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Abstract

There is a vast class of applications in which we know that a certain event occurred, but do
not know exactly when it occurred. However, as studied by Dyreson and Snodgrass [7], there
are many natural scenarios where probability distributions exist and quantify this uncertainty.
Dekhtyar et. al. extended Dyreson and Snodgrass’s work and defined an extension of the relational
algebra to handle such data [5]. The first contribution of this paper is a declarative temporal
probabilistic (TP for short) calculus which we show is equivalent in expressive power to the
temporal probabilistic algebra of [5]. Our second major contribution is a set of equivalence and
containment results for the TP-algebra. Our third contribution is the development of cost models
that may be used to estimate the cost of TP-algebra operations. Our fourth contribution is an
experimental evaluation of the accuracy of our cost models and the use of the equivalence results
as rewrite rules for optimizing queries by using an implementation of TP-databases on top of

ODBC.

1 Introduction

Dyreson and Snodgrass [7] pioneered the study of uncertainty in temporal databases where statements
of the form “Event e occurred or will occur at some time point in the time interval [t;,t;]” are
permitted. Such statements are common. For instance, a shipper like Federal Express may tell
customers that their package will be delivered within 24 hours of dropoff. In such a case, if the
smallest unit of time about which reasoning is performed is a minute, then there are (24 x 60)
minutes at which the package may be possibly delivered. However, over this time-frame, there is
a probability distribution reflecting the probability that the package will be delivered precisely ¢
minutes after dropoff. Such a probability distribution may be skewed (e.g. the probability that the
package is delivered within 3 hours is probably zero if the package has to make its way from Seattle
to Boston). Dyreson and Snodgrass [7] developed this idea substantially to provide a framework for
reasoning about temporal-probabilistic data. They also provided applications in a variety of other
areas including carbon-dating of historical records and stock market analysis. For example, there
are literally hundreds of programs that make stock market predictions — most prediction models
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are uncertain and provide probabilistic outputs. In the same vein, statistical models that track
performance of machines and machine parts on a factory floor yield probabilistic estimates of when
the parts will need to be repaired and/or replaced. Decision making programs for such applications
typically execute calls to the results of suc predictions.

Following on the important work of Dyreson and Snodgrass [7], work, Dekhtyar et. al. [5] developed
a “temporal probabilistic algebra” (TPA) which eliminated many of the assumptions in the framework
of [7].

We start this paper with a brief overview of TP-databases in Section 2. We then move on to our

specific contributions.

1. First, in Section 3, we develop a temporal probabilistic calculus (TP-calculus for short). We
show that this calculus, which is similar to the safe relational calculus, has the nice property

that it is equivalent in expressive power to the TP-algebra.

2. Second, in Section 4, we develop a set of query equivalence results in the TP-algebra. These
equivalences automatically yield a set of rewrite rules that a query optimizer for TP-databases

might use.

3. Third, in Section 5, we develop mechanisms to estimate the cost of executing a TP-algebra
query. Even though TP-algebra operations are implemented on top of a relational database,
these operations are not mere relational algebra queries — implementing them on top of the
relational algebra involves writing a C++ program that includes embedded SQL calls. Costing
such programs builds on top of cost models of relational operators, but involves taking into
account, the specific aspects of the programs themselves. Our cost models involve identifying
a set of statistics to be stored about the data, as well as methods to compute such statistics

for intermediate results obtained during query processing.

4. Fourth, in Section 6, we conduct a set of experiments to evaluate three things. Our first goal
is to assess the accuracy of our cost model. Our second goal is to assess the effectiveness
of our rewrite rules. The third goal is to assess the efficiency of a query optimizer based on
this cost model and these rewrite rules. Experiments were run using our implementation of
TP-databases which is built on top of ODBC (using Paradox as a back-end).

We compare our work with related work in Section 7 and finally conclude with directions for further

research.

2 Preliminaries: TP-Databases Overview

In this section, we recapitulate the notions of a Temporal Probabilistic database (TP-database) and
the Temporal Probabilistic Algebra (TPA). Full details may be found in [5].

2.1 Temporal-Probabilistic DB Model

To make statements about when certain events occurred, or when certain facts were/will be true,

TP-databases use a calendar (cf. Snodgrass and Soo [32]) and temporal constraints.



Calendar: A calendar T consists of an ordered list of time units. For example, (day, month, year) is
a possible calendar. Fach time unit has a finite domain associated with it. Given a calendar 7 over
time units (tuq,...,tu,), a time point is an expression of the form (v1,...,v,) where each v; is in
the domain of tu;. For instance, w.r.t. the example calendar, (25,5,2000) is a time point.

Temporal constraint: Temporal constraints are inductively defined. (i) If tu is a time unit, op € {<
,<,=,#,>,>}, and v € dom(tu), then (fu op v) is a temporal constraint over .
(i) If 1,72 are time points in 7 and ¢ < g, then (#1 ~ {3) is a temporal constraint over T.
(i) If €7 and Cy are temporal constraints then so are (C7 A Cs), (C1 V C3) and (=Cq).

The syntax (1 ~ t3) is a shorthand for the constraint (¢; < t < #3). We abuse notation and
write (t1) instead of (¢; ~ ¢1). Solutions of temporal constraints (denoted sol(C')) are defined in the
obvious way. For example, the constraint ((12:05 ~ 12:14) v (12:45 ~ 12:50)) has as its solutions all
time points between 12:05pm to 12:15pm, as well as all time points between 12:45pm to 12:50pm.

Probability Distribution Function (PDF): Let S; be the set of all temporal constraints over
calendar 7. Then the function ¢ : S, x 7 — [0,1]is a PDFif (VD € &) (Vt € sol(D)) (p(D,t)=0).
Furthermore, ¢ is a restricted PDFif (VD € S;) (X iesopy (D, 1) < 1).

This definition of a PDF is rich enough to capture almost all probability mass functions (e.g.
uniform, geometric, binomial, Poisson, etc.) studied in classical probability theory [25]. Furthermore,
probability density functions can be approximated by PDFs via a process of quantization.

TP-case: A TP-case over calendar 7 is a 5-tuple (C, D, L, U, ¢) where (i) C' and D are temporal
constraints over 7, (i) § C sol(C') Csol(D), (ii) 0 < L < U <1, and (iv) ¢ is a restricted PDF.

For example, ((12:05 ~ 12:14), (12:05 ~ 12:19), 0.5, 0.6, u) is a TP-case where ¢ is a uniform
distribution. Intuitively, C' specifies the time points when an event is valid while D specifies the
time points that are distributed by 8. Since sol(C') C sol(D), it follows that § assigns a probability
interval to each time point ¢ € sol(C'). Specifically, let Pr((C, D, L,U,¢),t) denote 6(D,t)-[L,U].

Alternatively, § could be defined as (g, prr) where gy, is a restricted PDF, g7 is a (unrestricted)
PDF, and (Vt € sol(C)) (pr(D,t) - L < py(D,t)-U). This generalization is useful when the lower
and upper probability bounds do not follow the same distribution. Here, Pr((C, D, L,U,(¢r, 9u)), 1)
denotes the probability interval [pr(D,?)- L, pu(D,t) - U]. Although extending ¢ to a pair of PDF's
is straightforward, we avoid this redefinition in order to maintain better compatibility with [5].

TP-tuple: A TP-tuple over relation scheme R = (Aq,..., A;) and calendar 7 is a pair (d,I') where
d is a relational k-tuple over R and I' is a nonempty TP-case statement over 7, i.e., I' is a set of
TP-cases over T where (V7y;,7; € T') ((i # j) — sol(7;,.C' Ay;.C) = 0).

In the following, suppose R is a relation scheme and 7 is a calendar over (tuq,...,tu,).
TP-table: A TP-table over R, T is a multiset of TP-tuples over R, T.
TP-relation: A TP-relation v over R, 7 is a TP-table over R, 7 where R is a superkey for r.
TP-database: A TP-database over T is a set of TP-tables over 7.

Annotation: The annotation of TP-relation r over R, produces a relation ANN(r) over relation



scheme (R, tuy, ..., tuy, Ly, U;) where dom(Ly) = dom(Uy;) = [0, 1] and

ANN(r) ={(d,t, L, U) | AT)(Fve D) ((d,I')€r At e€sol(y.C) A [L, U] = Pr(v,1))}

Equivalence: TP-relations r and ' are equivalent, denoted r = ', iff ANN(r) = ANN(+/).

Example 1 (Base TP-relations) The following TP-relations are named TrainDep and BusArr:

|| TrainNo | From | To || C | D | L | U | 6 ||
151 Baltimore | New York || (12:05 ~ 12:14) | (12:05 ~ 12:14) | 0.5 | 0.6 u
(12:15 ~ 12:20) | (12:15 ~ 12:20) | 0.3 | 0.4 | 4,0.5

|| BusNo | From | To || C | D | L | U | 1) ||
23 Rockville | Baltimore || (12:12 ~ 12:16) | (12:12 ~ 12:16) | 0.5 | 0.5 | 4,0.5
(12:17 ~ 12:26) | (12:17 ~ 12:26) | 0.5 | 0.5 | u

The second TP-case in TrainDep says that there is a 30-40% probability that train number 151 from
Baltimore to New York will depart between 12:15 and 12:20. Furthermore, given any time point ¢ in
this interval, the probability that the train will depart at exactly time ¢ is between (0.3)-8,.0.5(D,1)
and (0.4)-6,0.5(D,t) where D = (12:15 ~ 12:20). Note that when é = u, 6 = ¢,0.5,0r 6§ = b,0.5, then
the PDF is uniform (where n = [sol(D)]), geometric (where p = 0.5), or binomial (where n = |sol(D)|
and p = 0.5) respectively. <&

2.2 Temporal-Probabilistic Algebra (TPA)

In this section, we briefly overview some (but not all) of the TPA operators in [5].

Definition 1 (Selection condition) Suppose R is a relation scheme, 7 is a calendar, and 0 € {<
,<,=,#,>,>}. Then C is a selection condition over R, 7 if it has one of the following forms:

¢ Data condition: C = A © ¢ where A € R and constant ¢ € dom(A).

e Temporal condition: C =T where T is a temporal constraint over .

e Probabilistic condition: C = P © p where P € {L, U} and probability p € [0, 1].

¢ Conjunction condition: C = (C; A ... A C,,) where C; is a selection condition over R, T. &

We abuse notation and write 4 € R to indicate that A is an attribute of R. It should be clear

from context whether we mean set membership or membership of an attribute in R’s schema.

Definition 2 (TP-filter) A TP-filter function maps a TP-case (C, D, L,U,6) and a probabilistic
condition P © p to a temporal constraint C” where sol(C”) = {t € sol(C') | (6(D,t)- P) © p}. <

Various methods for implementing TP-filter functions are given in [5]. For example, a naive
approach involves testing every time point ¢ € sol(C'). Better algorithms exploit the properties of 6.

For instance if 6 = u, then € can be determined by testing only one time point in sol(C).



Definition 3 (Selection on a TP-relation) Suppose ris a TP-relation over R, 7, C is a selection
condition over R, 7, and flt is a TP-filter function. Then the selection of C on r using flt, denoted

O'é%(T), produces TP-relation 7"/ over R, T where the following constraints are satisfied:

e IfC=A0c¢, thenr" ={(d,T)er|dAOc}.
o IfC =T, then v = {(d, 1) | I" ={((CANT),D, LU, | (IT)((d,T)€ T A
(C.D, L, U6 €T A sol(CAT)#B)) A T # 0}
oIfC:P@p,thenr”:{(d,F”)|F”:{<ﬂt(’y, ), D, L.U6) | (3AT)(3C)((d,T)er A
={(C,D,L, U8 €T A sol(flt(v,C))#0)} ANT" £D}.

o If C = (Cy A Cy), then ¢ = O'C2(O'C1(7‘)). <&
Although the implementation chosen for TP-filter function fIt affects the efficiency of the selection

operation, notice that Ué%(r) = U?t/(r) must hold for all TP-filter functions fit, fit'. Thus, we let
oc(r) denote Ué%(r) with any choice for fit.

Example 2 (Selection) Let 7 = U((12:05~12:08)v(12:11~12:12)v(12:15~12:17))(Trai”DeP) and let
r9 = ULZO.05(BusArr). Then the following are the TP-relations for vy and rj:

|| TrainNo | From | To || C | D | L | U | 1) ||
151 Baltimore | New York || ((12:05 ~ 12:08) V (12:11 ~ 12:12)) | (12:05 ~ 12:14) | 0.5 | 0.6 u
(12:15 ~ 12:17) (12:15 ~ 12:20) | 0.3 | 0.4 | g,0.5
|| BusNo | From | To || C | D | L | U | 1) ||
23 Rockville | Baltimore || (12:13 ~ 12:15) | (12:12 ~ 12:16) | 0.5 | 0.5 | 4,0.5
(12:17 ~ 12:26) | (12:17 ~ 12:26) | 0.5 | 0.5 u

Notice that for both selections, we only need to change the values for the €' attribute. <&

Definition 4 (Attribute list) Suppose relation scheme R = (A,...,A;) and P is the primary

key for R. Then F = aq,...,a, is an attribute list over R, P if the following constraints are satisfied:
(i) n > 1, (ii) each a; is an attribute of R, (iii) each attribute in P is an attribute in F, and
(iv) no attribute occurs more than once in F. &

Definition 5 (Projection on a TP-relation) Suppose R = (Aq,..., Ag), 7 is a TP-relation over
R, 7, Pis the primary key for R, and F = a4, ..., a, is an attribute list over R, P. Then the projection
of F on r, denoted mx(r), produces TP-relation r” over R” 7 where R"” = (F) and

=" T)| (3d)(Vie[l,n])((d,T)er A d'.a; = d.a;)} &

Note that our projection operator is exactly like projection in the classical relational algebra except
the fields in the primary key for r and the C', D, L. U, é fields cannot be projected out.

Before presenting our definition of Cartesian product, we need to recall the notion of a probabilistic
conjunction strategy introduced by Lakshmanan et. al. [20]. Intuitively, this is a function that
returns the probability interval for a conjunction of two events given the probability intervals for
the individual events. We shall also introduce the concept of a Cartesian product function. These

functions are applied within the inner loop of a Cartesian product.



Definition 6 (PCS) A probabilistic conjunction strategy (PCS) is a binary function @ from closed

probability intervals to closed probability intervals where the following postulates are satisfied:

Bottomline: ([L1, U1] @ [L2, Us]) < [min(Lq, Lg), min(Uy, Us)].
Ignorance: ([L1, U1] @ [L2,Us]) C [max(0, Ly + Ly — 1), min(Uy, Us)].
Identity: ([Ly, Uy] ® [1,1]) = [Lq, U3].

Annihilator: ([L1, U] ® [0,0]) = [0,0].

Commutativity: ([Ll, Ul] ® [LQ, UQ]) = ([LQ, UQ] ® [Ll, Ul])
Associativity: (([Lq, Uy] ® [Lg, Ug)) @ [L3, Us]) = ([L1, U] @ ([L2, U] @ [L3, Us])).
MOI’IOtOI’liCityZ ([Ll, Ul] ® [LQ, UQ]) ([Ll, Ul] ® [Lg, Ug]) if [LQ, UQ] [Lg, Ug]

-~ O Ot = W N =

The following are some sample probabilistic conjunction strategies:

H PCS name ‘ Probability interval returned H
Ignorance ([L1, U1]) @iy [La, Us]) = [max(0, Ly + Ly — 1), min(Uy, Uy)]
Positive correlation | ([L1, U1] @pe [Lo, Uz]) = [min(Lq, Lg), min(Uy, Us)]
Negative correlation | ([L1, U1] @pe [L2, Uz]) = [max(0, L1 + Ly — 1), max(0, Uy + Uz — 1)]
Independence ([L1, U1] @i [ L2, Uz]) = [L1 - Lo, Uy - Uy]

Definition 7 (CPF) A Cartesian product function (CPF) maps a TP-case v, a PCS @, and a TP-
case 7' to a TP-case statement I where (i) sol(\/scpn(7".C')) sol(v.C' A 7'.C") and
(i) (V4" € T7) (¥t € sol(7".C)) (Pr(7",t) = Pr(y,t) @ Pr(v/,1)). <&

A simple CPF example is epf,. This function is defined as

[Lv U] = PI’(’)/, t) ® PI’(’)//, t)}

If 6 is a pair of PDFs, then another CPF example is epf,(v,®,7") = {(C", D", L", U”, (p}:, O}
where " = (v.C A+'.C), D" = C", L" = min(y.L,~".L), U"” = min(y.U,~". U) and ¢f , pf; are new
PDFs such that for each t € sol(D"), [pf(D".t), o{(D". )] = [ly,us], t = L5 if L" £ 0 or {; = 0
otherwise, u; = % if U” # 0 or u; = 0 otherwise, and [Ly, U] = Pr(y,t) @ Pr(+’,1).

If 6 is a single PDF, then a hybrid CPF example is cpf),. Specifically, epfy(v,®,7’) is defined
as {(C", D", L", L" - x,07)} if epf,(v,9,7) {(c", D", L"U" (¢}, 0{r))} and (Fz € [1,77))
(Vt € sol(D")) (pf(D",t) = pf,(D",t)- ). Otherwise, epfy (v, ®,7’) is the result of epf (v, ®,7').

Cpfs(77®77/) ={((1), (1), L,U,u) | t € sol(y.C' A 7/'0) A

Definition 8 (Cartesian product of two TP-relations) Suppose r is a TP-relation over R, 7,
r’ is a TP-relation over R', 7, « is a probabilistic conjunction strategy, epf is a Cartesian product
function, and {A | A€ R A A€ R'} = (. Then the Cartesian product of r and r' under a using
(R,R') and

cpf, denoted 7 x P ¢/, produces TP-relation 7 over R”, T where R =

NEW T € ') (d" =
F// —

= {(d”, F”) | (E| (d7r) € (d, d/) AT # 0 A

UwEF,w’EF’(Cpf(77 ®a7 7/)))}



Since 7 xPf ¢! = ¢ Xgpf/ ' must hold, we let 7 x,, 7’ denote r x*f 7/ with any choice for cpf.

Definition 9 (Renaming function) Suppose R = (Aq,..., Ar). Then a renaming function over
R is a function R that maps each attribute A; € R to an attribute R(A;) ¢ {C, D, L,U,8} where
(VAZ',A]‘ S R) (R(AZ) = R(A]) — A, = AJ‘). <&

Definition 10 (Renaming for a TP-relation) Suppose R = (Ay,...,A;), r is a TP-relation
over R, 7, and R is a renaming function over R. Then the renaming of r under R, denoted pr(r),

produces TP-relation " over R”, 7 where R” = (R(A1),...,R(Ay)) and

P = {(d"T) | (3d) (VA€ R)((d,T) € r A d"R(A) = d.A)} o

Example 3 (Renaming and Cartesian product) Let Ry map TrainNo, From, To to TrainNo,
TrainFrom, TrainTo, let Ry map BusNo, From, To to BusNo, BusFrom, BusTo, and let r3 = pg, (1) X5,
pRr,(r2). Then the following is a possible TP-relation for rs:

|| TrainNo | TrainFrom | TrainTo || BusNo | BusFrom | BusTo || C | D | L | U | § ||

151 Baltimore | New York 23 Rockville | Baltimore || (12:15) | (12:15) 0.01875 0.025 U
(12:17) | (12:17) | 0.001875 | 0.0025 | u

Notice that renaming operators can only change the names of the data attributes. <&
We are now ready to extend the classical definition of a natural join to TP-databases.

Definition 11 (Join of two TP-relations) Suppose R = (A;,...,Ay), R\ = (A},...,A}), risa
TP-relation over R, 7, r’ is a TP-relation over R', 7, a is a probabilistic conjunction strategy, epf
is a Cartesian product function, and fit is a TP-filter function. Then the join of r and ' under
a using cpf and fit, denoted r NP 31 produces TP-relation 7’ over R”, 7 where R" = (F),
= 7T]:(O'é%(7‘ x P pr(r"))), and R,C, F have the following values:

e R is a renaming function over R’ where
(VA€ RHY(A¢d R—R(A)=A)AN (A€ R—TR(A)¢ R)).
This requirement indicates that only the attributes in R’ that occur in R get renamed.
These attributes must be renamed to attribute names that are not present in R.

e C is the selection condition (a1 = R(a1) A ... A a, = R(a,)) where
{ai,...,a,} ={a € R’ | a € R}.
This is the natural join predicate.

o F is the attribute list Ay,..., A, R(ant1), ..., R(ar) where
{@ny1,...,ap} ={a € R | a¢ R} and ayyq1,...,a is a sublist of Af,..., A, <&

Since r XCPFA o = p pqepf AT 0 must hold, we let M, 7/ denote 7 M5 ¢/ with any choice for
cpf and fit. Now, let A'(r) denote 3=, 1ye,(|I']), i-e., the total number of TP-cases in 7. It is easy to
see that AV(r M, 7') can be huge. The TP-compression operation helps alleviate this problem.



—_

Definition 12 (TP-compression) A TP-compression function = is a function that maps TP-
relation r over R,7 to a TP-relation " over R,7 where (i) N(r") < N(r) and (ii) there exists
a bijection that maps each (d,t, Ly, U;) € ANN(r) to a matching (d,t, Ly, Uy) € ANN(r"). <&

The following are some sample TP-compression functions:

H TP-compression function name ‘ Function properties H

Identlty (Ezd) Eid(r) =7r
Maximal compression (Z,,.) (VE) (VN (Epe(r)) < N(Z(1)))

Let |r| denote the number of TP-tuples in r. Then it must be the case that A'(r) > |r|. Note that
if 6 can be a pair of PDF's, then N(Z,,.(7)) = |Epe(r)| = || for every TP-relation r.

Definition 13 (Intersection of two TP-tables) Suppose r and r’ are TP-tables over R,T.
Then the multiset intersection of v and ', denoted r N ¢/, produces TP-table " over R, T where

"= {(d,T") | AT) AT (A, T) € r A (d,T) €' AT #0 A
(I" = {{(C Ay'.C), D, LU | (C.D, L, U6 €T A~ €T A sol(CAY.C)#0} Vv
" = {{(v.CAC),D, LU, |y €T A (C,D,L, U6 €T Asol(v.CAC)£ D)} o

Definition 14 (Union of two TP-tables) Suppose r and 7’ are TP-tables over R,7. Then the
multiset union of r and r', denoted r U ', produces TP-table r” over R, 7 where

"={(d,T)|(d,T)er Vv (dT)er} &

The multiset operators produce TP-tables. TP-tables can be converted into TP-relations through
the process of compaction. Compactions are performed by executing several instantiations of a

compaction function. These functions operate by consulting a combination function.

Definition 15 (Combination function) Suppose S = {[L1,U4],...,[Ln,U,]} is a nonempty mul-
tiset of probability intervals and let [L,U] = ([L1,U1] 0 ... 0 [L,,U,]). Then x is a combination
function if x(.9) returns a probability interval [L”, U”] that satisfies the following conditions:

1. Identity: If [Ly,Uy] = ... = [L,, U,], then [L", U"] = [L,U].
2. Bottomline: L" < maxqz, rjes(Li)-

Furthermore, x is an equity combination function if [L”,U"] = [L, U] whenever [L,U] # . <&

The following are some sample equity combination functions:

H Combination function name ‘ Probability interval returned when Nz, pyeslli Uil = 0 H

Optimistic equity Xeq(S) = [maX[L Ules(Li), maxyr, 1es(Us)]
Enclosing equity Xee(S) = [mi Nz, U] es(L) maxr, U]eS(U)]
Pessimistic equity Xep(S) = [mingg, 11es(Li), mingg, 1es(Us)]
Rejecting equity Xer(5) = [0,0]

Skeptical equity Xesk(9) = [0, 1]

Quasi-independence equity | xegi(5) = [, vies(Li), Uip, ves(Ui)]




Definition 16 (Compaction function) Suppose G is a nonempty multiset of TP-case statements,

t is a time point, and Y is a combination function. Then the multiset S¢ ; is defined as
Sai=A{Pr(v,) | (AL € G)(y e ' At €sol(r.C))}

A function emp(G, x) is a compaction function if it returns a TP-case statement I where

L sol(Vyuern(7".C)) C sol(Vye(y)areq) (veryy (7€) and
2. (V" eT")(Vt € sol(7".C)) (Pr(v",t) = x(Sa4))- <&

A simple example is emp, (G, x) = {{(1), (1), L, U, u) | Sqc # 0 A [L, U] = x(5¢,)}-

If 6 is a pair of PDFs, then another example is cmp,(G,x) = {(C", D", L",U", (o7, 07))}
where €7 = (Ayciyarec) ery(1-C)). D7 = €7 L7 = maXeqoipm(max(y, vjesq, (Li)),
U" = maxiesolpry(maxy, vyess, (Ui)), and ¢F, oy are new PDFs such that for each ¢ € sol(D"),
(D", 1), ol (D", )] = [, ws), € = £ 36 L # 0 or {; = 0 otherwise, uy = 2% if U” # 0 or uy = 0
otherwise, and [L¢, U] = x(Sa4).

If 6 is a single PDF, then a hybrid example is emp,. Specifically, compaction function
emp, (G, x) is defined as {(C", D", L', L" -z, o7 )} if emp, (G, x) = {(C", D", L", U", (¢}, 9fr))} and
(Fz € [1, 7)) (Vt € sol(D")) (D", t) = p{}(D",t) - x). Otherwise, cmp, (G, x) = cmp,(G, x).

Definition 17 (Compaction of a TP-table) Suppose r is a TP-table over R, 7, y is a combina-
tion function, and emp is a compaction function. Then the compaction of r under x using cmp,

cmp

denoted Ky

(r), produces TP-relation " over R, T where

P ={(d I ED (D) er AT £ AT = emp({T7 [ (d,17) € r}, 1))} o

Since k(1) = /@;mp/(r) must hold, we let . (7) denote x™*(r) with any choice for emp.

Definition 18 (difference between two TP-relations) Suppose r and 7’ are TP-relations over
R, 7. Then the difference between r and r', denoted r — 7/, produces TP-relation r” over R, T where
" ={d, T 3T)3T)(d,T)er A (d,Tyer AT"#£0 A
I = {((CA-C"), D, L,U,6) | (C,D,L, U6 T A
(C'. D, LU eT! Asol(CA-C")#0})} &

We are now ready to define a TP-algebra query.

Definition 19 (TPA-query) Suppose db is a TP-database over 7 and let ¢; denote a TPA-query
over db where the answer to ¢; is a TP-relation r; over R;, 7. Then a TPA-query over db has one of
the following forms:

1. r where r is a TP-relation in db.

2. o¢(q1) where C is a selection condition over Ry, 7.

3. mr(q1) where Py is the primary key for Ry and F is an attribute list over Ry, P;.



pr(q1) where R is a renaming function over Ry.

=(¢1) where = is a TP-compression function.

(q1 Xo q2) where a is a probabilistic conjunction strategy and Ry N Ry = 0.
(1 M, q2) where a is a probabilistic conjunction strategy.

Ky(q1 N...N¢q,) where y is a combination function and Vi, j € [1,n] (R; = R;).

© o =1 O Ut s

Ky(q1 U...Uq,) where y is a combination function and Vi, j € [1,n] (R; = R;).
10. ¢1 — g2 where Ry = Rs. <&

Notice that a series of multiset intersections or multiset unions must end with a compaction. This
ensures that the answer to a TPA-query is always a TP-relation. Since these operators are often tied
together, it is convenient to let r N, r" and r U, r’ denote k(7 N+') and s, (r U 7’) respectively.

3 TP-Calculus

We now introduce the temporal probabilistic calculus (TP-calculus). This calculus is similar in spirit
to the safe tuple relational calculus [4].

3.1 Syntax of the TP-Calculus

Definition 20 (TP-variable) Suppose R = (Aq,..., A) is a relation scheme and S; is the set of

all temporal constraints over 7. Then a TP-variable over R, T is a variable s over the domain
dom(s) = dom(Ay) X -+ x dom(Ay) X dom(C') x dom(D) x dom(L) x dom(U) X dom(6)

where dom(C') = dom(D) = S-, dom(L) = dom(U) = [0,1], and dom(¢) is the set of all restricted
PDF's over calendar 7. Each (d,C, D, L,U,é) € dom(s) is an instance of s. <&

We shall abuse notation and write R C R’ to indicate that A € R’ must hold for all A € R.

Definition 21 (TP-atom) Suppose s is a TP-variable over R, 7, s’ is a TP-variable over R’ 7,
RC R, and O € {<,<,=,#,>,>}. Then a TP-atom over s,s',7 has one of the following forms:
5.4 O ¢ where A € R and constant ¢ € dom(A).

s.C':8'.C @T where T is a temporal constraint over 7.

s.C':8".P © p where P € {L,U} and probability p € [0, 1].

s.A=s".A" where A€ R, A’ € R, and dom(A) = dom(A"). <&

N

For example, s.4; > 20 and s.C' : 51.C' @ (1997 ~ 1999) are TP-atoms over s, 51, 7. TP-atoms are
used to construct more complex TP-expressions.

Definition 22 (Limited TP-expression) Suppose s is a TP-variable over R,7 and s’ is a TP-

variable over R’, 7. Then a TP-expression over s,s’, 7 is defined in the following way:

10



1. A TP-atom over s,s’, 7 is a TP-expression over s, s, 7.

2. If Ey, FEy are TP-expressions over s,s’, 7, then Fy A F5 is a TP-expression over s, s, 7.

A TP-expression E is limited if (i) it contains at least one TP-atom of the form s.A = s’.A’, and (ii)
forall A’ € R'|if s.A; = s’ A" and s.A; = s'. A" are TP-atoms in F, then i = j. &

For example, s.4; < 3 A s.C @ 5.C @ (1996 ~ 2001) A s.C @ s59.L > .1 A s.A; = s1.41 is a
TP-expression over s, sy, 7. The notion of a T P-linker specifies equality constraints that tie together
the data attributes of three TP-variables.

Definition 23 (TP-linker) Suppose s, s’, and s” are TP-variables over R, 7, R',7, and R",T re-

spectively. Then a TP-linker over s,s',s" has one of the following forms:
1. s A=s" A'if Ac R, A’ € R, and dom(A) = dom(A’).
2. s.A=5"A"if Ac R, A” € R", and dom(A) = dom(A").
3. L1 ALy if L1 and Ly are TP-linkers over s, s, s”. O

For example, s.47 = s".A; A s.47 = s”. A1 is a TP-linker over s, s, s".

Definition 24 (Strategy set) A strategy pairis an expression of the form (type, str) where type €
{®,Z,k} and str is a probabilistic conjunction strategy when type = @, str is a TP-compression
function when type = =, and str is a combination function when type = k.

A strategy set is a finite set  of strategy pairs such that (typey, stri) € Q and (typey, stra) € Q
implies that type; # type,. <&

For example, {(®, @in), (2, Zme)} and {(kK, Xeq), (2, Zime) } are strategy sets. We need strategy sets
because T'P-formulae (defined below) are complex formulae that represent queries about conjunctions
and/or disjunctions of events. When expressing such queries, the user needs to specify information
about (i) their knowledge of the dependencies (if any) between events handled by the query, (ii)
whether they want the answer compressed (if so, then how?), and (iii) what combination strategy to

use (e.g., to eliminate conflicts).

Definition 25 (TP-formula) Suppose db is a TP-database over 7, s is a TP-variable over R, 7,
and P is a primary key for R. Then a TP-formula over db has one of the following forms:

1. ds(ser) where r is a TP-relation over R, 7 and r is in db.

2. 3s(3s1 (F] A E)) where 51 is a TP-variable over Ry, 7, Fj is a TP-formula over db of the form
1 (F)), E is a limited TP-expression over s,s1,7, and Va € P(a € Ry).

3. 3s(Is1 (F] Ag Tsz(Fy A L)) where Fy is a TP-formula over db of the form 3y (F]), Fy is
a TP-formula over db of the form J s (F}), £ is a TP-linker over s, s1,s2, and € is a strategy
set of the form {(®,a), (Z,5)}.

4. F3s(Isy (F)) 6 ... 0 3s, (F!)) where Fy,..., F, are TP-formulae over db, each F; has the form
Js; (F!), each s; is a TP-variable over R, 7, § is a strategy set of the form {(k, x),(E, )}, and
0 c {/\Q,\/Q,/\—'}. &

11



Example 4 (TP-formulae) Suppose TP-database db contains TP-relations ry, ry, r3 over Ry, Ry,
Rs and 7 where Ry = (A1, Ag), Ry = (A1, As), Rs = (A1, A4), and 7 is a Gregorian calendar with a

chronon of one year. Then the following examples are TP-formulae over db:

1. 3s1(s1em)
We emphasize that the symbol ¢ is different from the set membership symbol €. sy & 7y restricts
dom(s1) in the following way: For each instance (d,C, D, L,U,6) € dom(sy), there must be a
TP-tuple (d,T') € r where TP-case (C, D, L,U,é) € T.

2. 3s(Is1(s1em A s.C s> 1 A s Ay = 51.47))
This TP-formula is related to a probabilistic selection followed by a projection that causes s to
be a TP-variable over relation scheme (A;) and calendar 7. To avoid the need for projection,
we could add TP-atom s.45 = s1.45 to the TP-expression used in this TP-formula.

3. ds (E| S1 (81 £ /\{<®7®i9>7<575mc>}
Jsg(saery AN s.A1 = 51.A1 N 8. A2 = 51.43 N s.A1 = s2.A1 A 5.A3 = 53.43)))
This TP-formula is related to a join of r; and ry under the probabilistic conjunction strategy
©ig followed by a TP-compression that uses the =,,. strategy. If we want a Cartesian product,
then all we need to do is replace TP-linker s.4y = s5.4; with TP-linker 5.4} = 5.4 in the
TP-formula above (this renames Ay in Rz to A%). To avoid compression, we could replace Z,,.
with the identity TP-compression function =;,.

4. Is(Fs1(Fs) (sher A s1.A1 = s].47)) ANk xeq) (EBme) }
Jsy(Fsh(shera A s2.A1 = s5.41)) A{(rixeq) (EEme)} 353 (3 sh(shers A sz Ay = s5.41)))

This TP-formula is related to the multiset intersection of w4, (r1), 74, (72), and 74, (r3) followed
by a compaction that uses the y., combination function and a TP-compression that uses
the =,,. strategy. Notice that unless dom(A3) = dom(As) = dom(A,4), the fourth rule for

constructing TP-formulae will not allow us to intersect r1, ro, and rs. <&
We are now ready to define a TP-calculus query.

Definition 26 (TPC-query) Suppose db is a TP-database over 7 and F' is a TP-formula of the
form Is(F’) where (i) s is the only free variable in F’ and (ii) » € db for every TP-relation r
mentioned in F. Then {s | F'} is a TPC-query over db. &

We will assume throughout this paper that all quantified TP-variables in a TPC-query differ
from each other and from the lone free TP-variable. There is no loss of generality in making this
assumption since TP-variables can easily be renamed.

3.2 Semantics of the TP-calculus

In this section, we provide a quick semantics for TPC-queries. We start with the definition of a
TP-assignment which is similar to the concept of a variable assignment in classical logic [29].

Definition 27 (TP-assignment) A TP-assignment is a function A that maps each TP-variable s
to an instance (d, C2, DA LA UA 64) € dom(s). We omit the superscipt A when it is clear from

5 "7s

context. Also, we let v, denote the TP-case (Cy, Dy, Ly, U, bs). &

12



For example, A may assign s to a data tuple d and a TP-case v € I' where (d,I') € r for some

TP-relation r. The following definition specifies when a TP-assignment satisfies a TP-expression.

Definition 28 (Suitable/satisfying TP-assignment) Suppose A is a TP-assignment, s is a TP-
variable over R, 7, s’ is a TP-variable over R’, 7, and E is a TP-expression over s,s’,7. Then A is
suitable for E, denoted Av E. if ) C sol(Cy) C sol(C'y) and the following constraints are satisfied:
If I has the form s.A © ¢, then (d;.A O ¢).

If E has the form s.C' : s.C' @ T, then V¢t € sol(C)(t € sol(Cy AT)).

If I has the form s.C' : s.P O p, then Vt € sol(C)(65( Dy, t)- Py O p).

If £ has the form s.A = s’ . A’, then (d;. A = dyg.A").

If £ has the form Fq A Fy, then Av Iy and A Fs.

[ R N

We say that A satisfies E, denoted A |= F., iff A> F and the following constraints are satisfied:

1. R ={A| there exists a TP-atom of the form s.A = s".A" in F'}. We assume here that relation

scheme R is treated as a set, i.e., the attribute ordering does not matter.

2. There is no temporal constraint C' where sol(C') D sol(C) and replacing C; above with C'
allows A to be suitable for F.

3. <D57L57U5765> - <Ds’7Ls’7Us’765’>- <
Example 5 (Satisfying TP-assignment) Suppose s; ¢ TrainDep (see Example 1). Then

dom(sy) = {(151, Baltimore, New York, (12:05 ~ 12:14), (12:05 ~ 12:14),0.5,0.6, u),
(151, Baltimore, New York, (12:15 ~ 12:20), (12:15 ~ 12:20),0.3,0.4, ¢,0.5) }

Furthermore, suppose s.C' : 517.C' @ (12:12 ~ 12:22) A s.C' : s1.L > .04 A s.TrainNo = s;.TrainNo is
TP-expression E. Then A |= E if TP-assignment A satisfies one of the following conditions:

o A(s)=(151,(12:12 ~ 12:14),(12:05 ~ 12:14),0.5,0.6, u) and
A(s1) = (151, Baltimore, New York, (12:05 ~ 12:14), (12:05 ~ 12:14), 0.5, 0.6, u).

(
(
o A(s) = (151, (12:15 ~ 12:16), (12:15 ~ 12:20), 0.3, 0.4, 9,0.5) and
A(s1) = (151, Baltimore, New York, (12:15 ~ 12:20), (12:15 ~ 12:20),0.3,0.4, g,0.5). <&

Recall that §; denotes the set of all temporal constraints over 7. Consider a partitioning of S
where C' and €' are in the same partition iff sol(C') = sol(C”). Although the size of each partition
is infinite, we can restrict ourselves to use only one canonical temporal constraint for each partition.
It is important to note that under this restriction, the set of all TP-assignments A where A = F is
finite if £ is a limited TP-expression over s, 51,7 and dom(sy) is finite.

Definition 29 (TP-linker satisfaction) Suppose A is a TP-assignment, s is a TP-variable over
R,7, s is a TP-variable over R', 7, s’ is a TP-variable over R”, 7, and L is a TP-linker over s, ', s".
Then A satisfies L, denoted A |= L, iff the following constraints are satisfied:

13
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. R = {A | there exists a TP-linker of the form s.A = s".A" or s.A = s".A” in L}. As in the

preceding definition, we assume that the attribute ordering is not important.
2. If £ is a TP-expression Fy over s,s’, 7, then A F;.
3. If £ is a TP-expression E5 over s,s”, 7, then A»> Ej.
4. I L = L1 ALy where £ is a TP-expression Fy over s,s', 7 and L, is a TP-expression Fy over
s,s", 7, then A> Fq and A Es. <&
For example, suppose s £ TrainDep, s ¢ BusArr, and £ is the following TP-linker over s, sq, $o:

s.TrainNo = s;.TrainNo A s.TrainFrom = s1.From A s.TrainTo = s1.To A

s.BusNo = s9.BusNo A s.BusFrom = s3.From A s.BusTo = s5.To

Furthermore, suppose s is a TP-variable over R, 7. Then A |= £ if (i) the set for relation scheme R
is {TrainNo, TrainFrom, TrainTo, BusNo, BusFrom, BusTo} and (ii) dA.A = d;‘:.A’ for each TP-linker
in £ of the form s.A = s;.A" where i € {1,2}.

Definition 30 (TP-formula semantics) Suppose A is a TP-assignment and /' is a TP-formula
over db. Then A is a model for F, denoted A |= F, iff the following constraints are satisfied:
1. If F has the form 3s(ser), then there exists a (ds, ') € » where (Cy, D, L, Us, 65) € 1.
2. If F has the form 3s(3s; (F] A E)), then A= 3 (F]) and A |E E.
3. If F has the form 3s (3 sy (F] Nq Ts2(F) A L)) where @ = {{(®, ), (=, 5)}, then
e Al=3s(F)), AE 352 (F), A L, s0l(Cs) # 0, and Cs = (C, A Cly).
o Vi € s0l(Cy) (Pr(7s,t) = Pr(vs,,1) @o Pr(vs,,1)).
4. If I has the form 3s(3s1 (F]) 0 ... 0 Is, (F))) where Q = {(k, x),(E,3)}, then
o Vie[l,n](Al=3s;(F))) and sol(Cy) # 0.
o If0=ANq,thends=d,, =...=d,,, Cs=(Cs; A...NCs,), and
¥t € 501(C,) (Pr(73,1) = X({PH(1p0s 1) » Pr(70n, D).
o If § = Vg, then ds € {ds,,...,d,}, Cs = (1), and
Pr(vs,t) = x({Pr(7s;, 1) | ¢ € I;}) where
Li={i|3A (A | Isi(F) A (d =ds) At esol(CL))).
o If 6 = A—, then dy = d,, and v, = ((Cs, A= C"), Dy, Ly, , Us, , 65, ) where
C' = Vi {C | A (A |2 3si(F]) A (dd = ds) 1 (C2 = )} ©

Definition 31 (TPC-query semantics) Suppose F' is a TP-formula of the form 3s(F’). Then
the answer to TPC-query {s | F'} is defined as the following TP-table:

{(d,T)|FAAEF Ad=d* AT = {21} <
The following important theorems jointly state that the TP-algebra and the TP-calculus have

exactly the same expressive power.
Theorem 1 (TPA = TPC) Every TPA-query can be expressed as a TPC-query. <&
Theorem 2 (TPC = TPA) Every TPC-query can be expressed as a TPA-query. <&
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4 Equivalence Results

In this section we describe a set of query equivalence results that hold in the TP-algebra. These query
equivalences provide rewrite rules that may be used to optimize queries. In the sequel, we assume
r,r’" are TP-tables, and C is a selection condition. Recall, from Section 2, that two TP-relations are
equivalent if their annotated expansions are identical — informally speaking, two TP-relations are
equivalent iff whenever tp is the restriction of a TP-tuple to its data attributes, if the probability that
tpis true at time ¢ is py according to the first TP-relation, then the probability that ¢p is true at time
tis p; according to the second relation as well, i.e. the two TP-relations assign the same probabilities.
Also, unless stated otherwise, the following equivalences hold for all combination functions and for
all probabilistic conjunction strategies, thus making the results very widely applicable.

4.1 Set-Theoretical Properties

The standard relational algebra operations are idempotent, commutative, and associative. These
properties do not hold for all TP-algebra operations. Our first result says that selection, projec-
tion, compaction, union, and intersection are idempotent, and an idempotence style result holds for
difference as well.

Theorem 3 (Idempotence) The following equivalences hold:
1. oc(oc(r)) = oc(r);
car(re(r)) = 7e(r);

. Fy( By (1)) = K(r) if x is any combination function;

2
3
4. r0yr =rif ris a TP-relation and y is any combination function;
5. rUy r =rif ris a TP-relation and x is any combination function;
6

Sr=r)y =7 =r =

The following two results show that most of the important operations in the TP-algebra are
commutative, but not all are associative.

Theorem 4 (Commutativity) The following equivalences hold:

—_

. o¢(oei(r)) = oer(oe(r));
- mr(mg(r)) = 7rng(r) = mg(mx(7));

I — .
LT =N T

S(r=r)y =" =(r ="y =1 == (U

2
3
4. rUyr' =" Uy s
)
6. 7 Xo 1 = 1" X4 r (ignoring the order of data attributes);
7

. 1<y 7 =1 e, v (ignoring the order of data attributes).

Theorem 5 (Associativity) The following equivalences hold:

Lo (rxar)y Xar"=rx, (¢ Xor");
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2. (r<g )y T =<y (7 sy 7).
In general, intersection and union are not associative because both these operations involve apply-
ing the compaction operator. The following example shows why intersection is not associative.

Example 6 (Intersection is not associative) Recall that for each data tuple d and time point
t, the ke’ operator collects all intervals [I1,u1],...,[ly, ux] associated with d and ¢ by different

TP-tuples and computes the new interval [/, u] as follows:

[min(ly,...,{k), max(uq,...,ur)] otherwise.

o] = {[ll,ul] N O [l ] [l ug] O [l we] # 05

Now consider three TP-relations r{, r9 and rs such that for some data tuple d and time point t,
(d,T1) € 11, (t ~ 1,1 ~ 1,0.2,0.4,u) € Ty, (d,T3) € o, (t ~ 1 ~ 1,0.3,0.6,u) € I'y, (d,1'3) € rs,
and (t ~ t,t ~ t,0.5,0.7,u) € I's. Then, rq N.. 72 will contain (d,I'12) where TP-case (t ~ t,t ~
1,0.3,0.4,u) € T'13 since [0.3,0.4] = [0.2.0.4] N [0.3,0.6]. Also, 73 N. 75 Will contain TP-tuple (d, I'y3)
where TP-case (t ~ t,t ~ 1,0.5,0.6,u) € I's5 since [0.5,0.6] = [0.3.0.6] N [0.5,0.7].

But then (71 Nee 72) Nee 73 Will contain TP-tuple (d, 12 3) where (t ~ ¢, ~¢,0.3,0.7,u) € I'12 3 as
[0.3,0.4]N[0.5,0.7] = @ and so the probability interval is [min(0.3,0.5), max(0.4,0.7)] = [0.3,0.7]. On
the other hand, rq Nee (72 Nee 73) Will contain TP-tuple (d, 'y 93) where (t ~ t,t ~¢,0.2,0.6, u) € I'y 23
as [0.2,0.4] N [0.5,0.6] = @ and so the probability interval is [min(0.2,0.5), max(0.4,0.6)] = [0.2,0.6].
This indicates that (71 Nee 72) Nee 73 Z 71 Nee (72 Nee T3).

Proposition 1 The following properties hold:
Lorngr Cru,r;
2.0 Er—(r—1');
3.r—('ngr")y=(r—=r) Uy (r—1");
4o r—(rUyr)y=(r=r")ny (r—1").

4.2 Pushing Selection Through Other Operations

An important rewrite rule in the classical relational algebra allows us to push selection through some
expensive operations like join. In this section, we study the cases where selection can be pushed
through various TP-operations. While many results are similar to the corresponding equivalences
from the classical relational algebra, in many important cases (e.g., pushing selection into Carte-
sian product/join), general results can only be obtained for data and temporal selection conditions.

Specific results for probabilistic selection conditions are discussed in Section 4.3.

Theorem 6 (Selection-projection) Suppose F is an attribute list and C does not involve any of
these attributes. Then oc(7m2(r)) = 1r(0c(r)).

The results below hold only for data and temporal selection conditions. The next result shows
that selection can be pushed into a compaction. From an efficiency standpoint, this is good because

selection can often be performed much faster than compaction.
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Theorem 7 (Pushing selection into compaction) Let C be a data condition or a temporal con-
dition. Then o¢(ky (7)) = Ky(oc(r)).

The following theorem shows that in some cases, selections can be pushed into Cartesian products.

Theorem 8 (Pushing selection into Cartesian product) Suppose a is a PCS, Cq (resp. Cq) is
a data selection condition for r (resp. 7'), and C is a temporal selection condition. Then

L. o, (r xo ') = o, (1) x4 1.
2. 00, (r xXo 1) =1 X4 00,(1").

3. oc(r Xa ') = 0c(r) Xo oc(1') =17 Xy oc(r') = 0c(r) xo 1.

Not surprisingly, a similar theorem holds for join.

Theorem 9 (Pushing selection into join) We use the same notation as Theorem 8.
1. o¢, (1, 1) = o, (1) By 7.
2. o, (1< 1) = 17, oe, (7).
3. oc(r e, 1) = oe(r) 0, oe(r') = 1, oe(r') = oc(r) g 7.

Next, we establish equivalences for pushing selections into set operations.

Theorem 10 (Pushing selection into set operations) Let C be either a data condition or a
temporal condition. Then

L. oc(rnyr’) T)
Uy 77) T)

3. oc(r—r")=oc(r)—oc(r') = oc(r) — 7.

~

=rNyoc(r')=oc(r)nyr'.

oc ocl\r

)
).

>

N
U

~

( (
2. oc(r Uy oc( Y ac(

4.3 Conditional Query Equivalences in TPA

In this section, we first (Section 4.3.1) explain why it is hard to find equivalence results probabilistic
selections. Then in Section 4.3.2, we provide a number of conditional equivalence results that we
have obtained for probabilistic selections under a variety of special cases.

4.3.1 Why equivalences involving probabilistic selection conditions are hard

We start with an example that provides strong evidence indicating that no simple, general rule for
pushing probabilistic selections into Cartesian products (and hence, joins) exists.

Example 7 (Probabilistic selection and Cartesian product) Consider TP-relations rq and 7,
of Example 2 and suppose that their attributes have been renamed via the renaming functions from
Example 3. Suppose probabilistic selection condition C* = (L < 0.04) v (U € [0.1,0.15]). Then
Table 1 shows the results of the following four queries:
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BusNo BusFrom BusTo TrainNo TrainFrom TrainTe

= 23 Rockville Baltimore 151 Baltimore New York

q1 = U(L<o.04)v(Ue[o.1,o.15])(7‘2 Xin T1)
Data Part | C D L U 6
d (12:15 ~ 12:15) (12:15 ~ 12:15) 0.01875  0.025 w
(12:17 ~ 12:17) (12:17 ~ 12:17) 0.001875 0.0025 wu

q2 = U(L<0.04)v(Ue[0.1,0.15])(7‘2) Xin U(L<0.04)v(Ue[0.1,0.15])(7‘1)
DataPart‘C D L U ¢ ‘

q3 = U(L<o.o4)v(Ue[0.1,o.15])(7‘2) Xin T1

Data Part | C D L U 0

d (12:15 ~ 12:15) (12:15 ~ 12:15) 0.01875 0.025

Ga = T2 Xy U(L<o.04)v(Ue[0.1,0.15])(7‘1)

Data Part | C D L U 0
d (12:17~12:17) (12:17~12:17) 0.001875 0.0025 u

Table 1: Different combinations of Cartesian product and probabilistic selection

q1 = 0c+(r2 Xin T1); G2 = 0cx+(T2) Xin 0c+(71);

g3 = 0c+(T2) Xin 713 qa = T2 Xip 0¢*(11).
It is clear from Table 1 that no appropriate rewrite rule similar to those described in Theorem 8 for
oc+(T3 X4 71) can be obtained as the answers to all four queries are different. We note here that
ocx(rg) selects only the time point 12:15 and o¢«(r2) selects only the time point 12:17. This makes
the result of ¢o an empty set.

Let us now consider an example involving compaction and probabilistic selects.

Example 8 (Probabilistic selection and compaction) Consider the k.. operator from Exam-
ple 6 and suppose TP-case v1 = (t ~ ¢, ~ ¢,0.3,0.6,u), v2 = (t ~ t,t ~ ¢,0.2,0.4,u), and
Y12 = (t ~ 1, ~ 1,0.3,0.4,u). Also, suppose TP-table r = {(d,1'1),(d,1'3)} where I'y = {71} and
I's = {72}. Then k..(r) = {(d,T'12)} where I'y3 = {712} since [0.3,0.4] = [0.3,0.6] N [0.2,0.4].

Consider the probabilistic selection condition U = 0.4. We see that TP-case v is in the answer to
01 =0.4(Ke:(7)) since its upper bound is 0.4. In contrast, the answer to o7=g.4(7) contains v but not
71 so the answer t0 K..(017=0.4(7)) can only contain y;. Therefore, opr=g 4(Kec(7)) and Kee(or=0.4(7))
are not equivalent.

As compaction is used to define both intersection and union, probabilistic selections and inter-
sections/unions do not commute. The next example shows that oc(r — ') is not equivalent to
oc(r) — oc(r') when C is a probabilistic selection condition.

Example 9 (Probabilistic selection and difference) Suppose TP-relation r; = (d,{y1}) and
TP-relation 7y = (d, {72}) where vy = (t ~ £, ~ ¢,0.4,0.6,u) and y5 = (t ~ ¢,t ~ ¢,0.5,0.6,u). Then
r1—7r2 = 0 soop=04(r1—r2) = 0. On the other hand, o7,—¢.4(7r1) will contain vy and o7,—¢.4(r2) will not
contain vy 80 07,=0.4(r1) — 0r=0.4(r2) will contain v;. Thus, op=04(r1 —r2) # 0r=04(r1) — or.=0.4(72).
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4.3.2 Specific query equivalences for probabilistic selections

Though the negative results about probabilistic selection presented above are discouraging, there is
good news: In some cases, probabilistic selection can be pushed into other operations. In our first

result, we consider only probabilistic selection conditions of the form P > p or P > p.

Theorem 11 (Pushing selections of the form P > p or P > p) Suppose C is a probabilistic se-
lection condition of the form L > p, U > p, L > p, or U > p. Then

1. oc(r xXo 1) = oc(oc(r) Xo oc(1'));
2. oc(r <y ') = oc(oe(r) g oc(r')).
The following theorem indicates that when the probabilistic selection condition has the form P < p

or P < p and we use the positive correlation PCS, then we can push probabilistic selection into
Cartesian product and join.

Theorem 12 (Pushing selection into Cartesian product and join under the ®,. PCS) :
Suppose C is a probabilistic selection condition of the form L < p, U < p, L < p, or U < p and
suppose Y is any equity combination function. Then

L. ooc(r Xpe ') = (00(1) Xpe 1) Uy (1 Xpe o ("))

2. oe(r vpe 1) = (oe(r) ppe 1) Uy (1 b<pe oe (7).

When the selection condition has the form P < p or P < p and we use the independence PCS,
then the following theorem indicates that we can push probabilistic selection into Cartesian product
and join if the optimizer stores the statistics MIN_L(r) and MIN_U(r) for each TP-relation r. As we

shall see in Section 5, MIN_L(r) is defined as min{l | [ = §(D,t)- L A (C,D,L,U,6) e I' A (d,T') € r}
and MIN_U(r) is defined as min{u | w = 6(D,t)- U A (C,D,L,U,é6) e ' A (d,I') € 1},

Theorem 13 (Pushing selection into Cartesian product under the ©;, PCS) :

Loor<p(r X 1) = o1.<p(r Xin O-LSMIN?L(T)(T/)) =
OL<p( O s (1) Xin O rep (1) = 0L<p(O g o (1) Xin 17);
2. 0pep(r Xin 7)) = opep(r Xin, O-L<MIN€L(T/)(T/)) = /
UL<p(UL<WL(T,)(T) Xin O« RIS (r') = or<p( L< i ,)( ) Xin ');
3. ou<p(r Xin 1) = oU<p(1 Xin, UUSWU(TI)(T/ )= /
OU <OV < g (1) Xin v rer (1)) = oU<p(0vg e (1) Xin 1)
4. 0 <p(rT Xin 7') = oU<p(r Xin Oy MIszU(T/) (r")) = /
U <p(OU < gt (1) Xin OV < e (1) = 00 <p (00 (1) X 7).

An analogous equivalence holds for join as shown below.
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Corollary 1 (Pushing selection into join under the ®;, PCS) :

L. op<p(r 04 7)) = op<p(r >y LS s )( ') =

OL<p(TL < g (1) i O e (1) = 01<p(O g o (1) in 77);
2. 0p<p(r > ') = 0p<p(r 2 0 ¢ MIM(T)(T')) =

OL<p(OL < gt (1) Din O e (1) = 0L<p(O ¢ rop (1) 2in 17);
3. ou<p(r >, 1) = ou<p(rT g, U<m(r’)) =

U< OU< e (1) 2in Oy g (1)) = o <p(Ou< e (1) i 17);
4. oy ep(rT iy 7)) = o <p(r >y, O'U<WU(T)(T/)) =

OU<p(OU < gt (1) 9in O prep (1) = ov<plOU < e (1) i 7).

We see from the above results that with some work, we can push probabilistic selections into cartesian
products and joins. For example, Theorem 11 and Theorem 12 show that for certain kinds of
probabilistics selection conditions, we can easily push selections into Cartesian Product and join.
Theorem 13 shows that as long as we maintain MIN_L(7) MIN_U(7) and for each tp-relation r, then
we can also push probabilistic selections in Cartesian Product and join when independence is the
PCS used. Most relational databases routinely maintain minima and maxima of different columns

for query optimization, so this overhead seems acceptable.

4.4 Pushing Projection Through Other Operations

In this section, we present results showing when and how projection can be pushed into TP-algebra

operations. Our first result shows that projection can be pushed inside a compaction.
Theorem 14 (Pushing projection into compaction) 7r(k, (7)) = ry(7£(1)).

As we have already see before, compaction is part of union and intersection. The above result
provides hope that projection can also be pushed through the set operations. This turns out to be
true as shown in the following theorem.

Theorem 15 (Pushing projection into set operations) If » and 7’ have the same schema,
Loar(rng r’) = 7r(r) Ny 7 (r").
2. mr(r Uy ') = mr(r) Uy mr(r’).

3. wr(r—1")=7x(r) — ().
The following results indicate that projections can be pushed into Cartesian products and join.

Theorem 16 (Pushing projection into Cartesian product and join) Suppose 7r(r) and
(') are TPA-queries. Also, let F, F' denote the attribute list that is obtained by concatenating

F with F" and removing duplicate attribute names. Then
1. 7T]:7]:/(7‘ Xa 7‘/) = 7T]:(7‘) Xa 7T]:/(7‘/).

2. 7T]:7]:/(7‘ Dy 7‘/) = 7T]:(7‘) Dy 7T]:/(7‘/).
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5 Costing TP-Queries

In order to efficiently execute a query in the TP-algebra, we must first have a “cost model” associated
with the algebra. Such a cost model has two parts. The first part specifies what statistics to
maintain about a TP-relation — such statistics includes information such as cardinality information,
distributions of attribute values and so on. The second part deals with the physical costs of executing
the operation, which depends upon the implementation. We first discuss the former in section 5.1
and the latter in section 5.3. Due to space restrictions, in this paper, we only consider the Selection,
Projection, Cartesian Product and Join operators in the TP-algebra.

5.1 Statistics for TP-Databases

For each TP-relation (base relation or otherwise), we maintain a set of statistics summarized in
Table 2. Given a tp-relation r, let times(r) = {t| there exists a tp-tuple ¢{p in r and a tp-case
(C,D,L,U,b) in tp such that t € sol(C')}. Then MaxC_1(r) = max(times(r)) and MinC_2(r) =
min(times(r)).

‘ Statistics ‘ Description
CARD Number of TP-tuples in the TP-relation
AVG_TIME_PTS Average number of solutions of C constraint in a TP-tuple
MAX_TP The latest time point in the TP-relation
MIN_TP The earliest time point in the TP-relation
MaxC_1 See below.
MinC_2 See below.

DOMAIN_MIN(time unit) | The smallest value time unit can take in calendar 7

DOMAIN_MAX(time unit) | The largest value time unit can take in calendar 7

AVG_L(U) Average lower (upper) bound probability in the TP-relation
MIN_L(U) Minimum lower (upper) bound probability value in the TP-relation
MAX_L(U) Maximum lower (upper) bound probability value in the TP-relation

Table 2: Statistics for TP-relations.

We now address the following problem. Given a TP-relation r whose statistical variables (cf.
Table 2) are known, and given that some TPA operation is executed on this table, how do we
estimate the values of these statistical variables for the output TP-relation? Though of course this
value can be correctly computed by answering the query, we would like to estimate these values
without answering the query. As in the case of relational database implementations, these estimates
need to be quickly computable and reasonably (rather than totally !) correct. This allows fast
evaluation of many possible different query plans for executing the query, so that we can pick the
best. Clearly, for data selects we can use the well-known classical techniques [11]. Hence, we ignore

this operation and deal instead with operations new to TPA.
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5.1.1 Temporal Selection

Due to space reasons we cannot show how to estimate all these parameters. We describe below,
methods to estimate card(o¢(r)) and avg_time_pts((oc(r)).

Estimating cardinality: card(oc(r)) may be written as card(r) x sel(C) where sel(C) denotes
the selectivity of the selection condition C. We can estimate sel(C) by induction on the structure of

C.

o tu < value : The probability that an arbitrary time point satisfies the constraint tu > value is
DOMAIN_MAX (tu)—value+1
DOMAIN MAX (tu)—DOMAIN _MIN (tu)+1

the solution of that TP-case’s C' constraint are greater than or equal to value may be estimated by

DOMAIN _M AX (tu)—value+1 AVG-TIME_PTS(r)
DOMAIN _MAX (tu)—DOMAIN _MIN (tu)+1

such solution of C will satisfy tu < value is

AVG_TIME_PTS(r)
DOMAIN_MAX (tu)—valuet1 . .
L= (DOMAIN_MAX(tu)—DOMAIN_MIN(tu)-H) ; which describes sel(C).

o tu > value: The analysis is exactly analogous to the above and the estimate of the selectivity of

C is:

). For a TP-case in r, the probability that all time points in

. Hence, the probability that at least one

1) =1 ( value — DOMAIN _MIN (tu) + 1 )AVG—TIMEJ’ TS
s = DOMAIN _MAX (tu) — DOMAIN _MIN (tu) + 1 ‘

¢ tu # value: By an analysis similar to that above, we see that here, the estimate of the selectivity

of C is:

1 AVG_TIME_PTS(r)
sel(C)=1- (DOMAIN_MAX(tu) — DOMAIN_MIN (tu) + 1)

e tu = value: In this case, we simply subtract the selectivity of tu # value from 1.

o t1 ~ ty: On the average, a TP-case has AVG_TIME_PTS solutions to its C' constraint. The prob-

to—t1+1
MAX _TP(r)-MIN_TP(r)+1"

The probability that an arbitrary time point will not be a solution of this constraint is

ability that an arbitrary time point will be a solution of this constraint is

1- MAX_TP(IE/?)_—%-I—I%V_TP(T)-I—I' Therefore, the probability that no time point of an arbitrary TP-
) AVG_TIME_PTS(r)

case will be a solution of the constraint ¢; ~ ¢ is (1 - MAX_TP(IZ?)_—IR}—I%V_TP(T)-FI

Hence, the total number of TP-tuples that will not be returned by this operation can be estimated

. AVG_TIME _PTS(r)
mn to—114+1
as CARD™ x (1 - MAX_TP(T2)—ﬁ41N_TP(T)+1)

. Then, the expected selectivity is:

| )AVG_TIME_PTS(T)

(1 ~t2)=1— (1
sel( ) ( MAX TP(r)— MINTP(r) + 1

(Formula TS1)

We can also compute the selectivity of this constraint in another way. Here, we try to estimate
the probability that t1 ~ t2 overlaps with any temporal constraint C' of the form ¢; ~ ¢; in the
TP-relation. These two intervals may overlap if either (i) F; = ¢; < t1 and ¢; > t1 (i.e. ¢1 is between
t; and t;), or (ii) Fy = ¢; > t1 and ¢; < {2 (i.e. t; is between 1 and 2). We can compute the
selectivities of these conditions as follows:
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sel(t; <tl) = sel(t; > tl) =
1 MaxC_1(r) < t1 1 MinC2(r) > t1
0 MIN_TP(r) > t1 0 MAX TP(r) < t1
t1-MIN_TP(r) therwi MAX _TP(r)—t1 therwi
MazC 1(r)—- MINTP(r)+1 O IETWISE MAX _TP(r)-MinC 2(r)+1 OVHETWISE
sel(t; > tl) = sel(t; <12) =
1 MIN_TP(r) > t1 1 MazC_1(r) < 12
0 MazC_1(r) < t1 0 MIN_TP(r) > t2
MazC_1(r)—t1 th . t2—MIN_TP(r) th .
MazC 1(r)— MIN TP(r)+1 OVHeTWIse MazC 1(r)= MIN_TP(r)1 OVHeTWIse

Hence, sel(Fy) = sel(t; < t1)* sel(t; > t1) and sel(Fy) = sel(t; > t1) * sel(t; < t2). Hence,
the selectivity of (¢1 ~ #2) will be

sel(tl ~ 12) = sel(Fy) + sel(Fy) — sel(Fy) X sel(Fy) (Formula TS2)

Later, in Section 6.0.3, we will run experiments to determine which of these two estimates is better.
Non atomic temporal constraints: Any non-atomic temporal constraint can be written purely
in terms of = and A. The selectivity of o_¢(r) is equal to 1 minus the selectivity of o¢(r). The
selectivity of o¢,ac, may be obtained by first estimating the selectivity of # = o¢,(r) and then
estimating o¢, (7).

Estimating AVG_TIMFE_PTS : Table 3 shows how we may estimate the average number of time
points associated with the C'-constraints in a TP-tuple. For space reasons, instead of explaining all
the entries, we explain only the first one (which also happens to be the toughest case). The probabil-

ity that one of these time points has time unit tu = value is DOMAIN_MAX(tu)—lDOMAIN_MIN(tu)-H'

As the original TP-relation has AVG TIM E_PTS(r) time points in it per TP-tuple, we may there-
AVG_TIME_PTS(r)
DOMAIN _MAX (ft)—DOMAIN _MIN (Tu)+

fore assume that the output relation has
TP-tuple.

7 time points in it per

5.2 Probabilistic Selection

Our methods to estimate the selectivity of a probabilistic selection condition use the following simple
(but useful) result.

Proposition 2 Given a value p € (0,1] and a TP-tuple tp = (d,1'), I' = {v1,...,7%}, 7 =
(Ci, Dy, Li, Uy, 6;), there are at most 21—? time points t € sol(Ul_,C;) such that 6;(t,D;)- L; > p,
where t € sol(CY).

Proof. Let T; = {t € sol(Ul_,C})[6;(t,D;) - L; > p,t € sol(Cj)}. Let s = |T;|. If s > ]1—) then
Yiery 6;(t,D;)-L; > s-p> %-p = 1. As we know that T7 C UL, (4, 3 e 6;(t,D;)-L; <3 L; <1

which yields a contradiction. <&
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‘ Condition

AVGTIME_PTS |

1 — value max(1 AVGTIME _PTS(1) )

" DOMAIN_MAX (lt)—DOMAIN _MIN(Tu)+1/°

AVGITIMEPTS(r)
tu # value AVGTIME_PTS(r)— Maxz(1, DOMAIN_MAX(tu)—DOMAIN_MIN(tu)+1)‘
> val AVG_TIME _PTS(r)(DOMAIN_MAX (Tt) —value)
> vatue DOMAIN _MAX ({u)—DOMAIN MIN(Tu)11
1 < val AVG_TIME _PTS(r)-(value— DOMAIN_MIN({1))
< vatue DOMAIN_MAX ({u)—DOMAIN _MIN (fu)+1
tp2—1ipl+1

tpl ~ tp2 AVGTIME_PTS(r)- MAX_JEP—J\pUN_TP-H

Table 3: Formulas to compute AVG_TIMFE_PTS

The above result says that as the probabilities assigned by a PDF add up to 1, at most 21—? time
points can be assigned a probability greater than or equal to p. We now estimate the selectivity of
atomic probabilistic selection conditions, one by one.

We first note that if the value of prob in the selection condition is not between MIN_L(r)
(MIN_U(r)) and MAX_L(r) (MAX_U(r)) for lower(upper) bound conditions, then the selectivity
will always be either 0 or 1 depending on the condition. For example if prob > M AX_L(r) and the
condition is I > prob then the result cardinality will be 0 as no time point in the TP-relation will

satisfy this condition. The table below contains the selectivities of probabilistic selects when prob is

outside the [MIN_L, MAX _L] ([MIN_U, M AX _U]) interval.

| Condition | prob> MAX_L(U) | prob < MIN _L(U) |

L(U) > prob 0 1
L(U) < prob 1 0
L(U) = prob 0 0
L(U) # prob 1 1

We now provide cardinality estimates for probabilistic selects when prob is in the above intervals.
We propose two sets of cardinality estimations, stemming from two somewhat different approaches.
Table 4 summarizes the formulas for the two sets. In this table PRO B~ denotes the following
expression:

1
PROBs = min (1 .
ROB> = min ( *prob x (MAX TP(r)— MIN TP(r) + 1))

Some explanations about the intuition behind the formulas for both sets are in order.

Set A: We explain the computations behind the Set A formulas on the example of atomic proba-
bilistic condition L > prob.
Consider an arbitrary TP-tuple in the input relation r. This tuple satisfies the condition L > prob

if at least one time point in the solution of one of its C'-constraints has the lower bound of probability
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| Cond. C | Set A: scl(C) | Set B: sel(C)
L = prob min (prob X AVG_%IME_PTS(T)’ 6)
L # prob L= min { 72— AVG_%IME_PTS(T)’ ¢
11— AV G_L(r) > prob
L>prob | 1 — (1 — PROBs)AVG-TIME-PTS(r) { — ¢ . o (r) > pro
mln(probeVG_TIME_PTS(r) , (1 — prob))otherwise
1 prob > 0.5 and AVGTIME_PTS(r)# 1
L < prob | 1 — (PROB)AVG-TIME-PTS(r) 1—e¢ prob > AVG_L(r)
1— (AVE‘;LG(fL}(—TZ;TOb)(AVG_TIME_PTS(T)/Z) otherwise
U = prob €
U # prob 1—ce¢
1—c¢ AVG_U(r) > prob
(1 _ AV G_TIME_PTS(r)
U>prob | 1= (1= PROB;) {min( 7’4‘/;;[[{(” , (1 — prob))otherwise
1—¢ prob > AVGU(r)
AVG_TIME_PTS(r
U<prob | 1— (PROB>) (r) {1 _ (Avi‘;%(_rU)(—rp)rob)(AvG_TIME_st(r)/z)OtherWise

Table 4: Two sets of selectivity estimates for atomic probabilistic selection conditions.

L > prob. The probability that an arbitrary time po

int ¢ satisfies the L > prob constraint can be

bounded above by PRO B>, = min (1, pTobX(MAX_TP(Tl)

—MIN_TP(T)-H))' Hence, the probability that ¢

and therefore

does not satisfy this constraint is 1 —

1
probX (MAX _TP(r)—

JAVGTIME PTS(r)
MIN_TP(r)+1)

the probability that a tuple has a time point in its TP-case statement satisfying L > prob is

1

1= (1—min(1, probx (MAX _TP(r)—MIN_TP(r)+1)

is given by

1

))AVG-TIME-PTS(r)

. Hence, the selectivity of o7 pr0p(7)

1 —(1— min(1

Tprobx (MAX_TP(r)— MIN_TP(r)+1)

))AVG_TIME_PTS(T)‘

The same reasoning applies to the all remaining atomic constraints on lower and upper bounds

featured in Table 4.
Set B: The intuition for different atomic conditions is

somewhat different.

L = prob. By Proposition 2 there can be at most ﬁ time points with probability equal to

prob in any TP-tuple. Therefore, when the number of time points in a TP-tuple is large, we expect

that the chances of any time point to have a fairly lar

ge lower bound of the probability interval are

fairly small. This inequality between small and large values of prob is represented by the expression

1
probx AVG_TIME _PTS(r)"

On the other hand, the chances of finding a time point with any particular small lower bound

of the probability interval should be approximately the same. We represent that, by assuming that

there exists a small constant ¢ that serves as an upper

bound on the probability to encounter a time

point satisfying L = prob. As there is a finite number of time points in the TP-tuple and, potentially

a continuum of values prob can take, ¢ should be a rel

atively small number.

L > prob. Whenever prob is less than or equal to the average lower bound probability value for a

single time point, we are all but guaranteed the existence of at least on time point with lower bound

larger than prob. Otherwise, if prob is very close to 1, then there is very little chance of finding a

time point with a larger lower bound. 1 — prob describes this value, in a min computation this will
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“win” whenever prob is almost 1. For the values of prob between the average lower bound and 1,
the chance to find a large probability value is in inverse proportion to the number of time points in
a TP-tuple and to the value of prob (c.f. Proposition 2).

L < prob. Whenever prob > 0.5 and there is more than one time point in a TP-tuple, we are
guaranteed to have a time point having a probability less than 0.5 and hence less than prob. If
prob is greater than the average probability then similar to the case above, the existence of a time
point with a lower bound smaller than prob is almost guaranteed, because there have to be time
points with probability less than the average probability. In the last entry in the above formula,
we assume that the expected number of time points with lower bounds greater than AV G_L(r)

os AVGITIME_PTS(r)/2. %ﬁ:(—f# provides our estimate of probability that a given time
point is in the interval between prob and the average lower bound. Such points do not satisfy our
requirements. So, by computing the probability that half of all time points are in this range (assuming
that the other half is above the average), and subtracting it from 1, we obtain a probability estimate
for the existence of at least one time point with lower bound for probability under prob.

The estimates for the remaining conditions use similar intuitions (correcting for the fact that
Proposition 2 does not apply to the upper bounds of probability intervals).

Whether Set A or Set B estimates are used, it is easy to estimate cardinality of queries such as

Ore[p1,p2)(7) by first estimating the size of op>,1(r), calling the result 7" and then estimating oz <pa(r').

Other statistical variables: Table 5 specifies how, given a probabilistic selection condition (atomic),

we may use the values of the statistical variables associated with input relation r to estimate the
values of AVG_L, AVG_U for the output relation obtained by applying the select.

| Conditi0n| AVG_L | AVGU |
L = prob prob prob+ AVG_DIFF
L > prob max(AVG_L"  prob) + sel- AVG_L™ AVG_LoM + AVG_DIFF
L < prob min(AVG_L'™ prob) — sel- AVG_L™ AVG_LM — AVG_DIFF
U = prob prob— AVG_DIFF prob
U > prob AVG UM + AVG_DIFF max(AVG U™ p) + sel- AVGU™
U < prob AVGU — AVG_DIFF min(AVG U™ p) — sel- AVGU™

L IN [pl,p?2] max(pl, (min(AVG_L" p2) — sel(L < p2)- | AVG_L*" + AVG_DIFF
AVG_L™)) + (min(AVG_L™, p2) — sel(L <
p2) - AVG_L™) - sel(L > pl)
UIN [pl,pd) AVG U + AVG_DIFF max(pl, (min(AVG_U™,p2) — sel(U < p2) -
AVGEU™)) + (min(AVGU™, p2) — sel U <
p2) - AVGU™) - sel(U > py)

Table 5: Computations for AVG_L and AV G_U in the result relation

5.2.1 Cartesian Product and Join

Given two arbitrary TP-tuples tp € rand tp’ € ' (tp = (d, 1), I'= {71, ..., v }), v = (Ci, Dy, Li, Ui, 6;);
tp! = (d', 1), 1" = {71, s v} )s v = (€, Dy, L UYL 8%) ), we need to determine the probability that
there will be a TP-tuple tp” € r x, r’ corresponding to these two tuples. The Cartesian product
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of tp and tp’ will be nonempty if they share at least one time point, i.e., if there exists 1 <1 < n,
1 < j < m, such that sol(C; A C%) # 0.

Let ¢ = Ui, C; and ¢ = UjL; €% We first need to compute the probability that a solu-
tion of C' is also a solution of C’. Note that if ¢ is outside the range of time points found in
' ([MINTP(r"), MAX T P(r")]) then it is definitely not a shared solution. Therefore, we first
establish the probability that ¢ € [MIN_TP(r'), MAX_TP(r")]. Ast € sol(C'), we know that

t € [MIN_TP(r), MAX TP(r)).
Let TR(r,r') = |[MIN_TP(r), MAX TP(r)]N[MIN_TP(r"), MAX _TP(r")]|. Then

TR(r, 1)

Pr(t € [MINTP('), MAX TP()|t € [MIN TP(r), MAX TP(r)]) = s ) = MINTPE 4T

Once we establish that ¢ is in the range of 7/, we need to determine the probability that t € sol(C").

. .- . . AVG_TIME_PTS(v'
This probability is given by MAX_TP(T/)—MIN_T(;(?/’/)-FI'

We obtain the desired probability Pr(t € sol(C”)|t € sol(C')) by multiplying the two numbers:

. TR(r, ") " AVGTIME_PTS(v")
- MAX TP(G')— MINTP(r')+1 " MAX_TP(r')— MIN_TP()+ 1’

sely = Pr(t € sol(C")]t € sol(C))

By a symmetric argument,

B TR(r, ') ) AVG_TIME_PTS(r)
T MAX TP(r)— MIN TP(r)+1  MAX TP(r)— MIN TP(r)+ 1’

sely = Pr(t € sol(C)|t € sol(C"))
Hence, the cardinality of the Cartesian product can be estimated as
CARD(r) x CARD(r") x max(sely, sely).

As the join operation in TP-algebra is merely a Cartesian product followed by a selection, the
cardinality of join is given by:

CARD(r) x CARD(r") x max(sely, selz) x sel(JC),

where JC is the join condition whose selectivity is computed in the same way as in the relational
case [11].

5.3 Physical costs

In order to specify the physical costs of executing these operations, we must first provide a brief
description of the implementation of TP-databases.

5.3.1 Implementation Overview

We have significantly extended the implementation of TP-databases outlined in [5] by (i) adding a
probabilistic table index, and (ii) developing a cost model that uses the physical implementation of
the algebra operations using a relational implementation and the probabilistic table index as well
as (well known) segment tree indexes for temporal data, (iii) developing a set of rewrite rules based
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Figure 1: Storing TP-tuples in Paradox: rg and r; relations and Table-L, Table-U and Table-T
indexes.

on the query equivalences we have derived in Section 4 and (iv) building a query optimizer for TP-
databases using the above components and the Cascades optimizer framework [12]. In this section,
we briefly describe the implementation.

A TP-relation consists of three parts — data, temporal and probabilistic. Each TP-relation r over

relational schema (Aq,..., Ag) is stored as two Paradox tables: rq over schema (TId, Ay, ..., Ak),
and r; over schema (CId, TId, C, D, L, U, Delta). Here, TId is the TP-tuple id which is used to join
rq and r; when a user wants to view r, and CId is the TP-case id which is used to uniquely identify
a TP-case. We create a primary key index on TId for r4, and on CId for r;. To perform a query on
r, we use the Borland Database Engine (BDE) to perform relational queries on Paradox tables r4
and r;. Moreover, the TP-relation 7" for the result of a query is materialized as two Paradox tables
(rf and 7).
Probabilistic table index: To index probabilistic information, we first create index tables Table-L,
and Table-U, for each TP-relation r. We explain the structure of Table-L, below - the other
table is built in a similar way. Table-L, has the schema (cid, MIN-L, MAX-L). For each tuple
(cid,C, D, L,U,§) € r, we store in Table-L,, its cid and the values

MIN-L:tEIsréll?C)(L ~6(D,t))

MAX-L= L-6(D,t
terg?(%)( (D, 1))

MIN-U and MAX-U values for each TP-case in Table-U, may be stored in a similar way.
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Each probabilistic query allowed in TPA can be expressed as a combination of L € Interval and
U € Interval (where Interval can either be open or closed on either side). For each such request
L € [a,b], Table-L, is scanned and the set of cids is determined such that [a,b] N [MIN-L, MAX-L] # 0.
This will be the list of candidate TP-cases. We are guaranteed that the answer to L € [a,b] is in a
subset of these candidate TP-cases. Each then needs to be retrieved and checked.

Temporal index: For indexing temporal data we use three different data structures. Two of them

are variations of segment trees [28] and the third is a variation of the index table structure used to
index probabilistic information. As segment trees are well studied, we do not discuss them further
here. Future work may involve extending sophisticated temporal index structures such as those
developed by Tsotras[18, 34] to handle probabilistic temporal data.

The tabular index structure Table-T, for the temporal data contains three fields: cid, the TP-case
id in r; and MAX-T and MIN-T — the maximal and minimal time point for each contiguous interval
described in TP-case with id cid. Unlike the case with Table-L, and Table-U., where cid was a
unique foreign key, cid will no longer be a unique key for Tuable-T,.. On the other hand, the result
of performing a select on a temporal condition using Table-T, will be the exact set of TP-case ids
matching the query (not a set of candidate TP-cases).

Figure 1 shows how temporal probabilistic data of Example 1 is stored and indexed in the under-

lying Paradox database.

5.3.2 Physical Cost Model

The TP-database implementation builds on top of a fixed set of query templates that are used to
access the underlying Paradox tables in which TP-relations are stored. Fach TP-algebra operator is
encoded via a C++ program that builds on such top of these templates. To model the physical cost
of such operators, we must therefore: (i) model the costs of the templates, and (ii) use the template
models to model the costs of the C4++ programs’ encoding the different TP-algebra operators. derive
a formula that estimates the cost of how long such C+4 programs need to run. Solely using a
standard cost model for relational databases is not enough.

Query Templates: The set of Paradox query templates and their associated cost formulas are
provided in Table 6. We use simple calibration and regression analysis techniques, such as those in
[35] to compute the costs of these template queries.

The notation used in Table 6 requires further explanation: A; and A; denote the data and TP-case
tables for an input TP-relation A. () and ('} denote the data and TP-case tables for the resulting
TP-relation. For binary operations like join and Cartesian product, By and By denote the data and
TP-case tables of the second operand. Two intermediate tables TmpF and TmpJ, which will be
discussed below, are used for Cartesian product and join operations. tableIndex denotes a temporal
or probabilistic index which is maintained as a Paradox table. Finally, we use [r] to denote the
schema of relation r.

The cost formulas in Table 6 were obtained by running several queries, trying many different cost
formulas, and using standard regression analysis and calibration methods to fit the best curves (and
hence obtain the best formulas). The cost formulas for query templates 1-8 are linear combinations
of input and output table cardinalities — this is to be expected as they involve a simple linear
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H # ‘ Query Template Cost Formula

1 CdHCdU(Tc(Ad) a-|Ad|—|—b-|Cd|—|—C
2 | Oy = CrUmpag(ow, ma=c,.11a) (A X Ca)) a- A +b-|Cql + ¢
34, @A+ 0
4 | Cq = CaUrpg(om,a=c.11a)(Aa X C)) a-|Agl+0-|Ci + ¢
5 | o(craes)(As) a-|Ag+b-]5[+¢
6 | T « oc(tableIndex); m4,1(0(4,.cra=T.c1ay(A¢ X T)) a- Ay +b-sel(C)-|tableIndex| + ¢
7 CdHCdUF]:(Ad) a-|Ad|—|—b
8 | Cp — CyU A a-|Ad + b
9 | Ay x By a-max(|A¢, |By) +b-|A - |Be| + ¢
10 | T < 0(4, TId=TmpA) A (B, TId=TmpB) (Ad X Ba X TmpF); | a-|[TmpF|+b
Ca = CaU Trmpo a1 84 (1)
11| TmpJ — TmpJ U WAd.TId,Bd.TId(UC(Ad X Bd)) a- min(|Ad|, |Bd|) +0b- |TmpF| +c
12 | T < 0(4, Tld=TmpA) A (B,.Tld=TmpB) (A: X By x TmpJ); | cost(A; va TmpJ) +
TraBl(1) cost(By o TmpJ) + €
13 | A, — mx(Aq); B, — 77 (By); a-|Tmpl|+b
T — 0(41, TId=TmpA) A (B'y.Tld=TmpB) (A X B}y X TmpF):;
Cyq = Cq U Trmpo far B (T

Table 6: Query Templates Used by Operators in the TP-algebra and Their Cost Formulas

relational operation. Likewise, Query 9 is a Cartesian product operation, and its cost formula
involves the products of the TP-relations involved.

In the case of Queries 10 and 13, we observed that the cost largely depends on the cardinality of
TmpF. Recall that TId is a primary key and there exists an index on TId in the data tables. The
join conditions in queries 10 and 13 are on TId. Hence, TmpF needs to be read once, and all tuples
satisfying the join are retrieved via the index on Ay, and similarly for By.

Query 11 is a join between two data tables. The join condition is on a data field and there is no
index on data fields. One would assume that Paradox uses either a nested loop or a merge join.
After extensive calibration, the best result seems to be the expression shown in Table 6.

Finally, Query 12 involves a two way join. We were unable to fit a satisfactory curve to match the
behavior of this query. As a consequence, we tried to model the cost of this query as two successive
join operations, and this led to the cost formula shown.

TP-Algebra Operations: We are now ready to use the costs of query templates in order to de-
rive cost formulas for TP-algebra operations. Each query begins by creating the C'y and C; tables
which will hold the results. To compute costs of TP-algebra operations, we executed each opera-
tion several times to determine its average running times. Our cost formulas focus on the cost of
retrieving and storing data in the Paradox tables. We use CREATE_COST(T) to denote the cost
of creating Paradox table T, GET_NEXT_COST to denote the cost of processing one Paradox tuple
via a Borland Data Engine (BDE) cursor!, and INSERT_COST(T') denotes the cost of inserting
one tuple into Paradox table 7. For brevity, let CREATE_COST denote CREATE_COST(Cy) +

!'We assume all readers are familiar with standard database concepts like cursors[11].
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CREATE_COST(CY).
Data Select: As this operation corresponds to a relational select, the data condition C is simply
passed to the BDE. Thus, (4 is computed by query 1, and C; by query 2. The cost formula is

cost =CREATE_COST + cost(queryl) + cost(query?2).

Temporal Select (without index): A temporal condition C is evaluated using special purpose
code since there is no equivalent notion in a relational database. Consider a boolean combination of
temporal intervals of the form (¢; ~ ¢;). As there is no index, all TP-cases in A; need to be retrieved
and checked. Thus we open a cursor on the result of query 3, read one TP-case 7; at a time, compute
C' = (7;.C AC), and insert a new TP-case which incorporates C' into Cy if sol(C') # (). Once the
computation of C is finished, the appropriate tuples are inserted into Cy by executing query 4. The
cost formula is

cost =CREATE COST + cost(query3)+ card(Ay) x GET_NEXT_COST +
card(Cy) X INSERT_COST(Cy) + cost(queryd).

Temporal Select (with segment tree index): In this case, we first retrieve a set S of CIds
by using the segment tree index. This index filters out irrelevant data by trying to ensure that
(7i.C AC) # 0 for each TP-case v; whose CId is in 5. We then execute query 5 to retrieve the
TP-cases referred to in 5. We read one TP-case at a time from the result of query 4, compute C',
and write the result into Cy. Finally, (4 is populated by executing query 4. The cost formula is

cost =CREATE_COST + cost(segTreeSearch) + cost(querys) +
| S| XGET_NEXT_COST + card(Cy) Xx INSERT_ COST(Cy) 4 cost(query4).

Temporal Select (with table index Table-T,): Table-T, is stored as a Paradox table where
MIN-T and MAX-T are indexed using standard, Paradox indices. We first execute query 6 to retrieve
from this table all CIds of TP-cases in A; whose C' constraints overlap with the selection condition.
We then open a cursor on the result of query 6, read one tuple at a time, compute €', and save the

results in C;. We finally execute query 4 to compute C'y. Hence, the cost formula is

cost =CREATE_COST + cost(query6) + sel(C) X card(tableIndex)x
GET_NEXT COST + card(Cy) x INSERT_COST(Cy) + cost(queryd).

Probabilistic Select (without index): As relational databases do not support probabilistic se-
lection conditions, we use special purpose code to compute the results of this operation which is
similar to the unindexed temporal select operation. The only difference is that €' is computed via
TP-filter(;,C), and hence sol(C) will be the set of time points in +;.C’ which satisfy C. The cost
formula is the same as the one used for unindexed temporal selections.

Probabilistic Select (with table index): A probabilistic condition C can be rewritten using one
interval (if op is not “#”), or the union of two intervals. For instance, I > p can be rewritten
as L € (p,1]. As a selection condition is a disjunction of intervals, probabilistic select queries are
implemented by using a procedure similar to the one used for temporal selects with table indices. In

fact, both queries share the same cost formula.
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Project: As the TP-algebra only allows projections of data attributes, this operator only projects
out fields from A, and retains all fields in A; by executing query 7 and query 8 respectively. The
cost formula is

cost =CREATE_COST + cost(queryT) + cost(querys).

Cartesian Product: To execute a Cartesian product operation between TP-relations A and B, we
first execute query 9 to retrieve all tuple ids from A; and B;. For each unique pair of TP-tuples from
A and B that produces a result in the Cartesian product, a new, unique tuple id needs to be created
for the resulting tuple. The TP-algebra uses a mapping f which takes tuple ids from A and B as
input, and returns a new tuple id for C'. This mapping is stored as a Paradox table Tmpl" with the
schema (TmpA, TmpB, TmpC). Here, TmpA, TmpB, and TmpC refer to the TIds from A, B, and
(' respectively. The implementation then creates TmpkF', whose cardinality equals that of C'y. We
then open a cursor on the result of query 9, and read one tuple at a time. For each tuple in the
result of query 9, we compute C' = (A;.C' A B;.C') and discard this tuple if sol(C') = (). Otherwise we
generate a unique id for (;.CId, and determine whether or not there is a value for f(A4,.TId, B;.TId).
If not, we generate a unique id for C;.TId, and assign this value to f(A;.TId, B;.TId). In either case,
the implementation inserts (C.CId, f(A¢.TId, B..TId),C, D, L,U,é)into C; when these values satisfy
Definition 8 of Cartesian product. Note that 6 may be a new distribution function that distributes
[L,U] among all time points ¢ € sol(D) according to the probabilities determined by ©@,.. After all
tuples returned by query 9 are processed, function f is saved. For all a,b,c where f(a,b) = ¢, the
code inserts (a,b,c) into Tmpl. This information is used to populate Cy by executing query 10.
Finally, we remove TmpF. The cost formula is

cost =CREATE_COST 4+ CREATE COST(TmpF)+ cost(query9) +
card(Ay) X card(B;) X GET_NEXT_COST 4 card(Cy) x INSERT_COST(Cy) +
card(TmpF) x INSERT_COST(TmpF) + cost(queryl0).

Join: To execute the join operation, we first create a temporary Paradox table Tmp.J with the schema
(TmpA, TmpB), and populate T'mpJ by executing query 11. Tmp.J stores the TIds of the pairs which
satisfy the join condition C. Hence, the cardinality of Tmp.J is card(Ay) X card(Byg) X sel(C). The
rest of the join code is similar to that of Cartesian product except that Query 12 is used instead of
Query 9 (to limit the number of TP-cases visited), and Query 13 is used instead of Query 10 (as the
result requires a projection on F). Furthermore, T'mpJ can be removed any time after executing

query 12. The cost formula is

cost =CREATE COST + CREATE COST(TmpJ) + cost(queryll) +
CREATE COST(TmpF) + cost(queryl2)+
card(TmpJ) x GET_NEXT_COST + card(Cy) x INSERT_COST(Cy) +
card(TmpF) x INSERT_COST(Tmpl') + cost(queryl3).

6 Experimental Results

We conducted experiments aimed at (i) evaluating the effectiveness of our selectivity estimates, (ii)
evaluating the effectiveness of our rewrite rules, and (iii) evaluating the effectiveness of our TP-

optimizer as a whole.
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All these experiments use a table creation program (TCP) which generates tables in accordance
with various parameters described in Table 7. TCP generates NO_TUPLES number of TP-tuples.
The TP-relations generated by TCP contain data fields f1 and f2. TCP assigns unique consecutive
integers to the f1 field, and randomly assigns integers in the interval [1, F2_Range] to the f2 field.
To generate a temporal constraint C of the form t; ~ {5, a value is drawn randomly from the range
C_R for t;. The number of time points that are solutions to a TP-case is controlled by drawing
value z from the range AVG_TIME_PTS_R and adding it to ¢;. Values for L. and U are generated
randomly by choosing a value from the ranges L_R and U_R respectively. Distributions in tp-cases
are restricted to geometric (g), binomial (b), uniform (u) and mix. When a “mix’ is chosen, TCP
randomly picks one of the ¢, b or u distributions.

‘ Parameter ‘ Description ‘
NO_TUPLES number of TP-tuples
F2_Range range for the data attribute f2
CR range for the lower bound of the temporal constraint C
AVG_TIME_PTS_R | range for the average number of time points in a TP-tuple
LR range for the lower bound probability L
U_R range for the upper bound probability U
Delta probability distribution function

Table 7: Parameters of the Table Creation Program

6.0.3 Effectiveness of Selectivity Estimators

We used TCP to create 6 TP-relations with various cardinalities and properties. These are shown
below. Each TP-tuple has one case.

| TP-rel | NO_TUPLES | F2 Range| CR |AVGTIMEPTSR| LR | UR |Delta|
rl 100 - 1900-2000 5-10 0.8-1.0 | 0.9-1.0 | mix
12 1000 - 1800-2000 5-15 0.75-0.9 | 0.95-1.0 | mix
3 10000 - 1800-2010 10-20 0.8-0.95 | 0.9-1.0 | mix
r4 1000 - 1950-2020 5-10 0.75-0.95 | 0.9-1.0 | mix
% 1000 - 1900-1980 10-20 0.6-0.8 | 0.9-1.0 | mix
6 10000 - 1850-2020 5-15 0.8-1.0 | 0.9-1.0 | mix

Table 8: TP-relations used in the first set of experiments.

Our experiments focus on the effectiveness of the selectivity estimation formulas for temporal
and probabilistic selection conditions as well as join operations. Table 9 contains the temporal and
probabilistic selection queries we used in these experiments.

Temporal Selectivity: Figure 2 shows the actual cardinality of the resulting answers, as well as
the estimated values provided by Formulas TS1, TS2. The leftmost bar in each group in the figure
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[ # [ Query |

1 UL>0.4(7‘2)

H # ‘ Query H 2 | 015015(75)
1 U1980~1995(7‘2) 3 UL>0.1(7‘4)
2 | o1940~1970(72) 4 | or>0.05(r2)
3 U1920~1995(7‘2) 5 UL<0.01(7‘4)
4 U1870~1990(7‘2) 6 UL<0.017(7‘2)
5 U1950~1960(7‘4) 7 UL<0.07(7‘5)
6 U1975~1993(7‘4) 8 UL<0.5(7‘4)
7 | o1900~1990(74) 9 | orr>0.48(T4)
8 | 01880~2000(74) 10 | ours0.25(75)
9 | 01965~1975(75) 11 | ouso.27(r2)
10 | o1960~2010(75) 12 | ouso.2(rs)
11 | oy850~1950(75) 13 | ovco.o1(rs)
12 | 01940~1980(75) 14 | ov<o01(5)
15 UU<0.1(7‘2)

16 UU<0.3(7‘5)

(a) Temporal Selection Queries (b) Probabilistic Selection Queries

Table 9: Selection Queries for Experiments

shows the cardinality estimates generated by using Formula T'S1, the middle bar show the estimates
generated by Formula TS2 and the rightmost bar shows the actual result cardinalities. It is easy to
see that Formula TS2 generates better results than Formula TS1.

Figures 3, 4, 5 and 6 contain the actual cardinality and the cardinality estimates generated by Set
A and Set B formulas for probabilistic conditions of the form L > prob , L < prob, U > prob and
U < prob, respectively. As seen from the figures, Set B formulas provide better estimates than Set
A formulas. For L > prob, Set B results are query accurate (we surmise that this is because they
use Proposition 2). For the same reason, and the fact that the sum of the upper probability values
do not have to add up to 1, but add up (on average) to AVG_U x AVGTIME_PTS, the formula
for U > prob also performs very well. The formulas for I < prob and U < prob in Set B assume
that the number of time points having probability values less than AVG_L (AVG_U) is half of the
average time points in a TP-tuple. In fact, we expect that there are more time points with lower
bounds of probability intervals between 0 and AVG_L than there are points with the lower bounds
of probability intervals between AVG_L and 1, as the sum should add up to 1. Hence, the estimates
for L < prob values are not as accurate as the L > prob case. A symmetric argument also applies to
the U < prob condition. The cardinality estimate generated by Set A for queries 5 and 13 in Table
9(b) were 0, and hence hence they do not appear in Figures 4 and 6.

Join: In order to assess the accuracy of our join size estimators, we created 7 queries involving a two-
way join between various TP-relations. These queries and their actual and the estimated cardinalities

are shown in Table 10. All queries assume that no prior knowledge about the relationship between the
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events represented in base relations exist — an assumption, known as ignorance [20]. The conjunction
strategy for this can be specified as follows: [a,b] @, [¢,d] = [max(0,a + ¢ — 1), min(b,d)]. The
results indicate that the cardinality estimates for the join provide “decent” estimates. The estimated
cardinalities seem to be reasonably accurate.

‘ Query No ‘ QUERY ‘ Actual Card ‘ Estimated Card ‘

1 select * from rl, r6 under ig where r1.f1 = r6.f1 7 7

2 select * from rl, r3 under ig where r1.f1 = r3.f1 10 7

3 select * from 12, r4 under ig where r2.f1 = r4.f1 57 79
4 select * from 12, r6 under ig where r2.f1 = r6.f1 94 47
5 select * from r4, r6 under ig where r4.f1 = r6.f1 113 97
6 select * from 12, r3 under ig where r2.f1 = r3.f1 124 64
7 select * from r3, r5 under ig where r3.f1 = r5.f1 169 147

Table 10: Join Queries for Experiments

6.0.4 Effectiveness of Rewrite Rules

In this section, we study the effectiveness of some of the rewrite rules proved in Section 4. Due
to space reasons, we are unable to present results on the effectiveness of all the rewrite rules. We
focus on the result that temporal and probabilistic selects are commutative (Theorem 4), and that
temporal selects can be pushed into joins (Theorem 9).

Commutativity of Temporal and Probabilistic Selects: If 7" (resp. P) is a temporal (resp.
probabilistic) selection condition, then by Theorem 4, we know that op(or(r)) = or(op(r)). We
started by generating TP-relations using the TCP with the following parameters:

| TP-rel | NO_TUPLES | F2 Range| C.R | AVGTIMEPTSR| LR | UR | Delta |
R 3880 | 1-100 [ 2000-2090 | 1-10 [0.1-0.5 | 0.1-1.0 | mix |

To vary T, we used the temporal condition (2000 ~ (2000 + 10 - 7)) for all ¢ € [0,9]. To vary P,
we used the probabilistic condition (L < 0), (L < 0.32-(2)") for all i € [0,8], and (L < 1). For each
pair (7, P), we determined the time (in seconds) to compute op(or(r)) minus the time to compute
or(op(r)) when r is not indexed (i.e., when all TP-cases must be examined). If this difference is
positive (negative), then it is better to perform the probabilistic (temporal) select first respectively.
The results are shown in Figure 7.

In general, if Sel-T and Sel-P are approximately equal, then both orderings are approximately
equal. Otherwise, it is better to perform the selection that offers the highest selectivity first. In
other words, even though it takes a lot of time to compute TP-filter(;, P) used in probabilistic as
compared to solving the constraint v;.C' AT in the case of temporal selects, this difference turns out
to be negligible. Intuitively, this occurs because testing v; is mostly a CPU-intensive operation while
writing out satisfying TP-cases is a memory-intensive operation, and hence is more expensive.
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Figure 7: Time for op(or(r)) minus time for or(op(r)) without indices

The same conclusion holds when r is indexed. In this case, we created probabilistic table indexes
Table-L, and Table-T, on r. Thus, the system used Table-T, to compute op(or(r)), and used
Table-L, to compute op(op(r)). The results are shown in Figure 8. In conclusion, when we need to
perform a series of selects on r, we should determine their execution order according to our estimates
of their selectivities with respect to r, regardless of the kind of select being considered. However, if
these selectivities are approximately equal, then we can give preference to data selects over temporal

selects, and temporal selects over probabilistic selects.

06 -8
m4-6
m2-4
WO -2
0(2)-0
0 (4)-(2)
H (6)-(4)
B (8)-(6)

Sel-T

Sel-P

Figure 8: Time for op(or(r)) minus time for or(op(r)) with indices
Pushing Temporal Selections into Join: Note that the query or(r t<, ') can be evaluated in

four possible ways: A = op(r >, '), B = op(r) s, o7 (1), C = 1 <, op(r'), or D = op(r) s, 1.
Our goal is to determine when we should use each of these methods. To generate sample relations
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for r and 1/, we used the parameters given in Figure 11.

TP-rel | NO_TUPLES | F2_Range CR AVG_TIME PTS R | LR U_R | Delta

T 585 1-100 2000-2090 1-10 0.1-0.5 | 0.1-1.0 | mix
T2 375 1-100 2000-2090 1-10 0.1-0.5 | 0.1-1.0 | mix
T3 748 1-1000 2000-2090 1-10 0.1-0.5 | 0.1-1.0 | mix
T4 346 1-1000 2000-2090 1-10 0.1-0.5 | 0.1-1.0 | mix

Table 11: TP-Relations Used In Join-Temporal Selection Rewrite Rules

We varied T in the same way as for temporal selections and we did not vary the conjunction strategy
a as this does not affect the relative running times of options A,B,C, D. We varied the number of
TP-cases returned by the join by considering the queries o7(ry 04, 72) (where |ry >, 73] = 238), and
or(rs >, 74) (Where |3 <, 74| = 31). The results for these two queries are shown, respectively, in
Figures 9 and 10.
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Figure 9: A = o7(r1 <, 72) vs. B = op(r1) >, o7(r2) vs. C = ry 0y op(r3) vs. D = op(ry) pd, 72

Figure 9 demonstrates the case when |r sq,, 7’| is relatively large. Here, it is better to push selection
into the join for both r and »’ (i.e., strategy B) unless the selectivity of the selection predicate is very
low (i.e., unless the selectivity of T is a large percentage). This result should not be surprising. As
|r ><, 7| increases, the preference for strategy B vs. strategy A intensifies. Conversely, as |r 0, /]
decreases, the threshold for T where A becomes preferable to B decreases. An example is shown in
Figure 10. Note that when the join removes a fairly large number of tuples, strategy C or D may
perform better than strategy B (the choice of C or D depends on the selectivity of T with respect
to 7/ and r). This occurs because strategy B requires three operations whereas the other strategies

only need two.
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Pushing Probabilistic Selections into Join: The query op(r M, ') where P is of the form L > p
for some probability p € [0, 1] can be evaluated as A = op(r X, r') or B = op(op(r) X, op(r’)). To
determine when to use these options, we used TCP to generate eight TP-relations with the following

parameters:

| TPrel |NOTUPLES| CR |AVGTIMEPTSR| LR | UR | Delta |

{ri|i€ll,6]} 1000 2000-2090 1-10 0.1-0.5 | 0.1-1.0 | mix
{ri |i€[7,8]} 10000 2000-2090 1-10 0.1-0.5 | 0.1-1.0 | mix

The F2_Range parameter was 1-1000 for ry and ry, 1-100 for r3 and r4, 1-10 for r5 and rg, and
1-10000 for 77 and rs. Thus, [ry My, ro| = 113, [r3 M, r4] = 1188, |r5 X, rg] = 11732, and
|r7 My 73| = 1191. To vary P, we used probabilistic predicate (L > 0.32 - (%)2) for all ¢ € [0,6].
The results are shown in Figure 11. Note that the conjunction strategy a remained constant. This
is acceptable since other experiments have verified that the running times depend on |op(r X, r')|
instead of the choice for a. Nonetheless, note that when a # o/, then it is often the case that
op(r o )] # op(r a0 7).

For each graph in Figure 11, the times for strategy A remain more or less constant. This is because
the times to perform the joins are constant, and these times overwhelm the times it takes to perform
the selections. Furthermore in each graph, the times for strategy B increase as the selectivity of
P increases. We are interested in the threshold for P where the time for strategy B exceeds the
time for strategy A. For graphs (a), (b), and (c) of Figure 11, this occurs when the selectivity of P
is around 20%, 65%, and 75% respectively. Thus if |r X, /| increases while max(|r|,|r’|) remains
constant, then the threshold for P increases. Graph (d) of Figure 11, uses base TP-relations r7,rg

where |r7| = |rs] = 10- (|r1| = ... = |r¢|). Here, the threshold for P is around 20%. This matches
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the threshold for graph (a) but does not match the threshold for graph (b). Thus to estimate the

threshold for P, we cannot just consider |r X, r'| (e.g., |r7 M, rs| & |rg M, r4]). Instead, consider

Ll X
' and max((rl, 1) (e-8 RETEG ~ maqaTa))

In conclusion, there are many cases where it is better to use strategy B even though it involves

the ratio between |r M, r

performing selects three times more often than strategy A. The accuracy of predicting when these

cases occur strongly depends on the accuracy of the cardinality estimators.

6.0.5 Effectiveness of The Query Optimizer

In this section, we report on experiments conducted by us to determine the overall effectiveness of
our TP query optimizer. We wanted to determine how “good” or “bad” the plans picked by the
TP-query optimizer are. We used TCP to create 9 TP-relations having the properties shown in Table
12.

| TP-rel | NO_.TUPLES | F2. Range| CR |AVG.TIMEPTSR| LR | UR | Delta |

rl 1000 100 1900-2000 0-10 0.1-0.5 | 0.1-1.0 | mix
r2 100 100 2000-2100 2-2 0.1-0.5 | 0.1-1.0 | mix
r3 100 100 2000-2500 2-2 0.1-0.5 | 0.1-1.0 | mix
r4 100 100 2000-3000 2-2 0.1-0.5 | 0.1-1.0 | mix
rH 100 100 2000-2100 5-5 0.1-0.5 | 0.1-1.0 | mix
6 100 100 2000-2500 5-5 0.1-0.5 | 0.1-1.0 | mix
r7 100 100 2000-3000 5-5 0.1-0.5 | 0.1-1.0 | mix
8 100 100 2000-2500 10-10 0.1-0.5 | 0.1-1.0 | mix
r9 100 100 2000-3000 10-10 0.1-0.5 | 0.1-1.0 | mix

Table 12: TP-relations used in the second set of experiments.

Simple Queries: We first tried to see what happens with queries involving only one TP-operation.
We compared compared the actual running times with the optimizer’s estimated execution times.
Table 13 contains the queries we tried, together with their actual and estimated execution times. It
can be seen that the optimizer estimates exhibit an acceptable amount of accuracy, consistent with
the accuracy of traditional cost based query optimizers. In those cases where the actual and estimate
differ, the difference appears to be due to inaccurate selectivity estimates. However, the optimizer
still seems to pick very good plans and seems to avoid very bad ones.

Multiple Selection Queries: We wanted to study the behavior of our optimizer when select queries
involve all three types of selects (data, temporal, probabilistic). We created three queries shown in
Table 14. There are 10 different feasible query plans for each of these queries. Figure 12 enumerates,
these plans, shows their running times, and uses a star to indicate which plan was picked by the
optimizer. As seen from the figure, the optimizer was able to choose the cheapest plan for queries 1
and 2, and the second best plan for query 3. The difference between the cheapest plan and the one
the optimizer picked was 0.3 secs.

Multiple Joins: Next, we studied how our optimizer behaves when queries with two joins are

executed. Table 15 shows four queries created by TCP. In each query, we chose TP-relations with
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H Query H Actual time ‘ Estimated Time H

or>0.2(m1) 0.47s 0.637s
01,50.05(71) 1.12s 1.169s
or=0.4("1) 0.156s 0.494s
or<01(r1) 1.254s 1.643s
01<0.01(71) 0.635s 0.855s
0'1900N1990(7‘1) 1.304s 1.506s
T1950~2000(71) 0.979s 1.209s
T1970~1980(71) 0.405s 0.977s
01960~2020(71) 0.776s 1.129s
Ory fl=ry £1(71 Xig T4) 0.56s 0.765s
Ory 2=ry £2(T2 Xig T3) 0.601s 0.764s
Ory 2=rg.£2(T5 Xig T6) 0.562s 0.769s
Org fl1=rg fl(r6 ng TS) 0.593s 0.76s
Org f2=rg f2(7‘8 ng 7‘9) 0.622s 0.763s

Table 13: Some Simple Queries, Their Estimated and Actual Running Times

| # | Query |
1 O (£2<250) A (1920~1990) A (L<0.01)(7‘1)
2 O (£2<250) A (1970~1990) A (L<0.2)(7‘1)
3 U(f2<10)/\(1920~1980)/\(L<0.3)(T1)

Table 14: Selection Queries

varying number of average time points. There are three ways of executing these two join operation.
Again, we executed those plans, and examined the optimizer’s choice in each case. The results are
shown in Figure 13’ and the optimizer’s choice is shown with a star. The reader will not that the

optimizer picked the best query plan in all four cases.

[ # | Query |

71 Xig Te Xig To

( )
(7‘5 Xig T6 Xig 7‘1)
( )
( )

1 T (ry £2=r6 £2) A (16 £2=r9 .f2)
2 O (ry, £2=r6 £2) A (rg.£2=r1 £2)
3 T (ry £2=r5 £2) A (ro.£2=r7 £2)
4 T (1o £2=76 .£2) A (16 £2=r9 .f2)

1 Xig T2 Xig T'7

T2 Xig Te Xig To

Table 15: Join Queries

Selection/Join Mix: We created three queries involving a join, a temporal and a probabilistic
select operation. Recall that temporal selects can be pushed into the join, but probabilistic selects
cannot. Moreover, temporal selection can be pushed into the first argument, or the second argument

or both arguments of the join. We can execute the temporal select by using an index or without
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Figure 12: Ordering of Data, Temporal and Probabilistic Selects

an index. Finally, we can commute temporal and probabilistic selects. Hence, there are 8 different
ways of executing these queries; in 6 of those temporal selects are executed before the join, and in
2 of them they are executed after the join. Figure 14 shows the actual execution times of these 8
plans for the three queries provided in Table 16. Once again, we marked the optimizer’s choice with
a star. Although the optimizer was not able to pick the cheapest plan for the first query, it was able
to avoid very bad plans and furthermore, the difference in execution times between the plan chosen
by the optimizer and the best plan was 0.311 secs. The optimizer chose the second best plan for the
second query, and was able to pick the best plan for the last query.

| # | Query |
1 O (ry.f2=r1 £2) A (2000~2010) A (L>0.05)(7‘2 Xig 1)
2 O (ry £2=r3 .f2) /\(2100~2150)/\(L<0.4)(7‘5 Xig 7‘8)

3 O (ry.f2=r5 £2) A (2400~2500) A (L<0.02)(7‘2 Xig Ts5)

Table 16: Join Queries with Selections

Finally, we made the previous join/selection mix queries more complex and created the queries
shown in Table 17. For the first and the third queries, the optimizer applied 674 rewrite rules to
generate a plan. The most promising plans and the one chosen by the optimizer are shown in Figure
15. The optimizer was able to choose the best plan for the first two queries, and it chose a good
plan for the third query. The difference between the execution times of the best plan and the plan
the optimizer chose for query 3 was 0.067secs.

We conclude this section by reporting that our cost models are reasonably accurate and easy to
compute and that the optimizer does its job effectively. It quickly selects a query execution plan

that is very good, while consistently avoiding bad plans.

43



4.5 A

3.5 1

2.5

execution time

1.5

N m
0 T
1 2 3 4
query no

Figure 13: Ordering of Two Joins

H # ‘ Query H
1 U(r6.f2:r4.f2)/\(r6.f2:r8.f2)/\(r6.f2<50)/\(r4.f2<75)/\(rg.f2>25)/\(2500~2520)/\(L<0.1)(7‘6 Xig Ta Xig 7‘8)
2 U(TQ.f?ZTg.f?)/\(Tg.f?:r5.f2)/\(T2.f2<25)/\(Tg.f2:5)/\(2000~2070)(T2 Xig 3 Xig 7‘5)

3 U(Tl.f2:7’7.f2)/\(7’7.f2:7’3.f2)/\(7’7.f2<75)/\(2100~2400)/\(L<0.3)(T1 Xig 7 Xig 7‘8)

Table 17: More Complex Queries

7 Related Work

Dyreson and Snodgrass [7] were one of the first to model temporal uncertainty using probabilities
by proposing the concept of an indeterminate instant. Intuitively, an indeterminate instant is an
interval of time points with an associated probability distribution. They propose an extension of SQL
that supports (i) specifying which temporal attributes are indeterminate, (ii) correlation credibility
which allows a query to use uncertainty to modify temporal data — for example, by using an
EXPECTED value correlation credibility, the query will return a determinate relation that retains
the most probable time point for the event, (iii) ordering plausibility which is an integer between 1
and 100 where 1 denotes that any possible answer to the query is desired while 100 denotes that only
a definite answer is desired, and (iv) specifying that certain temporal intervals are indeterminate.
Later, [5] extended the work of Dyreson and Snodgrass [7] in the following ways. First, they
proposed TP-cases as a way of using constraints and probabilities together to store probabilistic
temporal data. Then they developed an algebra extending the relational algebra to manipulate
this data. They used probability intervals (hence capturing point probabilities of Dyreson and
Snodgrass [7] as a special case). They allowed users to specify in their queries, arbitrary knowledge
the user’s may have about the dependencies between events, and in fact, their algebraic operators were

parameterized by these dependency assumptions. Specifically, all independence assumptions used in
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[7] were eliminated in [5]. They also proposed a set of operations such as compaction that were not
considered elsewhere. However, they did not incorporate some things that Dyreson and Snodgrass
could handle. For instance, they assumed tuples have only one indeterminate temporal attribute
while [7] allows more than one. Furthermore, they do not have analogs of correlation credibility
or ordering plausibility introduced by [7] and they use methods to store probability distributions
provided by Dyreson and Snodgrass [7].

This paper directly builds on the previous two works. Specifically, it provides cost models for
TP-databases which apply in large part to both the preceding works, and it provides estimates of
cardinality and other statistical variables useful for query optimization. In addition, it derives a
useful set of equivalence results that may be used for query rewriting. Using the software of [5], it
builds what is to our knowledge, the first query optimizer for temporal probabilistic databases.

The work also extends a host of work on probabilistic (non temporal !) databases. Kiessling et.
al.’s DUCK system [15, 17] provides an elegant, logical, axiomatic theory for rule based uncertainty.
Building on past work of Kifer and his colleagues [16], Lakshmanan and Sadri [22] show how selected
probabilistic strategies can be used to extend the previous probabilistic models. Lakshmanan and
Shiri [23] have shown how deductive databases may be parameterized through the use of conjunction
and disjunction strategies. Barbara et al. [1] develop a point probabilistic data model and propose
probabilistic operators. When performing joins, they assume that Bayes’ rule applies (and hence, as
they admit up front, they make the assumption that all events are independent). Also, as they point
out, unfortunately their definition leads to a “lossy” join. Cavallo and Pittarelli [3]’s important
probabilistic relational database model uses probabilistic projection and join operations, but the
other relational algebra operations are not specified. Also, a relation in their model is analogous
to a single tuple in the framework of [1]. Dey and Sarkar [6] propose an elegant 1NF approach
to handling probabilistic databases. They support (i) having uncertainty about some objects but
certain information about others, (ii) first normal form which is easy to understand and use, (iii)
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elegant new operations like conditionalization. The 1NF representation used by them is a special case
of the annotated representation of [5] who showed experimentally that when dealing the temporal
uncertainty, the TP-representation is superior. Also, the semantics of some of the operations in [6]
is different from the semantics of the same operations in TPA. Another important work is the
ProbView system for probabilistic databases by Lakshmanan et. al. [20]. ProbView extends the
classical relational algebra by allowing users to specify in their query, what probabilistic strategy
(or strategies) should be used to parameterize the query. ProbView removed the independence
assumption of previous works. However, ProbView has no notion of time, though ProbView scaled
up well to massive numbers of tuples, it did not scale up well when massive amounts of uncertainty
are present as is the case with temporal probabilistic databases, where saying that an event sometime
between Jan 1-4 yields a total of 4 x 24 x 60 x 60 = 345,600 seconds. Thus, if a temporal database
uses seconds as it lowest level of temporal granularity, this gives rise to 345,600 cases to represent
just one statement — something that would quickly overwhelm ProbView. The work reported in
this paper specifically builds upon the idea of a probabilistic conjunctive strategy of [20] and applies
it to TP-databases. But in addition to these works, none of which provided statistical estimates of
various parameters/variables associated with TP-data, we do so, and we provide a cost model for
such data and a query optimizer whose sole goal is to avoid the problems faced by purely probabilistic
database systems attempting to cope with huge amounts of uncertainty.

There is also much work in the temporal database community that deals with uncertainty. Snod-
grass was one of the first to model indeterminate instances in his doctoral dissertation [31] — he
proposed the use of a model based on three valued logic. Dutta [9] and Dubois and Prade [8] later
used a fuzzy logic based approach to handle generalized temporal events — events that may occur
multiple times. Gadia [10] proposes an elegant model to handle incomplete temporal information as
well. He models values that are completely known, values that are unknown but are known to have
occurred, values that are known if they have occurred, and values that are unknown even if they
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occurred. However, he makes no use of probabilistic information.

Koubarakis [19] proposes the use of constraints for representing event occurrences. His framework
allows stating the facts that event e; occurred between 8 and 11 AM, and that event ey occurs after
12pm. From this, we may conclude that event e; occurs after e;. While TP-tuples support this via
queries, they do not explicitly encode this data into tuples, which Koubarakis can do.

As mentioned earlier, though many of these works touch upon uncertainty, they do not provide the
comprehensive probability analysis provided in [7, 5]. They also do not propose statistical variables
to maintain information about TP-relations, and corresponding cost models which form the key
contributions of this paper.

The only comparable work in the area of query processing and query optimization comes from the
field of temporal databases. Salzberg and Tsotras provide an excellent overview of temporal indexing
methods developed in the community over the past decade [27]. Query optimization and cost models
for temporal databases have been studied in early 90s by Gunadhi and Segev [13, 14], and their study
was later continued by Soo, Snodgrass, Jensen and Slivinskas [33, 30]. Their research was primarily
concentrated on designing eflicient algorithms for relational operations on temporal databases which
minimized I/O costs. These results, however, are not directly applicable to the TP-Databases, due
to the complex structure of the data model developed in [5]. Moreover, to our knowledge, this is
the first attempt to develop a detailed model for estimating the cost and cardinality of probabilistic
selections.

8 Conclusions

Databases that contain nondeterministic temporal information are growing in importance. Important
work in this field was started by Dyreson and Snodgrass [7] who proposed a probabilistic temporal
model of such data. Dekhtyar et. al [5] extended the framework of [7] by proposing an extension of
the relational algebra for such data, as well as by eliminating many assumptions about the data that
was present in prior work.

In this paper, we make additional contributions to the area of temporal probabilistic (TP) databases.
First, we develop a TP calculus that is equivalent to the TP algebra in expressive power. Second,
we develop a large set of equivalence results in such databases that constitute rewrite rules that a
query optimizer might use. Third, we develop a cost model for TP databases. Fourth, we have
implemented our cost model and our rewrite rules in a prototype optimizer for TP databases. Using
this implementation, we have evaluated (i) the accuracy of our cost model, (ii) the effectiveness of

our rewrite rules, and (iii) the effectiveness of our TP optimizer as a whole.

References

[1] D. Barbara, H. Garcia-Molina and D. Porter. (1992) The Management of Probabilistic Data,
IEFE Trans. on Knowledge and Data Engineering, Vol. 4, pps 487-502.

[2] M.H. Béhlen, R.T. Snodgrass, and M.D. Soo. (1996) Coalescing in Temporal Databases, in
Proc. VLDB 96, pp. 180-191.

47



[3] R. Cavallo and M. Pittarelli. (1987) The Theory of Probabilistic Databases, in Proc. VLDB’87.
[4] Codd, E. F. “Relational Completeness of Data Base Sublanguages”, in [26], pages 65-98.

[5] A. Dekhtyar, R. Ross and V.S. Subrahmanian, Probabilistic Temporal Databases, Part I:
Algebra, ACM Transactions on Database Systems, vol 26, 1, pps 41-95, March 2001.

[6] D. Dey and S. Sarkar. (1996) A Probabilistic Relational Model and Algebra, ACM Transac-
tions on Database Systems, Vol. 21, 3, pps 339-369.

[7] C. Dyreson and R. Snodgrass. (1998) Supporting Valid-Time Indeterminacy, ACM Transac-
tions on Database Systems, Vol. 23, Nr. 1, pps 1—57.

[8] D. Dubois and H. Prade. (1989) Processing Fuzzy Temporal Knowledge, IFEE Transactions
on Systems, Man and Cybernetics, 19, 4, pps 729-744.

[9] S. Dutta. (1989) Generalized Events in Temporal Databases, in Proc. 5th Intl. Conf. on Data
Engineering, pp. 118-126.

[10] S. Gadia, S. Nair and Y.C. Poon. (1992) Incomplete Information in Relational Temporal
Databases, in Proc. VLDB’92.

[11] H. Garcia-Molina, J. D. Ullman and J. Widom, Database System Implementation, Prentice
Hall, 2000

[12] G. Graefe, (1995) The Cascades Framework for Query Optimization, in the Bulletin of the
TC on Data Engineering, 18(3), pp 19-29.

[13] H. Gunadhi, A. Segev (1990) A Framework for Query Optimization in Temporal Databases
in Proc. Conf. on Statistical and Secientific Database Management’1990,pp. 131-147.

[14] H. Gunadhi, A. Segev (1991) Query Processing Algorithms for Temporal Intersection Joins,
in Proc. ICDE 91, pp. 336-344.

[15] U. Guntzer, W. Kiessling and H. Thone. (1991) New Directions for Uncertainty Reasoning in
Deductive Databases, Proc. 1991 ACM SIGMOD, pp 178-187.

[16] M. Kifer and A. Li. (1988) On the Semantics of Rule-Based FExpert Systems with Uncer-
tainty, 2-nd Intl. Conf. on Database Theory, Springer Verlag LNCS 326, (eds. M. Gyssens, J.
Paredaens, D. Van Gucht), Bruges, Belgium, pp. 102-117.

[17] W. Kiessling, H. Thone and U. Guntzer. (1992) Database Support for Problematic Knowledge,
Proc. EDBT-92, pps 421-436, Springer LNCS Vol. 580.

[18] G. Kollios, V.J. Tsotras: Hashing Methods for Temporal Data. To appear at IEEE Transac-
tions on Knowledge and Data Engineering. 2001.

[19] M. Koubarakis. (1994) Database Models for Infinite and Indefinite Temporal Information,
Information Systems, Vol. 19, 2, pps 141-173.

[20] V.S. Lakshmanan, N. Leone, R. Ross and V.S. Subrahmanian. ProbView: A Flexible Proba-
bilistic Database System. ACM Transactions on Database Systems, Vol. 22, Nr. 3, pp. 419-469.

48



[21] V.S. Lakshmanan and F. Sadri. (1994) Modeling Uncertainty in Deductive Databases, in
Proc. Int. Conf. on Database Expert Systems and Applications, (DEXA’94), Lecture Notes in
Computer Science, Vol. 856, Springer (1994), pp. 724-733.

[22] V.S. Lakshmanan and F. Sadri. (1994) Probabilistic Deductive Databases, in Proc. Int. Logic
Programming Symp., (ILPS°94), MIT Press.

(23] V.S. Lakshmanan and N. Shiri. (1996) Parametric Approach with Deductive Databases with
Uncertainty, in Proc. Workshop on Logic In Databases 1996, pp 61-81.

[24] R. Ramakrishnan, J. Gehrke. (2000) Database Management Systems, 2nd Ed., McGraw-Hill.
[25] S. Ross. (1998) A First Course in Probability, Prentice Hall, 1998.
[26] Rustin, R. [1972]. Data Base Systems, Prentice-Hall, New Jersey, 1972.

[27] B. Salzberg and V. Tsotras. (1999) Comparison of Access Methods for Time-Evolving Data,
ACM Computing Surveys, vol 31, No. 2., pp. 158-221.

[28] H. Samet. (1989) The Design and Analysis of Spatial Data Structures, Addison Wesley, Read-
ing, MA.

[29] J. Shoenfield. (1967) Mathematical Logic, Addison Wesley.

[30] G. Slivinskas, C.S. Jensen, R.T. Snodgrass. (2000) Query Plans for Conventional and Tem-
poral Queries Involving Duplicates and Ordering, in Proc. ICDE-2000.

[31] R.T. Snodgrass. (1982) Monitoring Distributed Systems: A Relational Approach, PhD disser-
tation, Carnegie Mellon University.

[32] R.T. Snodgrass, M. Soo, (1995) Supporting Multiple Calendars in R.T. Snodgrass (Ed.), The
TSQL2 Temporal Query Language, pp. 103-121, Kluwer, 1995.

[33] M. D. Soo, R. T. Snodgrass, C. S. Jensen (1994) Efficient Evaluation of the Valid-Time
Natural Join, in Proc. ICDE’1994 pp. 282-29

[34] D. Zhang, V.J. Tsotras, B. Seeger: Efficient Temporal Join Processing using Indices. Proc.
ICDE’02 (to appear), San Jose, CA, Feb.-March 2002.

[35] Q. Zhu and P. Larson. (1998) Solving Local Cost Estimation Problem for Global Query
Optimization in Multidatabase Systems, Journal of Distributed and Parallel Databases, 6(4),
pp. 373-421.

49



A Proofs for the TP-Calculus Theorems

Proof of Theorem 1: Suppose db is a TP-database, ¢ is a TPA-query over db, and ¢; is a subquery
of q. We proceed by induction on the number of operators in ¢. This number is zero in the base case
where ¢ = r. Otherwise, ¢ must obey the structure specified in Definition 19.

Suppose @ is a TPC-query over db and ); = {s; | F/} is a subquery of . By the inductive
hypothesis, assume that TPA-query ¢; can be expressed as TPC-query ¢); for all subqueries of g.
Then TPA-query ¢ can be expressed as TPC-query ) in the following way:

1. If g =7, then Q = {s|ser}.
2. If g =o0c(q1) where C =Cy A ... ACpy,then Q ={s|3sy (F] N E1 A ... AN E,)} where

o I/;=5A40 cwhen(C; =(A0O ¢).
o F,=s5.C:5.C @T whenC;, =1T.
o I;=5.C:5.P 0 pwhenC;, = (P 0O p).

3. If ¢ = nr(q1) where F = aq,...,a,, then
Q=A{s|Is1(F] AN s.ag =s1.a1 A ... \ S.a, = $1.05)}.
4. If ¢ = pr(q1) where Ry = (aq,...,a,), then
Q={s|3s1(F] N s R(a1) = s1.a1 N ... N s.R(a,) = s1.a,)}.

5. If ¢ = Z(q1), then @ = Q.
6. If ¢ = (1 X4 q2) where Ry = (ay,...,a,) and Ry = (af,...,a’,), then

Q= {s|3s1 (F] A{(@,0),(EE)} 352 (F) A s.ay = s1.a1 A ... N Sy = S1.a, A
s.aly = s1.af AN sal, = s1.al,)) )
7. If ¢ = (¢1 M, ¢qz) where Ry = (aq,...,a,) and Ry = (d,...,a},), then

Q= {s|3s1 (F] A{(@,0),(EE)} 352 (F) A s.ay = s1.a1 A ... N Sy = S1.a, A
s.aly = s1.af AN sal, = s1.al,)) )
8. If g = I{X(ql N...N¢,), then @ = {s| I s (Fll) AN AEZ) Y - M) (B i)} ds, (F;L)}

9. If g = I{X(ql U...Ug,), then @ = {s| 35 (Fll) V)BTt - V) (B} ds, (F;L)}
10. If ¢ = ¢4 — g2, then @ = {s | Is; (F]) A—~TFsa (F5)}. &

Proof of Theorem 2: Suppose db be a TP-database, s is a TP-variable over R, 7, Q@ = {s | F'} is
a TPC-query over db, and @Q); = {s; | F/} is a subquery of ) where s; is a TP-variable over R;, 7.
We proceed by induction on the structures given in Definitions 21, 22, 23, 25, and 26.

Suppose ¢ is a TPA-query over db and ¢; is a subquery of ¢. By the inductive hypothesis, assume

that TPC-query ¢); can be expressed as TPA-query ¢; for all subqueries of ). Then TPC-query ¢
can be expressed as TPA-query ¢ in the following way:

1. Q = {s| ser}, then g = 7.
2. IfQ ={s[3s (F] N E)}, then ¢ = oc(mx(pr(q1))) where

e R(Ay) = A for each TP-atom in F of the form s.A = 51.4;.
e F=uay,...,a; when R = (ay,...,a).
e C=CyAN...NC, where
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— C; = (A O ¢) when the 7-th TP-atom in I is of the form s.4 O c.

— C; = T when the ¢-th TP-atom in F is of the form s.C': s;.C' @ T'.

— C; = (P O p) when the i-th TP-atom in E is of the form s.C' : 51.P O p.
— C; = true when the i-th TP-atom in F is of the form s.4 = s1.4;.

3. If Q ={s|3s1 (F] A Ts2(F) AN L))} where Q@ = {(®, a), (=, 5)}, then
q = 77(pRr,(q1) Mo pr,(g2)) where

e R1(Ay) = A for each TP-linker in £ of the form s.A = s;.A4;. Otherwise, R1(A41) = A;.
e Ry(Ay) = A for each TP-linker in £ of the form s.A = s3.A45. Otherwise, Ra(A3) = As.
e F=uay,...,a; when R = (ay,...,a).

4. 1 Q ={s|Fs1 (F)) 0 ... 8 3s,(F))} where @ = {(k, x), (E,5)}, then

o ¢ =r(q1N...N¢g,) when 8 = Aq.
o ¢ =r(q1U...Ug,) when 0 = vq.
¢ g=q; —...—q, When § = A—. <

B Proofs of Equivalence Results

The proofs of query equivalence results contained in this section are all done using Theoretical Anno-
tated Temporal Algebra (TATA ), defined in [5] on annotated relations, the flat relational equivalents of
TP-relations. Each annotated relation consists of annotated tuples which have the form (d, ¢, L, U)
where d is the data part of the tuple (a collection of relational attributes similar to the data part of
a TP-tuple), t is a single time point, and [L¢, U] C [0,1] is a probability interval. The annotation
operation can be applied to TP-tuples to produce “equivalent” annotated relations.

TATA has been defined in [5] on annotated relations. Except for TP-compression, which is specific
to the format of TP-tuples, all other TPA operations have their analogs in TATA. It has been shown in
[5] there that TPA operations correctly implement the semantics of corresponding TATA operations,
i.e. the equivalences ANN(Op(r)) = Op(ANN(r)) and ANN(Op(r,r’')) = Op(ANN(r), ANN(+')) hold
for unary and binary operations respectively of the TPA and TATA.

As annotated tuples are flat, reasoning in terms of annotations of TP-relations in proofs is less
cumbersome. The correct implementation theorems of [5], assure us that a query equivalence holds
in TPA iff it holds in TATA. Hence, we choose to prove equivalences in TATA to make our reasoning
more transparent and make the proofs shorter.

Proof of Theorem 3.

1. Selection. We prove the theorem statement for atomic selection conditions. Theorem 4 will
ensure that it holds for conjunctive selection conditions. Part 5 of this theorem will ensure
that it holds for disjunctive selection conditions.

Three cases need to be considered.

e Selection condition is on data. Then the idempotence of selection in TPA follows from
idempotence of selection in classical relational algebra [11].
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o Selection condition C'is temporal. Let at = (d,t,L,U) € ANN(oc(r
timepoint ¢ satisfies selection condition C'. But then, AN N(oc(oc(r

~—r

). This means that
)) will also contain

~—r

IN

at, hence o¢(r) C oc(oc(r)). The other subset inclusion, oc(oc(r)) C oc(r) follows from

the definition of selection in TPA.

e Selection condition C'is probabilistic. Let at = (d,t,L,U) € ANN(oc(r)). This means
that the probability interval [L, U] satisfies selection condition C'. But then, AN N(oc(oc(r)))
will also contain at, hence o¢(r) C oc(oc(r)). The other subset inclusion, oc(oc(r)) C
oc(r) follows from the definition of selection in TPA.

2. Projection. Direct corollary of idempotence of projection in classical relational algebra [11]:
projection in TPA affects only the data part of the tp-tuples.

3. Compaction. In [5] compaction operation is defined to have the following three properties:

e Compactness : x(r) is compact for all TP-relations r.
¢ No Fooling Around (NFA) : If r is compact then ANN(x(r)) = ANN(r).

o Conservativeness : If at = (d,t, Ly, U;) € ANN(k(r)), then Jat’ = (d,t, L}, U}) € ANN(r).
Idempotence of compaction, therefore, follows from Compactness and NFA properties.

4. Intersection. By definition (r M., 7) = K (r Nr). Let at = (d,t,L,U) € ANN(r). Then
ANN(rnr)=ANN(r)N ANN(r) will contain two distinct instances of at. As r is compact,
AN N (r) contains no other tuples for the pair d,, and therefore, AN N (rNr’) will only contain
two distinct instances of at for the pair d,t. By ldentity property of combination functions,
x({[L,U],[L,U]}) = [L,U], therefore, ANN (s (r N7)) = ki (ANN(r N 7)) will contain the
tuple at’ = (d,t,L,U). As at’ = at, we have shown that r C 7N, 7.

Consider now an annotated tuple at = (d,t, L, U) € ANN(rN 7). By definition of intersection,
r has to contain some tuple at’ = (d,t, L', U’), and as we know that r is compact, this tuple
will be unique for the pair d,¢. But then, by the Identity property of the combination function,
ANN(r Ny, r) will contain the tuple at” = (d,t, L', U’). As r N, ris compact, at” = at, i.e.,
L'= L and U' = U. But then at = at’ and therefore at € ANN(r). Hence, r N, 7 C 7.

5. Union. By definition (rU, r) = k(rUr). Let at = (d,t, L,U) € ANN(r). Then ANN(rUr) =
AN N (r)NAN N (r) will contain two distinct instances of at. As ris compact, AN N (r) contains
no other tuples for the pair d,, and therefore, AN N(r 0 #") will only contain two distinct in-
stances of at for the pair d,t. By ldentity property of combination functions, x({[L, U],[L,U]}) =
[L, U], therefore, ANN (ry(r Ur)) = K (ANN(rUr)) will contain the tuple at’ = (d,t, L, U).
As at’ = at, we have shown that r C r Ny, T
Consider now an annotated tuple at = (d,t,L,U) € ANN(r U, r). By definition of union,
r has to contain some tuple at’ = (d,t, L', U’), and as we know that r is compact, this tuple
will be unique for the pair d,¢. But then, by the Identity property of the combination function,
ANN(r Uy, r) will contain the tuple at” = (d,t, L', U’). As r U, ris compact, at” = at, i.e.,
L'= L and U' = U. But then at = at’ and therefore at € ANN(r). Hence, r U, r C 7.
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6.

Difference. Consider an annotated tuple at = (d,t,L,U) € ANN(r). We show at € ANN(r —
') iff at € ANN((r — ') —r'). Let " denote r — r’. Two cases are possible:

o There exists an annotated tuple at’ = (d,t, L', U’) € ANN(r'). In this case, by definition
of difference, at ¢ ANN(r"). Also, as ANN(r" —r") C r (see definition of difference),
at ¢ ANN(r" —77).

o There is no tuple in AN N(r) for the pair d,¢. In this case at € ANN(r") = ANN(r —1').
But then, at also has to be in ANN(+" —r). <&

Proof of Theorem 4.

1.

2.

Selection. See Theorem 13 in [5].

Projection. We prove mx(mg(r)) = mgnr. The other equivalence will follow.

Let tp = (d,v) € r. Let d' = nx(d). By definition of classical projection, d’ will only contain
attributes in F. Let d” = ng(d'). Then, d” will contain only attributes from G. Hence, d’ will
contain only attributes from F NG, i.e., d’' = mrng(d).

By definition of projection in TPA, 7wx(r) will contain tp-tuple tp’ = (7£(d),v) = (d’,v) and
mg(mr(r)) will contain tp-tuple ¢p” = (wg(d'),v) = (d”,v). But also, 7rng(r) will contain
tp-tuple tp* = (7rng(d),v) = (d",v) = tp”. So, for every tuple tp = (d,7) € r both wg(7£(r))
and mrqg(r) will contain the same tuple ¢p” = (d”, 7). Therefore, Tg(7x(r)) = Trag(r).

. Intersection. r N, ' = k(r N ). Thus in order to show the commutativity of intersection, we

need to show commutativity of multiset intersection: r N r' =+ Nr.

By definition of multiset intersection in TATA
ANN(rnr'y= ANN(r)n ANN(+') =
{at = (t,d, L,U) € ANN(r)|(Jat’ € ANN(r"))(at' = (t,d, L', U")}¥
{at' = (t,d, L', U")y € ANN(r")|(Jat € ANN(r))(at = (t,d,L,U)}

and

ANN(r'nr)= ANN(G')NANN(r) =
{at’" = (t,d, L', Uy € ANN(r)|(Jat € ANN(r))(at = (t,d, L,U)}
w{at = (t,d, L,U) € ANN(r)|(Jat’ € ANN(r))(at' = (¢t,d, L, U")}.

As ), the multiset union operation is commutative, the above two expressions are equivalent
and hence, ANN(rnr')= ANN(r' N r), yielding immediately »r N 7' =" N r.

Union. 7 U, ' = k(r U r"). Thus in order to show the commutativity of intersection, we need
to show commutativity of multiset union: r Ur' =+ Ur.

By definition of multiset union in TATA
ANN(rUr"y= ANN(r)UANN(r') = ANN(r)y AN N (')

and

ANN('Nr)= ANN(")NANN(r)= ANN(r'Y& ANN(r).
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As ¢, the multiset union operation (of set theory) is commutative, the above two expressions

are equivalent and hence, ANN(rUr") = ANN(v' Ur), yielding immediately » U ' =7 U r.
5. Difference

We show that (r —7') — r" = r — (#" U r"), the other equivalences follow from it.

o (r—r)y—r"Cr—(r"Ur).

Let at = (d,t,L,U) € ANN((r—7")—r"). Then by definition of difference, at € AN N(r —r')

and AN N(r") contains no tuple for the pair d,t. As at € ANN(r — r'), it must be the case
that at € ANN(r) and AN N(r') contains no tuple for the pair d,t.

But then ANN(r"U ") will contain no tuples containing data part d and timepoint ¢. As
at € ANN(r), we get at € ANN(r)— ANN(#'Ur")= ANN(r — (' Ur)).
or—(rur)yC(r—r1")—1".

Let at = (d,t,L,U) € ANN(r— (" Ur”). Then, by definition of difference, at € r and there is
no tuple containing the pair d,tin AN N(+'Ur”). Hence, there is no annotated tuple containing
the pair d,t in eiter ANN(r') or ANN(r"). Then at € ANN(r)— ANN(r') = ANN(r — 1)
and consequently, at € ANN(r— ') — ANN(") = ANN((r —1") = r").

6. Cartesian Product.

Recall that given two data tuples d and d’ we consider tuples (d, d’) and (d’, d) to be equivalent.
Let at = (d,t,L,U) € r and at’ = (d',t,L’,U") € r'. Then, ANN(r X, 7') will contain the
tuple at* = (d,d', ¢, L*, U*) where [L*,U*] = [L,U] @, [L',U']. Also ANN(r' x,, r) will contain
the tuple at* = (d',d,t,L*,U*), where [L*,U*] = [L',U'] ®, [L,U]. By commutativity of ®
operation, [L,U] @, [L',U'] = [L', U] ® [L,U], i.e. [L*,U*] = [L*,U*]. But then at* = at*.
Therefore, for each pair of tuples in ANN(r) and ANN(7') the same tuple will be found in
ANN(r x4 r" and ANN(7'x,,) (if the tuples have the same timepoint). This proves the theorem.

7. Join.
Remember that r o<, 1’ = wr(oc(r X, r'))?. But by commutativity of cartesian product,

r Xq 1 =71 X, 7, and therefore

T, 7= Tr(oe(r Xo 1)) = wr(oc(r’ x 1)) =1 vy 1.

Proof of Theorem 5.

1. Cartesian Product.
o (rxar )Xo Cr Xy (1 xy "),

Let at* = (d*,t, L*,U*) € ANN((r X4 7') X5 7). Then, by definition of cartesian product, there
exist annotated tuples aty = (dy,t, L1,Uy) € ANN(r x,r') and at” = (d",t,L",U") € ANN(r")
such that d* = (dy,d"”) and [L*,U*] = [L1,U1] @, [L”, U"]. Also, as aty € ANN(r x,, 7'), there
exist tuples at = (d,t, L,U) € ANN(r) and at’ = (d', ¢, L', U’] € ANN(+') such that dy = (d,d’)
and [L1,U4] = [L, U] @, [L',U"].

?Ignoring the renaming of the attributes.
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But then, ANN(7' X, ") will contain a tuple aty = (dg,t, Ly, Uy) where dy = (d’',d"”) and
[L2,Us] = [I/, U@, [L",U"] and ANN(r x4 (7' X5 7")) will contain a tuple at* = (d*,t, L*, U™)
where d* = (d,dy) = (d,d',d") = d&* and [L*, U] = [L,U] @u [La, Us] = [L, U] @ ([I, U] ©u
(L7, U") = ([L, U] @4 [L,U']) @u [L",U"] = [L*,U*] by associativity of @. But then, since
[L*,U*] = [L*,U"] we get at* = ¢* which proves the inclusion.

o 7 Xo (1" Xy 7)) C(r X 1!) X 1"

Let at* = (d*,t, L*,U*) € ANN(r x,, (1" x4 7)). Then, by definition of cartesian product, there
exist annotated tuples aty = (dg,t, Lo, Uz) € ANN(+' x,, 7"") and at = (d,t,L,U) € ANN(r)
such that d* = (d,dy) and [L*,U*] = [L,U] ®4 [L2,Us]. Also, as aty € ANN(7' x, r"), there
exist tuples at’ = (d',t,L',U’") € ANN(+') and at” = (d",t,L",U"] € ANN(r") such that
dy = (d',d") and [Ly, U] = [/, U @4 [L", U"].

But then, ANN(rx,7") will contain a tuple aty = (dy,t, Ly, Uy) where dy = (d,d") and [L1,Uy] =
[L,U] @ [L',U'] and ANN((r x4 ') X, r"") will contain a tuple at* = (d*,t, L*,U*) where
& = (d,d") = (d,d',d") = d* and [L*,U"] = [Ly, U] @ [I7,U"] = ([L,U] @ [I/,U]) &
(L7, U"] = [L, U] @4 ([L',U']) @4 [L",U"]) = [L*,U*] by associativity of @. But then, since

[L*,U*] = [L*,U*] we get at* = a* which proves the inclusion and the theorem.
. Join.

Let R, R" and R” be the lists of data attributes for tp-relations r, 7" and r” respectively.
By definition of join

(r o< 1) by " = TRUR=R) (A, ppra=R () (T Xa ') s, 7 =

T(RU(E=R)O(R—(RAR =R O A e mo oy a=R (@) (TRUR=R) (O s g = (a) (X 07") ) X a7")) =

(by pushing selection through projection (Theorem 6, proved below) and pushing selection through cartesian

product (Theorem &, proved below))

T(RO(RI~R)O(R~(RO(R = R)) (TRUR = B) (TN o - oy a=R () TN s =R (o) (Tt ) Xat™)))) =

T(RU(R'—R)U(R" —(RO(R'—R)))NRUR=R) TN e o - sy rorrya=R () (T Xa T7) Xa 7).

Similar reasoning leads to
! " ! "
1o (17 0 1) = T(RU((RIU(RY - R) = R)N(ROURU(R~ RN po o -y wrma=R (@) ((7Xa (77X 17) ).

By associativity of cartesian product (r X, ') x4 7" = r x4 (' X4 7).

We will now show that the selection conditions and projection lists in the two expressions above
are equivalent.

Projection lists:

(RU(R' - R)U(R" - (RU(R' =~ R))))N(RU (R~ R)) = ((RU(R - )) R)U((R" = (RU
(R’—R)))ﬂR”)U((RU(R’—R))ﬂ(R’—R))U((R”—(RU(R’—R))) (R ))U((RU(R’ R))n
RMOU(R"=(RU(R'=R)))NR") = RU((R"=R) = ((ROR)U((R' = R)N )))U( R)U((R"N
(R'=R)) = (R' = R))U((RNR)U(R"N(R" = R)))U((R"NR") - ((R”ﬂR) (R”ﬂ(R’ R)))) =
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RUPBU(R — R)UDU(RNR")U (RN (R - R)U(R"— (R"NR)U(R"N (R - R)))) =
RU(R' — R)U((R" -~ R)N(R" — R")) = RU (R — R)U((R" - R') — R)).

(RU((RU(R"—R))— ))m(RUR’ (R”—R’)):(ROR) (RmR’) (RN(R"—R")U
((R'U(R"=R")) = R)UR)U(((R'U(R" = R')) = R)U R U(((R'U(R" - R')) - R)N(R" = R)) =
RU(ROR)U(RN(R" = R)))U(((R (R” R))NR)—(RNR))U (((R’ﬂR’) ((R'=R)NR')) -
(ROR)U(((R'N(R"=R))U((R"=R)N(R"NR)) = (RN(R"= k")) = RU(RNR)U(RN(R" -
R)UR'NR)=R)N (R =(ROR))N(((RO(R"=R))U(R"=R"))—(RN(R"=R'))) = RU(RN
RHYU(RN(R"—R"))U(R' —R)U((R"—R")—(RN(R"—R")))=RU(R'— R)U((R"— R")— R).
Selection conditions:

(RURR—R)NRHNU(RNR)=(RU(R —R)U(RNR"))N(R'"U(RNR))=(RNR")U
(RR—=R)NR"HURNR NR"YURNRHYU(R -—RNRNRHYU(RNR)YN(RNR)) =
RNRMU(R"N(R'—R))U(RNR")U(RNRU(RNR'NR") = (RNRU(RNR"U(R"N(R—R"))
RNRNU((RNR")—RHU(RNR'NR")U((R'NR')-R) = (RN RHYU(R' NnR"YU(RN(R" - R").
RN(R'U(R"= RN UR' NR")=(RUR'NR"))N(R'U(R"—R)YU(R'NR"))=(RNR)
RN(R"—R))U(RNR'NR"YU(R'NR"YN(R'NR"))U((R'NR")NRHU((R'NR")n(R"—R"))
(RNRHYU(R'NR"YU(RN(R"—R").

Combined, the commutativity of the cartesian product and the equivalence of the projection

|~ | .

- c =1

lists and selection conditions prove the associativity of join. <&

Proof of Proposition 1.

1.rNn.r CruU,r'.

Let at = (d,t, L,U) € ANN(rN.7"). We need to show at € U, ’. By definition of intersection,
r (and hence, ANN(r))is compact. Therefore, at is the only tuple in ANN(r N, ') for the pair
d,t. By definitions of intersection and compaction, we infer that there must be annotated tuples
at; = (d,t,L;,U;) € ANN(rn7'), 1 <i<mn,n>2,such that s({[L;, U;]|1 <i<n})=[L,U].
But then, by definition of multiset intersection, each at; must belong to either ANN(r) or
ANN(r') (with at least one tuple in each relation). Without loss of generality, assume that
aty,...,at, € ANN(r) and at,41,...at, € ANN(+'), for some 1 < r < n — 1. But then, by
definition of multiset union, all at; belong to ANN(r U ') and no other annotated tuple for
the pair d,t belongs to ANN(r U r’). Therefore, by definitions of the union and compaction
ANN(r U, ') will contain tuple at’ = (d,t, L', U") where [L',U'] = x({[L;, U;]|]1 < i< n}). But
then, [L/,U’] = [L, U] and therefore at’ = at, i.e., at € ANN(r U, r').

2.rnr' £Er—(r—1r').

In short: »N7’ will contain tuples from both r and 7/, while r — (r — ') by definition of difference
will contain only tuples from r.

To be more specific, consider two annotated tuples at = (d,t,L,U) € ANN(r) and at’ =
(d,t,L',U’) € ANN(r'). By definition of » N/, ANN(r N #') will contain both at and at’.

On the other hand, ANN(r — 7') will contain no tuple for the pair (d,t), as at € ANN(r) and
at’ € ANN(7'). Therefore, ANN(r — (r — ")) will contain at, as at € ANN(r) and no tuple for
d,tis in ANN(r —r"). However, as at’ ¢ ANN(r), at’ ¢ ANN(r — (r — 1')).
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Jor—('ney=r—-rHu(r—1r").
er—(r'nr)yC(r—=rH)u(r—r").
Let at = (d,t,L,U) € ANN(r — (" n¢")). Then at € ANN(r) and there is no tuple in
ANN(r 0 ") which would contain the d,¢ pair. Thus, two possibilities have to be considered:
(i) neither ANN(7/), nor ANN(7") contain tuples for the d, ¢ pair and (ii) one of the two relations
(either ANN(7") or ANN(#")) contains a tuple at’ = (d,t, L, U’).
In case (i) both ANN(7 —7') and ANN(r — ") will contain at, and therefore ANN((r — ') U
(r— ")) will contain at.

In case (ii) (assume, for simplicity that ANN(r’) contains tuple at’ as above; the other case is
symmetric), ANN(r — 7"} will contain at while ANN(7r — 7') won’t. But then, at € ANN((r —
ryu(r—1r")).

er—(r'0r)yD(r—=r)u(r—1r").

Let, now at = (d,t,L,U) € ANN((r — ") U (r — 7"")). Then either at € ANN(r — ') or
at € ANN(r — #") or at is in both ANN(7 — ') and ANN(r — ).

Let at € ANN(r—r')and at ¢ ANN(r—7") (the case when at € ANN(r—7r") and at ¢ ANN(r—
') is symmetric). Then, at € ANN(r) and ANN(#) contains no tuple at’ = (d,t, L', U’). Also,
as at € ANN(r), it has to be the case that ANN(r") contains some tuple at” = (d,t,L",U").
However, as no tuple for d,¢ is in ANN("), ANN(r N r’) will also contain no tuple for d,¢ and
therefore ANN(r — (#/ N ") will contain at.

Now, in the case when both ANN(r—#") and ANN(r—7r") contain at, we know that at € ANN(r)
and neither ANN(r) nor ANN(#") contains any tuples for the pair d,t. Then, ANN(+' N ")
will contain no tuple for d,t either, and therefore at € ANN(r — (#' N 7).

4. r—'ur)y =0 —-r)n(r—1").
-

er—(ruUr)yC(r—=r)n(r—r").

Let at = (d,t,L,U) € ANN(r — (" U r")). Then at € ANN(r) and there is no tuple in
ANN(r U 7") which would contain the d,¢ pair. Therefore, neither ANN(7’) nor ANN(r")
contain any tuple for d,t. But then, both ANN(r — #') and ANN(r — ") will contain at and
therefore, so will ANN((r — ') N (r — #")).

er—(rUr)yD(r—=r)n(r—1r").

Let, now at = (d,t,L,U) € ANN((r — ') 0 (r — #")). Then at € ANN(r — r') and at €
ANN(r — "), and therefore ar € ANN(r) and no tuple in either ANN(r’) or ANN(+") will
contain the pair d,t. But then ANN(+' U ") will contain no such tuple as well, and because

at € ANN(r), at € ANN(r — (" Ur")). ©

Proof of Theorem 6.
We prove this theorem for atomic constraints C'. Then by Theorem 13 from [5] this will also hold
for non-atomic constraints. For an atomic constraint €' three cases are possible.

e ('isa data constraint. In this case the statement of the theorem is true since a similar statement
is true in classical relational algebra. The TP-case field of r is not “touched” by either F of (',
and hence both selection and projection on r will behave exactly as they would in the absence
of the TP-case.
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e (is a temporal constraint. We know that F contains only data fields in it. We also know that
(' does not refer to any data field. It is easy to see from this that the statement of the theorem
holds.

Indeed, let at = (d,t,l, u) be an annotated tuple from AN N (oc(mx(r))). Since C'is a temporal
constraint, we know that ¢ satisfies C'. Since ANN(oc(r)) € ANN(r), we know that at €
ANN (mx£(r)). Since ANN(mx(r)) = 77(ANN(r)), there exists an annotated tuple at’ =
(d',t,l,u) € ANN(r) such that d = P(d'). But then, since ¢ satisfies C', at’ € oc(ANN(r))
and therefore, at € mr(ac(ANN(r))).

Going the other way, let at = (d,t,l,u) € Tr(6c(ANN(r))). Then, oc(ANN(r)) contains
an annotated tuple at’ = (d',¢,l,u) where d = P(d’). Since (oc(ANN(r))) € (ANN(r)),
at’ € ANN(r), and therefore at € 77(ANN(r)). But at’ € oc(ANN(r)) implies that ¢
satisfies C', and therefore it must be the case that at € oc(mr(ANN(r))).

e (' is a probabilistic constraint. Asin the case above, F contains only data fields while C' refers
only to the contents of the TP-case field. Applying reasoning similar to the case of temporal
constraints we can establish that the statement of the theorem is true in this case as well. <

Proof of Theorem 7.

o ool (r) € ry(oe(r).
Let at = (d,t,l,u) € ANN(oc(ky(r)). We know that at satisfies C', and as (' is either a data

or temporal constraint, we know that any annotated tuples at” = (d,t,!"”,«") will also satisfy

C.

As at satisfies €' and since ANN(oc(r')) = oc(ANN(r')) for any tp-relation 7/, we know
that at € ANN(r,(r)). By the property of Conservativeness of s, there exists at least one
annotated tuple at’ = (d,t,I',u') € ANN(r). Now, let ANN(r)[d,t] = {aty,...,at,}, (V1 <
i < n)(at; = (d,t,l;,u;)). We know that [I,u] = x({[{1,u1],-..,[ln, un]}). As it was noticed
above all at’ € ANN(r)[d,t] satisfy C, and therefore, ANN(r)[d,t] C ANN(oc(r)). But as
ANN(o¢c(r)) € ANN(r), ANN(r)[d,t] = ANN(o¢c(r))[d,t]. Therefore, at = (d,t,1,u) will
be in AN N(ky(oc(r))) which means that oo (ky(r) C ry(oc(r)).

o ao(ry(r) 2 wx(oc(r)).
Let at = (d,t,l,u) € ANN(r,(oc(r))). By the Conservativeness property of x, operation
we know that there exists at least one annotated tuple tp/ = (d,t,l',u') € ANN(oc(r)).
Let now ANN(oc(r))[d,t] = {at1,...,at,}, where for all 1 < ¢ < n at; = (d,t,1;,u;) and
[(u] = x({[{1, wa], - - -, [lns wn]}). We know that all these annotated tuples satisfy C'. Also, since
for any tp-relation r and selection condition ¢! AN N(o¢ci(r)) C ANN(r), ANN(oc(r))[d, 1] C
AN N(r). But since C is a data or temporal constraint, we know that all annotated tuples in

the set AN N(r)[d,t] must satisfy it. Therefore AN N(r)[d,t] = ANN(oc(r))[d,1].

;From the latter equality and the fact that [[,u] = x({[l1,u1], ..., [ln, un]}) we get that at =
(d,t,l,u) € ANN(r,(r)). But we also know that at satisfies C' as would any annotated tuple
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with data part d and temporal part . Therefore at € ANN(oc(ky(r))) which means that
ac(kiy(r) 2 fiy(oo(r)).

As you may notice, the key step in the proof was the fact that in a tp-relation r, for any data
part d and timepoint ¢ it was true that AN N(o¢c(r))[d,t] = AN N(r)[d,?] for temporal or data select
conditions C'. This may not be true in the case when select condition is probabilistic. Therefore the
statement of the theorem above is not true for probabilistic select conditions. <&
Proof of Theorem 8.

1. o, (r Xy 1) = 0¢, (1) x4 r'. We break the proof of this fact into two parts.

o 00, (ANN(rxo1") Coc, (ANN((r)) Xy ANN(7).
Let at” = (d",t,l,u) € oo, (ANN(r x4 1')). Clearly, at” € ANN(r x, r'). As we know
([5], Theorem 16), ANN(r X, 7') = ANN(r) Xo ANN(r'), hence at” = (d",t,l,u) €
ANN(r)xoANN(r'). Then, by the definition of cartesian product on annotated relations,
there exist two annotated tuples at = (d,t,l;,u1) € ANN(r) and at’ = (d',t,13,uy) €
AN N (r') such that d = d,d" and [I,u] = [l1, u1] @4 [l2, uz]. As at” € oo, (ANN(r X4 1'))
we know that d” satisfies C'y. But since the only fields mentioned in 'y are those from
the relational schema of r (and AN N(r)), it must be the case that d satisfies C as d is
the part of d”. But then, at € o¢, (1), and therefore at” € o, (ANN(r)) xo, ANN(r').

o 00, (ANN(rxo71") D oc, (ANN((r)) Xy ANN(7).
Going the other way, we assume that at” = (d",¢,l,u) € oc,(ANN(r)) Xo ANN(r').
Clearly, then there exist two tuples at = (d,t,l1,u1) € ANN(r)and at’ = (d',t, 13, u2)oc, (AN N(r'))
such that d = d,d" and [l,u] = [l1,u1] @ [l2,u2]. As at € o, (ANN(r')) we also know
that at € ANN(r). But then at” € ANN(r) xo ANN(#') = ANN(r X, r'). Also, since
at € o, (ANN(7")) we know that d satisfies C';. Therefore, since 'y contains only ref-
erences to the fields from the relational schema of r (ANN(r)), d” also satisfies Cy and
therefore at” € o, (ANN(r x4 1')).

2. oo, (rXa ') =1 Xe00,(r").

The proof of this part of the theorem is symmetric to the proof of part 1.

3. oc(rXa 1) =o0c(r) x oc(r').

We prove this statement similarly to the proof of the statement in part 1. <&

Proof of Theorem 9.
Let F be the list of join attributes of 7 and 7" and C’ be the join condition. Then,

1. oo, (r <y 1) = oo, (nr(oci(r Xo 1)) = 7r(oc,(0ci(r Xo 1)) = wr(oci(oc, (1 X 1))
Tr(oci(oc, (1) Xa 1)) = 00, (1) >, /.

2. oo, (r <, 1) = oo, (Tr(oci(r Xo 1)) = Tr(oc,(0ei(r X0 1)) = 7r(oci(oc,(r Xo 1)) =
Tr(oci(r X 00, (1)) = 7 <y o0, (17).
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3. oc(r iy ) = oc(mr(oci(r x4 1)) = 7wr(oc(oc(r Xo 1)) = 7r(oci(oc(r xo ')
Tr(oci(oc(r) xXq oc (1)) = oc(r) i, oo (r').

Proof of Theorem 10.

1. oc(rngr') = 0.C(r) Ny oc(r') = r Ny, oe(r') = oe(r) N 1.

First we prove the statement of the theorem for multiset intersection.

o oc(rnr’) Coo(r)nNoc(r’).

Let at = (d,t,l,u) € ANN(oc(rnr')). Then at satisfies C' and as C' is a data or temporal
condition, so would any annotated tuple at” with data part d and temporal part {. As
ANN(oc(rnr’)) CANN(rn '), at € rNr’. Two cases are possible: (i) at € ANN(r)
and (ii) at € ANN(r'). We will consider case (i), the remaining case is symmetric.
As at € r we know that there has to be at least one tuple at’ = (d,t,l'.v') € ANN(+).
As we have noticed above, at’ satisfies C'. In this case at € ANN(o¢(r)) and at’ €
ANN(o¢(r)). But then, at € ANN(oc(r))NANN (oc(r')), which shows that oc(rnr’) C
oc(r)Noc(r’).

o oc(rnr’) Doc(r)Noc(r’). Let at = (d,t,l,u) € ANN(oc(r)Noc(r')) = ANN(oc(r))N
AN N (oc(r')). There are two possibilities: (i) at € ANN(o¢(r))and (ii) at € ANN(oc(r')).
We will consider the first one, proof for the second case is symmetric.

As at € ANN(oc(r)) we know that at satisfies C' and also that at € ANN(r). Also, as
at € ANN(oc(r)) N ANN(oc(r')), there has to be at least one tuple at’ = (d,¢,l',u') €
AN N (o¢(r')). Clearly, at’ also satisfies ' and at’ € AN N(7'). But in this case {at, at'}
ANN(rn ') and as at satisfies C, at € ANN(oc(r N r')) proving that oc(r N ')
oc(r)Noc(r).

SO U N

Now r N, 7’ = k(rNr') and therefore, (using the result of the Theorem 7), we get: o¢(r N, ')
oc(k(rnr')) = k(oc(rnr')) = k(oc(r)Noc(r')) = oc(r) N, oc(r).

<

2. oc(r U, ') = oc(r)Ug oc(r').

First we prove the statement for multiset union.

o oc(rur’) Cog(r)Uaoc(r).
Let at = (d,t,l,u) € ANN(oc(rUr')). In this case at satisfies C' and at € ANN(rUr’).
Two possibilities exist: (i) at € ANN(r) and (ii) at € ANN(r'). We will consider the
first one here, the proof for the other one is symmetric.
As at € AN N(r)and at satisfies C', at € AN N(o¢(r)), and therefore at € ANN(o¢(r))U
ANN (oc(r')) = ANN(oc(r)U AN N(oc(r")). This proves the desired subset inclusion.
o oc(rUr’)Dog(r)Uocc(r’). Let at = (d,t,l,u) € ANN(oc(r)Uoc(r')) = ANN(oc(r))U
AN N (oc(r')). Asin the previous case, two possible situations exist: (i) at € ANN(o¢c(r))
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and (ii) at € ANN(oc(r")). We consider the first possibility, the proof for the second one
will be symmetric.

Asat € ANN(oc(r)), at satisfies C' and at € ANN(r). Then at € ANN(r)UANN(+')

<l

ANN(ruUr'). As at satisfies C', we concluded that at € ANN(oc(r Ur')).
Now, rU, " = k(rUr’) and therefore, (using the result of the Theorem 7), we get: o¢(rUxr’) =
oc(k(rUr)) = k(oe(rUr')) = k(oe(r)Noe(r')) = oc(r) Uy, oc(r'). <&

3. oc(r —71")=oc(r)—oc(r') = oc(r)—1r'.

We prove the first equality. Second equality can be proven similarly.

o oc(r—1")Coc(r)—oc(r'). Let at = (d,t,l,u) € ANN(oc(r —r')). Then at satisfies
C and at € ANN(r —r'). In this case at € r and there are no tuples of the form
(d,t,l',u") in r".

As at € r and at satisfies C', at € ANN(o¢(r)). Also, we know that no tuple of the
form (d,t,l',u') is in ANN(oc(r')). But then, at € ANN(oc(r)) — ANN(oc(r')) =
ANN (oc(r) — oc(r'), which proves the desired inclusion.

o oc(r—1")Doc(r)—oc(r'). Let at = (d,t,l,u) € ANN(oc(r) — oc(r’)). In this case,
at € ANN(o¢(r)) and no tuple of the form (d,¢,0',u’) is in ANN(o¢(r')). Clearly, at
satisfies C' and as C is either a data or a temporal constraint, any tuple of the form
(d,t,l',u") would satisfy C'. As oc(r) C (r), at € r. Also, we know that 7’ does not
contain any tuples of the form (d,t,I',u’) since otherwise, oc(r') would have contained
them. But then, at € ANN(r — 7') and therefore at € ANN(oc(r — '), which shows
that oc(r — ') D oc(r) — oc(r'). &

Proof of Theorem 11.

o oc(r Xy 1) =0c(oc(r) Xa oc(r')).
As ANN(o¢(r)) € ANN(r) and ANN(oc(r')) € ANN(7'), the oc(r X4 ') D oc(oc(r) Xa
oc(r")) inclusion is immediate.
We now concentrate on proving oc(r X ') C oc(oc(r) Xq oc(r')).

Let ¢ = L > x. The proof for L > x, U > z, U > z is similar. Let at = (d,¢,L*,U*) €
ANN(oc(r x4 1')). Then L* > x, and at € ANN(r x, r’). By definition of cartesian product,
there exist annotated tuples at’ = (d,t¢, L', U’") € ANN(r) and at” = (d,t,L"”,U") € ANN(+')
such that [L*, U*] = [L',U'] @, [L", U"].

But, by the Bottomline axiom for probabilistic conjunction strategies, L* < min(L’, L") and
hence, L' > z and L” > 2. Therefore, both at’ and at” satisfy C' and at’ € ANN(o¢c(r)),
and at” € ANN(o¢(r')). But then, at € ANN(o¢(r) X, sigmac(r’)), and as at satisfies C,
at € ANN(oc(oc(r) xo oc(1))). <&

o oc(ro, ') = oc(oc(r) =g, oc(r)).
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oc(r gy 1) = oc(mr(oci(r xo 1)) = 7r(oc(oc(r Xo 1)) = 7r(oci(oc(r x4 "))
tr(oci(oc(oc(r)xaoc(r'))) = tr(oc(oci(oc(r)xaoc(r")))) = oc(nr(oci(oc(r)Xqoc(r'))
oc(oc(r) s, oc(r')).

Sz

Proof of Theorem 12.

o 0c(r Xpe ") = (00(1) Xpe 1)U (1 Xpe 00 (17))
Let C'= L < z. The proofs for L < z, U < 2 and U < x are similar.
o (1 Xpe 1) C(00(T) Xpe 1) U (1 Xpe o (r")).
Let at = (d,t,L,U) € ANN(oc(r xpe 7')). Then at satisfies C' (ie., L < z) and at €
ANN(r Xp. 7'). By definition of cartesian product there exist two annotated tuples at’ =
(d,t,L',U") € ANN(r) and at” = (d,t,L",U") € ANN(r') such that [L,U] = [L,U'] @y
[L",U"] = [min(L', L"), min(U’, U")]. Two cases are possible.
(1) L = L' (L’ < L"). In this case at’ = (d,t,L,U’) and at’ satisfies C', therefore at’ €
ANN(o¢(r)). But then, from the above, at € ANN(oc(r) X,e 7).
(2) L=L1L" (L" < L"). Reasoning analogously to case (1) we get at € ANN(r X, o¢(1')).
Combining two cases together we get at € ANN(o¢(r) X, ') or at € ANN(r X, oc(r')). But
then, at € ANN((oc(r) Xpe ') U (1 Xpe ac(1'))).
o (1 Xpe 1) D (00(T) Xpe ') U (1 Xpe o (1)).
Let at = (d,t,L,U) € ANN((oc(r) Xpe ') U (71 Xpe 0c(7'))). By definition of multiset union,
two cases are possible.

U
Ul

(1) at € ANN(o¢(r) Xper'). In this case there exist two annotated tuples at’ = (d,t, L', U’) €
ANN(o¢(r)) and at” = (d,t,L",U") € ANN(+') such that [L,U] = [L, U] @, [L",U"] =
[min(L’, L"), min(U, U")]. As at’ € ANN(sigmac(r), at satisfies €' and therefore L' < z.
But then as L = min(L/, L") < L', we get L < z, and therefore at satisfies C. Also, as
at’ € ANN(oc(r)) at is also in ANN(7). But them at € ANN(7 x,. ). As we have established
that at satisfies C', at € ANN(o¢(r Xpe 17)).

(2) at € ANN(7 X, oc(r')) and at ¢ ANN(oc(r) X, /). In this case there exist two anno-
tated tuples at’ = (d,t,L',U’) € ANN(o¢(r)) and at” = (d,t,L"”,U") € ANN(+') such that
(L, U] = [L, U] @p [L",U"] = [min(L’, L"), min(U, U")]. Because at ¢ ANN(oc(r) X, 1),
at’ ¢ ANN(oc(r)) and therefore at’ does not satisfy C', i.e., L’ > 2. On the other hand,
at” € ANN(o¢(r)) and therefore (i) at” € ANN(7') and (ii) at satisfies C', i.e., L” < 2. From
the latter and L' > z we conclude L” < L and therefore L” = min(L’, L"), i.e., L = L”. But
then L < z and at satisfies C'. as at” € ANN(r), at will be contained in ANN(r X, 7') and as
at satisfies C', at € ANN(o¢(r X, 1')). <&

o oo (r <y, ') = (o0(r) sy 1) U (1 40 0c(1))

Let F be the list of join attributes of r and 7’ and let C’ be the appropriate join condition.
Then,
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Te(r pe ) = G0(RHOO(r Xpe 1)) = THOC(TEH(T Xpe 1)) = THGCHOC(r Xpe 1))

Tr(oc((oc(r)Xper ) U(rxpeoc(r')))) = mr(oci(oo(r)Xper)Uoc (rXpeoc(r))) = mr(oc(oc(r) X pe

M) Urr(oci(r Xpe oc(r") = (oc(r) sy ') U (1 <0 o0 (1)), &
Proof of Theorem 13.

L. or<o(7 Xin ') = 0p<a (T Xin Tr< (r") = or<e(0r<
WL(T')(T) Xin 7‘/).

We show the first equivalence.

(7‘) Xin O'L<M1NL£r2(7‘/)) =

= __x
MINL(r) MINL(r")

ULgx(ULg

° ULgx(T Xin 1) C ULgx(T Xin ULSWL(T)(T/))

Let at = (d,t,L,U) € ANN(o7<.(r X4, 7')). Then at satisfies the selection condition, i.e.
L < 2 and also at € ANN(r x;,, 7').. Then, by definition of cartesian product, there exist two
annotated tuples at’ = (d,t,L',U’) € ANN(r) and at” = (d,t,L",U"”) € ANN(7') such that
(L, U] =[L, U@ [L", U= [L'-L",U"-U"]. As L <z, L' - L' < 2 and therefore L" < 7.
As MINL(r) < L', L" < 5 < MTvT[y- But then at" € ANN(op< MI§L(T)(7") and therefore,
at € ANN(7 X 0p< (r') as at satisfies L <z, at € ANN(op<,(7 Xin Op< M1§L(r)(rl)))'

FTNI
o 0r<o(7 Xin ') D Or<a(r Xin O'L<WL()(T/))

Let at = (d,t,L,U) € ANN(op<.(7 Xin S )(7")).
and at € ANN((r X, op< . - )(7")). By definition of cartesian product, there exist two
annotated tuples at’ = (d,t, L, U") € ANN(r) and at” = (d,t,L",U") € ANN(op< T )(7")
such that [L,U] = [L',U'] @i, [L",U"] = [L'- L", U’ - U"]. Than at” € ANN(+'). But then
at € ANN(r X;, ') and as at satisfies L <z, at € ANN(or<.(7 X4, 7). <&

Then, at satisfies I, < z condition

2. 0Lcr(r Xin ') = 0nca(r Xin Opc 2 e (1) = or<s(0p <

(1) Xin 7).

We show the second equivalence.

. - !
) W(T) Xin O-L<WL(T)(T ))

UL<1’( Or< m

® 01<olr Xin 1) © OL<o(On< e (1) Xin Op< e (1)

Let at = (d,t,L,U) € ANN(o7<.(r X4, 7')). Then at satisfies the selection condition, i.e.
L < 2 and also at € ANN(r x;,, 7').. Then, by definition of cartesian product, there exist two
annotated tuples at’ = (d,t,L',U’) € ANN(r) and at” = (d,t,L",U"”) € ANN(7') such that
(L, U] =[L, U@ [L", U= [L'-L",U"-U"]. As L <z, L' - L' < 2 and therefore L" < 7.
As MINL(r) < L', L" < & < Reasoning similarly, L' < /% and MINL(r") < L"
yield L' < WL(')

But then at” € ANN(O'L<
at € ANN(O'L< e
at € ANN(UL<1,(UL<

MU%L( I

s, )( ') and at" € ANN(op< o /)( 7). Therefore,
(r) ><m LSyt )( r')). As at satisfies L < z,

stz (1) Xin g g (17)))-

® Tr<olr Xin 1) 2 OL<o(Or< e (1) Xin Op< e (1))

Let at = (d,t,L,U) € ANN(op<,(0r« i /)( ) Xin Or<
x condition and at € ANN((op< MINL(T/)( ) Xin Op< -
product, there exist two annotated tuples at’ = (d,¢, L', U’) € ANN(op

s (r")). Then, at satisfies [ <
MINL(r)
r’)). By definition of cartesian
(r')). By
(r)) and at” =

X
MINL(r)
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(.1, 1", U") € ANN(opg e (r') such that [L, U] = [L', U"] @i [L", U] = [L'- 1", U" - U").
Than at’ € ANN(r) and at” € ANN(r'). But then at € ANN(r x;,,7') and as at satisfies L < z,
at € ANN(or<p(7 Xin 7). <&

3. oU<a(r Xin 7') = oU<o(T Xin OU< (7)) = ov<a(ov<

(1) Xin 17).

We prove the third equivalence.

(r) Xin o< e (7))

__x =z
MINU(r) MINU(r")

UUSQU(UUS TN

° ULSx(r Xin 1) C UL<1,(UL< T /)( T) Xin ')

Let at = (d,t,L,U) € ANN(or<.(7 Xin 7')). Then at satisfies the selection condition, i.e.
L < 2 and also at € ANN(r x;,, 7').. Then, by definition of cartesian product, there exist two
annotated tuples at’ = (d,t,L',U’) € ANN(r) and at” = (d,t,L",U") € ANN(7') such that
(L, U] =[L', U@ [L",U"] = [L'-L", U"-U"]. As L <z, L'- L" < 2z and therefore L' < 75. As
MINL(r') < 1", L' < 37 < gpgy- But then at’ € ANN(op<__o T/)(r) and therefore, at €
ANN(op<— (1) Xin 7" and, as at satisfies L < 2, at € ANN(or<(or< (1) X, 7).

X
=MINL(+)

( D
o 01<i(r Xin ') D Or<a(T Xin UL<WL(T)(T’))
Let at = (d,t,L,U) € ANN(op<z(0p<—=
and at € ANN(UL<W( 7) Xin 7). By definition of cartesian product, there exist two
annotated tuples at” = (d,t, L",U") € ANN(+') and at’ = (d,t,L',U") € ANN(o7< MINEL(T’)(T)
such that [L,U] = [L',U'] @i, [L",U"] = [L' - L",U"-U"]. Than at’ € ANN(r). But then
at € ANN(r X;, ') and as at satisfies L <z, at € ANN(or<.(7 X4, 7). <&

(7) Xin r"). Then, at satisfies L < z condition
MINL(r’)

4 0u<a(r Xin ™) = OU<alr Xin O e (1) = ovealove e (1) Xin U< (7))

(7) Xin ).

Proof of the first equivalence is analogous to the proof in part 1 of this theorem. Proof of

MINTT)
U< OV < gt (7
the second equivalence is analogous to the proof in part 2 of this theorem. Proof of the third

equivalence is analogous to the proof in part 3 of this theorem. <&

Proof of Theorem 14.

Let aty = (d,t, L1,Uy),...,at, = (d,t, L,,U,), be all annotated tuples in ANN(r) for the pair d,¢.
Let F be a list of manifest attributes, and let d’ = 7x(d). Then, ANN(7£(r)) will contain tuples
aty,...,atl, where at; = (d',t,L;,U;), for 1 < ¢ < n. But then, ANN(k,(7£(r))) will contain the
tuple at’ = (d,t, L', U") where [L',U’] = x([L1, U1}, ..., [Ln, Un)).

Now, consider ANN(x,(r)). This relation will contain annotated tuple at = (d,t,L,U) where
[L,U] = x([L1,U4], ..., [L,, Uy)) = [L,U’]. But then, ANN(7x(ky(r))) will contain the tuple at” =
(d';t, L', U") = at’. The latter equality proves the theorem. <&

Proof of Theorem 15.

o Intersection. We show the statement of the theorem for multiset intersection. Then, by Theorem

14, it will also hold for intersection.

o tr(rnr’) Car(r)Nar(r).
Let at’ = (d',t, L', U") € ANN(7xz(r N r")). Then, by definition of projection, there exists an
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annotated tuple at = (d,t, L', U’") € ANN(r N '), such that d' = 7#(d). As at € ANN(rN+'),
either at € ANN(r) or at € ANN(7/). Consider the former case, the latter is symmetric. at €
ANN(rnr’)and at € ANN(r) implies that there exists an annotated tuple at” = (d, ¢, L",U") €
ANN(r N r') such that at” € ANN(+'). But then, ANN(7£(r)) contains the tuple at’ =
(d',t, L', U") and ANN(7w£(7")) contains the tuple at* = (d', ¢, L"”,U"). As at’ and at* are data
and time-identical, ANN(7£(r) N 7z (') will contain both at’ and at*.

o tr(rNr’) D ar(r)Nar(r’).

Let at’ = (d',t,L',U") € ANN(7wz(r) N wx(r"). Then either at’ € ANN(7x(r)) or at’ €
ANN(mx(r")). Consider the first case, the other case is symmetric.

at’ € ANN(7x£(r)) and at’ = (d',t,L',U") € ANN(7£(r) N 7mx(r') implies that there exists an
annotated tuple at” = (d',t,L",U") € ANN(7wx(r) N 7£(r'") such that at” € ANN(7x(r')).
But then, ANN(r) contains the tuple at = (d,¢,L’,U’) and ANN(7') contains the tuple at* =
(d,t, L",U") where d' = m£(d). Therefore, as at and at* are data- and time-identicals, both at
and at* are contained in ANN(7#Nr’). But then, ANN(7£(rNr’)) will contain at’ = (d',t, L', U")
which proves the theorem. <&

Union. We prove the theorem for multiset union. Then, by Theorem 14, it will also hold for
union.

o Tr(rUr) Car(r)Unr(r).

Let at’ = (d',t, L', U") € ANN(7xz(r Ur")). Then, by definition of projection, there exists an
annotated tuple at = (d,t, L', U’") € ANN(r U '), such that d' = 7x(d). As at € ANN(rU '),
either at € ANN(r)or at € ANN(r'). Consider the former case, the latter is symmetric. As at €
ANN(r), ANN(7£(r)) contains the tuple at’ = (d’, ¢, L', U’) and therefore ANN(7x(r)U mr(r')
also contains at’.

o r(rUr) D ar(r)Une(r’).

Let at’ = (d',t,L',U") € ANN(7w£(r) U m£(r'). Then either at’ € ANN(7x(r)) or at’ €
ANN(7£(r")). Consider the first case, the other case is symmetric.

As at’ € ANN(7x£(r)) , ANN(r) contains the tuple at = (d,t, L', U’) where d' = mx(d). There-
fore, as at is contained in ANN(rUr’). But then, ANN(7£(rUr’)) will contain at’ = (d',t, L', U")

which proves the theorem. <&

Difference.

o 1r(r—7") Crr(r)—ar(r!).

Let at’ = (d',t,L,U) € ANN(mx(r—r")). Then, by definition of projection, ANN(r—7") contains
the tuple at = (d,t, L,U) where d" = 7(d). Then, by definition of difference, at € ANN(r)
and ANN(7') contains no tuple for the pair d,t. But then, at’ = 7mx(at) € ANN(7w£(r)) and
ANN(7x(r")) contains no tuple for the pair d’,t. Therefore, at’ € ANN(7w£(r) — mr(r')).

o mr(r—1") D wr(r) — mr(r).

Let at’ = (d',t ,L U) € ANN(wg(r) — wx(r')). Then at’ € ANN(7wx(r)) and ANN(7£(r'))
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contains no tuple for the pair d’,¢. But then, ANN(r) contains the tuple at = (d,t, L, U) where
d" = 7mr(d) and ANN(7') contains no tuple for the pair d,t. This means that at € ANN(r — 1)
and therefore at’ € ANN(7wx(r —1')). <&

Proof of Theorem 16.

o Trup (1T Xo 1) =7r(r) Xo e (')

o Trur(r Xo 1) Car(r) Xo mr(r').

Let at = (d,t, L,U) € ANN(wzyz(r Xo 7')). Then, by definition of projection, there exists an
annotated tuple at* = (d*,t,L,U) € ANN(r X, 7') such that d = 7ryz (d*). By definition of
cartesian product, there exist two annotated tuples at’ = (d',t,L’,U") € ANN(r) and at” =
(d",t, 1", U")y € ANN(+') such that dx = (d',d") and [L,U] = [L',U'] @, [L”,U"]. But then,
7#(r) contains the tuple at* = (d*,t, L', U’) where d* = nx(d’) and ANN(7z (7)) contains the
tuple at™ = (d**,t, L"”,U") where d** = ANN(7z(r')). But then, ANN(7£(r) X, 72 (7)) will
contain the tuple aty = ((d*,d™),t, L1, Uy) where [L1,U1] = [L/, U] ®,[L", U"]. We notice now
that [Ly, U] = [L, U] and that (d*,d™) = (7£(d'), 7r(d")) = 7 F U F')d',d") = 7rum(d”) =
d. Therefore, aty = at and at € ANN(7£(r) X, 70 (1")).

o Trur(rT Xo ') D wr(r) X wr(r').

Let at = (d,t,L,U) € ANN(7wx(r) X, (7). Then, by definition of cartesian product, there
exist annotated tuples at’ = (d',t, L', U’") € ANN(7x(r) and at” = (d',t, L', U") € ANN(7z ('),
such that d = (d',d") and [L,U] = [L',U'] @, [L”,U"]. But then, there exists an annotated
tuple at* = (d*,t,L’,U") € ANN(r) and an annotated tuple at™ = (d**,t, L”, U") € ANN(r")
such that d’ = 7x(d*) and d” = 77(d*). But then, ANN(r x, r') contains the tuple at* =
(d*,t,L*,U*) where d* = (d*,d™) and [L*,U*] = [L',U'] @, [L",U"] = [L,U]. Then, by
definition of projection ANN(7zyz (7 X, 7')) contains the tuple at; = (dy,t, L, U) where dy =
TroF(d*) = mrop (d*, &) = (mpatheal F(dF), nm(d7) = (d',d") = d. Therefore aty = at and
at € ANN(mzyz(r X4 '), which completes the proof. &

o Trup(r o, 1) = () sy T (1),

Let G denote the list of attributes to remain in the join and let C' denote the join condition.

Recall that G C F and G C F'. Then,

7T]:U]:/(7‘ By 7‘/) = 7T]:U]:/(7Tg(00(7‘ Xa 7‘/))) = ﬂg(ﬂ']:U]:/(Uc(T Xa 7‘/))) = ﬂg(Uc(ﬂ']:U]:/(T Xa
")) = wgloc(mr(r) Xo 7m(1")) = 7r(r) g T2 (1), <&
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