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Abstract 
As more information becomes available on the World Wide Web (there are currently over 4 
billion pages covering most areas of human endeavor), it becomes more difficult to provide 
effective search tools for information access.  Today, people access web information through 
two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query 
Engines (queries in the form of a set of keywords showing the topic of interest). The first 
process is tentative and time consuming and the second may not satisfy the user because of 
many inaccurate and irrelevant results. Better support is needed for expressing one's 
information need and returning high quality search results by web search tools. There appears 
to be a need for systems that do reasoning under uncertainty and are flexible enough to 
recover from the contradictions, inconsistencies, and irregularities that such reasoning 
involves. 
Active Logic is a formalism that has been developed with real-world applications and their 
challenges in mind.  Motivating its design is the thought that one of the factors that supports 
the flexibility of human reasoning is that it takes place step-wise, in time. Active Logic is one 
of a family of inference engines (step-logics) that explicitly reason in time, and incorporate a 
history of their reasoning as they run. This characteristic makes Active Logic systems more 
flexible than traditional AI systems and therefore more suitable for commonsense, real-world 
reasoning.  
In this report we mainly will survey recent advances in machine learning and crawling 
problems related to the web. We will review the continuum of supervised to semi-supervised 
to unsupervised learning problems, highlight the specific challenges which distinguish 
information retrieval in the hypertext domain and will summarize the key areas of recent and 
ongoing research. We will concentrate on topic-specific search engines, focused crawling, 
and finally will propose an Information Integration Environment, based on the Active Logic 
framework. 
Keywords: Web Information Retrieval, Web Crawling, Focused Crawling, Machine 
Learning, Active Logic
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1 Introduction 
 
The web has had very rapid growth in number of pages, number of hosts and 

number of domain names (e.g. Cisco.com) registered worldwide [1]. There are more 
than 4 billion web pages and it is estimated that the number of web pages will exceed 
16.5 billion by 2003 [2]. Almost 3 million pages or 59 Giga bytes of text are added 
daily, and the average life span of a web page is about 44 days [3]. To keep up with 
the changes to web content, one would need to download about same amount of bytes 
of information per day, which would mean you would need a connection capable of 
downloading 10 mega bytes of text per second [4]. The number of internet hosts 
increases exponentially. Figure 1 shows the growth of the internet hosts. The largest 
search engines have done an impressive job in extending their reach, though web 
growth itself has exceeded the crawling ability of search engines [5, 6]. Even the 
largest popular search engines, such as Alta Vista2 and HotBot3 index less than 18% 
of the accessible web as of February 1999 [6], down from 35% in late 1997 [7]. 
Figure 2 shows the percentage of the web coverage by the end of 2001. Today Google 
is probably biggest search engine, and has gathered more than 2 billion pages and 
covers only about 40 percent of the publicly available web pages.  

Internet Host Number
(Source: Internet Software Consortium (http://www.isc.org/)
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Figure 1. Internet host numbers since 1989 up to 2002 (Data from Internet 

Software Consortium4). 
 
The number of queries that search engines must handle has grown incredibly, too. 

In March and April 1994, the World Wide Web Worm received an average of about 
1500 queries per day. In November 1997, AltaVista claimed it handled roughly 20 
million queries per day. With the increasing number of users on the web, and 

                                                
2 http://www.altavista.com 
3 http://www.hotbot.com 
4 http://www.isc.org/ 
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automated systems that query search engines, it is likely that top search engines will 
handle hundreds of millions of queries per day [8].  
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Figure 2. Web coverage percentage by popular search engines (Data from The Search 
Engine Report5, Dec. 18, 2001). 

 
Web search engines create and maintain an index of words within documents they 

find on the web. They return to a user a ranked list of relevant documents as search 
results. Few of these results may be valuable to a user [9]. Several ranking methods 
have been proposed to improve the ranking of resulting documents [10]. For this 
reason, it may be helpful to use some user information context in returning and 
ranking results. 

 
Search engines are listed among the top accessed sites [11] and most people use 

them to find interesting information on the web [12]. As the web continues to grow, 
major general-purpose search engines have been faced with serious problems. They 
are unable to index all the documents on the web, because of the rapid growth in the 
amount of data and the number of documents that are publicly available. Their results 
may be out-of-date, and they do not index documents with authentication 
requirements or the information behind search forms. As more people share their 
information with others, the need for better search services to locate the interesting 
information is becoming increasingly important [10].  

 
One way to deal with huge amount of web content is to build topic-specific search 

engines, each of them focusing on one or a limited number of topics, such that they 
crawl the related hyperlinks and avoid traversing the irrelevant part of the web. 

                                                
5 http://searchenginewatch.com/sereport/index.html 



Information Retrieval on the WWW and Active Logic 

Page 7 of 45 

[13,14]. This approach needs web crawling mechanisms to be improved so that a 
crawler can better distinguish among links to achieve high performance.  

 
“Several different measures have been proposed to quantitatively measure the 
performance of classical information retrieval systems, most of which can be 
straightforwardly extended to evaluate web search engines. However, web users may 
have a tendency to favor some performance issues more strongly than traditional 
users of information retrieval systems. A basic model from traditional retrieval 
systems recognizes a three-way trade-off between the speed of information retrieval, 
precision and recall.  In the context of information retrieval, precision is defined as 
the ratio of relevant documents to the number of retrieved documents and recall is 
defined as the proportion of relevant documents that are retrieved [15].   
Most web users who utilize search engines are interested in precision as precision of 
the results displayed in the first page of the list of retrieved documents [15]. Since 
measuring the recall rate for each web search engine query is not a trivial work, some 
researches recognize the recall in form of finding the most information rich pages, 
called authority pages and hub pages [16], i.e., pages that have links to many 
authority pages are also recognized as being very valuable.” (See Table 1). 

 
 

Classical Information System web Search Engines 
Speed Interactive response times 
Precision Precision of the results displayed in 

the first page 
Recall Finding the most information rich 

pages, called authority  & Hub pages 
Table 1. The comparison of the measures of performance in classical information 

systems and web search engines (Data from [15]). 

Two methods of finding interesting information on the web are querying and 
browsing [17]. Querying is keyword-based search. The search engines post the user 
query to their index of keywords and return a ranked list of documents. Browsing is 
navigation through a hierarchy-like set of links toward the target topic. In every step, 
the user selects the links that (s)he guesses will lead to relevant documents. Querying 
is appropriate when user has a clear goal. Browsing is suitable when user cannot 
express his goal explicitly by a Boolean combination of the keywords. Browsing also 
is suitable for situations where the goal is general information on a topic.   

People have difficulty with the typical query mechanisms of search engines. 
Search engine queries tend to be the same as those used by the first search engines.  
They accept the user query as a set of keywords in the form of a Boolean expression. 
Unfortunately the keyword-matching method usually returns too many low quality 
results [8, 14, 18]. Furthermore, the formulation of some complex queries in the form 
of a Boolean expression is difficult or impossible. People may find natural language a 
better choice to convey their information needs, since simple keywords may not be 
able to convey the complex search semantics that a user wishes to express [18].  

In following sections, we review several basic concepts in the area of web 
information search. In particular we will consider the machine learning approaches in 
domain-specific search engines and focused crawling methods. In section 2 we 
describe the types of search engines, and our goal is to answer the question: “How 
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does a search engine work?” Section 3 reviews different web content and structure 
analysis. Section 4 describes machine-learning approaches used in information 
retrieval. Section 5 mainly describes the topic-specific search engine and focused 
crawler architecture. Section 6 introduces the Information Integration Environment 
based on Active Logic. Our conclusions are presented in section 7. 

2 Search Engines 

A “search engine” is a resource that provides the ability to search information on 
the Internet [19]. Search engines come in three major flavors:  

•  Web crawlers  
•  Web portals  
•  Meta-Search engines 

Each of them has its strengths and weaknesses. In the following subsections we 
review each in detail. Since different search engines provide different services and 
features, comparison among them is an important matter for users. Several parameters 
that can be used to compare search engines [20] that are listed in tables 2 and 3 and 4. 
Table 2 shows the parameters from “searching features” perspective.  

Evaluation 
Parameter 

Description 

Default search How does the engine put the keywords together, for example ‘AND’ 
between the words (inclusive) , or ‘OR’ between them (alternative). 

Keyword/Concept 
default 

Concept searching occurs when the engine not only searches for the 
exact character string, but also for word forms, and even synonyms and 
other words that statistically appear with the typed word. 

Exclusion 
possibility 

Ability to exclude web pages (results) including special terms, search 
engines represent it by putting a minus or ‘NOT’ in front of excluded term 

Truncation Possibility of finding various form of a word by adding a truncation symbol 
(such as ‘*’) on the end of the word 

Search restrictors Ability to search for terms or values contained only in certain portions of a 
page, rather than anywhere in the entire page or within special kind of 
pages (sound, image, video) or in special site domains (.com, .edu) 

Date searching 
restrictors 

Try to place a date restriction in search query. Date restrictions can be 
useful to locate newly created or recently updated web pages, weeding 
out older results. 

Phrase searching Ability of using quotation marks around some terms or a kind of Boolean 
connector such as ADJ between the terms for phrase searching 

Nesting Support the use of parentheses to nest various parts of a search query, 
for example (apple or blueberry) ADJ pie that means apple pie” OR 
“blueberry pie” 

Multi-level search Ability to first casting a wide net, then narrowing by searching only within 
that set of results 

Case sensitive If the search engine is case sensitive or no? 
Language 
restrictor 

Ability to search the web pages in various languages such as English, 
German, … 

Natural language 
support 

Can it handle queries in natural language? 
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Table 2. Evaluation parameters of the search engines from search language 
perspective. 

Table 3 shows the parameters of search engine coverage, database and manner of 
search. Table 4 shows the parameters from returned result perspective. 

Evaluation 
Parameter 

Description 

Content size  How big is its database, i.e. how many web pages are indexed in its 
database 

Search parts If they search full text of web page or a specific parts of it such as 
keywords, titles, headings, links of web pages, … 

Various kind of 
web resources 
indexing 

Indexing the document from other internet sources such as usenet, 
peoples, email texts, … 

Focused topic Whether the search engine focuses on a specific topic or document type 
or it is a general-purpose one 

Web crawling 
strategy 

The manner that search engine traverses the web link’s graph, for 
example breadth-first-search, according to priority queue and some 
parameters, such as Hub and authority score of page, Page-ranking, … 

Table 3. Evaluation parameters of search engines from the engine’s perspective.  

 

Evaluation 
Parameter 

Description 

web pages 
Ranking methods 

Different parameters used to specify the rank of web pages in returned 
result list, such as site popularity, … 

Various display 
option 

If various options are available to rank the returned result, such as by 
date, by site, …  

Suggested search Suggestions for further searching based on the initial search are provided 
or no. These suggestions can be simple, such as synonyms or alternative 
search terms, or may be more sophisticated, such as suggestions for 
searching in different, specialized databases.  

Similar searches If someone locates a web page that is highly relevant to his research 
issue, It might be interested in finding more pages that are very similar, is 
it available?  

Translated results Possibility of offering a tool to translate a given result page from one 
language to another.  

Table 4. Evaluation parameters of search engines from the perspective of returned 
results.  

 

2.1 Web Crawlers 

Web crawlers, also known as “robots,” “spiders,” “worms,” “walkers,” and 
“wanderers,” are almost as old as the web itself [21]. The first crawler, “Matthew 
Gray’s Wanderer”, was written in the spring of 1993, roughly coinciding with the first 
release of NCSA Mosaic [22]. A web crawler seeks the Internet looking for pages to 
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index. In general it starts with a set of predefined web addresses and downloads them. 
For each page, it extracts its URLs in order to follow them later in a specified manner, 
for example breath-first-search. Then it indexes all of its word and phrases and maybe 
the relative position of the words to each other. Later, a user can search this index for 
the presence of a particular word, phrase or even combination of some words in a web 
document. Usually, web crawlers store the complementary information for each page, 
such as time of download and update, different ranks that are computed off-line, 
header and title, etc. 

The “crawler” concept stands for the fact that it extracts all URLs within a 
downloaded page to be followed later. Figure 3 shows the workflow of a typical web 
crawler. A web crawler starts with a single or a set of default pages and it continues 
(theoretically) until it has downloaded every web page on the Internet. It is assumed 
that it can traverse all of the web graph links from the start page set. However, it is 
clear that this theory is not correct in practice, in at least two aspects. Firstly, it cannot 
reach all of the web documents from a single point in its graph. There is not a path 
from any given page to every other page on the Internet. Secondly, a search engine 
cannot cover all of Internet pages because of its power and time limitation in 
gathering all of the web documents. New pages are added daily with more speed than 
the web crawler gathers web pages, and some web pages will be updated long before 
the web crawler could crawl them again.  

Web crawlers are typically automatic and the keywords are stored in indexes, each 
of them associated with the documents they were found within. Human maintenance 
has not generally had an important role in web crawler indexing and querying. Web 
crawlers are best for finding specific information, but not common information [21]. If 
an interesting search topic is very general, e.g. “computers,” a web crawler will return 
thousands of results that contain the word “computer”. In this list, finding an 
appropriate page is difficult.  For this kind of information, a web portal is a better fit. 
In next subsection, we will review web portals.  
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Figure 3. Workflow of a typical web crawler (from [19]) 

There are several hundred commercial web crawlers. AltaVista6, Excite7, 
Google8, HotBot9, Lycos10 and Northern Light11 are some of the most popular web 
crawlers. 

 

2.2 Portals 

A web portal is generally considered to be a site that organizes information by 
topic [19]. It is also called “web directory”. In web crawlers, users can define the 
search criteria and search the web crawler’s indexed database for those criteria. A 
portal, in contrast, organizes the sites by topic to help in navigating and finding what 
the user is looking for. Most portals are human maintained. The large portals work 
hard to try to catch all of the intuitive categorizations of a given topic, but this does 
not always work. Portals also allow one to search their archives much like a web 
crawler, but search is generally possible only on the summaries and titles of sites in 
the portal, not on their contents. 

Portal providers generally construct portals according to the web pages that 
companies, institutes and individuals send to them; in addition, their employees 
search and browse the web to find interesting web pages on various topics. Figure 4 
shows the workflow of a topical portal.  Some portals, after acquiring the web pages, 
associate a number among 0 to 4 to each web page according to “Usability, Freshness, 
and Understandability”. Furthermore, from each page a summary will be extracted, 
from 2-3 lines to a full paragraph. Then they use different parameters to construct a 
hierarchy of topics. Acquired web pages will be placed in lower levels of this 
hierarchy according to their relevancy. This hierarchy will be maintained by humans 
to update and add more relevant documents. The top level of this hierarchy has a 
limited number of general topics, varying between 14-26 topics. The number of 
subtopics in lower levels depends on the topic and available web pages about it. There 
is some research that aims to automate classification and construction of these 
hierarchies, and some of these projects result in an acceptable level of precision [23, 
39, 41, 42].  

Portals are very efficient for finding common information, but they are unable to 
organize everything, so specific information is not nearly as easy to find [19]. This is 
one of the first rules to know when deciding between a crawler and a portal in order to 
find information. Some of the popular portals are Yahoo!12, Looksmart13, Open 
Directory Project14, IBM’s Patent Database15. These portals differ according to the 

                                                
6  http://www.altavista.com 
7 http://www.Excite.com 
8 http://www.google.com 
9 http://www.hotbot.com 
10 http://www.lycos.com 
11 http://www.northernlight.com 
12 http://www.yahoo.com 
13 http://www.looksmart.com 
14 http://www.dmoz.org 
15 http://www.delphion.com 
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amount of information they keep about every web pages and information items like 
summaries, titles, URLs, etc. 

 

 

Figure 4. Workflow of a topical portal 

2.3 Meta-Search Engines 

Meta-search engines (or meta-crawlers) are sites that take queries (keywords or 
even natural language queries), send them to a large number of search engines and 
return the results to user. Meta-search engines use three methods to search the web: 

•  Direct list of search engines 
•  Sequential searches 
•  Concurrent search 

2.3.1 Direct list of search engines 

This kind of search engine sends the user query directly to a list of search engines and 
acquires their results for that query, as if the user directly posed his query in each of 
them in isolation. The benefit of this kind of search engine is that they save the user’s 
time. This approach may also cover some search engines that the user has never tried. 
A number of meta-search engines rank the returned results of search engines using 
parameters such as search engine popularity, query terms, etc.  
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2.3.2. Sequential search 

In this kind of search engine a user can select some search engines from a list and 
send the user query to these selected search engines. Usually the results will be shown 
just as they are returned from the search engines. These meta-search engines wait to 
receive all of the results and then display the result page, so it is as slow as the slowest 
selected search engine.  

2.3.3 Concurrent search 

This kind of meta-search engine is similar to sequential search method, but it does not 
wait to receive the whole result from all search engines. As it receives the first search 
engine results, it displays them, and new received results will be added gradually. 
This approach decreases the time before the user sees the first results from the search 
engine.  

There are two tips about meta-search engines, first, a meta-search engine can only 
take inputs that are supported by all search engines that it uses, or it must convert the 
user’s query into a standard form supported by every search engine. Thus, the lowest 
common denominator of those sites’ features will determine what user can enter. In 
addition, the transformed query may not satisfy the user intention. Since meta-search 
engines do not allow for input of many search variables, their best use is to find hits 
on obscure items or to see if something is on the web. Second, what is the point of 
convenience? The real convenience is finding the best result quickly, not getting the 
largest number of bad results. The primary motivation of using a meta-search engine 
is that, since the web is huge and the most search engines in isolation cover a small 
fraction of web and have low recall and precision in their search results, it is better to 
use the results of several search engines, combine and re-rank them using a good 
algorithm, and return this result to the user. This scheme may increase recall and 
precision. However, while meta-search engines represent cumulative search results 
over other search engines, they still do not cover the entire web. Figure 5 shows the 
workflow of a topical meta-search engine. Some of the best-known meta-search 
engines are Dogpile16, Mamma17, Metacrawler18, and Askjeeves19. 

                                                
16 http://www.dogpile.com 
17 http://www.mamma.com 
18 http://www.metacrawler.com 
19 http://www.askjeeves.com 
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Figure 5. Workflow of a topical meta-search engine 

 
3 Web Analysis 

 
The web is similar to a graph, in that links are like edges and web pages are like 

nodes. Several approaches have been proposed to overcome the current limitations of 
web crawlers. Some approaches use web structure (relation between web links) to 
guide web crawlers in finding their path through the web, and some approaches use 
web content (text within each page) to perform the same thing. As we shall see in the 
next subsections, a combination of these two aspects of web search will improve the 
functionality of web crawling strategies further.  

 
3.1 Web Content Analysis 

The basic use of the content of a web page in search engines is in the form of 
exact query matching in a document index database. Our intention here is to shortly 
review different document similarity measures. We consider two kinds of similarities 
[26]:  

•  Document-query similarity is important for identifying similarity of user 
query to documents. 

•  Document-document similarity is important for finding similar documents 
in the document pool of a search engine. Some search engines represent 
this feature. 

 
3.1.1 Document-query similarity 

“Suppose that we have a term vector T(t1, t2, …, tn) represent all of the terms in our 
corpus. Furthermore D(ti, tj, …, tk) represents presence of the correspondent terms in 
T in  document D and Q(ta, tb,…, tm) represent the presence of the correspondent 
terms in T in  query Q. There are several methods for weighting the terms in 
document and query. There are some local weighting functions such as binary 
weighting that weights are either 0 or 1 shows presence of terms, or Term-frequency 
weighting, Log-Entropy weighting. There are also some global weighting functions 
that are simple and inexpensive to implement such as Normal, TFIDF, IDF, and 

1. Getting User query (keywords) and 
selected search engines 

2. Sending user query to search engines 

3. Acquiring the results from each search 
engine 

4. Re-ranking and duplicate checking 

5. Representing results to user  
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Entropy [26]. One of the simplest formulations of a query-document similarity value 
is  

 
Where Wqk is weight of term k in query and Wqk is weight of term k in documents. 
Note that when binary term weights are used, this similarity measures the number of 
terms that appear in both Q and D.” 

Adapted from [26] 
 

3.1.2 Document-document similarity 
Measuring the similarity of two documents is important in search engines, because 

when a user finds a web page that is on-topic, he may desire to find other relevant 
documents. There are different parameters which determine the relatedness of two 
documents: some are related according to their content, and others by their in and out 
hyperlinks. In this section we consider only document content. Table 5 shows the 
different models of document-to-document similarity measuring. 

 
Model Description Methods 

String distance 
(Edit distance) 

Considers the distance as amount of 
difference between strings 

Levenshtein distance, 
LikeIt 

Statistics of 
words 

Considers frequency of words in documents 
to judge on similarity 

TFIDF, LSI 

Document 
components or 
structure 

Considers structure or components of 
documents, for example references, 
abstract, title, keywords and … in research 
papers 

Citation analysis, 
ParaSite 

Table 5. Three models of measuring document-to-document similarity  
[Data from 26, 30] 

 
3.1.2.1 String distance model 

In Levenshtein distance [27], the difference between two strings is the number of 
insertions, deletions, or substitutions of letters required to transform one string into 
another. In LikeIt [28, 29] a string distance is based on an algorithm that tries to build 
an optimal weighted matching of the letters and multi-graphs (groups of letters). 
LikeIt tries to match sub-strings in a larger string. 
 
3.1.2.2 Statistics of words model 

TFIDF [30] (term frequency × inverse document frequency) is based on word 
frequencies in documents. In fact it is suitable for sets of documents, especially as part 
of a large number of documents. The common (stop) words such as “the”, “a”, etc., 
are ignored for computational efficiency. Sometimes stems of word are considered 
instead of complete words. A stemming approach by Porter [31] tries to return the 
same stem from several forms of same word (e.g. “learning”, “learn”, “learned” all 
become “learn”). In this approach, for each word in document, the weight of the word 
is calculated based on word frequency in a given document, the number of documents 
that include the word, the highest word frequency in a document, and the number of 
all documents in the document pool. Then the distance between two documents is 
calculated by dot product of the two word vectors for those documents. 
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Latent Semantic Indexing is an approach that uses a vector space model of a 
document to measure the similarity between two documents. Vectors in the vector 
model space are the weight of the words in document.  

“Latent Semantic Indexing (LSI) is a variation of the vector space model of 
information retrieval that uses techniques of singular value decomposition (SVD) to 
reduce the dimensionality of the vector space.” 

                                                                            Soumen Chakrabarti [7]  
 
This method considers the co-occurrence of words in a document, so it can derive 

a relationship between words and inherent concepts. The similarity of two documents 
is calculated by the cosine of the reduced vector space of two documents. Since this 
approach uses conceptual matching rather than exact word matching, researches [32] 
show that LSI provides better results than standard TFIDF, with fewer training sets of 
documents per category. 
 
3.1.2.3 Document components or structure model 

We can use the knowledge about document components or structure to judge the 
similarity between two documents. This approach is well suited for situations in 
which documents are of a specific type, or have special components or structure. In 
the case of research papers, for instance, they have similar structure and components, 
such as title, abstract, keywords, references. Also, common citations can be used as a 
parameter [33]. The ParaSite system [34] uses the nearness of links to referenced web 
pages in the HTML structure of a referencing web page as an indicator of relatedness 
of the referenced pages. 

CiteSeer [35] is a computer science research paper finder that uses several 
methods for document similarity measurement. CiteSeer uses the LikeIt string 
distance to measure the edit distance between the headers of document. It uses 
common authors, institutions, or words in the title of documents to reduce the LikeIt 
distance between headers. CiteSeer also uses common citations to make an estimate 
of document similarity. This measure, “Common Citation × Inverse Document 
Frequency” (CCIDF) is analogous to word-oriented TFIDF word weights. CiteSeer 
combines different methods of document similarity to result in a final similarity 
distance measure that is hopefully more accurate than any single method alone.  

 
 

3.2 Analysis Link Structure of Web 
“Every web page has some number of out-links and in-links (See Figure 6). We can 
never know whether we have found all the in-links of a particular page, but if we 
have downloaded it, we know its entire out-links at that time.”  

Page and Brin [8]. 
 
 
 
 
 
 
 

Figure 6. A and B are in-links of C (from [8]). 
Some approaches use the link structure of the web to find the importance of the 

web pages or to determine their relatedness to a particular topic. In the next 

C
A

B
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subsections we present two approaches, the “Page Rank” method and the “Hub and 
Authority” concept, which use the link structure of the web for this purpose. 

 
3.2.1 Ranking  

Web pages differ from each other in the number of in-links that they have. For 
example, the popular sites like “Yahoo!” and “Netscape” have many in-links but a 
typical homepage of a university student may have few in-links. The number of 
references (citations) to a thing is evidence of its importance; many Nobel Prizes are 
assigned according to this fact. Considering this, we can say that highly linked pages 
are more “important” than pages with few in-links [36]. L. Page and S. Brin proposed 
the Page Rank algorithm in [8, 36, 37] that calculates the importance of web pages 
using the link structure of the web.  

“It is somehow different and is more sophisticated than simply counting the number 
of in-links of a web page. The reason is that there are many cases where simple 
citation counting does not correspond to our common-sense notion of importance. For 
example, if a web page has a link from the Yahoo home page, it may be just one link, 
but it is a very important one. This page should be ranked higher than other pages 
with more links but only from obscure places. Page Rank is an attempt to see how 
good an approximation to “importance” can be obtained from just the link structure of 
the web.” 

Page and Brin [8]. 
3.2.1.1 Page Rank Algorithm  

Page Rank makes use of the link graph of the web. The Page Rank algorithm is 
defined as follows:  

 
“We assume page A has pages T1...Tn which point to it (i.e., are citations). The 
parameter d is a damping factor, which can be set between 0 and 1. We usually set d 
to 0.85. There are more details about d in the next section. Also C (A) is defined as 
the number of links going out of page A. The Page Rank of a page A is given as 
follows: 
                PR (A) = (1-d) + d (PR (T1)/C (T1) + ... + PR (Tn)/C (Tn)) 
Note that the Page Ranks form a probability distribution over web pages, so the sum 
of all web pages’ Page Ranks will be one.”  

    Page and Brin [8] 
 

Note that the rank of a page is divided evenly among its out-links to contribute to 
the ranks of the pages they point to. The equation is recursive, but starting with any 
set of ranks and iterating the computation until it converges may compute it.  

Page Rank can be calculated using a simple iterative algorithm, and corresponds 
to the principal eigen vector of the normalized link matrix of the web. Page Rank 
algorithm needs a few hours to calculate the rank of millions of pages [8]. 

 
3.2.1.2 Page Rank Algorithm application 

This algorithm is used as the base of the web crawling algorithm in the Google 
search engine. Google makes use of both link structure and anchor text [8]. Google 
orders the URL’s according to several parameters. Then the URLs with highest ranks 
will be crawled first [37]. It uses Page Rank as a parameter for measuring page 
importance among crawled pages to rank the result for user queries [8]. 
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3.2.2 Hub and Authority pages 
As we described in section 3.2.1, the importance of a pages can be extracted from 

the link structure of web. In this approach two kinds of pages are identified from web 
page links: pages that are very important and authorities in a special topic, and pages 
that have great number of links to authority pages. Kleinberg, when he was as visiting 
researcher in IBM’s Almaden Research Lab, proposed an algorithm to identify these 
pages on the web. In the next subsection we review this algorithm, called HITS.  
 
3.2.2.1 HITS Algorithm  

For a given query, HITS will find good sources of content (defined as authorities) 
and good sources of links (defined as hubs) [16]. Authorities have large in-degree. 
Hub pages are pages that “pull together” authorities on a given topic, and allow us to 
throw out unrelated pages of large in-degree (Those pages are simply universally 
popular like Yahoo!). (See Figure 7) 

“Hubs and authorities exhibit what could be called a mutually reinforcing 
relationship: a good hub is a page that points to many good authorities; a good 
authority is a page that is pointed to by many good hubs”. 

Kleinberg [16] 
 

 
 
 
 
 
 
 
 
      Hubs                   Authorities                          Unrelated Page of large In-degree          
 

Figure 7. A densely linked set of Hubs and Authorities (from [16]) 
  
HITS associates a non-negative authority weight x<p> and a non-negative hub 

weight y<p>(Figure 8). The weights of each type are normalized so that their squares 
sum to 1.  

 
 
 
 
 
 
 
 
 
 
 

Figure 8. The basic operations of HITS (from [16]) 
 

“Numerically the mutually reinforcing relationship can be expressed as follows: if p 
points to many pages with large x-values, then it should receive a large y-value; and 

q1

q2

q3

Page p 
X[p] = sum of y[q], for all q pointing to p

q3

q2
q1

                             Page p 
Y[p] = sum of x[q], for all q pointed to by p
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if p is pointed to by many pages with large y-values, then it should receive a large x-
value. Given weights x<p>,y <p> , then the x-weights is as follows:” 

 
and y-value is as follows:  

Kleinberg [16]. 
 
Bharat and Henzinger [38] point out that HITS did not work well in all cases due 

to the following three reasons:  
 

•  Mutually Reinforcing Relationships Between Hosts: Sometimes a 
set of documents on one host point to a single document on a second host. 
This drives up the hub scores of the documents on the first host and the 
authority score of the document on the second host. The reverse case, where 
there is one document on a first host pointing to multiple documents on a 
second host, creates the same problem. Since our assumption is that a single 
author or organization authored the set of documents on each host, these 
situations give undue weight to the opinion of one “author”.  

•  Automatically Generated Links. Web documents generated by tools 
(e.g. web authoring tools, database conversion tools) often have links that 
were inserted by the tool.  

•  Non-relevant Nodes: They show that the neighborhood graph often 
contains documents not relevant to the query topic. If these nodes are well 
connected, topic drift problem arises: the most-highly ranked authorities and hubs 
tend not to be about the original topic. For example, when running the algorithm 
on the query “mango fruit” the computation drifted to the general topic “fruit”.  

 
Bharat and Henzinger proposed an approach to solve the topic drift problem [38]. 

They used the web page’s content in addition to its graph structure. For each node in 
the link graph, they consider its relevancy to the query topic by calculating a 
relevancy weight to topic, W[n]. They use W[n] * H[n] instead of H[n] in computing 
the authority score of nodes, considering following notation, we have: 

A[n]: The authority score of node, H[n]: The hub score of a node,  
WAuth: Authority weight of node, WHub: Hub weight of node 

 
Both of Page-Rank and HITS algorithms use the links structure of web to find 

importance of web pages, Table 6 shows a comparison between these approaches. 
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HITS Page Rank 

Can distinguish between pages with high 
number of in-links but not related to topic 
and related to given query 

Blindly calculates the importance of a 
page according to its in-links and out-
links regardless of given query 

HITS is suitable for topic driven page 
importance measuring 

Page Rank is suitable for measuring 
overall ranking of sites and pages and 
their importance from the perspective of 
people citation regardless of topic, 
estimating the popular or highly cited 
sites 

Refined HITS [38] considers the web 
page content in addition to link structure  

Page Rank uses just link structure of the 
web 

Table 6. A comparison between HITS and Page Rank algorithms 
 
3.2.2.2 HITS Algorithm Application 

For the first use, it was implemented in the Clever20 search engine from IBM. 
Then several enhancements to this approach were proposed by researchers at the IBM 
Almaden center [40]. Finally an improved version of it was used in the Focused 
Crawler [13, 14] from same research institute. 
 
4 Machine Learning Approaches in Information Retrieval 
 

Learning is needed to improve the functionality of systems [18]. Different 
algorithms and methods for machine learning are used. These categories of algorithms 
are known as machine-learning algorithms. Search engines, like other computer 
systems, have used machine-learning approaches to improve their functionalities in 
various aspects. In this section we review machine-learning approaches that are used 
in web information retrieval systems. Definitions, algorithms and applications of each 
method are briefly discussed. Some example search engines that use machine learning 
approaches are described in section 5. 

In machine learning, we have three main categories of approaches. The difference 
between these approaches is in how the learner agent learns. Table 8 shows these 
approaches and their brief description. 

 
Approach Name Description 

Supervised Learning The learner agent learns from a collection of labeled training 
data, in other words, in the training phase the agent knows the 
correct answer for each input state. In the test phase the agent 
must guess the label for un-labeled cases. 

Semi-supervised 
learning 

The learner agent learns from a small collection of labeled 
training data. In this category of problem a small collection of 
training data are available and we can not provide for the 
system enough labeled training data like real world problems. 

Un-supervised learning The learner agent gives a set of un-labeled data and it performs 
the expected work according to some specific measure such as 
similarity. No training data will be given to agent. 

Table 8. Main three categories of machine learning approaches (Data from [7]) 

                                                
20 http://www.almaden.ibm.com/cs/k53/clever.html 
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4.1 Supervised learning 
Supervised learning – also called classification – is based on learning from a 

training data set. Each data item in the training set has a label or a class; in other 
words the learner is told the correct answer for each item. This class of algorithms 
learns from the training set and tries to guess the label for an input item in the test 
phase.  

Classification has several applications in the hypertext and semi-structured data 
domains. Classification is important in order to guess the relevance of a web 
document to the crawl topic. In this case, in the training phase the agent builds a 
model from a set of pre-classified documents (acquiring some parameters in a model). 
Another important application of classification is in constructing directories in portals. 
Web searchers may find directories easier to use when finding some general 
information. Automatic construction and maintenance of such portals is one of the 
leading research areas in applying classification in web IR systems [23, 39, 40]. 
 
4.1.1 Naïve Bayes classifier 

In this model of learning [7, 44] it is assumed that text documents are generated 
from a parametric model. This model estimates the model parameters from training 
data. For each new document, using the estimated parameters and Bayes rule, the 
classifier calculates the probability of generation of document by each class. The 
classification is selecting the class with highest probability.   

The classifier parameterizes each class with word frequency and document 
frequency. “Naïve” stands for this assumption that each word occurs in a document 
independent of all of other words in document and also independent of its occurrence 
location. Using the following notations, [23] formalizes this model as follows: 

 
wt : word t in document ,  cj : Class j in training data, V : Vocabulary,  
P(cj): frequency of document in class j in compare with all of other classes,   
P(wt|cj) : Probability of occurring of  word wt in each document of class cj,  
di: document i with a set of word,   P(cj|di): Probability that document i is 
generated by class j, wdik : kth word in ith document.  
 

Using Bayes rule and Naïve assumption we could write: 
 

P(cj|di) ∝  P(cj) P(di|cj) 
            ∝  P(cj) Π(k=1 .. |di|)P(wdik|cj)   (1) 
 

The  P(wt|cj) and P(cj) parameters are learned from the training data set. To estimate 
probability of word wt in class cj,  P(wt|cj), The frequency of word wt is enumerated in 
each class cj is enumerated. If N(wt,di) is the number of occurrence of word  wt in 
document di then we could write: 

 
Where 0 < P(cj|di) < 1. The frequency parameter of each class, P(cj) is calculated as: 
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Where |C| is number of classes and |D| is number of documents. Experimental results 
show that if the number of training documents is large, then the accuracy of 
classification is good [45].  

There are various classification approaches. Support Vector Machine (SVM) is a 
classification method that has been used for multi-class classification of hypertext 
documents in comparison with well-known Naïve Bayes classifiers. Experimental 
results show that it has much lower error score than Naïve Bayes in this context [46]. 

 
4.1.2 Learning Relations 

Learning relations between documents is an approach to extend the classification 
of documents, described in [7].  

“Consider the problem of classification of web pages of a computer science 
department web site in “Faculty”, “Student”, “Project”, “Course” classes. Simply, the 
following relation between these classes can be found: 

teaches(faculty, course),  
advises(faculty, student),  
enrolled(student, course), 

Learning such relations may improve the functionality of classification and it enables 
us to answer more complex queries such as “courses that are taken by students” or 
even “list of faculty that supervise more than 5 students”. Learning the relation 
between pages can be done by exploiting hyperlinks in a web site. Word statistic of 
neighborhood documents in additional to graph structure of web pages can be used to 
augment learning relations.” 

Soumen Chakrabarti [7]. 
4.2 Semi-supervised learning 

Semi-supervised learning is a goal-directed activity, which can be precisely 
evaluated, whereas unsupervised learning is open to interpretation [47]. On the other 
hand, supervised learning needs a large training data set, which must be obtained 
through human effort [47]. In real life, most often one has a relatively small collection 
of labeled training data, but a larger pool of unlabeled data. In the web context our 
training data is a small set of labeled documents. The label is document class, and our 
goal is to guess the label of an un-seen document.  In this category we review learning 
from labeled and unlabeled documents in section 4.2.1. In some semi-supervised 
approaches, a learner agent learns from interaction with a dynamic environment. In 
these environments, providing a set of training data for the agent is very difficult or 
even impossible, because of the dynamics inherent in the environment and 
correspondingly huge number of states and actions. In these environments the learner 
agent is never told the correct action in a state, instead it is told how good or how bad 
its action was. One requirement of this model is a measure of the goodness of action 
that the agent takes in a state. In section 4.2.2 we will review reinforcement learning 
from this category of learning methods. 

 
4.2.1 Learning from labeled and unlabeled documents  

Expectation Maximization (EM) [47] is an approach that uses a set of labeled and 
unlabeled documents to learn a multi-class classification problem. This algorithm first 
trains a Naïve Bayes classifier using only labeled documents and builds a model of 
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data. EM is a class of iterative algorithms for maximum likelihood or maximum a 
posteriori parameter estimation in problems with incomplete data [47]. For a model of 
training data with some missing values, EM iteratively uses the current model to 
estimate the missing values, and then uses the missing value estimates to improve the 
model. EM is an iterative two-step process, E-step and M-step. The E-step calculates 
probabilistically-weighted class labels, P(cj|di), for each document using the classifier 
and equation (1). The M-step estimates new classifier parameters using all the 
documents and equations (2) and (3). The iteration of E-step and M-step continues 
until (near-) convergence. Results are mostly favorable---compared to naïve Bayes 
alone, error is reduced by a third in the best cases, but care needs to be taken in 
modeling classes as mixtures of term distributions. 

 
4.2.2 Reinforcement learning 

The term “reinforcement learning” refers to a framework for learning optimal 
decision making from rewards or punishment [48]. It differs from supervised learning 
in that the learner is never told the correct action for a particular state, but is simply 
told how good or bad the selected action was, expressed in the form of a scalar 
“reward”. 

Using following notations, [23] formalizes a task in reinforcement learning as 
follows: 

S: set of states, s: a state in S,  
A: set of available actions, a: an action in A, 
T: S × A → S, a state-action transition function (mapping state/action pairs to the 
resulting state),  
R: S × A → R, a reward function (mapping state/action pairs to a scalar reward), 
The learner agent interacts with a dynamic environment. In each time step, the 

agent selects an action in a given state, receives a reward as a result of the taken 
action, and transitions to a new state. The goal of the agent is to learn a mapping from 
states to actions called a policy, π: S → A that maximizes reward over time. The 
“reward over time” is considered as a discounted sum of rewards into an infinite 
future. The discount factor is γ, which 0 ≤ γ < 1. Using this factor, rewards received 
sooner will be more valuable than rewards received later. The value of each state, 
following policy π, is defined as:  

Where rt is the reward received in time step t after starting in state s. The optimal 
policy, written π* is the one that maximizes the value, Vπ (s), for all states s. To learn 
the optimal policy its value function, V*, and its more specific correlate function (Q-
function) is learned. Let Q* (s,a) be the value of selecting action a from state s, and 
thereafter following the optimal policy. This is expressed as: 

 
                                Q* (s,a)  = R(s,a) + γV* (T(s,a)). 
 
Then the optimal policy is selecting from each state the action with the highest 

expected future reward: π*(s) = arg maxa Q*(s,a).  
The Cora search engine is a domain-specific web crawler that uses reinforcement 

learning to learn to find computer science research papers from web sites of computer 
science departments.  
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4.2.3 Case Based Reasoning 

Case Based Reasoning (CBR) is an approach to developing knowledge-based 
systems that are able to use past experiences to solve current similar problems [49]. In 
fact, it is a type of reasoning based on the reuse of past experiences called cases [50]. 
Cases are descriptions of experienced situations by learner agent. The agent acquires 
these experiences from interaction with its environment. In CBR two kinds of cases 
are stored in a case database, successful cases and failure cases. Successful cases 
should be reused as a basis to solve new problems that present a certain similarity 
[50]. Failure cases can prevent the agent from repeating similar actions that lead to 
unsuccessful results. Case Base Reasoning has been used in a variety of applications. 
As some examples we can name the use of CBR in document-retrieval systems, 
product-selection tasks in E-commerce environments, help-desk applications, 
diagnosis tasks in medicine and technical equipment, and system configuration and 
planning and design tasks [49]. Case Based BDI-Agent [43] is a domain-specific 
search engine that searches for the homepages of researchers with a particular interest. 
It uses CBR as its learning component to learn from past search results and reuse past 
cases to answer to similar queries in the future.  It also uses a domain-specific 
knowledge base to enhance its search results. 

 
4.3 Unsupervised learning  

An unsupervised learner agent is neither told the correct action in each state, nor is 
an evaluation of action taken in each state. In other words, there is not any training 
phase. In the hypertext context, the learner is given a set of hypertext documents, and 
then is expected to discover a hierarchy according to the documents’ similarities, and 
organize the documents along that hierarchy. This approach is also called clustering. 
A good clustering method will collect similar documents together in or near the leaves 
of a hierarchy, and dissimilar nodes will be joined near the root of the hierarchy. 
Clustering is used to enhance search, browsing, and visualization. In the next 
subsections we will review some clustering methods. 

Some of the classical clustering methods like k-means and hierarchical 
agglomerative clustering are applied to hyperlink documents [7]. Usually documents 
are represented in vector space model; each word of document is an element of its 
vector in a model such as TFIDF. The similarity of two documents is calculated as the 
cosine of the angle between their corresponding vectors, or the distance between the 
vectors, provided their lengths are normalized. 

 
4.3.1 K-means clustering  

“K-means is one of the basic techniques of clustering. The number of “k” in k-means 
clustering shows the desired number of clusters of document. Initially, the agent 
selects k number of seed documents arbitrarily. Each of seed document delegates a 
cluster. Thereafter each document is assigned to most similar cluster (seed 
document). The coordinate of the seed in the vector space is recomputed to be the 
centroid of all the documents assigned to that seed. This process is repeated until the 
seed coordinates stabilize. The process of document assigning continues until no 
document remained.” 

Soumen Chakrabarti [7]. 
 

4.3.2 Agglomerative clustering  
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“In agglomerative clustering that is a bottom-up clustering approach, documents are 
continually merged into super-documents or groups until only one group is left; the 
merge sequence generates a hierarchy based on similarity. We formalize the self-
similarity of a group Γ as: 

Where s(d1,d2) is the similarity between documents d1 and d2 , often defined as the 
cosine of the angle between the vectors corresponding to these documents in TFIDF 
vector space. Many other measures of similarity have been used. The algorithm 
initially places each document into a group by itself.” 

Soumen Chakrabarti [7]. 
 

5. Domain-Specific Search Engines 
 
As the web continues to grow exponentially, the idea of crawling the entire web on a 
regular basis becomes less and less feasible [51]. General-purpose search engines 
have certain limitations that we pointed to previously. We can summarize the 
fundamental limitations as: 

•  Querying Mechanism: They accept the user query in the form of a set of 
keywords, and complex user needs may not be easily formulated in a Boolean 
combination of keywords. However, some search engines can get other 
implicit context information or even accept the user query in form of natural 
language.   

•  Keyword Exact Matching: They rank the results shown to the user according 
to the exact keyword matching method.  

•  Low web Coverage Rate: They cover only a portion of the publicly available 
documents in web. To see web coverage rate, see section 1. The highest 
coverage rate search engine hardly covers 40 percent of web documents. 

•  Long result list with low relevancy to user query: The results of search engines 
may not satisfy user query; and even when the relevant documents are be in 
the search engine database, and they may not be high enough in the result list 
for the user to see them. 

Due to these basic problems and also because of the need to include information on 
specific domain, domain-specific search engines are proposed. A domain-specific 
search engine is defined as: “an information access system that allows access to all the 
information on the web that is relevant to a particular domain” [51]. We classify the 
search engines as shown in figure 9. 
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Figure 9. Classification of search engine systems 

 
As shown is figure 9, we can classify search engines as general-purpose search 
engines and domain-specific search engines. “Domain” in domain-specific search 
engines can be specialized with two existing kinds of search engines, search engines 
which focus on specific document type such as resumes, homepages, movies, etc. And 
search engines focus on specific topic like computer science, climbing, sport, etc. 
Table 9 shows some example search from each category.  
 

Search Engine 
Category 

Examples 

General-purpose 
search engines 

AltaVista, Excite, HotBot, Lycos, Northern Light 

Specific-document 
type search engine 

Ahoy, Cora∗ , Case-Based BDI Agent 

Specific topic search 
engines 

IBM Focused Crawler, Context Focused Crawler, Cora* 

Table 9. Examples of different type of search engines 
 

As we reviewed in section 2, a search engine or a web crawler has several parts: a 
crawler that traverses the web graph and downloads web documents; an indexer that 
processes and indexes the downloaded documents; and a query manager that handles 
the user query and returns relevant documents indexed in the database to the user. In 
this report we focus on the crawling mechanism of search engines. We focus on 
focused crawling (e.g., [37, 13, 24, 52]) that is a new crawling approach for domain-
specific search engines.  

While a general-purpose crawler visits the links of web in a breadth-first manner, 
a focused crawler reorders the links in the queue as to their predicted likelihood to 
lead to pages that are relevant to a particular topic [13]. Focused crawlers, like 
domain-specific search engines, can be divided into two categories: focused on 
specific topic or on a specific document type. If the goal of crawling is crawling pages 
related to “Agent-Based Systems”, that is the task of topic crawlers. But, if the goal is 
to fetch all course pages in a university or over the world, then this is the task of 
focused crawling on document type. All course pages are not on some related topic 

                                                
∗  Since Cora finds computer science research papers, it can be categorized in document specific 
(research paper finder) and also specific topic (computer science literature) search engine 

Search Engines 

General-purpose Search 
Engines 

Domain Specific Search 
Engines

Focused on Specific 
Document Type

Focused on 
Specific Topic 
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like “Agent-Based Systems”, but they are of the same type. This kind of crawler 
would also crawl on any specific types like resume, homepage, call-for-paper, FAQ, 
product, movie, papers, etc. There are some search engines in this category. 
Ahoy21[53] is a homepage search service based on a crawler specially tuned to locate 
homepages.  

Focused crawling is a new approach to topic-specific search engines, introduced 
by Soumen Chakrabarti et al. [13]. They describe their crawler as follows: 

 
“A focused crawler seeks, acquires, indexes, and maintains pages on a specific set of 
topics that represent a relatively narrow segment of the web. Thus, a distributed team 
of focused crawlers, each specializing in one or a few topics, can manage the entire 
content of the web. Rather than collecting and indexing all accessible web documents 
to be able to answer all possible ad-hoc queries, a focused crawler analyzes its crawl 
boundary to find the links that are likely to be most relevant for the crawl, and avoids 
irrelevant regions of the web. Focused crawlers selectively seek out pages that are 
relevant to a pre-defined set of topics. These pages will result in a personalized web 
within the World Wide Web. Topics are specified to the console of the focus system 
using exemplary documents and pages (instead of keywords). Such a way of 
functioning results in significant savings in hardware and network resources, and yet 
achieves respectable coverage at a rapid rate, simply because there is relatively little 
to do. Each focused crawler is far more nimble in detecting changes to pages within 
its focus than a crawler that crawl the entire web. 
The ideal focused crawler retrieves the maximal set of relevant pages while 
simultaneously traversing the minimal number of irrelevant documents on the web. 
Focused crawlers therefore offer a potential solution to the currency problem by 
allowing for standard exhaustive crawls to be supplemented by focused crawls for 
categories where content changes quickly.” 

Chakrabarti et al. [13]. 
5.1 Topic-Specific Focused Crawlers 

In this report, we concentrate on topic-specific focused crawlers and in the rest of 
this report “focused crawler” will refer to this kind. We can recognize three basic 
works in focused crawling. As stated earlier, Soumen Chakrabarti et al. [13, 14] 
presents the focused crawler as a new approach to topic-specific web resource 
discovery. This work was also done largely at IBM’s Almaden research center. Cora 
[23, 24, 25] is a computer science research paper search engine that uses 
reinforcement learning to guide its focused crawler. Rennie and McCallum at 
JustResearch and Carnegie Mellon University originally initiated this work. Another 
approach to focused crawling uses the context graph [52] to build a model of context 
within which topically relevant pages occur on the web. In the next subsections we 
survey new approaches to focused crawling, then we review the three basic focused 
crawlers named above, and finally we appraise these three approaches in the last 
subsection. 

 
5.2 Recent researches on Focused Crawling  

One of the first focused crawlers was the Fish system [54]. Fish is a client-based 
real-time information retrieval system. It crawls the hypertext documents on the web 
and uses “depth-first search” method to follow links within web documents. This 
search engine adopts the “Fish School” assumption and assumes that relevant 
documents to a topic should be near each other in link structure. Fish follows more 

                                                
21 http://www.cs.washington.edu/research/ahoy 
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links from pages that are relevant to the topic of search. It identifies relevant 
documents based on keywords and regular expressions. 

Another approach to focused crawling [37] uses the “importance of web pages” 
parameter to reorder links in its queue. Various heuristic measures for identifying 
page importance are tried, such as similarity to a driving query, number of pages 
pointing to this page (backlinks), page-rank and location (in a hierarchy).  We 
described the page-rank approach in the earlier section on web structure analysis.  

Focused crawling as a new approach to topic-specific resource discovery is 
introduced in [13]. The topic under focus is represented as a set of example 
documents instead of a set of keywords. This system has three main components, a 
classifier, distiller and crawler. The classifier makes relevance judgments on pages to 
decide on link expansion and the distiller determines centrality of pages to determine 
visit priorities. The latter is based on connectivity analysis and uses a variation of the 
HITS algorithm [16]. Soumen Chakrabarti proposed an improved version of this 
approach in [55, 56]. They added another classifier to this system, called Apprentice. 
The task of the new classifier is assigning priority to unvisited URLs while the old 
classifier provides templates for the new classifier. Apprentice uses HTML tags and 
the DOM22 (Document Object Model) tree, as well as user feedback to learn 
classification.  

A site mapping application which uses focused crawling is described in [57]. The 
crawler starts in a certain point and traverses the web graph toward relevant 
documents. This approach uses a vector space model to compute the similarity of 
documents to the focus topic. Next-level pages inherit a discounted score of this 
original relevancy. Anchor text and URL text is also used to judge the priority of links 
to follow within a relevant page. In fact, this approach is an improvement on the Fish 
system, described above. 

Cora [23, 24, 25] is a computer science search engine that uses reinforcement 
learning to guide a focused crawler. This crawler has two phases, training and testing. 
In the training phase it learns a mapping from text in a neighborhood of URLs to a 
scalar value. This value of a URL is some discounted reward that it receives by 
following that URL. Rewards are on-topic documents that are accessible by following 
that URL, one or more links away. In the test or work phase, it assigns a scalar value 
to each unvisited URL from its neighborhood text. This value is the estimated sum of 
rewards that are obtainable from that URL. The crawler picks the URLs from a 
priority queue in which URLs are ordered according to their estimated sum of future 
discounted rewards. One strength of this approach is that it considers the future 
reward of links in their crawling priority, so the likelihood of crawling a link within 
an off-topic document that may lead to reasonable amount of on-topic documents is 
high. We will describe this approach in more detail in the next section. 

Another kind of focused crawler considers the hidden aspects of the web [58]. The 
goal of this crawler is to access the huge amount of hidden information behind web 
search forms. They propose a task-specific human-assisted approach in a system 
called HiWE (Hidden Web Explorer). They model forms as a set of (element, 
domain) pairs and try to determine suitable input values based on labels from form 
layout. The crawler seems to perform better on larger forms (more descriptive labels 
and finite domains). 

The use of a context graph to guide a focused crawler is described in [52]. 
Researchers of this approach state that assigning proper credit to a link during the 

                                                
22 http://www.w3.org/DOM/ 
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crawl is the important problem of focused crawling. For example, some off-topic 
pages may lead to on-topic pages, some levels deep from the start page. To address 
this problem a context-focused crawler was proposed, which uses general-purpose 
search engines to find the back-links of pages, and uses these to construct a context 
graph for each page. Then this set is used to train a set of classifiers to assign 
documents to several classes according to their expected distance from on-topic 
documents. Graphs and classifiers are constructed for each seed document up to 
particular layer, showing the expected distance to target pages. A Naïve Bayes 
classifier is used for each layer. The links with lower distance to target documents are 
tried first. We review this kind of focused crawler in the next sections. 

Web Topic Management System (WTMS) is another approach to focused 
crawling that is described in [59]. They proposed a crawler that only downloads pages 
very near (parent, child, and sibling) to relevant documents. Documents in this system 
are represented in a vector model space and their relevancy to the focused topic is 
computed by techniques in this model. This crawler also follows URLs that include 
keywords of focused topic. It sets a threshold for each branch of the web and stops 
following URLs of this branch if the relevance score of the area falls below the 
threshold. 

An evaluation of focused crawlers is reported in [60]. Initially a set of classifiers 
for 100 topics was built to be used in the evaluation of the crawled documents. The 
researchers in this approach believe that a good focused crawler should remain in the 
vicinity of the topic. They evaluated the crawlers based on ability to remain on-topic 
during the crawling session.  Three different strategies of focused crawling are 
evaluated: 
 

•  Best-first search: Uses a priority queue and orders the links according to 
similarity between focus topic and page where they were found. 

•  Page-rank: Orders the page according to their page-rank score. This method is 
described in web structure analysis section (3.2.1). 

•  Infospider: Uses a back-propagation neural network and learns text around the 
links.

The results of this research show that Best-First-search out-performs the others; 
Infospider is in second place and finally page-rank has the lowest efficiency among 
them. They conclude that the page-rank method is too general to be very useful in 
topic-specific search.  

A focused crawler that tries to learn the link structure of the web is detailed in 
[61]. This approach tries to find some features in a page that make it more likely that 
its links lead to on-topic pages. For example, page content, URL structure of page, 
link structure of web or a combination of them can be considered as features. The 
researchers of this approach claim that learning the link structure of the web is a more 
general framework than assuming a predefined structure for it. They learn link 
structure with a statistical model. The result of this research shows that the combined 
features model is more efficient than using each of them in isolation. This approach is 
also robust against different starting points on web.  

 
5.3 IBM Focused Crawler 

Focused crawling [13, 14] as a new approach to topic specific resource discovery 
was proposed by Soumen Chakrabati and some of his colleagues when he was at  
IBM’s Almaden center. The focus topic in this system is represented by a set of 
example pages that is provided by a user to the system. In the system described there 
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is a user-browsable topic taxonomy where the user can mark some of the documents 
as good and select them as the focus topic.  

The system has three main components: A classifier that makes judgments on the 
relevancy of crawled documents, and decides on following the links within pages. The 
classifier is an extended version of the Naïve Bayes classifier. The second component 
is a distiller that evaluates the centrality of each page to determine crawling priority of 
links within it. The distiller uses the bibliometric concepts of hub and authority pages 
as an approximate social judgment of web page quality. For each page it calculates 
the hub and authority scores of each web page with an extended version of the HITS 
algorithm [16]. It tries to crawl the links within pages with the highest hub score first, 
in hopes of finding new authorities first. The third component of the system is a 
dynamic crawler that crawls the web according to a re-orderable priority queue.  

The system works in two phases: training and testing. In the training phase, the 
classifier is trained with some labeled data relevant to the focus topic. The training 
data set is acquired from existing taxonomy-like search engines (portal) such as 
Yahoo! and Open Directory Project. Figure 10 shows the architecture of this system.  

 

 
Figure 10. Architecture of IBM focused crawler, showing how classifier, distiller 

and crawler collaborate with each other. 
 
5.4 Cora Domain Specific Search Engine 

The Cora search engine [48, 49, 50] automatically spiders, classifies and extracts 
computer science research papers from the web. The papers in CORA are organized 
into a taxonomy with 75 leaves, and various fields such as author and title are 
extracted from each paper. Additionally, bibliographic information is extracted from 
each paper, allowing bibliometric analysis to be performed. The creation and 
maintenance of Cora relies heavily on artificial intelligence and machine learning 
techniques. The tasks can be broken down into four components: spidering 
(crawling), extraction, reference matching and classification.  
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In this report we concentrate on the crawling methodology of Cora. We can divide 
the spidering task into two phases: Training and Testing. Figures 11 through 15 show 
the workflow of the Cora spider in these two phases. 

 
“One strength of reinforcement learning is that it provides a formalism for measuring 
the utility of actions that give no immediate benefit, but give benefit in the future. 
Reinforcement learning agents presents this delayed benefit by learning a mapping 
from each available action to a scalar value (Q-Value) indicating the sum of future 
discounted rewards expected from executing that action. The “discount” makes later 
rewards less valuable than sooner rewards, thus encouraging efficiency. 
In the spidering task, the on-topic documents are immediate rewards. The actions are 
following a particular hyperlink. The state is the bit vector indicating which on-topic 
documents remain to be consumed, and which actions have been discovered.  The 
state does not include the current “position” (last page visited) of the agent since a 
crawler can jump to any known URL next. The number of available actions is large 
and dynamic, in that it depends on which documents the spider has visited so far. The 
key feature of topic-specific spidering that make reinforcement learning the proper 
framework for defining the optimal solution is: (1) performance is to be measured in 
terms of rewards over time, and (2) the environment presents situations with delayed 
reward.” 

Rennie and McCallum [24] 
 

The training phase involves two tasks: (1) assigning appropriate Q values to each 
hyperlink in the training set, and (2) learning a mapping from text to Q values using 
the training data.  Target documents or rewards are computer science research papers 
on the web pages of computer science departments.  As it is shown in Figure 11, 
assigning a Q-value to each URL is done according to a sum of the discounted 
number of rewards that are obtainable from a URL in the future. A more immediate 
strategy does not consider the future rewards in Q-value computation. Mapping from 
text to Q value is done by casting this regression problem as classification [62], 
discretizing hyperlink Q values and training a naive Bayes classifier on the 
corresponding neighborhood text. Figure 12 shows the pseudo code of mapping text 
to Q-value in the training phase. Figure 13 shows the pseudo code of mapping from 
neighborhood text of URLs to Q-Value in training data. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Workflow of training phase of Cora spider 
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Figure 12. Pseudo code of assigning Q-Value to each URL in training data 

Figure 13. Learning a mapping from neighborhood text of URLs to Q-Value 
 
In the testing (working) phase, the spider crawls the web and tries to follow the 

links with higher estimated reward first. Figure 14 shows the workflow of the working 
phase of the system. The crawler starts from the homepages of computer science 
departments and looks for research papers as target documents. Figure 15 shows the 
pseudo code of the system in working phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 14. Workflow of Cora spider in working phase 
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    Place the neighborhood text of the Hyperlink into the bin corresponding to  
    its Q-Value 
 
Train Naïve Bays classifier with texts in bins as training data, every bin has a 
specific Q-Value range 

Identifying 
Target 

documents 

Hyperlink 
extraction and 

document 
processing 

Processing target 
document and 

indexing 

Naïve Bayes 
Classifier 

Bins with 
certain Q-

values 

Calculating a Q-Value 
for each URL Web Crawlerweb 

HTML 
documents 
(non-target) 

Target Documents 

Priority 
Queue 

Hyperlinks 
and their 
neighborhood 
text 

Learned in training phase 

Probability of 
generating text 
by each bin 

Retrieved 
Documents 



Information Retrieval on the WWW and Active Logic 

Page 33 of 45 

Figure 15. Pseudo code of Cora spider working phase 
 
Experiments show that this directed spider is three times more efficient than a 

spider based on breadth-first search, and also more efficient than other smart spiders 
that do not explicitly model future reward [24]. 
 
5.5 Context Focused Crawler 

Context focused crawler [52] is an approach to focused crawling that tries to build 
a context graph for each web page (graph which shows the pages with link to that 
page in web link structure) and guess the distance of page to the target pages, then 
crawl the web pages with near distance to target pages first. The researchers of this 
approach believe that: 

 
“The major problem in focused crawling is performing appropriate credit assignment 
to different documents along a crawl path, such that short-term gains are not pursued 
at the expense of less-obvious crawl paths that ultimately yield larger sets of valuable 
pages. . .To address this problem we present a focused crawling algorithm that builds 
a model for the context within which topically relevant pages occur on the web. The 
context model can capture typical link hierarchies within which valuable pages occur, 
as well as model content on documents that frequently co-occur with relevant pages. 
This algorithm further leverages the existing capability of large search engines to 
provide partial reverse crawling capabilities. Algorithm shows significant 
performance improvements in crawling efficiency over standard focused crawling.” 

Diligenti et al. [52] 
 
We can recognize the work process of this focused crawler in two phases: training 

and testing. In the training phase a user should provide some seed documents relevant 
to topic.  For each seed document all of its backlinks are gathered using a general-
purpose search engine up to a certain level. Each gathered page is assigned to a 
specific layer according to its distance to seed (target) page. So each layer includes 
documents that are within a specific distance to target documents. Seed documents lay 
in layer 0. Then a set of Naïve Bayes classifiers is trained with documents in each 
layer. Every classifier learns documents in a specific layer.  

Download the document of the Hyperlink with highest Q-Value, 
    If the document is a target document: 
        Store it in document pool to be processed and indexed later. 
    Else: 

- Extract the page’s URLs and send its anchor and its      
   neighborhood text to Naïve Bays classifier  
- Having the probability of generating the URL’s text and its  
   neighborhood text with each class from Naïve Bays 

classifier,                   
   calculate Q-Value of URL according to: 
             Q-Value (Hyperlink) = Purl(bi)* Q(bi), where  
       P(bi) = Probability of generating the URL and its associated text    
        with bin i, produced by Naïve Bays classifier.  
       Q(bi) = Associated Q-Value of bin i. 
- Insert (URL, Q-Value) pair in priority queue to be crawled  

according to its Q-Value



Information Retrieval on the WWW and Active Logic 

Page 34 of 45 

In the testing phase, a new downloaded page is classified using the classifier and, 
according to its estimated distance to target documents, is assigned to a queue 
corresponding to each layer. The crawler crawls the URLs from queues with smaller 
numbers before others. Figure 16 shows the architecture of this crawler and Figure 17 
and 18 show pseudo code for its training and testing phase, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 16. Architecture of Context Focused Crawler (From [52]). 
 
 

 
Figure 17. Pseudo code of training phase of context focused crawler 

 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 18. Pseudo code of testing phase of context focused crawler 
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5.6 Appraisal of three basic Focused Crawlers 
The purpose of this section is to appraise three basic approaches to focused 

crawling. These approaches are Cora, IBM Focused Crawler and Context Focused 
Crawler that we detailed in the previous sections. Table 10 shows the fundamental 
characteristics of these crawlers in comparison with each other.  

 
 Type of 

Input 
Training 

Data 
Learns 
What? 

Target 
Documents 

Identifying 
target 

documents 
method 

IBM 
Focused 
Crawler 

Exemplary 
documents  

Classified 
relevant 
documents 

Identifying 
target 
documents 

on-topic 
HTML files 

Uses trained 
Naïve Bayes 
classifier 

Cora Some web 
site 

Some web 
site 

A mapping 
from 
neighborhood 
text of URLs to 
a scalar value 
(Q-Value) 

Computer 
science 
research 
paper files 
(.ps, .ps.z, 
.ps.gz) 

A hand-coded 
algorithm 
identifies with 
more than 
95% accuracy 

Context 
Focused 
Crawler 

Seed 
documents 

Pages in 
Context 
Graph of 
seed 
documents 

Estimating 
distance of 
current page to 
target pages 

on-topic 
HTML files 

Uses trained 
Naïve Bayes 
classifier 

Table 10. Characteristics of three basic approaches of focused crawling 
 
Each of these approaches has some strengths and some major problems. In the 

next subsections, we highlight their abilities and disabilities in more detail. 
 

5.6.1 IBM Focused Crawler 
We summarize the problems of this focused crawler as: 

•  Fixed model of classifier, IBM focused crawler uses a fixed model of 
relevancy class as a classifier to evaluate topical relevancy of documents. 
A more adaptive classifier uses documents that are marked as relevant by 
the classifier to update the classifier. However, ensuring flexibility in the 
classifier without simultaneously corrupting the classifier is difficult [52]. 

•  Does not model future rewards. One major problem faced by this focused 
crawler is that is does not learn that some sets of off-topic documents often 
lead reliably to highly relevant documents [52].  In other words it does not 
model the future reward of links. For example, a home page of a computer 
science department is not relevant to “Reinforcement Learning”, but links 
from that home page eventually lead to the home page of the “Machine 
Learning Laboratory” or the home page of a researcher where it may find 
valuable target pages.  

•  Lack of comparison of results. The results reported in papers of this 
approach are not compared with results of human-maintained portals like 
the Open Directory Project, so judgments on the quality of gathered pages 
in this approach is hard.  

•  Exemplary documents. Representation of focus topic in the form of some 
high quality documents related to topic is sometimes hard for the user. 
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5.6.2 Cora Focused Crawler 
We summarize the problems of this focused crawler as: 

•  Slow initialization. The main purpose of using reinforcement learning in 
this crawler is to learn a set of off-topic documents that leads to on-topic 
documents in next levels.  But in order to learn this set of documents, Cora 
needs to repeatedly crawl a substantial part of the target web sites during 
the learning phase [52].  

•  Specifying representative web sites. “The web site or server on which the 
document appears is repeatedly crawled to learn how to construct 
optimized paths to the target documents. This approach places a burden on 
the user to specify representative web sites.” [52]. 

•  Difficulty with target pages in sites other than the start web site. This 
approach only finds the target pages in the start web site and leaves the 
target pages in other web sites [52]. 

•  Unable to find documents further than 4 levels from the start page. 
Reported results show that it is able to find target documents up to 3-4 
hops beyond the current page. Since it uses words around URL to do a 
mapping to a scalar, the set of neighborhood words of URLs farther than 4 
jumps is large and too general to learn. 

 
5.6.3 Context Focused Crawler 
We summarize the problems of this focused crawler as: 

•  Requirement for reverse links. “The major limitation of this approach is 
the requirement for reverse links to exist at a known search engine for a 
reasonable fraction of the seed set documents.” [52]. 

•  Limited to 2-3 layers for efficient crawling. It learns the documents with 
particular distance to target pages using a set of Naïve Bayes classifiers. 
Learning of documents further than 2 or 3 jumps is difficult because of the 
heterogeneity and variety of the web pages found at those distances from 
the target documents. 

 
6 ALII: Information Integration Environment based on 
Active Logic framework. 

 
Active Logic is a kind of “step logic,” which was developed in [63] as formal 

mechanism for modeling the ongoing process of reasoning.  Unlike traditional logical 
formalisms, a step-logic does not calculate a final set of conclusions which can be 
drawn from an initial set of facts, but rather monitors the ever-changing set of 
conclusions as time goes on.  There are special persistence rules so that every theorem 
α present at time t implies itself at time t+1; likewise there are special rules so that if 
the knowledge base contains both a theorem α and its negation –α, these theorems and 
their consequences are “distrusted” so they are neither carried forward themselves nor 
used in further inference. An active logic, then, consists of a formal language 
(typically first-order) and inference rules, such that the application of a rule depends 
not only on what formulas have (or have not) been proven so far (this is also true of 
static logics) but also on what formulas are in the “current” belief set. In general the 
current beliefs are only a subset of all formulas proven so far: each is believed when 
first proven but some may subsequently have been rejected.   Active Logics have the 
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following characteristics: they are situated in time, maintain a history, tolerate 
contradictions, and allow meta-reasoning to be done. 

Based on the above definition, active logics are a family of inference engines that 
incorporate a history of their own reasoning as they run. Thus at any time t, an active 
logic has a record of its reasoning at all times prior to t, and it also knows that the 
current time is t. As it continues to reason from time t, that reasoning is also recorded 
in the history, marked at time t+1 as having occurred at time t. Thus an active logic 
records the passage of time in discrete steps, and the “current” time slides forward as 
the system runs. It is convenient to regard its current inferences as occurring in a 
working memory that is then transferred to the history (or long-term memory) in the 
next time-step. Thus, an active logic has time-sensitive inference rules and 
consequently time-sensitive inferences.  In active logics the current time is itself noted 
in the working memory—Now (t)—and this changes to Now (t+1) one step 
later. (A time-step should be thought of as very fast, perhaps 0.1 sec in 
correspondence with performance of elementary cognitive tasks by humans). Thus 
active logics “ground” now in terms of real time-passage during reasoning. 

These characteristics make active logics suitable for use in various domains 
including time situated planning and execution [66]; reasoning about other agents 
[67]; reasoning about dialog [68, 69], including updating and using discourse context 
[70]; and autonomous agency [71]. 

There are many examples of active logics in various papers. We present here a 
couple of simple rules. 

1) Time step update rule:   t: Now(t), then: t+1:Now(t+1) 
is a rule that says: if at the current step, Now has the value t, then, at the next step, 

let Now have the value (t + 1). This enables the active logic to keep track of step 
numbers and therefore of time. This is a basic rule and is included in all active logics.  

2) Another example is the contradiction rule:  
 t:P, not(P), then: t+1:contra(P, not(P))
If at a step, we have both P and not(P) present in the database, at the next step, we 

add contra(P, not (P)) to the database to indicate the contradiction. There will be other 
rules that will cause the consequences of P and not(P) not to be derived in later steps, 
and rules that will attempt to resolve the contradiction and reinstate either P or not(P) 
to the database at a later time.  

3) We can also have modus ponens:  t:P, P→Q, then conclude:t+1:Q. 
This says: if at time t, the database contains P and (P → Q), then in the next time 

step, conclude Q.   Note that if the database contains P, (P → Q) and (Q → R), we do 
not get R immediately, but only after 2 steps. First, we use P and (P → Q) to obtain Q, 
then in the second step, we use this together with (Q → R) to derive R.  

4) The inheritance rule keeps formulas in the database unless there is a 
contradiction:  

      t:P,not_know(not(P)),\+ P = Now(t),then conclude:
t + 1: P.
not_know(P) is true iff P is not in the current database. Since the database is finite, 

this poses no computational problems. “\+ P = Now(t)” verifies that P is not of the 
form Now(t) and prevents time from being inherited.  This rule also prevents the 
lemmas of a contradiction from being inherited.  

5) Let the sentences initially present in the database be: Now (0), Bird (tweety), 
Bird (x) & not_know (not (fly (x))) → fly (x). With the above rules of inference, this 
is what the database looks like at consecutive steps:  
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At step 0: Now(0), Bird(tweety), Bird(x) & not_know(not(fly(x))) → fly(x)  
At step 1: Now(1), Bird(tweety), Bird(x) & not_know(not(fly(x))) → fly(x), 

fly(tweety)  
since “not(fly(tweety))” is not present in the database at step 0.  
The database will not change thereafter.  
 
 

6.1 Why Active Logic for Focused crawling? 
As more information becomes available on the World Wide Web, it becomes 

more difficult to provide effective tools for accessing this information.  Today, web 
users access the web through two dominant interfaces: clicking on hyperlinks 
(browsing) and searching via keyword queries (crawling).  

Users have two main tools to help them locate relevant resources on the web: 
Catalogs and Search Engines. Human experts construct catalogs. They tend to be 
highly accurate but can be difficult to maintain as the web grows. To keep up with 
this growth search engines were designed to eliminate human effort in cataloging web 
sites. A search engine consists of a mechanism that “crawls” the web looking for new 
or changed pages, an indexing mechanism and a query interface.  Users generally 
query against the system index, although many contemporary search engines now also 
use link analysis to some degree. However, link analysis only helps to identify the 
most popular pages, and popularity may or may not correlate to relevance for a 
particular query. 

As we have seen there are numerous attempts to improve the search engine. One 
of the major efforts in this regard is in improving web Crawlers, also known as robots, 
spiders, worms, walkers, and wanderers, described in detail in sections 2 and 5. 

Two critical factors for the design, implementation and maintenance of a Focused 
Crawler are: conceptual modeling of the domain, and reasoning support over the 
conceptual representation. Knowledge representation and reasoning techniques play 
an important role for both of these factors. By using an Active Logic based 
framework in Focused Crawler architecture, we will be able to create an engine to 
implement these roles well. 

As is mentioned briefly in the last section, the focused crawler has three main 
components: a classifier, distiller, and a crawler. Presently focused crawlers tend to 
use probabilistic reasoning in their components. Detailed description of these 
components has been given in section 5. 

A major problem faced by existing crawlers is that it is frequently difficult to learn 
that some sets of off-topic documents often lead reliably to highly relevant 
documents. This deficiency causes a problem in traversing the hierarchical page 
layouts that commonly occur on the web. Consider, for example, a researcher looking 
for papers on ‘Natural Language Processing’. A large number of these papers are 
found on the home page of researchers at computer science department at universities. 
When a home page finds the home page of a university, a good strategy would be to 
follow the path to computer science (CS) department, then to the researcher’s page, 
even though the university and CS department pages in general would have low 
relevancy scores. An adaptive focused crawler based on active logic could in principle 
learn this strategy by building a tree from query and expanding this tree while the 
system was in process. 

ALII [72] utilizes a compact context representation and constructs a hierarchy 
model of query and web pages. The crawler based on active logic also utilizes the 
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limited keyword crawling possible using general search engine indices efficiently 
focus-crawl the web. 

There are three distinct stages to using active logic when performing a focused 
crawl session:  

1. An initialization phase when a query present to a search engine. In this 
phase the initial tree will be constructed.  

2. A crawling phase that extracts the pages from web sites. In this stage 
the associated trees are constructed for each of the seed pages. 

3. A process phase that evaluates each page tree within the query tree. In 
this phase the query tree will improved from time (t) to time (t+1). 

In implementing this idea for specific query, we will use above steps. The results 
will show how the query changes from time ‘t’ to ‘t+n’ and lead to the expectation of 
related responses from focused crawler. In this implementation we will first have to 
build hierarchy trees from the query and focused crawler responses at time ‘t’. By 
following the links on responses from focused crawler, the system will consequently 
improve both the query tree and the result tree. The trees’ improvement in time ‘t+1’ 
is based on active logic procedures combined with the focused crawler architecture. 

The query tree processing considers the weight of each node representing in the 
result tree from the focused crawler result. The associated weight to each node is 
calculated based on node relevancy to focused topic or query [72]. Based on weight, 
the tree may be pruned in one step, instead of expanded. Such an optimized tree 
presents more adequate and related results to the query. 

 
The following characteristics of Active Logic are considered in this phase. 

Ignorance-assessment amounts a lookup at time “t” of what was known prior 
to t. 

Contradictory information can (sometimes) be detected and used to curtail 
nonsensical inferences as well as to initiate repairs. 

Defaults can be characterized in terms of lookups to see whether the result 
page is (directly) contrary to the default knowledge regarding the specified 
topic. 

Reasoning can be kept current, i.e., inferences can be triggered to occur when 
they are needed.  From these characteristics, an environment based on 
active logic will be situated in time, will maintain a history of its own 
reasoning, will tolerate contradictions, and will enable meta-reasoning. 

 
All outputs of the process phase can be used as knowledge for input into the 

classifier component. The ALII [72] project aims at developing methods and tools for 
a Model-based, Semantic Integrating of information sources on web pages. Work in 
progress is centered on a demonstrator application for information services. ALII is a 
representation environment and logical reasoning tool with a formal foundation in 
Active Logic. ALII can seek (through the links), acquire, index and maintain pages 
that are relevant to a predefined set of topics and effectively build high quality 
collections of web documents. 

 
 

7 Conclusion 
 

Search engine technology has gone through several evolutions and finally reached 
the point where Artificial Intelligence can offer tremendous help. We have reviewed 
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this evolution from the beginning up to now and surveyed several different techniques 
that have been developed to improve search engine functionality. In particular we 
highlighted some machine learning approaches to information retrieval on the web 
and concentrated on topic-specific search engines. Finally, we proposed an 
information integration environment based on active logic. Our approach uses current 
technology in a good manner to provide better results. 
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