
Information Retrieval on the WWW and Active Logic

Page 1 of 45

Information Retrieval on the World Wide Web and Active
Logic: A Survey and Problem Definition

A. Abdollahzadeh Barfourosh1 M. L. Anderson

 H. R. Motahary Nezhad D. Perlis
Intelligent Systems Lab., Institute for Advanced Computer Studies, and
Computer Engineering Dept., Department of Computer Science,
Amir Kabir University of Technology, University of Maryland,
Tehran, Iran College Park, MD, USA
ahmad@ce.aku.ac.ir {mikeoda@cs.umd.edu, perlis@cs.umd.edu}

Abstract
As more information becomes available on the World Wide Web (there are currently over 4
billion pages covering most areas of human endeavor), it becomes more difficult to provide
effective search tools for information access. Today, people access web information through
two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query
Engines (queries in the form of a set of keywords showing the topic of interest). The first
process is tentative and time consuming and the second may not satisfy the user because of
many inaccurate and irrelevant results. Better support is needed for expressing one's
information need and returning high quality search results by web search tools. There appears
to be a need for systems that do reasoning under uncertainty and are flexible enough to
recover from the contradictions, inconsistencies, and irregularities that such reasoning
involves.
Active Logic is a formalism that has been developed with real-world applications and their
challenges in mind. Motivating its design is the thought that one of the factors that supports
the flexibility of human reasoning is that it takes place step-wise, in time. Active Logic is one
of a family of inference engines (step-logics) that explicitly reason in time, and incorporate a
history of their reasoning as they run. This characteristic makes Active Logic systems more
flexible than traditional AI systems and therefore more suitable for commonsense, real-world
reasoning.
In this report we mainly will survey recent advances in machine learning and crawling
problems related to the web. We will review the continuum of supervised to semi-supervised
to unsupervised learning problems, highlight the specific challenges which distinguish
information retrieval in the hypertext domain and will summarize the key areas of recent and
ongoing research. We will concentrate on topic-specific search engines, focused crawling,
and finally will propose an Information Integration Environment, based on the Active Logic
framework.
Keywords: Web Information Retrieval, Web Crawling, Focused Crawling, Machine
Learning, Active Logic

1 Dr. Barfourosh is currently visiting
Active Logic Group,
Computer Science Department,
University of Maryland,
College Park, MD, 20742

Dr. Barfourosh would like to thank Dr. Marie-Cristine Rousset(Laboratoire de Recherche
en Informatique, Artificial Intelligence and Inference Systems Group, Universite
Paris-Sud, Orsay) for helpful discussions of the challenges of Information Retrieval
and Integration.

Information Retrieval on the WWW and Active Logic

Page 2 of 45

Contents

Title Page

1 Introduction 5

2 Search Engines 7

2.1 Web Crawlers 9
2.2 Portals 11
2.3 Meta-Search Engines 12

2.3.1 Direct list of Search Engines 12
2.3.2 Sequential Search 13
2.3.3 Concurrent Search 13

3 Web Analysis 14

3.1 Web Content Analysis 14
3.1.1 Document-Query Similarity 14
3.1.2 Document-Document Similarity 15

3.2.2.1 String distance model 15
3.2.2.1 Statistics of word model 15
3.2.2.1 Document Component or Structure model 16

3.2 Analysis Link Structure of web 16
3.2.1 Ranking 17

3.2.1.1 Page-Rank Algorithm 17
3.2.1.2 Page-Rank Algorithm Application 17

3.2.2 Hub and Authority Pages 18
3.2.1.1 HITS Algorithm 18
3.2.1.2 HITS Algorithm Application 20

4 Machine Learning Approaches in Information Retrieval 20

4.1 Supervised Learning 21
4.1.1 Naïve Bayes Classifier 21
4.1.2 Learning Relations 22

4.2 Semi-Supervised Learning 22
4.2.1 Learning from Labeled and Unlabeled documents 22
4.2.2 Reinforcement Learning 23
4.2.3 Case Based Reasoning 22

4.3 Unsupervised Learning 24
4.3.1 K-means Clustering 24
4.3.2 Agglomerative Clustering 25

5 Domain Specific Search Engines 25

5.1 Topic Specific Focused Crawlers 27
5.2 Recent Researches on Focused Crawling 27
5.3 IBM Focused Crawler 29
5.4 Cora Domain Specific Search Engines 30
5.5 Context Focused Crawler 32
5.6 Appraisal of Three Basic Focused Crawlers 34

5.6.1 IBM Focused Crawler 35

Information Retrieval on the WWW and Active Logic

Page 3 of 45

5.6.2 Cora Focused Crawler 35
5.6.3 Context Focused Crawler 35

6 Information Integration Environment Based on Active Logic
Framework

36

6.1 Why Active Logic for Focused Crawling 37

7 Conclusion 39

8 References 40

Information Retrieval on the WWW and Active Logic

Page 4 of 45

Figures

Title Page

1. Internet host numbers since 1989 up to 2002 5
2. Web coverage percentage by popular search engines 6
3. Workflow of a typical web crawler 10
4. Workflow of a topical portal 12
5. Workflow of a topical meta-search engine 14
6. A and B are in-links of C 16
7. A densely linked set of Hubs and Authorities 18
8. The basic operations of HITS 18
9. Classification of search engine systems 25
10. Architecture of IBM focused crawler, shows how classifier, distiller and
crawler collaborate with each other.

30

11. Workflow of training phase of Cora spider 31
12. Pseudo code of assigning Q-Value to each URL in training data 31
13. Learning a mapping from neighborhood text of URLs to Q-Value 31
14. Workflow of Cora spider in working phase 32
15. Pseudo code of Cora spider working phase 32
16. Architecture of Context Focused Crawler 33
17. Pseudo code of training phase of context focused crawler 34
18. Pseudo code of testing phase of context focused crawler 34

Tables

Title Page

1. The comparison of the measures of performance in classical information
systems and web search engines.

7

2. Evaluation parameters of the search engines from search language
perspective

8

3. Evaluation parameters of search engines from the engine’s perspective 9
4. Evaluation parameters of search engines from the perspective of returned
results

9

5. Three models of measuring document to document similarity 15
6. Comparison between HITS and Page-Rank algorithms 20
7. Main three categories of machine learning approaches 20
8. Examples of different type of search engines 26
9. Characteristics of three basic approaches of focused crawling 34

Information Retrieval on the WWW and Active Logic

Page 5 of 45

1 Introduction

The web has had very rapid growth in number of pages, number of hosts and

number of domain names (e.g. Cisco.com) registered worldwide [1]. There are more
than 4 billion web pages and it is estimated that the number of web pages will exceed
16.5 billion by 2003 [2]. Almost 3 million pages or 59 Giga bytes of text are added
daily, and the average life span of a web page is about 44 days [3]. To keep up with
the changes to web content, one would need to download about same amount of bytes
of information per day, which would mean you would need a connection capable of
downloading 10 mega bytes of text per second [4]. The number of internet hosts
increases exponentially. Figure 1 shows the growth of the internet hosts. The largest
search engines have done an impressive job in extending their reach, though web
growth itself has exceeded the crawling ability of search engines [5, 6]. Even the
largest popular search engines, such as Alta Vista2 and HotBot3 index less than 18%
of the accessible web as of February 1999 [6], down from 35% in late 1997 [7].
Figure 2 shows the percentage of the web coverage by the end of 2001. Today Google
is probably biggest search engine, and has gathered more than 2 billion pages and
covers only about 40 percent of the publicly available web pages.

Internet Host Number
(Source: Internet Software Consortium (http://www.isc.org/)

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000

160,000,000

Ja
n 19

89

Ju
l 1

98
9

Ja
n 19

93

Ju
l 1

99
3

Ja
n 19

94

Ju
l 1

99
4

Ja
n 19

95

Ju
l 1

99
5

Ja
n 19

96

Ju
l 1

99
6

Ja
n 19

97

Ju
l 1

99
7

Ja
n 19

98

Ju
l 1

99
8

Ja
n 19

99

Ju
l 1

99
9

Ja
n 20

00

Ju
l 2

00
0

Ja
n 20

01

Ju
l 2

00
1

Ja
n 20

02

Date

H
os

t#

Host#

Figure 1. Internet host numbers since 1989 up to 2002 (Data from Internet

Software Consortium4).

The number of queries that search engines must handle has grown incredibly, too.

In March and April 1994, the World Wide Web Worm received an average of about
1500 queries per day. In November 1997, AltaVista claimed it handled roughly 20
million queries per day. With the increasing number of users on the web, and

2 http://www.altavista.com
3 http://www.hotbot.com
4 http://www.isc.org/

Information Retrieval on the WWW and Active Logic

Page 6 of 45

automated systems that query search engines, it is likely that top search engines will
handle hundreds of millions of queries per day [8].

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Percent

Fast Alta Vista Northern Light Google Inktomi Lycos
Search engines

Web Coverage Percent
by Search Engines

Dec. 1997
Feb. 2000
Dec. 2001

Figure 2. Web coverage percentage by popular search engines (Data from The Search
Engine Report5, Dec. 18, 2001).

Web search engines create and maintain an index of words within documents they

find on the web. They return to a user a ranked list of relevant documents as search
results. Few of these results may be valuable to a user [9]. Several ranking methods
have been proposed to improve the ranking of resulting documents [10]. For this
reason, it may be helpful to use some user information context in returning and
ranking results.

Search engines are listed among the top accessed sites [11] and most people use

them to find interesting information on the web [12]. As the web continues to grow,
major general-purpose search engines have been faced with serious problems. They
are unable to index all the documents on the web, because of the rapid growth in the
amount of data and the number of documents that are publicly available. Their results
may be out-of-date, and they do not index documents with authentication
requirements or the information behind search forms. As more people share their
information with others, the need for better search services to locate the interesting
information is becoming increasingly important [10].

One way to deal with huge amount of web content is to build topic-specific search

engines, each of them focusing on one or a limited number of topics, such that they
crawl the related hyperlinks and avoid traversing the irrelevant part of the web.

5 http://searchenginewatch.com/sereport/index.html

Information Retrieval on the WWW and Active Logic

Page 7 of 45

[13,14]. This approach needs web crawling mechanisms to be improved so that a
crawler can better distinguish among links to achieve high performance.

“Several different measures have been proposed to quantitatively measure the
performance of classical information retrieval systems, most of which can be
straightforwardly extended to evaluate web search engines. However, web users may
have a tendency to favor some performance issues more strongly than traditional
users of information retrieval systems. A basic model from traditional retrieval
systems recognizes a three-way trade-off between the speed of information retrieval,
precision and recall. In the context of information retrieval, precision is defined as
the ratio of relevant documents to the number of retrieved documents and recall is
defined as the proportion of relevant documents that are retrieved [15].
Most web users who utilize search engines are interested in precision as precision of
the results displayed in the first page of the list of retrieved documents [15]. Since
measuring the recall rate for each web search engine query is not a trivial work, some
researches recognize the recall in form of finding the most information rich pages,
called authority pages and hub pages [16], i.e., pages that have links to many
authority pages are also recognized as being very valuable.” (See Table 1).

Classical Information System web Search Engines
Speed Interactive response times
Precision Precision of the results displayed in

the first page
Recall Finding the most information rich

pages, called authority & Hub pages
Table 1. The comparison of the measures of performance in classical information

systems and web search engines (Data from [15]).

Two methods of finding interesting information on the web are querying and
browsing [17]. Querying is keyword-based search. The search engines post the user
query to their index of keywords and return a ranked list of documents. Browsing is
navigation through a hierarchy-like set of links toward the target topic. In every step,
the user selects the links that (s)he guesses will lead to relevant documents. Querying
is appropriate when user has a clear goal. Browsing is suitable when user cannot
express his goal explicitly by a Boolean combination of the keywords. Browsing also
is suitable for situations where the goal is general information on a topic.

People have difficulty with the typical query mechanisms of search engines.
Search engine queries tend to be the same as those used by the first search engines.
They accept the user query as a set of keywords in the form of a Boolean expression.
Unfortunately the keyword-matching method usually returns too many low quality
results [8, 14, 18]. Furthermore, the formulation of some complex queries in the form
of a Boolean expression is difficult or impossible. People may find natural language a
better choice to convey their information needs, since simple keywords may not be
able to convey the complex search semantics that a user wishes to express [18].

In following sections, we review several basic concepts in the area of web
information search. In particular we will consider the machine learning approaches in
domain-specific search engines and focused crawling methods. In section 2 we
describe the types of search engines, and our goal is to answer the question: “How

Information Retrieval on the WWW and Active Logic

Page 8 of 45

does a search engine work?” Section 3 reviews different web content and structure
analysis. Section 4 describes machine-learning approaches used in information
retrieval. Section 5 mainly describes the topic-specific search engine and focused
crawler architecture. Section 6 introduces the Information Integration Environment
based on Active Logic. Our conclusions are presented in section 7.

2 Search Engines

A “search engine” is a resource that provides the ability to search information on
the Internet [19]. Search engines come in three major flavors:

• Web crawlers
• Web portals
• Meta-Search engines

Each of them has its strengths and weaknesses. In the following subsections we
review each in detail. Since different search engines provide different services and
features, comparison among them is an important matter for users. Several parameters
that can be used to compare search engines [20] that are listed in tables 2 and 3 and 4.
Table 2 shows the parameters from “searching features” perspective.

Evaluation
Parameter

Description

Default search How does the engine put the keywords together, for example ‘AND’
between the words (inclusive) , or ‘OR’ between them (alternative).

Keyword/Concept
default

Concept searching occurs when the engine not only searches for the
exact character string, but also for word forms, and even synonyms and
other words that statistically appear with the typed word.

Exclusion
possibility

Ability to exclude web pages (results) including special terms, search
engines represent it by putting a minus or ‘NOT’ in front of excluded term

Truncation Possibility of finding various form of a word by adding a truncation symbol
(such as ‘*’) on the end of the word

Search restrictors Ability to search for terms or values contained only in certain portions of a
page, rather than anywhere in the entire page or within special kind of
pages (sound, image, video) or in special site domains (.com, .edu)

Date searching
restrictors

Try to place a date restriction in search query. Date restrictions can be
useful to locate newly created or recently updated web pages, weeding
out older results.

Phrase searching Ability of using quotation marks around some terms or a kind of Boolean
connector such as ADJ between the terms for phrase searching

Nesting Support the use of parentheses to nest various parts of a search query,
for example (apple or blueberry) ADJ pie that means apple pie” OR
“blueberry pie”

Multi-level search Ability to first casting a wide net, then narrowing by searching only within
that set of results

Case sensitive If the search engine is case sensitive or no?
Language
restrictor

Ability to search the web pages in various languages such as English,
German, …

Natural language
support

Can it handle queries in natural language?

Information Retrieval on the WWW and Active Logic

Page 9 of 45

Table 2. Evaluation parameters of the search engines from search language
perspective.

Table 3 shows the parameters of search engine coverage, database and manner of
search. Table 4 shows the parameters from returned result perspective.

Evaluation
Parameter

Description

Content size How big is its database, i.e. how many web pages are indexed in its
database

Search parts If they search full text of web page or a specific parts of it such as
keywords, titles, headings, links of web pages, …

Various kind of
web resources
indexing

Indexing the document from other internet sources such as usenet,
peoples, email texts, …

Focused topic Whether the search engine focuses on a specific topic or document type
or it is a general-purpose one

Web crawling
strategy

The manner that search engine traverses the web link’s graph, for
example breadth-first-search, according to priority queue and some
parameters, such as Hub and authority score of page, Page-ranking, …

Table 3. Evaluation parameters of search engines from the engine’s perspective.

Evaluation
Parameter

Description

web pages
Ranking methods

Different parameters used to specify the rank of web pages in returned
result list, such as site popularity, …

Various display
option

If various options are available to rank the returned result, such as by
date, by site, …

Suggested search Suggestions for further searching based on the initial search are provided
or no. These suggestions can be simple, such as synonyms or alternative
search terms, or may be more sophisticated, such as suggestions for
searching in different, specialized databases.

Similar searches If someone locates a web page that is highly relevant to his research
issue, It might be interested in finding more pages that are very similar, is
it available?

Translated results Possibility of offering a tool to translate a given result page from one
language to another.

Table 4. Evaluation parameters of search engines from the perspective of returned
results.

2.1 Web Crawlers

Web crawlers, also known as “robots,” “spiders,” “worms,” “walkers,” and
“wanderers,” are almost as old as the web itself [21]. The first crawler, “Matthew
Gray’s Wanderer”, was written in the spring of 1993, roughly coinciding with the first
release of NCSA Mosaic [22]. A web crawler seeks the Internet looking for pages to

Information Retrieval on the WWW and Active Logic

Page 10 of 45

index. In general it starts with a set of predefined web addresses and downloads them.
For each page, it extracts its URLs in order to follow them later in a specified manner,
for example breath-first-search. Then it indexes all of its word and phrases and maybe
the relative position of the words to each other. Later, a user can search this index for
the presence of a particular word, phrase or even combination of some words in a web
document. Usually, web crawlers store the complementary information for each page,
such as time of download and update, different ranks that are computed off-line,
header and title, etc.

The “crawler” concept stands for the fact that it extracts all URLs within a
downloaded page to be followed later. Figure 3 shows the workflow of a typical web
crawler. A web crawler starts with a single or a set of default pages and it continues
(theoretically) until it has downloaded every web page on the Internet. It is assumed
that it can traverse all of the web graph links from the start page set. However, it is
clear that this theory is not correct in practice, in at least two aspects. Firstly, it cannot
reach all of the web documents from a single point in its graph. There is not a path
from any given page to every other page on the Internet. Secondly, a search engine
cannot cover all of Internet pages because of its power and time limitation in
gathering all of the web documents. New pages are added daily with more speed than
the web crawler gathers web pages, and some web pages will be updated long before
the web crawler could crawl them again.

Web crawlers are typically automatic and the keywords are stored in indexes, each
of them associated with the documents they were found within. Human maintenance
has not generally had an important role in web crawler indexing and querying. Web
crawlers are best for finding specific information, but not common information [21]. If
an interesting search topic is very general, e.g. “computers,” a web crawler will return
thousands of results that contain the word “computer”. In this list, finding an
appropriate page is difficult. For this kind of information, a web portal is a better fit.
In next subsection, we will review web portals.

Yes

1. Get next URL in
queue

2. Contact web server

Crawler
allowed?

3. Download Page

4. Process Page

4a. Add
Complementary

4b. Index words,
phrases, …

4c. Extract URLs
& Update queue

No

Information Retrieval on the WWW and Active Logic

Page 11 of 45

Figure 3. Workflow of a typical web crawler (from [19])

There are several hundred commercial web crawlers. AltaVista6, Excite7,
Google8, HotBot9, Lycos10 and Northern Light11 are some of the most popular web
crawlers.

2.2 Portals

A web portal is generally considered to be a site that organizes information by
topic [19]. It is also called “web directory”. In web crawlers, users can define the
search criteria and search the web crawler’s indexed database for those criteria. A
portal, in contrast, organizes the sites by topic to help in navigating and finding what
the user is looking for. Most portals are human maintained. The large portals work
hard to try to catch all of the intuitive categorizations of a given topic, but this does
not always work. Portals also allow one to search their archives much like a web
crawler, but search is generally possible only on the summaries and titles of sites in
the portal, not on their contents.

Portal providers generally construct portals according to the web pages that
companies, institutes and individuals send to them; in addition, their employees
search and browse the web to find interesting web pages on various topics. Figure 4
shows the workflow of a topical portal. Some portals, after acquiring the web pages,
associate a number among 0 to 4 to each web page according to “Usability, Freshness,
and Understandability”. Furthermore, from each page a summary will be extracted,
from 2-3 lines to a full paragraph. Then they use different parameters to construct a
hierarchy of topics. Acquired web pages will be placed in lower levels of this
hierarchy according to their relevancy. This hierarchy will be maintained by humans
to update and add more relevant documents. The top level of this hierarchy has a
limited number of general topics, varying between 14-26 topics. The number of
subtopics in lower levels depends on the topic and available web pages about it. There
is some research that aims to automate classification and construction of these
hierarchies, and some of these projects result in an acceptable level of precision [23,
39, 41, 42].

Portals are very efficient for finding common information, but they are unable to
organize everything, so specific information is not nearly as easy to find [19]. This is
one of the first rules to know when deciding between a crawler and a portal in order to
find information. Some of the popular portals are Yahoo!12, Looksmart13, Open
Directory Project14, IBM’s Patent Database15. These portals differ according to the

6 http://www.altavista.com
7 http://www.Excite.com
8 http://www.google.com
9 http://www.hotbot.com
10 http://www.lycos.com
11 http://www.northernlight.com
12 http://www.yahoo.com
13 http://www.looksmart.com
14 http://www.dmoz.org
15 http://www.delphion.com

Information Retrieval on the WWW and Active Logic

Page 12 of 45

amount of information they keep about every web pages and information items like
summaries, titles, URLs, etc.

Figure 4. Workflow of a topical portal

2.3 Meta-Search Engines

Meta-search engines (or meta-crawlers) are sites that take queries (keywords or
even natural language queries), send them to a large number of search engines and
return the results to user. Meta-search engines use three methods to search the web:

• Direct list of search engines
• Sequential searches
• Concurrent search

2.3.1 Direct list of search engines

This kind of search engine sends the user query directly to a list of search engines and
acquires their results for that query, as if the user directly posed his query in each of
them in isolation. The benefit of this kind of search engine is that they save the user’s
time. This approach may also cover some search engines that the user has never tried.
A number of meta-search engines rank the returned results of search engines using
parameters such as search engine popularity, query terms, etc.

1. Gathering web pages

Sent by companies, Institutes
and individuals

Human efforts (web Search)

2. Associate a rank to each acquired web pages

3. Extract information items, such as summary, title,
…

4. Index web page and update periodically

4a. Add web page URL to
relevant subtopic

4b. Index information
items for web page

4c. Schedule its
update

Information Retrieval on the WWW and Active Logic

Page 13 of 45

2.3.2. Sequential search

In this kind of search engine a user can select some search engines from a list and
send the user query to these selected search engines. Usually the results will be shown
just as they are returned from the search engines. These meta-search engines wait to
receive all of the results and then display the result page, so it is as slow as the slowest
selected search engine.

2.3.3 Concurrent search

This kind of meta-search engine is similar to sequential search method, but it does not
wait to receive the whole result from all search engines. As it receives the first search
engine results, it displays them, and new received results will be added gradually.
This approach decreases the time before the user sees the first results from the search
engine.

There are two tips about meta-search engines, first, a meta-search engine can only
take inputs that are supported by all search engines that it uses, or it must convert the
user’s query into a standard form supported by every search engine. Thus, the lowest
common denominator of those sites’ features will determine what user can enter. In
addition, the transformed query may not satisfy the user intention. Since meta-search
engines do not allow for input of many search variables, their best use is to find hits
on obscure items or to see if something is on the web. Second, what is the point of
convenience? The real convenience is finding the best result quickly, not getting the
largest number of bad results. The primary motivation of using a meta-search engine
is that, since the web is huge and the most search engines in isolation cover a small
fraction of web and have low recall and precision in their search results, it is better to
use the results of several search engines, combine and re-rank them using a good
algorithm, and return this result to the user. This scheme may increase recall and
precision. However, while meta-search engines represent cumulative search results
over other search engines, they still do not cover the entire web. Figure 5 shows the
workflow of a topical meta-search engine. Some of the best-known meta-search
engines are Dogpile16, Mamma17, Metacrawler18, and Askjeeves19.

16 http://www.dogpile.com
17 http://www.mamma.com
18 http://www.metacrawler.com
19 http://www.askjeeves.com

Information Retrieval on the WWW and Active Logic

Page 14 of 45

Figure 5. Workflow of a topical meta-search engine

3 Web Analysis

The web is similar to a graph, in that links are like edges and web pages are like

nodes. Several approaches have been proposed to overcome the current limitations of
web crawlers. Some approaches use web structure (relation between web links) to
guide web crawlers in finding their path through the web, and some approaches use
web content (text within each page) to perform the same thing. As we shall see in the
next subsections, a combination of these two aspects of web search will improve the
functionality of web crawling strategies further.

3.1 Web Content Analysis

The basic use of the content of a web page in search engines is in the form of
exact query matching in a document index database. Our intention here is to shortly
review different document similarity measures. We consider two kinds of similarities
[26]:

• Document-query similarity is important for identifying similarity of user
query to documents.

• Document-document similarity is important for finding similar documents
in the document pool of a search engine. Some search engines represent
this feature.

3.1.1 Document-query similarity

“Suppose that we have a term vector T(t1, t2, …, tn) represent all of the terms in our
corpus. Furthermore D(ti, tj, …, tk) represents presence of the correspondent terms in
T in document D and Q(ta, tb,…, tm) represent the presence of the correspondent
terms in T in query Q. There are several methods for weighting the terms in
document and query. There are some local weighting functions such as binary
weighting that weights are either 0 or 1 shows presence of terms, or Term-frequency
weighting, Log-Entropy weighting. There are also some global weighting functions
that are simple and inexpensive to implement such as Normal, TFIDF, IDF, and

1. Getting User query (keywords) and
selected search engines

2. Sending user query to search engines

3. Acquiring the results from each search
engine

4. Re-ranking and duplicate checking

5. Representing results to user

Information Retrieval on the WWW and Active Logic

Page 15 of 45

Entropy [26]. One of the simplest formulations of a query-document similarity value
is

Where Wqk is weight of term k in query and Wqk is weight of term k in documents.
Note that when binary term weights are used, this similarity measures the number of
terms that appear in both Q and D.”

Adapted from [26]

3.1.2 Document-document similarity
Measuring the similarity of two documents is important in search engines, because

when a user finds a web page that is on-topic, he may desire to find other relevant
documents. There are different parameters which determine the relatedness of two
documents: some are related according to their content, and others by their in and out
hyperlinks. In this section we consider only document content. Table 5 shows the
different models of document-to-document similarity measuring.

Model Description Methods

String distance
(Edit distance)

Considers the distance as amount of
difference between strings

Levenshtein distance,
LikeIt

Statistics of
words

Considers frequency of words in documents
to judge on similarity

TFIDF, LSI

Document
components or
structure

Considers structure or components of
documents, for example references,
abstract, title, keywords and … in research
papers

Citation analysis,
ParaSite

Table 5. Three models of measuring document-to-document similarity
[Data from 26, 30]

3.1.2.1 String distance model

In Levenshtein distance [27], the difference between two strings is the number of
insertions, deletions, or substitutions of letters required to transform one string into
another. In LikeIt [28, 29] a string distance is based on an algorithm that tries to build
an optimal weighted matching of the letters and multi-graphs (groups of letters).
LikeIt tries to match sub-strings in a larger string.

3.1.2.2 Statistics of words model

TFIDF [30] (term frequency × inverse document frequency) is based on word
frequencies in documents. In fact it is suitable for sets of documents, especially as part
of a large number of documents. The common (stop) words such as “the”, “a”, etc.,
are ignored for computational efficiency. Sometimes stems of word are considered
instead of complete words. A stemming approach by Porter [31] tries to return the
same stem from several forms of same word (e.g. “learning”, “learn”, “learned” all
become “learn”). In this approach, for each word in document, the weight of the word
is calculated based on word frequency in a given document, the number of documents
that include the word, the highest word frequency in a document, and the number of
all documents in the document pool. Then the distance between two documents is
calculated by dot product of the two word vectors for those documents.

∑
=

=
t

k
dq kk

wwDQSimilarity
1

),(

Information Retrieval on the WWW and Active Logic

Page 16 of 45

Latent Semantic Indexing is an approach that uses a vector space model of a
document to measure the similarity between two documents. Vectors in the vector
model space are the weight of the words in document.

“Latent Semantic Indexing (LSI) is a variation of the vector space model of
information retrieval that uses techniques of singular value decomposition (SVD) to
reduce the dimensionality of the vector space.”

 Soumen Chakrabarti [7]

This method considers the co-occurrence of words in a document, so it can derive

a relationship between words and inherent concepts. The similarity of two documents
is calculated by the cosine of the reduced vector space of two documents. Since this
approach uses conceptual matching rather than exact word matching, researches [32]
show that LSI provides better results than standard TFIDF, with fewer training sets of
documents per category.

3.1.2.3 Document components or structure model

We can use the knowledge about document components or structure to judge the
similarity between two documents. This approach is well suited for situations in
which documents are of a specific type, or have special components or structure. In
the case of research papers, for instance, they have similar structure and components,
such as title, abstract, keywords, references. Also, common citations can be used as a
parameter [33]. The ParaSite system [34] uses the nearness of links to referenced web
pages in the HTML structure of a referencing web page as an indicator of relatedness
of the referenced pages.

CiteSeer [35] is a computer science research paper finder that uses several
methods for document similarity measurement. CiteSeer uses the LikeIt string
distance to measure the edit distance between the headers of document. It uses
common authors, institutions, or words in the title of documents to reduce the LikeIt
distance between headers. CiteSeer also uses common citations to make an estimate
of document similarity. This measure, “Common Citation × Inverse Document
Frequency” (CCIDF) is analogous to word-oriented TFIDF word weights. CiteSeer
combines different methods of document similarity to result in a final similarity
distance measure that is hopefully more accurate than any single method alone.

3.2 Analysis Link Structure of Web
“Every web page has some number of out-links and in-links (See Figure 6). We can
never know whether we have found all the in-links of a particular page, but if we
have downloaded it, we know its entire out-links at that time.”

Page and Brin [8].

Figure 6. A and B are in-links of C (from [8]).
Some approaches use the link structure of the web to find the importance of the

web pages or to determine their relatedness to a particular topic. In the next

C
A

B

Information Retrieval on the WWW and Active Logic

Page 17 of 45

subsections we present two approaches, the “Page Rank” method and the “Hub and
Authority” concept, which use the link structure of the web for this purpose.

3.2.1 Ranking

Web pages differ from each other in the number of in-links that they have. For
example, the popular sites like “Yahoo!” and “Netscape” have many in-links but a
typical homepage of a university student may have few in-links. The number of
references (citations) to a thing is evidence of its importance; many Nobel Prizes are
assigned according to this fact. Considering this, we can say that highly linked pages
are more “important” than pages with few in-links [36]. L. Page and S. Brin proposed
the Page Rank algorithm in [8, 36, 37] that calculates the importance of web pages
using the link structure of the web.

“It is somehow different and is more sophisticated than simply counting the number
of in-links of a web page. The reason is that there are many cases where simple
citation counting does not correspond to our common-sense notion of importance. For
example, if a web page has a link from the Yahoo home page, it may be just one link,
but it is a very important one. This page should be ranked higher than other pages
with more links but only from obscure places. Page Rank is an attempt to see how
good an approximation to “importance” can be obtained from just the link structure of
the web.”

Page and Brin [8].
3.2.1.1 Page Rank Algorithm

Page Rank makes use of the link graph of the web. The Page Rank algorithm is
defined as follows:

“We assume page A has pages T1...Tn which point to it (i.e., are citations). The
parameter d is a damping factor, which can be set between 0 and 1. We usually set d
to 0.85. There are more details about d in the next section. Also C (A) is defined as
the number of links going out of page A. The Page Rank of a page A is given as
follows:
 PR (A) = (1-d) + d (PR (T1)/C (T1) + ... + PR (Tn)/C (Tn))
Note that the Page Ranks form a probability distribution over web pages, so the sum
of all web pages’ Page Ranks will be one.”

 Page and Brin [8]

Note that the rank of a page is divided evenly among its out-links to contribute to
the ranks of the pages they point to. The equation is recursive, but starting with any
set of ranks and iterating the computation until it converges may compute it.

Page Rank can be calculated using a simple iterative algorithm, and corresponds
to the principal eigen vector of the normalized link matrix of the web. Page Rank
algorithm needs a few hours to calculate the rank of millions of pages [8].

3.2.1.2 Page Rank Algorithm application

This algorithm is used as the base of the web crawling algorithm in the Google
search engine. Google makes use of both link structure and anchor text [8]. Google
orders the URL’s according to several parameters. Then the URLs with highest ranks
will be crawled first [37]. It uses Page Rank as a parameter for measuring page
importance among crawled pages to rank the result for user queries [8].

Information Retrieval on the WWW and Active Logic

Page 18 of 45

3.2.2 Hub and Authority pages
As we described in section 3.2.1, the importance of a pages can be extracted from

the link structure of web. In this approach two kinds of pages are identified from web
page links: pages that are very important and authorities in a special topic, and pages
that have great number of links to authority pages. Kleinberg, when he was as visiting
researcher in IBM’s Almaden Research Lab, proposed an algorithm to identify these
pages on the web. In the next subsection we review this algorithm, called HITS.

3.2.2.1 HITS Algorithm

For a given query, HITS will find good sources of content (defined as authorities)
and good sources of links (defined as hubs) [16]. Authorities have large in-degree.
Hub pages are pages that “pull together” authorities on a given topic, and allow us to
throw out unrelated pages of large in-degree (Those pages are simply universally
popular like Yahoo!). (See Figure 7)

“Hubs and authorities exhibit what could be called a mutually reinforcing
relationship: a good hub is a page that points to many good authorities; a good
authority is a page that is pointed to by many good hubs”.

Kleinberg [16]

 Hubs Authorities Unrelated Page of large In-degree

Figure 7. A densely linked set of Hubs and Authorities (from [16])

HITS associates a non-negative authority weight x<p> and a non-negative hub

weight y<p>(Figure 8). The weights of each type are normalized so that their squares
sum to 1.

Figure 8. The basic operations of HITS (from [16])

“Numerically the mutually reinforcing relationship can be expressed as follows: if p
points to many pages with large x-values, then it should receive a large y-value; and

q1

q2

q3

Page p
X[p] = sum of y[q], for all q pointing to p

q3

q2
q1

 Page p
Y[p] = sum of x[q], for all q pointed to by p

Information Retrieval on the WWW and Active Logic

Page 19 of 45

if p is pointed to by many pages with large y-values, then it should receive a large x-
value. Given weights x<p>,y <p> , then the x-weights is as follows:”

and y-value is as follows:

Kleinberg [16].

Bharat and Henzinger [38] point out that HITS did not work well in all cases due

to the following three reasons:

• Mutually Reinforcing Relationships Between Hosts: Sometimes a
set of documents on one host point to a single document on a second host.
This drives up the hub scores of the documents on the first host and the
authority score of the document on the second host. The reverse case, where
there is one document on a first host pointing to multiple documents on a
second host, creates the same problem. Since our assumption is that a single
author or organization authored the set of documents on each host, these
situations give undue weight to the opinion of one “author”.

• Automatically Generated Links. Web documents generated by tools
(e.g. web authoring tools, database conversion tools) often have links that
were inserted by the tool.

• Non-relevant Nodes: They show that the neighborhood graph often
contains documents not relevant to the query topic. If these nodes are well
connected, topic drift problem arises: the most-highly ranked authorities and hubs
tend not to be about the original topic. For example, when running the algorithm
on the query “mango fruit” the computation drifted to the general topic “fruit”.

Bharat and Henzinger proposed an approach to solve the topic drift problem [38].

They used the web page’s content in addition to its graph structure. For each node in
the link graph, they consider its relevancy to the query topic by calculating a
relevancy weight to topic, W[n]. They use W[n] * H[n] instead of H[n] in computing
the authority score of nodes, considering following notation, we have:

A[n]: The authority score of node, H[n]: The hub score of a node,
WAuth: Authority weight of node, WHub: Hub weight of node

Both of Page-Rank and HITS algorithms use the links structure of web to find

importance of web pages, Table 6 shows a comparison between these approaches.

∑
∈

><>< ←
Epqq

qp yX
),(:

∑
∈

><>< ←
Eqpq

qp xY
),(:

∑
∈′

′×′=
Nnn

Auth nnWnHnA
),(

),(][][

∑
∈′

′×′=
Nnn

Hub nnWnAnH
),(

),(][][

Information Retrieval on the WWW and Active Logic

Page 20 of 45

HITS Page Rank

Can distinguish between pages with high
number of in-links but not related to topic
and related to given query

Blindly calculates the importance of a
page according to its in-links and out-
links regardless of given query

HITS is suitable for topic driven page
importance measuring

Page Rank is suitable for measuring
overall ranking of sites and pages and
their importance from the perspective of
people citation regardless of topic,
estimating the popular or highly cited
sites

Refined HITS [38] considers the web
page content in addition to link structure

Page Rank uses just link structure of the
web

Table 6. A comparison between HITS and Page Rank algorithms

3.2.2.2 HITS Algorithm Application

For the first use, it was implemented in the Clever20 search engine from IBM.
Then several enhancements to this approach were proposed by researchers at the IBM
Almaden center [40]. Finally an improved version of it was used in the Focused
Crawler [13, 14] from same research institute.

4 Machine Learning Approaches in Information Retrieval

Learning is needed to improve the functionality of systems [18]. Different
algorithms and methods for machine learning are used. These categories of algorithms
are known as machine-learning algorithms. Search engines, like other computer
systems, have used machine-learning approaches to improve their functionalities in
various aspects. In this section we review machine-learning approaches that are used
in web information retrieval systems. Definitions, algorithms and applications of each
method are briefly discussed. Some example search engines that use machine learning
approaches are described in section 5.

In machine learning, we have three main categories of approaches. The difference
between these approaches is in how the learner agent learns. Table 8 shows these
approaches and their brief description.

Approach Name Description

Supervised Learning The learner agent learns from a collection of labeled training
data, in other words, in the training phase the agent knows the
correct answer for each input state. In the test phase the agent
must guess the label for un-labeled cases.

Semi-supervised
learning

The learner agent learns from a small collection of labeled
training data. In this category of problem a small collection of
training data are available and we can not provide for the
system enough labeled training data like real world problems.

Un-supervised learning The learner agent gives a set of un-labeled data and it performs
the expected work according to some specific measure such as
similarity. No training data will be given to agent.

Table 8. Main three categories of machine learning approaches (Data from [7])

20 http://www.almaden.ibm.com/cs/k53/clever.html

Information Retrieval on the WWW and Active Logic

Page 21 of 45

4.1 Supervised learning
Supervised learning – also called classification – is based on learning from a

training data set. Each data item in the training set has a label or a class; in other
words the learner is told the correct answer for each item. This class of algorithms
learns from the training set and tries to guess the label for an input item in the test
phase.

Classification has several applications in the hypertext and semi-structured data
domains. Classification is important in order to guess the relevance of a web
document to the crawl topic. In this case, in the training phase the agent builds a
model from a set of pre-classified documents (acquiring some parameters in a model).
Another important application of classification is in constructing directories in portals.
Web searchers may find directories easier to use when finding some general
information. Automatic construction and maintenance of such portals is one of the
leading research areas in applying classification in web IR systems [23, 39, 40].

4.1.1 Naïve Bayes classifier

In this model of learning [7, 44] it is assumed that text documents are generated
from a parametric model. This model estimates the model parameters from training
data. For each new document, using the estimated parameters and Bayes rule, the
classifier calculates the probability of generation of document by each class. The
classification is selecting the class with highest probability.

The classifier parameterizes each class with word frequency and document
frequency. “Naïve” stands for this assumption that each word occurs in a document
independent of all of other words in document and also independent of its occurrence
location. Using the following notations, [23] formalizes this model as follows:

wt : word t in document , cj : Class j in training data, V : Vocabulary,
P(cj): frequency of document in class j in compare with all of other classes,
P(wt|cj) : Probability of occurring of word wt in each document of class cj,
di: document i with a set of word, P(cj|di): Probability that document i is
generated by class j, wdik : kth word in ith document.

Using Bayes rule and Naïve assumption we could write:

P(cj|di) ∝ P(cj) P(di|cj)
 ∝ P(cj) Π(k=1 .. |di|)P(wdik|cj) (1)

The P(wt|cj) and P(cj) parameters are learned from the training data set. To estimate
probability of word wt in class cj, P(wt|cj), The frequency of word wt is enumerated in
each class cj is enumerated. If N(wt,di) is the number of occurrence of word wt in
document di then we could write:

Where 0 < P(cj|di) < 1. The frequency parameter of each class, P(cj) is calculated as:

)2(
)|(),(||

)|(),(1
)|(||

1∑

∑

=

∈

+

+
= V

s ijis

ijDd it

jt
dcPdwNV

dcPdwN
cwP i

Information Retrieval on the WWW and Active Logic

Page 22 of 45

Where |C| is number of classes and |D| is number of documents. Experimental results
show that if the number of training documents is large, then the accuracy of
classification is good [45].

There are various classification approaches. Support Vector Machine (SVM) is a
classification method that has been used for multi-class classification of hypertext
documents in comparison with well-known Naïve Bayes classifiers. Experimental
results show that it has much lower error score than Naïve Bayes in this context [46].

4.1.2 Learning Relations

Learning relations between documents is an approach to extend the classification
of documents, described in [7].

“Consider the problem of classification of web pages of a computer science
department web site in “Faculty”, “Student”, “Project”, “Course” classes. Simply, the
following relation between these classes can be found:

teaches(faculty, course),
advises(faculty, student),
enrolled(student, course),

Learning such relations may improve the functionality of classification and it enables
us to answer more complex queries such as “courses that are taken by students” or
even “list of faculty that supervise more than 5 students”. Learning the relation
between pages can be done by exploiting hyperlinks in a web site. Word statistic of
neighborhood documents in additional to graph structure of web pages can be used to
augment learning relations.”

Soumen Chakrabarti [7].
4.2 Semi-supervised learning

Semi-supervised learning is a goal-directed activity, which can be precisely
evaluated, whereas unsupervised learning is open to interpretation [47]. On the other
hand, supervised learning needs a large training data set, which must be obtained
through human effort [47]. In real life, most often one has a relatively small collection
of labeled training data, but a larger pool of unlabeled data. In the web context our
training data is a small set of labeled documents. The label is document class, and our
goal is to guess the label of an un-seen document. In this category we review learning
from labeled and unlabeled documents in section 4.2.1. In some semi-supervised
approaches, a learner agent learns from interaction with a dynamic environment. In
these environments, providing a set of training data for the agent is very difficult or
even impossible, because of the dynamics inherent in the environment and
correspondingly huge number of states and actions. In these environments the learner
agent is never told the correct action in a state, instead it is told how good or how bad
its action was. One requirement of this model is a measure of the goodness of action
that the agent takes in a state. In section 4.2.2 we will review reinforcement learning
from this category of learning methods.

4.2.1 Learning from labeled and unlabeled documents

Expectation Maximization (EM) [47] is an approach that uses a set of labeled and
unlabeled documents to learn a multi-class classification problem. This algorithm first
trains a Naïve Bayes classifier using only labeled documents and builds a model of

)3(
||||

)|(1
)(

DC

dcP
cP

ijDd
j

i

+

+
=

∑ ∈

Information Retrieval on the WWW and Active Logic

Page 23 of 45

data. EM is a class of iterative algorithms for maximum likelihood or maximum a
posteriori parameter estimation in problems with incomplete data [47]. For a model of
training data with some missing values, EM iteratively uses the current model to
estimate the missing values, and then uses the missing value estimates to improve the
model. EM is an iterative two-step process, E-step and M-step. The E-step calculates
probabilistically-weighted class labels, P(cj|di), for each document using the classifier
and equation (1). The M-step estimates new classifier parameters using all the
documents and equations (2) and (3). The iteration of E-step and M-step continues
until (near-) convergence. Results are mostly favorable---compared to naïve Bayes
alone, error is reduced by a third in the best cases, but care needs to be taken in
modeling classes as mixtures of term distributions.

4.2.2 Reinforcement learning

The term “reinforcement learning” refers to a framework for learning optimal
decision making from rewards or punishment [48]. It differs from supervised learning
in that the learner is never told the correct action for a particular state, but is simply
told how good or bad the selected action was, expressed in the form of a scalar
“reward”.

Using following notations, [23] formalizes a task in reinforcement learning as
follows:

S: set of states, s: a state in S,
A: set of available actions, a: an action in A,
T: S × A → S, a state-action transition function (mapping state/action pairs to the
resulting state),
R: S × A → R, a reward function (mapping state/action pairs to a scalar reward),
The learner agent interacts with a dynamic environment. In each time step, the

agent selects an action in a given state, receives a reward as a result of the taken
action, and transitions to a new state. The goal of the agent is to learn a mapping from
states to actions called a policy, π: S → A that maximizes reward over time. The
“reward over time” is considered as a discounted sum of rewards into an infinite
future. The discount factor is γ, which 0 ≤ γ < 1. Using this factor, rewards received
sooner will be more valuable than rewards received later. The value of each state,
following policy π, is defined as:

Where rt is the reward received in time step t after starting in state s. The optimal
policy, written π* is the one that maximizes the value, Vπ (s), for all states s. To learn
the optimal policy its value function, V*, and its more specific correlate function (Q-
function) is learned. Let Q* (s,a) be the value of selecting action a from state s, and
thereafter following the optimal policy. This is expressed as:

 Q* (s,a) = R(s,a) + γV* (T(s,a)).

Then the optimal policy is selecting from each state the action with the highest

expected future reward: π*(s) = arg maxa Q*(s,a).
The Cora search engine is a domain-specific web crawler that uses reinforcement

learning to learn to find computer science research papers from web sites of computer
science departments.

∑
∞

=
=

0
)(

t
t

t rsV γπ

Information Retrieval on the WWW and Active Logic

Page 24 of 45

4.2.3 Case Based Reasoning

Case Based Reasoning (CBR) is an approach to developing knowledge-based
systems that are able to use past experiences to solve current similar problems [49]. In
fact, it is a type of reasoning based on the reuse of past experiences called cases [50].
Cases are descriptions of experienced situations by learner agent. The agent acquires
these experiences from interaction with its environment. In CBR two kinds of cases
are stored in a case database, successful cases and failure cases. Successful cases
should be reused as a basis to solve new problems that present a certain similarity
[50]. Failure cases can prevent the agent from repeating similar actions that lead to
unsuccessful results. Case Base Reasoning has been used in a variety of applications.
As some examples we can name the use of CBR in document-retrieval systems,
product-selection tasks in E-commerce environments, help-desk applications,
diagnosis tasks in medicine and technical equipment, and system configuration and
planning and design tasks [49]. Case Based BDI-Agent [43] is a domain-specific
search engine that searches for the homepages of researchers with a particular interest.
It uses CBR as its learning component to learn from past search results and reuse past
cases to answer to similar queries in the future. It also uses a domain-specific
knowledge base to enhance its search results.

4.3 Unsupervised learning

An unsupervised learner agent is neither told the correct action in each state, nor is
an evaluation of action taken in each state. In other words, there is not any training
phase. In the hypertext context, the learner is given a set of hypertext documents, and
then is expected to discover a hierarchy according to the documents’ similarities, and
organize the documents along that hierarchy. This approach is also called clustering.
A good clustering method will collect similar documents together in or near the leaves
of a hierarchy, and dissimilar nodes will be joined near the root of the hierarchy.
Clustering is used to enhance search, browsing, and visualization. In the next
subsections we will review some clustering methods.

Some of the classical clustering methods like k-means and hierarchical
agglomerative clustering are applied to hyperlink documents [7]. Usually documents
are represented in vector space model; each word of document is an element of its
vector in a model such as TFIDF. The similarity of two documents is calculated as the
cosine of the angle between their corresponding vectors, or the distance between the
vectors, provided their lengths are normalized.

4.3.1 K-means clustering

“K-means is one of the basic techniques of clustering. The number of “k” in k-means
clustering shows the desired number of clusters of document. Initially, the agent
selects k number of seed documents arbitrarily. Each of seed document delegates a
cluster. Thereafter each document is assigned to most similar cluster (seed
document). The coordinate of the seed in the vector space is recomputed to be the
centroid of all the documents assigned to that seed. This process is repeated until the
seed coordinates stabilize. The process of document assigning continues until no
document remained.”

Soumen Chakrabarti [7].

4.3.2 Agglomerative clustering

Information Retrieval on the WWW and Active Logic

Page 25 of 45

“In agglomerative clustering that is a bottom-up clustering approach, documents are
continually merged into super-documents or groups until only one group is left; the
merge sequence generates a hierarchy based on similarity. We formalize the self-
similarity of a group Γ as:

Where s(d1,d2) is the similarity between documents d1 and d2 , often defined as the
cosine of the angle between the vectors corresponding to these documents in TFIDF
vector space. Many other measures of similarity have been used. The algorithm
initially places each document into a group by itself.”

Soumen Chakrabarti [7].

5. Domain-Specific Search Engines

As the web continues to grow exponentially, the idea of crawling the entire web on a
regular basis becomes less and less feasible [51]. General-purpose search engines
have certain limitations that we pointed to previously. We can summarize the
fundamental limitations as:

• Querying Mechanism: They accept the user query in the form of a set of
keywords, and complex user needs may not be easily formulated in a Boolean
combination of keywords. However, some search engines can get other
implicit context information or even accept the user query in form of natural
language.

• Keyword Exact Matching: They rank the results shown to the user according
to the exact keyword matching method.

• Low web Coverage Rate: They cover only a portion of the publicly available
documents in web. To see web coverage rate, see section 1. The highest
coverage rate search engine hardly covers 40 percent of web documents.

• Long result list with low relevancy to user query: The results of search engines
may not satisfy user query; and even when the relevant documents are be in
the search engine database, and they may not be high enough in the result list
for the user to see them.

Due to these basic problems and also because of the need to include information on
specific domain, domain-specific search engines are proposed. A domain-specific
search engine is defined as: “an information access system that allows access to all the
information on the web that is relevant to a particular domain” [51]. We classify the
search engines as shown in figure 9.

∑
≠Γ∈−ΓΓ

=Γ
2121 ,,

21),(
)1|(|||

1)(
dddd

ddss

Information Retrieval on the WWW and Active Logic

Page 26 of 45

Figure 9. Classification of search engine systems

As shown is figure 9, we can classify search engines as general-purpose search
engines and domain-specific search engines. “Domain” in domain-specific search
engines can be specialized with two existing kinds of search engines, search engines
which focus on specific document type such as resumes, homepages, movies, etc. And
search engines focus on specific topic like computer science, climbing, sport, etc.
Table 9 shows some example search from each category.

Search Engine
Category

Examples

General-purpose
search engines

AltaVista, Excite, HotBot, Lycos, Northern Light

Specific-document
type search engine

Ahoy, Cora∗ , Case-Based BDI Agent

Specific topic search
engines

IBM Focused Crawler, Context Focused Crawler, Cora*

Table 9. Examples of different type of search engines

As we reviewed in section 2, a search engine or a web crawler has several parts: a
crawler that traverses the web graph and downloads web documents; an indexer that
processes and indexes the downloaded documents; and a query manager that handles
the user query and returns relevant documents indexed in the database to the user. In
this report we focus on the crawling mechanism of search engines. We focus on
focused crawling (e.g., [37, 13, 24, 52]) that is a new crawling approach for domain-
specific search engines.

While a general-purpose crawler visits the links of web in a breadth-first manner,
a focused crawler reorders the links in the queue as to their predicted likelihood to
lead to pages that are relevant to a particular topic [13]. Focused crawlers, like
domain-specific search engines, can be divided into two categories: focused on
specific topic or on a specific document type. If the goal of crawling is crawling pages
related to “Agent-Based Systems”, that is the task of topic crawlers. But, if the goal is
to fetch all course pages in a university or over the world, then this is the task of
focused crawling on document type. All course pages are not on some related topic

∗ Since Cora finds computer science research papers, it can be categorized in document specific
(research paper finder) and also specific topic (computer science literature) search engine

Search Engines

General-purpose Search
Engines

Domain Specific Search
Engines

Focused on Specific
Document Type

Focused on
Specific Topic

Information Retrieval on the WWW and Active Logic

Page 27 of 45

like “Agent-Based Systems”, but they are of the same type. This kind of crawler
would also crawl on any specific types like resume, homepage, call-for-paper, FAQ,
product, movie, papers, etc. There are some search engines in this category.
Ahoy21[53] is a homepage search service based on a crawler specially tuned to locate
homepages.

Focused crawling is a new approach to topic-specific search engines, introduced
by Soumen Chakrabarti et al. [13]. They describe their crawler as follows:

“A focused crawler seeks, acquires, indexes, and maintains pages on a specific set of
topics that represent a relatively narrow segment of the web. Thus, a distributed team
of focused crawlers, each specializing in one or a few topics, can manage the entire
content of the web. Rather than collecting and indexing all accessible web documents
to be able to answer all possible ad-hoc queries, a focused crawler analyzes its crawl
boundary to find the links that are likely to be most relevant for the crawl, and avoids
irrelevant regions of the web. Focused crawlers selectively seek out pages that are
relevant to a pre-defined set of topics. These pages will result in a personalized web
within the World Wide Web. Topics are specified to the console of the focus system
using exemplary documents and pages (instead of keywords). Such a way of
functioning results in significant savings in hardware and network resources, and yet
achieves respectable coverage at a rapid rate, simply because there is relatively little
to do. Each focused crawler is far more nimble in detecting changes to pages within
its focus than a crawler that crawl the entire web.
The ideal focused crawler retrieves the maximal set of relevant pages while
simultaneously traversing the minimal number of irrelevant documents on the web.
Focused crawlers therefore offer a potential solution to the currency problem by
allowing for standard exhaustive crawls to be supplemented by focused crawls for
categories where content changes quickly.”

Chakrabarti et al. [13].
5.1 Topic-Specific Focused Crawlers

In this report, we concentrate on topic-specific focused crawlers and in the rest of
this report “focused crawler” will refer to this kind. We can recognize three basic
works in focused crawling. As stated earlier, Soumen Chakrabarti et al. [13, 14]
presents the focused crawler as a new approach to topic-specific web resource
discovery. This work was also done largely at IBM’s Almaden research center. Cora
[23, 24, 25] is a computer science research paper search engine that uses
reinforcement learning to guide its focused crawler. Rennie and McCallum at
JustResearch and Carnegie Mellon University originally initiated this work. Another
approach to focused crawling uses the context graph [52] to build a model of context
within which topically relevant pages occur on the web. In the next subsections we
survey new approaches to focused crawling, then we review the three basic focused
crawlers named above, and finally we appraise these three approaches in the last
subsection.

5.2 Recent researches on Focused Crawling

One of the first focused crawlers was the Fish system [54]. Fish is a client-based
real-time information retrieval system. It crawls the hypertext documents on the web
and uses “depth-first search” method to follow links within web documents. This
search engine adopts the “Fish School” assumption and assumes that relevant
documents to a topic should be near each other in link structure. Fish follows more

21 http://www.cs.washington.edu/research/ahoy

Information Retrieval on the WWW and Active Logic

Page 28 of 45

links from pages that are relevant to the topic of search. It identifies relevant
documents based on keywords and regular expressions.

Another approach to focused crawling [37] uses the “importance of web pages”
parameter to reorder links in its queue. Various heuristic measures for identifying
page importance are tried, such as similarity to a driving query, number of pages
pointing to this page (backlinks), page-rank and location (in a hierarchy). We
described the page-rank approach in the earlier section on web structure analysis.

Focused crawling as a new approach to topic-specific resource discovery is
introduced in [13]. The topic under focus is represented as a set of example
documents instead of a set of keywords. This system has three main components, a
classifier, distiller and crawler. The classifier makes relevance judgments on pages to
decide on link expansion and the distiller determines centrality of pages to determine
visit priorities. The latter is based on connectivity analysis and uses a variation of the
HITS algorithm [16]. Soumen Chakrabarti proposed an improved version of this
approach in [55, 56]. They added another classifier to this system, called Apprentice.
The task of the new classifier is assigning priority to unvisited URLs while the old
classifier provides templates for the new classifier. Apprentice uses HTML tags and
the DOM22 (Document Object Model) tree, as well as user feedback to learn
classification.

A site mapping application which uses focused crawling is described in [57]. The
crawler starts in a certain point and traverses the web graph toward relevant
documents. This approach uses a vector space model to compute the similarity of
documents to the focus topic. Next-level pages inherit a discounted score of this
original relevancy. Anchor text and URL text is also used to judge the priority of links
to follow within a relevant page. In fact, this approach is an improvement on the Fish
system, described above.

Cora [23, 24, 25] is a computer science search engine that uses reinforcement
learning to guide a focused crawler. This crawler has two phases, training and testing.
In the training phase it learns a mapping from text in a neighborhood of URLs to a
scalar value. This value of a URL is some discounted reward that it receives by
following that URL. Rewards are on-topic documents that are accessible by following
that URL, one or more links away. In the test or work phase, it assigns a scalar value
to each unvisited URL from its neighborhood text. This value is the estimated sum of
rewards that are obtainable from that URL. The crawler picks the URLs from a
priority queue in which URLs are ordered according to their estimated sum of future
discounted rewards. One strength of this approach is that it considers the future
reward of links in their crawling priority, so the likelihood of crawling a link within
an off-topic document that may lead to reasonable amount of on-topic documents is
high. We will describe this approach in more detail in the next section.

Another kind of focused crawler considers the hidden aspects of the web [58]. The
goal of this crawler is to access the huge amount of hidden information behind web
search forms. They propose a task-specific human-assisted approach in a system
called HiWE (Hidden Web Explorer). They model forms as a set of (element,
domain) pairs and try to determine suitable input values based on labels from form
layout. The crawler seems to perform better on larger forms (more descriptive labels
and finite domains).

The use of a context graph to guide a focused crawler is described in [52].
Researchers of this approach state that assigning proper credit to a link during the

22 http://www.w3.org/DOM/

Information Retrieval on the WWW and Active Logic

Page 29 of 45

crawl is the important problem of focused crawling. For example, some off-topic
pages may lead to on-topic pages, some levels deep from the start page. To address
this problem a context-focused crawler was proposed, which uses general-purpose
search engines to find the back-links of pages, and uses these to construct a context
graph for each page. Then this set is used to train a set of classifiers to assign
documents to several classes according to their expected distance from on-topic
documents. Graphs and classifiers are constructed for each seed document up to
particular layer, showing the expected distance to target pages. A Naïve Bayes
classifier is used for each layer. The links with lower distance to target documents are
tried first. We review this kind of focused crawler in the next sections.

Web Topic Management System (WTMS) is another approach to focused
crawling that is described in [59]. They proposed a crawler that only downloads pages
very near (parent, child, and sibling) to relevant documents. Documents in this system
are represented in a vector model space and their relevancy to the focused topic is
computed by techniques in this model. This crawler also follows URLs that include
keywords of focused topic. It sets a threshold for each branch of the web and stops
following URLs of this branch if the relevance score of the area falls below the
threshold.

An evaluation of focused crawlers is reported in [60]. Initially a set of classifiers
for 100 topics was built to be used in the evaluation of the crawled documents. The
researchers in this approach believe that a good focused crawler should remain in the
vicinity of the topic. They evaluated the crawlers based on ability to remain on-topic
during the crawling session. Three different strategies of focused crawling are
evaluated:

• Best-first search: Uses a priority queue and orders the links according to
similarity between focus topic and page where they were found.

• Page-rank: Orders the page according to their page-rank score. This method is
described in web structure analysis section (3.2.1).

• Infospider: Uses a back-propagation neural network and learns text around the
links.

The results of this research show that Best-First-search out-performs the others;
Infospider is in second place and finally page-rank has the lowest efficiency among
them. They conclude that the page-rank method is too general to be very useful in
topic-specific search.

A focused crawler that tries to learn the link structure of the web is detailed in
[61]. This approach tries to find some features in a page that make it more likely that
its links lead to on-topic pages. For example, page content, URL structure of page,
link structure of web or a combination of them can be considered as features. The
researchers of this approach claim that learning the link structure of the web is a more
general framework than assuming a predefined structure for it. They learn link
structure with a statistical model. The result of this research shows that the combined
features model is more efficient than using each of them in isolation. This approach is
also robust against different starting points on web.

5.3 IBM Focused Crawler

Focused crawling [13, 14] as a new approach to topic specific resource discovery
was proposed by Soumen Chakrabati and some of his colleagues when he was at
IBM’s Almaden center. The focus topic in this system is represented by a set of
example pages that is provided by a user to the system. In the system described there

Information Retrieval on the WWW and Active Logic

Page 30 of 45

is a user-browsable topic taxonomy where the user can mark some of the documents
as good and select them as the focus topic.

The system has three main components: A classifier that makes judgments on the
relevancy of crawled documents, and decides on following the links within pages. The
classifier is an extended version of the Naïve Bayes classifier. The second component
is a distiller that evaluates the centrality of each page to determine crawling priority of
links within it. The distiller uses the bibliometric concepts of hub and authority pages
as an approximate social judgment of web page quality. For each page it calculates
the hub and authority scores of each web page with an extended version of the HITS
algorithm [16]. It tries to crawl the links within pages with the highest hub score first,
in hopes of finding new authorities first. The third component of the system is a
dynamic crawler that crawls the web according to a re-orderable priority queue.

The system works in two phases: training and testing. In the training phase, the
classifier is trained with some labeled data relevant to the focus topic. The training
data set is acquired from existing taxonomy-like search engines (portal) such as
Yahoo! and Open Directory Project. Figure 10 shows the architecture of this system.

Figure 10. Architecture of IBM focused crawler, showing how classifier, distiller

and crawler collaborate with each other.

5.4 Cora Domain Specific Search Engine

The Cora search engine [48, 49, 50] automatically spiders, classifies and extracts
computer science research papers from the web. The papers in CORA are organized
into a taxonomy with 75 leaves, and various fields such as author and title are
extracted from each paper. Additionally, bibliographic information is extracted from
each paper, allowing bibliometric analysis to be performed. The creation and
maintenance of Cora relies heavily on artificial intelligence and machine learning
techniques. The tasks can be broken down into four components: spidering
(crawling), extraction, reference matching and classification.

Processing target
document and

indexing

Topic
(Class)

Taxonomy

Web Crawlerweb

Learned in training phase

Retrieved
Documents

Classifier
(Naïve Bayes)

Document
Pool

Distiller

Priority
Queue

Information Retrieval on the WWW and Active Logic

Page 31 of 45

In this report we concentrate on the crawling methodology of Cora. We can divide
the spidering task into two phases: Training and Testing. Figures 11 through 15 show
the workflow of the Cora spider in these two phases.

“One strength of reinforcement learning is that it provides a formalism for measuring
the utility of actions that give no immediate benefit, but give benefit in the future.
Reinforcement learning agents presents this delayed benefit by learning a mapping
from each available action to a scalar value (Q-Value) indicating the sum of future
discounted rewards expected from executing that action. The “discount” makes later
rewards less valuable than sooner rewards, thus encouraging efficiency.
In the spidering task, the on-topic documents are immediate rewards. The actions are
following a particular hyperlink. The state is the bit vector indicating which on-topic
documents remain to be consumed, and which actions have been discovered. The
state does not include the current “position” (last page visited) of the agent since a
crawler can jump to any known URL next. The number of available actions is large
and dynamic, in that it depends on which documents the spider has visited so far. The
key feature of topic-specific spidering that make reinforcement learning the proper
framework for defining the optimal solution is: (1) performance is to be measured in
terms of rewards over time, and (2) the environment presents situations with delayed
reward.”

Rennie and McCallum [24]

The training phase involves two tasks: (1) assigning appropriate Q values to each
hyperlink in the training set, and (2) learning a mapping from text to Q values using
the training data. Target documents or rewards are computer science research papers
on the web pages of computer science departments. As it is shown in Figure 11,
assigning a Q-value to each URL is done according to a sum of the discounted
number of rewards that are obtainable from a URL in the future. A more immediate
strategy does not consider the future rewards in Q-value computation. Mapping from
text to Q value is done by casting this regression problem as classification [62],
discretizing hyperlink Q values and training a naive Bayes classifier on the
corresponding neighborhood text. Figure 12 shows the pseudo code of mapping text
to Q-value in the training phase. Figure 13 shows the pseudo code of mapping from
neighborhood text of URLs to Q-Value in training data.

Figure 11. Workflow of training phase of Cora spider

Computing Q-
Value of each
hyperlink

Classifying
according to

Q-Values

Determining
number of
bines

Training data set
(some web sites)

“Set of Words /
Q-Value” pairs

Learning Component
(Naive Bayes

Classifier)
Training
Classes

Classes associated
particular Q-Value

to each

Information Retrieval on the WWW and Active Logic

Page 32 of 45

Figure 12. Pseudo code of assigning Q-Value to each URL in training data

Figure 13. Learning a mapping from neighborhood text of URLs to Q-Value

In the testing (working) phase, the spider crawls the web and tries to follow the

links with higher estimated reward first. Figure 14 shows the workflow of the working
phase of the system. The crawler starts from the homepages of computer science
departments and looks for research papers as target documents. Figure 15 shows the
pseudo code of the system in working phase.

Figure 14. Workflow of Cora spider in working phase

For each Hyperlink do
 If crawling strategy is Immediate Reward,
 If Hyperlink directly leads to a target document, Q-Value = 1
 else Q-Value = 0.
 If crawling strategy is Future Reward,
 Q-Value = ΣtγtRt , 0 ≤ γ < 1 (Sum of future discounted rewards)
 R = Number of rewards in step t from Hyperlink,

For each Hyperlink/Q-Value pair do
 Place the neighborhood text of the Hyperlink into the bin corresponding to
 its Q-Value

Train Naïve Bays classifier with texts in bins as training data, every bin has a
specific Q-Value range

Identifying
Target

documents

Hyperlink
extraction and

document
processing

Processing target
document and

indexing

Naïve Bayes
Classifier

Bins with
certain Q-

values

Calculating a Q-Value
for each URL Web Crawlerweb

HTML
documents
(non-target)

Target Documents

Priority
Queue

Hyperlinks
and their
neighborhood
text

Learned in training phase

Probability of
generating text
by each bin

Retrieved
Documents

Information Retrieval on the WWW and Active Logic

Page 33 of 45

Figure 15. Pseudo code of Cora spider working phase

Experiments show that this directed spider is three times more efficient than a

spider based on breadth-first search, and also more efficient than other smart spiders
that do not explicitly model future reward [24].

5.5 Context Focused Crawler

Context focused crawler [52] is an approach to focused crawling that tries to build
a context graph for each web page (graph which shows the pages with link to that
page in web link structure) and guess the distance of page to the target pages, then
crawl the web pages with near distance to target pages first. The researchers of this
approach believe that:

“The major problem in focused crawling is performing appropriate credit assignment
to different documents along a crawl path, such that short-term gains are not pursued
at the expense of less-obvious crawl paths that ultimately yield larger sets of valuable
pages. . .To address this problem we present a focused crawling algorithm that builds
a model for the context within which topically relevant pages occur on the web. The
context model can capture typical link hierarchies within which valuable pages occur,
as well as model content on documents that frequently co-occur with relevant pages.
This algorithm further leverages the existing capability of large search engines to
provide partial reverse crawling capabilities. Algorithm shows significant
performance improvements in crawling efficiency over standard focused crawling.”

Diligenti et al. [52]

We can recognize the work process of this focused crawler in two phases: training

and testing. In the training phase a user should provide some seed documents relevant
to topic. For each seed document all of its backlinks are gathered using a general-
purpose search engine up to a certain level. Each gathered page is assigned to a
specific layer according to its distance to seed (target) page. So each layer includes
documents that are within a specific distance to target documents. Seed documents lay
in layer 0. Then a set of Naïve Bayes classifiers is trained with documents in each
layer. Every classifier learns documents in a specific layer.

Download the document of the Hyperlink with highest Q-Value,
 If the document is a target document:
 Store it in document pool to be processed and indexed later.
 Else:

- Extract the page’s URLs and send its anchor and its
 neighborhood text to Naïve Bays classifier
- Having the probability of generating the URL’s text and its
 neighborhood text with each class from Naïve Bays

classifier,
 calculate Q-Value of URL according to:
 Q-Value (Hyperlink) = Purl(bi)* Q(bi), where
 P(bi) = Probability of generating the URL and its associated text
 with bin i, produced by Naïve Bays classifier.
 Q(bi) = Associated Q-Value of bin i.
- Insert (URL, Q-Value) pair in priority queue to be crawled

according to its Q-Value

Information Retrieval on the WWW and Active Logic

Page 34 of 45

In the testing phase, a new downloaded page is classified using the classifier and,
according to its estimated distance to target documents, is assigned to a queue
corresponding to each layer. The crawler crawls the URLs from queues with smaller
numbers before others. Figure 16 shows the architecture of this crawler and Figure 17
and 18 show pseudo code for its training and testing phase, respectively.

Figure 16. Architecture of Context Focused Crawler (From [52]).

Figure 17. Pseudo code of training phase of context focused crawler

Figure 18. Pseudo code of testing phase of context focused crawler

Web Crawlerweb

Queue 2

Queue 3

Queue 1

Other

C1 C2 C3

New
Document

Class decision
maker

seed

Classes

Layers
URLs within new
document are added to
corresponding queue

Download documents of URLs in the smallest numbered queue (If it is empty
jump to next small numbered queue)

For each new document do:

- Classify document with trained Naïve Bayes classifier to estimates its
distance to target documents

- If it is a target document (classified as class 1) store it to be processed later
 Else

o Assign URLs within new document to a particular queue according
to its estimated distance to target document

o Assign so far estimated documents to “Other” layer

For each document in seed pages do:
- Construct its context graph up to a certain level
- Assign each document to a particular layer according to its distance to seed

document

Train a Naïve Bayes classifier for each layer using documents in that layer

Information Retrieval on the WWW and Active Logic

Page 35 of 45

5.6 Appraisal of three basic Focused Crawlers
The purpose of this section is to appraise three basic approaches to focused

crawling. These approaches are Cora, IBM Focused Crawler and Context Focused
Crawler that we detailed in the previous sections. Table 10 shows the fundamental
characteristics of these crawlers in comparison with each other.

 Type of

Input
Training

Data
Learns
What?

Target
Documents

Identifying
target

documents
method

IBM
Focused
Crawler

Exemplary
documents

Classified
relevant
documents

Identifying
target
documents

on-topic
HTML files

Uses trained
Naïve Bayes
classifier

Cora Some web
site

Some web
site

A mapping
from
neighborhood
text of URLs to
a scalar value
(Q-Value)

Computer
science
research
paper files
(.ps, .ps.z,
.ps.gz)

A hand-coded
algorithm
identifies with
more than
95% accuracy

Context
Focused
Crawler

Seed
documents

Pages in
Context
Graph of
seed
documents

Estimating
distance of
current page to
target pages

on-topic
HTML files

Uses trained
Naïve Bayes
classifier

Table 10. Characteristics of three basic approaches of focused crawling

Each of these approaches has some strengths and some major problems. In the

next subsections, we highlight their abilities and disabilities in more detail.

5.6.1 IBM Focused Crawler
We summarize the problems of this focused crawler as:

• Fixed model of classifier, IBM focused crawler uses a fixed model of
relevancy class as a classifier to evaluate topical relevancy of documents.
A more adaptive classifier uses documents that are marked as relevant by
the classifier to update the classifier. However, ensuring flexibility in the
classifier without simultaneously corrupting the classifier is difficult [52].

• Does not model future rewards. One major problem faced by this focused
crawler is that is does not learn that some sets of off-topic documents often
lead reliably to highly relevant documents [52]. In other words it does not
model the future reward of links. For example, a home page of a computer
science department is not relevant to “Reinforcement Learning”, but links
from that home page eventually lead to the home page of the “Machine
Learning Laboratory” or the home page of a researcher where it may find
valuable target pages.

• Lack of comparison of results. The results reported in papers of this
approach are not compared with results of human-maintained portals like
the Open Directory Project, so judgments on the quality of gathered pages
in this approach is hard.

• Exemplary documents. Representation of focus topic in the form of some
high quality documents related to topic is sometimes hard for the user.

Information Retrieval on the WWW and Active Logic

Page 36 of 45

5.6.2 Cora Focused Crawler
We summarize the problems of this focused crawler as:

• Slow initialization. The main purpose of using reinforcement learning in
this crawler is to learn a set of off-topic documents that leads to on-topic
documents in next levels. But in order to learn this set of documents, Cora
needs to repeatedly crawl a substantial part of the target web sites during
the learning phase [52].

• Specifying representative web sites. “The web site or server on which the
document appears is repeatedly crawled to learn how to construct
optimized paths to the target documents. This approach places a burden on
the user to specify representative web sites.” [52].

• Difficulty with target pages in sites other than the start web site. This
approach only finds the target pages in the start web site and leaves the
target pages in other web sites [52].

• Unable to find documents further than 4 levels from the start page.
Reported results show that it is able to find target documents up to 3-4
hops beyond the current page. Since it uses words around URL to do a
mapping to a scalar, the set of neighborhood words of URLs farther than 4
jumps is large and too general to learn.

5.6.3 Context Focused Crawler
We summarize the problems of this focused crawler as:

• Requirement for reverse links. “The major limitation of this approach is
the requirement for reverse links to exist at a known search engine for a
reasonable fraction of the seed set documents.” [52].

• Limited to 2-3 layers for efficient crawling. It learns the documents with
particular distance to target pages using a set of Naïve Bayes classifiers.
Learning of documents further than 2 or 3 jumps is difficult because of the
heterogeneity and variety of the web pages found at those distances from
the target documents.

6 ALII: Information Integration Environment based on
Active Logic framework.

Active Logic is a kind of “step logic,” which was developed in [63] as formal

mechanism for modeling the ongoing process of reasoning. Unlike traditional logical
formalisms, a step-logic does not calculate a final set of conclusions which can be
drawn from an initial set of facts, but rather monitors the ever-changing set of
conclusions as time goes on. There are special persistence rules so that every theorem
α present at time t implies itself at time t+1; likewise there are special rules so that if
the knowledge base contains both a theorem α and its negation –α, these theorems and
their consequences are “distrusted” so they are neither carried forward themselves nor
used in further inference. An active logic, then, consists of a formal language
(typically first-order) and inference rules, such that the application of a rule depends
not only on what formulas have (or have not) been proven so far (this is also true of
static logics) but also on what formulas are in the “current” belief set. In general the
current beliefs are only a subset of all formulas proven so far: each is believed when
first proven but some may subsequently have been rejected. Active Logics have the

Information Retrieval on the WWW and Active Logic

Page 37 of 45

following characteristics: they are situated in time, maintain a history, tolerate
contradictions, and allow meta-reasoning to be done.

Based on the above definition, active logics are a family of inference engines that
incorporate a history of their own reasoning as they run. Thus at any time t, an active
logic has a record of its reasoning at all times prior to t, and it also knows that the
current time is t. As it continues to reason from time t, that reasoning is also recorded
in the history, marked at time t+1 as having occurred at time t. Thus an active logic
records the passage of time in discrete steps, and the “current” time slides forward as
the system runs. It is convenient to regard its current inferences as occurring in a
working memory that is then transferred to the history (or long-term memory) in the
next time-step. Thus, an active logic has time-sensitive inference rules and
consequently time-sensitive inferences. In active logics the current time is itself noted
in the working memory—Now (t)—and this changes to Now (t+1) one step
later. (A time-step should be thought of as very fast, perhaps 0.1 sec in
correspondence with performance of elementary cognitive tasks by humans). Thus
active logics “ground” now in terms of real time-passage during reasoning.

These characteristics make active logics suitable for use in various domains
including time situated planning and execution [66]; reasoning about other agents
[67]; reasoning about dialog [68, 69], including updating and using discourse context
[70]; and autonomous agency [71].

There are many examples of active logics in various papers. We present here a
couple of simple rules.

1) Time step update rule: t: Now(t), then: t+1:Now(t+1)
is a rule that says: if at the current step, Now has the value t, then, at the next step,

let Now have the value (t + 1). This enables the active logic to keep track of step
numbers and therefore of time. This is a basic rule and is included in all active logics.

2) Another example is the contradiction rule:
 t:P, not(P), then: t+1:contra(P, not(P))
If at a step, we have both P and not(P) present in the database, at the next step, we

add contra(P, not (P)) to the database to indicate the contradiction. There will be other
rules that will cause the consequences of P and not(P) not to be derived in later steps,
and rules that will attempt to resolve the contradiction and reinstate either P or not(P)
to the database at a later time.

3) We can also have modus ponens: t:P, P→Q, then conclude:t+1:Q.
This says: if at time t, the database contains P and (P → Q), then in the next time

step, conclude Q. Note that if the database contains P, (P → Q) and (Q → R), we do
not get R immediately, but only after 2 steps. First, we use P and (P → Q) to obtain Q,
then in the second step, we use this together with (Q → R) to derive R.

4) The inheritance rule keeps formulas in the database unless there is a
contradiction:

 t:P,not_know(not(P)),\+ P = Now(t),then conclude:
t + 1: P.
not_know(P) is true iff P is not in the current database. Since the database is finite,

this poses no computational problems. “\+ P = Now(t)” verifies that P is not of the
form Now(t) and prevents time from being inherited. This rule also prevents the
lemmas of a contradiction from being inherited.

5) Let the sentences initially present in the database be: Now (0), Bird (tweety),
Bird (x) & not_know (not (fly (x))) → fly (x). With the above rules of inference, this
is what the database looks like at consecutive steps:

Information Retrieval on the WWW and Active Logic

Page 38 of 45

At step 0: Now(0), Bird(tweety), Bird(x) & not_know(not(fly(x))) → fly(x)
At step 1: Now(1), Bird(tweety), Bird(x) & not_know(not(fly(x))) → fly(x),

fly(tweety)
since “not(fly(tweety))” is not present in the database at step 0.
The database will not change thereafter.

6.1 Why Active Logic for Focused crawling?
As more information becomes available on the World Wide Web, it becomes

more difficult to provide effective tools for accessing this information. Today, web
users access the web through two dominant interfaces: clicking on hyperlinks
(browsing) and searching via keyword queries (crawling).

Users have two main tools to help them locate relevant resources on the web:
Catalogs and Search Engines. Human experts construct catalogs. They tend to be
highly accurate but can be difficult to maintain as the web grows. To keep up with
this growth search engines were designed to eliminate human effort in cataloging web
sites. A search engine consists of a mechanism that “crawls” the web looking for new
or changed pages, an indexing mechanism and a query interface. Users generally
query against the system index, although many contemporary search engines now also
use link analysis to some degree. However, link analysis only helps to identify the
most popular pages, and popularity may or may not correlate to relevance for a
particular query.

As we have seen there are numerous attempts to improve the search engine. One
of the major efforts in this regard is in improving web Crawlers, also known as robots,
spiders, worms, walkers, and wanderers, described in detail in sections 2 and 5.

Two critical factors for the design, implementation and maintenance of a Focused
Crawler are: conceptual modeling of the domain, and reasoning support over the
conceptual representation. Knowledge representation and reasoning techniques play
an important role for both of these factors. By using an Active Logic based
framework in Focused Crawler architecture, we will be able to create an engine to
implement these roles well.

As is mentioned briefly in the last section, the focused crawler has three main
components: a classifier, distiller, and a crawler. Presently focused crawlers tend to
use probabilistic reasoning in their components. Detailed description of these
components has been given in section 5.

A major problem faced by existing crawlers is that it is frequently difficult to learn
that some sets of off-topic documents often lead reliably to highly relevant
documents. This deficiency causes a problem in traversing the hierarchical page
layouts that commonly occur on the web. Consider, for example, a researcher looking
for papers on ‘Natural Language Processing’. A large number of these papers are
found on the home page of researchers at computer science department at universities.
When a home page finds the home page of a university, a good strategy would be to
follow the path to computer science (CS) department, then to the researcher’s page,
even though the university and CS department pages in general would have low
relevancy scores. An adaptive focused crawler based on active logic could in principle
learn this strategy by building a tree from query and expanding this tree while the
system was in process.

ALII [72] utilizes a compact context representation and constructs a hierarchy
model of query and web pages. The crawler based on active logic also utilizes the

Information Retrieval on the WWW and Active Logic

Page 39 of 45

limited keyword crawling possible using general search engine indices efficiently
focus-crawl the web.

There are three distinct stages to using active logic when performing a focused
crawl session:

1. An initialization phase when a query present to a search engine. In this
phase the initial tree will be constructed.

2. A crawling phase that extracts the pages from web sites. In this stage
the associated trees are constructed for each of the seed pages.

3. A process phase that evaluates each page tree within the query tree. In
this phase the query tree will improved from time (t) to time (t+1).

In implementing this idea for specific query, we will use above steps. The results
will show how the query changes from time ‘t’ to ‘t+n’ and lead to the expectation of
related responses from focused crawler. In this implementation we will first have to
build hierarchy trees from the query and focused crawler responses at time ‘t’. By
following the links on responses from focused crawler, the system will consequently
improve both the query tree and the result tree. The trees’ improvement in time ‘t+1’
is based on active logic procedures combined with the focused crawler architecture.

The query tree processing considers the weight of each node representing in the
result tree from the focused crawler result. The associated weight to each node is
calculated based on node relevancy to focused topic or query [72]. Based on weight,
the tree may be pruned in one step, instead of expanded. Such an optimized tree
presents more adequate and related results to the query.

The following characteristics of Active Logic are considered in this phase.

Ignorance-assessment amounts a lookup at time “t” of what was known prior
to t.

Contradictory information can (sometimes) be detected and used to curtail
nonsensical inferences as well as to initiate repairs.

Defaults can be characterized in terms of lookups to see whether the result
page is (directly) contrary to the default knowledge regarding the specified
topic.

Reasoning can be kept current, i.e., inferences can be triggered to occur when
they are needed. From these characteristics, an environment based on
active logic will be situated in time, will maintain a history of its own
reasoning, will tolerate contradictions, and will enable meta-reasoning.

All outputs of the process phase can be used as knowledge for input into the

classifier component. The ALII [72] project aims at developing methods and tools for
a Model-based, Semantic Integrating of information sources on web pages. Work in
progress is centered on a demonstrator application for information services. ALII is a
representation environment and logical reasoning tool with a formal foundation in
Active Logic. ALII can seek (through the links), acquire, index and maintain pages
that are relevant to a predefined set of topics and effectively build high quality
collections of web documents.

7 Conclusion

Search engine technology has gone through several evolutions and finally reached
the point where Artificial Intelligence can offer tremendous help. We have reviewed

Information Retrieval on the WWW and Active Logic

Page 40 of 45

this evolution from the beginning up to now and surveyed several different techniques
that have been developed to improve search engine functionality. In particular we
highlighted some machine learning approaches to information retrieval on the web
and concentrated on topic-specific search engines. Finally, we proposed an
information integration environment based on active logic. Our approach uses current
technology in a good manner to provide better results.

Information Retrieval on the WWW and Active Logic

Page 41 of 45

8 References

[1] NetNames Statistics , http://www.netnames.com , 12/28/1999

[2] John Gantz and Carol Glasheen, The Global Market Forecast for Internet Usage and
Commerce: Based on Internet Commerce Market Model™, IDC (International Data
Corporation) Report, Version 5, 1999. http://www.idc.com

[3] Internet Fact and State, http://optistreams.com/factsandstats15.htm

[4] The Censorware Project, http://www.censorware.org/web_size, Jan. 26, 1999

[5] S. Lawrence and C.L. Giles, Searching the World Wide Web, Science 80:98-100, 1998.

[6] S. Lawrence and C.L. Giles, Accessibility of Information on the Web, Nature 400:107-109,
1999.

[7] S. Chakrabarti, Data mining for hypertext: A tutorial survey, SIGKDD: SIGKDD
Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery &
Data Mining, ACM 1(2): 1-11, 2000.

[8] L. Page, S. Brin, The anatomy of a large-scale hypertext web search engine, Proceeding
of the seventh International World Wide Web Conference, 1998.

[9] S. Mizzaro, Relevance: The whole history, Journal of the American Society for
Information Science, 48(9): 810-832, 1997.

[10] S. Lawrence, Context in web Search, IEEE Data Engineering Bulletin, Volume 23,
Number 3, pp. 25-32, 2000

[11] Media Metrix, Media Metrix announces top 25 digital media/web properties and sites for
January 1999, 1999.

[12] Graphics, Visualization, and Usability center, Georgia Institute of technology, GVU’s
WWW User Surveys, http://www.gvu.gatech.edu/user_surveys/

[13] S. Chakrabarti, M. van der Berg, and B. Dom, Focused crawling: a new approach to
topic-specific web resource discovery, Proceeding of the 8th International World Wide Web
Conference (WWW8), 1999.

[14] S. Chakrabarti, M. H. van den Berg, B. E. Dom, Distributed Hypertext Resource
Discovery Through Examples, Proceedings of the 25th VLDB Conference, Edinburgh,
Scotland, 1999.

[15] M. Kobayashi and K. Takeda, Information retrieval on the web, IBM Research Report,
RT0347, April 2000.

[16] J. Kleinberg, Authoritative sources in a hyperlinked environment. Proceeding of 9th
ACM-SIAM Symposium on Discrete Algorithms, 1998. Extended version in Journal of the
ACM 46, 1999.

Information Retrieval on the WWW and Active Logic

Page 42 of 45

[17] M. Jaczynski, B. Trousse, Broadway: A Case-Based System for Cooperative Information
Browsing on the World-Wide-web, Collaboration between Human and Artificial Societies, pp.
264-283, 1999.

[18] Q. Yang, H. F. Wang, J. R. Wen, G. Zhang, Y. Lu, K. F. Lee and H. J. Zhang, Toward a
Next Generation Search engine, Proceedings of the Sixth Pacific Rim Artifact Artificial
Intelligence Conference, Melborne, Australia, 2000.

[19] LookOff E-book, Engine Basics, http://www.lookoff.com/tactics/engines.php3 , Oct 24
2000.

[20] D. Botluk, Search Engines Comparison, 2001, LLRX Company, available at:
http://www.llrx.com/features/engine2001.htm

[21] The web Robots Pages. http://info.webcrawler.com/mak/projects/robots/robots.html

[22] Internet Growth and Statistics: Credits and Background.
http//:www.mit.edu/people/mkgray/net/background.html

[23] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, Automating the construction of
internet portals with machine learning, Information Retrieval Journal, 1999.

[24] J. Rennie and A. McCallum, Using reinforcement learning to spider the web efficiently,
Proceeding of International Conference on Machine Learning (ICML), 1999.

[25] A. McCallum and K. Nigam, J.Rennie, and K. Seymore, Building domain-specific search
engines with machine learning techniques, AAAI-99 Spring Symposium on Intelligent
Agents in Cyberspace, 1999.

[26] M. Kobayashi and K. Takeda, Information Retrieval on the web: Selected Topics, IBM
Research, Tokyo Research Laboratory, IBM Japan, 1999.

[27] V. I. Levenshtein, Binary codes capable of correcting spurious insertions and deletions
of ones (original in Russian), Russian Problemy Peredachi Informatsii 1, pp. 12–25, 1965.

[28] P. Yianilos, The LikeIt intelligent string comparison facility, NEC Institute Tech Report
97-093, 1997.

[29] P. Yianilos, Data structures and algorithms for nearest neighbor search in general
ametric spaces, In Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms,
pp. 311–321, 1993.

[30] G. Salton, C. Yang, On the specification of term values in automatic indexing, Journal of
Documentation 29, pp. 351–372, 1973.

[31] M.F. Porter, An algorithm for suffix stripping, Program 14(3):130–137, 1980.

[32] R. Dolin, J. Pierre, M. Butler, and R. Avedon, Practical evaluation of IR within
automated classification system, Eighth International Conference of Information and
knowledge Management, 1999.

[33] G. Salton, Automatic indexing using bibliographic citations, Journal of Documentation
27, pp. 98–110, 1971.

Information Retrieval on the WWW and Active Logic

Page 43 of 45

[34] E. Spertus, ParaSite: Mining structural information on the web. Proceeding of The Sixth
International World Wide web Conference, 1997.

[35] K.D. Bollacker, S. Lawrence, and C. Lee Giles, CiteSeer: An Autonomous web Agent for
Automatic Retrieval and Identification of Interesting Publications, 2nd International ACM
Conference on Autonomous Agents, pp. 116-123, 1998.

[36] S. Brin, R. Motvani, L. Page, T. Winograd, What can you do with the web in your packet,
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 1998.

[37] J. Cho, H. Garcia-Molina, L. Page, Efficient Crawling through URL ordering, Seventh
International web Conference (WWW), 1998.

[38] K. Bharat and M. Henzinger, Improved algorithms for topic distillation in a hyperlinked
environment, SIGIR Conference on Research and Development in Information Retrieval, vol.
21, ACM, 1998.

[39] S. Chakrabarti, B. Dom and P. Indyk, Enhanced hypertext categorization using
hyperlinks, Proceedings of ACM SIGMOD, 1998.

[40] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, S.R. Kumar, P. Raghavan, S.
Rajagopalan and A. Tomkins, Mining the link structure of the World Wide web, IEEE
Computer, 1999.

[41] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghvan, Using taxonomy, discrimination,
and signatures to navigate in text databases. VLDB, 1997.

[42] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghvan, Scalable feature selection,
classification and signature generation for organizing large text databases into hierarchical
topic taxonomies, VLDB Journal, 1998.

[43] C. Olivia, C. Change, C. F. Enguix, A.K. Ghose, Case-Based BDI Agents: An Effective
Approach for Intelligent Search on the web, Proceeding AAAI-99, Spring Symposium on
Intelligent Agents in Cyberspace Stanford University, USA, 1999.

[44] T. M. Mitchell, Machine Learning, New York: McGraw-Hill, 1997.

[45] D. D. Lewis, Naive (Bayes) at forty: The independence assumption in information
retrieval, In ECML-98, 1998.

[46] J. Rennie, R. Rifkin, Improving Multiclass Text Classification with the Support
Vector Machine, Massachusetts Institute of Technology, Artificial Intelligence
Laboratory
Publications, AIM-2001-026, 2001.

[47] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell, Text classification from labeled and
unlabelled documents using EM, Machine Learning Journal, 1999.

[48] L. P. Kaelbling, M. L. Littman, and A. W. Moore, Reinforcement learning: A Survey,
Journal of Artificial Intelligence Research, pp. 237-285, 1996.

[49] J.L. Kolonder, Case-Based Reasoning, Morgan Kauffman, Publisher Inc, 1993.

Information Retrieval on the WWW and Active Logic

Page 44 of 45

[50]] B. Bartsch-Spörl, M. Lenz, , A. Hübner, Case-Based Reasoning – Survey and Future
Directions, Knowledge-Based Systems, Lecture Notes in Artificial Intelligence, Vol. 1570,
Springer-Verlag, Berlin, Heidelberg pages 67-89 ,1999.

[51] W. Cohen, A. McCallum, D. Quass, Learning to understand the web, Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, 2000.

[52] M. Diligenti, F. Coetzee, S. Lawrence, C. Lee Giles, M. Gori. Focused Crawling using
Context Graphs, 26th International Conference on Very Large Databases, VLDB 2000, pp.
527–534, 2000.

[53] J. Shakes, M. Langheinrich, O. Etzioni, Dynamic reference sifting: a case study in the
homepage domain, Proceedings of the Sixth International World Wide web Conference,
pp.189-200, 1997.

[54] P. De Bra, G. Houben, Y. Kornatzky and R. Post, Information Retrieval in Distributed
Hypertexts, Proceedings of the 4th RIAO Conference, pp. 481- 491, 1994.

[55] S. Chakrabarti, R. Jaju, M. Joshi, K. Punera, Analysing fine-grained hypertext features
for enhanced crawling and topic distillation, Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 2002.

[56] S. Chakrabarti, K. Punera, M. Subramanyam, Accelerated Focused Crawling through
Online Relevance Feedback, In 12th World Wide Web Conference, 2002.

[57] M. Hersovici, M. Jacovi, Y. Maarek, D. Pelleg, M. Shtalhaim and S. Ur, The Shark-
Search Algorithm - An Application: Tailored web Site Mapping, Proceedings of the Seventh
International World Wide web Conference, 1998.

[58] S. Raghavan and H. Garcia-Molina, Crawling the Hidden web, Stanford Digital
Libraries Technical Report, 2000.

[59] S. Mukherjea , WTMS: A System for Collecting and Analyzing Topic-Specific web
Information, Proceedings of the 9th International World Wide web Conference, 2000.

[60] F. Menczer, G. Pant, P. Srinivasan and M. Ruiz, Evaluating Topic-Driven web Crawlers,
In Proceedings of the 24th Annual International ACM/SIGIR Conference, 2001.

[61] C. Aggarwal, F. Al-Garawi, P. Yu, Intelligent Crawling on the World Wide web with
Arbitrary Predicates, Proceedings of the 10th International World Wide web Conference,
Hong Kong, 2001.

[62] L.Torgo, J. Gama, Regression using classification algorithms, Intelligent Data Analysis
1(4), 1997.

[63] J. Elgot-Drapkin. Step-logic: Reasoning Situated in Time. Ph.D. Thesis, Department of
Computer Science, University of Maryland, College Park, 1988.

[64] J. Elgot-Drapkin, S. Kraus, M. Miller, M. Nirkhe and D. Perlis, A Unified Formal
Approach to Episodic Reasoning. Technical report, University of Maryland, 1988.

[65] J. Elgot-Drapkin and D. Perlis, Reasoning Situated in Time {I}: Basic Concepts, Journal
of Experimental and Theoretical Artificial Intelligence, 2(1):75—98, 1990.

Information Retrieval on the WWW and Active Logic

Page 45 of 45

[66] K. Purang, D. Purushothaman, D. Traum, C. Andersen, D. Traum and D. Perlis.
Practical Reasoning and Plan Execution with Active Logic. IJCAI'99 Workshop on Practical
Reasoning and Rationality, 1999.

[67] , S. Kraus, D. Perlis, Assessing others' knowledge and ignorance, Proceedings of the 4th
International Symposium on Methodologies for Intelligent Systems, pp. 220-225, 1989.

[68] D. Perlis and K. Purang and C. Andersen, Conversational Adequacy: Mistakes are the
essence, International Journal of Human Computer Studies, 553--575. 1998.

[69] D. Traum, C. Andersen, Y. Chong, D. Josyula, M. O'Donovan-Anderson, Y. Okamoto,
K. Purang D. Perlis, Representations of Dialogue State for Domain and Task Independent
Meta-Dialogue, Electronic Transactions on AI, forthcoming.

[70] J. Gurney, D. Perlis and K. Purang, Interpreting Presuppositions Using Active Logic:
From Context to Utterances, Computational Intelligence. 1997.

[71] W. Chong, M. O'Donovan-Anderson, Y. Okamoto and D. Perlis, Seven Days in the Life
of a Robotic Agent, GSFC/JPL Workshop on Radical Agent Concepts, NASA Goddard Space
Flight Center, Greenbelt, MD, US, 2002.

[72] A. A. Barfourosh, H.R. Motahary Nezhad, M. Anderson, Don Perlis, ALLI: An
Information Integration System Based on Active Logic Framework, Proceedings of the Third
International Conference on Management Information Systems, Greece, pp.339-348, 2002.

