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Abstract

There is growing interest in software agents [11, 13, 10, 26, 6] that provide a variety of
services to humans, other agents, and third party software applications. Some of these agents
are engaged in hundreds of activities at any given time point. In such cases, agents may
try to examine a set� of activities and leverage commonalities between them in order to
reduce their load. We call thisactivity merging. Unfortunately, in most application domains,
activity merging turns out to be NP-complete. Thus, for each application domain, there is
an integer� (which varies from domain to domain) such that activity merging can merge
up to � activities while satisfying the application’s performance expectations. In this paper,
we consider the problem of what to do when the set of activities exceeds�. Our approach
partitions� into disjoint sets�� � �� � � � � � �� such that each�� contains at most�
activities in it (thus the activities in each�� can be merged using a merging algorithm). When
creating such partitions, we would like to ensure that the activities inside each�� share a
lot of commonality, so that merging yields a lot of savings. In this paper, we propose two
optimal algorithms (based on the�� algorithm and the branch and bound paradigm), as well as
numerous greedy algorithms to solve the problem. We have implemented these algorithms and
conducted detailed experiments. The results point out which algorithms are most appropriate
for scaling agent performance.

Index Terms: software agents, activity merging, activity partitioning, multiple activity
optimization.
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1 Introduction

The number of deployed software agent applications in the world has increased dramatically. For

example, software agents are being used for tasking a group of sensors (cf. Brooks[7]) and for

monitoring the results of the sensing activities. In the commercial world, there is growing interest

in using agents for activities such as creation of multimedia presentations [23], for supply chain

management related activities [30], for financial portfolio management activities[8] and health care

applications[31].

In this paper, we focus on agents that have a high volume of activity.Our work is not going to

help (very much) agents that have a relatively low amount of activity. Some agent researchers argue

that it is preferable to work with simple agents which can then be combined to form intelligent

coalitions to attack semantically and computationally hard problems. Though such agents might

perform only one specialized task, they may receive a large volume of requests. If the agent can

leverage common aspects across its diverse activities so as to reduce its load, its performance will

improve greatly. The idea of merging commonalities amongst diverse activities that an entity is

performing has a long history in computer science. Disk servers [24] schedule reads not of one job

at a time, but of aset of jobs precisely for this reason — when traversing the tracks and sectors on a

disk, they might as well perform reads and writes for pending jobs (without having to revisit those

sectors and tracks). The same is true of multimedia storage servers — when shipping data across

the network, techniques such as adaptive piggy-backing[14, 3] attempt to merge commonalities

between requests so as to ship media objects once rather than twice. Database servers do the same

— rather than process one query at a time, it often makes sense to process multiple queries [27] and

avoid doing any repetitive work. The same is true of AI planning systems as well where multiple

planning requests may be merged to create a lower cost plan[32].

Despite the great interest in merging techniques, almost all the above merging problems are NP-

hard. What this means is that merging is effective when the number of activities being merged

is “not too large.” Thus, for any given application domain�, there is some integer�� which
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describes how many tasks can be successfully merged while still keeping within the performance

expectations of the application.In this paper, we address the problem of what do when the number

of activities a single agent needs to engage in exceeds ��, assuming that we have an existing

method for merging.

Simply put, suppose we are given a set� of activities that an agent� is involved in where��� �

��. Furthermore, suppose there exists a known method�� for merging the activities engaged in by

agent�. In our work, we would like to split the set� of activities into a partition� � �� � � � � ��

such that activities that have common computations are grouped together in each��. Then, we can

merge the activities in�� using the merge algorithm��.

Clearly, there are many possible ways of finding such a partition. We would like to find a partition

that is “optimal” in the sense that the total cost of performing the activities in� is minimized.

Different partitions will have different costs.

In this paper, we start out by formalizing the activity partitioning problem in Section 2. Then,

in Section 3, we develop a set of algorithms to solve the problem. The algorithms fall into two

categories — optimal algorithms (which find an optimal solution) and heuristic algorithms (which

find a suboptimal solution but usually run much faster than the optimal algorithms). Two optimal

algorithms, and several heuristic algorithms are proposed. In Section 4, we perform a detailed

experimental analysis of the algorithms. We report on the results of the experiments and determine

which of the algorithms is most appropriate. Related work is presented in the concluding section

(Sec. 5).

2 Problem Definition

An agent may engage in some space ofactivities. For example, an agent that tasks sensors may

receive high level tasking requests from a GUI client (which in turn receives the tasks from a

human user) and convert these into tasks that are compatible with the capabilities of an array of

sensors. Likewise, the space of activities associated with a database agent may be all SQL queries.
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The space of activities associated with a planning agent may be the set of all possible planning

problems. The space of activities associated with a CNN-style news agent may be the set of all

interests that could possibly be associated with users. In the sequel, we use� to denote some set

of activities drawn from such an activity space.� denotes activities that the agent has to perform,

but has not yet performed.

Definition 1 (Partition) A partition � of a set � of activities is a set ���� ��� � � � � ��� where

each �� is a non-empty subset of � and

1. � = �� � �� � � � � � ��

2. � �� � � �� � �� � 	.

Each �� is called a component of the partition � . When the first condition is replaced by

� 
 �� � �� � � � � � ��, � is called a sub-partition.

A partition� of � splits a set of activities (to be done) into components. In our work, we would

like to partition� into a set������ � � ���� such that each component�� contains activities that

can be merged with “significant” cost savings. For example, if� consists of database activities,

then the queries inside a component�� may be merged using query merging methods (e.g. [27]).

Likewise, if� consists of AI planning activities, then the planning tasks inside a component� �

may be merged using plan merging methods [32]. To determine what partitions are better than

others, we need a cost estimation mechanism.

Definition 2 (Cost estimation function) A cost estimation function � takes a set of activities as

input and returns a real number as output. � is required to satisfy at least the following axioms: (I)

��	�� � � (II) ��	� � �, (III) �� � �� � �����  �����.

Intuitively, ����� denotes the estimated cost of executing the activities in�� after merging. When

�� � �	�� is a singleton set, we abuse notation and write��	�� instead of���	���. We also assume

that the computation of� takes polynomial time. This is consistent with algorithms to estimate

4



merged costs of sets of queries such as those of [27] as well as task merging methods [32]. In this

paper, capitalized�’s denote sets of activities. Lower case	’s denote individual activities.

Problem 1 (Activity Partitioning Problem(APP)) Given a set � of activities, a cost estimation

function �, and a partition � of �, is it the case that there is no other partition � � of � such that
�

���� � ����� 

�

���� �����?

We prove below that APP is NP-hard by using thezero-one multiple knapsack problem (MKP)

[19, 17]. MKP can be stated as: Given a set� of � items, a set� of  knapsacks, profit and

weight vectors�� and�� (�  �  �), and the capacity vector�� (�  �  ),

	�
�

���

�
��� ������

subject to
�

��� ������  �� �� � �

�
��� ����  � �� � �

���� � ��� �� �� � �� �� � �

The above formulation is as a search problem. MKP may be stated as a decision problem by

adding an extra input item�, an assignment of items to knapsacks. The decision problem version

of MKP returns true if the assignment� is an optimal solution to the search problem and false

otherwise. The following theorem shows that the activity partitioning problem is NP-complete.

Theorem 1 The activity partitioning problem is NP-complete.

Proof: As membership in NP is immediate, we prove NP-hardness. We transform the MKP

decision problem to APP. Let be the number of components in�. Create three tables with

the following database schemas1: ��(knapsackid,capacity), ��(itemid, profit,

weight) and�	(knapsackid, itemid). Insert an entry for each item into��, and an

entry for each knapsack into��. Create an entry in�	 for each item, knapsack pair present in the

assignment�. Then, for each item�, we create an SQL query�� given by:

1Informally, schemas list the attributes of a relational table.
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select * from��, ��, �	

where�	.itemid = � and��.itemid =�	.itemid and��.knapsackid =�	.knapsackid

and sum(��.weight)
 ��.capacity

Let the cost,����� � �
�

��
� ��.
2

It is easy to see that the tables and queries can be constructed in polynomial time. Therefore,

when we solve this instance of APP, we minimize the total cost of the queries. As a result, the sum

of the profits will be maximized in the solution. Hence, APP is NP-hard. �

3 Activity Partitioning Algorithms

Although we can transform theMKP problem into APP, we cannot immediately use available

approximation algorithms [19, 17] for theMKP problem. This is because inMKP the profits of

items are constants, that is they do not vary with different knapsacks. Similarly, although APP

looks very similar to graph or set partitioning [9] at first, we also cannot use the approximation

algorithms developed for graph/set partitioning. In the classical graph partitioning problem [12,

16, 22], the graph has a fixed structure and the goal is to partition the vertices such that the sum of

edge weights between partition components is minimized. Similarly, in the case of set partitioning

[12] the sizes (or weights) associated with each element in the set remains a constant.

However, in our case, the cost of a set of activities is not equal to the sum of such costs. It could

be equal to the sum or larger or smaller. Thus, if we try to encode APP via graph/set partitioning,

we would quickly find that neither the savings nor the weights are additive, making it unclear how

to use (or if it is even possible to use) graph/set partitioning algorithms for APP. The cost estimation

function can beany function satisfying the axioms described above. The cost of a set of activities

takes into account, commonalities amongst the tasks, as well as the fact that performing some

tasks in the set may make it easier (or harder) to perform others. This feature distinguishes APP

2Query�� guarantees that assignment of items to knapsacks does not exceed knapsack capacities, and minimizing

the cost guarantees that the profits are maximized.
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from MKP, set partitioning and graph partitioning problems. It is not difficult to see, for example,

that set partitioning can be encoded into APP. However, to use set partitioning algorithms to solve

APP, we would need to show that all instances of APP can also be encoded via set partitioning.

The same applies to graph partitioning and MKP. We describenew algorithms based on different

heuristics to solve APP.

3.1 Running Example

In this section, we present a small running example which will be used to illustrate the algorithms

developed later on in the paper.

Let � be an activity set containing five activities	�� 	�� 	�� 	� and	�. The individual costs of

these activities are as follows:

��	�� � ��� ��	�� � �� ��	�� � �� ��	�� � �� 	�� ��	�� � �

Further, let the pairwise costs of these activity sets given as follows:

���	�� 	��� � �	� ���	�� 	��� � ��� ���	�� 	��� � �
� ���	�� 	��� � ���

���	�� 	��� � ��� ���	�� 	��� � ��� ���	�� 	��� � ���

���	�� 	��� � �� ���	�� 	��� � �
� ���	�� 	��� � ��

In the following sections, we will use this activity set to demonstrate our partitioning algorithms.

Costs of other subsets of� will be defined as needed.

3.2 A�-based Algorithm

We start with an A�-based algorithm, which is guaranteed to find an optimal solution. To adapt

the�� algorithm [20], we first need to define the state space, the cost function� and the heuristic

function�.

Definition 3 (State) A state� is any sub-partitionof �. State � is a goal stateif it is a partitionof

�. Finally, the start state �� � 	.
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Definition 4 (Functions ����� ���� and ����) Suppose � is a cost estimation function and node

� has state � � ���� ��� � � � � ���, and let �����	� �� � ��������	 � ��� � ����� � �  � 

�� ��	��. Then, ���� and ���� are defined as follows:

���� �
��

��� �����

���� � ��������	� �� � 	 � �� �
��
�������

���� � ���� � ����

where � is the cost estimation function.

Intuitively, ���� says the cost of node� is the sum of the costs of the individual components.

���� underestimates the cost to a goal state. This is done as follows. Consider each activity	 that

is in � but that is not in the sub-partition associated with node�. Such an activity can either be

placed in one of the components of node� or may be in a new component. Evaluate the cost of

each of these alternatives and choose the minimal increase����� in cost for adding	 to node�.

To obtain a partition, every activity that is not in the current sub-partition must be added to node

� eventually, so the cost of a solution must be at least greater than the current cost by����� for

all such activities	. This provides the rationale for����. The following example shows how����

and���� are calculated.

Example 3.1 Consider the activity set � given in Section 3.1. Let a node � have state � �

��	�� 	���. Suppose ���	�� 	�� 	��� � 	�, ���	�� 	�� 	��� � �� and ���	�� 	�� 	��� � 	�. Then,

���� and ���� are computed as follows:

���� � ���	�� 	��� � ��	�� � ��	�� � ��

���� � ��������	�� ��� �����	�� ��� �����	�� ���

�����	�� �� � ������	�� 	�� 	���� ���	�� 	���� ��	��� � ���	�� �	� �� � �

�����	�� �� � ������	�� 	�� 	���� ���	�� 	���� ��	��� � ������ �	� �� � �

�����	�� �� � ������	�� 	�� 	���� ���	�� 	���� ��	��� � ���	�� �	� �� � �

���� � �
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Our��-based algorithm is given in Figure 1. The��-based algorithm expands nodes by picking

an unexpanded node� from theOPEN list such that���� � ���� is minimal. TheOPEN list

keeps activities in the increasing order of their���� � ���� values. Once the algorithm chooses

a node to expand, it picks an activity	� by using apick function. Thepick function ,pick(���),

orders activities and chooses from this list, the first activity which has not been assigned to any of

the components in state�. In this paper,pick orders activities based on their index order. The��-

based algorithm terminates when it finds the first goal state. The following example demonstrates

how nodes are expanded.

Example 3.2 Consider the activity set � in Section 3.1. Suppose the ��-based algorithm picks

a node � with state ��	�� 	��� �	��� to expand next, and the pick function returns 	�. The al-

gorithm generates the following three next states: ��	�� 	�� 	��� �	���, ��	�� 	��� �	�� 	���, and

��	�� 	��� �	��� �	���.

If the algorithm returns NIL, this implies that no goal state was reached and hence there is no

solution. Note that if the heuristic function� used by the�� algorithm is admissible, then the

algorithm is guaranteed to find an optimal solution [20]. The heuristic function� is admissible if

and only if����  ����� where����� is the lowest actual cost of getting to a goal node from node

�. The following result shows that our heuristic is admissible.

Theorem 2 (Admissibility of �) For all nodes n, ����  �����. Hence, ��-based algorithm finds

an optimal partition of �.

Proof: Suppose� is a node generated during the execution of the��-based algorithm. Let�

be the state of�, and �� be the best goal state reachable from�. Suppose� is of the form

���� � � � � ��� and�� is of the form���
�� � � � � �

�
��, where� � . Then,���� � ��������	� �� �

	 � ���
��
��� ���� and����� �

��
��� ���

�
� ��

��
��� �����. Thus,����  �����, for all �, because

if � �� ��, then�� contains at least one more activity	�, and	� incurs at least��������	�� ���,

i.e., minimum of the minimum cost increment of those activities which are not in�, because
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��-based(�)
/* Input: � (a set of activities) */
/* Output: � if one exists, NIL otherwise */

OPEN :=�
�� := pick(�, �);
�������� := ������ ; compute	���� and
����; insert�� into OPEN
while (OPEN �� �) do
� := OPEN.head; delete� from OPEN;� := n.state
if � is a goal statethen Return(s)
else /* expand and generate children */
�� := pick(s,�)
forall �� � � do

/* insert�� into �� */
�� �� ���� � � � � ����� �� � ����� � � � � ���
create a new node��; ��.state =��;
compute	���� and
����; insert�� into OPEN;

/* also create a new component with�� */
create a new node��

��.state :=���� � � � � ��� �����
compute	���� and
����; insert�� into OPEN;

end(while)
Return (NIL)
End-Algorithm

Figure 1:��-based Algorithm

�� � �� � �����  ����� and ��	�� � � (axioms (I) and (III) of the cost estimation func-

tion). Therefore,����  �����. �.

The��-basedalgorithm has the property that if the heuristic� satisfies the so calledmonotone

restriction [20], then the first goal state encountered during the search is guaranteed to be the

optimal solution. The monotone restriction requires that for all�, ����  ��� �� � ������� �����.

Theorem 3 The heuristic function � satisfies the monotone restriction.

Proof: Let � be a node generated during the execution of the��-based algorithm and let�� be

one of the nodes generated by expanding�. Further let� be the state of� and�� be the state

of ��. Suppose��������� � 	. Then,�����	� ��  ����� � ����, because the only difference
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between� and�� is the addition of	 in ��, and	 incurs at least�����	� �� of additional cost. As,

���� � ��������	� �� � 	 � � � �
��
��� ����, ����  �����	� ��, because���� is the minimum

of all cost increments. Thus,����  ����� � ����. As, ����� � � (due to definitions of cost

estimation function and�), we can conclude that����  ������ ���� � �����; i.e. � satisfies the

monotone restriction. �.

As our heuristic function is admissible and it satisfies the monotone restriction, the first goal state

encountered in the��-based algorithm is guarenteed to be the optimal solution.

3.3 Branch and Bound (BAB) Algorithm

In this section, we define a branch and bound (BAB) procedure which is also guaranteed to find

an optimal solution - however, the search strategy used is somewhat different. The BAB algorithm

maintainsnodes � which have the following fields:state (as defined in Definition 3),gval and

uval. gval specifies the value���� (cf. Definition 4), whileuval contains���� which is defined

below. Intuitively,���� � ���� overestimates the cost of the minimal cost solution reachable from

node�.3

Definition 5 Let node � have state � � ���� ��� � � � � ���. Then ���� �
�

����� ��	��. where

�� � ��
��
��� ��, and � is a cost estimation function.

Example 3.3 Consider the activity set provided in Section 3.1. Let � be a node with state � �

��	�� 	��� �	���. Then,

���� � ���	�� 	��� � ��	�� � �	 � � � 	�

���� � ��	�� � ��	�� � � � � � �	

TheBAB algorithm is provided in Figure 2, and uses the following definition of an “expansion.”

Definition 6 A partition � of � is reachable from a sub-partition � � if and only if there is a

sequence ��� � � � � �� of sub-partitions such that

3Contrast this with���� presented earlier that represents anunderestimate.
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1. �� � � � and �� � � , and

2. ������	� � ��
�
�����

��� such that ���� is an expansion of �� by 	� .

���� is an expansion of �� by 	� if and only if either

1. ��� � �� such that �� � �	�� � ����, or

2. ���� � �� � ��	���.

The algorithm is first called with the parameters��� 	��	� �����, where�	� ���� =
�

���� ��	��.

The algorithm carries� ��! 	"� across recursive calls to prune nodes that would not lead to

cheaper solutions. In each recursive invocation, the algorithm prunes the sub-partitions in�	��#���

whose�$	" exceeds that of the best solution found so far, and expands the other sub-partitions with

an activity in�. The algorithm recursively calls itself with one less activity in� and the resulting

set of sub-partitions obtained in this invocation. To further facilitate pruning, the OPEN list is

organized in ascending order of���� � ���� and theBAB algorithm always chooses the first node

in OPEN for expansion. The recursion terminates when there are no more activities in�. The

following example demonstrates how theBAB algorithm works for the first three recursive calls

for the activity set given in Section 3.1.

Example 3.4 The BAB algorithm is first invoked with ��	�� 	�� 	�� 	�� 	��� 	�
�

���� ��	�� � ���.

As �	��#��� is empty in the first invocation, the algorithm executes lines 6-8, and creates a new

node n with ��	� � ��, �$	" � ��, and �$	" � �, and inserts it into OPEN. The algorithm

executes lines 13-20 next, as ���$	" � ��  � ��! 	"� � ��. It picks 	� (as ordered by

their index) and creates a new sub-partition ��	��� and inserts it into �	��������. As there

are no more nodes in OPEN, and � �� 	, the algorithm recursively calls itself with the values

��	�� 	�� 	�� 	��� ��	���� ��� (line 28).

In the second invocation, the algorithm executes lines 1-4, creating a node � with ��	� �

��	���, ���$	" � 	�, and ���$	" � ��. This new node is now picked for expansion as it is
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the only node in OPEN. The BAB algorithm chooses to insert 	� next. It creates two new sub-

partitions ��	�� 	��� and ��	��� �	���, and inserts them into �	��������. The algorithm is now

invoked with values ��	�� 	�� 	��� ���	�� 	���� ��	��� �	����� ��� (line 28).

In the third recursive call of the algorithm, lines 1-4 are executed again. This time two new nodes

are created as follows:

�����	� � ��	�� 	���� ����$	" � 	�� ����$	" � �	

�����	� � ��	��� �	���� ����$	" � 	�� ����$	" � ��

The algorithm picks 	� to insert next. Since, ����$	" � ����$	" 
 ����$	" � ����$	", �� is ex-

panded first. In this case, ����$	"�����$	" � 	���	 � �� 
 � ��! 	"� � ��, hence � ��! 	"� 

is updated to be 33. The algorithm creates the sub-partitions ��	�� 	�� 	��� and ��	�� 	��� �	���

and inserts these two sub-partitions into �	�������� (lines 16-20). Then, �� is deleted from

OPEN and considered for expansion (lines 11 and 12). The algorithm creates the following

three sub-partitions and inserts them into �	��������: ��	�� 	��� �	���, ��	��� �	�� 	��� and

��	��� �	��� �	���. The BAB algorithm is once again invoked recursively with values ��	�� 	���

���	�� 	�� 	���� ��	�� 	��� �	���� ��	�� 	��� �	���� ��	��� �	�� 	���� ��	��� �	��� �	����� ���.

Theorem 4 The BAB algorithm finds an optimal partition of �.

Proof: We proceed by induction on the size of�.

Base Step: ��� � 	, i.e.,� � �	�� 	��. There are two possible partitions for�; �� � ��	�� 	���

and�� � ��	��� �	���. The algorithm is first called with��	�� 	��� 	� ��	�� � ��	���. Without

loss of generality, let us assume that theBAB algorithm choose	� to insert first. It then creates the

sub-partition��	���, and invokes itself recursively with the parameters��	��� ���	����� ��	�� �

��	���.

The BAB algorithm expands the sub-partition��	��� with 	� to create nodes�� and�� such

that �����	� � ��	�� 	��� � �� and�����	� � ��	��� �	��� � ��. As there are no more

4When we say�� � � , we mean that��� � � such that�� � �� .
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activities left in�, ����$	" � ����$	" � �. Moreover,����$	" � ����� and����$	" � �����. If

����� 
 �����, then the algorithm sets� ��! 	"� to ����� and returns��, which is the optimal

solution. Note that at this step� ��! 	"� � �����. Otherwise, i.e.,����� � ����� then node�� is

Branch&Bound(�, �������, ����� ����)

/* Input: �: set of activities */
/* ������� (set of sub-partitions) and����� ���� */

/* Output: � */

(1) forall � � ������� do
(2) create a new node�; �.state :=� ;
(3) ������ ��

�
������� �� ����� ; 4 ��	��� ��

�
���� �����;

(4) insert� into OPEN;
(5) if (������� � �) then
(6) create a new node�; �.state :=��;
(7) ������ ��

�
���� �����; ��	��� �� �

(8) insert� into OPEN;
(9) ��������� �� �;
(10) �� := pick(n.state,�);
(11) while (OPEN �� �) do
(12) � := OPEN.head; delete� from OPEN;
(13) if (��	��� � ����� ����) then
(14) if (��	��� � ������ � ����� ����) then
(15) ����� ���� �� ��	��� � ������;
(16) forall �� � ������� do
(17) � � �� ���� � � � � ����� �� � ����� � � � � ���;
(18) insert� � into ���������;
(19) � � := ���� � � � � ��� �����;
(20) insert� � into ���������;
(21) end(while)
(22) if (� � �) then
(23) ������� �� ������������
����; ������ �� ����������
����
(24) forall � � ��������� do
(25) if (��� � � �������) then
(26) ������� �� ��� �; ������ �� � ;
(27) Return (������);
(28) else BAB (�	 ����� ���������� ����� ����);
End-Algorithm

Figure 2: Branch and Bound Algorithm
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pruned, because����$	" � ����� � ����� � � ��! 	"� , hence the algorithm returns�� which is

the optimal solution. If����� � �����, then the algorithm returns one of them and the other is in

�	��������.

Inductive Step: Let us state the inductive hypothesis as:��, if� has � elements then every optimal

partition of � is reachable from the set “�	��������.”

Let ��� � � � �. Let us pick an arbitrary activity	� � � and remove it from� to get�� �

���	��. By the inductive hypothesis, theBAB algorithm finds an optimal partition for� �. Let us

consider the set�	�������� which is computed in the last recursive invocation of the algorithm and

also contains the optimal solution. We expand all sub-partitions� � �	�������� with 	 �. At this

stage,� ��! 	"� � ����	������������� ��. TheBAB algorithm inserts	� into each component

�� � � , for all � � �	��������, and also creates partitions� � ��	���. Among these, the

BAB algorithm chooses the partition with the least cost, because it would update� ��! 	"� only

if it finds a node whose state has a lower cost (i.e.�$	"). Note that at this stage all�$	"’s are

0, as there are no activities left. As theBAB finds the least cost way of including	� into the

nodes in��" and the cost of a set of activities does not decrease when we add more activities (i.e.

�� � �� � �����  �����, axiom III of the cost estimation function), the partition found by the

BAB algorithm for� is the optimal partition. �

3.4 Greedy Algorithms

The algorithms described in sections 3.2 and 3.3 are guaranteed to find an optimal partition of a

set of activities. As the activity partitioning problem is NP-hard, these algorithms take exponential

time. In this section, we develop greedy algorithms which run fast, but may find a suboptimal

solution. These algorithms use a concept called acluster graph, which is a heuristic representation

to capture savings between two activity sets. Given a set� of activities, a cluster graph is a

weighted graph whose vertices aredisjoint sets of activities. Given any set� of activities, we may

associate with it, acanonical cluster graph.
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Definition 7 (Canonical Cluster Graph (���)) A canonical cluster graphfor a set� of activities

is an undirected weighted graph where:

1. ! � ��	�� � 	� � ��,

2. % � ���	��� �	��� � 	�� 	� � � 	�� ��	�� � ��	��� ���	�� 	��� � ��,

3. ���	��� �	��� � ��	�� � ��	��� ���	�� 	���

Example 3.5 The canonical cluster graph associated with the activity set � in our running exam-

ple is provided in Figure 3. Edge weights are computed as follows:

���	��� �	��� � ��	�� � ��	��� ���	�� 	��� � �� � �� �	 � 


���	��� �	��� � ��	�� � ��	��� ���	�� 	��� � �� � �� �� � �

���	��� �	��� � ��	�� � ��	��� ���	�� 	��� � �� � �� �
 � ��

���	��� �	��� � ��	�� � ��	��� ���	�� 	��� � �� � �� �� � �

���	��� �	��� � ��	�� � ��	��� ���	�� 	��� � � � �� �� � 

���	��� �	��� � ��	�� � ��	��� ���	�� 	��� � � � �� �� � �

���	��� �	��� � ��	�� � ��	��� ���	�� 	��� � � � �� �� � �	

���	��� �	��� � ��	�� � ��	��� ���	�� 	��� � � � �� � � �

���	��� �	��� � ��	�� � ��	��� ���	�� 	��� � � � �� �
 � �

���	��� �	��� � ��	�� � ��	��� ���	�� 	��� � � � �� �� � �

As only ���	��� �	���� ���	��� �	���� ���	��� �	��� and ���	��� �	��� have positive values,

the only edges in the canonical cluster graph associated with � are shown in Figure 3.

a5a4a2
a3a1

6 4 5 3

Figure 3: Example Cluster Graph

The basic greedy algorithm is shown in Figure 4. TheGreedy-Basic uses canonical cluster

graphs, which capture pair-wise savings between two activities. TheGreedy-Basic algorithm tries
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to build a partition iteratively. In each iteration, it finds an edge with the highest weight (savings)

in the cluster graph and deletes it. If more than one such edge exists, one is arbitrarily picked. It

examines the two activities associated with that edge and checks to see if either of those activities

already occur in a component of the current partition. There are four cases to check depending on

whether one, both or neither activities occur in an existing component.

Case 1: If both 	� and	� are in the same component, then we do not have to do anything.

Case 2: If one of 	� or 	� is in an existing component but not the other, then the other can be

placed in the same component.

Case 3: If neither one is in any of the components, then we create a new component�	�� 	��.

Case 4: If both 	� and	� occur in existing but different components, then it may be possible to

move one of them from one component into the other. This should be done only if it yields

savings.

It is easy to see that the loop ofGreedy-Basic is executed&��%�� times, where�%� is the number

of edges in the canonical cluster graph. Moreover, each execution of the loop may take&��! ��

time (where�! � is the number of vertices in the canonical cluster graph) to check if	�� 	� occur in

a component. Therefore, theGreedy-Basic algorithm is polynomial in the size of the input� as

long as the cost estimation function� runs in polynomial time.

The following example illustrates how theGreedy-Basic algorithm works.

Example 3.6 Consider the canonical cluster graph in Figure 3. Initially, � � 	. In the first

iteration, the maximum weight edge �	�� 	�� is picked, and deleted from the graph. As both 	�

and 	� are not in � , the Greedy-Basic algorithm creates a new component �� and inserts 	�

and 	� into ��. In the next iteration, the algorithm picks the edge �	�� 	��, which has weight 5.

Again, neither 	� nor 	� is in the current solution. Hence a new component �� is created and

the sub-partition � � ��	�� 	��� �	�� 	��� is obtained. The next edge to be picked is �	�� 	��.
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Greedy-Basic(

�)
/* Input: 

� (canonical cluster graph of�) */
/* Output: � */

� := �; � �� �;
while (�� � 

�) do
� �� ���� ���, s.t.���� is maximum in

�
delete� from 

�
if (��� � � ���� �� � ��) then

if (��� �� �� � � ���� �� � ��) then
if (���� � ����� � ���� 	 ����� � ����� � �����)

then delete�� from��; insert�� into ��;
if (���� � ����� � ���� 	 ����� � ����� � �����)

then delete�� from ��; insert�� into ��;
else /* � ��� ���� �� � �� */

insert�� into ��

else /* � ��� ���� �� � �� */
if (��� � � ���� �� � ��) then

insert�� into ��

else
� �� �� �; �� �� ���� ���; � := � � ����;

end(while)
Return (�)
End-Algorithm

Figure 4: Basic Greedy Algorithm

Here, both 	� and 	� are in the solution, but are in two different components of � . The algorithm

considers the following three alternatives: �� � ��	�� 	��� �	�� 	���, �� � ��	�� 	�� 	��� �	���,

and �� � ��	��� �	�� 	�� 	���. Recall from Example 3.1 that ���	�� 	�� 	��� � 	� and suppose

that ���	�� 	�� 	��� � ��. Our algorithm computes the cost of these sub-partitions as: ����� �

�	�� � ��, ����� � 	��� � 	� and ����� � ����� � 	� and chooses ��. In the last iteration,

the algorithm picks the edge �	�� 	��. As 	� is already in the current solution, the algorithm inserts

	� into the same component as 	�. The algorithm terminates when it exhausts all the edges in the

graph, and returns the partition � � ��	�� 	��� �	�� 	�� 	���.
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One problem with theGreedy-Basic algorithm is the following: Once we start inserting activities

into components, the edge labels in the graph should be updated. For instance in Example 3.6,

when the algorithm creates the component�	�� 	��, the savings obtained by optimizing	� and	�

together is no longer 4. The reason for this is that when	� and	� are optimized together, the plan

to execute	� might change, e.g. to reuse results of	�. As a result, the savings obtained when

optimizing	� and	� together is different from the savings obtained when all three are optimized

together. One obvious way to solve this problem is to recompute the edge weights for those edges

that are adjacent to the deleted edges after each iteration. To update edge weights and properly

merge vertices after each iteration, we define a routine, calledReduce. Reduce takes a cluster

graph and an edge���� ��� in this cluster graph as input and merges��� �� together into one

vertex�� � �� such that all edges between other vertices�� and either�� or �� are now between

that vertex and the merged vertex�� � ��. The weights of these edges are recomputed to reflect

the savings between those vertices and the newly merged vertex�� � ��.

Definition 8 (Cluster Graph Reduction; Reduce) The function � ��� takes a cluster graph

�' � �!�%� ��, and an edge  � ���� ��� in this graph as input, and produces another clus-

ter graph �'� � �! �� % �� ��� as output such that,

1. ! � � ! � ���� ��� � ��� � ����

2. % � � % � ������ ��� � �� � ��'� � ����� ��� � �� � ��'� � ����� ��� � �� �

��'� � ����� ��� � �� � ��'��.

3. ������ ��� �

�������
������

����� ��� if �� (� ���� ���

���� � ��� � ������

���� � �� � ��� otherwise

Reduce is easily implementable in time linear in the number of edges in the cluster graph. The

next greedy algorithm,Greedy-WU, which is provided in Figure 5, usesReduce to adjust edge

weights correctly. Whenever it picks the maximum weight edge from the graph, it checks if the

activity sets associated with that edge are already in some component. If so, it simply deletes that
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edge, and continues. If one of the activity sets is a subset of an existing component, thenGreedy-

WU (Greedy with Weight Update) algorithm unions that activity set with the existing component,

and appliesReduce to create a new vertex and update the weights of adjacent edges. If neither

activity set associated with the edge is in a component, then it creates a new component which is

the union of the two activity sets, and invokesReduce to create a new vertex and recompute the

weights of adjacent edges.

The running time of theGreedy-WU algorithm is&��%� � ��%� � �! ����: The algorithm makes

&��%�� iterations and each iteration takes at most�! �� � �%� time to execute:&��! ��� time to

check subsets, and&��%�� to execute theReduce routine. The following example illustrates how

theGreedy-WU algorithm works.

Greedy-WU(

�)
/* Input: 

� (canonical cluster graph of�) */
/* Output: � */
� := �; � �� �;
while (�� � 
�) do
� �� ���� ���, s.t.���� is maximum in
�
delete� from 
�
if (��� � � ���� ��  ��) then

if (��� �� �� � � ���� ��  ��) then
delete���� ��� from��;

else /* � ��� ���� ��  �� */
�� �� �� ���;
�� �� Reduce������� ��);

else /* � ��� ���� ��  �� */
if (��� � � ���� ��  ��) then
�� �� �� ���;
�� �� Reduce������� ���;

else
� �� �� �; �� �� �� ���;
�� �� Reduce������� ���;
� := � � ����;

end(while)
Return (�)
End-Algorithm

Greedy-NMA(

�)
/* Input: 

� (canonical cluster graph of�) */
/* Output: � */
� := �; � �� �;
while (�� � 

�) do
� �� ���� ���, s.t.���� is maximum in

�
delete� from 

�
if (� ��� � � ���� �� � ��) then

if (� ��� �� �� � � ���� �� � ��) then
� �� �� �; �� �� ���� ���;
� := � � ����;

else /*��� � � ���� �� � �� */
insert�� into ��;

else /* ��� � � ���� �� � �� */
if (� ��� �� �� � � ���� �� � ��) then

insert�� into ��;
end(while)
Return (�)
End-Algorithm

Figure 5: Greedy with Weight Update and Greedy with No Move Around Algorithms
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Example 3.7 In the first iteration, the Greedy-WU algorithm picks the edge �	�� 	��, which has

the maximum weight. It creates a new component �� � �	�� 	�� and inserts �� into � . It then

invokes Reduce(�	��� �	��), which merges the vertices containing 	� and 	�, and recomputes the

weight ���	�� 	��� �	���. Recall from Example 3.1 that ���	�� 	�� 	��� � 	�. Then:

���	�� 	��� �	��� � ���	�� 	��� � ��	��� ���	�� 	�� 	��� � �	 � �� 	� � ��

As the weight is negative, no edge is created between �	�� 	�� and 	�, resulting in the cluster

graph given in Figure 6. In the next iteration, the maximum weight edge �	�� 	�� is picked. As

neither 	� nor 	� is in the solution, a new component �� � �	�� 	�� is created and inserted into � .

Reduce(�	��� �	��� is then invoked, and the weights are updated. Suppose ���	�� 	�� 	��� � ��.

Then,

���	�� 	��� �	��� � ���	�� 	��� � ��	��� ���	�� 	�� 	��� � � � �� �� � �

The cluster graph after this iteration is shown in Figure 7. Finally, the only edge left, i.e.,

��	�� 	��� �	���, is picked. Hence, 	� is not in the current solution, it is inserted into �� and

the algorithm returns � � ��	�� 	��� �	�� 	�� 	���.

1 2
5 3a3 5{a , a } a4 a

Figure 6: Cluster Graph After the 1st Iteration

1
{a , a }21 {a , a }43 5

a

Figure 7: Cluster Graph After the 2nd Iteration

When we create the canonical cluster graph associated with a set� of activities, we only need

to invoke the cost estimation function on sets containing two elements. However, theGreedy-

Basic algorithm may need to invoke the cost estimation function on activity sets involving many

activities. We can improve the running time of theGreedy-Basic algorithm by restricting the

number of choices it examines at each iteration. More specifically, if we do not move activities

across components once they are inserted into some component, the greedy algorithm does not
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have to consider costs of alternatives when two activities are in two different components in the

current solution. This give rise to theGreedy-NMA (Greedy with No Move Around) algorithm,

which does not modify the current solution when two activities are in the solution, but in two

different components. This algorithm is provided in Figure 5. TheGreedy-NMA algorithm also

runs in&��%� � �! �� time. The following example illustrates theGreedy-NMA algorithm.

Example 3.8 As in the case of the Greedy-Basic algorithm (Example 3.6), the Greedy-NMA al-

gorithm picks the edge �	�� 	�� and �	�� 	�� in the first and second iterations, respectively, and

creates the partial solution � � ��	�� 	��� �	�� 	���. Greedy-NMA differs from Greedy-Basic

in the next iteration, when it picks the edge �	�� 	��. Instead of considering alternatives as the

Greedy-Basic algorithm does, it does not change the current solution. In the final iteration, the

algorithm picks �	�� 	�� and inserts 	� in the same component as 	�, resulting in the final partition

��	�� 	��� �	�� 	�� 	���.

3.4.1 Improving the Quality of the Partitions Produced By the Greedy Algorithms

In this section, we study how we can increase the quality of the partitions found. The lower the

cost associated with a partition, the better the quality. To achieve this, we introduce a procedure

calledImproveQuality which takes a partition produced by one of the greedy algorithms, and tries

to decrease the cost by moving some of the activities across components of the input partition.

This procedure is described in Figure 8.

The ImproveQuality procedure maintains a data structure,"���, which is a sorted array of ac-

tivities in decreasing order of their individual costs. It then considers the first	� �� number of

activities from"���, i.e., the first	� �� number of activities with the highest individual costs. For

each activity	� the procedure examines, it deletes	� from its current component, and tries to in-

sert	� into every other component in the current solution. If the cost of the resulting (sub)partition

is less than that of the current solution, the procedure replaces the current solution with this new

(sub)partition with the least cost.
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ImproveQuality(�, �, ��� ��)

/* Input: �: a set of activities */
/* � � ���� � � � � ��� : a partition of� */
/* ��� �� : maximum number of activities to be considered */

/* Output: � */

���� := sort activities in decreasing order of their individual costs
������ := �;
forall ������	, s.t. � � ��� �� do

find�� , s.t. ������	 � ��

remove������	 from ��

forall �� �� �� � ������ do
���� := ���� � � � � �� � �������	�� � � � � ���
if (������ � � �������� �) then
������ �� ���� ;

Return (������ );

Figure 8: Procedure to Improve the Quality of Output Partitions

3.5 Hill Climbing Algorithm

The last algorithm that we consider uses a steepest descent hill climbing strategy. TheHillClimb

algorithm, provided in Figure 9, creates partitions by inserting one activity into the current subpar-

tition at a time. It starts with an empty partition and inserts the activity into the component that

incurs the leastadditional cost. TheHillClimb algorithm performs� iterations, one iteration per

activity, and each iteration runs in&������ time, where�� is the number of components in iteration

�. This is because of the fact that in each iteration, it either inserts an activity into one of the exist-

ing �� components, or creates a singleton component. In the worst case, there are� components in

iteration�, and theHillClimb algorithm creates one more component in each iteration, i.e., inserts

activities as singletons. In that case, the total number of cases the algorithm has to consider is

����������	
�

, hence the algorithm runs in&������ time. The following example demonstrates how

theHillClimb algorithm works.
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HillClimb(�, �� �� ����������)
/* Input: � (a set of activities),�� �� ���������� (no of activities) */
/* Output: � */

� := ������; count := 1;
while ( count� no of activities)do
� := � � ������������;
count := count + 1;
������� :=

�
���� �����;

������ := � ;
forall �� � � do
���� := ���� � � � � ����� �� � ���������� � � � � ���
������� =

�
������� �����;

if (������� � �������) then
������� := �������;
������ := ���� ;

� := ���� ;
end(while)
Return (������);
End-Algorithm

Figure 9:Hill Climb Algorithm

Example 3.9 Consider the activity set � described in Section 3.1. Suppose the activities are

inserted in the order they are given. First, �� � ��	���. When the algorithm inserts 	�, it can

either insert 	� in the same component as 	� or it can create a new component that contains only

	�. ����	�� 	����� ����� � �	� �� � 	, and ���	��� � ���	���� ����� � ��� � ��� �� � �.

As the first sub-partition causes a smaller cost increase, �� � ��	�� 	��� and ����� � �	. 	� is

inserted next. Again there are two possibilities. This time, ����	�� 	�� 	���������� � 	���	 � �,

and ����	�� 	��� �	����� ����� � ��	 � ��� �	 � �. As the second option yields a smaller cost

increase, �� � ��	�� 	��� �	��� and ����� � �	 � � � ��. In the next iteration, the HillClimb

algorithm inserts 	�. Now, there are three possibilities: 	� can be inserted into either one of

the existing components, or a new component that contains only 	� can be created. Recall from

Example 3.1 that ���	�� 	�� 	��� � ��. Then, ����	�� 	�� 	��� �	���� � ����� � ��� � �� �

�� � �, ����	�� 	��� �	�� 	���� � ����� � ��	 � �� � �� � �, and ����	�� 	��� �	��� �	���� �
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����� � ��	 � � � �� � �� � �. As the second alternative involves a lower cost increase, �� �

��	�� 	��� �	�� 	



current partition or by creating a new partitionwithout violating the component size constraint.

The definition of���� is now given in terms of the new��������� function. It is easy to see that

� defined thus is still an underestimate of the cost to a solution from the current node.

4 Experimental Results

We have implemented all algorithms described here ( versions of theBAB andHillClimb algo-

rithms with component constraints were not implemented as they don’t scale well). We wrote a

program to simulate the cost estimation function. This program takesnumber of activities, number

of clusters, overlap probability, overlap degree, andmaximum cost as input. It uniformly assigns a

cost from the [0,maximum cost] interval to individual activities. It then computes costs of activity

sets as follows. As each activity is likely to overlap with only some (not all) other activities, there

will be clusters of activities that can potentially be merged. To simulate this behavior, we first

assign each activity to one of the clusters. Only activities in the same cluster overlap. Anoverlap

probability determines activity pairs in a cluster that share computations. Given a pair of activities

from �, the overlap probability gives the probability that the pair will overlap. We then use an

overlap degree to measure the savings obtained when two activitiesdo overlap. Suppose we know

activities	�� 	� overlap. Theoverlap degree in this case is����	�����	����������	
��������	�����		

. Intuitively, the

larger the overlap degree, the greater the savings obtained by merging two activities.

In the following sections, we describe several experiments to evaluate the performance of the

algorithms in terms of both their running times, and the quality of the solutions they produce.

Moreover, we evaluated the algorithms presented in Section 3 when there were no component

constraints, as well as when there were such constraints. In all experiments reported here, we ran

the algorithms multiple times on a Sun Ultra1 machine with 320 MB memory running Solaris 2.6

and used the averages in the graphs. In the following, we will report��)�(	$ �	� � ���, (CI =

Confidence Interval) for 95% confidence intervals in the graphs where we plot running times. The

reason for reporting a normalized number is due to the high deviation between the running times
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of the algorithms.

4.1 Performance of Algorithms without Component Constraints

In this section, we report on experiments that evaluate the performance of activity partitioning

algorithms without component size constraints.

4.1.1 Scalability of the Algorithms

The first experiment compares the running time of our algorithms. Table 1 show the results. It

turns out that��-based ran out of memory when the number of activities exceeded 10, andBAB

ran out of memory when the number of activities exceeded 11. The reason for this is that the

OPEN list quickly grows overwhelmingly large. Hence, the tables only show results for 10 ac-

tivities. Although the��-based algorithm is faster thanBAB, it runs out of memory faster. Both

algorithms have much longer running times compared to the heuristic-based algorithms. This is ex-

pected as the problem is NP-hard, and both��-based andBAB algorithms find optimal solutions.

��)�(	$ �	� � ��� 
 �� for the tibastar algorithm; it is less than	� for theBAB algorithm and

it is less than for the greedy algorithms.

Scalability of the Greedy Algorithms

As the heuristic algorithms were very fast, we increased the number of activities to be partitioned.

We first fixed the overlap degree and overlap probability constant at 0.2, and ran two experiments.

In the first experiment, we kept the number of activities within a cluster constant at 25, and in the

second, the number of activities within a cluster was 50. Figures 10 and 11 show the results.

In this experiment, theHillClimb algorithm ran out of memory around 400 activities and did not

scale up very well. Recall that theHillClimb algorithm uses the same expansion function as the

��-based algorithm, but keeps the best sub-partition at each node. When the number of activities

in the input set exceed 350-400 activities the algorithm generates too many children nodes and runs
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No of Activities ��-based BAB Greedy-Basic Greedy-NMA Greedy-WU Hill Climb

5 17.24 19.84 5.28 5.04 7.92 6.44

6 53.4 58.26 6.46 6.2 10.72 8.54

7 142.72 158.44 8.2 7.58 14.84 11.02

8 479.02 503.5 10.02 9.4 19.26 13.8

9 1431.7 1657.5 11.94 11.56 25.14 17.16

10 4189.44 3432.38 15.68 13.8 31.4 20.92

11 4149.56 18.7 16.14 38.12 24.96

Table 1: Running times of the Algorithms (in millisecs) for (o-prob=0.8, o-degree=0.6, no-of-

clusters=1, max-cost=100)

out of memory. Therefore, we only show the scalability results for the greedy algorithms. This

result suggests thatthe cluster graph representation is a very effective heuristic.

When the number of activities within a cluster is 25 (Figure 10), the running times of the algo-

rithms are very close, and they handle 1000 activities in about 140secs. On the other hand, when

the number of activities within a cluster is increased to 50, then the execution time of theGreedy-

WU algorithm is much longer than the other two greedy algorithms. This is expected because the

Greedy-WU recomputes edge weights after each iteration, and the larger the number of activities,

the larger the number of edges in the cluster graph. Moreover, all algorithms run much slower in

the second experiment.

In this experiment we measured the effect of changing the overlap probability on the running

time of the greedy algorithms. Recall that greedy algorithms use the cluster graph representation

and their running time depends on the number of edges in the cluster graph. Moreover, the overlap

probability affects the number of edges in the cluster graph. For this experiment, we kept the

overlap degree constant at 0.4 and ran experiments with overlap probabilities 0.2, and 0.4. The

number of activities within a cluster was also kept constant at 25. The results are shown in Figures
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12 and 13.��)�(	$ �	� � ��� 
 �� in Figure 12 for 95% confidence interval, and it is less than

1.6 in Figure 13. As expected, the algorithms have a slightly longer running time and the relative

difference between the algorithms is more explicit when the overlap probability is higher (i.e 0..4).

4.1.2 Quality of the Output Partitions

As the greedy algorithms may compute suboptimal solutions, we evaluated the quality of solutions

produced against the optimal solution. We used the following metric for this purpose. Given a set

� of activities, and a partition� of �, the cost reduction percentage realized by� is
�

��� ��	��
�

���	 ������
��� ��	�

�

We use percentage savings instead of absolute numbers because we use a simulated cost estimation

function. As savings percentage is already a normalized number, we directly report confidence

interval in the graphs where we plot savings percentages.

We first studied how savings are affected by changes in the amount of overlap between activities.

We kept the overlap probability constant at 0.4, and ran experiments for overlap degrees 0.2, 0.4,
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0.6 and 0.8. Figures 14, 15, 16 and 17 show the results. We only plotted savings generated by

theBAB algorithm as bothBAB and��-based find optimal solutions and hence produce the same

result. In Figure 14��)� 
 �, in Figure 15��)� 
 ���, in Figure 16��)� 
 	�� and finally in

Figure 17��)� 
 ��� for 95% confidence intervals.

In general, the solutions produced by theGreedy-Basic algorithm are about 0.8–13% worse

than the optimal solutions. The solutions produced by theGreedy-NMA algorithm are 0.8–20%

worse, and the ones produced by theGreedy-WU algorithm are 0.06–9.4% worse than the optimal

solutions. The quality of the solutions produced by theHillClimb algorithm is not as good as the

greedy solutions, and they are about 2.4–23% worse than the optimal solutions. As we increase

the overlap degree in the input activity set, the difference between the savings generated by the

heuristic algorithms and the ones computed by the optimal algorithms also increases.

We also studied how savings changed with changes in overlap probability. We kept the overlap

between the activities constant at 0.6, and ran experiments for overlap probabilities 0.4, 0.6 and

0.8. Figures 16, 18, and 19 show the results of these experiments. In Figure 16��)� 
 	��, in

Figure 18��)� 
 	�
 and in Figure 19��)� 
 	�� for 95% confidence intervals. As these and
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previous results show that confidence intervals change more relative to the overlap degree than to

the overlap probability, we conclude that the greedy algorithms are more sensitive to the overlap

degree.

As the overlap probability increases, the savings obtained by partitioning also increases. The rel-

ative performance of the greedy algorithms and theHillClimb algorithm stays the same. However,

the quality of the partitions produced by the heuristic algorithms seem to degrade as the overlap
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degree=0.6, no-of-clusters=1, max-cost=100)

probability increases. The reason for this is that when the overlap probability is higher, more ac-

tivities share computations. As the heuristic algorithms consider relatively few alternatives, their

performance degrades. Nevertheless, we do not expect real applications to have 60% to 80% over-

lap.

Although we could not get the optimal solution after 11 activities, we still ran the greedy algo-

rithms up to 1000 activities to see the quality of partitions they produced. We kept the overlap

probability constant at 0.2, and overlap degree constant at 0.4, and ran two experiments. In the first

one, the number of activities within a cluster was 25, and in the second one it was 50. Figures 20

and 21 show the results. For 95% confidence intervals,��)� 
 ��
 in Figure 20, and��)� 
 ���

for Greedy-Basic andGreedy-NMA, and��)� 
  for Greedy-WU in Figure 21. TheGreedy-WU

algorithms is more sensitive as the number of edges in the cluster graph increases as it reshapes

the graph after each iteration. Moreover, as seen from the graphs, the performance of the greedy

algorithms does not degrade, and stays about the same as we increase the number of activities in

the input sets. In both graphs, theGreedy-NMA algorithm produces the worst results as it explores

the smallest number of alternatives when generating partitions. The quality of the partitions pro-

duced by theGreedy-Basic and theGreedy-WU algorithms are comparable. When the number
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of activities within a cluster is small, and hence there are fewer edges in the cluster graph, the

Greedy-Basic algorithm does better than theGreedy-WU. However, when the number of activities

within a cluster increases theGreedy-WU algorithm catches up with theGreedy-Basic algorithm.
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These results show that although theGreedy-WU algorithm uses more accurate cost saving es-

timates, it is still outperformed by theGreedy-Basic algorithm which tries to adapt its savings

estimates as the computation of the output partition proceeds by moving activities across compo-

nents. It turns out that this heuristic is more effective in capturing the real savings than updating

weights. Moreover,Greedy-Basic is faster thanGreedy-WU, and it is less sensitive to the number

of edges in the cluster graph. As a result, we believe thatGreedy-Basic is the better choice.

Both��-basedandBAB are unable to performat all when there are more than 10-20 concurrent

activities. On larger sets of activities, they both quickly run out of memory — in contrast, the

greedy algorithms scale up very effectively when many activities occur. Furthermore, theHill-

Climb algorithm also does not scale up very well, and produces worse quality results than the

greedy algorithms.The results suggest that the cluster graph representation is a very effective

heuristic, and hence pairwise savings are a good first approximation.
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4.1.3 Performance of the Enhanced Greedy Algorithms

We wanted to explore how theImproveQuality procedure can improve the cost of the partitions

produced by the greedy algorithms. We have created three new versions of the greedy algorithms:

TheEnhanced-Greedy-Basic, theEnhanced-Greedy-NMA and theEnhanced-Greedy-WU algo-

rithms are created by invoking theImproveQuality procedure with the output partitions produced

by theGreedy-Basic, theGreedy-NMA and theGreedy-WU algorithms, respectively.

Figures 22 and 23 show the cost reduction percentages obtained when the overlap probability

is 0.4, the number of activities considered (i.e. maxno) is 20% of the number of activities, and

the overlap degree is 0.4 and 0.6. In Figure 22��)� 
 ��� and in Figure 23��)� 
 ��� for 95%

confidence intervals. As seen from the Figures, theImproveQuality procedure slightly increases

the cost reduction percentages obtained by each greedy algorithm by 2-4%. On the other hand,

the running times of the algorithms increase considerably. Figure 24 shows the running times of

the greedy algorithms, and their enhanced versions. In Figure 24��)�(	$ �	� � ��� 
  for

95% confidence interval. We see that the running times of the enhanced versions of the algorithms

are double or more the running times of their vanilla counterparts. These results suggest that the
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greedy algorithms achieve substantial savings, and the quality of the partitions obtained by the

ImproveQuality procedure does not offset its cost.
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4.2 Performance of the Algorithms with Component Constraints

To evaluate the performance of the algorithms with component size constraints, we ran two exper-

iments. In both experiments, the overlap probability was 0.2, the overlap degree was 0.4 and the

number of activities within each cluster was 50. In the first experiment, we examined the running

times of the algorithm when� = 25. Figure 25 shows the running times of the algorithms. In this

graph,��)�(	$ �	� � ��� 
 	�	 for 95% confidence interval. As can be seen from the figure,

the execution time of the algorithms did not change much when component size constraints were

present.

We also studied how savings change when we have component size constraints. Figures 26 and

27 show the cost reduction percentages when� = 25, and� =10, respectively. In this experiment,

number of activities per cluster is 50. In Figure 26��)� 
 ��� and in Figure 27��)� 
 ��
 for
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95% confidence interval. As expected, the cost reduction percentages are slightly smaller (1%–

4%) when the components are required to be less than or equal to 10. When we compare these

cost reduction percentages with the case when there were no component size limits (Figure 21),



for multiple users interested in obtaining different sensory information about a given location or

region. An agent that provides access to real-time stock data may participate in both numerous

multi-agent applications (e.g. risk analysis applications, predictive applications, portfolio manage-

ment applications) but also provide direct services to individual and institutional investors.

At any given point in time, agents of the kind mentioned above may have numerous activities to

perform. Improving the performance of such agents poses a major challenge. Past work on this

topic has focused on the following approaches to the problem:

1. Caching strategies: Adali et. al. [2, 1] and Ashish et. al. [4, 5] have developed strategies

where the agents precompute certain critical components of their task and cache the results.

This cache may then be used to improve the performance of the agent.

2. Merging strategies: In many domains, researchers have noticed thatmerging tasks is often

preferable to servicing tasks in a queue fashion. This work goes all the way to the design of

disk controllers. It is often preferable to schedule aset of disk reads and writes rather than

execute them one at a time. The reason is that to read a sector on the disk, some rotational and

radial movements may be needed to bring the disk head over the disk track and sector to be

read[24]. Merging strategies have also been used by multimedia researchers [3, 14], database

researchers [27] to merge queries and planning researchers[32] to merge the construction of

multiple plans. In agents research, the only merging strategies we have seen is the work of

Ozcan et. al. [21] who show how merging and caching methods can be used to scale agent

performance.

Our work leverages from the two types of methods described above. It hinges on the observation

that in most domains�, merging works well only for some number�� of activities. The number

varies from domain to domain. The reason is that as the number of tasks increases, the time taken

to merge increases substantially — [27] proves that merging is NP-hard for databases, and Ozcan

et. al. [21] prove that merging is NP-hard in most domains.
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In this paper, we study the problem of what to do when an agent has a set of activities far exceed-

ing that agent’s� value. We propose asplitting strategy. In this strategy, we find a partition of the

agent’s activities. The partition consists of a set of components such that within each component

are activities that “are similar” and that show promise of yielding substantial savings if they are

merged together. We define the problem of finding an optimal partition and show the problem is

NP-hard. We then define a set of algorithms to find partitions — some of these algorithms will

find an optimal partition, while theGreedy algorithms will find suboptimal partitions. We have

implemented these algorithms and conducted detailed experiments in order to determine which

ones are the best.

There has been substantial work in the literature on graph partitioning algorithms [16, 22], which

are somewhat similar to our greedy algorithms. Our greedy algorithms are based on the heuristic

that modeling pair-wise savings between activities provides a good approximation. Since cluster

graphs are only an approximation to the original problem, the optimal partitioning of the cluster

graph does not correspond to the optimal solution to the activity partitioning problem. Hence,

graph partitioning algorithms are not directly applicable.

Probably, the closest work on graph partitioning is by Pinar and Hendrickson [22], where the

authors try to partition and distribute a set of tasks to a set of processors by also factoring in

interactions among the partitions incurred due to inter-process communications. In their solution,

they use one of the classical methods to come up with an initial partition, and then improve the cost

by reassigning some of the tasks. Although their approach might be exploited for APP, coming up

with an initial solution is not a trivial task. Besides, our goal is not merely to distribute the activities

across agents, and balance the load, but our objective is to group together those activities that may

share computations for asingle agent.

It is important to note that the algorithms in this paper are not tied to a specific agent frame-

work - as such, the principles outlined here are applicable to different agent environments such as

[11, 13, 10, 26, 6]. Our work is also reminiscent of work on creating coalitions [28, 18, 25]. In [28],
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Sen and Dutta propose a stochastic search algorithm (called OBGA) to compute optimal coalition

structures. Given a set of agents, they partition the agents into coalitions. A coalition is similar

to a component in our framework. They focus on finding partitions, taking into account the fact

that value of a coalition depends on the values of other coalitions (they argue that other coalition

formations approaches like [18, 25] do not take this into account). We do not do this for compo-

nents. Instead, we argue that the value of a component is an arbitrary function (satisfying the cost

estimation axioms) of the contents of the component. They do not do this. Likewise, Shehory and

Kraus [29] develop methods for allocating tasks between agents but do not address the problem of

how a single agent buckets tasks so as to reduce its own load. Hannebauer[15] develops algorithms

for distributing tasks between multiple constraint solvers. Given a set of tasks, they find a partition

with high quality. The idea is that each component is a set of tasks that can be given to a specific

agent. They measure quality of a partition by internal problem complexity and communication

costs. We do not consider the latter (for our problem, it is irrelevant). But in addition, they use a

specific quality function (given at the end of section 3.1 of [15]). In contrast, our work applies to

any cost estimation function that satisfies the axioms applicable to cost estimation functions.
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