

ABSTRACT

Title of Thesis: EVALUATING THE IMPACT OF MEMORY SYSTEM
PERFORMANCE ON SOFTWARE PREFETCHING AND LOCALITY
OPTIMIZATIONS

Degree candidate: Abdel-Hameed A. Badawy

Degree and year: Master of Science, 2002

Thesis directed by: Professor Donald Yeung
Department of Electrical and Computer Engineering

Software prefetching and locality optimizations are two techniques for overcoming
the speed gap between processor and memory known as the memory wall as
suggested by Wulf and Mckee [57]. This thesis evaluates the impact of memory
trends on the effectiveness of software prefetching and locality optimizations for
three types of applications: regular scientific codes, irregular scientific codes, and
pointer-chasing codes. For many applications, software prefetching outperforms
locality optimizations when there is sufficient bandwidth in the underlying
memory system, but locality optimizations outperform software prefetching when
the underlying memory system doesn’t provide sufficient bandwidth. The
break-even point, or equivalently the crossover bandwidth point, occurs at
roughly 2.4 GBytes/sec , for 1 GHz processors on today’s memory systems, and
will increase on future memory systems. This thesis also studies the interactions
between software prefetching and locality optimizations when applied in concert.
Naively combining the two techniques provides a more robust application
performance in the face of variations in memory bandwidth and/or latency, but
does not yield additional performance gains. In other words, the performance
won’t be better than the best performance of the two techniques alone. Also,
several algorithms are proposed and evaluated to better combine software
prefetching and locality optimizations, including an enhanced tiling algorithm,
padding for software prefetching, and index prefetching.

Evaluating the Impact of Memory System Performance on Software Prefetching
and Locality Optimizations

by

Abdel-Hameed Abdel-Salam Badawy

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2002

Advisory Committee:

Professor Donald Yeung
Professor Manoj Franklin
Professor Chau-Wen Tseng

i

ACKNOWLEDGMENTS

This is going to be a long list of people to thank since prophet
Muhammad said ”Whoever is not thankful to people is not thankful to
ALLAH(GOD)” so please bear with me.

I would like to thank Aneesh Agrawal for his efforts which helped me to
finish this work leading to this thesis. Aneesh implemented the memory system
model on top of SimpleScalar which was called sim-bw. He gave me a jump-start
on the benchmarks and the simulator while he was an intern at DEC in summer
of 2000. Also, I would like to thank all my lab-mates including [Choi, Dongkeun,
Deepak, Gautham, Aamer, and Zahran] for their support during the deadlines of
HPCA’2001 and ICS’2001. They are just a wonderful group of people to work
nearby them.

Also, I am grateful to Gabe Rivera (professor Chau-Wen’s student) who
helped me understand his work on tile selection techniques and for his willingness
to discuss his work with me. Also, I would like to thank Hansoo Han for giving
us his locality optimized code for the irregular array benchmarks.

I would like to thank professor Chau-Wen for his suggestions, guidance,
and support. He really has a great inertia to put work together. I learnt from
him never to give up submitting papers to conferences no matter what and never
give up. I learnt from him to always think positively and work as fast as possible.

At last but not least,I would also like to thank my advisor, professor
Donald Yeung. I appreciate very much his valuable contributions to my
understanding of computer architecture at large and to the topics covered in this
thesis, and specifically my experience as a graduate student under his
supervision. He deserves much more than what I can say here.

I would also like to thank my family for their love support, encouragement
and supplications. I would love thank my wife for her continual support in every
way possible. Also, I would like to thank her family for their supplications and
love.

Finally, I thank GOD, or equivalently ALLAH in Arabic, the all mighty
who have given human beings countless blessings. To name one, our ability to do
research and to ask and answer questions that lead humanity to prosper and
flourish. All the praise and thank are due to the LORD of the whole universe.
Allah the self-sufficient master, whom all creatures need and needs none of them.
The one who begets not, nor was he begotten and there is none co-equal or
comparable unto him.

ii

Contents

LIST OF FIGURES v

LIST OF TABLES vii

ABBREVIATIONS viii

1 Introduction 1

1.1 The Memory Wall . 1
1.2 Introducing Software Prefetching 3
1.3 Introducing Locality Optimization 7
1.4 Thesis Organization . 8

2 Related Work 11

3 Memory Access Patterns 15

3.1 Affine Array Accesses . 15
3.2 Indexed Array Accesses . 17
3.3 Pointer-Chasing Accesses . 19

4 Software Prefetching 21

4.1 Affine Array Prefetching . 22
4.2 Indexed Array Prefetching . 25
4.3 Pointer-Chasing Prefetching . 28

5 Locality Optimizations 32

5.1 Tiling for Affine Accesses . 33
5.2 Reordering for Indexed Accesses . 35
5.3 Memory Allocation For Pointers . 38

6 Experimental Evaluation 40

6.1 Methodology . 40
6.2 Varying Memory Bandwidth . 45
6.3 Varying Memory Latency . 53
6.4 Combined Techniques . 58

iii

7 Algorithm Enhancements 65

7.1 Enhancing Tiling for Software Prefetching 65
7.2 Padding for Software Prefetching 70
7.3 Index Prefetching . 75

8 Conclusion 79

9 Future Work 82

BIBLIOGRAPHY 84

iv

List of Figures

1.1 Comparison of processor performance to memory performance over
time. 2

1.2 Array traversal. a) Code with data structure. b) Time-line without
prefetching. c) Code and time-line with prefetching. 5

1.3 Example Locality Optimization (Tiling). Part(A) Original code
without any optimizations. Part(B) Tiled code. 7

3.1 Example of 3 different access patterns. Part(A) Affine Array Ac-
cess example code. Part(B) Indexed Array Access example code.
Part(C) Pointer-Chasing Access example code. 16

3.2 The computation order and direction of progress in 2D Jacobi. . . 17
3.3 The computation order and direction of progress in 3D Jacobi. . . 17
3.4 Showing the relationship between the index and indexed arrays be-

fore inspector-executor runs. 18
3.5 Chasing pointers to access list nodes. 19

4.1 Example affine array prefetching for the 2D Jacobi kernel using
Mowry’s algorithm [38]. The prefetch algorithm involves three steps:
loop unrolling, prefetch scheduling, and loop peeling. 23

4.2 Example indexed array prefetching for a molecular dynamics kernel
using the algorithm in [38]. The prefetch algorithm is similar to
the algorithm for affine arrays, with several extensions to handle
indexed arrays. 26

4.3 Example pointer prefetching for a linked list traversal using jump
pointers and prefetch arrays [27]. Part(A) shows the traversal code
instrumented with prefetching through jump pointers and prefetch
arrays. Part(B) shows the prefetch pointer initialization code. . . . 29

4.4 Jump Pointers inserted into the list nodes. 29
4.5 Prefetch Array pointers labelled ”P” added to the list nodes already

having jump pointers. 30

5.1 Example of conflict misses under two array layouts. 33
5.2 Example Locality optimized codes for affine array, indexed array

and pointer-chasing codes. 33
5.3 Indexed Arrays Reordering technique. 36
5.4 Indexed Array computation reordered after the reordering operations. 36

v

5.5 Linked list contiguously allocated in Main Memory. 39

6.1 Affine Array applications execution time breakdown under mem-
ory bandwidth scaling with no optimizations (Orig), with software
prefetching (Pref), with locality optimization (Opt), and with com-
bined optimizations(Opt+Pref). Memory latency is fixed at 80 cycles. 46

6.2 Indexed Array execution time breakdown under memory bandwidth
scaling with no optimizations (Orig), with software prefetching
(Pref), with locality optimization (Opt), and with combined op-
timizations(Opt+Pref). Memory latency is fixed at 80 cycles. 47

6.3 Pointer-chasing applications execution time breakdown under mem-
ory bandwidth scaling with no optimizations (Orig), with software
prefetching (Pref), with locality optimization (Opt), and with com-
bined optimizations(Opt+Pref). Memory latency is fixed at 80 cycles. 48

6.4 Execution time under both memory bandwidth and latency scaling
for affine array benchmarks with no optimizations (Orig), with soft-
ware prefetching (Pref), with locality optimization (Opt), and with
combined optimizations (Opt+Pref). 54

6.5 Execution time under both memory bandwidth and latency scal-
ing for indexed array and pointer-chasing benchmarks with no op-
timizations (Orig), with software prefetching (Pref), with locality
optimization (Opt), and with combined optimizations (Opt+Pref). . 55

6.6 Execution time under both memory bandwidth and latency scal-
ing for indexed array and pointer-chasing benchmarks with no op-
timizations (Orig), with software prefetching (Pref), with locality
optimization (Opt), and with combined optimizations (Opt+Pref). . 56

6.7 Comparing average performance for different versions of programs
relative to memory bandwidth and latency. Performance is normal-
ized relative to the original program with 1 Gbyte/sec bandwidth
and 80 cycle latency. 63

7.1 Two configurations one with square tiles and one with tall tiles. . . 66
7.2 Comparing square tiles and tall tiles with and without prefetching. 69
7.3 Layout of Data in the Cache before and after padding. 71
7.4 Padding for prefetching in Jacobi and RedBlack. 73
7.5 Comparing index prefetching (Index Pref) to prefetch arrays (Pref),

CCMALLOC memory allocation (CCMALLOC), and combined op-
timizations (CCMALLOC+Pref). In the top two graphs, memory
latency is fixed at 80 cycles. 77

vi

List of Tables

6.1 Benchmark summary. 41
6.2 Prefetch distances for RedBlack, Jacobi and Matmult for the

different latencies. 44
6.3 Prefetch distances for Irreg, Moldyn and NBF for the different

latencies. 44
6.4 Prefetch distances for Health, MST and EM3D for the different

latencies. 44
6.5 Equi-performance bandwidths for 80, 160, 320, and 640-cycle mem-

ory latencies. The last column reports the average over the 9 bench-
marks. All memory bandwidths are in Gbytes/sec. 50

6.6 Prefetch distances for the combined version of RedBlack, Jacobi

and Matmult for the different latencies 58
6.7 Prefetch distances for the combined version of Irreg, Moldyn and

NBF for the different latencies. 59
6.8 Prefetch distances for the combined versions of Health, MST and

EM3D for the different latencies. 59

7.1 Tile sizes for square and tall-tile versions of the affine array bench-
marks. 67

7.2 Prefetch distances for RedBlack, Jacobi and Matmult for the
different latencies with tall tiles applied. 68

7.3 The prefetch distances for the padded versions of RedBlack and
Jacobi. 71

vii

ABBREVIATIONS

ISA Instruction Set Architecture
L1 Level 1
L2 Level 2
KB Kilobyte (1024 Bytes)
MB Megabyte (1024 Kilobytes)

PD Prefetch Distance
JPP Jump Pointer Prefetching
PDE Partial Differential Equations
AVG Average

MM Matrix Multiply

Jac Jacobi

RB RedBlack

Irreg Irregular Mesh Solver

Mol Moldyn

Health Columbian Health Simulation

MST Minimum Spanning Tree

gpart Graph Partitioning

rcb Recursive Coordinate Bisection

Orig Original Code

Pref Code instrumented with Prefetching

Opt Code instrumented with the appropriate Locality Optimization Technique

Pref+Opt Code instrumented with both Prefetching and Locality Optimization

viii

Chapter 1

Introduction

1.1 The Memory Wall

The performance of microprocessors continues to improve at an impressive pace.

In fact, microprocessor performance increases by 58% per year. However,

memory system performance improves by only 7% in the same amount of

time [23], leading to an exponential increase in the processor-memory

performance gap [57]. In the early 1980’s, memory systems were fast enough to

keep up with processors. Unfortunately, since processor and memory

performance increase at different exponential rates, their difference in

performance increases exponentially. Figure 1.1 illustrates how extreme this

problem is, plotting both memory and processor performance over time. The

time axis is on a linear scale; however, the performance axis is on a logarithmic

scale. Figure 1.1 shows that processor performance is a factor of 100 higher than

memory performance in 2000, and it will reach a factor of 5000 in 2010.

The most effective known solution to alleviate this problem is to use

caches. Caches are small, fast memories that store recently accessed data. The

1

1990 1995 2000 2005 2010

P
er

fo
rm

an
ce

Year

Processor Performance
Memory Performance

Performance Gap

Figure 1.1: Comparison of processor performance to memory performance over
time.

2

principle of temporal locality states that once data is accessed, it is likely to be

accessed again in the near future. Therefore, data will likely be accessed multiple

times and only need to be retrieved from main memory the first time it is

accessed. This allows successive accesses to be satisfied from the faster cache,

effectively reducing the average latency required to access data. However, since

caches are limited in size, they do not in all cases have enough capacity to fit the

application’s working set especially for large applications. Also, some

applications do not have sufficient temporal locality to allow caches to reduce the

average latency of a data access. Consequently, while caches are typically

effective, they do not completely address the memory gap problem.

When a processor accesses data from main memory, it must wait for the

memory system to retrieve the data. This is called a memory stall. As the

processor-memory performance gap continues to widen, memory stalls increase

and application performance becomes increasingly limited by the memory system

performance. Other techniques are required to fully address the memory wall

problem. The rest of this Chapter introduces two existing techniques, software

prefetching and data locality transformations.

1.2 Introducing Software Prefetching

Two promising approaches for improving memory performance are software

prefetching and locality optimizations. This section briefly introduces software

prefetching. Software prefetching executes explicit prefetch instructions to

initiate loading data from memory to cache early. Prefetching works by

3

pre-loading data from memory before the processor requests it so that it is ready

when the processor performs the access, thus hiding the latency of the memory

access from the processor. Prefetching can be controlled in either hardware or

software. In this thesis, software prefetching is considered. In software

prefetching, the compiler identifies loops that are likely to cause frequent cache

misses, and inserts prefetch instructions into the application loop code to

prefetch the data in advance of its use. The compiler does this by pairing each

LOAD instruction with a PREFETCH instruction that prefetches data to the

cache. Scheduling is done for the PREFETCH instruction so that the data is

available to the processor when it is requested.

When data is prefetched, it is loaded from memory and put into

cache [7, 34] or a special buffer called a prefetch buffer [28, 47]. When data is

prefetched into a prefetch buffer, it is moved into the L1 cache when it is

referenced by the processor. This prevents inaccurately prefetched data from

polluting the cache and thus evicting useful cache blocks. In this thesis,

prefetching into the L1 cache is considered only. Figure 1.2a illustrates software

prefetching using a simple code example. This code sequentially loads data from

an array, shown on the right side of Figure 1.2a, and performs some computation

on each array element. Figure 1.2b shows the execution time-line for the array

traversal in Figure 1.2a. It shows that most of the execution time is spent in

memory stall. With Prefetching shown in Figure 1.2c, each element of the array

can be preloaded to avoid memory stalls and thus the latency is hidden

underneath the execution of the loop computations. On each loop iteration, the

4

PD=l/W
for (i=0; i<L; i=i+1){
 prefetch(node[i+PD]);
 compute(node[i]);
}

for (i=0; i<L; i=i+1){
 compute(node[i]);
}

node:
a)

c)

mem latency (l)

mem stall

b)

loop work (W)

Figure 1.2: Array traversal. a) Code with data structure. b) Time-line without
prefetching. c) Code and time-line with prefetching.

array element accessed PD loop iterations ahead is prefetched. The value PD is

referred to as the prefetch distance, and determines how far ahead (in terms of

loop iterations) to prefetch data from memory. In other words, PD determines

the number of loop iterations necessary to hide the latency of one array element

access. Figure 1.2c also shows the execution time-line for the array example with

a prefetch distance of two.

The code shown in Figure 1.2c does not prefetch the first PD elements of

the array because the first element prefetched is node[0+PD]. To address this

problem, a prologue loop is added to the code just before the traversal code loop

(not shown in Figure 1.2). The prologue loop prefetches the first PD elements of

the array without performing any computation on the data itself. The time-line

in Figure 1.2c is shown for ”steady state” iterations only, so it doesn’t show the

5

prologue loop prefetches. The value of the prefetch distance, PD, is computed

according to Equation 1.1

PD = dl/W e (1.1)

where l is the memory latency and W is the amount of work per loop iteration.

Unfortunately, the values of l and W are not exactly known at compile time. The

value of l depends on whether data is found in the L1 cache, L2 cache, or main

memory. The value of W varies if there are conditional statements in the loop

body. Since both l and W are not constant, typically worst case values are

chosen. Also, note that PD must be rounded up to the nearest whole number,

thus we use the ceiling in the equation for the prefetch distance. Both

conservative estimates of the prefetch distance and roundoff error can result in

PD being too high and data being prefetched too early. The problem with early

prefetches is that the data being pre-loaded to the cache may be evicted before it

is consumed by the processor.

Prefetching is effective only if sufficient memory bandwidth exists to

transfer all prefetched data in time. If the memory system cannot transfer the

data fast enough, memory stalls will remain unresolved and degrade overall

performance. As processor speeds increase, memory bandwidth requirements

increase too since the processor will consume data at a faster pace, requiring the

memory system to supply data more rapidly in order to avoid stalling the

processor.

6

Do jj = 2, N-1, TJ

Do ii = 2, N-1, TI

Do j= jj,jj+TJ-1

Do i= ii, ii+TI-1

A(i,j)=A(i-1,j)+A(i,j-1);

NxN

TIxTJ TIxTJ

TIxTJ NxN

TIxTJ TIxTJ

TIxTJ

NxNNxN
Do j = 2 to N-1

Do i = 2 to N-1
A(i,j) = A(i-1,j)+ A(i,j-1);

Nx1

Overhead

Part(A)

Part(B)

Before
Tiling

After
Tiling

Figure 1.3: Example Locality Optimization (Tiling). Part(A) Original code with-
out any optimizations. Part(B) Tiled code.

1.3 Introducing Locality Optimization

In comparison to prefetching outlined in the previous section, locality

optimizations use compiler or run-time transformations to change the

computation order and/or data layout of a program to increase the locality of the

processor’s memory access patterns, improving the probability that the processor

accesses data that is already in the cache. Thus locality optimizations are not

latency tolerance techniques like prefetching. Instead, they are latency reduction

techniques since they use compiler or run-time transformations in order to make

better use of the data that is already present in the cache.

Figure 1.3 illustrates a particular form of locality optimization called

tiling [14, 29, 30, 42, 44]. This technique is particularly useful for statically

allocated regular arrays. Figure 1.3 part(A) illustrates a two dimensional version

7

of the Jacobi code. The original computation proceeds down the columns of the

array. Since the computation of each array element uses neighboring values along

rows, there is reuse across outer loop iterations. Unfortunately, this reuse cannot

be exploited unless multiple columns fit in the cache simultaneously, which does

not occur for large arrays or small caches. The locality optimization algorithm is

applied to the loop either by hand or the compiler.

Figure 1.3 part(B) illustrates Jacobi code with tiling. Two more loops

are inserted to force the computation to go tile by tile, exploiting reuse along

rows and columns more effectively. This causes the number of cache misses and

the amount of traffic moved from memory to cache to go down, thus improving

the overall system performance. In effect, locality optimization techniques

increase the reuse of the data that is already in the cache so that when it gets

evicted it will not be used again later since the application has exhausted this

piece of data for all the computations that needs this piece of data. In general,

when locality optimization techniques are applied to a specific application and it

turns out to be successful, both average memory latency and bandwidth usage

are reduced. On the negative side, the additional loops inserted by tiling

introduce overhead, similar to the overhead that prefetch instructions introduce

in software prefetching.

1.4 Thesis Organization

Both software prefetching and locality optimizations have been studied in

isolation. This thesis conducts an in-depth evaluation that compares the two

8

techniques under different memory system design points. The evaluation uses

benchmarks from three broad classes of data-intensive applications. In addition,

the evaluation uses a single unified simulation environment based on the

Simple-Scalar tool set [5] with a detailed memory system to enable a meaningful

comparison. The primary focus of the work is to compare the importance of

latency tolerance provided by software prefetching and latency reduction provided

by locality optimizations on future high-performance memory systems. The work

also investigates the interactions of software prefetching and locality

optimizations when applied in concert both naively and then with some

enhancements to increase the effectiveness of their combination.

The contributions of this thesis are as follows:

• Compare the efficacy of software prefetching and locality optimizations for

three types of data-intensive applications in terms of performance.

• Quantify the impact of memory system parameters, such as bandwidth and

latency, in future memory systems on the relative effectiveness of software

prefetching and locality optimizations.

• Examine the performance of integrated software prefetching and locality

optimizations, then propose and evaluate several enhancements to increase

their combined performance.

The rest of this thesis will be organized as follows. First, related work is

discussed in Chapter 2. Second, the three memory access patterns are explained

9

in Chapter 3. Then, different optimizations for each access pattern is discussed.

Chapter 4 discusses software prefetching optimizations. Chapter 5 discusses

locality optimizations. The experimental results are presented in Chapter 6.

Improved algorithms are discussed in Chapter 7. Chapter 8 presents the

conclusions. Finally, Chapter 9 discusses the future extensions to this thesis.

10

Chapter 2

Related Work

This thesis is similar to Saavedra et al [49], in which they evaluated unimodular

transformations, tiling, and software prefetching for matrix multiply only using a

cache simulator as their measurement environment. Mowry et al [39] evaluated

software prefetching and tiling for two scientific applications. This thesis is

focused on memory system parameters scaling and quantification of their impact

on software prefetching and locality optimizations. The previous works have

considered only a fixed technology point. Furthermore, 3 classes of benchmarks

are studied in this thesis requiring different types of optimizations. New

enhancements are proposed to better combine software prefetching and locality

optimizations, as well as an enhancement to software prefetching when applied to

array-based benchmarks. The experimental evaluation methodology used is a

detailed execution-driven simulator for a modern processor and memory system.

Most of the work done before has been devoted to the study of the two

techniques in isolation, and little work has been done to study the combined

techniques. To our knowledge, the only one to do this is Saavedra et al [49]. The

conclusions in that paper were negative. They concluded that the combination

11

suffers degradation in performance due to destructive interference but didn’t

suggest anything to address the problem.

Software prefetching for affine array accesses has been studied

in [37, 28, 7] as will be described in detail in Section 4.1. Hardware

prefetching [10, 41, 19, 18, 26] uses hardware to identify the access pattern

automatically. Prefetch engines for affine array accesses [53, 9, 13, 11] provide

hardware support for prefetching, but rely on the programmer or compiler to

identify the access pattern, i.e. the hardware itself doesn’t detect the access

pattern automatically like hardware prefetching. Intel and AMD are both having

some hardware prefetching techniques in their latest processors (Pentium 4 and

Athlon 4 chips) [33, 24].

Prefetching for pointer-chasing traversals uses one of four approaches. The

first approach inserts additional pointers, called jump pointers, into the data

structure of the application to connect non-consecutive list elements [27, 48, 32],

as will be described in detail in Section 4.3. The second approach uses natural

pointers for prefetching [47, 34, 32]. This technique prefetches pointer chains

sequentially, but schedules each prefetch as early in the loop iteration as possible

to maximize memory latency overlap. The third approach uses a hardware table,

called a Markov predictor [25], to predict link node addresses for prefetching.

Finally, the fourth approach uses a special allocation technique to allocate nodes

contiguously in memory which enables indexed access to the list nodes. This

approach was first proposed in [32] and is called data linearization prefetching.

This is what is called in this thesis ”index prefetching” technique and is

12

evaluated in Section 7.3.

Data locality has been studied extensively in the literature.

Computation-reordering transformations such as loop permutation and tiling are

the primary optimization techniques [56]. Chapter 5 will discuss these techniques

in greater detail. Data layout optimizations such as padding and transpose have

been shown to be useful in eliminating conflict misses and improving spatial

locality [43]. Padding is studied as an enhancement to software prefetching in

Section 7.2. Several cache miss estimation techniques have been proposed to help

guide data locality optimizations [20, 56]. Tiling has been proven useful for linear

algebra codes [30, 56, 14] and multiple loop nests across time-step loops [51]. In

comparison, tiling for 3D stencil codes is applied in these benchmarks which

cannot be tiled with existing methods. Tiling for 3D and 2D arrays is discussed

in detail in Section 5.1.

Researchers have examined irregular computations mostly in the context

of parallel computing, using the run-time [16] or compiler [31] to support accesses

on message-passing multiprocessors. A few have also looked at techniques for

improving locality [1, 17]. The techniques for irregular computations are

discussed in detail in Section 5.2.

Few researchers have investigated data layout transformations for

pointer-based data structures. Chilimbi et al. investigated allocation-time and

run-time techniques to improve locality for linked lists and trees [12]. Further

extensions are introduced in this work to use this technique in conjunction with

software prefetching. Also, index prefetching utilized this allocation methodology

13

as discussed later in Section 7.3. Calderet al. use profiling to guide layout of

global and stack variables to avoid conflicts [6]. Carlisle et al. investigate parallel

performance of pointer-based codes in Olden [8].

14

Chapter 3

Memory Access Patterns

The type of software prefetching and locality optimizations to use depend on the

memory access pattern of the application code. This Chapter discusses three

common memory access patterns that occur in the benchmarks used by this

thesis. In the following sections, affine array accesses, indexed array accesses and

pointer-chasing accesses are discussed.

3.1 Affine Array Accesses

Affine array access is the most basic access pattern. This pattern arises when

traversing arrays, as shown in Figure 3.1 Part(A). This figure shows the 2D

Jacobi code. All the array elements accessed are statically known at compile

time since the indices of the arrays are linear functions of the loop induction

variable. The access pattern used in the 2D Jacobi code fragment is usually

called a stencil. In a stencil, three columns are needed to perform the

computation. It is necessary to have all three columns in the cache for high

performance. Figure 3.2 shows the computation elements and how the

computation progresses in the array. 3D solvers suffer from very bad cache

15

// Affine Array Accesses // Indexed Array Accesses // Pointer-Based Structures
// (2D Jacobi Kernel) // (Molecular Dynamics) // (Linked List Traversal)
A(N,N,N),B(N,N,N) X1(M),X2(M),index(N) struct node {val, next} *ptr;
do j=2,N-1 do t = 1, time while (...) {
do i=2,N-1 do i = 1, N ptr->next = malloc(node);
A(i,j) = 0.25 * d = X1(index(i))-X2(index(i)) ptr = ptr->next;
(B(i-1,j)+B(i+1,j)+ force = d**(-7)-d**(-4) ptr->val = ... ;
B(i,j-1)+B(i,j+1)) X1(index(i)) += force }

X2(index(i)) += -force while (ptr->next){
ptr = ptr->next; …;

}

Part(A) Part(B) Part(C)

Figure 3.1: Example of 3 different access patterns. Part(A) Affine Array Access
example code. Part(B) Indexed Array Access example code. Part(C) Pointer-
Chasing Access example code.

performance [4, 52, 55]. A version of Jacobi extended to 3 dimensions is shown

in Figure 3.3. This figure shows a pictorial image of the computation order. The

dark squares are the neighboring elements that are averaged. The computation

averages 6 elements: 4 in the main plane and one element for each plane above

and below the main plane as shown in the figure. For high performance in this

case, the cache needs to hold three entire N×N planes. Assuming double

precision data and a write-through cache so that array A doesn’t interfere with

B, a 16K Byte L1 cache can hold a 3D array of size 26×26×M , where M is the

third dimension of the array which can be any number. As the problem size

increases the problem gets worse. In comparison, the same sized cache can hold

data up to 682×M array in case of a 2D version of Jacobi.

Affine array accesses are common in dense-matrix codes such as linear

algebra and PDE solvers. Such access patterns can also be found in image

16

B

Figure 3.2: The computation order and direction of progress in 2D Jacobi.

i

j

ki

j

k

BB

Figure 3.3: The computation order and direction of progress in 3D Jacobi.

processing and signal processing codes; they are particularly common in DSP

applications. An important feature of affine array accesses is that they allow

memory access patterns to be analyzed exactly at compile time, assuming array

dimension sizes are known. For this reason, software prefetching and locality

transformations can be instrumented for affine array accesses at compile time

fairly easily.

3.2 Indexed Array Accesses

The second access pattern is indexed array accesses. Indexed array accesses are

similar to affine array accesses except the indexing of the array is not statically

17

Index Array

Data Array

Figure 3.4: Showing the relationship between the index and indexed arrays before
inspector-executor runs.

known. The data array, which is the main computation array, is indexed by

another array which is called the index array. This pattern results in an irregular

access pattern since the data array elements accessed depend on the contents of

the index array.

Figure 3.1 Part(B) is a simple piece of code extracted from one of the

applications that uses indexed arrays. The array named index is accessed in an

affine manner similar to the arrays in the previous section. The two arrays X1

and X2 are indexed by the contents of the index array. The accesses are

irregular due to the randomness of the data stored in the array index. The cache

performance of applications using indexed arrays can be poor since both spatial

and temporal locality in such applications is typically low due to the irregularity

of the access pattern.

Figure 3.4 shows the relationship between the index array and the indexed

”data” array. Unlike Affine array accesses, which can be improved using

compile-time transformations, indexed array accesses cannot be improved at

compile-time since the index array values are known only at run-time. To

improve the performance of such applications, run-time transformations are

18

Figure 3.5: Chasing pointers to access list nodes.

required to change the access patterns dynamically.

3.3 Pointer-Chasing Accesses

The third and final access pattern is pointer-chasing accesses. As the name

suggests, this access pattern is characterized by pointer dereference operations.

This results in an access pattern that is as random in nature as indexed arrays

discussed above. Applications using linked lists, trees, and graph data structures

are examples of codes that produce such access patterns.

Figure 3.1 Part(C) shows an example of creating and traversing a

singly-linked list. The list nodes are dynamically allocated at run-time. The

length of the list is usually a parameter that is known only at run-time.

Figure 3.5 can be used to help describe the list access pattern. As shown in this

figure, the list nodes are linked through pointers. To traverse the list, the

pointers are dereferenced one after another in a serial manner. This access

pattern cannot be analyzed by the compiler to improve its locality since the

pointer locations are not known statically. Memory locations are known only at

run-time which makes the locality optimizations of these types of codes possible

at run-time only. Whereas, prefetching is not hindered by the fact that the

memory location are not known at compile-time but is hindered by the fact that

19

the accesses are inherently serial. In pointer-chasing codes, it is common for

spatial and temporal locality to be low. Thus, the cache behavior of these

applications can be poor. The pointer-chasing accesses force the accesses to be

sequentialized since the next node cannot be accessed until the pointer pointing

to that node is found in the current node. Pointer-chasing codes are quite

common in applications such as databases, and advanced pointer-based data

structures found in many applications.

20

Chapter 4

Software Prefetching

Software prefetching is a well-known prefetching technique for pre-loading data

into the cache from memory. Software prefetching relies on the programmer or

the compiler to insert explicit prefetch ”Pre-load” instructions and schedule them

far enough in advance to hide or ”tolerate” the latency of the memory accesses.

The job of the compiler or the programmer is to identify memory accesses that

are likely to miss in the cache, and to issue a prefetch for that piece of data to

avoid stalls due to cache misses.

There exist several techniques to implement software prefetching for affine

array codes [7, 28, 38, 37]. These techniques can be easily extended for indexed

array codes [40]. Researchers have also proposed software prefetching techniques

for pointer-chasing applications [27, 48, 47, 34, 32].

The advantage of software prefetching is that it is controlled by software

and hence does not need much special hardware support. The only support

needed is lockup-free caches which allow multiple outstanding misses, and ISA

support in the form of a prefetch instruction. Consequently, software prefetching

is relatively cheap compared to hardware prefetching.

21

In this thesis, three software prefetching algorithms proposed previously in

the literature for the three different memory access patterns described in

Chapter 3 are studied both in isolation and in combination with the appropriate

locality optimization technique. This chapter describes the three software

prefetching algorithms.

4.1 Affine Array Prefetching

Affine array prefetching inserts prefetches for loops traversing affine arrays. The

algorithm used is Mowry’s algorithm [38]. In this thesis, Mowry’s algorithm is

applied by hand, even though it has been automated by a compiler. This

algorithm prefetches only the missing data items. The algorithm is comprised of

three steps. The first is to identify the instances of the data items that are going

to miss in the cache. The second is to perform loop unrolling and loop splitting

to isolate the memory references that will miss. The degree of loop unrolling is

determined by the size of the data element and the size of the cache block. The

third and final step is to schedule the prefetches such that they arrive in cache

just prior to being accessed by the computation. The distance (in loop iterations)

a prefetch instruction is scheduled before its consumption is called the prefetch

distance. The 2D Jacobi kernel from Figure 3.1 Part(A) has been instrumented

with Mowry’s algorithm. The instrumented code appears in Figure 4.1.

Figure 3.2 can be used to visualize the computation order and progress for 2D

Jacobi.

The first step is to identify the references that will miss in the cache. The

22

A(N,N,N),B(N,N,N)

do j=2,N-1
do i= 2 , PD , step=4
prefetch(&B[i][j])
prefetch(&B[i][j+1])
prefetch(&B[i][j-1])
prefetch(&A[i][j])

do i=2,N-PD-1,step=4
prefetch(&B[i+PD][j])
prefetch(&B[i+PD][j+1])
prefetch(&B[i+PD][j-1])
prefetch(&A[i+PD][j])

A(i,j) = 0.25*(B(i-1,j)+B(i+1,j)+B(i,j-1)+B(i,j+1))
A(i+1,j) = 0.25*(B(i,j)+B(i+2,j)+B(i+1,j-1)+B(i+1,j+1))
A(i+2,j) = 0.25*(B(i+1,j)+B(i+3,j)+B(i+2,j-1)+B(i+2,j+1))
A(i+3,j) = 0.25*(B(i+2,j)+B(i+4,j)+B(i+3,j-1)+B(i+3,j+1))

do i=N-PD,N-1
A(i,j) = 0.25*(B(i-1,j)+B(i+1,j)+B(i,j-1)+B(i,j+1))

Prologue Loop

Epilogue Loop

Loop Unrolling

Figure 4.1: Example affine array prefetching for the 2D Jacobi kernel using
Mowry’s algorithm [38]. The prefetch algorithm involves three steps: loop un-
rolling, prefetch scheduling, and loop peeling.

23

missing references are those in the innermost loops. Using compiler analysis to

determine the locality of the data access pattern, the missing elements are

identified. In the unrolling step, the loop is unrolled to expose the leading

memory reference from each cache block that will cause a cache miss. Only the

missing reference from a cache block is prefetched. When the prefetch comes

back, the whole cache block will be brought to the cache and thus no further

prefetch instructions for any of the elements belonging to that cache block are

necessary. Thus, the loop unrolling step minimizes prefetch overhead since only

one prefetch is issued per cache block.

The 2D Jacobi code in Figure 4.1 shows the prefetch instructions, loop

unrolling, and the scheduling of the prefetch instructions. Each statement in the

code reference four B array elements and one A array element. All elements

referenced in the same statement lie in different cache blocks except for the two

elements B(i − 1, j) and B(i + 1, j) which lie on the same cache block, thus an

unnecessary prefetch is saved. The compiler or the programmer can figure out

that only four prefetches are needed for each statement, assuming a data element

size of 8 bytes and a 32-byte cache block. Hence the loop is unrolled four times.

Scheduling the prefetches is necessary since there isn’t enough work in a

single unrolled loop iteration under which to hide the memory latency. Thus, the

prefetch instructions need to be issued some number of loop iterations in advance

to give them enough slack to hide the cache miss. The distance in loop iterations

necessary to hide a cache miss latency is called the prefetch distance. Computing

the prefetch distance is done using the formula d l

w
e; l is the memory latency and

24

w is the work in one loop iteration, as mentioned in Chapter 1. Since every

prefetch instruction needs to be scheduled exactly PD iterations ahead, a

”prologue loop” should be inserted before the main computation loop to prefetch

the first PD elements. Similarly, the last PD iterations will not need any

prefetching. Thus, an ”epilogue loop” needs to be inserted after the main loop

computation to perform the last PD iterations without prefetching. The

transformation to handle the first and last PD loop iterations in the prologue

and epilogue loops is called ”loop peeling”.

Imagine a pipeline that executes the loop iterations. In such a pipeline,

the prologue loop is filling up the pipeline with the first few data elements

needed, and the epilogue loop executes the last PD iterations without

prefetching, essentially draining the pipeline. Figure 4.1 illustrates the prologue

and epilogue loops created by the loop peeling transformations.

4.2 Indexed Array Prefetching

Indexed array accesses, of the form X1(index(i)), are very similar to affine array

accesses except they have a single level of indirection since each reference is

actually two references performed back to back. The algorithm used to

instrument prefetching for indexed array accesses is also the Mowry

algorithm [40]. Figure 4.2 shows a simplified molecular dynamics kernel (very

similar to the Moldyn, Irreg, and NBF benchmarks used in the performance

evaluation) after all the necessary transformations have been applied.

The strategy is to prefetch two back-to-back (serialized) prefetches, one

25

X1(M),X2(M),index(N)

do t = 1, time

do i = 1,PD ,step=2

 prefetch(&index(i))

do i = 1, PD, step=2

 prefetch(&index(i+PD))

 prefetch(&X1(index(i)))

 prefetch(&X2(index(i)))

 prefetch(&X1(index(i+1)))

 prefetch(&X2(index(i+1)))

do i = 1, N-2*PD-1, step=2

 prefetch(&index(i+2*PD))

 prefetch(&X1(index(i+PD)))

 prefetch(&X2(index(i+PD)))

 prefetch(&X1(index(i+1+PD)))

 prefetch(&X2(index(i+1+PD)))

 d = X1(index(i))-X2(index(i))

 force = d**(-7)-d**(-4)

 X1(index(i)) += force

 X2(index(i)) += -force

 d = X1(index(i+1))-X2(index(i+1))

 force = d**(-7)-d**(-4)

 X1(index(i+1)) += force

 X2(index(i+1)) += -force

do i=N-2*PD-1, N-PD-1

 prefetch(&X1(index(i+PD)))

 prefetch(&X2(index(i+PD)))

 d = X1(index(i))-X2(index(i))

 force = d**(-7)-d**(-4)

 X1(index(i)) += force

 X2(index(i)) += -force

do i=N-PD-1, N

 d = X1(index(i))-X2(index(i))

 force = d**(-7)-d**(-4)

 X1(index(i)) += force

 X2(index(i)) += -force

Prologue

Loops

Epilogue

Loops

Loop Unrolling

Figure 4.2: Example indexed array prefetching for a molecular dynamics kernel
using the algorithm in [38]. The prefetch algorithm is similar to the algorithm for
affine arrays, with several extensions to handle indexed arrays.

26

for the index array value, and another for the data array value. The index array

can be prefetched like the affine array case, as described in Section 4.1. Then,

when the prefetch for that index array element completes, a prefetch for the data

array can be issued using the index array data that came back. Thus, the index

array prefetches should start PD iterations before the data array. In addition,

two prologue and epilogue loops are required, as shown in Figure 4.2: one loop to

start the index array prefetches before the data array, and one loop to start the

data array prefetches. Then, the computations start.

Looking back at the pipeline example mentioned above in explaining how

prefetching works, there are two prefetch pipelines with two different prefetch

distances for indexed arrays. Thus, at the end of the computations, two epilogue

loops are needed: one to prefetch the last PD entries of the data array while

performing the computations for 2×PD iterations before the end of the

computations, and another final loop to perform only the remaining PD

computations at the end of the array.

Loop unrolling is used to reduce the number of prefetches in the index

array. Loop unrolling is not effective at reducing the prefetch overhead for the

data array since the compiler cannot figure out which elements of the data array

belong to the same cache block. Hence, the compiler must conservatively

schedule a prefetch for every reference of the data array increasing the prefetch

overhead for this array. The loop unrolling degree is 2 in Figure 4.2 only to limit

the size of the example code. Thus, loop unrolling will help the index array only

since it is treated as an affine array. The prefetch distance is computed in the

27

same way as affine array codes.

4.3 Pointer-Chasing Prefetching

Prefetching pointer-chasing accesses is the most challenging of the three

prefetching techniques. The problem with pointer-chasing accesses is that the

memory references performed along a pointer chain are inherently serial. As

shown in Figure 3.5, each node of the list can be accessed only after all previous

list node pointers have been dereferenced sequentially. The serial nature of

pointer references is known as the pointer-chasing problem.

One promising technique for addressing the pointer-chasing problem is

jump pointer prefetching [48, 32]. In this technique, the list data structure is

modified to permit prefetching of list nodes further down the pointer chain

without traversing the intermediate list nodes. Jump pointer prefetching

instruments the list nodes with extra pointers, called jump pointers. As this

name suggests, jump pointers point to some number of nodes down the list to

permit access to later nodes. Similar to previous prefetching techniques, the

distance between where a jump pointer originates and where it points to is the

prefetch distance. Jump pointers break the sequentiality of the list node accesses.

Computing the prefetch distance in jump pointer prefetching is the same as in

other prefetching techniques.

Figure 4.3-Part A shows a “while” loop that has been instrumented with

jump pointer prefetching. Figure 4.4 shows how prefetch pointers are inserted

into a list, and how these prefetch pointers point to list elements further down

28

struct node {data, next, jump}
*ptr, *list_head, *prefetch_array[PD], *history[PD];

int i, head, tail;
for (i=0; i < PD; i++) for (i = 0; i < PD; i++)

prefetch(prefetch_array[i]); history[i] = NULL;
tail = 0;

ptr = list_head; head = PD-1;
while (ptr->next) {

prefetch(ptr->jump); ptr = list_head;
... while (ptr) {
ptr = ptr->next; history[head] = ptr;

} if (!history[tail])
prefetch_array[tail] = ptr;

else
history[tail]->jump = ptr;

head = (head+1) % PD;
tail = (tail+1) % PD;
ptr = ptr->next;

}

Prologue
Loop

Pointer Prefetching
Generation Loop

Part B: Prefetching Pointers Creation Code.

Part A: Traversal Code.

Figure 4.3: Example pointer prefetching for a linked list traversal using jump
pointers and prefetch arrays [27]. Part(A) shows the traversal code instrumented
with prefetching through jump pointers and prefetch arrays. Part(B) shows the
prefetch pointer initialization code.

Figure 4.4: Jump Pointers inserted into the list nodes.

the list, this breaking the sequentiality of pointer accesses.

One problem with jump pointers is that there are no jump pointers

pointing to the first PD nodes of the list. Thus, a technique is needed to help

generate something similar to the prologue loop in affine and indexed arrays.

This technique is called prefetch arrays [27]. In this enhancement to jump pointer

prefetching, an array of pointers is constructed to point to the first PD elements

of the list, and a ”prologue loop” is added to prefetch the first PD elements

29

P
P

P
P

P

P

Figure 4.5: Prefetch Array pointers labelled ”P” added to the list nodes already
having jump pointers.

using the array of pointers. Figure 4.5 shows prefetch array pointers for the

linked list example, and labels them with the letter ”P”. Figure 4.3-Part A

shows the additional prologue loop code needed to issue prefetches through the

prefetch arrays.

Before prefetching can start, the prefetch pointers must be set.

Figure 4.3-Part B shows an example of prefetch pointer creation code which uses

a history pointer array [32] to set the prefetch pointers. The history pointer

array, called “history” in Figure 4.3-part B, is a circular queue that records the

last PD link nodes traversed by the creation code. Whenever a new link node is

traversed, it is added to the head of the circular queue and the head is

incremented. At the same time, the tail of the circular queue is tested. If the tail

is NULL, then the current node is one of the first PD link nodes in the list since

PD link nodes must be encountered before the circular queue fills. In this case,

we set one of the “prefetch array” pointers to point to the node. Otherwise, the

tail’s jump pointer is set to point to the current link node. Since the circular

queue has depth PD, all jump pointers are initialized to point PD link nodes

ahead, thus providing the proper prefetch distance.

30

Normally, the compiler or programmer ensures the prefetch pointer

initialization code gets executed prior to prefetching, for example on the first

traversal of a linked list data structure. Furthermore, if the application modifies

the linked data structure after the prefetch pointers have been initialized, it may

be necessary to update the prefetch pointers either by re-executing the

initialization code or by using other fix up codes, adding extra overhead to the

pointer prefetching technique.

31

Chapter 5

Locality Optimizations

Locality optimizations are the second technique to be evaluated in this thesis.

This techniques are orthogonal to software prefetching. Software prefetching tries

to hide the latency of references by issuing loads early for those references that

are expected to miss in the cache. Locality optimizations try to change data

layout and/or computation order of the programs so that the application’s data

locality is increased [56]. Data locality optimizations improve the application’s

data reuse which already exists but is not exposed. Changing the computation

order and data layout of the program at compile and/or run-times exposes this

data reuse.

Reuse comes in two forms. One is temporal reuse where data accesses to

the same location of memory are repeated in time. Temporal reuse can be

exploited by reordering the computations to finish all computations on a

particular element before moving on to the next element. The second is spatial

reuse where data accesses to nearby locations are performed together. Spatial

reuse can be exploited by reordering the computations to perform computations

on elements that are close in space before moving on to other computations.

32

CACHE (array layout causes conflict)

CACHE (array layout avoids conflicts)

Figure 5.1: Example of conflict misses under two array layouts.

// Tiled 3D Jacobi //Inspector-Executor for // Pointer-Based Structures
A(N,N,N),B(N,N,N) //Molecular Dynamics // (Linked List Traversal)
do kk=2,N-1,TK inspect_reorder(&E(2,N)) struct node{val, next} *ptr, *list;
do jj=2,N-1,TJ do t = 1, time while (...) {
do ii=2,N-1,TI if (recalc) ptr->next = ccmalloc(node);

do k=kk,kk+TK-1 E(...) = ... ptr = ptr->next;
do j=jj,jj+TJ-1 do i = 1, N ptr->val = ... ;
do i=ii,ii+TI-1 d = X(E(1,i))-X(E(2,i)) }

A(i,j,k) = 0.16667 * force = d**(-7)-d**(-4) while (ptr->next) {
(B(i-1, j, k) + B(i, j-1, k)+ X1(E(1,i)) += force ptr = ptr->next;…;
B(i+1, j, k) + B(i, j+1, k)+ X2(E(2,i)) += -force }
B(i, j, k-1) + B(i, j, k+1))

Tiled
Loops

TIxTJxTK
Tile

Part(A) Part(B) Part(C)

Figure 5.2: Example Locality optimized codes for affine array, indexed array and
pointer-chasing codes.

In data locality optimizations, the compiler or run-time code examines the

application to see what type of data locality can be exploited to improve the

application’s cache performance. Several data locality optimizations have been

proposed in the literature. These optimizations target different access patterns.

In the next three sections, locality optimizations for the three access patterns

discussed earlier in Chapter 3 will be explained.

5.1 Tiling for Affine Accesses

Locality optimizations for affine array accesses are straightforward to apply

because the access patterns can be analyzed exactly at compile time. The

33

transformation for such access patterns is called tiling. In tiling, loop permutation

and strip-minning are applied to arrange the access pattern into small tiles that

can fit completely in the cache [56]. The main idea is to instrument the

innermost loop to make the accessed data fit in the cache and thus achieve the

requirement of better reuse. A significant problem with tiling techniques is that

conflict misses can occur. Such misses will cause tile data to be evicted from

cache before they are fully reused [30]. This effect is shown in Figure 5.1.

Figure 5.2 part(A) shows tiling applied to the 2D Jacobi code introduced

in Chapter 3. The goal in tiling for Jacobi is to keep the three columns needed

for each computation in the cache. To address the cache conflicts problem, tile

size selection and array padding can be applied to avoid conflict misses in

tiles [14, 42, 44].

Avoiding conflicts in tiling problems, especially for 3D problems is

discussed in Rivera et al. [45]. They consider 4 possible solutions to reduce

conflict misses when applying tiling. They dismiss 3 of these solutions and are

left with one good solution. Tile size selection avoids conflicts by carefully

selecting tile dimensions tailored to the particular array dimensions so that no

conflicts occur. An algorithm called the Euclidean remainder algorithm is used to

compute sequences of nonconflicting tile dimensions [14, 44] for 2D arrays. Also,

an extension of this technique is discussed in [45] to apply this algorithm to 3D

arrays. A cost function is required in these algorithms to pick one tile size out of

all the generated tile sizes. A greedy algorithm is used to search for improved tile

size candidates by increasing the tile dimensions and testing for conflicts. The

34

tile size is continually extended until no more extensions are possible without

introducing conflicts.

Even when choosing non-conflicting tiles, performance of tiling may suffer

for certain array dimensions. For instance, given a 341×341×M array, the best

tile size available is (110,4). The problem with this tile size is that the second tile

dimension is small. When one or more tile dimensions are small, performance

suffers. Note that the original problem was doing computations assuming a tile

size of (341,1), the new tile size won’t be effective enough in improving the

locality of the application. The solution is to use padding to enable better tile

sizes [43]. Padding algorithms for picking the optimal tile size are NP-complete.

However, good tile sizes can be obtained using heuristics that have reasonable

complexity.

5.2 Reordering for Indexed Accesses

As was discussed previously in Chapters 3 and 4, indexed array accesses are

difficult to optimize since compile-time analysis cannot determine the access

patterns. Instead, indexed array accesses must be optimized at runtime

[1, 17, 35, 36]. Saltz et al. designed a compiler which generates calls to an

inspector to process memory access patterns at run-time. The same approach

can be used to improve the locality of indexed array access patterns.

Figure 3.4 shows the relationship between the index array and the data

(indexed) array. Indexed array accesses can be optimized using an

inspector-executor approach [16] as shown in Figure 5.2 part(B). The outcome of

35

53

1 2

453

1 2

45533

11 22

44computation

data

1 2 3 4

1 2 3 4 5

original access

computation

data

1 2 3 4

1 2 3 4 5

computation

data

1 2 3 41 2 3 4

1 2 3 4 5

original access

1 23 411 2233 44

graph partitioninggraph partitioning

1 2 3 4

3 1 5 2 4

data reordering

1 2 3 4

3 1 5 2 4

data reordering

1 2 3 4

3 1 5 2 4

1 2 3 41 2 3 4

3 1 5 2 4

data reordering

Figure 5.3: Indexed Arrays Reordering technique.

1 2 3 4

3 1 5 2 4

after data reordering

1 2 3 4

3 1 5 2 4

1 2 3 41 2 3 4

3 1 5 2 4

after data reordering

location: a b c d e

3 1 4 2

3 1 5 2 4

computation reordering

3 1 4 2

3 1 5 2 4

computation reordering

3 1 4 2

3 1 5 2 4

3 1 4 23 1 4 2

3 1 5 2 4

computation reordering

Figure 5.4: Indexed Array computation reordered after the reordering operations.

such a transformation is a change of the layout of the data that forces the access

to the data array to be more regular, thus resulting in better cache performance.

The reordering process is shown in Figure 5.3. This figure shows the

partitioning and the reordering of the data and index arrays taking place. Since

almost all molecular dynamics and electromagnetic codes interact pairs of data

according to their geometric coordinate data. The problem lends itself to a

directed graph. Several data and computation locality transformations exist to

solve the problem of improving the locality of such graphs. One of these

techniques is called Graph Partitioning techniques (GPART). This technique is

based on hierarchical clustering. It generates quality partitions like the ones in

36

Figure 5.3 quickly. The main advantage of this technique is that it has low

overhead since it only considers edges between partitions. GPART closely

matches the performance of more sophisticated partitioning algorithms, with one

third of the overhead [1, 35, 21].

An example is shown in Figure 5.4. Circles represent computations (loop

iterations), squares represent data (array elements), and arrows represent data

accesses. Initially, memory accesses are irregular, but either computation or data

may be reordered to improve temporal and spatial locality. Note that each

iteration accesses two array elements. Computations can be viewed as edges

connecting data nodes, resulting in a graph. Locality optimizations can then be

mapped to a graph partitioning problem. Partitioning the graph and putting

nodes in a partition close in memory can then improve spatial and temporal

locality. Applying lexicographic sorting after partitioning captures even more

locality.

The hierarchical structure in GPART is similar to that of recursive

coordinate bisection (RCB), which is a data reordering algorithm used when data

is unevenly distributed. RCB is based on geometric coordinate information. RCB

recursively splits each dimension into two by finding the median of the data

coordinates in that dimension. After partitioning, data items are stored

consecutively within each partition. Loop iterations are lexicographically sorted

based on the data accessed [17, 21, 36]. RCB has higher overheads than other

techniques but is most likely to work well with unevenly distributed data. The

right half of Figure 5.4 shows the computations after the partitioning technique

37

has been applied and shows how the computations will access the array in a

different order compared to the original access order. These algorithms are

defined in more detail in [21, 22].

5.3 Memory Allocation For Pointers

Pointer-based applications typically suffer from poor cache performance just like

indexed array codes since the allocation of these data structures is dynamic and

typically exhibits low spatial locality. Pointer-based applications are harder to

optimize than indexed array codes because of their dependence upon pointers

and dynamic allocation of new data items. Due to the pointer chasing problem,

link nodes must be traversed sequentially, as explained in Sections 3.3 and 4.3.

Cache-conscious allocation has been introduced to improve the locality of

such accesses [6, 12]. This technique packs nodes of data that are logically

contiguous onto the same cache line so that they are physically contiguous in

memory, thus increasing spatial locality. The node packing is achieved using a

custom memory allocator called ”CCMALLOC”.

Figure 5.5 shows how nodes from a linked list are allocated in a

cache-conscious fashion using CCMALLOC. Figure 5.2 part(C) shows a simple

list allocation code that uses CCMALLOC to allocate list nodes on nearby

cache blocks dynamically. The modification is quite simple: replacing malloc

with CCMALLOC. This optimization is applied to all pointer-chasing

benchmarks used.

CCMALLOC works in the following way: it takes a pointer as an

38

Main Memory Contiguously Allocated
List in Main Memory

Figure 5.5: Linked list contiguously allocated in Main Memory.

argument and allocates current and future nodes close to it. It reserves space for

future data blocks when allocating the first node [12].

Note one problem with CCMALLOC is that dynamic data structures

which change after allocation may not benefit from this optimization. Frequent

insert and delete operations after allocation will make logically contiguous nodes

physically non-contiguous.

39

Chapter 6

Experimental Evaluation

In this Chapter, the performance of software prefetching as well as that of

locality optimizations is evaluated independently and when combined together

naively. The experimental methodology in doing the evaluation is explained in

detail. Then, the results for software prefetching and locality optimizations under

different memory bandwidths and latencies are shown for all 9 benchmarks

studied. Finally, the naive combination is discussed. Later in Chapter 7,

enhancements for more effectively combining software prefetching and locality

optimizations are presented and evaluated.

6.1 Methodology

In this section, the methodology used to evaluate the different techniques is

presented. This thesis evaluates 9 benchmarks. The evaluation considers different

versions of each benchmark: original, prefetching, locality optimized, and the

combined version which includes both prefetching and locality optimizations. All

experiments are performed on the same cycle accurate simulator, and all

benchmarks were run to completion.

40

Application Problem Size Access Pattern

Matmult 200x200 matrices Affine array
Jacobi 200x200x8 grid Affine array
RedBlack 200x200x8 grid Affine array

Irreg 14K node mesh Indexed array
Moldyn 13K molecules Indexed array
NBF 144K mols Indexed array

Health 5 levels, 500 iters Pointer-chasing
MST 1024 nodes Pointer-chasing
EM3D 10K nodes Pointer-chasing

Table 6.1: Benchmark summary.

As discussed in Chapter 3, three different access patterns are evaluated.

For each access pattern, three benchmarks are instrumented and evaluated.

Table 6.1 lists all the benchmarks used along with their problem sizes and

memory access patterns.

The Affine array benchmarks are Matmult, which multiplies two

matrices, RedBlack, which performs a 3D red-black successive-over-relaxation,

and Jacobi, which performs a 3D Jacobi relaxation. Both Jacobi and

RedBlack are frequently found in PDE solvers, such as MGrid from the

SPEC/NAS benchmark suite.

The indexed array benchmarks are Irreg, which is an iterative PDE

solver for an irregular mesh, Moldyn, which is abstracted from the non-bonded

force calculation in CHARMM [16], a key molecular dynamics application used

at NIH to model macromolecular systems, and NBF (Non Bonded Force kernel),

which performs a molecular dynamics simulation. NBF is taken from the

GROMOS benchmark suite [54].

Finally, the pointer-chasing benchmarks are Health, which simulates the

41

Columbian health care system, MST, which computes a minimum spanning tree,

and EM3D, which simulates electromagnetic wave propagation through 3D

objects. Health, MST, and EM3D are from the olden benchmark suite [46].

For reasons that will appear later on in the results provided for EM3D, a

more detailed explanation of what the application is actually doing and how it is

doing it is introduced here. The major data structure of EM3D is an array that

contains the set of magnetic and electric nodes [15] since Electromagnetic waves

travel through space as alternating magnetic and electric fields. EM3D simulates

these fields with two sets of nodes: enodes and hnodes, where each set of nodes

corresponds to one of the fields. The area or surface on which the electromagnetic

field is to be simulated is modeled by a mesh of the e and hnodes. Each node is

given an initial value, and a list of it’s neighboring nodes. (enodes have hnodes

for neighbors and hnodes have enodes for neighbors.) Each node is connected to

each of its neighbors via an edge that has an associated coupling coefficient. The

list of nodes, edges, and the edge coefficients form a bipartite graph [50].

The original code is instrumented by hand to generate the prefetching,

locality optimized and the combined versions of each application. These codes

are compiled for our target architecture which is based on the SimpleScalar tool

set [5] and models a 1GHz 4-way issue dynamically-scheduled processor. The

simulator simulates all aspects of the processor, including the functional units,

the reorder buffer, the branch predictors, register renaming, the instruction fetch

unit, the load-store unit, the caches (data and instructions), and of course, the

register file. The simulator is cycle accurate. The original memory system model

42

from the SimpleScalar tool set was modified to account for the contention on the

L2-memory system bus. It was assumed that the L1-L2 bus link has infinite

bandwidth. No MSHRs are modeled. This approach maximizes the concurrency

in the memory system to expose memory bandwidth limitations. Also, a prefetch

instruction was added to the ISA of the processor.

The experiments were done using the following cache organization: A split

8-KByte direct-mapped L1 cache with 32-byte cache blocks, and a unified

256-KByte 4-way set-associative L2 cache with 64-byte cache blocks. The latency

of the L1 cache is one cycle, while the L1-L2 bus latency is 7 cycles and has

infinite bandwidth. Although the cache sizes are small, they are matched to the

small problem sizes used for the benchmarks in order to limit the simulation time.

Using this simulator model, each benchmark version is evaluated with

different L2-memory latencies and different memory bandwidths to study the

effects of memory system parameters on software prefetching and locality

optimization performance. The L2-memory latency is varied from 80 to 640

cycles in powers of two, and memory bandwidth is varied from 1 Gbytes/sec to

64 Gbytes/sec also, in powers of two. The lower end of both the latency and

bandwidth ranges simulated captures the trends of existing memory systems

which have latencies of around 100 cycles and bandwidths of around 2-3

GBytes/sec. The mid and high end of the latency and bandwidth ranges

simulated capture the characteristics of future architectures. All these number

are capturing the trends in single processor system and doesn’t extend to

multi-processor systems.

43

Latency in Cycles RedBlack Jacobi Matmult

80 12 8 , 36 24
160 24 16, 68 44
320 48 28, 136 88
640 96 56, 268 176

Table 6.2: Prefetch distances for RedBlack, Jacobi and Matmult for the
different latencies.

Latency in Cycles Irreg Moldyn NBF

80 8 , 20 , 20 , 40 1, 1, 2 2
160 12, 40 , 40 , 80 2, 2, 3 4
320 24, 80 , 80 , 160 4, 4, 5 8
640 44, 160, 160, 319 7, 7, 9 16

Table 6.3: Prefetch distances for Irreg, Moldyn and NBF for the different
latencies.

Latency in Cycles Health MST EM3D

80 31 3 2
160 62 3 3
320 124 3 6
640 247 3 11

Table 6.4: Prefetch distances for Health, MST and EM3D for the different
latencies.

44

Table 6.2 shows the prefetch distances of the three affine array

benchmarks for the different latencies. These prefetch distances are computed for

the original codes when instrumented with prefetching. Note that in Jacobi,

there are two loops instrumented with prefetching; hence, there are two prefetch

distances, one for each loop. For every benchmark, the prefetch distances are

reported with respect to the four memory system latencies simulated. Table 6.3

shows the prefetch distances for all the indexed array benchmarks used in the

thesis. Irreg has four loops that have been prefetched. Moldyn has only three

loops, while NBF has only one loop.

Table 6.4 shows the prefetch distances for the pointer-chasing benchmarks

used in this thesis. Note that the prefetch distances for Health are extremely

large. The prefetch distance for a latency of 640 cycles is 247, which is large

compared to the length of the list nodes of Health (around 120 nodes).

Prefetching has no impact on Health at this high latency since no list nodes are

prefetched when the prefetch distance exceeds the size of the linked lists.

6.2 Varying Memory Bandwidth

In this section, the results for a fixed memory latency of 80 cycles are discussed

while varying the bandwidth from 1 Gbytes/sec-64 Gbytes/sec. Results are

shown for the four versions of each benchmark (original, prefetching, locality

optimization, and combined), but the combined results will be discussed in a

later section.

Figures 6.1, 6.2, and 6.3 show the results for the 9 benchmarks with fixed

45

||0.0

|20.0

|40.0

|60.0

|80.0

|100.0

 E
xe

cu
tio

n
Ti

m
e

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Orig

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

Opt

64
32

16
8

4
2

1

Pref+Opt

Matmult

||0.0

|3.0

|6.0
|9.0

|12.0

|15.0

|18.0

 E
xe

cu
tio

n
Ti

m
e

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Orig

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

Opt

64
32

16
8

4
2

1

Pref+Opt

Jacobi

||0.0

|4.0

|8.0

|12.0

|16.0

|20.0

|24.0

|28.0

 E
xe

cu
tio

n
Ti

m
e

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Orig

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

Opt

64
32

16
8

4
2

1

Pref+Opt

RedBlack

Figure 6.1: Affine Array applications execution time breakdown under memory
bandwidth scaling with no optimizations (Orig), with software prefetching (Pref),
with locality optimization (Opt), and with combined optimizations(Opt+Pref).
Memory latency is fixed at 80 cycles.

46

||0.0

|20.0

|40.0

|60.0

|80.0

|100.0

 E
xe

cu
tio

n
Ti

m
e

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Orig

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

Opt

64
32

16
8

4
2

1

Pref+Opt

Irreg

||0.0

|50.0

|100.0
|150.0

|200.0

|250.0

|300.0

|350.0

 E
xe

cu
tio

n
Ti

m
e

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Orig

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

Opt

64
32

16
8

4
2

1

Pref+Opt

Moldyn

||0.0

|20.0

|40.0

|60.0

|80.0

|100.0

 E
xe

cu
tio

n
Ti

m
e

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Orig

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

Opt

64
32

16
8

4
2

1

Pref+Opt

NBF

Figure 6.2: Indexed Array execution time breakdown under memory bandwidth
scaling with no optimizations (Orig), with software prefetching (Pref), with lo-
cality optimization (Opt), and with combined optimizations(Opt+Pref). Memory
latency is fixed at 80 cycles.

47

||0.0

|1.0

|2.0

|3.0

|4.0

|5.0

|6.0

|7.0

|8.0

 E
xe

cu
tio

n
Ti

m
e

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Orig

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

Opt

64
32

16
8

4
2

1

Pref+Opt

Health

||0.0

|40.0

|80.0
|120.0

|160.0

|200.0

|240.0

|280.0

|320.0

 E
xe

cu
tio

n
Ti

m
e

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Orig

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

Opt

64
32

16
8

4
2

1

Pref+Opt

MST

||0.0

|0.6

|1.2

|1.8

|2.4

|3.0

|3.6

|4.2

 E
xe

cu
tio

n
Ti

m
e

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Orig

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

Opt

64
32

16
8

4
2

1

Pref+Opt

EM3D

Figure 6.3: Pointer-chasing applications execution time breakdown under memory
bandwidth scaling with no optimizations (Orig), with software prefetching (Pref),
with locality optimization (Opt), and with combined optimizations(Opt+Pref).
Memory latency is fixed at 80 cycles.

48

latency and varied bandwidth. In all these figures, execution time is plotted

along the y-axis against the memory bandwidth which is varied from 1-64

Gbytes/sec along the x-axis, in powers of 2, keeping memory latency fixed at 80

cycles. Each execution time bar is broken down into memory stall, which is the

amount of execution time spent waiting for some memory operation to complete,

software overhead, which is the code inserted into the benchmarks to instrument

them with the different optimization techniques, and Busy, which is the amount

of time the code needs to execute. The Busy component is the amount of time to

execute the code on a perfect memory system where every memory operation

would take only one cycle. The overhead component is measured as the

incremental difference between the original code and the optimized codes when

executed on a perfect memory system. The stall component is the rest of the

execution time after subtracting the busy and overhead components when the

application is executed on a real memory system. Bars are grouped into 4

groups, including the original version which is labeled ”Orig”, the software

prefetching version which is labeled ”Pref”, the locality optimized version which

is labeled ”Opt”, and the combined version which is labeled ”Pref+Opt”.

First, let us discuss the results for affine arrays in Figure 6.1 and indexed

arrays in Figure 6.2. Performance increases with increasing memory bandwidth

for all versions of each benchmark. Both software prefetching and locality

optimizations outperform the un-optimized original codes by 45% on average.

The prefetching overhead is larger than that of locality optimizations. For affine

arrays, tiling has overhead due the additional loop nests. For indexed arrays, rcb

49

Latency MM JAC RB Irreg MOL NBF EM3D Average

80 1.84 1.57 2.97 2.80 3.51 N/A 1.75 2.41
160 2.84 1.89 3.45 2.93 2.86 3.37 1.83 2.74
320 3.82 2.05 3.72 3.04 2.99 3.62 1.87 3.02
640 4.68 2.10 3.90 3.20 3.31 3.81 1.89 3.27

Table 6.5: Equi-performance bandwidths for 80, 160, 320, and 640-cycle memory
latencies. The last column reports the average over the 9 benchmarks. All memory
bandwidths are in Gbytes/sec.

has no measurable overhead since the runtime inspector is amortized over lots of

computations. This is discussed in greater detail in the work done by Hwansoo

Han and Chau-Wen Tseng in [22]. Prefetching overheads are mainly due to the

prefetch instructions and address computations. For indexed arrays, unrolling

doesn’t reduce prefetch overhead as with the case of affine arrays as discussed

earlier in Section 4.2.

The effectiveness of each of the two techniques is dependent on the

”technology point” or the memory system parameters at which the comparison is

performed. Prefetching overlaps latency with useful work. At high bandwidths,

prefetching can hide practically all the memory latency, and outperforms locality

optimizations. Locality optimizations reduce latency by more effectively using

the cache; however, it does not get rid of all the latency. But at low latency, it

outperforms prefetching since it reduces memory traffic. Consequently, the

conclusion drawn from the data is that for all the array-based benchmarks (affine

and indexed), software prefetching outperforms locality optimizations at high

memory bandwidths, while locality optimizations outperform software

prefetching at low memory bandwidths.

50

This thesis aims to show where each of the two techniques is

outperforming the other. Only then, a conclusion about which technique is better

for which applications on what memory system can be formalized. Table 6.5

reports the memory bandwidths at which software prefetching and locality

optimizations achieve equal performance. For bandwidths higher than this

equi-performance bandwidth, software prefetching outperforms locality

optimizations, while for bandwidths lower than this equi-performance bandwidth,

locality optimizations outperform software prefetching.

On a memory system with memory system latency of 80 cycles, the

average equi-performance bandwidth for all array-based applications is 2.12

GBytes/sec. Note that NBF doesn’t have an equi-performance bandwidth at 80

cycles since locality optimizations outperform software prefetching at all

bandwidths for that particular latency. The implication of these results is that

while software prefetching has superior maximum performance. ”Latency hiding

techniques” such as software prefetching cannot gain the optimal performance

gains without using latency reduction techniques on current memory systems,

which has bandwidths in the range of 1-3 GBytes/sec.

Second, let us look at Figure 6.3. This figure shows the results for the

pointer-chasing benchmarks. In Health, the prefetching overheads are much

higher than cache-conscious allocation due to the jump pointer management and

creation code. Prefetching doesn’t get rid of all the memory latency because the

loops are fairly short, around 120 elements as explained earlier. Prefetching tries

to hide the memory latency underneath the useful work that is done in the

51

computation loops. Short lists do not provide prefetching enough work to hide

the latency underneath. At low bandwidth, performance is worse than the

original code because of the extra data that is being fetched since the data

structures have more data due to the jump pointers. CCMALLOC or

”cache-conscious allocation” has much smaller overheads. The overhead is hardly

measurable. Overall, this allocation technique is much better than software

prefetching at all bandwidths.

For MST, software prefetching isn’t as effective in removing memory

stalls even at high bandwidth since the lists are extremely short, around 4 nodes.

This is even worse than Health which has longer lists than MST. Software

prefetching needs enough slack ”computations” to hide the memory latency

underneath which is not the case for MST. No crossover is detected for both

Health and MST; thus, locality optimizations outperform software prefetching

at all bandwidths.

EM3D has different behavior compared to Health and MST, and

resembles the behavior of the array benchmarks. In EM3D, software prefetching

achieves better performance than CCMALLOC at high bandwidths, and worse

performance than CCMALLOC at low bandwidths; the equi-performance

bandwidth is 1.7 Gbytes/sec at 80 cycles of latency. EM3D has an ”array of

lists” data structure which permits very effective prefetching of the lists. The

data structure of EM3D was explained in more detailed in Section 6.1.

52

6.3 Varying Memory Latency

In the previous section, the results shown were for a fixed latency of 80 cycles

with bandwidth scaling. In this section, memory latency is varied between 80 and

640 cycles along with bandwidth scaling in powers of 2.

Figures 6.4, 6.5, and 6.6 show the results for the 9 benchmarks. The axes

of the figures are exactly the same as in the fixed latency figures, but

performance is not broken down into the three execution components. Instead,

each figure plots four lines, representing bandwidth scaling results at 4 different

memory latencies (80, 160, 320, and 640 cycles). In contrast to the graphs in

Figures 6.1, 6.2, and 6.3 where each graph reports results for all versions of the

benchmark, each version of each benchmark is shown in a separate graph.

As in Section 6.2, the focus of this section will be on comparing the

techniques separately, leaving a discussion of the combined techniques for

Section 6.4. Clearly, it can be concluded from all the figures of varying latency

that execution times increase with increasing latency. Given the larger memory

stall components at higher latencies, the performance differential between the

techniques becomes magnified.

For both the affine array and indexed array benchmarks, software

prefetching effectively hides the increasing memory latencies given sufficient

memory bandwidth. This is clearly seen at the high bandwidth end of the graphs

for those benchmarks where all the different latency lines come close together.

Locality optimizations suffer performance degradation as memory latencies grow;

53

� 640� 320� 160�
 80

| | | | | | | | ||0

|80

|160

|240

|320

|400

|480

|560

|640

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

�������

�������
�������
�������

MM Orig

� 640� 320� 160�
 80

| | | | | | | | ||0

|80

|160

|240

|320

|400

|480

|560

|640

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

����
�
�

�

�����
�
�

������
�

�������

MM Pref

� 640	 320
 160� 80

| | | | | | | | ||0

|80

|160

|240

|320

|400

|480

|560

|640

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

������� 							

 �������

MM Opt

� 640 320� 160� 80

| | | | | | | | ||0

|80

|160

|240

|320

|400

|480
|560

|640

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

������� ������� �������

MM Opt+Pref

�
 640� 320� 160� 80

| | | | | | | | ||0

|20

|40

|60

|80

|100

|120

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

�����
�

�

������
�

������
�

�������

Jacobi Orig

� 640� 320� 160� 80

| | | | | | | | ||0

|20

|40

|60
|80

|100

|120

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

����
�
�

�

�����
�
�

������
�

�������

Jacobi Pref

�
 640� 320� 160� 80

| | | | | | | | ||0

|20

|40

|60

|80

|100

|120

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

�����
�

�

������
�

������� �������

Jacobi Opt

�
 640� 320� 160� 80

| | | | | | | | ||0

|20

|40

|60

|80

|100

|120

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

����
�
�

�

�����
�
�

������
�

�������

Jacobi Opt+Pref

 640! 320" 160# 80

| | | | | | | | ||0

|30

|60

|90

|120

|150

|180

|210

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

!!!!!
!
!

""""""
"

#######

RB Orig

$ 640% 320& 160' 80

| | | | | | | | ||0

|30

|60

|90

|120

|150

|180

|210

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

$$$$
$
$

$

%%%%%
%
%

&&&&&&
&

'''''''

RB Pref

(
 640) 320* 160+ 80

| | | | | | | | ||0

|30

|60

|90

|120

|150

|180

|210

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

((((((())))))) ******* +++++++

RB Opt

,
 640- 320. 160/ 80

| | | | | | | | ||0

|30

|60

|90

|120

|150

|180

|210

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

,,,,,,, ------- ///////

RB Opt+Pref

Figure 6.4: Execution time under both memory bandwidth and latency scaling
for affine array benchmarks with no optimizations (Orig), with software prefetch-
ing (Pref), with locality optimization (Opt), and with combined optimizations
(Opt+Pref).

54

0 6401
 3202
 1603
 80

| | | | | | | | ||0

|90

|180

|270

|360

|450

|540

|630

|720

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

00000
0

0

111111
1

2222222 3333333

Irreg Orig

4
 6405
 3206
 1607 80

| | | | | | | | ||0

|90

|180

|270

|360

|450

|540

|630

|720

 Bandwidth (GBytes/sec)
 E

xe
cu

tio
n

Ti
m

e
(M

cy
cl

es
)

1 2 4 8 16 32 64

4444
4
4

4

55555
5
5

666666
6

7777777

Irreg Pref

8 6409
 320:
 160;
 80

| | | | | | | | ||0

|90

|180

|270

|360

|450

|540

|630

|720

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

8888888 9999999 ::::::: ;;;;;;;

Irreg Opt

< 640=
 320>
 160?
 80

| | | | | | | | ||0

|90

|180

|270

|360

|450

|540

|630
|720

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

<<<<<<
<

======= >>>>>>> ???????

Irreg Opt+Pref

@
 640A
 320B 160C
 80

| | | | | | | | ||0

|300

|600

|900

|1200

|1500

|1800

|2100

|2400

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

@@@@@@
@

AAAAAA
A

BBBBBBB CCCCCCC

Moldyn Orig

D 640E
 320F 160G 80

| | | | | | | | ||0

|300

|600

|900

|1200
|1500

|1800

|2100

|2400

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

DDDD
D
D

D

EEEEE
E
E

FFFFFF
F

GGGGGGG

Moldyn Pref

H
 640I
 320J 160K
 80

| | | | | | | | ||0

|300

|600

|900

|1200

|1500

|1800

|2100

|2400

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

HHHHHHH IIIIIII JJJJJJJ KKKKKKK

Moldyn Opt

L
 640M
 320N 160O
 80

| | | | | | | | ||0

|300

|600

|900

|1200

|1500

|1800

|2100

|2400

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

LLLLLL
L

MMMMMMM NNNNNNN OOOOOOO

Moldyn Opt+Pref

P 640Q
 320R
 160S
 80

| | | | | | | | ||0

|90

|180

|270

|360

|450

|540

|630

|720

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

PPPPPP

P

QQQQQQ
Q

RRRRRRR SSSSSSS

NBF Orig

T
 640U
 320V 160W 80

| | | | | | | | ||0

|90

|180

|270

|360

|450

|540

|630

|720

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

TTTT
T
T

T

UUUUU
U
U

VVVVVV
V

WWWWWWW

NBF Pref

X 640Y
 320Z
 160[
 80

| | | | | | | | ||0

|90

|180

|270

|360

|450

|540

|630

|720

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

XXXXXXX YYYYYYY ZZZZZZZ [[[[[[[

NBF Opt

\ 640]
 320^
 160_
 80

| | | | | | | | ||0

|90

|180

|270

|360

|450

|540

|630

|720

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

\\\\\\\]]]]]]] ^^^^^^^ _______

NBF Opt+Pref

Figure 6.5: Execution time under both memory bandwidth and latency scaling for
indexed array and pointer-chasing benchmarks with no optimizations (Orig), with
software prefetching (Pref), with locality optimization (Opt), and with combined
optimizations (Opt+Pref).

55

` 640a 320b 160c 80

| | | | | | | | ||0

|8

|16

|24

|32

|40

|48

|56

|64

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n
Ti

m
e

(M
cy

cl
es

)

1 2 4 8 16 32 64

``````
`

aaaaaa
a

bbbbbbb ccccccc

Health Orig

d  640e  320f  160g  80

| | | | | | | | ||0

|8

|16

|24

|32

|40

|48

|56

|64

 Bandwidth (GBytes/sec)
 E

xe
cu

tio
n 

Ti
m

e 
(M

cy
cl

es
)

1 2 4 8 16 32 64

dddd
d
d

d

eeeee
e
e

ffffff
f

ggggggg

Health Pref

h  640i  320j  160k  80

| | | | | | | | ||0

|8

|16

|24

|32

|40

|48

|56

|64

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

hhhhhh
h

iiiiiii jjjjjjj kkkkkkk

Health Opt

l  640m  320n  160o  80

| | | | | | | | ||0

|8

|16

|24

|32

|40

|48
|56

|64

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

lllll
l
l

mmmmmm
m

nnnnnnn ooooooo

Health Opt+Pref

p  640q
 320r  160s  80

| | | | | | | | ||0

|300

|600

|900

|1200

|1500

|1800

|2100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

ppppppp

qqqqqqq
rrrrrrr sssssss

MST Orig

t  640u
 320v
 160w  80

| | | | | | | | ||0

|300

|600

|900

|1200
|1500

|1800

|2100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

tttttt
t

uuuuuu
u

vvvvvvv wwwwwww

MST Pref

x  640y
 320z  160{
 80

| | | | | | | | ||0

|300

|600

|900

|1200

|1500

|1800

|2100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

xxxxxxx
yyyyyyy zzzzzzz {{{{{{{

MST Opt

|  640}
 320~  160�
 80

| | | | | | | | ||0

|300

|600

|900

|1200

|1500

|1800

|2100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

|||||||

}}}}}}}
~~~~~~~ �������

MST Opt+Pref

�  640�  320�  160�  80

| | | | | | | | ||0

|4

|8

|12

|16

|20

|24

|28

|32

|36

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

������
�

������
�

������� �������

EM3D Orig

�  640�  320�  160�
 80

| | | | | | | | ||0

|4

|8

|12

|16

|20

|24

|28

|32

|36

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

����
�
�

�

�����
�
�

������
�

�������

EM3D Pref

�  640�  320�  160�  80

| | | | | | | | ||0

|4

|8

|12

|16

|20

|24

|28

|32

|36

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

������
�

������
�

������� �������

EM3D Opt

�  640�  320�  160�  80

| | | | | | | | ||0

|4

|8

|12

|16

|20

|24

|28

|32

|36

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

����
�
�

�

�����
�
�

������
�

�������

EM3D Opt+Pref

Figure 6.6: Execution time under both memory bandwidth and latency scaling for
indexed array and pointer-chasing benchmarks with no optimizations (Orig), with
software prefetching (Pref), with locality optimization (Opt), and with combined
optimizations (Opt+Pref).

56



however, at low memory bandwidths, the locality optimization graphs show

better performance than prefetching even with high memory latency. Thus, the

conclusion here is that software prefetching outperforms locality optimizations at

high memory bandwidths, while locality optimizations outperform software

prefetching at low memory bandwidths for all the memory latencies for all of the

benchmarks. NBF at 80 cycles latency is the one exception since locality

optimizations is slightly better than prefetching at all bandwidths.

Pointer-chasing benchmarks are different from the array-based

benchmarks with varying latency as was the case with varying bandwidth while

keeping latency fixed. For MST, locality optimization outperforms software

prefetching at all memory latencies and bandwidths. For Health, still software

prefetching at high bandwidths outperforms locality optimizations. The same

reasons given in Section 6.2 for the reduced effectiveness of software prefetching

on pointer-based data structures explain locality optimization’s performance

advantage at higher memory latencies and lower bandwidths. Again, EM3D is

an exception. EM3D performance with memory latency scaling is similar to

affine and indexed array performance. The same reasons given in Section 6.2

apply. It is worthy to note that since the performance of the three

pointer-chasing benchmarks differs, there is still room for research to study more

pointer-chasing applications to better characterize their performance when

software prefetching and locality optimizations are applied.

Table 6.5 shows the equi-performance bandwidths at different memory

latencies. The crossover bandwidths grow with latency in general. Consequently,

57



Latency in Cycles RedBlack Jacobi Matmult

80 9 8 , 40 16
160 9 11, 80 28
320 9 11, 156 52
640 9 11, 308 104

Table 6.6: Prefetch distances for the combined version of RedBlack, Jacobi and
Matmult for the different latencies .

on future systems with high memory latencies, greater memory bandwidth will

be required before software prefetching demonstrates a performance advantage

over locality optimizations for all these benchmarks, i.e. latency reduction will

still be important in the future and will provide more benefits than latency

tolerance applied alone.

6.4 Combined Techniques

This section evaluates software prefetching and locality optimizations when they

are combined naively, i.e. no tuning is applied to combine the techniques in the

best possible way. The combined versions of all the benchmarks were generated

in the following way.

First, for the affine array benchmarks, software prefetching is

instrumented into the innermost tiled loops of each benchmark, i.e. the

benchmark code is first tiled (locality optimized) and then software prefetching is

applied to its inner most loops.

Table 6.6 shows the prefetch distances for the affine array benchmarks

after applying software prefetching to the locality optimized innermost loops of

the benchmarks to produce the naive combined version of the benchmarks at

58



Latency in Cycles Irreg Moldyn NBF

80 8 , 20 , 20 , 40 1, 1, 2 2
160 12, 40 , 40 , 80 2, 2, 3 4
320 24, 80 , 80 , 160 4, 4, 5 8
640 44, 160, 160, 319 7, 7, 9 16

Table 6.7: Prefetch distances for the combined version of Irreg, Moldyn and
NBF for the different latencies.

Latency in Cycles Health MST EM3D

80 8 3 2
160 16 3 3
320 32 3 6
640 16 3 11

Table 6.8: Prefetch distances for the combined versions of Health, MST and
EM3D for the different latencies.

different latencies. Note that for RedBlack, the prefetch distance is fixed at 9

since the square tile size is 9x10 and the prefetch distances computed is larger

than 9. For our algorithm to function properly, we must limit the prefetch

distance to the smallest of the prefetch distance and the length of the tile in

order to prevent prefetching beyond the current computation tile. This effect also

occurs in the case of Jacobi for latencies higher than 80 cycles. Table 6.7 shows

the prefetch distances for indexed array benchmarks after merging software

prefetching and locality optimizations since they modify different parts of the

benchmarks. Table 6.8 shows the prefetch distances used for the pointer-chasing

benchmarks. The combined code is generated by merging the two optimizations

as the case with indexed array benchmarks.

For the affine array benchmarks, tiling significantly reduces the number of

iterations in the innermost loop because of the additional loop nests which tiling

introduces. These loop modifications can be seen in Figure 5.2 Part(A). When

59



prefetching is applied to these short tiled loops, the software pipeline startup

overhead incurred by prefetching, i.e. prologue loop prefetches becomes

significant since they are executed more often than without tiling. In effect, this

reduces the amount of memory latency that software prefetching would have

hidden in the case that no tiling was applied. This effect is very clear in the high

CPU overheads in the ”Pref+Opt” versions of Matmult and Jacobi in

Figure 6.1. Combining inherits the merits and the demerits of the two

techniques, namely, the overheads associated with both software prefetching and

tiling. This reduces the combined code performance relative to software

prefetching alone as shown in the previously mentioned figures.

For affine array benchmarks, the overheads roughly add. This is shown

clearly in Figure 6.1. The maximum performance is often lower than the

maximum performance of either technique alone. The combined technique, by

virtue of the tiled loops providing short innermost loops giving prefetching less

work to hide latency underneath, suffer more memory stalls. Also, the startup

prefetches in the ”prologue loop” will add more stalls since it will be executed

once per innermost loop. Hence, this will be more visible at high memory

latencies since the startup prefetches and memory stalls become more expensive.

For both indexed array and pointer-chasing benchmarks, software

prefetching and locality optimizations modify different parts of the benchmark

code. Software prefetching modifies the computation loops themselves while

locality optimizations instrument the creation code semantics, or reorders data

before entering the computation loop. Thus, the combined versions are generated

60



by merging modifications of software prefetching and locality optimization

together. The results are shown in Figures 6.2, 6.3, 6.5 and 6.6 under

“Pref+Opt” which is the rightmost graph in each of the benchmarks presented.

The performance of the combined versions of the benchmarks for affine array

benchmarks, indexed array benchmarks and EM3D is without question better

than that of the original un-optimized version. This is not the case with MST

and Health for the reasons mentioned in Section 6.2. Yet, with these results

especially for pointer-chasing applications there is still room for more

investigation of other pointer-chasing applications to study how they perform and

what differentiates them.

For indexed array codes, the combined overheads are similar to

prefetching since the locality transformation codes have no measurable overhead

as discussed earlier. The combined performance is superior at all bandwidths and

latencies. The overhead is not higher than prefetching. There is no negative

effects for the locality optimizations since data reordering doesn’t change the

loops at all; it only changes the order of the computations which doesn’t affect

software prefetching.

For pointer-chasing codes, except for EM3D, the combined techniques are

worse than locality optimizations alone at low bandwidth since additional jump

pointers consume precious memory bandwidth and increase overheads as well.

For Health, combined is the best at high bandwidth even though the overheads

are high. For MST, the combined technique is worse than locality optimization

alone because prefetching is completely ineffective for the extremely short lists.

61



Only overheads are added without hiding any memory latency. For EM3D,

locality optimizations performs better than any other technique at low

bandwidth. At higher bandwidth, combined is the best among all the techniques

since it takes the advantages of latency tolerance from software prefetching and

the better locality of CCMALLOC allocation.

For pointer-chasing benchmarks, combining always under-performs

CCMALLOC memory allocation alone at low memory bandwidths. The jump

pointers added for software prefetching and prefetch arrays required for pointer

prefetching increase the demand for memory bandwidth, thus partially decreasing

the reduced traffic benefits achieved by CCMALLOC memory allocation in the

combined version. The combined version also under-performs CCMALLOC

memory allocation at high memory bandwidths in MST. This was explained

before in Section 6.2. Software prefetching for the short list traversal loops in

MST is ineffective; hence, combining software prefetching with CCMALLOC

memory allocation only adds overhead without reducing memory stalls. Thus, it

is not such a good idea to apply combining for these applications. Only if the

application has long lists compared to the prefetch distance computed for the

computation loops, and there is enough memory bandwidth, then software

prefetching with or without CCMALLOC will achieve performance gains.

The combined techniques inherit the overheads from both techniques, but

enjoy the combined benefits of both traffic reduction and latency tolerance. From

the performance figures, it is clear that at high bandwidth, the graphs follow the

software prefetching performance. Although the combined techniques do not

62



Performance vs Latency

0

1

2

3

4

5

6

80 160 320 640

Memory Latency (cycles)

A
vg

 P
er

fo
rm

an
ce

 (n
or

m
al

iz
ed

)

Orig

Pref

Opt

Pref+Opt

Performance vs Bandwidth

0

1

2

3

4

1 2 4 8 16 32 64

Bandwidth (Gbytes/sec)

A
vg

 P
er

fo
rm

an
ce

 (n
or

m
al

iz
ed

)

Orig

Pref

Opt

Pref+Opt

Figure 6.7: Comparing average performance for different versions of programs
relative to memory bandwidth and latency. Performance is normalized relative to
the original program with 1 Gbyte/sec bandwidth and 80 cycle latency.

outperform software prefetching alone, they are much better than locality

optimization alone especially at high bandwidth. At low bandwidth, the

combined techniques perform better than software prefetching alone because of

the reduced traffic provided by locality optimizations.

The conclusion is that the combined techniques capture both the good

and bad features of both techniques. On average, the combined codes perform

better than any of the two techniques in isolation. Figure 6.7 shows this result.

In this figure, the average performance of each version of the program is plotted

relative to memory bandwidth and latency. Performance is normalized relative to

the original program (with bandwidth of 1 Gbyte/sec and latency of 80 cycles;

the lower-left point of the latency varyinggraphs in Figures 6.4, 6.5, and 6.6),

then averaged over all programs for each memory bandwidth or latency. Two

graphs are generated: one with varying bandwidth and one with varying latency.

The result in Figure 6.7 suggests that the combined techniques perform

better than any of the two techniques alone on average and definitely better than

63



the original code over all bandwidths and latencies. In other words, the combined

techniques are more robust to changes in memory system parameters. One

observation that can be made from this data is that applying both techniques in

concert achieves the best average application performance independent of

memory parameters. This relieves the compiler from having to choose which

technique to apply based on memory system parameters, which are usually not

known to the compiler. This is particularly true if the compiler is generating

code for different machines with different parameters.

64



Chapter 7

Algorithm Enhancements

Chapter 6 discussed the results for applying software prefetching and locality

optimizations in isolation to the benchmark suite and the results of the naive

combination in detail. This Chapter presents several enhancements to better

combine the two techniques and to enhance software prefetching for array codes

in the presence of conflict misses. First, tiling is enhanced to combine more

effectively with software prefetching. Then, padding which is normally used to

reduce conflicts in tiling is applied to software prefetching to avoid prefetch

thrashing. Finally, CCMALLOC is used to reduce overhead in software

prefetching for pointer-chasing data structures.

7.1 Enhancing Tiling for Software Prefetching

High startup overheads are noticed when tiling and software prefetching are

combined naively as discussed in Section 6.4. Prefetching, when naively combined

with tiling, loses part of its effectiveness due to the destructive interference

introduced by the tiling algorithm which makes the tiled loops shorter than they

were before applying tiling. The effect of these smaller innermost loops is to force

65



NxN

TIxTJ TIxTJ

TIxTJ

Square Tiles Tall Tiles

NxN

T
IxT

J
T

IxT
J

T
IxT

J
T

IxT
J

Figure 7.1: Two configurations one with square tiles and one with tall tiles.

more memory stalls to be exposed since there is not enough work to hide the

latency underneath. Also, the overheads are increased since the prologue loop is

getting executed more often due to the same reason mentioned above, the short

tiled loops. Note that the number of prefetches executed is the same but how

often the prologue loop gets executed increases. Using the pipeline analogy to

explain prologue loops in Chapter 4, the pipeline length gets shorter so the same

amount of work is performed on a shorter pipeline resulting in more frequent

pipeline startup operations, and increased overhead.

The performance of software prefetching can be improved by biasing the

tiling algorithm to select tiles that result in longer innermost loops, hence

providing more work to hide latency underneath and reducing the overhead

introduced by the prologue loop, i.e. countering the effects of short tiles.

66



Application Square Tall

Matmult 33 × 23 83 × 9
Jacobi 11 × 13 59 × 3
RedBlack 9 × 10 31 × 3

Table 7.1: Tile sizes for square and tall-tile versions of the affine array benchmarks.

The tiling algorithm used to tile the affine array benchmarks is called the

Euclidean GCD algorithm. It is explained in detail in [14, 44]. This algorithm

generates a series of non-conflicting tile sizes that can be used to tile a particular

program under a specific set of cache parameters.

Figure 7.1 shows two configurations of tile sizes: one is squarish and one is

rectangular in shape. Tiles with a squarish aspect ratio typically achieve the best

cache utilization. However, the algorithm can select taller tiles with greater

height to width aspect ratio so that the problem of tiling and software prefetching

can be alleviated. Such tall tiles will have more iterations in their innermost

loops compared to square tiles. Thus, as mentioned before, two positive effects

are achieved: one is reduction of startup overhead, and the other is more work in

the innermost loops to hide the latency underneath. Table 7.1 shows the square

and the tall tile sizes for the affine array benchmarks studied in this thesis.

Although selecting tall tiles increases software prefetching effectiveness,

selecting tiles that are extremely tall has drawbacks. In the extreme case, having

a tile size of Y ×1 would result in mapping the problem back to the original

computation order (recall in Figure 1.3 that the computation order was column

by column, and that the size of each column was N×1). Thus, extremely tall

tiles negates the benefits tiling introduces.

67



Latency in Cycles RedBlack Jacobi Matmult

80 12 8 , 40 16
160 20 12, 80 28
320 31 24, 156 52
640 31 48, 308 104

Table 7.2: Prefetch distances for RedBlack, Jacobi and Matmult for the
different latencies with tall tiles applied.

Table 7.2 shows the prefetch distances for the three affine array

benchmarks. Each benchmark is instrumented with tall tiles and software

prefetching. If the prefetch distance computed after the instrumentation with tall

tiles exceeds the length of the tile, the prefetch distance is selected to be the

minimum of the tile length and the computed prefetch distance. This ensures

that software prefetching does not prefetch beyond the particular tile for which

the computation is taking place.

Figure 7.2 shows the results using tall tiles with and without prefetching

for all the affine array benchmarks. Figure 7.2 compares square-tile versions of

the benchmarks with tall-tile versions. Tall tiles and square tiles achieve similar

performance when they are applied without software prefetching. However, when

tall tiles are combined with software prefetching, the short-loop overheads

suffered at high bandwidths are significantly reduced compared to square tiles.

The performance with tall-tiles matches the performance of software prefetching

alone from Figure 6.4. The conclusion of these performance results is that tall

tiles fully exploit the benefits of software prefetching and tiling simultaneously

and avoids the problems encountered due to the short innermost loops.

The combined tall-tile and software prefetching techniques retain the

68



�  640�  320�
 160�
 80

| | | | | | | | ||0

|20

|40

|60

|80

|100

|120

|140

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

�������
������� ������� �������

Square Tile

�  640�
 320�
 160�
 80

| | | | | | | | ||0

|20

|40

|60

|80

|100

|120

|140

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

������
�

������
�

������� �������

Tall Tile

�  640�  320�
 160�
 80

| | | | | | | | ||0

|20

|40

|60

|80

|100

|120

|140

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

������
�

������� ������� �������

Square Tile+Pref

�  640�
 320�
 160�
 80

| | | | | | | | ||0

|20

|40

|60

|80

|100

|120

|140

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

�����
�
�

������
�

������� �������

Tall Tile+Pref

Matmult

   640¡  320¢  160£  80

| | | | | | | | ||0

|20

|40

|60

|80

|100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

     
 

 

¡¡¡¡¡¡
¡

¢¢¢¢¢¢
¢

£££££££

Square Tile

¤  640¥  320¦  160§
 80

| | | | | | | | ||0

|20

|40

|60

|80
|100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

¤¤¤¤¤
¤

¤

¥¥¥¥¥¥
¥

¦¦¦¦¦¦
¦

§§§§§§§

Tall Tile

¨  640©  320ª  160«  80

| | | | | | | | ||0

|20

|40

|60

|80

|100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

¨¨¨¨
¨
¨

¨

©©©©©
©
©

ªªªªªª
ª

«««««««

Square Tile+Pref

¬  640  320®  160¯
 80

| | | | | | | | ||0

|20

|40

|60

|80

|100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

¬¬¬¬
¬
¬

¬





®®®®®®
®

¯¯¯¯¯¯¯

Tall Tile+Pref

Jacobi

°
 640±
 320²  160³  80

| | | | | | | | ||0

|5

|10

|15

|20

|25

|30

|35

|40

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

°°°°°°
°

±±±±±±
±

²²²²²²² ³³³³³³³

Square Tile

´
 640µ  320¶  160·  80

| | | | | | | | ||0

|5

|10

|15

|20

|25

|30

|35

|40

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

´´´´´´
´

µµµµµµ
µ

¶¶¶¶¶¶¶ ·······

Tall Tile

¸
 640¹
 320º  160»  80

| | | | | | | | ||0

|5

|10

|15

|20

|25

|30

|35

|40

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

¸¸¸¸¸¸

¸

¹¹¹¹¹¹
¹

ººººººº »»»»»»»

Square Tile+Pref

¼
 640½
 320¾  160¿  80

| | | | | | | | ||0

|5

|10

|15

|20

|25

|30

|35

|40

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

¼¼¼¼¼
¼

¼

½½½½½½
½

¾¾¾¾¾¾¾ ¿¿¿¿¿¿¿

Tall Tile+Pref

RedBlack

Figure 7.2: Comparing square tiles and tall tiles with and without prefetching.

69



robustness benefit described in Section 6.4. Figure 7.2 shows that at low

bandwidth, the performance tracks tiling performance alone, while at high

bandwidth, the performance tracks software prefetching performance alone.

Hence, the enhanced combined technique shows more robustness to variations in

the memory system parameters since the two techniques have a better fit when

the enhancement is applied.

7.2 Padding for Software Prefetching

Software prefetching works by hiding memory latency. Conflict misses on

prefetched data, which can arise in pathological problem sizes that divide or

nearly divide the cache size, generate conflict misses among prefetched data as

illustrated in Figure 7.3. Such conflict misses essentially eliminate all the benefits

of memory latency tolerance that software prefetching tries to achieve.

Prefetched data gets knocked out from the cache before it is used due to the fact

that some other data maps to the same location as the datum being prefetched.

Software prefetching for affine array codes with specific conditions such as

power of 2 problem sizes and/or low L2 cache associativity requires applying

array padding to alleviate the conflicts causing a mapping such as that suggested

in the left half of Figure 7.3. This figure shows that with a particular problem

size, some data gets mapped to the same cache line(s). Thus, conflicts arise.

Array padding can avoid such conflicts [43, 44], even if the loops are tiled. Array

padding helps eliminate further conflicts that tiling would not address. The

compiler can perform array padding by inserting dummy variables or by

70



ÀÀ
ÀÀ
À

ÁÁ
ÁÁ
Á

ÂÂ
ÂÂ
Â

ÃÃ
ÃÃ
Ã

ÄÄ
ÄÄ
Ä

ÅÅ
ÅÅ
Å

ÆÆ
ÆÆ
Æ

ÇÇ
ÇÇ
Ç

ÈÈ
ÈÈ
È

ÉÉ
ÉÉ
É

ÊËÊÊËÊ
ÊËÊÊËÊ
ÊËÊ

ÌËÌÌËÌ
ÌËÌÌËÌ
ÌËÌ

ÍÍ
ÍÍ
Í

ÎÎ
ÎÎ
Î

ÏÏ
ÏÏ
Ï

ÐÐ
ÐÐ
Ð

ÑÑ
ÑÑ
Ñ

ÒÒ
ÒÒ
Ò

ÓËÓÓËÓ
ÓËÓÓËÓ
ÓËÓ

ÔËÔÔËÔ
ÔËÔÔËÔ
ÔËÔ

ÕÕ
ÕÕ
Õ

ÖÖ
ÖÖ
Ö

××
××
×

ØØ
ØØ
Ø

ÙÙÚ
Ú
ÛËÛÛËÛÜËÜÜËÜ Ý
Ý
ÞÞ ßßàà áËá

áËá
âËââËâãËã
ãËãää åËåËååËåËå

æËæËææËæËæ çËçËççËçËç
èËèËèèËèËè éËéËééËéËé

êËêËêêËêËê ëËëËëëËëËë
ìËìËììËìËì

After paddingOriginal

CACHE CACHE

Figure 7.3: Layout of Data in the Cache before and after padding.

Latency in Cycles RedBlack Jacobi

80 12 8 , 36
160 24 16, 68
320 48 28, 136
640 96 56, 268

Table 7.3: The prefetch distances for the padded versions of RedBlack and
Jacobi.

increasing the size of the leading array dimension.

The appropriate amount of padding to apply to the array is computed as

follows. First, the prefetch distance, computed by the prefetching algorithm as

explained in Chapter 4, is treated as the “height” of a tile that should be kept in

the cache for the whole computation, such that no conflicts occur to evict array

elements within this tile. Before the first step the prefetch distance for the

benchmark is computed as described in previous chapters. Table 7.3 reports the

prefetch distances for Jacobi and RedBlack. Second, the compiler uses the

71



Euclidean GCD algorithm which was used in Section 7.1 to compute the tall tile

size and to determine whether cache conflicts will occur within such a prefetch

distance (tile height). Padding is introduced incrementally to the leading array

dimension until the Euclidean GCD algorithm gives a conflict free tile size whose

height is at least equal to or larger than the computed prefetch distance for the

benchmark used [44, 45]. In other words, the algorithm computes a new padded

problem size such that if tiling were applied to this particular problem size,

conflict free tiles whose height is at least equal to the prefetch distance are

produced by the Euclidean GCD algorithm. This ensures that prefetched data

will not experience conflicts and will stay in the cache until the processor accesses

them.

Versions of Jacobi and RedBlack were created with and without both

padding and prefetching. These codes were run on the same simulator

configuration used before, but with a 2-way set associative L2 cache. The

conflicts introduced in these benchmarks can be eliminated by using a 4-way set

associative L2 cache for both benchmarks. However, this is not true for more

complex benchmarks. Thus, the combination of these benchmarks with a 2-way

set associative L2 cache permits a reasonable study of our padding for software

prefetching technique to show significant conflict cache misses and enabling the

study of improving software prefetching with padding. The problem size used for

Jacobi is 256×256×8, while the problem size of RedBlack is 256×256. Note

that, power-of-two problem sizes occur frequently in multigrid codes. Based on

the prefetch distance for each of the two benchmarks, applying the algorithm

72



í
 640î  320ï
 160ð
 80

| | | | | | | | ||0

|200

|400

|600

|800

|1000

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

ííííí
í

í

îîîîîî
î

ïïïïïï
ï

ððððððð

Orig

ñ
 640ò  320ó
 160ô
 80

| | | | | | | | ||0

|200

|400

|600

|800

|1000

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

ñññññññ òòòòòòò óóóóóóó ôôôôôôô

Orig+Pad

õ
 640ö  320÷  160ø
 80

| | | | | | | | ||0

|200

|400

|600

|800

|1000

 Bandwidth (GBytes/sec)
 E

xe
cu

tio
n 

Ti
m

e 
(M

cy
cl

es
)

1 2 4 8 16 32 64

õõõõ
õ
õ

õ

ööööö
ö
ö

÷÷÷÷÷÷
÷

øøøøøøø

Pref

ù
 640ú  320û
 160ü
 80

| | | | | | | | ||0

|200

|400

|600

|800

|1000

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

ùùùùùù
ù

úúúúúúú ûûûûûûû üüüüüüü

Pref+Pad

Jacobi

ý  640þ  320ÿ  160
�  80

| | | | | | | | ||0

|100

|200

|300

|400
|500

|600

|700

|800

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

ýýýýý
ý

ý

þþþþþþ
þ

ÿÿÿÿÿÿÿ
������

�

Orig

�  640
�  320
�  160
�  80

| | | | | | | | ||0

|100

|200

|300

|400

|500

|600

|700

|800

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

�����
�

�

������

�

�������

�������

Orig+Pad

�  640
�  320
�

 160
�

 80

| | | | | | | | ||0

|100

|200

|300

|400

|500

|600

|700

|800

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

���
�

�

�

�

����
�

�

�

�����
�

�

������

�

Pref

	  640

  320
�  160
�

 80

| | | | | | | | ||0

|100

|200

|300

|400

|500

|600

|700

|800

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64
				

	

	

	













������
�

�������

Pref+Pad

RedBlack

Figure 7.4: Padding for prefetching in Jacobi and RedBlack.

73



gives a padded problem size for Jacobi to be 313×256×8, and 313×256 for

RedBlack. The padding is done for the leading array dimension which has the

effect of shifting the locations of all other columns of the arrays in the cache, as

depicted in the right half for Figure 7.3.

Figure 7.4 shows the results for the two benchmarks. Figure 7.4 shows

both Jacobi and RedBlack experience many cache misses due to conflicts.

This was verified by running the same original un-optimized code for the two

applications with fully associative caches which showed that all the memory stalls

went away and performance similar to that shown for ”Orig+Pad” was observed.

After padding the array according to the algorithm explained above, the

experiments were run for four different versions of each benchmark: (”Orig”

which represents the results for the un-optimized original code, ”Orig+Pad”

which represents the results for the original array with array padding, ”Pref”

which represents the results for the prefetching version of the code, and

”Pref+Pad” which represents the results for the prefetched code optimized with

array padding).

Looking at the first two graphs for RedBlack and Jacobi, padding

alone added to the original un-optimized code is capable of removing most of the

conflict misses. Also, it is clear that prefetching when applied alone to both

benchmarks provides zero benefit due to the conflicts. In fact, performance

degrades at low bandwidth due to fetching more data because of the conflicts.

Finally, let us look at the results after applying array padding to software

prefetching. Array padding minimizes the cache conflicts seen in the original

74



code, allowing software prefetching to achieve better performance. It is clear that

”Pref+Pad” outperforms every other version of the benchmarks.

7.3 Index Prefetching

Software prefetching for pointer-chasing codes as shown in Chapter 6 suffers large

overheads due to the creation and management of the jump pointers. If

CCMALLOC is used to allocate the list nodes, then there is no need to have

jump pointers. Since CCMALLOC allocates list nodes in a linear fashion, the

address of any link node can be computed simply by offsetting from the address

of the list head instead of traversing all the list nodes sequentially. With

CCMALLOC used in this manner, the pointer-chasing problem is alleviated

and all accesses behave like affine array accesses.

Figure 5.5 shows how CCMALLOC would allocate the list nodes in

memory. All the list nodes are contiguous in main memory, so referencing them

will require just knowing the location of the first node and then indexing. Using

the address of the first node and the node size, any node down the list can be

reached without performing memory indirection.

This approach was called index prefetching in [2]. The accesses use

indexing as if they were accessing a static array. This technique was originally

proposed by Luk and Mowry in [32]. They called it data-linearization prefetching.

With index prefetching, the jump pointers become unnecessary, and removing

them also removes all the overheads associated with jump pointer creation,

management and maintenance. This benefit is applied only to the two

75



pointer-chasing benchmarks which exhibit bad performance with jump pointer

prefetching: Health and MST.

Index prefetching versions for Health and MST are created and

simulation results are shown in Figure 7.5 with both fixed latency and variable

latency, as is done in Chapter 6. This figure shows the results for prefetch arrays

(jump pointers), CCMALLOC memory allocation, combined optimizations, i.e.

CCMALLOC and prefetching, and finally, index prefetching. The top two

graphs show results with memory latency fixed at 80 cycles, and the remaining

graphs show results with both latency and bandwidth scaling.

The figure shows that index prefetching eliminates most of the overheads

incurred by jump pointer prefetching. Thus, index prefetching outperforms

almost all versions at high memory bandwidths for both Health and MST.

Index prefetching is very close in performance to CCMALLOC alone. This is

most obvious in MST. The reason for this is that the length of the list is not

known and some unnecessary prefetches past the list length can be issued,

causing both overhead and waste of memory bandwidth.

Index prefetching reduces software overheads but does not eliminate as

much memory stalls as prefetch arrays, particularly in Health. In Health,

many delete and insert operations occur. Even though CCMALLOC allocates

lists linearly, frequent inserts and deletes randomize the layout of the list nodes.

Hence, index prefetching loses its effectiveness because it tries to prefetch

physically contiguous nodes which are no longer logically contiguous due to the

deletes and inserts. Although index prefetching has lower overhead, prefetch

76



||0.0

|1.0

|2.0

|3.0

|4.0

|5.0

|6.0

|7.0

|8.0

 E
xe

cu
tio

n 
Ti

m
e 

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

CCMALLOC

64
32

16
8

4
2

1

CCMALLOC+Pref

64
32

16
8

4
2

1

Index Pref

Health

||0.0

|40.0

|80.0

|120.0

|160.0

|200.0

|240.0

|280.0

|320.0

 E
xe

cu
tio

n 
Ti

m
e 

(M
 c

yc
le

/s
ec

)

Memory
Overhead
Busy

64
32

16
8

4
2

1

Pref

64
32

16
8

4
2

1

CCMALLOC

64
32

16
8

4
2

1

CCMALLOC+Pref

64
32

16
8

4
2

1

Index Pref

MST

  640
�  320
�  160
�  80

| | | | | | | | ||0

|8

|16

|24

|32

|40

|48

|56

|64

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64










����
�

�

�

�����
�

�

�����
�

�

Pref

�  640
�  320
�  160
�  80

| | | | | | | | ||0

|8

|16
|24

|32

|40

|48

|56

|64

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

������

�

������

�

������
�

�������

CCMALLOC

�  640
�  320
�  160
�  80

| | | | | | | | ||0

|8

|16

|24

|32

|40

|48

|56

|64

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

����
�

�

�

�����

�

�

�����
�

�

������
�

CCMALLOC+Pref

�  640
�  320
�  160
�  80

| | | | | | | | ||0

|8

|16

|24

|32

|40

|48

|56

|64

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

����
�

�

�

�����
�

�

������
�

�������

Index Pref

Health

�  640
�

 320
�

 160
  80

| | | | | | | | ||0

|300

|600

|900

|1200

|1500

|1800

|2100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

����
�

�

�

�����
�

�

������
�

       

Pref

!  640
"

 320
#  160
$  80

| | | | | | | | ||0

|300

|600

|900

|1200

|1500

|1800

|2100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

!!!!!!!

"""""""

#######

$$$$$$$

CCMALLOC

%  640
&

 320
'  160
(

 80

| | | | | | | | ||0

|300

|600

|900

|1200

|1500

|1800

|2100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

%%%%%%

%

&&&&&&
&

'''''''

(((((((

CCMALLOC+Pref

)  640
*

 320
+  160
,  80

| | | | | | | | ||0

|300

|600

|900

|1200

|1500

|1800

|2100

 Bandwidth (GBytes/sec)

 E
xe

cu
tio

n 
Ti

m
e 

(M
cy

cl
es

)

1 2 4 8 16 32 64

))))))

)

******

*

++++++
+

,,,,,,,

Index Pref

MST

Figure 7.5: Comparing index prefetching (Index Pref) to prefetch arrays (Pref),
CCMALLOC memory allocation (CCMALLOC), and combined optimizations
(CCMALLOC+Pref). In the top two graphs, memory latency is fixed at 80 cycles.

77



arrays hide more memory latency than index prefetching because of the

delete-insert problem. The increased memory stalls caused by the increased

memory latency outweigh the benefits of reduced software overheads, making the

naive combination of CCMALLOC and prefetch arrays the superior technique.

For MST, index prefetching performs very similar to CCMALLOC that

it outperforms it with a very small margin at high memory latencies only since

some of the latency is partially hidden. CCMALLOC does not have that

advantage. CCMALLOC, in general, outperforms all other techniques when the

lists are short since short lists prevent prefetching from being effective.

78



Chapter 8

Conclusion

Several conclusions can be drawn from this work. The main conclusions are as

follows. First, the relative effectiveness of software prefetching and locality

optimizations depends on how much memory bandwidth is available. In

array-based benchmarks, software prefetching outperforms locality optimizations

at high memory bandwidths, while locality optimizations outperform software

prefetching at low memory bandwidths without exception. The equi-performance

”crossover” bandwidth is around 2.4 GBytes/sec on today’s memory systems, but

the simulations show that this is going to increase as memory latencies increase

in the future. However, for some types of pointer chasing applications, locality

optimizations outperform software prefetching for the pointer-chasing

benchmarks at all memory bandwidths and latencies due to the reduced

effectiveness of prefetching for pointer-based data structures. For EM3D, the

comparison between software prefetching and locality optimizations resembles the

affine array benchmarks.

Second, combining software prefetching and locality optimizations inherits

the merits of both techniques. Combining provides better performance than

79



either software prefetching or locality optimizations alone when memory latency

is very high. Also, combining is less sensitive to changes in the memory system

parameters than either software prefetching or locality optimization techniques

applied in isolation. Moreover, naively combining techniques does not outperform

the best performance of software prefetching and locality optimizations when

applied alone at all bandwidths and latencies.

Finally, the combination of software prefetching and locality optimizations

can be enhanced through better combining algorithms. First, for affine array

benchmarks, selecting tall-tiles will reduce prefetching startup overheads,

allowing combining to outperform software prefetching and locality optimizations

applied in isolation especially at the points where one of the two techniques

would win over the combined case. Second, padding is capable of removing

conflicts on prefetched data in affine array benchmarks, and is essential for

problem sizes that are close to multiples of the cache size. Third, for

pointer-chasing benchmarks, using of index prefetching instead of naively

combining prefetch arrays and CCMALLOC memory allocation can reduce

prefetch overheads. However, index prefetching is not a panacea. Index

prefetching does not perform well when large numbers of list nodes cannot be

allocated contiguously due to fragment deletion and insertions as is the case in

Health, or when CCMALLOC allocation strategy is already doing well by

itself thus reducing the need for further enhancements as is the case in MST.

The only exception in such applications is EM3D which performs similar to

affine array benchmarks using jump pointers prefetching.

80



Memory bandwidths of 1-4 Gbytes/sec are achievable in current

commercial systems. The simulation results that match current memory and

processor systems are towards the low end of our graphs. With faster and faster

processors, the memory wall will grow which will impose higher requirements on

memory bandwidth relative to current systems. Locality optimizations will be

essential in these future systems since the available memory bandwidth will be

more scarce. As the latency of memory systems increase, the relevant results

from our experiments will be the upper curves in the variable latency figures.

In the future, processor-in-memory (PIM) architectures [3] if realized will

increase memory bandwidth dramatically. For data residing on the PIM chip, the

available memory bandwidth will resemble the higher end of our bandwidth

ranges. Thus, this will enable software prefetching to provide significant

performance gains and improve the performance of applications running on such

processors. Locality optimizations for such systems will still be useful to reduce

the time the processor spends going off-chip to bring data into the PIM chip.

81



Chapter 9

Future Work

The results in this thesis have been acquired using small kernels from larger

applications. These kernels are important to optimize since they comprise a

significant portion of the processing time in the larger problems. Thus, the

question that needs to be answered is what is the effect of these techniques when

applied to real applications?

An important area of future work is to perform our study using more

realistic applications. Our locality optimizations were applied semi-automatically,

only partially implemented in the compiler and run-time system. For these

optimizations to be widely used, compilers must automatically incorporate them

as much as possible. In addition, software prefetching was instrumented by hand

in all of the loops for all the benchmarks. This is yet another task that should be

performed automatically by compiler. Similarly, the enhancements we propose

are also performed by hand. Another important direction for future work is to

implement our algorithms in a compiler and to perform a similar study to see if

our results hold.

Our goal of reducing the memory wall is essential for improving

82



performance on scientific, engineering, and commercial workloads. This thesis

presents some insights that are likely to prove useful for improving the memory

performance of these workloads on future memory system designs.

83



Bibliography

[1] I. Al-Furaih and S. Ranka. Memory hierarchy management for iterative

graph structures. In Proceedings of the 12th International Parallel

Processing Symposium, Orlando, FL, April 1998.

[2] Abdel-Hameed A. Badawy, Aneesh Agarwala, Donald Yeung, and Chau-Wen

Tseng. Evaluating the Impact of memory system performance on software

prefetching and locality optimizations. In Proceedings of the 15th Annual

International Conference on Supercomputing, Sorrento, Italy, June 2001.

ACM.

[3] Gordon Bell, Richard Sites, William Dally, David Ditzel, and Yale Patt.

Architects Look to Processors of Future. MICROPROCESSOR REPORT,

MICRODESIGN RESOURCES, VOL.10(NO.10), August 5, 1996.

[4] T. Bonk and U. Rüde. Performance analysis and optimization of numerically

intensive programs. SFB Bericht 342/26/92 A, Institut für Informatik, TU

München, November 1992.

[5] Doug Burger and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0.

CS TR 1342, University of Wisconsin-Madison, June 1997.

84



[6] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data

placement. In Proceedings of the Eighth International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS-VIII), San Jose, CA, October 1998.

[7] David Callahan, Ken Kennedy, and Allan Porterfield. Software Prefetching.

In In Proceedings of the 4th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 40–52,

April 1991.

[8] M. Carlisle, A. Rogers, J. Reppy, and L. Hendren. Early experiences with

Olden. In Proceedings of the Sixth Workshop on Languages and Compilers

for Parallel Computing, Portland, OR, August 1993.

[9] Tien-Fu Chen. An Effective Programmable Prefetch Engine for On-Chip

Caches. In Proceedings of the 28th Annual Symposium on Microarchitecture,

pages 237–242. IEEE, 1995.

[10] Tien-Fu Chen and Jean-Loup Baer. Effective Hardware-Based Data

Prefetching for High-Performance Processors. Transactions on Computers,

44(5):609–623, May 1995.

[11] Chi-Hung Chi. Compiler Optimization Technique for Data Cache

Prefetching Using a Small CAM Array. In In Proceedings of the 1994

International Conference on Parallel Processing, pages I–263–I–266, August

1994.

85



[12] T. Chilimbi, M. Hill, and J. Larus. Cache-conscious structure layout. In

Proceedings of the SIGPLAN ’99 Conference on Programming Language

Design and Implementation, Atlanta, GA, May 1999.

[13] Tzi cker Chiueh. Sunder: A Programmable Hardware Prefetch Architecture

for Numerical Loops. In In Proceedings of Supercomputing ’94, pages

488–497. ACM, November 1994.

[14] S. Coleman and K. S. McKinley. Tile size selection using cache organization

and data layout. In Proceedings of the SIGPLAN ’95 Conference on

Programming Language Design and Implementation, La Jolla, CA, June

1995.

[15] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik

Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.

LogP: Towards a Realistic Model of Parallel Computation. In Fourth ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming,

pages 1–12, San Diego, CA, May 1993. IEEE.

[16] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communication optimizations

for irregular scientific computations on distributed memory architectures.

Journal of Parallel and Distributed Computing, 22(3):462–479, September

1994.

[17] C. Ding and K. Kennedy. Improving cache performance of dynamic

applications with computation and data layout transformations. In

86



Proceedings of the SIGPLAN ’99 Conference on Programming Language

Design and Implementation, Atlanta, GA, May 1999.

[18] John W. C. Fu and Janak H. Patel. Data Prefetching in Multiprocessor

Vector Cache Memories. In Proceedings of the 18th Annual Symposium on

Computer Architecture, pages 54–63, Toronto, Canada, May 1991. ACM.

[19] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride Directed

Prefetching in Scalar Processors. In In Proceedings of the 25th Annual

International Symposium on Microarchitecture, pages 102–110, December

1992.

[20] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: An analytical

representation of cache misses. In Proceedings of the 1997 ACM

International Conference on Supercomputing, Vienna, Austria, July 1997.

[21] H. Han and C.-W. Tseng. A comparison of locality transformations for

irregular codes. In Proceedings of the 5th Workshop on Languages,

Compilers, and Run-time Systems for Scalable Computers, Rochester, NY,

May 2000.

[22] H. Han and C.-W. Tseng. Improving locality for adaptive irregular codes. In

Proceedings of the Thirteenth Workshop on Languages and Compilers for

Parallel Computing, White Plains, NY, August 2000.

[23] John L. Hennessy and David A. Patterson. Computer Architecture A

Quantitative Approach. Morgan Kaufmann, Second Edition:Chapter 1, 1996.

87



[24] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan

Kyker, and Patrice Roussel. The Microarchitecture of the Pentium 4

Processor. Intel Technology Journal, Q1, 2001.

[25] Doug Joseph and Dirk Grunwald. Prefetching using Markov Predictors. In

Proceedings of the 24th International Symposium on Computer Architecture,

pages 252–263, Denver, CO, June 1997. ACM.

[26] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers. In

Proceedings of the 17th Annual International Symposium on Computer

Architecture, pages 364–373, Seattle, WA, May 1990. ACM.

[27] Magnus Karlsson, Fredrik Dahlgren, and Per Stenstrom. A Prefetching

Technique for Irregular Accesses to Linked Data Structures. In Proceedings

of the 6th International Conference on High Performance Computer

Architecture, Toulouse, France, January 2000.

[28] Alexander C. Klaiber and Henry M. Levy. An Architecture for

Software-Controlled Data Prefetching. In Proceedings of the 18th

International Symposium on Computer Architecture, pages 43–53, Toronto,

Canada, May 1991. ACM.

[29] I. Kodukula, K. Pingali, R. Cox, and D. Maydan. An experimental

evaluation of tiling and shacking for memory hierarchy management. In

88



Proceedings of the 1999 ACM International Conference on Supercomputing,

Rhodes, Greece, June 1999.

[30] M. Lam, E. Rothberg, and M. E. Wolf. The cache performance and

optimizations of blocked algorithms. In Proceedings of the Fourth

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-IV), Santa Clara, CA, April

1991.

[31] H. Lu, A. Cox, S. Dwarkadas, R. Rajamony, and W. Zwaenepoel. Compiler

and software distributed shared memory support for irregular applications.

In Proceedings of the Sixth ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, Las Vegas, NV, June 1997.

[32] C.-K. Luk and T. Mowry. Compiler-based prefetching for recursive data

structures. In Proceedings of the Seventh International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS-VII), Boston, MA, October 1996.

[33] Bert McComas and Van Smith. The War Escalates Athlon4 takes on

Pentium4. InQuest Market Research, May 2001.

[34] Sharad Mehrotra and Luddy Harrison. Examination of a Memory Access

Classification Scheme for Pointer-Intensive and Numeric Programs. In In

Proceedings of the 10th ACM International Conference on Supercomputing,

Philadelphia, PA, May 1996. ACM.

89



[35] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improving memory

hierarchy performance for irregular applications. In Proceedings of the 1999

ACM International Conference on Supercomputing, Rhodes, Greece, June

1999.

[36] N. Mitchell, L. Carter, and J. Ferrante. Localizing non-affine array

references. In Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, Newport Beach , LA, October

1999.

[37] T. Mowry. Tolerating latency in multiprocessors through compiler-inserted

prefetching. ACM Transactions on Computer Systems, 16(1):55–92,

February 1998.

[38] T. Mowry and A. Gupta. Tolerating latency through software-controlled

prefetching in shared-memory multiprocessors. Journal of Parallel and

Distributed Computing, 12(2):87–106, June 1991.

[39] Todd Mowry, Monica Lam, and Anoop Gupta. Design and Evaluation of a

Compiler Algorithm for Prefetching. In Proceedings of 5th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-V), pages 62–73. ACM, October 1992.

[40] Todd C. Mowry. Tolerating Latency Through Software-Controlled Data

Prefetching, PhD Thesis. Technical report, Stanford University, March 1994.

90



[41] Subbarao Palacharla and R. E. Kessler. Evaluating Stream Buffers as a

Secondary Cache Replacement. In Proceedings of the 21st Annual

International Symposium on Computer Architecture, pages 24–33, Chicago,

IL, May 1994. ACM.

[42] R. Panda, H. Nakamura, N. Dutt, and A. Nicolau. Augmenting loop tiling

with data alignment for improved cache performance. IEEE Transactions on

Computers, 48(2):142–149, February 1999.

[43] G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict

misses. In Proceedings of the SIGPLAN ’98 Conference on Programming

Language Design and Implementation, Montreal, Canada, June 1998.

[44] G. Rivera and C.-W. Tseng. A comparison of compiler tiling algorithms. In

Proceedings of the 8th International Conference on Compiler Construction

(CC’99), Amsterdam, The Netherlands, March 1999.

[45] G. Rivera and C.-W. Tseng. Tiling optimizations for 3d scientific

computations. In Proceedings of SC’00, Dallas, TX, November 2000.

[46] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Supporting dynamic data

structures on distributed memory machines. ACM Transactions on

Programming Languages and Systems, 17(2):233–263, March 1995.

[47] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence Based

Prefetching for Linked Data Structures. In In Proceedings of the Eigth

91



International Conference on Architectural Support for Programming

Languages and Operating Systems, October 1998.

[48] Amir Roth and Gurindar S. Sohi. Effective Jump-Pointer Prefetching for

Linked Data Structures. In Proceedings of the 26th International Symposium

on Computer Architecture, Atlanta, GA, May 1999.

[49] R. Saavedra, W. Mao, D. Park, J. Chame, and S. Moon. The Combined

Effectiveness of Unimodular Transformations, Tiling, and Software

Prefetching. In Proceedings of the 10th International Parallel Processing

Symposium, pages 39–45, April 1996.

[50] James R. Larus Satish Chandra and Anne Rogers. Where is time spent in

messagepassing and sharedmemory programs. pages 61–73. ASPLOS VI,

November San Jose, California, 1994.

[51] Y. Song and Z. Li. New tiling techniques to improve cache temporal locality.

In Proceedings of the SIGPLAN ’99 Conference on Programming Language

Design and Implementation, Atlanta, GA, May 1999.

[52] L. Stals, U. Rüde, C. Weiss, and H. Hellwagner. Data local iterative

methods for the efficient solution of partial differential equations. In

Proceedings of the Eighth Biennial Computational Techniques and

Applications Conference, Adelaide, Australia, September 1997.

[53] O. Temam. Streaming Prefetch. In Proceedings of Europar’96, Lyon,France,

1996.

92



[54] W. F. van Gunsteren and H. J. C. Berendsen. GROMOS: GROningen

MOlecular Simulation software. Technical report, Laboratory of Physical

Chemistry, University of Groningen, Nijenborgh,The Netherlands, 1988.

[55] C. Weiß, W. Karl, M. Kowarschik, and U. Rüde. Memory characteristics of

iterative methods. In Proceedings of SC’99, Portland, OR, November 1999.

[56] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings

of the SIGPLAN ’91 Conference on Programming Language Design and

Implementation, Toronto, Canada, June 1991.

[57] William A. Wulf and Sally A. McKee. Hitting the Memory Wall:

Implications of the Obvious. Computer Architecture News, 23(1):20–24,

March 1995.

93



94


