
STAGNATION OF GMRES �ILYA ZAVORINy, DIANNE P. O'LEARYz, AND HOWARD ELMANxAbstra
t. We study problems for whi
h the iterative method gmres for solving linear systemsof equations makes no progress in its initial iterations. Our tool for analysis is a nonlinear system ofequations, the stagnation system, that 
hara
terizes this behavior. For problems of dimension 2 we
an solve this system expli
itly, determining that every 
hoi
e of eigenvalues leads to a stagnatingproblem for eigenve
tor matri
es that are suÆ
iently poorly 
onditioned. We partially extend thisresult to higher dimensions for a 
lass of eigenve
tor matri
es 
alled extreme. We give ne
essary andsuÆ
ient 
onditions for stagnation of systems involving unitary matri
es, and show that if a normalmatrix stagnates then so does an entire family of nonnormal matri
es with the same eigenvalues.Finally, we show that there are real matri
es for whi
h stagnation o

urs for 
ertain 
omplex right-hand sides but not for real ones.Key words. Iterative methods, GMRES, stagnation, 
onvergen
e.Running Title: Stagnation of gmres1. Introdu
tion. gmres [8℄ is one of the most widely used iterations for solvinglinear systems of equations Ax = b, where A is an n � n matrix and x and b aren-ve
tors. Although it is guaranteed to produ
e the exa
t solution in at most niterations, it is useful for large systems of equations be
ause a good approximatesolution is often 
omputed quite early, after very few iterations.In this paper, we study an oddity: the 
lass of problems for whi
h the gmresalgorithm, when started with the initial guess x(0) = 0 and using exa
t arithmeti
,
omputes m iterates x(1) = : : : = x(m) = 0 without making any progress at all. We
all this partial or m-step stagnation. If m = n� 1, we 
all this 
omplete stagnationof gmres. In this 
ase, gmres will 
ompute the exa
t solution at iteration n.If gmres frequently stagnated on pra
ti
al problems, it would not be a popularalgorithm. Clearly this set of problems is rather obs
ure. Why is it of interest?Despite �fteen years of intense e�ort, the 
onvergen
e of gmres is not at all well-understood and a great number of open questions remain. Although we study theextreme 
ase, we believe the new perspe
tive lends insight into the fa
tors that a�e
t
onvergen
e rate and provides tools that may be of use in studying problems forwhi
h gmres 
onverges more favorably. In parti
ular, this is demonstrated in [15,Chap. 5℄ and a forth
oming paper [14℄. In addition, most 
ommon implementationsof gmres allow restarts after a small number of iterations to 
onserve storage spa
e.The restarted gmres algorithm often makes rapid progress in the beginning iterationsbut then nearly stagnates in the later ones. We hope that our study of stagnationwill eventually shed light on restarted stagnation, too.We begin with a new tool for studying gmres 
onvergen
e, the stagnation system.In Se
tion 2, we derive this equation, whi
h separates the e�e
ts of the eigenvaluesof A, the eigenve
tors of A, and the right-hand side. In Se
tion 3 we present resultsof appli
ation of this formalism to analysis of 
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In Se
tion 4 we study the spe
ial 
ase of extreme matri
es, those whose eigenve
tormatrix has only two distin
t singular values. In Se
tion 5 we 
onsider normal matri
es.It is well known that gmres 
an stagnate on a parti
ular set of unitary matri
es [5℄; weshow that this is the only set of stagnating problems for unitary matri
es. We furthershow that if a normal matrix stagnates then so does an entire family of nonnormalmatri
es with the same eigenvalues. Results on real matri
es and right-hand sides aregiven in Se
tion 6.2. The Stagnation Equation. We apply gmres to the linear systemAx = b; x 2 Cn; b 2 Cn; A 2 Cn�n :Throughout this paper, we make the following assumptions:1. The matrix A is diagonalizable and has the spe
tral de
omposition A =V �V �1 where � = diag(�1; : : : ; �n) and the 
olumns of V are the righteigenve
tors of A.2. These eigenve
tors are linearly independent, so the matrix W = V HV isHermitian positive de�nite.3. The right-hand side b is normalized to Eu
lidean norm 1 and the initial guessfor gmres is x0 = 0. We denote by rm the gmres residual after m steps, sothat rm = b�Axm, with r0 = b.4. The matrix V has a singular value de
omposition of the form P�QH , whereQ
ontains right singular ve
tors of V and � is a diagonal matrix with singularvalues of V on the diagonal. Behavior of gmres is essentially invariant topre-multipli
ation of V by a unitary matrix. Therefore, when 
onvenient,we may assume that P is the identity matrix. In other words, left singularve
tors of V are irrelevant to the apparatus we develop in this paper. Also,without loss of generality, we may assume that 
olumns of V have Eu
lideannorm 1.The gmres algorithm 
omputes a sequen
e of approximate solutions to Ax = bso that the mth approximation is the member of the Krylov subspa
eKm(A; b) = spanfb; Ab; : : : ; Am�1bg;with minimal residual norm krmk = minx2Km(A;b) kb�Axk:It is well known [8℄ and evident from this de�nition that the residual norms are mono-toni
ally nonin
reasing with m, and that gmres terminates with the exa
t solutionin at most n iterations.In this se
tion we develop a new approa
h for analysis of gmres, establishingne
essary and suÆ
ient 
onditions for stagnation of gmres. This is done using theKrylov matrix Km = [b Ab : : : Am�1b℄:together with the eigenvalues and eigenve
tors of the 
oeÆ
ient matrix A.An important tool in our analysis is a fa
torization ofKm, separating the in
uen
eof the eigenvalues of A, the eigenve
tors, and the right-hand side b. This fa
torizationappears, for example, in Ipsen [2, Proof of Theorem 4.1℄); a version of this result 
analso be found in [9℄. 2



Lemma 2.1. Let y = V �1b and let Y = diag(y). ThenKm+1 = V Y Zm+1;(2.1)where Zm+1 is the Vandermonde matrix 
omputed from eigenvalues of A,Zm+1 = 0B� 1 �1 : : : �m1... ... . . . ...1 �n : : : �mn 1CA = ( e �e : : : �me ) :Proof. The Krylov matrix satis�esKm+1(A; b) = [V y V �V �1V y : : : V �mV �1V y℄= V [Y e �Y e : : : �mY e℄= V Y [e �e : : : �me℄= V Y Zm+1:We are now ready to prove the main result of this se
tion.Theorem 2.2. Let A be nonsingular with at least m+1 distin
t eigenvalues. Lety = V �1b. Then gmres(A,b) m�stagnates if and only if y satis�es the stagnationsystem ZHm+1 �Y Wy = e1 ;(2.2)where e1 = [1; 0; : : : ; 0℄T 2 Cm+1.Proof. At the mth step, gmres minimizes the residual over all ve
tors x in thespan of the 
olumns ofKm. This means that the resulting residual rm is the proje
tionof b onto the subspa
e orthogonal to the span of the 
olumns of AKm. Therefore,gmres stagnates at step m if and only if b is orthogonal to the 
olumns of AKm, or,equivalently, orthogonal to the last m 
olumns of Km+1. Sin
e the �rst 
olumn ofKm+1 is b, this is equivalent to stagnation if and only if KHm+1b = e1: Substitutingthe fa
torization of Km+1 from Lemma 2.1 yields the desired result.If m = n�1, we have 
omplete stagnation. Sin
e 
omplete stagnation is impossi-ble if eigenvalues of A repeat, we assume a distin
t spe
trum, whi
h yields a full-ranksquare Vandermonde matrix Z. In this 
ase, Theorem 2.2 takes the following form.Corollary 2.3. Let A be nonsingular with distin
t eigenvalues. Let y = V �1b.Then gmres(A,b) 
ompletely stagnates if and only if y satis�es�Y Wy = Z�He1 = u(2.3)where the elements of u are de�ned byuj = (�1)n+1
onj0BB� nYk=1k 6=j �k�j � �k1CCA :(2.4)Proof. Denote the elements of the �rst 
olumn of Z�H by uj ; j = 1; : : : ; n. Theproof is a 
onsequen
e of [1, Se
tion 21.1℄, where an expli
it 
onstru
tion of the entriesof the inverse of a Vandermonde matrix is derived.3



We 
an make a similar statement for partial stagnation.Corollary 2.4. Let A be nonsingular with distin
t eigenvalues. Let y = V �1b.Then gmres(A,b) m-stagnates if and only if y satis�es�Y Wy = (ZHm+1)ye1 + t(2.5)where t is in the null spa
e of ZHm+1.The usefulness of (2.2), as well as the related equations (2.3) and (2.5), is thatit separates the in
uen
e of the eigenvalues, whi
h determine Z, and eigenve
tors,whi
h determine W . Stagnation is explored through the intera
tion of W and Z.The systems (2.2) and (2.3) are not polynomial systems of equations sin
e theyinvolve 
omplex 
onjugation of the entries of the variable y. They 
an, however, berewritten as real polynomial systems with 2(m + 1) and 2n equations, respe
tively,by splitting all 
omponents into their respe
tive real and imaginary parts. Partial or
omplete stagnation of gmres 
orresponds to the existen
e of a real solution of su
ha polynomial system. If the total number of (real and 
omplex) regular and in�nitesolutions is �nite, then, a

ording to a result of Bezout [3℄, the number does notex
eed the total degree of the polynomial system, whi
h in the 
ase of (2.2) is 22(m+1).Therefore, in pra
ti
al experiments, we need to use a solver su
h as POLSYS PLP [12℄that �nds all solutions of the system. Stagnation takes pla
e i� any of these solutionsis regular and real.We 
on
lude this se
tion by establishing the equivalen
e of stagnation of gmresfor A with stagnation for AH .Theorem 2.5. gmres stagnates for the problem Ax = b if and only if it stagnatesfor AHx = b̂ where b = V y, ŷ = �Y �1u, and b̂ = V �H ŷ.Proof. From (2.3), we obtain �Y V HV y = u, soY �1V �1V �H �Y �1u = e :Let U = diag(u) whi
h yields �u = �Ue. Multiplying the above equation by �U , weobtain the stagnation equation for AHx = b̂:Ŷ V �1V �H ŷ = �u:2.1. The Geometry of Stagnation. The 
omplete stagnation system (2.3)
an be written as FV (y) = G(�);where FV (y) = �Y Wy and G(�) = u. Let us look at the domains and ranges of FVand G. Sin
e 1 = kbk2 = kV yk2 = yHWy = kyk2W = eTu;it follows that the domain of FV (y) is the hyper-ellipsoid surfa
eEV = fy 2 Cn j yHWy = 1g;whose axes are determined by singular values and ve
tors of the matrix V . Moreover,u lies in the hyperplaneSn = fu = [u1 : : : un℄T 2 Cn j nXj=1 uj = 1g:4



The range of the operator FV (y) de�ned over EV isSV = fu 2 Sn j there exists yu 2 Cn su
h that FV (yu) = ug;whi
h is a subset of Sn. Due to s
ale-invarian
e of the fun
tion G(�), without loss ofgenerality we 
an assume that all eigenvalue distributions lie in the boxB = f� = [�1 : : : �n℄T 2 Cn j 0 � j�j j � 1g:Therefore, the range of G(�) de�ned over B isS� = fu 2 Sn j there exists �u 2 B su
h that G(�u) = ug;whi
h is also a subset of Sn. To summarize,FV : EV ! SV � SnG(�) : B ! S� � Sn:
U
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 Interpretation of Complete gmres StagnationWe 
an now give a geometri
 interpretation of 
omplete stagnation of gmres.It is illustrated in Figure 2.1. Let us �x a set of eigenve
tors V , whi
h �xes thedomain and range sets EV and SV , respe
tively. The interse
tion of SV with S�,whi
h is the meshed area in Figure 2.1, 
an be thought of as a representation ofall eigenvalue distributions � whi
h yield a stagnating matrix A = V �V �1 for thegiven V . Why? Be
ause, if we pi
k an eigenvalue distribution (labeled �S in the�gure) su
h that it gets mapped by G inside SV TS�, then there exists a ve
toryS 2 EV su
h that the stagnation equation is satis�ed for the triple fV; �S ; ySg and5



so gmres(V �SV �1; V yS) 
ompletely stagnates. Conversely, if G(�NS) 62 SV TS�for some �NS then no matter what y 2 EV we pi
k, the stagnation equation (2.3) isnever satis�ed and so gmres(V �NSV �1; b) never stagnates.We make two remarks. First, the above interpretation allows us to make a generi
statement about what it means for a set of eigenve
tors to be \good" or \bad" interms of 
omplete gmres stagnation. We see that the larger SV TS� is for a givenV , the more stagnating �'s one 
an �nd, and so the smaller this interse
tion is thebetter. Se
ond, this interpretation pla
es primary emphasis on eigenve
tors and thenin
orporates eigenvalues into the pi
ture. This is di�erent from existing literature on
onvergen
e of Krylov methods, where eigenvalues are 
onsidered more important. Soin order to get a better understanding of stagnation, we have to study properties ofFV (y) and G(�) as operators de�ned over their respe
tive domains.Similar statements 
an be made for the domain and range for the partial stagna-tion equation, but perhaps the most intuitive interpretation is that we seek an elementof EV whose elements sum to one and that is orthogonal to the 
olumns 2 throughm+ 1 of Z.2.2. The Nature of S�. It follows from (2.4) that u 2 Sn belongs to S� i� thereexists a ve
tor � 2 B su
h that G(�) = u. Sin
e we may assume that all eigenvaluesare distin
t and nonzero, this is equivalent to the following system of equations�2 �3 : : : �n = (�1)n+1 u1 (�1 � �2) : : : (�1 � �n)...�1 : : : �j�1 �j+1 : : : �n = (�1)n+1 uj (�j � �1) : : : (�j � �n)(2.6) ...�1 �2 : : : �n�1 = (�1)n+1 un (�n � �1) : : : (�n � �n�1):It appears from extensive numeri
al experiments that, in the 
ase of arbitrary 
omplexeigenvalues, the system (2.6) has solutions for any u 2 Sn, i.e. S� = Sn. Consequently,in our analysis of the stagnation region SV TS�, we fo
us most of our attention onSV . The system (2.6) is a parametrized polynomial system in � with elements of thegiven ve
tor u 2 Sn being the parameters. For 
ertain values of u, it is possible to
ompute solutions of (2.6) expli
itly. For instan
e, any permutation of the ve
tor� = [ei�1 ; � � � ; ei�n ℄T ; �j = 2�(j � 1)n ;solves the system when uj = 1=n; j = 1; : : : ; n. Thus, in order to establish equality ofSn and S� analyti
ally, it may be possible to use the theory of 
oeÆ
ient-parameterpolynomial 
ontinuation [4℄.When only real or 
omplex 
onjugate eigenvalues are allowed, Sn is signi�
antlylarger than S�. However, in this 
ase experimental data suggest that for any twoeigenve
tor distributions V1 and V2, the volume of SV1 TS� is larger than that ofSV2 TS� i� the volume of SV1 is larger than that of SV2 .2.3. The Nature of SV . Sin
e EV is 
ompa
t and FV (x) is 
ontinuous, SV isalso 
ompa
t, and we now derive an expli
it bound for elements of SV .6



Lemma 2.6. If V is nonsingular and u 2 SV , then kuk � �(V ) � maxi �i=mini �i :Proof. Sin
e kykW = 1 we 
an bound the 2-norm of y in terms of the singularvalues of V : 1maxi �i � kyk2 � 1mini �i :If u 2 SV with the 
orresponding yu 2 EV , thenkuk = kYuWyuk � kYukkWyuk � kyukkWyuk:If we de�ne ru by yu = Qru, then1 = yHu Wyu = rTu�2ru = k�ruk;so kWyuk = kQ�2QHQruk = k�2ruk � k�kk�ruk = maxi �i:Combining these expressions, we obtainkuk � kyukkWyuk � maxi �imini �i = �(V ):Lemma 2.6 implies that given eigenve
tors V , any eigenvalue distribution � su
h thatkG(�)k > �(V ) ne
essarily yields a non-stagnating matrix A = V �V �1.3. Results for Problems of Size 2� 2. In this se
tion we use the stagnationsystem to analyze stagnation of gmres in the simplest possible 
ase, when n = 2. Weshow that stagnation is determined by a simple relationship between the ratio of theeigenvalues and the 
ondition number of the eigenve
tor matrix. More spe
i�
ally,we show that given any set of distin
t nonzero eigenvalues � 2 C2 and a set ofeigenve
tors V 2 C2�2, there exists a ve
tor b 2 C2 su
h that gmres(V �V �1; b)stagnates i� the 
ondition number of V is large enough with respe
t to the ratio ofthe largest eigenvalue to the smallest one. We also provide an expli
it formula for astagnating right-hand side b.Let V have the form �QH and let r = QHy. We 
an rewrite the stagnationsystem (2.3) as follows,G(�) = Y V HV y = Y (Q�)(�QH)(Qr) = Y Q�2r:(3.1)Without loss of generality, we make the following assumptions. First, the unitarymatrix Q has the form Q = 1p2 � 1 �1ei� ei�� ; � 2 [0; 2�℄:(3.2)Se
ond, let �(V ) � � � 1. Due to the 
olumn s
aling of V and the fa
t that the orderof singular values is not important, we let� =r 2�2 + 1 �� 00 1� :(3.3) 7



Third, it is easy to see that y solves (2.3) i� ei
y also does, where 
 is any phaseangle. Therefore we assumer = � r1r2ei� � ; r1; r2 2 R n f0g; � 2 [0; 2�℄:(3.4)Note that if ve
tor r 
ontains a zero entry, the 
orresponding right-hand side ve
torb 
an never 
ause stagnation. Therefore we assume that r1 and r2 are nonzero. Alsonote that we allow the two variables to be negative. This gives us more 
exibilitywhen solving the resulting polynomial system. On the other hand, if either variabletakes a negative value, the 
orresponding polar representation of the entry of r 
anbe obtained by adjusting the phase angle �.Finally, for our fourth assumption, sin
e G(�) is s
ale invariant, we let� = � 1�0ei� � ; �0 > 1; � 2 [0; 2�℄:(3.5)We plug (3.2) { (3.5) into (3.1), simplify, separate both sides of the stagnationsystem into real and imaginary parts and obtain the following system of four equations:�2r21 + r22�2 + 1 � r1r2 
os� = 1� �0 
os �1� 2�0 
os � + �20�2r21 + r22�2 + 1 + r1r2 
os� = �0(�0 � 
os �)1� 2�0 
os � + �20(�2 � 1)r1r2 sin��2 + 1 = �0 sin �1� 2�0 
os � + �20� (�2 � 1)r1r2 sin��2 + 1 = � �0 sin �1� 2�0 
os � + �20 :The fourth equation is redundant and 
an be dropped. The remaining three nonlinearequations have three unknowns fr1; r2; �g. We need to determine the 
onditions on theparameters of the system, �0, � and �, under whi
h system has appropriate solutions.There are four pairs of solutions fr1; r2g: 1,ff�12s1 + 1� 
4
3�2 ;�
2
5q1 + 1� 
4
3�2
1 g;f12s1 + 1 + 
4
3�2 ;�
2
6q1 + 1+ 
4
3�2
1 g;(3.6) f�12s1 + 1 + 
4
3�2 ;�
2
6q1 + 1+ 
4
3�2
1 g;f12s1 + 1� 
4
3�2 ;�
2
5q1 + 1� 
4
3�2
1 gg;1Computations were performed using Mathemati
a version 4 [13℄.8



where

 = 2666666666664

4((�2 � 1)2 + 8�2�20 + (�2 � 1)2�40 � 2(1 + �2)2�20 
os �);q(�2 � 1)2(�20 � 1)2 + 4(�2 + 1)2�20 sin2 �;(�2 � 1)(1� 2�0 
os � + �20);p
7 + 
8;
4 + (�4 � 1)(1� 2�0 
os � + �20);
4 � (�4 � 1)(1� 2�0 
os � + �20);(�2 � 1)4 + 4(1� 10�4 + �8)�20;(�2 � 1)4�40 � 4(�4 � 1)2�0(�20 + 1) 
os � + 2(�2 + 1)4�20 
os 2�
3777777777775 :Although the above expressions are quite 
ompli
ated, we observe that there exists areal pair of solutions fr1; r2g i� 
4 is real. The expression 
24 = 
7 + 
8 is a fourth-degree polynomial in �2 with the positive leading 
oeÆ
ient (1 � 2�0 
os � + �20)2.In order to determine regions 
orresponding to stagnating matri
es A, we need todetermine values of �2 for whi
h the expression 
24 is positive. To this end, we solve
24 = 0 for �2 and obtain the following four zeros,�21(�0; �) = 1 + �0(�0 � 4)� 2p2(�0 � 1)2�0(
os � � 1) + 2�0 
os �1� 2�0 
os � + �20 ;�22(�0; �) = 1 + �0(�0 � 4) + 2p2(�0 � 1)2�0(
os � � 1) + 2�0 
os �1� 2�0 
os � + �20 ;(3.7) �23(�0; �) = (1 + �0 � 2p�0 
os �2 )21� 2�0 
os � + �20 ;�24(�0; �) = (1 + �0 + 2p�0 
os �2 )21� 2�0 
os � + �20 :We now examine the sign of 
24 depending on where �2 is relative to �2j (�0; �); j =1; 2; 3; 4. We 
onsider three separate 
ases.(i) Real Eigenvalues of the Same Sign. Eigenvalues of A are real and of the samesign i� � = 0. In this 
ase, (3.7) simpli�es to�21(�0; 0) = �22(�0; 0) = 1;�23(�0; 0) = 1�same(�0)2 ; �24(�0; 0) = �same(�0)2;where �same(�0) = p�0 + 1p�0 � 1 ;and so �23(�0; 0) � �21(�0; 0) = 1 = �22(�0; 0) � �24(�0; 0):For any V , �(V ) � 1, so we need only 
onsider only two 
ases, when 1 � �2 < �24(�0; 0)and �24(�0; 0) � �2. As noted above, the leading 
oeÆ
ient of 
24 as a fun
tion of �2is positive, so that lim�!+1 
24 = +1:9



We 
on
lude that if �(V ) � �same(�0);then 
24 � 0 and so there exists a real pair of fr1; r2g that yields a stagnating right-hand side b. Conversely, if 1 � �(V ) < �same(�0), then there is no stagnating b. Notethat �0 > 1 is just the ratio of the larger and smaller eigenvalues of A.(ii) Real Eigenvalues of Opposite Signs. Eigenvalues of A are real and of oppositesigns i� � = �. We �rst observe that unless � = 0, �21(�0; �) and �22(�0; �) are 
omplex,so in order to determine the sign of 
24, we 
onsider �23(�0; �) and �24(�0; �) only. Aftersimpli�
ation we obtain �23(�0; �) = �24(�0; �) = 1:Again, sin
e the leading 
oeÆ
ient is positive, we 
on
lude that if�(V ) � 1then there exists a stagnating ve
tor b. This implies that any A 2 C2�2 with realeigenvalues of opposite signs is stagnating.
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Fig. 3.1. Contours of �
x(�0; �)(iii) Complex Eigenvalues. Finally, we 
onsider � 2 (0; �)S(�; 2�), whi
h 
orre-sponds to A with 
omplex eigenvalues. Again, sin
e �21;2(�0; �) are 
omplex, we only
onsider �23;4(�0; �). First, we determine that�23(�0; �) �24(�0; �) = 1:Moreover, if 0 < � < � then �23(�0; �) < 1 and �24(�0; �) > 1. If � < � < 2� then theopposite holds.On
e more referring to the positive leading 
oeÆ
ient, we 
on
lude that a matrixA 2 C2�2 with 
omplex eigenvalues is stagnating i� the 
ondition number of itseigenve
tor matrix V is larger than the biggest of the two zeros, i.e. it satis�es�(V ) � �
x(�0; �);10



where �
x(�0; �) = 8>><>>: �4(�0; �) = 1+�0+2p�0 
os �2p1�2�0 
os �+�20 ; 0 < � < ��3(�0; �) = 1+�0�2p�0 
os �2p1�2�0 
os �+�20 ; � < � < 2�where �0 and � are determined by the ratio of moduli of the larger and smallereigenvalues. As � ! 0 and �, �
x(�0; �)! �same(�0) and 1, respe
tively.We 
an summarize the �ndings on 2� 2 stagnation as follows.1. Given an eigenvalue distribution � 2 C2, there exists b 2 C2 for whi
hgmres(V �V �1,b) stagnates whenever �(V ) is large enough with respe
t toj�2j=j�1j. Conversely, given a nonsingular V 2 C2�2 one 
an �nd � 2 C2 thatwill yield a stagnating A.2. For some � 2 C2 (spe
i�
ally, real with eigenvalues of opposite signs), everyV gives a stagnating matrix.3. Whether a given matrix A yields stagnation of gmres(A,b) for some b is
ompletely determined by the relationship between the eigenvalue ratio �0ei�and the 
ondition number of V .4. When �(V ) is large enough to 
ause stagnation, it is possible to 
ompute astagnating right-hand side ve
tor b expli
itly from (3.6).Item 1 is illustrated graphi
ally in Figure 3.1, whi
h shows 
ontour lines of�
x(�0; �) for 2 � �0 � 6 and �180Æ � � � 180Æ. Ea
h 
ontour line �
x(�0; �) = �
orresponds to eigenvalue distributions � su
h that A = V �V �1 is stagnating forevery V with �(V ) � �. The inside of the region en
losed by a 
ontour line 
orre-sponds to non-stagnating distributions �. As expe
ted, this region be
omes smalleras �
x(�0; �) grows. Next we investigate to what extent these �ndings generalize toproblems of larger dimensions.4. Complete Stagnation of Matri
es with Extreme Eigenvalue Distri-butions. We 
all V extreme if its singular values 
an be ordered to satisfy�1 = �2 = � � � = �n�1 6= �n;In this se
tion, we explore the stru
ture of SV derived from su
h extreme matri
esand show in parti
ular that two di�erent, but equally 
onditioned, extreme eigenve
tordistributions have essentially the same range sets SV . Sin
e 
olumns of V are assumedto have Eu
lidean norm 1, the 
ondition number of V is within a fa
tor of pn ofoptimal [10℄, and the singular values satisfy�21 + � � �+ �2n = n:(4.1)For extreme matri
es V , the stagnation system �Y Wy = u has a parti
ularlysimple form. Let the singular values ofW be �2j = �; j = 1; : : : ; n�1, and �2n = �+�,where � is nonnegative and � is real. By (4.1), n� + � = n; and, sin
e the singularvalues are nonnegative, we must have 0 � � � n=(n� 1) and �2n = �+n(1��). Thematrix �2 then has the form �2 = �I + n(1� �)eneTnwhere en is the nth unit ve
tor. We 
an then 
on
lude thatW = Q�2QH = Q(�I + n(1� �)eneTn )QH = �I + n(1� �)qqH ;11



where q is the last 
olumn of Q, the right singular ve
tor 
orresponding to the singularvalue �n. Therefore, the stagnation system (2.3) be
omesu = �Y Wy = � �Y y + n(1� �) �Y qqHy:(4.2)The singular ve
tor q has the property that every entry has the same magnitude:Lemma 4.1. Suppose V 2 Cn�n is extreme and the 
orresponding W has singularvalues parameterized by � and � as de�ned above. Thenq = 1pn �ei�1 ; : : : ; ei�n�T ;where �j 2 [0; 2�℄ are 
ertain phase angles.Proof. Let elements of the ve
tor q have the form qj = rjei�j , where rj 2 R and�j 2 [0; 2�℄. Sin
e V is properly s
aled, the main diagonal elements of W are1 = wjj = �+ n(1� �)qj �qj = �+ n(1� �)r2j ; j = 1; : : : ; n :Consequently rj =s 1� �n(1� �) = 1pn:4.1. Stru
ture of SV for an Extreme V . We now use this lemma to provethat the range set SV of an extreme V is symmetri
 with respe
t to the \
enter" pointu
 = (1=n) e, i.e., if u 2 SV then uP = Pu 2 SV , where P is any permutation matrix.Theorem 4.2. Suppose a properly s
aled matrix V is extreme, with singularvalues � and right singular ve
tors de�ned by Q. Thenu 2 SV ) uP = Pu 2 SV ;where P is a permutation matrix.Proof. Suppose we have a solution to the stagnation equationu = � �Y y + n(1� �) �Y qqHy:Sin
e the basis in Q for the spa
e orthogonal to q is arbitrary, we 
an establish ourresult just by proving it for a permutation P that inter
hanges the �rst and last
omponents of a ve
tor. Let ŷ = Ŷ e whereŶ = PY PD;and D = diag(ei(�1��n); 1; : : : ; 1; ei(�n��1)) :Then �D = PDP , so that Ŷ = P �Y P �D = P �Y DP:ThereforeŶ ŷ = (P �Y DP )(PY PDe) = P �Y DY PDe = P �Y Y (DPD)e = P �Y y;12



sin
e DPD = P . Similarly, sin
e DPq = q,Ŷ qqH ŷ = PY DPqqHPY PDe= PY qqHPY PDPPe= P �Y qqHPY �DPe= P �Y qqHP �DY e= P �Y qqHy:Therefore, �Ŷ ŷ + n(1� �)Ŷ qqH ŷ = Pu;so Pu 2 SV .We have run extensive numeri
al experiments that suggest that the set SV of anextreme V is 
onvex. The range set SV also appears to be 
onvex for any 3� 3 realmatrix V . However, in general SV is not 
onvex.Example. Let the matrix A be de�ned by its eigenve
tor matrixV = 0B��0:3998204 0:2414875 �0:0877858 �0:4306034�0:5786559 �0:8362391 0:4920379 0:32133180:6984230 0:0537175 �0:7499413 0:5155494�0:1323115 0:4893898 �0:4333364 �0:66748441CA ;and its eigenvalues� = (1:0000000;�0:7658066;�0:2656295; 0:8705277):The mapping G(�) isG(�) = (�0:6120;�0:1600; 0:9269; 0:8451):If we 
onsider only real right-hand sides b, then the dotted region in Figure 4.1 
orre-sponds to the sli
e of SV that is its interse
tion with the plane u3 = 0:9269. Clearly,the range set is not 
onvex. This �gure was 
onstru
ted by solving the stagnationsystem using globally 
onvergent probability-one homotopy algorithms [11℄, as imple-mented in the POLSYS PLP pa
kage [12℄. Further details are given in [15℄.We 
on
lude this se
tion with a result that relates the range sets SV of twodi�erent extreme matri
es.Theorem 4.3. Let Q be a unitary matrix with last 
olumn q. Let � be a real
onstant greater than 1. De�ne two extreme matri
es V1 = �1QH and V2 = �2QH sothat �1�1 + �1 = �2 + �2�2 = �;and thus �(W1) = �(W2) = �. Then u 2 SV1 i� �u 2 SV2 .Proof. The proof is 
onstru
tive. Suppose we are given a ve
tor y1 2 EV1 su
hthat FV1(y1) = u. Then we may express y1 asy1 = r1ei�1 q̂ + rnei�nqfor some q̂ orthogonal to q, where r1; rn 2 R and 0 � �1; �n � 2�. Now lety2 = 
1r1e�i�n q̂ + 
nrne�i�1q13
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Fig. 4.1. The range of FV (y) 
an fail to be 
onvex (Se
tion 4.1), and real ve
tors b are notsuÆ
ient (Se
tion 6.2).where 
1 =s�(�+ n� 1)�(n� 1) + 1 ; 
n =s �+ n� 1�(�(n� 1) + 1) :It is easy, but tedious, to verify that FV2(y2) = �u. The details 
an be found in [15,Se
tion 4.6℄.Theorem 4.3 shows that the two equally 
onditioned extreme matri
es are essen-tially identi
al in terms of stagnation, i.e. the matrix A1 = V1�V �11 is stagnating i�A2 = V2 ��V �12 is, too.5. Complete Stagnation of Normal Matri
es. A normal matrix A is onewhose eigenve
tor matrix V is unitary. In this 
ase, the stagnation system (2.3)simpli�es to Y y = u = G(�);(5.1)whi
h is a system of n de
oupled equations of the form,jyj j2 = uj ; j = 1; : : : ; n:Theorem 5.1. Let A 2 Cn�n be normal with distin
t eigenvalues �. If the ve
toru = G(�), de�ned by (2.4), satis�es u 2 Rn, and 0 � uj � 1; j = 1; : : : ; n, thengmres(A,b) stagnates for b = V y, whereyj = pujei�j ; j = 1; : : : ; n;(5.2)and the phase angles �j are arbitrary. Conversely, if � is su
h that the 
orrespondingG(�) 
ontains 
omplex or real negative entries, then there is no right-hand side forwhi
h gmres(A,b) stagnates. 14



Proof. If u = G(�) is real positive then y de�ned elementwise by (5.2) solves (5.1)and thus 
auses stagnation of gmres. Conversely, if at least one element of u is either
omplex or real negative, the system (5.1) does not have a solution, so stagnation isimpossible.When A is normal, the 
orresponding SV has a simple form.Corollary 5.2. Let V 2 Cn�n be unitary. Then the 
orresponding set EV isthe unit sphere and the range of FV (y) is a real simplexSI = f u 2 Rn j 0 � uj � 1; j = 1; : : : ; n g:When A is Hermitian or real symmetri
, gmres is equivalent to minres [7℄.Proposition 5.3 below shows that in this 
ase the two methods 
annot stagnate, pro-vided n � 3. This is a well known result, but we show how this fa
t is re
e
ted in theframework of the stagnation equation.Proposition 5.3. Let � 2 Rn and let u = G(�). Then all elements of u =[u1; : : : ; un℄T are nonzero. Furthermore,� If n = 2n̂� 1 is odd then n̂ elements of u are negative.� If n = 2n̂ is even then either n̂ or n̂� 1 elements of u are negative.Therefore gmres 
annot stagnate when applied to a Hermitian or real symmetri
matrix with distin
t eigenvalues.Proof. See [15, Proposition 4℄.5.1. Stagnation of Unitary Matri
es. A normal matrix A is unitary i� itseigenvalues satisfy �j = ei�j ; 0 � �j � 2�; j = 1; : : : ; n:(5.3)It has been shown that gmres 
an stagnate when applied to a unitary matrix Awith eigenvalues distributed uniformly over the unit 
ir
le in the 
omplex plane [5℄.Using Theorem 5.1 we now show that those are the only unitary matri
es for whi
hstagnation 
an o

ur.Theorem 5.4. Let A 2 Cn�n be unitary with distin
t eigenvalues. gmres stag-nates i� the phase angles �j satisfy�j = �+ 2�(j � 1)n ; j = 1; : : : ; n;(5.4)where � is arbitrary, whi
h represents n eigenvalues distributed uniformly over theunit 
ir
le in the 
omplex plane.We prove Theorem 5.4 in two steps. Given �, a set of n distin
t eigenvalues ofthe form (5.3), de�ne its image under the transformation G(�) byG(�) = u = v + i w; v; w 2 Rn:In Lemma 5.5, we derive expli
it formulations for v and w. Then, in Lemma 5.6, weprove that the only set of phase angles f�jg that makes w zero is the one de�ned by(5.4). For this set of angles, it 
an be shown by dire
t 
omputation that v 
ontainsonly positive entries.Lemma 5.5. Let � 2 Cn be a set of n distin
t eigenvalues of the form (5.3).Without loss of generality assume that0 = �1 < �2 < : : : < �n < 2�:(5.5) 15



Then individual entries of the ve
tor u = (u1; : : : ; un)T 
an be written in terms of thephase angles as follows. uj = 
(n) C(n)j d(n)j ;(5.6)where
(n) =8<: (�1)n�22 ; if n is even(�1)n�12 ; if n is odd ; C(n)j = �12�n�1 nYk=1k 6=j 
s
 �j � �k2 ;and d(n)j = 8>><>>: sin �(n)j2 + i 
os �(n)j2 ; if n is even
os �(n)j2 � i sin �(n)j2 ; if n is odd;where �(n)j = (n� 1)�j � nXk=1k 6=j �k:Proof. The jth element of u satis�es uj = u1j , where u1j is de�ned by (2.4). Ea
hterm of (2.4) 
an be rewritten as follows using (5.3)�k�j � �k = � sin �j��k2 + i 
os �j��k22 sin �j��k2 = ��12� 
s
 �j � �k2 i ei��k��j2 �This yieldsuj = (�1)n�12�n�1 nYk=1k 6=j 
s
 �j � �k2 in�1 exp0BB�i nXk=1k 6=j �k � �j2 1CCA :(5.7)Let us now assume that n = 2k is even. The 
ase for odd n is treated similarly. Sin
e(�1)n in�1 = (�1)n�22 i;we 
an rewrite (5.7) as uj = 
(n) C(n)j i e�i�(n)j2 ;where i e�i�(n)j2 = sin �(n)j2 + 
os �(n)j2 :This 
ompletes the proof. 16



Lemma 5.6. The ve
tor w, the imaginary part of u de�ned by (5.6), is zero i�the phase angles f�jg are given by (5.4).Proof. We present a proof for even values of n. The proof for odd n is similar.First we observe that sin
e eigenvalues are distin
t, the C(n)j terms are all well-de�nedand nonzero. From (5.6) we see that u is real i�ŵ =  
os �(n)12 ; 
os �(n)22 ; : : : ; 
os �(n)n2 !T = 0:Thus �(n)k = � + 2�mk; k = 2; : : : ; n;(5.8)where mk is an integer.Our goal is to prove that the only 
ombination of the indi
es mk that yields phaseangles �k that satisfy (5.5) is the one that gives (5.4). To �nd phase angles �2; : : : ; �nthat set the bottom n � 1 entries of ŵ to zero, we have to solve the n � 1 � n � 1system M� = �;whereM = 0BB�n� 1 �1 �1 : : : �1�1 n� 1 �1 : : : �1... ... ... . . . ...�1 �1 �1 : : : n� 11CCA ; � = 0BB� �2�3...�n1CCA ; � = 0BB� � + 2�m2� + 2�m3...� + 2�mn1CCA :Now M�1 = 1n 0BB� 2 1 1 : : : 11 2 1 : : : 1... ... ... . . . ...1 1 1 : : : 21CCA ;so �̂ =M�1� = �n 0BBBBBBBB� n+ 2(m2 + : : :+mn) + 2m2n+ 2(m2 + : : :+mn) + 2m3...n+ 2(m2 + : : :+mn) + 2mn
1CCCCCCCCA :From (5.5) it follows that m2 < m3 < : : : < mn, so we 
an writemj = m2 + Æj ; j = 3; : : : ; n;where Æj is a positive integer, in
reasing with j. We 
onsider two 
ases.Case I: Æj = 1, j = 3; : : : ; n. In this 
ase�̂k = �n (n2 � 2n� 2 + 2nm2 + 2k); k = 2; : : : ; n:17



We know that m2 2 [2 � n; 0℄, so let m2 = (2 � n)=2� �, where m 2 [1; (n � 2)=2℄.Then �̂2 = 2�n (1� �n) < 0;whi
h violates (5.5). Now let m2 = (2� n)=2 + � with � in the same range. Then�̂n = 2�n (n� 1 + n�) > 2�;whi
h also violates (5.5). Only when m2 = (2 � n)=2 do we get a valid set of phaseangles �̂k, namely, �̂ = 2�n (1; 2; : : : ; n� 1)T :(5.9)Case II: Æj > 1; j � j0 � 3. Clearly, in this 
ase, regardless of j0, �̂2 is negativeand �̂n ex
eeds 2� when m2 equals (2� n)=2� � and (2� n)=2+�, respe
tively. Onthe other hand, when m2 = (2� n)=2,�̂n � 2�(n� 1)n + 4�n > 2�:We 
on
lude that the only 
ombination of phase angles whi
h satis�es (5.5) and setsthe bottom n � 1 entries of ŵ to zero is the one de�ned by (5.9). It is easy to showby dire
t 
omputation that it also zeroes out the �rst entry of ŵ.5.2. Does Normal Stagnation Imply Non-Normal Stagnation?. In Se
-tion 3 we found that, given � 2 C2, as long as �(V ) is larger than a 
ertain valuethat depends on �, the 
orresponding A = V �V �1 is stagnating. In parti
ular, thisimplies that if A 2 C2�2 is normal and stagnating then so is ~A = ~V �~V �1 for any~V 2 V2. Does this extend to n > 2?While running extensive testing to determine properties of SV for low-dimensionalreal matri
es V we have noti
ed that in all the tested 
ases, SV in
luded SI , whereSI is the real simplex de�ned in Se
tion 2.1 whi
h 
onstitutes the range of FV (y) forany normal V . If this is true in general then that would imply that normal stagnationdoes indeed imply non-normal stagnation.Stagnation of a normal matrix with real eigenvalues does imply stagnation of anentire family of matri
es with the same eigenvalues:Theorem 5.7. Suppose A has distin
t eigenvalues � and a real eigenve
tor matrixV , and that u = G(�) satis�es u 2 Rn with 0 < ui � 1. Then gmres(A,b) stagnatesfor b = V y where y 2 Rn satis�es Y Wy = u :Proof. If V is real, then W is symmetri
 positive de�nite. Solving the stagnationequation Y Wy = u is equivalent to �nding a diagonal s
aling matrix Y so that YWYhas row sums u. Sin
e 0 < ui � 1, the main theorem in [6℄ tells us that su
h a s
alingmatrix exists.6. Complete Stagnation of Real Matri
es. In this se
tion, we investigatethe spe
ial form that the stagnation system (2.3) takes when A is real, and we deter-mine whether it is suÆ
ient to 
onsider real right hand side ve
tors when studyingstagnation of gmres for real matri
es A. 18



When A is real, its spe
trum 
onsists of real eigenvalues and 
omplex 
onjugatepairs of eigenvalues. Let A 2 Rn�n have eigenvalues � and eigenve
tors V . Thenthere exists a symmetri
 permutation matrix P 2 Rn�n su
h thatV = V P; �� = P�:(6.1)It follows that gmres(A,b) stagnates for b = V y 2 Cn i� kbk = 1 and y solvesY PWT y = u(6.2)where WT = V TV . Furthermore, gmres(A,b) stagnates for b = V y 2 Rn i� kbk = 1and y solves YWT y = �u; �y = Py:(6.3)Unlike (2.3), equation (6.3) 
onstitutes a polynomial system of size n in y. This makesnumeri
al experiments easier.6.1. Real Eigenvalues. When the spe
trum of A is real, the stagnation systemsimpli�es even further. Both W and G(�) are real in this 
ase, P is the identitymatrix and WT = W . If we 
onsider only real right-hand sides then we get the realpolynomial stagnation system YWy = u;(6.4)where y 2 Rn satisfes yTWy = 1 and u = G(�).Note that when (2.3) or (6.2) is solved, the 
orresponding domain for FV (y) =Y Wy is EV = f y 2 Cn j yHWy = 1g:When we 
onsider (6.3), the domain 
hanges toEV = f y 2 Cn j �y = Py; yHWy = yTWT y = 1g;where WT = V TV and P is de�ned by (6.1). Finally, for (6.4) the domain has theform EV = f y 2 Rn j yTWy = 1g:6.2. When Real Ve
tors b are SuÆ
ient. Suppose A is real with real spe
-trum. Is it possible that gmres(A,b) stagnates for some 
omplex b but does notstagnate for any real b? If V is 3 � 3 or extreme, the answer is no: existen
e of a
omplex stagnating b implies existen
e of a real one.Theorem 6.1. Let A 2 Rn�n with real eigenvalues � and eigenve
tors V . IfV is of size 3 � 3 or is an extreme matrix, then existen
e of a 
omplex stagnatingright-hand side ve
tor implies existen
e of a real one.Proof. Let u = G(�) 2 Rn. Suppose there exists stagnating y 2 Cn of the formy = (y1 ei�1 ; : : : ; yn ei�n)T ;where, for every j = 1; : : : ; n, yj 2 R and 0 � �j � 2�. We may assume that b = V yhas unit norm. This implies that y satis�es Y Wy = u.19



We show that if V is 3� 3 and/or extreme, the phase angles �1; : : : ; �n are allequal. Then we 
an 
on
lude that the real ve
tor yR = e�i�1y satis�es YRWyR = uand, therefore, also 
orresponds to a stagnating right-hand side.We �rst 
onsider the 3 � 3 
ase. We expand Y Wy and 
on
lude that y mustsatisfy 24 u1u2u3 35 = 24 x21 + x1x2ei(�2��1) + x1x3ei(�3��1)x22 + x2x1ei(�1��2) + x2x3ei(�3��2)x23 + x3x1ei(�1��3) + x3x2ei(�2��3) 35 :(6.5)Ea
h entry on the left of equation (6.5) is real, so, 
learly, ea
h entry on the rightmust also be real. The �rst term, x2j ; j = 1; 2; 3 is real. In order for two 
omplexnumbers to have a real sum, they must have identi
al magnitudes and opposite phases.Therefore �2 � �1 = �1 � �3�1 � �2 = �2 � �3:Solving the above pair of equations we 
on
lude that �1 = �2 = �3.Now assume V is extreme with singular ve
tors Q. Then, as in the proof ofTheorem 4.3, y 
an be expressed asy = r1ei�1 q̂ + rnei�nqfor some q̂ orthogonal to q, where r1; rn 2 R and 0 � �1; �n � 2�. Using the extremematrix stagnation equation (4.2), we obtainuj = (q̂jr1�1)2 + (qjrn�n)2 + q̂jqjr1rn(�21ei(�1��n) + �2nei(�n��1)); j = 1; : : : ; n:Unless V is unitary, �1 6= �n. Therefore in order for uj to be real, �1 must be equalto �n. This yields y with �1 = : : : = �n.If V is not extreme or three-dimensional, however, it is possible for a 
orrespond-ing matrix A to have a 
omplex, but no real, stagnating right-hand side.Example: Consider the matrix from Example 4.1. The ve
tory = 2664 1:5564116+ 1:5564116 i�1:2084570� 0:3414864 i0:7066397+ 1:5089330 i�1:8679775� 1:2644748 i 3775solves (2.3) and it 
an be veri�ed dire
tly that gmres(A,b) stagnates when b = V y.In order to determine whether any real stagnating b exists, we solve the polynomialsystem (6.4) with W and u as above. Note that if a 
omplex y solves (6.4) then so do�y, �y and ��y. Applying the POLSYS PLP solver we obtain exa
tly 24 = 16 
omplexsolutions. The four \fundamental" ones are listed below,yI = 2664 0:7391037+ 0:2570027 i�0:1534853+ 0:5091449 i1:2414730+ 0:3333155 i�1:2276988+ 0:1269897 i 3775 ; yII = 2664 0:1578663+ 0:9757913 i0:1463589+ 0:0364812 i0:9548215+ 0:3991290 i0:8611411� 0:2115472 i 3775 ;yIII = 2664 �0:9785711� 2:1552377 i3:4382447+ 2:1527698 i1:8727147� 0:2306006 i2:7341793+ 2:2536406 i 3775 ; yIV = 2664 2:4426010+ 0:4870174 i�1:1947469� 0:5787159 i1:7072389+ 0:0030895 i�2:3718795� 0:5254314 i 3775 :20



The degree of the system is 16, and all sixteen solutions are veri�ed to be isolated.We 
on
lude that the given system (6.4) has no other real or 
omplex solutions. Onthe other hand, a 
omplex solution of (6.4) does not produ
e a stagnating b.It appears, however, that at least for small n, A 
an be expe
ted to have areal stagnating right-hand side if it has a 
omplex one. For instan
e, let us againexamine Figure 4.1, whi
h shows a sli
e of SV for the matrix V de�ned above. Thedotted points 
orrespond to ve
tors u 2 Sn for whi
h there are both real and 
omplexstagnating ve
tors b. For the points marked with '+', only 
omplex ones exist. Wesee that the dotted region is signi�
antly larger.7. Con
lusions. We have presented several results on the stagnation behavior ofgmres . For problems of dimension 2 we determined that every 
hoi
e of eigenvaluesleads to a stagnating problem for eigenve
tor matri
es that are suÆ
iently poorly
onditioned. We partially extended this result to higher dimensions for a 
lass ofeigenve
tor matri
es 
alled extreme. We gave ne
essary and suÆ
ient 
onditionsfor stagnation of systems involving unitary matri
es, and showed that if a normalmatrix stagnates then so does an entire family of nonnormal matri
es with the sameeigenvalues. Finally, we showed that there are real matri
es for whi
h stagnationo

urs for 
ertain 
omplex right-hand sides but not for real ones.The stagnation system was a 
ru
ial tool in developing these results and we believeits analysis will 
ontribute to the solution of other open problems as well.8. A
knowledgements. We are grateful to Layne T. Watson for substantialadvi
e on polynomial equations, and to Anne Greenbaum and Zdene�k Strako�s forhelpful 
omments on this work.
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