
Probabilistic Temporal Databases, II: Calculus and Query Processing�Alex Dekhtyary Fatma �Ozcanz Robert Ross x V.S. Subrahmanian{AbstractThere is a vast class of applications in which we know that a certain event occurred, but donot know exactly when it occurred. However, as studied by Dyreson and Snodgrass [7], thereare many natural scenarios where probability distributions exist and quantify this uncertainty.Dekhtyar et. al. extended Dyreson and Snodgrass's work and de�ned an extension of the relationalalgebra to handle such data [5]. The �rst contribution of this paper is a declarative temporalprobabilistic (TP for short) calculus which we show is equivalent in expressive power to thetemporal probabilistic algebra of [5]. Our second major contribution is a set of equivalence andcontainment results for the TP-algebra. Our third contribution is the development of cost modelsthat may be used to estimate the cost of TP-algebra operations. Our fourth contribution is anexperimental evaluation of the accuracy of our cost models and the use of the equivalence resultsas rewrite rules for optimizing queries by using an implementation of TP-databases on top ofODBC.1 IntroductionDyreson and Snodgrass [7] pioneered the study of uncertainty in temporal databases where statementsof the form \Event e occurred or will occur at some time point in the time interval [t1; t2]" arepermitted. Such statements are common. For instance, a shipper like Federal Express may tellcustomers that their package will be delivered within 24 hours of dropo�. In such a case, if thesmallest unit of time about which reasoning is performed is a minute, then there are (24 � 60)minutes at which the package may be possibly delivered. However, over this time-frame, there isa probability distribution re
ecting the probability that the package will be delivered precisely tminutes after dropo�. Such a probability distribution may be skewed (e.g. the probability that thepackage is delivered within 3 hours is probably zero if the package has to make its way from Seattleto Boston). Dyreson and Snodgrass [7] developed this idea substantially to provide a framework forreasoning about temporal-probabilistic data. They also provided applications in a variety of otherareas including carbon-dating of historical records and stock market analysis. For example, thereare literally hundreds of programs that make stock market predictions | most prediction models�This work was supported in part by the Army Research Lab under contract number DAAL0197K0135, the ArmyResearch O�ce under grant number DAAD190010484, by DARPA/RL contract number F306029910552, and by theARL CTA on Advanced Decision Architectures.yDepartment of Computer Science, University of Kentucky, Lexington, KY. Email: dekhtyar@cs.uky.eduzDepartment of Computer Science, University of Maryland, College Park, MD 20742. Email: fatma@cs.umd.eduxDepartment of Computer Science, University of Maryland, College Park, MD 20742. Email: robross@cs.umd.edu{Department of Computer Science, University of Maryland, College Park, MD 20742. Email: vs@cs.umd.edu1

are uncertain and provide probabilistic outputs. In the same vein, statistical models that trackperformance of machines and machine parts on a factory
oor yield probabilistic estimates of whenthe parts will need to be repaired and/or replaced. Decision making programs for such applicationstypically execute calls to the results of suc predictions.Following on the important work of Dyreson and Snodgrass [7], work, Dekhtyar et. al. [5] developeda \temporal probabilistic algebra" (TPA) which eliminated many of the assumptions in the frameworkof [7].We start this paper with a brief overview of TP-databases in Section 2. We then move on to ourspeci�c contributions.1. First, in Section 3, we develop a temporal probabilistic calculus (TP-calculus for short). Weshow that this calculus, which is similar to the safe relational calculus, has the nice propertythat it is equivalent in expressive power to the TP-algebra.2. Second, in Section 4, we develop a set of query equivalence results in the TP-algebra. Theseequivalences automatically yield a set of rewrite rules that a query optimizer for TP-databasesmight use.3. Third, in Section 5, we develop mechanisms to estimate the cost of executing a TP-algebraquery. Even though TP-algebra operations are implemented on top of a relational database,these operations are not mere relational algebra queries | implementing them on top of therelational algebra involves writing a C++ program that includes embedded SQL calls. Costingsuch programs builds on top of cost models of relational operators, but involves taking intoaccount, the speci�c aspects of the programs themselves. Our cost models involve identifyinga set of statistics to be stored about the data, as well as methods to compute such statisticsfor intermediate results obtained during query processing.4. Fourth, in Section 6, we conduct a set of experiments to evaluate three things. Our �rst goalis to assess the accuracy of our cost model. Our second goal is to assess the e�ectivenessof our rewrite rules. The third goal is to assess the e�ciency of a query optimizer based onthis cost model and these rewrite rules. Experiments were run using our implementation ofTP-databases which is built on top of ODBC (using Paradox as a back-end).We compare our work with related work in Section 7 and �nally conclude with directions for furtherresearch.2 Preliminaries: TP-Databases OverviewIn this section, we recapitulate the notions of a Temporal Probabilistic database (TP-database) andthe Temporal Probabilistic Algebra (TPA). Full details may be found in [5].2.1 Temporal-Probabilistic DB ModelTo make statements about when certain events occurred, or when certain facts were/will be true,TP-databases use a calendar (cf. Snodgrass and Soo [32]) and temporal constraints.2

Calendar: A calendar � consists of an ordered list of time units. For example, (day, month, year) isa possible calendar. Each time unit has a �nite domain associated with it. Given a calendar � overtime units (tu1; : : : ; tun), a time point is an expression of the form (v1; : : : ; vn) where each vi is inthe domain of tui. For instance, w.r.t. the example calendar, (25; 5; 2000) is a time point.Temporal constraint: Temporal constraints are inductively de�ned. (i) If tu is a time unit, op 2 f<;�;=; 6=;�; >g, and v 2 dom(tu), then (tu op v) is a temporal constraint over � .(ii) If t1; t2 are time points in � and t1 � t2, then (t1 � t2) is a temporal constraint over � .(iii) If C1 and C2 are temporal constraints then so are (C1 ^ C2), (C1 _ C2) and (:C1).The syntax (t1 � t2) is a shorthand for the constraint (t1 � t � t2). We abuse notation andwrite (t1) instead of (t1 � t1). Solutions of temporal constraints (denoted sol(C)) are de�ned in theobvious way. For example, the constraint ((12:05 � 12:14) _ (12:45 � 12:50)) has as its solutions alltime points between 12:05pm to 12:15pm, as well as all time points between 12:45pm to 12:50pm.Probability Distribution Function (PDF): Let S� be the set of all temporal constraints overcalendar � . Then the function } : S� � � ! [0; 1] is a PDF if (8D 2 S�) (8t 62 sol(D)) (}(D; t) = 0).Furthermore, } is a restricted PDF if (8D 2 S�) (Pt2sol(D) }(D; t) � 1).This de�nition of a PDF is rich enough to capture almost all probability mass functions (e.g.uniform, geometric, binomial, Poisson, etc.) studied in classical probability theory [25]. Furthermore,probability density functions can be approximated by PDFs via a process of quantization.TP-case: A TP-case over calendar � is a 5-tuple hC;D; L;U; �i where (i) C and D are temporalconstraints over � , (ii) ; � sol(C) � sol(D), (iii) 0 � L � U � 1, and (iv) � is a restricted PDF.For example, h(12:05 � 12:14), (12:05 � 12:19), 0.5, 0.6, ui is a TP-case where � is a uniformdistribution. Intuitively, C speci�es the time points when an event is valid while D speci�es thetime points that are distributed by �. Since sol(C) � sol(D), it follows that � assigns a probabilityinterval to each time point t 2 sol(C). Speci�cally, let Pr(hC;D; L;U; �i; t) denote �(D; t) � [L; U].Alternatively, � could be de�ned as (}L; }U) where }L is a restricted PDF, }U is a (unrestricted)PDF, and (8t 2 sol(C)) (}L(D; t) � L � }U(D; t) � U). This generalization is useful when the lowerand upper probability bounds do not follow the same distribution. Here, Pr(hC;D; L;U; (}L; }U)i; t)denotes the probability interval [}L(D; t) �L; }U(D; t) �U]. Although extending � to a pair of PDFsis straightforward, we avoid this rede�nition in order to maintain better compatibility with [5].TP-tuple: A TP-tuple over relation scheme R = (A1; : : : ; Ak) and calendar � is a pair (d;�) whered is a relational k-tuple over R and � is a nonempty TP-case statement over � , i.e., � is a set ofTP-cases over � where (8
i;
j 2 �) ((i 6= j)! sol(
i:C ^
j :C) = ;).In the following, suppose R is a relation scheme and � is a calendar over (tu1; : : : ; tun).TP-table: A TP-table over R; � is a multiset of TP-tuples over R; � .TP-relation: A TP-relation r over R; � is a TP-table over R; � where R is a superkey for r.TP-database: A TP-database over � is a set of TP-tables over � .Annotation: The annotation of TP-relation r over R; � produces a relation ANN(r) over relation3

scheme (R; tu1; : : : ; tun; Lt; Ut) where dom(Lt) = dom(Ut) = [0; 1] andANN(r) = f(d; t; Lt; Ut) j (9�) (9
 2 �) ((d;�) 2 r ^ t 2 sol(
:C) ^ [Lt; Ut] = Pr(
; t))gEquivalence: TP-relations r and r0 are equivalent, denoted r � r0, i� ANN(r) = ANN(r0).Example 1 (Base TP-relations) The following TP-relations are named TrainDep and BusArr:TrainNo From To C D L U �151 Baltimore New York (12:05 � 12:14) (12:05 � 12:14) 0.5 0.6 u(12:15 � 12:20) (12:15 � 12:20) 0.3 0.4 g; 0:5BusNo From To C D L U �23 Rockville Baltimore (12:12 � 12:16) (12:12 � 12:16) 0.5 0.5 b; 0:5(12:17 � 12:26) (12:17 � 12:26) 0.5 0.5 uThe second TP-case in TrainDep says that there is a 30-40% probability that train number 151 fromBaltimore to New York will depart between 12:15 and 12:20. Furthermore, given any time point t inthis interval, the probability that the train will depart at exactly time t is between (0:3) � �g;0:5(D; t)and (0:4)��g;0:5(D; t) where D = (12:15� 12:20). Note that when � = u, � = g; 0:5, or � = b; 0:5, thenthe PDF is uniform (where n = jsol(D)j), geometric (where p = 0:5), or binomial (where n = jsol(D)jand p = 0:5) respectively. 32.2 Temporal-Probabilistic Algebra (TPA)In this section, we brie
y overview some (but not all) of the TPA operators in [5].De�nition 1 (Selection condition) Suppose R is a relation scheme, � is a calendar, and � 2 f<;�;=; 6=;�; >g. Then C is a selection condition over R; � if it has one of the following forms:� Data condition: C = A � c where A 2 R and constant c 2 dom(A).� Temporal condition: C = T where T is a temporal constraint over � .� Probabilistic condition: C = P � p where P 2 fL; Ug and probability p 2 [0; 1].� Conjunction condition: C = (C1 ^ : : : ^ Cn) where Ci is a selection condition over R; � . 3We abuse notation and write A 2 R to indicate that A is an attribute of R. It should be clearfrom context whether we mean set membership or membership of an attribute in R's schema.De�nition 2 (TP-�lter) A TP-�lter function maps a TP-case hC;D; L; U; �i and a probabilisticcondition P � p to a temporal constraint C 00 where sol(C 00) = ft 2 sol(C) j (�(D; t) � P) � pg. 3Various methods for implementing TP-�lter functions are given in [5]. For example, a naiveapproach involves testing every time point t 2 sol(C). Better algorithms exploit the properties of �.For instance if � = u, then C 00 can be determined by testing only one time point in sol(C).4

De�nition 3 (Selection on a TP-relation) Suppose r is a TP-relation over R; � , C is a selectioncondition over R; � , and
t is a TP-�lter function. Then the selection of C on r using
t , denoted�
tC (r), produces TP-relation r00 over R; � where the following constraints are satis�ed:� If C = A � c, then r00 = f(d;�) 2 r j d:A � cg.� If C = T , then r00 = f(d;�00) j �00 = fh(C ^ T); D; L; U; �i j (9�) ((d;�) 2 r ^hC;D; L;U; �i 2 � ^ sol(C ^ T) 6= ;)g ^ �00 6= ;g.� If C = P � p, then r00 = f(d;�00) j �00 = fh
t(
; C);D;L;U; �i j (9�) (9C) ((d;�)2 r ^
 = hC;D; L;U; �i 2 � ^ sol(
t(
; C)) 6= ;)g ^ �00 6= ;g.� If C = (C1 ^ C2), then r00 = �C2(�C1(r)). 3Although the implementation chosen for TP-�lter function
t a�ects the e�ciency of the selectionoperation, notice that �
tC (r) � �
t 0C (r) must hold for all TP-�lter functions
t ;
t 0. Thus, we let�C(r) denote �
tC (r) with any choice for
t .Example 2 (Selection) Let r1 = �((12:05� 12:08)_ (12:11� 12:12)_ (12:15� 12:17))(TrainDep) and letr2 = �L� 0:05(BusArr). Then the following are the TP-relations for r1 and r2:TrainNo From To C D L U �151 Baltimore New York ((12:05 � 12:08) _ (12:11 � 12:12)) (12:05 � 12:14) 0.5 0.6 u(12:15 � 12:17) (12:15 � 12:20) 0.3 0.4 g; 0:5BusNo From To C D L U �23 Rockville Baltimore (12:13 � 12:15) (12:12 � 12:16) 0.5 0.5 b; 0:5(12:17 � 12:26) (12:17 � 12:26) 0.5 0.5 uNotice that for both selections, we only need to change the values for the C attribute. 3De�nition 4 (Attribute list) Suppose relation scheme R = (A1; : : : ; Ak) and P is the primarykey for R. Then F = a1; : : : ; an is an attribute list over R; P if the following constraints are satis�ed:(i) n � 1, (ii) each ai is an attribute of R, (iii) each attribute in P is an attribute in F , and(iv) no attribute occurs more than once in F . 3De�nition 5 (Projection on a TP-relation) Suppose R = (A1; : : : ; Ak), r is a TP-relation overR; � , P is the primary key for R, and F = a1; : : : ; an is an attribute list overR; P . Then the projectionof F on r, denoted �F (r), produces TP-relation r00 over R00; � where R00 = (F) andr00 = f(d00;�) j (9 d) (8i 2 [1; n]) ((d;�) 2 r ^ d00:ai = d:ai)g 3Note that our projection operator is exactly like projection in the classical relational algebra exceptthe �elds in the primary key for r and the C, D, L, U , � �elds cannot be projected out.Before presenting our de�nition of Cartesian product, we need to recall the notion of a probabilisticconjunction strategy introduced by Lakshmanan et. al. [20]. Intuitively, this is a function thatreturns the probability interval for a conjunction of two events given the probability intervals forthe individual events. We shall also introduce the concept of a Cartesian product function. Thesefunctions are applied within the inner loop of a Cartesian product.5

De�nition 6 (PCS) A probabilistic conjunction strategy (PCS) is a binary function
 from closedprobability intervals to closed probability intervals where the following postulates are satis�ed:1. Bottomline: ([L1; U1]
 [L2; U2]) � [min(L1; L2);min(U1; U2)].2. Ignorance: ([L1; U1]
 [L2; U2]) � [max(0; L1+ L2 � 1);min(U1; U2)].3. Identity: ([L1; U1]
 [1; 1]) = [L1; U1].4. Annihilator: ([L1; U1]
 [0; 0]) = [0; 0].5. Commutativity: ([L1; U1]
 [L2; U2]) = ([L2; U2]
 [L1; U1]).6. Associativity: (([L1; U1]
 [L2; U2])
 [L3; U3]) = ([L1; U1]
 ([L2; U2]
 [L3; U3])).7. Monotonicity: ([L1; U1]
 [L2; U2]) � ([L1; U1]
 [L3; U3]) if [L2; U2] � [L3; U3]. 3The following are some sample probabilistic conjunction strategies:PCS name Probability interval returnedIgnorance ([L1; U1]
ig [L2; U2]) = [max(0; L1+ L2 � 1);min(U1; U2)]Positive correlation ([L1; U1]
pc [L2; U2]) = [min(L1; L2);min(U1; U2)]Negative correlation ([L1; U1]
nc [L2; U2]) = [max(0; L1+ L2 � 1);max(0; U1+ U2 � 1)]Independence ([L1; U1]
in [L2; U2]) = [L1 �L2; U1 � U2]De�nition 7 (CPF) A Cartesian product function (CPF) maps a TP-case
, a PCS
, and a TP-case
 0 to a TP-case statement �00 where (i) sol(W
002�00(
 00:C)) = sol(
:C ^
 0:C) and(ii) (8
00 2 �00) (8t 2 sol(
 00:C)) (Pr(
00; t) = Pr(
; t)
 Pr(
 0; t)). 3A simple CPF example is cpfs. This function is de�ned ascpfs(
;
;
0) = fh(t); (t); L; U; ui j t 2 sol(
:C ^
 0:C) ^ [L; U] = Pr(
; t)
 Pr(
 0; t)gIf � is a pair of PDFs, then another CPF example is cpfp(
;
;
0) = fhC 00; D00; L00; U 00; (}00L; }00U)igwhere C00 = (
:C ^
 0:C), D00 = C00, L00 = min(
:L;
 0:L), U 00 = min(
:U;
0:U), and }00L; }00U are newPDFs such that for each t 2 sol(D00), [}00L(D00; t); }00U(D00; t)] = [`t; ut], `t = LtL00 if L00 6= 0 or `t = 0otherwise, ut = UtU 00 if U 00 6= 0 or ut = 0 otherwise, and [Lt; Ut] = Pr(
; t)
 Pr(
 0; t).If � is a single PDF, then a hybrid CPF example is cpfh. Speci�cally, cpfh(
;
;
 0) is de�nedas fhC00; D00; L00; L00 � x; }00Lig if cpfp(
;
;
 0) = fhC 00; D00; L00; U 00; (}00L; }00U)ig and (9 x 2 [1; 1L00])(8t 2 sol(D00)) (}00L(D00; t) = }00U (D00; t) � x). Otherwise, cpfh(
;
;
 0) is the result of cpfs(
;
;
0).De�nition 8 (Cartesian product of two TP-relations) Suppose r is a TP-relation over R; � ,r0 is a TP-relation over R0; � , � is a probabilistic conjunction strategy, cpf is a Cartesian productfunction, and fA j A 2 R ^ A 2 R0g = ;. Then the Cartesian product of r and r0 under � usingcpf , denoted r �cpf� r0, produces TP-relation r00 over R00; � where R00 = (R;R0) andr00 = f(d00;�00) j (9 (d;�) 2 r) (9 (d0;�0) 2 r0) (d00 = (d; d0) ^ �00 6= ; ^�00 = S
2�;
02�0(cpf (
;
�;
 0)))g 36

Since r �cpf� r0 � r �cpf 0� r0 must hold, we let r �� r0 denote r �cpf� r0 with any choice for cpf .De�nition 9 (Renaming function) Suppose R = (A1; : : : ; Ak). Then a renaming function overR is a function R that maps each attribute Ai 2 R to an attribute R(Ai) =2 fC;D; L; U; �g where(8Ai; Aj 2 R) (R(Ai) = R(Aj)! Ai = Aj). 3De�nition 10 (Renaming for a TP-relation) Suppose R = (A1; : : : ; Ak), r is a TP-relationover R; � , and R is a renaming function over R. Then the renaming of r under R, denoted �R(r),produces TP-relation r00 over R00; � where R00 = (R(A1); : : : ;R(Ak)) andr00 = f(d00;�) j (9 d) (8A 2 R) ((d;�) 2 r ^ d00:R(A) = d:A)g 3Example 3 (Renaming and Cartesian product) Let R1 map TrainNo, From, To to TrainNo,TrainFrom,TrainTo, let R2 map BusNo, From, To to BusNo, BusFrom, BusTo, and let r3 = �R1(r1)�in�R2(r2). Then the following is a possible TP-relation for r3:TrainNo TrainFrom TrainTo BusNo BusFrom BusTo C D L U �151 Baltimore New York 23 Rockville Baltimore (12:15) (12:15) 0.01875 0.025 u(12:17) (12:17) 0.001875 0.0025 uNotice that renaming operators can only change the names of the data attributes. 3We are now ready to extend the classical de�nition of a natural join to TP-databases.De�nition 11 (Join of two TP-relations) Suppose R = (A1; : : : ; Ak), R0 = (A01; : : : ; A0k0), r is aTP-relation over R; � , r0 is a TP-relation over R0; � , � is a probabilistic conjunction strategy, cpfis a Cartesian product function, and
t is a TP-�lter function. Then the join of r and r0 under� using cpf and
t , denoted r 1cpf ;
t� r0, produces TP-relation r00 over R00; � where R00 = (F),r00 = �F(�
tC (r�cpf� �R(r0))), and R; C;F have the following values:� R is a renaming function over R0 where(8A 2 R0) ((A =2 R! R(A) = A) ^ (A 2 R! R(A) =2 R)).This requirement indicates that only the attributes in R0 that occur in R get renamed.These attributes must be renamed to attribute names that are not present in R.� C is the selection condition (a1 = R(a1) ^ : : : ^ an = R(an)) wherefa1; : : : ; ang = fa 2 R0 j a 2 Rg.This is the natural join predicate.� F is the attribute list A1; : : : ; Ak;R(an+1); : : : ;R(ak0) wherefan+1; : : : ; ak0g = fa 2 R0 j a =2 Rg and an+1; : : : ; ak0 is a sublist of A01; : : : ; A0k0 . 3Since r 1cpf ;
t� r0 � r 1cpf 0;
t 0� r0 must hold, we let r 1� r0 denote r 1cpf ;
t� r0 with any choice forcpf and
t . Now, let N (r) denote P(d;�)2r(j�j), i.e., the total number of TP-cases in r. It is easy tosee that N (r 1� r0) can be huge. The TP-compression operation helps alleviate this problem.7

De�nition 12 (TP-compression) A TP-compression function � is a function that maps TP-relation r over R; � to a TP-relation r00 over R; � where (i) N (r00) � N (r) and (ii) there existsa bijection that maps each (d; t; Lt; Ut) 2 ANN(r) to a matching (d; t; Lt; Ut) 2 ANN(r00). 3The following are some sample TP-compression functions:TP-compression function name Function propertiesIdentity (�id) �id(r) = rMaximal compression (�mc) (8�) (N (�mc(r)) � N (�(r)))Let jrj denote the number of TP-tuples in r. Then it must be the case that N (r) � jrj. Note thatif � can be a pair of PDFs, then N (�mc(r)) = j�mc(r)j = jrj for every TP-relation r.De�nition 13 (Intersection of two TP-tables) Suppose r and r0 are TP-tables over R; � .Then the multiset intersection of r and r0, denoted r \ r0, produces TP-table r00 over R; � wherer00 = f(d;�00) j (9�) (9�0) ((d;�) 2 r ^ (d;�0) 2 r0 ^ �00 6= ; ^(�00 = fh(C ^
 0:C); D; L;U; �i j hC;D; L;U; �i 2 � ^
 0 2 �0 ^ sol(C ^
 0:C) 6= ;g _�00 = fh(
:C ^ C); D; L; U; �i j
 2 � ^ hC;D; L; U; �i 2 �0 ^ sol(
:C ^ C) 6= ;g))g 3De�nition 14 (Union of two TP-tables) Suppose r and r0 are TP-tables over R; � . Then themultiset union of r and r0, denoted r [r0, produces TP-table r00 over R; � wherer00 = f(d;�) j (d;�) 2 r _ (d;�) 2 r0g 3The multiset operators produce TP-tables. TP-tables can be converted into TP-relations throughthe process of compaction. Compactions are performed by executing several instantiations of acompaction function. These functions operate by consulting a combination function.De�nition 15 (Combination function) Suppose S = f[L1; U1]; : : : ; [Ln; Un]g is a nonempty mul-tiset of probability intervals and let [L; U] = ([L1; U1] \ : : : \ [Ln; Un]). Then � is a combinationfunction if �(S) returns a probability interval [L00; U 00] that satis�es the following conditions:1. Identity: If [L1; U1] = : : := [Ln; Un], then [L00; U 00] = [L; U].2. Bottomline: L00 � max[Li;Ui]2S(Li).Furthermore, � is an equity combination function if [L00; U 00] = [L; U] whenever [L; U] 6= ;. 3The following are some sample equity combination functions:Combination function name Probability interval returned when T[Li;Ui]2S [Li; Ui] = ;Optimistic equity �eq(S) = [max[Li;Ui]2S(Li);max[Li;Ui]2S(Ui)]Enclosing equity �ec(S) = [min[Li;Ui]2S(Li);max[Li;Ui]2S(Ui)]Pessimistic equity �ep(S) = [min[Li;Ui]2S(Li);min[Li;Ui]2S(Ui)]Rejecting equity �er(S) = [0; 0]Skeptical equity �esk(S) = [0; 1]Quasi-independence equity �eqi(S) = [�[Li;Ui]2S(Li);�[Li;Ui]2S(Ui)]8

De�nition 16 (Compaction function) Suppose G is a nonempty multiset of TP-case statements,t is a time point, and � is a combination function. Then the multiset SG;t is de�ned asSG;t = fPr(
; t) j (9� 2 G) (
 2 � ^ t 2 sol(
:C))gA function cmp(G; �) is a compaction function if it returns a TP-case statement �00 where1. sol(W
002�00(
 00:C)) � sol(W
02f
j(9�2G) (
2�)g(
 0:C)) and2. (8
 00 2 �00) (8t 2 sol(
 00:C)) (Pr(
00; t) = �(SG;t)). 3A simple example is cmps(G; �) = fh(t); (t); L; U; ui j SG;t 6= ; ^ [L; U] = �(SG;t)g.If � is a pair of PDFs, then another example is cmpp(G; �) = fhC 00; D00; L00; U 00; (}00L; }00U)igwhere C00 = (V
02f
j(9�2G) (
2�)g(
 0:C)), D00 = C 00, L00 = maxt2sol(D00)(max[Li;Ui]2SG;t(Li)),U 00 = maxt2sol(D00)(max[Li;Ui]2SG;t(Ui)), and }00L; }00U are new PDFs such that for each t 2 sol(D00),[}00L(D00; t); }00U(D00; t)] = [`t; ut], `t = LtL00 if L00 6= 0 or `t = 0 otherwise, ut = UtU 00 if U 00 6= 0 or ut = 0otherwise, and [Lt; Ut] = �(SG;t).If � is a single PDF, then a hybrid example is cmph. Speci�cally, compaction functioncmph(G; �) is de�ned as fhC 00; D00; L00; L00 � x; }00Lig if cmpp(G; �) = fhC 00; D00; L00; U 00; (}00L; }00U)ig and(9 x 2 [1; 1L00]) (8t 2 sol(D00)) (}00L(D00; t) = }00U (D00; t) � x). Otherwise, cmph(G; �) = cmps(G; �).De�nition 17 (Compaction of a TP-table) Suppose r is a TP-table over R; � , � is a combina-tion function, and cmp is a compaction function. Then the compaction of r under � using cmp ,denoted �cmp� (r), produces TP-relation r00 over R; � wherer00 = f(d;�00) j (9�) ((d;�) 2 r ^ �00 6= ; ^ �00 = cmp(f�0 j (d;�0) 2 rg; �))g 3Since �cmp� (r) � �cmp 0� (r) must hold, we let ��(r) denote �cmp� (r) with any choice for cmp.De�nition 18 (di�erence between two TP-relations) Suppose r and r0 are TP-relations overR; � . Then the di�erence between r and r0, denoted r � r0, produces TP-relation r00 over R; � wherer00 = f(d;�00) j (9�) (9�0) ((d;�) 2 r ^ (d;�0) 2 r0 ^ �00 6= ; ^�00 = fh(C ^ :C 0); D; L; U; �i j hC;D; L;U; �i 2 � ^hC 0; D0; L0; U 0; �0i 2 �0 ^ sol(C ^ :C 0) 6= ;g)g 3We are now ready to de�ne a TP-algebra query.De�nition 19 (TPA-query) Suppose db is a TP-database over � and let qi denote a TPA-queryover db where the answer to qi is a TP-relation ri over Ri; � . Then a TPA-query over db has one ofthe following forms:1. r where r is a TP-relation in db.2. �C(q1) where C is a selection condition over R1; � .3. �F(q1) where P1 is the primary key for R1 and F is an attribute list over R1; P1.9

4. �R(q1) where R is a renaming function over R1.5. �(q1) where � is a TP-compression function.6. (q1 �� q2) where � is a probabilistic conjunction strategy and R1 \ R2 = ;.7. (q1 1� q2) where � is a probabilistic conjunction strategy.8. ��(q1 \ : : :\ qn) where � is a combination function and 8i; j 2 [1; n] (Ri = Rj).9. ��(q1 [: : :[qn) where � is a combination function and 8i; j 2 [1; n] (Ri = Rj).10. q1 � q2 where R1 = R2. 3Notice that a series of multiset intersections or multiset unions must end with a compaction. Thisensures that the answer to a TPA-query is always a TP-relation. Since these operators are often tiedtogether, it is convenient to let r \� r0 and r [� r0 denote ��(r \ r0) and ��(r [r0) respectively.3 TP-CalculusWe now introduce the temporal probabilistic calculus (TP-calculus). This calculus is similar in spiritto the safe tuple relational calculus [4].3.1 Syntax of the TP-CalculusDe�nition 20 (TP-variable) Suppose R = (A1; : : : ; Ak) is a relation scheme and S� is the set ofall temporal constraints over � . Then a TP-variable over R; � is a variable s over the domaindom(s) = dom(A1)� � � � � dom(Ak)� dom(C)� dom(D)� dom(L)� dom(U)� dom(�)where dom(C) = dom(D) = S� , dom(L) = dom(U) = [0; 1], and dom(�) is the set of all restrictedPDFs over calendar � . Each hd; C;D; L;U; �i 2 dom(s) is an instance of s. 3We shall abuse notation and write R � R0 to indicate that A 2 R0 must hold for all A 2 R.De�nition 21 (TP-atom) Suppose s is a TP-variable over R; � , s0 is a TP-variable over R0; � ,R � R0, and � 2 f<;�;=; 6=;�; >g. Then a TP-atom over s; s0; � has one of the following forms:1. s:A � c where A 2 R and constant c 2 dom(A).2. s:C : s0:C @ T where T is a temporal constraint over � .3. s:C : s0:P � p where P 2 fL; Ug and probability p 2 [0; 1].4. s:A = s0:A0 where A 2 R, A0 2 R0, and dom(A) = dom(A0). 3For example, s:A1 > 20 and s:C : s1:C @ (1997 � 1999) are TP-atoms over s; s1; � . TP-atoms areused to construct more complex TP-expressions.De�nition 22 (Limited TP-expression) Suppose s is a TP-variable over R; � and s0 is a TP-variable over R0; � . Then a TP-expression over s; s0; � is de�ned in the following way:10

1. A TP-atom over s; s0; � is a TP-expression over s; s0; � .2. If E1; E2 are TP-expressions over s; s0; � , then E1 ^E2 is a TP-expression over s; s0; � .A TP-expression E is limited if (i) it contains at least one TP-atom of the form s:A = s0:A0, and (ii)for all A0 2 R0, if s:Ai = s0:A0 and s:Aj = s0:A0 are TP-atoms in E, then i = j. 3For example, s:A1 � 3 ^ s:C : s1:C @ (1996 � 2001) ^ s:C : s1:L > :1 ^ s:A1 = s1:A1 is aTP-expression over s; s1; � . The notion of a TP-linker speci�es equality constraints that tie togetherthe data attributes of three TP-variables.De�nition 23 (TP-linker) Suppose s, s0, and s00 are TP-variables over R; � , R0; � , and R00; � re-spectively. Then a TP-linker over s; s0; s00 has one of the following forms:1. s:A = s0:A0 if A 2 R, A0 2 R0, and dom(A) = dom(A0).2. s:A = s00:A00 if A 2 R, A00 2 R00, and dom(A) = dom(A00).3. L1 ^ L2 if L1 and L2 are TP-linkers over s; s0; s00. 3For example, s:A1 = s0:A1 ^ s:A1 = s00:A1 is a TP-linker over s; s0; s00.De�nition 24 (Strategy set) A strategy pair is an expression of the form htype; stri where type 2f
;�; �g and str is a probabilistic conjunction strategy when type =
, str is a TP-compressionfunction when type = �, and str is a combination function when type = �.A strategy set is a �nite set
 of strategy pairs such that htype1; str1i 2
 and htype2; str2i 2
implies that type1 6= type2. 3For example, fh
;
ini; h�;�mcig and fh�; �eqi; h�;�mcig are strategy sets. We need strategy setsbecause TP-formulae (de�ned below) are complex formulae that represent queries about conjunctionsand/or disjunctions of events. When expressing such queries, the user needs to specify informationabout (i) their knowledge of the dependencies (if any) between events handled by the query, (ii)whether they want the answer compressed (if so, then how?), and (iii) what combination strategy touse (e.g., to eliminate con
icts).De�nition 25 (TP-formula) Suppose db is a TP-database over � , s is a TP-variable over R; � ,and P is a primary key for R. Then a TP-formula over db has one of the following forms:1. 9 s (s " r) where r is a TP-relation over R; � and r is in db.2. 9 s (9 s1 (F 01 ^ E)) where s1 is a TP-variable over R1; � , F1 is a TP-formula over db of the form9 s1 (F 01), E is a limited TP-expression over s; s1; � , and 8a 2 P (a 2 R1).3. 9 s (9 s1 (F 01 ^
 9 s2 (F 02 ^ L))) where F1 is a TP-formula over db of the form 9 s1 (F 01), F2 isa TP-formula over db of the form 9 s2 (F 02), L is a TP-linker over s; s1; s2, and
 is a strategyset of the form fh
; �i; h�; �ig.4. 9 s (9 s1 (F 01) � : : : � 9 sn (F 0n)) where F1; : : : ; Fn are TP-formulae over db, each Fi has the form9 si (F 0i), each si is a TP-variable over R; � ,
 is a strategy set of the form fh�; �i; h�; �ig, and� 2 f^
;_
;^:g. 311

Example 4 (TP-formulae) Suppose TP-database db contains TP-relations r1, r2, r3 over R1, R2,R3 and � where R1 = (A1; A2), R2 = (A1; A3), R3 = (A1; A4), and � is a Gregorian calendar with achronon of one year. Then the following examples are TP-formulae over db:1. 9 s1 (s1 " r1)We emphasize that the symbol " is di�erent from the set membership symbol 2. s1 " r1 restrictsdom(s1) in the following way: For each instance hd; C;D;L;U; �i 2 dom(s1), there must be aTP-tuple (d;�) 2 r where TP-case hC;D; L;U; �i 2 �.2. 9 s (9 s1 (s1 " r1 ^ s:C : s1:L > :1 ^ s:A1 = s1:A1))This TP-formula is related to a probabilistic selection followed by a projection that causes s tobe a TP-variable over relation scheme (A1) and calendar � . To avoid the need for projection,we could add TP-atom s:A2 = s1:A2 to the TP-expression used in this TP-formula.3. 9 s (9 s1 (s1 " r1 ^fh
;
igi;h�;�mcig9 s2 (s2 " r2 ^ s:A1 = s1:A1 ^ s:A2 = s1:A2 ^ s:A1 = s2:A1 ^ s:A3 = s2:A3)))This TP-formula is related to a join of r1 and r2 under the probabilistic conjunction strategy
ig followed by a TP-compression that uses the �mc strategy. If we want a Cartesian product,then all we need to do is replace TP-linker s:A1 = s2:A1 with TP-linker s:A01 = s2:A1 in theTP-formula above (this renames A1 in R2 to A02). To avoid compression, we could replace �mcwith the identity TP-compression function �id.4. 9 s (9 s1 (9 s01 (s01 " r1 ^ s1:A1 = s01:A1)) ^fh�;�eqi;h�;�mcig9 s2 (9 s02 (s02 " r2 ^ s2:A1 = s02:A1)) ^fh�;�eqi;h�;�mcig 9 s3 (9 s03 (s03 " r3 ^ s3:A1 = s03:A1)))This TP-formula is related to the multiset intersection of �A1(r1), �A1(r2), and �A1(r3) followedby a compaction that uses the �eq combination function and a TP-compression that usesthe �mc strategy. Notice that unless dom(A2) = dom(A3) = dom(A4), the fourth rule forconstructing TP-formulae will not allow us to intersect r1, r2, and r3. 3We are now ready to de�ne a TP-calculus query.De�nition 26 (TPC-query) Suppose db is a TP-database over � and F is a TP-formula of theform 9 s (F 0) where (i) s is the only free variable in F 0 and (ii) r 2 db for every TP-relation rmentioned in F . Then fs j F 0g is a TPC-query over db. 3We will assume throughout this paper that all quanti�ed TP-variables in a TPC-query di�erfrom each other and from the lone free TP-variable. There is no loss of generality in making thisassumption since TP-variables can easily be renamed.3.2 Semantics of the TP-calculusIn this section, we provide a quick semantics for TPC-queries. We start with the de�nition of aTP-assignment which is similar to the concept of a variable assignment in classical logic [29].De�nition 27 (TP-assignment) A TP-assignment is a function A that maps each TP-variable sto an instance hdAs ; CAs ; DAs ; LAs ; UAs ; �As i 2 dom(s). We omit the superscipt A when it is clear fromcontext. Also, we let
s denote the TP-case hCs; Ds; Ls; Us; �si. 312

For example, A may assign s to a data tuple d and a TP-case
 2 � where (d;�) 2 r for someTP-relation r. The following de�nition speci�es when a TP-assignment satis�es a TP-expression.De�nition 28 (Suitable/satisfying TP-assignment) Suppose A is a TP-assignment, s is a TP-variable over R; � , s0 is a TP-variable over R0; � , and E is a TP-expression over s; s0; � . Then A issuitable for E, denoted A . E, if ; � sol(Cs) � sol(Cs0) and the following constraints are satis�ed:1. If E has the form s:A � c, then (ds:A � c).2. If E has the form s:C : s0:C @ T , then 8t 2 sol(Cs)(t 2 sol(Cs0 ^ T)).3. If E has the form s:C : s0:P � p, then 8t 2 sol(Cs)(�s0(Ds0 ; t) � Ps0 � p).4. If E has the form s:A = s0:A0, then (ds:A = ds0 :A0).5. If E has the form E1 ^E2, then A . E1 and A . E2.We say that A satis�es E, denoted A j= E, i� A . E and the following constraints are satis�ed:1. R = fA j there exists a TP-atom of the form s:A = s0:A0 in Eg. We assume here that relationscheme R is treated as a set, i.e., the attribute ordering does not matter.2. There is no temporal constraint C where sol(C) � sol(Cs) and replacing Cs above with Callows A to be suitable for E.3. hDs; Ls; Us; �si = hDs0 ; Ls0; Us0 ; �s0i. 3Example 5 (Satisfying TP-assignment) Suppose s1 "TrainDep (see Example 1). Thendom(s1) = fh151;Baltimore;New York; (12:05� 12:14); (12:05� 12:14); 0:5; 0:6; ui;h151;Baltimore;New York; (12:15� 12:20); (12:15� 12:20); 0:3; 0:4; g;0:5igFurthermore, suppose s:C : s1:C @ (12:12 � 12:22) ^ s:C : s1:L > :04 ^ s:TrainNo = s1:TrainNo isTP-expression E. Then A j= E if TP-assignment A satis�es one of the following conditions:� A(s) = h151; (12:12� 12:14); (12:05� 12:14); 0:5; 0:6; ui andA(s1) = h151;Baltimore;New York; (12:05� 12:14); (12:05� 12:14); 0:5; 0:6; ui.� A(s) = h151; (12:15� 12:16); (12:15� 12:20); 0:3; 0:4; g;0:5i andA(s1) = h151;Baltimore;New York; (12:15� 12:20); (12:15� 12:20); 0:3; 0:4; g;0:5i. 3Recall that S� denotes the set of all temporal constraints over � . Consider a partitioning of S�where C and C0 are in the same partition i� sol(C) = sol(C0). Although the size of each partitionis in�nite, we can restrict ourselves to use only one canonical temporal constraint for each partition.It is important to note that under this restriction, the set of all TP-assignments A where A j= E is�nite if E is a limited TP-expression over s; s1; � and dom(s1) is �nite.De�nition 29 (TP-linker satisfaction) Suppose A is a TP-assignment, s is a TP-variable overR; � , s0 is a TP-variable over R0; � , s00 is a TP-variable over R00; � , and L is a TP-linker over s; s0; s00.Then A satis�es L, denoted A j= L, i� the following constraints are satis�ed:13

1. R = fA j there exists a TP-linker of the form s:A = s0:A0 or s:A = s00:A00 in Lg. As in thepreceding de�nition, we assume that the attribute ordering is not important.2. If L is a TP-expression E1 over s; s0; � , then A . E1.3. If L is a TP-expression E2 over s; s00; � , then A . E2.4. If L = L1 ^L2 where L1 is a TP-expression E1 over s; s0; � and L2 is a TP-expression E2 overs; s00; � , then A . E1 and A . E2. 3For example, suppose s1 "TrainDep, s2 "BusArr, and L is the following TP-linker over s; s1; s2:s:TrainNo = s1:TrainNo ^ s:TrainFrom= s1:From ^ s:TrainTo = s1:To ^s:BusNo = s2:BusNo ^ s:BusFrom = s2:From ^ s:BusTo = s2:ToFurthermore, suppose s is a TP-variable over R; � . Then A j= L if (i) the set for relation scheme Ris fTrainNo;TrainFrom;TrainTo;BusNo;BusFrom;BusTog and (ii) dAs :A = dAsi :A0 for each TP-linkerin L of the form s:A = si:A0 where i 2 f1; 2g.De�nition 30 (TP-formula semantics) Suppose A is a TP-assignment and F is a TP-formulaover db. Then A is a model for F , denoted A j= F , i� the following constraints are satis�ed:1. If F has the form 9 s (s " r), then there exists a (ds;�) 2 r where hCs; Ds; Ls; Us; �si 2 �.2. If F has the form 9 s (9 s1 (F 01 ^ E)), then A j= 9 s1 (F 01) and A j= E.3. If F has the form 9 s (9 s1 (F 01 ^
 9 s2 (F 02 ^ L))) where
 = fh
; �i; h�; �ig, then� A j= 9 s1 (F 01), A j= 9 s2 (F 02), A j= L, sol(Cs) 6= ;, and Cs = (Cs1 ^ Cs2).� 8t 2 sol(Cs) (Pr(
s; t) = Pr(
s1 ; t)
� Pr(
s2 ; t)).4. If F has the form 9 s (9 s1 (F 01) � : : : � 9 sn (F 0n)) where
 = fh�; �i; h�; �ig, then� 8i 2 [1; n] (A j= 9 si (F 0i)) and sol(Cs) 6= ;.� If � = ^
, then ds = ds1 = : : : = dsn , Cs = (Cs1 ^ : : :^ Csn), and8t 2 sol(Cs) (Pr(
s; t) = �(fPr(
s1 ; t); : : : ;Pr(
sn; t)g)).� If � = _
, then ds 2 fds1 ; : : : ; dsng, Cs = (t), andPr(
s; t) = �(fPr(
si; t) j i 2 Itg) whereIt = fi j 9A0 (A0 j= 9 si(F 0i) ^ (dA0si = ds) ^ t 2 sol(CA0si))g.� If � = ^:, then ds = ds1 and
s = h(Cs1 ^ :C 0); Ds1; Ls1 ; Us1 ; �s1i whereC 0 = W ni=2 fC j 9A0 (A0 j= 9 si(F 0i) ^ (dA0si = ds) ^ (CA0si = C))g. 3De�nition 31 (TPC-query semantics) Suppose F is a TP-formula of the form 9 s (F 0). Thenthe answer to TPC-query fs j F 0g is de�ned as the following TP-table:f(d;�) j 9A (A j= F ^ d = dAs ^ � = f
As g)g 3The following important theorems jointly state that the TP-algebra and the TP-calculus haveexactly the same expressive power.Theorem 1 (TPA) TPC) Every TPA-query can be expressed as a TPC-query. 3Theorem 2 (TPC) TPA) Every TPC-query can be expressed as a TPA-query. 314

4 Equivalence ResultsIn this section we describe a set of query equivalence results that hold in the TP-algebra. These queryequivalences provide rewrite rules that may be used to optimize queries. In the sequel, we assumer; r0 are TP-tables, and C is a selection condition. Recall, from Section 2, that two TP-relations areequivalent if their annotated expansions are identical | informally speaking, two TP-relations areequivalent i� whenever tp is the restriction of a TP-tuple to its data attributes, if the probability thattp is true at time t is p1 according to the �rst TP-relation, then the probability that tp is true at timet is p1 according to the second relation as well, i.e. the two TP-relations assign the same probabilities.Also, unless stated otherwise, the following equivalences hold for all combination functions and forall probabilistic conjunction strategies, thus making the results very widely applicable.4.1 Set-Theoretical PropertiesThe standard relational algebra operations are idempotent, commutative, and associative. Theseproperties do not hold for all TP-algebra operations. Our �rst result says that selection, projec-tion, compaction, union, and intersection are idempotent, and an idempotence style result holds fordi�erence as well.Theorem 3 (Idempotence) The following equivalences hold:1. �C(�C(r)) � �C(r);2. �F(�F(r)) � �F(r);3. ��(��(r)) = �(r) if � is any combination function;4. r \� r � r if r is a TP-relation and � is any combination function;5. r [� r � r if r is a TP-relation and � is any combination function;6. (r� r0)� r0 � r � r0.The following two results show that most of the important operations in the TP-algebra arecommutative, but not all are associative.Theorem 4 (Commutativity) The following equivalences hold:1. �C(�C0(r)) � �C0(�C(r));2. �F(�G(r)) � �F\G(r) � �G(�F(r));3. r \� r0 � r0 \� r;4. r [� r0 � r0 [� r0;5. (r� r0)� r00 � (r � r00)� r0 � r � (r0 [r00);6. r �� r0 � r0 �� r (ignoring the order of data attributes);7. r ./� r0 � r0 ./� r (ignoring the order of data attributes).Theorem 5 (Associativity) The following equivalences hold:1. (r�� r0)�� r00 � r�� (r0 �� r00); 15

2. (r ./� r0) ./� r00 � r ./� (r0 ./� r00).In general, intersection and union are not associative because both these operations involve apply-ing the compaction operator. The following example shows why intersection is not associative.Example 6 (Intersection is not associative) Recall that for each data tuple d and time pointt, the �cmpsec operator collects all intervals [l1; u1]; : : : ; [lk; uk] associated with d and t by di�erentTP-tuples and computes the new interval [l; u] as follows:[l; u] = ([l1; u1] \ : : :\ [lk; uk] i� [l1; u1] \ : : :\ [lk; uk] 6= ;;[min(l1; : : : ; lk);max(u1; : : : ; uk)] otherwise.Now consider three TP-relations r1, r2 and r3 such that for some data tuple d and time point t,(d;�1) 2 r1, ht � t; t � t; 0:2; 0:4; ui 2 �1, (d;�2) 2 r2, ht � t; t � t; 0:3; 0:6; ui 2 �2, (d;�3) 2 r3,and ht � t; t � t; 0:5; 0:7; ui 2 �3. Then, r1 \ec r2 will contain (d;�12) where TP-case ht � t; t �t; 0:3; 0:4; ui 2 �12 since [0:3; 0:4] = [0:2:0:4]\ [0:3; 0:6]. Also, r2 \ec r3 will contain TP-tuple (d;�23)where TP-case ht � t; t � t; 0:5; 0:6; ui 2 �23 since [0:5; 0:6] = [0:3:0:6]\ [0:5; 0:7].But then (r1 \ec r2) \ec r3 will contain TP-tuple (d;�12;3) where ht � t; t � t; 0:3; 0:7; ui 2 �12;3 as[0:3; 0:4]\ [0:5; 0:7] = ; and so the probability interval is [min(0:3; 0:5);max(0:4; 0:7)] = [0:3; 0:7]. Onthe other hand, r1\ec (r2\ec r3) will contain TP-tuple (d;�1;23) where ht � t; t � t; 0:2; 0:6; ui 2 �1;23as [0:2; 0:4]\ [0:5; 0:6] = ; and so the probability interval is [min(0:2; 0:5);max(0:4; 0:6)] = [0:2; 0:6].This indicates that (r1 \ec r2) \ec r3 6� r1 \ec (r2 \ec r3).Proposition 1 The following properties hold:1. r \� r0 � r [� r0;2. r \� r0 6� r � (r � r0);3. r � (r0 \� r00) � (r � r0) [� (r� r00);4. r � (r0 [� r00) � (r � r0) \� (r� r00).4.2 Pushing Selection Through Other OperationsAn important rewrite rule in the classical relational algebra allows us to push selection through someexpensive operations like join. In this section, we study the cases where selection can be pushedthrough various TP-operations. While many results are similar to the corresponding equivalencesfrom the classical relational algebra, in many important cases (e.g., pushing selection into Carte-sian product/join), general results can only be obtained for data and temporal selection conditions.Speci�c results for probabilistic selection conditions are discussed in Section 4.3.Theorem 6 (Selection-projection) Suppose F is an attribute list and C does not involve any ofthese attributes. Then �C(�F (r)) � �F (�C(r)).The results below hold only for data and temporal selection conditions. The next result showsthat selection can be pushed into a compaction. From an e�ciency standpoint, this is good becauseselection can often be performed much faster than compaction.16

Theorem 7 (Pushing selection into compaction) Let C be a data condition or a temporal con-dition. Then �C(��(r)) � ��(�C(r0)).The following theorem shows that in some cases, selections can be pushed into Cartesian products.Theorem 8 (Pushing selection into Cartesian product) Suppose � is a PCS, C1 (resp. C2) isa data selection condition for r (resp. r0), and C is a temporal selection condition. Then1. �C1(r�� r0) � �C1(r)�� r0.2. �C2(r�� r0) � r �� �C2(r0).3. �C(r �� r0) � �C(r)�� �C(r0) � r�� �C(r0) � �C(r)�� r0.Not surprisingly, a similar theorem holds for join.Theorem 9 (Pushing selection into join) We use the same notation as Theorem 8.1. �C1(r ./� r0) � �C1(r) ./� r0.2. �C2(r ./� r0) � r ./� �C2(r0).3. �C(r ./� r0) � �C(r) ./� �C(r0) � r ./� �C(r0) � �C(r) ./� r0.Next, we establish equivalences for pushing selections into set operations.Theorem 10 (Pushing selection into set operations) Let C be either a data condition or atemporal condition. Then1. �C(r \� r0) � �C(r) \� �C(r0) � r \� �C(r0) � �C(r) \� r0.2. �C(r [� r0) � �C(r) [� �C(r0).3. �C(r � r0) � �C(r)� �C(r0) � �C(r)� r0.4.3 Conditional Query Equivalences in TPAIn this section, we �rst (Section 4.3.1) explain why it is hard to �nd equivalence results probabilisticselections. Then in Section 4.3.2, we provide a number of conditional equivalence results that wehave obtained for probabilistic selections under a variety of special cases.4.3.1 Why equivalences involving probabilistic selection conditions are hardWe start with an example that provides strong evidence indicating that no simple, general rule forpushing probabilistic selections into Cartesian products (and hence, joins) exists.Example 7 (Probabilistic selection and Cartesian product) Consider TP-relations r1 and r2of Example 2 and suppose that their attributes have been renamed via the renaming functions fromExample 3. Suppose probabilistic selection condition C� = (L � 0:04) _ (U 2 [0:1; 0:15]). ThenTable 1 shows the results of the following four queries:17

d = BusNo BusFrom BusTo TrainNo TrainFrom TrainTo23 Rockville Baltimore 151 Baltimore New Yorkq1 = �(L�0:04)_(U2[0:1;0:15])(r2 �in r1)Data Part C D L U �d (12:15 � 12:15) (12:15 � 12:15) 0.01875 0.025 u(12:17 � 12:17) (12:17 � 12:17) 0.001875 0.0025 uq2 = �(L�0:04)_(U2[0:1;0:15])(r2)�in �(L�0:04)_(U2[0:1;0:15])(r1)Data Part C D L U �q3 = �(L�0:04)_(U2[0:1;0:15])(r2)�in r1Data Part C D L U �d (12:15 � 12:15) (12:15 � 12:15) 0.01875 0.025 uq4 = r2 �in �(L�0:04)_(U2[0:1;0:15])(r1)Data Part C D L U �d (12 : 17 � 12 : 17) (12 : 17 � 12 : 17) 0.001875 0.0025 uTable 1: Di�erent combinations of Cartesian product and probabilistic selectionq1 = �C�(r2 �in r1); q2 = �C�(r2)�in �C�(r1);q3 = �C�(r2)�in r1; q4 = r2 �in �C�(r1).It is clear from Table 1 that no appropriate rewrite rule similar to those described in Theorem 8 for�C�(r2 �in r1) can be obtained as the answers to all four queries are di�erent. We note here that�C�(r2) selects only the time point 12:15 and �C�(r2) selects only the time point 12:17. This makesthe result of q2 an empty set.Let us now consider an example involving compaction and probabilistic selects.Example 8 (Probabilistic selection and compaction) Consider the �ec operator from Exam-ple 6 and suppose TP-case
1 = ht � t; t � t; 0:3; 0:6; ui,
2 = ht � t; t � t; 0:2; 0:4; ui, and
12 = ht � t; t � t; 0:3; 0:4; ui. Also, suppose TP-table r = f(d;�1); (d;�2)g where �1 = f
1g and�2 = f
2g. Then �ec(r) = f(d;�12)g where �12 = f
12g since [0:3; 0:4] = [0:3; 0:6]\ [0:2; 0:4].Consider the probabilistic selection condition U = 0:4. We see that TP-case
12 is in the answer to�U=0:4(�ec(r)) since its upper bound is 0.4. In contrast, the answer to �U=0:4(r) contains
2 but not
1 so the answer to �ec(�U=0:4(r)) can only contain
2. Therefore, �U=0:4(�ec(r)) and �ec(�U=0:4(r))are not equivalent.As compaction is used to de�ne both intersection and union, probabilistic selections and inter-sections/unions do not commute. The next example shows that �C(r � r0) is not equivalent to�C(r)� �C(r0) when C is a probabilistic selection condition.Example 9 (Probabilistic selection and di�erence) Suppose TP-relation r1 = (d; f
1g) andTP-relation r2 = (d; f
2g) where
1 = ht � t; t � t; 0:4; 0:6; ui and
2 = ht � t; t � t; 0:5; 0:6; ui. Thenr1�r2 = ; so �L=0:4(r1�r2) = ;. On the other hand, �L=0:4(r1) will contain
1 and �L=0:4(r2) will notcontain
2 so �L=0:4(r1)��L=0:4(r2) will contain
1. Thus, �L=0:4(r1�r2) 6� �L=0:4(r1)��L=0:4(r2).18

4.3.2 Speci�c query equivalences for probabilistic selectionsThough the negative results about probabilistic selection presented above are discouraging, there isgood news: In some cases, probabilistic selection can be pushed into other operations. In our �rstresult, we consider only probabilistic selection conditions of the form P > p or P � p.Theorem 11 (Pushing selections of the form P > p or P � p) Suppose C is a probabilistic se-lection condition of the form L > p, U > p, L � p, or U � p. Then1. �C(r �� r0) � �C(�C(r)�� �C(r0));2. �C(r ./� r0) � �C(�C(r) ./� �C(r0)).The following theorem indicates that when the probabilistic selection condition has the form P < por P � p and we use the positive correlation PCS, then we can push probabilistic selection intoCartesian product and join.Theorem 12 (Pushing selection into Cartesian product and join under the
pc PCS) :Suppose C is a probabilistic selection condition of the form L < p, U < p, L � p, or U � p andsuppose � is any equity combination function. Then1. �C(r �pc r0) � (�C(r)�pc r0) [� (r�pc �C(r0));2. �C(r ./pc r0) � (�C(r) ./pc r0) [� (r ./pc �C(r0)).When the selection condition has the form P < p or P � p and we use the independence PCS,then the following theorem indicates that we can push probabilistic selection into Cartesian productand join if the optimizer stores the statistics MIN L(r) and MIN U(r) for each TP-relation r. As weshall see in Section 5, MIN L(r) is de�ned as minfl j l = �(D; t) �L ^ hC;D; L;U; �i 2 � ^ (d;�) 2 rgand MIN U(r) is de�ned as minfu j u = �(D; t) � U ^ hC;D; L;U; �i 2 � ^ (d;�) 2 rg.Theorem 13 (Pushing selection into Cartesian product under the
in PCS) :1. �L�p(r �in r0) � �L�p(r �in �L� pMIN L(r) (r0)) ��L�p(�L� pMIN L(r0) (r)�in �L� pMIN L(r) (r0)) � �L�p(�L� pMIN L(r0) (r)�in r0);2. �L<p(r �in r0) � �L<p(r �in �L< pMIN L(r) (r0)) ��L<p(�L< pMIN L(r0) (r)�in �L< pMIN L(r) (r0)) � �L<p(�L< pMIN L(r0) (r)�in r0);3. �U�p(r �in r0) � �U�p(r �in �U� pMIN U(r) (r0)) ��U�p(�U� pMIN U(r0) (r)�in �U� pMIN U(r) (r0)) � �U�p(�U� pMIN U(r0) (r)�in r0);4. �U<p(r �in r0) � �U<p(r �in �U< pMIN U(r) (r0)) ��U<p(�U< pMIN U(r0) (r)�in �U< pMIN U(r) (r0)) � �U<p(�U< pMIN U(r0) (r)�in r0).An analogous equivalence holds for join as shown below.19

Corollary 1 (Pushing selection into join under the
in PCS) :1. �L�p(r ./in r0) � �L�p(r ./in �L� pMIN L(r) (r0)) ��L�p(�L� pMIN L(r0) (r) ./in �L� pMIN L(r) (r0)) � �L�p(�L� pMIN L(r0) (r) ./in r0);2. �L<p(r ./in r0) � �L<p(r ./in �L< pMIN L(r) (r0)) ��L<p(�L< pMIN L(r0) (r) ./in �L< pMIN L(r) (r0)) � �L<p(�L< pMIN L(r0) (r) ./in r0);3. �U�p(r ./in r0) � �U�p(r ./in �U� pMIN U(r) (r0)) ��U�p(�U� pMIN U(r0) (r) ./in �U� pMIN U(r) (r0)) � �U�p(�U� pMIN U(r0) (r) ./in r0);4. �U<p(r ./in r0) � �U<p(r ./in �U< pMIN U(r) (r0)) ��U<p(�U< pMIN U(r0) (r) ./in �U< pMIN U(r) (r0)) � �U<p(�U< pMIN U(r0) (r) ./in r0).We see from the above results that with some work, we can push probabilistic selections into cartesianproducts and joins. For example, Theorem 11 and Theorem 12 show that for certain kinds ofprobabilistics selection conditions, we can easily push selections into Cartesian Product and join.Theorem 13 shows that as long as we maintain MIN L(r) MIN U(r) and for each tp-relation r, thenwe can also push probabilistic selections in Cartesian Product and join when independence is thePCS used. Most relational databases routinely maintain minima and maxima of di�erent columnsfor query optimization, so this overhead seems acceptable.4.4 Pushing Projection Through Other OperationsIn this section, we present results showing when and how projection can be pushed into TP-algebraoperations. Our �rst result shows that projection can be pushed inside a compaction.Theorem 14 (Pushing projection into compaction) �F(��(r)) � ��(�F(r)).As we have already see before, compaction is part of union and intersection. The above resultprovides hope that projection can also be pushed through the set operations. This turns out to betrue as shown in the following theorem.Theorem 15 (Pushing projection into set operations) If r and r0 have the same schema,1. �F(r \� r0) � �F(r) \� �F (r0).2. �F(r [� r0) � �F(r) [� �F (r0).3. �F(r � r0) � �F(r)� �F (r0).The following results indicate that projections can be pushed into Cartesian products and join.Theorem 16 (Pushing projection into Cartesian product and join) Suppose �F(r) and�F 0(r0) are TPA-queries. Also, let F ;F 0 denote the attribute list that is obtained by concatenatingF with F 0 and removing duplicate attribute names. Then1. �F;F 0(r�� r0) � �F (r)�� �F 0(r0).2. �F;F 0(r ./� r0) � �F(r) ./� �F 0(r0). 20

5 Costing TP-QueriesIn order to e�ciently execute a query in the TP-algebra, we must �rst have a \cost model" associatedwith the algebra. Such a cost model has two parts. The �rst part speci�es what statistics tomaintain about a TP-relation | such statistics includes information such as cardinality information,distributions of attribute values and so on. The second part deals with the physical costs of executingthe operation, which depends upon the implementation. We �rst discuss the former in section 5.1and the latter in section 5.3. Due to space restrictions, in this paper, we only consider the Selection,Projection, Cartesian Product and Join operators in the TP-algebra.5.1 Statistics for TP-DatabasesFor each TP-relation (base relation or otherwise), we maintain a set of statistics summarized inTable 2. Given a tp-relation r, let times(r) = ft j there exists a tp-tuple tp in r and a tp-case(C;D; L;U; �) in tp such that t 2 sol(C)g. Then MaxC 1(r) = max(times(r)) and MinC 2(r) =min(times(r)).Statistics DescriptionCARD Number of TP-tuples in the TP-relationAVG TIME PTS Average number of solutions of C constraint in a TP-tupleMAX TP The latest time point in the TP-relationMIN TP The earliest time point in the TP-relationMaxC 1 See below.MinC 2 See below.DOMAIN MIN(time unit) The smallest value time unit can take in calendar �DOMAIN MAX(time unit) The largest value time unit can take in calendar �AVG L(U) Average lower (upper) bound probability in the TP-relationMIN L(U) Minimum lower (upper) bound probability value in the TP-relationMAX L(U) Maximum lower (upper) bound probability value in the TP-relationTable 2: Statistics for TP-relations.We now address the following problem. Given a TP-relation r whose statistical variables (cf.Table 2) are known, and given that some TPA operation is executed on this table, how do weestimate the values of these statistical variables for the output TP-relation? Though of course thisvalue can be correctly computed by answering the query, we would like to estimate these valueswithout answering the query. As in the case of relational database implementations, these estimatesneed to be quickly computable and reasonably (rather than totally !) correct. This allows fastevaluation of many possible di�erent query plans for executing the query, so that we can pick thebest. Clearly, for data selects we can use the well-known classical techniques [11]. Hence, we ignorethis operation and deal instead with operations new to TPA.21

5.1.1 Temporal SelectionDue to space reasons we cannot show how to estimate all these parameters. We describe below,methods to estimate card(�C(r)) and avg time pts((�C(r)).Estimating cardinality: card(�C(r)) may be written as card(r)� sel(C) where sel(C) denotesthe selectivity of the selection condition C. We can estimate sel(C) by induction on the structure ofC.� tu < value : The probability that an arbitrary time point satis�es the constraint tu � value is� DOMAIN MAX(tu)�value+1DOMAIN MAX(tu)�DOMAIN MIN(tu)+1�. For a TP-case in r, the probability that all time points inthe solution of that TP-case's C constraint are greater than or equal to value may be estimated by� DOMAIN MAX(tu)�value+1DOMAIN MAX(tu)�DOMAIN MIN(tu)+1�AV G TIME PTS(r). Hence, the probability that at least onesuch solution of C will satisfy tu < value is1� � DOMAIN MAX(tu)�value+1DOMAIN MAX(tu)�DOMAIN MIN(tu)+1�AV G TIME PTS(r), which describes sel(C).� tu > value : The analysis is exactly analogous to the above and the estimate of the selectivity ofC is: sel(C) = 1� � value�DOMAIN MIN(tu) + 1DOMAIN MAX(tu)�DOMAIN MIN(tu) + 1�AV G TIME PTS(r) :� tu 6= value: By an analysis similar to that above, we see that here, the estimate of the selectivityof C is:sel(C) = 1� � 1DOMAIN MAX(tu)�DOMAIN MIN(tu) + 1�AV G TIME PTS(r) :� tu = value: In this case, we simply subtract the selectivity of tu 6= value from 1.� t1 � t2: On the average, a TP-case has AVG TIME PTS solutions to its C constraint. The prob-ability that an arbitrary time point will be a solution of this constraint is t2�t1+1MAX TP (r)�MIN TP (r)+1 .The probability that an arbitrary time point will not be a solution of this constraint is1 � t2�t1+1MAX TP (r)�MIN TP (r)+1 . Therefore, the probability that no time point of an arbitrary TP-case will be a solution of the constraint t1 � t2 is �1� t2�t1+1MAX TP (r)�MIN TP (r)+1�AVG TIME PTS(r).Hence, the total number of TP-tuples that will not be returned by this operation can be estimatedas CARDin � �1� t2�t1+1MAX TP (r)�MIN TP (r)+1�AV G TIME PTS(r). Then, the expected selectivity is:sel(t1 � t2) = 1� �1� t2 � t1 + 1MAX TP (r)�MIN TP (r) + 1�AV G TIME PTS(r) (Formula TS1)We can also compute the selectivity of this constraint in another way. Here, we try to estimatethe probability that t1 � t2 overlaps with any temporal constraint C of the form ti � tj in theTP-relation. These two intervals may overlap if either (i) F1 = ti < t1 and tj > t1 (i.e. t1 is betweenti and tj), or (ii) F2 = ti > t1 and ti < t2 (i.e. ti is between t1 and t2). We can compute theselectivities of these conditions as follows: 22

sel(ti < t1) =8<:1 MaxC 1(r) < t10 MIN TP (r) > t1t1�MIN TP (r)MaxC 1(r)�MINTP (r)+1otherwise sel(tj > t1) =8<:1 MinC 2(r) > t10 MAX TP (r) < t1MAX TP (r)�t1MAX TP (r)�MinC 2(r)+1otherwisesel(ti > t1) =8<:1 MIN TP (r) > t10 MaxC 1(r) < t1MaxC 1(r)�t1MaxC 1(r)�MIN TP (r)+1otherwise sel(ti < t2) =8<:1 MaxC 1(r) < t20 MIN TP (r) > t2t2�MIN TP (r)MaxC 1(r)�MIN TP (r)+1otherwiseHence, sel(F1) = sel(ti < t1) � sel(tj > t1) and sel(F2) = sel(ti > t1) � sel(ti < t2). Hence,the selectivity of (t1 � t2) will besel(t1 � t2) = sel(F1) + sel(F2)� sel(F1)� sel(F2) (Formula TS2)Later, in Section 6.0.3, we will run experiments to determine which of these two estimates is better.Non atomic temporal constraints: Any non-atomic temporal constraint can be written purelyin terms of : and ^. The selectivity of �:C(r) is equal to 1 minus the selectivity of �C(r). Theselectivity of �C1^C2 may be obtained by �rst estimating the selectivity of r0 = �C2(r) and thenestimating �C1(r0).Estimating AV G TIME PTS : Table 3 shows how we may estimate the average number of timepoints associated with the C-constraints in a TP-tuple. For space reasons, instead of explaining allthe entries, we explain only the �rst one (which also happens to be the toughest case). The probabil-ity that one of these time points has time unit tu = value is 1DOMAIN MAX(tu)�DOMAIN MIN(tu)+1 .As the original TP-relation has AV G TIME PTS(r) time points in it per TP-tuple, we may there-fore assume that the output relation has AVG TIME PTS(r)DOMAIN MAX(tu)�DOMAIN MIN(tu)+1 time points in it perTP-tuple.5.2 Probabilistic SelectionOur methods to estimate the selectivity of a probabilistic selection condition use the following simple(but useful) result.Proposition 2 Given a value p 2 (0; 1] and a TP-tuple tp = (d;�), � = f
1; : : : ;
ng,
i =hCi; Di; Li; Ui; �ii, there are at most 1p time points t 2 sol([ni=1Ci) such that �j(t; Dj) � Lj � p,where t 2 sol(Cj).Proof. Let T �p = ft 2 sol([ni=1Ci)j�j(t; Dj) � Lj � p; t 2 sol(Cj)g. Let s = jT �p j. If s > 1p thenPt2T �p �j(t; Dj)�Lj � s�p > 1p �p = 1:As we know that T �p � [ni=1Ci,Pt2T �p �j(t; Dj)�Lj �Pni=1 Li � 1which yields a contradiction. 323

Condition AV G TIME PTStu = value max(1; AV G TIME PTS(r)DOMAIN MAX(tu)�DOMAIN MIN(tu)+1):tu 6= value AV G TIME PTS(r)�Max(1; AV G TIME PTS(r)DOMAIN MAX(tu)�DOMAIN MIN(tu)+1):tu > value AV G TIME PTS(r)�(DOMAIN MAX(tu)�value)DOMAIN MAX(tu)�DOMAIN MIN(tu)+1tu < value AV G TIME PTS(r)�(value�DOMAIN MIN(tu))DOMAIN MAX(tu)�DOMAIN MIN(tu)+1tp1 � tp2 AV G TIME PTS(r) � tp2�tp1+1MAX TP�MIN TP+1Table 3: Formulas to compute AV G TIME PTSThe above result says that as the probabilities assigned by a PDF add up to 1, at most 1p timepoints can be assigned a probability greater than or equal to p. We now estimate the selectivity ofatomic probabilistic selection conditions, one by one.We �rst note that if the value of prob in the selection condition is not between MIN L(r)(MIN U(r)) and MAX L(r) (MAX U(r)) for lower(upper) bound conditions, then the selectivitywill always be either 0 or 1 depending on the condition. For example if prob > MAX L(r) and thecondition is L > prob then the result cardinality will be 0 as no time point in the TP-relation willsatisfy this condition. The table below contains the selectivities of probabilistic selects when prob isoutside the [MIN L;MAX L] ([MIN U;MAX U]) interval.Condition prob > MAX L(U) prob < MIN L(U)L(U) > prob 0 1L(U) < prob 1 0L(U) = prob 0 0L(U) 6= prob 1 1We now provide cardinality estimates for probabilistic selects when prob is in the above intervals.We propose two sets of cardinality estimations, stemming from two somewhat di�erent approaches.Table 4 summarizes the formulas for the two sets. In this table PROB> denotes the followingexpression: PROB> = min�1; 1prob� (MAX TP (r)�MIN TP (r) + 1)� :Some explanations about the intuition behind the formulas for both sets are in order.Set A: We explain the computations behind the Set A formulas on the example of atomic proba-bilistic condition L > prob.Consider an arbitrary TP-tuple in the input relation r. This tuple satis�es the condition L > probif at least one time point in the solution of one of its C-constraints has the lower bound of probability24

Cond. C Set A: sel(C) Set B: sel(C)L = prob min� 1prob � AVG TIME PTS(r) ; ��L 6= prob 1�min� 1prob � AVG TIME PTS(r) ; ��L > prob 1� (1� PROB>)AVG TIME PTS(r) �1� � AV G L(r) � probmin(1prob�AVG TIME PTS(r) ; (1� prob))otherwiseL < prob 1� (PROB>)AVG TIME PTS(r) 8<:1 prob > 0.5 and AV G TIME PTS(r) 6= 11� � prob > AVG L(r)1� (AVG L(r)�probAV G L(r))(AVG TIME PTS(r)=2) otherwiseU = prob �U 6= prob 1� �U > prob 1� (1� PROB>)AVG TIME PTS(r) (1� � AVG U(r) > probmin(AVG U(r)prob ; (1� prob))otherwiseU < prob 1� (PROB>)AVG TIME PTS(r) (1� � prob > AV G U (r)1� (AVG U(r)�probAV G U(r))(AVG TIME PTS(r)=2)otherwiseTable 4: Two sets of selectivity estimates for atomic probabilistic selection conditions.L > prob. The probability that an arbitrary time point t satis�es the L > prob constraint can bebounded above by PROB> = min �1; 1prob�(MAX TP (r)�MIN TP (r)+1)�. Hence, the probability that tdoes not satisfy this constraint is 1� 1prob�(MAX TP (r)�MIN TP (r)+1))AVG TIME PTS(r) and thereforethe probability that a tuple has a time point in its TP-case statement satisfying L > prob is1�(1�min(1; 1prob�(MAX TP (r)�MIN TP (r)+1)))AVG TIME PTS(r). Hence, the selectivity of �L>prob(r)is given by1� (1�min(1; 1prob� (MAX TP (r)�MIN TP (r) + 1)))AVG TIME PTS(r):The same reasoning applies to the all remaining atomic constraints on lower and upper boundsfeatured in Table 4.Set B: The intuition for di�erent atomic conditions is somewhat di�erent.L = prob . By Proposition 2 there can be at most 1prob time points with probability equal toprob in any TP-tuple. Therefore, when the number of time points in a TP-tuple is large, we expectthat the chances of any time point to have a fairly large lower bound of the probability interval arefairly small. This inequality between small and large values of prob is represented by the expression1prob�AV G TIME PTS(r) .On the other hand, the chances of �nding a time point with any particular small lower boundof the probability interval should be approximately the same. We represent that, by assuming thatthere exists a small constant � that serves as an upper bound on the probability to encounter a timepoint satisfying L = prob. As there is a �nite number of time points in the TP-tuple and, potentiallya continuum of values prob can take, � should be a relatively small number.L > prob . Whenever prob is less than or equal to the average lower bound probability value for asingle time point, we are all but guaranteed the existence of at least on time point with lower boundlarger than prob. Otherwise, if prob is very close to 1, then there is very little chance of �nding atime point with a larger lower bound. 1� prob describes this value, in a min computation this will25

\win" whenever prob is almost 1. For the values of prob between the average lower bound and 1,the chance to �nd a large probability value is in inverse proportion to the number of time points ina TP-tuple and to the value of prob (c.f. Proposition 2).L < prob . Whenever prob > 0:5 and there is more than one time point in a TP-tuple, we areguaranteed to have a time point having a probability less than 0.5 and hence less than prob. Ifprob is greater than the average probability then similar to the case above, the existence of a timepoint with a lower bound smaller than prob is almost guaranteed, because there have to be timepoints with probability less than the average probability. In the last entry in the above formula,we assume that the expected number of time points with lower bounds greater than AV G L(r)os AV G TIME PTS(r)=2. AV G L(r)�probAV G L(r) provides our estimate of probability that a given timepoint is in the interval between prob and the average lower bound. Such points do not satisfy ourrequirements. So, by computing the probability that half of all time points are in this range (assumingthat the other half is above the average), and subtracting it from 1, we obtain a probability estimatefor the existence of at least one time point with lower bound for probability under prob.The estimates for the remaining conditions use similar intuitions (correcting for the fact thatProposition 2 does not apply to the upper bounds of probability intervals).Whether Set A or Set B estimates are used, it is easy to estimate cardinality of queries such as�L2[p1;p2](r) by �rst estimating the size of �L�p1(r), calling the result r0 and then estimating �L<p2(r0).Other statistical variables: Table 5 speci�es how, given a probabilistic selection condition (atomic),we may use the values of the statistical variables associated with input relation r to estimate thevalues of AV G L;AVG U for the output relation obtained by applying the select.Condition AVG L AVG UL = prob prob prob+AV G DIFFL > prob max(AV G Lin; prob) + sel �AVG Lin AVG Lout +AV G DIFFL < prob min(AV G Lin; prob)� sel �AVG Lin AVG Lout �AV G DIFFU = prob prob�AV G DIFF probU > prob AV G U out +AV G DIFF max(AV G U in; p) + sel �AV G U inU < prob AV G U out �AV G DIFF min(AV G U in; p)� sel �AV G U inL IN [p1; p2] max(p1; (min(AVG Lin; p2) � sel(L � p2) �AVG Lin)) + (min(AVG Lin; p2)� sel(L �p2) �AVG Lin) � sel(L � p1) AVG Lout +AV G DIFFU IN [p1; p2]AVG U out +AV G DIFF max(p1; (min(AVG U in; p2)� sel(U � p2) �AVG U in))+(min(AV G U in; p2)� sel(U �p2) �AV G U in) � sel(U � p1)Table 5: Computations for AVG L and AV G U in the result relation5.2.1 Cartesian Product and JoinGiven two arbitrary TP-tuples tp 2 r and tp0 2 r0 (tp = (d;�);� = f
1; : : : ;
ng);
i = hCi; Di; Li; Ui; �ii;tp0 = (d0;�0);�0 = f
 01; : : : ;
 0mg);
 0j = hC 0j ; D0j; L0j; U 0j ; �0ji), we need to determine the probability thatthere will be a TP-tuple tp00 2 r �� r0 corresponding to these two tuples. The Cartesian product26

of tp and tp0 will be nonempty if they share at least one time point, i.e., if there exists 1 � i � n,1 � j � m, such that sol(Ci ^ C 0j) 6= ;.Let C = Sni=1Ci and C0 = Smj=1 C0j . We �rst need to compute the probability that a solu-tion of C is also a solution of C0. Note that if t is outside the range of time points found inr0 ([MIN TP (r0);MAX TP (r0)]) then it is de�nitely not a shared solution. Therefore, we �rstestablish the probability that t 2 [MIN TP (r0);MAX TP (r0)]. As t 2 sol(C), we know thatt 2 [MIN TP (r);MAX TP (r)].Let TR(r; r0) = j[MIN TP (r);MAX TP (r)]\ [MIN TP (r0);MAX TP (r0)]j. ThenPr(t 2 [MIN TP (r0);MAX TP (r0)]jt 2 [MIN TP (r);MAX TP (r)]) = TR(r; r0)MAX TP (r0)�MIN TP (r0) + 1 :Once we establish that t is in the range of r0, we need to determine the probability that t 2 sol(C0).This probability is given by AV G TIME PTS(r0)MAX TP (r0)�MIN TP (r0)+1 :We obtain the desired probability Pr(t 2 sol(C 0)jt 2 sol(C)) by multiplying the two numbers:sel1 = Pr(t 2 sol(C 0)jt 2 sol(C)) = TR(r; r0)MAX TP (r0)�MIN TP (r0) + 1 � AV G TIME PTS(r0)MAX TP (r0)�MIN TP (r0) + 1 :By a symmetric argument,sel2 = Pr(t 2 sol(C)jt 2 sol(C 0)) = TR(r; r0)MAX TP (r)�MIN TP (r) + 1 � AV G TIME PTS(r)MAX TP (r)�MIN TP (r) + 1 :Hence, the cardinality of the Cartesian product can be estimated asCARD(r)� CARD(r0)�max(sel1; sel2):As the join operation in TP-algebra is merely a Cartesian product followed by a selection, thecardinality of join is given by:CARD(r)� CARD(r0)�max(sel1; sel2)� sel(JC);where JC is the join condition whose selectivity is computed in the same way as in the relationalcase [11].5.3 Physical costsIn order to specify the physical costs of executing these operations, we must �rst provide a briefdescription of the implementation of TP-databases.5.3.1 Implementation OverviewWe have signi�cantly extended the implementation of TP-databases outlined in [5] by (i) adding aprobabilistic table index, and (ii) developing a cost model that uses the physical implementation ofthe algebra operations using a relational implementation and the probabilistic table index as wellas (well known) segment tree indexes for temporal data, (iii) developing a set of rewrite rules based27

151 Baltimore New York (12:05 ~ 12:08) v (12:11 ~ 12:12) (12:05 ~ 12:14) 0.5 0.6 u

(12:15 ~ 12:17) (12:15 ~ 12:20) 0.3 0.4 g, 0.5

TrainNo From To C D L U delta

3434 12:05 12:08

3434 12:11 12:!2

 3435 12:15 12.17

cid MIN-T MAX-T

...

3435 0.0375 0.15

3434 0.05 0.05

...

cid MIN-L MAX-L

3434 1021 (12:05~12:08)v(12:11~12:12) (12:05~12:14) 0.5 0.6 u

3435 1021 (12:15~ 12:17) (12:15~12:20) 0.3 0.4 g,0.5

cid tid C D L U delta

...

cid MIN-U MAX-U

3435 0.05 0.2

3434 0.06 0.06

...

TrainDep

 1021 151 Baltimore New York

tid TrainNo From To

...

r d

t

Table-T

Table-U

Table-L

Indexes

Data

rFigure 1: Storing TP-tuples in Paradox: rd and rt relations and Table-L, Table-U and Table-Tindexes.on the query equivalences we have derived in Section 4 and (iv) building a query optimizer for TP-databases using the above components and the Cascades optimizer framework [12]. In this section,we brie
y describe the implementation.A TP-relation consists of three parts { data, temporal and probabilistic. Each TP-relation r overrelational schema (A1; : : : ; Ak) is stored as two Paradox tables: rd over schema (TId, A1, : : :, Ak),and rt over schema (CId, TId, C, D, L, U, Delta). Here, TId is the TP-tuple id which is used to joinrd and rt when a user wants to view r, and CId is the TP-case id which is used to uniquely identifya TP-case. We create a primary key index on TId for rd, and on CId for rt. To perform a query onr, we use the Borland Database Engine (BDE) to perform relational queries on Paradox tables rdand rt. Moreover, the TP-relation r00 for the result of a query is materialized as two Paradox tables(r00d and r00t).Probabilistic table index: To index probabilistic information, we �rst create index tables Table-Lrand Table-Ur for each TP-relation r. We explain the structure of Table-Lr below - the othertable is built in a similar way. Table-Lr has the schema (cid;MIN-L;MAX-L). For each tuple(cid; C;D; L;U; �) 2 rt we store in Table-Lr, its cid and the valuesMIN-L= mint2sol(C)(L � �(D; t))MAX-L= maxt2sol(C)(L � �(D; t))MIN-U and MAX-U values for each TP-case in Table-Ur may be stored in a similar way.28

Each probabilistic query allowed in TPA can be expressed as a combination of L 2 Interval andU 2 Interval (where Interval can either be open or closed on either side). For each such requestL 2 [a; b], Table-Lr is scanned and the set of cids is determined such that [a; b]\ [MIN-L;MAX-L] 6= ;.This will be the list of candidate TP-cases. We are guaranteed that the answer to L 2 [a; b] is in asubset of these candidate TP-cases. Each then needs to be retrieved and checked.Temporal index: For indexing temporal data we use three di�erent data structures. Two of themare variations of segment trees [28] and the third is a variation of the index table structure used toindex probabilistic information. As segment trees are well studied, we do not discuss them furtherhere. Future work may involve extending sophisticated temporal index structures such as thosedeveloped by Tsotras[18, 34] to handle probabilistic temporal data.The tabular index structure Table-Tr for the temporal data contains three �elds: cid, the TP-caseid in rt and MAX-T and MIN-T { the maximal and minimal time point for each contiguous intervaldescribed in TP-case with id cid. Unlike the case with Table-Lr and Table-Ur, where cid was aunique foreign key, cid will no longer be a unique key for Table-Tr. On the other hand, the resultof performing a select on a temporal condition using Table-Tr will be the exact set of TP-case idsmatching the query (not a set of candidate TP-cases).Figure 1 shows how temporal probabilistic data of Example 1 is stored and indexed in the under-lying Paradox database.5.3.2 Physical Cost ModelThe TP-database implementation builds on top of a �xed set of query templates that are used toaccess the underlying Paradox tables in which TP-relations are stored. Each TP-algebra operator isencoded via a C++ program that builds on such top of these templates. To model the physical costof such operators, we must therefore: (i) model the costs of the templates, and (ii) use the templatemodels to model the costs of the C++ programs' encoding the di�erent TP-algebra operators. derivea formula that estimates the cost of how long such C++ programs need to run. Solely using astandard cost model for relational databases is not enough.Query Templates: The set of Paradox query templates and their associated cost formulas areprovided in Table 6. We use simple calibration and regression analysis techniques, such as those in[35] to compute the costs of these template queries.The notation used in Table 6 requires further explanation: Ad and At denote the data and TP-casetables for an input TP-relation A. Cd and Ct denote the data and TP-case tables for the resultingTP-relation. For binary operations like join and Cartesian product, Bd and Bt denote the data andTP-case tables of the second operand. Two intermediate tables TmpF and TmpJ , which will bediscussed below, are used for Cartesian product and join operations. tableIndex denotes a temporalor probabilistic index which is maintained as a Paradox table. Finally, we use [r] to denote theschema of relation r.The cost formulas in Table 6 were obtained by running several queries, trying many di�erent costformulas, and using standard regression analysis and calibration methods to �t the best curves (andhence obtain the best formulas). The cost formulas for query templates 1-8 are linear combinationsof input and output table cardinalities | this is to be expected as they involve a simple linear29

Query Template Cost Formula1 Cd Cd [�C(Ad) a � jAdj+ b � jCdj+ c2 Ct Ct [�[At](�(At:TId=Cd:TId)(At � Cd)) a � jAtj+ b � jCdj+ c3 At a � jAtj+ b4 Cd Cd [�[Ad](�(Ad:TId=Ct:TId)(Ad � Ct)) a � jAdj+ b � jCtj+ c5 �(CId2S)(At) a � jAtj+ b � jSj+ c6 T �C(tableIndex); �[At](�(At:CId=T:CId)(At � T)) a � jAtj+ b � sel(C) � jtableIndexj+ c7 Cd Cd [�F (Ad) a � jAdj+ b8 Ct Ct [At a � jAtj+ b9 At �Bt a �max(jAtj; jBtj) + b � jAtj � jBtj+ c10 T �(Ad:TId=TmpA)^ (Bd:TId=TmpB)(Ad � Bd � TmpF); a � jTmpF j+ bCd Cd [�TmpC;[Ad];[Bd](T)11 TmpJ TmpJ [�Ad:TId;Bd:TId(�C(Ad �Bd)) a �min(jAdj; jBdj) + b � jTmpF j+ c12 T �(At:TId=TmpA)^ (Bt:TId=TmpB)(At �Bt � TmpJ); cost(At ./ TmpJ) +�[At];[Bt](T) cost(Bt ./ TmpJ) + �13 A0d �F(Ad); B0d �F (Bd); a � jTmpF j+ bT �(A0d:TId=TmpA)^ (B0d:TId=TmpB)(A0d �B0d � TmpF);Cd Cd [�TmpC;[A0d];[B0d](T)Table 6: Query Templates Used by Operators in the TP-algebra and Their Cost Formulasrelational operation. Likewise, Query 9 is a Cartesian product operation, and its cost formulainvolves the products of the TP-relations involved.In the case of Queries 10 and 13, we observed that the cost largely depends on the cardinality ofTmpF. Recall that TId is a primary key and there exists an index on TId in the data tables. Thejoin conditions in queries 10 and 13 are on TId. Hence, TmpF needs to be read once, and all tuplessatisfying the join are retrieved via the index on Ad, and similarly for Bd.Query 11 is a join between two data tables. The join condition is on a data �eld and there is noindex on data �elds. One would assume that Paradox uses either a nested loop or a merge join.After extensive calibration, the best result seems to be the expression shown in Table 6.Finally, Query 12 involves a two way join. We were unable to �t a satisfactory curve to match thebehavior of this query. As a consequence, we tried to model the cost of this query as two successivejoin operations, and this led to the cost formula shown.TP-Algebra Operations: We are now ready to use the costs of query templates in order to de-rive cost formulas for TP-algebra operations. Each query begins by creating the Cd and Ct tableswhich will hold the results. To compute costs of TP-algebra operations, we executed each opera-tion several times to determine its average running times. Our cost formulas focus on the cost ofretrieving and storing data in the Paradox tables. We use CREATE COST(T) to denote the costof creating Paradox table T, GET NEXT COST to denote the cost of processing one Paradox tuplevia a Borland Data Engine (BDE) cursor1, and INSERT COST(T) denotes the cost of insertingone tuple into Paradox table T . For brevity, let CREATE COST denote CREATE COST(Cd) +1We assume all readers are familiar with standard database concepts like cursors[11].30

CREATE COST(Ct).Data Select: As this operation corresponds to a relational select, the data condition C is simplypassed to the BDE. Thus, Cd is computed by query 1, and Ct by query 2. The cost formula iscost =CREATE COST + cost(query1) + cost(query2):Temporal Select (without index): A temporal condition C is evaluated using special purposecode since there is no equivalent notion in a relational database. Consider a boolean combination oftemporal intervals of the form (ti � tj). As there is no index, all TP-cases in At need to be retrievedand checked. Thus we open a cursor on the result of query 3, read one TP-case
i at a time, computeC = (
i:C ^ C), and insert a new TP-case which incorporates C into Ct if sol(C) 6= ;. Once thecomputation of Ct is �nished, the appropriate tuples are inserted into Cd by executing query 4. Thecost formula iscost =CREATE COST + cost(query3) + card(At)�GET NEXT COST +card(Ct)� INSERT COST (Ct) + cost(query4):Temporal Select (with segment tree index): In this case, we �rst retrieve a set S of CIdsby using the segment tree index. This index �lters out irrelevant data by trying to ensure that(
i:C ^ C) 6= ; for each TP-case
i whose CId is in S. We then execute query 5 to retrieve theTP-cases referred to in S. We read one TP-case at a time from the result of query 5, compute C,and write the result into Ct. Finally, Cd is populated by executing query 4. The cost formula iscost =CREATE COST + cost(segTreeSearch) + cost(query5) +j S j �GET NEXT COST + card(Ct)� INSERT COST (Ct) + cost(query4):Temporal Select (with table index Table-Tr): Table-Tr is stored as a Paradox table whereMIN-T and MAX-T are indexed using standard, Paradox indices. We �rst execute query 6 to retrievefrom this table all CIds of TP-cases in At whose C constraints overlap with the selection condition.We then open a cursor on the result of query 6, read one tuple at a time, compute C, and save theresults in Ct. We �nally execute query 4 to compute Cd. Hence, the cost formula iscost =CREATE COST + cost(query6) + sel(C)� card(tableIndex)�GET NEXT COST + card(Ct)� INSERT COST (Ct) + cost(query4):Probabilistic Select (without index): As relational databases do not support probabilistic se-lection conditions, we use special purpose code to compute the results of this operation which issimilar to the unindexed temporal select operation. The only di�erence is that C is computed viaTP-�lter(
i; C), and hence sol(C) will be the set of time points in
i:C which satisfy C. The costformula is the same as the one used for unindexed temporal selections.Probabilistic Select (with table index): A probabilistic condition C can be rewritten using oneinterval (if op is not \6="), or the union of two intervals. For instance, L > p can be rewrittenas L 2 (p; 1]. As a selection condition is a disjunction of intervals, probabilistic select queries areimplemented by using a procedure similar to the one used for temporal selects with table indices. Infact, both queries share the same cost formula. 31

Project: As the TP-algebra only allows projections of data attributes, this operator only projectsout �elds from Ad and retains all �elds in At by executing query 7 and query 8 respectively. Thecost formula is cost =CREATE COST + cost(query7) + cost(query8):Cartesian Product: To execute a Cartesian product operation between TP-relations A and B, we�rst execute query 9 to retrieve all tuple ids from At and Bt. For each unique pair of TP-tuples fromA and B that produces a result in the Cartesian product, a new, unique tuple id needs to be createdfor the resulting tuple. The TP-algebra uses a mapping f which takes tuple ids from A and B asinput, and returns a new tuple id for C. This mapping is stored as a Paradox table TmpF with theschema (TmpA, TmpB, TmpC). Here, TmpA, TmpB, and TmpC refer to the TIds from A, B, andC respectively. The implementation then creates TmpF , whose cardinality equals that of Cd. Wethen open a cursor on the result of query 9, and read one tuple at a time. For each tuple in theresult of query 9, we compute C = (At:C ^Bt:C) and discard this tuple if sol(C) = ;. Otherwise wegenerate a unique id for Ct:CId, and determine whether or not there is a value for f(At:TId; Bt:TId).If not, we generate a unique id for Ct:TId, and assign this value to f(At:TId; Bt:TId). In either case,the implementation inserts hCt:CId; f(At:TId; Bt:TId); C;D; L;U; �i into Ct when these values satisfyDe�nition 8 of Cartesian product. Note that � may be a new distribution function that distributes[L; U] among all time points t 2 sol(D) according to the probabilities determined by
�. After alltuples returned by query 9 are processed, function f is saved. For all a; b; c where f(a; b) = c, thecode inserts (a; b; c) into TmpF . This information is used to populate Cd by executing query 10.Finally, we remove TmpF . The cost formula iscost =CREATE COST + CREATE COST (TmpF) + cost(query9) +card(At)� card(Bt)� GET NEXT COST + card(Ct)� INSERT COST (Ct) +card(TmpF)� INSERT COST (TmpF) + cost(query10):Join: To execute the join operation, we �rst create a temporary Paradox table TmpJ with the schema(TmpA, TmpB), and populate TmpJ by executing query 11. TmpJ stores the TIds of the pairs whichsatisfy the join condition C. Hence, the cardinality of TmpJ is card(Ad)� card(Bd) � sel(C). Therest of the join code is similar to that of Cartesian product except that Query 12 is used instead ofQuery 9 (to limit the number of TP-cases visited), and Query 13 is used instead of Query 10 (as theresult requires a projection on F). Furthermore, TmpJ can be removed any time after executingquery 12. The cost formula iscost =CREATE COST + CREATE COST (TmpJ) + cost(query11) +CREATE COST (TmpF) + cost(query12)+card(TmpJ)�GET NEXT COST + card(Ct)� INSERT COST (Ct) +card(TmpF)� INSERT COST (TmpF) + cost(query13):6 Experimental ResultsWe conducted experiments aimed at (i) evaluating the e�ectiveness of our selectivity estimates, (ii)evaluating the e�ectiveness of our rewrite rules, and (iii) evaluating the e�ectiveness of our TP-optimizer as a whole. 32

All these experiments use a table creation program (TCP) which generates tables in accordancewith various parameters described in Table 7. TCP generates NO TUPLES number of TP-tuples.The TP-relations generated by TCP contain data �elds f1 and f2. TCP assigns unique consecutiveintegers to the f1 �eld, and randomly assigns integers in the interval [1, F2 Range] to the f2 �eld.To generate a temporal constraint C of the form t1 � t2, a value is drawn randomly from the rangeC R for t1. The number of time points that are solutions to a TP-case is controlled by drawingvalue x from the range AVG TIME PTS R and adding it to t1. Values for L and U are generatedrandomly by choosing a value from the ranges L R and U R respectively. Distributions in tp-casesare restricted to geometric (g), binomial (b), uniform (u) and mix. When a \mix' is chosen, TCPrandomly picks one of the g; b or u distributions.Parameter DescriptionNO TUPLES number of TP-tuplesF2 Range range for the data attribute f2C R range for the lower bound of the temporal constraint CAVG TIME PTS R range for the average number of time points in a TP-tupleL R range for the lower bound probability LU R range for the upper bound probability UDelta probability distribution functionTable 7: Parameters of the Table Creation Program6.0.3 E�ectiveness of Selectivity EstimatorsWe used TCP to create 6 TP-relations with various cardinalities and properties. These are shownbelow. Each TP-tuple has one case.TP-rel NO TUPLES F2 Range C R AVG TIME PTS R L R U R Deltar1 100 - 1900-2000 5-10 0.8-1.0 0.9-1.0 mixr2 1000 - 1800-2000 5-15 0.75-0.9 0.95-1.0 mixr3 10000 - 1800-2010 10-20 0.8-0.95 0.9-1.0 mixr4 1000 - 1950-2020 5-10 0.75-0.95 0.9-1.0 mixr5 1000 - 1900-1980 10-20 0.6-0.8 0.9-1.0 mixr6 10000 - 1850-2020 5-15 0.8-1.0 0.9-1.0 mixTable 8: TP-relations used in the �rst set of experiments.Our experiments focus on the e�ectiveness of the selectivity estimation formulas for temporaland probabilistic selection conditions as well as join operations. Table 9 contains the temporal andprobabilistic selection queries we used in these experiments.Temporal Selectivity: Figure 2 shows the actual cardinality of the resulting answers, as well asthe estimated values provided by Formulas TS1, TS2. The leftmost bar in each group in the �gure33

Query1 �1980�1995(r2)2 �1940�1970(r2)3 �1920�1995(r2)4 �1870�1990(r2)5 �1950�1960(r4)6 �1975�1993(r4)7 �1900�1990(r4)8 �1880�2000(r4)9 �1965�1975(r5)10 �1960�2010(r5)11 �1850�1950(r5)12 �1940�1980(r5)
Query1 �L>0:4(r2)2 �L>0:15(r5)3 �L>0:1(r4)4 �L>0:05(r2)5 �L<0:01(r4)6 �L<0:017(r2)7 �L<0:07(r5)8 �L<0:5(r4)9 �U>0:48(r4)10 �U>0:25(r5)11 �U>0:27(r2)12 �U>0:2(r4)13 �U<0:01(r4)14 �U<0:01(r5)15 �U<0:1(r2)16 �U<0:3(r5)(a) Temporal Selection Queries (b) Probabilistic Selection QueriesTable 9: Selection Queries for Experimentsshows the cardinality estimates generated by using Formula TS1, the middle bar show the estimatesgenerated by Formula TS2 and the rightmost bar shows the actual result cardinalities. It is easy tosee that Formula TS2 generates better results than Formula TS1.Figures 3, 4, 5 and 6 contain the actual cardinality and the cardinality estimates generated by SetA and Set B formulas for probabilistic conditions of the form L > prob , L < prob, U > prob andU < prob, respectively. As seen from the �gures, Set B formulas provide better estimates than SetA formulas. For L > prob, Set B results are query accurate (we surmise that this is because theyuse Proposition 2). For the same reason, and the fact that the sum of the upper probability valuesdo not have to add up to 1, but add up (on average) to AVG U � AVG TIME PTS, the formulafor U > prob also performs very well. The formulas for L < prob and U < prob in Set B assumethat the number of time points having probability values less than AVG L (AVG U) is half of theaverage time points in a TP-tuple. In fact, we expect that there are more time points with lowerbounds of probability intervals between 0 and AVG L than there are points with the lower boundsof probability intervals between AVG L and 1, as the sum should add up to 1. Hence, the estimatesfor L < prob values are not as accurate as the L > prob case. A symmetric argument also applies tothe U < prob condition. The cardinality estimate generated by Set A for queries 5 and 13 in Table9(b) were 0, and hence hence they do not appear in Figures 4 and 6.Join: In order to assess the accuracy of our join size estimators, we created 7 queries involving a two-way join between various TP-relations. These queries and their actual and the estimated cardinalitiesare shown in Table 10. All queries assume that no prior knowledge about the relationship between the34

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12

query no

ca
rdi

na
lity Estimated Card by

Formula TS1

Estimated Card by
Formula TS2

Actual CardFigure 2: Actual And Estimated Cardinalities for Temporal Selections
0

200

400

600

800

1000

1200

1 2 3 4

query no

ca
rd

in
al

ity Estimated Card by Set A
Estimated Card by Set B
Actual CardFigure 3: Actual And Estimated Cardinalitiesfor L > prob 0

200

400

600

800

1000

1200

5 6 7 8

query no

ca
rd

in
al

ity Estimated Card by Set A
Estimated Card by Set B
Actual CardFigure 4: Actual And Estimated Cardinalitiesfor L < prob

0

100

200

300

400

500

600

700

9 10 11 12

query no

ca
rd

in
al

ity Estimated Card by Set A
Estimated Card by Set B
Actual CardFigure 5: Actual And Estimated Cardinalitiesfor U > prob 0

200

400

600

800

1000

1200

13 14 15 16

query no

ca
rd

in
al

ity Estimated Card by Set A
Estimated Card by Set B
Actual CardFigure 6: Actual And Estimated Cardinalitiesfor U < prob35

events represented in base relations exist { an assumption, known as ignorance [20]. The conjunctionstrategy for this can be speci�ed as follows: [a; b]
ig [c; d] = [max(0; a + c � 1);min(b; d)]. Theresults indicate that the cardinality estimates for the join provide \decent" estimates. The estimatedcardinalities seem to be reasonably accurate.Query No QUERY Actual Card Estimated Card1 select * from r1, r6 under ig where r1.f1 = r6.f1 7 72 select * from r1, r3 under ig where r1.f1 = r3.f1 10 73 select * from r2, r4 under ig where r2.f1 = r4.f1 57 794 select * from r2, r6 under ig where r2.f1 = r6.f1 94 475 select * from r4, r6 under ig where r4.f1 = r6.f1 113 976 select * from r2, r3 under ig where r2.f1 = r3.f1 124 647 select * from r3, r5 under ig where r3.f1 = r5.f1 169 147Table 10: Join Queries for Experiments6.0.4 E�ectiveness of Rewrite RulesIn this section, we study the e�ectiveness of some of the rewrite rules proved in Section 4. Dueto space reasons, we are unable to present results on the e�ectiveness of all the rewrite rules. Wefocus on the result that temporal and probabilistic selects are commutative (Theorem 4), and thattemporal selects can be pushed into joins (Theorem 9).Commutativity of Temporal and Probabilistic Selects: If T (resp. P) is a temporal (resp.probabilistic) selection condition, then by Theorem 4, we know that �P (�T (r)) = �T (�P (r)). Westarted by generating TP-relations using the TCP with the following parameters:TP-rel NO TUPLES F2 Range C R AVG TIME PTS R L R U R Deltar 3880 1-100 2000-2090 1-10 0.1-0.5 0.1-1.0 mixTo vary T , we used the temporal condition (2000 � (2000 + 10 � i)) for all i 2 [0; 9]. To vary P ,we used the probabilistic condition (L � 0), (L � 0:32 � (12)i) for all i 2 [0; 8], and (L � 1). For eachpair (T; P), we determined the time (in seconds) to compute �P (�T (r)) minus the time to compute�T (�P (r)) when r is not indexed (i.e., when all TP-cases must be examined). If this di�erence ispositive (negative), then it is better to perform the probabilistic (temporal) select �rst respectively.The results are shown in Figure 7.In general, if Sel-T and Sel-P are approximately equal, then both orderings are approximatelyequal. Otherwise, it is better to perform the selection that o�ers the highest selectivity �rst. Inother words, even though it takes a lot of time to compute TP-�lter(
i; P) used in probabilistic ascompared to solving the constraint
i:C ^ T in the case of temporal selects, this di�erence turns outto be negligible. Intuitively, this occurs because testing
i is mostly a CPU-intensive operation whilewriting out satisfying TP-cases is a memory-intensive operation, and hence is more expensive.36

0.
00

19
.5

1

25
.8

8

31
.8

8

37
.5

8

48
.3

2

63
.5

8

80
.3

1

90
.9

5

97
.4

2

10
0.

00

1.13

12.53

23.22

34.43

45.03

55.46

67.14

77.84

88.84

100.00

Sel-P

Sel-T
4 -6
2 -4
0 -2
(2)-0
(4)-(2)
(6)-(4)Figure 7: Time for �P (�T (r)) minus time for �T (�P (r)) without indicesThe same conclusion holds when r is indexed. In this case, we created probabilistic table indexesTable-Lr and Table-Tr on r. Thus, the system used Table-Tr to compute �P (�T (r)), and usedTable-Lr to compute �T (�P (r)). The results are shown in Figure 8. In conclusion, when we need toperform a series of selects on r, we should determine their execution order according to our estimatesof their selectivities with respect to r, regardless of the kind of select being considered. However, ifthese selectivities are approximately equal, then we can give preference to data selects over temporalselects, and temporal selects over probabilistic selects.

0.
00

19
.5

1

25
.8

8

31
.8

8

37
.5

8

48
.3

2

63
.5

8

80
.3

1

90
.9

5

97
.4

2

10
0.

00

1.13

12.53

23.22

34.43

45.03

55.46

67.14

77.84

88.84

100.00

Sel-P

Sel-T

6 -8
4 -6
2 -4
0 -2
(2)-0
(4)-(2)
(6)-(4)
(8)-(6)Figure 8: Time for �P (�T (r)) minus time for �T (�P (r)) with indicesPushing Temporal Selections into Join: Note that the query �T (r ./� r0) can be evaluated infour possible ways: A = �T (r ./� r0), B = �T (r) ./� �T (r0), C = r ./� �T (r0), or D = �T (r) ./� r0.Our goal is to determine when we should use each of these methods. To generate sample relations37

for r and r0, we used the parameters given in Figure 11.TP-rel NO TUPLES F2 Range C R AVG TIME PTS R L R U R Deltar1 585 1-100 2000-2090 1-10 0.1-0.5 0.1-1.0 mixr2 375 1-100 2000-2090 1-10 0.1-0.5 0.1-1.0 mixr3 748 1-1000 2000-2090 1-10 0.1-0.5 0.1-1.0 mixr4 346 1-1000 2000-2090 1-10 0.1-0.5 0.1-1.0 mixTable 11: TP-Relations Used In Join-Temporal Selection Rewrite RulesWe varied T in the same way as for temporal selections and we did not vary the conjunction strategy� as this does not a�ect the relative running times of options A,B,C, D. We varied the number ofTP-cases returned by the join by considering the queries �T (r1 ./� r2) (where jr1 ./� r2j = 238), and�T (r3 ./� r4) (where jr3 ./� r4j = 31). The results for these two queries are shown, respectively, inFigures 9 and 10.
0

2

4

6

8

10

12

0.00
5.88

13.45
21.85

32.35
42.44

56.72
74.37

84.45

100.00

Selectivity of T with respect to (r 1 join r 2)

Ti
m

e
(s

ec
) A

B
C
D

Figure 9: A = �T (r1 ./� r2) vs. B = �T (r1) ./� �T (r2) vs. C = r1 ./� �T (r2) vs. D = �T (r1) ./� r2Figure 9 demonstrates the case when jr ./� r0j is relatively large. Here, it is better to push selectioninto the join for both r and r0 (i.e., strategy B) unless the selectivity of the selection predicate is verylow (i.e., unless the selectivity of T is a large percentage). This result should not be surprising. Asjr ./� r0j increases, the preference for strategy B vs. strategy A intensi�es. Conversely, as jr ./� r0jdecreases, the threshold for T where A becomes preferable to B decreases. An example is shown inFigure 10. Note that when the join removes a fairly large number of tuples, strategy C or D mayperform better than strategy B (the choice of C or D depends on the selectivity of T with respectto r0 and r). This occurs because strategy B requires three operations whereas the other strategiesonly need two. 38

Pushing Probabilistic Selections into Join: The query �P (r 1� r0) where P is of the form L � pfor some probability p 2 [0; 1] can be evaluated as A = �P (r 1� r0) or B = �P (�P (r) 1� �P (r0)). Todetermine when to use these options, we used TCP to generate eight TP-relations with the followingparameters:TP-rel NO TUPLES C R AVG TIME PTS R L R U R Deltafri j i 2 [1; 6]g 1000 2000-2090 1-10 0.1-0.5 0.1-1.0 mixfri j i 2 [7; 8]g 10000 2000-2090 1-10 0.1-0.5 0.1-1.0 mixThe F2 Range parameter was 1-1000 for r1 and r2, 1-100 for r3 and r4, 1-10 for r5 and r6, and1-10000 for r7 and r8. Thus, jr1 1pc r2j = 113, jr3 1pc r4j = 1188, jr5 1pc r6j = 11732, andjr7 1pc r8j = 1191. To vary P , we used probabilistic predicate (L � 0:32 � (12)i) for all i 2 [0; 6].The results are shown in Figure 11. Note that the conjunction strategy � remained constant. Thisis acceptable since other experiments have veri�ed that the running times depend on j�P (r 1� r0)jinstead of the choice for �. Nonetheless, note that when � 6= �0, then it is often the case thatj�P (r 1� r0)j 6= j�P (r 1�0 r0)j.For each graph in Figure 11, the times for strategy A remain more or less constant. This is becausethe times to perform the joins are constant, and these times overwhelm the times it takes to performthe selections. Furthermore in each graph, the times for strategy B increase as the selectivity ofP increases. We are interested in the threshold for P where the time for strategy B exceeds thetime for strategy A. For graphs (a), (b), and (c) of Figure 11, this occurs when the selectivity of Pis around 20%, 65%, and 75% respectively. Thus if jr 1� r0j increases while max(jrj; jr0j) remainsconstant, then the threshold for P increases. Graph (d) of Figure 11, uses base TP-relations r7; r8where jr7j = jr8j = 10 � (jr1j = : : : = jr6j). Here, the threshold for P is around 20%. This matches
0

0.5

1

1.5

2

2.5

3

0.00
12.90

35.48
38.71

51.61
64.52

64.52
80.65

90.32

100.00

Selectivity of T with respect to (r 3 join r 4)

Ti
m

e
(s

ec
) A

B
C
D

Figure 10: A = �T (r3 ./� r4) vs. B = �T (r3) ./� �T (r4) vs. C = r3 ./� �T (r4) vs. D = �T (r3) ./� r439

0

1

2

3

4

5

6

7

8

0.00 0.88 8.85 30.97 63.72 76.99 87.61
Selectivity of P with respect to (r1 join r2)

T
im

e
(s

ec
)

A
B

0

5

10

15

20

25

30

35

40

45

50

0.00 0.17 9.34 33.00 60.61 75.42 82.74
Selectivity of P with respect to (r3 join r4)

T
im

e
(s

ec
)

A
B(a) (b)

0

50

100

150

200

250

300

350

400

450

0.01 0.55 8.36 33.04 59.16 74.58 81.86
Selectivity of P with respect to (r5 join r6)

T
im

e
(s

ec
)

A
B

0

10

20

30

40

50

60

70

80

0.00 0.59 6.63 33.50 59.87 74.64 81.19
Selectivity of P with respect to (r7 join r8)

T
im

e
(s

ec
)

A
B(c) (d)Figure 11: A = �P (r1 1pc r2) vs. B = �P (�P (r1) 1pc �P (r2))

40

the threshold for graph (a) but does not match the threshold for graph (b). Thus to estimate thethreshold for P , we cannot just consider jr 1� r0j (e.g., jr7 1pc r8j � jr3 1pc r4j). Instead, considerthe ratio between jr 1� r0j and max(jrj; jr0j) (e.g., jr7 1pc r8jmax(jr7j;jr8j) � jr1 1pc r2 jmax(jr1j;jr2j)).In conclusion, there are many cases where it is better to use strategy B even though it involvesperforming selects three times more often than strategy A. The accuracy of predicting when thesecases occur strongly depends on the accuracy of the cardinality estimators.6.0.5 E�ectiveness of The Query OptimizerIn this section, we report on experiments conducted by us to determine the overall e�ectiveness ofour TP query optimizer. We wanted to determine how \good" or \bad" the plans picked by theTP-query optimizer are. We used TCP to create 9 TP-relations having the properties shown in Table12.TP-rel NO TUPLES F2 Range C R AVG TIME PTS R L R U R Deltar1 1000 100 1900-2000 0-10 0.1-0.5 0.1-1.0 mixr2 100 100 2000-2100 2-2 0.1-0.5 0.1-1.0 mixr3 100 100 2000-2500 2-2 0.1-0.5 0.1-1.0 mixr4 100 100 2000-3000 2-2 0.1-0.5 0.1-1.0 mixr5 100 100 2000-2100 5-5 0.1-0.5 0.1-1.0 mixr6 100 100 2000-2500 5-5 0.1-0.5 0.1-1.0 mixr7 100 100 2000-3000 5-5 0.1-0.5 0.1-1.0 mixr8 100 100 2000-2500 10-10 0.1-0.5 0.1-1.0 mixr9 100 100 2000-3000 10-10 0.1-0.5 0.1-1.0 mixTable 12: TP-relations used in the second set of experiments.Simple Queries: We �rst tried to see what happens with queries involving only one TP-operation.We compared compared the actual running times with the optimizer's estimated execution times.Table 13 contains the queries we tried, together with their actual and estimated execution times. Itcan be seen that the optimizer estimates exhibit an acceptable amount of accuracy, consistent withthe accuracy of traditional cost based query optimizers. In those cases where the actual and estimatedi�er, the di�erence appears to be due to inaccurate selectivity estimates. However, the optimizerstill seems to pick very good plans and seems to avoid very bad ones.Multiple Selection Queries: We wanted to study the behavior of our optimizer when select queriesinvolve all three types of selects (data, temporal, probabilistic). We created three queries shown inTable 14. There are 10 di�erent feasible query plans for each of these queries. Figure 12 enumerates,these plans, shows their running times, and uses a star to indicate which plan was picked by theoptimizer. As seen from the �gure, the optimizer was able to choose the cheapest plan for queries 1and 2, and the second best plan for query 3. The di�erence between the cheapest plan and the onethe optimizer picked was 0.3 secs.Multiple Joins: Next, we studied how our optimizer behaves when queries with two joins areexecuted. Table 15 shows four queries created by TCP. In each query, we chose TP-relations with41

Query Actual time Estimated Time�L>0:2(r1) 0.47s 0.637s�L>0:05(r1) 1.12s 1.169s�L=0:4(r1) 0.156s 0.494s�L<0:1(r1) 1.254s 1.643s�L<0:01(r1) 0.635s 0.855s�1900�1990(r1) 1.304s 1.506s�1950�2000(r1) 0.979s 1.209s�1970�1980(r1) 0.405s 0.977s�1960�2020(r1) 0.776s 1.129s�r1 :f1=r4:f1(r1 �ig r4) 0.56s 0.765s�r2 :f2=r3:f2(r2 �ig r3) 0.601s 0.764s�r5 :f2=r6:f2(r5 �ig r6) 0.562s 0.769s�r6 :f1=r8:f1(r6 �ig r8) 0.593s 0.76s�r8 :f2=r9:f2(r8 �ig r9) 0.622s 0.763sTable 13: Some Simple Queries, Their Estimated and Actual Running Times# Query1 �(f2<250)^ (1920�1990)^ (L<0:01)(r1)2 �(f2<250)^ (1970�1990)^ (L<0:2)(r1)3 �(f2<10)^ (1920�1980)^ (L<0:3)(r1)Table 14: Selection Queriesvarying number of average time points. There are three ways of executing these two join operation.Again, we executed those plans, and examined the optimizer's choice in each case. The results areshown in Figure 13' and the optimizer's choice is shown with a star. The reader will not that theoptimizer picked the best query plan in all four cases.# Query1 �(r1:f2=r6:f2)^ (r6:f2=r9:f2)(r1 �ig r6 �ig r9)2 �(r5:f2=r6:f2)^ (r6:f2=r1:f2)(r5 �ig r6 �ig r1)3 �(r1:f2=r2:f2)^ (r2:f2=r7:f2)(r1 �ig r2 �ig r7)4 �(r2:f2=r6:f2)^ (r6:f2=r9:f2)(r2 �ig r6 �ig r9)Table 15: Join QueriesSelection/Join Mix: We created three queries involving a join, a temporal and a probabilisticselect operation. Recall that temporal selects can be pushed into the join, but probabilistic selectscannot. Moreover, temporal selection can be pushed into the �rst argument, or the second argumentor both arguments of the join. We can execute the temporal select by using an index or without42

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3

query no

ex
ec

ut
io

n
tim

e

DPT

DTP

PDT

IPDT

PTD

IPTD

TDP

ITDP

TPD

ITPDFigure 12: Ordering of Data, Temporal and Probabilistic Selectsan index. Finally, we can commute temporal and probabilistic selects. Hence, there are 8 di�erentways of executing these queries; in 6 of those temporal selects are executed before the join, and in2 of them they are executed after the join. Figure 14 shows the actual execution times of these 8plans for the three queries provided in Table 16. Once again, we marked the optimizer's choice witha star. Although the optimizer was not able to pick the cheapest plan for the �rst query, it was ableto avoid very bad plans and furthermore, the di�erence in execution times between the plan chosenby the optimizer and the best plan was 0.311 secs. The optimizer chose the second best plan for thesecond query, and was able to pick the best plan for the last query.# Query1 �(r2:f2=r1 :f2)^ (2000�2010)^ (L>0:05)(r2 �ig r1)2 �(r5:f2=r8 :f2)^ (2100�2150)^ (L<0:4)(r5 �ig r8)3 �(r2:f2=r5 :f2)^ (2400�2500)^ (L<0:02)(r2 �ig r5)Table 16: Join Queries with SelectionsFinally, we made the previous join/selection mix queries more complex and created the queriesshown in Table 17. For the �rst and the third queries, the optimizer applied 674 rewrite rules togenerate a plan. The most promising plans and the one chosen by the optimizer are shown in Figure15. The optimizer was able to choose the best plan for the �rst two queries, and it chose a goodplan for the third query. The di�erence between the execution times of the best plan and the planthe optimizer chose for query 3 was 0.067secs.We conclude this section by reporting that our cost models are reasonably accurate and easy tocompute and that the optimizer does its job e�ectively. It quickly selects a query execution planthat is very good, while consistently avoiding bad plans.43

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4

query no

ex
ec

ut
io

n
tim

e

Figure 13: Ordering of Two Joins# Query1 �(r6:f2=r4:f2)^ (r6:f2=r8:f2)^ (r6:f2<50)^ (r4:f2<75)^ (r8:f2>25)^ (2500�2520)^ (L<0:1)(r6 �ig r4 �ig r8)2 �(r2:f2=r3:f2)^ (r3:f2=r5:f2)^ (r2:f2<25)^ (r3:f2=5)^ (2000�2070)(r2 �ig r3 �ig r5)3 �(r1:f2=r7:f2)^ (r7:f2=r8:f2)^ (r7:f2<75)^ (2100�2400)^ (L<0:3)(r1 �ig r7 �ig r8)Table 17: More Complex Queries7 Related WorkDyreson and Snodgrass [7] were one of the �rst to model temporal uncertainty using probabilitiesby proposing the concept of an indeterminate instant. Intuitively, an indeterminate instant is aninterval of time points with an associated probability distribution. They propose an extension of SQLthat supports (i) specifying which temporal attributes are indeterminate, (ii) correlation credibilitywhich allows a query to use uncertainty to modify temporal data | for example, by using anEXPECTED value correlation credibility, the query will return a determinate relation that retainsthe most probable time point for the event, (iii) ordering plausibility which is an integer between 1and 100 where 1 denotes that any possible answer to the query is desired while 100 denotes that onlya de�nite answer is desired, and (iv) specifying that certain temporal intervals are indeterminate.Later, [5] extended the work of Dyreson and Snodgrass [7] in the following ways. First, theyproposed TP-cases as a way of using constraints and probabilities together to store probabilistictemporal data. Then they developed an algebra extending the relational algebra to manipulatethis data. They used probability intervals (hence capturing point probabilities of Dyreson andSnodgrass [7] as a special case). They allowed users to specify in their queries, arbitrary knowledgethe user's may have about the dependencies between events, and in fact, their algebraic operators wereparameterized by these dependency assumptions. Speci�cally, all independence assumptions used in44

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3

query no

ex
ec

ut
ion

 tim
e

Figure 14: Ordering of a Join with Temporal and Probabilistic Selects[7] were eliminated in [5]. They also proposed a set of operations such as compaction that were notconsidered elsewhere. However, they did not incorporate some things that Dyreson and Snodgrasscould handle. For instance, they assumed tuples have only one indeterminate temporal attributewhile [7] allows more than one. Furthermore, they do not have analogs of correlation credibilityor ordering plausibility introduced by [7] and they use methods to store probability distributionsprovided by Dyreson and Snodgrass [7].This paper directly builds on the previous two works. Speci�cally, it provides cost models forTP-databases which apply in large part to both the preceding works, and it provides estimates ofcardinality and other statistical variables useful for query optimization. In addition, it derives auseful set of equivalence results that may be used for query rewriting. Using the software of [5], itbuilds what is to our knowledge, the �rst query optimizer for temporal probabilistic databases.The work also extends a host of work on probabilistic (non temporal !) databases. Kiessling et.al.'s DUCK system [15, 17] provides an elegant, logical, axiomatic theory for rule based uncertainty.Building on past work of Kifer and his colleagues [16], Lakshmanan and Sadri [22] show how selectedprobabilistic strategies can be used to extend the previous probabilistic models. Lakshmanan andShiri [23] have shown how deductive databases may be parameterized through the use of conjunctionand disjunction strategies. Barbara et al. [1] develop a point probabilistic data model and proposeprobabilistic operators. When performing joins, they assume that Bayes' rule applies (and hence, asthey admit up front, they make the assumption that all events are independent). Also, as they pointout, unfortunately their de�nition leads to a \lossy" join. Cavallo and Pittarelli [3]'s importantprobabilistic relational database model uses probabilistic projection and join operations, but theother relational algebra operations are not speci�ed. Also, a relation in their model is analogousto a single tuple in the framework of [1]. Dey and Sarkar [6] propose an elegant 1NF approachto handling probabilistic databases. They support (i) having uncertainty about some objects butcertain information about others, (ii) �rst normal form which is easy to understand and use, (iii)45

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3

query no

ex
ec

ut
ion

 tim
e

Figure 15: Plans for Complex Querieselegant new operations like conditionalization. The 1NF representation used by them is a special caseof the annotated representation of [5] who showed experimentally that when dealing the temporaluncertainty, the TP-representation is superior. Also, the semantics of some of the operations in [6]is di�erent from the semantics of the same operations in TPA. Another important work is theProbView system for probabilistic databases by Lakshmanan et. al. [20]. ProbView extends theclassical relational algebra by allowing users to specify in their query, what probabilistic strategy(or strategies) should be used to parameterize the query. ProbView removed the independenceassumption of previous works. However, ProbView has no notion of time, though ProbView scaledup well to massive numbers of tuples, it did not scale up well when massive amounts of uncertaintyare present as is the case with temporal probabilistic databases, where saying that an event sometimebetween Jan 1-4 yields a total of 4� 24� 60� 60 = 345; 600 seconds. Thus, if a temporal databaseuses seconds as it lowest level of temporal granularity, this gives rise to 345; 600 cases to representjust one statement | something that would quickly overwhelm ProbView. The work reported inthis paper speci�cally builds upon the idea of a probabilistic conjunctive strategy of [20] and appliesit to TP-databases. But in addition to these works, none of which provided statistical estimates ofvarious parameters/variables associated with TP-data, we do so, and we provide a cost model forsuch data and a query optimizer whose sole goal is to avoid the problems faced by purely probabilisticdatabase systems attempting to cope with huge amounts of uncertainty.There is also much work in the temporal database community that deals with uncertainty. Snod-grass was one of the �rst to model indeterminate instances in his doctoral dissertation [31] | heproposed the use of a model based on three valued logic. Dutta [9] and Dubois and Prade [8] laterused a fuzzy logic based approach to handle generalized temporal events | events that may occurmultiple times. Gadia [10] proposes an elegant model to handle incomplete temporal information aswell. He models values that are completely known, values that are unknown but are known to haveoccurred, values that are known if they have occurred, and values that are unknown even if they46

occurred. However, he makes no use of probabilistic information.Koubarakis [19] proposes the use of constraints for representing event occurrences. His frameworkallows stating the facts that event e1 occurred between 8 and 11 AM, and that event e2 occurs after12pm. From this, we may conclude that event e2 occurs after e1. While TP-tuples support this viaqueries, they do not explicitly encode this data into tuples, which Koubarakis can do.As mentioned earlier, though many of these works touch upon uncertainty, they do not provide thecomprehensive probability analysis provided in [7, 5]. They also do not propose statistical variablesto maintain information about TP-relations, and corresponding cost models which form the keycontributions of this paper.The only comparable work in the area of query processing and query optimization comes from the�eld of temporal databases. Salzberg and Tsotras provide an excellent overview of temporal indexingmethods developed in the community over the past decade [27]. Query optimization and cost modelsfor temporal databases have been studied in early 90s by Gunadhi and Segev [13, 14], and their studywas later continued by Soo, Snodgrass, Jensen and Slivinskas [33, 30]. Their research was primarilyconcentrated on designing e�cient algorithms for relational operations on temporal databases whichminimized I/O costs. These results, however, are not directly applicable to the TP-Databases, dueto the complex structure of the data model developed in [5]. Moreover, to our knowledge, this isthe �rst attempt to develop a detailed model for estimating the cost and cardinality of probabilisticselections.8 ConclusionsDatabases that contain nondeterministic temporal information are growing in importance. Importantwork in this �eld was started by Dyreson and Snodgrass [7] who proposed a probabilistic temporalmodel of such data. Dekhtyar et. al [5] extended the framework of [7] by proposing an extension ofthe relational algebra for such data, as well as by eliminating many assumptions about the data thatwas present in prior work.In this paper, we make additional contributions to the area of temporal probabilistic (TP) databases.First, we develop a TP calculus that is equivalent to the TP algebra in expressive power. Second,we develop a large set of equivalence results in such databases that constitute rewrite rules that aquery optimizer might use. Third, we develop a cost model for TP databases. Fourth, we haveimplemented our cost model and our rewrite rules in a prototype optimizer for TP databases. Usingthis implementation, we have evaluated (i) the accuracy of our cost model, (ii) the e�ectiveness ofour rewrite rules, and (iii) the e�ectiveness of our TP optimizer as a whole.References[1] D. Barbara, H. Garcia-Molina and D. Porter. (1992) The Management of Probabilistic Data,IEEE Trans. on Knowledge and Data Engineering, Vol. 4, pps 487{502.[2] M.H. B�ohlen, R.T. Snodgrass, and M.D. Soo. (1996) Coalescing in Temporal Databases, inProc. VLDB'96, pp. 180-191. 47

[3] R. Cavallo and M. Pittarelli. (1987) The Theory of Probabilistic Databases, in Proc. VLDB'87.[4] Codd, E. F. \Relational Completeness of Data Base Sublanguages", in [26], pages 65-98.[5] A. Dekhtyar, R. Ross and V.S. Subrahmanian, Probabilistic Temporal Databases, Part I:Algebra, ACM Transactions on Database Systems, vol 26, 1, pps 41{95, March 2001.[6] D. Dey and S. Sarkar. (1996) A Probabilistic Relational Model and Algebra, ACM Transac-tions on Database Systems, Vol. 21, 3, pps 339{369.[7] C. Dyreson and R. Snodgrass. (1998) Supporting Valid-Time Indeterminacy, ACM Transac-tions on Database Systems, Vol. 23, Nr. 1, pps 1|57.[8] D. Dubois and H. Prade. (1989) Processing Fuzzy Temporal Knowledge, IEEE Transactionson Systems, Man and Cybernetics, 19, 4, pps 729{744.[9] S. Dutta. (1989) Generalized Events in Temporal Databases, in Proc. 5th Intl. Conf. on DataEngineering, pp. 118{126.[10] S. Gadia, S. Nair and Y.C. Poon. (1992) Incomplete Information in Relational TemporalDatabases, in Proc. VLDB'92.[11] H. Garcia-Molina, J. D. Ullman and J. Widom, Database System Implementation, PrenticeHall, 2000[12] G. Graefe, (1995) The Cascades Framework for Query Optimization, in the Bulletin of theTC on Data Engineering, 18(3), pp 19-29.[13] H. Gunadhi, A. Segev (1990) A Framework for Query Optimization in Temporal Databasesin Proc. Conf. on Statistical and Scienti�c Database Management'1990,pp. 131-147.[14] H. Gunadhi, A. Segev (1991) Query Processing Algorithms for Temporal Intersection Joins,in Proc. ICDE'91, pp. 336-344.[15] U. Guntzer, W. Kiessling and H. Thone. (1991) New Directions for Uncertainty Reasoning inDeductive Databases, Proc. 1991 ACM SIGMOD, pp 178{187.[16] M. Kifer and A. Li. (1988) On the Semantics of Rule-Based Expert Systems with Uncer-tainty, 2-nd Intl. Conf. on Database Theory, Springer Verlag LNCS 326, (eds. M. Gyssens, J.Paredaens, D. Van Gucht), Bruges, Belgium, pp. 102{117.[17] W. Kiessling, H. Thone and U. Guntzer. (1992) Database Support for Problematic Knowledge,Proc. EDBT-92, pps 421{436, Springer LNCS Vol. 580.[18] G. Kollios, V.J. Tsotras: Hashing Methods for Temporal Data. To appear at IEEE Transac-tions on Knowledge and Data Engineering. 2001.[19] M. Koubarakis. (1994) Database Models for In�nite and Inde�nite Temporal Information,Information Systems, Vol. 19, 2, pps 141{173.[20] V.S. Lakshmanan, N. Leone, R. Ross and V.S. Subrahmanian. ProbView: A Flexible Proba-bilistic Database System.ACM Transactions on Database Systems, Vol. 22, Nr. 3, pp. 419{469.48

[21] V.S. Lakshmanan and F. Sadri. (1994) Modeling Uncertainty in Deductive Databases, inProc. Int. Conf. on Database Expert Systems and Applications, (DEXA'94), Lecture Notes inComputer Science, Vol. 856, Springer (1994), pp. 724-733.[22] V.S. Lakshmanan and F. Sadri. (1994) Probabilistic Deductive Databases, in Proc. Int. LogicProgramming Symp., (ILPS'94), MIT Press.[23] V.S. Lakshmanan and N. Shiri. (1996) Parametric Approach with Deductive Databases withUncertainty, in Proc. Workshop on Logic In Databases 1996, pp 61-81.[24] R. Ramakrishnan, J. Gehrke. (2000) Database Management Systems, 2nd Ed., McGraw-Hill.[25] S. Ross. (1998) A First Course in Probability, Prentice Hall, 1998.[26] Rustin, R. [1972]. Data Base Systems, Prentice-Hall, New Jersey, 1972.[27] B. Salzberg and V. Tsotras. (1999) Comparison of Access Methods for Time-Evolving Data,ACM Computing Surveys, vol 31, No. 2., pp. 158-221.[28] H. Samet. (1989) The Design and Analysis of Spatial Data Structures, Addison Wesley, Read-ing, MA.[29] J. Shoen�eld. (1967) Mathematical Logic, Addison Wesley.[30] G. Slivinskas, C.S. Jensen, R.T. Snodgrass. (2000) Query Plans for Conventional and Tem-poral Queries Involving Duplicates and Ordering, in Proc. ICDE-2000.[31] R.T. Snodgrass. (1982) Monitoring Distributed Systems: A Relational Approach, PhD disser-tation, Carnegie Mellon University.[32] R.T. Snodgrass, M. Soo, (1995) Supporting Multiple Calendars in R.T. Snodgrass (Ed.), TheTSQL2 Temporal Query Language, pp. 103-121, Kluwer, 1995.[33] M. D. Soo, R. T. Snodgrass, C. S. Jensen (1994) E�cient Evaluation of the Valid-TimeNatural Join, in Proc. ICDE'1994 pp. 282-29[34] D. Zhang, V.J. Tsotras, B. Seeger: E�cient Temporal Join Processing using Indices. Proc.ICDE'02 (to appear), San Jose, CA, Feb.-March 2002.[35] Q. Zhu and P. Larson. (1998) Solving Local Cost Estimation Problem for Global QueryOptimization in Multidatabase Systems, Journal of Distributed and Parallel Databases, 6(4),pp. 373{421.
49

A Proofs for the TP-Calculus TheoremsProof of Theorem 1: Suppose db is a TP-database, q is a TPA-query over db, and qi is a subqueryof q. We proceed by induction on the number of operators in q. This number is zero in the base casewhere q = r. Otherwise, q must obey the structure speci�ed in De�nition 19.Suppose Q is a TPC-query over db and Qi = fsi j F 0i g is a subquery of Q. By the inductivehypothesis, assume that TPA-query qi can be expressed as TPC-query Qi for all subqueries of q.Then TPA-query q can be expressed as TPC-query Q in the following way:1. If q = r, then Q = fs j s " rg.2. If q = �C(q1) where C = C1 ^ : : :^ Cn, then Q = fs j 9 s1 (F 01 ^ E1 ^ : : : ^ En)g where� Ei = s:A � c when Ci = (A � c).� Ei = s:C : s1:C @ T when Ci = T .� Ei = s:C : s1:P � p when Ci = (P � p).3. If q = �F(q1) where F = a1; : : : ; an, thenQ = fs j 9 s1 (F 01 ^ s:a1 = s1:a1 ^ : : : ^ s:an = s1:an)g.4. If q = �R(q1) where R1 = (a1; : : : ; an), thenQ = fs j 9 s1 (F 01 ^ s:R(a1) = s1:a1 ^ : : : ^ s:R(an) = s1:an)g.5. If q = �(q1), then Q = Q1.6. If q = (q1 �� q2) where R1 = (a1; : : : ; an) and R2 = (a01; : : : ; a0n0), thenQ = fs j 9 s1 (F 01 ^fh
;�i;h�;�idig 9 s2 (F 02 ^ s:a1 = s1:a1 ^ : : : ^ s:an = s1:an ^s:a01 = s1:a01 ^ : : : ^ s:a0n = s1:a0n0))g.7. If q = (q1 1� q2) where R1 = (a1; : : : ; an) and R2 = (a01; : : : ; a0n0), thenQ = fs j 9 s1 (F 01 ^fh
;�i;h�;�idig 9 s2 (F 02 ^ s:a1 = s1:a1 ^ : : : ^ s:an = s1:an ^s:a01 = s1:a01 ^ : : : ^ s:a0n = s1:a0n0))g.8. If q = ��(q1 \ : : :\ qn), then Q = fs j 9 s1 (F 01) ^fh�;�i;h�;�idig : : : ^fh�;�i;h�;�idig 9 sn (F 0n)g.9. If q = ��(q1 [: : :[qn), then Q = fs j 9 s1 (F 01) _fh�;�i;h�;�idig : : : _fh�;�i;h�;�idig 9 sn (F 0n)g.10. If q = q1 � q2, then Q = fs j 9 s1 (F 01) ^ :9 s2 (F 02)g. 3Proof of Theorem 2: Suppose db be a TP-database, s is a TP-variable over R; � , Q = fs j F 0g isa TPC-query over db, and Qi = fsi j F 0i g is a subquery of Q where si is a TP-variable over Ri; � .We proceed by induction on the structures given in De�nitions 21, 22, 23, 25, and 26.Suppose q is a TPA-query over db and qi is a subquery of q. By the inductive hypothesis, assumethat TPC-query Qi can be expressed as TPA-query qi for all subqueries of Q. Then TPC-query Qcan be expressed as TPA-query q in the following way:1. If Q = fs j s " rg, then q = r.2. If Q = fs j 9 s1 (F 01 ^ E)g, then q = �C(�F (�R(q1))) where� R(A1) = A for each TP-atom in E of the form s:A = s1:A1.� F = a1; : : : ; ak when R = (a1; : : : ; ak).� C = C1 ^ : : :^ Cn where 50

{ Ci = (A � c) when the i-th TP-atom in E is of the form s:A � c.{ Ci = T when the i-th TP-atom in E is of the form s:C : s1:C @ T .{ Ci = (P � p) when the i-th TP-atom in E is of the form s:C : s1:P � p.{ Ci = true when the i-th TP-atom in E is of the form s:A = s1:A1.3. If Q = fs j 9 s1 (F 01 ^
 9 s2 (F 02 ^ L))g where
 = fh
; �i; h�; �ig, thenq = �F (�R1(q1) 1� �R2(q2)) where� R1(A1) = A for each TP-linker in L of the form s:A = s1:A1. Otherwise, R1(A1) = A1.� R2(A2) = A for each TP-linker in L of the form s:A = s2:A2. Otherwise, R2(A2) = A2.� F = a1; : : : ; ak when R = (a1; : : : ; ak).4. If Q = fs j 9 s1 (F 01) � : : : � 9 sn (F 0n)g where
 = fh�; �i; h�; �ig, then� q = ��(q1 \ : : :\ qn) when � = ^
.� q = ��(q1 [: : :[qn) when � = _
.� q = q1 � : : :� qn when � = ^:. 3B Proofs of Equivalence ResultsThe proofs of query equivalence results contained in this section are all done using Theoretical Anno-tated Temporal Algebra (TATA), de�ned in [5] on annotated relations, the
at relational equivalents ofTP-relations. Each annotated relation consists of annotated tuples which have the form (d; t; Lt; Ut)where d is the data part of the tuple (a collection of relational attributes similar to the data part ofa TP-tuple), t is a single time point, and [Lt; Ut] � [0; 1] is a probability interval. The annotationoperation can be applied to TP-tuples to produce \equivalent" annotated relations.TATA has been de�ned in [5] on annotated relations. Except for TP-compression, which is speci�cto the format of TP-tuples, all other TPA operations have their analogs in TATA. It has been shown in[5] there that TPA operations correctly implement the semantics of corresponding TATA operations,i.e. the equivalences ANN(Op(r))� Op(ANN(r)) and ANN(Op(r; r0)) � Op(ANN(r);ANN(r0)) holdfor unary and binary operations respectively of the TPA and TATA.As annotated tuples are
at, reasoning in terms of annotations of TP-relations in proofs is lesscumbersome. The correct implementation theorems of [5], assure us that a query equivalence holdsin TPA i� it holds in TATA. Hence, we choose to prove equivalences in TATA to make our reasoningmore transparent and make the proofs shorter.Proof of Theorem 3.1. Selection. We prove the theorem statement for atomic selection conditions. Theorem 4 willensure that it holds for conjunctive selection conditions. Part 5 of this theorem will ensurethat it holds for disjunctive selection conditions.Three cases need to be considered.� Selection condition is on data. Then the idempotence of selection in TPA follows fromidempotence of selection in classical relational algebra [11].51

� Selection condition C is temporal. Let at = (d; t; L; U) 2 ANN(�C(r)). This means thattimepoint t satis�es selection condition C. But then, ANN(�C(�C(r))) will also containat, hence �C(r) � �C(�C(r)). The other subset inclusion, �C(�C(r)) � �C(r) follows fromthe de�nition of selection in TPA.� Selection condition C is probabilistic. Let at = (d; t; L; U) 2 ANN(�C(r)). This meansthat the probability interval [L; U] satis�es selection condition C. But then, ANN(�C(�C(r)))will also contain at, hence �C(r) � �C(�C(r)). The other subset inclusion, �C(�C(r)) ��C(r) follows from the de�nition of selection in TPA.2. Projection. Direct corollary of idempotence of projection in classical relational algebra [11]:projection in TPA a�ects only the data part of the tp-tuples.3. Compaction. In [5] compaction operation is de�ned to have the following three properties:� Compactness : �(r) is compact for all TP-relations r.� No Fooling Around (NFA) : If r is compact then ANN(�(r)) = ANN(r).� Conservativeness : If at = (d; t; Lt; Ut) 2 ANN(�(r)), then 9at0 = (d; t; L0t; U 0t) 2 ANN(r).Idempotence of compaction, therefore, follows from Compactness and NFA properties.4. Intersection. By de�nition (r \�� r) = ��(r \ r). Let at = (d; t; L; U) 2 ANN(r). ThenANN(r\ r) � ANN(r)\ANN(r) will contain two distinct instances of at. As r is compact,ANN(r) contains no other tuples for the pair d; t, and therefore, ANN(r\r0) will only containtwo distinct instances of at for the pair d; t. By Identity property of combination functions,�(f[L; U]; [L;U]g) = [L; U], therefore, ANN(��(r \ r)) � ��(ANN(r \ r)) will contain thetuple at0 = (d; t; L; U). As at0 = at, we have shown that r � r \�� r.Consider now an annotated tuple at = (d; t; L; U) 2 ANN(r\��r). By de�nition of intersection,r has to contain some tuple at0 = (d; t; L0; U 0), and as we know that r is compact, this tuplewill be unique for the pair d; t. But then, by the Identity property of the combination function,ANN(r \�� r) will contain the tuple at00 = (d; t; L0; U 0). As r \�� r is compact, at00 = at, i.e.,L0 = L and U 0 = U . But then at = at0 and therefore at 2 ANN(r). Hence, r \�� r � r.5. Union. By de�nition (r[�� r) = ��(r[r). Let at = (d; t; L; U) 2 ANN(r). Then ANN(r[r) �ANN(r)\ANN(r) will contain two distinct instances of at. As r is compact, ANN(r) containsno other tuples for the pair d; t, and therefore, ANN(r \ r0) will only contain two distinct in-stances of at for the pair d; t. By Identity property of combination functions, �(f[L; U]; [L; U]g) =[L; U], therefore, ANN(��(r [r)) � ��(ANN(r [r)) will contain the tuple at0 = (d; t; L; U).As at0 = at, we have shown that r � r \�� r.Consider now an annotated tuple at = (d; t; L; U) 2 ANN(r [�� r). By de�nition of union,r has to contain some tuple at0 = (d; t; L0; U 0), and as we know that r is compact, this tuplewill be unique for the pair d; t. But then, by the Identity property of the combination function,ANN(r [�� r) will contain the tuple at00 = (d; t; L0; U 0). As r [�� r is compact, at00 = at, i.e.,L0 = L and U 0 = U . But then at = at0 and therefore at 2 ANN(r). Hence, r [�� r � r.52

6. Di�erence. Consider an annotated tuple at = (d; t; L; U) 2 ANN(r). We show at 2 ANN(r�r0) i� at 2 ANN((r� r0)� r0). Let r00 denote r � r0. Two cases are possible:� There exists an annotated tuple at0 = (d; t; L0; U 0) 2 ANN(r0). In this case, by de�nitionof di�erence, at 62 ANN(r00). Also, as ANN(r00 � r0) � r (see de�nition of di�erence),at 62 ANN(r00� r0).� There is no tuple in ANN(r) for the pair d; t. In this case at 2 ANN(r00) = ANN(r�r0).But then, at also has to be in ANN(r00� r). 3Proof of Theorem 4.1. Selection. See Theorem 13 in [5].2. Projection. We prove �F(�G(r)) � �G\F . The other equivalence will follow.Let tp = (d;
) 2 r. Let d0 = �F (d). By de�nition of classical projection, d0 will only containattributes in F . Let d00 = �G(d0). Then, d00 will contain only attributes from G. Hence, d00 willcontain only attributes from F \ G, i.e., d00 = �F\G(d).By de�nition of projection in TPA, �F(r) will contain tp-tuple tp0 = (�F(d);
) = (d0;
) and�G(�F(r)) will contain tp-tuple tp00 = (�G(d0);
) = (d00;
). But also, �F\G(r) will containtp-tuple tp? = (�F\G(d);
) = (d00;
) = tp00. So, for every tuple tp = (d;
) 2 r both �G(�F(r))and �F\G(r) will contain the same tuple tp00 = (d00;
). Therefore, �G(�F(r)) � �F\G(r).3. Intersection. r \� r0 = �(r \ r0). Thus in order to show the commutativity of intersection, weneed to show commutativity of multiset intersection: r \ r0 � r0 \ r.By de�nition of multiset intersection in TATAANN(r \ r0) = ANN(r)\ ANN(r0) =fat = (t; d; L; U) 2 ANN(r)j(9at0 2 ANN(r0))(at0 = (t; d; L0; U 0)g]fat0 = (t; d; L0; U 0) 2 ANN(r0)j(9at 2 ANN(r))(at = (t; d; L; U)gand ANN(r0 \ r) = ANN(r0) \ANN(r) =fat0 = (t; d; L0; U 0) 2 ANN(r)j(9at 2 ANN(r))(at = (t; d; L; U)g]fat = (t; d; L; U) 2 ANN(r)j(9at0 2 ANN(r))(at0 = (t; d; L0; U 0)g:As], the multiset union operation is commutative, the above two expressions are equivalentand hence, ANN(r \ r0) � ANN(r0 \ r), yielding immediately r \ r0 � r0 \ r.4. Union. r [� r0 = �(r [r0). Thus in order to show the commutativity of intersection, we needto show commutativity of multiset union: r [r0 � r0 [r.By de�nition of multiset union in TATAANN(r[r0) = ANN(r)[ANN(r0) = ANN(r)]ANN(r0)and ANN(r0 \ r) = ANN(r0) \ ANN(r) = ANN(r0)] ANN(r):53

As], the multiset union operation (of set theory) is commutative, the above two expressionsare equivalent and hence, ANN(r[r0) � ANN(r0 [r), yielding immediately r [r0 � r0 [r.5. Di�erenceWe show that (r � r0)� r00 � r � (r0 [r00), the other equivalences follow from it.� (r� r0)� r00 � r � (r0 [r00).Let at = (d; t; L; U) 2 ANN((r� r0)� r00). Then by de�nition of di�erence, at 2 ANN(r� r0)and ANN(r00) contains no tuple for the pair d; t. As at 2 ANN(r � r0), it must be the casethat at 2 ANN(r) and ANN(r0) contains no tuple for the pair d; t.But then ANN(r0 [r00) will contain no tuples containing data part d and timepoint t. Asat 2 ANN(r), we get at 2 ANN(r)�ANN(r0 [r00) = ANN(r� (r0 [r)).� r � (r0 [r00) � (r� r0)� r00.Let at = (d; t; L; U) 2 ANN(r� (r0[r00). Then, by de�nition of di�erence, at 2 r and there isno tuple containing the pair d; t in ANN(r0[r00). Hence, there is no annotated tuple containingthe pair d; t in eiter ANN(r0) or ANN(r00). Then at 2 ANN(r)� ANN(r0) = ANN(r� r0)and consequently, at 2 ANN(r� r0)� ANN(r00) = ANN((r� r0)� r00).6. Cartesian Product.Recall that given two data tuples d and d0 we consider tuples (d; d0) and (d0; d) to be equivalent.Let at = (d; t; L; U) 2 r and at0 = (d0; t; L0; U 0) 2 r0. Then, ANN(r �� r0) will contain thetuple at? = (d; d0; t; L?; U?) where [L?; U?] = [L; U]
� [L0; U 0]. Also ANN(r0�� r) will containthe tuple at� = (d0; d; t; L�; U�), where [L�; U�] = [L0; U 0]
� [L; U]. By commutativity of
operation, [L; U]
� [L0; U 0] = [L0; U 0]
 [L; U], i.e. [L?; U?] = [L�; U�]. But then at? = at�.Therefore, for each pair of tuples in ANN(r) and ANN(r0) the same tuple will be found inANN(r��r0 and ANN(r0��) (if the tuples have the same timepoint). This proves the theorem.7. Join.Remember that r ./� r0 = �F(�C(r �� r0))2. But by commutativity of cartesian product,r �� r0 � r0 �� r, and thereforer ./� r0 = �F(�C(r �� r0)) � �F(�C(r0 � r)) = r0 ./� r: 3Proof of Theorem 5.1. Cartesian Product.� (r�� r0)�� r00 � r �� (r0 �� r00).Let at? = (d?; t; L?; U?) 2 ANN((r�� r0)�� r). Then, by de�nition of cartesian product, thereexist annotated tuples at1 = (d1; t; L1; U1) 2 ANN(r��r0) and at00 = (d00; t; L00; U 00) 2 ANN(r00)such that d? = (d1; d00) and [L?; U?] = [L1; U1]
� [L00; U 00]. Also, as at1 2 ANN(r�� r0), thereexist tuples at = (d; t; L; U) 2 ANN(r) and at0 = (d0; t; L0; U 0] 2 ANN(r0) such that d1 = (d; d0)and [L1; U1] = [L; U]
� [L0; U 0].2Ignoring the renaming of the attributes. 54

But then, ANN(r0 �� r00) will contain a tuple at2 = (d2; t; L2; U2) where d2 = (d0; d00) and[L2; U2] = [L0; U 0]
� [L00; U 00] and ANN(r�� (r0�� r00)) will contain a tuple at� = (d�; t; L�; U�)where d� = (d; d2) = (d; d0; d00) = d? and [L�; U�] = [L; U]
� [L2; U2] = [L; U]
 ([L0; U 0]
�[L00; U 00]) = ([L; U]
� [L0; U 0])
� [L00; U 00] = [L?; U?] by associativity of
. But then, since[L�; U�] = [L?; U?] we get at? = a� which proves the inclusion.� r �� (r0 �� r00) � (r �� r0)�� r00.Let at? = (d?; t; L?; U?) 2 ANN(r�� (r0�� r)). Then, by de�nition of cartesian product, thereexist annotated tuples at2 = (d2; t; L2; U2) 2 ANN(r0 �� r00) and at = (d; t; L; U) 2 ANN(r)such that d? = (d; d2) and [L?; U?] = [L; U]
� [L2; U2]. Also, as at2 2 ANN(r0 �� r00), thereexist tuples at0 = (d0; t; L0; U 0) 2 ANN(r0) and at00 = (d00; t; L00; U 00] 2 ANN(r00) such thatd2 = (d0; d00) and [L2; U2] = [L0; U 0]
� [L00; U 00].But then, ANN(r��r0) will contain a tuple at1 = (d1; t; L1; U1) where d1 = (d; d0) and [L1; U1] =[L; U]
� [L0; U 0] and ANN((r �� r0) �� r00) will contain a tuple at� = (d�; t; L�; U�) whered� = (d1; d00) = (d; d0; d00) = d? and [L�; U�] = [L1; U1]
� [L00; U 00] = ([L; U]
 [L0; U 0])
�[L00; U 00] = [L; U]
� ([L0; U 0])
� [L00; U 00]) = [L?; U?] by associativity of
. But then, since[L�; U�] = [L?; U?] we get at? = a� which proves the inclusion and the theorem.2. Join.Let R;R0 and R00 be the lists of data attributes for tp-relations r; r0 and r00 respectively.By de�nition of join(r ./� r0) ./� r00 = �R[(R0�R)(�^a2R\R0a=R(a)(r�� r0) ./� r00 =�(R[(R0�R))[(R00�(R[(R0�R)))(�^a2(R[(R0�R))\R00)a=R(a)(�R[(R0�R)(�^a2R\R0a=R(a)(r��r0))��r00)) =(by pushing selection through projection (Theorem 6, proved below) and pushing selection through cartesianproduct (Theorem 8, proved below))�(R[(R0�R))[(R00�(R[(R0�R)))(�R[(R0�R)(�^a2(R[(R0�R))\R00)a=R(a)(�^a2R\R0a=R(a)((r��r0)��r00)))) =�(R[(R0�R)[(R00�(R[(R0�R))))\(R[(R0�R))(�^a2((R[(R0�R))\R00))[(R\R0)a=R(a)((r �� r0)�� r00)):Similar reasoning leads tor ./� (r0 ./� r00) = �(R[((R0[(R00�R))�R))\(R[R0[(R00�R0))(�^a2(R\(R0[(R00�R0)))[(R0\R00)a=R(a)((r��(r0��r00)):By associativity of cartesian product (r �� r0)�� r00 � r �� (r0 �� r00).We will now show that the selection conditions and projection lists in the two expressions aboveare equivalent.Projection lists:(R [(R0 � R) [(R00� (R [(R0 � R))))\ (R [(R0 � R)) = ((R[(R0�R))\R)[((R00� (R[(R0�R)))\R00)[((R[(R0�R))\(R0�R))[((R00�(R[(R0�R)))\(R0�R))[((R[(R0�R))\R00)[((R00�(R[(R0�R)))\R00) = R[((R00�R)�((R\R)[((R0�R)\R)))[(R0�R)[((R00\(R0�R))�(R0�R))[((R\R0)[(R00\(R0�R)))[((R00\R00)�((R"\R)[(R00\(R0�R)))) =55

R [; [(R0 � R) [; [(R \ R00) [(R00 \ (R0 � R)) [(R00 � ((R00 \ R) [(R00 \ (R0 � R)))) =R [(R0 � R) [((R00� R) \ (R00 �R0)) = R [(R0 � R) [((R00� R0)� R)):(R [((R0 [(R00 � R))�R)) \ (R [R0 [(R00 �R0)) = (R \ R) [(R \ R0) [(R \ (R00 � R0)) [(((R0[(R00�R0))�R)[R)[(((R0[(R00�R0))�R)[R0)[(((R0[(R00�R0))�R)\(R00�R)) =R[(R\R0)[(R\(R00�R0))[(((R0[(R00�R0))\R)�(R\R))[(((R0\R0)[((R00�R0)\R0))�(R\R0))[(((R0\(R00�R0))[((R00�R0)\(R00\R0))�(R\(R00�R0))) = R[(R\R0)[(R\(R00�R0))[((R0\R)�R)\(R0�(R\R0))\(((R\(R00�R0))[(R00�R0))�(R\(R00�R0))) = R[(R\R0)[(R\(R00�R0))[(R0�R)[((R00�R0)�(R\(R00�R0))) = R [(R0 �R) [((R00 �R0)�R):Selection conditions:((R [(R0 �R)) \R00) [(R \R0) = (R [(R0 �R) [(R \R0))\ (R00 [(R \ R0)) = (R \ R00) [((R0 � R) \ R00) [(R \ R0 \ R00) [(R \ R0) [((R0 � R) \ R \ R0) [((R \ R0) \ (R \ R0)) =(R\R00)[(R00\(R0�R))[(R\R0)[(R\R0)[(R\R0\R00) = (R\R0)[(R\R00)[(R00\(R�R0)) =(R\R0)[((R\R00)�R0)[(R\R0\R00)[((R00\R0)�R) = (R \ R0) [(R0 \R00) [(R \ (R00 � R0)):(R \ (R0 [(R00� R0)) [(R0 \R00)) = (R[(R0\R00))\ (R0[(R00�R0)[(R0\R00)) = (R\R0)[(R\(R00�R))[(R\R0\R00)[((R0\R00)\(R0\R00))[((R0\R00)\R0)[((R0\R00)\(R00�R0)) =(R \ R0) [(R0 \R00) [(R \ (R00� R0)):Combined, the commutativity of the cartesian product and the equivalence of the projectionlists and selection conditions prove the associativity of join. 3Proof of Proposition 1.1. r \� r0 � r [� r0.Let at = (d; t; L; U) 2 ANN(r\� r0). We need to show at 2 r[� r0. By de�nition of intersection,r (and hence, ANN(r)) is compact. Therefore, at is the only tuple in ANN(r\� r0) for the paird; t. By de�nitions of intersection and compaction, we infer that there must be annotated tuplesati = (d; t; Li; Ui) 2 ANN(r \ r0), 1 � i � n, n � 2, such that �(f[Li; Ui]j1 � i � ng) = [L; U].But then, by de�nition of multiset intersection, each ati must belong to either ANN(r) orANN(r0) (with at least one tuple in each relation). Without loss of generality, assume thatat1; : : : ; atr 2 ANN(r) and atr+1; : : :atn 2 ANN(r0), for some 1 � r � n � 1. But then, byde�nition of multiset union, all ati belong to ANN(r [r0) and no other annotated tuple forthe pair d; t belongs to ANN(r [r0). Therefore, by de�nitions of the union and compactionANN(r[� r0) will contain tuple at0 = (d; t; L0; U 0) where [L0; U 0] = �(f[Li; Ui]j1 � i � ng). Butthen, [L0; U 0] = [L; U] and therefore at0 = at, i.e., at 2 ANN(r [� r0).2. r \ r0 6� r � (r � r0).In short: r\r0 will contain tuples from both r and r0, while r�(r�r0) by de�nition of di�erencewill contain only tuples from r.To be more speci�c, consider two annotated tuples at = (d; t; L; U) 2 ANN(r) and at0 =(d; t; L0; U 0) 2 ANN(r0). By de�nition of r \ r0, ANN(r \ r0) will contain both at and at0.On the other hand, ANN(r � r0) will contain no tuple for the pair (d; t), as at 2 ANN(r) andat0 2 ANN(r0). Therefore, ANN(r� (r � r0)) will contain at, as at 2 ANN(r) and no tuple ford; t is in ANN(r � r0). However, as at0 62 ANN(r), at0 62 ANN(r� (r� r0)).56

3. r � (r0 \ r00) � (r � r0) [(r� r00).� r � (r0 \ r00) � (r� r0) [(r � r00).Let at = (d; t; L; U) 2 ANN(r � (r0 \ r00)). Then at 2 ANN(r) and there is no tuple inANN(r \ r00) which would contain the d; t pair. Thus, two possibilities have to be considered:(i) neither ANN(r0), nor ANN(r00) contain tuples for the d; t pair and (ii) one of the two relations(either ANN(r0) or ANN(r00)) contains a tuple at0 = (d; t; L0; U 0).In case (i) both ANN(r � r0) and ANN(r � r00) will contain at, and therefore ANN((r � r0) [(r� r00)) will contain at.In case (ii) (assume, for simplicity that ANN(r0) contains tuple at0 as above; the other case issymmetric), ANN(r � r00) will contain at while ANN(r � r0) won't. But then, at 2 ANN((r �r0) [(r � r00)).� r � (r0 \ r00) � (r� r0) [(r � r00).Let, now at = (d; t; L; U) 2 ANN((r � r0) [(r � r00)). Then either at 2 ANN(r � r0) orat 2 ANN(r � r00) or at is in both ANN(r � r0) and ANN(r � r00).Let at 2 ANN(r�r0) and at 62 ANN(r�r00) (the case when at 2 ANN(r�r00) and at 62 ANN(r�r0) is symmetric). Then, at 2 ANN(r) and ANN(r0) contains no tuple at0 = (d; t; L0; U 0). Also,as at 2 ANN(r), it has to be the case that ANN(r00) contains some tuple at00 = (d; t; L00; U 00).However, as no tuple for d; t is in ANN(r0), ANN(r \ r0) will also contain no tuple for d; t andtherefore ANN(r � (r0 \ r00) will contain at.Now, in the case when both ANN(r�r0) and ANN(r�r00) contain at, we know that at 2 ANN(r)and neither ANN(r) nor ANN(r00) contains any tuples for the pair d; t. Then, ANN(r0 \ r00)will contain no tuple for d; t either, and therefore at 2 ANN(r � (r0 \ r00)).4. r � (r0 [r00) � (r � r0) \ (r� r00).� r � (r0 [r00) � (r� r0) \ (r � r00).Let at = (d; t; L; U) 2 ANN(r � (r0 [r00)). Then at 2 ANN(r) and there is no tuple inANN(r [r00) which would contain the d; t pair. Therefore, neither ANN(r0) nor ANN(r00)contain any tuple for d; t. But then, both ANN(r � r0) and ANN(r � r00) will contain at andtherefore, so will ANN((r� r0) \ (r� r00)).� r � (r0 [r00) � (r� r0) \ (r � r00).Let, now at = (d; t; L; U) 2 ANN((r � r0) \ (r � r00)). Then at 2 ANN(r � r0) and at 2ANN(r � r00), and therefore ar 2 ANN(r) and no tuple in either ANN(r0) or ANN(r00) willcontain the pair d; t. But then ANN(r0 [r00) will contain no such tuple as well, and becauseat 2 ANN(r), at 2 ANN(r � (r0 [r00)). 3Proof of Theorem 6.We prove this theorem for atomic constraints C. Then by Theorem 13 from [5] this will also holdfor non-atomic constraints. For an atomic constraint C three cases are possible.� C is a data constraint. In this case the statement of the theorem is true since a similar statementis true in classical relational algebra. The TP-case �eld of r is not \touched" by either F of C,and hence both selection and projection on r will behave exactly as they would in the absenceof the TP-case. 57

� C is a temporal constraint. We know that F contains only data �elds in it. We also know thatC does not refer to any data �eld. It is easy to see from this that the statement of the theoremholds.Indeed, let at = (d; t; l; u) be an annotated tuple from ANN(�C(�F (r))). Since C is a temporalconstraint, we know that t satis�es C. Since ANN(�C(r)) � ANN(r), we know that at 2ANN(�F(r)). Since ANN(�F(r)) = �F (ANN(r)), there exists an annotated tuple at0 =(d0; t; l; u) 2 ANN(r) such that d = P(d0). But then, since t satis�es C, at0 2 �C(ANN(r))and therefore, at 2 �F(�C(ANN(r))).Going the other way, let at = (d; t; l; u) 2 �F (�C(ANN(r))). Then, �C(ANN(r)) containsan annotated tuple at0 = (d0; t; l; u) where d = P(d0). Since (�C(ANN(r))) � (ANN(r)),at0 2 ANN(r), and therefore at 2 �F(ANN(r)). But at0 2 �C(ANN(r)) implies that tsatis�es C, and therefore it must be the case that at 2 �C(�F (ANN(r))).� C is a probabilistic constraint. As in the case above, F contains only data �elds while C refersonly to the contents of the TP-case �eld. Applying reasoning similar to the case of temporalconstraints we can establish that the statement of the theorem is true in this case as well. 3Proof of Theorem 7.� �C(��(r) � ��(�C(r)).Let at = (d; t; l; u) 2 ANN(�C(��(r)). We know that at satis�es C, and as C is either a dataor temporal constraint, we know that any annotated tuples at00 = (d; t; l00; u00) will also satisfyC.As at satis�es C and since ANN(�C(r0)) = �C(ANN(r0)) for any tp-relation r0, we knowthat at 2 ANN(��(r)). By the property of Conservativeness of �� there exists at least oneannotated tuple at0 = (d; t; l0; u0) 2 ANN(r). Now, let ANN(r)[d; t] = fat1; : : : ; atng, (81 �i � n)(ati = (d; t; li; ui)). We know that [l; u] = �(f[l1; u1]; : : : ; [ln; un]g). As it was noticedabove all at0 2 ANN(r)[d; t] satisfy C, and therefore, ANN(r)[d; t] � ANN(�C(r)). But asANN(�C(r)) � ANN(r), ANN(r)[d; t] = ANN(�C(r))[d; t]. Therefore, at = (d; t; l; u) willbe in ANN(��(�C(r))) which means that �C(��(r) � ��(�C(r)).� �C(��(r) � ��(�C(r)).Let at = (d; t; l; u) 2 ANN(��(�C(r))). By the Conservativeness property of �� operationwe know that there exists at least one annotated tuple tp0 = (d; t; l0; u0) 2 ANN(�C(r)).Let now ANN(�C(r))[d; t] = fat1; : : : ; atng, where for all 1 � i � n ati = (d; t; li; ui) and[l; u] = �(f[l1; u1]; : : : ; [ln; un]g). We know that all these annotated tuples satisfy C. Also, sincefor any tp-relation r and selection condition C0 ANN(�C0(r)) � ANN(r), ANN(�C(r))[d; t]�ANN(r). But since C is a data or temporal constraint, we know that all annotated tuples inthe set ANN(r)[d; t] must satisfy it. Therefore ANN(r)[d; t] = ANN(�C(r))[d; t].>From the latter equality and the fact that [l; u] = �(f[l1; u1]; : : : ; [ln; un]g) we get that at =(d; t; l; u) 2 ANN(��(r)). But we also know that at satis�es C as would any annotated tuple58

with data part d and temporal part t. Therefore at 2 ANN(�C(��(r))) which means that�C(��(r) � ��(�C(r)).As you may notice, the key step in the proof was the fact that in a tp-relation r, for any datapart d and timepoint t it was true that ANN(�C(r))[d; t] = ANN(r)[d; t] for temporal or data selectconditions C. This may not be true in the case when select condition is probabilistic. Therefore thestatement of the theorem above is not true for probabilistic select conditions. 3Proof of Theorem 8.1. �C1(r �� r0) � �C1(r)�� r0. We break the proof of this fact into two parts.� �C1(ANN(r�� r0)) � �C1(ANN((r))�� ANN(r0).Let at00 = (d00; t; l; u) 2 �C1(ANN(r�� r0)). Clearly, at00 2 ANN(r�� r0). As we know([5], Theorem 16), ANN(r �� r0) = ANN(r) �� ANN(r0), hence at00 = (d00; t; l; u) 2ANN(r)��ANN(r0). Then, by the de�nition of cartesian product on annotated relations,there exist two annotated tuples at = (d; t; l1; u1) 2 ANN(r) and at0 = (d0; t; l2; u2) 2ANN(r0) such that d = d; d0 and [l; u] = [l1; u1]
� [l2; u2]. As at00 2 �C1(ANN(r�� r0))we know that d00 satis�es C1. But since the only �elds mentioned in C1 are those fromthe relational schema of r (and ANN(r)), it must be the case that d satis�es C1 as d isthe part of d00. But then, at 2 �C1(r), and therefore at00 2 �C1(ANN(r))�� ANN(r0).� �C1(ANN(r�� r0)) � �C1(ANN((r))�� ANN(r0).Going the other way, we assume that at00 = (d00; t; l; u) 2 �C1(ANN(r)) �� ANN(r0).Clearly, then there exist two tuples at = (d; t; l1; u1) 2 ANN(r) and at0 = (d0; t; l2; u2)�C1(ANN(r0))such that d = d; d0 and [l; u] = [l1; u1]
� [l2; u2]. As at 2 �C1(ANN(r0)) we also knowthat at 2 ANN(r). But then at00 2 ANN(r)�� ANN(r0) = ANN(r�� r0). Also, sinceat 2 �C1(ANN(r0)) we know that d satis�es C1. Therefore, since C1 contains only ref-erences to the �elds from the relational schema of r (ANN(r)), d00 also satis�es C1 andtherefore at00 2 �C1(ANN(r�� r0)).2. �C2(r �� r0) � r �� �C2(r0).The proof of this part of the theorem is symmetric to the proof of part 1.3. �C(r �� r0) � �C(r)� �C(r0).We prove this statement similarly to the proof of the statement in part 1. 3Proof of Theorem 9.Let F be the list of join attributes of r and r0 and C 0 be the join condition. Then,1. �C1(r ./� r0) = �C1(�F(�C0(r �� r0))) � �F (�C1(�C0(r �� r0))) � �F(�C0(�C1(r �� r0))) ��F(�C0(�C1(r)�� r0)) � �C1(r) ./� r0:2. �C2(r ./� r0) = �C2(�F(�C0(r �� r0))) � �F (�C2(�C0(r �� r0))) � �F(�C0(�C2(r �� r0))) ��F(�C0(r�� �C2(r0))) � r ./� �C2(r0): 59

3. �C(r ./� r0) = �C(�F(�C0(r �� r0))) � �F(�C(�C0(r �� r0))) � �F(�C0(�C(r �� r0))) ��F(�C0(�C(r)�� �C(r0))) � �C(r) ./� �C(r0): 3Proof of Theorem 10.1. �C(r \� r0) � ��C(r) \� �C(r0) � r \� �C(r0) � �C(r) \� r0:First we prove the statement of the theorem for multiset intersection.� �C(r \ r0) � �C(r) \ �C(r0).Let at = (d; t; l; u) 2 ANN(�C(r\r0)). Then at satis�es C and as C is a data or temporalcondition, so would any annotated tuple at00 with data part d and temporal part t. AsANN(�C(r \ r0)) � ANN(r \ r0), at 2 r \ r0. Two cases are possible: (i) at 2 ANN(r)and (ii) at 2 ANN(r0). We will consider case (i), the remaining case is symmetric.As at 2 r we know that there has to be at least one tuple at0 = (d; t; l0:u0) 2 ANN(r0).As we have noticed above, at0 satis�es C. In this case at 2 ANN(�C(r)) and at0 2ANN(�C(r)). But then, at 2 ANN(�C(r))\ANN(�C(r0)), which shows that �C(r\r0) ��C(r) \ �C(r0).� �C(r \ r0) � �C(r) \ �C(r0). Let at = (d; t; l; u) 2 ANN(�C(r)\�C(r0)) = ANN(�C(r))\ANN(�C(r0)). There are two possibilities: (i) at 2 ANN(�C(r)) and (ii) at 2 ANN(�C(r0)).We will consider the �rst one, proof for the second case is symmetric.As at 2 ANN(�C(r)) we know that at satis�es C and also that at 2 ANN(r). Also, asat 2 ANN(�C(r)) \ ANN(�C(r0)), there has to be at least one tuple at0 = (d; t; l0; u0) 2ANN(�C(r0)). Clearly, at0 also satis�es C and at0 2 ANN(r0). But in this case fat; at0g �ANN(r \ r0) and as at satis�es C, at 2 ANN(�C(r \ r0)) proving that �C(r \ r0) ��C(r) \ �C(r0). 3Now r\� r0 = �(r\r0) and therefore, (using the result of the Theorem 7), we get: �C(r\� r0) =�C(�(r \ r0)) � �(�C(r \ r0)) � �(�C(r) \ �C(r0)) = �C(r) \� �C(r0). 32. �C(r [� r0) � �C(r) [� �C(r0).First we prove the statement for multiset union.� �C(r [r0) � �C(r) [�C(r0).Let at = (d; t; l; u) 2 ANN(�C(r [r0)). In this case at satis�es C and at 2 ANN(r [r0).Two possibilities exist: (i) at 2 ANN(r) and (ii) at 2 ANN(r0). We will consider the�rst one here, the proof for the other one is symmetric.As at 2 ANN(r) and at satis�es C, at 2 ANN(�C(r)), and therefore at 2 ANN(�C(r))[ANN(�C(r0)) = ANN(�C(r) [ANN(�C(r0)). This proves the desired subset inclusion.� �C(r [r0) � �C(r) [�C(r0). Let at = (d; t; l; u) 2 ANN(�C(r)[�C(r0)) = ANN(�C(r))[ANN(�C(r0)). As in the previous case, two possible situations exist: (i) at 2 ANN(�C(r))60

and (ii) at 2 ANN(�C(r0)). We consider the �rst possibility, the proof for the second onewill be symmetric.As at 2 ANN(�C(r)), at satis�es C and at 2 ANN(r). Then at 2 ANN(r)[ANN(r0) =ANN(r[r0). As at satis�es C, we concluded that at 2 ANN(�C(r [r0)). 3Now, r[� r0 = �(r[r0) and therefore, (using the result of the Theorem 7), we get: �C(r[�r0) =�C(�(r [r0)) � �(�C(r [r0)) � �(�C(r) \ �C(r0)) = �C(r) [� �C(r0). 33. �C(r � r0) � �C(r)� �C(r0) � �C(r)� r0:We prove the �rst equality. Second equality can be proven similarly.� �C(r � r0) � �C(r)� �C(r0). Let at = (d; t; l; u) 2 ANN(�C(r � r0)). Then at satis�esC and at 2 ANN(r � r0). In this case at 2 r and there are no tuples of the form(d; t; l0; u0) in r0.As at 2 r and at satis�es C, at 2 ANN(�C(r)). Also, we know that no tuple of theform (d; t; l0; u0) is in ANN(�C(r0)). But then, at 2 ANN(�C(r)) � ANN(�C(r0)) =ANN(�C(r)� �C(r0), which proves the desired inclusion.� �C(r � r0) � �C(r)� �C(r0). Let at = (d; t; l; u) 2 ANN(�C(r) � �C(r0)). In this case,at 2 ANN(�C(r)) and no tuple of the form (d; t; l0; u0) is in ANN(�C(r0)). Clearly, atsatis�es C and as C is either a data or a temporal constraint, any tuple of the form(d; t; l0; u0) would satisfy C. As �C(r) � (r), at 2 r. Also, we know that r0 does notcontain any tuples of the form (d; t; l0; u0) since otherwise, �C(r0) would have containedthem. But then, at 2 ANN(r � r0) and therefore at 2 ANN(�C(r � r0)), which showsthat �C(r� r0) � �C(r)� �C(r0). 3Proof of Theorem 11.� �C(r �� r0) � �C(�C(r)�� �C(r0)).As ANN(�C(r)) � ANN(r) and ANN(�C(r0)) � ANN(r0), the �C(r �� r0) � �C(�C(r) ���C(r0)) inclusion is immediate.We now concentrate on proving �C(r�� r0) � �C(�C(r)�� �C(r0)).Let C = L � x. The proof for L > x, U � x, U > x is similar. Let at = (d; t; L�; U�) 2ANN(�C(r �� r0)). Then L� � x, and at 2 ANN(r �� r0). By de�nition of cartesian product,there exist annotated tuples at0 = (d; t; L0; U 0) 2 ANN(r) and at00 = (d; t; L00; U 00) 2 ANN(r0)such that [L�; U�] = [L0; U 0]
� [L00; U 00].But, by the Bottomline axiom for probabilistic conjunction strategies, L� � min(L0; L00) andhence, L0 � x and L00 � x. Therefore, both at0 and at00 satisfy C and at0 2 ANN(�C(r)),and at00 2 ANN(�C(r0)). But then, at 2 ANN(�C(r) �� sigmaC(r0)), and as at satis�es C,at 2 ANN(�C(�C(r)�� �C(r0))). 3� �C(r ./� r0) � �C(�C(r) ./� �C(r0)). 61

�C(r ./� r0) � �C(�F(�C0(r �� r0))) � �F(�C(�C0(r �� r0)) � �F(�C0(�C(r �� r0)) ��F(�C0(�C(�C(r)���C(r0)))) � �F (�C(�C0(�C(r)���C(r0)))) � �C(�F (�C0(�C(r)���C(r0)))) ��C(�C(r) ./� �C(r0)): 3Proof of Theorem 12.� �C(r �pc r0) � (�C(r)�pc r0) [(r�pc �C(r0))Let C = L � x. The proofs for L < x, U � x and U < x are similar.� �C(r �pc r0) � (�C(r)�pc r0) [(r�pc �C(r0)).Let at = (d; t; L; U) 2 ANN(�C(r �pc r0)). Then at satis�es C (i.e., L � x) and at 2ANN(r �pc r0). By de�nition of cartesian product there exist two annotated tuples at0 =(d; t; L0; U 0) 2 ANN(r) and at00 = (d; t; L00; U 00) 2 ANN(r0) such that [L; U] = [L0; U 0]
pc[L00; U 00] = [min(L0; L00);min(U 0; U 00)]. Two cases are possible.(1) L = L0 (L0 � L00). In this case at0 = (d; t; L; U 0) and at0 satis�es C, therefore at0 2ANN(�C(r)). But then, from the above, at 2 ANN(�C(r)�pc r0).(2) L = L00 (L00 < L0). Reasoning analogously to case (1) we get at 2 ANN(r�pc �C(r0)).Combining two cases together we get at 2 ANN(�C(r)�pc r0) or at 2 ANN(r�pc �C(r0)). Butthen, at 2 ANN((�C(r)�pc r0) [(r�pc �C(r0))).� �C(r �pc r0) � (�C(r)�pc r0) [(r�pc �C(r0)).Let at = (d; t; L; U) 2 ANN((�C(r)�pc r0) [(r �pc �C(r0))). By de�nition of multiset union,two cases are possible.(1) at 2 ANN(�C(r)�pc r0). In this case there exist two annotated tuples at0 = (d; t; L0; U 0) 2ANN(�C(r)) and at00 = (d; t; L00; U 00) 2 ANN(r0) such that [L; U] = [L0; U 0]
pc [L00; U 00] =[min(L0; L00);min(U; U 00)]. As at0 2 ANN(sigmaC(r), at satis�es C and therefore L0 � x.But then as L = min(L0; L00) � L0, we get L � x, and therefore at satis�es C. Also, asat0 2 ANN(�C(r)) at is also in ANN(r). But them at 2 ANN(r�pc r0). As we have establishedthat at satis�es C, at 2 ANN(�C(r �pc r0)).(2) at 2 ANN(r �pc �C(r0)) and at 62 ANN(�C(r) �pc r0). In this case there exist two anno-tated tuples at0 = (d; t; L0; U 0) 2 ANN(�C(r)) and at00 = (d; t; L00; U 00) 2 ANN(r0) such that[L; U] = [L0; U 0]
pc [L00; U 00] = [min(L0; L00);min(U; U 00)]. Because at 62 ANN(�C(r) �pc r0),at0 62 ANN(�C(r)) and therefore at0 does not satisfy C, i.e., L0 > x. On the other hand,at00 2 ANN(�C(r0)) and therefore (i) at00 2 ANN(r0) and (ii) at satis�es C, i.e., L00 � x. Fromthe latter and L0 > x we conclude L00 < L and therefore L00 = min(L0; L00), i.e., L = L00. Butthen L � x and at satis�es C. as at00 2 ANN(r), at will be contained in ANN(r�pc r0) and asat satis�es C, at 2 ANN(�C(r�pc r0)). 3� �C(r ./pc r0) � (�C(r) ./pc r0) [(r ./pc �C(r0))Let F be the list of join attributes of r and r0 and let C 0 be the appropriate join condition.Then, 62

�C(r ./pc r0) = �C(�F (�C0(r �pc r0))) � �F(�C(�C0(r �pc r0))) � �F(�C0(�C(r �pc r0))) ��F(�C0((�C(r)�pcr0)[(r�pc�C(r0)))) � �F (�C0(�C(r)�pcr)[�C0(r�pc�C(r0))) � �F(�C0(�C(r)�pcr0)) [�F (�C0(r �pc �C(r0))) = (�C(r) ./pc r0) [(r ./pc �C(r0)). 3Proof of Theorem 13.1. �L�x(r �in r0) � �L�x(r�in �L� xMINL(r) (r0)) � �L�x(�L� xMINL(r0) (r)�in �L�MINL(r)x (r0)) ��L�x(�L� xMINL(r0) (r)�in r0).We show the �rst equivalence.� �L�x(r �in r0) � �L�x(r�in �L� xMINL(r) (r0))Let at = (d; t; L; U) 2 ANN(�L�x(r �in r0)). Then at satis�es the selection condition, i.e.L � x and also at 2 ANN(r �in r0).. Then, by de�nition of cartesian product, there exist twoannotated tuples at0 = (d; t; L0; U 0) 2 ANN(r) and at00 = (d; t; L00; U 00) 2 ANN(r0) such that[L; U] = [L0; U 0]
in [L00; U 00] = [L0 � L00; U 0 � U 00]. As L � x, L0 � L00 � x and therefore L00 � xL0 .As MINL(r) � L0, L00 � xL0 � xMINL(r). But then at00 2 ANN(�L� xMINL(r) (r0) and therefore,at 2 ANN(r �in �L� xMINL(r) (r0) as at satis�es L � x, at 2 ANN(�L�x(r�in �L� xMINL(r) (r0))).� �L�x(r �in r0) � �L�x(r�in �L� xMINL(r) (r0))Let at = (d; t; L; U) 2 ANN(�L�x(r �in �L� xMINL(r) (r0)). Then, at satis�es L � x conditionand at 2 ANN((r �in �L� xMINL(r) (r0)). By de�nition of cartesian product, there exist twoannotated tuples at0 = (d; t; L0; U 0) 2 ANN(r) and at00 = (d; t; L00; U 00) 2 ANN(�L� xMINL(r) (r0)such that [L; U] = [L0; U 0]
in [L00; U 00] = [L0 � L00; U 0 � U 00]. Than at00 2 ANN(r0). But thenat 2 ANN(r �in r0) and as at satis�es L � x, at 2 ANN(�L�x(r�in r0)). 32. �L<x(r �in r0) � �L<x(r�in �L< xMINL(r) (r0)) � �L<x(�L< xMINL(r0) (r)�in �L< xMINL(r) (r0)) ��L<x(�L< xMINL(r0) (r)�in r0).We show the second equivalence.� �L<x(r �in r0) � �L<x(�L< xMINL(r0) (r)�in �L< xMINL(r) (r0)).Let at = (d; t; L; U) 2 ANN(�L�x(r �in r0)). Then at satis�es the selection condition, i.e.L � x and also at 2 ANN(r �in r0).. Then, by de�nition of cartesian product, there exist twoannotated tuples at0 = (d; t; L0; U 0) 2 ANN(r) and at00 = (d; t; L00; U 00) 2 ANN(r0) such that[L; U] = [L0; U 0]
in [L00; U 00] = [L0 � L00; U 0 � U 00]. As L � x, L0 � L00 � x and therefore L00 � xL0 .As MINL(r) � L0, L00 � xL0 � xMINL(r). Reasoning similarly, L0 � xL00 and MINL(r0) � L00yield L0 � xMINL(r0) .But then at00 2 ANN(�L� xMINL(r) (r0) and at0 2 ANN(�L� xMINL(r0) (r). Therefore,at 2 ANN(�L� xMINL(r0) (r)�in �L� xMINL(r) (r0)). As at satis�es L � x,at 2 ANN(�L�x(�L� xMINL(r0) (r)�in �L� xMINL(r) (r0))).� �L<x(r �in r0) � �L<x(�L< xMINL(r0) (r)�in �L< xMINL(r) (r0)).Let at = (d; t; L; U) 2 ANN(�L�x(�L< xMINL(r0) (r)�in �L� xMINL(r) (r0)). Then, at satis�es L �x condition and at 2 ANN((�L< xMINL(r0) (r) �in �L� xMINL(r) (r0)). By de�nition of cartesianproduct, there exist two annotated tuples at0 = (d; t; L0; U 0) 2 ANN(�L< xMINL(r0) (r)) and at00 =63

(d; t; L00; U 00) 2 ANN(�L� xMINL(r) (r0) such that [L; U] = [L0; U 0]
in [L00; U 00] = [L0 �L00; U 0 � U 00].Than at0 2 ANN(r) and at00 2 ANN(r0). But then at 2 ANN(r�in r0) and as at satis�es L � x,at 2 ANN(�L�x(r �in r0)). 33. �U�x(r�in r0) � �U�x(r�in �U� xMINU(r) (r0)) � �U�x(�U� xMINU(r0) (r)�in �U� xMINU(r) (r0)) ��U�x(�U� xMINU(r0) (r)�in r0).We prove the third equivalence.� �L�x(r �in r0) � �L�x(�L� xMINL(r0) (r)�in r0)Let at = (d; t; L; U) 2 ANN(�L�x(r �in r0)). Then at satis�es the selection condition, i.e.L � x and also at 2 ANN(r �in r0).. Then, by de�nition of cartesian product, there exist twoannotated tuples at0 = (d; t; L0; U 0) 2 ANN(r) and at00 = (d; t; L00; U 00) 2 ANN(r0) such that[L; U] = [L0; U 0]
in [L00; U 00] = [L0 �L00; U 0 �U 00]. As L � x, L0 �L00 � x and therefore L0 � xL00 . AsMINL(r0) � L00, L0 � xL0 � xMINL(r0) . But then at0 2 ANN(�L� xMINL(r0) (r) and therefore, at 2ANN(�L� xMINL(r0) (r)�in r0 and, as at satis�es L � x, at 2 ANN(�L�x(�L� xMINL(r0) (r)�in r0)).� �L�x(r �in r0) � �L�x(r�in �L� xMINL(r) (r0))Let at = (d; t; L; U) 2 ANN(�L�x(�L� xMINL(r0) (r) �in r0). Then, at satis�es L � x conditionand at 2 ANN(�L� xMINL(r0) (r) �in r0). By de�nition of cartesian product, there exist twoannotated tuples at00 = (d; t; L00; U 00) 2 ANN(r0) and at0 = (d; t; L0; U 0) 2 ANN(�L� xMINL(r0) (r)such that [L; U] = [L0; U 0]
in [L00; U 00] = [L0 � L00; U 0 � U 00]. Than at0 2 ANN(r). But thenat 2 ANN(r �in r0) and as at satis�es L � x, at 2 ANN(�L�x(r�in r0)). 34. �U<x(r�in r0) � �U<x(r�in �U< xMINU(r) (r0)) � �U<x(�U< xMINU(r0) (r)�in �U< xMINU(r) (r0)) ��U<x(�U< xMINU(r0) (r)�in r0).Proof of the �rst equivalence is analogous to the proof in part 1 of this theorem. Proof ofthe second equivalence is analogous to the proof in part 2 of this theorem. Proof of the thirdequivalence is analogous to the proof in part 3 of this theorem. 3Proof of Theorem 14.Let at1 = (d; t; L1; U1); : : : ; atn = (d; t; Ln; Un), be all annotated tuples in ANN(r) for the pair d; t.Let F be a list of manifest attributes, and let d0 = �F(d). Then, ANN(�F (r)) will contain tuplesat01; : : : ; at0n where at0i = (d0; t; Li; Ui), for 1 � i � n. But then, ANN(��(�F(r))) will contain thetuple at0 = (d; t; L0; U 0) where [L0; U 0] = �([L1; U1]; : : : ; [Ln; Un]).Now, consider ANN(��(r)). This relation will contain annotated tuple at = (d; t; L; U) where[L; U] = �([L1; U1]; : : : ; [Ln; Un]) = [L0; U 0]. But then, ANN(�F(��(r))) will contain the tuple at00 =(d0; t; L0; U 0) = at0. The latter equality proves the theorem. 3Proof of Theorem 15.� Intersection. We show the statement of the theorem for multiset intersection. Then, by Theorem14, it will also hold for intersection.� �F(r \ r0) � �F(r) \ �F(r0).Let at0 = (d0; t; L0; U 0) 2 ANN(�F(r \ r0)). Then, by de�nition of projection, there exists an64

annotated tuple at = (d; t; L0; U 0) 2 ANN(r \ r0), such that d0 = �F(d). As at 2 ANN(r \ r0),either at 2 ANN(r) or at 2 ANN(r0). Consider the former case, the latter is symmetric. at 2ANN(r\r0) and at 2 ANN(r) implies that there exists an annotated tuple at00 = (d; t; L00; U 00) 2ANN(r \ r0) such that at00 2 ANN(r0). But then, ANN(�F (r)) contains the tuple at0 =(d0; t; L0; U 0) and ANN(�F(r0)) contains the tuple at� = (d0; t; L00; U 00). As at0 and at� are dataand time-identical, ANN(�F(r) \ �F (r0) will contain both at0 and at�.� �F(r \ r0) � �F(r) \ �F(r0).Let at0 = (d0; t; L0; U 0) 2 ANN(�F(r) \ �F(r0). Then either at0 2 ANN(�F(r)) or at0 2ANN(�F(r0)). Consider the �rst case, the other case is symmetric.at0 2 ANN(�F(r)) and at0 = (d0; t; L0; U 0) 2 ANN(�F(r) \ �F(r0) implies that there exists anannotated tuple at00 = (d0; t; L00; U 00) 2 ANN(�F (r) \ �F (r0) such that at00 2 ANN(�F(r0)).But then, ANN(r) contains the tuple at = (d; t; L0; U 0) and ANN(r0) contains the tuple at� =(d; t; L00; U 00) where d0 = �F(d). Therefore, as at and at� are data- and time-identicals, both atand at� are contained in ANN(r\r0). But then, ANN(�F(r\r0)) will contain at0 = (d0; t; L0; U 0)which proves the theorem. 3� Union. We prove the theorem for multiset union. Then, by Theorem 14, it will also hold forunion.� �F(r [r0) � �F(r) [�F(r0).Let at0 = (d0; t; L0; U 0) 2 ANN(�F(r [r0)). Then, by de�nition of projection, there exists anannotated tuple at = (d; t; L0; U 0) 2 ANN(r [r0), such that d0 = �F(d). As at 2 ANN(r [r0),either at 2 ANN(r) or at 2 ANN(r0). Consider the former case, the latter is symmetric. As at 2ANN(r), ANN(�F(r)) contains the tuple at0 = (d0; t; L0; U 0) and therefore ANN(�F(r)[�F(r0)also contains at0.� �F(r [r0) � �F(r) [�F(r0).Let at0 = (d0; t; L0; U 0) 2 ANN(�F(r) [�F(r0). Then either at0 2 ANN(�F(r)) or at0 2ANN(�F(r0)). Consider the �rst case, the other case is symmetric.As at0 2 ANN(�F(r)) , ANN(r) contains the tuple at = (d; t; L0; U 0) where d0 = �F (d). There-fore, as at is contained in ANN(r[r0). But then, ANN(�F(r[r0)) will contain at0 = (d0; t; L0; U 0)which proves the theorem. 3� Di�erence.� �F(r � r0) � �F(r)� �F (r0).Let at0 = (d0; t; L; U) 2 ANN(�F (r�r0)). Then, by de�nition of projection, ANN(r�r0) containsthe tuple at = (d; t; L; U) where d0 = �F(d). Then, by de�nition of di�erence, at 2 ANN(r)and ANN(r0) contains no tuple for the pair d; t. But then, at0 = �F (at) 2 ANN(�F (r)) andANN(�F(r0)) contains no tuple for the pair d0; t. Therefore, at0 2 ANN(�F(r)� �F(r0)).� �F(r � r0) � �F(r)� �F (r0).Let at0 = (d0; t; L; U) 2 ANN(�F(r) � �F(r0)). Then at0 2 ANN(�F(r)) and ANN(�F(r0))65

contains no tuple for the pair d0; t. But then, ANN(r) contains the tuple at = (d; t; L; U) whered0 = �F(d) and ANN(r0) contains no tuple for the pair d; t. This means that at 2 ANN(r� r0)and therefore at0 2 ANN(�F(r � r0)). 3Proof of Theorem 16.� �F[F 0(r�� r0) � �F(r)�� �F 0(r0)� �F[F 0(r �� r0) � �F(r)�� �F 0(r0).Let at = (d; t; L; U) 2 ANN(�F[F 0(r�� r0)). Then, by de�nition of projection, there exists anannotated tuple at� = (d�; t; L; U) 2 ANN(r �� r0) such that d = �F[F 0(d�). By de�nition ofcartesian product, there exist two annotated tuples at0 = (d0; t; L0; U 0) 2 ANN(r) and at00 =(d00; t; L00; U 00) 2 ANN(r0) such that d� = (d0; d00) and [L; U] = [L0; U 0]
� [L00; U 00]. But then,�F(r) contains the tuple at? = (d?; t; L0; U 0) where d? = �F (d0) and ANN(�F 0(r0)) contains thetuple at?? = (d??; t; L00; U 00) where d?? = ANN(�F 0(r0)). But then, ANN(�F(r)�� �F 0(r0)) willcontain the tuple at1 = ((d?; d??); t; L1; U1) where [L1; U1] = [L0; U 0]
� [L00; U 00]. We notice nowthat [L1; U1] = [L; U] and that (d?; d??) = (�F (d0); �F 0(d00)) = �(F [F 0)(d0; d00) = �F[F 0(d�) =d. Therefore, at1 = at and at 2 ANN(�F(r)�� �F 0(r0)).� �F[F 0(r �� r0) � �F(r)�� �F 0(r0).Let at = (d; t; L; U) 2 ANN(�F(r)�� �F 0(r0). Then, by de�nition of cartesian product, thereexist annotated tuples at0 = (d0; t; L0; U 0) 2 ANN(�F(r) and at00 = (d0; t; L0; U 0) 2 ANN(�F 0(r0),such that d = (d0; d00) and [L; U] = [L0; U 0]
� [L00; U 00]. But then, there exists an annotatedtuple at? = (d?; t; L0; U 0) 2 ANN(r) and an annotated tuple at?? = (d??; t; L00; U 00) 2 ANN(r0)such that d0 = �F(d?) and d00 = �F 0(d??). But then, ANN(r �� r0) contains the tuple at� =(d�; t; L�; U�) where d� = (d?; d??) and [L�; U�] = [L0; U 0]
� [L00; U 00] = [L; U]. Then, byde�nition of projection ANN(�F[F 0(r�� r0)) contains the tuple at1 = (d1; t; L; U) where d1 =�F[F 0(d�) = �F[F 0(d?; d??) = (�mathcalF (d?); �F 0(d??) = (d0; d00) = d. Therefore at1 = at andat 2 ANN(�F[F 0(r �� r0)), which completes the proof. 3� �F[F 0(r ./� r0) � �F(r) ./� �F 0(r0).Let G denote the list of attributes to remain in the join and let C denote the join condition.Recall that G � F and G � F 0. Then,�F[F 0(r ./� r0) � �F[F 0(�G(�C(r �� r0))) � �G(�F[F 0(�C(r �� r0))) � �G(�C(�F[F 0(r ��r0))) � �G(�C(�F(r)�� �F 0(r0))) � �F(r) ./� �F 0(r0). 3
66

