, self-losure transitions are identi�edusing the symbol // next to the arrows denoting the transitions.Closure transition:. Suh a transition is also taken for an input symbol e of typeB (begin element) with depth greater than the depth of the urrent state. Thesoure state of the transition remains in the set of urrent states. However, unlikethe ase of the self-losure transition, new states are added to the set of urrentstates. The depth staks of the new states are obtained by pushing the depth ofthe event onto a opy of the depth stak of the urrent state. That is, for a losuretransition, if e:type = B and e:depth > d:peek() then d0 = d:push(e:depth). Instate transition diagrams, losure transitions are identi�ed using the symbol = onthe arrows denoting the transitions.Regular transition:. Suh a transition is taken for an input symbol e ife:depth = � d:peek () + 1; when e:type = Bd:peek (); when e:type = T or e:type = EThe urrent state q is removed from the set of ative states. The depth stak ofACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



16 � F. Peng and S. S. Chawathe# event ative statesf($1, �)g1 (pub; �;B; 1) f($1, �), ($2,(1))g2 (pub; �;B; 2) f($1, �), ($2,(1)), ($2,(2))g3 (book; �;B; 3) f($1, �), ($2,(1)), ($2,(2)), ($3,(1,3)), ($3,(2,3))g4 (name; �;B; 4) f($1, �), ($2,(1)), ($2,(2)), ($4,(1,3,4)), ($4,(2,3,4))g f0 exeuted5 (name; f(text(); A)g; T; 4), f($1, �), ($2,(1)), ($2,(2)), ($4,(1,3,4)), ($4,(2,3,4))g no transition6 (name; �;E; 4) f($1, �), ($2,(1)), ($2,(2)), ($3,(1,3)), ($3,(2,3))g7 (book; �; E; 3) f($1, �), ($2,(1)), ($2,(2))g8 (pub; �;B; 2) f($1, �), ($2,(1))g9 (pub; �;B; 1) f($1, �)gFig. 8: The XPDT of Example 4 in ationeah state q0 added to the set of ative states is obtained as follows:d0 = 8<: d:push(e:depth) when e:type = Bd when e:type = Td:pop(); when e:type = EIn state transition diagrams, regular transitions are represented by arrows with nospeial markings.Cath-all transition:. Suh a transition is taken for an input symbol e of any typeif the depth of e is greater than the depth of the urrent state q or if e is of typeT and has depth equal to the depth of q. The state q remains in the set of urrentstates, i.e., q0 = q. In state transition diagrams, ath-all transitions are identi�edusing the symbol �� next to the arrows representing the transitions.Given the above rules relating the depth staks of the soure and destination statesof a transition in an XPDT, we do not need to speify the depth staks expliitlyin the transition funtion. In partiular, we an determine the operations on thedepth staks by noting the symbols adorning the arrows (==, =, ��, or none) in astate transition diagram.Example 4. Consider an XPDT (�;�; Q; P; Æ; F; s0) where Q = f$1; $2; $3; $4g,P = �, and F = ff0g, where f0 is an operation that writes the string mathed to theoutput. The start state s0 is $1, and the transition funtion is summarized by thestate transition diagram depited in Figure 9. The diagram uses <pub> and </pub>to denote, respetively, the begin and end events of pub elements. The XPDT isdesigned to produe one mathed string in the output for eah element mathingthe query //pub//book/name .Figure 8 summarizes the ations of the XPDT on the following input:<pub><pub><book><name>A</name></book></pub></pub>In step 3, a transition on book is taken from both ($2,(1)) and ($2,(2)) beausethe transition from $2 to $3 is a losure transition, as indiated by the = on thearrow. These two states also remain ative beause of the self-losure transition instate $2, as indiated by the // on the arrow from $2 to itself. The transition takenin step 4, $3 ! $4, results in the exeution of the print operation. We note thatwe may also put this operation on the transition $4 ! $3 instead of on $3 ! $4beause we assume that the input is well-formed. In step 5 there is no transitionde�ned on the input event and the set of ative states is unhanged. More preisely,ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 17$1
$2
$3
$4

==<pub> <=pub>==<book> <=book>
< name >print("mathed") <=name>Fig. 9: A simple XPDT

$1 $2 $3$4
$5 $6 $7$8 $9

<root> <=root><pub> <=pub><book> <=book>flear()g<author>fflush()g <=author><=book><prie>fenqueue(��)g <=prie>fenqueue(��)g��fenqueue(��)g
<prie>foutput(��)g <=prie>foutput(��)g��foutput(��)gFig. 10: A simple BPDT for query /pub/book[author℄/prieÆ(q; (name ; f(text(); A)g;��) = ; for all states q ative in step 5. Finally, a simplehange to this XPDT yields an XPDT that produes the text ontents of mathingname elements as output (instead of the string mathed). We remove the operationfrom the transition $3 ! $4 and add a transition $4 ! $4 on the text event, withan operation that outputs the value of the text() attribute of the event.The above example suggests how an XPDT is used to answer simple XPathqueries. It also illustrates that we do not need to speify the depth staks expliitlyin the transition funtion. They are determined at runtime based on the type ofthe transition taken, using the rules desribed earlier. However, the reader maynotie that there is a problem with the XPDT used in this example. In step 4, theoperation f0 is exeuted twie: one for of the transition $3! $4 out of ($3; (1; 3))and one for the same transition out ($3; (2; 3)). Thus, the string mathed is printedtwie although there is only one mathing name element in the data. This problemis aused by the two ways in whih the name element mathes the query. The �rstmathing uses the outermost pub element of the input while the seond uses theinner pub element. In order to �x this problem, as well as to enable evaluation ofprediates that require bu�ering, the next setion introdues a bu�ered version ofthis automaton.5. BUFFERED PUSHDOWN TRANSDUCERSReall our disussion in Example 1, whih indiated that a streaming XPath pro-essor must bu�er data items whose result membership annot be deided untiladditional data arrives in the stream. Sine the XPDTs introdued in the previoussetion do not have a bu�er, they annot answer XPath queries with prediates,whih require bu�ering. In this setion, we augment the XPDT with a bu�er andACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



18 � F. Peng and S. S. Chawathea set of bu�er operations. The resulting automaton, whih we all a bu�ered push-down transduer (BPDT), is used to enode a single loation step of an XPathquery. A olletion of suh automata is then used to enode the entire query. Weintrodue the bu�er and the operations used to manipulate it in Setion 5.1. InSetion 5.2, we desribe our method for mapping XPath loation steps to BPDTs.We disuss the ombining of BPDTs in Setion 5.3.5.1 BPDTs and Bu�er OperationsABu�ered Pushdown Transduer BPDT is an 8-tuple (�;�; Q; P; Æ; FB ;
; s0),where �;�; Q; P; Æ, and s0 are de�ned as in the de�nition of the XPDT (Setion 4). The bu�er alphabet 
 spei�es the items in the bu�er, whih is organized as aqueue. The set FB is omposed of the bu�er operations desribed below.The bu�er operation enqueue(a) puts the value of feature a of the urrentinput event at the end of the queue. There are three kinds of features that maybe enqueued using this operation. First, a may be the name of an XML attribute,in whih ase the value of the named attribute of the urrent event is enqueued.Seond, a may be the literal text(), in whih ase the text ontent of the urrentevent is enqueued. Finally, a may be the ath-all symbol ��, in whih ase theserialized (string) representation of the input event is enqueued, inluding all itsattributes. For example, for the begin event (book ; f(id ; "1")g;B ; 1 ), the operationenqueue(��) enqueues the string <book id="1">. Other operations on the bu�erinlude lear(), whih lears the ontents in the queue, and ush(), whih ushesthe ontents of the queue to the output. The operation output(a) emits the valueof attribute a diretly as the output. Although it does not operate on the bu�er, weinlude it in FB for ease of presentation. In state transition diagrams, we indiatethe bu�er operation assoiated with a transition by using the operation as a labelon the arrow representing the transition. The following example illustrates how aBPDT may use the bu�er to answer an XPath query that requires bu�ering.Example 5. The BPDT depited in Figure 11 performs a streaming evaluationof the query: /pub/book[author℄/prie . It uses the ath-all symbol �� to indi-ate that all subelements of the prie element should be in the result. Let us onsiderthe �rst few ations of this BPDT on the XML stream of Figure 1. After proessingthe elements in lines 1 through 3, the BPDT is in state $5. It then enqueues theitem in line 4 into the bu�er. We note that it will return from state $8 to state $5when it enounters the end event of the prie element sine the ath-all transitionaepts only events with depth larger than the depth of the urrent state (Setion 4)while the end event of the prie element has the same depth as the urrent state.When the BPDT enounters the begin event of the author element in line 6, itushes the items to the output and goes to state $6 (and state $7 at the end eventof the author). The BPDT enounters the next prie element in line 7 and thistime it emits the element diretly to output.5.2 Templates for Single Loation StepsThe following example desribes the intuition behind our mapping from XPathloation steps to BPDTs.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 19$1
$2 $3<n> [a=v℄ <=n> < n >[a! = v℄<=t>

START State
TRUE StateFig. 11: Template BPDT for: /n[�a = v℄

$1
$2 $3$4$5 <n> <=n> flear()g <=><  >[a! = v℄<  >[a = v℄fflush()g</> <=n>

START State
NA StateTRUE StateFig. 12: Template BPDT for: /n[�a = v℄$1

$2$3$4 <n> <=n> flear()g<  >fflush()g<=> <=n>
START State
NA StateTRUE StateFig. 13: Template BPDT for: /n[=v℄

$1
$2 $3$4 <n> <=n> flear()g <=n>< n:text() >[text()! = v℄flear()g< n:text() >[text() = v℄fflush()g<=n>

START State
NA StateTRUE StateFig. 14: Template BPDT for: /n[text() = v℄Example 6. Consider the XPath query /book[author℄/text(), whih onsistsof a single loation step /book/[author℄. Given the semantis of this query, aBPDT for this query must operate as follows on streaming data: If it enounters a<book> event followed by an <author> event, it must reord the fat that this bookelement satis�es the [author℄ prediate, so that it an output the text ontents ofthe element immediately when they are enountered later. On the other hand, if thetext ontents of a book element are enountered before a <author> event, then theontents must be bu�ered until either a <author> event is enountered, in whihase the bu�er is ushed to the output, or a </book> event is enountered, indiatingthat the book element has no author subelement, in whih ase the bu�er is leared.These observations suggest mapping this loation step to a BPDT similar to the onedepited in Figure 14, substituting <book> for <n> and <author> for <>. In orderto extend this BPDT for the loation step /book/[author℄ to one that answersthe query /book[author℄/text(), we add transitions for the text() event of bookelements to states $2 and $4. The bu�er operation on the transition out of $2enqueues the text ontent while the bu�er operation on the transition out of $4sends the ontent diretly to the output.As suggested by Example 6, there are three speial states in the BPDT orre-sponding to a loation step: The start state is the entry point to the BPDT. Thetrue state indiates the prediate of this loation step has evaluated to true, whilethe na state indiates that the prediate has not yet been satis�ed. As disussedlater (Setion 6), these states are used to onnet the BPDTs for individual lo-ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



20 � F. Peng and S. S. Chawathe $1
$2$3

$4
$5$6 <n> <=n> flear()g<  >< = >< :text() >[text()! = v℄ <=>< :text() >[text() = v℄fflush()g<=><=n>

START State
NA StateTRUE State Fig. 15: Template BPDT for: /n[=v℄ation steps to form an automaton that answers a multi-step XPath query. Thereader may note that the satisfation of a prediate has limited sope; for instane,in Example 6, the presene of an author element satis�es the [author℄ prediateonly for the book element that is its parent. The prediate must be evaluated sep-arately for other book elements. We desribe our methods for suh bookkeeping inSetions 5.3 and 6.For the purpose of mapping XPath loation steps that ontain prediates toBPDTs, we lassify the loation steps into the �ve ategories desribed below.Reall, from Setion 4, that our transition diagrams do not expliitly mention themanipulations of the depth staks, whih are governed by the rules desribed earlier.|Loation steps that test whether the urrent element has a spei�ed attribute, orwhether the attribute satis�es some ondition. These steps have the general form/n[�a℄ and /n[�a op v℄, where n is an element name, a is an attribute name,op is one of the omparison operators (Figure 4), and v is a literal. For example,/book[�id℄ denotes a book element that has an id attribute, while /book[�id<= 10℄ requires further that the id attribute have a value no greater than 10.Suh steps are mapped to a BPDT using the template suggested by Figure 12.The �gure illustrates the ase for /n[�a = v℄; for the /n[�a℄ ase, the test ofthe attribute value is replaed by a test for the existene of the attribute.When evaluating the omparison for the attribute value with a literal, the seman-tis of XPath require that if the literal v is a number, the value of the ontents(here is the attribute) should be onverted to numerial value and the numerialvalues are ompared. If the omparison is failed, the prediate returns false.|Loation steps that test whether the urrent element ontains a spei�ed string,or whether the value of the text satis�es some ondition. These steps take thegeneral form of /n[text() op v℄. For example, /year[text() = 2000℄ de-notes a year element whose text ontent is equal to 2000. Figure 15 depits thetemplate for the BPDTs that proess loation step of the form /n[text()=v℄.A subtle point here is that we have impliitly assumed that an element maygenerate at most one text event. However, when the text ontent of an elementis interspersed with subelements, a SAX parser generates multiple text events,one for eah ontiguous text segment. For example, the XML fragment <review>The<olor>yellow</olor>road...</review> generates two text events, oneACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 21for \The" and the other for "road..." XPath semantis require that this fragmentmath the loation step /review[text() ontains "The road"℄. However, ifthe two text events are treated separately, suh a math will be missed. XSQtherefore aggregates multiple text events of this kind into a single event thatis issued just before the end tag of the element to whih the text belongs (justbefore </review> in our example). For ease of exposition, we will heneforthassume that text events are in suh an aggregated form.|Loation steps that test whether the urrent element has a spei�ed type ofsubelement. These steps are of the form /n[℄. For example, /book[author℄mathes a book element that has at least one author subelement. Figure 14depits the template for the BPDTs that proess loation step /n[℄.One may note that there is only one transition out of state $3 and onsider thepossibilty of merging $4 with $3, with a transition on </> from $3 to itselfand a transition on </n> from $3 to $1. However, BPDT generated using thistemplate annot be ombined with other BPDTs to answer XPath queries thathave several loation steps. Consider the BPDT in Figure 11. If we merge state$6 and $7 with a transition on </author> from $6 to itself, the state $6 willaept not only the prie subelements of the book element, but also the theprie subelements of the pub element (while the query asks for only the former).|Loation steps that test whether a spei�ed subelement of the urrent elementontains an attribute, or whether the value of suh an attribute satis�es a pred-iate. These steps are of the form /n[�a℄ and /n[�a op v℄, respetively. Forexample, /pub[book�id <= 10℄) denotes a pub element that has a book subele-ment whose id attribute is less than or equal to 10. The BPDT template of theloation step /n[�a op v℄ is depited in Figure 13.|Loation steps that test whether the value of a spei�ed subelement of the urrentelement satis�es a given prediate. These steps are of the form /n[ op v℄.For example, /book[year <= 2000℄ mathes a book element that has a yearsubelement whose value is less than or equal to 2000. Figure 16 depits thetemplate for the BPDTs that proess loation step /n[ op v℄. This templateis similar to the template depited in Figure 14, but inludes transitions to proessthe text event.We note that the above templates enode the existential semantis of XPath pred-iates: An element mathing the name in a loation step quali�es for mathing theloation step if there is at least one subelement data that satis�es the prediate.The element fails to qualify only if all its subelements fail to satisfy the prediate.Although the above templates provide a simple method for mapping loationsteps to automata, using them to answer a given query requires some manipulationof the bu�er operations. For example, Figure 17 depits a BPDT generated fora single step XPath query that returns an entire element: /pub/[year > 2000℄.The need to return an entire element (not just its text ontent) requires the use ofthe ath-all transition in the BPDT. Suh modi�ations for generating BPDTs foranswering single-step XPath queries from the templates (the template in Figure 16in our example) are straightforward.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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<pub> fenqueue(� �)g <=pub> flear()g<year><=year><year:text()>[text()<=2000℄ <=year><year:text()>[text() > 2000℄fflush()g<=year><=pub> foutput(� �)g
START State

NA StateTRUE State Fig. 16: BPDT for query /pub[year>2000℄5.3 Conneting the BPDTsWe now disuss methods to onnet BPDTs for the loation steps of an XPathquery into a larger BPDT that answers the omplete query. When we onnetBPDTs for individual loation steps, we must maintain the strutural relationsamong the loation steps. For example, for query /book[author℄/prie/text(),we must ensure that the BPDT generated for the seond loation step outputs thetext ontent of only those prie elements that have a book element satisfying the[author℄ prediate as parent. This requirement is easily satis�ed following thesheme disussed in Example 5: We merge the start state of the seond BPDTwith states that are right after the begin event of the book element or right beforethe end event of the book element, ensuring that any prie element onsidered bythe seond BPDT is a hild of a book element. Figure 18 illustrates this idea. Wenote that we need multiple opies of the seond BPDT, whih is a BPDT of thesimplest kind, having no prediate. These opies di�er in their bu�er operations.We defer to Setion 6 the desription of our method for modifying bu�er operationsin the BPDT templates to ensure proper operation of the automaton omposed ofmultiple BPDTs.Reall that XSQ is designed to bu�er only those items whose result member-ship annot be immediately determined (i.e., those that any streaming XPath pro-essor must bu�er). For example, for the query /book[author℄/prie[�type="disount"℄/text(), the operations in the BPDT generated for the seond loa-tion step should output all the text ontents diretly if the prediate in this BPDThas been satis�ed and the prediate in the �rst loation step is known to be true.If the result of the �rst prediate is urrently unknown, text ontents should beenqueued if the type attribute is named disount. By applying the idea of gener-ating multiple opies of BPDTs for the seond loation step and merging the startstates of these opies with the appropriate states in the BPDT of the �rst loationstep, we arrive at the BPDT depited in Figure 19. We note that although we gen-erate the BPDTs for the seond loation step by instantiating the same templatefrom Setion 5.2, the operations on the transitions di�er between the instanes,depending on state in the BPDT for the �rst loation step to whih they onnet.For queries with three or more loation steps, determining the appropriate bu�erACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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<book> <=book>flear()g<author>fflush()g <=author><=book>
<prie> <=prie>
<prie:text()>fenqueue(��)g

<prie> <=prie>
<prie:text()>foutput(��)gFig. 17: BPDT for query/book[author℄/prie/text()
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<book> <=book>flear()g<author>fflush()g <=author><=book><prie>[�type = "disount"℄<=prie><prie:text()>fenqueue(��)g
<prie>[�type = "disount"℄ <=prie><prie:text()>foutput(��)g

<prie>[�type! = "disount"℄<=prie>
<prie>[�type! = "disount"℄<=prie>Fig. 18: BPDT for query/book[author℄/prie[�type="disount"℄/text()operations for eah instantiation of a template is likely to be ompliated beausethe operations may be a�eted by results of prediates both before and after theurrent loation step. Although suh a sheme an be worked out, we prefer to usethe simpler sheme desribed in Setion 6 beause that sheme is needed to addressthe problem we desribe next.When BPDTs are interonneted, we need to ensure that when a prediate isevaluated, all the ontents in the bu�ers that are a�eted by the result of thisprediate are proessed right away. If the result is true, items in the bu�er thatare waiting only for this result (and not the result of some other prediate aswell) should be sent to output. If the result is false, all items in the bu�er thatare waiting for this result (and perhaps other results) should be removed. Anadditional ompliation ours when there there are multiple mathings betweenthe data and the query, suh as those desribed in Example 2. In this ase, wemust ensure that we remove from the bu�er only those items for whih there is nomathing that satis�es all the prediates. The simple bu�er organization used byBPDTs makes it impossible to di�erentiate between bu�er items in this manner.For example, as we desribed in Example 1, when we evaluate the query /pub[year> 2000℄/book[prie < 11℄/author over the stream in Figure 1, there are threeauthor items in the bu�er when we enounter the end event of the seond bookelement. At this time, the prediate of the seond loation step, [prie < 11℄, ofthe seond book element evaluates to false. Therefore, the two authors of the seondbook should be removed from the bu�er. However, the BPDT annot distinguishbetween the author of the �rst book and the authors of the seond book. We mayaddress this problem by extending the bu�er alphabet to inlude ags that allowus to distinguish between di�erent groups of items. Another alternative, and oneused by XSQ and desribed next, is to organize bu�ers hierarhially and de�nebu�er operations that transfer items from a bu�er to its parent.6. BUILDING A HIERARCHICAL PUSHDOWN TRANSDUCERIn this setion, we put together the ideas from earlier setions to desribe the om-plete method used by XSQ to build an automaton to answer an XPath query. ThisACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



24 � F. Peng and S. S. Chawatheautomaton is obtained by aggregating the BPDTs generated for eah loation stepin the query. As disussed in Setion 5.3, we may need to use multiple instanes ofthe BPDT orresponding to a loation step, with eah instane using a di�erent setof bu�er operations. We �rst desribe how BPDTs are onneted in a hierarhialmanner so that the bu�er operations in eah BPDT are determined solely by theloation step from whih the BPDT is generated and the position of the BPDT inthe struture, but not by the runtime information of the results of the prediates.We then extend the set of BPDT bu�er operations to support ommuniation be-tween the BPDTs. We refer to the resulting network of BPDTs as a HierarhialPushdown Transduer (HPDT).6.1 A hierarhial strutureAs we desribed in Setion 5.3, a single bu�er does not enable us to properly proessbu�er items that di�er in the sets of prediates they must satisfy in order to qualifyas query results. To address this problem, we introdue a separate bu�er for eahBPDT in an HPDT. We also introdue an upload(bpdt) funtion that transfers allthe items from the bu�er of the alling BPDT to the bu�er of the BPDT spei�edas the argument. (The details are desribed below.)Reall, from Setion 4, that although states are identi�ed using a two-dimensionalidenti�er (i; d) where i is a base identi�er and d is a stak of integers (the depthstak), the rules governing the depth staks during transitions permit us to speifya transition funtion using only the base identi�ers of states. The depth staks aremanipulated at run-time based on the rules in Setion 4. In this setion, our fousis on the ompile-time onstrution of an HPDT. Therefore, we will identify statesusing only their base identi�ers.Reall, from Setion 5.2, that eah BPDT template has a single start state,a single true state, and an optional na state. Given an XPath query with nloation steps, we generate instanes of BPDTs using these templates, and onnetthe instanes as follows: For the l'th loation step, we generate 2l BPDTs from thetemplates desribed in Setion 5.2. The bu�er operations are initially set to thosein the templates. The BPDTs generated for the l'th loation step are assignedidenti�ers of the form (l; k), where k 2 [0; 2l). We use bpdt(l; k) to denote theBPDT with identi�er (l; k). After we generate BPDTs for all the loation steps, weonnet the BPDTs in a layered fashion. Eah bpdt(l; k) (l < n) has two hildren:a right hild bpdt(l + 1; 2k) whose start state is the na state of bpdt(l; k) and aleft hild bpdt(l+1; 2k+1) whose start state is the true state of bpdt(l; k). It ispossible that the bpdt(l; k) does not have an na state; in this ase, bpdt(l + 1; 2k)is set to null. A null BPDT does not exist in the struture, but it is ounted whenwe ompute the sequene numbers of BPDTs. In this layered struture, we referto the BPDTs generated for the l'th loation step as the l'th layer. We maintaina separate bu�er for eah BPDT and use B(l; k) to denote the bu�er of bpdt(l; k).The zeroth loation step refers to the leftmost / in an XPath query and it mathesthe doument root. The BPDT generated for the zeroth loation step is depitedin Figure 20. Null BPDTs resulting from missing na states result in pruning in theHPDT. For example, sine the BPDT for the zeroth loation step does not have anna state, there is no need to generate bpdt(1; 0) for the �rst loation step; similarly,its desendants, bpdt(l; k) for l 2 [2; n℄ and k 2 [0; 2l�1℄ are not generated. AnACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 25$1 $2<root><=root>START State TRUE StateFig. 19: Template for the root BPDTexample of an HPDT is depited in Figure 21. Eah box in the �gure enloses thestates of a BPDT (with the exeption of BPDT start states that have been mergedwith states in BPDTs at a higher layer). The identi�ers of the BPDTs are shownon the shoulders of the boxes enlosing them.Figure 21 suggests why this method of onneting BPDTs ensures that the stru-tural relations between the loation steps are satis�ed. For example, onsider states$14, $15, $16, and $17, belonging to BPDTs generated for the loation step //name.The start states for these BPDTs, $8, $10, $11, and $13, respetively, oinide withthe true and na states of BPDTs for the loation step //book. Therefore, onlyname elements that our within a book element result in states $14, $15, $16, and$17 being ative. Using a similar argument, we infer that the only book elementsthat result in states $8, $10, $11, and $13 being ative are those that our withina pub element.Another property of our method of onneting BPDTs is that at states of theHPDT that lie in BPDTs in the right subtree of bpdt(l; k), the prediate in l'thloation step has not yet been satis�ed beause these states an be reahed onlyvia a path of state transitions that ontains the na state in bpdt(l; k). On the otherhand, at states that lie in BPDTs in the left subtree of bpdt(l; k), the prediate in l'thloation step has already been satis�ed beause suh these states an be reahedonly via the true state in bpdt(l; k). Therefore, within eah BPDT, the status(satis�ed or pending) of prediates in all higher layer (lower numbered) BPDTsare known. The bpdt(n; 2n�1 � 1) is in the left subtree of all its anestor BPDTs.Therefore, at states in this BPDT, all prediates have been satis�ed. Consequently,when data that mathes the trunk of the query (i.e., the query exluding prediates)is found, it is sent diretly to the output using the output bu�er operation. Thissituation is exempli�ed by bpdt(3; 7) in Figure 21; the self-transition emerging from$17 sends the text ontents of the name element to the output. At states withinall other BPDTs in layer n, there is at least one prediate that has not yet beensatis�ed. Therefore, when mathing data is found, it is bu�ered using the enqueueoperation. This situation is exempli�ed by bpdt(3; 5) in Figure 21. In state $15,the prediate [author℄ has been satis�ed but the prediate [year > 2000℄ hasnot been satis�ed. Therefore, the self-transition emerging from $15 bu�ers the textontents of the name element to the output.When input events result in a transition out of a BPDT, the truth value ofthe BPDT's prediate is known. If the prediate evaluates to false, the items aredisarded using the lear operation. Otherwise, the the upload operation is usedto transfer the items to the bu�er of one of its anestor BPDTs. More preisely, aBPDT b uploads its bu�er items to the bu�er of the nearest anestor b0 suh thatb is in the right subtree of b0. We say that b0 is the D-anestor of b. Reallingthe method of onneting BPDTs, we note that the prediates of all the anestorsof b that lie below the D-anestor b0 are known to be satis�ed sine b lies in theirACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



26 � F. Peng and S. S. Chawatheleft subtrees. Therefore, the ontents in b's bu�er are waiting next for the resultof the prediate that is evaluated by b0, and uploading them to b0's bu�er is theorret ation. We do not need any runtime information to ompute the D-anestorof a BPDT. We note that the parent of b = bpdt(l; k) is b0 = bpdt(l � 1; bk=2).Further, b is the left hild of b0 i� k is even. Thus, the D-anestor of bpdt(l; k)is bpdt(l � s; bk=2s) where s is the smallest positive integer suh that 2bk=2s =bk=2s�1. Equivalently, we may ompute the D-anestor by sanning the binaryrepresentation of k right-to-left, looking for the �rst 0 bit after the least-signi�antbit. Let k0 be the result of trunating k by deleting the suÆx that begins at thisbit, and s is the length of the trunated suÆx. Then, the D-anestor of bpdt(l; k)is bpdt(l � s; k0).Thus, a BPDT b aepts from its hild BPDTs bu�er items that are known tosatisfy the lower layer prediates (those to the right of its loation step in the XPathquery) and that must satisfy b's prediate in order to qualify for the result. If b'sprediate evaluates to true, these items are sent to the output if no higher levelprediates are pending. Otherwise, the items are uploaded to the bu�er of theBPDT with the losest pending prediate (b's D-anestor).Example 7. This example outlines the basi features of an HPDT, illustratinghow it is used to answer XPath queries with multiple prediates. Figure 21 depitsthe state transition diagram for the query // pub[year>2000℄//book[author℄//name/text() . However, if we ignore the losure and self-losure transitions (arsmarked with = and //, respetively), we are left with the state transition diagram forthe following query without losures: /pub[year>2000℄/book[author℄/name/text() . (The original query is disussed is Setion 6.2 below.)Let us trae the ations of this HPDT given the input stream of Figure 1. Reallthat depth staks are used to distinguish between multiple query mathings for asingle element in the input. For a query that does not use the losure axis, thereis at most one mathing for eah element. Therefore, we do not need to onsiderthe depth staks in this example. (Example 9 shows how the depth stak is used toevaluate the original query, whih uses the losure axis.) The HPDT starts in state$1. When it enounters the name \�rst," it is in state $14; thus it enqueues thetext ontent \�rst" into B(3; 4). At the end event of the name element, the item isuploaded to B(2; 2). The next event is the begin event of the author element. TheHPDT goes from state $8 to state $9 and uploads the item to the bu�er B(1; 1).A similar proess applies to the item \seond," whih is the name element of theseond book. Then, at the begin event of the year element, the HPDT is in state $3and the bu�er B(1; 1) ontains two items: \�rst" and \seond." When the HPDTenounters the text event of the year element, it evaluates the prediate [text() >2000℄ to yield true. Therefore the HPDT goes from state $4 to $6 and ushes theontent of its bu�er to the output.The above example illustrates how the bu�er operations in eah BPDT an bedetermined based on the BPDT's position within the HPDT. For example, sinebpdt(3; 4) is the right hild of bpdt(2; 2), it is onneted to the na state of bpdt(2; 2).Therefore, at states within bpdt(3; 4), the prediate in bpdt(2; 2) ([author℄) has notyet been satis�ed. Similarly, sine bpdt(2; 2) is the right hild of bpdt(1; 1), at stateswithin bpdt(2; 2), the prediate in bpdt(1; 1) ([year > 2000℄) has not yet beenACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 27satis�ed. Combining these fats, at states within bpdt(3; 4) we know that neitherof the two prediates in the query are satis�ed. We note that this information isobtained solely from the positions of the BPDTs, so that the bu�er operations inthe BPDTs are easily determined.6.2 Extended bu�er operationsAlthough the upload operation and the related data ow desribed above supportmultiple prediates in the queries, they annot orretly handle the ase of multiplemathings between the data and the query (desribed in Example 2). The reason isthat items orresponding to di�erent mathings may be stored in the same bu�er,rendering them indistinguishable to the subsequent bu�er operations. For example,if a BPDT's prediate evaluates to false based on one of the mathings, the entirebu�er is leared. The items that have other mathings that result in the prediatebeing satis�ed annot be reovered. Sine we annot guarantee the sequene of theevaluation for di�erent mathings, we need to ensure that if the prediate in thisBPDT for one of the mathings is not evaluated, the items orresponding to thatmathing remain in the bu�er. (If one of the mathings results in the prediatebeing satis�ed, we an output or upload the items beause we only need one orretmathing to determine the destination of the bu�er items). Example 8 illustratessome of these ideas.Example 8. Consider the HPDT in Figure 21, for the query // pub[year>2000℄// book[author℄//name/text() , operating on the stream of Figure 2.When the HPDT enounters the name element on line 11, it is in state $14. How-ever, there are three mathings between this element and the query:pub in line 2! book in line 7! name in line 11pub in line 2! book in line 10! name in line 11pub in line 9! book in line 10! name in line 11.These di�erent mathings lead to the same sequene of state transitions:$1!$2!$3!$8!$14.(However, the depth staks of these states in di�erent mathings are di�erent; thisfat is used for distinguishing the bu�er items as desribed later.)All three mathings lead to the same BPDT beause they agree on the prediatesthat have been satis�ed. Sine the urrent BPDT, bpdt(3; 4), is in the left subtreeof the bpdt(0; 0), but in the right subtrees of bpdt(1; 0) and bpdt(2; 0), we know thatonly the �rst prediate is true while the other two are unknown. (The �rst prediateis the trivially true prediate for the impliit /root at the beginning of every XPathquery.) However, we annot simply enqueue the item Z from the text event of theurrent element. If we do so, then following the �rst mathing, the item will beleared at the transition from $8 to $3 when the HPDT enounters the end of thebook element on line 16 (whih orresponds to the book on line 7). Sine this bookelement does not have an author hild, the prediate in the seond loation stepevaluates to false. Similarly, using the third mathing, the HPDT will lear theitem when it goes from state $3 to state $2, sine the year subelement of the pubelement on line 9 fails the prediate in the �rst loation step. However, followingthe seond path, the HPDT should output the item on the transition from $4 to $6when it enounters the year element on line 17 sine the book element in line 10ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



28 � F. Peng and S. S. Chawathehas an author subelement in line 12 (whih omes before this year element andsatis�es the seond prediate in the query). This need for di�erent behavior fordi�erent mathings suggests the need for additional bookkeeping in the bu�er.To support multiple mathings of the kind disussed above, we store a depthstak with eah bu�er item, and extend the bu�er operations aordingly. Reall,from Example 4, that the depth stak distinguishes between di�erent mathingsbetween a query and a single element in the input. Essentially, we reate a opyof the item for eah mathing, keyed by the orresponding depth stak. The bu�eroperations of the HPDT in any state operate only on the items in the bu�er whosedepth stak agrees with that of the state, aording to the rules desribed below.The depth stak of a bu�er item is set by the enqueue operation in suh a way thatit reords the depths of the elements that take part in the mathing that resulted inenqueuing the item. In Example 8, we listed three mathings for the name elementin line 11 of Figure 2 and noted that they orrespond to the same sequene of statetransitions when we identify states using only their base identi�ers. However, if weinlude the depth stak of eah state in addition to its base identi�er, we have thefollowing three paths for the three mathings in that example:($1,�) ! ($2,(0)) ! ($3,(0,1) ! ($8,(0,1,2))) ! ($14,(0,1,2,5))($1,�) ! ($2,(0)) ! ($3,(0,1) ! ($8,(0,1,4))) ! ($14,(0,1,4,5))($1,�) ! ($2,(0)) ! ($3,(0,3) ! ($8,(0,3,4))) ! ($14,(0,3,4,5))The three states with base identi�er $14 but di�erent depth staks represent dif-ferent mathings between the element and the query. For example, the depth stak(0; 1; 4; 5) assoiated with an item indiates that the anestors at depths 0, 1, and 4are mathed with the �rst, seond, and third loation step, respetively. Therefore,when the three di�erent states enqueue the text ontent of a name element, theyassoiate di�erent depth staks with the opies of the items the enqueue. Copies ofthe same item are later distinguished by their assoiated depth staks.As desribed in Setion 6.1, the items enqueued in the bu�er may be uploaded tothe upper layer BPDTs and be operated on by operations de�ned in them. Sinestates in upper layer BPDTs always have di�erent depth staks than the statesin the lowest layer BPDTs (whih have the initial depth staks assoiated withthe bu�er items), we need to ensure that the transitions in upper layer BPDTsoperate on the orret bu�er items based on the depth staks. For example, asshown in Example 8, one of the mathings leads the item being leared in thetransition from $8 to $3 in bpdt(2; 2). The other mathing leads the item be learedin the transition from $3 to $2 in bpdt(1; 1). The third mathing leads to the itembeing sent to output from $4 to $6 in bpdt(1; 1). All the states involved in thesetransitions have depth staks that are di�erent from the depth stak of the enqueueditem. Therefore, we need to devise rules that math operations on transitions tothe appropriate bu�er items.The mathing of the depth staks of bu�er items with and the depth staks ofHPDT states is ahieved by making the following two modi�ations to the bu�eroperations: First, the upload operation trunates the depth stak of the uploadedbu�er items so that the new depth stak is the same as the depth stak of the naACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 29state of the target BPDT for the same mathing. (Reall that there are, in general,multiple ative states that have the base identi�er of the na state but di�erentdepth staks, orresponding to di�erent mathings.) Seond, a bu�er operationon a transition out of a state q in BPDT b operates only on those bu�er itemswhose depth stak is equal to the depth stak of b's na state for the mathingorresponding to q.When an upload operation moves the bu�er items from BPDT b to its D-anestorb0, aording to the de�nition of D-anestor, the na state of b0 must be in the pathof state transitions from the start state of the HPDT to the state that enqueuesthose bu�er items. This na state will be ative when the HPDT returns to b0 toproess the pending prediate in b0. (It may be ative when the items are enqueuedif there is a self-losusre axis on it.) Therefore, the depth stak of the na state mustbe the �rst portion of the initial depth stak of the bu�er items. It is also easy toonlude that the na state in a BPDT in layer m must have a depth stak of lengthm+1 where the �rst element of the stak is always the depth of the doument root(whih is 0). Therefore, if b0 is in layer l0, the depth stak of the na state in b0 isthe the �rst l0 + 1 integers of the depth stak that are initially assoiated by theenqueue operation. We then de�ne the upload operation from b to b0 to removethe top l � l0 integers in the stak, where l is the layer of b. This proess repeatsitself for eah upload operation that ats on a bu�er item. The result is that thedepth staks of an item in a bu�er is equal to the depth stak of the na state ofthat bu�er's BPDT for the mathing that originally enqueued the item.Not all the transitions assoiated with bu�er operations are diretly related tothe na state. Therefore, we need to onnet the depth staks of states in thosetransitions to the depth stak of the na state. We note that, in any BPDT, thedepth stak of an na state for a given mathing is always equal to the depth stak ofthe true state for that mathing. (This observation follows from an examination ofthe templates in Figures 13, 14, and 16, whih inlude paired begin and end eventsbetween their na and true states; the template in Figure 12 does not have an nastate, while the template depited in Figure 15 has no begin and end events betweenthe na state and true state.) Therefore, for a transition from state (s1; d1) to state(s2; d2), if s1(s2) is the true (or na) state, we set the operation assoiated withthis transition to operate on the bu�er items with depth stak d1 (respetively, d2).Aording to the templates in Figure 12 through Figure 16, all the bu�er operationsare related to either the true state or na state (or both) exept the transition fromstate $3 to state $4 in the template depited in Figure 16. However, it is also easyto determine the depth stak of the na state beause the depth stak of state $3is reated by pushing one element onto the depth stak of the na state. We anobtain the depth stak of the na state by removing the topmost element from thedepth stak of state $3.Based on above analysis, we now desribe the modi�ed bu�er operations used inan HPDT. The bu�er alphabet 
 is extended to 
H and onsists of bu�er symbolsof the form (v; d), where v is a data item as desribed in Setion 5 and d is the depthstak of that item. The depth stak is assoiated with the data item by the modi�edenqueue operation desribed below. The set of bu�er operations, FH , onsists ofthe following, for a transition from state q1 = (s1; d1) to state q2 = (s2; d2) on eventACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



30 � F. Peng and S. S. Chawathee:|enqueue(v): If e:type is B, add (v; d2) to the end of the bu�er (whih is organizedas a queue). If e:type is T orE, add (v; d1) to the end of the bu�er. This de�nitionensures that the depth stak of a bu�er item ontains exatly the depths of theelements that partiipate in the mathing that justi�es enqueuing this item.|lear(): Remove from the bu�er all items with depth stak d1 (sine the learoperation is always exeuted in the transition from the na state to other states).|flush(): If s1(s2) is true or na state, send to the output the values of all bu�eritems that have depth stak d1(d2, respetively). Otherwise, send to the outputthe values of all bu�er items that have depth stak d1:remove(1). (Reall, fromSetion 4, that the operation remove(k) removes the top k items from a depthstak.)|upload(): The impliit argument of the upload operation is the target BPDT,whih is always the D-anestor of the urrent BPDT. The rules to determine thedepth stak of the bu�er items on whih the upload operation ats are the sameas those desribed for the ush operation (sine we replae the ush operationwith upload operation for BPDTs in whih some prediate is still unknown). Theupload operation moves all bu�er items that have the determined depth stakd to the D-anestor of the urrent BPDT. Let l and l0 denote the layers of theurrent BPDT and its D-anestor, respetively. The depth stak of all the itemsmoved by the upload operation is set to d:remove(l � l0).As before, the operation output(v) outputs the value v diretly without bu�ering.Example 9. Let us revisit Example 8 using the bu�er struture and operationsdesribed above. In Figure I, we summarize the ations of the HPDT of Figure21 given the input data of Figure 2. The �rst, seond, and third olumns of thetable list the sequene number, summary, and depth of eah event as it arrives inthe stream. The fourth olumn, labeled Current State Set, lists the ative statesin eah step before the event is proessed by the HPDT. The state transitions thatthe inoming event triggers are also listed in this olumn. The Buffer olumn listsontents of bu�ers after the event has been proessed. Bu�ers that are not listedare empty.Eah state is represented as a pair (s; d), where s is the base identi�er of thestate and d is the depth stak. The base identi�er s is used to label the state in thestate transition diagram depited in Figure 21. The depth stak d is determined atruntime based on the rules desribed in Setion 4.In the Current State Set olumn, we also list the transitions the urrent a-tive state takes for the inoming event in the Event olumn. Closure transitions(labeled with a = on the arrow in the state transition diagram) are represented as[(s1; d1) x)(s2; d2)℄. Regular transitions are represented as [(s1; d1) x!(s2; d2)℄ Self-losure transitions are implied if the state stays in the urrent state set withoutany expliit transitions. Reall that a transition is taken only if the depth of theinoming event and the depths of the soure and target states satisfy the onditionsdesribed earlier. The labels on top of the transition arrows are the operations thatare exeuted when the transition ours. The label e stands for enqueue,  for lear,ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 20: HPDT for Example 9u for upload, f for ush, and o for output. The states of the bu�ers after theseoperations are performed are summarized in the Buffer olumn.We use B(i; j) to denote the bu�er of bpdt(i; j). The last olumn lists the itemsin eah nonempty bu�er B(i; j) using the syntax B(i; j): e1; e2; : : :. Eah bu�er itemei is of the form [v; d℄, where v is the value and d is the depth stak assoiated withthe value. Items listed in bold font are those that are enqueued or uploaded by theoperation denoted in the labeled state transitions in the previous olumn. Items withstrike-through line are items leared by an operation in the previous olumn. Itemsdisplayed in a box are items that are ushed or sent to output.We now highlight some features of this example. First, we note that the HPDTorretly handles multiple mathings. In line 17, for the z element, there are threeurrent states that will respond to the input event. These states have the samebase identi�er 14, but di�erent depth staks: (0; 1; 2; 5), (0; 1; 4; 5), and (0; 3; 4; 5).The HPDT puts three opies of the element's ontent into the bu�er B(3; 4); thedepth staks for the three opies are the depth staks of the three soure states:(0; 1; 2; 5), (0; 1; 4; 5), and (0; 3; 4; 5). We note that these depth staks reord exatlythe depths of the elements that that math the loation steps of the query leadingto the urrent state. For example, onsider the depth stak (0; 3; 4; 5). It indiatesa mathing onsisting of the root element at depth 0, a pub element at depth 3, abook element at depth 4, and a name element at depth 5, leading the HPDT to thestate ($14; (0; 3; 4; 5)). These opies of the text ontent z are proessed di�erentlyACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



32 � F. Peng and S. S. ChawatheEvent d Current State Set (before the event) Bu�er (after the event)1 <root> 0 [($1,(�))!($2,(0))℄2 <pub> 1 [($2,(0))($3,(0,1))℄3 <book> 2 ($2,(0)) [($3,(0,1)))($8,(0,1,2))℄4 <name> 3 ($2,(0)) ($3,(0,1)) [($8,(0,1,2)))($3,(0,1))℄5 text()=x 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(3; 4):[x,(0,1,2,3)℄[($14,(0,1,2,3)) e!($14,(0,1,2,3))℄6 </name> 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(2; 2):[x,(0,1,2)℄[($14,(0,1,2,3)) u!($8,(0,1,2))℄7 <author> 3 ($2,(0)) ($3,(0,1)) [($8,(0,1,2)) u!($9,(0,1,2,3))℄ B(1; 1):[x,(0,1)℄8 </author> 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(1; 1):[x,(0,1)℄[($9,(0,1,2,3))!($10,(0,1,2))℄9 </book> 2 ($2,(0)) ($3,(0,1)) [($8,(0,1,2))!($3,(0,1))℄ B(1; 1):[x,(0,1)℄[($10,(0,1,2))!($3,(0,1))℄10 <book> 2 ($2,(0)) [($3,(0,1)))($8,(0,1,2))℄ B(1; 1):[x,(0,1)℄11 <name> 3 ($2,(0)) ($3,(0,1)) [($8,(0,1,2)))($14,(0,1,2,3))℄ B(1; 1):[x,(0,1)℄12 text()=y 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(1; 1):[x,(0,1)℄[($14,(0,1,2,3)) e!($14,(0,1,2,3))℄ B(3; 4):[y,(0,1,2,3)℄13 </name> 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(1; 1):[x,(0,1)℄[($14,(0,1,2,3)) u!($8,(0,1,2))℄ B(2; 2):[y,(0,1,2)℄14 <pub> 3 [($2,(0)))($3,(0,3))℄ ($3,(0,1)) ($8,(0,1,2)) B(1; 1):[x,(0,1)℄B(2; 2):[y,(0,1,2)℄15 <book> 4 ($2,(0)) (($3,(0,1)))($8,(0,1,4))℄ B(1; 1):[x,(0,1)℄[($3,(0,3)))($8,(0,3,4))℄ ($8,(0,1,2)) B(2; 2):[y,(0,1,2)℄16 <name> 5 ($2,(0)) ($3,(0,1)) [($8,(0,1,2)))($14,(0,1,2,5))℄ B(1; 1):[x,(0,1)℄($3,(0,3)) [($8,(0,1,4)))($14,(0,1,4,5))℄ B(2; 2):[y,(0,1,2)℄[($8,(0,3,4)))($14,(0,3,4,5))℄17 text()=z 5 ($2,(0)) ($3,(0,1)) ($3,(0,3)) B(1; 1):[x,(0,1)℄($8,(0,1,2)) [($14,(0,1,2,5)) e!($14,(0,1,2,5))℄ B(2; 2):[y,(0,1,2)℄($8,(0,1,4)) [($14,(0,1,4,5)) e!($14,(0,1,4,5))℄ B(3; 4):[z,(0,1,2,5)℄($8,(0,3,4)) [($14,(0,3,4,5)) e!($14,(0,3,4,5))℄ [z,(0,1,4,5)℄ [z,(0,3,4,5)℄18 </name> 5 ($2,(0)) ($3,(0,1)) ($3,(0,3)) B(1; 1):[x,(0,1)℄($8,(0,1,2)) [($14,(0,1,2,5)) u!($8,(0,1,2))℄ B(2; 2):[fy,zg,(0,1,2)℄($8,(0,1,4)) [($14,(0,1,4,5)) u!($8,(0,1,4))℄ [z,(0,1,4)℄ [z,(0,3,4)℄($8,(0,3,4)) [($14,(0,3,4,5)) u!($8,(0,3,4))℄19 <author> 5 ($2,(0)) ($3,(0,1)) [($8,(0,1,4)) u)($9,(0,1,4,5))℄ B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄($3,(0,3)) ($8,(0,1,2)) [($8,(0,3,4)) u)($9,(0,3,4,5))℄ B(2; 2):[fy.zg,(0,1,2)℄20 </author> 5 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄($8,(0,1,4)) [($9,(0,1,4,5))!($10,(0,1,4))℄ B(2; 2):[fy,zg,(0,1,2)℄($8,(0,3,4)) [($9,(0,3,4,5))℄!($10,(0,3,4))℄21 </book> 4 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄[($8,(0,1,4)) !($3,(0,1))℄ [($8,(0,3,4)) !($3,(0,3))℄ B(2; 2):[fy,zg,(0,1,2)℄[($10,(0,1,4))!($3,(0,1))℄ [($10,(0,3,4))!($3,(0,3))℄22 <year> 4 ($2,(0)) ($3,(0,1)) [($3,(0,3)))($4,(0,3,4))℄ B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄($8,(0,1,2)) B(2; 2):[fy,zg,(0,1,2)℄23 text()=1999 4 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄[($4,(0,3,4))!($5,(0,3,4))℄ B(2; 2):[fy,zg,(0,1,2)℄24 </year> 4 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄[($5,(0,3,4))!($3,(0,3))℄ B(2; 2):[fy,zg,(0,1,2)℄25 </pub> 3 ($2,(0)) ($3,(0,1)) [($3,(0,3)) !($2,(0))℄ ($8,(0,1,2)) B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄B(2; 2): [fy,zg,(0,1,2)℄26 </book> 2 ($2,(0)) ($3,(0,1)) [($8,(0,1,2)) !($3,(0,1))℄ B(1; 1):[fx,zg,(0,1)℄B(2; 2):[fy,zg,(0,1,2)℄27 <year> 2 ($2,(0)) [($3,(0,1)))($4,(0,1,2))℄ B(1; 1):[fx,zg,(0,1)℄28 text()=2002 2 ($2,(0)) ($3,(0,1)) [($4,(0,1,2)) f!($6,(0,1,2))℄ B(1; 1): [fx,zg,(0,1)℄29 </year> 2 ($2,(0)) ($3,(0,1)) [($6,(0,1,2))!($7,(0,1))℄30 </pub> 1 ($2,(0)) [($3,(0,1))!($2,(0))℄ [($7,(0,1))!($2,(0))℄31 </root> 0 ($2,(0))32 ($1,(�))Fig. 21: HPDT ations for Example 9ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 33based on their depth staks. The z item with depth stak (0; 3; 4; 5) is �rst uploadedto BPDT bpdt(2; 2) and the depth stak is modi�ed to (0; 3; 4) in line 18, indiatingthat the prediate for the name element at depth 5 has been satis�ed. It is thenuploaded to bpdt(1; 1) and the depth stak is modi�ed to (0; 3) sine the prediatefor the book anestor at depth 4 has also been satis�ed. When the prediate for thepub anestor at depth 3 ([year > 2000℄) evaluates to false at the end of the pubanestor in line 25, the item is leared from the bu�er. However, sine di�erentopies of the items follow di�erent ows among the bu�ers, the other opies willnot a�eted by this operation and be proessed orretly based on their mathings.The proess outlined in Figure I also demonstrates that an item is always removedor ushed from a bu�er as soon as its membership in the result set an possibly bedetermined. For example, the z element with depth stak (0; 3; 4; 5) is removed fromthe bu�er when the pub element in the mathing fails the prediate [year > 2000℄at the end of the pub element. (Before this point in the stream, it is impossibleto determine that the prediate fails beause an additional year element satisfyingthe prediate may appear at any point before the </pub> event.) The items in theresult (x and z) are sent to the output as soon as the last pending prediate [year> 2000℄ is satis�ed.This example also illustrates how bu�er items with the same depth stak areproessed together. In line 19, the entry [fx; zg; (0; 1)℄ indiates that the two itemshave the same depth stak, and thus should be proessed as a group. Althoughthese two items are at di�erent depths, they are in the same group beause theyboth have satis�ed all the prediates in lower layer BPDTs. The item [x; (0; 1)℄,whih omes from [x; (0; 1; 2; 3)℄, has satis�ed the prediate in the third loationstep /name (whih has the null prediate that is always true) and the seond loationstep book[author℄ (with the book element at depth 2). The item [z; (0; 1)℄, whihomes from [z; (0; 1; 4; 5)℄ has satis�ed the prediate in the third loation step and theprediate in the seond loation step (with the book element at depth 4). Althoughthey math di�erent elements that satisfy the prediates in lower layer BPDTs, theyare both waiting for the result of the prediate of the same pub element at depth 1(and prediates of the same anestors in the upper layer BPDTs, if there are any),whih is determined by their depth staks.We note that the mathing rules between the depth staks of bu�er items and thestates in the transitions ensure that operations at only on the bu�er items for themathing relevant to the transition. For example, in line 26, the state ($3; (0; 3))transitions to state ($2; (0)) and the lear() operation is exeuted. At the time,there are three items in the bu�er B(1; 1): [fx; zg; (0; 1)℄ and [z; (0; 3)℄. The learoperation removes only the item [z; (0; 3)℄ from the bu�er sine the depth staksmath. The other opy of z ([z; (0; 1)℄) remains in the bu�er sine it is waiting forthe end of the other pub element (whih will later result in the prediate evaluatingto true). In line 28, at the text event, the state ($4; (0; 1; 2)) transitions to state($6; (0; 1; 2)) and the ush operation is exeuted. Although the depth stak is (0; 1; 2)for the soure state, aording to the rules de�ned earlier in this setion, for thistext event of the subelement year, the mathed depth stak for the ush operationshould be the depth stak without the last integer, whih is (0; 1). Therefore, theitems in the bu�er with depth stak (0; 1) are ushed to output.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



34 � F. Peng and S. S. ChawatheInput: XPath Query query = N1N2:::Nn=OOutput: an HPDT in the form of an array of BPDTs1 GenerateHPDT ( ) f2 /* Generate bpdt(0,0) based on Figure 20. */3 bpdt (0 , 0 ) = generateRootBPDT ( ) ;4 for ( l = 1 to n ) f5 for ( k = 0 to 2l�1 �1 ) f6 i f ( bpdt ( l �1 , k ) != null )f7 bpdt ( l , 2 k+1)=addBPDT( bpdt ( l �1,k ) ,Nl ,TRUE) ;8 i f ( bpdt ( l �1 , k ) . na != null )9 bpdt ( l , 2 k)=addBPDT( bpdt ( l �1,k ) ,Nl ,NA) ;10 g11 g12 g13 /* Add output to the lowest layer BPDTs. */14 for ( k = 0 to 2n�1�1 )15 addOutput (O, bpdt (n , k ) ) ;16 g Fig. 22: Algorithm GenerateHPDTWe also note that the state ($2; (0)) remains urrent for almost the whole proess.The reason is that, due to the losure axis in the �rst loation step, a pub elementat any depth mathes the �rst loation step. Sine this state is used to math thepub elements, not until we enounter the end of the stream an we remove thisstate from the urrent state set. However, if we know beforehand that the data isnot reursive, i.e., no node has an anestor with the same name, then we do notneed to keep the state as ative after it is mathed with an element even when thequery has losure axes. The reason is that one we math a pub element with thisstate, we know there will not be any more pub elements inside this element, andthis state will not math any other elements until the end of this urrent mathedpub element.The above example illustrates some of the omplexities resulting from losure axesin the query and reursive struture in the input data. Due to the possibly multiplemathings between the query and the data, we have to hek all the possibilitiesand reord extra information. We note that all streaming XPath proessors thatuse minimal bu�ering (i.e., any data they bu�er must also be bu�ered by any otherstreaming XPath proessor) need to perform suh bookkeeping. As demonstratedin Setion 9, XSQ is able to handle these diÆult ases without ompromising theeÆieny in the simpler ases.6.3 Building HPDTs from XPath QueriesWe now omplete our desription of the method used by XSQ to map an XPathquery to an HPDT that evaluates the query over streaming data. We �rst desribethe high level method that builds the HPDT struture. Two important subroutinesof the proess, alled addBPDT and addOutput are explained in detail later. Con-sider an XPath query N1N2:::Nn=O, where Ni denotes the ith loation step andACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 351 addBPDT(BPDT p , Loat ionStep N, State s )f23 /* instantiate template mathing N */4 n = reateBPDT(N) ;56 /* onnet to parent BPDT */7 mergeStates (n . s ta r t , s ) ;89 /* set BPDT id = (layer, seqnum) */10 n . l a y e r = p . l ay e r + 1 ;11 i f ( s . type == TRUE)12 n . seqnum = 2 � p . seqnum + 1;13 else /* s == NA*/14 n . seqnum = 2 � p . seqnum ;1516 i f ( n . seqnum != 2n:layer�1)17 n . bufOp = UPLOAD;18 /* set ush ops to upload */19 setFlushToUpload (n ) ;20 g21 else n . bufOp = FLUSH;2223 /* For losure axis, add a self-losure transition to the START state.*/24 i f (N. ax i s ==  l o su r e )25 newTrans (n , START, START, BEGIN, "//" ) ;2627 /* Make all transitions on the BEGIN event of n.tag out of the START28 state losure transitions. */29 t r a n s i t i o n s = getTrans (n , START, BEGIN, n . tag ) ;30 for ( t in t r a n s i t i o n s ) t . type = CLOSURE;3132 /* Put an extra ush/upload operation on the transition in the parent33 that proesses the end event of the prediate's subelement. */34 t2 = getEndOfChildTran (p ) ;35 addOp( t2 , p . bufOp , null )36 g37 g Fig. 23: Subroutine addBPDTO denotes the output expression. For ease of exposition, we will use N0 to denotean impliit /root pre�x for all XPath queries. Figure 22 presents the pseudoodethat summarizes the top-down reation of an HPDT as desribed in Setion 6.1.As indiated by the pseudoode of Figure 22, the bulk of the BPDT-generationwork is done within the addBPDT subroutine. The pseudoode for addBPDT islisted in Figure 23. This subroutine is responsible for reating a new BPDT basedon a loation step and setting the bu�er operations in the new BPDT. Further, itis responsible for onneting the new BPDT to the appropriate higher-level BPDT,whih may also need some modi�ations. The subroutine takes three parameters:the parent BPDT p, the loation step N , and the state s in BPDT p to whih theACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



36 � F. Peng and S. S. Chawathe1 addOutput (BPDT b , OutputFuntion O)f2 i f ( b . seqnum != 2b:layer�1) op = ENQUEUE;3 else op = OUTPUT;4 swith (O. type )f56 ase ATTRIBUTE:7 t = getTrans (b , START, BEGIN, b . tag ) ;8 addOp( t , op , "�"+O. attrname ) ;9 break ;1011 ase TEXT:12 /* Add a new transition from the NA state to the NA state that13 proesses the TEXT event of b.tag.*/14 t = newTran (b , NA, NA, TEXT, b . tag ) ;1516 /* Add the operation op with the parameter b.tag+".text()" to the transition.*/17 addOp( t , op , b . tag+".text ()" ) ;18 t = newTran (b ,TRUE,TRUE,TEXT, b . tag ) ;19 addOp( t , op , b . tag+".text ()" ) ;20 break ;2122 ase CATCHALL:23 t = getTrans (b , START, BEGIN, b . tag ) ;24 addOp( t , op , "��" ) ;25 t = newTrans (b , NA, NA, CATCHALL) ;26 addOp( t , op , "��" ) ;27 t = newTrans (b , TRUE, TRUE, CATCHALL) ;28 addOp( t , op , "��" ) ;29 /* Get the transition that going from the TRUE state to the START state30 proessing the END event of b.tag. */31 t = getTrans (b , TRUE, START, END, b . tag ) ;32 addOp( t , op , "��" ) ;33 /* add extra upload/ush operation */34 t = getEndOfChildTran (b ) ;35 addOperation ( t , b . bufOp , null ) ;36 break ;37 g38 g Fig. 24: Subroutine addOutputnew BPDT is onneted. It uses the reateBPDT funtion to generate a BPDT bymathing the loation step N with the templates (depited in Figures 12 through16 in Setion 5.2) and binding the symbols in the templates to the atual values inthe loation step. The start state of this new BPDT is merged with s (the trueor na of p). That is, the two states are assigned the same ID and the transitionsassoiated with them are ombined (funtion mergeStates). Other states in the newBPDT are assigned a unique (arbitrary) state identi�er. The newly reated BPDTis then assigned an identi�er of the form (l; k) based on the state s to onform tothe sheme desribed earlier.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 37The addBPDT subroutine also sets the bu�er operations in the new BPDT basedon its identi�er. The lear operations remain idential to those in the templates.For bpdt(l; k) with k 6= 2l�1 (i.e., all exept the leftmost BPDT), the ush operationin this BPDT is replaed by an upload operation. Sine this BPDT is in the rightsubtree of at least one anestor (otherwise k = 2l � 1), we know that at least oneprediate for the items in the bu�er is still not satis�ed. For bpdt(l; 2l � 1), theush operation is left unhanged.If the loation step N uses the losure axis, the addBPDT subroutine modi�esthe transitions in the new BPDT. It �rst adds a self-losure transition from thestart state to itself, labeled with //. This transition permits the HPDT to stayin the start state for any begin event that omes from the subelements for theurrent element. It then sets as losure transitions the transitions that emergefrom the start state and proess the begin event of the node test in the loationstep. (There is only one suh transition in all BPDTs exept those generated usingthe template in Figure 12.) These transitions permit the HPDT to aept thesubelement of any depth that mathes the node test of the urrent loation step.In addition to the modi�ations made to the transitions, an extra bu�er operationis needed for the p BPDT when the loation step N has a losure axis. Let us on-sider an example to illustrate the neessity of the extra bu�er operation. Reall theBPDT depited in Figure 18, whih evaluates the query /book[author℄/prie/text(). Now onsider the following query, whih di�ers from the earlier one onlyin the axis of the seond loation step being desendant-or-self instead of hild:/book[author℄//prie/text(). The orresponding hanges to the BPDT of Fig-ure 18 involve adding two self-losure transitions to states $2 and $4 and markingthe transitions $2! $5 and $4 ! $6 as losure axes (marking the ars with =). At�rst glane, these hanges may seem suÆient and the resulting automaton mayseem to aurately proess the new query. However, a loser examination reveals aproblem in the ase of prie elements that have both book and author elements asanestors. Corretly proessing suh elements requires a ush operation on transi-tion $3 ! $4. The prie elements that are desendants of both book and authorelements always our between the begin and end events of the author element;they will be enqueued by the self-transition on $5, and ushed to output by theoperation on the transition from $3 to state $4. We note that this modi�ation isneeded only for parent BPDTs generated using the templates in the following Fig-ures (with the a�eted transitions in parentheses): Figure 13 ($4 ! $5), Figure 14($3 ! $4), and Figure 16 ($4 ! $5). (The a�eted transitions are returned by thegetEndOfChildTran funtion in Figure 23.) The added extra operation ould beush or upload, based on the bu�er operation used in the parent BPDT.Returning to Figure 22, we note that after all the BPDTs have been generatedand onneted, the addOutput subroutine is used to add output operations to theBPDTs in the lowest layer. The pseudoode for this subroutine is presented inFigure 24. First, as desribed in Setion 6.1, only bpdt(n; 2n � 1) uses the diretoutput operation beause it is the only BPDT in whih any data mathing the trunkof the query has already satis�ed all the prediates in the query. The other BPDTsin the lowest layer use enqueue operations in plae of the output operation. Next,the BPDT is modi�ed by adding further operations and transitions, determinedACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



38 � F. Peng and S. S. Chawatheby the type of the output funtion O. If O spei�es outputting an attribute ofthe element spei�ed by the last loation step, an output or enqueue operationwill be added to every transition emerging from the start state that proessesthe begin event of that element. If O spei�es outputting the text ontent of theelement, a self-transition is added to every na and true state in this BPDT. Aoutput(text()) or enqueue(text()) operation is added to the new transition. If Ospei�es outputting the whole element spei�ed by the last loation step, we adda self-transition labeled with �� (ath-all) to every na and true state assoiatedwith the output(��) operation. These two transitions will math all the subelementsand text ontents of the urrent element. The operation output(��) is also addedto the transition that emerges from the start state that proesses the begin eventof the urrent element and to the transition from the true state to the startstate that proesses the end event of the urrent element. All these newly addedoperations will math every event within the urrent element. We also note thatsine the ath-all transitions essentially funtion as losure transitions (aeptinginoming events at any larger depth), we have to add an extra bu�er operation(ush or upload) to the urrent BPDT as desribed above.6.4 AggregationsGiven the above mahinery, very little extra work is required for supporting aggre-gates. For this purpose, XSQ uses a statistis bu�er stat. In the stat bu�er, thereis one item for eah aggregation funtion, with initial value null. There are twooperations on this bu�er:|update(aggr,value): Update the item for aggregation funtion aggr in statwith the value . For example, update(COUNT,2)will add 2 to the number in stat .|output(aggr): Output the value of the funtion aggr in stat .For example, onsider the following query, whih di�ers from the query of Example 9only in using an output funtion ount() instead of text()://pub[year>2000℄//book[author℄//name/ount()To evaluate this query, we use an HPDT that is almost idential to the one depitedin Figure 21. We replae all ourrenes of flush()with update(COUNT, v), wherev is the number of items in the BPDT's queue. We also replae all instanes ofoutput(value) with update(COUNT,1). Finally, we plae output(COUNT) on thetransition from $2 to $1. We may also modify the semantis of update() so that itemits a new value whenever the number in the bu�er is updated. This hange makesthe result of the aggregation query available in an online manner. This feature isespeially useful when we proess aggregation queries over unbounded streams.6.5 AnalysisWe provide a detailed experimental analysis of XSQ in Setion 9. Here, we presenta simple worst-ase analysis of the spae and time osts of the method desribedabove. Consider an XPath query that has q loation steps. In worst ase, wheneah loation step involves a prediate, our method results in an HPDT built from2q BPDTs. (Note that none of the BPDTs in the subtree rooted at bpdt(1; 0) aregenerated.) Reall, from Setion 5, that our method generates BPDTs for eahstep based on the templates of Figures 12, 15, 13, 14, and 16. The largest of theseACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 39(the template for a step of the form /tag[hild=val) has six nodes. However,the start state of eah BPDT other than the root BPDT is idential to one ofthe states in its parent BPDT. Therefore, the number of states in the HPDT isat most 5 � (2q � 1) + 2 = 5 � 2q � 3 states (sine the root BPDT has two nodes).Although the exponential dependene on query length may seem problemati at�rst, we note that the HPDT has a very regular struture that lends itself well tooptimizations in the implementation. In partiular, level k of the HPDT onsistsof 2k BPDTs that are very similar to eah other. An implementation may hoosea ompressed representation of the state spae they enode, by using a bit vetorto indiate whih subset of the BPDTs at a given level are ative. The urrentversion of XSQ does not perform suh optimizations. However, as we indiate inSetion 9, the memory used for the HPDT is still modest. In fat, the dominantspae ost for most query-data ombinations is not the HPDT but the bu�ers usedto hold potential query results. By examining all the ases for bu�er operations inthe HPDT, we observe that an item is in the bu�er exatly when its membershipin the query result annot be deided based on the portion of the stream that hasalready been seen. It follows that every streaming proessor must bu�er suh anitem. Therefore, the bu�ering mehanism in XSQ is optimal in the sense that atany point in time, the bu�er of any streaming XPath proessor must inlude atleast the bu�er items in XSQ's bu�er.The appropriate measure of time omplexity for a streaming query proessor isthe amount of work it must perform for eah unit of input. In the ase of XSQ,the ritial fator determining the amount of suh work is the number of urrentlyative states in the HPDT. If the query does not use the losure axes (//, denotingdesendant-or-self, and its variants), then there is only one ative state at any time.Thus, for eah input symbol, we need to hek transitions from only one state.By hashing on tag names, mathing transitions an be seleted in onstant timeby using perfet hashing (ignoring the typially modest hash funtion evaluationtime). Thus, the ase of no losure axes leads to a onstant amount of work perinput byte.The worst ase is when all q loation steps of the query use losure axes andhave prediates assoiated with them. The amount of work performed by XSQ inthis ase depends on the struture of the input stream. If the stream does notontain reursive struture then eah losure state generates only one state in theruntime set of urrent states (and the depth stak is not needed). The size ofthe urrent state set is at most O(2q), and for eah SAX event, we have to hekfor possible transitions O(2q) times. The maximum number of transitions on theinoming event for eah of these states is two (one self-transition and one transitionto another state). The amount of work XSQ must perform for eah input item (SAXevent) is O(2q), in worst ase. We note that this result is only a rough estimate.Sine elements that math the �rst loation step have at most one state to hekfor possible transitions, elements that math i'th loation step have at most 2istates to hek, and only the elements that mathe the pattern will be heked(the others will not lead to any state transitions at all). The atual number ofoperations depends on the degree of similarity between the data and the query andthe struture of the data.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



40 � F. Peng and S. S. ChawatheIf the stream does ontain reursive struture, the number of urrent states de-pends on the number of ways eah element an math the orresponding loationstep. For example, if an element in the �nal result has k ways to math the query,the HPDT may reate O(2q) urrent states. Then, for eah state in layer q (thelowest layer), k opies of the state are generated at runtime, eah with a di�erentdepth stak. For the states in a higher layers, no more than k opies are generated.Therefore, the amount of work per input item is is O(2qk) in worst ase. As notedearlier, this worst ase result is only a rough estimate and real queries and streamsare unlikely to inur the worst ase osts. We explore these and other issues indetail in Setion 9.7. RELATED WORKSeveral papers have addressed the problem of �ltering a stream of XML douments[Altinel and Franklin 2000; Green et al. 2003; Diao et al. 2002; Lakshmanan andSailaja 2002; Chan et al. 2002℄. This problem has been referred to variously asseletive dissemination of information (SDI), publish-subsribe (pub-sub), and querylabeling. Briey, �ltering assumes that the input is a stream of douments that areto be mathed with a given set of queries. A query is said to math a doument ifthe result of evaluating the query on the doument is non-empty. Sine there is nooutput other than the identi�ers of the douments mathing eah query, methodsfor �ltering are simpler than those needed for querying. As desribed in Setion 3,we may think of methods for �ltering as starting points for the exploration of moregeneral methods for querying. Filtering systems typially fous on supporting highthroughput for a large number of queries using only a moderate amount of mainmemory.The XFilter system [Altinel and Franklin 2000℄ fouses on the problem of evalu-ating a large number of XPath �lter expressions over every doument in a streamof douments. It uses �nite-state automata similar to those desribed in Setion 3.Sine the �lter expressions are likely to have many ommon segments, the automataare ombined and indexed to yield an eÆient �ltering method. The YFilter sys-tem [Diao et al. 2002℄ addresses a similar problem and uses one automaton toevaluate all submitted �lter expressions. It ombines all the automata into one bigautomaton that uses a run time stak to trak all the possible states for all thequeries. Instead of the index used by XFilter, YFilter uses query identi�ers in thestates to denote the queries orresponding to the results. The method desribed in[Chan et al. 2002℄ uses a data struture alled XTrie instead of a at table to indexXPath queries based on ommon substrings among them. Automaton-based meth-ods spend a signi�ant amount of time mathing transitions to inoming events;as a result, deterministi automata typially yield higher throughput than theirnondeterministi ounterparts. However, as usual, the deterministi version of anautomaton may require a large amount of memory. This problem is addressed in[Green et al. 2003℄ by using a lazy deterministi �nite state automaton. The mainidea is to �rst build a naive �nite-state automaton diretly from the XPath ex-pression. At run time, the system adds new states as needed on the y. Sine itdoes not need to use a stak to keep trak of all possible states, its throughput isimproved. Although the deterministi automaton requires more memory than itsACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 41nondeterministi ounterparts, an upper bound on the size of DFA is provided in[Green et al. 2003℄.The problem of query labeling is studied in [Lakshmanan and Sailaja 2002℄. Theauthors propose a requirements index as a dual to the traditional data index. Aframework is provided to organize the index eÆiently and to label the nodes instreaming XML douments with all the mathed requirements in the index. Theproblem of validating XML streams using pushdown automata has been studied in[Segou�n and Vianu 2002℄. (Briey, an XML doument is said to be valid withrespet to a given Doument Type De�nition (DTD) if the doument strutureobeys the grammar spei�ed in the DTD [Bray et al. 1998℄.) This problem an alsobe onsidered as a �ltering problem beause the pushdown automaton an �lter thedouments that satisfy the DTD.As noted earlier, the above systems support �ltering, not querying, of XMLstreams. Further, they either do not support prediates, or support only simpleprediates that test strutural information (whether an element has spei�ed de-sendant). The YFilter system [Diao et al. 2002℄ supports prediates that do notreferene other elements so that the prediate an be evaluated immediately whenthe related input element is enountered. Sine the YFilter system only �lters theXML stream, it need not handle the ase where the prediates are evaluated indi�erent sequenes.A transduer-based approah to evaluating XQuery queries on streaming datais presented in [Ludasher et al. 2002℄. An XQuery is deomposed into subex-pressions and eah subexpression is mapped to an XML Stream Mahine (XSM).Eah XSM onsumes the ontent of its input bu�er and writes output to its outputbu�ers. The output bu�er of one XSM may be the input bu�er of another. Thisproduer-onsumer relationship of XSMs through their bu�ers results in a networkof XSMs. This network is merged into a single XSM that an be optimized if theDTD for the input data is available. (In [Olteanu et al. 2002℄, a similar approahis used to evaluate regular path expressions with quali�ers over well-formed XMLstreams. That paper proposes a transduer network model alled SPEX, in whiheah transduer is generated from a regular path expression onstrut. The outputtape of one transduer forms the input tape of another.) The key di�erenes be-tween XSQ and XSM are as follows: First, XSQ supports XPath features suh asaggregations, losures, and multiple prediates that are not supported by XSM. Asdesribed in earlier setions, these features, espeially in ombination, ompliatequery proessing. Seond, XSM supports onstrutors in XQuery expressions whileXSQ supports only XPath (no onstrutors). XSQ uses this simpli�ation to workwith a simpler automaton and a simpler model of bu�er interations. Third, theombined, optimized XSM is quite ompliated, making it diÆult to group similarqueries. In ontrast, the HPDT has simple struture, and methods suh as thosein [Diao et al. 2002℄ an be easily applied to it. At the time of writing, the XSMsystem was not available for testing and it is therefore omitted from our study inSetion 9. However, we believe that XSQ and XSM are pratial demonstrationsof the trade-o�s between query language expressiveness and system simpliity andeÆieny (XPath vs. full XQuery).An interesting feature of the XAOS system [Barton et al. 2003℄ for streamingACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



42 � F. Peng and S. S. ChawatheXML is that it supports XPath's reverse axes, suh as parent and anestor. Ituses two data strutures alled X-tree and X-dag to redue the amount of stream-ing data bu�ered in a mathing struture. Essentially, the X-tree is the parse treeof the XPath expression, with reverse axes permitted. The X-dag is the equiv-alent XPath representation with reverse axes removed. The X-dag is used as apattern to �lter the inoming stream to remove the irrelevant nodes. The rele-vant nodes are stored in the mathing struture based on their relations in theX-tree. When the end of the stream is enountered, results are produed bytraversing the mathing struture. A drawbak of this approah is that it doesnot output any results until the end of the stream is enountered. (For unboundedstreams, a periodi evaluation of the mathing struture ould be used.) UnlikeXSQ, XAOS supports reverse axes; however, unlike XAOS, XSQ produes inre-mental results and bu�ers data in an optimal manner (least amount of data forthe least amount of time possible). Rewriting XPath queries with reverse axes intoequivalent queries with only forward axes is studied in [Olteanu et al. 2002℄. How-ever, sine the rewriting algorithm introdues node set omparison operations inthe new expression, the approah is diÆult to apply in a streaming environment.For example, for an expression X[anestor::Y/Z℄, the rewriting algorithm pro-dues X[/desendant::Y[Z℄/desendant::node()=self::node()℄. We believeit should be possible to ombine some of the ideas used in XSQ, XAOS, and themethod of [Olteanu et al. 2002℄ to yield a system that supports reverse axes withoutsari�ing bu�er spae.Several systems provide methods for querying non-streaming XML data. Galax[Fernandez and Simeon 2002℄ is a full-edged XQuery query engine. It implementsalmost all of the XML Query Data Model along with the type system and dynamisemantis of the XML Query Algebra. XQEngine [Katz 2002℄ is a full-text searhengine for XML douments that uses XQuery and XPath as its query language.XPath expressions and boolean ombinations of keywords are used to query olle-tions of XML douments. The engine reates a full-text index for every doumentbefore the doument an be queried. It is diÆult to adapt these systems forstreaming data. Nevertheless, we use them in our experimental study in Setion 9for omparison purposes.A topi losely related to XPath query proessing is XML transformation. XSLTis a standard template-based language for transforming XML [W3C XSL WorkingGroup 2002℄. Sine XSLT uses XPath to speify patterns in its rules, XSQ and othermethods for XPath proessing have appliations in XSLT proessors. As studiedin Setion 9, the popular implementation of XSLT in Saxon [Kay 2002℄ is based onan in-memory materialization of the entire XML doument and is therefore limitedin the size of douments it an eÆiently transform. By using a streaming XPathproessor suh as XSQ, we an design an XML transformation system that bu�ersonly limited amount amounts of data.The STX system takes a di�erent, more proedural, approah to transformingstreaming XML [Beker et al. 2002℄. It uses templates to speify the operations thatshould be performed when data mathing the template pattern is enountered. Wemay think of STX as a general-purpose event-driven programming environmentthat is not tailored to a spei� query language. However, it may be used forACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 43XPath proessing if we design a method for generating eÆient STX templatesfrom XPath queries. For example, if there are two prediates in an XPath query,we may reate two variables in the program to store the urrent results of theprediates. When a prediate is evaluated, the orresponding variable is set tothe result of the evaluation. We also need to speify expliitly when to reset thevariables. We may then hoose the right operation based on the urrent valuesof the variables. However, in this sheme, the positions of the elements have tosatisfy the requirement that the prediate is evaluated before the target items. Ingeneral, it is not obvious how to generate STX templates equivalent to an XPathquery in a systemati manner. However, this approah is an alternative to ourautomaton-based approah and would bene�t from further attention.The query omplexity of XPath is addressed by [Gottlob et al. 2002℄, whih pro-vides a main-memory algorithm for evaluating XPath on non-streaming data thatis polynomial in the size of the query (and data). The method is based on redu-ing every axis to two primitive axes: �rst-hild and next-sibling. The algorithmtraverses the XPath parse tree in a bottom-up manner. The subexpressions in thelowest level are evaluated by sanning the data. The results of these subexpressionsare then used in the evaluation of their parent subexpressions, reursively. The pa-per also provides a re�ned top-down algorithm and suggest a ore subset of XPaththat an be evaluated in linear time. Sine these methods require multiple passesof the data, it is not easy to adapt them methods for a streaming environment.However, it should be interesting to investigate the issues raised by this paper in astreaming environment.The evaluation of XPath queries over XML data is losely related to the problemof tree pattern mathing [Miklau and Suiu 2002; Chen et al. 2001℄. As desribedin [Miklau and Suiu 2002℄, despite the resemblane, there are important di�er-enes between XPath evaluation and the lassial problems of tree pattern math-ing [Ho�mann and O'Donnell 1982℄ and unordered tree inlusion [Kilpel 1992℄. Inpartiular, the problem of unordered tree inlusion is NP-hard (by diret redutionfrom SAT) [Kilpel 1992℄, while XPath queries an be answered in polynomial time[Gottlob et al. 2002℄. Intuitively, the reason the inlusion problem is harder thanthe XPath problem is that the former does not permit multiple nodes in the pat-tern tree to be mapped to the same node in the data tree. Most of the algorithmsfor these problems require a postorder (bottom-up) traversal of the data trees andare thus unsuitable for streaming data that is provided in preorder. As an exep-tion, the algorithm desribed in [Ho�mann and O'Donnell 1982℄ for the lassialtree pattern mathing problem needs only a preorder traversal of the data tree.However, it allows only parent-hild (not desendant) edges in patterns and �ndsonly mathes for whih siblings our in the same order in the data and as in thepattern. On the other hand, tree patterns orresponding to XPath queries inludeanestor-desendant edges (for the losure axis) and XPath semantis require thatthe sibling order in the pattern (order of nodes mentioned in prediates) be ignored.Therefore, this algorithm annot be easily applied to XPath.An alternating automaton is an automaton in whih eah state has a ag indi-ating the aeptane or rejetion [Chandra et al. 1981℄. There are three types ofstates: universal, existential, and negating. A universal (existential) state beomesACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



44 � F. Peng and S. S. Chawathean aepting state if all (respetively, at least one) of its o�spring states reah a-epting states. A negating state has a unique o�spring and beomes an aeptingstate only when the o�spring state is a rejeting state. There are two diÆulties inapplying alternating automata for streaming XPath evaluation: First, alternatingautomata naturally express the semantis of �ltering expressions, but not queryingexpressions. In partiular, they do not provide a mehanism to solve the addressthe bu�ering problems disussed in Setion 5. Seond, they use a bottom-up modelof omputation that does not �t well with the preorder arrival of streaming XMLinput. However, it may be possible to adapt some of the ideas used by alternatingautomata for XPath.The Aurora system [Carney et al. 2002; Cherniak et al. 2003; Zdonik et al. 2003℄is a data stream management system for monitoring appliations, in whih typialtasks inlude traking the abnormalities among multiple streams, �ltering spei�target data for the user, and exeuting queries involving aggregations and joins. TheAurora system proesses data streams using a large trigger network. The trigger,whih is essentially a data-ow graph, is generated from the persistent queriesprovided by appliations. The tuples in the results of these queries are reatedfrom the inoming streams and fed into the original appliation also in streamingform. The Aurora system provides a set of operators for an appliation to speifythe persistent query and quality of servie (QoS) requirements. At runtime, theAurora system is optimized by using tehniques suh as load shedding (disardingdata that requires a long time to proess) and real-time sheduling.The Fjords arhiteture [Madden and Franklin 2002℄ has been developed formanaging multiple queries over the numerous data streams generated from sen-sors. Sensor data is generated in streaming form and the data rate is typially highand variable. The Fjords arhiteture is designed to maintain a high throughputfor queries even when the data rate is unpreditable. It provides an eÆient andadaptive infrastruture for more sophistiated query appliations. The main om-ponents of the arhiteture are the queuing system and the sensor proxies. Thequeues an funtion in either pull or push mode. They are the basi funtionalstrutures to route data between the operators in a query plan. Query operatorsmay be adaptive, suh as Eddies [Avnur and Hellerstein 2000℄. Eah sensor has asensor proxy that aepts queries and tries to simplify the queries for the sensor'sproessor. The proxy adjusts the sample rate of the sensor based on the queriesand permits di�erent users share data from the sensor. Suh optimizations resultin higher throughput and longer sensor battery life, sine energy is onserved byavoiding unneessary sampling.The NiagaraCQ system is designed to eÆiently support a large number of sub-sription queries expressed in XML-QL over distributed XML datasets [Chen et al.2000℄. It groups queries based on their signatures. Essentially, queries that havesimilar query struture by di�erent onstants are grouped and share the results ofthe subqueries representing the overlap among the queries. NiagaraCQ and XSQwork at di�erent granularities of data. Although NiagaraCQ handles both hange-based and timer-based ontinuous queries, the events it handles (suh as hangedremote XML �le and ativated timer) are at a high level. Therefore, it an usematerialized data that is managed by a ahe manager. In ontrast, systems suhACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 45as XSQ and XFilter respond to every event generated by a SAX-like parser. XSQevaluates queries on streaming data, and the result is also in streaming form. Thesetwo granularities are omplementary: One an ombine the methods of NiagaraCQfor the larger granularity with the methods of XSQ for the �ner granularity.A related system, WebCQ, implements server-based Web page monitoring [Liuet al. 2000; 1999℄. Users use WebCQ's own query language to speify a sentinel,whih is essentially a request for monitoring the spei�ed Web objets. The sentinelsupports di�erent kinds of objets, suh as images and links in Web pages, di�erenttime intervals for hange detetion, and di�erent kinds of noti�ation mehanisms.Although both WebCQ and XSQ are event-driven systems, the events in WebCQsystems are spei�ed by the user and are mostly timer-based. When a timer isativated, WebCQ visits the spei�ed Web resoure and pulls the ontent thatwill be ompared with its stored version in the ahe. XSQ, in ontrast, is morelike a push-based system that reeives the data passively and returns the resultsontinuously. Further, like NiagaraCQ,WebCQ also operates at a larger granularitythan does XSQ.Another system for proessing data streams is dQUOB [Plale and Shwan 2003;2000℄. It views the data streams as a relational database. Eah event in the streammaps to a tuple in a relation that haraterizes the stream. It uses SQL extendedwith reate-if-then rules from Starburst 's ative database query language [Widom1996℄. The reate lause spei�es the name of the rule and the data soure, the iflause ontains a SQL query, and the then lause spei�es an optional funtion thataepts the result of the SQL query for further proessing (inluding serving as theinput of another query). The dQUOB system an generate optimized query plansfor the ontinuous queries presented in the system based on the relational modeland allows user-spei�ed adaptation for hanges in data streams.Most work on streaming data, inluding XSQ, assumes that the input onsistsof only the raw data. In this environment, ertain limitations are unavoidable.For example, it is easy to devise XPath queries and sample inputs for whih anunbounded amount of bu�ering is required for any XPath proessor that produesexat results. An interesting alternative to this environment is one in whih theinput provides some assistane to the query proessor by speifying onstraints onforthoming data or some other similar hints. For example, [Tuker et al. 2003℄desribes a method for embedding puntuations in streaming data, failitating thestreaming evaluation of queries that inlude bloking operators suh as group by.It should be interesting to use similar ideas for streaming XML to support XPathqueries that inlude traversal axes suh as following.8. SYSTEM ARCHITECTURE AND IMPLEMENTATIONWe have implemented the XSQ system in Java using Sun Java SDK version 1.4.The ode is publily available (GNU GPL terms) at http://www.s.umd.edu/projets/xsq/. The arhiteture of the XSQ system is depited in Figure 25. Thesingle arrows denote streaming data transfer between omponents at runtime (queryexeution time). The double arrows denote the ow of information during ompiletime. The XSQ system generates the HPDT orresponding to a given XPath asfollows. The XPath query is parsed by the XPath parser into a sequene ofACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 25: XSQ system arhiteture
Fig. 26: Sreenshot of the XSQ systemloation steps. Eah step onsists of an axis, a node-test, and a prediate in the formof objet op onst. The prediate may be null. The objet of a non-null prediatefalls in one of the �ve ategories we summarized in Setion 5.2. Based on theategory of the objet, the BPDT builder builds a BPDT for eah loation stepby instantiating the template for its ategory. The BPDT builder �rst reates theroot BPDT whih is denoted by bpdt(0; 0). For the ith loation step, it starts with2i idential BPDTs and assigns eah opy a unique ID (i; k). If k 6= 2i� 1, i.e., thebpdt(i; k) is not the left most BPDT in the layer, the ush operation in the templatesshould be modi�ed to upload operation. It also adds a self-losure transition to thestart state of the urrent BPDT and modi�es the existing transitions if the axis inthe loation step is a losure axis. (The details of these modi�ations are desribedin Setion 6.3.) The set of BPDTs is stored indexed by their soure states. Eahstate stores the set of transitions emerging from it as a set indexed by the targetsof the transitions. For eah transition ar, we store the target state, the prediate,the bu�er operations, and the type of the transition (self-losure, losure, regular,or ath-all). We thus obtain an array of BPDTs in whih the bpdt(l; k) is storedat the o�set 2l + (k � 1).The HPDT builder onnets all the BPDTs into one HPDT by assigning aunique state ID for eah state in all the BPDTs. For the true state of the bpdt(l; k),it will be assigned the same state ID as the start state of bpdt(l + 1; 2k + 1). Forthe na state of bpdt(l; k), it will be assigned the same state ID as the start stateACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 27: Sreenshot of XSQ displaying a HPDTof bpdt(l+ 1; 2k). The transition ars from the two states are ombined. However,eah transition ar stores the ID of the original BPDT to whih it belongs. Aftersuh assignment, all the states in the HPDT are stored in a single set.All the tasks desribed above are performed o�ine when the query is issued(query ompilation time). At runtime, the HPDT engine is responsible for exe-uting the HPDT spei�ation produed by the HPDT builder. It maintains theative states, stak, bu�ers, and other runtime objets assoiated with the HPDT.When the HPDT engine reads an HPDT spei�ation, it �rst reates a global queuethat is used for storing all items (raw ontent, without depth staks) that need tobe bu�ered in FIFO order. It also reates an array of bu�ers whose items arereferenes to the items in the global queue (with depth staks). The bu�er of thebpdt(l; k) is stored at the o�set 2l + (k � 1) in the array. When the proessingof streaming data begins, the HPDT has the start state with the depth stak (0)as the ative state. Whenever a transition ar in bpdt(l; k) is exeuted, the bu�eroperations de�ned for this ar, if there are any, operate on the bu�er at the o�set2l + (k � 1) in the array of the bu�ers.The streaming input to the HPDT engine omes from the SAX parser, whihgenerates a sequene of SAX events in response to the inoming XML data. We usethe SAX interfae of the Xeres parser [XER 2000℄. For eah event, it alls a user-ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



48 � F. Peng and S. S. Chawathede�ned event handler that proesses the event. Our event handlers �rst reordthe depth of the urrent event in order to support the event struture desribed inSetion 2.2 (sine the standard SAX API does not provide the information). It alsoperforms the stak operations and validations sine these operations are the samefor all XML data. If the XML data is well-formed, it forwards the event to theHPDT engine in the XSQ format, whih is a quadruple of (tag, attrs, type, depth).In order to failitate our experimental evaluation of the e�ets of di�erent XPathfeatures, we have implemented two versions of XSQ: XSQ-NC supports multi-ple prediates and aggregations, but not losures. XSQ-F supports losures inaddition to multiple prediates and aggregations. Figure 26 depits a sreenshotof the graphial interfae of the XSQ-F system. The sreenshot displays the re-sult of the query //ACT[TITLE="ACT I"℄//SPEECH[SPEAKER℄//LINE/ount() onthe mabeth.xml �le from the SHAKE dataset, whih ontains XML versions ofsome of Shakespeare's work [Bosak 2002℄. The query illustrates the use of ag-gregation funtions; it returns the number of lines that our as desendants ofa SPEECH element with a SPEAKER hild in At I of the play. Figure 27 de-pits another sreenshot of the interfae. The query is one used in Example 9:pub[year>2000℄//book[author℄//name/text() The dataset has struture simi-lar to that depited in Figure 2. As indiated by the �gure, in addition to queryresults, XSQ produes a graphial representation of the HPDT it uses for queryproessing. (We use the Graphviz pakage [Gansner and North 2000℄ for renderingthe HPDT.)The oneptual data strutures introdued in earlier setions are implementedusing more eÆient low-level mehanisms in several instanes. For example, depthstaks are stored as integers and operations on the depth staks are implementedas fast bitwise operations on the integer representations. For example, if the depthstak is (1; 2; 5), the integer representation is 11001. That is, the i'th bit is set ifand only if the depth stak ontains i. This representation is unambiguous beausethe depth stak onsists of monotonially stritly inreasing numbers (reading thestak bottom to top). Thus, the depth staks use very little memory and operationson them inur very little overhead. We use long integers (64 bits) for this purpose.In order to support data with depth greater than 64, we an swith to using apair of long integers. (Currently, this swith requires a reompilation of the HPDTengine module.)Another implementation optimization is that used for bu�ers. There is only oneopy of any data item in a global queue. The separate bu�ers of eah BPDT onlystore referenes to this opy. Sine we are using the referenes, we an mark theitem in the global queue with an output ag when one BPDT determines that theitem should be output. If there are several transitions proessing the item, theother operations an be ignored. (Some of these may all for dequeuing the item;however, from the existential semantis of prediates in XPath it follows that theitem belongs in the result.) Moreover, the doument order of items is maintainedautomatially sine we always output from the head of the global queue; that is,even if an item is agged for output, it is not sent to output until it beomes the headof the global queue. Given this guarantee, the referenes of the items in one bu�eran be grouped based on their depth staks regardless of their doument order,ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 49whih will be maintained in the �nal result. Therefore, when a bu�er operationoperates on the urrent bu�er, it ompares the desired depth stak (aording tothe states involved in the transition) with the depth staks of the items group bygroup instead of going through the items one by one.9. EXPERIMENTAL EVALUATIONIn this setion, we summarize the results of our experimental evaluation of XSQ.We begin by desribing our experimental setup in Setion 9.1. Next, we study thetwo main performane metris: throughput in Setion 9.2 and memory usage inSetion 9.3. Setion 9.4 presents a broader study of a set of query engines aimed atharaterizing their features and performane. In Setion 9.5 we present a detailedexperimental haraterization of XSQ.9.1 Experimental SetupWe onduted our experiments on a PC-lass mahine with an Intel Pentium III900MHZ proessor with 1 GB of main memory running the Redhat 7.2 distributionof GNU/Linux (kernel 2.4.9-34). The maximum amount of memory the Java VirtualMahine (JVM) ould use was set to 512 MB. For the purpose of omparison,we seleted a set of systems that proess XPath or XPath-like queries. Thesesystems are outlined in Figure 28. As the �gure suggests, these systems varyonsiderably in their design goals and features, and many do not support streaming.We have disussed Galax [Fernandez and Simeon 2002℄ (version 0.1�), XQEngine[Katz 2002℄ (version 0.56), XMLTK [Avila-Campillo et al. 2002℄ (version 0.9), Saxon[Kay 2002℄ (version 6.5.2), and Joost (version 20020828) [Beker 2002℄ in Setion7. Some systems use query languages that are supersets or variations of XPath.For suh systems, we issued queries that are equivalent to the XPath queries in ourexperiments. In many ases, the results are enlosed by di�erent ontainer elementsbut the ontents are the same.One of the goals of our experimental study is omparing di�erent systems for thethroughput and the memory usage, whih are very important metris of a queryengine. However, we also wish to haraterize these XPath proessors in terms ofthe relation between the performane and the underlying features of the systems.We wish to gain insights into the ost to supporting ertain XPath features suhas losures and to study whih systems and features are best suited to a givenenvironment. For example, if we only want to use a simple XPath fragment withoutprediates, we do not need a full-avored XQuery engine suh as Galax. However,if we need to express ompliated queries that involve joins or onstruting newelements, we need to use systems suh as Galax.In our experiments, we use both real and syntheti datasets that di�er in sizeand harateristis. We use four real datasets [Avila-Campillo et al. 2002℄: anXML-ized version of Shakespeare's plays (SHAKE); the NASA ADC XML dataset(NASA) [Borne 2002℄, bibliographi reords from the DBLP site (DBLP) [Ley ℄, andthe PIR-International Protein Sequene Database (PSD) [Wu et al. 2002℄. We alsouse syntheti datasets that are generated using IBM's XML Generator [IBM 2001℄and Toxgene [Barbosa et al. 2002℄. Sine the real datasets have relatively shallowstrutures, we generated two datasets using IBMGEN with deeper doument stru-ture to explore features related to suh data. They are named as RECURS andACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 28: System FeaturesName Size Text Number of Avg/Max Average Parsing Parsing(MB) size elements depth tag Time(s) Time (s)(MB) (K) length Xeres ExpatSHAKE 7.89 4.94 180 5.77/7 5.03 1.42 0.43NASA 25.0 15.1 477 5.58/8 6.31 4.35 1.50DBLP 119 56.4 2,990 2.90/6 5.81 27.6 7.53PSD 716 286 21,300 5.57/7 6.33 170 66.4RECURS 10.4 8.78 95.6 22.3/26 5.31 1.65 0.43RECURB 121 105 963 26/30 5.31 13.0 4.82Fig. 29: Dataset DesriptionsRECURB. Some harateristis of these datasets, suh as size, number of elements,depth, and parsing time are listed in Figure II.For a text-based data format suh as XML, parsing the input is often a sub-stantial omponent of the running time. The parsing times listed in Figure II aregenerated using two parsing programs, named PureParsers, in C and Java. ThePureParser in C uses the Expat 1.2 parser that is used by XMLTK. The PureParserin Java uses Xeres 1.0 for Java, whih is used in XSQ-NC, XSQ-F, XQEngine,Saxon, and Joost in the experiments. The PureParsers parse the XML data butdo nothing else. We note that the C parser is generally faster than Java parsersine parsing involves a large number of string operations, whih are implementedmore eÆiently in C. For example, for the 119MB DBLP dataset, the C PureParser�nishes parsing in 7.53 seonds and the Java PureParser uses 27.6 seonds.In our experiments, we exeuted eah query on a dataset 30 times to get the meanvalue of the result we need. We also omputed the 95% on�dene intervals ofthe values to make sure our omparisons are statistially signi�ant. We found thatin all ases the 95% on�dene interval is of width less than 1% of the mean valuebeing measured (throughput, memory usage, et.). Sine it is diÆult to displaythis small interval graphially, the usual error-bars are omitted in the graphialresults that follow.9.2 ThroughputWe measure throughput as the rate at whih a streaming query engine onsumesinput data (megabytes per seond). Sine this rate may vary over time (perhapsdepending on the struture of the data, or as a result of periodi reorganizationof data strutures in a streaming system), we measure the average throughput asthe size of the input divided by the time required to proess it. Although thismeasure of throughput is useful for understanding the end-to-end performane ofACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 33: Relative throughputs for di�erentqueries on the PSD datasetQ1:/ProteinEntry/referene/refinfo/authors/author/text()Q2:/ProteinEntry[sequene℄/protein/name/text()Q3://sequenea streaming query engine, it is not a good metri for our goal of understanding therami�ations of di�erent system designs and features for two reasons. The �rst isthat the systems we study use di�erent programming languages and environments,and di�erent parsers. Sine the performane of the parser is a dominant fator inthe performane of XPath proessors, results based on only end-to-end throughputmeasurements are likely to be determined more by the features of the parser andprogramming language libraries than by the query engine proper. The seondreason is that di�erent datasets may lead to di�erent parsing performane for thesame parser. We an see in Figure II that the parsing times are inuened by notonly the size of the �le, but also by the number of elements in the �le. For the twodatasets DBLP and RECURB, the sizes are similar but the parsing times di�ersubstantially sine DBLP has more elements than RECURB. In order to study thethroughput of query engines on di�erent datasets, it is important to fator out thee�ets of the varying diÆulties of parsing suh datasets.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 35: Relative throughputs for di�erentqueries on the RECURB datasetQ1:/pub/book/title/text()Q2:/pub/book[year℄/author[email℄/name/firstname/text()Q3://proeedings/�ategoryQ4://pub[year=14℄//paper[�id=13℄/titleSine all the systems in Figure 28 use the SAX API to parse the data, thethroughput of the PureParser, whih parses the data but does nothing else, givesan upper bound of the throughput for any XML query system. Therefore, insteadof omparing systems using their raw throughput, we ompare them using theirthroughput normalized with respet to their parsers. That is, we de�ne relativethroughput to be the throughput of the omplete system divided by the through-put of the parser used by that system. Note that Galax implements its own parserin OCaml. Sine we were unable to �nd a SAX parser implemented in OCaml,we used the Java PureParser to normalize the throughput of Galax. However, webelieve that the OCaml parser is faster than the Java PureParser; thus this swithdoes not put Galax at a disadvantage.Figures 29, 30, 31, 32, 33, and 34 summarize our experiments omparing therelative throughputs of the systems over di�erent datasets and queries. Results forseveral ombinations of queries and datasets are missing for one or more systemsbeause either the system does not support queries with ertain features (e.g.,losures, prediates) or the dataset is too large for the implementation. For example,XMLTK, Galax, and Joost do not support query Q2 in Figure 29. Similarly, manysystems do not work with the large PSD dataset of the experiment summarized byFigure 32.We observe that, in general, XMLTK and XSQ-NC are the fastest two systemswhen we use simple queries that they support. However, sine XMLTK does nothandle prediates and XSQ-NC does not handle losure axes, they an use moreeÆient methods for query evaluation. One reason for this eÆieny is that theydo not need to handle the multiple mathings between the query and the data.Therefore, they have fewer extra operations for eah element. Another reason isthey use deterministi automata. The HPDT used in XSQ-NC is deterministi,whih means there is only one urrent state at any point in time. For eah inputevent, there is at most one transition ar that aepts the input for the urrent state.Therefore, even when proessing the same query without losure, XSQ-NC is fasterthan XSQ-F sine XSQ-F uses a non-deterministi automaton. For example, whenACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 36: Preproessing time, query proessing time, and total querying timeDataset: SHAKE Query: /PLAY/ACT/SCENE/SPEECH/SPEAKER/text()Note: We were unable to determine the separate times for Joost and Galax.searhing for a mathing transition in the automaton, XSQ-NC an stop searhingafter it �nds one math. In ontrast, XSQ-F has to go through all the transition ofthe urrent state to make sure every transition is handled.Figures 29, 31, and 33 suggest that Saxon is faster than XSQ-F when they proessXML data that an �t into main memory. Saxon uses the SAX parser to load allthe data into the memory and build the DOM tree before it evaluates the query.After parsing the data, Saxon does all the proessing in main memory. In-memoryproessing is eÆient and an support more powerful queries. However, it is notsuitable for streaming data in general. Moreover, as we will see next, the amountof memory it needs is usually four to �ve times the size of the dataset. Thus, it isdiÆult to sale the Saxon approah to large XML �les and to streaming data.Figure 35 summarizes our experiments measuring the omponents of the overallquery-proessing time. The dark bar represents the query ompilation time, whihusually inludes parsing the query and building the data strutures used by the run-time query engine. The gray bar represents the preproessing time. For example,the preproessing stage of Saxon loads all the data into memory to build the DOMtree before it an evaluate the queries. Similarly, XQEngine preproesses databy building a full-text index on the data before evaluating any queries. Figure35 highlights an important advantage of streaming systems: They return resultsinrementally while still reading the input. The availability of some results early isa useful feature in general, and espeially important when the input data streamis unbounded or very large. The non-streaming systems have to wait until all thepreproessing �nishes before they an begin evaluating the queries. However, aslong as the preproessed data in these systems remains in memory, subsequentqueries an be evaluated very eÆiently by reusing the preproessed data.9.3 Memory UsageThe main memory required by a streaming query engine is an important metriand often determines the feasibility of using that engine for a dataset. Further, it isoften possible to inrease throughput by inreasing the memory footprint. FiguresACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Different QueryFig. 42: Memory for di�erent queries on the RE-CURB datasetQ1:/pub/book/title/text()Q2:/pub/book[year℄/author[email℄/name/firstname/text()Q3://proeedings/�ategoryQ4://pub[year=14℄//paper[�id=13℄/titleand reursiveness. For example, for the dataset of size 13MB, the nested levelparameter of the XML Generator program is set to 15 and the maximum repeatsparameter is set to 20. From Figure 37 we note that even with highly reursive dataand queries with losures, the memory used by XSQ-F is onstant. Reall, fromSetion 6, that XSQ-F needs to bu�er more data if there are losures in the query.However, sine all the items in the bu�ers an be determined when we enounterthe end event of the element spei�ed in the �rst loation step (when the HPDTreturns to the highest layer BPDT), the maximum amount of memory the XSQneeds does not exeed the maximum size of the elements in the stream.9.4 Charaterizing the XPath ProessorsReall, from our disussion in Setion 6, that XSQ and other streaming queryengines need to bu�er data items when they annot immediately deide whetherthe data items belong to the result. In general, the relative ordering in a dataset ofXML elements to whih a query refers inuenes the amount of bu�ering requiredACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



56 � F. Peng and S. S. Chawathefor that dataset. In order to study this e�et, we generated a 10 MB dataset usingToxgene, by applying the following template repeatedly to generate new a elementswith suessive id attributes.<a id="1"><prior> 1 </prior><foo> 1 </foo><!--- 10,000 foo elements ---><foo> 1 </foo><posterior> 1 </posterior></a>We evaluated the following three queries on this dataset:Q1: /a[prior=0℄Q2: /a[posterior=0℄Q3: /a[�id=0℄All three queries have empty results on the above dataset beause their prediates,whih test for an text ontents or attributes with value 0, are not satis�ed by thetest data, in whih all ontent has value 1. However, the queries di�er in theloation of the data item used in the prediate relative to the data item to whihthe prediate applies.Figure 42 summarizes the results of running XSQ-NC, XSQ-F, and Saxon onthese queries. (XMLTK and Joost annot handle queries that need expliit bu�eringof the data. Galax reports an \Internal Error" when evaluating the queries onthe syntheti data. XQEngine is not tested in the following experiment sine theversion we use an proess only XML �les that have less than 32,767 elements.)We observe that the throughput of the Saxon system is essentially the same forall three queries. This result is not surprising beause Saxon always loads all thedata into the memory before it evaluates the queries. When it traverses the DOMtree in the main memory to evaluate a query, the doument order of the elementstraversed is not important. However, the throughput of XSQ-NC is 30% higherfor Q3 than for the other two queries. When proessing Q3, XSQ-NC is able todetermine at the beginning of the a element that all the ontents in this elementan be ignored. For the other two queries, on the other hand, the ontent of everya element must be bu�ered beause the prior and posterior elements may ouranywhere before the losing tag of the a element. We also observe that XSQ-F isnot as sensitive as XSQ-NC to the element order. Reall from Setion 6 that evenif XSQ-F determines that an item is in the result set, it annot output the itemright away beause there may be items in the global queue whose memberships inthe result are as yet undetermined and that lie ahead of this item in the queue.Thus, XSQ-F must �rst mark the item with an output ag and hek if the itemis the head of the global queue. This proess of marking and heking every resultitem slows down the XSQ-F system and redues its sensitivity to the order of theelements. (However, this proess is neessary sine the losure axes in the queryimply that the result membership of items in the bu�er annot always be determinedin doument order.)We also studied the sensitivity of system throughput to the size of the queryresult. The degree to whih system throughput depends on result size varies arossACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 43: E�et of data ordering on throughput
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SystemFig. 44: E�et of the result size on throughputthe systems we studied. For example, the XQEngine is slower than the othersystems in Figure 35 beause the query returns a large portion of the dataset.However, if the query ontains a tag that is not in the data, XQEngine returnsthe empty result set very quikly beause it has aess to an inverted �le index ontags. The other systems, laking suh an index, spend similar amount of time onthe query irrespetive of whether the tags in the query appear in the doument.We used Toxgene to generate a test dataset of 10 MB onsisting of a mix ofthree types of elements (besides a few top level elements): 10% of the elementshave tag red, 30% green, and 60% blue. The ontent of eah suh element is asingle harater. We used this dataset with three queries: /a/red, /a/green, and/a/blue, generating query results that are roughly 1 MB, 3 MB, and 6 MB in size,respetively. Figure 43 indiates the relative throughputs of the systems on thesequeries. (XQEngine and Galax are not tested for the same reason as desribed inthe previous experiment.) We observe that XSQ-NC's throughput is quite sensitiveto the size of the result. The di�erene in the performane is due to the di�erenthandling of data items based on whether they are in the result. Items that are notin the result an be ignored and XSQ-NC stays in the same state. If there are moreitems in the result set, the XSQ-NC will make more state transitions and outputoperations, whih onstitute a large portion of the running time of XSQ-NC. Wealso note that XSQ-F is not as sensitive as XSQ-NC. As desribed in Setion 6,XSQ-F always keeps the item �rst, irrespetive of whether it is in the result, andheks the queue after all transition ars are handled. The di�erene between thetreatment of elements in and not in the result is therefore not as large as in XSQ-NC. Saxon's throughput is not very sensitive to the result size sine after it loadsall data into main memory, the evaluation proess is done in main memory exeptthe output proess, whih onstitutes only a small amount of the total exeutiontime. Similarly, the low sensitivity of XMLTK's throughput to the result size isbeause the di�erene is only in the time required to output the result. However,it is not lear why Joost's throughput is not more sensitive to the result size.9.5 Charaterizing XSQ-FIn this setion, we study the e�et of di�erent query features on the performaneof XSQ-F. In partiular, we study the e�et of the number of losure axes in thequery, the number of prediates in the query, and the length of the query.In the �rst experiment, we exeuted a set of queries that return the same resultACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 45: HPDT generated for query/dataset/referene/soure/other/-name/text()
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Different queries that return the same resultFig. 48: Memory usage of queries with losureaxes on NASA datasetset but with di�erent number of losure axes in the query. In Figure 45, QS , whereS � f1; 2; 3; 4; 5g, is the query in whih the ith loation step has a losure axisfor all i 2 S. For example, the query Q123 has losure axes in the 1st, 2nd, and3rd loation steps. (The remaining loation steps have the hild axis.) All thesequeries return the same result when applied to the NASA dataset. The memoryused by XSQ-F when proessing these queries is summarized in Figure 47. TheHPDT generated for the query /dataset/referene/soure/other/name/text()is depited in Figure 44. The HPDTs for other queries have a similar struture, withself-losure transitions and losure transitions in the appropriate plaes, followingthe sheme of Setion 6.3.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 59Figure 47 indiates that although the number of losure axes and their loationsvary among the queries, resulting in varying sizes of the set of urrent states, thememory used for the di�erent queries does not vary muh. As disussed earlier,this insensitivity is due to the fat that the memory used by the HPDT states isonly a very small amount in the total memory used by the system. The bu�ers andother system omponents are responsible for most of the memory usage.Figure 45 summarizes the throughput on the above queries. We observe thatthe throughput is lower for queries with a losure axis in the �rst loation stepthan for queries with a hild axis in the �rst loation step. (The di�erenes inthe histogram bars, though small, are statistially signi�ant; here, as in our otherexperimental results the 95% on�dene intervals are smaller than 1% of the valuesshown.) From the DTD of the dataset [Borne 2002℄, we know that all the top levelelements in the NASA dataset are dataset elements. If we have losure axis inthe �rst loation step, then after the HPDT (Figure 44) makes the transition fromstate $2 to $4, it will also keep state $2 in its urrent state set. Then, the HPDTneeds to hek whether eah inoming event is a dataset element, whih involvesstring omparisons. In ontrast, if the �rst loation step has a hild axis, state $2does not remain urrent. Therefore, only for all the subelements of the datasetelements does the HPDT hek the begin events by omparing the name of theelement with the label. It ignores all elements that are not desendants of bothdataset and referene by simply heking the depth of those events, an operationmuh faster operation than the string omparison used for the earlier ase.It is not the position of the losure axes in the query alone that determines thethroughput. On examining the dataset losely, we note that the evaluation timeis signi�antly a�eted by the seletivities of eah loation step. Consider the i'thloation step of a query and let S be the set of elements that math the �rst i� 1loation steps. Let S0 be the hildren of nodes in S. We de�ne the seletivityof loation step i (for a given dataset) to be the fration of the nodes in S0 thatmath the �rst i loation steps. If the i'th loation step uses the losure axis,we use desendants instead of hildren in identifying the set S0 in this de�nition.For the query and dataset of this experiment, eah dataset element ontains onereferene hild, whih orresponds to 10%{20% of the total number of events forone dataset element. We also ran these queries on a dataset obtained by remov-ing all subelements of dataset elements other than the referene subelements(whih means the seletivity of the seond loation step hanged from around 20%to 100%). The result is summarized in Figure 46. We an see that the losureaxis in the �rst loation step no longer has a signi�ant impat on the throughput.(The throughput of query Q1 is not signi�antly smaller than throughputs of queryQ2, Q2, Q3, and Q5, all of whih ontain one losure axes but in di�erent loationsteps.) The reason is that the extra work done by Q1 (heking desendants ofsubelements other than referene) on the original dataset no longer exists whenthe system evaluates the queries on the new dataset sine the dataset elementsin the new dataset have only referene subelements. In general, when the se-letivity of a loation step is small, losure axes preeding this step result in aperformane penalty beause the non-result desendants annot be eliminated bydepth omparisons and inur the ost of more expensive string omparisons.ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



60 � F. Peng and S. S. ChawatheIn the previous experiment, we used queries with only losure axes but withoutprediates. We also performed an experiment using queries with prediates ofdi�erent types and in di�erent positions. The dataset used for this experimentis the NASA dataset. The results are summarized in Figure 48. (We abbreviatedataset as d in the queries; similarly, we abbreviate other tags by their �rst letter.)The �rst eight queries have the same result although they have di�erent typesand numbers of prediates. The last three queries have empty results. We notethat the throughputs for the �rst eight queries are similar beause the number ofomparisons needed to determine the results of their prediates does not vary muhaross these queries. For example, although the dataset elements typially haveseveral altname subelements, the �rst altname subelement usually has the attributetype that has value ADC. Therefore, the query Q3 and Q4 will both hek the �rstaltname subelement and ignore the remaining altname elements. However, forquery Q10, although the result set is empty, resulting in less time spent on outputoperations, all the altname subelements of dataset elements must be heked.Therefore, its throughput is lower than those of queries Q3 and Q4. We alsoobserve that the query Q9 has the largest throughput among all the queries used inthe experiment. The reason is that the prediate in this query [�subjet=test℄an be evaluated to false at the beginning of the dataset elements. Thus, all thedesendants of the dataset elements an be ignored. This experiment demonstratesthat XSQ is able to save on omparisons for prediates that have already beenevaluated.In the next experiment, we used queries of di�erent lengths (query sizes). Theresults are summarized in Figure 49. The query Q5 and Q6 return the same resultset of size 747 KB and the others return the same result set of size 16.7 KB.The bars in Figure 49 plot relative throughput: striped bars for queries with noprediates, gray bars for queries with a prediate in every loation step, and whitebars for queries with a prediate in only the �rst loation step. The prediatesall evaluate to false. For example, for Q3 for the gray bar is for the query //soure[test℄//other[test℄//title[test℄/text() while for Q1 the white baris for the query //soure[test℄//other//title/text(). The memory usage forthese queries is shown in Figure 50. The �gures indiate that queries with prediatesin every loation step use almost the same amount of memory as the queries withoutprediates. The throughputs are also similar.Although Figure 49 suggests that longer queries generally have lower through-puts, we notie an exeption: Q6 has smaller throughput than Q4 and Q5 althoughit returns the same result set as Q5 and has the same query length as Q4. Q6 isslower than Q4 beause the seletivity of the seond loation step of Q6 is muhsmaller than the seletivity of the seond loation step of Q4. (That is, the frationof the desendants of dataset elements that have tag title is muh smaller thanthe fration of the desendants of other elements that have tag title.) Reall,from our disussion earlier in this setion, that a loation step with a low seletivityresults in a larger number of string omparisons resulting from a losure axis in theprevious loation step. Thus, Q6 inurs a larger number of string omparisons thanQ4, resulting in lower throughput.We also note that Q5 has a higher throughput than Q6 beause the HPDTACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 61
R

el
at

iv
e 

th
ro

ug
hp

ut
1

0.8

0.6

0.4

0.2

0
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q11Q10

Query with different predicateQ1:/d[�subjet=astronomy℄/r/s/o/n/text()Q2:/d[�subjet℄/r/s/o/n/text()Q3:/d[altname℄/r/s/o/n/text()Q4:/d[altname�type=ADC℄/r/s/o/n/text()Q5:/d/r/s/o[publisher℄/n/text()Q6:/d[altname�type=ADC℄/r/s/o[publisher℄/n/text()Q7:/d[altname℄/r/s/o[publisher℄/n/text()Q8:/d[�subjet℄/r/s/o[publisher℄/n/text()Q9:/d[�subjet=test℄/r/s/o/n/text()Q10:/d[altname�type=test℄/r/s/o[publisher℄/n/text()Q11:/d/r/s/o[test℄/n/text()
Fig. 49: E�et of prediates in the queries onNASA dataset
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Fig. 51: E�et of query length on memory usagefor the NASA datasetevaluating Q5 has smaller urrent state set. The HPDT evaluating Q5 has oneurrent state that stays ative during the whole proess (to hek whether the nextevent is the begin event of a title element) while the HPDT evaluating Q6 has twourrent states that stay ative (to hek the begin events of the dataset and thetitle elements). Therefore, for the begin event of every desendant of the datasetelements, the HPDT for Q6 performs two string omparisons, while the HPDT forQ5 only performs one.We noted in the Setion 9.3 that the maximum amount of data that XSQ needsto bu�er is no greater than the size of largest element in the input. To verify ourimplementation, we generated an XML �le of size 31.5 MB, ontaining 11 top-level elements hunk. We put a test attribute within the open tag of eah hunkelement. All the test attributes have value 1. We also put two test subelementsinside the hunk elements. The �rst one is put right after the open tag of eahhunk element and its ontent is set to 0. The seond one is plaed right beforethe lose tag of eah hunk element and its ontent is set to 1. We ran two setsof queries on the dataset. The memory usage of the experiments is summarizedin Figure 53. The �rst set of queries ontains similar patterns but with di�erentprediates in their �rst loation steps. A loation step /a is inserted between theACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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</data>Fig. 52: HPDT generated for the query /hunk[test=x℄//data/text() and/hunk[�test=x℄//data/text()
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$10Fig. 53: HPDT generated for the query /hunk[test=x℄/a//data/text() and/hunk[�test=x℄/a//data/text()
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XSQ:A Streaming XPath Engine � 63�rst loation step and seond loation step of eah query in the �rst set to formthe queries in the seond set. However, sine eah hunk element has only onea subelement and all the data desendants of the hunk element are inside the asubelement, the orresponding queries in the two sets always return the same resultset on this syntheti dataset. Moreover, Q1, Q2, and Q5 of the two sets return thesame result set of size 23.4MB while Q3 and Q4 of both query sets return the emptyresult set. The HPDTs generated for the �rst set queries are depited in Figure 51,and the HPDTs generated for the seond set of queries are depited in Figure 52.For the two sets of queries, Q2 and Q3 almost use the same amount of memorywhile Q4 and Q5 use muh less memory, although Q2 and Q4 returns a result setof size 23.4MB and Q3 and Q5 return an empty result set. The memory usage forQ2 and Q3 is similar beause both of them require bu�ering the text ontents of alldata subelements sine the results of the prediates in both queries are determinedonly at end of every hunk element. (The results of query Q2 are sent to outputwhile the results of query Q3 are leared from the bu�er.) Queries Q4 and Q5use muh less memory than Q2 and Q3 beause neither requires the ontents tobe bu�ered sine the results of their prediates are determined at the beginningof the hunk element. For Q4, the HPDT sends all the text ontents of the datasubelements diretly to output, while for Q5 all the data subelements are disardedas they are enountered.The di�erene in the memory usage of the two Q1 queries is due to the di�erentstrutures of the orresponding HPDTs. If we follow the reasoning of the previousparagraph, it seems reasonable to expet that both Q1 queries have memory usagesimilar to that of queries Q4 and Q5 beause the result of the prediates in thequeries an be determined at the beginning of the hunk elements. However, it islear in Figure 53 that the memory usage of Q1 in the �rst set is lose to that ofQ2 and Q3, while the memory usage of Q1 in the seond set is lose to that of Q4and Q5. The HPDT generated from Q1 in the �rst set is depited in Figure 51.Even when the prediate has been satis�ed, this HPDT keeps the state $4 ativebeause of the self-losure transition on $4. The HPDT ontinues to enqueue thetext ontents of the data desendants (using the enqueue operation on state $9),whih will never be used beause the same data item will be sent to output rightaway (by the output operation on state $10). However, sine we annot expliitlylear the bu�er until the end of a hunk element, these items stay in memory untilthe end of the hunk element. Thus, the memory usage of this Q1 query is almostthe same as that of Q2 and Q3. In ontrast, the state $4 in the HPDT for Q1 inthe seond set (Figure 52) does not have a self-losure transition. Therefore, whenthe prediate has been satis�ed, only state $8 is ative. The text ontents of thedata elements will be only output by the operation on the state $12. The enqueueoperation on state $10 will never be exeuted.10. CONCLUSIONThe XSQ system provides an eÆient implementation of XPath for streaming XMLdata. It supports XPath queries that have multiple prediates, losure axes, andoutput funtions that permit extration of portions of the stream. We have il-lustrated the hallenges posed by these XPath features to query proessing in aACM Transations on Database Systems, Vol. V, No. N, Month 20YY.
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68 � F. Peng and S. S. ChawatheA. DTD USED IN IBM XML GENERATOR FOR THE SYNTHETIC DATA<!ELEMENT root (pub*)><!ELEMENT pub (year,book*,paper*, proeedings*)><!ELEMENT year (#PCDATA)><!ELEMENT book (title, author, publisher?, year?,prie?)><!ATTLIST book id ID #REQUIRED><!ELEMENT paper (title, author, pages?,proeedings?, year?)><!ATTLIST paper id ID #IMPLIED><!ELEMENT title (#PCDATA)><!ELEMENT author (name, institute, email, pub?)><!ELEMENT publisher (#PCDATA)><!ELEMENT pages (#PCDATA)><!ELEMENT prie (#PCDATA)><!ELEMENT proeedings (name, plae, time, paper*)><!ATTLIST proeedings ategory CDATA #IMPLIED><!ELEMENT email (#PCDATA)><!ELEMENT institute (#PCDATA)><!ELEMENT name (first, last)><!ELEMENT plae (ountry, ity)><!ELEMENT time (#PCDATA)><!ELEMENT first (#PCDATA)><!ELEMENT last (#PCDATA)><!ELEMENT ountry (#PCDATA)><!ELEMENT ity (#PCDATA)>B. TEMPLATE FILE USED IN TOXGENEThe template �le used in Toxgene to generate the syntheti dataset for the experi-ment in Figure 43 is shown in Figure 54.C. QUERIES AND COMMANDS USED FOR SOME SYSTEMSC.1 GalaxFor GALAX, the query.xq �le is like following:<result> f$shake/root/PLAY/ACT/SCENE/SPEECH/SPEAKER/text()g</result>;The ontext �le is like following:define global $shake ftreat as doument (doument("shake.xml"))g The ommand is like following:ACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 69<?xml version='1.0' enoding='ISO-8859-1' ?><!DOCTYPE tox-template SYSTEM 'http://www.s.toronto.edu/tox/toxgene/ToXgene1_1.dtd'><tox-template><tox-distribution name="4" type="uniform" minInlusive="1" maxInlusive="6"></tox-distribution><tox-list name="steps" readFrom="input.xml"><element name="hunk"><omplexType><element name="step" type="byte"/></omplexType></element></tox-list><tox-doument name="result"><element name="root"><omplexType><tox-foreah path="[steps/hunk℄" name="s"><element name="hunk"><omplexType><element name="a" maxOurs="unbounded" tox-reursionLevels="4"><omplexType mixed="true"><tox-san path="[$s/step℄"><attribute name="ount"><simpleType><restrition base="byte"><minInlusive value="01"/><tox-number sequential="yes"/></restrition></simpleType></attribute><tox-alternatives><tox-option odds="10"><element name="prior"><tox-expr value="2"/></element><element name="red" maxOurs="10000"><tox-expr value="[!℄"/></element><element name="posterior"><tox-expr value="2"/></element></tox-option><tox-option odds="30"><element name="prior"><tox-expr value="2"/></element><element name="green" maxOurs="10000"><tox-expr value="[!℄"/></element><element name="posterior"><tox-expr value="2"/></element></tox-option><tox-option odds="60"><element name="prior"><tox-expr value="2"/></element><element name="blue" maxOurs="10000"><tox-expr value="[!℄"/></element><element name="posterior"><tox-expr value="2"/></element></tox-option></tox-alternatives></tox-san></omplexType></element></omplexType></element></tox-foreah></omplexType></element></tox-doument></tox-template> Fig. 55: Template �le used in ToxgeneACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



70 � F. Peng and S. S. Chawathetime -f "%U" xmlquery -pi -verbose -ontext galaxontext.xq galax.n.xq > galax.n.outC.2 SaxonFor SAXON, the style-sheet �le is like following:<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.1"><xsl:template math="/"><result><xsl:for-eah selet="/root/PLAY/ACT/SCENE/SPEECH/SPEAKER"><xsl:value-of selet="."/></xsl:for-eah></result></xsl:template></xsl:stylesheet>The ommand is like following:java om.il.saxon.StyleSheet -x org.apahe.xeres.parsers. SAXParser-t shake.xml saxon.n.xsl > saxon.n.outC.3 JoostFor Joost, the transformation �le is like following:<?xml version="1.0" enoding="ISO-8859-1"?><stx:transform xmlns:stx="http://stx.soureforge.net/2002/ns" version="1.0"><stx:template math="/root/PLAY/ACT/SCENE/SPEECH/SPEAKER/text()"><stx:opy /></stx:template></stx:transform>The ommand is like following:time -o -f "%U" java -Dorg.xml.sax.driver=org.apahe.xeres. parsers.SAXParsernet.sf.joost.Main shake.xml joost.n.stx > joost.n.outC.4 XMLTKNote that we have modi�ed the xrun program so that it reports the running time.The ommand is like following:xrun "/root/PLAY/ACT/SCENE/SPEECH/SPEAKER/text()" shake.xml > xrun.n.outC.5 XQEngineFor XQEngine, the ommand to query the SHAKE dataset is like following:java XQE a_and_.xml ymbelin.xml hen_vi_1.xmlACM Transations on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 71j_aesar.xml merhant.xml periles.xml t_night.xmlall_well.xml dream.xml hen_vi_2.xml john.xmlm_for_m.xml taming.xml troilus.xml as_you.xmlhamlet.xml hen_vi_3.xml lear.xml muh_ado.xmlr_and_j.xml tempest.xml two_gent.xml om_err.xmlhen_iv_1.xml hen_viii.xml lll.xml m_wives.xmlrih_iii.xml timon.xml win_tale.xml oriolan.xmlhen_iv_2.xml hen_v.xml mabeth.xml othello.xmlrih_ii.xml titus.xml "/PLAY/ACT/SCENE/SPEECH/SPEAKER">> XQE.n.out
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