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Abstract. Rapid growth of digital data collections is overwhelming the capabilities of humans to 
comprehend them without aid. The extraction of useful data from large raw data sets is something that 
humans do poorly because of the overwhelming amount of information.  Aggregation is a technique 
that extracts important aspect from groups of data thus reducing the amount that the user has to deal 
with at one time, thereby enabling them to discover patterns, outliers, gaps, and clusters. Previous 
mechanisms for interactive exploration with aggregated data was either too complex to use or too 
limited in scope. This paper proposes a new technique for dynamic aggregation that can combine with 
dynamic queries to support most of the tasks involved in data manipulation. 

1 Introduction 

Current technologies have enabled massive collections of data. Unfortunately, disk storage grows at a faster 
rate than Moore’s law. Newer and faster algorithms for data analysis are always in demand to harness the 
flood of data. If the amount of data can be reduced to a manageable size, then humans can find patterns that 
automated algorithms may have missed. Dynamic Queries (DQ) is an interactive technique for data 
exploration.[1] Users manipulate sliders to filter out data. Each slider corresponds to an attribute of the 
data. A requirement of dynamic queries is that the visualization must keep up with the user's manipulation 
within 100 milliseconds.  Since a large portion of the computer's computation is spent on visualization, 
when the data sets grow, the time to complete drawing grows proportionately. Thus DQ isn’t suitable for 
dealing with large amounts of data. Aggregation is an effective way of managing large data sets. It 
summarizes groups of similar data elements and can greatly reduce the number of glyphs that are shown on 
the screen. Because users can specify how to aggregate the data, the important aspects of the data will be 
preserved while the data set size is reduced. Patterns that are hidden within millions of data points can 
emerge dramatically when aggregation reduces these into thousands of points. 

1.1 Motivation 

Large datasets poses two problems to interactive exploration. One is how to represent the elements on the 
screen fast enough. Second is if you draw it on the screen, can the user even understand it. Visual occlusion 
is a problem in general for visualization. If the user can’t see the data point, then the time spent drawing the 
item was wasted. This problem can be solved for small numbers of items.  The commercial data analysis 
package, SpotFire (www.spotfire.com), randomly jitters the data points continuously, so that clusters that 
occupy the same point can be seen. This technique can’t be scaled up easily [2]. With larger data sets, the 
occlusion problem grows more and more pressing. The average size of current displays, in terms of pixels, 
is 1024x768, with the highest resolution on commercial screens being 1600x1200. The maximum number 
of data points that can appear on screen with no occlusion is then around 2 million; with each data item one 
pixel in size. Due to the non-uniform nature of most data sets, many data points will still occlude others.  
Because occlusion hides many data points, the visual representation can deceive users by not showing 
clusters that exist in the data.  
 

http://www.spotfire.com/


Figure 1 shows 380016 data points using a scatter plot of clients to a website versus the time a request 
came. Are there any patterns in that data? Size coding of data points further decreases the maximum 
number of data points shown and increases occlusion. The number of data points that can be effectively 
understood with size coding enabled is probably orders of magnitude less than the theoretical maximum. 
Thus, aggregation is needed to reduce the total number of data points down to a manageable size. This also 
will reduce the rendering time of the display and increases the interactively of the whole system. Figure 2 
shows only 24869 data points with the same axes, but now the data points represent the number of requests 
that came from a client in an hour. Now horizontal black stripes are easily seen representing repeated client 
visits. The dark black vertical areas in early July indicate a period of intense activity while the blank 
vertical indicated a server outage. These patterns are hard to predict yet they are readily visible and invite 
further investigation 

 

.  
Fig. 1. Web log data when viewed without aggregation makes pattern discovery impossible 

 

 
Fig. 2. Showing client requests aggregated by hour reveal several interesting activities and a server outage 

1.2 Related Works 

Using aggregation and Dynamic Queries (DQ) together is not a new idea. Goldstein et al [3] proposed it in 
1994. An interface mechanism called Aggregate Manager (AM) was combined with DQ, which produced a 



powerful combination. (see Figure 3 and 4) DQ is used to select a subset of the data set; this can be 
transferred over to AM as an aggregate group. AM can then do aggregation on different aggregate groups, 
then pass the data back to DQ for display. One of the lacking area of DQ is providing conjunct of disjunct 
groups, which can be performed by AM. Users can create multiple groups, and then pass them to the AM. 
The AM can then create an aggregation based on those groups and pass them back to the visualization. 
Using AM along with DQ provides many possible combinations for data manipulation, which is powerful 
but can be hard for users to understand and fully control. One of the success of DQ is that it is simple to 
understand and operate, and yet is sufficiently powerful for most tasks. The coupling of AM with DQ 
disrupts the simplicity. 

 

 
Fig. 3. The workspaces of AM with DQ 

 
Fig. 5. The flow of data with AM with DQ 
 
An alternative approach to user-controlled aggregation is 
automatic aggregation. Chuah [4] used automatic 
aggregation in SolarPlot, a circular histogram. Elements are 
mapped to a pixel on the circumference of a circle, the 
height of a spike that emanates from the pixel represents the 
number of data values that fall with in that pixel. This 
aggregation is intuitive and simple, the scale of the 
aggregation depends on the diameter of the circle, and the 
aggregated value is easily understood. There are several 
limitations to using SolarPlot. The use of a circle as the 
primary visualization leaves a large portion of the display 
unused, while part of the motivation for aggregation is to  
 Fig. 4. SolarPlot showing a histogram



use screen space more efficiently. SolarPlot only encode one dimension of data in the visualization, any 
correlations between fields are harder to find as a result.  

 

 
Fig. 6. Close up and zoomed out view of Aggregate  

TowersRayson's [5] aggregate towers provide another automatic aggregation algorithm. The data points are displayed 
as cubes on a 3d plane. As the user zoom in and out, data points are clustered based on their geospatial location. The 
aggregate groups are represented by stacks pointing out of the plane. The cubes still retain their original color-coding. 
This automatic technique alleviates 2D occlusion problem by forcing it in to 3D. These stacks of data towers will 
occlude each other in 3D, but is easily remedied by allowing the user to freely rotate the view. 

2. A Simple Manual Aggregation Interface 

Automatic aggregation is useful as a way to reduce occlusion. However, having no user control makes 
automatic aggregation of limited use. Goldstein's AM is complex and hard to learn. A simple interface for 
manual aggregation is a nice compromise. 
 
What are the basic steps involved in aggregation? First, a group of data item must be selected. In AM, this 
is done manual by the user; SolarPlot and Aggregate Tower use a spatial criterion. Secondly, the fields of 
the group must be summaries in a meaningful manner. In AM, the user selects a summary statistic from a 
pop-up menu, then the user selects an attributes to be shown with that statistic from another pop-up menu; 
the other interfaces provide a fixed histogram like representation. Lastly, the group should be able to be 
divided into subgroups.  
 
Because DQ and aggregation are a powerful combination, the current interface is designed to be integrated 
with DQ easily. Fredrikson et al. [6] explored using aggregated data in conjunction with Spotfire, and 
showed the uses of different kinds of aggregation. Thus Spotfire's interface was used as the starting point of 
our system. The data are plotted as a scatter plot based on two attributes of the data. Combo boxes at the 
edges of the screen select the fields being plotted. A panel on the side displays DQ controls and detail on 
demand. The entire interface is in front of the user. Our system has similar characteristics as Spotfire. The 
aggregation controls are located on the left side so that DQ can be placed on the right side as is. The 
primary aggregation control is a combo box that can be enabled or disabled. Specifying a group of data is 
easy to achieve using DQ. However, creating many groups manually can be time consuming and should be 
automated. The user only needs to select a field to group on, and have the program figure out which data 
point belong in which group. The default grouping algorithm used is equivalence grouping. This is an 
easily understood algorithm and is fairly useful. Should the user require a different grouping criterion, 
clicking on the "..." button to the right of the combo box will bring up an options dialog. Here, the user can 
choose which algorithm to use and to configure the algorithm to their liking.  



 
Fig. 7. Spotfire interface layout 

 
Fig. 8. Choosing to group by Date and selecting the granularity of grouping 

Goldstein et al. defined four main types of decomposition, or grouping algorithms: 
• Natural groupings - e.g. day, month, year, holiday vs. non-holiday 
• Element frequency divisions - e.g. partition into groups with same number of elements 
• Set interval divisions - e.g. each group have the same length interval 
• Statistical methods 

Aggregate tower's occlusion avoidance grouping would fall into the statistical methods, and SolarPlot’s 
scheme is an interval division algorithm. Once the grouping computation is finished, the results are shown 
on the screen with each dot now representing a particular group, the size of the dot is currently coded to 
show the number of elements in that group. The secondary aggregation controls are the aggregate method 
combo boxes. Those are located below the vertical axes field selector, and to the left of the horizontal axes 
field selector. The user can select different aggregation algorithms for each axis independently. Creation of 
subgroups is exactly the same procedure as creating a group, select a field and a grouping algorithm. 



3. System demonstration 

Our current implementation is in Java. The 
main obstacle in using Java as a testing 
platform was not its speed, but rather, its 
appetite for memory. This is a problem in 
dealing with large data sets in general, 
however, Java's large primitive types and other 
inefficiencies are ill suited to hold large 
amounts of data in memory. The following 
graph is a plot of CPU time consumed to load 
the data versus the number of row in the data 
file. The data file is in a plain text format read 
in from the hard drive. CPU usage time is used 
instead of physical time because of the low 
level of memory in the testing machine 
resulted in sever thrashing which affects 
performance greatly and doesn't accurately 
reflect the program's performance. 

The dataset used is extracted from web logs. The
Science web server. Only the requests tha
(www.cs.umd.edu/hcil) was extracted.  Hochhe
However, some of their visualizations used pre
system. The data have the following five fields:  

• Client host 
• time: timestamp of request 
• url: the URL requested 
• return code: the server response code to r
• bandwidth used: number of bytes transmi

The rough correspondence between number of el
The data is first read into memory. Nominal da
represented in screen coordinates. Then all data is
it is. It was surprising to see that the load time is r
n). Investigation into this paradox found that even
data is growing at a sub-linear rate. This offsets
loading time. 
 
Web log data is very large and has only a few fie
of statistics and static graphs. The user merely f
decides what to report back to the user. Hochhei
like Spotfire, is a valid way of analyzing web log
features involved preprocessing and aggregation. 
flexibility and power of our simple aggregation in
text file. The data covers four weeks of requests 
consists of individual client requests, one logical 
size of the groups (count of rows when group by 
requests from a particular user. (Figure 10) 
 
Fig. 9. Performance graph 
 
 data is taken from University of Maryland’s Computer 
t belonged to the HCIL section of the website 
iser et. al. [7] explored the same dataset using SpotFire. 
processed data that could be created just by using our 

equest 
tted for that request 
ements and file size is around 10k data points per Meg. 
ta is sorted and given an ordinal value so they can be 
 wrapped up in different classes based on the type of data 
oughly linear, since sorting of nominal data is order n(log 
 though as dataset grows, the number of unique nominal 
 the supra-linear rate of sorting thus producing a linear 

lds. Most traditional web analysis packages create tables 
eed the data to the program, and it is the program that 
ster et al. argued that interactive star field visualization, 
 data. However, in order to find some of the interesting 
Thus, using the same web data will be a good test of the 
terface. The data file used is 35 Meg tab delimited plain 
from July 1, 2000 to July 28, 2000. Since the web data 
grouping would be to group by user. Just by viewing the 
client host), one can detect abnormally large numbers of 

http://www.cs.umd.edu/hcil


 
Fig. 10. Finding the most frequent visitor by aggregating by client host 

 
Fig. 11. Finding high bandwidth usages 

We find that the Google spider the most frequent visitor of HCIL. To check out how much bandwidth did 
Google consume, we just need to change the field we are viewing to “Bandwidth used” and set the 
aggregator function to sum the field. From this graph, we find that it isn’t Google, but another crawler, 
EoExchange that is taking the most bandwidth. (Figure 11) We can also see that EoExchange consumes 
almost three times more bandwidth and has one quarter less requests. 
 
Grouping by URL can similarly reveal which URL is the most popular, and how much each byte each URL 
used. A more interesting visualization is looking at the first time an URL is accessed (group by URL and 
use MIN on the time field); this might show related URL accesses. Since URLs that are close are logically 
related in someway, thus lines and clusters represent interesting information. The two vertical lines 
represent concurrent access of a set of related files. They turn out to be Java classes used in an applet. 
Seeing this, a web master might decide to make a jar out of those Java classes to save bandwidth. The 
horizontal line is a series of slides that was crawled by Google. This is interesting to see because the 



crawling happened over three days, suggesting that Google tries to spread out crawling over time to avoid 
affecting the website performance. 
 

 
Fig. 12. Interesting access patterns 

To find repeat visitors to a particular page, one can group first by user, then by URL. Thus the size of the 
dot is based on how many times a user used the web page. (Figure 13) This is an important metric for 
websites, because it is a measure of the site’s “stickiness.” 
 

 
Fig. 13. URL stickiness 
 
Viewing the user visits across the time domain will show usage patterns of users, and will show repeat 
users and one time visitors. Just grouping by time and clients using equivalence grouping gives a cluttered 
view.  



 
Fig. 14. User activity over time using equivalence grouping 

Grouping by day shows us that most users are repeat users, indicated by the solid lines across time. The 
bandwidth hog EoExchange shows up in this graph as well. Google’s accesses are well hidden and spread 
out across days, which validate the previous observation. (Figure 15) 
 

 
Fig. 15. User activity over days 

4. Implementation and Design 

The logical view of the system is a linear flow of data. Data flows from a data source and passes through 
many processors and the final products are values that can be used directly by the visualization. 



 
Fig. 16. The flow of converting raw data into visualization data 

This is an abstraction that is used commonly in computer graphics (called rendering pipeline), and in 
audio/video processing (see Java Media Frameworks), and should be familiar to Unix users as well (pipes). 
The client of the data, the visualization, requests data from the end of the pipeline (a.k.a. pulling), and each 
processor request data from upstream. If the pipeline is empty, then the data flows directly from the data 
source and is processed along the way. Each processor should also implement caching, so that subsequent 
requests for data are fulfilled quickly. The actual implementation isn't nearly as simple as the design 
because of optimization issues. A TextDataSource is responsible for reading the data in from disk and is at 
the beginning of the pipeline. The last processor in the pipeline is the Aggregator, this class is responsible 
for the summing of information once the groups are created. Because this always applied at the end, it 
doesn’t need to be integrated into the pipeline. AggregateDataSource is the class that does all of the work. 
It calls the GroupingAlgorithm class to break the data into groups, then uses the Aggregator to produce the 
output. 

Table 1. Example of web log data 

URL Client host Group by 
URL 

Group by 
host 

Group by 
both 

/hcil/jazz L4p26.dav.mother.com 0 0 0 
/hcil/elastic-

windows 
J200.inktomi.com 1 1 4 

/hcil/jazz Dialin68.computeron.net 0 2 2 
/hcil/jazz/learn/ L4p26.dav.mother.com 2 0 6 

 
The most basic grouping algorithm is equivalence grouping. All data types support this grouping and is the 
default algorithm used in the system. Table 1 shows some sample data with the results of grouping. The 
first two fields are fields in the actual data, the next two fields show the results of grouping on one of those 
fields. The grouping algorithm will number the groups consecutively, starting from 0. Identical entries in 
the field that we are grouping by produce the same group number. We could use a hashing function to 
produce group numbers, but sequential groups makes creation of subgroups easier. Once grouping 
calculations are done for a particular field, it can be cached for later use. Subgroups can easily be created 
using the group ids of the fields used in subgrouping. Column 5 of Table 1 shows the group number when 
grouping by URL and Client host. The following simple formula can be used to generate subgroup ids: 

IDGroupoupNumberOfGrIDGroupsubgroupID 22*1 +=  (1) 

A problem with using the above equation is when dealing with large group ids, multiplying two large 
numbers might result in wrap around. Hashing based on the group ids can solve this problem. Using this 
technique is faster than direct calculations of the subgroups with no caching, since the grouping algorithms 
may take a long time to complete. The only draw back to this technique is that the memory requirements of 
caching can be quite large. A LRU or priority queue algorithm can be used to manage the cache space if 
memory is scarce. AggregationDataSource also caches the results of aggregation. It uses Java’s hashtable 
to associate a field name with an array of values returned by the Aggregator object. The amount of data 
needed to store these data is much smaller due to the fact that the aggregated dataset is much smaller. 



5. Future Work 

Dynamic Queries provides a visual and interactive means of filtering of data. Filters are nothing more than 
another kind of data processor, and as such can be integrated with our system very easily. Integrating DQ 
into our current system should require little change to our design. Since DQ requires binning of values so 
each pixel on the visual control correspond to a group of data that can be filtered out, we can use the 
interval grouping or element frequency grouping algorithm that is already developed for dynamic 
aggregation. There are two alternatives to the position that DQ will occupy in the pipeline, one before 
aggregation and one after. Putting DQ before aggregation would probably be more powerful but since this 
changes the data upstream, all data downstream would have to be flushed and recomputed. This can be 
prohibitively slow for interactive requirements of DQ. Putting DQ after aggregation can also be useful and 
is much more computational tractable due to the smaller number of data items. The integration of DQ to 
our system would produce a system that can cover most of the data manipulation techniques. 
 
Another area of importance is how to compute with much larger datasets. Currently, our system loads 
everything into memory before doing any computation. This is clearly unfeasible for datasets with 
gigabytes and terabytes of information. If aggregation means having to go through the entire database 
before an answer can be returned, the user would suffer a long delay before any real exploration of data can 
occur. A promising technique to integrate with would be combining the dynamic aggregation interface with 
“Online Aggregation” developed by Haas and Hellerstein [8]. Online Aggregation returns partial answers 
to database queries along with a confidence measure. This confidence measure is updated incrementally, 
meaning that partial results can be returned and viewed. In this way, query on a large database merely takes 
more time to get a good enough confidence measure, while the user can still explore the data returned. 

6. Conclusion 

We have developed a linear data flow design that produces groups to be used in aggregation, unlike the 
cyclical flow used in AM. Due to the simplicity of the system, we believe that users can understand the 
state of the system and will be able to use the tool effectively. However, due to the inherent complicity of 
the aggregation concept, users should have in mind a specific aggregation that they require. Unlike DQ, in 
which users can explore and experiment with data, aggregation should be thought of as creation of a new 
dataset. This new dataset can then be explored by DQ. A usability test should be conducted to test how 
readily users understand using the interface and which grouping algorithm and aggregation algorithm are 
needed to have a rich set of tools so the user can find answers to more complex questions than what was 
considered in the paper. 
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