
1

X-Tags: Efficient Data Processing using Cross Layer Hints

Suman Banerjee, Ashok Agrawala
MIND Lab, UMIACS and Department of Computer Science

University of Maryland, College Park, MD 20742, USA
Email: fsuman,agrawalag@cs.md.edu

Michael J. Kramer
Aerospace Integration Science Center

Chantilly, VA 20151, USA
Email: Michael.J.Kramer@aero.org

UMIACS-TR 2002-59 and CS-TR 4379
June 2002

Abstract— Conventional network stacks define a layered
architecture, where each layer implements a set of services
and exports a well-defined interface to be used by its imme-
diate upper layer. A key design choice of the layered ar-
chitecture has been to provide isolation between the func-
tional modules of distinct layers. While such an architecture
provides an useful abstraction for system development, the
strict isolation of this layered architecture limits the flexibil-
ity of tailoring the behavior of the lower layers of the stack
to the needs of the application. In this paper we define a new
architecture, called X-Tags, which allows flexible interaction
between layers for cooperative data processing without im-
pacting the isolation property. In this architecture, applica-
tions use special tags to provide semantic hints for data pro-
cessing to lower layers. We motivate the usefulness of this
architecture by describing its applicability to some emerg-
ing applications.

I. INTRODUCTION

Conventional network stacks define a layered architec-
ture, where each layer implements a set of services and
exports a well-defined interface to be used by its imme-
diate upper layer. A key design choice of the layered ar-
chitecture has been to provide isolation between the func-
tional modules of distinct layers. Such an abstraction is
useful for system development in multiple ways. To quote
Clark and Tennenhouse [1], “a major architectural bene-
fit of such isolation is that it facilitates the implementation
of subsystems whose scope is restricted to a small subset
of the (protocol) suite’s layers.” However, they also ob-
serve that the layered architecture may well conflict with
the efficient engineering of data processing at the end sys-
tems. Hence, layered engineering should not be thought of
as fundamental, but only as one approach, which must be
evaluated on the basis of overhead and simplicity against
other designs. Therefore, one of the design principles pro-
posed by Clark and Tennenhouse was Integrated Layer
Processing (ILP). By blurring strict layering boundaries,
ILP promotes a greater interaction between the operations
performed at different layers and thus facilitates the im-
plementor to define more efficient data processing mecha-
nisms.

In this paper we define a new architecture, which we
call X-Tags (pronounced cross-tags), that enable the ben-
efits of ILP while maintaining the isolation property of the
layered architecture. In this architecture, as data passes
through different layers of the network stack, each layer
can add some “tags” that serve as layer-specific hints to
other layers. Tags added by one layer are interpreted and
used by another layer as processing hints. In this paper, we
present two examples of the applicability of the X-Tags ar-
chitecture that can facilitate more efficient data processing
on the network stack.

A. Why X-Tags?

The X-Tags architecture provides significant flexibility
to implement efficient data processing mechanisms in the
network stack. We explain the key idea of this architecture
for a data sender’s stack using Figure 1. One of the basic
of tenets of traditional network stack implementations is
the isolation property. Layer A is able to access services
provided by its immediate lower layer, B, using the inter-
face provided by the latter. Layer,B, interacts with its im-
mediate lower layer, C, in the same manner. In the exam-
ple, layersB andC each implement two different services
(B0 andB1 for layerB andC0 andC1 for layer C). LayerA has two different data packets to transmit through the
stack. Data packet 1 requires servicesB0 andC1 from lay-
ersB andC respectively prior to packet forwarding, while
data packet 2 requires services B1 and C0 from the two
layers.

In typical network stack implementations, services im-
plemented by lower layers are not exposed to the upper
layers. While layer A can choose service B0 for data
packet 1 and service B1 for data packet 2 through the in-
terface of layer B, there exists no mechanism by which
layer A can directly access the services and functionality
provided by layer C. This is shown in Panel 0, Figure 1.
The isolation between layers is therefore, too restrictive
in defining flexible access methods to services at different
layers.

The only way layer A can access specific functional-
ity of layer C, is if layer B explicitly exposes the layer

2C functionality at its interface. In order for layer A to
avail an arbitrary combination of these services, layer B
needs to create and expose four different service primitives
and access methods in its interface with layer A, one for
each of the possible combinations. Layer A then explic-
itly chooses the appropriate access method of layer B for
each of its data packets. The disadvantage of such a design
is that it couples the implementation of the two layers (B
and C) and thus breaks the isolation property of the lay-
ered architecture.

In Panel 2, Figure 1, we present the design of the X-
Tags-enhanced network stack. In this design there is a sin-
gle demultiplexer at the interface of each layer. Layer A
specifies a set of tags with each data packet, which provide
semantic hints to the lower layers for packet processing. In
each layer, these tags are mapped to the set of service prim-
itives that are implemented in this layer. By specifying the
appropriate combination of hints, the data packet will be
processed using the desired service primitives at the lower
layers. In the example in Panel 1 of Figure 1, layerA spec-
ifies two tags: r and e for data packet 1. Tag r is mapped
to service primitive B0 in layer B and tag e is mapped to
service primitiveC1 in layer C. This allows each layer to
independently apply the appropriate service primitive for
this packet as using the hints provided by the originator of
the data source. In particular, the application layer can use
this architecture to explicitly recommend packet process-
ing mechanisms at different layers.

Thus, the X-Tags architecture allows a flexible inter-
action between the different layers without breaking the
isolation property of the layered architecture. Note that
unlike the simple enhancement to the traditional network
stack (Panel 1), each layer still can independently imple-
ment the set of services that it provides.

Use of this tag-based mechanism to exchange data pro-
cessing hints is beneficial to the system in two different
ways: (a) implementation of each layer remains indepen-
dent of the other layers and (b) intelligent packet process-
ing can be performed at each layer using additional seman-
tic information from other layers. An interesting feature of
this architecture is that different layers may apply different
service primitives to the same packet based on the same
tag. In fact, interpretation of the same tag by a layer may
differ between network stacks of two different devices, de-
pending on the capabilities of the layer for that device.

We illustrate these aspects of the architecture in the
next two sections using two examples, one for energy-
constrained wireless devices and the other for data secu-
rity for mobile devices. In Section IV we present details
of the X-Tags architecture. In Section V we present some
of the related work and we finally conclude and present fu-

ture directions of work in Section VI.

II. EXAMPLE I: ENERGY EFFICIENT PACKET

FORWARDING FOR WIRELESS DEVICES

Energy efficient mechanisms for computing, signal pro-
cessing and communication are key to the success of dif-
ferent wireless devices. Recent research has defined dif-
ferent energy-efficient link-layer forwarding techniques
for such wireless devices [6], [2] However, different appli-
cations have different forwarding requirements from the
link-layer. We now describe how the flexibility of the X-
Tags architecture allows applications to choose appropri-
ate mechanisms and services from different layers in the
context of power-constrained wireless devices.

Wireless channels are inherently noisy in nature. The
noise of the channels is time-varying and typically the bit
error rate of the wireless channel is a monotonically de-
creasing function of the received power level for the sig-
nal.

We can, therefore, describe two different forwarding
mechanisms for successful frame delivery in the link layer
by varying the following choices:� Choice of transmission power: If a high transmission

power is used for the data, then the error rate on the
channel is reduced. Thus one scheme for successful
packet delivery across a noisy channel is to transmit
packet with a high power. Clearly this would mean
fewer packet corruptions due to noise and hence,
fewer retransmissions. An advantage of this scheme
is that the end-to-end latency of packet delivery is
also reduced. However since packets are transmitted
with higher power, the energy cost is high.� Choice of transmission data rate: This is an alterna-
tive technique to combat channel noise. This tech-
nique is based on the observation that in many chan-
nel coding schemes, the energy required to transmit a
packet can be significantly reduced by choosing a low
transmission power and by transmitting the packet
over a longer period of time [6]. Some of the exist-
ing wireless MAC layer protocols make use of this
technique in choosing data transmission rates. The
IEEE 802.11b standard [4] specifies three different
data rates for transfer of data packets (1 Mbps, 2
Mbps and 11 Mbps). In different implementations
of the IEEE 802.11b wireless LAN standard, the de-
vices do not increase their transmission power. In-
stead they choose a lower bit rate for data transfer
in presence of high channel errors to reduce packet
losses.

Now consider two different applications on the wireless
device that are transmitting packets with different require-

3

Data Packet
r e
Tags

x, r p, u, s

p, d x, e

X-Tags enhanced Network Stack2

 u d

1

2

Data Packet

B0 B1

C0 C1

Layer A

Layer B

Layer C

Traditional Network Stack (typical)0

1

2

Data Packet

C0 C1

Layer A

Layer B

Layer C

Traditional Network Stack (enhanced)1

1

2

B0 B1

C0 C1

B0 B1

Fig. 1. In a traditional network stack, the upper layer,A, interacts with the lower layer,B, only through the well-defined interface exported byB. Therefore,A can access the functionality of an even lower layer, C , if and only if B exports this functionality to A. In the X-Tags enhanced
stack, data passes between neighboring layers though a demultiplexer and data processing is performed in each layer based on the tags and are
independent of the other layers.

ments, namely a real-time audio application and a bulk
data transfer application. A real-time audio application
has no reliability requirement but is delay-sensitive and
would require low delay for its packets. On the other hand,
the bulk data transfer application requires end-to-end reli-
ability but has no delay constraints. In power-constrained
wireless devices, bulk data transfers should be performed
in the most energy efficient mechanism that is possible.
Under the X-Tags architecture, both applications are able
to indicate their requirements that its data packets desires
from the wireless infrastructure as application-level hints
using tags that are added in the application space.

We can instantiate this example in Panel 2, Figure 1. We
consider layersA, B and C in the figure to be the applica-
tion, transport and the link layers respectively.

The primitivesB0 andB1 at the transport layer are reli-
able and un-reliable data delivery mechanisms (e.g. TCP
and UDP respectively). The primitiveC0 at the link layer
implements low-delay forwarding, i.e. when the channel
noise is high, a high transmission power is used to reduce
the bit-error rate on the channel and consequently the end-
to-end latency of data packets. Although this is inefficient
use of the scarce power resources, it is necessary to reduce
the end-to-end latency to provide a good audio quality.
The primitiveC1 implements energy-efficient forwarding
by reducing the transmission bit rate in presence of high
channel noise.

Data packet 1 shown in the figure belongs to the bulk
data transfer application — it requires reliability and at the
same time is not delay-sensitive. The data processing ser-
vices for packets for this flow can be composed by the ap-
plication by using the X-Tags architecture as follows: It
uses the two tags, r and e, where tag r corresponds to re-
liability requirement (note that it is mapped to primitive

B0 at the transport layer) and tag e corresponds to delay-
insensitive energy-efficient link-layer forwarding (and is
mapped to primitiveC1 at the link layer).

Data packet 2 belongs to a real-time audio application.
For packets belonging to this flow, the application uses the
tags, u for reliable transfer and d for delay-sensitive link-
layer forwarding. As the packets pass through the different
layers, they are appropriately processed and can avail the
desired set of services.

This example demonstrates the flexibility of the X-Tags
architecture in which an application can compose the ser-
vices desired by its packets by just providing application-
level hints. Note that it is not necessary that all stacks in-
terpret these hints in an uniform manner. For example, en-
ergy efficiency is not a concern in wired networks and de-
vices. Therefore in the link layer of a wired device, both
tags e and d will be mapped to the same default link-layer
forwarding technique.

III. EXAMPLE II: MOBILITY-AWARE DATA SECURITY

We now consider another example application of the X-
Tags architecture. Mobility support has slowly become
an important component of the Internet. As the number
of mobile devices have increased, new techniques have
emerged to provide users with a seamless experience as
they change their network point of attachments. This im-
plies that the mobile device should be able to change its
network point of attachment without changing its IP ad-
dress.

Mobile IP [5] is one of the main proposals that allow
transparent routing of IP packets to mobile destinations in
the Internet. Each mobile device has a long term IP ad-
dress in the address space of its home network. In the Mo-
bile IP solution, each mobile device registers itself with an

4

Home
Network

Home
Agent

Foreign
Network

Foreign
Agent

Internet

Data Packet
Sec-if-Foreign

Tag

No IPSec IPSec

Data Packet
Sec-if-Foreign

Tag

No IPSec IPSec

Data Processing in Home Network Data Processing in Foreign Network

Server

Fig. 2. Conditional data security for Mobile IP-enabled data stack us-
ing the X-Tags architecture.

entity, called the Home Agent (HA), in the home network.
When away from its home network, a temporary “care-of
address” is associated with the mobile node and reflects
the mobile node’s current point of attachment. Data pack-
ets destined for the mobile device will typically reach the
home network of the device, and will be tunneled by the
HA to the care-of address.

A typical corporate user on the road will continue ac-
cess sensitive corporate data from the servers located at
the home network. However seamless experience of Mo-
bile IP ensures that such underlying changes to the net-
work point of attachment are not visible at the application
layer. The integrity and privacy of sensitive corporate data
is a major concern when being accessed from a foreign un-
trusted network and so the data needs to be appropriately
encrypted. However, this may not be an issue when the
mobile user is accessing the servers directly from the home
network. Data encryption and decryptions are computa-
tionally expensive operations (specially for some of the
palm devices) and are avoided when the perceived threat
is low (i.e. connecting directly via the home network).

The X-Tags architecture can be used to put into place
such a security policy as shown in Figure 2. The appli-
cation will add a “secure-if-foreign” tag to all data pack-
ets. Let us assume for this example that data security is
provided by invoking IPSec functionalities 1. Therefore,
the IP layer of the mobile device will invoke IPSec mech-
anisms if and only it is roaming in a foreign network. This
information is not available to the application in traditional
network stacks due to the isolation property of the layered
architecture. However, by allowing the application to pro-
vide such hints to the IP layer, such a security policy can1See IP Security Protocol (ipsec) charter at
http://www.ietf.org/html.charters/ipsec-charter.html

be implemented in an efficient manner without violating
the clean implementation of a layered stack.

As both these example applications show, an important
feature of the X-Tags framework is the flexibility available
to specific applications to tailor the services of the different
layers to its various needs.

IV. ARCHITECTURE

In this section, we first describe the basic X-Tags archi-
tecture for a single host and the tags are exchanged be-
tween different layers of the host. If all the communicat-
ing hosts are X-Tags-capable, then the entire end-to-end
interaction can be X-Tags-aware. Later in this section we
briefly outline some extensions required for an end-to-end
implementation of X-Tags.

A. Basics

In the X-Tags architecture, each separate unit of self-
contained code that interacts with other such units through
a well-defined interface is considered to be a layer. Apart
from the traditional layers of a network stack, multiple
application-layer protocols can exist in a host and will be
considered to be separate layers.

We call the layer which generates data in the X-Tags ar-
chitecture the principal for the data. The principal typi-
cally is aware of the semantics of the data and therefore,
generates the data processing hints, in form of tags. How-
ever, any other layer can also append and/or update tags
for the data.

The format of a X-Tags data unit is shown in Figure 3.
A X-Tags header is created by the principal along with
the data. The X-Tags header consists of a version num-
ber field, a count field that indicates the number of tags
that follow, and the total length of all the tags (in bytes)
in the X-Tags header. This is followed by the individ-
ual tags. Each tag consists of a tag type, a tag source
which indicates the entity that added this tag to the data
and tag length, which indicates the total length of this tag
(in bytes). Finally, each tag can carry an optional variable
length data field, that can be used to convey additional se-
mantic information about the data. The length of each of
these fields are shown in Figure 3. As the data passes down
the stack, layer-specific headers are added to the data. We
extend each of the layer headers to have a pointer to the
beginning of the X-Tags header. This makes the X-Tags
header directly accessible to the layer processing logic.

B. Data Processing and Control Plane

The data generated by the principal is passed down the
layers and is processed at each layer based on the tags as-
sociated with the data. It is also possible that a layer, other

5

CountVer.

Tag 1

Tag 2

Tag Src Tag Type Tag Length

Variable Length Data

Total Length

Tag N

X-Tags Header PayloadL1 Hdr L2 Hdr L3 Hdr

Pointers to beginning of
X-Tags Header

Tag

4 8 20

8 12 12

32 bits

Fig. 3. The X-Tags data format. Each of the layer headers has a
pointer to the X-Tags header.

Control Plane
of X-Tags

Data Packet Tag
1

1 2 Tag added by
intermediate layer

Demultiplex
based on tags

Service primitives
at a layer

Fig. 4. Architecture of X-Tags.

Function Annotation
SetId(i) Sets i as the identifier for the layer (boot-up)
AddTag(tag) Maps a tag to a service primitive
DeleteTag(tag) Deletes the mapping above
QueryTags(i) Finds the list of tags that are supported by layer i
TestConflict(i,TagSet) Tests and identifies tag conflicts at layer i

TABLE I
CONTROL PLANE FUNCTIONS

than the principal, generates and adds one or more tags to
the data. Such a flexibility is useful in certain scenarios.
Consider a case in which the application adds a “Secure”
tag to the data (i.e. encryption is needed prior to data trans-
mission). Depending on the configuration of the host, se-
cure services can be provided at different layers. The first
layer that provides this service encrypts the data and re-
moves the “Secure” tag, so that no subsequent layer at-
tempts to perform any redundant re-encryption of the data.

Each layer of the stack implements a set of different
services. The interface of the layer uses the tags in the
data packet to choose one or more services that are ap-
plied to the data. In some of the applications that we have
described, the choice of an appropriate service primitive
would depend on the tag type. In some other cases (as
shown in Section III) it will depend on the tag type as well
as state information local to that layer (e.g. whether the
mobile device is currently attached to the home network or
not). However, in a more general case, the demultiplexing
may be based on the tag type, the state information at the
layer as well as specific semantic information in optional
data field.

Each layer maps each possible tag to a subset (includ-

ing an empty subset) of its service primitives. Again in the
most typical case, a tag will be mapped to a single service
primitive. Each layer also identifies one of its primitives
as the default primitive, which is used by a data packet if
none of its tags are mapped to any specific primitive. It
is possible that a data packet carries a “contradicting” tag
set, i.e. the set of service primitives chosen by the tag set
of the data packet are conflicting operations. For example,
a data packet might erroneously have both “reliable” and
“unreliable” tags (which correspond to the reliable and un-
reliable transport layer services). One way to prevent such
conflicts is to define a set of rules when tags are assigned
such that no conflicts are created at any layer. This ap-
proach is called conflict avoidance. Instead we use a con-
flict resolution approach. In this scheme each layer defines
a priority ordering of its service primitives. If the tag set of
a data packet chooses conflicting service primitives, then
only the service primitive higher in the priority order is ap-
plied to the data. This approach is simpler to implement
and can be done locally at each layer.

The control plane of the X-Tags architecture is used
for out-of-band interaction between the layers. At system
boot-up, it assigns an unique identifier to each layer. A
layer can bind and un-bind a tag to one or more of its ser-
vice primitives and uses the AddTag and DeleteTag func-
tions to signal this information. These functions also up-
date the priority order information in which tags will be
processed in case of conflicts. Each layer can find out what
tags are explicitlymapped to different service primitives in
another layer using the QueryTags function. Additionally
the control plane also supports queries about conflicts be-
tween a set of tags and the priority order used by a layer

6

to resolve such conflicts. This is done using the TestCon-
flict function. The principal of data can use this function
to evaluate how the data will be processed at the queried
layer. The relevant set of functions on the control plane
that interact with the layers is specified in Table I.

C. Extensions for End-to-end Support

If the receiving end-host of data communication does
not support X-Tags, then the X-Tags header information
associated with the data packet is stripped out at the sender
before it is transmitted to the receiving counterpart(s).
However, if all the communicating end-hosts implement
X-Tags, then these semantic tags associated with the data
can be retained in the data transmission and can be used
for efficient and flexible data processing at the receiver(s).
Clearly it requires specific coordination between the end-
hosts so that the semantics of the data tags are mutually un-
derstood. The control plane functionality needs to be ex-
tended so that the sending host can query the set of tags
that are supported by different layers at the receiving host
and vice versa.

V. RELATED WORK

The idea of using tags to exchange hints between en-
tities is not a new concept. Feldmeier [3] defined a data
labeling technique that added application-specific infor-
mation to data fragments. The goal of the technique
was efficient fragmentation and re-assembly of data. In
particular, Feldmeier observed that the data fragments
(called chunks) could be mis-ordered in the network, and
the data-labeling technique allowed, in particular, out-of-
order chunks to be processed by the entire protocol stack
without depending on the arrival of any other chunk. This
data labeling technique is one instantiation of Applica-
tion Level Framing (ALF) as proposed by Clark and Ten-
nenhouse [1]. In the ALF proposal, Application Data
Units (ADUs) are application-specified aggregates of data
that should be manipulated by lower layers without fur-
ther fragmentation. An ADU is thus the smallest unit of
data which the application can independently deal with
out of order. The Axon architecture [7] also proposed
application-specific labeling and framing of data for ef-
ficient re-assembly purposes. In contrast, in X-Tags any
layer in general, and the application in particular, can add
semantic hints to the data, which can be used by other lay-
ers to apply suitable service primitives for efficient data
processing.

Integrated Layer Processing (ILP) [1] is another ap-
proach for efficient data processing in network stacks. ILP

blurs strict layering boundaries and promotes greater in-
teraction between operations performed at different lay-
ers. The X-Tags architecture also promotes such interac-
tion between layers. However, unlike ILP, we still main-
tain the layering boundaries. The goal of ILP is to improve
protocol performance by appropriately re-ordering opera-
tions from different layers. In contrast the goal of X-Tags
is to provide more flexibility to the applications in compos-
ing the functionalities available at different layers of the
network stack.

VI. CONCLUSIONS AND FUTURE WORK

We believe that the X-Tags architecture exposes a richer
data processing interface to applications and can be used
to tailor the network stack behavior to application-specific
needs. Our continued work in this framework is two-
fold:� Implementation of the architecture: We are currently

implementing the X-Tags framework for Unix-based
systems. We have chosen the two applications de-
scribed in this paper to demonstrate the flexibility of
the system.� Instantiation of general-purpose tags and identifica-
tion of the dependencies: Ideally we would want a
minimal set of tags that can be used to define all possi-
ble functionalitiesavailable in the network stack. Ad-
ditionally, given a set of tags and the functionalities
that they enable, we also need a generalized frame-
work to express the priority order among the service
primitives at each layer for tag conflict resolution.

REFERENCES

[1] D.D. Clark and D.L Tennenhouse. Architectural Considerations
for a New Generation of Protocols. In Proceedings of ACM Sig-
comm, 1990.

[2] A. El Gamal, C. Nair, B. Prabhakar,E. Uysal-Biyikoglu, and S. Za-
hedi. Energy-efficient Scheduling of Packet Transmissions over
Wireless Networks. In Proceedings of IEEE Infocom, June 2002.

[3] D.C. Feldmeier. A Data Labelling Technique for High-
Performance Protocol Processing and its Consequences. In
Proceedings of ACM Sigcomm, 1993.

[4] IEEE. Wireless LAN medium access control (MAC) and physical
layer (PHY) specification, Standard 802.11, 1999.

[5] C.E. Perkins. IP Mobility Support. RFC 2002, IETF, October
1996.

[6] B. Prabhakar, E. Uysal-Biyikoglu, and A. El Gamal. Energy-
efficient Transmission over a Wireless Link via Lazy Packet
Scheduling. In Proceedings of IEEE Infocom, April 2001.

[7] J. Sterbenz and G. Parulkar. Axon: A High-Speed Communication
Architecture for Distributed Applications. In Proceedingsof IEEE
Infocom, June 1990.

