XSQ: A Streaming XPath Engine

FENG PENG

SUDARSHAN S. CHAWATHE
Department of Computer Science
University of Maryland, College Park

We have implemented and released the XSQ system for evaluating XPath queries on streaming
XML data. XSQ supports XPath features such as multiple predicates, closures, and aggregation,
which pose interesting challenges for streaming evaluation. Our implementation is based on using
a hierarchical arrangement of pushdown transducers augmented with buffers. A notable feature of
XSQ is that it buffers data for only as long as it must be buffered by any streaming XPath query
engine. We present a detailed experimental study that characterizes the performance of XSQ and
related systems, and illustrates the performance implications of XPath features such as closures.

Categories and Subject Descriptors: H.2.4 [Database Management|: Systems—query process-
ing

General Terms: Experimentation, Performance

Additional Key Words and Phrases: XPath, streaming processing

1. INTRODUCTION

The XSQ system is an XPath engine for streaming XML data. We begin this
section by describing the characteristics and sources of streaming XML data. We
introduce XPath using a simple example and briefly touch on some prior work in
the area. We then outline the distinguishing features of XSQ and the contributions
of this paper. Next, we present some examples that illustrate some of the challenges
faced by an XPath query engine that operates in a streaming environment. We end
the section with a map of the rest of the paper.

The Extensible Markup Language (XML) has become a well-established data
format and an increasing amount of information is becoming available in XML form
[Bray et al. 1998]. The term streaming data is used to describe data items that are
available for reading only once and that are provided in a fixed order determined by
the data source. Applications that use such data cannot seek forward or backward
in the stream and cannot revisit a data item seen earlier unless they buffer it
on their own. Examples of data that occur naturally in streaming form include
real-time news feeds, stock market data, sensor data, surveillance feeds, and data
from network monitoring equipment. One reason for some data being available in

This material is based upon work supported by the National Science Foundation under grants
11S-9984296 (CAREER) and IIS-0081860 (ITR).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1-077.

2 . F. Peng and S. S. Chawathe

only streaming form is that the data may have a limited lifetime of interest to most
consumers. For example, articles on a topical news feed are not likely to retain their
value for very long. Another reason for such data is that the source of data may lack
the resources required for providing non-streaming access to data. For example, a
network router that provides real-time packet counts, error reports, and security
violations is typically unable to fulfill the processing or storage requirements of
providing non-streaming (so-called random) access to such data. Similar concerns
may lead servers hosting large files to offer only streaming network access to data
even though the data is available internally in non-streaming form. Finally, since
sequential access to data is typically orders of magnitude faster than random access,
it is often beneficial to use methods for streaming data on non-streaming data as
well. In what follows, we focus on streaming data that is in XML form and use the
term streaming XML to refer to XML data in all of the above scenarios.

There have been a number of recent proposals on query languages for XML
and XML-like data models [Abiteboul et al. 1996; Fernandez et al. 1997; Bune-
man et al. 1996; Deutsch et al. 1998; Clark and DeRose 1999; Boag et al. 2002].
Of these proposals, XPath and XQuery have emerged as the standards recom-
mendations that are likely to receive broad support. In this paper, we focus on
XPath. However, since XPath forms an important core of XQuery, the methods
we describe are useful not only for XPath engines, but also for XQuery engines.
An XPath query consists a location path and an output expression. We
may think of the location path as a selection operator and the output expres-
sion as a projection operator. The former selects a set of XML elements and
the latter determines the parts, or functions, of those elements that form the re-
sult. While the projection operator in XPath is quite simple, the selection op-
erator is fairly complex because it permits predicates on all elements that lie on
the path from the document root to the selected element. For example, the lo-
cation path of the query //book[year>2000]/review[@source="BN"]/text () is
//book [year>2000] /review[@source="BN"]. This location path matches the re-
view elements that have a source attribute with value BN and that are children of
book elements that have year subelements with values greater than 2000. Inter-
preting the location path as a path expression, the / connective denotes a child and
the // connective denotes a descendant. The output expression, text (), indicates
that the result consists of the text contents of reviews matching the location path.
(Further details on XPath appear in Section 2.3.)

Automaton-based methods for processing streaming data are attractive due to
their efficiency and clean design. An important task in building such systems for
XPath queries is the generation of the automaton from the query. The difficulties
(explained further by the examples below) are due to XPath features such as clo-
sures and predicates in conjunction with the read-once nature of streaming data.
Briefly, when the automaton encounters an item in the stream, the data required
to determine whether this item is in the query result may be unavailable. The un-
avoidable buffering introduces complexities of buffer management such as flagging
buffered data based on subsequent satisfaction or falsification of predicates, and
duplicate avoidance.

There has been a considerable amount of work on stream processing and XML

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 3

1. <root> L. <root>
2. <pub>
2. <pub>
. 3. <book>
3. <book id="1">
- . 4 <name> X </name>
4. <price> 12.00 </price>
. 5. <author> A </author>
5. <name> First </name>
6. </book>
6. <author>A </author>
7 <price type="discount”> 10.00 </price> 7. <book>
’ P ype= ’ P 8. <name> Y </name>
8. < /book> 9 <pub>
9. <book id="2"> ' P
. . 10. <book>
10. <price> 14.00 </price>
11. <name> Z </name>
11. <name> Second </name>
12. <author> B </author>
12. <author> A </author>
13. < /book>
13. <author> B </author> 14 <year> 1999 </year>
14. <price type="discount” > 12.00 </price> 15' </ ib> Y
15. </book> ’ P
16. <year> 2002 </year> 16. </book>
17'</ b 17. <year> 2002 </year>
18. <p/r00t> 18. </pub>
) 19. </root>

Fig. 1: Input data for Example 1 Fig. 2: Input data for Example 2

query processing, and some recent work on query processing for streaming XML
as well. Below, we touch on only on recent work that is most closely related
to our work, deferring a longer discussion to Section 7. Much of the previous
work on processing streaming XML data focuses on filtering a collection of XML
documents using restricted XPath expressions [Altinel and Franklin 2000; Diao
et al. 2002; Chan et al. 2002]. Since XPath expressions without predicates are
essentially regular expressions, they can be transformed into finite state automata
that accept exactly the documents that satisfy the expressions. If the automaton
accepts the document, the filtering system returns the identifier of the current
document to the user. Such systems do not need to buffer individual elements
of the documents. However, as we shall explain shortly, general XPath queries
cannot be evaluated in a streaming system that lacks buffering capabilities. The
XMLTK system [Avila-Campillo et al. 2002] is a closer match to our work, because
it supports XPath expressions that retrieve only parts of a document. However,
XMLTK does not support predicates in XPath expressions. Therefore, whenever
it encounters an element that matches the path expression in a query, it can write
it directly to output and no buffering is needed. In contrast, if the query includes
predicates, the membership of an element in the query result cannot be decided
immediately in general. The XSM system [Ludascher et al. 2002] handles predicates
in the query but it does not handle the closures and aggregations. (It assumes that
the query does not contain the closure axis //). As we describe below, closures
pose significant challenges to query evaluation.

We note that XPath features such as (multiple) predicates, closures, and aggre-
gations are important usability advantages, especially if the data is semistructured
or has a structure unknown to the query formulator. Closures, in particular, are
indispensable in queries on data whose structure is partly unknown. For example,
the query //book [author="Adams"]//price returns the prices of books by Adams
in a variety of likely structuring of bibliographic data, regardless of whether book

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

4 . F. Peng and S. S. Chawathe

occurs at the top level in the document or several levels deep and, similarly, regard-
less of whether the price element is a child of the book element or a descendant
separated by intervening bookstore elements. Similarly, predicates permit a more
accurate delineation of the data of interest, leading to smaller, and more usable,
results. The challenges posed by these features are exacerbated by data that has a
recursive structure, as explained below. (A recent survey of 60 real datasets found
35 to be recursive [Choi 2002].)
The major contributions of this paper may be summarized as follows:!

—To the best of our knowledge, our method for evaluating XPath queries over
streaming data is the first one that handles closures, aggregations, and multiple
predicates (together). As the examples below illustrate, these features, especially
in conjunction, pose significant implementation challenges.

—Our methods use a very clean design based on a hierarchical arrangement of
pushdown transducers augmented with buffers. The system is easy to under-
stand, implement, and expand to more complex queries. Further, this method
provides a clean separation between high level design and lower-level implemen-
tation techniques. For example, it is easy to use our methods in a query engine
that implements our automaton independently.

—We present a detailed experimental study of XSQ and several related systems in
Section 9. In addition to providing a comprehensive evaluation of the methods
we propose, our study also illustrates the costs and benefits of different XPath
features and implementation trade-offs as embodied by different systems.

—All the methods described in this paper are fully implemented in the XSQ sys-
tem, which has been publicly released under the GNU GPL license [Peng and
Chawathe 2002; GNU 1991]. The Java-based implementation should work on
any platform for which a Java virtual machine is available. In addition to serving
as a testbed for further work on this topic, our system should be useful to anyone
building systems for languages that include XPath (e.g., XQuery, XSLT).

ExaMPLE 1. Consider the following query for the XML stream depicted in Fig-
ure 1: /pub[year>2000]/book [price<11]/author. When we encounter the first
author element in the stream, we know that it satisfies the path /pub/book/author.
However, the predicate in the first location step, [year > 2000], cannot be eval-
uated yet because we have not encountered any year subelements and qualifying
elements may occur later. We have encountered the first price subelement of the
book element. This element does not satisfy the predicate [price < 11]. However,
we cannot conclude that the book element of line 3 fails to satisfy the predicate
on price because there may be additional price subelements later in the stream.
Therefore we must to buffer the book element. Indeed, when we encounter the
second price element (line 7) of this book element, we determine that the book
element satisfies the predicate on price. At this point, we still do not know whether
the pub element of line 2 satisfies the predicate on year. Consequently we do not
know whether the author element of line 6 belongs to the result. Therefore, we

LA brief outline of our methods and the results of a preliminary experimental study of XSQ appear
in [?].

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 5

must continue to buffer the pub and author elements. When we encounter the two
author subelements of the second book (lines 12 and 13), we need to buffer them
as well. Now there are three author elements in the buffer: two with value A and
one with value B. Next, we encounter the second price element (line 14) of the
second book and find that it does not satisfy the predicate. However, only when
we encounter the end tag of the second book element, can we conclude that this
book element fails to satisfy the predicate [price < 11]. Consequently, the two
author elements of the second book should be removed from the buffer. Note that
one author with value A should remain in the buffer because it belongs to the first
book. When we encounter the year element on line 16, we determine that the pub
element satisfies the first predicate. Recalling that the author element remaining in
the buffer has already satisfied the other predicate, we determine that this author
element should be sent to the output.

The above example, although quite simple, illustrates some of the intricacies
that we must handle: First, we may encounter data that is potentially in the
result before we encounter the items required to evaluate the predicates to decide
its membership in the result. We need to buffer such potential result items. In
Example 1, we buffered three author elements as well as the pub and book elements
for this reason. Second, items in the buffer have to be marked separately so that,
after the evaluation of a predicate, we can process only the items that are affected by
the predicate. In Example 1, for instance, we needed to delete the author elements
belonging to the second book while retaining the author element for the first book
in the buffer. Third, in order to buffer items for the least amount of time possible,
we need to encode the implicit existential quantification within predicates: When
a single item satisfying a predicate is found, we must check whether the elements
within the scope of the newly satisfied predicate can be sent to the output. On the
other hand, we cannot delete items from the buffer until we encounter the end tag
of the appropriate element. In the above example, for instance, only we reach the
end of the second book element may we conclude that it fails to satisfy the predicate
on price. Finally, predicates access different portions of the data. Some should be
evaluated when the begin tag is encountered, while others should be evaluated upon
encountering the text content. There are other forms of predicates, are discussed
in detail later.

Let us now consider a slightly more complex example, featuring closures in the
query and recursive structure in the input stream. We say an XML stream has
recursive structure if it contains ancestor-descendant pairs of elements that have
the same tag. Figure 2 depicts an example of such data: the pub element in line
2 has a grandchild named pub in line 9. As the following example illustrates,
such recursive structure in the input poses additional challenges to XPath query
processing.

ExaMPLE 2. Consider the following query for the XML data of Figure 2: //
pub [year>2000]//book [author]//name. (The predicate [author] checks for the
existence of an author child.) This example introduces some new problems in
addition to those discussed in the previous example. Since the closure axis // is
used in the query, a node and its descendants may match the same location step.
For instance, the pub elements in both line 1 and line 9 match the node test in

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

6 . F. Peng and S. S. Chawathe

the first location step. Consider the name element in line 11. There are three ways
in which it matches the main trunk of the query (ignoring predicates) and each
matching yields a different result for the predicates in the query. The situation
is summarized by the following table, which indicates the truth value of the two
predicates for each matching (combination of pub and book elements) that leads to
the name element of line 11:

pub book | [year > 2000] | [author] | name
line 2 | line 7 true false line 11
line 2 | line 10 true true line 11
line9 | line 10 false true line 11

As indicated by the table, only the match in the second row results in both
predicates evaluating to true. When we encounter the end tag of the pub element
of line 15, we know that the pub element of line 9 fails the predicate [year >
2000]. However, we cannot remove the name Z from the buffer because it is still
possible that this item satisfies the query due to a subsequent year element. A
similar situation occurs when we encounter the end tag of the book element in line
16. Only when all the possible matches have evaluated the predicates to false can
we remove the item from the buffer. We need to be careful with the other cases
where multiple matches evaluate all predicates to true. For example, if there were
an additional author element between lines 8 and 9, the match indicated by the
first row of the above table would also result in both predicates being satisfied. In
such cases, we must avoid duplicates (outputting the same element twice).

These examples illustrate the difficulties encountered in designing an automaton
for evaluating XPath queries systematically. Briefly, difficulties arise due to the fact
that elements in an XML stream may arrive in an order that does not match the
order of the predicates that use them in the query, and due to recursive structure
in the data, which leads to multiple matchings for an input item. When the query
contains the closure axis and multiple predicates, it is even more difficult to keep
track of all the information needed for proper buffer management.

The rest of this paper is organized as follows. Some preliminaries, including
the DOM and SAX models for XML, and the XPath language, are covered in Sec-
tion 2. Section 3 describes the use of pushdown automata for document filtering
and contrasts the task of filtering with the task of querying streams. Section 4 in-
troduces an extended pushdown transducer that provides a convenient method for
keeping track of multiple matching paths. A buffered version of these automata is
described in Section 5, and a hierarchical arrangement of such automata is described
in Section 6. Related work is discussed in Section 7. We describe the architecture
and implementation of the XSQ system in Section 8. Section 9 presents our exper-
imental study of XSQ and related systems. We conclude in Section 10.

2. PRELIMINARIES

In this Section, we provide brief descriptions of the DOM and SAX models for
parsed XML, and of XPath. We focus on the features that are essential for under-
standing our methods presented in subsequent sections and do not provide compre-
hensive descriptions, which may be found elsewhere [Bray et al. 1998; XSL Working

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 7

root

1 1200 First Atype 1000 2 14.00 Second A B typa2.00

discount discount
Fig. 3: The DOM tree for the data in Figure 1

Group and the XML Linking Working Group 2000; Megginson et al. 2002; Clark
and DeRose 1999].

2.1 Data Model for XML

XML data is usually modeled as an edge-labeled or node-labeled tree [Abiteboul
et al. 2000]. In the commonly used Document Object Model (DOM) [XSL Working
Group and the XML Linking Working Group 2000], an XML document is modeled
as a node-labeled tree. Each element in the document is mapped to a subtree in
the tree, whose root node is labeled with the tag of the element. Although element
E is mapped to a subtree of the DOM tree, it is convenient to refer to the root
of this subtree as the node E. The subelements of an element E are mapped to
subelements of the node E that have node type of element. The attributes and
text contents of element E are also mapped to subelements of node E, but with
node types Attr and Text, respectively. Figure 3 depicts the DOM tree of the XML
document in Figure 1. In the figure, the nodes with dotted boxes are Attr nodes
and the nodes without boxes are Text nodes.

2.2 Data Model for XML Streams

For streaming data, building a DOM tree in memory is not usually desirable because
the data may be unbounded. Further, we may not need all of the DOM tree to
process the given query. Therefore, streaming data is better modeled using the
SAX (Simple API of XML) model [Megginson et al. 2002]. Parsers based on the
SAX Application Programming Interface process an XML document and generate
a sequence of SAX events. For each opening and closing tag of an element, the
SAX parser generates, respectively, a begin and end event. The begin event of an
element comes with an attribute list that encodes the names and values of attributes
associated with the element. (Since the XML standard does not allow an element to
be associated with multiple attributes with the same name, this list is composed of
pairs that are uniquely identified by their first element.) The text contents enclosed
by the opening and closing tag result in the SAX parser generating a text event.
Essentially, the sequence of the SAX events corresponds to a pre-order traversal of

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

8 . F. Peng and S. S. Chawathe

the DOM tree of the data in which the attribute nodes are combined with their
parents. The SAX events generated by a SAX parser given the data of Figure 1 as
input are discussed in Example 3 below.

The SAX API does not explicitly associate events with the depth of the corre-
sponding elements in the document tree. However, this information is easily added
to SAX events by maintaining a counter that is incremented and decremented by
the handlers for the begin and end events, respectively. Our system makes use
of such a counter. For modularity of the code, this counter is stored separately,
outside the SAX parser. However, in the descriptions that follow, it is convenient
to regard the depth information as part of the SAX event. In more detail, we
model the input as a sequence of SAX events, where each event is a quadruple
(tag, attrs, type, depth) where:

—tag is a string that corresponds the name of the element that generates the SAX
event.

—attrs is the attribute list of this element. That is, it is a list of elements of the
form (a,v) indicating that the element has attribute a with value v. Recall that
since elements do not have multiple attributes with the same name, there is at
most one pair of the form (a, v) in the attribute list of any element, for all a. We
use the notation e.a to refer to the value of the a attribute of element e; if e does
not have an attribute a, e.a is null.

—type is B for a begin event, E for an end event, and T for a text event. Events
of type E have an empty attribute list, while events of type 7" have an attribute
list containing the single pair (text,t), indicating that ¢ is the text content of the
element.

—depth is the depth of the element in the document tree. The attr and text nodes
have the same depth as their parent node.

EXAMPLE 3. Using the notation described above, we list below the first ten events
generated by a SAX parser given the input of Figure 1.

(1) (root,¢,B,0): the begin event of root element.
(2) (pub,d,B,1): the begin event of pub element.

(8) (name,{(is,”17)}, B,2): the begin event of book element. The name-value list
{(id,”1”)} is associated with the event.

(4) (price, ¢, B,3): the begin event of price element.

(5) (price, {(text,”12.00”)},T,3): text event of price element. The text 712.00” is
associated with the event.

(6) (price,¢,E,3): the end event of price element.
(7) (name,p, B,3): the begin event of name element.

(8) (name,{(text,” First”)},T,3): the text event of name element. The text ”First”
is assoctated with the event.

(9) (name, ¢, E,3): the end event of name element.
(10) (author,¢,B,3): the begin event of author element.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 9

Q = NT[/O]

N = [/|//ltag [F]

F := [FO[OP constant]|
FO := Qattribute | tag[Qattribute]| text()
O := Qattribute | text()|count()|sum()
OP = > |>]|=] < | >|# |contains

Fig. 4: EBNF for core XPath

2.3 XPath

A simplified grammar for XPath is depicted in Figure 4. An XPath query is
an expression of the form of Ny N,...N,, /O, which consists of a location path,
NiNs...N,, and an output expression O. Each location step /V; in the location
path is in the form /a::n[p] where a is an axis, n is a node test, and p is an
optional predicate that is specified syntactically using square brackets. A location
step matches a node in the document tree. The axis specifies the relation between
the previous node and the current node. In the simplified grammar, / is shorthand
for the /child:: axis, which selects the children of the current node. Similarly, //
is shorthand for the /descendant-or-self::node()/ axis, which selects the cur-
rent node and its descendants. We use the simplified grammar in our descriptions
in this paper. If no axis is specified, the default axis is the child axis. However,
if the axis before the first location step is omitted, the default axis is //, not the
child axis. For example, expression title/text () returns the text content of all
title descendants of the document root.

An element matches a location path if the path from the document root to
that element matches the sequence of labels in the location path, and satisfies
all predicates. For each matching element, the result of evaluating the output
expression on the element is added to the query result. The output expression may
specify an attribute of the element, or its text value. It may also use an aggregation
function such as sum() and count(). If no output expression is specified in the query,
the query returns all the elements in the result set.

The following queries, evaluated on the data of Figure 2 or Figure 1, illustrate
some of the key features of XPath.

—//author/count (): This query returns the number of author elements in the
document. The first location step is //author, which consists of the closure axis
//, and the node-test author; it does not include a predicate. This location step
matches all descendants of the document root that have tag author. The output
expression, count () is applied to all qualifying elements to produce the query
result. The result is 2 for the data of Figure 2. We note that this query may also
be expressed as author/count () because a missing axis in the first location step
defaults to closure.

—//pub[book]//year: This query returns the year elements that have pub an-
cestors that have at least one book subelement each. Here, the predicate of
the first location step requires the existence of a book subelement. We note
that both location steps in this query use the closure axis. Further, there is
no explicit output function, implying that the elements that match the loca-

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

10 . F. Peng and S. S. Chawathe

tion path constitute the query result. The result for the data of Figure 2 is
<year>1999</year><year>2002</year>. Although the <year>1999</year>
element in line 14 has two pub ancestors, both of which satisfy the predicate
[book], the year element appears in the result only once.

—/pub[book] /year/text (): This query returns the text contents of the year
elements that have a pub parent that occurs at the top level. We note that
this query does not use the closure axis; thus the depth of elements matching
the location path is fixed at 2. Further, the use of the text () output function
indicates that only the text contents of matching elements are included in the
result, without the enclosing tags. The result for the data of Figure 2 is 2002.

—//pub/book[@id>1] /price[@type="discount"]/text (): This query returns the
text contents of the price elements that have a type attribute with value discount.
The price element must have a book parent, which in turn has a pub parent. The
id attribute of the book element must be greater than 1. The result for the data
of Figure 1 is 12.00. Though the id attribute and the discount attribute are
displayed both as strings in the document, the id attribute is compared using its
numerical value since it is compared to a numerical value. If the value of an at-
tribute cannot be converted to a number successfully, the operation returns false.
(Such implicit type coercion semantics provide intuitive results on semistructured
data and have been used in other languages, such as Lorel [Abiteboul et al. 1996].)

We note that all the above queries are supported by XSQ, as are other, more com-
plex queries, involving several closures and predicates. The effect of such features
on the running time and memory usage of XSQ is discussed in Section 9.5.

3. PUSHDOWN AUTOMATON FOR FILTERING XML STREAMS

In this section, we will first briefly describe pushdown automata and pushdown
transducers. Next, we describe the simple relationship between these automata
and the XML streams they accept. Systems for filtering XML documents make
use of this relationship [Diao et al. 2002; Altinel and Franklin 2000]. We discuss
why this simple relationship cannot be directly used for the purpose of querying
XML data. We use the term filtering to refer to the task of finding the documents
(from a given set) that satisfy a given predicate and the term querying to mean the
task of extracting relevant portions of data from one or more documents, or from
streaming XML.

A pushdown automaton (PDA) [Hopcraft and Ullman 1979 is a finite-state
automaton that operates on both an input tape and a stack. It has a finite set of
states, including one start state and one or more accepting states, a set of input
symbols, and a set of stack symbols. At each step, a PDA consumes a symbol
from the input. A PDA’s transition function determines, as a function of the
input symbol, the current state, and the stack, the next state and the operation
performed on the stack. A PDA is said to accept an input string if, when the input
is consumed, it is in one of its accepting states.

A pushdown transducer (PDT) is a PDA with actions defined along the
transition arcs on the automaton. The transition function of a PDT specifies an
optional output operation as a function of the current state, input symbol, and
stack (in addition to specifying the next state and the stack operation). When a

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 11

< book >| | < /book >

< author >
Q5

< [author>

< price >
Q4

< [price>

< name >| | < /name >

< name > | | < /name >

Q6
< name.text() >

output(name.text())

Fig. 5: A simple PDA for the XML Fig. 6: A simple PDT

stream in Figure 1

state transition occurs, such an operation results in some items being appended to
the output of the PDT. A PDT is defined to accept an input string in a manner
analogous to a PDA. However, a more common use of a PDT is to transform data
by using a state transition function with output operations.

It is easy to devise a PDA that accepts XML documents that have a specified
structure. One may begin with an automaton that intuitively traces the desired
document structure. For example, Figure 5 depicts an automaton that outlines
documents with structure similar to that of the document of Figure 1. The start
state is $1 and the only accepting state is $3. This automaton accepts a document
that has, at the top level, a pub element that has a year element as child and
that also has a book subelement that, in turn, has subelements with labels price,
name, and author. It also accepts a much simpler document that only has a pub
element without any subelements. However, it will not accept a document with a
book element at the top level. In more detail, for each of the SAX events generated
for the XML stream in Figure 1, the PDA in Figure 5 makes a state transition
according to the state transition diagram. For each begin event, it also puts the tag
of the element into the stack. For each end event, it compares the tag of the current
element and the tag on the top of the stack. If these two tags match, it pops the
tag off the stack. Otherwise the XML stream is not well-formed and an error is
flagged. For acceptance, when the PDA has processed all the events generated from
the stream, it should be in the final state $3. It implies that the stack should be
empty since the stack operations have a bijective mapping to the state transitions
(e.g., pushing pub onto the stack corresponds to the transition on the <pub> event).
In the following discussion, we assume the XML stream is always well-formed.

The skeleton PDA described above can be adapted to filtering XML documents as
follows: Suppose we wish to find all the documents that contain at least one element
matching the pattern //pub//book//name. We may use the simple automaton

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

12 . F. Peng and S. S. Chawathe

suggested by Figure 5. Here and in what follows we shall assume that if there is
no arc (transition) matching an input symbol then the automaton remains in the
current state. Whenever this simple automaton transitions from state $6 to state
$8, we know that the current XML document contains an element that satisfies
the filter expression //pub//book//name and we can return the document to the
user. The PDA in Figure 5 can be further used for simultaneously filtering an XML
stream using multiple queries. When a transition marked with @; is triggered by
an event in the incoming XML file, the PDA reports to the user that the document
satisfies query @Q;. For example, Q)2 is //pub//year, (Js is //pub//book//name,
and the other queries can be inferred similarly. Of course, in many real applications,
the queries do not have such convenient similarities. Combining such queries then
requires more sophisticated techniques [Altinel and Franklin 2000; Diao et al. 2002;
Chan et al. 2002].

The PDA can also be modified into a PDT that answers simple queries. For
example, if we remove the branches of the PDA in Figure 5 and put an output
operation on a self-transition from state $8, we get the PDT depicted in Figure 6.
This PDT evaluates the XPath query //pub//book//name/text ().

However, it is not straightforward to extend this simple idea for building PDAs
and PDTs to more general XPath queries. The main reason is that the PDA cannot
buffer previously processed data. (The stack of the PDA is used exclusively to en-
sure proper nesting of begin and end tags.) Such buffering is required for answering
XPath queries that have predicates because the data required for evaluating these
predicates for a given XML element (that satisfies the rest of the XPath query) may
appear at various points in a stream. In particular, the data required to evaluate
a predicate for an element may appear long after (much farther downstream from)
the element itself. A naive solution is to record the current results for every pred-
icate, and mark every item in the buffer with flags that indicate which predicates
have been satisfied and which have not yet been satisfied. Every time we evaluate
a predicate, such a method would need to check if some items are affected by its
result, resulting in poor performance. Further, as queries get more complex, such a
method would soon become too unwieldy as it uses ad-hoc methods to keep track
of all the necessary information. In Example 1, if the first year element has satis-
fied the predicate [year > 2000], the other year element of the same pub element
should not be tested. If there are closures in the query and the data is recursive,
such flags need to be set on a per-matching basis, not just for each item. These
and other difficulties are explored in more detail when we describe our methods in
the following sections.

4. EXTENDED PUSHDOWN TRANSDUCERS

The traditional PDT and PDA are not suitable for streaming XML processing
since the states in the PDT and PDA do not encode enough information about the
patterns they match. For example, when the PDT of Figure 6 is in state $6, we
know only that the current element satisfies the pattern //pub//book. We do not
know the depths of the pub and book elements that match this pattern. Further,
when there are multiple matches between the pattern and the data, these matchings
cannot be distinguished. However, recall from Example 2 that if the path from the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 13

* *

& <pub> é <book> @

</pub> < /book>
Fig. 7: A PDT with Kleene star

document root to an item matches a path in a query in multiple ways, we must
consider each matching; the item belongs in the query results if any one of these
matchings satisfies the predicates in the query.

Another problem with PDTs is that the semantics of closures (Kleene closure,)
in these automata do not map easily to the semantics of closures in XPath (descen-
dant axis, //). For example, the query //pub//book may suggest the PDT depicted
in 7, with the transition from $2 to $3 generating output for the result. However,
in addition to matching book elements that are descendants of pub elements, such
a PDT also produces output for book elements that occur anywhere after a pub
element in document order. For example, it erroneously produces output for the
book element in the XML input <pub>p1</pub><book>b1</book>.

To address the above problems, we define an extended PDT (XPDT) by
augmenting a PDT with a stack (separate from the main stack) called the depth
stack and modifying the transition function to take this stack into account. We
also permit transitions to be conditional on the evaluation of a predicate adorning
the transition. We show that the XPDT is a useful extension of the PDT that
permits convenient processing of depth information in XML streams.

An XPDT is specified by means of a 7-tuple (X,T,Q, P, 0, F, sg), indicating the
input alphabet X, the stack alphabet I', the set of states (), the set of predicates
P, the transition function J, the set of operations F', and the start state so € Q.
We describe these components in more detail below.

—The input alphabet ¥ may be infinite and is composed of input symbols, which
are SAX events of the form (tag, atirs, type, depth). (Recall the SAX model from
Section 2.2.)

—The stack alphabet I" consists of stack symbols of the form of (tag, depth). On
encountering an input symbol of type B (begin element; see Section 2.2), the tag
and depth of the element is pushed on to the stack. This stack item is removed
from stack when the corresponding end element event (type E) is encountered.
The stack is subject to the standard operations: push(x), which pushes z onto
the stack; pop(), which removes and returns the element at the top of the stack;
and peek(), which returns the top element without displacing it.

—States in @ are of the form (i, d), where ¢, called the base ID, is a unique iden-
tifier and d, called the depth stack, is a stack of integers. We may think of ¢ as
the traditional state ID for an automaton. However, it forms only one dimension
of the two dimensional state identifiers in XPDTs. The second dimension, the
depth stack, is used to distinguish between different paths that lead to states
with the same base ID, corresponding to different matchings between the query
and an input item. This two-dimensional naming scheme for states is convenient
for describing the operation of the XPDT. (See Example 4 below.)

—Each predicate in the set P is of the form of attr op lit and compares the value

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

14 . F. Peng and S. S. Chawathe

of the named attribute with the provided literal using the operator op (chosen
from the list in Figure 4, with the usual semantics). The predicate associated
with a transition is evaluated on input symbols that trigger that transition; the
transition is taken if and only if the predicate evaluates to true.

—The set F' contains the operations that are associated with the transitions. If an
operation f is associated with a transition, the operation f will be executed when
the transition happens. Choices for the operation include the null operation that
does nothing, printing the current input symbol, and displaying a predefined
message based on the content in the stack. Operations form the interface for
more complex transducers to extend the function of an XPDT. For example, the
BPDT described in Section 5.1, defines a set of buffer operations that operate on
the augmented buffer.

—The transition function § is a mapping from @ x ¥ x['* to P(P x Q xI'* x F),
where P(X) denotes the power set of X and I'* denotes the stack as a string
over the stack alphabet. We may think of ¢ as defining, for each state in @, a
set of outgoing transitions based on the state of the stack and the input symbol.
Each transition is described by a predicate, a destination state, a new stack state,
and an operation from F. The semantics of the transition function are explained
further below.

—The start state go is simply the initial state of the automaton. The automaton
commences execution by evaluating the transition function for this state, with
an empty stack, and with the first symbol in the input.

In the following discussion, we use the term current element to refer to the in-
put element that generated the SAX event currently being processed by the XPDT.
The depth stack is used to record the run-time information of which elements in
the input lead to the current state. The begin events of all ancestors of the current
element are processed before the current element; however, not all of them result in
a state change during this process. The XPDT only needs to record the ancestors
that lead to state changes. In the application of evaluating XPath queries, only
these ancestors take part in the matchings between the XPath query and the result.
For example, suppose we wish to evaluate the query //book//pub//name on the
input listed in Figure 2. Although the name element in line 11 has five ancestors,
in lines 1, 2, 7, 9, and 10, we need to record only the two ancestors in lines 7 and
line 9. Although the other three elements may match a single step in the query
(and may be involved in the matching for other name elements), we do not need
the results of predicate evaluations at these elements when we process the name
element in line 11.

The depth stack contains the integer ¢ if only if the current element’s ancestor
at depth ¢ produced a state change in the sequence of transitions leading from the
start state to the current state. The depth stack essentially records the states of
the main stack in the states leading to the current state. We define the depth of
a state (i,d) to be the integer at the top of the stack d. That is, the depth of (i, d)
is d.peek(). In addition to the standard stack operations (push, pop, and peek), we
define the operation remove(k) on depth stacks to result in the removal of the top
k elements of the stack. We say two depth stacks are equal if they have the same
number of elements and the corresponding elements are equal.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 15

We now describe the semantics of the transition function 6 : Q@ x ¥ x I'* —
P(P x @Q xI'* x F) in more detail. The XPDT maintains a set of currently active
states ¥, which initially is {(qo, ())}, where we use () to denote an empty depth
stack. When the XPDT reads the input symbol e, it computes, for every state
(n,d) € ¥, the set of transitions §((n,d),e, K), where K denotes the stack. For
each transition (p, (n’,d’), K', f) in this set, the XPDT evaluates the predicate p.
If p evaluates to true, the XPDT replaces (n,d) with (n/,d') in ¥ and updates the
stack from K to K'. Further, the operation f associated with the transition is
performed. If p evaluates to false for all transitions, (n,d) remains in ¥ and no
further action is taken. A special case is when 6((n,d), e, K) is empty, i.e., when
there are no transitions from (n,d) on e. We contrast this convention for undefined
transitions with that used in many traditional automata, which report an error
if such a situation occurs. This convention allows us to simplify the definition of
automata for XPath queries. For example, given a query /A/B, the automaton need
only consider the B subelements of the A elements. All the other subelements of A
can be ignored. In the state corresponding to A in the automaton, we may achieve
this behavior by defining only one transition, on B.

The above definition of an XPDT permits arbitrary transitions and arbitrary
modifications to the depth stack at each transition. However, we focus our atten-
tion on the XPDTs used by XSQ to process XPath queries. In such XPDTs, the
transitions may be classified as described below and the depth stack is modified in
only a few different ways. In the following description of transitions, we consider
an input symbol e, source state ¢ = (n,d) and target state ¢' = (n',d’).

Self-closure transition:. Such a transition is taken for an input symbol e of type
B (begin element) that has depth greater than the depth of the current state. The
source state of the transition remains in the set of current states, and no new state
is added. That is, for a self-closure transition, if e.type = B and e.depth > d.peek()
then ¢' = ¢. In state transition diagrams, self-closure transitions are identified
using the symbol // next to the arrows denoting the transitions.

Closure transition:. Such a transition is also taken for an input symbol e of type
B (begin element) with depth greater than the depth of the current state. The
source state of the transition remains in the set of current states. However, unlike
the case of the self-closure transition, new states are added to the set of current
states. The depth stacks of the new states are obtained by pushing the depth of
the event onto a copy of the depth stack of the current state. That is, for a closure
transition, if e.type = B and e.depth > d.peek() then d' = d.push(e.depth). In
state transition diagrams, closure transitions are identified using the symbol = on
the arrows denoting the transitions.

Regular transition:. Such a transition is taken for an input symbol e if

[d.peek() + 1, when e.type = B
¢.depth = { d.peek(), when e.type =T or e.type = E

The current state ¢ is removed from the set of active states. The depth stack of

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

16 F. Peng and S. S. Chawathe
| event active states
{81, ¢)}
1 | (pub, ¢, B,1) {(31, ¢), (82,(1))}
2 | (pub,¢,B,2) {(81, ¢), (82,(1)), (82,(2))}
3 | (book,¢,B,3) {(81, ¢), (82,(1)), (82,(2)), (83,(1,3)), (83,(2,3))}
4 | (name, ¢, B,4) {(81, ¢), ($2,(1)), (82,(2)), ($4,(1,3,4)), ($4,(2,3,4))}
5 | (name, {(text(),8)},T,4), | {(81, ¢), (82,(1)), (52,(2)), (84,(1,3,4)), (84,(2,3,4))}
6 | (name, ¢, E,4) {(81, ¢), (82,(1)), (82,(2)), (83,(1,3)), (83,(2,3))}
7 | (book, ¢, E,3) {(31, ¢), (82,(1)), ($2,(2))}
8 | (pub,¢,B,2) {(81, ¢), (82,(1))}
9 | (pub,¢,B,1) {81, ¢)}

Fig. 8: The XPDT of Example 4 in action

each state ¢’ added to the set of active states is obtained as follows:

d.push(e.depth) when e.type = B
d=<d when e.type =T
d.pop(), when e.type = E

In state transition diagrams, regular transitions are represented by arrows with no
special markings.

Catch-all transition:. Such a transition is taken for an input symbol e of any type
if the depth of e is greater than the depth of the current state q or if e is of type
T and has depth equal to the depth of q. The state g remains in the set of current
states, i.e., ¢ = ¢. In state transition diagrams, catch-all transitions are identified
using the symbol ¥ next to the arrows representing the transitions.

Given the above rules relating the depth stacks of the source and destination states
of a transition in an XPDT, we do not need to specify the depth stacks explicitly
in the transition function. In particular, we can determine the operations on the
depth stacks by noting the symbols adorning the arrows (//, =, %, or none) in a
state transition diagram.

ExaMmpLE 4. Consider an XPDT (X,T',Q, P, 6, F, so) where Q = {$1,$2,$3,$4},
P =¢, and F = {fo}, where fy is an operation that writes the string matched to the
output. The start state sy is $1, and the transition function is summarized by the
state transition diagram depicted in Figure 9. The diagram uses <pub> and </pub>
to denote, respectively, the begin and end events of pub elements. The XPDT is
designed to produce one matched string in the output for each element matching
the query //pub/ /book/name.

Figure 8 summarizes the actions of the XPDT on the following input:
<pub><pub><book><name>A</name></book></pub></pub>
In step 8, a transition on book is taken from both ($2,(1)) and ($2,(2)) because
the transition from $2 to $3 is a closure transition, as indicated by the = on the
arrow. These two states also remain active because of the self-closure transition in
state $2, as indicated by the // on the arrow from $2 to itself. The transition taken
in step 4, $3 — $4, results in the execution of the print operation. We note that
we may also put this operation on the transition $4 — $3 instead of on $3 — $4
because we assume that the input is well-formed. In step 5 there is no transition
defined on the input event and the set of active states is unchanged. More precisely,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

fo executed
no transition

XSQ:A Streaming XPath Engine . 17

// @ <root> @ </root>

<author>

{flush()}

<book> | | </book>

< [price>
{output(*)}

</price> <price>
{enqueue(*)} {output(*)}

<price>
{enqueue(*)}

< name >

print(”matched”) <[name>

* *
{enqueue(*)} {output (%)}
Fig. 9: A simple XPDT Fig. 10: A simple BPDT for query /pub/book[author]/price

5(q, (name, {(text(),A)},T*) = 0 for all states q active in step 5. Finally, a simple
change to this XPDT vyields an XPDT that produces the text contents of matching
name elements as output (instead of the string matched). We remove the operation
from the transition $3 — $4 and add a transition $4 — $4 on the text event, with
an operation that outputs the value of the text () attribute of the event.

The above example suggests how an XPDT is used to answer simple XPath
queries. It also illustrates that we do not need to specify the depth stacks explicitly
in the transition function. They are determined at runtime based on the type of
the transition taken, using the rules described earlier. However, the reader may
notice that there is a problem with the XPDT used in this example. In step 4, the
operation fy is executed twice: once for of the transition $3 — $4 out of ($3, (1, 3))
and once for the same transition out ($3, (2,3)). Thus, the string matched is printed
twice although there is only one matching name element in the data. This problem
is caused by the two ways in which the name element matches the query. The first
matching uses the outermost pub element of the input while the second uses the
inner pub element. In order to fix this problem, as well as to enable evaluation of
predicates that require buffering, the next section introduces a buffered version of
this automaton.

5. BUFFERED PUSHDOWN TRANSDUCERS

Recall our discussion in Example 1, which indicated that a streaming XPath pro-
cessor must buffer data items whose result membership cannot be decided until
additional data arrives in the stream. Since the XPDTs introduced in the previous
section do not have a buffer, they cannot answer XPath queries with predicates,
which require buffering. In this section, we augment the XPDT with a buffer and

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

18 . F. Peng and S. S. Chawathe

a set of buffer operations. The resulting automaton, which we call a buffered push-
down transducer (BPDT), is used to encode a single location step of an XPath
query. A collection of such automata is then used to encode the entire query. We
introduce the buffer and the operations used to manipulate it in Section 5.1. In
Section 5.2, we describe our method for mapping XPath location steps to BPDTs.
We discuss the combining of BPDTs in Section 5.3.

5.1 BPDTs and Buffer Operations

A Buffered Pushdown Transducer BPDT is an 8-tuple (X,T',Q, P, 4, Fi, (2, so),
where ¥, T, @, P, 0, and sg are defined as in the definition of the XPDT (Section 4)
. The buffer alphabet 2 specifies the items in the buffer, which is organized as a
queue. The set Fig is composed of the buffer operations described below.

The buffer operation enqueue(a) puts the value of feature a of the current
input event at the end of the queue. There are three kinds of features that may
be enqueued using this operation. First, a may be the name of an XML attribute,
in which case the value of the named attribute of the current event is enqueued.
Second, a may be the literal text (), in which case the text content of the current
event is enqueued. Finally, ¢ may be the catch-all symbol %, in which case the
serialized (string) representation of the input event is enqueued, including all its
attributes. For example, for the begin event (book, {(id,” 1”)}, B, 1), the operation
enqueue(*) enqueues the string <book id="1">. Other operations on the buffer
include clear(), which clears the contents in the queue, and flush(), which flushes
the contents of the queue to the output. The operation output(a) emits the value
of attribute a directly as the output. Although it does not operate on the buffer, we
include it in Fp for ease of presentation. In state transition diagrams, we indicate
the buffer operation associated with a transition by using the operation as a label
on the arrow representing the transition. The following example illustrates how a
BPDT may use the buffer to answer an XPath query that requires buffering.

EXAMPLE 5. The BPDT depicted in Figure 11 performs a streaming evaluation
of the query: /pub/book[author] /price. It uses the catch-all symbol * to indi-
cate that all subelements of the price element should be in the result. Let us consider
the first few actions of this BPDT on the XML stream of Figure 1. After processing
the elements in lines 1 through 3, the BPDT is in state $5. It then enqueues the
item in line 4 into the buffer. We note that it will return from state $8 to state $5
when it encounters the end event of the price element since the catch-all transition
accepts only events with depth larger than the depth of the current state (Section 4)
while the end event of the price element has the same depth as the current state.
When the BPDT encounters the begin event of the author element in line 6, it
flushes the items to the output and goes to state $6 (and state $7 at the end event
of the author). The BPDT encounters the next price element in line 7 and this
time it emits the element directly to output.

5.2 Templates for Single Location Steps

The following example describes the intuition behind our mapping from XPath
location steps to BPDTs.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 19

START State START State

flush
TRUE State TRUE State YHhO} A State </
Fig. 11: Template BPDT for: /n[Qa = v] Fig. 12: Template BPDT for: /n[c@a = v]

START State START State

y |

{flush()} 2 {clear()}
TRUE State NA State TRUE State NA State

Fig. 13: Template BPDT for: /n[c=v] Fig. 14: Template BPDT for: /nftext() = v]

ExaMPLE 6. Consider the XPath query /book[author]/tezt (), which consists
of a single location step /book/[author]. Given the semantics of this query, a
BPDT for this query must operate as follows on streaming data: If it encounters a
<book> event followed by an <author> event, it must record the fact that this book
element satisfies the [author] predicate, so that it can output the text contents of
the element immediately when they are encountered later. On the other hand, if the
text contents of a book element are encountered before a <author> event, then the
contents must be buffered until either a <author> event is encountered, in which
case the buffer is flushed to the output, or a </book> event is encountered, indicating
that the book element has no author subelement, in which case the buffer is cleared.
These observations suggest mapping this location step to a BPDT similar to the one
depicted in Figure 14, substituting <book> for <n> and <author> for <c>. In order
to extend this BPDT for the location step /book/[author] to one that answers
the query /book[author]/text (), we add transitions for the text () event of book
elements to states $2 and $4. The buffer operation on the transition out of $2
enqueues the text content while the buffer operation on the transition out of $4
sends the content directly to the output.

As suggested by Example 6, there are three special states in the BPDT corre-
sponding to a location step: The START state is the entry point to the BPDT. The
TRUE state indicates the predicate of this location step has evaluated to true, while
the NA state indicates that the predicate has not yet been satisfied. As discussed
later (Section 6), these states are used to connect the BPDTs for individual lo-

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

20 . F. Peng and S. S. Chawathe

START State

@

{clear()}

TRUE State

Fig. 15: Template BPDT for: /n[c=v]

cation steps to form an automaton that answers a multi-step XPath query. The
reader may note that the satisfaction of a predicate has limited scope; for instance,
in Example 6, the presence of an author element satisfies the [author] predicate
only for the book element that is its parent. The predicate must be evaluated sep-
arately for other book elements. We describe our methods for such bookkeeping in
Sections 5.3 and 6.

For the purpose of mapping XPath location steps that contain predicates to
BPDTs, we classify the location steps into the five categories described below.
Recall, from Section 4, that our transition diagrams do not explicitly mention the
manipulations of the depth stacks, which are governed by the rules described earlier.

—Location steps that test whether the current element has a specified attribute, or
whether the attribute satisfies some condition. These steps have the general form
/nl@a] and /n[@a op v], where n is an element name, a is an attribute name,
op is one of the comparison operators (Figure 4), and v is a literal. For example,
/book[@id] denotes a book element that has an id attribute, while /book[@id
<= 10] requires further that the id attribute have a value no greater than 10.
Such steps are mapped to a BPDT using the template suggested by Figure 12.
The figure illustrates the case for /n[@a = v]; for the /n[@a] case, the test of
the attribute value is replaced by a test for the existence of the attribute.
When evaluating the comparison for the attribute value with a literal, the seman-
tics of XPath require that if the literal v is a number, the value of the contents
(here is the attribute) should be converted to numerical value and the numerical
values are compared. If the comparison is failed, the predicate returns false.

—Location steps that test whether the current element contains a specified string,
or whether the value of the text satisfies some condition. These steps take the
general form of /n[text() op v]. For example, /year[text() = 2000] de-
notes a year element whose text content is equal to 2000. Figure 15 depicts the
template for the BPDTs that process location step of the form /n[text()=v].
A subtle point here is that we have implicitly assumed that an element may
generate at most one text event. However, when the text content of an element
is interspersed with subelements, a SAX parser generates multiple text events,
one for each contiguous text segment. For example, the XML fragment <review>
The<color>yellow</color>road...</review> generates two text events, one

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 21

for “The” and the other for "road. ..” XPath semantics require that this fragment
match the location step /review[text() contains "The road"]. However, if
the two text events are treated separately, such a match will be missed. XSQ
therefore aggregates multiple text events of this kind into a single event that
is issued just before the end tag of the element to which the text belongs (just
before </review> in our example). For ease of exposition, we will henceforth
assume that text events are in such an aggregated form.

—Location steps that test whether the current element has a specified type of
subelement. These steps are of the form /n[c]. For example, /book[author]
matches a book element that has at least one author subelement. Figure 14
depicts the template for the BPDTs that process location step /nl[c].

One may note that there is only one transition out of state $3 and consider the
possibilty of merging $4 with $3, with a transition on </c> from $3 to itself
and a transition on </n> from $3 to $1. However, BPDT generated using this
template cannot be combined with other BPDTs to answer XPath queries that
have several location steps. Consider the BPDT in Figure 11. If we merge state
$6 and $7 with a transition on </author> from $6 to itself, the state $6 will
accept not only the price subelements of the book element, but also the the
price subelements of the pub element (while the query asks for only the former).

—Location steps that test whether a specified subelement of the current element
contains an attribute, or whether the value of such an attribute satisfies a pred-
icate. These steps are of the form /n[c@a] and /n[c@a op v], respectively. For
example, /pub[book@id <= 10]) denotes a pub element that has a book subele-
ment whose id attribute is less than or equal to 10. The BPDT template of the
location step /nl[c@a op v] is depicted in Figure 13.

—Location steps that test whether the value of a specified subelement of the current
element satisfies a given predicate. These steps are of the form /n[c op v].
For example, /book[year <= 2000] matches a book element that has a year
subelement whose value is less than or equal to 2000. Figure 16 depicts the
template for the BPDTs that process location step /nl[c op v]. This template
is similar to the template depicted in Figure 14, but includes transitions to process
the text event.

We note that the above templates encode the existential semantics of XPath pred-
icates: An element matching the name in a location step qualifies for matching the
location step if there is at least one subelement data that satisfies the predicate.
The element fails to qualify only if all its subelements fail to satisfy the predicate.

Although the above templates provide a simple method for mapping location
steps to automata, using them to answer a given query requires some manipulation
of the buffer operations. For example, Figure 17 depicts a BPDT generated for
a single step XPath query that returns an entire element: /pub/[year > 2000].
The need to return an entire element (not just its text content) requires the use of
the catch-all transition in the BPDT. Such modifications for generating BPDT's for
answering single-step XPath queries from the templates (the template in Figure 16
in our example) are straightforward.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

22 . F. Peng and S. S. Chawathe

START State

$1
¢
1% —~—
A AT
58|15
—~~ SIS 2 S
=t JS s |VE
] 3 PN ~2
=& Y =
N4
VvV g &
— &
>
<year.tert()> ~ &
</year> [text() > 2000] <year> y |
$6 $5 (33 152)
{flush()} </year>
TRUE State NA State

Fig. 16: BPDT for query /pub[year>2000]

5.3 Connecting the BPDTs

We now discuss methods to connect BPDTs for the location steps of an XPath
query into a larger BPDT that answers the complete query. When we connect
BPDTs for individual location steps, we must maintain the structural relations
among the location steps. For example, for query /book[author]/price/text(),
we must ensure that the BPDT generated for the second location step outputs the
text content of only those price elements that have a book element satisfying the
[author] predicate as parent. This requirement is easily satisfied following the
scheme discussed in Example 5: We merge the START state of the second BPDT
with states that are right after the begin event of the book element or right before
the end event of the book element, ensuring that any price element considered by
the second BPDT is a child of a book element. Figure 18 illustrates this idea. We
note that we need multiple copies of the second BPDT, which is a BPDT of the
simplest kind, having no predicate. These copies differ in their buffer operations.
We defer to Section 6 the description of our method for modifying buffer operations
in the BPDT templates to ensure proper operation of the automaton composed of
multiple BPDTs.

Recall that XSQ is designed to buffer only those items whose result member-
ship cannot be immediately determined (i.e., those that any streaming XPath pro-
cessor must buffer). For example, for the query /book[author]/pricel@type=
"discount"]/text (), the operations in the BPDT generated for the second loca-
tion step should output all the text contents directly if the predicate in this BPDT
has been satisfied and the predicate in the first location step is known to be true.
If the result of the first predicate is currently unknown, text contents should be
enqueued if the type attribute is named discount. By applying the idea of gener-
ating multiple copies of BPDTs for the second location step and merging the START
states of these copies with the appropriate states in the BPDT of the first location
step, we arrive at the BPDT depicted in Figure 19. We note that although we gen-
erate the BPDTs for the second location step by instantiating the same template
from Section 5.2, the operations on the transitions differ between the instances,
depending on state in the BPDT for the first location step to which they connect.
For queries with three or more location steps, determining the appropriate buffer

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 23

<book>

<author>

{flush()}

<author>

{flush()}

&

. . . . \ [@Qtype = "discount”] -
<price>| | </price> <price> | | </price> QY <price>

[@type = " discount”]

$5
<price.text()> <price.text()> <price.text()> <price.text()>
{enqueue(x)} {output(%)} {enqueue(x)} {output(¥)}
Fig. 17: BPDT for query Fig. 18: BPDT for query
/book[author]/price/text() /book[author] /price[@type="discount"]/text ()

operations for each instantiation of a template is likely to be complicated because
the operations may be affected by results of predicates both before and after the
current location step. Although such a scheme can be worked out, we prefer to use
the simpler scheme described in Section 6 because that scheme is needed to address
the problem we describe next.

When BPDTs are interconnected, we need to ensure that when a predicate is
evaluated, all the contents in the buffers that are affected by the result of this
predicate are processed right away. If the result is true, items in the buffer that
are waiting only for this result (and not the result of some other predicate as
well) should be sent to output. If the result is false, all items in the buffer that
are waiting for this result (and perhaps other results) should be removed. An
additional complication occurs when there there are multiple matchings between
the data and the query, such as those described in Example 2. In this case, we
must ensure that we remove from the buffer only those items for which there is no
matching that satisfies all the predicates. The simple buffer organization used by
BPDTs makes it impossible to differentiate between buffer items in this manner.
For example, as we described in Example 1, when we evaluate the query /publ[year
> 2000] /book[price < 11]/author over the stream in Figure 1, there are three
author items in the buffer when we encounter the end event of the second book
element. At this time, the predicate of the second location step, [price < 111, of
the second book element evaluates to false. Therefore, the two authors of the second
book should be removed from the buffer. However, the BPDT cannot distinguish
between the author of the first book and the authors of the second book. We may
address this problem by extending the buffer alphabet to include flags that allow
us to distinguish between different groups of items. Another alternative, and one
used by XSQ and described next, is to organize buffers hierarchically and define
buffer operations that transfer items from a buffer to its parent.

6. BUILDING A HIERARCHICAL PUSHDOWN TRANSDUCER

In this section, we put together the ideas from earlier sections to describe the com-
plete method used by XSQ to build an automaton to answer an XPath query. This

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

24 . F. Peng and S. S. Chawathe

automaton is obtained by aggregating the BPDTs generated for each location step
in the query. As discussed in Section 5.3, we may need to use multiple instances of
the BPDT corresponding to a location step, with each instance using a different set
of buffer operations. We first describe how BPDTs are connected in a hierarchical
manner so that the buffer operations in each BPDT are determined solely by the
location step from which the BPDT is generated and the position of the BPDT in
the structure, but not by the runtime information of the results of the predicates.
We then extend the set of BPDT buffer operations to support communication be-
tween the BPDTs. We refer to the resulting network of BPDTs as a Hierarchical
Pushdown Transducer (HPDT).

6.1 A hierarchical structure

As we described in Section 5.3, a single buffer does not enable us to properly process
buffer items that differ in the sets of predicates they must satisfy in order to qualify
as query results. To address this problem, we introduce a separate buffer for each
BPDT in an HPDT. We also introduce an upload(bpdt) function that transfers all
the items from the buffer of the calling BPDT to the buffer of the BPDT specified
as the argument. (The details are described below.)

Recall, from Section 4, that although states are identified using a two-dimensional
identifier (i,d) where i is a base identifier and d is a stack of integers (the depth
stack), the rules governing the depth stacks during transitions permit us to specify
a transition function using only the base identifiers of states. The depth stacks are
manipulated at run-time based on the rules in Section 4. In this section, our focus
is on the compile-time construction of an HPDT. Therefore, we will identify states
using only their base identifiers.

Recall, from Section 5.2, that each BPDT template has a single START state,
a single TRUE state, and an optional NA state. Given an XPath query with n
location steps, we generate instances of BPDTs using these templates, and connect
the instances as follows: For the I’th location step, we generate 2! BPDTs from the
templates described in Section 5.2. The buffer operations are initially set to those
in the templates. The BPDTs generated for the [’th location step are assigned
identifiers of the form (I,k), where k € [0,2!). We use bpdt(l,k) to denote the
BPDT with identifier (I, k). After we generate BPDTs for all the location steps, we
connect the BPDTs in a layered fashion. Each bpdt(l, k) (I < n) has two children:
a right child bpdt(l + 1,2k) whose START state is the NA state of bpdt(l, k) and a
left child bpdt(l + 1,2k + 1) whose START state is the TRUE state of bpdt(l, k). It is
possible that the bpdt(l, k) does not have an NA state; in this case, bpdt(l + 1,2k)
is set to null. A null BPDT does not exist in the structure, but it is counted when
we compute the sequence numbers of BPDTs. In this layered structure, we refer
to the BPDTs generated for the I’th location step as the [’th layer. We maintain
a separate buffer for each BPDT and use B(l, k) to denote the buffer of bpdt(l, k).
The zeroth location step refers to the leftmost / in an XPath query and it matches
the document root. The BPDT generated for the zeroth location step is depicted
in Figure 20. Null BPDTs resulting from missing NA states result in pruning in the
HPDT. For example, since the BPDT for the zeroth location step does not have an
NA state, there is no need to generate bpdt(1,0) for the first location step; similarly,
its descendants, bpdt(l,k) for I € [2,n] and k € [0,2'"1] are not generated. An

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 25

START State TRUE State
<root>
$1% @
</root>

Fig. 19: Template for the root BPDT

example of an HPDT is depicted in Figure 21. Each box in the figure encloses the
states of a BPDT (with the exception of BPDT start states that have been merged
with states in BPDTs at a higher layer). The identifiers of the BPDTs are shown
on the shoulders of the boxes enclosing them.

Figure 21 suggests why this method of connecting BPDTs ensures that the struc-
tural relations between the location steps are satisfied. For example, consider states
$14, $15, $16, and $17, belonging to BPDTs generated for the location step //name.
The start states for these BPDTs, $8, §10, $11, and $13, respectively, coincide with
the TRUE and NA states of BPDTs for the location step //book. Therefore, only
name elements that occur within a book element result in states $14, $15, $16, and
$17 being active. Using a similar argument, we infer that the only book elements
that result in states $8, $10, $11, and $13 being active are those that occur within
a pub element.

Another property of our method of connecting BPDTs is that at states of the
HPDT that lie in BPDTs in the right subtree of bpdt(l, k), the predicate in [’th
location step has not yet been satisfied because these states can be reached only
via a path of state transitions that contains the NA state in bpdt(l, k). On the other
hand, at states that lie in BPDTs in the left subtree of bpdi(l, k), the predicate in I’th
location step has already been satisfied because such these states can be reached
only via the TRUE state in bpdt(l, k). Therefore, within each BPDT, the status
(satisfied or pending) of predicates in all higher layer (lower numbered) BPDTs
are known. The bpdt(n,2" ! — 1) is in the left subtree of all its ancestor BPDTs.
Therefore, at states in this BPDT, all predicates have been satisfied. Consequently,
when data that matches the trunk of the query (i.e., the query excluding predicates)
is found, it is sent directly to the output using the output buffer operation. This
situation is exemplified by bpdt(3,7) in Figure 21; the self-transition emerging from
$17 sends the text contents of the name element to the output. At states within
all other BPDTs in layer n, there is at least one predicate that has not yet been
satisfied. Therefore, when matching data is found, it is buffered using the enqueue
operation. This situation is exemplified by bpdt(3,5) in Figure 21. In state $15,
the predicate [author] has been satisfied but the predicate [year > 2000] has
not been satisfied. Therefore, the self-transition emerging from $15 buffers the text
contents of the name element to the output.

When input events result in a transition out of a BPDT, the truth value of
the BPDT’s predicate is known. If the predicate evaluates to false, the items are
discarded using the clear operation. Otherwise, the the upload operation is used
to transfer the items to the buffer of one of its ancestor BPDTs. More precisely, a
BPDT b uploads its buffer items to the buffer of the nearest ancestor b’ such that
b is in the right subtree of b’. We say that b’ is the D-ancestor of b. Recalling
the method of connecting BPDTs, we note that the predicates of all the ancestors
of b that lie below the D-ancestor b’ are known to be satisfied since b lies in their

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

26 . F. Peng and S. S. Chawathe

left subtrees. Therefore, the contents in b’s buffer are waiting next for the result
of the predicate that is evaluated by ', and uploading them to b’’s buffer is the
correct action. We do not need any runtime information to compute the D-ancestor
of a BPDT. We note that the parent of b = bpdt(l, k) is b' = bpdt(l — 1, |k/2]).
Further, b is the left child of b’ iff k is even. Thus, the D-ancestor of bpdt(l, k)
is bpdt(l — s, |k/2%|) where s is the smallest positive integer such that 2|k/2°| =
|k/257t]. Equivalently, we may compute the D-ancestor by scanning the binary
representation of k right-to-left, looking for the first 0 bit after the least-significant
bit. Let k' be the result of truncating k by deleting the suffix that begins at this
bit, and s is the length of the truncated suffix. Then, the D-ancestor of bpdt(l, k)
is bpdt(l — s, k').

Thus, a BPDT b accepts from its child BPDTs buffer items that are known to
satisfy the lower layer predicates (those to the right of its location step in the XPath
query) and that must satisfy b’s predicate in order to qualify for the result. If b’s
predicate evaluates to true, these items are sent to the output if no higher level
predicates are pending. Otherwise, the items are uploaded to the buffer of the
BPDT with the closest pending predicate (b’s D-ancestor).

ExaMpPLE 7. This example outlines the basic features of an HPDT, illustrating
how it is used to answer XPath queries with multiple predicates. Figure 21 depicts
the state transition diagram for the query // pub [year>2000] // book[author] //
name/ texzt (). However, if we ignore the closure and self-closure transitions (arcs
marked with = and //, respectively), we are left with the state transition diagram for
the following query without closures: /publ[year>2000] /book[author] /name/
texzt (). (The original query is discussed is Section 6.2 below.)

Let us trace the actions of this HPDT given the input stream of Figure 1. Recall
that depth stacks are used to distinguish between multiple query matchings for a
single element in the input. For a query that does not use the closure axis, there
is at most one matching for each element. Therefore, we do not need to consider
the depth stacks in this example. (Example 9 shows how the depth stack is used to
evaluate the original query, which uses the closure axis.) The HPDT starts in state
$1. When it encounters the name “first,” it is in state $14; thus it enqueues the
text content “first” into B(3,4). At the end event of the name element, the item is
uploaded to B(2,2). The next event is the begin event of the author element. The
HPDT goes from state $8 to state $9 and uploads the item to the buffer B(1,1).
A similar process applies to the item “second,” which is the name element of the
second book. Then, at the begin event of the year element, the HPDT is in state $3
and the buffer B(1,1) contains two items: “first” and “second.” When the HPDT
encounters the text event of the year element, it evaluates the predicate [tezt () >
2000] to yield true. Therefore the HPDT goes from state $4 to $6 and flushes the
content of its buffer to the output.

The above example illustrates how the buffer operations in each BPDT can be
determined based on the BPDT’s position within the HPDT. For example, since
bpdt(3,4) is the right child of bpdt(2,2), it is connected to the NA state of bpdt(2,2).
Therefore, at states within bpdt(3,4), the predicate in bpdt(2,2) ([author]) has not
yet been satisfied. Similarly, since bpdt(2,2) is the right child of bpdt(1,1), at states
within bpdt(2,2), the predicate in bpdt(1,1) ([year > 2000]) has not yet been

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 27

satisfied. Combining these facts, at states within bpdt(3,4) we know that neither
of the two predicates in the query are satisfied. We note that this information is
obtained solely from the positions of the BPDTs, so that the buffer operations in
the BPDTs are easily determined.

6.2 Extended buffer operations

Although the upload operation and the related data flow described above support
multiple predicates in the queries, they cannot correctly handle the case of multiple
matchings between the data and the query (described in Example 2). The reason is
that items corresponding to different matchings may be stored in the same buffer,
rendering them indistinguishable to the subsequent buffer operations. For example,
if a BPDT’s predicate evaluates to false based on one of the matchings, the entire
buffer is cleared. The items that have other matchings that result in the predicate
being satisfied cannot be recovered. Since we cannot guarantee the sequence of the
evaluation for different matchings, we need to ensure that if the predicate in this
BPDT for one of the matchings is not evaluated, the items corresponding to that
matching remain in the buffer. (If one of the matchings results in the predicate
being satisfied, we can output or upload the items because we only need one correct
matching to determine the destination of the buffer items). Example 8 illustrates
some of these ideas.

ExamMprLE 8. Consider the HPDT in Figure 21, for the query //publ[year>
2000] // book[author] //name/ text (), operating on the stream of Figure 2.
When the HPDT encounters the name element on line 11, it is in state $14. How-
ever, there are three matchings between this element and the query:
pub in line 2— book in line 7= name in line 11
pub in line 2— book in line 10— name in line 11
pub in line 9— book in line 10— name in line 11.

These different matchings lead to the same sequence of state transitions:
$1—9$2— 33— 38— 314.

(Howewver, the depth stacks of these states in different matchings are different; this
fact is used for distinguishing the buffer items as described later.)

All three matchings lead to the same BPDT because they agree on the predicates
that have been satisfied. Since the current BPDT, bpdt(3,4), is in the left subtree
of the bpdt(0,0), but in the right subtrees of bpdt(1,0) and bpdt(2,0), we know that
only the first predicate is true while the other two are unknown. (The first predicate
is the trivially true predicate for the implicit /root at the beginning of every XPath
query.) However, we cannot simply enqueue the item Z from the text event of the
current element. If we do so, then following the first matching, the item will be
cleared at the transition from $8 to $3 when the HPDT encounters the end of the
book element on line 16 (which corresponds to the book on line 7). Since this book
element does not have an author child, the predicate in the second location step
evaluates to false. Similarly, using the third matching, the HPDT will clear the
item when it goes from state $3 to state $2, since the year subelement of the pub
element on line 9 fails the predicate in the first location step. However, following
the second path, the HPDT should output the item on the transition from $4 to $6
when it encounters the year element on line 17 since the book element in line 10

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

28 . F. Peng and S. S. Chawathe

has an author subelement in line 12 (which comes before this year element and
satisfies the second predicate in the query). This need for different behavior for
different matchings suggests the need for additional bookkeeping in the buffer.

To support multiple matchings of the kind discussed above, we store a depth
stack with each buffer item, and extend the buffer operations accordingly. Recall,
from Example 4, that the depth stack distinguishes between different matchings
between a query and a single element in the input. Essentially, we create a copy
of the item for each matching, keyed by the corresponding depth stack. The buffer
operations of the HPDT in any state operate only on the items in the buffer whose
depth stack agrees with that of the state, according to the rules described below.

The depth stack of a buffer item is set by the enqueue operation in such a way that
it records the depths of the elements that take part in the matching that resulted in
enqueuing the item. In Example 8, we listed three matchings for the name element
in line 11 of Figure 2 and noted that they correspond to the same sequence of state
transitions when we identify states using only their base identifiers. However, if we
include the depth stack of each state in addition to its base identifier, we have the
following three paths for the three matchings in that example:

($1,6) — (52,(0)) — ($3,(0,1) — ($8,(0,1,2))) — ($14,(0,1,2,5))
($1,6) — (82,(0)) — ($3,(0,1) — ($8,(0,1,4))) — ($14,(0,1,4,5))
(81,0) — (82,(0)) — (83,(0,3) — (88,(0,3.4))) — (814,(0,3,4,5))

The three states with base identifier $14 but different depth stacks represent dif-
ferent matchings between the element and the query. For example, the depth stack
(0,1,4,5) associated with an item indicates that the ancestors at depths 0, 1, and 4
are matched with the first, second, and third location step, respectively. Therefore,
when the three different states enqueue the text content of a name element, they
associate different depth stacks with the copies of the items the enqueue. Copies of
the same item are later distinguished by their associated depth stacks.

As described in Section 6.1, the items enqueued in the buffer may be uploaded to
the upper layer BPDTs and be operated on by operations defined in them. Since
states in upper layer BPDTs always have different depth stacks than the states
in the lowest layer BPDTs (which have the initial depth stacks associated with
the buffer items), we need to ensure that the transitions in upper layer BPDTs
operate on the correct buffer items based on the depth stacks. For example, as
shown in Example 8, one of the matchings leads the item being cleared in the
transition from $8 to $3 in bpdt(2,2). The other matching leads the item be cleared
in the transition from $3 to $2 in bpdt(1,1). The third matching leads to the item
being sent to output from $4 to $6 in bpdt(1,1). All the states involved in these
transitions have depth stacks that are different from the depth stack of the enqueued
item. Therefore, we need to devise rules that match operations on transitions to
the appropriate buffer items.

The matching of the depth stacks of buffer items with and the depth stacks of
HPDT states is achieved by making the following two modifications to the buffer
operations: First, the upload operation truncates the depth stack of the uploaded
buffer items so that the new depth stack is the same as the depth stack of the NA

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 29

state of the target BPDT for the same matching. (Recall that there are, in general,
multiple active states that have the base identifier of the NA state but different
depth stacks, corresponding to different matchings.) Second, a buffer operation
on a transition out of a state ¢ in BPDT b operates only on those buffer items
whose depth stack is equal to the depth stack of b’s NA state for the matching
corresponding to g.

When an upload operation moves the buffer items from BPDT b to its D-ancestor
b', according to the definition of D-ancestor, the NA state of b’ must be in the path
of state transitions from the start state of the HPDT to the state that enqueues
those buffer items. This NA state will be active when the HPDT returns to b’ to
process the pending predicate in b'. (It may be active when the items are enqueued
if there is a self-closusre axis on it.) Therefore, the depth stack of the NA state must
be the first portion of the initial depth stack of the buffer items. It is also easy to
conclude that the NA state in a BPDT in layer m must have a depth stack of length
m+ 1 where the first element of the stack is always the depth of the document root
(which is 0). Therefore, if b’ is in layer I’, the depth stack of the NA state in b’ is
the the first I’ + 1 integers of the depth stack that are initially associated by the
enqueue operation. We then define the upload operation from b to b’ to remove
the top [— I’ integers in the stack, where [is the layer of b. This process repeats
itself for each upload operation that acts on a buffer item. The result is that the
depth stacks of an item in a buffer is equal to the depth stack of the NA state of
that buffer’s BPDT for the matching that originally enqueued the item.

Not all the transitions associated with buffer operations are directly related to
the NA state. Therefore, we need to connect the depth stacks of states in those
transitions to the depth stack of the NA state. We note that, in any BPDT, the
depth stack of an NA state for a given matching is always equal to the depth stack of
the TRUE state for that matching. (This observation follows from an examination of
the templates in Figures 13, 14, and 16, which include paired begin and end events
between their NA and TRUE states; the template in Figure 12 does not have an NA
state, while the template depicted in Figure 15 has no begin and end events between
the NA state and TRUE state.) Therefore, for a transition from state (s, d;) to state
(s2,ds), if s1(s2) is the TRUE (or NA) state, we set the operation associated with
this transition to operate on the buffer items with depth stack d; (respectively, d»).
According to the templates in Figure 12 through Figure 16, all the buffer operations
are related to either the TRUE state or NA state (or both) except the transition from
state $3 to state $4 in the template depicted in Figure 16. However, it is also easy
to determine the depth stack of the NA state because the depth stack of state $3
is created by pushing one element onto the depth stack of the NA state. We can
obtain the depth stack of the NA state by removing the topmost element from the
depth stack of state $3.

Based on above analysis, we now describe the modified buffer operations used in
an HPDT. The buffer alphabet 2 is extended to 2y and consists of buffer symbols
of the form (v, d), where v is a data item as described in Section 5 and d is the depth
stack of that item. The depth stack is associated with the data item by the modified
enqueue operation described below. The set of buffer operations, Fyr, consists of
the following, for a transition from state ¢ = (s1,dy) to state go = (s2,d2) on event

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

30 . F. Peng and S. S. Chawathe

e:

—engqueue(v): If e.type is B, add (v, ds) to the end of the buffer (which is organized
as a queue). If e.type is T or E, add (v, d;) to the end of the buffer. This definition
ensures that the depth stack of a buffer item contains exactly the depths of the
elements that participate in the matching that justifies enqueuing this item.

—clear(): Remove from the buffer all items with depth stack d; (since the clear
operation is always executed in the transition from the NA state to other states).

—flush(): If s1(s2) is TRUE or NA state, send to the output the values of all buffer
items that have depth stack d; (dz, respectively). Otherwise, send to the output
the values of all buffer items that have depth stack d;.remove(1). (Recall, from
Section 4, that the operation remove(k) removes the top k items from a depth
stack.)

—upload(): The implicit argument of the upload operation is the target BPDT,
which is always the D-ancestor of the current BPDT. The rules to determine the
depth stack of the buffer items on which the upload operation acts are the same
as those described for the flush operation (since we replace the flush operation
with upload operation for BPDTs in which some predicate is still unknown). The
upload operation moves all buffer items that have the determined depth stack
d to the D-ancestor of the current BPDT. Let [and I’ denote the layers of the
current BPDT and its D-ancestor, respectively. The depth stack of all the items
moved by the upload operation is set to d.remove(l —1').

As before, the operation output(v) outputs the value v directly without buffering.

EXAMPLE 9. Let us revisit Example 8 using the buffer structure and operations
described above. In Figure I, we summarize the actions of the HPDT of Figure
21 given the input data of Figure 2. The first, second, and third columns of the
table list the sequence number, summary, and depth of each event as it arrives in
the stream. The fourth column, labeled Current State Set, lists the active states
in each step before the event is processed by the HPDT. The state transitions that
the incoming event triggers are also listed in this column. The Buffer column lists
contents of buffers after the event has been processed. Buffers that are not listed
are empty.

Each state is represented as a pair (s,d), where s is the base identifier of the
state and d is the depth stack. The base identifier s is used to label the state in the
state transition diagram depicted in Figure 21. The depth stack d is determined at
runtime based on the rules described in Section 4.

In the Current State Set column, we also list the transitions the current ac-
tive state takes for the incoming event in the Event column. Closure transitions
(labeled with a = on the arrow in the state transition diagram) are represented as
[(s1,d1)=(s2,ds)]. Regular transitions are represented as [(s1,dy)~—>(sz2,ds)] Self-
closure transitions are implied if the state stays in the current state set without
any explicit transitions. Recall that a transition is taken only if the depth of the
incoming event and the depths of the source and target states satisfy the conditions
described earlier. The labels on top of the transition arrows are the operations that
are executed when the transition occurs. The label e stands for enqueue, c for clear,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 31

bpdt(0,0)

HPDT for query:
(2

<root>| |</root>

Lo
$2)%

/lpublyear>2000]//book[author]//name/text()

bpdt(1,1)
| |</pub>
{clear()}
/ [text()>2000], % . !
<lyear> text()> ~%
$7 6 4 (33
bpdt(2,3) ol {flush(} {flush(} <lyear> >
i bpdt(2,2) 1
</book>|T. </book>|T.
</book> {clear()} <book> </book> {clear()} <book>

)

(=

" % i I
\@ </author> — <author> ﬁ) Mdauthop @ <author>

{flushQ} =2 {flush(}

o

1 {upload()} {upload()} ™
bpdt(3,7) bpdt(3,6) bpdt(3,5) bpdt(3,4)
</name3 | <name> </name> | | <names | <named | <mname> <name> | | </name>
R {upload()} || {upload()} {upload(}
<name.text()> <name.text()> <name.text()> <name.text()>
{output(name.text()) {enqueue(name.text({enqueue(name.text() {enqueue(name.text()}

Fig. 20: HPDT for Example 9

u for upload, f for flush, and o for output. The states of the buffers after these
operations are performed are summarized in the Buffer column.

We use B(i,j) to denote the buffer of bpdt(i,j). The last column lists the itemns
in each nonempty buffer B(i, j) using the syntax B(i, j):e1, e, Each buffer item
e; is of the form [v,d], where v is the value and d is the depth stack associated with
the value. Items listed in bold font are those that are enqueued or uploaded by the
operation denoted in the labeled state transitions in the previous column. Items with
strike-through line are items cleared by an operation in the previous column. Items
displayed in a box are items that are flushed or sent to output.

We now highlight some features of this example. First, we note that the HPDT
correctly handles multiple matchings. In line 17, for the z element, there are three
current states that will respond to the input event. These states have the same
base identifier 14, but different depth stacks: (0,1,2,5), (0,1,4,5), and (0,3,4,5).
The HPDT puts three copies of the element’s content into the buffer B(3,4); the
depth stacks for the three copies are the depth stacks of the three source states:
(0,1,2,5), (0,1,4,5), and (0, 3,4,5). We note that these depth stacks record exactly
the depths of the elements that that match the location steps of the query leading
to the current state. For example, consider the depth stack (0,3,4,5). It indicates
a matching consisting of the root element at depth 0, a pub element at depth 3, a
book element at depth 4, and a name element at depth 5, leading the HPDT to the
state ($14,(0,3,4,5)). These copies of the text content z are processed differently

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

bpdt(1,0)

 null

null BPDTs

null BPDTs

32 F. Peng and S. S. Chawathe
Event d | Current State Set (before the event) Buffer (after the event)

1T | <root> 0 | [(3L,(€)—=(52,(0))]

2 <pub> 1 [($2,(0)=($3,(0,1))]

3 <book> 2 | ($2,(0)) [($3,(0,1))=($8,(0,1,2))]

4 | <name> 3 | ($2,(0)) ($3,(0,1)) [($8,(0,1,2))=>($3,(0,1))]

5 text()=x 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(3,4):[x,(0,1,2,3)]
[($14,(0,1,2,3))($14,(0,1,2,3))]

6 </name> 3 | ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(2,2):[x,(0,1,2)]
[($14,(0,1,2,3))-5($8,(0,1,2))]

7 | <author> 3 | ($2,(0)) ($3,(0,1)) [(88,(0,1,2))-(89,(0,1,2,3))] B(1,1):[x,(0,1)]

8 | </author> | 3 | ($2,(0)) (33,(0,1)) ($8,(0,1,2)) B(1,1):[x,(0,1)]
[($9,(0,1,2,3))—($10,(0,1,2))]

9 | </book> 2 | ($2,(0)) ($3,(0,1)) [(58,(0,1,2))—(33,(0,1))] B(1,1):[x,(0,1)]
[($10,(0,1,2))—($3,(0,1))]

10 | <book> 2 | ($2,(0)) [($3,(0,1))=($8,(0,1,2))] B(1,1):[x,(0,1)

11 | <name> 3 | ($2,(0)) (83,(0,1)) [($8,(0,1,2))=($14,(0,1,2,3))] B(1,1):[x,(0,1)

12 | text()=y 3 | (32,(0)) (53,(0,1)) (38,(0,1,2)) B(1,1):[x,(0,1)
[($14,(0,1,2,3))($14,(0,1,2,3))] B(3,4):[y,(0,1,2,3)]

13 | </name> 3 | ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(1,1):[x,(0,1)]
[($147(0717273))$($87(07172))] B(2,2):[y,(0,1,2)]

14 | <pub> 3| [(52,(0))=(33,(0,3))] (33,(0,1)) ($8,(0,1,2)) B(1,1):[x,(0,1)]

B(2,2): y,(0,1,2)]

15 | <book> 4 | ($2,(0)) (($3,(0,1))=($8,(0,1,4))] B(1,1):[x,(0,1)]
[($3,(0,3))=(88,(0,3,4))] ($8,(0,1,2)) B(2,2):[y,(0,1,2)]

16 | <name> 5 | (52,(0)) ($3,(0,1)) [(58,(0,1,2))=(314,(0,1,2,5))] B(1,1):[x,(0,1)]

($3,(0,3)) [($8,(0,1,4))=(%$14,(0,1,4,5))] B(2,2):[y,(0,1,2)]
[($8,(0,3,4))=($14,(0,3,4,5))]

17 | text()=z 5 ($2,(0)) ($3,(0,1)) ($3,(0,3)) B(1,1):[x,(0,1)]

($8,(0,1,2)) [($147(0717275))5($14,(0,1,2,5))] B(2,2):[y,(0,1,2)]
($8,(0,1,4)) [($14,(0,1,4,5))($14,(0,1,4,5))] B(3,4):[z,(0,1,2,5)]
($87(07374)) [($147(0737475))£’($147(0737475))] [z,(0,1,4,5)] [z’(0,3’4,5)]

18 </name> 5 ($2,(0)) ($3,(0,1)) ($3,(0,3)) B(1,1):[x,(0,1)]

($8,(0,1,2)) [($14,(0,1,2,5))~($8,(0,1,2))] B(2,2):[{y,z},(0,1,2)]
($87(07174)) [($147(0717475))i’($87(07174))] [z,(0,1,4)] [z’(0,3,4)]
($8,(0,3,4)) [($14,(0,3,4,5))~($8,(0,3,4))]

19 | <author> 5 ($2,(0)) ($3,(0,1)) [($8,(0,1,4))£‘>($9,(0,1,4,5))] B(1,1):[{x,z},(0,1)] [2,(0,3)]
($3,(0,3)) (88,(0,1,2)) [(88,(0,3,4))=>($9,(0,3,4,5))] B(2,2):[{y.z},(0,1,2)]

20 < /author> 5 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1,1):[{x,z},(0,1)] [2,(0,3)]
($8,(0,1,4)) [($9,(0,1,4,5))—($10,(0,1,4))] B(2,2):[{y,z},(0,1,2)]
($8,(0,3,4)) [($9,(0,3,4,5))]—($10,(0,3,4))]

21 </book> 4 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1,1):[{x,z},(0,1)] [2,(0,3)]
[($8,(0,1,4))($3,(0,1))] [($8,(0,3,4))($3,(0,3))] B(2,2):[{y,2},(0,1,2)]
[($10,(0,1,4))—($3,(0,1))] [($10,(0,3,4))—($3,(0,3))]

22 | <year> 4 ($2,(0)) ($3,(0,1)) [($3,(0,3))=-(%$4,(0,3,4))] B(1,1):[{x,2},(0,1)] [2,(0,3)]
($8,(0,1,2)) B(2,2):[{y,z},(0,1,2)]

23 | text()=1999 | 4 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1,1):[{x,2},(0,1)] [2,(0,3)]
[($4,(0,3,4))—($5,(0,3,4))] B(2,2):[{y,z},(0,1,2)]

24 </year> 4 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1,1):[{x,z},(0,1)] [2,(0,3)]
[($5,(0,3,4))—($3,(0,3))] B(2,2):[{y,z},(0,1,2)]

25 | </pub> 3| ($2,(0)) ($3,(0,1)) [($3,(0,3))-3($2,(0))] ($8,(0,1,2)) | B(1,1):[{x,2},(0,1)] f(6:33}

B(2,2): [{y,z},(0,1,2)]

26 </book> 2 ($2,(0)) ($3,(0,1)) {($8,(0,1,2))3($3,(0,1))] B(1,1):[{x,z},(0,1)]

B(2, 2):Hyz}t0:4:

27 | <year> 2 | ($2,(0)) [($3,(0,1))=(%4,(0,1,2))] B(1,1):[{x,z},(0,1)]

28 | text()=2002 | 2 | ($2,(0)) ($3,(0,1)) [(54,(0,1,2))5(86,(0,1,2))] B(1,1): | [{x,2},(0,1)]

29 </year> 2 ($2,(0)) ($3,(0,1)) [($6,(0,1,2))—($7,(0,1))]

30 | </pub> 1 ($2,(0)) [($3,(0,1))—($2,(0))] [(87,(0,1))—($2,(0))]

31 </root> 0 ($2,(0))

32 (81,(¢))

Fig. 21: HPDT actions for Example 9

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 33

based on their depth stacks. The z item with depth stack (0,3,4,5) is first uploaded
to BPDT bpdt(2,2) and the depth stack is modified to (0,3,4) in line 18, indicating
that the predicate for the name element at depth 5 has been satisfied. It is then
uploaded to bpdt(1,1) and the depth stack is modified to (0,3) since the predicate
for the book ancestor at depth 4 has also been satisfied. When the predicate for the
pub ancestor at depth 8 ([year > 2000]) evaluates to false at the end of the pub
ancestor in line 25, the item is cleared from the buffer. However, since different
copies of the items follow different flows among the buffers, the other copies will
not affected by this operation and be processed correctly based on their matchings.

The process outlined in Figure I also demonstrates that an item is always removed
or flushed from a buffer as soon as its membership in the result set can possibly be
determined. For example, the z element with depth stack (0, 3,4, 5) is removed from
the buffer when the pub element in the matching fails the predicate [year > 2000]
at the end of the pub element. (Before this point in the stream, it is impossible
to determine that the predicate fails because an additional year element satisfying
the predicate may appear at any point before the </pub> event.) The items in the
result (¢ and z) are sent to the output as soon as the last pending predicate [year
> 2000] is satisfied.

This example also illustrates how buffer items with the same depth stack are
processed together. In line 19, the entry [{z, z}, (0,1)] indicates that the two items
have the same depth stack, and thus should be processed as a group. Although
these two items are at different depths, they are in the same group because they
both have satisfied all the predicates in lower layer BPDTs. The item [z, (0,1)],
which comes from [z,(0,1,2,3)], has satisfied the predicate in the third location
step /name (which has the null predicate that is always true) and the second location
step book[author] (with the book element at depth 2). The item [z, (0,1)], which
comes from [z, (0,1,4,5)] has satisfied the predicate in the third location step and the
predicate in the second location step (with the book element at depth 4). Although
they match different elements that satisfy the predicates in lower layer BPDTs, they
are both waiting for the result of the predicate of the same pub element at depth 1
(and predicates of the same ancestors in the upper layer BPDTs, if there are any),
which 1s determined by their depth stacks.

We note that the matching rules between the depth stacks of buffer items and the
states in the transitions ensure that operations act only on the buffer items for the
matching relevant to the transition. For example, in line 26, the state ($3,(0,3))
transitions to state ($2,(0)) and the clear() operation is executed. At the time,
there are three items in the buffer B(1,1): [{z, 2}, (0,1)] and [z,(0,3)]. The clear
operation removes only the item [z,(0,3)] from the buffer since the depth stacks
match. The other copy of z ([z,(0,1)]) remains in the buffer since it is waiting for
the end of the other pub element (which will later result in the predicate evaluating
to true). In line 28, at the text event, the state ($4,(0,1,2)) transitions to state
(%6, (0,1,2)) and the flush operation is executed. Although the depth stack is (0,1,2)
for the source state, according to the rules defined earlier in this section, for this
text event of the subelement year, the matched depth stack for the flush operation
should be the depth stack without the last integer, which is (0,1). Therefore, the
items in the buffer with depth stack (0,1) are flushed to output.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

34 . F. Peng and S. S. Chawathe

Input: XPath Query query = NiN»...N, /O
Output: an HPDT in the form of an array of BPDTs

1 GenerateHPDT (){

2 /* Generate bpdt(0,0) based on Figure 20. */

3 bpdt(0,0) = generateRootBPDT ();

4 for (1 =1 ton) {

5 for (k=0 to 271 —1) {

6 if (bpdt(l-1, k) !'= null){

7 bpdt (1,2k+1)=addBPDT (bpdt (1 —1,k),N; ,TRUE);
8 if (bpdt(l—-1, k).na != null)

9 bpdt (1 ,2k)=addBPDT (bpdt (1 —1,k),N; ,NA);
10 }

11 }

12}

13 /* Add output to the lowest layer BPDTs. */

14 for (k=0 to 2" '—1)

15 addOutput (O, bpdt(n,k)) ;

16 }

Fig. 22: Algorithm Generate HPDT

We also note that the state ($2, (0)) remains current for almost the whole process.
The reason is that, due to the closure axis in the first location step, a pub element
at any depth matches the first location step. Since this state is used to match the
pub elements, not until we encounter the end of the stream can we remove this
state from the current state set. However, if we know beforehand that the data is
not recursive, i.e., no node has an ancestor with the same name, then we do not
need to keep the state as active after it is matched with an element even when the
query has closure azes. The reason is that once we match a pub element with this
state, we know there will not be any more pub elements inside this element, and
this state will not match any other elements until the end of this current matched
pub element.

The above example illustrates some of the complexities resulting from closure axes
in the query and recursive structure in the input data. Due to the possibly multiple
matchings between the query and the data, we have to check all the possibilities
and record extra information. We note that all streaming XPath processors that
use minimal buffering (i.e., any data they buffer must also be buffered by any other
streaming XPath processor) need to perform such bookkeeping. As demonstrated
in Section 9, XSQ is able to handle these difficult cases without compromising the
efficiency in the simpler cases.

6.3 Building HPDTs from XPath Queries

We now complete our description of the method used by XSQ to map an XPath
query to an HPDT that evaluates the query over streaming data. We first describe
the high level method that builds the HPDT structure. Two important subroutines
of the process, called addBPDT and addOutput are explained in detail later. Con-
sider an XPath query N;Ns...N,,/O, where N; denotes the ith location step and

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 }

XSQ:A Streaming XPath Engine

addBPDT (BPDT p, LocationStep N, State s){

/* instantiate template matching N */
n = createBPDT(N);

/* connect to parent BPDT */
mergeStates (n.start , s);

/* set BPDT id = (layer, seqgnum) */
n.layer = p.layer + 1;
if (s.type == TRUE)

n.seqnum = 2 % p.seqnum + 1;
else /*s == NA*/

n.sequum = 2 x p.seqnum;
if (n.seqnum != 2™1ever_1)

n.bufOp = UPLOAD;
/* set flush ops to upload */
setFlushToUpload (n);

else n.bufOp = FLUSH;

/¥ For closure azis, add a self-closure transition to the START state.*/
if (N.axis == closure)
newTrans (n, START, START, BEGIN, "//");

/* Make all transitions on the BEGIN event of n.tag out of the START
state closure transitions. */
transitions = getTrans(n, START, BEGIN, n.tag);
for(t in transitions) t.type = CLOSURE;

/* Put an extra flush/upload operation on the transition in the parent
that processes the end event of the predicate’s subelement. */

t2 = getEndOfChildTran (p);

addOp(t2, p.bufOp, null)

}

Fig. 23: Subroutine addBPDT

35

O denotes the output expression. For ease of exposition, we will use Ny to denote

an implicit /root prefix for all XPath queries. Figure 22 presents the pseudocode

that summarizes the top-down creation of an HPDT as described in Section 6.1.

As indicated by the pseudocode of Figure 22, the bulk of the BPDT-generation
work is done within the addBPDT subroutine. The pseudocode for addBPDT is
listed in Figure 23. This subroutine is responsible for creating a new BPDT based

on a location step and setting the buffer operations in the new BPDT. Further, it
is responsible for connecting the new BPDT to the appropriate higher-level BPDT,
which may also need some modifications. The subroutine takes three parameters:
the parent BPDT p, the location step N, and the state s in BPDT p to which the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

36 . F. Peng and S. S. Chawathe

1 addOutput (BPDT b, OutputFunction O){
2 if (b.seqnum != 2°19%¢" _1) op = ENQUEUE;
3 else op = OUIPUT;
4 switch (O.type){
5
6 case ATTRIBUTE:
7 t = getTrans(b, START, BEGIN, b. tag);
8 addOp(t, op, "@"4+O.attrname);
9 break;
10
11 case TEXT:
12 /* Add a new transition from the NA state to the NA state that
13 processes the TEXT event of b.tag.*/
14 t = newTran(b, NA, NA, TEXT, b.tag);
15
16 /* Add the operation op with the parameter b.tag+”.text()” to the transition.*/
17 addOp(t, op, b.tag+".text()");
18 t = newTran (b, TRUE, TRUE,TEXT,b. tag);
19 addOp(t, op, b.tag+".text()");
20 break;
21
22 case CATCHALL:
23 t = getTrans(b, START, BEGIN, b.tag);
24 addOp(t, op, "=");
25 t = newTrans (b, NA, NA, CATCHALL);
26 addOp(t, op, "x");
27 t = newTrans (b, TRUE, TRUE, CATCHALL);
28 addOp(t, op, "®");
29 /* Get the transition that going from the TRUE state to the START state
30 processing the END event of b.tag. */
31 t = getTrans(b, TRUE, START, END, b.tag);
32 addOp(t, op, "x");
33 /* add extra upload/flush operation */
34 t = getEndOfChildTran (b);
35 addOperation(t, b.bufOp, null);
36 break;
37}
38 }

Fig. 24: Subroutine addOutput

new BPDT is connected. It uses the createBPDT function to generate a BPDT by
matching the location step N with the templates (depicted in Figures 12 through
16 in Section 5.2) and binding the symbols in the templates to the actual values in
the location step. The START state of this new BPDT is merged with s (the TRUE
or NA of p). That is, the two states are assigned the same ID and the transitions
associated with them are combined (function mergeStates). Other states in the new
BPDT are assigned a unique (arbitrary) state identifier. The newly created BPDT
is then assigned an identifier of the form (I, k) based on the state s to conform to
the scheme described earlier.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 37

The addBPDT subroutine also sets the buffer operations in the new BPDT based
on its identifier. The clear operations remain identical to those in the templates.
For bpdt(l, k) with k # 2!—1 (i.e., all except the leftmost BPDT), the flush operation
in this BPDT is replaced by an upload operation. Since this BPDT is in the right
subtree of at least one ancestor (otherwise k = 2! — 1), we know that at least one
predicate for the items in the buffer is still not satisfied. For bpdt(l,2' — 1), the
flush operation is left unchanged.

If the location step N uses the closure axis, the addBPDT subroutine modifies
the transitions in the new BPDT. It first adds a self-closure transition from the
START state to itself, labeled with //. This transition permits the HPDT to stay
in the START state for any begin event that comes from the subelements for the
current element. It then sets as closure transitions the transitions that emerge
from the START state and process the begin event of the node test in the location
step. (There is only one such transition in all BPDTs except those generated using
the template in Figure 12.) These transitions permit the HPDT to accept the
subelement of any depth that matches the node test of the current location step.

In addition to the modifications made to the transitions, an extra buffer operation
is needed for the p BPDT when the location step N has a closure axis. Let us con-
sider an example to illustrate the necessity of the extra buffer operation. Recall the
BPDT depicted in Figure 18, which evaluates the query /book[author]/price/
text (). Now consider the following query, which differs from the earlier one only
in the axis of the second location step being descendant-or-self instead of child:
/book[author]//price/text (). The corresponding changes to the BPDT of Fig-
ure 18 involve adding two self-closure transitions to states $2 and $4 and marking
the transitions $2 — $5 and $4 — $6 as closure axes (marking the arcs with =). At
first glance, these changes may seem sufficient and the resulting automaton may
seem to accurately process the new query. However, a closer examination reveals a
problem in the case of price elements that have both book and author elements as
ancestors. Correctly processing such elements requires a flush operation on transi-
tion $3 — $4. The price elements that are descendants of both book and author
elements always occur between the begin and end events of the author element;
they will be enqueued by the self-transition on $5, and flushed to output by the
operation on the transition from $3 to state $4. We note that this modification is
needed only for parent BPDTs generated using the templates in the following Fig-
ures (with the affected transitions in parentheses): Figure 13 ($4 — $5), Figure 14
($3 — $4), and Figure 16 ($4 — $5). (The affected transitions are returned by the
getEnd0fChildTran function in Figure 23.) The added extra operation could be
flush or upload, based on the buffer operation used in the parent BPDT.

Returning to Figure 22, we note that after all the BPDTs have been generated
and connected, the addOutput subroutine is used to add output operations to the
BPDTs in the lowest layer. The pseudocode for this subroutine is presented in
Figure 24. First, as described in Section 6.1, only bpdi(n,2"™ — 1) uses the direct
output operation because it is the only BPDT in which any data matching the trunk
of the query has already satisfied all the predicates in the query. The other BPDTs
in the lowest layer use enqueue operations in place of the output operation. Next,
the BPDT is modified by adding further operations and transitions, determined

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

38 . F. Peng and S. S. Chawathe

by the type of the output function O. If O specifies outputting an attribute of
the element specified by the last location step, an output or enqueue operation
will be added to every transition emerging from the START state that processes
the begin event of that element. If O specifies outputting the text content of the
element, a self-transition is added to every NA and TRUE state in this BPDT. A
output(text()) or enqueue(text()) operation is added to the new transition. If O
specifies outputting the whole element specified by the last location step, we add
a self-transition labeled with % (catch-all) to every NA and TRUE state associated
with the output(*) operation. These two transitions will match all the subelements
and text contents of the current element. The operation output(*) is also added
to the transition that emerges from the START state that processes the begin event
of the current element and to the transition from the TRUE state to the START
state that processes the end event of the current element. All these newly added
operations will match every event within the current element. We also note that
since the catch-all transitions essentially function as closure transitions (accepting
incoming events at any larger depth), we have to add an extra buffer operation
(flush or upload) to the current BPDT as described above.

6.4 Aggregations

Given the above machinery, very little extra work is required for supporting aggre-
gates. For this purpose, XSQ uses a statistics buffer stat. In the stat buffer, there
is one item for each aggregation function, with initial value null. There are two
operations on this buffer:

—update (aggr,value): Update the item for aggregation function aggr in stat
with the value. For example, update (COUNT, 2) will add 2 to the number in stat.

—output (aggr): Output the value of the function aggr in stat.

For example, consider the following query, which differs from the query of Example 9
only in using an output function count () instead of text():

//pub [year>2000]//book [author] //name/count ()

To evaluate this query, we use an HPDT that is almost identical to the one depicted
in Figure 21. We replace all occurrences of £lush() with update (COUNT, v), where
v is the number of items in the BPDT’s queue. We also replace all instances of
output(value) with update(COUNT,1). Finally, we place output (COUNT) on the
transition from $2 to $1. We may also modify the semantics of update () so that it
emits a new value whenever the number in the buffer is updated. This change makes
the result of the aggregation query available in an online manner. This feature is
especially useful when we process aggregation queries over unbounded streams.

6.5 Analysis

We provide a detailed experimental analysis of XSQ in Section 9. Here, we present
a simple worst-case analysis of the space and time costs of the method described
above. Consider an XPath query that has ¢ location steps. In worst case, when
each location step involves a predicate, our method results in an HPDT built from
27 BPDTs. (Note that none of the BPDTs in the subtree rooted at bpdt(1,0) are
generated.) Recall, from Section 5, that our method generates BPDTs for each
step based on the templates of Figures 12, 15, 13, 14, and 16. The largest of these

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 39

(the template for a step of the form /taglchild=val) has six nodes. However,
the start state of each BPDT other than the root BPDT is identical to one of
the states in its parent BPDT. Therefore, the number of states in the HPDT is
at most 5- (27 — 1) + 2 = 5 - 27 — 3 states (since the root BPDT has two nodes).
Although the exponential dependence on query length may seem problematic at
first, we note that the HPDT has a very regular structure that lends itself well to
optimizations in the implementation. In particular, level & of the HPDT consists
of 2¥ BPDTs that are very similar to each other. An implementation may choose
a compressed representation of the state space they encode, by using a bit vector
to indicate which subset of the BPDTs at a given level are active. The current
version of XS(Q does not perform such optimizations. However, as we indicate in
Section 9, the memory used for the HPDT is still modest. In fact, the dominant
space cost for most query-data combinations is not the HPDT but the buffers used
to hold potential query results. By examining all the cases for buffer operations in
the HPDT, we observe that an item is in the buffer exactly when its membership
in the query result cannot be decided based on the portion of the stream that has
already been seen. It follows that every streaming processor must buffer such an
item. Therefore, the buffering mechanism in XSQ is optimal in the sense that at
any point in time, the buffer of any streaming XPath processor must include at
least the buffer items in XSQ’s buffer.

The appropriate measure of time complexity for a streaming query processor is
the amount of work it must perform for each unit of input. In the case of XSQ,
the critical factor determining the amount of such work is the number of currently
active states in the HPDT. If the query does not use the closure axes (//, denoting
descendant-or-self, and its variants), then there is only one active state at any time.
Thus, for each input symbol, we need to check transitions from only one state.
By hashing on tag names, matching transitions can be selected in constant time
by using perfect hashing (ignoring the typically modest hash function evaluation
time). Thus, the case of no closure axes leads to a constant amount of work per
input byte.

The worst case is when all ¢ location steps of the query use closure axes and
have predicates associated with them. The amount of work performed by XSQ in
this case depends on the structure of the input stream. If the stream does not
contain recursive structure then each closure state generates only one state in the
runtime set of current states (and the depth stack is not needed). The size of
the current state set is at most O(27), and for each SAX event, we have to check
for possible transitions O(29) times. The maximum number of transitions on the
incoming event for each of these states is two (one self-transition and one transition
to another state). The amount of work XSQ must perform for each input item (SAX
event) is O(27), in worst case. We note that this result is only a rough estimate.
Since elements that match the first location step have at most one state to check
for possible transitions, elements that match i’th location step have at most 27
states to check, and only the elements that matche the pattern will be checked
(the others will not lead to any state transitions at all). The actual number of
operations depends on the degree of similarity between the data and the query and
the structure of the data.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

40 . F. Peng and S. S. Chawathe

If the stream does contain recursive structure, the number of current states de-
pends on the number of ways each element can match the corresponding location
step. For example, if an element in the final result has k ways to match the query,
the HPDT may create O(24) current states. Then, for each state in layer ¢ (the
lowest layer), k copies of the state are generated at runtime, each with a different
depth stack. For the states in a higher layers, no more than k copies are generated.
Therefore, the amount of work per input item is is O(27k) in worst case. As noted
earlier, this worst case result is only a rough estimate and real queries and streams
are unlikely to incur the worst case costs. We explore these and other issues in
detail in Section 9.

7. RELATED WORK

Several papers have addressed the problem of filtering a stream of XML documents
[Altinel and Franklin 2000; Green et al. 2003; Diao et al. 2002; Lakshmanan and
Sailaja 2002; Chan et al. 2002]. This problem has been referred to variously as
selective dissemination of information (SDI), publish-subscribe (pub-sub), and query
labeling. Briefly, filtering assumes that the input is a stream of documents that are
to be matched with a given set of queries. A query is said to match a document if
the result of evaluating the query on the document is non-empty. Since there is no
output other than the identifiers of the documents matching each query, methods
for filtering are simpler than those needed for querying. As described in Section 3,
we may think of methods for filtering as starting points for the exploration of more
general methods for querying. Filtering systems typically focus on supporting high
throughput for a large number of queries using only a moderate amount of main
memory.

The XFilter system [Altinel and Franklin 2000] focuses on the problem of evalu-
ating a large number of XPath filter expressions over every document in a stream
of documents. It uses finite-state automata similar to those described in Section 3.
Since the filter expressions are likely to have many common segments, the automata
are combined and indexed to yield an efficient filtering method. The YFilter sys-
tem [Diao et al. 2002] addresses a similar problem and uses one automaton to
evaluate all submitted filter expressions. It combines all the automata into one big
automaton that uses a run time stack to track all the possible states for all the
queries. Instead of the index used by XFilter, YFilter uses query identifiers in the
states to denote the queries corresponding to the results. The method described in
[Chan et al. 2002] uses a data structure called X Trie instead of a flat table to index
XPath queries based on common substrings among them. Automaton-based meth-
ods spend a significant amount of time matching transitions to incoming events;
as a result, deterministic automata typically yield higher throughput than their
nondeterministic counterparts. However, as usual, the deterministic version of an
automaton may require a large amount of memory. This problem is addressed in
[Green et al. 2003] by using a lazy deterministic finite state automaton. The main
idea is to first build a naive finite-state automaton directly from the XPath ex-
pression. At run time, the system adds new states as needed on the fly. Since it
does not need to use a stack to keep track of all possible states, its throughput is
improved. Although the deterministic automaton requires more memory than its

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 41

nondeterministic counterparts, an upper bound on the size of DFA is provided in
[Green et al. 2003].

The problem of query labeling is studied in [Lakshmanan and Sailaja 2002]. The
authors propose a requirements index as a dual to the traditional data index. A
framework is provided to organize the index efficiently and to label the nodes in
streaming XML documents with all the matched requirements in the index. The
problem of validating XML streams using pushdown automata has been studied in
[Segoufin and Vianu 2002]. (Briefly, an XML document is said to be valid with
respect to a given Document Type Definition (DTD) if the document structure
obeys the grammar specified in the DTD [Bray et al. 1998].) This problem can also
be considered as a filtering problem because the pushdown automaton can filter the
documents that satisfy the DTD.

As noted earlier, the above systems support filtering, not querying, of XML
streams. Further, they either do not support predicates, or support only simple
predicates that test structural information (whether an element has specified de-
scendant). The YFilter system [Diao et al. 2002] supports predicates that do not
reference other elements so that the predicate can be evaluated immediately when
the related input element is encountered. Since the YFilter system only filters the
XML stream, it need not handle the case where the predicates are evaluated in
different sequences.

A transducer-based approach to evaluating XQuery queries on streaming data
is presented in [Ludascher et al. 2002]. An XQuery is decomposed into subex-
pressions and each subexpression is mapped to an XML Stream Machine (XSM).
Each XSM consumes the content of its input buffer and writes output to its output
buffers. The output buffer of one XSM may be the input buffer of another. This
producer-consumer relationship of XSMs through their buffers results in a network
of XSMs. This network is merged into a single XSM that can be optimized if the
DTD for the input data is available. (In [Olteanu et al. 2002], a similar approach
is used to evaluate regular path expressions with qualifiers over well-formed XML
streams. That paper proposes a transducer network model called SPEX, in which
each transducer is generated from a regular path expression construct. The output
tape of one transducer forms the input tape of another.) The key differences be-
tween XSQ and XSM are as follows: First, XSQ supports XPath features such as
aggregations, closures, and multiple predicates that are not supported by XSM. As
described in earlier sections, these features, especially in combination, complicate
query processing. Second, XSM supports constructors in XQuery expressions while
XSQ supports only XPath (no constructors). XSQ uses this simplification to work
with a simpler automaton and a simpler model of buffer interactions. Third, the
combined, optimized XSM is quite complicated, making it difficult to group similar
queries. In contrast, the HPDT has simple structure, and methods such as those
in [Diao et al. 2002] can be easily applied to it. At the time of writing, the XSM
system was not available for testing and it is therefore omitted from our study in
Section 9. However, we believe that XSQ and XSM are practical demonstrations
of the trade-offs between query language expressiveness and system simplicity and
efficiency (XPath vs. full XQuery).

An interesting feature of the XAOS system [Barton et al. 2003] for streaming

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

42 . F. Peng and S. S. Chawathe

XML is that it supports XPath’s reverse axes, such as parent and ancestor. It
uses two data structures called X-tree and X-dag to reduce the amount of stream-
ing data buffered in a matching structure. Essentially, the X-tree is the parse tree
of the XPath expression, with reverse axes permitted. The X-dag is the equiv-
alent XPath representation with reverse axes removed. The X-dag is used as a
pattern to filter the incoming stream to remove the irrelevant nodes. The rele-
vant nodes are stored in the matching structure based on their relations in the
X-tree. When the end of the stream is encountered, results are produced by
traversing the matching structure. A drawback of this approach is that it does
not output any results until the end of the stream is encountered. (For unbounded
streams, a periodic evaluation of the matching structure could be used.) Unlike
XSQ, XAOS supports reverse axes; however, unlike XAOS, XSQ produces incre-
mental results and buffers data in an optimal manner (least amount of data for
the least amount of time possible). Rewriting XPath queries with reverse axes into
equivalent queries with only forward axes is studied in [Olteanu et al. 2002]. How-
ever, since the rewriting algorithm introduces node set comparison operations in
the new expression, the approach is difficult to apply in a streaming environment.
For example, for an expression X[ancestor::Y/Z], the rewriting algorithm pro-
duces X[/descendant::Y[Z]/descendant: :node()=self::node()]. We believe
it should be possible to combine some of the ideas used in XSQ, XAOS, and the
method of [Olteanu et al. 2002] to yield a system that supports reverse axes without
sacrificing buffer space.

Several systems provide methods for querying non-streaming XML data. Galaz
[Fernandez and Simeon 2002] is a full-fledged XQuery query engine. It implements
almost all of the XML Query Data Model along with the type system and dynamic
semantics of the XML Query Algebra. XQEngine [Katz 2002] is a full-text search
engine for XML documents that uses XQuery and XPath as its query language.
XPath expressions and boolean combinations of keywords are used to query collec-
tions of XML documents. The engine creates a full-text index for every document
before the document can be queried. It is difficult to adapt these systems for
streaming data. Nevertheless, we use them in our experimental study in Section 9
for comparison purposes.

A topic closely related to XPath query processing is XML transformation. XSLT
is a standard template-based language for transforming XML [W3C XSL Working
Group 2002]. Since XSLT uses XPath to specify patterns in its rules, XSQ and other
methods for XPath processing have applications in XSLT processors. As studied
in Section 9, the popular implementation of XSLT in Saxon [Kay 2002] is based on
an in-memory materialization of the entire XML document and is therefore limited
in the size of documents it can efficiently transform. By using a streaming XPath
processor such as XSQ, we can design an XML transformation system that buffers
only limited amount amounts of data.

The STX system takes a different, more procedural, approach to transforming
streaming XML [Becker et al. 2002]. It uses templates to specify the operations that
should be performed when data matching the template pattern is encountered. We
may think of STX as a general-purpose event-driven programming environment
that is not tailored to a specific query language. However, it may be used for

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 43

XPath processing if we design a method for generating efficient STX templates
from XPath queries. For example, if there are two predicates in an XPath query,
we may create two variables in the program to store the current results of the
predicates. When a predicate is evaluated, the corresponding variable is set to
the result of the evaluation. We also need to specify explicitly when to reset the
variables. We may then choose the right operation based on the current values
of the variables. However, in this scheme, the positions of the elements have to
satisfy the requirement that the predicate is evaluated before the target items. In
general, it is not obvious how to generate STX templates equivalent to an XPath
query in a systematic manner. However, this approach is an alternative to our
automaton-based approach and would benefit from further attention.

The query complezity of XPath is addressed by [Gottlob et al. 2002], which pro-
vides a main-memory algorithm for evaluating XPath on non-streaming data that
is polynomial in the size of the query (and data). The method is based on reduc-
ing every axis to two primitive axes: first-child and next-sibling. The algorithm
traverses the XPath parse tree in a bottom-up manner. The subexpressions in the
lowest level are evaluated by scanning the data. The results of these subexpressions
are then used in the evaluation of their parent subexpressions, recursively. The pa-
per also provides a refined top-down algorithm and suggest a core subset of XPath
that can be evaluated in linear time. Since these methods require multiple passes
of the data, it is not easy to adapt them methods for a streaming environment.
However, it should be interesting to investigate the issues raised by this paper in a
streaming environment.

The evaluation of XPath queries over XML data is closely related to the problem
of tree pattern matching [Miklau and Suciu 2002; Chen et al. 2001]. As described
in [Miklau and Suciu 2002], despite the resemblance, there are important differ-
ences between XPath evaluation and the classical problems of tree pattern match-
ing [Hoffmann and O’Donnell 1982] and unordered tree inclusion [Kilpel 1992]. In
particular, the problem of unordered tree inclusion is NP-hard (by direct reduction
from SAT) [Kilpel 1992], while XPath queries can be answered in polynomial time
[Gottlob et al. 2002]. Intuitively, the reason the inclusion problem is harder than
the XPath problem is that the former does not permit multiple nodes in the pat-
tern tree to be mapped to the same node in the data tree. Most of the algorithms
for these problems require a postorder (bottom-up) traversal of the data trees and
are thus unsuitable for streaming data that is provided in preorder. As an excep-
tion, the algorithm described in [Hoffmann and O’Donnell 1982] for the classical
tree pattern matching problem needs only a preorder traversal of the data tree.
However, it allows only parent-child (not descendant) edges in patterns and finds
only matches for which siblings occur in the same order in the data and as in the
pattern. On the other hand, tree patterns corresponding to XPath queries include
ancestor-descendant edges (for the closure axis) and XPath semantics require that
the sibling order in the pattern (order of nodes mentioned in predicates) be ignored.
Therefore, this algorithm cannot be easily applied to XPath.

An alternating automaton is an automaton in which each state has a flag indi-
cating the acceptance or rejection [Chandra et al. 1981]. There are three types of
states: universal, ezistential, and negating. A universal (existential) state becomes

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

44 . F. Peng and S. S. Chawathe

an accepting state if all (respectively, at least one) of its offspring states reach ac-
cepting states. A negating state has a unique offspring and becomes an accepting
state only when the offspring state is a rejecting state. There are two difficulties in
applying alternating automata for streaming XPath evaluation: First, alternating
automata naturally express the semantics of filtering expressions, but not querying
expressions. In particular, they do not provide a mechanism to solve the address
the buffering problems discussed in Section 5. Second, they use a bottom-up model
of computation that does not fit well with the preorder arrival of streaming XML
input. However, it may be possible to adapt some of the ideas used by alternating
automata for XPath.

The Aurora system [Carney et al. 2002; Cherniack et al. 2003; Zdonik et al. 2003]
is a data stream management system for monitoring applications, in which typical
tasks include tracking the abnormalities among multiple streams, filtering specific
target data for the user, and executing queries involving aggregations and joins. The
Aurora system processes data streams using a large trigger network. The trigger,
which is essentially a data-flow graph, is generated from the persistent queries
provided by applications. The tuples in the results of these queries are created
from the incoming streams and fed into the original application also in streaming
form. The Aurora system provides a set of operators for an application to specify
the persistent query and quality of service (QoS) requirements. At runtime, the
Aurora system is optimized by using techniques such as load shedding (discarding
data that requires a long time to process) and real-time scheduling.

The Fjords architecture [Madden and Franklin 2002] has been developed for
managing multiple queries over the numerous data streams generated from sen-
sors. Sensor data is generated in streaming form and the data rate is typically high
and variable. The Fjords architecture is designed to maintain a high throughput
for queries even when the data rate is unpredictable. It provides an efficient and
adaptive infrastructure for more sophisticated query applications. The main com-
ponents of the architecture are the queuing system and the sensor proxies. The
queues can function in either pull or push mode. They are the basic functional
structures to route data between the operators in a query plan. Query operators
may be adaptive, such as Eddies [Avnur and Hellerstein 2000]. Each sensor has a
sensor proxy that accepts queries and tries to simplify the queries for the sensor’s
processor. The proxy adjusts the sample rate of the sensor based on the queries
and permits different users share data from the sensor. Such optimizations result
in higher throughput and longer sensor battery life, since energy is conserved by
avoiding unnecessary sampling.

The NiagaraC(Q system is designed to efficiently support a large number of sub-
scription queries expressed in XML-QL over distributed XML datasets [Chen et al.
2000]. It groups queries based on their signatures. Essentially, queries that have
similar query structure by different constants are grouped and share the results of
the subqueries representing the overlap among the queries. NiagaraCQ and XSQ
work at different granularities of data. Although NiagaraCQ handles both change-
based and timer-based continuous queries, the events it handles (such as changed
remote XML file and activated timer) are at a high level. Therefore, it can use
materialized data that is managed by a cache manager. In contrast, systems such

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 45

as XSQ and XFilter respond to every event generated by a SAX-like parser. XSQ
evaluates queries on streaming data, and the result is also in streaming form. These
two granularities are complementary: One can combine the methods of NiagaraCQ
for the larger granularity with the methods of XSQ for the finer granularity.

A related system, WebC(Q), implements server-based Web page monitoring [Liu
et al. 2000; 1999]. Users use WebCQ’s own query language to specify a sentinel,
which is essentially a request for monitoring the specified Web objects. The sentinel
supports different kinds of objects, such as images and links in Web pages, different
time intervals for change detection, and different kinds of notification mechanisms.
Although both WebCQ and XSQ are event-driven systems, the events in WebCQ
systems are specified by the user and are mostly timer-based. When a timer is
activated, WebCQ visits the specified Web resource and pulls the content that
will be compared with its stored version in the cache. XSQ, in contrast, is more
like a push-based system that receives the data passively and returns the results
continuously. Further, like NiagaraCQ, WebC(Q also operates at a larger granularity
than does XSQ.

Another system for processing data streams is dQ UOB [Plale and Schwan 2003;
2000]. It views the data streams as a relational database. Each event in the stream
maps to a tuple in a relation that characterizes the stream. It uses SQL extended
with create-if-then rules from Starburst’s active database query language [Widom
1996]. The create clause specifies the name of the rule and the data source, the if
clause contains a SQL query, and the then clause specifies an optional function that
accepts the result of the SQL query for further processing (including serving as the
input of another query). The dQUOB system can generate optimized query plans
for the continuous queries presented in the system based on the relational model
and allows user-specified adaptation for changes in data streams.

Most work on streaming data, including XSQ, assumes that the input consists
of only the raw data. In this environment, certain limitations are unavoidable.
For example, it is easy to devise XPath queries and sample inputs for which an
unbounded amount of buffering is required for any XPath processor that produces
exact results. An interesting alternative to this environment is one in which the
input provides some assistance to the query processor by specifying constraints on
forthcoming data or some other similar hints. For example, [Tucker et al. 2003]
describes a method for embedding punctuations in streaming data, facilitating the
streaming evaluation of queries that include blocking operators such as group by.
It should be interesting to use similar ideas for streaming XML to support XPath
queries that include traversal axes such as following.

8. SYSTEM ARCHITECTURE AND IMPLEMENTATION

We have implemented the XSQ system in Java using Sun Java SDK version 1.4.
The code is publicly available (GNU GPL terms) at http://www.cs.umd.edu/
projects/xsq/. The architecture of the XSQ system is depicted in Figure 25. The
single arrows denote streaming data transfer between components at runtime (query
execution time). The double arrows denote the flow of information during compile
time. The XSQ system generates the HPDT corresponding to a given XPath as
follows. The XPath query is parsed by the XPath parser into a sequence of

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

46 . F. Peng and S. S. Chawathe

XPath Query
1

i Templates
i i
v A sequence of v
XPath |Location steps | BPDT |_BP2Ts_ [HPDT
Parser|”~ """~ Builder |77~ Builder
|

|

h
”HPDT
1l

\%
SAX Events
XMLstream | oy~ SAXEvents [Eyent | emaioms | HPDT Query Result
Parse —>|Handler — > | Engine >

Fig. 25: XSQ system architecture

- XS0 version 1.0 : : : : : : : : : : : : : £ E@E
File Help

Target filename:; |macbeth. il | File...
Input XPath queny; [f/ACT[TITLE="ACT '] /SPEECH[SPEAKER]//LINE/count() || Execute
Root Tag: [PLAY || Reset

'_Quer.y'result. [:

Filename is : macheth. xml

The queryis: ff ACT [TITLE="ACT "1/ SPEECH [SPEAKER] ff LINE | count()
The result is:

535

Fig. 26: Screenshot of the XSQ system

location steps. Each step consists of an axis, a node-test, and a predicate in the form
of object op const. The predicate may be null. The object of a non-null predicate
falls in one of the five categories we summarized in Section 5.2. Based on the
category of the object, the BPDT builder builds a BPDT for each location step
by instantiating the template for its category. The BPDT builder first creates the
root BPDT which is denoted by bpdt(0,0). For the ith location step, it starts with
2¢ identical BPDTs and assigns each copy a unique ID (i, k). If k # 2¢ — 1, i.e., the
bpdt (i, k) is not the left most BPDT in the layer, the flush operation in the templates
should be modified to upload operation. It also adds a self-closure transition to the
START state of the current BPDT and modifies the existing transitions if the axis in
the location step is a closure axis. (The details of these modifications are described
in Section 6.3.) The set of BPDTs is stored indexed by their source states. Each
state stores the set of transitions emerging from it as a set indexed by the targets
of the transitions. For each transition arc, we store the target state, the predicate,
the buffer operations, and the type of the transition (self-closure, closure, regular,
or catch-all). We thus obtain an array of BPDTs in which the bpdt(l, k) is stored
at the offset 2! + (k — 1).

The HPDT builder connects all the BPDTs into one HPDT by assigning a
unique state ID for each state in all the BPDTs. For the TRUE state of the bpdt(l, k),
it will be assigned the same state ID as the START state of bpdé(l + 1,2k + 1). For
the NA state of bpdt(l, k), it will be assigned the same state ID as the START state

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

—+ X34 version 1.0
Hle H!Ip

XSQ:A Streaming XPath Engine

47

[
closure, xmil

Target fi

[——

<t

=fYeir

abaoks

= aar et >
text = 2000]

avaartaxtl
frext = 2000]
FLUSH)

—
2) = fireats
= (FLUSH }

=fbaoks

ook FPDTTY
il g

m/i

- >
4 &:
=athors <finthers = Hates e O T
oy UFLOAD } oL @PLoaD) (EZ(Fmatodlh v v ron)
s FEOTES g = i 25
s Troy Qe N[Siged
OUEUE valite text 3

T OUTPU'I wallte text!
) <athor= <1“*‘U‘°‘> i
1 i f =l _"{1’-0'

S —_— mﬂng—_ {FLUSH)

Input XPath query: //publyear>2000]//booklauthor]/ fname /taxt() | Bxecute |
| Save HPDT |
HPDT Figure |
<fYools
{FLUSH }
= ==
aoo
<koul= 01
TFLFAE

hate Telll=

Fig. 27: Screenshot of XSQ displaying a HPDT

of bpdt(l + 1,2k). The transition arcs from the two states are combined. However,
each transition arc stores the ID of the original BPDT to which it belongs. After
such assignment, all the states in the HPDT are stored in a single set.

All the tasks described above are performed offline when the query is issued
(query compilation time). At runtime, the HPDT engine is responsible for exe-
cuting the HPDT specification produced by the HPDT builder. It maintains the
active states, stack, buffers, and other runtime objects associated with the HPDT.
When the HPDT engine reads an HPDT specification, it first creates a global queue
that is used for storing all items (raw content, without depth stacks) that need to
be buffered in FIFO order. It also creates an array of buffers whose items are
references to the items in the global queue (with depth stacks). The buffer of the
bpdt(l, k) is stored at the offset 2! + (k — 1) in the array. When the processing
of streaming data begins, the HPDT has the start state with the depth stack (0)
as the active state. Whenever a transition arc in bpdt(l, k) is executed, the buffer
operations defined for this arc, if there are any, operate on the buffer at the offset
2! + (k — 1) in the array of the buffers.

The streaming input to the HPDT engine comes from the SAX parser, which
generates a sequence of SAX events in response to the incoming XML data. We use
the SAX interface of the Xerces parser [XER 2000]. For each event, it calls a user-

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

48 . F. Peng and S. S. Chawathe

defined event handler that processes the event. Our event handlers first record
the depth of the current event in order to support the event structure described in
Section 2.2 (since the standard SAX API does not provide the information). It also
performs the stack operations and validations since these operations are the same
for all XML data. If the XML data is well-formed, it forwards the event to the
HPDT engine in the XSQ format, which is a quadruple of (tag, attrs, type, depth).

In order to facilitate our experimental evaluation of the effects of different XPath
features, we have implemented two versions of XSQ: XSQ-NC supports multi-
ple predicates and aggregations, but not closures. XSQ-F supports closures in
addition to multiple predicates and aggregations. Figure 26 depicts a screenshot
of the graphical interface of the XSQ-F system. The screenshot displays the re-
sult of the query //ACT[TITLE="ACT I"]//SPEECH[SPEAKER]//LINE/count() on
the macbeth.xml file from the SHAKE dataset, which contains XML versions of
some of Shakespeare’s work [Bosak 2002]. The query illustrates the use of ag-
gregation functions; it returns the number of lines that occur as descendants of
a SPEECH element with a SPEAKER child in Act I of the play. Figure 27 de-
picts another screenshot of the interface. The query is one used in Example 9:
pub [year>2000]//book [author] //name/text () The dataset has structure simi-
lar to that depicted in Figure 2. As indicated by the figure, in addition to query
results, XSQ produces a graphical representation of the HPDT it uses for query
processing. (We use the Graphviz package [Gansner and North 2000] for rendering
the HPDT.)

The conceptual data structures introduced in earlier sections are implemented
using more efficient low-level mechanisms in several instances. For example, depth
stacks are stored as integers and operations on the depth stacks are implemented
as fast bitwise operations on the integer representations. For example, if the depth
stack is (1,2,5), the integer representation is 11001. That is, the i’th bit is set if
and only if the depth stack contains ;. This representation is unambiguous because
the depth stack consists of monotonically strictly increasing numbers (reading the
stack bottom to top). Thus, the depth stacks use very little memory and operations
on them incur very little overhead. We use long integers (64 bits) for this purpose.
In order to support data with depth greater than 64, we can switch to using a
pair of long integers. (Currently, this switch requires a recompilation of the HPDT
engine module.)

Another implementation optimization is that used for buffers. There is only one
copy of any data item in a global queue. The separate buffers of each BPDT only
store references to this copy. Since we are using the references, we can mark the
item in the global queue with an output flag when one BPDT determines that the
item should be output. If there are several transitions processing the item, the
other operations can be ignored. (Some of these may call for dequeuing the item;
however, from the existential semantics of predicates in XPath it follows that the
item belongs in the result.) Moreover, the document order of items is maintained
automatically since we always output from the head of the global queue; that is,
even if an item is flagged for output, it is not sent to output until it becomes the head
of the global queue. Given this guarantee, the references of the items in one buffer
can be grouped based on their depth stacks regardless of their document order,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 49

which will be maintained in the final result. Therefore, when a buffer operation
operates on the current buffer, it compares the desired depth stack (according to
the states involved in the transition) with the depth stacks of the items group by
group instead of going through the items one by one.

9. EXPERIMENTAL EVALUATION

In this section, we summarize the results of our experimental evaluation of XSQ.
We begin by describing our experimental setup in Section 9.1. Next, we study the
two main performance metrics: throughput in Section 9.2 and memory usage in
Section 9.3. Section 9.4 presents a broader study of a set of query engines aimed at
characterizing their features and performance. In Section 9.5 we present a detailed
experimental characterization of XSQ.

9.1 Experimental Setup

We conducted our experiments on a PC-class machine with an Intel Pentium IIT
900MHZ processor with 1 GB of main memory running the Redhat 7.2 distribution
of GNU/Linux (kernel 2.4.9-34). The maximum amount of memory the Java Virtual
Machine (JVM) could use was set to 512 MB. For the purpose of comparison,
we selected a set of systems that process XPath or XPath-like queries. These
systems are outlined in Figure 28. As the figure suggests, these systems vary
considerably in their design goals and features, and many do not support streaming.
We have discussed Galax [Fernandez and Simeon 2002] (version 0.1a), XQEngine
[Katz 2002] (version 0.56), XMLTK [Avila-Campillo et al. 2002] (version 0.9), Saxon
[Kay 2002] (version 6.5.2), and Joost (version 20020828) [Becker 2002] in Section
7. Some systems use query languages that are supersets or variations of XPath.
For such systems, we issued queries that are equivalent to the XPath queries in our
experiments. In many cases, the results are enclosed by different container elements
but the contents are the same.

One of the goals of our experimental study is comparing different systems for the
throughput and the memory usage, which are very important metrics of a query
engine. However, we also wish to characterize these XPath processors in terms of
the relation between the performance and the underlying features of the systems.
We wish to gain insights into the cost to supporting certain XPath features such
as closures and to study which systems and features are best suited to a given
environment. For example, if we only want to use a simple XPath fragment without
predicates, we do not need a full-flavored XQuery engine such as Galax. However,
if we need to express complicated queries that involve joins or constructing new
elements, we need to use systems such as Galax.

In our experiments, we use both real and synthetic datasets that differ in size
and characteristics. We use four real datasets [Avila-Campillo et al. 2002]: an
XML-ized version of Shakespeare’s plays (SHAKE); the NASA ADC XML dataset
(NASA) [Borne 2002], bibliographic records from the DBLP site (DBLP) [Ley |, and
the PIR-International Protein Sequence Database (PSD) [Wu et al. 2002]. We also
use synthetic datasets that are generated using IBM’s XML Generator [IBM 2001]
and Toxgene [Barbosa et al. 2002]. Since the real datasets have relatively shallow
structures, we generated two datasets using IBMGEN with deeper document struc-
ture to explore features related to such data. They are named as RECURS and

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

50 . F. Peng and S. S. Chawathe

Name Support Streaming Mutiple | Closurg Aggregation Buffered
predicates predicate
evalaution
XSQ-F | XPath X X X X X
XSQ-NC| XPath X X X X
XMLTK | XPath X X
Saxon | XSLT X X X —
XQEngine| XQuery X X X —
Galax | XQuery X X X —
Joost STX X X X

Fig. 28: System Features

Name Size Text | Number of | Avg/Max | Average | Parsing | Parsing
(MB) | size elements depth tag Time(s) | Time (s)
(MB) | (K) length Xerces Expat
SHAKE 7.89 4.94 180 5.77/7 5.03 1.42 0.43
NASA 25.0 15.1 477 5.58/8 6.31 4.35 1.50
DBLP 119 56.4 2,990 2.90/6 5.81 27.6 7.53
PSD 716 286 21,300 5.57/7 6.33 170 66.4
RECURS | 10.4 8.78 95.6 22.3/26 5.31 1.65 0.43
RECURB | 121 105 963 26/30 5.31 13.0 4.82

Fig. 29: Dataset Descriptions

RECURB. Some characteristics of these datasets, such as size, number of elements,
depth, and parsing time are listed in Figure II.

For a text-based data format such as XML, parsing the input is often a sub-
stantial component of the running time. The parsing times listed in Figure II are
generated using two parsing programs, named PureParsers, in C and Java. The
PureParser in C uses the Expat 1.2 parser that is used by XMLTK. The PureParser
in Java uses Xerces 1.0 for Java, which is used in XSQ-NC, XSQ-F, XQEngine,
Saxon, and Joost in the experiments. The PureParsers parse the XML data but
do nothing else. We note that the C parser is generally faster than Java parser
since parsing involves a large number of string operations, which are implemented
more efficiently in C. For example, for the 119MB DBLP dataset, the C PureParser
finishes parsing in 7.53 seconds and the Java PureParser uses 27.6 seconds.

In our experiments, we executed each query on a dataset 30 times to get the mean
value of the result we need. We also computed the 95% confidence intervals of
the values to make sure our comparisons are statistically significant. We found that
in all cases the 95% confidence interval is of width less than 1% of the mean value
being measured (throughput, memory usage, etc.). Since it is difficult to display
this small interval graphically, the usual error-bars are omitted in the graphical
results that follow.

9.2 Throughput

We measure throughput as the rate at which a streaming query engine consumes
input data (megabytes per second). Since this rate may vary over time (perhaps
depending on the structure of the data, or as a result of periodic reorganization
of data structures in a streaming system), we measure the average throughput as
the size of the input divided by the time required to process it. Although this
measure of throughput is useful for understanding the end-to-end performance of

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 51
_NCZzZz Saxon &Y | 1 ‘
= X)S(g ’:lF XQEnginemmm -
2 08 Q Galax B B a
3 0.8 xMLTK alax a
< Joost 5
2 B
SR 4 2
< 7 B =
o 7 s L
204 e) - 0 12
g% ‘| g
I} e "IN ER IEN L
oz N N N 1
oL A & N Q3 A ‘
Q1 Q2 Q4 Q2
Different Query Different Query
Fig. 30: Relative throughputs for different Fjs 31: Relative throughputs for different

queries on the SHAKE dataset

Q1: /PLAY/ACT/SCENE/SPEECH/SPEAKER/text ()

Q2: /PLAY/ACT/SCENE/SPEECH[LINE%lovel]/SPEAKER/
text ()

Q3: //ACT//SPEAKER/text ()

Q4: /PLAY/TITLE/text ()

queries on the DBLP dataset

Q1: /article/title/text()

Q2: /article[year>1990]/title/text ()
Q3: /article{@key}

Q4: //title

Relative throughput
Relative throughput

Q2
Different Query

Fig. 33: Relative throughputs for different

Different Query

Fig. 32: Relative throughputs for different

queries on the NASA dataset
Q1l:/dataset/reference/source/other/title/text ()
Q2:/dataset/title/text ()

Q3:/dataset [altname@type=’ADC’]/title/text ()
Q4://dataset//title/text ()

queries on the PSD dataset
Q1:/ProteinEntry/reference/refinfo/authors/
author/text ()
Q2:/ProteinEntry[sequencel]/protein/name/text ()
Q3://sequence

a streaming query engine, it is not a good metric for our goal of understanding the
ramifications of different system designs and features for two reasons. The first is
that the systems we study use different programming languages and environments,
and different parsers. Since the performance of the parser is a dominant factor in
the performance of XPath processors, results based on only end-to-end throughput
measurements are likely to be determined more by the features of the parser and
programming language libraries than by the query engine proper. The second
reason is that different datasets may lead to different parsing performance for the
same parser. We can see in Figure II that the parsing times are influenced by not
only the size of the file, but also by the number of elements in the file. For the two
datasets DBLP and RECURB, the sizes are similar but the parsing times differ
substantially since DBLP has more elements than RECURB. In order to study the
throughput of query engines on different datasets, it is important to factor out the
effects of the varying difficulties of parsing such datasets.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

52 . F. Peng and S. S. Chawathe

1 T

XSQ-NCezzzm
0.8 XSQ-F
XMLTK

SaxoNsTv
Joosthanad

N

Relative throughput

KRR

w

QL Q2 Q
Different Query
Fig. 34:
queries on the RECURS dataset
Q1:/pub/book/title/text ()

Q2:/pub/book [year] /author [email] /name/firstname/

text ()
Q3://proceedings/Qcategory

Relative throughputs for different

XSQ-NCzzza Saxon
5 0.8 Joost bazad
g XMLTK
D
3 0.6
g \
@02 §
\
0 \

Different Query

Fig. 35:
queries on the RECURB dataset
Q1:/pub/book/title/text ()

Q2:/pub/book[year]/author[email] /name/firstname/

text ()
Q3://proceedings/Qcategory

Relative throughputs for different

Q4://publyear=141//paper[@id=13]1/title Q4://publyear=14]1//paper [0id=13]/title

Since all the systems in Figure 28 use the SAX API to parse the data, the
throughput of the PureParser, which parses the data but does nothing else, gives
an upper bound of the throughput for any XML query system. Therefore, instead
of comparing systems using their raw throughput, we compare them using their
throughput normalized with respect to their parsers. That is, we define relative
throughput to be the throughput of the complete system divided by the through-
put of the parser used by that system. Note that Galax implements its own parser
in OCaml. Since we were unable to find a SAX parser implemented in OCaml,
we used the Java PureParser to normalize the throughput of Galax. However, we
believe that the OCaml parser is faster than the Java PureParser; thus this switch
does not put Galax at a disadvantage.

Figures 29, 30, 31, 32, 33, and 34 summarize our experiments comparing the
relative throughputs of the systems over different datasets and queries. Results for
several combinations of queries and datasets are missing for one or more systems
because either the system does not support queries with certain features (e.g.,
closures, predicates) or the dataset is too large for the implementation. For example,
XMLTK, Galax, and Joost do not support query Q2 in Figure 29. Similarly, many
systems do not work with the large PSD dataset of the experiment summarized by
Figure 32.

We observe that, in general, XMLTK and XSQ-NC are the fastest two systems
when we use simple queries that they support. However, since XMLTK does not
handle predicates and XSQ-NC does not handle closure axes, they can use more
efficient methods for query evaluation. One reason for this efficiency is that they
do not need to handle the multiple matchings between the query and the data.
Therefore, they have fewer extra operations for each element. Another reason is
they use deterministic automata. The HPDT used in XSQ-NC is deterministic,
which means there is only one current state at any point in time. For each input
event, there is at most one transition arc that accepts the input for the current state.
Therefore, even when processing the same query without closure, XSQ-NC is faster
than XSQ-F since XSQ-F uses a non-deterministic automaton. For example, when

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 53

[Building se— T
Preprocessinge—=
L Querying ezzzz E
M d in total i &
easured In total time—— § m
12000~ &gy ds 1
10000 |]

8000

T988T

6000
4000-

Processing time (in ms)

2000

0 1 A
XSQ-NC XSQ-F XMLTK Saxon XQEngine Galax Joost

Different System

Fig. 36: Preprocessing time, query processing time, and total querying time
Dataset: SHAKE Query: /PLAY/ACT/SCENE/SPEECH/SPEAKER/text ()

Note: We were unable to determine the separate times for Joost and Galax.

searching for a matching transition in the automaton, XSQ-NC can stop searching
after it finds one match. In contrast, XSQ-F has to go through all the transition of
the current state to make sure every transition is handled.

Figures 29, 31, and 33 suggest that Saxon is faster than XSQ-F when they process
XML data that can fit into main memory. Saxon uses the SAX parser to load all
the data into the memory and build the DOM tree before it evaluates the query.
After parsing the data, Saxon does all the processing in main memory. In-memory
processing is efficient and can support more powerful queries. However, it is not
suitable for streaming data in general. Moreover, as we will see next, the amount
of memory it needs is usually four to five times the size of the dataset. Thus, it is
difficult to scale the Saxon approach to large XML files and to streaming data.

Figure 35 summarizes our experiments measuring the components of the overall
query-processing time. The dark bar represents the query compilation time, which
usually includes parsing the query and building the data structures used by the run-
time query engine. The gray bar represents the preprocessing time. For example,
the preprocessing stage of Saxon loads all the data into memory to build the DOM
tree before it can evaluate the queries. Similarly, XQEngine preprocesses data
by building a full-text index on the data before evaluating any queries. Figure
35 highlights an important advantage of streaming systems: They return results
incrementally while still reading the input. The availability of some results early is
a useful feature in general, and especially important when the input data stream
is unbounded or very large. The non-streaming systems have to wait until all the
preprocessing finishes before they can begin evaluating the queries. However, as
long as the preprocessed data in these systems remains in memory, subsequent
queries can be evaluated very efficiently by reusing the preprocessed data.

9.3 Memory Usage

The main memory required by a streaming query engine is an important metric
and often determines the feasibility of using that engine for a dataset. Further, it is
often possible to increase throughput by increasing the memory footprint. Figures

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

54 F. Peng and S. S. Chawathe
s 250 ——— — ‘ ‘
< XSQ-NC—— S ool XSO-F -]
= XSQ-F > c 200 SAX(%)N
$ 200; XMLTK® - 4% | xSoNe .
o SAXON: % .7 < 1
1] x X a =) L XMLTK i
S Galax- o N @ 150 | +
> 1501 Joost: x _lan” 1 E XQEGng;ni g
S XQEnginé P > aa -
1S PE S 100+ Joost |
@ 100 s % 1 £ "
€ Phe - [} ains
A x £ -

€ s %] £ 50F .]
IS & E -
© =
s O oo ho oo I . I TR SR Sy S é 0 L L L L . . .

0 5 10 15 20 25 30 35 40 450 s 0 5 10 15 20 25 30 35 4C

Size of dataset (in MB) Size of dataset (in MB)

Fig. 37: Memory usage for DBLP-based datasets Fig. 38: Memory usage for synthetic datasets of
of different sizes different sizes

Query:/dblp/inproceedings[author]/title/text () Query://publyear]//book[@id]/title/text ()
1. The query for XMLTK :/dblp/inproceedings/ 1. The system cannot handle the query in the

title/text() dataset.
2. XQEngine could not be tested because it cur- 2. Galax reports a ”stack overflow” error when we
rently supports only 32K elements per document. try the query.

36, 37, 38, 39, 40, and 41 summarize the results of our experiments comparing
the memory used by the systems we study. We observe that, as expected, the
streaming systems typically use much less memory than the non-streaming systems.
For example, although Saxon (a non-streaming system) is faster than XSQ-F when
both systems handle the queries in these figures (Figures 31, 33, and 34), it also
uses much more memory than XSQ-F. We also note that, for different datasets,
the streaming systems use almost the same amount of memory. This fact suggests
that the streaming systems need a small amount of memory which is only weakly
dependent on to the size of the datasets in our study. For systems such as XMLTK
and Joost, which do not support predicates, this observation is always true since
they do not buffer anything in the data. However, systems that support predicates,
such as XSQ-NC and XSQ-F must buffer data and the amount of buffered data
may be large, depending on the dataset and query. Recall, however, that any data
buffered by XSQ must also be buffered by any streaming query engine for XPath.
That is, the need for a potentially large amount of buffering in this case is a result
of XPath features and not system design. Further experiments studying this aspect
of XSQ are described in Section 9.5.

Memory usage is also an important determinant of the scalability of streaming
systems. Since non-streaming systems need to load the whole dataset into memory,
they need memory that grows at least linearly with the size of the input. In contrast,
streaming systems need to store only a small fraction of the stream. Figure 36 shows
the memory usage reported for the queries over datasets ranging in size from 5MB
to 50MB. All the datasets are excerpts of the DBLP dataset. For example, the
10MB dataset contains the first 10MB data of the DBLP dataset. (The size is
approximate since we need to include the closing tags of elements near the 10MB
offset in order to obtain well-formed XML.) Figure 36 indicates that Saxon and
Galax use memory roughly linear in the size of the input data. Linear growth
in memory usage, with a constant factor of 4 to 5, makes DOM-based systems
unsuitable for large XML files.

We also used the XML Generator program to generate datasets of varying size

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Saxon]
GalaxFH

X)S(Q—N(m

SQ-
XMLTK*

[any
N
o

Relative throughput

Q1
(XMLTK usually uses less than IMB memory.)

Different Query

Fig. 39: Memory usage for different queries on
the NASA dataset
Q1l:/dataset/reference/source/other/title/text ()
Q2:/dataset/title/text ()

Q3:/dataset [altname@type=’ADC’]/title/text ()
Q4://dataset//title/text ()

100 T T
XSQ-NC SaxOonESEYY
@ 80l XSQ- Joostreza |
s XMLTK N
£ \
260 N
: \
2 \
Z 40 § ,
5 \
s 20+ § i
N\
ol Z \
Q1 Q2 Q3 Q4
Different Query

Fig. 41: Memory usage for different queries on
the RECURS dataset

Q1:/pub/book/title/text ()
Q2:/pub/book[year]/author[emaill/name/firstname/
text ()

Q3://proceedings/@category
Q4://pub[year=14]//paper[@id=13]/title

and recursiveness.

XSQ:A Streaming XPath Engine . 55
30r xso-Nczzzz 1

Dost itk = |

= Joost B

©20-]

g |,

S15

fel

Q2
Different Query

Fig. 40: Memory usage for different queries on
the PSD dataset
Q1:/ProteinEntry/reference/refinfo/authors/
author/text ()
Q2:/ProteinEntry[sequence]/protein/name/text ()
Q3://sequence

XSQ-NQzzz Saxonss=xy(*: 32MB for Saxon
7 Joostbarza

N
\
\
\

Memory Usage(MB)«
=

277777777

5 § 1
0 N IN VAAN &
Q1 Q2 Q3 Q4
Different Query

Fig. 42: Memory for different queries on the RE-
CURB dataset

Q1:/pub/book/title/text ()
Q2:/pub/book[year]/author[email] /name/firstname/
text ()

Q3://proceedings/@category
Q4://publyear=141//paper[@id=13]1/title

For example, for the dataset of size 13MB, the nested level

parameter of the XML Generator program is set to 15 and the maximum repeats
parameter is set to 20. From Figure 37 we note that even with highly recursive data
and queries with closures, the memory used by XSQ-F is constant. Recall, from
Section 6, that XSQ-F needs to buffer more data if there are closures in the query.
However, since all the items in the buffers can be determined when we encounter
the end event of the element specified in the first location step (when the HPDT

returns to the highest layer BPDT), the

maximum amount of memory the XSQ

needs does not exceed the maximum size of the elements in the stream.

9.4 Characterizing the XPath Processors

Recall, from our discussion in Section 6, that XSQ and other streaming query
engines need to buffer data items when they cannot immediately decide whether
the data items belong to the result. In general, the relative ordering in a dataset of
XML elements to which a query refers influences the amount of buffering required

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

56 . F. Peng and S. S. Chawathe

for that dataset. In order to study this effect, we generated a 10 MB dataset using
Toxgene, by applying the following template repeatedly to generate new a elements
with successive id attributes.

<prior> 1 </prior>
<foo> 1 </foo>
<!--- 10,000 foo elements —--->
<foo> 1 </foo>
<posterior> 1 </posterior>

We evaluated the following three queries on this dataset:

Q1: /alprior=0]
Q2: /alposterior=0]
Q3: /ale@id=0]

All three queries have empty results on the above dataset because their predicates,
which test for an text contents or attributes with value 0, are not satisfied by the
test data, in which all content has value 1. However, the queries differ in the
location of the data item used in the predicate relative to the data item to which
the predicate applies.

Figure 42 summarizes the results of running XSQ-NC, XSQ-F, and Saxon on
these queries. (XMLTK and Joost cannot handle queries that need explicit buffering
of the data. Galax reports an “Internal Error” when evaluating the queries on
the synthetic data. XQEngine is not tested in the following experiment since the
version we use can process only XML files that have less than 32,767 elements.)
We observe that the throughput of the Saxon system is essentially the same for
all three queries. This result is not surprising because Saxon always loads all the
data into the memory before it evaluates the queries. When it traverses the DOM
tree in the main memory to evaluate a query, the document order of the elements
traversed is not important. However, the throughput of XSQ-NC is 30% higher
for Q3 than for the other two queries. When processing Q3, XSQ-NC is able to
determine at the beginning of the a element that all the contents in this element
can be ignored. For the other two queries, on the other hand, the content of every
a element must be buffered because the prior and posterior elements may occur
anywhere before the closing tag of the a element. We also observe that XSQ-F is
not as sensitive as XSQ-NC to the element order. Recall from Section 6 that even
if XSQ-F determines that an item is in the result set, it cannot output the item
right away because there may be items in the global queue whose memberships in
the result are as yet undetermined and that lie ahead of this item in the queue.
Thus, XSQ-F must first mark the item with an output flag and check if the item
is the head of the global queue. This process of marking and checking every result
item slows down the XSQ-F system and reduces its sensitivity to the order of the
elements. (However, this process is necessary since the closure axes in the query
imply that the result membership of items in the buffer cannot always be determined
in document order.)

We also studied the sensitivity of system throughput to the size of the query
result. The degree to which system throughput depends on result size varies across

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 57

1 T 1 T T
0.8 /a[prior=0] — <08 /a//g/Red: %8?/0—

5 0.8 ior=0] =——= q 3 0.8 reen: o R
2 ’a[PjSte”.‘”_ ol e Ja/Blue: 60%——
S a[@id=0] —— =)
2 0.6r 1 206 B
£ £
204 E % 0.4¢ 1
8 8
& 027 | & Ozh_‘ I_H I_H |

. ‘ Sl I Bl PR NANN SR

XSQ-NC XSQ-F Saxon XSQ-NC XSQ-F XMLTK Saxon Joost
System System

Fig. 43: Effect of data ordering on throughput Fig. 44: Effect of the result size on throughput

the systems we studied. For example, the XQEngine is slower than the other
systems in Figure 35 because the query returns a large portion of the dataset.
However, if the query contains a tag that is not in the data, XQEngine returns
the empty result set very quickly because it has access to an inverted file index on
tags. The other systems, lacking such an index, spend similar amount of time on
the query irrespective of whether the tags in the query appear in the document.

We used Toxgene to generate a test dataset of 10 MB consisting of a mix of
three types of elements (besides a few top level elements): 10% of the elements
have tag red, 30% green, and 60% blue. The content of each such element is a
single character. We used this dataset with three queries: /a/red, /a/green, and
/a/blue, generating query results that are roughly 1 MB, 3 MB, and 6 MB in size,
respectively. Figure 43 indicates the relative throughputs of the systems on these
queries. (XQEngine and Galax are not tested for the same reason as described in
the previous experiment.) We observe that XSQ-NC’s throughput is quite sensitive
to the size of the result. The difference in the performance is due to the different
handling of data items based on whether they are in the result. Items that are not
in the result can be ignored and XSQ-NC stays in the same state. If there are more
items in the result set, the XSQ-NC will make more state transitions and output
operations, which constitute a large portion of the running time of XSQ-NC. We
also note that XSQ-F is not as sensitive as XSQ-NC. As described in Section 6,
XSQ-F always keeps the item first, irrespective of whether it is in the result, and
checks the queue after all transition arcs are handled. The difference between the
treatment of elements in and not in the result is therefore not as large as in XSQ-
NC. Saxon’s throughput is not very sensitive to the result size since after it loads
all data into main memory, the evaluation process is done in main memory except
the output process, which constitutes only a small amount of the total execution
time. Similarly, the low sensitivity of XMLTK’s throughput to the result size is
because the difference is only in the time required to output the result. However,
it is not clear why Joost’s throughput is not more sensitive to the result size.

9.5 Characterizing XSQ-F

In this section, we study the effect of different query features on the performance
of XSQ-F. In particular, we study the effect of the number of closure axes in the
query, the number of predicates in the query, and the length of the query.

In the first experiment, we executed a set of queries that return the same result

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

58 . F. Peng and S. S. Chawathe

<datasets> < /datasets>
(St gy Stz

1
<dataset> | | </dataset> = 08
5 0.

(=8

=)
S 0.6

e

=]
<reference>| | </reference> ° o4
2

=

5}

o

<source> | | </source>

O.2I I I I I I B
0
Qo Q1 Q2 Q3 Q4 Q5 Q12 Q123 Q12341234!
Different queries that return the same result
QO:/dataset/reference/source/other/name/text ()
Q1://dataset/reference/source/other/name/text ()
Q2:/dataset//reference/source/other/name/text ()
Q3:/dataset/reference//source/other/name/text ()
Q4:/dataset/reference/source//other/name/text ()
Q5:/dataset/reference/source/other//name/text ()
Q12://dataset//reference/source/other/name/text ()

Q123://dataset//reference//source/other/name/text ()

Q1234://dataset//reference//source//other/name/text ()
Q12345://dataset//reference//source//other//name/text ()

Fig. 45: HPDT generated for query
/dataset /reference/source/other/-
name/text()

dataset

0.8 E

0.2 E

Relative Throughput

Q0 Q1 Q2 Q3 Q4 Q5 Q12 Q123 Q1234Q123
Different queries that return the same result
Fig. 47: Experiment of Figure 45 using a modified
NASA dataset

Fig. 46: Effect of closure axes in the queries on NASA

Memory used(MB)

Q QI Q2 Q3 Q4
Different queries that return the same result

Q5 Q12 Q121234 Q128

Fig. 48: Memory usage of queries with closure
axes on NASA dataset

set but with different number of closure axes in the query. In Figure 45, Q) g, where
S C {1,2,3,4,5}, is the query in which the ith location step has a closure axis
for all : € S. For example, the query (J123 has closure axes in the 1st, 2nd, and
3rd location steps. (The remaining location steps have the child axis.) All these
queries return the same result when applied to the NASA dataset. The memory
used by XSQ-F when processing these queries is summarized in Figure 47. The
HPDT generated for the query /dataset/reference/source/other/name/text ()
is depicted in Figure 44. The HPDTs for other queries have a similar structure, with
self-closure transitions and closure transitions in the appropriate places, following

the scheme of Section 6.3.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 59

Figure 47 indicates that although the number of closure axes and their locations
vary among the queries, resulting in varying sizes of the set of current states, the
memory used for the different queries does not vary much. As discussed earlier,
this insensitivity is due to the fact that the memory used by the HPDT states is
only a very small amount in the total memory used by the system. The buffers and
other system components are responsible for most of the memory usage.

Figure 45 summarizes the throughput on the above queries. We observe that
the throughput is lower for queries with a closure axis in the first location step
than for queries with a child axis in the first location step. (The differences in
the histogram bars, though small, are statistically significant; here, as in our other
experimental results the 95% confidence intervals are smaller than 1% of the values
shown.) From the DTD of the dataset [Borne 2002], we know that all the top level
elements in the NASA dataset are dataset elements. If we have closure axis in
the first location step, then after the HPDT (Figure 44) makes the transition from
state $2 to $4, it will also keep state $2 in its current state set. Then, the HPDT
needs to check whether each incoming event is a dataset element, which involves
string comparisons. In contrast, if the first location step has a child axis, state $2
does not remain current. Therefore, only for all the subelements of the dataset
elements does the HPDT check the begin events by comparing the name of the
element with the label. It ignores all elements that are not descendants of both
dataset and reference by simply checking the depth of those events, an operation
much faster operation than the string comparison used for the earlier case.

It is not the position of the closure axes in the query alone that determines the
throughput. On examining the dataset closely, we note that the evaluation time
is significantly affected by the selectivities of each location step. Consider the i’th
location step of a query and let S be the set of elements that match the first i — 1
location steps. Let S’ be the children of nodes in S. We define the selectivity
of location step i (for a given dataset) to be the fraction of the nodes in S’ that
match the first ¢ location steps. If the ¢’th location step uses the closure axis,
we use descendants instead of children in identifying the set S” in this definition.
For the query and dataset of this experiment, each dataset element contains one
reference child, which corresponds to 10%—20% of the total number of events for
one dataset element. We also ran these queries on a dataset obtained by remov-
ing all subelements of dataset elements other than the reference subelements
(which means the selectivity of the second location step changed from around 20%
to 100%). The result is summarized in Figure 46. We can see that the closure
axis in the first location step no longer has a significant impact on the throughput.
(The throughput of query Q1 is not significantly smaller than throughputs of query
Q2, Q2, Q3, and Q5, all of which contain one closure axes but in different location
steps.) The reason is that the extra work done by Q1 (checking descendants of
subelements other than reference) on the original dataset no longer exists when
the system evaluates the queries on the new dataset since the dataset elements
in the new dataset have only reference subelements. In general, when the se-
lectivity of a location step is small, closure axes preceding this step result in a
performance penalty because the non-result descendants cannot be eliminated by
depth comparisons and incur the cost of more expensive string comparisons.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

60 . F. Peng and S. S. Chawathe

In the previous experiment, we used queries with only closure axes but without
predicates. We also performed an experiment using queries with predicates of
different types and in different positions. The dataset used for this experiment
is the NASA dataset. The results are summarized in Figure 48. (We abbreviate
dataset as d in the queries; similarly, we abbreviate other tags by their first letter.)
The first eight queries have the same result although they have different types
and numbers of predicates. The last three queries have empty results. We note
that the throughputs for the first eight queries are similar because the number of
comparisons needed to determine the results of their predicates does not vary much
across these queries. For example, although the dataset elements typically have
several altname subelements, the first altname subelement usually has the attribute
type that has value ADC. Therefore, the query Q3 and Q4 will both check the first
altname subelement and ignore the remaining altname elements. However, for
query Q10, although the result set is empty, resulting in less time spent on output
operations, all the altname subelements of dataset elements must be checked.
Therefore, its throughput is lower than those of queries Q3 and Q4. We also
observe that the query Q9 has the largest throughput among all the queries used in
the experiment. The reason is that the predicate in this query [@subject=test]
can be evaluated to false at the beginning of the dataset elements. Thus, all the
descendants of the dataset elements can be ignored. This experiment demonstrates
that XSQ is able to save on comparisons for predicates that have already been
evaluated.

In the next experiment, we used queries of different lengths (query sizes). The
results are summarized in Figure 49. The query Q5 and Q6 return the same result
set of size 747 KB and the others return the same result set of size 16.7 KB.
The bars in Figure 49 plot relative throughput: striped bars for queries with no
predicates, gray bars for queries with a predicate in every location step, and white
bars for queries with a predicate in only the first location step. The predicates
all evaluate to false. For example, for Q3 for the gray bar is for the query //
source[test]//other[test]//title[test]/text () while for Q1 the white bar
is for the query //source[test]//other//title/text (). The memory usage for
these queries is shown in Figure 50. The figures indicate that queries with predicates
in every location step use almost the same amount of memory as the queries without
predicates. The throughputs are also similar.

Although Figure 49 suggests that longer queries generally have lower through-
puts, we notice an exception: Q6 has smaller throughput than Q4 and Q5 although
it returns the same result set as Q5 and has the same query length as Q4. Q6 is
slower than Q4 because the selectivity of the second location step of Q6 is much
smaller than the selectivity of the second location step of Q4. (That is, the fraction
of the descendants of dataset elements that have tag title is much smaller than
the fraction of the descendants of other elements that have tag title.) Recall,
from our discussion earlier in this section, that a location step with a low selectivity
results in a larger number of string comparisons resulting from a closure axis in the
previous location step. Thus, Q6 incurs a larger number of string comparisons than
Q4, resulting in lower throughput.

We also note that Q5 has a higher throughput than Q6 because the HPDT

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 61

1 1 : : . .
) ~ Without any predicatezzzzz
= 208 With predicate in every location Stefe=
3 0.8 i 291 With one predicate in first location step——
§ 5
(g: 0.6 30.6F |
£ I
0.4- B
3 &02
© 0.2 1
. 701 Tz Q3 & 5 Qe
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 QW10 Q Different query

Query with different predicate Q1://dataset//reference//source//other//title/
text ()
Q2://reference//source//other//title/text ()
Q3://source//other//title/text ()
Q4://other//title/text ()

Qb5://title/text ()

Q6://dataset//title/text ()

Q1:/d[@subject=astronomyl/r/s/o/n/text ()
Q2:/d[@subject]/r/s/o/n/text ()
Q3:/d[altnamel/r/s/o/n/text ()
Q4:/d[altname@type=ADC]/r/s/o/n/text ()
Q5:/d/r/s/o[publisher]/n/text ()
Q6:/d[altname@type=ADC]/r/s/o[publisher]/n/
text ()
Q7:/d[altname]/r/s/o[publisher]/n/text ()
Q8:/d[@subject]/r/s/o[publisher]/n/text ()
Q9:/d[@subject=test]/r/s/o/n/text ()
Q10:/d[altname@type=test]/r/s/o[publisher]l/n/
text ()

Q11:/d/x/s/o[test]/n/text ()

Fig. 50: Effect of query length on throughput for
thze5 NASA dataset

T T i
) ~ Without any predicatezzzz

With predicate in every location steges=s
With one predicate in first location step—

7

(MB
e

Memory usage
B =
o o

o

0
é
0
%
%
%
é
%
)
0

o

Q1 Q2 Q3 Q4 Q5 Q6
Different queries

Fig. 49: Effect of predicates in the queries on Fig. 51: Effect of query length on memory usage
NASA dataset for the NASA dataset

evaluating Q5 has smaller current state set. The HPDT evaluating Q5 has one
current state that stays active during the whole process (to check whether the next
event is the begin event of a title element) while the HPDT evaluating Q6 has two
current states that stay active (to check the begin events of the dataset and the
title elements). Therefore, for the begin event of every descendant of the dataset
elements, the HPDT for Q6 performs two string comparisons, while the HPDT for
Q5 only performs one.

We noted in the Section 9.3 that the maximum amount of data that XSQ needs
to buffer is no greater than the size of largest element in the input. To verify our
implementation, we generated an XML file of size 31.5 MB, containing 11 top-
level elements chunk. We put a test attribute within the open tag of each chunk
element. All the test attributes have value 1. We also put two test subelements
inside the chunk elements. The first one is put right after the open tag of each
chunk element and its content is set to 0. The second one is placed right before
the close tag of each chunk element and its content is set to 1. We ran two sets
of queries on the dataset. The memory usage of the experiments is summarized
in Figure 53. The first set of queries contains similar patterns but with different
predicates in their first location steps. A location step /a is inserted between the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

62 . F. Peng and S. S. Chawathe

. <root>

</root> @

<root> .
</chunk> ah
2= =nal|a
a5 Qg g
=T oc| |2
& v 23 S 2
% 0 =
1 <test.text()> I EANRNACY
<ftest> o, [text0=x] w7 §%
{flush(}>" {flush()} <ltest> 1
</data>| | <data> <data> | </data> </data>| | <data>
{upload()} L
$
<data.text()> <data.text()> <data.text()>
{output(datg.text())} {enqueue(data.text())} {output(data.text())}
Fig. 52: HPDT generated for the query /chunk[test=x]//data/text() and

/chunk [@test=x]//data/text ()

<root> </root> e} <root> @ </root>

</chunk> —~A
o4
82 =alla
Vv wa 3 2\/_
<test.text()> X,
</test> [text()=x] ~ o
$7 $
{flush()} @ {flush()} <Jtest> } }
 <ax | <a>| |
1 1 i
$9 $
</data> | <data> <datai {iﬁgfggg()} </data» | <data>
$1 $
<data.text()> <data.text()> <data.text()>
{output(data.text())} {enqueue(data.text())} {output(da(t)a.text())}
Fig. 53: HPDT generated for the query /chunk[test=x]/a//data/text() and
/chunk [@test=x]/a//data/text ()
80 T
Qlmmmm Q4=
700V Q50 1
D 4o OF=]
S 50 |
<
8 40]
>
g 30 B
g 20 E
10 B
0 ‘ HH
First set Second Set
Query
Set 1 Set 11

Q1 | /chunk[test=0]//data/text() /chunk[test=0]/a//data/text()

Q2 | /chunk[test=1]//data/text() /chunk[test=1]/a//data/text()

Q3 | /chunk[test=2]//data/text() /chunk|test=2]/a//data/text()

Q4 | /chunk|[@test=0]//data/text() | /chunk[@test=0]/a//data/text()

Q5 | /chunk[@test=1]//data/text() | /chunk[@test=1]/a//data/text()
Fig. 54: Memory usage of queries

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 63

first location step and second location step of each query in the first set to form
the queries in the second set. However, since each chunk element has only one
a subelement and all the data descendants of the chunk element are inside the a
subelement, the corresponding queries in the two sets always return the same result
set on this synthetic dataset. Moreover, Q1, Q2, and Q5 of the two sets return the
same result set of size 23.4MB while Q3 and Q4 of both query sets return the empty
result set. The HPDTs generated for the first set queries are depicted in Figure 51,
and the HPDTs generated for the second set of queries are depicted in Figure 52.

For the two sets of queries, Q2 and Q3 almost use the same amount of memory
while Q4 and Q5 use much less memory, although Q2 and Q4 returns a result set
of size 23.4MB and Q3 and Q5 return an empty result set. The memory usage for
Q2 and Q3 is similar because both of them require buffering the text contents of all
data subelements since the results of the predicates in both queries are determined
only at end of every chunk element. (The results of query Q2 are sent to output
while the results of query Q3 are cleared from the buffer.) Queries Q4 and Q5
use much less memory than Q2 and Q3 because neither requires the contents to
be buffered since the results of their predicates are determined at the beginning
of the chunk element. For Q4, the HPDT sends all the text contents of the data
subelements directly to output, while for Q5 all the data subelements are discarded
as they are encountered.

The difference in the memory usage of the two Q1 queries is due to the different
structures of the corresponding HPDTs. If we follow the reasoning of the previous
paragraph, it seems reasonable to expect that both Q1 queries have memory usage
similar to that of queries Q4 and Q5 because the result of the predicates in the
queries can be determined at the beginning of the chunk elements. However, it is
clear in Figure 53 that the memory usage of Q1 in the first set is close to that of
Q2 and Q3, while the memory usage of Q1 in the second set is close to that of Q4
and Q5. The HPDT generated from Q1 in the first set is depicted in Figure 51.
Even when the predicate has been satisfied, this HPDT keeps the state $4 active
because of the self-closure transition on $4. The HPDT continues to enqueue the
text contents of the data descendants (using the enqueue operation on state $9),
which will never be used because the same data item will be sent to output right
away (by the output operation on state $§10). However, since we cannot explicitly
clear the buffer until the end of a chunk element, these items stay in memory until
the end of the chunk element. Thus, the memory usage of this Q1 query is almost
the same as that of Q2 and Q3. In contrast, the state $4 in the HPDT for Q1 in
the second set (Figure 52) does not have a self-closure transition. Therefore, when
the predicate has been satisfied, only state $8 is active. The text contents of the
data elements will be only output by the operation on the state $12. The enqueue
operation on state $10 will never be executed.

10. CONCLUSION

The XSQ system provides an efficient implementation of XPath for streaming XML
data. It supports XPath queries that have multiple predicates, closure axes, and
output functions that permit extraction of portions of the stream. We have il-
lustrated the challenges posed by these XPath features to query processing in a

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

64 . F. Peng and S. S. Chawathe

streaming environment and described the soulution used by XSQ. All the methods
described in this paper have been fully implemented in the XSQ system, which is
freely available at http://www.cs.umd.edu/projects/xsq/. The implementation
is based on a clean system design that centers on a hierarchical arrangement of push-
down transducers augmented with buffers and auxiliary stacks. A notable feature
of XSQ is that at any point during query processing, the data that is buffered by
XSQ must necessarily be buffered by any streaming XPath query engine. We have
described the results of a detailed experimental study of XSQ and similar systems.
In addition to demonstrating the ability of XSQ to maintain a high throughput
with modest memory requirements, even for large datasets and complex queries,
our experimental study provides a valuable characterization of the performance im-
plications of XPath features and system designs, as embodied in the systems we
studied.

Acknowledgment

We would like to thank Jerome Simeon and Mary Fernandez for providing the Galax
system; Howard Katz for XQEngine; the XMLTK team (Iliana Avila-Campillo,
Demi Raven, T.J. Green, Ashish Gupta, Yana Kadiyska, Makoto Onizuka, and
Dan Suciu) for the XMLTK system and for pointers to datasets; Michael Kay for
Saxon; Denilson Barbosa and Alberto Mendelzon for ToXGene; Angel Luis Diaz
and Douglas Lovell the XML Generator; Oliver Becker for the Joost program and
assistance with the code; the Graphviz team (John Ellson, Emden Gansner, Eleft-
herios Koutsofios, John Mocenigo, Stephen North, and Gordon Woodhull)for the
Graphviz program used to display HPDTs; Mukund Raghavachari for bringing to
our attention work on stream processing of backward axes; and Bertram Ludascher
and Yannis Papakonstantinou for providing an early version of their paper on XSM.

REFERENCES

ABITEBOUL, S., BUNEMAN, P., AND Suctu, D. 2000. Data on the Web. Morgan Kaufmann.

ABITEBOUL, S., Quass, D., McHugH, J., WIDoM, J., AND WIENER, J. 1996. The Lorel query
language for semistructured data. Journal of Digital Libraries 1, 1 (Nov.), 68-88.

ALTINEL, M. AND FRANKLIN, M. J. 2000. Efficient Filtering of XML Documents for Selective
Dissemination of Information. In The 26th International Conference on Very Large Data
Bases. 53-64.

AviLA-CAMPILLO, I., RAVEN, D., GREEN, T., GurTA, A., KADIYSKA, Y., ONIZUKA, M., AND Su-
ciu, D. 2002. An XML Toolkit for Light-weight XML Stream Processing. http://www.cs.
washington.edu/homes/suciu/XMLTK/.

AVNUR, R. AND HELLERSTEIN, J. M. 2000. Eddies: Continuously Adaptive Query Processing. In
The 19th ACM SIGMOD International Conference on Management of Data. 261-272.

BArBOSA, D., MENDELZON, A., KEENLEYSIDE, J., AND Lyons, K. 2002. ToXgene: a template-
based data generator for XML. In The 5th International Workshop on the Web and Databases.
Madison, Wisconsin, 49-54.

BArTON, C. M., CHARLES, P. G., GOYAL, D., RAGHAVACHARI, M., JOSIFOVSKI, V., AND FON-
TOURA, M. F. 2003. Streaming XPath Processing with Forward and Backward Axes. In The
18th International Conference on Data Engineering.

BECKER, O. 2002. Joost is Ollie’s Original Streaming Transformer. http://joost.sourceforge.
net/.

BECKER, O., CIMPRICH, P., AND NENTWICH, C. 2002. Streaming Transformations for XML.
http://www.gingerall.cz/stx.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 65

Boag, S., CHAMBERLIN, D., FERNANDEZ, M. F., FLORESCU, D., ROBIE, J., AND SIMEON, J. 2002.
XQuery 1.0: An XML query language. W3C Working Draft. http://www.w3.org/TR/2002/
WD-xquery-20021115/.

BornE, K. D. 2002. ADC Dataset, GSFC/NASA XML Project. http://xml.gsfc.nasa.gov/
archive/.

Bosak, J. 2002. The Plays of Shakespeare in XML. http://www.oasis-open.org/cover/
bosakShakespeare200.html.

BRAY, T., PAOLL, J., AND SPERBERG-MCQUEEN, C. 1998. Extensible markup language (XML) 1.0.
World Wide Web Consortium Recommendation. Available at http://www.w3.org/TR/REC-xml.

BuNEMAN, P., DAvIDSON, S., HILLEBRAND, G., AND Suctu, D. 1996. A query language and opti-
mization techniques for unstructured data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. Montréal, Québec, 505-516.

CARNEY, D., CETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., SEIDMAN, G., STONE-
BRAKER, M., TATBUL, N., AND ZDONIK, S. 2002. Monitoring Streams: A New Class of Data
Management Applications. In Proceedings of the 28th International Conference on Very Large
Data Bases. 215-226.

CHAN, C. Y., FELBER, P., GAROFALAKIS, M. N.; AND RAsTOGI, R. 2002. Efficient Filtering of
XML Documents with XPath Expressions. In The 18th International Conference of Data
Engineering. 235-244.

CHANDRA, A. K., KOZEN, D. C., AND STOCKMEYER, L. J. 1981. Alternation. Journal of the ACM
(JACM) 28, 1, 114-133.

CHEN, J., DEWITT, D. J., TIAN, F., AND WANG, Y. 2000. NiagaraCQ: A Scalable Continuous
Query System for Internet Databases. In The 19th ACM SIGMOD international conference
on Management of data. 379-390.

CHEN, Z., JAGaDISH, H. V., KORN, F., Koubas, N., MUTHUKRISHNAN, S., NG, R. T, AND SRI-
VASTAVA, D. 2001. Counting T'wig Matches in a Tree. In The 17th International Conference of
Data Engineering. 595-604.

CHERNIACK, M., BALAKRISHNAN, H., BALAZINSKA, M., CARNEY, D., CETINTEMEL, U., XING, Y.,
AND ZDONIK, S. 2003. Scalable Distributed Stream Processing. In The First Biennial Confer-
ence on Innovative Database Systems.

CHol, B. 2002. What Are Real DTDs Like. In The 5th International Workshop on the Web and
Databases. Madison,Wisconsin, 43—-48.

CLARK, J. AND DEROSE, S. 1999. XML path language (XPath) version 1.0. W3C Recommendation
http://www.w3.org/.

DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A., AND Suctu, D. 1998. XML-QL: A query
language for XML. Available at http://www.w3.org/xml/.

Diao, Y., FISCHER, P., AND FRANKLIN, M. J. 2002. YFilter: Efficient and Scalable Filtering of
XML Documents. In The 18th International Conference of Data Engineering. 341-344.

FERNANDEZ, M. AND SIMEON, J. 2002. Galax. http://db.bell-labs.com/galax/.

FERNANDEZ, M. F., FLOrRESCU, D., KANG, J., LEvY, A. Y., AND Suciu, D. 1997. STRUDEL: A
Web-site management system. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), J. Peckham, Ed. Tucson, Arizona, 549-552.

GANSNER, E. R. AND NORTH, S. C. 2000. An open graph visualization system and its applications
to software engineering. Software - Practice and Ezperience 30, 11 (September), 1203-1233.
GNU 1991. GNU general public license. Free Software Foundation, Inc. http://www.gnu.org/

copyleft/gnu.html. Version 2.

GorrLoB, G., Kocn, C., AND PICHLER, R. 2002. Efficient algorithms for processing XPath
queries. In Proceedings of the International Conference on Very Large Data Bases (VLDB).
Hong Kong, China.

GREEN, T. J., MIKLAU, G., ONIZUKA, M., AND Suciu, D. 2003. Processing XML streams with
Deterministic Automata. In The 9th International Conference on Database Theory. Siena,
Italy, 173-189.

HorFMANN, C. M. AND O’DONNELL, M. J. 1982. Pattern matching in trees. Journal of the ACM
(JACM) 29, 1, 68-95.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

66 . F. Peng and S. S. Chawathe

HoprCrRAFT, J. AND ULLMAN, J. 1979. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley.

IBM. 2001. XML Generator. http://www.alphaworks.ibm.com/tech/xmlgenerator.

Karz, H. 2002. XQEngine. http://www.fatdog.com.

Kay, M. H. 2002. SAXON: an XSLT processor. http://saxon.sourceforge.net/.

KILPEL, P. 1992. Tree matching problems with applications to structured text databases. Ph.D.
thesis, Dept. of Computer Science, University of Helsink.

LAKSHMANAN, L. V. AND SAILAJA, P. 2002. On Efficient Matching of Streaming XML Documents
and Queries. In The 8th International Conference on Extending Database Technology. Prague,
Czech Republic, 142-160.

LeEy, M. Computer Science Bibliography. http://dblp.uni-trier.de/xml/.

Liu, L., Pu, C., AND TANG, W. 1999. Continual Queries for Internet Scale Event-Driven Infor-
mation Delivery. Knowledge and Data Engineering 11, 4, 610—628.

Liu, L., Pu, C., AND TANG, W. 2000. Webcqg-detecting and delivering information changes on the
web. In 9th International Conference on Information and Knowledge Management. 512-519.

LUDASCHER, B., MUKHOPADHAYN, P., AND PAPAKONSTANTINOU, Y. 2002. A Transducer-Based
XML Query Processor. In The 28th International Conference on Very Large Data Bases.
Hong Kong, China, 227-238.

MADDEN, S. AND FRANKLIN, M. J. 2002. Fjording the Stream: An Architecture for Queries Over
Streaming Sensor Data. In The 18th International Conference of Data Engineering.

MEGGINSON, D. ET AL. 2002. Simple API for XML. http://www.saxproject.org/.

MikLAu, G. AND Suciu, D. 2002. Containment and Equivalence for an XPath Fragment. In
The 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
Madison,Wisconsin, 65-76.

OLTEANU, D., KIESLING, T., AND FRANOIS BRY. 2002. An Evaluation of Regular Path Expressions
with Qualifiers against XML Streams. Tech. Rep. PMS-FB-2002-12, Institute for Computer
Science, Ludwig-Maximilians University, Munich. May.

OLTEANU, D., MEUSS, H., FURCHE, T., AND Bry, F. 2002. XPath: Looking forward. In Workshop
on XML-Based Data Management (XMLDM) at the 8th Conference on Extending Database
Technology. Springer-Verlag, Prague, 109-127.

PENG, F. AND CHAWATHE, S. S. 2003. The XSQ project. http://www.cs.umd.edu/projects/xsq/.

PLALE, B. AND ScuwAN, K. 2000. dQUOB: Managing Large Data Flows by Dynamic Embed-
ded Queries. In The 9th IEEE International Symposium on High Performance Distributed
Computing. Pittsburgh, Pennsylvania, 263-270.

PLALE, B. AND ScuwAN, K. 2003. Dynamic querying of streaming data with the dquob system.
IEEE Transactions on Parallel and Distributed Systems 14, 4 (April), 422-432.

SEGOUFIN, L. AND VIANU, V. 2002. Validating Streaming XML documents. In The 21st ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Madison, Wis-
consin, 53-64.

TUCKER, P. A., MAIER, D., AND SHEARD, T. 2003. Applying punctuation schemes to queries
over continuous data streams. Bulletin of the Technical Committe on Data Engineering, IEEE
Computer Society 26, 1 (March), 33—40.

W3C XSL WORKING GROUP. 2002. XSL Transformations (XSLT) Version 2.0. W3C Working
Draft, W3C, http://www.w3.0org/TR/xs1t20/. April.

WibowMm, J. 1996. The starburst active database rule system. IEEE Transactions of Knowledge
and Data Engineering 8, 4 (August), 583-595.

Wu, C. H., HuANG, H., ARMINSKI, L., ET AL. 2002. The Protein Information Resource: an
integrated public resource of functional annotation of proteins. Nucleic Acids Ressearch 30,35-
37.

XER 2000. The Xerces Java parser readme. http://xml.apache.org/.

XSL WORKING GROUP AND THE XML LINKING WORKING GROUP. 2000. Document Object Model
Level 2 Core Specification. W3C Recommendation, W3C, http://www.w3c.org/DOM/. Novem-
ber.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 67

ZDONIK, S., STONEBRAKER, M., CHERNIACK, M., CETINTEMEL, U., BALAZINSKA, M., AND Q, H. B.
2003. The aurora and medusa projects. Bulletin of the Technical Committe on Data Engineer-
ing, IEEE Computer Society 26, 1 (March), 3-10.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

68 . F. Peng and S. S. Chawathe

A. DTD USED IN IBM XML GENERATOR FOR THE SYNTHETIC DATA
<!ELEMENT root (pubx)>

<!ELEMENT pub (year,book*,paper*, proceedingsx)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT book (title, author, publisher?, year?,
price?)>

<IATTLIST book id ID #REQUIRED>

<!ELEMENT paper (title, author, pages?,
proceedings?, year?)>

<!ATTLIST paper id ID #IMPLIED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (name, institute, email, pub?)>
<!ELEMENT publisher (#PCDATA)>

<!ELEMENT pages (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT proceedings (name, place, time, paperx*)>
<!ATTLIST proceedings category CDATA #IMPLIED>

<!ELEMENT email (#PCDATA)>
<!ELEMENT institute (#PCDATA)>
<!ELEMENT name (first, last)>
<!ELEMENT place (country, city)>
<!'ELEMENT time (#PCDATA)>

<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT city (#PCDATA)>

B. TEMPLATE FILE USED IN TOXGENE

The template file used in Toxgene to generate the synthetic dataset for the experi-
ment in Figure 43 is shown in Figure 54.

C. QUERIES AND COMMANDS USED FOR SOME SYSTEMS
C.1 Galax

For GALAX, the query.xq file is like following:
<result> {
$shake/root/PLAY/ACT/SCENE/SPEECH/SPEAKER/text ()
}</result>;

The context file is like following;:
define global $shake {
treat as document (document("shake.xml"))

}

The command is like following:

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

XSQ:A Streaming XPath Engine . 69

<?xml version=’1.0’ encoding=’I50-8859-1’ 7>
<!DOCTYPE tox-template SYSTEM ’http://www.cs.toronto.edu/tox/toxgene/ToXgenel_1.dtd’>
<tox-template>
<tox-distribution name="c4" type="uniform" minInclusive="1" maxInclusive="6">
</tox-distribution>
<tox-list name="steps" readFrom="input.xml">
<element name='"chunk'">
<complexType><element name="step" type="byte"/></complexType>
</element>
</tox-list>
<tox-document name="result">
<element name="root">
<complexType>
<tox-foreach path="[steps/chunk]" name="s"
<element name='"chunk">
<complexType>
<element name="a'" maxOccurs="unbounded" tox-recursionLevels='"c4">
<complexType mixed="true">
<tox-scan path="[$s/step]l">
<attribute name="count">
<simpleType>
<restriction base="byte'">
<minInclusive value="01"/>
<tox-number sequential="yes"/>
</restriction>
</simpleType>
</attribute>
<tox-alternatives>
<tox-option odds="10">
<element name="prior">
<tox-expr value="2"/>
</element>
<element name='"red" maxOccurs="10000">
<tox-expr value="[!]"/>
</element>
<element name="posterior">
<tox-expr value="2"/>
</element>
</tox-option>
<tox-option odds="30">
<element name="prior">
<tox-expr value="2"/>
</element>
<element name="green" maxOccurs="10000">
<tox-expr value="[!]"/>
</element>
<element name="posterior">
<tox-expr value="2"/>
</element>
</tox-option>
<tox-option odds="60">
<element name="prior">
<tox-expr value="2"/>
</element>
<element name="blue" maxOccurs="10000">
<tox-expr value="[!]"/>
</element>
<element name="posterior">
<tox-expr value="2"/>
</element>
</tox-option>
</tox-alternatives>
</tox-scan>
</complexType>
</element>
</complexType>
</element>
</tox-foreach>
</complexType>
</element>
</tox-document>
</tox-template> ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Fig. 55: Template file used in Toxgene

70 . F. Peng and S. S. Chawathe

time -f ")U" xmlquery -pic -verbose -context galax
_context.xq galax.nc.xq > galax.nc.out

C.2 Saxon

For SAXON, the style-sheet file is like following:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL
/Transform" version="1.1">
<xsl:template match="/">

<result>
<xsl:for-each select="/root/PLAY/ACT/SCENE/SPEECH
/SPEAKER">
<xsl:value-of select="."/>
</xsl:for-each>
</result>

</xsl:template>
</xsl:stylesheet>

The command is like following:
java com.icl.saxon.StyleSheet -x org.apache.xerces.parsers. SAXParser
-t shake.xml saxon.nc.xsl > saxon.nc.out

C.3 Joost

For Joost, the transformation file is like following:

<?7xml version="1.0" encoding="IS0-8859-1"7>
<stx:transform xmlns:stx="http://stx.sourceforge.net
/2002/ns" version="1.0">
<stx:template match="/root/PLAY/ACT/SCENE/SPEECH
/SPEAKER/text () ">
<stx:copy />

</stx:template>

</stx:transform>

The command is like following:
time -o -f "JU" java -Dorg.xzml.sax.driver=org.apache.xerces. parsers.SAXParser
net.sf.joost.Main shake.xml joost.nc.stx > joost.nc.out

C.4 XMLTK

Note that we have modified the xrun program so that it reports the running time.
The command is like following:
xrun "/root/PLAY/ACT/SCENE/SPEECH/SPEAKER/text ()" shake.xml > xrun.nc.out

C.5 XQEngine
For XQEngine, the command to query the SHAKE dataset is like following;:

java XQE a_and_c.xml cymbelin.xml hen_vi_1.xml

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

j_caesar.xml
all_well.xml

hamlet.xml
r_and_j.xml
hen_iv_1.xml
rich_iii.xml

XSQ:A Streaming XPath Engine

merchant.xml pericles.xml t_night.xml

dream.xml hen_vi_2.xml john.xml
m_for_m.xml taming.xml troilus.xml as_you.xml
hen_vi_3.xml lear.xml much_ado.xml
tempest.xml two_gent.xml com_err.xml
hen_viii.xml 111.xml m_wives.xml
timon.xml win_tale.xml coriolan.xml
hen_v.xml macbeth.xml othello.xml

hen_iv_2.xml
rich_ii.xml
>> XQE.nc.out

titus.xml "/PLAY/ACT/SCENE/SPEECH/SPEAKER"

71

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

