
STAGNATION OF GMRES �ILYA ZAVORINy, DIANNE P. O'LEARYz, AND HOWARD ELMANxAbstrat. We study problems for whih the iterative method gmres for solving linear systemsof equations makes no progress in its initial iterations. Our tool for analysis is a nonlinear system ofequations, the stagnation system, that haraterizes this behavior. For problems of dimension 2 wean solve this system expliitly, determining that every hoie of eigenvalues leads to a stagnatingproblem for eigenvetor matries that are suÆiently poorly onditioned. We partially extend thisresult to higher dimensions for a lass of eigenvetor matries alled extreme. We give neessary andsuÆient onditions for stagnation of systems involving unitary matries, and show that if a normalmatrix stagnates then so does an entire family of nonnormal matries with the same eigenvalues.Finally, we show that there are real matries for whih stagnation ours for ertain omplex right-hand sides but not for real ones.Key words. Iterative methods, GMRES, stagnation, onvergene.Running Title: Stagnation of gmres1. Introdution. gmres [8℄ is one of the most widely used iterations for solvinglinear systems of equations Ax = b, where A is an n � n matrix and x and b aren-vetors. Although it is guaranteed to produe the exat solution in at most niterations, it is useful for large systems of equations beause a good approximatesolution is often omputed quite early, after very few iterations.In this paper, we study an oddity: the lass of problems for whih the gmresalgorithm, when started with the initial guess x(0) = 0 and using exat arithmeti,omputes m iterates x(1) = : : : = x(m) = 0 without making any progress at all. Weall this partial or m-step stagnation. If m = n� 1, we all this omplete stagnationof gmres. In this ase, gmres will ompute the exat solution at iteration n.If gmres frequently stagnated on pratial problems, it would not be a popularalgorithm. Clearly this set of problems is rather obsure. Why is it of interest?Despite �fteen years of intense e�ort, the onvergene of gmres is not at all well-understood and a great number of open questions remain. Although we study theextreme ase, we believe the new perspetive lends insight into the fators that a�etonvergene rate and provides tools that may be of use in studying problems forwhih gmres onverges more favorably. In partiular, this is demonstrated in [15,Chap. 5℄ and a forthoming paper [14℄. In addition, most ommon implementationsof gmres allow restarts after a small number of iterations to onserve storage spae.The restarted gmres algorithm often makes rapid progress in the beginning iterationsbut then nearly stagnates in the later ones. We hope that our study of stagnationwill eventually shed light on restarted stagnation, too.We begin with a new tool for studying gmres onvergene, the stagnation system.In Setion 2, we derive this equation, whih separates the e�ets of the eigenvaluesof A, the eigenvetors of A, and the right-hand side. In Setion 3 we present resultsof appliation of this formalism to analysis of omplete gmres stagnation for n = 2.�This work was partially supported by the National Siene Foundation under Grants CCR 95-03126, CCR-97-32022 and DMS-99-72490.y Applied Mathematis and Sienti� Computing Program, University of Maryland, College Park,MD 20742 (iaz�s.umd.edu).zDept. of Computer Siene and Institute for Advaned Computer Studies, University of Mary-land, College Park, MD 20742 (oleary�s.umd.edu).xDept. of Computer Siene and Institute for Advaned Computer Studies, University of Mary-land, College Park, MD 20742 (elman�s.umd.edu)1



In Setion 4 we study the speial ase of extreme matries, those whose eigenvetormatrix has only two distint singular values. In Setion 5 we onsider normal matries.It is well known that gmres an stagnate on a partiular set of unitary matries [5℄; weshow that this is the only set of stagnating problems for unitary matries. We furthershow that if a normal matrix stagnates then so does an entire family of nonnormalmatries with the same eigenvalues. Results on real matries and right-hand sides aregiven in Setion 6.2. The Stagnation Equation. We apply gmres to the linear systemAx = b; x 2 Cn; b 2 Cn; A 2 Cn�n :Throughout this paper, we make the following assumptions:1. The matrix A is diagonalizable and has the spetral deomposition A =V �V �1 where � = diag(�1; : : : ; �n) and the olumns of V are the righteigenvetors of A.2. These eigenvetors are linearly independent, so the matrix W = V HV isHermitian positive de�nite.3. The right-hand side b is normalized to Eulidean norm 1 and the initial guessfor gmres is x0 = 0. We denote by rm the gmres residual after m steps, sothat rm = b�Axm, with r0 = b.4. The matrix V has a singular value deomposition of the form P�QH , whereQontains right singular vetors of V and � is a diagonal matrix with singularvalues of V on the diagonal. Behavior of gmres is essentially invariant topre-multipliation of V by a unitary matrix. Therefore, when onvenient,we may assume that P is the identity matrix. In other words, left singularvetors of V are irrelevant to the apparatus we develop in this paper. Also,without loss of generality, we may assume that olumns of V have Eulideannorm 1.The gmres algorithm omputes a sequene of approximate solutions to Ax = bso that the mth approximation is the member of the Krylov subspaeKm(A; b) = spanfb; Ab; : : : ; Am�1bg;with minimal residual norm krmk = minx2Km(A;b) kb�Axk:It is well known [8℄ and evident from this de�nition that the residual norms are mono-tonially noninreasing with m, and that gmres terminates with the exat solutionin at most n iterations.In this setion we develop a new approah for analysis of gmres, establishingneessary and suÆient onditions for stagnation of gmres. This is done using theKrylov matrix Km = [b Ab : : : Am�1b℄:together with the eigenvalues and eigenvetors of the oeÆient matrix A.An important tool in our analysis is a fatorization ofKm, separating the inueneof the eigenvalues of A, the eigenvetors, and the right-hand side b. This fatorizationappears, for example, in Ipsen [2, Proof of Theorem 4.1℄); a version of this result analso be found in [9℄. 2



Lemma 2.1. Let y = V �1b and let Y = diag(y). ThenKm+1 = V Y Zm+1;(2.1)where Zm+1 is the Vandermonde matrix omputed from eigenvalues of A,Zm+1 = 0B� 1 �1 : : : �m1... ... . . . ...1 �n : : : �mn 1CA = ( e �e : : : �me ) :Proof. The Krylov matrix satis�esKm+1(A; b) = [V y V �V �1V y : : : V �mV �1V y℄= V [Y e �Y e : : : �mY e℄= V Y [e �e : : : �me℄= V Y Zm+1:We are now ready to prove the main result of this setion.Theorem 2.2. Let A be nonsingular with at least m+1 distint eigenvalues. Lety = V �1b. Then gmres(A,b) m�stagnates if and only if y satis�es the stagnationsystem ZHm+1 �Y Wy = e1 ;(2.2)where e1 = [1; 0; : : : ; 0℄T 2 Cm+1.Proof. At the mth step, gmres minimizes the residual over all vetors x in thespan of the olumns ofKm. This means that the resulting residual rm is the projetionof b onto the subspae orthogonal to the span of the olumns of AKm. Therefore,gmres stagnates at step m if and only if b is orthogonal to the olumns of AKm, or,equivalently, orthogonal to the last m olumns of Km+1. Sine the �rst olumn ofKm+1 is b, this is equivalent to stagnation if and only if KHm+1b = e1: Substitutingthe fatorization of Km+1 from Lemma 2.1 yields the desired result.If m = n�1, we have omplete stagnation. Sine omplete stagnation is impossi-ble if eigenvalues of A repeat, we assume a distint spetrum, whih yields a full-ranksquare Vandermonde matrix Z. In this ase, Theorem 2.2 takes the following form.Corollary 2.3. Let A be nonsingular with distint eigenvalues. Let y = V �1b.Then gmres(A,b) ompletely stagnates if and only if y satis�es�Y Wy = Z�He1 = u(2.3)where the elements of u are de�ned byuj = (�1)n+1onj0BB� nYk=1k 6=j �k�j � �k1CCA :(2.4)Proof. Denote the elements of the �rst olumn of Z�H by uj ; j = 1; : : : ; n. Theproof is a onsequene of [1, Setion 21.1℄, where an expliit onstrution of the entriesof the inverse of a Vandermonde matrix is derived.3



We an make a similar statement for partial stagnation.Corollary 2.4. Let A be nonsingular with distint eigenvalues. Let y = V �1b.Then gmres(A,b) m-stagnates if and only if y satis�es�Y Wy = (ZHm+1)ye1 + t(2.5)where t is in the null spae of ZHm+1.The usefulness of (2.2), as well as the related equations (2.3) and (2.5), is thatit separates the inuene of the eigenvalues, whih determine Z, and eigenvetors,whih determine W . Stagnation is explored through the interation of W and Z.The systems (2.2) and (2.3) are not polynomial systems of equations sine theyinvolve omplex onjugation of the entries of the variable y. They an, however, berewritten as real polynomial systems with 2(m + 1) and 2n equations, respetively,by splitting all omponents into their respetive real and imaginary parts. Partial oromplete stagnation of gmres orresponds to the existene of a real solution of suha polynomial system. If the total number of (real and omplex) regular and in�nitesolutions is �nite, then, aording to a result of Bezout [3℄, the number does notexeed the total degree of the polynomial system, whih in the ase of (2.2) is 22(m+1).Therefore, in pratial experiments, we need to use a solver suh as POLSYS PLP [12℄that �nds all solutions of the system. Stagnation takes plae i� any of these solutionsis regular and real.We onlude this setion by establishing the equivalene of stagnation of gmresfor A with stagnation for AH .Theorem 2.5. gmres stagnates for the problem Ax = b if and only if it stagnatesfor AHx = b̂ where b = V y, ŷ = �Y �1u, and b̂ = V �H ŷ.Proof. From (2.3), we obtain �Y V HV y = u, soY �1V �1V �H �Y �1u = e :Let U = diag(u) whih yields �u = �Ue. Multiplying the above equation by �U , weobtain the stagnation equation for AHx = b̂:Ŷ V �1V �H ŷ = �u:2.1. The Geometry of Stagnation. The omplete stagnation system (2.3)an be written as FV (y) = G(�);where FV (y) = �Y Wy and G(�) = u. Let us look at the domains and ranges of FVand G. Sine 1 = kbk2 = kV yk2 = yHWy = kyk2W = eTu;it follows that the domain of FV (y) is the hyper-ellipsoid surfaeEV = fy 2 Cn j yHWy = 1g;whose axes are determined by singular values and vetors of the matrix V . Moreover,u lies in the hyperplaneSn = fu = [u1 : : : un℄T 2 Cn j nXj=1 uj = 1g:4



The range of the operator FV (y) de�ned over EV isSV = fu 2 Sn j there exists yu 2 Cn suh that FV (yu) = ug;whih is a subset of Sn. Due to sale-invariane of the funtion G(�), without loss ofgenerality we an assume that all eigenvalue distributions lie in the boxB = f� = [�1 : : : �n℄T 2 Cn j 0 � j�j j � 1g:Therefore, the range of G(�) de�ned over B isS� = fu 2 Sn j there exists �u 2 B suh that G(�u) = ug;whih is also a subset of Sn. To summarize,FV : EV ! SV � SnG(�) : B ! S� � Sn:
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λSVS λFig. 2.1. A Geometri Interpretation of Complete gmres StagnationWe an now give a geometri interpretation of omplete stagnation of gmres.It is illustrated in Figure 2.1. Let us �x a set of eigenvetors V , whih �xes thedomain and range sets EV and SV , respetively. The intersetion of SV with S�,whih is the meshed area in Figure 2.1, an be thought of as a representation ofall eigenvalue distributions � whih yield a stagnating matrix A = V �V �1 for thegiven V . Why? Beause, if we pik an eigenvalue distribution (labeled �S in the�gure) suh that it gets mapped by G inside SV TS�, then there exists a vetoryS 2 EV suh that the stagnation equation is satis�ed for the triple fV; �S ; ySg and5



so gmres(V �SV �1; V yS) ompletely stagnates. Conversely, if G(�NS) 62 SV TS�for some �NS then no matter what y 2 EV we pik, the stagnation equation (2.3) isnever satis�ed and so gmres(V �NSV �1; b) never stagnates.We make two remarks. First, the above interpretation allows us to make a generistatement about what it means for a set of eigenvetors to be \good" or \bad" interms of omplete gmres stagnation. We see that the larger SV TS� is for a givenV , the more stagnating �'s one an �nd, and so the smaller this intersetion is thebetter. Seond, this interpretation plaes primary emphasis on eigenvetors and theninorporates eigenvalues into the piture. This is di�erent from existing literature ononvergene of Krylov methods, where eigenvalues are onsidered more important. Soin order to get a better understanding of stagnation, we have to study properties ofFV (y) and G(�) as operators de�ned over their respetive domains.Similar statements an be made for the domain and range for the partial stagna-tion equation, but perhaps the most intuitive interpretation is that we seek an elementof EV whose elements sum to one and that is orthogonal to the olumns 2 throughm+ 1 of Z.2.2. The Nature of S�. It follows from (2.4) that u 2 Sn belongs to S� i� thereexists a vetor � 2 B suh that G(�) = u. Sine we may assume that all eigenvaluesare distint and nonzero, this is equivalent to the following system of equations�2 �3 : : : �n = (�1)n+1 u1 (�1 � �2) : : : (�1 � �n)...�1 : : : �j�1 �j+1 : : : �n = (�1)n+1 uj (�j � �1) : : : (�j � �n)(2.6) ...�1 �2 : : : �n�1 = (�1)n+1 un (�n � �1) : : : (�n � �n�1):It appears from extensive numerial experiments that, in the ase of arbitrary omplexeigenvalues, the system (2.6) has solutions for any u 2 Sn, i.e. S� = Sn. Consequently,in our analysis of the stagnation region SV TS�, we fous most of our attention onSV . The system (2.6) is a parametrized polynomial system in � with elements of thegiven vetor u 2 Sn being the parameters. For ertain values of u, it is possible toompute solutions of (2.6) expliitly. For instane, any permutation of the vetor� = [ei�1 ; � � � ; ei�n ℄T ; �j = 2�(j � 1)n ;solves the system when uj = 1=n; j = 1; : : : ; n. Thus, in order to establish equality ofSn and S� analytially, it may be possible to use the theory of oeÆient-parameterpolynomial ontinuation [4℄.When only real or omplex onjugate eigenvalues are allowed, Sn is signi�antlylarger than S�. However, in this ase experimental data suggest that for any twoeigenvetor distributions V1 and V2, the volume of SV1 TS� is larger than that ofSV2 TS� i� the volume of SV1 is larger than that of SV2 .2.3. The Nature of SV . Sine EV is ompat and FV (x) is ontinuous, SV isalso ompat, and we now derive an expliit bound for elements of SV .6



Lemma 2.6. If V is nonsingular and u 2 SV , then kuk � �(V ) � maxi �i=mini �i :Proof. Sine kykW = 1 we an bound the 2-norm of y in terms of the singularvalues of V : 1maxi �i � kyk2 � 1mini �i :If u 2 SV with the orresponding yu 2 EV , thenkuk = kYuWyuk � kYukkWyuk � kyukkWyuk:If we de�ne ru by yu = Qru, then1 = yHu Wyu = rTu�2ru = k�ruk;so kWyuk = kQ�2QHQruk = k�2ruk � k�kk�ruk = maxi �i:Combining these expressions, we obtainkuk � kyukkWyuk � maxi �imini �i = �(V ):Lemma 2.6 implies that given eigenvetors V , any eigenvalue distribution � suh thatkG(�)k > �(V ) neessarily yields a non-stagnating matrix A = V �V �1.3. Results for Problems of Size 2� 2. In this setion we use the stagnationsystem to analyze stagnation of gmres in the simplest possible ase, when n = 2. Weshow that stagnation is determined by a simple relationship between the ratio of theeigenvalues and the ondition number of the eigenvetor matrix. More spei�ally,we show that given any set of distint nonzero eigenvalues � 2 C2 and a set ofeigenvetors V 2 C2�2, there exists a vetor b 2 C2 suh that gmres(V �V �1; b)stagnates i� the ondition number of V is large enough with respet to the ratio ofthe largest eigenvalue to the smallest one. We also provide an expliit formula for astagnating right-hand side b.Let V have the form �QH and let r = QHy. We an rewrite the stagnationsystem (2.3) as follows,G(�) = Y V HV y = Y (Q�)(�QH)(Qr) = Y Q�2r:(3.1)Without loss of generality, we make the following assumptions. First, the unitarymatrix Q has the form Q = 1p2 � 1 �1ei� ei�� ; � 2 [0; 2�℄:(3.2)Seond, let �(V ) � � � 1. Due to the olumn saling of V and the fat that the orderof singular values is not important, we let� =r 2�2 + 1 �� 00 1� :(3.3) 7



Third, it is easy to see that y solves (2.3) i� eiy also does, where  is any phaseangle. Therefore we assumer = � r1r2ei� � ; r1; r2 2 R n f0g; � 2 [0; 2�℄:(3.4)Note that if vetor r ontains a zero entry, the orresponding right-hand side vetorb an never ause stagnation. Therefore we assume that r1 and r2 are nonzero. Alsonote that we allow the two variables to be negative. This gives us more exibilitywhen solving the resulting polynomial system. On the other hand, if either variabletakes a negative value, the orresponding polar representation of the entry of r anbe obtained by adjusting the phase angle �.Finally, for our fourth assumption, sine G(�) is sale invariant, we let� = � 1�0ei� � ; �0 > 1; � 2 [0; 2�℄:(3.5)We plug (3.2) { (3.5) into (3.1), simplify, separate both sides of the stagnationsystem into real and imaginary parts and obtain the following system of four equations:�2r21 + r22�2 + 1 � r1r2 os� = 1� �0 os �1� 2�0 os � + �20�2r21 + r22�2 + 1 + r1r2 os� = �0(�0 � os �)1� 2�0 os � + �20(�2 � 1)r1r2 sin��2 + 1 = �0 sin �1� 2�0 os � + �20� (�2 � 1)r1r2 sin��2 + 1 = � �0 sin �1� 2�0 os � + �20 :The fourth equation is redundant and an be dropped. The remaining three nonlinearequations have three unknowns fr1; r2; �g. We need to determine the onditions on theparameters of the system, �0, � and �, under whih system has appropriate solutions.There are four pairs of solutions fr1; r2g: 1,ff�12s1 + 1� 43�2 ;�25q1 + 1� 43�21 g;f12s1 + 1 + 43�2 ;�26q1 + 1+ 43�21 g;(3.6) f�12s1 + 1 + 43�2 ;�26q1 + 1+ 43�21 g;f12s1 + 1� 43�2 ;�25q1 + 1� 43�21 gg;1Computations were performed using Mathematia version 4 [13℄.8



where
 = 2666666666664

4((�2 � 1)2 + 8�2�20 + (�2 � 1)2�40 � 2(1 + �2)2�20 os �);q(�2 � 1)2(�20 � 1)2 + 4(�2 + 1)2�20 sin2 �;(�2 � 1)(1� 2�0 os � + �20);p7 + 8;4 + (�4 � 1)(1� 2�0 os � + �20);4 � (�4 � 1)(1� 2�0 os � + �20);(�2 � 1)4 + 4(1� 10�4 + �8)�20;(�2 � 1)4�40 � 4(�4 � 1)2�0(�20 + 1) os � + 2(�2 + 1)4�20 os 2�
3777777777775 :Although the above expressions are quite ompliated, we observe that there exists areal pair of solutions fr1; r2g i� 4 is real. The expression 24 = 7 + 8 is a fourth-degree polynomial in �2 with the positive leading oeÆient (1 � 2�0 os � + �20)2.In order to determine regions orresponding to stagnating matries A, we need todetermine values of �2 for whih the expression 24 is positive. To this end, we solve24 = 0 for �2 and obtain the following four zeros,�21(�0; �) = 1 + �0(�0 � 4)� 2p2(�0 � 1)2�0(os � � 1) + 2�0 os �1� 2�0 os � + �20 ;�22(�0; �) = 1 + �0(�0 � 4) + 2p2(�0 � 1)2�0(os � � 1) + 2�0 os �1� 2�0 os � + �20 ;(3.7) �23(�0; �) = (1 + �0 � 2p�0 os �2 )21� 2�0 os � + �20 ;�24(�0; �) = (1 + �0 + 2p�0 os �2 )21� 2�0 os � + �20 :We now examine the sign of 24 depending on where �2 is relative to �2j (�0; �); j =1; 2; 3; 4. We onsider three separate ases.(i) Real Eigenvalues of the Same Sign. Eigenvalues of A are real and of the samesign i� � = 0. In this ase, (3.7) simpli�es to�21(�0; 0) = �22(�0; 0) = 1;�23(�0; 0) = 1�same(�0)2 ; �24(�0; 0) = �same(�0)2;where �same(�0) = p�0 + 1p�0 � 1 ;and so �23(�0; 0) � �21(�0; 0) = 1 = �22(�0; 0) � �24(�0; 0):For any V , �(V ) � 1, so we need only onsider only two ases, when 1 � �2 < �24(�0; 0)and �24(�0; 0) � �2. As noted above, the leading oeÆient of 24 as a funtion of �2is positive, so that lim�!+1 24 = +1:9



We onlude that if �(V ) � �same(�0);then 24 � 0 and so there exists a real pair of fr1; r2g that yields a stagnating right-hand side b. Conversely, if 1 � �(V ) < �same(�0), then there is no stagnating b. Notethat �0 > 1 is just the ratio of the larger and smaller eigenvalues of A.(ii) Real Eigenvalues of Opposite Signs. Eigenvalues of A are real and of oppositesigns i� � = �. We �rst observe that unless � = 0, �21(�0; �) and �22(�0; �) are omplex,so in order to determine the sign of 24, we onsider �23(�0; �) and �24(�0; �) only. Aftersimpli�ation we obtain �23(�0; �) = �24(�0; �) = 1:Again, sine the leading oeÆient is positive, we onlude that if�(V ) � 1then there exists a stagnating vetor b. This implies that any A 2 C2�2 with realeigenvalues of opposite signs is stagnating.
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Fig. 3.1. Contours of �x(�0; �)(iii) Complex Eigenvalues. Finally, we onsider � 2 (0; �)S(�; 2�), whih orre-sponds to A with omplex eigenvalues. Again, sine �21;2(�0; �) are omplex, we onlyonsider �23;4(�0; �). First, we determine that�23(�0; �) �24(�0; �) = 1:Moreover, if 0 < � < � then �23(�0; �) < 1 and �24(�0; �) > 1. If � < � < 2� then theopposite holds.One more referring to the positive leading oeÆient, we onlude that a matrixA 2 C2�2 with omplex eigenvalues is stagnating i� the ondition number of itseigenvetor matrix V is larger than the biggest of the two zeros, i.e. it satis�es�(V ) � �x(�0; �);10



where �x(�0; �) = 8>><>>: �4(�0; �) = 1+�0+2p�0 os �2p1�2�0 os �+�20 ; 0 < � < ��3(�0; �) = 1+�0�2p�0 os �2p1�2�0 os �+�20 ; � < � < 2�where �0 and � are determined by the ratio of moduli of the larger and smallereigenvalues. As � ! 0 and �, �x(�0; �)! �same(�0) and 1, respetively.We an summarize the �ndings on 2� 2 stagnation as follows.1. Given an eigenvalue distribution � 2 C2, there exists b 2 C2 for whihgmres(V �V �1,b) stagnates whenever �(V ) is large enough with respet toj�2j=j�1j. Conversely, given a nonsingular V 2 C2�2 one an �nd � 2 C2 thatwill yield a stagnating A.2. For some � 2 C2 (spei�ally, real with eigenvalues of opposite signs), everyV gives a stagnating matrix.3. Whether a given matrix A yields stagnation of gmres(A,b) for some b isompletely determined by the relationship between the eigenvalue ratio �0ei�and the ondition number of V .4. When �(V ) is large enough to ause stagnation, it is possible to ompute astagnating right-hand side vetor b expliitly from (3.6).Item 1 is illustrated graphially in Figure 3.1, whih shows ontour lines of�x(�0; �) for 2 � �0 � 6 and �180Æ � � � 180Æ. Eah ontour line �x(�0; �) = �orresponds to eigenvalue distributions � suh that A = V �V �1 is stagnating forevery V with �(V ) � �. The inside of the region enlosed by a ontour line orre-sponds to non-stagnating distributions �. As expeted, this region beomes smalleras �x(�0; �) grows. Next we investigate to what extent these �ndings generalize toproblems of larger dimensions.4. Complete Stagnation of Matries with Extreme Eigenvalue Distri-butions. We all V extreme if its singular values an be ordered to satisfy�1 = �2 = � � � = �n�1 6= �n;In this setion, we explore the struture of SV derived from suh extreme matriesand show in partiular that two di�erent, but equally onditioned, extreme eigenvetordistributions have essentially the same range sets SV . Sine olumns of V are assumedto have Eulidean norm 1, the ondition number of V is within a fator of pn ofoptimal [10℄, and the singular values satisfy�21 + � � �+ �2n = n:(4.1)For extreme matries V , the stagnation system �Y Wy = u has a partiularlysimple form. Let the singular values ofW be �2j = �; j = 1; : : : ; n�1, and �2n = �+�,where � is nonnegative and � is real. By (4.1), n� + � = n; and, sine the singularvalues are nonnegative, we must have 0 � � � n=(n� 1) and �2n = �+n(1��). Thematrix �2 then has the form �2 = �I + n(1� �)eneTnwhere en is the nth unit vetor. We an then onlude thatW = Q�2QH = Q(�I + n(1� �)eneTn )QH = �I + n(1� �)qqH ;11



where q is the last olumn of Q, the right singular vetor orresponding to the singularvalue �n. Therefore, the stagnation system (2.3) beomesu = �Y Wy = � �Y y + n(1� �) �Y qqHy:(4.2)The singular vetor q has the property that every entry has the same magnitude:Lemma 4.1. Suppose V 2 Cn�n is extreme and the orresponding W has singularvalues parameterized by � and � as de�ned above. Thenq = 1pn �ei�1 ; : : : ; ei�n�T ;where �j 2 [0; 2�℄ are ertain phase angles.Proof. Let elements of the vetor q have the form qj = rjei�j , where rj 2 R and�j 2 [0; 2�℄. Sine V is properly saled, the main diagonal elements of W are1 = wjj = �+ n(1� �)qj �qj = �+ n(1� �)r2j ; j = 1; : : : ; n :Consequently rj =s 1� �n(1� �) = 1pn:4.1. Struture of SV for an Extreme V . We now use this lemma to provethat the range set SV of an extreme V is symmetri with respet to the \enter" pointu = (1=n) e, i.e., if u 2 SV then uP = Pu 2 SV , where P is any permutation matrix.Theorem 4.2. Suppose a properly saled matrix V is extreme, with singularvalues � and right singular vetors de�ned by Q. Thenu 2 SV ) uP = Pu 2 SV ;where P is a permutation matrix.Proof. Suppose we have a solution to the stagnation equationu = � �Y y + n(1� �) �Y qqHy:Sine the basis in Q for the spae orthogonal to q is arbitrary, we an establish ourresult just by proving it for a permutation P that interhanges the �rst and lastomponents of a vetor. Let ŷ = Ŷ e whereŶ = PY PD;and D = diag(ei(�1��n); 1; : : : ; 1; ei(�n��1)) :Then �D = PDP , so that Ŷ = P �Y P �D = P �Y DP:ThereforeŶ ŷ = (P �Y DP )(PY PDe) = P �Y DY PDe = P �Y Y (DPD)e = P �Y y;12



sine DPD = P . Similarly, sine DPq = q,Ŷ qqH ŷ = PY DPqqHPY PDe= PY qqHPY PDPPe= P �Y qqHPY �DPe= P �Y qqHP �DY e= P �Y qqHy:Therefore, �Ŷ ŷ + n(1� �)Ŷ qqH ŷ = Pu;so Pu 2 SV .We have run extensive numerial experiments that suggest that the set SV of anextreme V is onvex. The range set SV also appears to be onvex for any 3� 3 realmatrix V . However, in general SV is not onvex.Example. Let the matrix A be de�ned by its eigenvetor matrixV = 0B��0:3998204 0:2414875 �0:0877858 �0:4306034�0:5786559 �0:8362391 0:4920379 0:32133180:6984230 0:0537175 �0:7499413 0:5155494�0:1323115 0:4893898 �0:4333364 �0:66748441CA ;and its eigenvalues� = (1:0000000;�0:7658066;�0:2656295; 0:8705277):The mapping G(�) isG(�) = (�0:6120;�0:1600; 0:9269; 0:8451):If we onsider only real right-hand sides b, then the dotted region in Figure 4.1 orre-sponds to the slie of SV that is its intersetion with the plane u3 = 0:9269. Clearly,the range set is not onvex. This �gure was onstruted by solving the stagnationsystem using globally onvergent probability-one homotopy algorithms [11℄, as imple-mented in the POLSYS PLP pakage [12℄. Further details are given in [15℄.We onlude this setion with a result that relates the range sets SV of twodi�erent extreme matries.Theorem 4.3. Let Q be a unitary matrix with last olumn q. Let � be a realonstant greater than 1. De�ne two extreme matries V1 = �1QH and V2 = �2QH sothat �1�1 + �1 = �2 + �2�2 = �;and thus �(W1) = �(W2) = �. Then u 2 SV1 i� �u 2 SV2 .Proof. The proof is onstrutive. Suppose we are given a vetor y1 2 EV1 suhthat FV1(y1) = u. Then we may express y1 asy1 = r1ei�1 q̂ + rnei�nqfor some q̂ orthogonal to q, where r1; rn 2 R and 0 � �1; �n � 2�. Now lety2 = 1r1e�i�n q̂ + nrne�i�1q13
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Fig. 4.1. The range of FV (y) an fail to be onvex (Setion 4.1), and real vetors b are notsuÆient (Setion 6.2).where 1 =s�(�+ n� 1)�(n� 1) + 1 ; n =s �+ n� 1�(�(n� 1) + 1) :It is easy, but tedious, to verify that FV2(y2) = �u. The details an be found in [15,Setion 4.6℄.Theorem 4.3 shows that the two equally onditioned extreme matries are essen-tially idential in terms of stagnation, i.e. the matrix A1 = V1�V �11 is stagnating i�A2 = V2 ��V �12 is, too.5. Complete Stagnation of Normal Matries. A normal matrix A is onewhose eigenvetor matrix V is unitary. In this ase, the stagnation system (2.3)simpli�es to Y y = u = G(�);(5.1)whih is a system of n deoupled equations of the form,jyj j2 = uj ; j = 1; : : : ; n:Theorem 5.1. Let A 2 Cn�n be normal with distint eigenvalues �. If the vetoru = G(�), de�ned by (2.4), satis�es u 2 Rn, and 0 � uj � 1; j = 1; : : : ; n, thengmres(A,b) stagnates for b = V y, whereyj = pujei�j ; j = 1; : : : ; n;(5.2)and the phase angles �j are arbitrary. Conversely, if � is suh that the orrespondingG(�) ontains omplex or real negative entries, then there is no right-hand side forwhih gmres(A,b) stagnates. 14



Proof. If u = G(�) is real positive then y de�ned elementwise by (5.2) solves (5.1)and thus auses stagnation of gmres. Conversely, if at least one element of u is eitheromplex or real negative, the system (5.1) does not have a solution, so stagnation isimpossible.When A is normal, the orresponding SV has a simple form.Corollary 5.2. Let V 2 Cn�n be unitary. Then the orresponding set EV isthe unit sphere and the range of FV (y) is a real simplexSI = f u 2 Rn j 0 � uj � 1; j = 1; : : : ; n g:When A is Hermitian or real symmetri, gmres is equivalent to minres [7℄.Proposition 5.3 below shows that in this ase the two methods annot stagnate, pro-vided n � 3. This is a well known result, but we show how this fat is reeted in theframework of the stagnation equation.Proposition 5.3. Let � 2 Rn and let u = G(�). Then all elements of u =[u1; : : : ; un℄T are nonzero. Furthermore,� If n = 2n̂� 1 is odd then n̂ elements of u are negative.� If n = 2n̂ is even then either n̂ or n̂� 1 elements of u are negative.Therefore gmres annot stagnate when applied to a Hermitian or real symmetrimatrix with distint eigenvalues.Proof. See [15, Proposition 4℄.5.1. Stagnation of Unitary Matries. A normal matrix A is unitary i� itseigenvalues satisfy �j = ei�j ; 0 � �j � 2�; j = 1; : : : ; n:(5.3)It has been shown that gmres an stagnate when applied to a unitary matrix Awith eigenvalues distributed uniformly over the unit irle in the omplex plane [5℄.Using Theorem 5.1 we now show that those are the only unitary matries for whihstagnation an our.Theorem 5.4. Let A 2 Cn�n be unitary with distint eigenvalues. gmres stag-nates i� the phase angles �j satisfy�j = �+ 2�(j � 1)n ; j = 1; : : : ; n;(5.4)where � is arbitrary, whih represents n eigenvalues distributed uniformly over theunit irle in the omplex plane.We prove Theorem 5.4 in two steps. Given �, a set of n distint eigenvalues ofthe form (5.3), de�ne its image under the transformation G(�) byG(�) = u = v + i w; v; w 2 Rn:In Lemma 5.5, we derive expliit formulations for v and w. Then, in Lemma 5.6, weprove that the only set of phase angles f�jg that makes w zero is the one de�ned by(5.4). For this set of angles, it an be shown by diret omputation that v ontainsonly positive entries.Lemma 5.5. Let � 2 Cn be a set of n distint eigenvalues of the form (5.3).Without loss of generality assume that0 = �1 < �2 < : : : < �n < 2�:(5.5) 15



Then individual entries of the vetor u = (u1; : : : ; un)T an be written in terms of thephase angles as follows. uj = (n) C(n)j d(n)j ;(5.6)where(n) =8<: (�1)n�22 ; if n is even(�1)n�12 ; if n is odd ; C(n)j = �12�n�1 nYk=1k 6=j s �j � �k2 ;and d(n)j = 8>><>>: sin �(n)j2 + i os �(n)j2 ; if n is evenos �(n)j2 � i sin �(n)j2 ; if n is odd;where �(n)j = (n� 1)�j � nXk=1k 6=j �k:Proof. The jth element of u satis�es uj = u1j , where u1j is de�ned by (2.4). Eahterm of (2.4) an be rewritten as follows using (5.3)�k�j � �k = � sin �j��k2 + i os �j��k22 sin �j��k2 = ��12� s �j � �k2 i ei��k��j2 �This yieldsuj = (�1)n�12�n�1 nYk=1k 6=j s �j � �k2 in�1 exp0BB�i nXk=1k 6=j �k � �j2 1CCA :(5.7)Let us now assume that n = 2k is even. The ase for odd n is treated similarly. Sine(�1)n in�1 = (�1)n�22 i;we an rewrite (5.7) as uj = (n) C(n)j i e�i�(n)j2 ;where i e�i�(n)j2 = sin �(n)j2 + os �(n)j2 :This ompletes the proof. 16



Lemma 5.6. The vetor w, the imaginary part of u de�ned by (5.6), is zero i�the phase angles f�jg are given by (5.4).Proof. We present a proof for even values of n. The proof for odd n is similar.First we observe that sine eigenvalues are distint, the C(n)j terms are all well-de�nedand nonzero. From (5.6) we see that u is real i�ŵ =  os �(n)12 ; os �(n)22 ; : : : ; os �(n)n2 !T = 0:Thus �(n)k = � + 2�mk; k = 2; : : : ; n;(5.8)where mk is an integer.Our goal is to prove that the only ombination of the indies mk that yields phaseangles �k that satisfy (5.5) is the one that gives (5.4). To �nd phase angles �2; : : : ; �nthat set the bottom n � 1 entries of ŵ to zero, we have to solve the n � 1 � n � 1system M� = �;whereM = 0BB�n� 1 �1 �1 : : : �1�1 n� 1 �1 : : : �1... ... ... . . . ...�1 �1 �1 : : : n� 11CCA ; � = 0BB� �2�3...�n1CCA ; � = 0BB� � + 2�m2� + 2�m3...� + 2�mn1CCA :Now M�1 = 1n 0BB� 2 1 1 : : : 11 2 1 : : : 1... ... ... . . . ...1 1 1 : : : 21CCA ;so �̂ =M�1� = �n 0BBBBBBBB� n+ 2(m2 + : : :+mn) + 2m2n+ 2(m2 + : : :+mn) + 2m3...n+ 2(m2 + : : :+mn) + 2mn
1CCCCCCCCA :From (5.5) it follows that m2 < m3 < : : : < mn, so we an writemj = m2 + Æj ; j = 3; : : : ; n;where Æj is a positive integer, inreasing with j. We onsider two ases.Case I: Æj = 1, j = 3; : : : ; n. In this ase�̂k = �n (n2 � 2n� 2 + 2nm2 + 2k); k = 2; : : : ; n:17



We know that m2 2 [2 � n; 0℄, so let m2 = (2 � n)=2� �, where m 2 [1; (n � 2)=2℄.Then �̂2 = 2�n (1� �n) < 0;whih violates (5.5). Now let m2 = (2� n)=2 + � with � in the same range. Then�̂n = 2�n (n� 1 + n�) > 2�;whih also violates (5.5). Only when m2 = (2 � n)=2 do we get a valid set of phaseangles �̂k, namely, �̂ = 2�n (1; 2; : : : ; n� 1)T :(5.9)Case II: Æj > 1; j � j0 � 3. Clearly, in this ase, regardless of j0, �̂2 is negativeand �̂n exeeds 2� when m2 equals (2� n)=2� � and (2� n)=2+�, respetively. Onthe other hand, when m2 = (2� n)=2,�̂n � 2�(n� 1)n + 4�n > 2�:We onlude that the only ombination of phase angles whih satis�es (5.5) and setsthe bottom n � 1 entries of ŵ to zero is the one de�ned by (5.9). It is easy to showby diret omputation that it also zeroes out the �rst entry of ŵ.5.2. Does Normal Stagnation Imply Non-Normal Stagnation?. In Se-tion 3 we found that, given � 2 C2, as long as �(V ) is larger than a ertain valuethat depends on �, the orresponding A = V �V �1 is stagnating. In partiular, thisimplies that if A 2 C2�2 is normal and stagnating then so is ~A = ~V �~V �1 for any~V 2 V2. Does this extend to n > 2?While running extensive testing to determine properties of SV for low-dimensionalreal matries V we have notied that in all the tested ases, SV inluded SI , whereSI is the real simplex de�ned in Setion 2.1 whih onstitutes the range of FV (y) forany normal V . If this is true in general then that would imply that normal stagnationdoes indeed imply non-normal stagnation.Stagnation of a normal matrix with real eigenvalues does imply stagnation of anentire family of matries with the same eigenvalues:Theorem 5.7. Suppose A has distint eigenvalues � and a real eigenvetor matrixV , and that u = G(�) satis�es u 2 Rn with 0 < ui � 1. Then gmres(A,b) stagnatesfor b = V y where y 2 Rn satis�es Y Wy = u :Proof. If V is real, then W is symmetri positive de�nite. Solving the stagnationequation Y Wy = u is equivalent to �nding a diagonal saling matrix Y so that YWYhas row sums u. Sine 0 < ui � 1, the main theorem in [6℄ tells us that suh a salingmatrix exists.6. Complete Stagnation of Real Matries. In this setion, we investigatethe speial form that the stagnation system (2.3) takes when A is real, and we deter-mine whether it is suÆient to onsider real right hand side vetors when studyingstagnation of gmres for real matries A. 18



When A is real, its spetrum onsists of real eigenvalues and omplex onjugatepairs of eigenvalues. Let A 2 Rn�n have eigenvalues � and eigenvetors V . Thenthere exists a symmetri permutation matrix P 2 Rn�n suh thatV = V P; �� = P�:(6.1)It follows that gmres(A,b) stagnates for b = V y 2 Cn i� kbk = 1 and y solvesY PWT y = u(6.2)where WT = V TV . Furthermore, gmres(A,b) stagnates for b = V y 2 Rn i� kbk = 1and y solves YWT y = �u; �y = Py:(6.3)Unlike (2.3), equation (6.3) onstitutes a polynomial system of size n in y. This makesnumerial experiments easier.6.1. Real Eigenvalues. When the spetrum of A is real, the stagnation systemsimpli�es even further. Both W and G(�) are real in this ase, P is the identitymatrix and WT = W . If we onsider only real right-hand sides then we get the realpolynomial stagnation system YWy = u;(6.4)where y 2 Rn satisfes yTWy = 1 and u = G(�).Note that when (2.3) or (6.2) is solved, the orresponding domain for FV (y) =Y Wy is EV = f y 2 Cn j yHWy = 1g:When we onsider (6.3), the domain hanges toEV = f y 2 Cn j �y = Py; yHWy = yTWT y = 1g;where WT = V TV and P is de�ned by (6.1). Finally, for (6.4) the domain has theform EV = f y 2 Rn j yTWy = 1g:6.2. When Real Vetors b are SuÆient. Suppose A is real with real spe-trum. Is it possible that gmres(A,b) stagnates for some omplex b but does notstagnate for any real b? If V is 3 � 3 or extreme, the answer is no: existene of aomplex stagnating b implies existene of a real one.Theorem 6.1. Let A 2 Rn�n with real eigenvalues � and eigenvetors V . IfV is of size 3 � 3 or is an extreme matrix, then existene of a omplex stagnatingright-hand side vetor implies existene of a real one.Proof. Let u = G(�) 2 Rn. Suppose there exists stagnating y 2 Cn of the formy = (y1 ei�1 ; : : : ; yn ei�n)T ;where, for every j = 1; : : : ; n, yj 2 R and 0 � �j � 2�. We may assume that b = V yhas unit norm. This implies that y satis�es Y Wy = u.19



We show that if V is 3� 3 and/or extreme, the phase angles �1; : : : ; �n are allequal. Then we an onlude that the real vetor yR = e�i�1y satis�es YRWyR = uand, therefore, also orresponds to a stagnating right-hand side.We �rst onsider the 3 � 3 ase. We expand Y Wy and onlude that y mustsatisfy 24 u1u2u3 35 = 24 x21 + x1x2ei(�2��1) + x1x3ei(�3��1)x22 + x2x1ei(�1��2) + x2x3ei(�3��2)x23 + x3x1ei(�1��3) + x3x2ei(�2��3) 35 :(6.5)Eah entry on the left of equation (6.5) is real, so, learly, eah entry on the rightmust also be real. The �rst term, x2j ; j = 1; 2; 3 is real. In order for two omplexnumbers to have a real sum, they must have idential magnitudes and opposite phases.Therefore �2 � �1 = �1 � �3�1 � �2 = �2 � �3:Solving the above pair of equations we onlude that �1 = �2 = �3.Now assume V is extreme with singular vetors Q. Then, as in the proof ofTheorem 4.3, y an be expressed asy = r1ei�1 q̂ + rnei�nqfor some q̂ orthogonal to q, where r1; rn 2 R and 0 � �1; �n � 2�. Using the extremematrix stagnation equation (4.2), we obtainuj = (q̂jr1�1)2 + (qjrn�n)2 + q̂jqjr1rn(�21ei(�1��n) + �2nei(�n��1)); j = 1; : : : ; n:Unless V is unitary, �1 6= �n. Therefore in order for uj to be real, �1 must be equalto �n. This yields y with �1 = : : : = �n.If V is not extreme or three-dimensional, however, it is possible for a orrespond-ing matrix A to have a omplex, but no real, stagnating right-hand side.Example: Consider the matrix from Example 4.1. The vetory = 2664 1:5564116+ 1:5564116 i�1:2084570� 0:3414864 i0:7066397+ 1:5089330 i�1:8679775� 1:2644748 i 3775solves (2.3) and it an be veri�ed diretly that gmres(A,b) stagnates when b = V y.In order to determine whether any real stagnating b exists, we solve the polynomialsystem (6.4) with W and u as above. Note that if a omplex y solves (6.4) then so do�y, �y and ��y. Applying the POLSYS PLP solver we obtain exatly 24 = 16 omplexsolutions. The four \fundamental" ones are listed below,yI = 2664 0:7391037+ 0:2570027 i�0:1534853+ 0:5091449 i1:2414730+ 0:3333155 i�1:2276988+ 0:1269897 i 3775 ; yII = 2664 0:1578663+ 0:9757913 i0:1463589+ 0:0364812 i0:9548215+ 0:3991290 i0:8611411� 0:2115472 i 3775 ;yIII = 2664 �0:9785711� 2:1552377 i3:4382447+ 2:1527698 i1:8727147� 0:2306006 i2:7341793+ 2:2536406 i 3775 ; yIV = 2664 2:4426010+ 0:4870174 i�1:1947469� 0:5787159 i1:7072389+ 0:0030895 i�2:3718795� 0:5254314 i 3775 :20



The degree of the system is 16, and all sixteen solutions are veri�ed to be isolated.We onlude that the given system (6.4) has no other real or omplex solutions. Onthe other hand, a omplex solution of (6.4) does not produe a stagnating b.It appears, however, that at least for small n, A an be expeted to have areal stagnating right-hand side if it has a omplex one. For instane, let us againexamine Figure 4.1, whih shows a slie of SV for the matrix V de�ned above. Thedotted points orrespond to vetors u 2 Sn for whih there are both real and omplexstagnating vetors b. For the points marked with '+', only omplex ones exist. Wesee that the dotted region is signi�antly larger.7. Conlusions. We have presented several results on the stagnation behavior ofgmres . For problems of dimension 2 we determined that every hoie of eigenvaluesleads to a stagnating problem for eigenvetor matries that are suÆiently poorlyonditioned. We partially extended this result to higher dimensions for a lass ofeigenvetor matries alled extreme. We gave neessary and suÆient onditionsfor stagnation of systems involving unitary matries, and showed that if a normalmatrix stagnates then so does an entire family of nonnormal matries with the sameeigenvalues. Finally, we showed that there are real matries for whih stagnationours for ertain omplex right-hand sides but not for real ones.The stagnation system was a ruial tool in developing these results and we believeits analysis will ontribute to the solution of other open problems as well.8. Aknowledgements. We are grateful to Layne T. Watson for substantialadvie on polynomial equations, and to Anne Greenbaum and Zdene�k Strako�s forhelpful omments on this work.
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