
XSQ: A Streaming XPath EngineFENG PENGSUDARSHAN S. CHAWATHEDepartment of Computer S
ien
eUniversity of Maryland, College ParkWe have implemented and released the XSQ system for evaluating XPath queries on streamingXML data. XSQ supports XPath features su
h as multiple predi
ates, 
losures, and aggregation,whi
h pose interesting 
hallenges for streaming evaluation. Our implementation is based on usinga hierar
hi
al arrangement of pushdown transdu
ers augmented with bu�ers. A notable feature ofXSQ is that it bu�ers data for only as long as it must be bu�ered by any streaming XPath queryengine. We present a detailed experimental study that 
hara
terizes the performan
e of XSQ andrelated systems, and illustrates the performan
e impli
ations of XPath features su
h as 
losures.Categories and Subje
t Des
riptors: H.2.4 [Database Management℄: Systems|query pro
ess-ingGeneral Terms: Experimentation, Performan
eAdditional Key Words and Phrases: XPath, streaming pro
essing1. INTRODUCTIONThe XSQ system is an XPath engine for streaming XML data. We begin thisse
tion by des
ribing the 
hara
teristi
s and sour
es of streaming XML data. Weintrodu
e XPath using a simple example and brie
y tou
h on some prior work inthe area. We then outline the distinguishing features of XSQ and the 
ontributionsof this paper. Next, we present some examples that illustrate some of the 
hallengesfa
ed by an XPath query engine that operates in a streaming environment. We endthe se
tion with a map of the rest of the paper.The Extensible Markup Language (XML) has be
ome a well-established dataformat and an in
reasing amount of information is be
oming available in XML form[Bray et al. 1998℄. The term streaming data is used to des
ribe data items that areavailable for reading only on
e and that are provided in a �xed order determined bythe data sour
e. Appli
ations that use su
h data 
annot seek forward or ba
kwardin the stream and 
annot revisit a data item seen earlier unless they bu�er iton their own. Examples of data that o

ur naturally in streaming form in
ludereal-time news feeds, sto
k market data, sensor data, surveillan
e feeds, and datafrom network monitoring equipment. One reason for some data being available inThis material is based upon work supported by the National S
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2 � F. Peng and S. S. Chawatheonly streaming form is that the data may have a limited lifetime of interest to most
onsumers. For example, arti
les on a topi
al news feed are not likely to retain theirvalue for very long. Another reason for su
h data is that the sour
e of data may la
kthe resour
es required for providing non-streaming a

ess to data. For example, anetwork router that provides real-time pa
ket 
ounts, error reports, and se
urityviolations is typi
ally unable to ful�ll the pro
essing or storage requirements ofproviding non-streaming (so-
alled random) a

ess to su
h data. Similar 
on
ernsmay lead servers hosting large �les to o�er only streaming network a

ess to dataeven though the data is available internally in non-streaming form. Finally, sin
esequential a

ess to data is typi
ally orders of magnitude faster than random a

ess,it is often bene�
ial to use methods for streaming data on non-streaming data aswell. In what follows, we fo
us on streaming data that is in XML form and use theterm streaming XML to refer to XML data in all of the above s
enarios.There have been a number of re
ent proposals on query languages for XMLand XML-like data models [Abiteboul et al. 1996; Fernandez et al. 1997; Bune-man et al. 1996; Deuts
h et al. 1998; Clark and DeRose 1999; Boag et al. 2002℄.Of these proposals, XPath and XQuery have emerged as the standards re
om-mendations that are likely to re
eive broad support. In this paper, we fo
us onXPath. However, sin
e XPath forms an important 
ore of XQuery, the methodswe des
ribe are useful not only for XPath engines, but also for XQuery engines.An XPath query 
onsists a lo
ation path and an output expression. Wemay think of the lo
ation path as a sele
tion operator and the output expres-sion as a proje
tion operator. The former sele
ts a set of XML elements andthe latter determines the parts, or fun
tions, of those elements that form the re-sult. While the proje
tion operator in XPath is quite simple, the sele
tion op-erator is fairly 
omplex be
ause it permits predi
ates on all elements that lie onthe path from the do
ument root to the sele
ted element. For example, the lo-
ation path of the query //book[year>2000℄/review[�sour
e="BN"℄/text() is//book[year>2000℄/review[�sour
e="BN"℄. This lo
ation path mat
hes the re-view elements that have a sour
e attribute with value BN and that are 
hildren ofbook elements that have year subelements with values greater than 2000. Inter-preting the lo
ation path as a path expression, the / 
onne
tive denotes a 
hild andthe // 
onne
tive denotes a des
endant. The output expression, text(), indi
atesthat the result 
onsists of the text 
ontents of reviews mat
hing the lo
ation path.(Further details on XPath appear in Se
tion 2.3.)Automaton-based methods for pro
essing streaming data are attra
tive due totheir eÆ
ien
y and 
lean design. An important task in building su
h systems forXPath queries is the generation of the automaton from the query. The diÆ
ulties(explained further by the examples below) are due to XPath features su
h as 
lo-sures and predi
ates in 
onjun
tion with the read-on
e nature of streaming data.Brie
y, when the automaton en
ounters an item in the stream, the data requiredto determine whether this item is in the query result may be unavailable. The un-avoidable bu�ering introdu
es 
omplexities of bu�er management su
h as 
aggingbu�ered data based on subsequent satisfa
tion or falsi�
ation of predi
ates, anddupli
ate avoidan
e.There has been a 
onsiderable amount of work on stream pro
essing and XMLACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 31. <root>2. <pub>3. <book id="1">4. <pri
e> 12.00 </pri
e>5. <name> First </name>6. <author>A </author>7. <pri
e type="dis
ount"> 10.00 </pri
e>8. </book>9. <book id="2">10. <pri
e> 14.00 </pri
e>11. <name> Se
ond </name>12. <author> A </author>13. <author> B </author>14. <pri
e type="dis
ount"> 12.00 </pri
e>15. </book>16. <year> 2002 </year>17.</pub>18. </root>Fig. 1: Input data for Example 1

1. <root>2. <pub>3. <book>4. <name> X </name>5. <author> A </author>6. </book>7. <book>8. <name> Y </name>9. <pub>10. <book>11. <name> Z </name>12. <author> B </author>13. </book>14. <year> 1999 </year>15. </pub>16. </book>17. <year> 2002 </year>18. </pub>19. </root>Fig. 2: Input data for Example 2query pro
essing, and some re
ent work on query pro
essing for streaming XMLas well. Below, we tou
h on only on re
ent work that is most 
losely relatedto our work, deferring a longer dis
ussion to Se
tion 7. Mu
h of the previouswork on pro
essing streaming XML data fo
uses on �ltering a 
olle
tion of XMLdo
uments using restri
ted XPath expressions [Altinel and Franklin 2000; Diaoet al. 2002; Chan et al. 2002℄. Sin
e XPath expressions without predi
ates areessentially regular expressions, they 
an be transformed into �nite state automatathat a

ept exa
tly the do
uments that satisfy the expressions. If the automatona

epts the do
ument, the �ltering system returns the identi�er of the 
urrentdo
ument to the user. Su
h systems do not need to bu�er individual elementsof the do
uments. However, as we shall explain shortly, general XPath queries
annot be evaluated in a streaming system that la
ks bu�ering 
apabilities. TheXMLTK system [Avila-Campillo et al. 2002℄ is a 
loser mat
h to our work, be
auseit supports XPath expressions that retrieve only parts of a do
ument. However,XMLTK does not support predi
ates in XPath expressions. Therefore, wheneverit en
ounters an element that mat
hes the path expression in a query, it 
an writeit dire
tly to output and no bu�ering is needed. In 
ontrast, if the query in
ludespredi
ates, the membership of an element in the query result 
annot be de
idedimmediately in general. The XSM system [Ludas
her et al. 2002℄ handles predi
atesin the query but it does not handle the 
losures and aggregations. (It assumes thatthe query does not 
ontain the 
losure axis //). As we des
ribe below, 
losurespose signi�
ant 
hallenges to query evaluation.We note that XPath features su
h as (multiple) predi
ates, 
losures, and aggre-gations are important usability advantages, espe
ially if the data is semistru
turedor has a stru
ture unknown to the query formulator. Closures, in parti
ular, areindispensable in queries on data whose stru
ture is partly unknown. For example,the query //book[author="Adams"℄//pri
e returns the pri
es of books by Adamsin a variety of likely stru
turing of bibliographi
 data, regardless of whether bookACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



4 � F. Peng and S. S. Chawatheo

urs at the top level in the do
ument or several levels deep and, similarly, regard-less of whether the pri
e element is a 
hild of the book element or a des
endantseparated by intervening bookstore elements. Similarly, predi
ates permit a morea

urate delineation of the data of interest, leading to smaller, and more usable,results. The 
hallenges posed by these features are exa
erbated by data that has are
ursive stru
ture, as explained below. (A re
ent survey of 60 real datasets found35 to be re
ursive [Choi 2002℄.)The major 
ontributions of this paper may be summarized as follows:1|To the best of our knowledge, our method for evaluating XPath queries overstreaming data is the �rst one that handles 
losures, aggregations, and multiplepredi
ates (together). As the examples below illustrate, these features, espe
iallyin 
onjun
tion, pose signi�
ant implementation 
hallenges.|Our methods use a very 
lean design based on a hierar
hi
al arrangement ofpushdown transdu
ers augmented with bu�ers. The system is easy to under-stand, implement, and expand to more 
omplex queries. Further, this methodprovides a 
lean separation between high level design and lower-level implemen-tation te
hniques. For example, it is easy to use our methods in a query enginethat implements our automaton independently.|We present a detailed experimental study of XSQ and several related systems inSe
tion 9. In addition to providing a 
omprehensive evaluation of the methodswe propose, our study also illustrates the 
osts and bene�ts of di�erent XPathfeatures and implementation trade-o�s as embodied by di�erent systems.|All the methods des
ribed in this paper are fully implemented in the XSQ sys-tem, whi
h has been publi
ly released under the GNU GPL li
ense [Peng andChawathe 2002; GNU 1991℄. The Java-based implementation should work onany platform for whi
h a Java virtual ma
hine is available. In addition to servingas a testbed for further work on this topi
, our system should be useful to anyonebuilding systems for languages that in
lude XPath (e.g., XQuery, XSLT).Example 1. Consider the following query for the XML stream depi
ted in Fig-ure 1: /pub[year>2000℄/book[pri
e<11℄/author. When we en
ounter the �rstauthor element in the stream, we know that it satis�es the path /pub/book/author.However, the predi
ate in the �rst lo
ation step, [year > 2000℄, 
annot be eval-uated yet be
ause we have not en
ountered any year subelements and qualifyingelements may o

ur later. We have en
ountered the �rst pri
e subelement of thebook element. This element does not satisfy the predi
ate [pri
e < 11℄. However,we 
annot 
on
lude that the book element of line 3 fails to satisfy the predi
ateon pri
e be
ause there may be additional pri
e subelements later in the stream.Therefore we must to bu�er the book element. Indeed, when we en
ounter these
ond pri
e element (line 7) of this book element, we determine that the bookelement satis�es the predi
ate on pri
e. At this point, we still do not know whetherthe pub element of line 2 satis�es the predi
ate on year. Consequently we do notknow whether the author element of line 6 belongs to the result. Therefore, we1A brief outline of our methods and the results of a preliminary experimental study of XSQ appearin [?℄.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 5must 
ontinue to bu�er the pub and author elements. When we en
ounter the twoauthor subelements of the se
ond book (lines 12 and 13), we need to bu�er themas well. Now there are three author elements in the bu�er: two with value A andone with value B. Next, we en
ounter the se
ond pri
e element (line 14) of these
ond book and �nd that it does not satisfy the predi
ate. However, only whenwe en
ounter the end tag of the se
ond book element, 
an we 
on
lude that thisbook element fails to satisfy the predi
ate [pri
e < 11℄. Consequently, the twoauthor elements of the se
ond book should be removed from the bu�er. Note thatone author with value A should remain in the bu�er be
ause it belongs to the �rstbook. When we en
ounter the year element on line 16, we determine that the pubelement satis�es the �rst predi
ate. Re
alling that the author element remaining inthe bu�er has already satis�ed the other predi
ate, we determine that this authorelement should be sent to the output.The above example, although quite simple, illustrates some of the intri
a
iesthat we must handle: First, we may en
ounter data that is potentially in theresult before we en
ounter the items required to evaluate the predi
ates to de
ideits membership in the result. We need to bu�er su
h potential result items. InExample 1, we bu�ered three author elements as well as the pub and book elementsfor this reason. Se
ond, items in the bu�er have to be marked separately so that,after the evaluation of a predi
ate, we 
an pro
ess only the items that are a�e
ted bythe predi
ate. In Example 1, for instan
e, we needed to delete the author elementsbelonging to the se
ond book while retaining the author element for the �rst bookin the bu�er. Third, in order to bu�er items for the least amount of time possible,we need to en
ode the impli
it existential quanti�
ation within predi
ates: Whena single item satisfying a predi
ate is found, we must 
he
k whether the elementswithin the s
ope of the newly satis�ed predi
ate 
an be sent to the output. On theother hand, we 
annot delete items from the bu�er until we en
ounter the end tagof the appropriate element. In the above example, for instan
e, only we rea
h theend of the se
ond book element may we 
on
lude that it fails to satisfy the predi
ateon pri
e. Finally, predi
ates a

ess di�erent portions of the data. Some should beevaluated when the begin tag is en
ountered, while others should be evaluated uponen
ountering the text 
ontent. There are other forms of predi
ates, are dis
ussedin detail later.Let us now 
onsider a slightly more 
omplex example, featuring 
losures in thequery and re
ursive stru
ture in the input stream. We say an XML stream hasre
ursive stru
ture if it 
ontains an
estor-des
endant pairs of elements that havethe same tag. Figure 2 depi
ts an example of su
h data: the pub element in line2 has a grand
hild named pub in line 9. As the following example illustrates,su
h re
ursive stru
ture in the input poses additional 
hallenges to XPath querypro
essing.Example 2. Consider the following query for the XML data of Figure 2: //pub[year>2000℄//book[author℄//name. (The predi
ate [author℄ 
he
ks for theexisten
e of an author 
hild.) This example introdu
es some new problems inaddition to those dis
ussed in the previous example. Sin
e the 
losure axis // isused in the query, a node and its des
endants may mat
h the same lo
ation step.For instan
e, the pub elements in both line 1 and line 9 mat
h the node test inACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



6 � F. Peng and S. S. Chawathethe �rst lo
ation step. Consider the name element in line 11. There are three waysin whi
h it mat
hes the main trunk of the query (ignoring predi
ates) and ea
hmat
hing yields a di�erent result for the predi
ates in the query. The situationis summarized by the following table, whi
h indi
ates the truth value of the twopredi
ates for ea
h mat
hing (
ombination of pub and book elements) that leads tothe name element of line 11:pub book [year > 2000℄ [author℄ nameline 2 line 7 true false line 11line 2 line 10 true true line 11line9 line 10 false true line 11As indi
ated by the table, only the mat
h in the se
ond row results in bothpredi
ates evaluating to true. When we en
ounter the end tag of the pub elementof line 15, we know that the pub element of line 9 fails the predi
ate [year >2000℄. However, we 
annot remove the name Z from the bu�er be
ause it is stillpossible that this item satis�es the query due to a subsequent year element. Asimilar situation o

urs when we en
ounter the end tag of the book element in line16. Only when all the possible mat
hes have evaluated the predi
ates to false 
anwe remove the item from the bu�er. We need to be 
areful with the other 
aseswhere multiple mat
hes evaluate all predi
ates to true. For example, if there werean additional author element between lines 8 and 9, the mat
h indi
ated by the�rst row of the above table would also result in both predi
ates being satis�ed. Insu
h 
ases, we must avoid dupli
ates (outputting the same element twi
e).These examples illustrate the diÆ
ulties en
ountered in designing an automatonfor evaluating XPath queries systemati
ally. Brie
y, diÆ
ulties arise due to the fa
tthat elements in an XML stream may arrive in an order that does not mat
h theorder of the predi
ates that use them in the query, and due to re
ursive stru
turein the data, whi
h leads to multiple mat
hings for an input item. When the query
ontains the 
losure axis and multiple predi
ates, it is even more diÆ
ult to keeptra
k of all the information needed for proper bu�er management.The rest of this paper is organized as follows. Some preliminaries, in
ludingthe DOM and SAX models for XML, and the XPath language, are 
overed in Se
-tion 2. Se
tion 3 des
ribes the use of pushdown automata for do
ument �lteringand 
ontrasts the task of �ltering with the task of querying streams. Se
tion 4 in-trodu
es an extended pushdown transdu
er that provides a 
onvenient method forkeeping tra
k of multiple mat
hing paths. A bu�ered version of these automata isdes
ribed in Se
tion 5, and a hierar
hi
al arrangement of su
h automata is des
ribedin Se
tion 6. Related work is dis
ussed in Se
tion 7. We des
ribe the ar
hite
tureand implementation of the XSQ system in Se
tion 8. Se
tion 9 presents our exper-imental study of XSQ and related systems. We 
on
lude in Se
tion 10.2. PRELIMINARIESIn this Se
tion, we provide brief des
riptions of the DOM and SAX models forparsed XML, and of XPath. We fo
us on the features that are essential for under-standing our methods presented in subsequent se
tions and do not provide 
ompre-hensive des
riptions, whi
h may be found elsewhere [Bray et al. 1998; XSL WorkingACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 7
type

discount

10.00

nameid price pricename author price author authorid price

pub

book book year

2002

1 12.00 First A 2 14.00 Second A B type

discount

12.00

root

Fig. 3: The DOM tree for the data in Figure 1Group and the XML Linking Working Group 2000; Megginson et al. 2002; Clarkand DeRose 1999℄.2.1 Data Model for XMLXML data is usually modeled as an edge-labeled or node-labeled tree [Abiteboulet al. 2000℄. In the 
ommonly used Do
ument Obje
t Model (DOM) [XSL WorkingGroup and the XML Linking Working Group 2000℄, an XML do
ument is modeledas a node-labeled tree. Ea
h element in the do
ument is mapped to a subtree inthe tree, whose root node is labeled with the tag of the element. Although elementE is mapped to a subtree of the DOM tree, it is 
onvenient to refer to the rootof this subtree as the node E. The subelements of an element E are mapped tosubelements of the node E that have node type of element. The attributes andtext 
ontents of element E are also mapped to subelements of node E, but withnode types Attr and Text, respe
tively. Figure 3 depi
ts the DOM tree of the XMLdo
ument in Figure 1. In the �gure, the nodes with dotted boxes are Attr nodesand the nodes without boxes are Text nodes.2.2 Data Model for XML StreamsFor streaming data, building a DOM tree in memory is not usually desirable be
ausethe data may be unbounded. Further, we may not need all of the DOM tree topro
ess the given query. Therefore, streaming data is better modeled using theSAX (Simple API of XML) model [Megginson et al. 2002℄. Parsers based on theSAX Appli
ation Programming Interfa
e pro
ess an XML do
ument and generatea sequen
e of SAX events. For ea
h opening and 
losing tag of an element, theSAX parser generates, respe
tively, a begin and end event. The begin event of anelement 
omes with an attribute list that en
odes the names and values of attributesasso
iated with the element. (Sin
e the XML standard does not allow an element tobe asso
iated with multiple attributes with the same name, this list is 
omposed ofpairs that are uniquely identi�ed by their �rst element.) The text 
ontents en
losedby the opening and 
losing tag result in the SAX parser generating a text event.Essentially, the sequen
e of the SAX events 
orresponds to a pre-order traversal ofACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



8 � F. Peng and S. S. Chawathethe DOM tree of the data in whi
h the attribute nodes are 
ombined with theirparents. The SAX events generated by a SAX parser given the data of Figure 1 asinput are dis
ussed in Example 3 below.The SAX API does not expli
itly asso
iate events with the depth of the 
orre-sponding elements in the do
ument tree. However, this information is easily addedto SAX events by maintaining a 
ounter that is in
remented and de
remented bythe handlers for the begin and end events, respe
tively. Our system makes useof su
h a 
ounter. For modularity of the 
ode, this 
ounter is stored separately,outside the SAX parser. However, in the des
riptions that follow, it is 
onvenientto regard the depth information as part of the SAX event. In more detail, wemodel the input as a sequen
e of SAX events, where ea
h event is a quadruple(tag; attrs; type;depth) where:|tag is a string that 
orresponds the name of the element that generates the SAXevent.|attrs is the attribute list of this element. That is, it is a list of elements of theform (a; v) indi
ating that the element has attribute a with value v. Re
all thatsin
e elements do not have multiple attributes with the same name, there is atmost one pair of the form (a; v) in the attribute list of any element, for all a. Weuse the notation e:a to refer to the value of the a attribute of element e; if e doesnot have an attribute a, e:a is null.|type is B for a begin event, E for an end event, and T for a text event. Eventsof type E have an empty attribute list, while events of type T have an attributelist 
ontaining the single pair (text ; t), indi
ating that t is the text 
ontent of theelement.|depth is the depth of the element in the do
ument tree. The attr and text nodeshave the same depth as their parent node.Example 3. Using the notation des
ribed above, we list below the �rst ten eventsgenerated by a SAX parser given the input of Figure 1.(1 ) (root ; �; B; 0): the begin event of root element.(2 ) (pub; �; B; 1): the begin event of pub element.(3 ) (name; f(is ; "1")g; B; 2): the begin event of book element. The name-value listf(id,"1")g is asso
iated with the event.(4 ) (pri
e ; �; B; 3): the begin event of pri
e element.(5 ) (pri
e ; f(text; "12:00")g; T; 3): text event of pri
e element. The text "12.00" isasso
iated with the event.(6 ) (pri
e ; �; E; 3): the end event of pri
e element.(7 ) (name; �; B; 3): the begin event of name element.(8 ) (name; f(text ; "First")g; T; 3): the text event of name element. The text "First"is asso
iated with the event.(9 ) (name; �; E; 3): the end event of name element.(10 ) (author ; �; B; 3): the begin event of author element.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 9Q ::= N+[=O℄N ::= [=j==℄tag [F℄F ::= [FO[OP 
onstant℄℄FO ::= �attribute j tag[�attribute℄j text()O ::= �attribute j text()j
ount()jsum()OP ::= > j � j = j < j � j 6= j
ontainsFig. 4: EBNF for 
ore XPath2.3 XPathA simpli�ed grammar for XPath is depi
ted in Figure 4. An XPath query isan expression of the form of N1N2 : : : Nn=O, whi
h 
onsists of a lo
ation path,N1N2 : : :Nn, and an output expression O. Ea
h lo
ation step Ni in the lo
ationpath is in the form /a::n[p℄ where a is an axis, n is a node test, and p is anoptional predi
ate that is spe
i�ed synta
ti
ally using square bra
kets. A lo
ationstep mat
hes a node in the do
ument tree. The axis spe
i�es the relation betweenthe previous node and the 
urrent node. In the simpli�ed grammar, / is shorthandfor the /
hild:: axis, whi
h sele
ts the 
hildren of the 
urrent node. Similarly, //is shorthand for the /des
endant-or-self::node()/ axis, whi
h sele
ts the 
ur-rent node and its des
endants. We use the simpli�ed grammar in our des
riptionsin this paper. If no axis is spe
i�ed, the default axis is the 
hild axis. However,if the axis before the �rst lo
ation step is omitted, the default axis is //, not the
hild axis. For example, expression title/text() returns the text 
ontent of alltitle des
endants of the do
ument root.An element mat
hes a lo
ation path if the path from the do
ument root tothat element mat
hes the sequen
e of labels in the lo
ation path, and satis�esall predi
ates. For ea
h mat
hing element, the result of evaluating the outputexpression on the element is added to the query result. The output expression mayspe
ify an attribute of the element, or its text value. It may also use an aggregationfun
tion su
h as sum() and 
ount(). If no output expression is spe
i�ed in the query,the query returns all the elements in the result set.The following queries, evaluated on the data of Figure 2 or Figure 1, illustratesome of the key features of XPath.|//author/
ount(): This query returns the number of author elements in thedo
ument. The �rst lo
ation step is //author, whi
h 
onsists of the 
losure axis//, and the node-test author; it does not in
lude a predi
ate. This lo
ation stepmat
hes all des
endants of the do
ument root that have tag author. The outputexpression, 
ount() is applied to all qualifying elements to produ
e the queryresult. The result is 2 for the data of Figure 2. We note that this query may alsobe expressed as author/
ount() be
ause a missing axis in the �rst lo
ation stepdefaults to 
losure.|//pub[book℄//year: This query returns the year elements that have pub an-
estors that have at least one book subelement ea
h. Here, the predi
ate ofthe �rst lo
ation step requires the existen
e of a book subelement. We notethat both lo
ation steps in this query use the 
losure axis. Further, there isno expli
it output fun
tion, implying that the elements that mat
h the lo
a-ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



10 � F. Peng and S. S. Chawathetion path 
onstitute the query result. The result for the data of Figure 2 is<year>1999</year><year>2002</year>. Although the <year>1999</year>element in line 14 has two pub an
estors, both of whi
h satisfy the predi
ate[book℄, the year element appears in the result only on
e.|/pub[book℄/year/text(): This query returns the text 
ontents of the yearelements that have a pub parent that o

urs at the top level. We note thatthis query does not use the 
losure axis; thus the depth of elements mat
hingthe lo
ation path is �xed at 2. Further, the use of the text() output fun
tionindi
ates that only the text 
ontents of mat
hing elements are in
luded in theresult, without the en
losing tags. The result for the data of Figure 2 is 2002.|//pub/book[�id>1℄/pri
e[�type="dis
ount"℄/text(): This query returns thetext 
ontents of the pri
e elements that have a type attribute with value dis
ount.The pri
e element must have a book parent, whi
h in turn has a pub parent. Theid attribute of the book element must be greater than 1. The result for the dataof Figure 1 is 12.00. Though the id attribute and the dis
ount attribute aredisplayed both as strings in the do
ument, the id attribute is 
ompared using itsnumeri
al value sin
e it is 
ompared to a numeri
al value. If the value of an at-tribute 
annot be 
onverted to a number su

essfully, the operation returns false.(Su
h impli
it type 
oer
ion semanti
s provide intuitive results on semistru
tureddata and have been used in other languages, su
h as Lorel [Abiteboul et al. 1996℄.)We note that all the above queries are supported by XSQ, as are other, more 
om-plex queries, involving several 
losures and predi
ates. The e�e
t of su
h featureson the running time and memory usage of XSQ is dis
ussed in Se
tion 9.5.3. PUSHDOWN AUTOMATON FOR FILTERING XML STREAMSIn this se
tion, we will �rst brie
y des
ribe pushdown automata and pushdowntransdu
ers. Next, we des
ribe the simple relationship between these automataand the XML streams they a

ept. Systems for �ltering XML do
uments makeuse of this relationship [Diao et al. 2002; Altinel and Franklin 2000℄. We dis
usswhy this simple relationship 
annot be dire
tly used for the purpose of queryingXML data. We use the term �ltering to refer to the task of �nding the do
uments(from a given set) that satisfy a given predi
ate and the term querying to mean thetask of extra
ting relevant portions of data from one or more do
uments, or fromstreaming XML.A pushdown automaton (PDA) [Hop
raft and Ullman 1979℄ is a �nite-stateautomaton that operates on both an input tape and a sta
k. It has a �nite set ofstates, in
luding one start state and one or more a

epting states, a set of inputsymbols, and a set of sta
k symbols. At ea
h step, a PDA 
onsumes a symbolfrom the input. A PDA's transition fun
tion determines, as a fun
tion of theinput symbol, the 
urrent state, and the sta
k, the next state and the operationperformed on the sta
k. A PDA is said to a

ept an input string if, when the inputis 
onsumed, it is in one of its a

epting states.A pushdown transdu
er (PDT) is a PDA with a
tions de�ned along thetransition ar
s on the automaton. The transition fun
tion of a PDT spe
i�es anoptional output operation as a fun
tion of the 
urrent state, input symbol, andsta
k (in addition to spe
ifying the next state and the sta
k operation). When aACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 11$1 $2 $3
$4 $5
$6 $7
$8

$9
<root> <=root>< pub >Q1 < =pub >< year >Q2<=year>< book >Q3 < =book >
< name >Q6 < =name >< pri
e >Q4<=pri
e> < author >Q5<=author>

Fig. 5: A simple PDA for the XMLstream in Figure 1

$1 $2 $3$4$6$8

<root> <=root>< pub > < =pub >< book > < =book >< name > < =name >< name:text() >output(name:text())Fig. 6: A simple PDTstate transition o

urs, su
h an operation results in some items being appended tothe output of the PDT. A PDT is de�ned to a

ept an input string in a manneranalogous to a PDA. However, a more 
ommon use of a PDT is to transform databy using a state transition fun
tion with output operations.It is easy to devise a PDA that a

epts XML do
uments that have a spe
i�edstru
ture. One may begin with an automaton that intuitively tra
es the desireddo
ument stru
ture. For example, Figure 5 depi
ts an automaton that outlinesdo
uments with stru
ture similar to that of the do
ument of Figure 1. The startstate is $1 and the only a

epting state is $3. This automaton a

epts a do
umentthat has, at the top level, a pub element that has a year element as 
hild andthat also has a book subelement that, in turn, has subelements with labels pri
e,name, and author. It also a

epts a mu
h simpler do
ument that only has a pubelement without any subelements. However, it will not a

ept a do
ument with abook element at the top level. In more detail, for ea
h of the SAX events generatedfor the XML stream in Figure 1, the PDA in Figure 5 makes a state transitiona

ording to the state transition diagram. For ea
h begin event, it also puts the tagof the element into the sta
k. For ea
h end event, it 
ompares the tag of the 
urrentelement and the tag on the top of the sta
k. If these two tags mat
h, it pops thetag o� the sta
k. Otherwise the XML stream is not well-formed and an error is
agged. For a

eptan
e, when the PDA has pro
essed all the events generated fromthe stream, it should be in the �nal state $3. It implies that the sta
k should beempty sin
e the sta
k operations have a bije
tive mapping to the state transitions(e.g., pushing pub onto the sta
k 
orresponds to the transition on the <pub> event).In the following dis
ussion, we assume the XML stream is always well-formed.The skeleton PDA des
ribed above 
an be adapted to �ltering XML do
uments asfollows: Suppose we wish to �nd all the do
uments that 
ontain at least one elementmat
hing the pattern //pub//book//name. We may use the simple automatonACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



12 � F. Peng and S. S. Chawathesuggested by Figure 5. Here and in what follows we shall assume that if there isno ar
 (transition) mat
hing an input symbol then the automaton remains in the
urrent state. Whenever this simple automaton transitions from state $6 to state$8, we know that the 
urrent XML do
ument 
ontains an element that satis�esthe �lter expression //pub//book//name and we 
an return the do
ument to theuser. The PDA in Figure 5 
an be further used for simultaneously �ltering an XMLstream using multiple queries. When a transition marked with Qi is triggered byan event in the in
oming XML �le, the PDA reports to the user that the do
umentsatis�es query Qi. For example, Q2 is //pub//year, Q6 is //pub//book//name,and the other queries 
an be inferred similarly. Of 
ourse, in many real appli
ations,the queries do not have su
h 
onvenient similarities. Combining su
h queries thenrequires more sophisti
ated te
hniques [Altinel and Franklin 2000; Diao et al. 2002;Chan et al. 2002℄.The PDA 
an also be modi�ed into a PDT that answers simple queries. Forexample, if we remove the bran
hes of the PDA in Figure 5 and put an outputoperation on a self-transition from state $8, we get the PDT depi
ted in Figure 6.This PDT evaluates the XPath query //pub//book//name/text().However, it is not straightforward to extend this simple idea for building PDAsand PDTs to more general XPath queries. The main reason is that the PDA 
annotbu�er previously pro
essed data. (The sta
k of the PDA is used ex
lusively to en-sure proper nesting of begin and end tags.) Su
h bu�ering is required for answeringXPath queries that have predi
ates be
ause the data required for evaluating thesepredi
ates for a given XML element (that satis�es the rest of the XPath query) mayappear at various points in a stream. In parti
ular, the data required to evaluatea predi
ate for an element may appear long after (mu
h farther downstream from)the element itself. A naive solution is to re
ord the 
urrent results for every pred-i
ate, and mark every item in the bu�er with 
ags that indi
ate whi
h predi
ateshave been satis�ed and whi
h have not yet been satis�ed. Every time we evaluatea predi
ate, su
h a method would need to 
he
k if some items are a�e
ted by itsresult, resulting in poor performan
e. Further, as queries get more 
omplex, su
h amethod would soon be
ome too unwieldy as it uses ad-ho
 methods to keep tra
kof all the ne
essary information. In Example 1, if the �rst year element has satis-�ed the predi
ate [year > 2000℄, the other year element of the same pub elementshould not be tested. If there are 
losures in the query and the data is re
ursive,su
h 
ags need to be set on a per-mat
hing basis, not just for ea
h item. Theseand other diÆ
ulties are explored in more detail when we des
ribe our methods inthe following se
tions.4. EXTENDED PUSHDOWN TRANSDUCERSThe traditional PDT and PDA are not suitable for streaming XML pro
essingsin
e the states in the PDT and PDA do not en
ode enough information about thepatterns they mat
h. For example, when the PDT of Figure 6 is in state $6, weknow only that the 
urrent element satis�es the pattern //pub//book. We do notknow the depths of the pub and book elements that mat
h this pattern. Further,when there are multiple mat
hes between the pattern and the data, these mat
hings
annot be distinguished. However, re
all from Example 2 that if the path from theACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 13$1 $2 $3<pub><=pub> <book><=book>� �Fig. 7: A PDT with Kleene stardo
ument root to an item mat
hes a path in a query in multiple ways, we must
onsider ea
h mat
hing; the item belongs in the query results if any one of thesemat
hings satis�es the predi
ates in the query.Another problem with PDTs is that the semanti
s of 
losures (Kleene 
losure, ?)in these automata do not map easily to the semanti
s of 
losures in XPath (des
en-dant axis, //). For example, the query //pub//bookmay suggest the PDT depi
tedin 7, with the transition from $2 to $3 generating output for the result. However,in addition to mat
hing book elements that are des
endants of pub elements, su
ha PDT also produ
es output for book elements that o

ur anywhere after a pubelement in do
ument order. For example, it erroneously produ
es output for thebook element in the XML input <pub>p1</pub><book>b1</book>.To address the above problems, we de�ne an extended PDT (XPDT) byaugmenting a PDT with a sta
k (separate from the main sta
k) 
alled the depthsta
k and modifying the transition fun
tion to take this sta
k into a

ount. Wealso permit transitions to be 
onditional on the evaluation of a predi
ate adorningthe transition. We show that the XPDT is a useful extension of the PDT thatpermits 
onvenient pro
essing of depth information in XML streams.An XPDT is spe
i�ed by means of a 7-tuple (�;�; Q; P; Æ; F; s0), indi
ating theinput alphabet �, the sta
k alphabet �, the set of states Q, the set of predi
atesP , the transition fun
tion Æ, the set of operations F , and the start state s0 2 Q.We des
ribe these 
omponents in more detail below.|The input alphabet � may be in�nite and is 
omposed of input symbols, whi
hare SAX events of the form (tag; attrs; type; depth). (Re
all the SAX model fromSe
tion 2.2.)|The sta
k alphabet � 
onsists of sta
k symbols of the form of (tag; depth). Onen
ountering an input symbol of type B (begin element; see Se
tion 2.2), the tagand depth of the element is pushed on to the sta
k. This sta
k item is removedfrom sta
k when the 
orresponding end element event (type E) is en
ountered.The sta
k is subje
t to the standard operations: push(x), whi
h pushes x ontothe sta
k; pop(), whi
h removes and returns the element at the top of the sta
k;and peek(), whi
h returns the top element without displa
ing it.|States in Q are of the form (i; d), where i, 
alled the base ID, is a unique iden-ti�er and d, 
alled the depth sta
k, is a sta
k of integers. We may think of i asthe traditional state ID for an automaton. However, it forms only one dimensionof the two dimensional state identi�ers in XPDTs. The se
ond dimension, thedepth sta
k, is used to distinguish between di�erent paths that lead to stateswith the same base ID, 
orresponding to di�erent mat
hings between the queryand an input item. This two-dimensional naming s
heme for states is 
onvenientfor des
ribing the operation of the XPDT. (See Example 4 below.)|Ea
h predi
ate in the set P is of the form of attr op lit and 
ompares the valueACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



14 � F. Peng and S. S. Chawatheof the named attribute with the provided literal using the operator op (
hosenfrom the list in Figure 4, with the usual semanti
s). The predi
ate asso
iatedwith a transition is evaluated on input symbols that trigger that transition; thetransition is taken if and only if the predi
ate evaluates to true.|The set F 
ontains the operations that are asso
iated with the transitions. If anoperation f is asso
iated with a transition, the operation f will be exe
uted whenthe transition happens. Choi
es for the operation in
lude the null operation thatdoes nothing, printing the 
urrent input symbol, and displaying a prede�nedmessage based on the 
ontent in the sta
k. Operations form the interfa
e formore 
omplex transdu
ers to extend the fun
tion of an XPDT. For example, theBPDT des
ribed in Se
tion 5.1, de�nes a set of bu�er operations that operate onthe augmented bu�er.|The transition fun
tion Æ is a mapping from Q����� to P(P �Q����F ),where P(X) denotes the power set of X and �� denotes the sta
k as a stringover the sta
k alphabet. We may think of Æ as de�ning, for ea
h state in Q, aset of outgoing transitions based on the state of the sta
k and the input symbol.Ea
h transition is des
ribed by a predi
ate, a destination state, a new sta
k state,and an operation from F . The semanti
s of the transition fun
tion are explainedfurther below.|The start state q0 is simply the initial state of the automaton. The automaton
ommen
es exe
ution by evaluating the transition fun
tion for this state, withan empty sta
k, and with the �rst symbol in the input.In the following dis
ussion, we use the term 
urrent element to refer to the in-put element that generated the SAX event 
urrently being pro
essed by the XPDT.The depth sta
k is used to re
ord the run-time information of whi
h elements inthe input lead to the 
urrent state. The begin events of all an
estors of the 
urrentelement are pro
essed before the 
urrent element; however, not all of them result ina state 
hange during this pro
ess. The XPDT only needs to re
ord the an
estorsthat lead to state 
hanges. In the appli
ation of evaluating XPath queries, onlythese an
estors take part in the mat
hings between the XPath query and the result.For example, suppose we wish to evaluate the query //book//pub//name on theinput listed in Figure 2. Although the name element in line 11 has �ve an
estors,in lines 1, 2, 7, 9, and 10, we need to re
ord only the two an
estors in lines 7 andline 9. Although the other three elements may mat
h a single step in the query(and may be involved in the mat
hing for other name elements), we do not needthe results of predi
ate evaluations at these elements when we pro
ess the nameelement in line 11.The depth sta
k 
ontains the integer i if only if the 
urrent element's an
estorat depth i produ
ed a state 
hange in the sequen
e of transitions leading from thestart state to the 
urrent state. The depth sta
k essentially re
ords the states ofthe main sta
k in the states leading to the 
urrent state. We de�ne the depth ofa state (i; d) to be the integer at the top of the sta
k d. That is, the depth of (i; d)is d:peek (). In addition to the standard sta
k operations (push, pop, and peek), wede�ne the operation remove(k) on depth sta
ks to result in the removal of the topk elements of the sta
k. We say two depth sta
ks are equal if they have the samenumber of elements and the 
orresponding elements are equal.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 15We now des
ribe the semanti
s of the transition fun
tion Æ : Q � � � �� !P(P �Q� �� � F ) in more detail. The XPDT maintains a set of 
urrently a
tivestates 	, whi
h initially is f(q0; ())g, where we use () to denote an empty depthsta
k. When the XPDT reads the input symbol e, it 
omputes, for every state(n; d) 2 	, the set of transitions Æ((n; d); e;K), where K denotes the sta
k. Forea
h transition (p; (n0; d0);K 0; f) in this set, the XPDT evaluates the predi
ate p.If p evaluates to true, the XPDT repla
es (n; d) with (n0; d0) in 	 and updates thesta
k from K to K 0. Further, the operation f asso
iated with the transition isperformed. If p evaluates to false for all transitions, (n; d) remains in 	 and nofurther a
tion is taken. A spe
ial 
ase is when Æ((n; d); e;K) is empty, i.e., whenthere are no transitions from (n; d) on e. We 
ontrast this 
onvention for unde�nedtransitions with that used in many traditional automata, whi
h report an errorif su
h a situation o

urs. This 
onvention allows us to simplify the de�nition ofautomata for XPath queries. For example, given a query /A/B, the automaton needonly 
onsider the B subelements of the A elements. All the other subelements of A
an be ignored. In the state 
orresponding to A in the automaton, we may a
hievethis behavior by de�ning only one transition, on B.The above de�nition of an XPDT permits arbitrary transitions and arbitrarymodi�
ations to the depth sta
k at ea
h transition. However, we fo
us our atten-tion on the XPDTs used by XSQ to pro
ess XPath queries. In su
h XPDTs, thetransitions may be 
lassi�ed as des
ribed below and the depth sta
k is modi�ed inonly a few di�erent ways. In the following des
ription of transitions, we 
onsideran input symbol e, sour
e state q = (n; d) and target state q0 = (n0; d0).Self-
losure transition:. Su
h a transition is taken for an input symbol e of typeB (begin element) that has depth greater than the depth of the 
urrent state. Thesour
e state of the transition remains in the set of 
urrent states, and no new stateis added. That is, for a self-
losure transition, if e:type = B and e:depth > d:peek ()then q0 = q. In state transition diagrams, self-
losure transitions are identi�edusing the symbol // next to the arrows denoting the transitions.Closure transition:. Su
h a transition is also taken for an input symbol e of typeB (begin element) with depth greater than the depth of the 
urrent state. Thesour
e state of the transition remains in the set of 
urrent states. However, unlikethe 
ase of the self-
losure transition, new states are added to the set of 
urrentstates. The depth sta
ks of the new states are obtained by pushing the depth ofthe event onto a 
opy of the depth sta
k of the 
urrent state. That is, for a 
losuretransition, if e:type = B and e:depth > d:peek() then d0 = d:push(e:depth). Instate transition diagrams, 
losure transitions are identi�ed using the symbol = onthe arrows denoting the transitions.Regular transition:. Su
h a transition is taken for an input symbol e ife:depth = � d:peek () + 1; when e:type = Bd:peek (); when e:type = T or e:type = EThe 
urrent state q is removed from the set of a
tive states. The depth sta
k ofACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



16 � F. Peng and S. S. Chawathe# event a
tive statesf($1, �)g1 (pub; �;B; 1) f($1, �), ($2,(1))g2 (pub; �;B; 2) f($1, �), ($2,(1)), ($2,(2))g3 (book; �;B; 3) f($1, �), ($2,(1)), ($2,(2)), ($3,(1,3)), ($3,(2,3))g4 (name; �;B; 4) f($1, �), ($2,(1)), ($2,(2)), ($4,(1,3,4)), ($4,(2,3,4))g f0 exe
uted5 (name; f(text(); A)g; T; 4), f($1, �), ($2,(1)), ($2,(2)), ($4,(1,3,4)), ($4,(2,3,4))g no transition6 (name; �;E; 4) f($1, �), ($2,(1)), ($2,(2)), ($3,(1,3)), ($3,(2,3))g7 (book; �; E; 3) f($1, �), ($2,(1)), ($2,(2))g8 (pub; �;B; 2) f($1, �), ($2,(1))g9 (pub; �;B; 1) f($1, �)gFig. 8: The XPDT of Example 4 in a
tionea
h state q0 added to the set of a
tive states is obtained as follows:d0 = 8<: d:push(e:depth) when e:type = Bd when e:type = Td:pop(); when e:type = EIn state transition diagrams, regular transitions are represented by arrows with nospe
ial markings.Cat
h-all transition:. Su
h a transition is taken for an input symbol e of any typeif the depth of e is greater than the depth of the 
urrent state q or if e is of typeT and has depth equal to the depth of q. The state q remains in the set of 
urrentstates, i.e., q0 = q. In state transition diagrams, 
at
h-all transitions are identi�edusing the symbol �� next to the arrows representing the transitions.Given the above rules relating the depth sta
ks of the sour
e and destination statesof a transition in an XPDT, we do not need to spe
ify the depth sta
ks expli
itlyin the transition fun
tion. In parti
ular, we 
an determine the operations on thedepth sta
ks by noting the symbols adorning the arrows (==, =, ��, or none) in astate transition diagram.Example 4. Consider an XPDT (�;�; Q; P; Æ; F; s0) where Q = f$1; $2; $3; $4g,P = �, and F = ff0g, where f0 is an operation that writes the string mat
hed to theoutput. The start state s0 is $1, and the transition fun
tion is summarized by thestate transition diagram depi
ted in Figure 9. The diagram uses <pub> and </pub>to denote, respe
tively, the begin and end events of pub elements. The XPDT isdesigned to produ
e one mat
hed string in the output for ea
h element mat
hingthe query //pub//book/name .Figure 8 summarizes the a
tions of the XPDT on the following input:<pub><pub><book><name>A</name></book></pub></pub>In step 3, a transition on book is taken from both ($2,(1)) and ($2,(2)) be
ausethe transition from $2 to $3 is a 
losure transition, as indi
ated by the = on thearrow. These two states also remain a
tive be
ause of the self-
losure transition instate $2, as indi
ated by the // on the arrow from $2 to itself. The transition takenin step 4, $3 ! $4, results in the exe
ution of the print operation. We note thatwe may also put this operation on the transition $4 ! $3 instead of on $3 ! $4be
ause we assume that the input is well-formed. In step 5 there is no transitionde�ned on the input event and the set of a
tive states is un
hanged. More pre
isely,ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 17$1
$2
$3
$4

==<pub> <=pub>==<book> <=book>
< name >print("mat
hed") <=name>Fig. 9: A simple XPDT

$1 $2 $3$4
$5 $6 $7$8 $9

<root> <=root><pub> <=pub><book> <=book>f
lear()g<author>fflush()g <=author><=book><pri
e>fenqueue(��)g <=pri
e>fenqueue(��)g��fenqueue(��)g
<pri
e>foutput(��)g <=pri
e>foutput(��)g��foutput(��)gFig. 10: A simple BPDT for query /pub/book[author℄/pri
eÆ(q; (name ; f(text(); A)g;��) = ; for all states q a
tive in step 5. Finally, a simple
hange to this XPDT yields an XPDT that produ
es the text 
ontents of mat
hingname elements as output (instead of the string mat
hed). We remove the operationfrom the transition $3 ! $4 and add a transition $4 ! $4 on the text event, withan operation that outputs the value of the text() attribute of the event.The above example suggests how an XPDT is used to answer simple XPathqueries. It also illustrates that we do not need to spe
ify the depth sta
ks expli
itlyin the transition fun
tion. They are determined at runtime based on the type ofthe transition taken, using the rules des
ribed earlier. However, the reader maynoti
e that there is a problem with the XPDT used in this example. In step 4, theoperation f0 is exe
uted twi
e: on
e for of the transition $3! $4 out of ($3; (1; 3))and on
e for the same transition out ($3; (2; 3)). Thus, the string mat
hed is printedtwi
e although there is only one mat
hing name element in the data. This problemis 
aused by the two ways in whi
h the name element mat
hes the query. The �rstmat
hing uses the outermost pub element of the input while the se
ond uses theinner pub element. In order to �x this problem, as well as to enable evaluation ofpredi
ates that require bu�ering, the next se
tion introdu
es a bu�ered version ofthis automaton.5. BUFFERED PUSHDOWN TRANSDUCERSRe
all our dis
ussion in Example 1, whi
h indi
ated that a streaming XPath pro-
essor must bu�er data items whose result membership 
annot be de
ided untiladditional data arrives in the stream. Sin
e the XPDTs introdu
ed in the previousse
tion do not have a bu�er, they 
annot answer XPath queries with predi
ates,whi
h require bu�ering. In this se
tion, we augment the XPDT with a bu�er andACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



18 � F. Peng and S. S. Chawathea set of bu�er operations. The resulting automaton, whi
h we 
all a bu�ered push-down transdu
er (BPDT), is used to en
ode a single lo
ation step of an XPathquery. A 
olle
tion of su
h automata is then used to en
ode the entire query. Weintrodu
e the bu�er and the operations used to manipulate it in Se
tion 5.1. InSe
tion 5.2, we des
ribe our method for mapping XPath lo
ation steps to BPDTs.We dis
uss the 
ombining of BPDTs in Se
tion 5.3.5.1 BPDTs and Bu�er OperationsABu�ered Pushdown Transdu
er BPDT is an 8-tuple (�;�; Q; P; Æ; FB ;
; s0),where �;�; Q; P; Æ, and s0 are de�ned as in the de�nition of the XPDT (Se
tion 4). The bu�er alphabet 
 spe
i�es the items in the bu�er, whi
h is organized as aqueue. The set FB is 
omposed of the bu�er operations des
ribed below.The bu�er operation enqueue(a) puts the value of feature a of the 
urrentinput event at the end of the queue. There are three kinds of features that maybe enqueued using this operation. First, a may be the name of an XML attribute,in whi
h 
ase the value of the named attribute of the 
urrent event is enqueued.Se
ond, a may be the literal text(), in whi
h 
ase the text 
ontent of the 
urrentevent is enqueued. Finally, a may be the 
at
h-all symbol ��, in whi
h 
ase theserialized (string) representation of the input event is enqueued, in
luding all itsattributes. For example, for the begin event (book ; f(id ; "1")g;B ; 1 ), the operationenqueue(��) enqueues the string <book id="1">. Other operations on the bu�erin
lude 
lear(), whi
h 
lears the 
ontents in the queue, and 
ush(), whi
h 
ushesthe 
ontents of the queue to the output. The operation output(a) emits the valueof attribute a dire
tly as the output. Although it does not operate on the bu�er, wein
lude it in FB for ease of presentation. In state transition diagrams, we indi
atethe bu�er operation asso
iated with a transition by using the operation as a labelon the arrow representing the transition. The following example illustrates how aBPDT may use the bu�er to answer an XPath query that requires bu�ering.Example 5. The BPDT depi
ted in Figure 11 performs a streaming evaluationof the query: /pub/book[author℄/pri
e . It uses the 
at
h-all symbol �� to indi-
ate that all subelements of the pri
e element should be in the result. Let us 
onsiderthe �rst few a
tions of this BPDT on the XML stream of Figure 1. After pro
essingthe elements in lines 1 through 3, the BPDT is in state $5. It then enqueues theitem in line 4 into the bu�er. We note that it will return from state $8 to state $5when it en
ounters the end event of the pri
e element sin
e the 
at
h-all transitiona

epts only events with depth larger than the depth of the 
urrent state (Se
tion 4)while the end event of the pri
e element has the same depth as the 
urrent state.When the BPDT en
ounters the begin event of the author element in line 6, it
ushes the items to the output and goes to state $6 (and state $7 at the end eventof the author). The BPDT en
ounters the next pri
e element in line 7 and thistime it emits the element dire
tly to output.5.2 Templates for Single Lo
ation StepsThe following example des
ribes the intuition behind our mapping from XPathlo
ation steps to BPDTs.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 19$1
$2 $3<n> [a=v℄ <=n> < n >[a! = v℄<=t>

START State
TRUE StateFig. 11: Template BPDT for: /n[�a = v℄

$1
$2 $3$4$5 <n> <=n> f
lear()g <=
>< 
 >[a! = v℄< 
 >[a = v℄fflush()g</
> <=n>

START State
NA StateTRUE StateFig. 12: Template BPDT for: /n[
�a = v℄$1

$2$3$4 <n> <=n> f
lear()g< 
 >fflush()g<=
> <=n>
START State
NA StateTRUE StateFig. 13: Template BPDT for: /n[
=v℄

$1
$2 $3$4 <n> <=n> f
lear()g <=n>< n:text() >[text()! = v℄f
lear()g< n:text() >[text() = v℄fflush()g<=n>

START State
NA StateTRUE StateFig. 14: Template BPDT for: /n[text() = v℄Example 6. Consider the XPath query /book[author℄/text(), whi
h 
onsistsof a single lo
ation step /book/[author℄. Given the semanti
s of this query, aBPDT for this query must operate as follows on streaming data: If it en
ounters a<book> event followed by an <author> event, it must re
ord the fa
t that this bookelement satis�es the [author℄ predi
ate, so that it 
an output the text 
ontents ofthe element immediately when they are en
ountered later. On the other hand, if thetext 
ontents of a book element are en
ountered before a <author> event, then the
ontents must be bu�ered until either a <author> event is en
ountered, in whi
h
ase the bu�er is 
ushed to the output, or a </book> event is en
ountered, indi
atingthat the book element has no author subelement, in whi
h 
ase the bu�er is 
leared.These observations suggest mapping this lo
ation step to a BPDT similar to the onedepi
ted in Figure 14, substituting <book> for <n> and <author> for <
>. In orderto extend this BPDT for the lo
ation step /book/[author℄ to one that answersthe query /book[author℄/text(), we add transitions for the text() event of bookelements to states $2 and $4. The bu�er operation on the transition out of $2enqueues the text 
ontent while the bu�er operation on the transition out of $4sends the 
ontent dire
tly to the output.As suggested by Example 6, there are three spe
ial states in the BPDT 
orre-sponding to a lo
ation step: The start state is the entry point to the BPDT. Thetrue state indi
ates the predi
ate of this lo
ation step has evaluated to true, whilethe na state indi
ates that the predi
ate has not yet been satis�ed. As dis
ussedlater (Se
tion 6), these states are used to 
onne
t the BPDTs for individual lo-ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



20 � F. Peng and S. S. Chawathe $1
$2$3

$4
$5$6 <n> <=n> f
lear()g< 
 >< =
 >< 
:text() >[text()! = v℄ <=
>< 
:text() >[text() = v℄fflush()g<=
><=n>

START State
NA StateTRUE State Fig. 15: Template BPDT for: /n[
=v℄
ation steps to form an automaton that answers a multi-step XPath query. Thereader may note that the satisfa
tion of a predi
ate has limited s
ope; for instan
e,in Example 6, the presen
e of an author element satis�es the [author℄ predi
ateonly for the book element that is its parent. The predi
ate must be evaluated sep-arately for other book elements. We des
ribe our methods for su
h bookkeeping inSe
tions 5.3 and 6.For the purpose of mapping XPath lo
ation steps that 
ontain predi
ates toBPDTs, we 
lassify the lo
ation steps into the �ve 
ategories des
ribed below.Re
all, from Se
tion 4, that our transition diagrams do not expli
itly mention themanipulations of the depth sta
ks, whi
h are governed by the rules des
ribed earlier.|Lo
ation steps that test whether the 
urrent element has a spe
i�ed attribute, orwhether the attribute satis�es some 
ondition. These steps have the general form/n[�a℄ and /n[�a op v℄, where n is an element name, a is an attribute name,op is one of the 
omparison operators (Figure 4), and v is a literal. For example,/book[�id℄ denotes a book element that has an id attribute, while /book[�id<= 10℄ requires further that the id attribute have a value no greater than 10.Su
h steps are mapped to a BPDT using the template suggested by Figure 12.The �gure illustrates the 
ase for /n[�a = v℄; for the /n[�a℄ 
ase, the test ofthe attribute value is repla
ed by a test for the existen
e of the attribute.When evaluating the 
omparison for the attribute value with a literal, the seman-ti
s of XPath require that if the literal v is a number, the value of the 
ontents(here is the attribute) should be 
onverted to numeri
al value and the numeri
alvalues are 
ompared. If the 
omparison is failed, the predi
ate returns false.|Lo
ation steps that test whether the 
urrent element 
ontains a spe
i�ed string,or whether the value of the text satis�es some 
ondition. These steps take thegeneral form of /n[text() op v℄. For example, /year[text() = 2000℄ de-notes a year element whose text 
ontent is equal to 2000. Figure 15 depi
ts thetemplate for the BPDTs that pro
ess lo
ation step of the form /n[text()=v℄.A subtle point here is that we have impli
itly assumed that an element maygenerate at most one text event. However, when the text 
ontent of an elementis interspersed with subelements, a SAX parser generates multiple text events,one for ea
h 
ontiguous text segment. For example, the XML fragment <review>The<
olor>yellow</
olor>road...</review> generates two text events, oneACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 21for \The" and the other for "road..." XPath semanti
s require that this fragmentmat
h the lo
ation step /review[text() 
ontains "The road"℄. However, ifthe two text events are treated separately, su
h a mat
h will be missed. XSQtherefore aggregates multiple text events of this kind into a single event thatis issued just before the end tag of the element to whi
h the text belongs (justbefore </review> in our example). For ease of exposition, we will hen
eforthassume that text events are in su
h an aggregated form.|Lo
ation steps that test whether the 
urrent element has a spe
i�ed type ofsubelement. These steps are of the form /n[
℄. For example, /book[author℄mat
hes a book element that has at least one author subelement. Figure 14depi
ts the template for the BPDTs that pro
ess lo
ation step /n[
℄.One may note that there is only one transition out of state $3 and 
onsider thepossibilty of merging $4 with $3, with a transition on </
> from $3 to itselfand a transition on </n> from $3 to $1. However, BPDT generated using thistemplate 
annot be 
ombined with other BPDTs to answer XPath queries thathave several lo
ation steps. Consider the BPDT in Figure 11. If we merge state$6 and $7 with a transition on </author> from $6 to itself, the state $6 willa

ept not only the pri
e subelements of the book element, but also the thepri
e subelements of the pub element (while the query asks for only the former).|Lo
ation steps that test whether a spe
i�ed subelement of the 
urrent element
ontains an attribute, or whether the value of su
h an attribute satis�es a pred-i
ate. These steps are of the form /n[
�a℄ and /n[
�a op v℄, respe
tively. Forexample, /pub[book�id <= 10℄) denotes a pub element that has a book subele-ment whose id attribute is less than or equal to 10. The BPDT template of thelo
ation step /n[
�a op v℄ is depi
ted in Figure 13.|Lo
ation steps that test whether the value of a spe
i�ed subelement of the 
urrentelement satis�es a given predi
ate. These steps are of the form /n[
 op v℄.For example, /book[year <= 2000℄ mat
hes a book element that has a yearsubelement whose value is less than or equal to 2000. Figure 16 depi
ts thetemplate for the BPDTs that pro
ess lo
ation step /n[
 op v℄. This templateis similar to the template depi
ted in Figure 14, but in
ludes transitions to pro
essthe text event.We note that the above templates en
ode the existential semanti
s of XPath pred-i
ates: An element mat
hing the name in a lo
ation step quali�es for mat
hing thelo
ation step if there is at least one subelement data that satis�es the predi
ate.The element fails to qualify only if all its subelements fail to satisfy the predi
ate.Although the above templates provide a simple method for mapping lo
ationsteps to automata, using them to answer a given query requires some manipulationof the bu�er operations. For example, Figure 17 depi
ts a BPDT generated fora single step XPath query that returns an entire element: /pub/[year > 2000℄.The need to return an entire element (not just its text 
ontent) requires the use ofthe 
at
h-all transition in the BPDT. Su
h modi�
ations for generating BPDTs foranswering single-step XPath queries from the templates (the template in Figure 16in our example) are straightforward.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



22 � F. Peng and S. S. Chawathe $1
$2$3

$4
$5$6

<pub> fenqueue(� �)g <=pub> f
lear()g<year><=year><year:text()>[text()<=2000℄ <=year><year:text()>[text() > 2000℄fflush()g<=year><=pub> foutput(� �)g
START State

NA StateTRUE State Fig. 16: BPDT for query /pub[year>2000℄5.3 Conne
ting the BPDTsWe now dis
uss methods to 
onne
t BPDTs for the lo
ation steps of an XPathquery into a larger BPDT that answers the 
omplete query. When we 
onne
tBPDTs for individual lo
ation steps, we must maintain the stru
tural relationsamong the lo
ation steps. For example, for query /book[author℄/pri
e/text(),we must ensure that the BPDT generated for the se
ond lo
ation step outputs thetext 
ontent of only those pri
e elements that have a book element satisfying the[author℄ predi
ate as parent. This requirement is easily satis�ed following thes
heme dis
ussed in Example 5: We merge the start state of the se
ond BPDTwith states that are right after the begin event of the book element or right beforethe end event of the book element, ensuring that any pri
e element 
onsidered bythe se
ond BPDT is a 
hild of a book element. Figure 18 illustrates this idea. Wenote that we need multiple 
opies of the se
ond BPDT, whi
h is a BPDT of thesimplest kind, having no predi
ate. These 
opies di�er in their bu�er operations.We defer to Se
tion 6 the des
ription of our method for modifying bu�er operationsin the BPDT templates to ensure proper operation of the automaton 
omposed ofmultiple BPDTs.Re
all that XSQ is designed to bu�er only those items whose result member-ship 
annot be immediately determined (i.e., those that any streaming XPath pro-
essor must bu�er). For example, for the query /book[author℄/pri
e[�type="dis
ount"℄/text(), the operations in the BPDT generated for the se
ond lo
a-tion step should output all the text 
ontents dire
tly if the predi
ate in this BPDThas been satis�ed and the predi
ate in the �rst lo
ation step is known to be true.If the result of the �rst predi
ate is 
urrently unknown, text 
ontents should beenqueued if the type attribute is named dis
ount. By applying the idea of gener-ating multiple 
opies of BPDTs for the se
ond lo
ation step and merging the startstates of these 
opies with the appropriate states in the BPDT of the �rst lo
ationstep, we arrive at the BPDT depi
ted in Figure 19. We note that although we gen-erate the BPDTs for the se
ond lo
ation step by instantiating the same templatefrom Se
tion 5.2, the operations on the transitions di�er between the instan
es,depending on state in the BPDT for the �rst lo
ation step to whi
h they 
onne
t.For queries with three or more lo
ation steps, determining the appropriate bu�erACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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$2 $3 $4
$5 $6

<book> <=book>f
lear()g<author>fflush()g <=author><=book>
<pri
e> <=pri
e>
<pri
e:text()>fenqueue(��)g

<pri
e> <=pri
e>
<pri
e:text()>foutput(��)gFig. 17: BPDT for query/book[author℄/pri
e/text()

$1
$2 $3 $4
$5 $6$7 $8

<book> <=book>f
lear()g<author>fflush()g <=author><=book><pri
e>[�type = "dis
ount"℄<=pri
e><pri
e:text()>fenqueue(��)g
<pri
e>[�type = "dis
ount"℄ <=pri
e><pri
e:text()>foutput(��)g

<pri
e>[�type! = "dis
ount"℄<=pri
e>
<pri
e>[�type! = "dis
ount"℄<=pri
e>Fig. 18: BPDT for query/book[author℄/pri
e[�type="dis
ount"℄/text()operations for ea
h instantiation of a template is likely to be 
ompli
ated be
ausethe operations may be a�e
ted by results of predi
ates both before and after the
urrent lo
ation step. Although su
h a s
heme 
an be worked out, we prefer to usethe simpler s
heme des
ribed in Se
tion 6 be
ause that s
heme is needed to addressthe problem we des
ribe next.When BPDTs are inter
onne
ted, we need to ensure that when a predi
ate isevaluated, all the 
ontents in the bu�ers that are a�e
ted by the result of thispredi
ate are pro
essed right away. If the result is true, items in the bu�er thatare waiting only for this result (and not the result of some other predi
ate aswell) should be sent to output. If the result is false, all items in the bu�er thatare waiting for this result (and perhaps other results) should be removed. Anadditional 
ompli
ation o

urs when there there are multiple mat
hings betweenthe data and the query, su
h as those des
ribed in Example 2. In this 
ase, wemust ensure that we remove from the bu�er only those items for whi
h there is nomat
hing that satis�es all the predi
ates. The simple bu�er organization used byBPDTs makes it impossible to di�erentiate between bu�er items in this manner.For example, as we des
ribed in Example 1, when we evaluate the query /pub[year> 2000℄/book[pri
e < 11℄/author over the stream in Figure 1, there are threeauthor items in the bu�er when we en
ounter the end event of the se
ond bookelement. At this time, the predi
ate of the se
ond lo
ation step, [pri
e < 11℄, ofthe se
ond book element evaluates to false. Therefore, the two authors of the se
ondbook should be removed from the bu�er. However, the BPDT 
annot distinguishbetween the author of the �rst book and the authors of the se
ond book. We mayaddress this problem by extending the bu�er alphabet to in
lude 
ags that allowus to distinguish between di�erent groups of items. Another alternative, and oneused by XSQ and des
ribed next, is to organize bu�ers hierar
hi
ally and de�nebu�er operations that transfer items from a bu�er to its parent.6. BUILDING A HIERARCHICAL PUSHDOWN TRANSDUCERIn this se
tion, we put together the ideas from earlier se
tions to des
ribe the 
om-plete method used by XSQ to build an automaton to answer an XPath query. ThisACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



24 � F. Peng and S. S. Chawatheautomaton is obtained by aggregating the BPDTs generated for ea
h lo
ation stepin the query. As dis
ussed in Se
tion 5.3, we may need to use multiple instan
es ofthe BPDT 
orresponding to a lo
ation step, with ea
h instan
e using a di�erent setof bu�er operations. We �rst des
ribe how BPDTs are 
onne
ted in a hierar
hi
almanner so that the bu�er operations in ea
h BPDT are determined solely by thelo
ation step from whi
h the BPDT is generated and the position of the BPDT inthe stru
ture, but not by the runtime information of the results of the predi
ates.We then extend the set of BPDT bu�er operations to support 
ommuni
ation be-tween the BPDTs. We refer to the resulting network of BPDTs as a Hierar
hi
alPushdown Transdu
er (HPDT).6.1 A hierar
hi
al stru
tureAs we des
ribed in Se
tion 5.3, a single bu�er does not enable us to properly pro
essbu�er items that di�er in the sets of predi
ates they must satisfy in order to qualifyas query results. To address this problem, we introdu
e a separate bu�er for ea
hBPDT in an HPDT. We also introdu
e an upload(bpdt) fun
tion that transfers allthe items from the bu�er of the 
alling BPDT to the bu�er of the BPDT spe
i�edas the argument. (The details are des
ribed below.)Re
all, from Se
tion 4, that although states are identi�ed using a two-dimensionalidenti�er (i; d) where i is a base identi�er and d is a sta
k of integers (the depthsta
k), the rules governing the depth sta
ks during transitions permit us to spe
ifya transition fun
tion using only the base identi�ers of states. The depth sta
ks aremanipulated at run-time based on the rules in Se
tion 4. In this se
tion, our fo
usis on the 
ompile-time 
onstru
tion of an HPDT. Therefore, we will identify statesusing only their base identi�ers.Re
all, from Se
tion 5.2, that ea
h BPDT template has a single start state,a single true state, and an optional na state. Given an XPath query with nlo
ation steps, we generate instan
es of BPDTs using these templates, and 
onne
tthe instan
es as follows: For the l'th lo
ation step, we generate 2l BPDTs from thetemplates des
ribed in Se
tion 5.2. The bu�er operations are initially set to thosein the templates. The BPDTs generated for the l'th lo
ation step are assignedidenti�ers of the form (l; k), where k 2 [0; 2l). We use bpdt(l; k) to denote theBPDT with identi�er (l; k). After we generate BPDTs for all the lo
ation steps, we
onne
t the BPDTs in a layered fashion. Ea
h bpdt(l; k) (l < n) has two 
hildren:a right 
hild bpdt(l + 1; 2k) whose start state is the na state of bpdt(l; k) and aleft 
hild bpdt(l+1; 2k+1) whose start state is the true state of bpdt(l; k). It ispossible that the bpdt(l; k) does not have an na state; in this 
ase, bpdt(l + 1; 2k)is set to null. A null BPDT does not exist in the stru
ture, but it is 
ounted whenwe 
ompute the sequen
e numbers of BPDTs. In this layered stru
ture, we referto the BPDTs generated for the l'th lo
ation step as the l'th layer. We maintaina separate bu�er for ea
h BPDT and use B(l; k) to denote the bu�er of bpdt(l; k).The zeroth lo
ation step refers to the leftmost / in an XPath query and it mat
hesthe do
ument root. The BPDT generated for the zeroth lo
ation step is depi
tedin Figure 20. Null BPDTs resulting from missing na states result in pruning in theHPDT. For example, sin
e the BPDT for the zeroth lo
ation step does not have anna state, there is no need to generate bpdt(1; 0) for the �rst lo
ation step; similarly,its des
endants, bpdt(l; k) for l 2 [2; n℄ and k 2 [0; 2l�1℄ are not generated. AnACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 25$1 $2<root><=root>START State TRUE StateFig. 19: Template for the root BPDTexample of an HPDT is depi
ted in Figure 21. Ea
h box in the �gure en
loses thestates of a BPDT (with the ex
eption of BPDT start states that have been mergedwith states in BPDTs at a higher layer). The identi�ers of the BPDTs are shownon the shoulders of the boxes en
losing them.Figure 21 suggests why this method of 
onne
ting BPDTs ensures that the stru
-tural relations between the lo
ation steps are satis�ed. For example, 
onsider states$14, $15, $16, and $17, belonging to BPDTs generated for the lo
ation step //name.The start states for these BPDTs, $8, $10, $11, and $13, respe
tively, 
oin
ide withthe true and na states of BPDTs for the lo
ation step //book. Therefore, onlyname elements that o

ur within a book element result in states $14, $15, $16, and$17 being a
tive. Using a similar argument, we infer that the only book elementsthat result in states $8, $10, $11, and $13 being a
tive are those that o

ur withina pub element.Another property of our method of 
onne
ting BPDTs is that at states of theHPDT that lie in BPDTs in the right subtree of bpdt(l; k), the predi
ate in l'thlo
ation step has not yet been satis�ed be
ause these states 
an be rea
hed onlyvia a path of state transitions that 
ontains the na state in bpdt(l; k). On the otherhand, at states that lie in BPDTs in the left subtree of bpdt(l; k), the predi
ate in l'thlo
ation step has already been satis�ed be
ause su
h these states 
an be rea
hedonly via the true state in bpdt(l; k). Therefore, within ea
h BPDT, the status(satis�ed or pending) of predi
ates in all higher layer (lower numbered) BPDTsare known. The bpdt(n; 2n�1 � 1) is in the left subtree of all its an
estor BPDTs.Therefore, at states in this BPDT, all predi
ates have been satis�ed. Consequently,when data that mat
hes the trunk of the query (i.e., the query ex
luding predi
ates)is found, it is sent dire
tly to the output using the output bu�er operation. Thissituation is exempli�ed by bpdt(3; 7) in Figure 21; the self-transition emerging from$17 sends the text 
ontents of the name element to the output. At states withinall other BPDTs in layer n, there is at least one predi
ate that has not yet beensatis�ed. Therefore, when mat
hing data is found, it is bu�ered using the enqueueoperation. This situation is exempli�ed by bpdt(3; 5) in Figure 21. In state $15,the predi
ate [author℄ has been satis�ed but the predi
ate [year > 2000℄ hasnot been satis�ed. Therefore, the self-transition emerging from $15 bu�ers the text
ontents of the name element to the output.When input events result in a transition out of a BPDT, the truth value ofthe BPDT's predi
ate is known. If the predi
ate evaluates to false, the items aredis
arded using the 
lear operation. Otherwise, the the upload operation is usedto transfer the items to the bu�er of one of its an
estor BPDTs. More pre
isely, aBPDT b uploads its bu�er items to the bu�er of the nearest an
estor b0 su
h thatb is in the right subtree of b0. We say that b0 is the D-an
estor of b. Re
allingthe method of 
onne
ting BPDTs, we note that the predi
ates of all the an
estorsof b that lie below the D-an
estor b0 are known to be satis�ed sin
e b lies in theirACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



26 � F. Peng and S. S. Chawatheleft subtrees. Therefore, the 
ontents in b's bu�er are waiting next for the resultof the predi
ate that is evaluated by b0, and uploading them to b0's bu�er is the
orre
t a
tion. We do not need any runtime information to 
ompute the D-an
estorof a BPDT. We note that the parent of b = bpdt(l; k) is b0 = bpdt(l � 1; bk=2
).Further, b is the left 
hild of b0 i� k is even. Thus, the D-an
estor of bpdt(l; k)is bpdt(l � s; bk=2s
) where s is the smallest positive integer su
h that 2bk=2s
 =bk=2s�1
. Equivalently, we may 
ompute the D-an
estor by s
anning the binaryrepresentation of k right-to-left, looking for the �rst 0 bit after the least-signi�
antbit. Let k0 be the result of trun
ating k by deleting the suÆx that begins at thisbit, and s is the length of the trun
ated suÆx. Then, the D-an
estor of bpdt(l; k)is bpdt(l � s; k0).Thus, a BPDT b a

epts from its 
hild BPDTs bu�er items that are known tosatisfy the lower layer predi
ates (those to the right of its lo
ation step in the XPathquery) and that must satisfy b's predi
ate in order to qualify for the result. If b'spredi
ate evaluates to true, these items are sent to the output if no higher levelpredi
ates are pending. Otherwise, the items are uploaded to the bu�er of theBPDT with the 
losest pending predi
ate (b's D-an
estor).Example 7. This example outlines the basi
 features of an HPDT, illustratinghow it is used to answer XPath queries with multiple predi
ates. Figure 21 depi
tsthe state transition diagram for the query // pub[year>2000℄//book[author℄//name/text() . However, if we ignore the 
losure and self-
losure transitions (ar
smarked with = and //, respe
tively), we are left with the state transition diagram forthe following query without 
losures: /pub[year>2000℄/book[author℄/name/text() . (The original query is dis
ussed is Se
tion 6.2 below.)Let us tra
e the a
tions of this HPDT given the input stream of Figure 1. Re
allthat depth sta
ks are used to distinguish between multiple query mat
hings for asingle element in the input. For a query that does not use the 
losure axis, thereis at most one mat
hing for ea
h element. Therefore, we do not need to 
onsiderthe depth sta
ks in this example. (Example 9 shows how the depth sta
k is used toevaluate the original query, whi
h uses the 
losure axis.) The HPDT starts in state$1. When it en
ounters the name \�rst," it is in state $14; thus it enqueues thetext 
ontent \�rst" into B(3; 4). At the end event of the name element, the item isuploaded to B(2; 2). The next event is the begin event of the author element. TheHPDT goes from state $8 to state $9 and uploads the item to the bu�er B(1; 1).A similar pro
ess applies to the item \se
ond," whi
h is the name element of these
ond book. Then, at the begin event of the year element, the HPDT is in state $3and the bu�er B(1; 1) 
ontains two items: \�rst" and \se
ond." When the HPDTen
ounters the text event of the year element, it evaluates the predi
ate [text() >2000℄ to yield true. Therefore the HPDT goes from state $4 to $6 and 
ushes the
ontent of its bu�er to the output.The above example illustrates how the bu�er operations in ea
h BPDT 
an bedetermined based on the BPDT's position within the HPDT. For example, sin
ebpdt(3; 4) is the right 
hild of bpdt(2; 2), it is 
onne
ted to the na state of bpdt(2; 2).Therefore, at states within bpdt(3; 4), the predi
ate in bpdt(2; 2) ([author℄) has notyet been satis�ed. Similarly, sin
e bpdt(2; 2) is the right 
hild of bpdt(1; 1), at stateswithin bpdt(2; 2), the predi
ate in bpdt(1; 1) ([year > 2000℄) has not yet beenACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 27satis�ed. Combining these fa
ts, at states within bpdt(3; 4) we know that neitherof the two predi
ates in the query are satis�ed. We note that this information isobtained solely from the positions of the BPDTs, so that the bu�er operations inthe BPDTs are easily determined.6.2 Extended bu�er operationsAlthough the upload operation and the related data 
ow des
ribed above supportmultiple predi
ates in the queries, they 
annot 
orre
tly handle the 
ase of multiplemat
hings between the data and the query (des
ribed in Example 2). The reason isthat items 
orresponding to di�erent mat
hings may be stored in the same bu�er,rendering them indistinguishable to the subsequent bu�er operations. For example,if a BPDT's predi
ate evaluates to false based on one of the mat
hings, the entirebu�er is 
leared. The items that have other mat
hings that result in the predi
atebeing satis�ed 
annot be re
overed. Sin
e we 
annot guarantee the sequen
e of theevaluation for di�erent mat
hings, we need to ensure that if the predi
ate in thisBPDT for one of the mat
hings is not evaluated, the items 
orresponding to thatmat
hing remain in the bu�er. (If one of the mat
hings results in the predi
atebeing satis�ed, we 
an output or upload the items be
ause we only need one 
orre
tmat
hing to determine the destination of the bu�er items). Example 8 illustratessome of these ideas.Example 8. Consider the HPDT in Figure 21, for the query // pub[year>2000℄// book[author℄//name/text() , operating on the stream of Figure 2.When the HPDT en
ounters the name element on line 11, it is in state $14. How-ever, there are three mat
hings between this element and the query:pub in line 2! book in line 7! name in line 11pub in line 2! book in line 10! name in line 11pub in line 9! book in line 10! name in line 11.These di�erent mat
hings lead to the same sequen
e of state transitions:$1!$2!$3!$8!$14.(However, the depth sta
ks of these states in di�erent mat
hings are di�erent; thisfa
t is used for distinguishing the bu�er items as des
ribed later.)All three mat
hings lead to the same BPDT be
ause they agree on the predi
atesthat have been satis�ed. Sin
e the 
urrent BPDT, bpdt(3; 4), is in the left subtreeof the bpdt(0; 0), but in the right subtrees of bpdt(1; 0) and bpdt(2; 0), we know thatonly the �rst predi
ate is true while the other two are unknown. (The �rst predi
ateis the trivially true predi
ate for the impli
it /root at the beginning of every XPathquery.) However, we 
annot simply enqueue the item Z from the text event of the
urrent element. If we do so, then following the �rst mat
hing, the item will be
leared at the transition from $8 to $3 when the HPDT en
ounters the end of thebook element on line 16 (whi
h 
orresponds to the book on line 7). Sin
e this bookelement does not have an author 
hild, the predi
ate in the se
ond lo
ation stepevaluates to false. Similarly, using the third mat
hing, the HPDT will 
lear theitem when it goes from state $3 to state $2, sin
e the year subelement of the pubelement on line 9 fails the predi
ate in the �rst lo
ation step. However, followingthe se
ond path, the HPDT should output the item on the transition from $4 to $6when it en
ounters the year element on line 17 sin
e the book element in line 10ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



28 � F. Peng and S. S. Chawathehas an author subelement in line 12 (whi
h 
omes before this year element andsatis�es the se
ond predi
ate in the query). This need for di�erent behavior fordi�erent mat
hings suggests the need for additional bookkeeping in the bu�er.To support multiple mat
hings of the kind dis
ussed above, we store a depthsta
k with ea
h bu�er item, and extend the bu�er operations a

ordingly. Re
all,from Example 4, that the depth sta
k distinguishes between di�erent mat
hingsbetween a query and a single element in the input. Essentially, we 
reate a 
opyof the item for ea
h mat
hing, keyed by the 
orresponding depth sta
k. The bu�eroperations of the HPDT in any state operate only on the items in the bu�er whosedepth sta
k agrees with that of the state, a

ording to the rules des
ribed below.The depth sta
k of a bu�er item is set by the enqueue operation in su
h a way thatit re
ords the depths of the elements that take part in the mat
hing that resulted inenqueuing the item. In Example 8, we listed three mat
hings for the name elementin line 11 of Figure 2 and noted that they 
orrespond to the same sequen
e of statetransitions when we identify states using only their base identi�ers. However, if wein
lude the depth sta
k of ea
h state in addition to its base identi�er, we have thefollowing three paths for the three mat
hings in that example:($1,�) ! ($2,(0)) ! ($3,(0,1) ! ($8,(0,1,2))) ! ($14,(0,1,2,5))($1,�) ! ($2,(0)) ! ($3,(0,1) ! ($8,(0,1,4))) ! ($14,(0,1,4,5))($1,�) ! ($2,(0)) ! ($3,(0,3) ! ($8,(0,3,4))) ! ($14,(0,3,4,5))The three states with base identi�er $14 but di�erent depth sta
ks represent dif-ferent mat
hings between the element and the query. For example, the depth sta
k(0; 1; 4; 5) asso
iated with an item indi
ates that the an
estors at depths 0, 1, and 4are mat
hed with the �rst, se
ond, and third lo
ation step, respe
tively. Therefore,when the three di�erent states enqueue the text 
ontent of a name element, theyasso
iate di�erent depth sta
ks with the 
opies of the items the enqueue. Copies ofthe same item are later distinguished by their asso
iated depth sta
ks.As des
ribed in Se
tion 6.1, the items enqueued in the bu�er may be uploaded tothe upper layer BPDTs and be operated on by operations de�ned in them. Sin
estates in upper layer BPDTs always have di�erent depth sta
ks than the statesin the lowest layer BPDTs (whi
h have the initial depth sta
ks asso
iated withthe bu�er items), we need to ensure that the transitions in upper layer BPDTsoperate on the 
orre
t bu�er items based on the depth sta
ks. For example, asshown in Example 8, one of the mat
hings leads the item being 
leared in thetransition from $8 to $3 in bpdt(2; 2). The other mat
hing leads the item be 
learedin the transition from $3 to $2 in bpdt(1; 1). The third mat
hing leads to the itembeing sent to output from $4 to $6 in bpdt(1; 1). All the states involved in thesetransitions have depth sta
ks that are di�erent from the depth sta
k of the enqueueditem. Therefore, we need to devise rules that mat
h operations on transitions tothe appropriate bu�er items.The mat
hing of the depth sta
ks of bu�er items with and the depth sta
ks ofHPDT states is a
hieved by making the following two modi�
ations to the bu�eroperations: First, the upload operation trun
ates the depth sta
k of the uploadedbu�er items so that the new depth sta
k is the same as the depth sta
k of the naACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 29state of the target BPDT for the same mat
hing. (Re
all that there are, in general,multiple a
tive states that have the base identi�er of the na state but di�erentdepth sta
ks, 
orresponding to di�erent mat
hings.) Se
ond, a bu�er operationon a transition out of a state q in BPDT b operates only on those bu�er itemswhose depth sta
k is equal to the depth sta
k of b's na state for the mat
hing
orresponding to q.When an upload operation moves the bu�er items from BPDT b to its D-an
estorb0, a

ording to the de�nition of D-an
estor, the na state of b0 must be in the pathof state transitions from the start state of the HPDT to the state that enqueuesthose bu�er items. This na state will be a
tive when the HPDT returns to b0 topro
ess the pending predi
ate in b0. (It may be a
tive when the items are enqueuedif there is a self-
losusre axis on it.) Therefore, the depth sta
k of the na state mustbe the �rst portion of the initial depth sta
k of the bu�er items. It is also easy to
on
lude that the na state in a BPDT in layer m must have a depth sta
k of lengthm+1 where the �rst element of the sta
k is always the depth of the do
ument root(whi
h is 0). Therefore, if b0 is in layer l0, the depth sta
k of the na state in b0 isthe the �rst l0 + 1 integers of the depth sta
k that are initially asso
iated by theenqueue operation. We then de�ne the upload operation from b to b0 to removethe top l � l0 integers in the sta
k, where l is the layer of b. This pro
ess repeatsitself for ea
h upload operation that a
ts on a bu�er item. The result is that thedepth sta
ks of an item in a bu�er is equal to the depth sta
k of the na state ofthat bu�er's BPDT for the mat
hing that originally enqueued the item.Not all the transitions asso
iated with bu�er operations are dire
tly related tothe na state. Therefore, we need to 
onne
t the depth sta
ks of states in thosetransitions to the depth sta
k of the na state. We note that, in any BPDT, thedepth sta
k of an na state for a given mat
hing is always equal to the depth sta
k ofthe true state for that mat
hing. (This observation follows from an examination ofthe templates in Figures 13, 14, and 16, whi
h in
lude paired begin and end eventsbetween their na and true states; the template in Figure 12 does not have an nastate, while the template depi
ted in Figure 15 has no begin and end events betweenthe na state and true state.) Therefore, for a transition from state (s1; d1) to state(s2; d2), if s1(s2) is the true (or na) state, we set the operation asso
iated withthis transition to operate on the bu�er items with depth sta
k d1 (respe
tively, d2).A

ording to the templates in Figure 12 through Figure 16, all the bu�er operationsare related to either the true state or na state (or both) ex
ept the transition fromstate $3 to state $4 in the template depi
ted in Figure 16. However, it is also easyto determine the depth sta
k of the na state be
ause the depth sta
k of state $3is 
reated by pushing one element onto the depth sta
k of the na state. We 
anobtain the depth sta
k of the na state by removing the topmost element from thedepth sta
k of state $3.Based on above analysis, we now des
ribe the modi�ed bu�er operations used inan HPDT. The bu�er alphabet 
 is extended to 
H and 
onsists of bu�er symbolsof the form (v; d), where v is a data item as des
ribed in Se
tion 5 and d is the depthsta
k of that item. The depth sta
k is asso
iated with the data item by the modi�edenqueue operation des
ribed below. The set of bu�er operations, FH , 
onsists ofthe following, for a transition from state q1 = (s1; d1) to state q2 = (s2; d2) on eventACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



30 � F. Peng and S. S. Chawathee:|enqueue(v): If e:type is B, add (v; d2) to the end of the bu�er (whi
h is organizedas a queue). If e:type is T orE, add (v; d1) to the end of the bu�er. This de�nitionensures that the depth sta
k of a bu�er item 
ontains exa
tly the depths of theelements that parti
ipate in the mat
hing that justi�es enqueuing this item.|
lear(): Remove from the bu�er all items with depth sta
k d1 (sin
e the 
learoperation is always exe
uted in the transition from the na state to other states).|flush(): If s1(s2) is true or na state, send to the output the values of all bu�eritems that have depth sta
k d1(d2, respe
tively). Otherwise, send to the outputthe values of all bu�er items that have depth sta
k d1:remove(1). (Re
all, fromSe
tion 4, that the operation remove(k) removes the top k items from a depthsta
k.)|upload(): The impli
it argument of the upload operation is the target BPDT,whi
h is always the D-an
estor of the 
urrent BPDT. The rules to determine thedepth sta
k of the bu�er items on whi
h the upload operation a
ts are the sameas those des
ribed for the 
ush operation (sin
e we repla
e the 
ush operationwith upload operation for BPDTs in whi
h some predi
ate is still unknown). Theupload operation moves all bu�er items that have the determined depth sta
kd to the D-an
estor of the 
urrent BPDT. Let l and l0 denote the layers of the
urrent BPDT and its D-an
estor, respe
tively. The depth sta
k of all the itemsmoved by the upload operation is set to d:remove(l � l0).As before, the operation output(v) outputs the value v dire
tly without bu�ering.Example 9. Let us revisit Example 8 using the bu�er stru
ture and operationsdes
ribed above. In Figure I, we summarize the a
tions of the HPDT of Figure21 given the input data of Figure 2. The �rst, se
ond, and third 
olumns of thetable list the sequen
e number, summary, and depth of ea
h event as it arrives inthe stream. The fourth 
olumn, labeled Current State Set, lists the a
tive statesin ea
h step before the event is pro
essed by the HPDT. The state transitions thatthe in
oming event triggers are also listed in this 
olumn. The Buffer 
olumn lists
ontents of bu�ers after the event has been pro
essed. Bu�ers that are not listedare empty.Ea
h state is represented as a pair (s; d), where s is the base identi�er of thestate and d is the depth sta
k. The base identi�er s is used to label the state in thestate transition diagram depi
ted in Figure 21. The depth sta
k d is determined atruntime based on the rules des
ribed in Se
tion 4.In the Current State Set 
olumn, we also list the transitions the 
urrent a
-tive state takes for the in
oming event in the Event 
olumn. Closure transitions(labeled with a = on the arrow in the state transition diagram) are represented as[(s1; d1) x)(s2; d2)℄. Regular transitions are represented as [(s1; d1) x!(s2; d2)℄ Self-
losure transitions are implied if the state stays in the 
urrent state set withoutany expli
it transitions. Re
all that a transition is taken only if the depth of thein
oming event and the depths of the sour
e and target states satisfy the 
onditionsdes
ribed earlier. The labels on top of the transition arrows are the operations thatare exe
uted when the transition o

urs. The label e stands for enqueue, 
 for 
lear,ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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null

bpdt(0,0)

</root><root>

bpdt(1,0)

</pub>

bpdt(1,1)

<year>

</pub>
{clear()}

<book></book>
bpdt(2,2)

</book>
{clear()}

</year>

</book>

bpdt(3,6) bpdt(3,5) bpdt(3,4)

bpdt(2,3)

<name></name>

{output(name.text())}
<name.text()>

{upload()}
</name> <name>

{enqueue(name.text()}
<name.text()>

<name> </name>
{upload()}

<name.text()>
{enqueue(name.text()}

</year>

<name> </name>
{upload()}

<name.text()>
{enqueue(name.text()}

HPDT for query:

//pub[year>2000]//book[author]//name/text()

bpdt(3,7)

</book>
{clear()}

<book>

{flush()}
</author>

{flush()}
</year>

{upload()} {upload()}
<author></author>

{flush()}
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Fig. 20: HPDT for Example 9u for upload, f for 
ush, and o for output. The states of the bu�ers after theseoperations are performed are summarized in the Buffer 
olumn.We use B(i; j) to denote the bu�er of bpdt(i; j). The last 
olumn lists the itemsin ea
h nonempty bu�er B(i; j) using the syntax B(i; j): e1; e2; : : :. Ea
h bu�er itemei is of the form [v; d℄, where v is the value and d is the depth sta
k asso
iated withthe value. Items listed in bold font are those that are enqueued or uploaded by theoperation denoted in the labeled state transitions in the previous 
olumn. Items withstrike-through line are items 
leared by an operation in the previous 
olumn. Itemsdisplayed in a box are items that are 
ushed or sent to output.We now highlight some features of this example. First, we note that the HPDT
orre
tly handles multiple mat
hings. In line 17, for the z element, there are three
urrent states that will respond to the input event. These states have the samebase identi�er 14, but di�erent depth sta
ks: (0; 1; 2; 5), (0; 1; 4; 5), and (0; 3; 4; 5).The HPDT puts three 
opies of the element's 
ontent into the bu�er B(3; 4); thedepth sta
ks for the three 
opies are the depth sta
ks of the three sour
e states:(0; 1; 2; 5), (0; 1; 4; 5), and (0; 3; 4; 5). We note that these depth sta
ks re
ord exa
tlythe depths of the elements that that mat
h the lo
ation steps of the query leadingto the 
urrent state. For example, 
onsider the depth sta
k (0; 3; 4; 5). It indi
atesa mat
hing 
onsisting of the root element at depth 0, a pub element at depth 3, abook element at depth 4, and a name element at depth 5, leading the HPDT to thestate ($14; (0; 3; 4; 5)). These 
opies of the text 
ontent z are pro
essed di�erentlyACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



32 � F. Peng and S. S. ChawatheEvent d Current State Set (before the event) Bu�er (after the event)1 <root> 0 [($1,(�))!($2,(0))℄2 <pub> 1 [($2,(0))($3,(0,1))℄3 <book> 2 ($2,(0)) [($3,(0,1)))($8,(0,1,2))℄4 <name> 3 ($2,(0)) ($3,(0,1)) [($8,(0,1,2)))($3,(0,1))℄5 text()=x 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(3; 4):[x,(0,1,2,3)℄[($14,(0,1,2,3)) e!($14,(0,1,2,3))℄6 </name> 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(2; 2):[x,(0,1,2)℄[($14,(0,1,2,3)) u!($8,(0,1,2))℄7 <author> 3 ($2,(0)) ($3,(0,1)) [($8,(0,1,2)) u!($9,(0,1,2,3))℄ B(1; 1):[x,(0,1)℄8 </author> 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(1; 1):[x,(0,1)℄[($9,(0,1,2,3))!($10,(0,1,2))℄9 </book> 2 ($2,(0)) ($3,(0,1)) [($8,(0,1,2))!($3,(0,1))℄ B(1; 1):[x,(0,1)℄[($10,(0,1,2))!($3,(0,1))℄10 <book> 2 ($2,(0)) [($3,(0,1)))($8,(0,1,2))℄ B(1; 1):[x,(0,1)℄11 <name> 3 ($2,(0)) ($3,(0,1)) [($8,(0,1,2)))($14,(0,1,2,3))℄ B(1; 1):[x,(0,1)℄12 text()=y 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(1; 1):[x,(0,1)℄[($14,(0,1,2,3)) e!($14,(0,1,2,3))℄ B(3; 4):[y,(0,1,2,3)℄13 </name> 3 ($2,(0)) ($3,(0,1)) ($8,(0,1,2)) B(1; 1):[x,(0,1)℄[($14,(0,1,2,3)) u!($8,(0,1,2))℄ B(2; 2):[y,(0,1,2)℄14 <pub> 3 [($2,(0)))($3,(0,3))℄ ($3,(0,1)) ($8,(0,1,2)) B(1; 1):[x,(0,1)℄B(2; 2):[y,(0,1,2)℄15 <book> 4 ($2,(0)) (($3,(0,1)))($8,(0,1,4))℄ B(1; 1):[x,(0,1)℄[($3,(0,3)))($8,(0,3,4))℄ ($8,(0,1,2)) B(2; 2):[y,(0,1,2)℄16 <name> 5 ($2,(0)) ($3,(0,1)) [($8,(0,1,2)))($14,(0,1,2,5))℄ B(1; 1):[x,(0,1)℄($3,(0,3)) [($8,(0,1,4)))($14,(0,1,4,5))℄ B(2; 2):[y,(0,1,2)℄[($8,(0,3,4)))($14,(0,3,4,5))℄17 text()=z 5 ($2,(0)) ($3,(0,1)) ($3,(0,3)) B(1; 1):[x,(0,1)℄($8,(0,1,2)) [($14,(0,1,2,5)) e!($14,(0,1,2,5))℄ B(2; 2):[y,(0,1,2)℄($8,(0,1,4)) [($14,(0,1,4,5)) e!($14,(0,1,4,5))℄ B(3; 4):[z,(0,1,2,5)℄($8,(0,3,4)) [($14,(0,3,4,5)) e!($14,(0,3,4,5))℄ [z,(0,1,4,5)℄ [z,(0,3,4,5)℄18 </name> 5 ($2,(0)) ($3,(0,1)) ($3,(0,3)) B(1; 1):[x,(0,1)℄($8,(0,1,2)) [($14,(0,1,2,5)) u!($8,(0,1,2))℄ B(2; 2):[fy,zg,(0,1,2)℄($8,(0,1,4)) [($14,(0,1,4,5)) u!($8,(0,1,4))℄ [z,(0,1,4)℄ [z,(0,3,4)℄($8,(0,3,4)) [($14,(0,3,4,5)) u!($8,(0,3,4))℄19 <author> 5 ($2,(0)) ($3,(0,1)) [($8,(0,1,4)) u)($9,(0,1,4,5))℄ B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄($3,(0,3)) ($8,(0,1,2)) [($8,(0,3,4)) u)($9,(0,3,4,5))℄ B(2; 2):[fy.zg,(0,1,2)℄20 </author> 5 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄($8,(0,1,4)) [($9,(0,1,4,5))!($10,(0,1,4))℄ B(2; 2):[fy,zg,(0,1,2)℄($8,(0,3,4)) [($9,(0,3,4,5))℄!($10,(0,3,4))℄21 </book> 4 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄[($8,(0,1,4)) 
!($3,(0,1))℄ [($8,(0,3,4)) 
!($3,(0,3))℄ B(2; 2):[fy,zg,(0,1,2)℄[($10,(0,1,4))!($3,(0,1))℄ [($10,(0,3,4))!($3,(0,3))℄22 <year> 4 ($2,(0)) ($3,(0,1)) [($3,(0,3)))($4,(0,3,4))℄ B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄($8,(0,1,2)) B(2; 2):[fy,zg,(0,1,2)℄23 text()=1999 4 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄[($4,(0,3,4))!($5,(0,3,4))℄ B(2; 2):[fy,zg,(0,1,2)℄24 </year> 4 ($2,(0)) ($3,(0,1)) ($3,(0,3)) ($8,(0,1,2)) B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄[($5,(0,3,4))!($3,(0,3))℄ B(2; 2):[fy,zg,(0,1,2)℄25 </pub> 3 ($2,(0)) ($3,(0,1)) [($3,(0,3)) 
!($2,(0))℄ ($8,(0,1,2)) B(1; 1):[fx,zg,(0,1)℄ [z,(0,3)℄B(2; 2): [fy,zg,(0,1,2)℄26 </book> 2 ($2,(0)) ($3,(0,1)) [($8,(0,1,2)) 
!($3,(0,1))℄ B(1; 1):[fx,zg,(0,1)℄B(2; 2):[fy,zg,(0,1,2)℄27 <year> 2 ($2,(0)) [($3,(0,1)))($4,(0,1,2))℄ B(1; 1):[fx,zg,(0,1)℄28 text()=2002 2 ($2,(0)) ($3,(0,1)) [($4,(0,1,2)) f!($6,(0,1,2))℄ B(1; 1): [fx,zg,(0,1)℄29 </year> 2 ($2,(0)) ($3,(0,1)) [($6,(0,1,2))!($7,(0,1))℄30 </pub> 1 ($2,(0)) [($3,(0,1))!($2,(0))℄ [($7,(0,1))!($2,(0))℄31 </root> 0 ($2,(0))32 ($1,(�))Fig. 21: HPDT a
tions for Example 9ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 33based on their depth sta
ks. The z item with depth sta
k (0; 3; 4; 5) is �rst uploadedto BPDT bpdt(2; 2) and the depth sta
k is modi�ed to (0; 3; 4) in line 18, indi
atingthat the predi
ate for the name element at depth 5 has been satis�ed. It is thenuploaded to bpdt(1; 1) and the depth sta
k is modi�ed to (0; 3) sin
e the predi
atefor the book an
estor at depth 4 has also been satis�ed. When the predi
ate for thepub an
estor at depth 3 ([year > 2000℄) evaluates to false at the end of the puban
estor in line 25, the item is 
leared from the bu�er. However, sin
e di�erent
opies of the items follow di�erent 
ows among the bu�ers, the other 
opies willnot a�e
ted by this operation and be pro
essed 
orre
tly based on their mat
hings.The pro
ess outlined in Figure I also demonstrates that an item is always removedor 
ushed from a bu�er as soon as its membership in the result set 
an possibly bedetermined. For example, the z element with depth sta
k (0; 3; 4; 5) is removed fromthe bu�er when the pub element in the mat
hing fails the predi
ate [year > 2000℄at the end of the pub element. (Before this point in the stream, it is impossibleto determine that the predi
ate fails be
ause an additional year element satisfyingthe predi
ate may appear at any point before the </pub> event.) The items in theresult (x and z) are sent to the output as soon as the last pending predi
ate [year> 2000℄ is satis�ed.This example also illustrates how bu�er items with the same depth sta
k arepro
essed together. In line 19, the entry [fx; zg; (0; 1)℄ indi
ates that the two itemshave the same depth sta
k, and thus should be pro
essed as a group. Althoughthese two items are at di�erent depths, they are in the same group be
ause theyboth have satis�ed all the predi
ates in lower layer BPDTs. The item [x; (0; 1)℄,whi
h 
omes from [x; (0; 1; 2; 3)℄, has satis�ed the predi
ate in the third lo
ationstep /name (whi
h has the null predi
ate that is always true) and the se
ond lo
ationstep book[author℄ (with the book element at depth 2). The item [z; (0; 1)℄, whi
h
omes from [z; (0; 1; 4; 5)℄ has satis�ed the predi
ate in the third lo
ation step and thepredi
ate in the se
ond lo
ation step (with the book element at depth 4). Althoughthey mat
h di�erent elements that satisfy the predi
ates in lower layer BPDTs, theyare both waiting for the result of the predi
ate of the same pub element at depth 1(and predi
ates of the same an
estors in the upper layer BPDTs, if there are any),whi
h is determined by their depth sta
ks.We note that the mat
hing rules between the depth sta
ks of bu�er items and thestates in the transitions ensure that operations a
t only on the bu�er items for themat
hing relevant to the transition. For example, in line 26, the state ($3; (0; 3))transitions to state ($2; (0)) and the 
lear() operation is exe
uted. At the time,there are three items in the bu�er B(1; 1): [fx; zg; (0; 1)℄ and [z; (0; 3)℄. The 
learoperation removes only the item [z; (0; 3)℄ from the bu�er sin
e the depth sta
ksmat
h. The other 
opy of z ([z; (0; 1)℄) remains in the bu�er sin
e it is waiting forthe end of the other pub element (whi
h will later result in the predi
ate evaluatingto true). In line 28, at the text event, the state ($4; (0; 1; 2)) transitions to state($6; (0; 1; 2)) and the 
ush operation is exe
uted. Although the depth sta
k is (0; 1; 2)for the sour
e state, a

ording to the rules de�ned earlier in this se
tion, for thistext event of the subelement year, the mat
hed depth sta
k for the 
ush operationshould be the depth sta
k without the last integer, whi
h is (0; 1). Therefore, theitems in the bu�er with depth sta
k (0; 1) are 
ushed to output.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



34 � F. Peng and S. S. ChawatheInput: XPath Query query = N1N2:::Nn=OOutput: an HPDT in the form of an array of BPDTs1 GenerateHPDT ( ) f2 /* Generate bpdt(0,0) based on Figure 20. */3 bpdt (0 , 0 ) = generateRootBPDT ( ) ;4 for ( l = 1 to n ) f5 for ( k = 0 to 2l�1 �1 ) f6 i f ( bpdt ( l �1 , k ) != null )f7 bpdt ( l , 2 k+1)=addBPDT( bpdt ( l �1,k ) ,Nl ,TRUE) ;8 i f ( bpdt ( l �1 , k ) . na != null )9 bpdt ( l , 2 k)=addBPDT( bpdt ( l �1,k ) ,Nl ,NA) ;10 g11 g12 g13 /* Add output to the lowest layer BPDTs. */14 for ( k = 0 to 2n�1�1 )15 addOutput (O, bpdt (n , k ) ) ;16 g Fig. 22: Algorithm GenerateHPDTWe also note that the state ($2; (0)) remains 
urrent for almost the whole pro
ess.The reason is that, due to the 
losure axis in the �rst lo
ation step, a pub elementat any depth mat
hes the �rst lo
ation step. Sin
e this state is used to mat
h thepub elements, not until we en
ounter the end of the stream 
an we remove thisstate from the 
urrent state set. However, if we know beforehand that the data isnot re
ursive, i.e., no node has an an
estor with the same name, then we do notneed to keep the state as a
tive after it is mat
hed with an element even when thequery has 
losure axes. The reason is that on
e we mat
h a pub element with thisstate, we know there will not be any more pub elements inside this element, andthis state will not mat
h any other elements until the end of this 
urrent mat
hedpub element.The above example illustrates some of the 
omplexities resulting from 
losure axesin the query and re
ursive stru
ture in the input data. Due to the possibly multiplemat
hings between the query and the data, we have to 
he
k all the possibilitiesand re
ord extra information. We note that all streaming XPath pro
essors thatuse minimal bu�ering (i.e., any data they bu�er must also be bu�ered by any otherstreaming XPath pro
essor) need to perform su
h bookkeeping. As demonstratedin Se
tion 9, XSQ is able to handle these diÆ
ult 
ases without 
ompromising theeÆ
ien
y in the simpler 
ases.6.3 Building HPDTs from XPath QueriesWe now 
omplete our des
ription of the method used by XSQ to map an XPathquery to an HPDT that evaluates the query over streaming data. We �rst des
ribethe high level method that builds the HPDT stru
ture. Two important subroutinesof the pro
ess, 
alled addBPDT and addOutput are explained in detail later. Con-sider an XPath query N1N2:::Nn=O, where Ni denotes the ith lo
ation step andACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 351 addBPDT(BPDT p , Lo
at ionStep N, State s )f23 /* instantiate template mat
hing N */4 n = 
reateBPDT(N) ;56 /* 
onne
t to parent BPDT */7 mergeStates (n . s ta r t , s ) ;89 /* set BPDT id = (layer, seqnum) */10 n . l a y e r = p . l ay e r + 1 ;11 i f ( s . type == TRUE)12 n . seqnum = 2 � p . seqnum + 1;13 else /* s == NA*/14 n . seqnum = 2 � p . seqnum ;1516 i f ( n . seqnum != 2n:layer�1)17 n . bufOp = UPLOAD;18 /* set 
ush ops to upload */19 setFlushToUpload (n ) ;20 g21 else n . bufOp = FLUSH;2223 /* For 
losure axis, add a self-
losure transition to the START state.*/24 i f (N. ax i s == 
 l o su r e )25 newTrans (n , START, START, BEGIN, "//" ) ;2627 /* Make all transitions on the BEGIN event of n.tag out of the START28 state 
losure transitions. */29 t r a n s i t i o n s = getTrans (n , START, BEGIN, n . tag ) ;30 for ( t in t r a n s i t i o n s ) t . type = CLOSURE;3132 /* Put an extra 
ush/upload operation on the transition in the parent33 that pro
esses the end event of the predi
ate's subelement. */34 t2 = getEndOfChildTran (p ) ;35 addOp( t2 , p . bufOp , null )36 g37 g Fig. 23: Subroutine addBPDTO denotes the output expression. For ease of exposition, we will use N0 to denotean impli
it /root pre�x for all XPath queries. Figure 22 presents the pseudo
odethat summarizes the top-down 
reation of an HPDT as des
ribed in Se
tion 6.1.As indi
ated by the pseudo
ode of Figure 22, the bulk of the BPDT-generationwork is done within the addBPDT subroutine. The pseudo
ode for addBPDT islisted in Figure 23. This subroutine is responsible for 
reating a new BPDT basedon a lo
ation step and setting the bu�er operations in the new BPDT. Further, itis responsible for 
onne
ting the new BPDT to the appropriate higher-level BPDT,whi
h may also need some modi�
ations. The subroutine takes three parameters:the parent BPDT p, the lo
ation step N , and the state s in BPDT p to whi
h theACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



36 � F. Peng and S. S. Chawathe1 addOutput (BPDT b , OutputFun
tion O)f2 i f ( b . seqnum != 2b:layer�1) op = ENQUEUE;3 else op = OUTPUT;4 swit
h (O. type )f56 
ase ATTRIBUTE:7 t = getTrans (b , START, BEGIN, b . tag ) ;8 addOp( t , op , "�"+O. attrname ) ;9 break ;1011 
ase TEXT:12 /* Add a new transition from the NA state to the NA state that13 pro
esses the TEXT event of b.tag.*/14 t = newTran (b , NA, NA, TEXT, b . tag ) ;1516 /* Add the operation op with the parameter b.tag+".text()" to the transition.*/17 addOp( t , op , b . tag+".text ()" ) ;18 t = newTran (b ,TRUE,TRUE,TEXT, b . tag ) ;19 addOp( t , op , b . tag+".text ()" ) ;20 break ;2122 
ase CATCHALL:23 t = getTrans (b , START, BEGIN, b . tag ) ;24 addOp( t , op , "��" ) ;25 t = newTrans (b , NA, NA, CATCHALL) ;26 addOp( t , op , "��" ) ;27 t = newTrans (b , TRUE, TRUE, CATCHALL) ;28 addOp( t , op , "��" ) ;29 /* Get the transition that going from the TRUE state to the START state30 pro
essing the END event of b.tag. */31 t = getTrans (b , TRUE, START, END, b . tag ) ;32 addOp( t , op , "��" ) ;33 /* add extra upload/
ush operation */34 t = getEndOfChildTran (b ) ;35 addOperation ( t , b . bufOp , null ) ;36 break ;37 g38 g Fig. 24: Subroutine addOutputnew BPDT is 
onne
ted. It uses the 
reateBPDT fun
tion to generate a BPDT bymat
hing the lo
ation step N with the templates (depi
ted in Figures 12 through16 in Se
tion 5.2) and binding the symbols in the templates to the a
tual values inthe lo
ation step. The start state of this new BPDT is merged with s (the trueor na of p). That is, the two states are assigned the same ID and the transitionsasso
iated with them are 
ombined (fun
tion mergeStates). Other states in the newBPDT are assigned a unique (arbitrary) state identi�er. The newly 
reated BPDTis then assigned an identi�er of the form (l; k) based on the state s to 
onform tothe s
heme des
ribed earlier.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 37The addBPDT subroutine also sets the bu�er operations in the new BPDT basedon its identi�er. The 
lear operations remain identi
al to those in the templates.For bpdt(l; k) with k 6= 2l�1 (i.e., all ex
ept the leftmost BPDT), the 
ush operationin this BPDT is repla
ed by an upload operation. Sin
e this BPDT is in the rightsubtree of at least one an
estor (otherwise k = 2l � 1), we know that at least onepredi
ate for the items in the bu�er is still not satis�ed. For bpdt(l; 2l � 1), the
ush operation is left un
hanged.If the lo
ation step N uses the 
losure axis, the addBPDT subroutine modi�esthe transitions in the new BPDT. It �rst adds a self-
losure transition from thestart state to itself, labeled with //. This transition permits the HPDT to stayin the start state for any begin event that 
omes from the subelements for the
urrent element. It then sets as 
losure transitions the transitions that emergefrom the start state and pro
ess the begin event of the node test in the lo
ationstep. (There is only one su
h transition in all BPDTs ex
ept those generated usingthe template in Figure 12.) These transitions permit the HPDT to a

ept thesubelement of any depth that mat
hes the node test of the 
urrent lo
ation step.In addition to the modi�
ations made to the transitions, an extra bu�er operationis needed for the p BPDT when the lo
ation step N has a 
losure axis. Let us 
on-sider an example to illustrate the ne
essity of the extra bu�er operation. Re
all theBPDT depi
ted in Figure 18, whi
h evaluates the query /book[author℄/pri
e/text(). Now 
onsider the following query, whi
h di�ers from the earlier one onlyin the axis of the se
ond lo
ation step being des
endant-or-self instead of 
hild:/book[author℄//pri
e/text(). The 
orresponding 
hanges to the BPDT of Fig-ure 18 involve adding two self-
losure transitions to states $2 and $4 and markingthe transitions $2! $5 and $4 ! $6 as 
losure axes (marking the ar
s with =). At�rst glan
e, these 
hanges may seem suÆ
ient and the resulting automaton mayseem to a

urately pro
ess the new query. However, a 
loser examination reveals aproblem in the 
ase of pri
e elements that have both book and author elements asan
estors. Corre
tly pro
essing su
h elements requires a 
ush operation on transi-tion $3 ! $4. The pri
e elements that are des
endants of both book and authorelements always o

ur between the begin and end events of the author element;they will be enqueued by the self-transition on $5, and 
ushed to output by theoperation on the transition from $3 to state $4. We note that this modi�
ation isneeded only for parent BPDTs generated using the templates in the following Fig-ures (with the a�e
ted transitions in parentheses): Figure 13 ($4 ! $5), Figure 14($3 ! $4), and Figure 16 ($4 ! $5). (The a�e
ted transitions are returned by thegetEndOfChildTran fun
tion in Figure 23.) The added extra operation 
ould be
ush or upload, based on the bu�er operation used in the parent BPDT.Returning to Figure 22, we note that after all the BPDTs have been generatedand 
onne
ted, the addOutput subroutine is used to add output operations to theBPDTs in the lowest layer. The pseudo
ode for this subroutine is presented inFigure 24. First, as des
ribed in Se
tion 6.1, only bpdt(n; 2n � 1) uses the dire
toutput operation be
ause it is the only BPDT in whi
h any data mat
hing the trunkof the query has already satis�ed all the predi
ates in the query. The other BPDTsin the lowest layer use enqueue operations in pla
e of the output operation. Next,the BPDT is modi�ed by adding further operations and transitions, determinedACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



38 � F. Peng and S. S. Chawatheby the type of the output fun
tion O. If O spe
i�es outputting an attribute ofthe element spe
i�ed by the last lo
ation step, an output or enqueue operationwill be added to every transition emerging from the start state that pro
essesthe begin event of that element. If O spe
i�es outputting the text 
ontent of theelement, a self-transition is added to every na and true state in this BPDT. Aoutput(text()) or enqueue(text()) operation is added to the new transition. If Ospe
i�es outputting the whole element spe
i�ed by the last lo
ation step, we adda self-transition labeled with �� (
at
h-all) to every na and true state asso
iatedwith the output(��) operation. These two transitions will mat
h all the subelementsand text 
ontents of the 
urrent element. The operation output(��) is also addedto the transition that emerges from the start state that pro
esses the begin eventof the 
urrent element and to the transition from the true state to the startstate that pro
esses the end event of the 
urrent element. All these newly addedoperations will mat
h every event within the 
urrent element. We also note thatsin
e the 
at
h-all transitions essentially fun
tion as 
losure transitions (a

eptingin
oming events at any larger depth), we have to add an extra bu�er operation(
ush or upload) to the 
urrent BPDT as des
ribed above.6.4 AggregationsGiven the above ma
hinery, very little extra work is required for supporting aggre-gates. For this purpose, XSQ uses a statisti
s bu�er stat. In the stat bu�er, thereis one item for ea
h aggregation fun
tion, with initial value null. There are twooperations on this bu�er:|update(aggr,value): Update the item for aggregation fun
tion aggr in statwith the value . For example, update(COUNT,2)will add 2 to the number in stat .|output(aggr): Output the value of the fun
tion aggr in stat .For example, 
onsider the following query, whi
h di�ers from the query of Example 9only in using an output fun
tion 
ount() instead of text()://pub[year>2000℄//book[author℄//name/
ount()To evaluate this query, we use an HPDT that is almost identi
al to the one depi
tedin Figure 21. We repla
e all o

urren
es of flush()with update(COUNT, v), wherev is the number of items in the BPDT's queue. We also repla
e all instan
es ofoutput(value) with update(COUNT,1). Finally, we pla
e output(COUNT) on thetransition from $2 to $1. We may also modify the semanti
s of update() so that itemits a new value whenever the number in the bu�er is updated. This 
hange makesthe result of the aggregation query available in an online manner. This feature isespe
ially useful when we pro
ess aggregation queries over unbounded streams.6.5 AnalysisWe provide a detailed experimental analysis of XSQ in Se
tion 9. Here, we presenta simple worst-
ase analysis of the spa
e and time 
osts of the method des
ribedabove. Consider an XPath query that has q lo
ation steps. In worst 
ase, whenea
h lo
ation step involves a predi
ate, our method results in an HPDT built from2q BPDTs. (Note that none of the BPDTs in the subtree rooted at bpdt(1; 0) aregenerated.) Re
all, from Se
tion 5, that our method generates BPDTs for ea
hstep based on the templates of Figures 12, 15, 13, 14, and 16. The largest of theseACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 39(the template for a step of the form /tag[
hild=val) has six nodes. However,the start state of ea
h BPDT other than the root BPDT is identi
al to one ofthe states in its parent BPDT. Therefore, the number of states in the HPDT isat most 5 � (2q � 1) + 2 = 5 � 2q � 3 states (sin
e the root BPDT has two nodes).Although the exponential dependen
e on query length may seem problemati
 at�rst, we note that the HPDT has a very regular stru
ture that lends itself well tooptimizations in the implementation. In parti
ular, level k of the HPDT 
onsistsof 2k BPDTs that are very similar to ea
h other. An implementation may 
hoosea 
ompressed representation of the state spa
e they en
ode, by using a bit ve
torto indi
ate whi
h subset of the BPDTs at a given level are a
tive. The 
urrentversion of XSQ does not perform su
h optimizations. However, as we indi
ate inSe
tion 9, the memory used for the HPDT is still modest. In fa
t, the dominantspa
e 
ost for most query-data 
ombinations is not the HPDT but the bu�ers usedto hold potential query results. By examining all the 
ases for bu�er operations inthe HPDT, we observe that an item is in the bu�er exa
tly when its membershipin the query result 
annot be de
ided based on the portion of the stream that hasalready been seen. It follows that every streaming pro
essor must bu�er su
h anitem. Therefore, the bu�ering me
hanism in XSQ is optimal in the sense that atany point in time, the bu�er of any streaming XPath pro
essor must in
lude atleast the bu�er items in XSQ's bu�er.The appropriate measure of time 
omplexity for a streaming query pro
essor isthe amount of work it must perform for ea
h unit of input. In the 
ase of XSQ,the 
riti
al fa
tor determining the amount of su
h work is the number of 
urrentlya
tive states in the HPDT. If the query does not use the 
losure axes (//, denotingdes
endant-or-self, and its variants), then there is only one a
tive state at any time.Thus, for ea
h input symbol, we need to 
he
k transitions from only one state.By hashing on tag names, mat
hing transitions 
an be sele
ted in 
onstant timeby using perfe
t hashing (ignoring the typi
ally modest hash fun
tion evaluationtime). Thus, the 
ase of no 
losure axes leads to a 
onstant amount of work perinput byte.The worst 
ase is when all q lo
ation steps of the query use 
losure axes andhave predi
ates asso
iated with them. The amount of work performed by XSQ inthis 
ase depends on the stru
ture of the input stream. If the stream does not
ontain re
ursive stru
ture then ea
h 
losure state generates only one state in theruntime set of 
urrent states (and the depth sta
k is not needed). The size ofthe 
urrent state set is at most O(2q), and for ea
h SAX event, we have to 
he
kfor possible transitions O(2q) times. The maximum number of transitions on thein
oming event for ea
h of these states is two (one self-transition and one transitionto another state). The amount of work XSQ must perform for ea
h input item (SAXevent) is O(2q), in worst 
ase. We note that this result is only a rough estimate.Sin
e elements that mat
h the �rst lo
ation step have at most one state to 
he
kfor possible transitions, elements that mat
h i'th lo
ation step have at most 2istates to 
he
k, and only the elements that mat
he the pattern will be 
he
ked(the others will not lead to any state transitions at all). The a
tual number ofoperations depends on the degree of similarity between the data and the query andthe stru
ture of the data.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



40 � F. Peng and S. S. ChawatheIf the stream does 
ontain re
ursive stru
ture, the number of 
urrent states de-pends on the number of ways ea
h element 
an mat
h the 
orresponding lo
ationstep. For example, if an element in the �nal result has k ways to mat
h the query,the HPDT may 
reate O(2q) 
urrent states. Then, for ea
h state in layer q (thelowest layer), k 
opies of the state are generated at runtime, ea
h with a di�erentdepth sta
k. For the states in a higher layers, no more than k 
opies are generated.Therefore, the amount of work per input item is is O(2qk) in worst 
ase. As notedearlier, this worst 
ase result is only a rough estimate and real queries and streamsare unlikely to in
ur the worst 
ase 
osts. We explore these and other issues indetail in Se
tion 9.7. RELATED WORKSeveral papers have addressed the problem of �ltering a stream of XML do
uments[Altinel and Franklin 2000; Green et al. 2003; Diao et al. 2002; Lakshmanan andSailaja 2002; Chan et al. 2002℄. This problem has been referred to variously assele
tive dissemination of information (SDI), publish-subs
ribe (pub-sub), and querylabeling. Brie
y, �ltering assumes that the input is a stream of do
uments that areto be mat
hed with a given set of queries. A query is said to mat
h a do
ument ifthe result of evaluating the query on the do
ument is non-empty. Sin
e there is nooutput other than the identi�ers of the do
uments mat
hing ea
h query, methodsfor �ltering are simpler than those needed for querying. As des
ribed in Se
tion 3,we may think of methods for �ltering as starting points for the exploration of moregeneral methods for querying. Filtering systems typi
ally fo
us on supporting highthroughput for a large number of queries using only a moderate amount of mainmemory.The XFilter system [Altinel and Franklin 2000℄ fo
uses on the problem of evalu-ating a large number of XPath �lter expressions over every do
ument in a streamof do
uments. It uses �nite-state automata similar to those des
ribed in Se
tion 3.Sin
e the �lter expressions are likely to have many 
ommon segments, the automataare 
ombined and indexed to yield an eÆ
ient �ltering method. The YFilter sys-tem [Diao et al. 2002℄ addresses a similar problem and uses one automaton toevaluate all submitted �lter expressions. It 
ombines all the automata into one bigautomaton that uses a run time sta
k to tra
k all the possible states for all thequeries. Instead of the index used by XFilter, YFilter uses query identi�ers in thestates to denote the queries 
orresponding to the results. The method des
ribed in[Chan et al. 2002℄ uses a data stru
ture 
alled XTrie instead of a 
at table to indexXPath queries based on 
ommon substrings among them. Automaton-based meth-ods spend a signi�
ant amount of time mat
hing transitions to in
oming events;as a result, deterministi
 automata typi
ally yield higher throughput than theirnondeterministi
 
ounterparts. However, as usual, the deterministi
 version of anautomaton may require a large amount of memory. This problem is addressed in[Green et al. 2003℄ by using a lazy deterministi
 �nite state automaton. The mainidea is to �rst build a naive �nite-state automaton dire
tly from the XPath ex-pression. At run time, the system adds new states as needed on the 
y. Sin
e itdoes not need to use a sta
k to keep tra
k of all possible states, its throughput isimproved. Although the deterministi
 automaton requires more memory than itsACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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ounterparts, an upper bound on the size of DFA is provided in[Green et al. 2003℄.The problem of query labeling is studied in [Lakshmanan and Sailaja 2002℄. Theauthors propose a requirements index as a dual to the traditional data index. Aframework is provided to organize the index eÆ
iently and to label the nodes instreaming XML do
uments with all the mat
hed requirements in the index. Theproblem of validating XML streams using pushdown automata has been studied in[Segou�n and Vianu 2002℄. (Brie
y, an XML do
ument is said to be valid withrespe
t to a given Do
ument Type De�nition (DTD) if the do
ument stru
tureobeys the grammar spe
i�ed in the DTD [Bray et al. 1998℄.) This problem 
an alsobe 
onsidered as a �ltering problem be
ause the pushdown automaton 
an �lter thedo
uments that satisfy the DTD.As noted earlier, the above systems support �ltering, not querying, of XMLstreams. Further, they either do not support predi
ates, or support only simplepredi
ates that test stru
tural information (whether an element has spe
i�ed de-s
endant). The YFilter system [Diao et al. 2002℄ supports predi
ates that do notreferen
e other elements so that the predi
ate 
an be evaluated immediately whenthe related input element is en
ountered. Sin
e the YFilter system only �lters theXML stream, it need not handle the 
ase where the predi
ates are evaluated indi�erent sequen
es.A transdu
er-based approa
h to evaluating XQuery queries on streaming datais presented in [Ludas
her et al. 2002℄. An XQuery is de
omposed into subex-pressions and ea
h subexpression is mapped to an XML Stream Ma
hine (XSM).Ea
h XSM 
onsumes the 
ontent of its input bu�er and writes output to its outputbu�ers. The output bu�er of one XSM may be the input bu�er of another. Thisprodu
er-
onsumer relationship of XSMs through their bu�ers results in a networkof XSMs. This network is merged into a single XSM that 
an be optimized if theDTD for the input data is available. (In [Olteanu et al. 2002℄, a similar approa
his used to evaluate regular path expressions with quali�ers over well-formed XMLstreams. That paper proposes a transdu
er network model 
alled SPEX, in whi
hea
h transdu
er is generated from a regular path expression 
onstru
t. The outputtape of one transdu
er forms the input tape of another.) The key di�eren
es be-tween XSQ and XSM are as follows: First, XSQ supports XPath features su
h asaggregations, 
losures, and multiple predi
ates that are not supported by XSM. Asdes
ribed in earlier se
tions, these features, espe
ially in 
ombination, 
ompli
atequery pro
essing. Se
ond, XSM supports 
onstru
tors in XQuery expressions whileXSQ supports only XPath (no 
onstru
tors). XSQ uses this simpli�
ation to workwith a simpler automaton and a simpler model of bu�er intera
tions. Third, the
ombined, optimized XSM is quite 
ompli
ated, making it diÆ
ult to group similarqueries. In 
ontrast, the HPDT has simple stru
ture, and methods su
h as thosein [Diao et al. 2002℄ 
an be easily applied to it. At the time of writing, the XSMsystem was not available for testing and it is therefore omitted from our study inSe
tion 9. However, we believe that XSQ and XSM are pra
ti
al demonstrationsof the trade-o�s between query language expressiveness and system simpli
ity andeÆ
ien
y (XPath vs. full XQuery).An interesting feature of the XAOS system [Barton et al. 2003℄ for streamingACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



42 � F. Peng and S. S. ChawatheXML is that it supports XPath's reverse axes, su
h as parent and an
estor. Ituses two data stru
tures 
alled X-tree and X-dag to redu
e the amount of stream-ing data bu�ered in a mat
hing stru
ture. Essentially, the X-tree is the parse treeof the XPath expression, with reverse axes permitted. The X-dag is the equiv-alent XPath representation with reverse axes removed. The X-dag is used as apattern to �lter the in
oming stream to remove the irrelevant nodes. The rele-vant nodes are stored in the mat
hing stru
ture based on their relations in theX-tree. When the end of the stream is en
ountered, results are produ
ed bytraversing the mat
hing stru
ture. A drawba
k of this approa
h is that it doesnot output any results until the end of the stream is en
ountered. (For unboundedstreams, a periodi
 evaluation of the mat
hing stru
ture 
ould be used.) UnlikeXSQ, XAOS supports reverse axes; however, unlike XAOS, XSQ produ
es in
re-mental results and bu�ers data in an optimal manner (least amount of data forthe least amount of time possible). Rewriting XPath queries with reverse axes intoequivalent queries with only forward axes is studied in [Olteanu et al. 2002℄. How-ever, sin
e the rewriting algorithm introdu
es node set 
omparison operations inthe new expression, the approa
h is diÆ
ult to apply in a streaming environment.For example, for an expression X[an
estor::Y/Z℄, the rewriting algorithm pro-du
es X[/des
endant::Y[Z℄/des
endant::node()=self::node()℄. We believeit should be possible to 
ombine some of the ideas used in XSQ, XAOS, and themethod of [Olteanu et al. 2002℄ to yield a system that supports reverse axes withoutsa
ri�
ing bu�er spa
e.Several systems provide methods for querying non-streaming XML data. Galax[Fernandez and Simeon 2002℄ is a full-
edged XQuery query engine. It implementsalmost all of the XML Query Data Model along with the type system and dynami
semanti
s of the XML Query Algebra. XQEngine [Katz 2002℄ is a full-text sear
hengine for XML do
uments that uses XQuery and XPath as its query language.XPath expressions and boolean 
ombinations of keywords are used to query 
olle
-tions of XML do
uments. The engine 
reates a full-text index for every do
umentbefore the do
ument 
an be queried. It is diÆ
ult to adapt these systems forstreaming data. Nevertheless, we use them in our experimental study in Se
tion 9for 
omparison purposes.A topi
 
losely related to XPath query pro
essing is XML transformation. XSLTis a standard template-based language for transforming XML [W3C XSL WorkingGroup 2002℄. Sin
e XSLT uses XPath to spe
ify patterns in its rules, XSQ and othermethods for XPath pro
essing have appli
ations in XSLT pro
essors. As studiedin Se
tion 9, the popular implementation of XSLT in Saxon [Kay 2002℄ is based onan in-memory materialization of the entire XML do
ument and is therefore limitedin the size of do
uments it 
an eÆ
iently transform. By using a streaming XPathpro
essor su
h as XSQ, we 
an design an XML transformation system that bu�ersonly limited amount amounts of data.The STX system takes a di�erent, more pro
edural, approa
h to transformingstreaming XML [Be
ker et al. 2002℄. It uses templates to spe
ify the operations thatshould be performed when data mat
hing the template pattern is en
ountered. Wemay think of STX as a general-purpose event-driven programming environmentthat is not tailored to a spe
i�
 query language. However, it may be used forACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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essing if we design a method for generating eÆ
ient STX templatesfrom XPath queries. For example, if there are two predi
ates in an XPath query,we may 
reate two variables in the program to store the 
urrent results of thepredi
ates. When a predi
ate is evaluated, the 
orresponding variable is set tothe result of the evaluation. We also need to spe
ify expli
itly when to reset thevariables. We may then 
hoose the right operation based on the 
urrent valuesof the variables. However, in this s
heme, the positions of the elements have tosatisfy the requirement that the predi
ate is evaluated before the target items. Ingeneral, it is not obvious how to generate STX templates equivalent to an XPathquery in a systemati
 manner. However, this approa
h is an alternative to ourautomaton-based approa
h and would bene�t from further attention.The query 
omplexity of XPath is addressed by [Gottlob et al. 2002℄, whi
h pro-vides a main-memory algorithm for evaluating XPath on non-streaming data thatis polynomial in the size of the query (and data). The method is based on redu
-ing every axis to two primitive axes: �rst-
hild and next-sibling. The algorithmtraverses the XPath parse tree in a bottom-up manner. The subexpressions in thelowest level are evaluated by s
anning the data. The results of these subexpressionsare then used in the evaluation of their parent subexpressions, re
ursively. The pa-per also provides a re�ned top-down algorithm and suggest a 
ore subset of XPaththat 
an be evaluated in linear time. Sin
e these methods require multiple passesof the data, it is not easy to adapt them methods for a streaming environment.However, it should be interesting to investigate the issues raised by this paper in astreaming environment.The evaluation of XPath queries over XML data is 
losely related to the problemof tree pattern mat
hing [Miklau and Su
iu 2002; Chen et al. 2001℄. As des
ribedin [Miklau and Su
iu 2002℄, despite the resemblan
e, there are important di�er-en
es between XPath evaluation and the 
lassi
al problems of tree pattern mat
h-ing [Ho�mann and O'Donnell 1982℄ and unordered tree in
lusion [Kilpel 1992℄. Inparti
ular, the problem of unordered tree in
lusion is NP-hard (by dire
t redu
tionfrom SAT) [Kilpel 1992℄, while XPath queries 
an be answered in polynomial time[Gottlob et al. 2002℄. Intuitively, the reason the in
lusion problem is harder thanthe XPath problem is that the former does not permit multiple nodes in the pat-tern tree to be mapped to the same node in the data tree. Most of the algorithmsfor these problems require a postorder (bottom-up) traversal of the data trees andare thus unsuitable for streaming data that is provided in preorder. As an ex
ep-tion, the algorithm des
ribed in [Ho�mann and O'Donnell 1982℄ for the 
lassi
altree pattern mat
hing problem needs only a preorder traversal of the data tree.However, it allows only parent-
hild (not des
endant) edges in patterns and �ndsonly mat
hes for whi
h siblings o

ur in the same order in the data and as in thepattern. On the other hand, tree patterns 
orresponding to XPath queries in
ludean
estor-des
endant edges (for the 
losure axis) and XPath semanti
s require thatthe sibling order in the pattern (order of nodes mentioned in predi
ates) be ignored.Therefore, this algorithm 
annot be easily applied to XPath.An alternating automaton is an automaton in whi
h ea
h state has a 
ag indi-
ating the a

eptan
e or reje
tion [Chandra et al. 1981℄. There are three types ofstates: universal, existential, and negating. A universal (existential) state be
omesACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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epting state if all (respe
tively, at least one) of its o�spring states rea
h a
-
epting states. A negating state has a unique o�spring and be
omes an a

eptingstate only when the o�spring state is a reje
ting state. There are two diÆ
ulties inapplying alternating automata for streaming XPath evaluation: First, alternatingautomata naturally express the semanti
s of �ltering expressions, but not queryingexpressions. In parti
ular, they do not provide a me
hanism to solve the addressthe bu�ering problems dis
ussed in Se
tion 5. Se
ond, they use a bottom-up modelof 
omputation that does not �t well with the preorder arrival of streaming XMLinput. However, it may be possible to adapt some of the ideas used by alternatingautomata for XPath.The Aurora system [Carney et al. 2002; Chernia
k et al. 2003; Zdonik et al. 2003℄is a data stream management system for monitoring appli
ations, in whi
h typi
altasks in
lude tra
king the abnormalities among multiple streams, �ltering spe
i�
target data for the user, and exe
uting queries involving aggregations and joins. TheAurora system pro
esses data streams using a large trigger network. The trigger,whi
h is essentially a data-
ow graph, is generated from the persistent queriesprovided by appli
ations. The tuples in the results of these queries are 
reatedfrom the in
oming streams and fed into the original appli
ation also in streamingform. The Aurora system provides a set of operators for an appli
ation to spe
ifythe persistent query and quality of servi
e (QoS) requirements. At runtime, theAurora system is optimized by using te
hniques su
h as load shedding (dis
ardingdata that requires a long time to pro
ess) and real-time s
heduling.The Fjords ar
hite
ture [Madden and Franklin 2002℄ has been developed formanaging multiple queries over the numerous data streams generated from sen-sors. Sensor data is generated in streaming form and the data rate is typi
ally highand variable. The Fjords ar
hite
ture is designed to maintain a high throughputfor queries even when the data rate is unpredi
table. It provides an eÆ
ient andadaptive infrastru
ture for more sophisti
ated query appli
ations. The main 
om-ponents of the ar
hite
ture are the queuing system and the sensor proxies. Thequeues 
an fun
tion in either pull or push mode. They are the basi
 fun
tionalstru
tures to route data between the operators in a query plan. Query operatorsmay be adaptive, su
h as Eddies [Avnur and Hellerstein 2000℄. Ea
h sensor has asensor proxy that a

epts queries and tries to simplify the queries for the sensor'spro
essor. The proxy adjusts the sample rate of the sensor based on the queriesand permits di�erent users share data from the sensor. Su
h optimizations resultin higher throughput and longer sensor battery life, sin
e energy is 
onserved byavoiding unne
essary sampling.The NiagaraCQ system is designed to eÆ
iently support a large number of sub-s
ription queries expressed in XML-QL over distributed XML datasets [Chen et al.2000℄. It groups queries based on their signatures. Essentially, queries that havesimilar query stru
ture by di�erent 
onstants are grouped and share the results ofthe subqueries representing the overlap among the queries. NiagaraCQ and XSQwork at di�erent granularities of data. Although NiagaraCQ handles both 
hange-based and timer-based 
ontinuous queries, the events it handles (su
h as 
hangedremote XML �le and a
tivated timer) are at a high level. Therefore, it 
an usematerialized data that is managed by a 
a
he manager. In 
ontrast, systems su
hACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 45as XSQ and XFilter respond to every event generated by a SAX-like parser. XSQevaluates queries on streaming data, and the result is also in streaming form. Thesetwo granularities are 
omplementary: One 
an 
ombine the methods of NiagaraCQfor the larger granularity with the methods of XSQ for the �ner granularity.A related system, WebCQ, implements server-based Web page monitoring [Liuet al. 2000; 1999℄. Users use WebCQ's own query language to spe
ify a sentinel,whi
h is essentially a request for monitoring the spe
i�ed Web obje
ts. The sentinelsupports di�erent kinds of obje
ts, su
h as images and links in Web pages, di�erenttime intervals for 
hange dete
tion, and di�erent kinds of noti�
ation me
hanisms.Although both WebCQ and XSQ are event-driven systems, the events in WebCQsystems are spe
i�ed by the user and are mostly timer-based. When a timer isa
tivated, WebCQ visits the spe
i�ed Web resour
e and pulls the 
ontent thatwill be 
ompared with its stored version in the 
a
he. XSQ, in 
ontrast, is morelike a push-based system that re
eives the data passively and returns the results
ontinuously. Further, like NiagaraCQ,WebCQ also operates at a larger granularitythan does XSQ.Another system for pro
essing data streams is dQUOB [Plale and S
hwan 2003;2000℄. It views the data streams as a relational database. Ea
h event in the streammaps to a tuple in a relation that 
hara
terizes the stream. It uses SQL extendedwith 
reate-if-then rules from Starburst 's a
tive database query language [Widom1996℄. The 
reate 
lause spe
i�es the name of the rule and the data sour
e, the if
lause 
ontains a SQL query, and the then 
lause spe
i�es an optional fun
tion thata

epts the result of the SQL query for further pro
essing (in
luding serving as theinput of another query). The dQUOB system 
an generate optimized query plansfor the 
ontinuous queries presented in the system based on the relational modeland allows user-spe
i�ed adaptation for 
hanges in data streams.Most work on streaming data, in
luding XSQ, assumes that the input 
onsistsof only the raw data. In this environment, 
ertain limitations are unavoidable.For example, it is easy to devise XPath queries and sample inputs for whi
h anunbounded amount of bu�ering is required for any XPath pro
essor that produ
esexa
t results. An interesting alternative to this environment is one in whi
h theinput provides some assistan
e to the query pro
essor by spe
ifying 
onstraints onforth
oming data or some other similar hints. For example, [Tu
ker et al. 2003℄des
ribes a method for embedding pun
tuations in streaming data, fa
ilitating thestreaming evaluation of queries that in
lude blo
king operators su
h as group by.It should be interesting to use similar ideas for streaming XML to support XPathqueries that in
lude traversal axes su
h as following.8. SYSTEM ARCHITECTURE AND IMPLEMENTATIONWe have implemented the XSQ system in Java using Sun Java SDK version 1.4.The 
ode is publi
ly available (GNU GPL terms) at http://www.
s.umd.edu/proje
ts/xsq/. The ar
hite
ture of the XSQ system is depi
ted in Figure 25. Thesingle arrows denote streaming data transfer between 
omponents at runtime (queryexe
ution time). The double arrows denote the 
ow of information during 
ompiletime. The XSQ system generates the HPDT 
orresponding to a given XPath asfollows. The XPath query is parsed by the XPath parser into a sequen
e ofACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 25: XSQ system ar
hite
ture
Fig. 26: S
reenshot of the XSQ systemlo
ation steps. Ea
h step 
onsists of an axis, a node-test, and a predi
ate in the formof obje
t op 
onst. The predi
ate may be null. The obje
t of a non-null predi
atefalls in one of the �ve 
ategories we summarized in Se
tion 5.2. Based on the
ategory of the obje
t, the BPDT builder builds a BPDT for ea
h lo
ation stepby instantiating the template for its 
ategory. The BPDT builder �rst 
reates theroot BPDT whi
h is denoted by bpdt(0; 0). For the ith lo
ation step, it starts with2i identi
al BPDTs and assigns ea
h 
opy a unique ID (i; k). If k 6= 2i� 1, i.e., thebpdt(i; k) is not the left most BPDT in the layer, the 
ush operation in the templatesshould be modi�ed to upload operation. It also adds a self-
losure transition to thestart state of the 
urrent BPDT and modi�es the existing transitions if the axis inthe lo
ation step is a 
losure axis. (The details of these modi�
ations are des
ribedin Se
tion 6.3.) The set of BPDTs is stored indexed by their sour
e states. Ea
hstate stores the set of transitions emerging from it as a set indexed by the targetsof the transitions. For ea
h transition ar
, we store the target state, the predi
ate,the bu�er operations, and the type of the transition (self-
losure, 
losure, regular,or 
at
h-all). We thus obtain an array of BPDTs in whi
h the bpdt(l; k) is storedat the o�set 2l + (k � 1).The HPDT builder 
onne
ts all the BPDTs into one HPDT by assigning aunique state ID for ea
h state in all the BPDTs. For the true state of the bpdt(l; k),it will be assigned the same state ID as the start state of bpdt(l + 1; 2k + 1). Forthe na state of bpdt(l; k), it will be assigned the same state ID as the start stateACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 27: S
reenshot of XSQ displaying a HPDTof bpdt(l+ 1; 2k). The transition ar
s from the two states are 
ombined. However,ea
h transition ar
 stores the ID of the original BPDT to whi
h it belongs. Aftersu
h assignment, all the states in the HPDT are stored in a single set.All the tasks des
ribed above are performed o�ine when the query is issued(query 
ompilation time). At runtime, the HPDT engine is responsible for exe-
uting the HPDT spe
i�
ation produ
ed by the HPDT builder. It maintains thea
tive states, sta
k, bu�ers, and other runtime obje
ts asso
iated with the HPDT.When the HPDT engine reads an HPDT spe
i�
ation, it �rst 
reates a global queuethat is used for storing all items (raw 
ontent, without depth sta
ks) that need tobe bu�ered in FIFO order. It also 
reates an array of bu�ers whose items arereferen
es to the items in the global queue (with depth sta
ks). The bu�er of thebpdt(l; k) is stored at the o�set 2l + (k � 1) in the array. When the pro
essingof streaming data begins, the HPDT has the start state with the depth sta
k (0)as the a
tive state. Whenever a transition ar
 in bpdt(l; k) is exe
uted, the bu�eroperations de�ned for this ar
, if there are any, operate on the bu�er at the o�set2l + (k � 1) in the array of the bu�ers.The streaming input to the HPDT engine 
omes from the SAX parser, whi
hgenerates a sequen
e of SAX events in response to the in
oming XML data. We usethe SAX interfa
e of the Xer
es parser [XER 2000℄. For ea
h event, it 
alls a user-ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



48 � F. Peng and S. S. Chawathede�ned event handler that pro
esses the event. Our event handlers �rst re
ordthe depth of the 
urrent event in order to support the event stru
ture des
ribed inSe
tion 2.2 (sin
e the standard SAX API does not provide the information). It alsoperforms the sta
k operations and validations sin
e these operations are the samefor all XML data. If the XML data is well-formed, it forwards the event to theHPDT engine in the XSQ format, whi
h is a quadruple of (tag, attrs, type, depth).In order to fa
ilitate our experimental evaluation of the e�e
ts of di�erent XPathfeatures, we have implemented two versions of XSQ: XSQ-NC supports multi-ple predi
ates and aggregations, but not 
losures. XSQ-F supports 
losures inaddition to multiple predi
ates and aggregations. Figure 26 depi
ts a s
reenshotof the graphi
al interfa
e of the XSQ-F system. The s
reenshot displays the re-sult of the query //ACT[TITLE="ACT I"℄//SPEECH[SPEAKER℄//LINE/
ount() onthe ma
beth.xml �le from the SHAKE dataset, whi
h 
ontains XML versions ofsome of Shakespeare's work [Bosak 2002℄. The query illustrates the use of ag-gregation fun
tions; it returns the number of lines that o

ur as des
endants ofa SPEECH element with a SPEAKER 
hild in A
t I of the play. Figure 27 de-pi
ts another s
reenshot of the interfa
e. The query is one used in Example 9:pub[year>2000℄//book[author℄//name/text() The dataset has stru
ture simi-lar to that depi
ted in Figure 2. As indi
ated by the �gure, in addition to queryresults, XSQ produ
es a graphi
al representation of the HPDT it uses for querypro
essing. (We use the Graphviz pa
kage [Gansner and North 2000℄ for renderingthe HPDT.)The 
on
eptual data stru
tures introdu
ed in earlier se
tions are implementedusing more eÆ
ient low-level me
hanisms in several instan
es. For example, depthsta
ks are stored as integers and operations on the depth sta
ks are implementedas fast bitwise operations on the integer representations. For example, if the depthsta
k is (1; 2; 5), the integer representation is 11001. That is, the i'th bit is set ifand only if the depth sta
k 
ontains i. This representation is unambiguous be
ausethe depth sta
k 
onsists of monotoni
ally stri
tly in
reasing numbers (reading thesta
k bottom to top). Thus, the depth sta
ks use very little memory and operationson them in
ur very little overhead. We use long integers (64 bits) for this purpose.In order to support data with depth greater than 64, we 
an swit
h to using apair of long integers. (Currently, this swit
h requires a re
ompilation of the HPDTengine module.)Another implementation optimization is that used for bu�ers. There is only one
opy of any data item in a global queue. The separate bu�ers of ea
h BPDT onlystore referen
es to this 
opy. Sin
e we are using the referen
es, we 
an mark theitem in the global queue with an output 
ag when one BPDT determines that theitem should be output. If there are several transitions pro
essing the item, theother operations 
an be ignored. (Some of these may 
all for dequeuing the item;however, from the existential semanti
s of predi
ates in XPath it follows that theitem belongs in the result.) Moreover, the do
ument order of items is maintainedautomati
ally sin
e we always output from the head of the global queue; that is,even if an item is 
agged for output, it is not sent to output until it be
omes the headof the global queue. Given this guarantee, the referen
es of the items in one bu�er
an be grouped based on their depth sta
ks regardless of their do
ument order,ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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h will be maintained in the �nal result. Therefore, when a bu�er operationoperates on the 
urrent bu�er, it 
ompares the desired depth sta
k (a

ording tothe states involved in the transition) with the depth sta
ks of the items group bygroup instead of going through the items one by one.9. EXPERIMENTAL EVALUATIONIn this se
tion, we summarize the results of our experimental evaluation of XSQ.We begin by des
ribing our experimental setup in Se
tion 9.1. Next, we study thetwo main performan
e metri
s: throughput in Se
tion 9.2 and memory usage inSe
tion 9.3. Se
tion 9.4 presents a broader study of a set of query engines aimed at
hara
terizing their features and performan
e. In Se
tion 9.5 we present a detailedexperimental 
hara
terization of XSQ.9.1 Experimental SetupWe 
ondu
ted our experiments on a PC-
lass ma
hine with an Intel Pentium III900MHZ pro
essor with 1 GB of main memory running the Redhat 7.2 distributionof GNU/Linux (kernel 2.4.9-34). The maximum amount of memory the Java VirtualMa
hine (JVM) 
ould use was set to 512 MB. For the purpose of 
omparison,we sele
ted a set of systems that pro
ess XPath or XPath-like queries. Thesesystems are outlined in Figure 28. As the �gure suggests, these systems vary
onsiderably in their design goals and features, and many do not support streaming.We have dis
ussed Galax [Fernandez and Simeon 2002℄ (version 0.1�), XQEngine[Katz 2002℄ (version 0.56), XMLTK [Avila-Campillo et al. 2002℄ (version 0.9), Saxon[Kay 2002℄ (version 6.5.2), and Joost (version 20020828) [Be
ker 2002℄ in Se
tion7. Some systems use query languages that are supersets or variations of XPath.For su
h systems, we issued queries that are equivalent to the XPath queries in ourexperiments. In many 
ases, the results are en
losed by di�erent 
ontainer elementsbut the 
ontents are the same.One of the goals of our experimental study is 
omparing di�erent systems for thethroughput and the memory usage, whi
h are very important metri
s of a queryengine. However, we also wish to 
hara
terize these XPath pro
essors in terms ofthe relation between the performan
e and the underlying features of the systems.We wish to gain insights into the 
ost to supporting 
ertain XPath features su
has 
losures and to study whi
h systems and features are best suited to a givenenvironment. For example, if we only want to use a simple XPath fragment withoutpredi
ates, we do not need a full-
avored XQuery engine su
h as Galax. However,if we need to express 
ompli
ated queries that involve joins or 
onstru
ting newelements, we need to use systems su
h as Galax.In our experiments, we use both real and syntheti
 datasets that di�er in sizeand 
hara
teristi
s. We use four real datasets [Avila-Campillo et al. 2002℄: anXML-ized version of Shakespeare's plays (SHAKE); the NASA ADC XML dataset(NASA) [Borne 2002℄, bibliographi
 re
ords from the DBLP site (DBLP) [Ley ℄, andthe PIR-International Protein Sequen
e Database (PSD) [Wu et al. 2002℄. We alsouse syntheti
 datasets that are generated using IBM's XML Generator [IBM 2001℄and Toxgene [Barbosa et al. 2002℄. Sin
e the real datasets have relatively shallowstru
tures, we generated two datasets using IBMGEN with deeper do
ument stru
-ture to explore features related to su
h data. They are named as RECURS andACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 28: System FeaturesName Size Text Number of Avg/Max Average Parsing Parsing(MB) size elements depth tag Time(s) Time (s)(MB) (K) length Xer
es ExpatSHAKE 7.89 4.94 180 5.77/7 5.03 1.42 0.43NASA 25.0 15.1 477 5.58/8 6.31 4.35 1.50DBLP 119 56.4 2,990 2.90/6 5.81 27.6 7.53PSD 716 286 21,300 5.57/7 6.33 170 66.4RECURS 10.4 8.78 95.6 22.3/26 5.31 1.65 0.43RECURB 121 105 963 26/30 5.31 13.0 4.82Fig. 29: Dataset Des
riptionsRECURB. Some 
hara
teristi
s of these datasets, su
h as size, number of elements,depth, and parsing time are listed in Figure II.For a text-based data format su
h as XML, parsing the input is often a sub-stantial 
omponent of the running time. The parsing times listed in Figure II aregenerated using two parsing programs, named PureParsers, in C and Java. ThePureParser in C uses the Expat 1.2 parser that is used by XMLTK. The PureParserin Java uses Xer
es 1.0 for Java, whi
h is used in XSQ-NC, XSQ-F, XQEngine,Saxon, and Joost in the experiments. The PureParsers parse the XML data butdo nothing else. We note that the C parser is generally faster than Java parsersin
e parsing involves a large number of string operations, whi
h are implementedmore eÆ
iently in C. For example, for the 119MB DBLP dataset, the C PureParser�nishes parsing in 7.53 se
onds and the Java PureParser uses 27.6 se
onds.In our experiments, we exe
uted ea
h query on a dataset 30 times to get the meanvalue of the result we need. We also 
omputed the 95% 
on�den
e intervals ofthe values to make sure our 
omparisons are statisti
ally signi�
ant. We found thatin all 
ases the 95% 
on�den
e interval is of width less than 1% of the mean valuebeing measured (throughput, memory usage, et
.). Sin
e it is diÆ
ult to displaythis small interval graphi
ally, the usual error-bars are omitted in the graphi
alresults that follow.9.2 ThroughputWe measure throughput as the rate at whi
h a streaming query engine 
onsumesinput data (megabytes per se
ond). Sin
e this rate may vary over time (perhapsdepending on the stru
ture of the data, or as a result of periodi
 reorganizationof data stru
tures in a streaming system), we measure the average throughput asthe size of the input divided by the time required to pro
ess it. Although thismeasure of throughput is useful for understanding the end-to-end performan
e ofACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 33: Relative throughputs for di�erentqueries on the PSD datasetQ1:/ProteinEntry/referen
e/refinfo/authors/author/text()Q2:/ProteinEntry[sequen
e℄/protein/name/text()Q3://sequen
ea streaming query engine, it is not a good metri
 for our goal of understanding therami�
ations of di�erent system designs and features for two reasons. The �rst isthat the systems we study use di�erent programming languages and environments,and di�erent parsers. Sin
e the performan
e of the parser is a dominant fa
tor inthe performan
e of XPath pro
essors, results based on only end-to-end throughputmeasurements are likely to be determined more by the features of the parser andprogramming language libraries than by the query engine proper. The se
ondreason is that di�erent datasets may lead to di�erent parsing performan
e for thesame parser. We 
an see in Figure II that the parsing times are in
uen
ed by notonly the size of the �le, but also by the number of elements in the �le. For the twodatasets DBLP and RECURB, the sizes are similar but the parsing times di�ersubstantially sin
e DBLP has more elements than RECURB. In order to study thethroughput of query engines on di�erent datasets, it is important to fa
tor out thee�e
ts of the varying diÆ
ulties of parsing su
h datasets.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 35: Relative throughputs for di�erentqueries on the RECURB datasetQ1:/pub/book/title/text()Q2:/pub/book[year℄/author[email℄/name/firstname/text()Q3://pro
eedings/�
ategoryQ4://pub[year=14℄//paper[�id=13℄/titleSin
e all the systems in Figure 28 use the SAX API to parse the data, thethroughput of the PureParser, whi
h parses the data but does nothing else, givesan upper bound of the throughput for any XML query system. Therefore, insteadof 
omparing systems using their raw throughput, we 
ompare them using theirthroughput normalized with respe
t to their parsers. That is, we de�ne relativethroughput to be the throughput of the 
omplete system divided by the through-put of the parser used by that system. Note that Galax implements its own parserin OCaml. Sin
e we were unable to �nd a SAX parser implemented in OCaml,we used the Java PureParser to normalize the throughput of Galax. However, webelieve that the OCaml parser is faster than the Java PureParser; thus this swit
hdoes not put Galax at a disadvantage.Figures 29, 30, 31, 32, 33, and 34 summarize our experiments 
omparing therelative throughputs of the systems over di�erent datasets and queries. Results forseveral 
ombinations of queries and datasets are missing for one or more systemsbe
ause either the system does not support queries with 
ertain features (e.g.,
losures, predi
ates) or the dataset is too large for the implementation. For example,XMLTK, Galax, and Joost do not support query Q2 in Figure 29. Similarly, manysystems do not work with the large PSD dataset of the experiment summarized byFigure 32.We observe that, in general, XMLTK and XSQ-NC are the fastest two systemswhen we use simple queries that they support. However, sin
e XMLTK does nothandle predi
ates and XSQ-NC does not handle 
losure axes, they 
an use moreeÆ
ient methods for query evaluation. One reason for this eÆ
ien
y is that theydo not need to handle the multiple mat
hings between the query and the data.Therefore, they have fewer extra operations for ea
h element. Another reason isthey use deterministi
 automata. The HPDT used in XSQ-NC is deterministi
,whi
h means there is only one 
urrent state at any point in time. For ea
h inputevent, there is at most one transition ar
 that a

epts the input for the 
urrent state.Therefore, even when pro
essing the same query without 
losure, XSQ-NC is fasterthan XSQ-F sin
e XSQ-F uses a non-deterministi
 automaton. For example, whenACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 36: Prepro
essing time, query pro
essing time, and total querying timeDataset: SHAKE Query: /PLAY/ACT/SCENE/SPEECH/SPEAKER/text()Note: We were unable to determine the separate times for Joost and Galax.sear
hing for a mat
hing transition in the automaton, XSQ-NC 
an stop sear
hingafter it �nds one mat
h. In 
ontrast, XSQ-F has to go through all the transition ofthe 
urrent state to make sure every transition is handled.Figures 29, 31, and 33 suggest that Saxon is faster than XSQ-F when they pro
essXML data that 
an �t into main memory. Saxon uses the SAX parser to load allthe data into the memory and build the DOM tree before it evaluates the query.After parsing the data, Saxon does all the pro
essing in main memory. In-memorypro
essing is eÆ
ient and 
an support more powerful queries. However, it is notsuitable for streaming data in general. Moreover, as we will see next, the amountof memory it needs is usually four to �ve times the size of the dataset. Thus, it isdiÆ
ult to s
ale the Saxon approa
h to large XML �les and to streaming data.Figure 35 summarizes our experiments measuring the 
omponents of the overallquery-pro
essing time. The dark bar represents the query 
ompilation time, whi
husually in
ludes parsing the query and building the data stru
tures used by the run-time query engine. The gray bar represents the prepro
essing time. For example,the prepro
essing stage of Saxon loads all the data into memory to build the DOMtree before it 
an evaluate the queries. Similarly, XQEngine prepro
esses databy building a full-text index on the data before evaluating any queries. Figure35 highlights an important advantage of streaming systems: They return resultsin
rementally while still reading the input. The availability of some results early isa useful feature in general, and espe
ially important when the input data streamis unbounded or very large. The non-streaming systems have to wait until all theprepro
essing �nishes before they 
an begin evaluating the queries. However, aslong as the prepro
essed data in these systems remains in memory, subsequentqueries 
an be evaluated very eÆ
iently by reusing the prepro
essed data.9.3 Memory UsageThe main memory required by a streaming query engine is an important metri
and often determines the feasibility of using that engine for a dataset. Further, it isoften possible to in
rease throughput by in
reasing the memory footprint. FiguresACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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ause it 
ur-rently supports only 32K elements per do
ument.
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40Fig. 38: Memory usage for syntheti
 datasets ofdi�erent sizesQuery://pub[year℄//book[�id℄/title/text()1. The system 
annot handle the query in thedataset.2. Galax reports a "sta
k over
ow" error when wetry the query.36, 37, 38, 39, 40, and 41 summarize the results of our experiments 
omparingthe memory used by the systems we study. We observe that, as expe
ted, thestreaming systems typi
ally use mu
h less memory than the non-streaming systems.For example, although Saxon (a non-streaming system) is faster than XSQ-F whenboth systems handle the queries in these �gures (Figures 31, 33, and 34), it alsouses mu
h more memory than XSQ-F. We also note that, for di�erent datasets,the streaming systems use almost the same amount of memory. This fa
t suggeststhat the streaming systems need a small amount of memory whi
h is only weaklydependent on to the size of the datasets in our study. For systems su
h as XMLTKand Joost, whi
h do not support predi
ates, this observation is always true sin
ethey do not bu�er anything in the data. However, systems that support predi
ates,su
h as XSQ-NC and XSQ-F must bu�er data and the amount of bu�ered datamay be large, depending on the dataset and query. Re
all, however, that any databu�ered by XSQ must also be bu�ered by any streaming query engine for XPath.That is, the need for a potentially large amount of bu�ering in this 
ase is a resultof XPath features and not system design. Further experiments studying this aspe
tof XSQ are des
ribed in Se
tion 9.5.Memory usage is also an important determinant of the s
alability of streamingsystems. Sin
e non-streaming systems need to load the whole dataset into memory,they need memory that grows at least linearly with the size of the input. In 
ontrast,streaming systems need to store only a small fra
tion of the stream. Figure 36 showsthe memory usage reported for the queries over datasets ranging in size from 5MBto 50MB. All the datasets are ex
erpts of the DBLP dataset. For example, the10MB dataset 
ontains the �rst 10MB data of the DBLP dataset. (The size isapproximate sin
e we need to in
lude the 
losing tags of elements near the 10MBo�set in order to obtain well-formed XML.) Figure 36 indi
ates that Saxon andGalax use memory roughly linear in the size of the input data. Linear growthin memory usage, with a 
onstant fa
tor of 4 to 5, makes DOM-based systemsunsuitable for large XML �les.We also used the XML Generator program to generate datasets of varying sizeACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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Different QueryFig. 42: Memory for di�erent queries on the RE-CURB datasetQ1:/pub/book/title/text()Q2:/pub/book[year℄/author[email℄/name/firstname/text()Q3://pro
eedings/�
ategoryQ4://pub[year=14℄//paper[�id=13℄/titleand re
ursiveness. For example, for the dataset of size 13MB, the nested levelparameter of the XML Generator program is set to 15 and the maximum repeatsparameter is set to 20. From Figure 37 we note that even with highly re
ursive dataand queries with 
losures, the memory used by XSQ-F is 
onstant. Re
all, fromSe
tion 6, that XSQ-F needs to bu�er more data if there are 
losures in the query.However, sin
e all the items in the bu�ers 
an be determined when we en
ounterthe end event of the element spe
i�ed in the �rst lo
ation step (when the HPDTreturns to the highest layer BPDT), the maximum amount of memory the XSQneeds does not ex
eed the maximum size of the elements in the stream.9.4 Chara
terizing the XPath Pro
essorsRe
all, from our dis
ussion in Se
tion 6, that XSQ and other streaming queryengines need to bu�er data items when they 
annot immediately de
ide whetherthe data items belong to the result. In general, the relative ordering in a dataset ofXML elements to whi
h a query refers in
uen
es the amount of bu�ering requiredACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



56 � F. Peng and S. S. Chawathefor that dataset. In order to study this e�e
t, we generated a 10 MB dataset usingToxgene, by applying the following template repeatedly to generate new a elementswith su

essive id attributes.<a id="1"><prior> 1 </prior><foo> 1 </foo><!--- 10,000 foo elements ---><foo> 1 </foo><posterior> 1 </posterior></a>We evaluated the following three queries on this dataset:Q1: /a[prior=0℄Q2: /a[posterior=0℄Q3: /a[�id=0℄All three queries have empty results on the above dataset be
ause their predi
ates,whi
h test for an text 
ontents or attributes with value 0, are not satis�ed by thetest data, in whi
h all 
ontent has value 1. However, the queries di�er in thelo
ation of the data item used in the predi
ate relative to the data item to whi
hthe predi
ate applies.Figure 42 summarizes the results of running XSQ-NC, XSQ-F, and Saxon onthese queries. (XMLTK and Joost 
annot handle queries that need expli
it bu�eringof the data. Galax reports an \Internal Error" when evaluating the queries onthe syntheti
 data. XQEngine is not tested in the following experiment sin
e theversion we use 
an pro
ess only XML �les that have less than 32,767 elements.)We observe that the throughput of the Saxon system is essentially the same forall three queries. This result is not surprising be
ause Saxon always loads all thedata into the memory before it evaluates the queries. When it traverses the DOMtree in the main memory to evaluate a query, the do
ument order of the elementstraversed is not important. However, the throughput of XSQ-NC is 30% higherfor Q3 than for the other two queries. When pro
essing Q3, XSQ-NC is able todetermine at the beginning of the a element that all the 
ontents in this element
an be ignored. For the other two queries, on the other hand, the 
ontent of everya element must be bu�ered be
ause the prior and posterior elements may o

uranywhere before the 
losing tag of the a element. We also observe that XSQ-F isnot as sensitive as XSQ-NC to the element order. Re
all from Se
tion 6 that evenif XSQ-F determines that an item is in the result set, it 
annot output the itemright away be
ause there may be items in the global queue whose memberships inthe result are as yet undetermined and that lie ahead of this item in the queue.Thus, XSQ-F must �rst mark the item with an output 
ag and 
he
k if the itemis the head of the global queue. This pro
ess of marking and 
he
king every resultitem slows down the XSQ-F system and redu
es its sensitivity to the order of theelements. (However, this pro
ess is ne
essary sin
e the 
losure axes in the queryimply that the result membership of items in the bu�er 
annot always be determinedin do
ument order.)We also studied the sensitivity of system throughput to the size of the queryresult. The degree to whi
h system throughput depends on result size varies a
rossACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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SystemFig. 44: E�e
t of the result size on throughputthe systems we studied. For example, the XQEngine is slower than the othersystems in Figure 35 be
ause the query returns a large portion of the dataset.However, if the query 
ontains a tag that is not in the data, XQEngine returnsthe empty result set very qui
kly be
ause it has a

ess to an inverted �le index ontags. The other systems, la
king su
h an index, spend similar amount of time onthe query irrespe
tive of whether the tags in the query appear in the do
ument.We used Toxgene to generate a test dataset of 10 MB 
onsisting of a mix ofthree types of elements (besides a few top level elements): 10% of the elementshave tag red, 30% green, and 60% blue. The 
ontent of ea
h su
h element is asingle 
hara
ter. We used this dataset with three queries: /a/red, /a/green, and/a/blue, generating query results that are roughly 1 MB, 3 MB, and 6 MB in size,respe
tively. Figure 43 indi
ates the relative throughputs of the systems on thesequeries. (XQEngine and Galax are not tested for the same reason as des
ribed inthe previous experiment.) We observe that XSQ-NC's throughput is quite sensitiveto the size of the result. The di�eren
e in the performan
e is due to the di�erenthandling of data items based on whether they are in the result. Items that are notin the result 
an be ignored and XSQ-NC stays in the same state. If there are moreitems in the result set, the XSQ-NC will make more state transitions and outputoperations, whi
h 
onstitute a large portion of the running time of XSQ-NC. Wealso note that XSQ-F is not as sensitive as XSQ-NC. As des
ribed in Se
tion 6,XSQ-F always keeps the item �rst, irrespe
tive of whether it is in the result, and
he
ks the queue after all transition ar
s are handled. The di�eren
e between thetreatment of elements in and not in the result is therefore not as large as in XSQ-NC. Saxon's throughput is not very sensitive to the result size sin
e after it loadsall data into main memory, the evaluation pro
ess is done in main memory ex
eptthe output pro
ess, whi
h 
onstitutes only a small amount of the total exe
utiontime. Similarly, the low sensitivity of XMLTK's throughput to the result size isbe
ause the di�eren
e is only in the time required to output the result. However,it is not 
lear why Joost's throughput is not more sensitive to the result size.9.5 Chara
terizing XSQ-FIn this se
tion, we study the e�e
t of di�erent query features on the performan
eof XSQ-F. In parti
ular, we study the e�e
t of the number of 
losure axes in thequery, the number of predi
ates in the query, and the length of the query.In the �rst experiment, we exe
uted a set of queries that return the same resultACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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<datasets> <=datasets><dataset> <=dataset><referen
e> <=referen
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e> <=sour
e><other> <=other><name> <=name>
Fig. 45: HPDT generated for query/dataset/referen
e/sour
e/other/-name/text()
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t of 
losure axes in the queries on NASAdataset
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Different queries that return the same resultFig. 48: Memory usage of queries with 
losureaxes on NASA datasetset but with di�erent number of 
losure axes in the query. In Figure 45, QS , whereS � f1; 2; 3; 4; 5g, is the query in whi
h the ith lo
ation step has a 
losure axisfor all i 2 S. For example, the query Q123 has 
losure axes in the 1st, 2nd, and3rd lo
ation steps. (The remaining lo
ation steps have the 
hild axis.) All thesequeries return the same result when applied to the NASA dataset. The memoryused by XSQ-F when pro
essing these queries is summarized in Figure 47. TheHPDT generated for the query /dataset/referen
e/sour
e/other/name/text()is depi
ted in Figure 44. The HPDTs for other queries have a similar stru
ture, withself-
losure transitions and 
losure transitions in the appropriate pla
es, followingthe s
heme of Se
tion 6.3.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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ates that although the number of 
losure axes and their lo
ationsvary among the queries, resulting in varying sizes of the set of 
urrent states, thememory used for the di�erent queries does not vary mu
h. As dis
ussed earlier,this insensitivity is due to the fa
t that the memory used by the HPDT states isonly a very small amount in the total memory used by the system. The bu�ers andother system 
omponents are responsible for most of the memory usage.Figure 45 summarizes the throughput on the above queries. We observe thatthe throughput is lower for queries with a 
losure axis in the �rst lo
ation stepthan for queries with a 
hild axis in the �rst lo
ation step. (The di�eren
es inthe histogram bars, though small, are statisti
ally signi�
ant; here, as in our otherexperimental results the 95% 
on�den
e intervals are smaller than 1% of the valuesshown.) From the DTD of the dataset [Borne 2002℄, we know that all the top levelelements in the NASA dataset are dataset elements. If we have 
losure axis inthe �rst lo
ation step, then after the HPDT (Figure 44) makes the transition fromstate $2 to $4, it will also keep state $2 in its 
urrent state set. Then, the HPDTneeds to 
he
k whether ea
h in
oming event is a dataset element, whi
h involvesstring 
omparisons. In 
ontrast, if the �rst lo
ation step has a 
hild axis, state $2does not remain 
urrent. Therefore, only for all the subelements of the datasetelements does the HPDT 
he
k the begin events by 
omparing the name of theelement with the label. It ignores all elements that are not des
endants of bothdataset and referen
e by simply 
he
king the depth of those events, an operationmu
h faster operation than the string 
omparison used for the earlier 
ase.It is not the position of the 
losure axes in the query alone that determines thethroughput. On examining the dataset 
losely, we note that the evaluation timeis signi�
antly a�e
ted by the sele
tivities of ea
h lo
ation step. Consider the i'thlo
ation step of a query and let S be the set of elements that mat
h the �rst i� 1lo
ation steps. Let S0 be the 
hildren of nodes in S. We de�ne the sele
tivityof lo
ation step i (for a given dataset) to be the fra
tion of the nodes in S0 thatmat
h the �rst i lo
ation steps. If the i'th lo
ation step uses the 
losure axis,we use des
endants instead of 
hildren in identifying the set S0 in this de�nition.For the query and dataset of this experiment, ea
h dataset element 
ontains onereferen
e 
hild, whi
h 
orresponds to 10%{20% of the total number of events forone dataset element. We also ran these queries on a dataset obtained by remov-ing all subelements of dataset elements other than the referen
e subelements(whi
h means the sele
tivity of the se
ond lo
ation step 
hanged from around 20%to 100%). The result is summarized in Figure 46. We 
an see that the 
losureaxis in the �rst lo
ation step no longer has a signi�
ant impa
t on the throughput.(The throughput of query Q1 is not signi�
antly smaller than throughputs of queryQ2, Q2, Q3, and Q5, all of whi
h 
ontain one 
losure axes but in di�erent lo
ationsteps.) The reason is that the extra work done by Q1 (
he
king des
endants ofsubelements other than referen
e) on the original dataset no longer exists whenthe system evaluates the queries on the new dataset sin
e the dataset elementsin the new dataset have only referen
e subelements. In general, when the se-le
tivity of a lo
ation step is small, 
losure axes pre
eding this step result in aperforman
e penalty be
ause the non-result des
endants 
annot be eliminated bydepth 
omparisons and in
ur the 
ost of more expensive string 
omparisons.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



60 � F. Peng and S. S. ChawatheIn the previous experiment, we used queries with only 
losure axes but withoutpredi
ates. We also performed an experiment using queries with predi
ates ofdi�erent types and in di�erent positions. The dataset used for this experimentis the NASA dataset. The results are summarized in Figure 48. (We abbreviatedataset as d in the queries; similarly, we abbreviate other tags by their �rst letter.)The �rst eight queries have the same result although they have di�erent typesand numbers of predi
ates. The last three queries have empty results. We notethat the throughputs for the �rst eight queries are similar be
ause the number of
omparisons needed to determine the results of their predi
ates does not vary mu
ha
ross these queries. For example, although the dataset elements typi
ally haveseveral altname subelements, the �rst altname subelement usually has the attributetype that has value ADC. Therefore, the query Q3 and Q4 will both 
he
k the �rstaltname subelement and ignore the remaining altname elements. However, forquery Q10, although the result set is empty, resulting in less time spent on outputoperations, all the altname subelements of dataset elements must be 
he
ked.Therefore, its throughput is lower than those of queries Q3 and Q4. We alsoobserve that the query Q9 has the largest throughput among all the queries used inthe experiment. The reason is that the predi
ate in this query [�subje
t=test℄
an be evaluated to false at the beginning of the dataset elements. Thus, all thedes
endants of the dataset elements 
an be ignored. This experiment demonstratesthat XSQ is able to save on 
omparisons for predi
ates that have already beenevaluated.In the next experiment, we used queries of di�erent lengths (query sizes). Theresults are summarized in Figure 49. The query Q5 and Q6 return the same resultset of size 747 KB and the others return the same result set of size 16.7 KB.The bars in Figure 49 plot relative throughput: striped bars for queries with nopredi
ates, gray bars for queries with a predi
ate in every lo
ation step, and whitebars for queries with a predi
ate in only the �rst lo
ation step. The predi
atesall evaluate to false. For example, for Q3 for the gray bar is for the query //sour
e[test℄//other[test℄//title[test℄/text() while for Q1 the white baris for the query //sour
e[test℄//other//title/text(). The memory usage forthese queries is shown in Figure 50. The �gures indi
ate that queries with predi
atesin every lo
ation step use almost the same amount of memory as the queries withoutpredi
ates. The throughputs are also similar.Although Figure 49 suggests that longer queries generally have lower through-puts, we noti
e an ex
eption: Q6 has smaller throughput than Q4 and Q5 althoughit returns the same result set as Q5 and has the same query length as Q4. Q6 isslower than Q4 be
ause the sele
tivity of the se
ond lo
ation step of Q6 is mu
hsmaller than the sele
tivity of the se
ond lo
ation step of Q4. (That is, the fra
tionof the des
endants of dataset elements that have tag title is mu
h smaller thanthe fra
tion of the des
endants of other elements that have tag title.) Re
all,from our dis
ussion earlier in this se
tion, that a lo
ation step with a low sele
tivityresults in a larger number of string 
omparisons resulting from a 
losure axis in theprevious lo
ation step. Thus, Q6 in
urs a larger number of string 
omparisons thanQ4, resulting in lower throughput.We also note that Q5 has a higher throughput than Q6 be
ause the HPDTACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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Fig. 49: E�e
t of predi
ates in the queries onNASA dataset
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Fig. 51: E�e
t of query length on memory usagefor the NASA datasetevaluating Q5 has smaller 
urrent state set. The HPDT evaluating Q5 has one
urrent state that stays a
tive during the whole pro
ess (to 
he
k whether the nextevent is the begin event of a title element) while the HPDT evaluating Q6 has two
urrent states that stay a
tive (to 
he
k the begin events of the dataset and thetitle elements). Therefore, for the begin event of every des
endant of the datasetelements, the HPDT for Q6 performs two string 
omparisons, while the HPDT forQ5 only performs one.We noted in the Se
tion 9.3 that the maximum amount of data that XSQ needsto bu�er is no greater than the size of largest element in the input. To verify ourimplementation, we generated an XML �le of size 31.5 MB, 
ontaining 11 top-level elements 
hunk. We put a test attribute within the open tag of ea
h 
hunkelement. All the test attributes have value 1. We also put two test subelementsinside the 
hunk elements. The �rst one is put right after the open tag of ea
h
hunk element and its 
ontent is set to 0. The se
ond one is pla
ed right beforethe 
lose tag of ea
h 
hunk element and its 
ontent is set to 1. We ran two setsof queries on the dataset. The memory usage of the experiments is summarizedin Figure 53. The �rst set of queries 
ontains similar patterns but with di�erentpredi
ates in their �rst lo
ation steps. A lo
ation step /a is inserted between theACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.
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<test>

</chunk>

$4$5

<data.text()>

$6

{clear()}
<

/chunk>

[@
test=

x]

$5

<chunk>

[@
test!=x]

$7$8

<data>

$2
<root> </root>

$2
<root> </root>

$3

<
chunk>

//

<data>

<data.text()>

$6

$4

//

$1 $3 $1

//

$9$10

{output(data.text())}
<data.text()>

<data>

</test>{flush()}

[text()=x]
<test.text()>

<t
es

t.t
ex

t()
>

[te
xt

()
!=

x]

<
chunk></test>

</data>

<
/chunk>

</chunk>

</data>

{flush()}
</test>

{enqueue(data.text())} {output(data.text())}

{upload()}
</data>Fig. 52: HPDT generated for the query /
hunk[test=x℄//data/text() and/
hunk[�test=x℄//data/text()
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{clear()}
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<data>
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//

$6

$7

<data.text()>

</data>
{upload()}

//

$9

<a> </a> </a>

$8

</a>

<data>

<data.text()>

//

$12

<a>

$11

$2
<root> </root>

$3$1 $2
<root> </root>

$1 $3

$4 $5
{flush()}
</test>

{flush()}
[text()=x]
<test.text()>

<t
es

t.t
ex

t()
>

[te
xt

()
!=

x] </test>

{output(data.text())}

</data> <data>

</chunk>

[@
test=

x]

[@
test!=x]

<chunk>

<a>

</data>

{enqueue(data.text())} {output(data.text())}

</test>

$10Fig. 53: HPDT generated for the query /
hunk[test=x℄/a//data/text() and/
hunk[�test=x℄/a//data/text()
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ation step and se
ond lo
ation step of ea
h query in the �rst set to formthe queries in the se
ond set. However, sin
e ea
h 
hunk element has only onea subelement and all the data des
endants of the 
hunk element are inside the asubelement, the 
orresponding queries in the two sets always return the same resultset on this syntheti
 dataset. Moreover, Q1, Q2, and Q5 of the two sets return thesame result set of size 23.4MB while Q3 and Q4 of both query sets return the emptyresult set. The HPDTs generated for the �rst set queries are depi
ted in Figure 51,and the HPDTs generated for the se
ond set of queries are depi
ted in Figure 52.For the two sets of queries, Q2 and Q3 almost use the same amount of memorywhile Q4 and Q5 use mu
h less memory, although Q2 and Q4 returns a result setof size 23.4MB and Q3 and Q5 return an empty result set. The memory usage forQ2 and Q3 is similar be
ause both of them require bu�ering the text 
ontents of alldata subelements sin
e the results of the predi
ates in both queries are determinedonly at end of every 
hunk element. (The results of query Q2 are sent to outputwhile the results of query Q3 are 
leared from the bu�er.) Queries Q4 and Q5use mu
h less memory than Q2 and Q3 be
ause neither requires the 
ontents tobe bu�ered sin
e the results of their predi
ates are determined at the beginningof the 
hunk element. For Q4, the HPDT sends all the text 
ontents of the datasubelements dire
tly to output, while for Q5 all the data subelements are dis
ardedas they are en
ountered.The di�eren
e in the memory usage of the two Q1 queries is due to the di�erentstru
tures of the 
orresponding HPDTs. If we follow the reasoning of the previousparagraph, it seems reasonable to expe
t that both Q1 queries have memory usagesimilar to that of queries Q4 and Q5 be
ause the result of the predi
ates in thequeries 
an be determined at the beginning of the 
hunk elements. However, it is
lear in Figure 53 that the memory usage of Q1 in the �rst set is 
lose to that ofQ2 and Q3, while the memory usage of Q1 in the se
ond set is 
lose to that of Q4and Q5. The HPDT generated from Q1 in the �rst set is depi
ted in Figure 51.Even when the predi
ate has been satis�ed, this HPDT keeps the state $4 a
tivebe
ause of the self-
losure transition on $4. The HPDT 
ontinues to enqueue thetext 
ontents of the data des
endants (using the enqueue operation on state $9),whi
h will never be used be
ause the same data item will be sent to output rightaway (by the output operation on state $10). However, sin
e we 
annot expli
itly
lear the bu�er until the end of a 
hunk element, these items stay in memory untilthe end of the 
hunk element. Thus, the memory usage of this Q1 query is almostthe same as that of Q2 and Q3. In 
ontrast, the state $4 in the HPDT for Q1 inthe se
ond set (Figure 52) does not have a self-
losure transition. Therefore, whenthe predi
ate has been satis�ed, only state $8 is a
tive. The text 
ontents of thedata elements will be only output by the operation on the state $12. The enqueueoperation on state $10 will never be exe
uted.10. CONCLUSIONThe XSQ system provides an eÆ
ient implementation of XPath for streaming XMLdata. It supports XPath queries that have multiple predi
ates, 
losure axes, andoutput fun
tions that permit extra
tion of portions of the stream. We have il-lustrated the 
hallenges posed by these XPath features to query pro
essing in aACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



64 � F. Peng and S. S. Chawathestreaming environment and des
ribed the soulution used by XSQ. All the methodsdes
ribed in this paper have been fully implemented in the XSQ system, whi
h isfreely available at http://www.
s.umd.edu/proje
ts/xsq/. The implementationis based on a 
lean system design that 
enters on a hierar
hi
al arrangement of push-down transdu
ers augmented with bu�ers and auxiliary sta
ks. A notable featureof XSQ is that at any point during query pro
essing, the data that is bu�ered byXSQ must ne
essarily be bu�ered by any streaming XPath query engine. We havedes
ribed the results of a detailed experimental study of XSQ and similar systems.In addition to demonstrating the ability of XSQ to maintain a high throughputwith modest memory requirements, even for large datasets and 
omplex queries,our experimental study provides a valuable 
hara
terization of the performan
e im-pli
ations of XPath features and system designs, as embodied in the systems westudied.A
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68 � F. Peng and S. S. ChawatheA. DTD USED IN IBM XML GENERATOR FOR THE SYNTHETIC DATA<!ELEMENT root (pub*)><!ELEMENT pub (year,book*,paper*, pro
eedings*)><!ELEMENT year (#PCDATA)><!ELEMENT book (title, author, publisher?, year?,pri
e?)><!ATTLIST book id ID #REQUIRED><!ELEMENT paper (title, author, pages?,pro
eedings?, year?)><!ATTLIST paper id ID #IMPLIED><!ELEMENT title (#PCDATA)><!ELEMENT author (name, institute, email, pub?)><!ELEMENT publisher (#PCDATA)><!ELEMENT pages (#PCDATA)><!ELEMENT pri
e (#PCDATA)><!ELEMENT pro
eedings (name, pla
e, time, paper*)><!ATTLIST pro
eedings 
ategory CDATA #IMPLIED><!ELEMENT email (#PCDATA)><!ELEMENT institute (#PCDATA)><!ELEMENT name (first, last)><!ELEMENT pla
e (
ountry, 
ity)><!ELEMENT time (#PCDATA)><!ELEMENT first (#PCDATA)><!ELEMENT last (#PCDATA)><!ELEMENT 
ountry (#PCDATA)><!ELEMENT 
ity (#PCDATA)>B. TEMPLATE FILE USED IN TOXGENEThe template �le used in Toxgene to generate the syntheti
 dataset for the experi-ment in Figure 43 is shown in Figure 54.C. QUERIES AND COMMANDS USED FOR SOME SYSTEMSC.1 GalaxFor GALAX, the query.xq �le is like following:<result> f$shake/root/PLAY/ACT/SCENE/SPEECH/SPEAKER/text()g</result>;The 
ontext �le is like following:define global $shake ftreat as do
ument (do
ument("shake.xml"))g The 
ommand is like following:ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 69<?xml version='1.0' en
oding='ISO-8859-1' ?><!DOCTYPE tox-template SYSTEM 'http://www.
s.toronto.edu/tox/toxgene/ToXgene1_1.dtd'><tox-template><tox-distribution name="
4" type="uniform" minIn
lusive="1" maxIn
lusive="6"></tox-distribution><tox-list name="steps" readFrom="input.xml"><element name="
hunk"><
omplexType><element name="step" type="byte"/></
omplexType></element></tox-list><tox-do
ument name="result"><element name="root"><
omplexType><tox-forea
h path="[steps/
hunk℄" name="s"><element name="
hunk"><
omplexType><element name="a" maxO

urs="unbounded" tox-re
ursionLevels="
4"><
omplexType mixed="true"><tox-s
an path="[$s/step℄"><attribute name="
ount"><simpleType><restri
tion base="byte"><minIn
lusive value="01"/><tox-number sequential="yes"/></restri
tion></simpleType></attribute><tox-alternatives><tox-option odds="10"><element name="prior"><tox-expr value="2"/></element><element name="red" maxO

urs="10000"><tox-expr value="[!℄"/></element><element name="posterior"><tox-expr value="2"/></element></tox-option><tox-option odds="30"><element name="prior"><tox-expr value="2"/></element><element name="green" maxO

urs="10000"><tox-expr value="[!℄"/></element><element name="posterior"><tox-expr value="2"/></element></tox-option><tox-option odds="60"><element name="prior"><tox-expr value="2"/></element><element name="blue" maxO

urs="10000"><tox-expr value="[!℄"/></element><element name="posterior"><tox-expr value="2"/></element></tox-option></tox-alternatives></tox-s
an></
omplexType></element></
omplexType></element></tox-forea
h></
omplexType></element></tox-do
ument></tox-template> Fig. 55: Template �le used in ToxgeneACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



70 � F. Peng and S. S. Chawathetime -f "%U" xmlquery -pi
 -verbose -
ontext galax
ontext.xq galax.n
.xq > galax.n
.outC.2 SaxonFor SAXON, the style-sheet �le is like following:<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.1"><xsl:template mat
h="/"><result><xsl:for-ea
h sele
t="/root/PLAY/ACT/SCENE/SPEECH/SPEAKER"><xsl:value-of sele
t="."/></xsl:for-ea
h></result></xsl:template></xsl:stylesheet>The 
ommand is like following:java 
om.i
l.saxon.StyleSheet -x org.apa
he.xer
es.parsers. SAXParser-t shake.xml saxon.n
.xsl > saxon.n
.outC.3 JoostFor Joost, the transformation �le is like following:<?xml version="1.0" en
oding="ISO-8859-1"?><stx:transform xmlns:stx="http://stx.sour
eforge.net/2002/ns" version="1.0"><stx:template mat
h="/root/PLAY/ACT/SCENE/SPEECH/SPEAKER/text()"><stx:
opy /></stx:template></stx:transform>The 
ommand is like following:time -o -f "%U" java -Dorg.xml.sax.driver=org.apa
he.xer
es. parsers.SAXParsernet.sf.joost.Main shake.xml joost.n
.stx > joost.n
.outC.4 XMLTKNote that we have modi�ed the xrun program so that it reports the running time.The 
ommand is like following:xrun "/root/PLAY/ACT/SCENE/SPEECH/SPEAKER/text()" shake.xml > xrun.n
.outC.5 XQEngineFor XQEngine, the 
ommand to query the SHAKE dataset is like following:java XQE a_and_
.xml 
ymbelin.xml hen_vi_1.xmlACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.



XSQ:A Streaming XPath Engine � 71j_
aesar.xml mer
hant.xml peri
les.xml t_night.xmlall_well.xml dream.xml hen_vi_2.xml john.xmlm_for_m.xml taming.xml troilus.xml as_you.xmlhamlet.xml hen_vi_3.xml lear.xml mu
h_ado.xmlr_and_j.xml tempest.xml two_gent.xml 
om_err.xmlhen_iv_1.xml hen_viii.xml lll.xml m_wives.xmlri
h_iii.xml timon.xml win_tale.xml 
oriolan.xmlhen_iv_2.xml hen_v.xml ma
beth.xml othello.xmlri
h_ii.xml titus.xml "/PLAY/ACT/SCENE/SPEECH/SPEAKER">> XQE.n
.out

ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.


