
Context-Sensitive Search and Exploration of XML TextThomas Baby Sudarshan S. Chawathethomas@cs.umd.edu chaw@cs.umd.eduDepartment of Computer Science Institute for Advanced Computer StudiesUniversity of Maryland, College Park University of Maryland, College ParkMD 20742 MD 20742CS-TR-#4223UMIACS-TR-#2001-12AbstractXML permits documents with arbitrary nested context (tag structure). We investigate howthis context may be used to aid the task of searching and exploring XML text. We describe thedesign and implementation of the Cextor system, which includes a context-sensitive text-searchengine and a novel technique for organizing and exploring very large search results based oncontext. A distinguishing feature of this technique is that it does not assume search results areof modest size. Rather, it is designed to cope with search results that are potentially the size ofthe database. We present the results of an experimental evaluation of Cextor on derived datafrom the Web.1 IntroductionThe ability to easily locate information on the Internet is signi�cantly improving the e�ciency ofscienti�c and business activities. Given the size and rapid growth of the Internet, especially inrecent years, the design of scalable systems for searching networked documents remains challeng-ing. Nevertheless, the availability of commercial search engines such as Google has considerablyeased the task of locating documents that can be accurately described using a few distinguish-ing terms. For example, it is not di�cult to �nd information about the ide-scsi driver for Linuxusing Google and the query linux ide-scsi. Our task in this example was simpli�ed by ourknowledge (or assumption) that relevant documents contain the term ide-scsi, which occurs infre-quently in the document collection. Unfortunately, this happy circumstance is more an exceptionthan the norm and we must often search for documents that cannot be discriminated this easily.Continuing our example, suppose we are looking for information on monitors that work well withLinux. Several of the obvious Google queries (e.g., linux monitor) return very large (800; 000)matches. Further, a high proportion of the �rst few matches are not relevant to monitor hardware,but use the term monitor in other contexts (e.g., network monitor, diald monitor). Successive re-1



�nements (e.g., linux monitor -network, linux monitor -network display hardware) yieldprogressively more relevant results.Such re�nement requires one to �rst examine the early search results in order to determinethe terms that may help in �ltering out irrelevant results. This task is often complicated bythe presence of documents that use the same word or phrase in di�erent contexts (e.g., the useof the word monitor in our example). Unless one is very careful, relevant documents may beinadvertently eliminated from the result. In our example, the addition of re�nement term -network(intended to remove documents describing network monitors and not computer displays) resultsin the elimination of several helpful documents from organizations with the word network in theirnames (e.g., Maximum Linux Network).The importance of the context in which words appear in a document is well recognized inthe Information Retrieval literature, as is the need for e�ective (e�cient and usable) re�nementmechanisms. However, most documents on the Web are in HTML format, which is severely limitedin its ability to encode meaningful context. While a few �xed contexts (e.g., title, headings) areavailable, there is no way to de�ne and use more meaningful contexts (e.g., hardware review, price).Further, since HTML mixes content with its presentation, many documents misuse HTML tags forformatting purposes, resulting in further complications. Therefore, the simple form of context-sensitivity found in some search engines (e.g., title:review in AltaVista) results in very limitedimprovements.The emergence of XML and related technologies promises to improve the situation by cleanlyseparating data from its presentation. In particular, XML documents may de�ne and use theirown context hierarchies (by nesting user-de�ned tags). For example, the word Stewart in line10 of Document 1 in Figure 1 is marked with the tag name. Start and end tags (e.g., <writer>and </writer>) delimit an element that we shall identify with the name of the tag (lines 9{12of Document 1). Elements can be nested (e.g., the above writer element has name subelementsin lines 10 and 11; the writer element is, in turn, a subelement of the show element beginningin line 7). The context depends on all the ancestors of the element in which a word appears.For example, the context of the name element in line 8 of Document 1 is di�erent from that ofthe name element in line 10. We distinguish these contexts by using their fully quali�ed forms:/guide/theater/show/name and /guide/theater/show/writer/name, respectively.The ability to de�ne document-speci�c (more commonly, application- and domain-speci�c) con-texts leads to both opportunities and challenges. On the one hand, proper use of this added powercan help alleviate the problems described earlier. On the other hand, the unbridled use of user-de�ned contexts can result in di�culties in their interpretation. Continuing our example, an XMLdocument containing the fragment <Monitor>... <Size>18</Size>... </Monitor> providesa more precise method for locating 18-inch computer monitors compared with what is possiblewith HTML documents (e.g., a Google search for monitor 18). However, while it is tempting toassume the most obvious interpretation of the elements, there is no guarantee that this interpreta-tion is correct. In our example, the XML document could be the con�guration �le for a networkmonitoring tool, with the size element indicating the size, in bytes, of test packets.Similar observations have resulted in a urry of activity on the standardization of XML tags in2



1:<guide>2: <city> New York </city> <state> New York </state>3: <theater> Ford Center for Performing Arts4: <address>5: <street> 213 West 42nd Street </street>6: </address>7: <show>8: <name> 42nd Street </name>9: <writer>10: <name> Michael Stewart </name>11: <name> Mark Bramble </name>12: </writer>13: <director> Gower Champion </director>14: </show>15: </theater>16: <theater> Broadhurst Theatre17: <address>18: <street> 235 West 44th Street </street>19: </address>20: <show>21: <name> Fosse </name>22: <director> Ann Reinking </director>23: </show>24: </theater>25:</guide> (a) Document 11:<guide>2: <city> New York </city> <state> New York </state>3: <broadway> <theater>4: <name> Shubert Theatre </name>5: <address> 225 West 44th Street </address>6: <show>7: <name> Chicago </name>8: <writer>9: <name>John Kander</name>10: <name>Fred Ebb</name>11: </writer>12: <director> Bob Fosse </director>13: </show>14: </theater>15: <theater>16: <name>American Airlines Theatre </name>17: <address> 227 West 42nd Street </address>18: <show>19: <name> Design for Living </name>20: <playwright> Noel Coward </playwright>21: <director> Joe Mantello </director>22: </show>23: </theater> </broadway>24:</guide> (b) Document 2Figure 1: Sample XML Documents3



various communities. Recognizing that complete global standardization for all domains is unlikely,there has also been work on standardized speci�cation of semantics and ontologies and on theintegration of such speci�cations. Such work aims to arrive at an integrated, semantically consistentversion of all relevant XML documents (either by standardization or by reasoning with ontologies)and is not the focus of this paper.In this paper, we adopt a di�erent view: In the near future, there are likely to be many XMLdocuments that do not adhere to the kind of careful semantic speci�cations that the standardizationwork demands. Further, even in the long term, a diverse and autonomous environment such asthe Web will always a contain a signi�cant amount of useful information in documents that aresemantically unconstrained or ill formed (perhaps because the generator of such information doesnot have the motivation or resources to put it in a standard form). Of course, tools for searchingXML could always ignore such documents; however, they would then be rather limited in their reach.In order to bene�t from the information in such documents, we believe it is important to studythe following problem, which is the focus of this paper: How can we improve the e�ectivenessof XML search without assuming anything other than well-formedness of XML? (Intuitively, anXML document is well-formed if it satis�es some very simple syntactic constraints, such as propernesting of elements.) Our work shares this guiding principle with recent work in semistructureddata: Structure is considered descriptive, but not prescriptive. Our goal is to make the best use ofany available structure (context) without insisting on any particular structure.To address the above problem, we have designed and implemented the Cextor system. Cextorimplements context-sensitive boolean queries on XML documents. Intuitively, the query fosse IN/guide/show/name AND NOT fosse IN /guide/show/director/name matches XML documentscontaining the word fosse in the �rst context context but not in the second. (Details appear inSection 2.) This query language is implemented using some simple and e�ective extensions tothe traditional inverted �le data structures. Unlike common search engines, the execution of aCextor query results in more than an annotated list of document identi�ers. Instead, the matchingdocuments (and matching locations and contexts within them) are organized in an intuitive ande�cient data structure, called the context tree. Intuitively, the context tree groups the documentsin a query result based on the contexts in which they match the query terms. Cextor providesthree operations for exploring the query results through the context tree: navigation (expandingand hiding tree nodes), re�nement (�ltering results), and anchoring (reorganizing the tree usinga new node as root). The context tree and the exploration operations serve as e�cient buildingblocks for expressive interfaces that integrate search and exploration of a large XML documentcollection. We do not assume that the result of a query contains a modest number of documents.Instead, the context tree and the exploratory operations are designed to e�ciently operate on queryresults that are comparable in size to the entire document collection.We have built a complete system, including a user interface. However, our interest lies pri-marily in the data-centric query-and-exploration operations that (through the Cextor applicationprogramming interface) enable an expressive user interface, not in the interface itself. Further, sincethe number of XML documents on the public Web is much smaller than the number of HTML doc-uments, we have tested our system by crawling and indexing HTML, not XML, documents. While4



using such HTML (converted to XML as XHTML) su�ces for testing our ideas, the test system isnot as intuitive to use as is one based on XML. (For example, we do not expect to use the interfacesuggested by the screenshot in Figure 2 for purposes other than validation and experimentation.)Our contribution is not the test system, but the Cextor system that is capable of indexing anyXML (or HTML) collection. We have made the Cextor source code publicly available (GNU GPLterms) at http://www.cs.umd.edu/projects/cextor/.In summary, our primary contributions in this paper are (1) an index structure for XMLthat implements context-sensitive boolean queries; (2) an extension to this structure for speedingup XML queries in languages similar to XML-QL; (3) methods for organizing and exploring verylarge search results; (4) an experimental evaluation of our work; and (5) an implemented systemwhose source code is publicly available.2 The Cextor SystemIn this section, we describe our system for search and exploration of XML documents. We beginwith some preliminary de�nitions followed by a description of the syntax and semantics of ourquery language. Next, we present the context tree that forms the basis of our the Cextor ap-plication programming interface (API). We describe our simple interface based on this API. Wethen describe the exploration operations introduced in the previous section. Finally, we discuss theimplementation techniques for the indexing and exploratory modules.2.1 Document ModelIn this paper, we adopt a simpli�ed view of XML documents. Each document has a single element,called the root, within which all other elements are nested (e.g., the guide element in Document 2of Figure 1). We view each document as a rooted, ordered tree, where nodes represent elements andedges represent nesting of elements. Each node in the tree is labeled with the tag of the elementit represents. We further simplify the document model by treating an element's attribute as itssubelement, with the attribute name as tag and the attribute value as content1.2.2 Context and Context ExpressionThe context of an element in a document is the string formed by concatenating, in order, the=-pre�xed tags of elements on the path from the document root to the node corresponding to theelement. The context of a word or phrase in a document is the context of the element containingit. For example, the context of the word \fosse" in line 21 of Document 1 (Figure 1) is the string/guide/theater/show/name.1This simpli�ed model overlooks several distinctions between subelements and attributes (e.g., restriction onattribute names and textual context). However, we believe our model is e�ective for XML search and exploration (asdistinct from XML data processing). 5



Figure 2: Screenshot of our Search Engine in action.
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A context expression is a string that identi�es one or more contexts, each of which is saidto match the context expression. A context expression is formed by concatenating tags, separatedby either = or ==. The separators = and == specify parent-child and ancestor-descendant nest-ing relationships, respectively, that must hold between tags in contexts that match the contextexpression.Example 2.1 The context expression /guide//show/director speci�es that, in a context match-ing the context expression, a show element must be a descendant of a guide element (because of== separating guide and show tags) that is the document's root. In addition, the show elementmust have a director element as its child (because of = seperating show and director tags). Thecontext /guide/theater/show/director is a context that matches the context expression. However,the context /guide/city does not match the context expression.In this paper, strings representing contexts are typeset using italic font (e.g., /guide/theater/show/name) whereas strings representing context expressions are typeset using typewriter font (e.g.,/guide//show/director).2.3 Query LanguageA query consists of one or more query terms, combined using the boolean connectives AND, OR,and NOT. A query term is either a word or a phrase. It can be optionally quali�ed with a contextexpression, using keywords IN (denoting containment) or DIN (denoting direct containment). Thecontext expression is said to qualify the query term.The context expression that quali�es a query term identi�es interesting instances of the queryterm in the document repository. If a query term and the context expression that quali�es it areconnected using DIN (e.g., 42nd DIN /guide//show), an instance of the query term in a documentis interesting if it is contained within an element whose context matches the context expression. Ifa query term and and the context expression that quali�es it are connected using IN (e.g., fosse IN/guide//show), an instance of the query term in a document is interesting if it is contained withinan element or within the descendant of an element whose context matches the context expression.The boolean connectives combine constraints in the usual manner.Example 2.2 Consider the query fosse DIN /guide//show/director on the two documents inFigure 1. The instance of the query term \fosse" in line 12 of Document 2 is interesting because ithas the context /guide/broadway/theater/show/director, which matches /guide//show/director.However, the instance of the query term \fosse" in line 21 of Document 1 is not interesting becauseit has the context /guide/theater/show/name, which does not match /guide//show/director.Example 2.3 Consider the query fosse IN /guide//show on the two documents in Figure 1. Theinstance of \fosse" in line 12 of Document 2 is interesting because it is contained within a directorelement, whose parent's context (/guide/broadway/theater/show) matches the context expression/guide//show. The instance of \fosse" in line 21 of Document 1 is also interesting because it7



is contained within a name element, whose parent's context (/guide/theater/show) matches thecontext expression.The result of a query consists of a set of documents and a set of contexts. We de�ne thedocument set of a query term as the set of documents that have at least one interesting instanceof the query term. The set of documents in the result is formed by combining the document sets ofthe query terms using union, intersection, and di�erence, corresponding to OR, AND, and NOT,respectively. The context set of a document is the set containing the contexts of all interestingquery term instances that are present in the document. The set of contexts in the result of a queryis the union of the context sets of documents in the result. We call this set of contexts the span ofthe query.Example 2.4 Consider the Cextor query (42nd IN /guide//theater/address) AND (fosse IN/guide//show) on the two documents in Figure 1. Document 1 contains one interesting instanceof \42nd" (line 5, context /guide/theater/address/street). Document 2 also contains one interest-ing instance of \42nd" (line 17, context /guide/broadway/theater/address). The document set ofthe query term \42nd" contains both documents 1 and 2. The document set of the query term\fosse" also contains both the documents. The set of documents in the result of the query isthe intersection (corresponding to AND) of the document sets of \42nd" and \fosse." Document1 contains two interesting query term instances (\42nd" in line 5 and \fosse" in line 21). Itscontext set contains the contexts of these interesting instances: /guide/theater/address/street and/guide/theater/show/name. The context set of Document 2 contains contexts /guide/broadway/theater/address and /guide/broadway/theater/show/director. The span of the query is the union ofthe context sets of documents 1 and 2. It contains four contexts: /guide/theater/address/street,/guide/theater/show/name, /guide/broadway/theater/address, and /guide/broadway/theater/show/director.2.4 Result Presentation and ExplorationCextor presents the result of a query as a rooted, labeled tree, called the context tree, whichrepresents the span of the query. The context tree is a trie that is built using strings of thealphabet of tags [Knu00]. Each context in the span maps to a root-leaf path in the tree. The stringformed by concatenating the node labels along any root-leaf path is a context in the span. Contextsthat share a pre�x map to paths that share nodes in the context tree. (If there is no pre�x commonto all paths, the context tree has a dummy root with the empty string as its label.)Example 2.5 Figure 3 illustrates the context tree that is presented as output of the query (42ndIN /guide//theater/address) AND (fosse IN /guide//show) on the two documents in Figure1. The context corresponding to the root-leaf path n1 � n5 � n7 is /guide/theater/show/name,obtained by concatenating the labels of nodes n1, n5, and n7. The center �gure in Figure 2 is ascreenshot of the context tree output by our system for the query spielberg. The tree is displayedas a table, with the label of a node displayed at a column and row given by the node's depth andpreorder number, respectively. 8
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Query Figure 6: Cextor Architecture.2.6 ImplementationFigure 6 illustrates the high-level architecture of Cextor. The Crawler&Cleaner module is re-sponsible for crawling the Web, downloading all HTML documents at depth below a given value(parameter, set to 40 in our experiments), and cleaning them using the Tidy software to heuris-tically remove faulty HTML and insert closing tags to convert HTML to XHTML. The Indexermodule builds the context index in two steps: index �le construction and dictionary creation.The Context Index The context index includes a dictionary that contains all words in thedocument repository, except those that occur only as tags. The context list for a word in thedictionary is a sorted list containing the contexts of all instances of the word in the documentcollection. The dictionary contains a pointer to the context list for each word in it. For eachcontext, the context list contains a pointer to an inverted list, which is a sorted list of postings.Each posting is a pair of integers: the identi�er of a document containing an instance of the wordwithin that context and the o�set of the instance within the document.Example 2.8 In Figure 7, we show a portion of the context index for the two documents in Fig-ure 1. The word \street" occurs in Document 1 (lines 5, 7, and 17) and Document 2 (lines 6 and 16).Its context list has three contexts: /guide/broadway/theater/address, /guide/broadway/theater/address/street, and /guide/broadway/theater/show/name, and its postings are grouped into three listsbased on these contexts.Index File Construction The Indexer parses the repository in phases, where each phase involvesthe construction of main memory structures that are written to disk at the end of the phase. Duringa phase, it builds in main memory a trie containing words encountered in that phase [Knu00]. Theinstances of a word that are encountered in a phase are called the phase instances of the word.For each word in the trie, the Indexer module builds a sorted list of the contexts of its phaseinstances. We call this list the context list of the word. For each context in the list, the Indexermodule builds a sorted list of the locations of the phase instances that have that context. We callthis list the location list of the context and the word.12
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WHERE <guide> <broadway> <theater> $t </> </> </>IN ``*'',<address> $a </><show> fosse </> IN $tCONSTRUCT <result> <theater> $t </> </>Figure 8: Sample query.in batches, each batch sorted according the buckets of the values. Our hashing scheme is likely tocreate a larger hash table than that created by linear hashing or extendible hashing for identicalinsertions. However, our scheme leads to a simpler implementation. (e.g., In linear hashing, onehas to worry about the position of the bucket pointer while bulk loading the hash table.)The four remaining modules|Query Processor, Tree Builder, Re�ner, and the Anchor Module|are quite straightforward. For example, the Query Processor uses o�sets in postings to locate queryterms. For each query term, it constructs a list of contexts of interesting instances of the queryterm, and for each context in the list, it constructs a list of documents that have interesting queryterm instances in that context. A distinguishing feature of our system is that it writes temporarystructures created by each of these four modules to disk so that subsequent operations in the samesession can make use of them. For example, the contexts of interesting instances of a query termare saved as session state by the Query Processor so that a subsequent re�nement using the queryterm can operate on them. Some operations (e.g., re�nement) cannot be supported without suchstate information whereas others (e.g., node expansion) use it for e�ciency.3 The Augmented IndexXML query languages like XML-QL permit more sophisticated querying than is possible usingCextor [FSW+99]. In Figure 8, we illustrate a query expressed using a syntax that is quite similarto that of XML-QL. The WHERE clause speci�es constraints on elements and the CONSTRUCTclause uses elements satisfying the constraints to build the query result. The \*" following IN in theWHERE clause indicates that the query has to be evaluated over all documents in the collection.The query in the �gure asks for all elements with context /guide/broadway/theater, and havingan address subelement and a show subelement. In addition, the show subelement must containthe word \fosse." The context index cannot be used to locate subelements of an element (e.g.,theater), and so cannot be used to evaluate such queries. We present an enhancement to thecontext index that can be used to speed up evaluation of such queries. We call this enhanced indexan augmented index.The constraints on elements expressed in the WHERE clause of a query in many XML querylanguages can be viewed as a tree pattern, Each node in the tree pattern represents a tag or aterm in the WHERE clause and each edge represents direct containment or containment. We use a14
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e5Figure 9: Tree Pattern.single edge to represent direct containment and a double edge to represent containment. Evaluationof the WHERE clause can be viewed as �nding trees (i.e., XML documents) that match the treepattern. Figure 9 illustrates the tree pattern for the query in Figure 8. The edge e1 in Figure 9speci�es that a broadway element has to be a subelement of a guide subelement.The augmented index includes two dictionaries: a word dictionary and a context dictionary.The word dictionary contains all words in the document repository, excluding those that occuronly as tags or as names of attributes. For each word, it stores a pointer to a sorted list of wordpostings. A word posting consists of three integers: the identi�er of a document containing aninstance of the word, the o�set of the instance in the document, and the depth of the context ofthe instance. The context dictonary contains all contexts that occur in some document of therepository. For each context, it stores a pointer to a sorted list of context postings. A contextposting consists of three integers: the identi�er of a document containing an element with thatcontext, and the o�sets start and end of the element in the document.Example 3.1 Figure 10 illustrates a portion of the augmented index for the two documents inFigure 1. We describe one way in which the query suggested by the tree pattern in Figure 9 canbe evaluated using the augmented index. First, we �nd all theater elements with the context/guide/broadway/theater and containing the address subelement by merging the inverted lists forthe contexts /guide/broadway/theater/address and /guide/broadway/theater. While merging, weuse o�sets in postings with identical document identi�ers to locate theater elements having anaddress subelement, and we output the postings of theater elements that qualify. This mergecompletes the evaluation of edge e3 in Figure 9. We evaluate edges e4 and e5 in a similar man-ner. Note that edges e1 and e2 need not be evaluated since the constraints they represent aresubsumed by the context /guide/broadway/theater. If we modify the tree pattern by replacingedge e2 with a containment operator, during evaluation, we use the dictionary to �rst �nd allcontexts matching the context expression /guide/broadway//theater. We compute the union ofthe inverted lists for the contexts that match, and merge it with the inverted list for the context15
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/guide/broadway/theater/address. The rest of the evaluation is una�ected.Our augmented index is similar in spirit to the index used by the Niagara system [NDM+00].The Niagara index consists of two dictionaries: a word dictionary and a tag dictionary. The worddictionary contains all words in the document repository, except those that occur only as tags oras names of attributes. For each word, the word dictionary stores a pointer to a sorted list ofpostings. Each posting is a pair of integers: the identi�er of a document containing an instance ofthe word and the o�set of the instance within the document. The tag dictionary contains all tagsin the document collection. For each tag, the tag dictionary stores a pointer to a sorted list of tagpostings. Each tag posting consists of three integers: the identi�er of a document containing anelement with the tag, and the o�sets start and end of the element in the document. Matching atree pattern to documents using the Niagara index involves merging two lists for each edge in thetree pattern. The lists that are merged are the inverted lists corresponding to the tags and wordsconnected by an edge in the tree pattern.The relative performance of the augmented index and the Niagara index depends on the typeof query. If the Niagara index is used to match a tree pattern having containment operators,one does not have to perform a union, as is necessary with the augmented index (See exampleevaluation using the augmented index). The inverted lists for the tags and words connected byan edge representing a containment operator can be merged to locate relevant elements. However,since the Niagara index does not store depth information, it cannot be used to match tree patternsthat have direct containment operators. A depth-enhanced Niagara index needs to have the depth(an integer) stored with each tag posting. If the augmented index is used to match a tree patternthat consists of a chain of direct containment operators (e1 � e2 � e3 in Figure 9), one or moreedges need not be evaluated (See example).The Niagara index can be used to match tree patterns to XML documents, if the patterns donot have direct containment operators. A context expression is a simple instance of a tree pattern.Therefore, the Niagara index can be used to �nd documents with interesting query term instancesof query terms in a Cextor query, provided that the context expressions in the query do not involvedirect containment operators. However, since the index does not store contexts, it cannot returncontexts that match a context expression. Therefore, it cannot be used to explore documents thata search returns.4 Experimental ResultsExcept for the augmented index, we have implemented the Cextor system as described in Sec-tion 2.5. The document repository built by crawling the umd.edu domain contained about 210; 000HTML �les amounting to 10 GBytes of data. After cleaning the �les, we parsed them using a SAX-based parser. We built contexts using tags contained even in documents that could not be cleanedby Tidy, generating very deep contexts. (We observed a maximum depth of 200.) We evaluated oursystem on a Sun Ultra 5 workstation with a 270 MHz Sparc processor and 128 MBytes of RAM,and running Solaris version 2:6. We present our experimental results in three sets. The �rst set of17
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Figure 12: Query Execution Time.experiments evaluates the context index. The second set evaluates our algorithm for context treeconstruction. In the third set, we study some properties of our corpus.4.1 Index Construction and Query ProcessingWe used 22 queries (Table 1), chosen to cover a wide range of result sizes, to study the time toexecute queries in Cextor. (The query ids are in increasing span size.) Figure 12 shows for eachquery, its execution time, which includes the time to compute (1) the query's span, (2) the setof documents in its result, and (3) the association between contexts and documents in the result(i.e., what documents have interesting query term instances that have a speci�c context?). Theexecution time shown for each query does not include the time to construct the context tree usingthe span. 18



QID Query Size of Context- Docs. Query TermSpan Doc Pairs Instances.Q0 thesaurus 78 184 137 252Q1 catholic 217 2395 2265 3202Q2 workstation 290 1897 1404 3215Q3 germany 348 2541 2074 4040Q4 sport OR basketball 406 5503 5009 8880Q5 china 442 3209 2424 9296Q6 \graduate school" OR rank 582 5759 4961 10880Q7 joint OR appointment 780 7954 6792 13127Q8 database 1176 15829 8662 35355Q9 service OR \parking permit" 1780 23192 17894 47867Q10 system 2237 40360 28386 105428Q11 theory OR group 2417 42814 28372 95414Q12 that 2991 102605 77059 936730Q13 \computer science" OR faculty 3140 52879 30787 109135Q14 computer OR science 3541 57476 36096 157609Q15 this 3861 132477 92673 529866Q16 research OR thomas 4355 72134 38588 172957Q17 health OR center 5136 194492 89590 727811Q18 a 8564 216293 119190 2149533Q19 edu 8736 385141 100530 1280713Q20 and 11062 311998 133396 3215259Q21 the 11655 338066 140307 5830851Table 1: Sample Queries.Queries having a single word (Q12,Q15, Q18, Q19, Q20, Q21) take time roughly proportional tothe number of instances of the word. For queries with multiple query terms where each query termis a single word (Q14, Q16, Q17), their execution times depend on three factors: (1) the numberof query terms, (2) the total number of query term instances that are interesting, and (3) the skewin the number of instances of the di�erent query terms. For example, Q17 (727; 811 instances)takes more time than either Q14 (157609 instances) or Q16 (172; 957 instances) because it selectsa larger number of interesting query instances. By the same argument, one would expect that Q16take more time than Q14. However, the words \computer" and \science" have about the samenumber of interesting instances (84; 976 for \computer" and 72; 633 for \science"), but the words\research" and \thomas" have a disproportionate number of instances (161; 361 for \research" and11; 596 for \thomas"). During evaluation of the OR, merging of these unequally sized lists for thequery terms in Q16 takes less time than the merging of the roughly equal sized lists for the queryterms in Q14. Query Q13 has a moderate number (109; 135) of interesting query term instances,but it takes more time compared to queries with similar number of interesting query term instances.This high execution time is because the evaluation of Q13 involves merging lists for \computer" and19



Run Size (No. of Word Instances) 1,000,000No. of Runs 173Run Generation Time 49 min. 56 sec.Run Merge Time 35 hrs. 40 min. 13 sec.Dictionary Creation Time 27 min. 26 sec.Table 2: Context Index Creation Statistics.\science", which are both very common words in our corpus (gathered from a university domain).The execution times for some of the queries (Q13, Q20, Q21) are quite high. These highexecution times are due to the fact that we need to carry context information along with eachdocument, through all stages of query evaluation, in order to support operations such as re�nementand anchoring. As a result, the context-enhanced list returned by the context index is larger thanthe inverted list returned by a traditional inverted �le. For example, for query Q21, the number ofcontext-document pairs (33; 806) in its result is more than twice the number of documents (140; 307)in the result.Recall from Section 2.6 that our implementation of the dictionary is a hash table that rehashesall buckets when a bucket is full. We studied the time taken to bulk load 208; 867 strings (URLs)to a hash table �le on disk for di�erent sizes of the batch used to write them to disk. We insertedthe strings in random order to a hash table that was large enough (40; 36 buckets, each with 100slots) to contain all strings without the need to rehash during the bulk load. We varied the size ofthe batch from 1 (write to disk immediately after each insertion) to 208; 867 (write all strings inone access to �le on disk). We show the time taken (processing + I/O time) to write all strings tothe �le on disk.Figure 11 shows that for small batch sizes, the execution time is dominated by I/O time dueto large seeks in the �le on disk, as entries in the same batch belong to buckets that are widelyseparated in the �le. However, for larger batch sizes, almost each bucket in the �le is accessedduring the ush of each batch so that there is no more gain in performance. Performance levels o�at about 25% of the capacity of the hash table (total number of slots in the hash table). The CPUcomponent of the execution time remained almost even (at about 14 seconds) for all batch sizes.At the largest batchsize (208; 867 strings), the �le is accessed once, sequentially. As a result, theI/O time for bulk load is low and the CPU component is a non-trivial fraction (about 7%) of thetotal execution time. We observed a similar behavior while bulk loading the dictionary as well.In Table 2, we present the execution times of di�erent phases in the creation of the contextindex.4.2 Exploration of Query ResultsWe studied the time to construct a context tree by executing queries that covered a wide rangeof span sizes (from 28 contexts to 11; 655 contexts). Figure 13 shows that the time to construct acontext tree is linear in the number of contexts it represents.20
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Property Avg. Max.Context Depth 7.06 200Context Length (bytes) 29.29 995Contexts per Word 5.99 12298Instances of a Word 146.80 5830831Documents Containing a Word 44.64 190871Words in the Collection 1102478Contexts in the Collection 106016Documents in the Collection 209020Table 3: Some Properties of our Corpus.We studied the time to anchor a context tree by using the a tag to anchor the initial contexttree output by each of the 22 queries (Q0 � Q21) in Table 1. Figure 14(a) plots the time to (1)read the span of the query from a �le (old session state), (2) �nd contexts in the span that containthe a tag, (3) write the remaining contexts (new span) to a new �le (new session state), and (4)split each remaining context into an outer context and an inner context. We do not show the timeto construct the output tree. The anchoring time is dominated by the I/O times to read and writesession state information, which are proportional to the number of contexts in the input (old span)and output (new span), respectively. Anchoring the context tree of Query Q19 took the longesttime because it had the highest number of total contexts in the input (8736 contexts) and output(5623 contexts) combined.Using the context expression //a, we studied the time to re�ne the initial context tree outputafter evaluation of each of the 22 queries in Table 1. We used the context expression to constrainthe contexts of interesting instances of the �rst query term in each query (the �rst query term inhealth center is \health"). In Figure 14(b), we show for each, the time, which includes the timeto (1) contexts of all interesting instances of the �rst term of the query, (2) �nd contexts that match//a, and (3) write the matching contexts to a new �le (as session state). It does not show the timeto recompute the span and result documents based on the new set of interesting instances. Thetimes were I/O dominated, similar to what we observed for anchoring.4.3 Data StatisticsTable 3 summarizes some properties of our corpus.It is well known that frquencies of words in text documents follow the Zipf distribution [BYRN99].As expected, we observed the same behavior in our corpus. However, we found it interesting tostudy the distribution of the number of distinct contexts across words. Figure 15(a), plotted us-ing logarithmic scales on both axes, illustrates that this distribution follows the Zipf distribution,if we ignore a few words of high rank. The dotted line in the �gure represents the Zipf curve31630:06=(x:5633). We also studied the distribution of the number of distinct contexts in a docu-22



100

1000

10000

100000

1 10 100 1000

N
um

be
r 

of
 C

on
te

xt
s

Word Identifiers in Rank Order

observed data
31630.06/(x^.5633)

(a) Contexts across Words 1

10

100

1000

100 1000 10000 100000

N
u

m
b

er
 o

f 
C

o
n

te
x

t 
S

tr
in

g
s

Document Identifiers in Rank Order

observed data
56.5458/x^.2610

(b) Contexts across DocumentsFigure 15: Distribution of Contextsment. Figure 15(b) illustrates that this distribution also follows the Zipf distribution. The straightline in the �gure represents the Zipf curve 56:55=(x:2610).When indexing an HTML corpus, one may choose to limit the depths of the contexts stored inthe index, since many deep contexts are a result of missing end tags in documents. Even if docu-ments are well-formed, one may choose to limit the depth to avoid displaying deep contexts in thecontext tree. We studied the distribution of words across various levels of the document hierarchy.Figure 16(a), which plots the number of word instances (excluding tags) whose contexts have acertain depth, shows that most of the word instances are located at depth 2 (due to /html/body).It also shows that there are fewer than 10; 000 words in the repository for all depth greater than20. We also studied the number of contexts that have depth below a certain value, and found thatmost contexts have very low (< 10) depths (Figure 16(b)).5 Related WorkSeveral index structures have been developed by the Information Retrieval community for searchover full text documents [BYRN99]. They include signature �les [FC84], inverted �les [SM83] andsu�x arrays [MM90]. The traditional inverted �le stores the postings for each word in a documentcollection, but does not store the contexts within which the word occurs.Recent work on querying XML may be classi�ed into two broad and complementary cate-gories based on the type of XML data they study: The �rst category adopts a data-centric viewin which XML encodes a database that may be structured or semistructured. Query languagesin this category (e.g., Lorel, WebOQL, XML-QL) resemble OQL and other database query lan-guages [STZ+99, MAG+97]. The second category adopts a document-centric view in which XML23
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Depth Limit(b) Context DepthsFigure 16: Words and Contexts across Depths.is standardized syntax for structured documents such as technical reports, legal briefs, and equip-ment manuals. Query languages in this category resemble those used in information retrieval (e.g.,boolean queries, vector space queries) [BYRN99]. Our work in this paper falls in the second cate-gory and our query language is an extension of the boolean query model. A distinguishing feature ofour work is the postprocessing (context tree creation and exploration) performed on query results.XSet is an index structure for fast search and retrieval of XML documents frommoderately sizeddata collections such as a local area directory service [Zha00]. The main memory data structuresused by XSet do not scale to data that does not �t in main memory. Our approach has more incommon with the Niagara system [NDM+00]. A detailed comparison of our indexing methods andthose in Niagara appears in Section 3. Schemes similar to the Niagara indexing scheme have alsobeen used to index structured documents [Nav95, SM00].Our work on exploring search results is related to a large body of work in the Human-ComputerInteraction �eld. Due to space contraints, we mention only two systems that share some of ourgoals. The DLITE system [CK+97] provides an interactive workspace for querying documents andorganizing search results. The Cat-a-Cone interface uses the Information Visualizer [CRM96] topresent a three-dimensional view of category hierarchies and the documents within them. Themain di�erence between these systems and Cextor is that they focus on the user interface issues(good use of visual cues, interactivity, etc.) for moderate sized data, while while Cextor focuseson data-centric operations on very large data. Cextor can complement systems such as DLITE byproviding them with the ability to e�ciently manage large amounts of data.24



6 ConclusionIn this paper, we addressed the following problem: How can we use the rich context informationinherent in the tag structure of XML documents to improve search and exploration? We motivatedthe need for methods that improve XML search without assuming anything beyond well-formednessof XML documents. We stressed the need for an exploratary interface that enables users unfamiliarwith the corpus to discover its structure and content. Our main contributions are (1) methods forcontext-sensitive search in XML (2) extensions with applications to query processing in XML-QL;(3) methods for exploring very large search results; (4) an experimental evaluation; and (5) animplemented system whose source code is publicly available. All the methods described in thispaper, except the augmented index, have been fully implemented.We are currently incorporating the augmented index into Cextor. We are also working onfurther improving the e�ciency of index construction by evaluating alternate encoding techniquesand implementations on a distributed architecture. We are studying methods to improve thescalability of context trees. Although we did not focus on the user interface itself in this paper,we are working on an innovative, Java-based user interface that uses zooming and other ideas toconcisely present a large number of objects (such as large query results). Finally, we are planninga full-scale deployment of a search engine based on CextorReferences[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.Addison-Wesley, Harlow, England, 1999.[CK+97] S. B. Cousins, S. P. Ketchpel, et al. The digital library integrated task environment(DLITE). In Proceedings of the ACM International Conference on Digital Libraries,pages 142{151, Philadelphia, Pennsylvania, July 1997.[CRM96] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information visualizer, aninformation workspace. In Proceedings of the ACM SIGCHI Conference on HumanFactors in Computing Systems, pages 111{117, Zurich, Switzerland, April 1996.[FC84] Christos Faloutsos and Stavros Christodoulakis. Signature �les: An access method fordocuments and its analytical performance evaluation. ACM Transactions on O�ceInformation Systems, 2(4):267{288, 1984.[FSW+99] Mary F. Fernandez, J�erôme Simon, Philip Wadler, Sophie Cluet, Alin Deutsch, DanielaFlorescu, Alon Levy, David Maier, Jason McHugh, Jonathan Robie, Dan Suciu, andJennifer Widom. XML query languages: Experiences and exemplars, 1999. Availableat http://www-db.research.belllabs.com/user/simeon/xquery.ps. 25
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