
XSQ: Streaming XPath QueriesFeng Peng Sudarshan S. ChawatheDepartment of Computer SieneUniversity of Maryland, College Park, Maryland 20742, U.S.A.fpengfeng,hawg�s.umd.edu1 IntrodutionXML is beoming the de fato standard for informationexhange and the amount of XML data is growing rapidly.Some of this data is aessible only in streaming form.That is, data items are presented in a �xed serialization;the appliation annot seek forward or bakward in thedata, nor an it revisit a data item enountered earlierunless it is expliitly bu�ered. In addition to data thatours natively in streaming form (e.g., stok market up-dates, real-time news feeds), it is useful to proess largeXML datasets in streaming form beause of the greatereÆieny of streaming systems (whih use a sequentialsan instead of non-sequential data aess on disk). Inthe sequel, we use the term streaming XML to refer toboth data that ours naturally in streaming form anddata that is best aessed in streaming form. We addressthe problem of evaluating XPath queries on streamingXML. (XPath is an emerging standard query languagethat is useful by itself, and forms an important part ofmore expressive languages suh as XQuery.) A streamingquery engine or XPath annot rely on any method thatrequires instantiation of a large subset of the data. For ex-ample, methods based on the DOM interfae to XML donot satisfy this requirement. Some of the distinguishingfeatures of our streaming XPath query proessor, alledXSQ, are as follows:� To the best of our knowledge, XSQ is the �rst systemfor querying XML data streams that handles XPathfeatures suh as losures, aggregations, and multipleprediates. Reent work on querying XML streamshas addressed some of these issues separately, butnot in ombination. For example, the XMLTK pro-gram [ACR+02℄ allows retrieval of a portion of anXML �le spei�ed using XPath. However, XMLTKdoes not support prediates in XPath expressions.The XSM system [LMP02℄ handles prediates in thequery but it does not handle the losures and aggre-gations. As disussed later, the ombination of thelosures and multiple prediates introdues substan-tial diÆulties.� XSQ is very eÆient. For example, we dupliatethe DBLP dataset to generate a dataset of one gi-gabyte in our experiments. Parsing the datasetalone takes 297 seonds. Evaluating the query//artile[�key℄//title/text() over this datasetrequires only 84 seonds of additional time to returnall the results. Initial results are produed withinone seond of issuing the query. Another feature of

the system is that it is very eÆient in its use of mainmemory. Spei�ally, a data item is bu�ered by XSQonly if its membership in the query result annot bedeided based on the data seen so far. Suh a dataitem must therefore be bu�ered by any streamingquery proessor that produes omplete results.� The XSQ system uses a lean design based on hierar-hial pushdown transduers that onsist of standardtransduers augmented with queues. The system iseasy to understand, implement, prove orret, andexpand to more omplex queries.2 The XSQ SystemThe basi idea of the XSQ system is to use a pushdowntransduer (PDT) to proess the events that are gener-ated by a SAX parser when it parses XML streams. APDT is a pushdown automaton (PDA) with ations de-�ned along with the transition ars of the automaton. APDT is initialized in the start state. At eah step, basedon the next input symbol and the symbols in the stak,it hanges state and operates the stak aording to thetransition funtions. The PDT also de�nes an outputoperation whih ould generate output during the tran-sition. In the XSQ system, the PDT is augmented witha bu�er so that the output operation ould also be thebu�er operations.An XPath query in the XSQ system onsists of apattern expression, whih is spei�ed by a loationpath, and an output expression. The loation pathis a sequene of loation steps that speify the pathto a desired element. The output expression spei-�es what portions or funtions of the element shouldbe outputted. Eah loation step has an axis, anode test, and an optional prediate. For example,in the query //pub[year>2000℄/book/name/text(),//pub [year>2000℄/book/name is the pattern expres-sion. The output expression, text(), spei�es that onlythe text in the elements should be outputted. In the �rstloation step //pub[year>2000℄, // is the axis denot-ing losure, pub is the node test, and year>2000 is theprediate.Without prediates and the output expression, anXPath query an be deemed as a �lter pattern that ouldbe used to �lter the XML douments in a olletion,returning only the douments that math the pattern.Sine these XPath queries are essentially regular expres-sions, they ould be onverted diretly to �nite state au-tomata (FSAs) whih aept the same set of XML do-1

uments. Systems suh as [AF00, CFGR02℄ use FSAs to�lter the XML streams and fous mainly on groupingand indexing similar XPath expressions. With predi-ates and output expressions in the XPath query, it isnot so straightforward to onvert the XPath query intoan transduer that answers the query. When the queryinludes aggregations and losures, the problem beomeseven more diÆult. We briey desribe some of the diÆ-ulties below:� The sequene of elements in the data stream makes itpossible that some of the prediates annot be evalu-ated when the we enounter an element that satis�esthe pattern expression of the query. Thus we needto bu�er these elements until the data required toevaluate the prediates is available. For example,onsider the query /book[year=2002℄/name. In thedata stream, the year hild of a book element mayome after the name hild of the book. Thus whenwe enounter the name hild, we need to bu�er it.Only after we enounter the year hild of the bookan we deide whether the name should be send tooutput.� The prediates, whih ome in various forms, needto be assoiated with di�erent SAX events. For ex-ample, for the query /book[author�age<25℄/name,the prediate is evaluated upon the begin event ofthe author hild of the book element. If one of theauthors of the book is younger than 25, the nameof the book should be outputted. Thus we need tosee all the authors before we an deide that thename is not in the result. In ontrast, for the query/book[�id>25℄/name, we an deide at the beginevent of the book element whether the name shouldbe outputted sine the attribute id always omes inthe begin event of the book element in the stream.� When a prediate is evaluated, we need to �rst deidewhat items in the bu�er are a�eted by the result ofthis prediate. If the prediate evaluates to false, weneed to remove all the items that are a�eted by itfrom the bu�er right away. If the prediate evaluatesto true, for eah item in the bu�er that is a�eted bythe prediate, we need to deide whether there areother prediates unevaluated required by the item.If not, the item now satis�es all its prediates andshould be send to the output immediately. Other-wise, we have to keep trak that the item has satis-�ed the urrent prediate but is still waiting for theevaluation of other prediates.� When there are losure axes \//" in XPath queriesdenoting \desendant-or-self", the above problembeomes more ompliated. There may be severaldi�erent ways that the path to an element mathesthe pattern expression of the query. Eah mathgives a di�erent evaluation of the prediates. Some ofthese evaluations may be false. However, as long asthere is one math for whih all prediates evaluate

to true, the element should be inluded in the result.At the same time, dupliates should be avoided ifmultiple mathes have true evaluation for all predi-ates.Our solution uses a hierarhially strutured PDT, alledHPDT, that onsists of smaller PDTs that have their ownbu�ers. Eah small PDT, alled a basi PDT (BPDT), isgenerated using templates based on the kinds of loationsteps in XPath queries. The templates are based on thefollowing ategorization of loation steps:1. Test whether the urrent element has a spei�ed at-tribute, or whether the attribute satis�es some on-dition, (e.g., /book[�id℄, /book[�id � 10℄).2. Test whether the urrent element ontains some text,or whether the text value satis�es some ondition,(e.g., /year[text() = 2000℄).3. Test whether the urrent element has a spei�ed typeof hild, (e.g., /book[author℄).4. Test whether the the urrent element's spei�ed hildontains an attribute, or whether the value of the at-tribute satis�es some ondition, (e.g., /pub[book�id� 10℄) .5. Test whether the spei�ed hild of the urrent ele-ment has a value that satis�es some ondition, (e.g.,/book[year � 2000℄).
$3

$1

$2

$5

<
ta

g>

<
/ta

g>

</child>

<child>

{q
ue

ue
.c

le
ar

()
}

<c
hi

ld
.te

xt
()

[te
xt

()
 !=

 v
al

]

</child>

$4
</child> {queue.upload()}

[text() == val]
<child.text()>

$5

Start State

NA StateTRUE State

<
/ta

g>
{q

ue
ue

.u
pl

oa
d(

)}

Figure 1: Template of BPDT for a loation step of theform /tag[hild=val℄Figure 1 depits a BPDT that proesses a single lo-ation step with a prediate testing the text of a hild.In eah BPDT, there is a TRUE state that indiates theprediate in this loation step has been evaluated to betrue and an NA state that indiates the prediate hasnot been evaluated yet. Eah BPDT also has its ownbu�er whih is organized as a queue. In Figure 1, notiethat only when all hildren have failed the test and theurrent element reahes its end event will the automatonlear the ontent of its bu�er, whih exatly expresses thelogi of the prediate. Due to the spae limit, the graphsof other templates are omitted here. Details appears inour tehnial report.11Available at http://www.s.umd.edu/~pengfeng/xsq/2

$8 $9 $10

</year>

<year>

</year>

<pub> </pub>
{queue.clear()}

[te
xt

()
<=

20
00

]

<y
ea

r.t
ex

t()
>

$2

$3$4

$5

$6

////

$7
{queue.flush()} {queue.flush()}

[text()>2000]
<year.text()>

</year>

</pub>

$11

{queue.clear()}
</book> <book></book>

$12

<author>
{queue.flush()} <author>

{queue.clear()}
</book><book>

{queue.upload()}

</book>

<root> </root>

bpdt(1,1)

$1
bpdt(0,0)

</author>

<name><name>

$13
</author>

bpdt(2,3)

HPDT for query:

//pub[year>2000]//book[author]/name/text()

$14

</name> <name> <name> </name>
{queue.upload()}

<name.text()>

$15

<name.text()>
{queue.enqueue(name.text()}

$16

<name.text()>
{queue.enqueue(name.text()}

$17

<name.text()>
{output(name.text())}

bpdt(3,5) bpdt(3,4)bpdt(3,6)

bpdt(2,2)

bpdt(3,7)

{queue.enqueue(name.text()}

{queue.upload()}
</name></name>

{queue.upload()}

//

Figure 2: HPDT generated for query: //pub[year>2000℄//book[author℄/name/text()Next we use an example HPDT shown in Figure 2 toillustrate how to build the HPDT. Eah BPDT has anunique id onsisting of the level and the id inside thelevel. We �rst generate the single bpdt(0,0) for the rootaxis in level 0, whih exists in all XPath queries. Thenthe TRUE state of bpdt(0,0) is used as the start stateof bpdt(1,1) in level 1, whih is generated for the �rstloation step. For both TRUE state $7 and NA state$3 of bpdt(1,1), we generate a BPDT in level 2 for theseond loation step. The di�erene between them is theoperations on the transition ars. In bpdt(2,3), whih isonneted to the TRUE state, we ush the ontent inthe queue to the output if urrent prediate is satis�ed.In the ontrast, sine bpdt(2,3) is onneted to the NAstate, whih indiates that the prediate in the upperlevel has not been evaluated yet, we have to upload theontent in the queue to the upper level BPDT after theurrent prediate evaluates to true. In both BPDTs, thequeue will be leared if the prediate evaluates to falseat the end of the element. In the BPDT in the lowestlayer, the ontent of the potential result is put into thequeue unless we know that all the previous prediates aretrue, in whih ase we should output the data diretly.Thus we an see that only in bpdt(3,7) do we output thedata diretly, and in all the other BPDTs in the lowestlevel, we enqueue the data into the queue.There are 3 loation steps in the query. Instead of gen-erating 24� 1 = 15 BPDTs, whih is the maximum num-ber of BPDTs a 4-level HPDT ould have, there are a-tually only 8 BPDTs in the system beause only BPDTs

with prediates have two hildren. Thus the number ofthe states in the HPDT is redued signi�antly. More-over, in the implementations, beause of the similaritiesof the BPDTs in the same level, we atually do not needto instantiate all the BPDTs. It suÆes to only reateone BPDT for eah layer and use bitmap ags to keeptrak of the operations. As to the memory usage, fromFigure 2 we an see that the HPDT only puts the itemsinto the bu�er when they satisfy the pattern expressionbut have prediates that annot be evaluated yet. Assoon as one of the prediates evaluates to false, the on-tent in the bu�er of the urrent BPDT will be learedright away. Meanwhile, if all the prediates have beenevaluated true, the ontent will be ushed to the outputimmediately. Thus the system only bu�ers data that anystreaming system must bu�er.In order to proess losures and aggregations, we makesome extensions to the basi ideas presented above. Foraggregations, the HPDT is augmented with a statistisbu�er. It uses templates for the possible aggregationfuntions in the lowest level BPDTs. For losures, thebasi idea is to keep trak of all the possible paths to-ward the urrent element that math the pattern expres-sion. Unless all the paths have failed the prediates, theontent will be kept in the queue. Due to spae limita-tion, the details to handle the losures and aggregationsare omitted here. Our experiments show that both fea-tures are handled without any signi�ant degradation ofperformane.3

3 Demonstration

Figure 3: Sreenshot of the XSQ interfaeWe have implemented the XSQ system using Sun JavaSDK version 1.4 and Xeres 1.0 parser for Java. The ex-periments use the Redhat 7.2 distribution of GNU/Linux(kernel 2.4.9-34) on a Pentium III 900MHZ mahine with1GB of main memory.For the demonstration, we use large XML �les (20MBto 2GB) to simulate XML streams. One dataset is syn-theti data generated using IBM XMLGen. Anotherdataset is generated by dupliating the DBLP datasetof size 119MB, whih is ommonly used as the test setfor XML query systems. Other real life datasets, suh asNASA ADC XML repository of size 24MB and Swiss-PortProtein knowledgebase of size 114MB , are also part ofthe demonstration. (Any well formed XML data streaman be used as input data.)We use queries suh as the one in Figure 2 to demon-strate various features of the system: losures, prediateson the text of a hild, and multiple prediates in a query.Even if the data is heavily nested and there are multiplelosures in the query, we demonstrate that the amountof memory used to proess the query is still small. Wealso demonstrate that the XSQ system generates outputwhile the SAX parser is still parsing the XML �le. Inthe graphial interfae shown in Figure 3, we also displaythe struture of the HPDT (similar to the graph in Fig-ure 2). (Users an pose other XPath queries to test theperformane of the system.)In our experiments, the XSQ system is faster thanother urrently available systems that we tested, suh asGalax [FS02℄, Joost [BCN02℄, and XALAN. For example,it took the Galax system, whih is DOM-based, about 47seonds to evaluate the query Q4 in Figure 4 while XSQonly uses 10.4 seonds. Further, in our experiments withthese, and some other similar systems, the DBLP andSwiss-Port datasets exhausted available main memory.An exeption is the XMLTK [ACR+02℄ program whihis about 50% faster than XSQ. XMLTK is eÆient sineit uses a simpler automaton without bu�ers. Beause

Dataset Size Query Query Time Parse TimeDBLP 119MB Q1 20.9s 48.3sDBLP-1GB 1024MB Q2 84s 298sSYN-2GB 2135MB Q3 224s 774sNASA 25MB Q4 2.6s 7.88sSwiss-Port 114MB Q5 11.7s 49.6sQ1: //inproeedings[year>1995℄/ount()Q2: //artile[�key℄//title/text()Q3: /pub[year℄/book[�id=a3℄/author/name/first/text()Q4: /dataset[�subjet=astronomy℄/referene/soure/other[date℄/nameQ5: /Entry/Ref/CiteFigure 4: Representative experimental resultsXMLTK does not handle prediates and aggregations, italways outputs the result diretly. Moreover, bu�er oper-ations, whih are essential to proess prediates and ag-gregations, introdue signi�antly larger amount of stringoperations. Sine parsing aounts for a signi�ant fra-tion of query proessing time, another fator that a�etsthe performane is the di�erent SAX parsers used in thesystems XSQ uses Xeres for Java that is slower thanExpat parser written in C that is used by XMLTK. Todemonstrate the eÆieny of the XSQ system, we alsoompare the speed of the XSQ system with a pure parserwhih parses the XML �le and does nothing else. Thepure parser gives an lower bound on the time of a stream-ing proessing system needs to proess the streams. Somesample queries and experimental results are shown in theFigure 4. The query times refer to the times for omput-ing the entire result sets. In all ases, initial (streaming)results are available within 1 seond.Referenes[ACR+02℄ I. Avila-Campillo, D. Raven, et al. An XMLtoolkit for light-weight XML stream proessing, 2002.http://www.s.washington.edu/homes/suiu/XMLTK/ .[AF00℄ M. Altinel and M. J. Franklin. EÆient �lteringof XML douments for seletive dissemination of infor-mation. In Proeedings of 26th International Confereneon Very Large Data Bases, pages 53{64, Cairo, Egypt,2000.[BCN02℄ O. Beker, P. Cimprih, and C. Nen-twih. Streaming transformations for XML, 2002.http://www.gingerall.z/stx.[CFGR02℄ C. Y. Chan, P. Felber, M. N. Garofalakis, andR. Rastogi. EÆient �ltering of XML douments withXPath expressions. In 18th Intl. Conf. on Data Engineer-ing(ICDE), pages 235{244, San Jose, February 2002.[FS02℄ M. Fernndez and J. Simon. Galax, 2002.http://db.bell-labs.om/galax/.[LMP02℄ B. Ludasher, P. Mukhopadhayn, and Y. Pa-pakonstantinou. A transduer-based XML query pro-essor. In Proeedings of 28th International Conferene onVery Large Data Bases, Hongkong, August 2002.4

