STAGNATION OF GMRES *
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Abstract. We study problems for which the iterative method GMRES for solving linear systems
of equations makes no progress in its initial iterations. Our tool for analysis is a nonlinear system of
equations, the stagnation system, that characterizes this behavior. For problems of dimension 2 we
can solve this system explicitly, determining that every choice of eigenvalues leads to a stagnating
problem for eigenvector matrices that are sufficiently poorly conditioned. We partially extend this
result to higher dimensions for a class of eigenvector matrices called extreme. We give necessary and
sufficient conditions for stagnation of systems involving unitary matrices, and show that if a normal
matrix stagnates then so does an entire family of nonnormal matrices with the same eigenvalues.
Finally, we show that there are real matrices for which stagnation occurs for certain complex right-
hand sides but not for real ones.
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1. Introduction. GMRES [8] is one of the most widely used iterations for solving
linear systems of equations Az = b, where A is an n X n matrix and x and b are
n-vectors. Although it is guaranteed to produce the exact solution in at most n
iterations, it is useful for large systems of equations because a good approximate
solution is often computed quite early, after very few iterations.

In this paper, we study an oddity: the class of problems for which the GMRES
algorithm, when started with the initial guess 2(°) = 0 and using exact arithmetic,
computes m iterates () = ... = z(™) = 0 without making any progress at all. We
call this partial or m-step stagnation. If m = n — 1, we call this complete stagnation
of GMRES. In this case, GMRES will compute the exact solution at iteration n.

If GMRES frequently stagnated on practical problems, it would not be a popular
algorithm. Clearly this set of problems is rather obscure. Why is it of interest?
Despite fifteen years of intense effort, the convergence of GMRES is not at all well-
understood and a great number of open questions remain. Although we study the
extreme case, we believe the new perspective lends insight into the factors that affect
convergence rate and provides tools that may be of use in studying problems for
which GMRES converges more favorably. In particular, this is demonstrated in [15,
Chap. 5] and a forthcoming paper [14]. In addition, most common implementations
of GMRES allow restarts after a small number of iterations to conserve storage space.
The restarted GMRES algorithm often makes rapid progress in the beginning iterations
but then nearly stagnates in the later ones. We hope that our study of stagnation
will eventually shed light on restarted stagnation, too.

We begin with a new tool for studying GMRES convergence, the stagnation system.
In Section 2, we derive this equation, which separates the effects of the eigenvalues
of A, the eigenvectors of A, and the right-hand side. In Section 3 we present results
of application of this formalism to analysis of complete GMRES stagnation for n = 2.
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In Section 4 we study the special case of extreme matrices, those whose eigenvector
matrix has only two distinct singular values. In Section 5 we consider normal matrices.
It is well known that GMRES can stagnate on a particular set of unitary matrices [5]; we
show that this is the only set of stagnating problems for unitary matrices. We further
show that if a normal matrix stagnates then so does an entire family of nonnormal
matrices with the same eigenvalues. Results on real matrices and right-hand sides are
given in Section 6.

2. The Stagnation Equation. We apply GMRES to the linear system
Az =b, x€C" beC", AeC™".

Throughout this paper, we make the following assumptions:

1. The matrix A is diagonalizable and has the spectral decomposition A =
VAV~! where A = diag(A1,...,\,) and the columns of V are the right
eigenvectors of A.

2. These eigenvectors are linearly independent, so the matrix W = VHV is
Hermitian positive definite.

3. The right-hand side b is normalized to Euclidean norm 1 and the initial guess
for GMRES is xg = 0. We denote by r,, the GMRES residual after m steps, so
that r,, = b — Ax,,, with ro = b.

4. The matrix V has a singular value decomposition of the form PXQ¥, where Q
contains right singular vectors of V' and ¥ is a diagonal matrix with singular
values of V on the diagonal. Behavior of GMRES is essentially invariant to
pre-multiplication of V' by a unitary matrix. Therefore, when convenient,
we may assume that P is the identity matrix. In other words, left singular
vectors of V' are irrelevant to the apparatus we develop in this paper. Also,
without loss of generality, we may assume that columns of V' have Euclidean
norm 1.

The GMRES algorithm computes a sequence of approximate solutions to Az = b
so that the mth approximation is the member of the Krylov subspace

Km(A,b) = span{b, Ab, ..., A" b},
with minimal residual norm

Il = _min, | 5= A
It is well known [8] and evident from this definition that the residual norms are mono-
tonically nonincreasing with m, and that GMRES terminates with the exact solution
in at most n iterations.
In this section we develop a new approach for analysis of GMRES, establishing
necessary and sufficient conditions for stagnation of GMRES. This is done using the
Krylov matrix

Kp=[bAb ... A™ 1.

together with the eigenvalues and eigenvectors of the coefficient matrix A.

An important tool in our analysis is a factorization of K,,, separating the influence
of the eigenvalues of A, the eigenvectors, and the right-hand side b. This factorization
appears, for example, in Ipsen [2, Proof of Theorem 4.1]); a version of this result can
also be found in [9].



LEMMA 2.1. Lety = V~='b and let Y = diag(y). Then
(21) Km+]_ - VYZm+]_,
where Z,,+1 is the Vandermonde matriz computed from eigenvalues of A,

1 A ...oAR
Zmpr =1+ . =(e Ae ... A™e).

Proof. The Krylov matrix satisfies

Kpni1(A0) = [Vy VAV IVy ... VA™V1Vy]
= V[Ye AYe ... A™Ye]
= VY [e Ae ... A™¢]
= VYZm+1.

We are now ready to prove the main result of this section.

THEOREM 2.2. Let A be nonsingular with at least m+ 1 distinct eigenvalues. Let
y = V1b. Then GMRES(A,b) m—stagnates if and only if y satisfies the stagnation
system

(2.2) ZR YWy =ey,

where e; = [1,0,...,0]T € ¢+t

Proof. At the mth step, GMRES minimizes the residual over all vectors x in the
span of the columns of K,,,. This means that the resulting residual r,, is the projection
of b onto the subspace orthogonal to the span of the columns of AK,,. Therefore,
GMRES stagnates at step m if and only if b is orthogonal to the columns of AK,,, or,
equivalently, orthogonal to the last m columns of K,,;1. Since the first column of
K41 is b, this is equivalent to stagnation if and only if KnIEbe = e;. Substituting
the factorization of K11 from Lemma 2.1 yields the desired result. O

If m = n—1, we have complete stagnation. Since complete stagnation is impossi-
ble if eigenvalues of A repeat, we assume a distinct spectrum, which yields a full-rank
square Vandermonde matrix Z. In this case, Theorem 2.2 takes the following form.

COROLLARY 2.3. Let A be nonsingular with distinct eigenvalues. Let y = V 1.
Then GMRES(A,b) completely stagnates if and only if y satisfies

(2.3) YWy =2He =u

where the elements of u are defined by

n
Ak
;= (— n+l 1
(2.4) uj = (=1)"""conj ,!=|1 N

k#3j

Proof. Denote the elements of the first column of Z—H by uj, j=1,...,n. The
proof is a consequence of [1, Section 21.1], where an explicit construction of the entries
of the inverse of a Vandermonde matrix is derived. O

3



We can make a similar statement for partial stagnation.
COROLLARY 2.4. Let A be nonsingular with distinct eigenvalues. Let y = V ~1b.
Then GMRES(A,b) m-stagnates if and only if y satisfies

(2.5) YWy = (ZX, )ler +t

where t is in the null space of ZgH.

The usefulness of (2.2), as well as the related equations (2.3) and (2.5), is that
it separates the influence of the eigenvalues, which determine Z, and eigenvectors,
which determine W. Stagnation is explored through the interaction of W and Z.

The systems (2.2) and (2.3) are not polynomial systems of equations since they
involve complex conjugation of the entries of the variable y. They can, however, be
rewritten as real polynomial systems with 2(m + 1) and 2n equations, respectively,
by splitting all components into their respective real and imaginary parts. Partial or
complete stagnation of GMRES corresponds to the existence of a real solution of such
a polynomial system. If the total number of (real and complex) regular and infinite
solutions is finite, then, according to a result of Bezout [3], the number does not
exceed the total degree of the polynomial system, which in the case of (2.2) is 22(m+1)
Therefore, in practical experiments, we need to use a solver such as POLSYS_PLP [12]
that finds all solutions of the system. Stagnation takes place iff any of these solutions
is regular and real.

We conclude this section by establishing the equivalence of stagnation of GMRES
for A with stagnation for AH.

THEOREM 2.5. GMRES stagnates for the problem Ax = b if and only if it stagnates
for Az = b where b = Vy, § =Y tu, and b= V—Hyg,

Proof. From (2.3), we obtain YV#Vy = u, so

Yy lv v HY Ty —e.

Let U = diag(u) which yields @ = Ue. Multiplying the above equation by U, we
obtain the stagnation equation for A%z = b:

YV-ly—Hj = q.

2.1. The Geometry of Stagnation. The complete stagnation system (2.3)
can be written as

Fy(y) =G,

where Fy (y) = YWy and G(\) = u. Let us look at the domains and ranges of Fy
and G. Since

L=pll> = [IVyll> = "Wy = |lylly = e’ u,
it follows that the domain of Fy (y) is the hyper-ellipsoid surface
By ={yeC" | yiWy =1},

whose axes are determined by singular values and vectors of the matrix V. Moreover,
u lies in the hyperplane

Sp={u=[ur ... us]" €C"| Y u; =1}

Jj=1
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The range of the operator Fy (y) defined over Ey is
Sy ={u € §,, | there exists y,, € C" such that Fy (y,) = u},

which is a subset of S,,. Due to scale-invariance of the function G()\), without loss of
generality we can assume that all eigenvalue distributions lie in the box

B={\=[\ ... )T €Cc"|0<|N| <1}
Therefore, the range of G(\) defined over B is
Sy ={u € S, | there exists A, € B such that G(\,) = u},
which is also a subset of S;,. To summarize,

Fy, : Ey—SyCS,
G(\) : B8 C Sy

\ K
RO

G(AY)

G(M9)

*" NS

NGA

Svﬂ S)\ Represents all stagnating A for given V

Fic. 2.1. A Geometric Interpretation of Complete GMRES Stagnation

We can now give a geometric interpretation of complete stagnation of GMRES.
It is illustrated in Figure 2.1. Let us fix a set of eigenvectors V', which fixes the
domain and range sets Ey and Sy, respectively. The intersection of Sy with Sy,
which is the meshed area in Figure 2.1, can be thought of as a representation of
all eigenvalue distributions A\ which yield a stagnating matrix A = VAV ~! for the
given V. Why? Because, if we pick an eigenvalue distribution (labeled Ag in the
figure) such that it gets mapped by G inside Sy [ Sy, then there exists a vector
ys € Ey such that the stagnation equation is satisfied for the triple {V, \s,ys} and
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so GMRES(VAgV ™1 Vys) completely stagnates. Conversely, if G(Ans) € Sy [)Sa
for some Ang then no matter what y € Ey we pick, the stagnation equation (2.3) is
never satisfied and so GMRES(VAnsV ™1, b) never stagnates.

We make two remarks. First, the above interpretation allows us to make a generic
statement about what it means for a set of eigenvectors to be “good” or “bad” in
terms of complete GMRES stagnation. We see that the larger Sy [ S, is for a given
V', the more stagnating A’s one can find, and so the smaller this intersection is the
better. Second, this interpretation places primary emphasis on eigenvectors and then
incorporates eigenvalues into the picture. This is different from existing literature on
convergence of Krylov methods, where eigenvalues are considered more important. So
in order to get a better understanding of stagnation, we have to study properties of
Fy (y) and G()\) as operators defined over their respective domains.

Similar statements can be made for the domain and range for the partial stagna-
tion equation, but perhaps the most intuitive interpretation is that we seek an element
of Ey whose elements sum to one and that is orthogonal to the columns 2 through
m+1of Z.

2.2. The Nature of S,. It follows from (2.4) that u € S,, belongs to Sy iff there
exists a vector A € B such that G(\) = u. Since we may assume that all eigenvalues
are distinct and nonzero, this is equivalent to the following system of equations

AQ /\3 e /\n = (_1)n+1 (5% (/\1 — Az) e (Al — An)
(CX5) I VED VRIS VIR RN W G ) Lt P O VIEED VS INSUNN 0 P W'
/\1 AQ e An,:[ = (_1)n+1 Unp (/\n — Al) e (An — /\nfl).

It appears from extensive numerical experiments that, in the case of arbitrary complex
eigenvalues, the system (2.6) has solutions for any u € S,,,i.e. Sy = S,,. Consequently,
in our analysis of the stagnation region Sy [ S\, we focus most of our attention on
Sy .

The system (2.6) is a parametrized polynomial system in A with elements of the
given vector v € S, being the parameters. For certain values of u, it is possible to
compute solutions of (2.6) explicitly. For instance, any permutation of the vector

: : 2w(j — 1
)\:[61917_‘_7610n]T, 0]':%;
solves the system when u; = 1/n, j = 1,...,n. Thus, in order to establish equality of

S, and Sy analytically, it may be possible to use the theory of coefficient-parameter
polynomial continuation [4].

When only real or complex conjugate eigenvalues are allowed, S, is significantly
larger than S). However, in this case experimental data suggest that for any two
eigenvector distributions V; and Vs, the volume of Sy, (] Sy is larger than that of
Sy, [ Sy iff the volume of Sy, is larger than that of Sy,.

2.3. The Nature of Sy. Since Ey is compact and Fy (z) is continuous, Sy is
also compact, and we now derive an explicit bound for elements of Sy .

6



LEMMA 2.6. IfV is nonsingular and u € Sy, then ||u|| < k(V') = max; 0;/ min; o; J|

Proof. Since ||y|lw = 1 we can bound the 2-norm of y in terms of the singular
values of V:

<yl £ ——.
max; o; min; o;

If u € Sy with the corresponding vy, € Ey, then
lull = [YaWyull < IYalllWyall < Nyl Wyl
If we define r, by y, = Qr,, then
1=y Wyu =1, Z2ry = [|Zra,
SO
Wyl = 1QZ*Q™Qrull = [Z*ru]l < IZ]|[Trull = maxo;.

Combining these expressions, we obtain

max; o;
Jull < lyulllWyull < ——— = K(V).

mini g

O
Lemma 2.6 implies that given eigenvectors V', any eigenvalue distribution A such that
IG(N)]| > £(V) necessarily yields a non-stagnating matrix A = VAV L,

3. Results for Problems of Size 2 x 2. In this section we use the stagnation
system to analyze stagnation of GMRES in the simplest possible case, when n = 2. We
show that stagnation is determined by a simple relationship between the ratio of the
eigenvalues and the condition number of the eigenvector matrix. More specifically,
we show that given any set of distinct nonzero eigenvalues A € C? and a set of
eigenvectors V € C2*2) there exists a vector b € C? such that GMRES(VAV 1 b)
stagnates iff the condition number of V' is large enough with respect to the ratio of
the largest eigenvalue to the smallest one. We also provide an explicit formula for a
stagnating right-hand side b.

Let V have the form Q¥ and let r = Q”y. We can rewrite the stagnation
system (2.3) as follows,

(3.1) G\ =YVHVy =Y (QR)(2Q™)(Qr) =Y QX%

Without loss of generality, we make the following assumptions. First, the unitary
matrix () has the form

(3.2) Q:\/ii <€}a e‘i) a € [0, 2n].

Second, let (V) = k > 1. Due to the column scaling of V' and the fact that the order
of singular values is not important, we let

(3.3) 2:\/%@ 2)
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Third, it is easy to see that y solves (2.3) iff ey also does, where v is any phase
angle. Therefore we assume

(3.4) r= [ 1 io } , 1,72 € R\ {0}, ¢ €[0,2n].
ra2€
Note that if vector r contains a zero entry, the corresponding right-hand side vector
b can never cause stagnation. Therefore we assume that r; and ry are nonzero. Also
note that we allow the two variables to be negative. This gives us more flexibility
when solving the resulting polynomial system. On the other hand, if either variable
takes a negative value, the corresponding polar representation of the entry of r can
be obtained by adjusting the phase angle ¢.
Finally, for our fourth assumption, since G(\) is scale invariant, we let

(3.5) A= { ;Oe” } , Ao >1, 8€]0,27].

We plug (3.2) — (3.5) into (3.1), simplify, separate both sides of the stagnation
system into real and imaginary parts and obtain the following system of four equations:

K2r? 413 cos ¢ 1 — Ao cosb
— 2 = .
k2 +1 12 1—2Xpcosf + A2
K2r? + 13 Ao(Xo — cos @)
k241 +T1T2COS¢_1—2/\06080+/\%
(k? = 1)ryrysing Ao sin 6
k241 T 1—2)gcosf + A3
(k2 = Drirpsing Ao siné
K2 +1 T 1—2)gcosf + A

The fourth equation is redundant and can be dropped. The remaining three nonlinear

equations have three unknowns {ri, 2, ¢}. We need to determine the conditions on the

parameters of the system, Ao, k¥ and 8, under which system has appropriate solutions.
There are four pairs of solutions {r;,rs}: !

1-%4
{{__ ]._E—Z _0265 1+ N;s}
K2 c1 ’
1+22
{1 14 + 0_4 cacg\/ 1+ Kg% }
2 K2 c1 ’
(3.6)
1+2
1 + = CoCq 1 + ;3
1+ =2, —=},
1 - C_4 CoCs 1 + 1_22_;%
{5 1+ K2 c1 H

LComputations were performed using Mathematica version 4 [13].
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where

4((k? = 1)% + 8r2AZ + (K% — 1)2A§ — 2(1 + k*)%A3 cos ),
Vs = 12003 = 1)2 +4(s2 + 1)2\3 sin 6,
(k2 —1)(1 — 2Xpcos B + A2),

c= Ver +cs,

ca+ (K* —1)(1 = 2Xg cos b + A3),

ey — (kY = 1)(1 — 2Xg cosf + A2),

(k2 — 1)* +4(1 — 106* + £%)A3,
| (5% = 1)*AG — 4(k* = 1)2X0 (A3 + 1) cos @ + 2(k? + 1)* A3 cos 20 J

Although the above expressions are quite complicated, we observe that there exists a
real pair of solutions {ry,r2} iff ¢4 is real. The expression ¢} = ¢7 + ¢g is a fourth-
degree polynomial in k? with the positive leading coefficient (1 — 2X\g cos@ + A3)2.
In order to determine regions corresponding to stagnating matrices A, we need to
determine values of k? for which the expression ¢? is positive. To this end, we solve
c? = 0 for k? and obtain the following four zeros,

14+ X0(Ao —4) —2y/2(Xo — 1)2Xg(cos# — 1) + 2 cos

(o, 0) =
F1(%o,9) 1—2Xpcosf + A3 ’
9 L+ Xo(Mo —4) +2v/2(Xo — 1)2Xg(cosf — 1) + 2Xg cos §
1432()\0,0): 2 )
1—2Xgcosf + A3
(3.7)
2 (00.6) = (L4 Ao — 2v/Ag cos §)?
B0 1—2)gcosb + A2
1+ Ao + 2v/Ag cos §)?
¥, 0) = (LEX A2 0o )

1—2Xpcosf + A3
We now examine the sign of ¢f depending on where &7 is relative to £%(Ao,0), j =
1,2,3,4. We consider three separate cases.

(i) Real Eigenvalues of the Same Sign. Eigenvalues of A are real and of the same
sign iff # = 0. In this case, (3.7) simplifies to

H%(/\an) = Hg(/\o,O) =1,

K5(X,0) = 5520 £3(X0,0) = Ksame (Mo)?,
where
Ksame(Ao) = @:
Vg —1
and so

K3(A0,0) < K7 (Xo,0) = 1= k35(Xo,0) < &3 (Xo,0).

For any V', (V') > 1, so we need only consider only two cases, when 1 < 2 < k3(Ag, 0)
and k% (X\o,0) < k2. As noted above, the leading coefficient of ¢3 as a function of x>
is positive, so that

lim ¢ = +o0.
K—+00
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We conclude that if
KJ(V) > Ksame(AO):

then ¢ > 0 and so there exists a real pair of {r;,r>} that yields a stagnating right-
hand side b. Conversely, if 1 < &(V) < Ksame(Ao), then there is no stagnating b. Note
that A\ > 1 is just the ratio of the larger and smaller eigenvalues of A.

(ii) Real Eigenvalues of Opposite Signs. Eigenvalues of A are real and of opposite
signs iff # = m. We first observe that unless # = 0, k3 (Ao, ) and k3()\o, #) are complex,
so in order to determine the sign of ¢4, we consider k3(Xg,8) and k3 ()o,6) only. After
simplification we obtain

k3 (Xo, ) = K3( Ao, ) = 1.
Again, since the leading coefficient is positive, we conclude that if

k(V)>1

then there exists a stagnating vector b. This implies that any A € C?*? with real

eigenvalues of opposite signs is stagnating.

Fic. 3.1. Contours of kcz(Xo, 8)

(iii) Complex Eigenvalues. Finally, we consider 6 € (0, n) |J(w, 27), which corre-
sponds to A with complex eigenvalues. Again, since £} ,(Xo,#) are complex, we only
consider 3 4(Xo,6). First, we determine that

H%(/\an) H;Zl(/\():e) =1

Moreover, if 0 < 6 < 7 then k%(X\o,0) < 1 and £3(X\o,0) > 1. If 7 < § < 27 then the
opposite holds.

Once more referring to the positive leading coefficient, we conclude that a matrix
A € C**? with complex eigenvalues is stagnating iff the condition number of its
eigenvector matrix V' is larger than the biggest of the two zeros, i.e. it satisfies

"':(V) Z Rex (AO; 9);
10



where

14+ Ao+2vAo cos £
I<L4(/\0,0) = 2

\/1—2X0 cos 042 ?

14+Xo—2v Ao cos &
K3(No, §) = A0 2V Ao 08y

V/1—2X0 cos 042 ?

where g and 6 are determined by the ratio of moduli of the larger and smaller
eigenvalues. As 6 — 0 and 7, kcz(Ao,8) = Ksame(Ao) and 1, respectively.

We can summarize the findings on 2 x 2 stagnation as follows.

1. Given an eigenvalue distribution A € C?, there exists b € C? for which
aMRES(VAV1b) stagnates whenever x(V) is large enough with respect to
|A2]/|A1|. Conversely, given a nonsingular V' € C**? one can find A € C? that
will yield a stagnating A.

2. For some \ € C? (specifically, real with eigenvalues of opposite signs), every
V gives a stagnating matrix.

3. Whether a given matrix A yields stagnation of GMRES(A,b) for some b is
completely determined by the relationship between the eigenvalue ratio Age®
and the condition number of V.

4. When (V) is large enough to cause stagnation, it is possible to compute a
stagnating right-hand side vector b explicitly from (3.6).

Item 1 is illustrated graphically in Figure 3.1, which shows contour lines of
Kex(No,0) for 2 < A\g < 6 and —180° < € < 180°. Each contour line k., (Ao, 0) = &
corresponds to eigenvalue distributions A such that A = VAV ™! is stagnating for
every V with k(V) > k. The inside of the region enclosed by a contour line corre-
sponds to non-stagnating distributions A. As expected, this region becomes smaller
as kez(Ao, ) grows. Next we investigate to what extent these findings generalize to
problems of larger dimensions.

0<f<m
K?cz(/\Oag) =
T<0<27

4. Complete Stagnation of Matrices with Extreme Eigenvalue Distri-
butions. We call V' extreme if its singular values can be ordered to satisfy

01 =0y ="'+ =0p_1 # Op,

In this section, we explore the structure of Sy derived from such extreme matrices
and show in particular that two different, but equally conditioned, extreme eigenvector
distributions have essentially the same range sets Sy. Since columns of V' are assumed
to have Euclidean norm 1, the condition number of V is within a factor of /n of
optimal [10], and the singular values satisfy

(4.1) of+ -+ o2 =n.

For extreme matrices V, the stagnation system YWy = u has a particularly
simple form. Let the singular values of W be 07 =, j = 1,...,n—1,and 0}, = a+4,
where « is nonnegative and f is real. By (4.1), na + 8 = n, and, since the singular
values are nonnegative, we must have 0 < a <n/(n—1) and 62 = a+n(l — ). The
matrix ¥? then has the form

Y2 =al +n(l —a)e,el
where e, is the nth unit vector. We can then conclude that

W =QxQ! = Q(al +n(l - a)eneg)QH =al +n(l - a)qu,
11



where ¢ is the last column of @, the right singular vector corresponding to the singular
value o,,. Therefore, the stagnation system (2.3) becomes

(4.2) u=YWy=aYy+n(l - a)}_quHy.

The singular vector ¢ has the property that every entry has the same magnitude:
LEMMA 4.1. Suppose V € C"™*" is extreme and the corresponding W has singular
values parameterized by o and B as defined above. Then

. . T
6101 619" ) ,

yeeey

q:%(

where §; € [0,2n] are certain phase angles.
Proof. Let elements of the vector ¢ have the form g; = r;e?, where r; € R and
0; € [0,27]. Since V is properly scaled, the main diagonal elements of W are

1=wjj=a—|—n(1—a)qj(jj:a—l—n(l—a)r?, j=1,...,n.

Consequently

11—« 1
7‘]': —_— Y = —.

nl-a)  va

4.1. Structure of Sy for an Extreme V. We now use this lemma to prove
that the range set Sy of an extreme V' is symmetric with respect to the “center” point
u. = (1/n) e, ie., if u € Sy then up = Pu € Sy, where P is any permutation matrix.

THEOREM 4.2. Suppose a properly scaled matrix V' is extreme, with singular
values ¥ and right singular vectors defined by Q. Then

u€Sy = up=PucSly,

where P s a permutation matriz.
Proof. Suppose we have a solution to the stagnation equation

uw=aYy+n(l—-a)Yq'ly.

Since the basis in @ for the space orthogonal to ¢ is arbitrary, we can establish our
result just by proving it for a permutation P that interchanges the first and last
components of a vector. Let §j = Ye where

Y = PYPD,
and
D = diag(e!?1=0) 1, ... 1,¢0n=00)y
Then D = PDP, so that
Y = PYPD = PYDP.
Therefore

Y§j = (PYDP)(PY PDe) = PY DY PDe = PYY (DPD)e = PYy,
12



since DPD = P. Similarly, since DPq = g,

Yqq"§ = PYDPqq® PY PDe

= PYqq" PYPDPPe
= PYqq" PY DPe
= PYq¢" PDYe
= PYqq"y.
Therefore,
a?gj +n(l - a)?qug) = Pu,
so Pu e Sy. O

We have run extensive numerical experiments that suggest that the set Sy of an
extreme V is convex. The range set Sy also appears to be convex for any 3 x 3 real
matrix V. However, in general Sy is not convex.

Example. Let the matrix A be defined by its eigenvector matrix

—0.3998204 0.2414875 —0.0877858 —0.4306034
V= —0.5786559 —0.8362391 0.4920379  0.3213318
T | 0.6984230  0.0537175  —0.7499413 0.5155494 |’

—0.1323115 0.4893898 —0.4333364 —0.6674844
and its eigenvalues
A = (1.0000000, —0.7658066, —0.2656295, 0.8705277).
The mapping G(\) is
G(A\) = (—0.6120,—0.1600, 0.9269, 0.8451).

If we consider only real right-hand sides b, then the dotted region in Figure 4.1 corre-
sponds to the slice of Sy that is its intersection with the plane ug = 0.9269. Clearly,
the range set is not convex. This figure was constructed by solving the stagnation
system using globally convergent probability-one homotopy algorithms [11], as imple-
mented in the POLSYS_PLP package [12]. Further details are given in [15].

We conclude this section with a result that relates the range sets Sy of two
different extreme matrices.

THEOREM 4.3. Let Q be a unitary matriz with last column q. Let k be a real
constant greater than 1. Define two extreme matrices Vi = TiQT and Vo = 320QF so
that

o _at B2 _
ay + 51 o
and thus k(W) = k(Ws) = k. Then u € Sy, iff @ € Sy,.

Proof. The proof is constructive. Suppose we are given a vector y; € Ey, such
that Fy, (y1) = u. Then we may express y; as

)

iy 4 TQn

yr=rie"q+rpe"q

for some ¢ orthogonal to ¢, where ry,r, € R and 0 < a1, a,, < 27. Now let

—iQy, —ia

q+ cprine
13
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Fi1G. 4.1. The range of Fy (y) can fail to be conver (Section 4.1), and real vectors b are not
sufficient (Section 6.2).

where

k(k+mn—1) k+n-—1
L =(\|—F/—————, Ch=4| —F—————.
k(n—1)+1 k(k(n—1)+1)
It is easy, but tedious, to verify that Fy,(y2) = @. The details can be found in [15,
Section 4.6]. O
Theorem 4.3 shows that the two equally conditioned extreme matrices are essen-

tially identical in terms of stagnation, i.e. the matrix 4; = ViAV! is stagnating iff
Ay = VgAV{l is, too.

5. Complete Stagnation of Normal Matrices. A normal matrix A is one
whose eigenvector matrix V' is unitary. In this case, the stagnation system (2.3)
simplifies to

(5.1) Yy=u=G(\),

which is a system of n decoupled equations of the form,

|yj|2 = Uuj, j = 1,.. ., 1.

THEOREM 5.1. Let A € C™*™ be normal with distinct eigenvalues A. If the vector
u = G(N), defined by (2.4), satisfies u € R™, and 0 < uj; <1, j=1,...,n, then
GMRES(A,b) stagnates for b =Vy, where

(5.2) y; = ,/ujewj, j=1,...,n,

and the phase angles 8; are arbitrary. Conversely, if X is such that the corresponding
G(X) contains complex or real negative entries, then there is no right-hand side for
which GMRES(A,b) stagnates.

14



Proof. If u = G(\) is real positive then y defined elementwise by (5.2) solves (5.1)
and thus causes stagnation of GMRES. Conversely, if at least one element of u is either
complex or real negative, the system (5.1) does not have a solution, so stagnation is
impossible. O

When A is normal, the corresponding Sy has a simple form.

COROLLARY 5.2. Let V' € C"*™ be unitary. Then the corresponding set Ey is
the unit sphere and the range of Fy(y) is a real simplex

Sr={ueR"|0<u; <1, j=1,...,n }.

When A is Hermitian or real symmetric, GMRES is equivalent to MINRES [7].
Proposition 5.3 below shows that in this case the two methods cannot stagnate, pro-
vided n > 3. This is a well known result, but we show how this fact is reflected in the
framework of the stagnation equation.

PROPOSITION 5.3. Let A € R"™ and let u = G(X). Then all elements of u =
[ui,...,u,)T are nonzero. Furthermore,

o Ifn=2n—1 1is odd then n elements of u are negative.

o Ifn = 2n is even then either n or n — 1 elements of u are negative.
Therefore GMRES cannot stagnate when applied to a Hermitian or real symmetric
matriz with distinct eigenvalues.

Proof. See [15, Proposition 4]. O

5.1. Stagnation of Unitary Matrices. A normal matrix A is unitary iff its
eigenvalues satisfy

(5.3) =€, 0<¢; <21, j=1,...,n.

It has been shown that GMRES can stagnate when applied to a unitary matrix A
with eigenvalues distributed uniformly over the unit circle in the complex plane [5].
Using Theorem 5.1 we now show that those are the only unitary matrices for which
stagnation can occur.

THEOREM 5.4. Let A € C™*"™ be unitary with distinct eigenvalues. GMRES stag-
nates iff the phase angles ¢; satisfy

where ¢ is arbitrary, which represents n eigenvalues distributed uniformly over the
unit circle in the complex plane.

We prove Theorem 5.4 in two steps. Given A, a set of n distinct eigenvalues of
the form (5.3), define its image under the transformation G(A) by

G =u=v+iw, wv,weR"™

In Lemma 5.5, we derive explicit formulations for v and w. Then, in Lemma 5.6, we
prove that the only set of phase angles {¢;} that makes w zero is the one defined by
(5.4). For this set of angles, it can be shown by direct computation that v contains
only positive entries.

LEMMA 5.5. Let A\ € C™ be a set of n distinct eigenvalues of the form (5.3).
Without loss of generality assume that

(5.5) 0=¢1 <y < ...< ¢, < 2m.
15



Then individual entries of the vector u = (uy,...,u,)" can be written in terms of the

phase angles as follows.

(5.6) uj =y O dlm,
where
n—2
(=1)7z, if niseven n—1 n
(n) — m _ (1 ¢j — Pk
W = n__1' ' , Cj = <2> Hcsc 5
(-1)7z, if nisodd by
and
(n) al™
- sin 45— +14 cos —4—, if n is even
d\" =
! ol ol
cos —5— — i sin—4—, if n is odd,
where

Proof. The jth element of u satisfies u; = u1;, where uy; is defined by (2.4). Each
term of (2.4) can be rewritten as follows using (5.3)

it () oo e
Aj — A 2sin ¢j;¢k 2

This yields

- O — Ok = Ok — Oj
(5.7) u; = (—=1)" <§> E e8C = i""exp|i ; —
k#j k#3j
Let us now assume that n = 2k is even. The case for odd n is treated similarly. Since

n—2

(=prinTt= (=17 4
we can rewrite (5.7) as

o)
i

uj =" C'](-n) ie T,

where

0o . ol
=sin —— —.
Sin 2 COS 2

P S
ie 72

This completes the proof. O
16



LEMMA 5.6. The vector w, the imaginary part of u defined by (5.6), is zero iff

the phase angles {¢;} are given by (5.4).

Proof. We present a proof for even values of n. The proof for odd n is similar.

First we observe that since eigenvalues are distinct,

and nonzero. From (5.6) we see that u is real iff

the CJ(-”) terms are all well-defined

T
cos@ =0
5 =0.

(n) (n)
W= (cosalT,cos%T,...,
Thus
(5.8) agcn) =7n42mmy, k=2,...,n,

where my, is an integer.

Our goal is to prove that the only combination of the indices my, that yields phase

angles ¢y, that satisfy (5.5) is the one that gives (5.4). To find phase angles ¢-, ..

"(an

that set the bottom n — 1 entries of w to zero, we have to solve the n — 1 xn —1

system
M¢=p,
where
n—1 -1 -1 -1
-1 n—1 -1 -1
M= : : : : 9 (]52
-1 -1 -1 n—1
Now
2 11
Mflzl 1 2 1
nl| oo
1 1 1
SO
n+2(ms+...
- T
p=M"1p=—
n

b2
b3

T+ 2mme
T+ 2mmsg

T+ 2mm,

o0

+my,) + 2me

+ my) + 2ms3

+ my) + 2mg,

From (5.5) it follows that mas < mg < ... < my,, so we can write

mj=m2+5j, ji=3, ...

7n7

where J; is a positive integer, increasing with j. We consider two cases.

Case I: §; =1, j =3,...,n. In this case

~

Dr
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n
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We know that mo € [2 —n,0], so let ma = (2 —n)/2 — p, where m € [1,(n — 2)/2].
Then

N 2

¢2 = _(1 _lun) < 07
n
which violates (5.5). Now let ms = (2 —n)/2 + p with p in the same range. Then

- 2
¢n=%(n—1+n,u)>27r,

which also violates (5.5). Only when ms = (2 — n)/2 do we get a valid set of phase
angles ¢y, namely,

(5.9) é:%”u, 2, ...,n—17T.

Case II: §; > 1, j > jo > 3. Clearly, in this case, regardless of jo, <£2 is negative
and ¢,, exceeds 27 when my equals (2 —n)/2 — i and (2 —n)/2 + p, respectively. On
the other hand, when my = (2 —n)/2,

- 2r(n —1 4T
P > ¥ +— > 27
n n
We conclude that the only combination of phase angles which satisfies (5.5) and sets
the bottom n — 1 entries of & to zero is the one defined by (5.9). It is easy to show
by direct computation that it also zeroes out the first entry of w. O

5.2. Does Normal Stagnation Imply Non-Normal Stagnation?. In Sec-
tion 3 we found that, given A € C2, as long as (V) is larger than a certain value
that depends on A, the corresponding A = VAV ! is stagnating. In particular, this
implies that if A € C?*? is normal and stagnating then so is A = VAV ! for any
V € V2. Does this extend to n > 2?

While running extensive testing to determine properties of Sy for low-dimensional
real matrices V' we have noticed that in all the tested cases, Sy included Sy, where
Sy is the real simplex defined in Section 2.1 which constitutes the range of Fy (y) for
any normal V. If this is true in general then that would imply that normal stagnation
does indeed imply non-normal stagnation.

Stagnation of a normal matrix with real eigenvalues does imply stagnation of an
entire family of matrices with the same eigenvalues:

THEOREM 5.7. Suppose A has distinct eigenvalues \ and a real eigenvector matriz
V', and that u = G(A) satisfies u € R™ with 0 < u; < 1. Then GMRES(A,b) stagnates
for b=Vy where y € R™ satisfies YWy =u.

Proof. If V is real, then W is symmetric positive definite. Solving the stagnation
equation YWy = u is equivalent to finding a diagonal scaling matrix Y so that YWY
has row sums u. Since 0 < u; < 1, the main theorem in [6] tells us that such a scaling
matrix exists.

O

6. Complete Stagnation of Real Matrices. In this section, we investigate
the special form that the stagnation system (2.3) takes when A is real, and we deter-
mine whether it is sufficient to consider real right hand side vectors when studying
stagnation of GMRES for real matrices A.

18



When A is real, its spectrum consists of real eigenvalues and complex conjugate
pairs of eigenvalues. Let A € R™*™ have eigenvalues A\ and eigenvectors V. Then
there exists a symmetric permutation matrix P € R™*™ such that

(6.1) V=VP, A=PA\
It follows that GMRES(A,b) stagnates for b = Vy € C™ iff ||b]| = 1 and y solves
(6.2) YPWry=u

where Wy = VIV, Furthermore, GMRES(A,b) stagnates for b = Vy € R™ iff ||| = 1
and y solves

(6.3) YWry =a, §=Py.

Uunlike (2.3), equation (6.3) constitutes a polynomial system of size n in y. This makes
numerical experiments easier.

6.1. Real Eigenvalues. When the spectrum of A is real, the stagnation system
simplifies even further. Both W and G()\) are real in this case, P is the identity
matrix and W = W. If we consider only real right-hand sides then we get the real
polynomial stagnation system

(6.4) YWy = u,

where y € R" satisfes y? Wy =1 and u = G(\).
_ Note that when (2.3) or (6.2) is solved, the corresponding domain for Fy (y) =
YWy is

Ey={yecC"|y"wy=1}.
When we consider (6.3), the domain changes to
By ={yeC"|g="Py, y'"Wy=y'Wry=1},

where Wz = VTV and P is defined by (6.1). Finally, for (6.4) the domain has the

form
Ey={yeR"|y'"Wy=1}.

6.2. When Real Vectors b are Sufficient. Suppose A is real with real spec-
trum. Is it possible that GMRES(A,b) stagnates for some complex b but does not
stagnate for any real b7 If V is 3 x 3 or extreme, the answer is no: existence of a
complex stagnating b implies existence of a real one.

THEOREM 6.1. Let A € R™ "™ with real eigenvalues \ and eigenvectors V. If
V is of size 3 x 3 or is an extreme matriz, then evistence of a complex stagnating
right-hand side vector implies existence of a real one.

Proof. Let u = G(\) € R™. Suppose there exists stagnating y € C" of the form

y = (yl ei¢17' . '7yn el¢n)T7
where, for every j =1,...,n,y; € R and 0 < ¢; < 27. We may assume that b = Vy

has unit norm. This implies that y satisfies YWy = u.
19



We show that if V' is 3 x 3 and/or extreme, the phase angles ¢1, ...,¢, are all
equal. Then we can conclude that the real vector ygr = e~ ®1y satisfies YaAWyr = u
and, therefore, also corresponds to a stagnating right-hand side.

We first consider the 3 x 3 case. We expand YWy and conclude that y must
satisfy

Uy 23 4 2 20e%(927 1) 4 3y pgei(d3—01)
(6.5) uy | = | 23 4 zow1ef91792) 4 goggei(9s—02)
us3 x2 + x3x,ei91793) 4 pop,ei(®2—08)

Each entry on the left of equation (6.5) is real, so, clearly, each entry on the right
must also be real. The first term, :Uf-,j = 1,2,3 is real. In order for two complex
numbers to have a real sum, they must have identical magnitudes and opposite phases.
Therefore

P2—P1 = 1 — @3
¢ —¢2 = P2 — ¢
Solving the above pair of equations we conclude that ¢ = ¢o = ¢3.

Now assume V is extreme with singular vectors (). Then, as in the proof of
Theorem 4.3, y can be expressed as

y =rie g +retng
for some ¢ orthogonal to ¢, where ry,r, € R and 0 < ay,a,, < 27. Using the extreme
matrix stagnation equation (4.2), we obtain

uj = (gjr1o1)? + (¢j7non)® + (qu]'ﬁ?”n(afei(“l*“") +o2eilan—a)y =1 o,
Unless V' is unitary, o1 # o0,,. Therefore in order for u; to be real, oy must be equal
to a,,. This yields y with ¢, = ... = ¢,. O

If V is not extreme or three-dimensional, however, it is possible for a correspond-
ing matrix A to have a complex, but no real, stagnating right-hand side.
Example: Consider the matrix from Example 4.1. The vector

1.5564116 + 1.5564116 ¢
| —1.2084570 — 0.3414864 ¢
y= 0.7066397 + 1.5089330 4
—1.8679775 — 1.2644748 ¢

solves (2.3) and it can be verified directly that GMRES(A,b) stagnates when b = Vy.
In order to determine whether any real stagnating b exists, we solve the polynomial
system (6.4) with W and u as above. Note that if a complex y solves (6.4) then so do
—y, 7 and —j. Applying the POLSYS_PLP solver we obtain exactly 2* = 16 complex
solutions. The four “fundamental” ones are listed below,

0.7391037 + 0.2570027 i 0.1578663 + 0.9757913 i
_ | —0.1534853 + 0.5091449 i | 0.1463589 + 0.0364812 i
II= | 1.2414730+0.33331554 | * Y777 | 0.9548215+ 0.3991290 i |’
—1.2276988 + 0.1269897 i 0.8611411 — 0.2115472 i
—0.9785711 — 2.1552377 i 2.4426010 + 0.4870174 i
| 3.4382447 4 2.1527698 i | —1.1947469 — 0.5787159 i
Y= 1 8727147 — 0.2306006 i |’ YTV T | 1.7072389 + 0.0030895 i
2.7341793 + 2.2536406 i —2.3718795 — 0.5254314 i

20



The degree of the system is 16, and all sixteen solutions are verified to be isolated.
We conclude that the given system (6.4) has no other real or complex solutions. On
the other hand, a complex solution of (6.4) does not produce a stagnating b.

It appears, however, that at least for small n, A can be expected to have a
real stagnating right-hand side if it has a complex one. For instance, let us again
examine Figure 4.1, which shows a slice of Sy for the matrix V' defined above. The
dotted points correspond to vectors u € S, for which there are both real and complex
stagnating vectors b. For the points marked with '+’, only complex ones exist. We
see that the dotted region is significantly larger.

7. Conclusions. We have presented several results on the stagnation behavior of
GMRES . For problems of dimension 2 we determined that every choice of eigenvalues
leads to a stagnating problem for eigenvector matrices that are sufficiently poorly
conditioned. We partially extended this result to higher dimensions for a class of
eigenvector matrices called extreme. We gave necessary and sufficient conditions
for stagnation of systems involving unitary matrices, and showed that if a normal
matrix stagnates then so does an entire family of nonnormal matrices with the same
eigenvalues. Finally, we showed that there are real matrices for which stagnation
occurs for certain complex right-hand sides but not for real ones.

The stagnation system was a crucial tool in developing these results and we believe
its analysis will contribute to the solution of other open problems as well.
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