CS-TR-4182 UMIACS-TR-2000-64

A SIMULATION ENVIRONMENT FOR EVOLVING
MULTIAGENT COMMUNICATION

September 2000

James A. Reggial?, Reiner Schulz?, Juan Uriagereka®, and Jerry Wilkinson*

! Institute for Advanced Computer Studies
2 Department of Computer Science
3 Linguistics Department
4 Biology Department

University of Maryland
College Park, MD 20742 USA

Abstract: A simulation environment has been created to support study of emergent com-
munication. Multiple agents exist in a two-dimensional world where they must find food
and avoid predators. While non-communicating agents may survive, the world is configured
so that survival and fitness can be enhanced through the use of inter-agent communication.
The goal with this version of the simulator is to determine conditions under which simple
communication (signaling) emerges and persists during an evolutionary process.

INTRODUCTION

The simulation environment described here is based on a two-dimensional rectangular
space of discrete cells referred to as the world. The cells form a square-tessellation of this
space. The world size is arbitrary but the boundaries are absolute: anything attempting to
move out of the existing world is reflected back in. Time is also discrete, starting at zero
and being incremented by one on each iteration of a simulation.

A number of entities (objects) are initially randomly placed in the world during a sim-
ulation. There are three types of objects: food, predators and agents. It is permissible for
multiple entities of multiple types, or of the same type, to occupy the same cell simultane-
ously. In this sense each cell can be viewed as a small region of finite extent accommodating
multiple entities that can interact directly when they occupy the same cell'. Agents search
for stationary food sources and consume them when found. Agents flee from predators when
detected. If detected in time, an agent can escape from a predator. If not detected, a preda-
tor will approach and “kill” an agent. Agents can only “see” a small region in front of (and
to the sides of) the cell they occupy in the direction they are oriented. Thus predators can
approach from other directions undetected, or an agent may not observe a nearby source
of food that it passes. However, agents detecting a predator or food site could signal their
existence, thus alerting other agents that might not otherwise detect them. Communication
thus conveys the potential advantage of alerting agents to nearby danger or food. Agent
“fitness” is anticipated in general to be a reflection of success in avoiding predators and
obtaining food.

There are four classes or types of agents. These are designated NC for non-communicating
agents, FO for agents that communicate about food only and not about predators, OP for
agents that communicate about predators only and not food, and FP for agents that com-
municate about both food and predators. Often in simulations, one is interested in starting
with 100% NC agents and determining what fraction of the agent population eventually
evolves over time to communicate about food, predators or both.

Instructions on starting the current version of the simulator are given later in this report.
Results following a simulation will be found in the following three files in the same directory
as the one in which the simulator is started:

!For example, an agent can only consume food when it is in the same cell as the food, and a predator can
only kill an agent when they are in the same cell. On the other hand, objects also interact when they are in
different cells in the sense that an agent/predator may see an object in another cell and change its behavior
based on that, and agents may communicate with other agents in other cells via messages.

File Contents
res.stat 1. parameter settings during the simulation
2. agent genome/chromosome counts, collected periodically
during the simulation
3. tallies of “statistics” collected during the simulation
res.disp display of world state, collected periodically during
a simulation
res.log a record of events occurring during a simulation (empty if
tracing is turned off)

Numerous parameters/variables in the simulator file can be modified to affect the details
of a simulation, and many of these are listed at various places in this report. For example,
the parameter tmax specifies how many iterations to run a simulation, so a simulation will
stop when the current iteration number tick equals tmaz. All global parameters and global
variables are declared and assigned a value at the beginning of the system file.?

General Simulator Parameters/Variables:

world = two-dimensional space of cells

xdim, ydim = x and y dimensions of world

tmax = number of time steps to run simulation

mode = mode of operation

tick = current time/iteration

trace = level of tracing (0 to 2); turns on output to simulation log file

errlist = list of fatal error(s) detected causing simulator termination prematurely
gentime = display gene counts in res.stat every gentime iterations

disptime = display world state in res.disp every disptime iterations

SAMPLE OUTPUT FILES

Sample contents from the result files are given below. First, the contents of res.stat
are shown. The values of parameters appear first, indicating (among other things) that
a population of 200 agents are present in a 60 x 60 world. This is followed by a table
where, every 100 iterations/ticks, a variety of information is given for each of four classes of
agents: number in existence, their average age, number currently fleeing/avoiding predators,
and their average fitness. For example, at iteration 1000, there are 193 non-communicating
agents (NC), 2 agents that communicate about food only (FO), 4 that communicate about
predators only (OP), and none that communicate about both food and predators (FP).
Finally, at the end of the file after termination at iteration 100,000, various information
collected during the simulation is displayed, including that 77108 total agents died due to
starvation while 190,722 died due to predators, and that a total of 37,018 messages were

2Global parameters/variables all have names starting with an asterisk in the actual code; local variables
never do. Thus, a parameter such as #maz indicated here is actually named *tmaz in the code.

posted by communicating agents. Similar information is given for the last 30,000 iterations.
The contents of res.stat are:

Fri May 5 11:55:43 EDT 2000

60 x 60 world, max ticks 100000, mode EVOLVE

toursize 10, locnpars SPATIAL, pmf 0.003, pmp 0.003, pc 0.0
locnkids 3, maxrad 6, reprocost 0, reproage 4, follow parents NIL

200 agents (vf ctr 2, hear range 6, max beliefs 15, prob continues 0.9)
(avoid time 4, food capac 30, initfoodstore 25, max age 1000)

20 preds (see range 3, hear range 6, quiescent 2, prob continues 0.9)
(max pursuit 7)

32 initial food sites (size 50, target amount 1600, reaptimes 3)

Population genome data:
#agents avg. age #agents in
FLEE/AVOID state avg. fitness
Tick NC FO OP FP TOT NC FO OP FP TOT NC FO OP FP TOT NC FO OP FP TOT

0 200 0 0 0O 200 0O 0 0 O 0 0O 0 0 0 O 0O 0 0 0 O

100 196 0 1 0 197 59 047 0O 59 30 0 O 0 30 16 0 10 0 16
200 195 1 1 0 197 6049 1 0 59 27 0 O 0O 27 16 9 0 0 16
300 196 0O 0 O 196 59 0 0 O 59 41 0 0 0 41 15 0 0 0 15
400 197 0 1 0 198 48 0 O O 48 36 0 0 0 36 14 0 0 0 14
500 192 1 5 0 198 50 523 0 50 25 0 2 0 27 16 23 18 0 16
600 190 2 4 0 196 55 22 65 0 b5 45 2 1 0 48 16 6 11 0 16
700 197 1 1 0 199 64 70 48 0 64 27 0O 0O 0 27 18 14 25 0 18
800 197 3 0 0 200 6579 0 0 65 27 0 O 0O 27 1518 0 0 15
900 184 5 6 0 195 48 69 31 0 48 44 0 2 0 46 14 15 20 0 14
1000 193 2 4 0 199 48 62 74 0 49 28 0 0 0 28 16 23 14 0 16
1100 176 25 0 0 201 5240 0 0 51 28 5 0 0 33 18 13 0 0 17

(material deleted)

99700 180 18 1 0 199 73 72 39 0 72 23 1 0 0 24 17 15 16 0 17
99800 173 26 0 1 200 62 60 051 62 12 5 0 0 17 16 12 0 17 15
99900 194 0 0 O 194 38 0 0 0 38 29 0 0 0 29 16 0 0 0 16
100000 197 O 1 O 198 64 059 0 64 28 0 0 0 28 18 0 28 0 18

Termination at tick 100000

Total agents 268028, Total preds 20, Total food units 3029050, Total msgs 37018
Current agents 198, Current food units 1538

Deaths: starvation, old age, predation, total

NC: 69953, 0, 175078, 245031

FO: 4454, 0, 10359, 14813

0P: 2518, 0, 4904, 7422

FpP: 183, 0, 381, 564

TOT: 77108, 0, 190722, 267830

Life expectancy: NC 75, FO 71, OP 75, FP 71, TOT 74
Statistics at equilibrium state (starting at tick 70000):
Deaths: starvation, old age, predation, total

NC: 21824, 0, 51827, 73651

FO: 1619, 0, 3657, 5276

0P: 512, 0, 1031, 1543

_Fp: 33, 0, 78, 111

_TOT: 23988, 0, 56593, 80581

_Life expectancy: NC 74, FO 71, OP 74, FP 73, TOT 74

Displays of the current world state can be done in one of two ways. The first way is to
simply indicate which sites are occupied by agents, food and/or predators. For example, two
consecutive maps of the world appearing in the file res.disp are shown. These maps provide
a coarse indication of the world state at the ends of ticks 14 and 15. A dot (.) indicates
an empty cell, a circle (o) an agent, an asterisk (*) a predator, and a plus sign (+) a food
site. A predator and agent are generally not at the same site (if so the predator captures
the agent and it disappears). If an agent is at a food site, only the circle and no + appears.
Object/cell coordinates (x,y) are measured from an origin at the upper left corner. The
positive x-coordinate is vertical increasing downwards with the first row’s index being zero.
The positive y-coordinate is horizontal increasing to the right with the first column being
zero. Thus the uppermost food site + at tick/iteration 14 is at (5,38). The predator located
at (7,19) at tick 14 is seen to move up one cell to (6,19) at tick 15, capturing the agent at
that location. The excerpt from res.disp is:

O.viinn Ot i i Ovivve ..
Ot e i e e +.
Ot ii i Ottt i
................... T
...................... Ottt i
.............. e
.......... Ot
..... Ot e
..................... K e e e
...... Ot e e

Tick = 15
e

Oviviiniin Ottt

Ot e e O...... +

................... K e e e
....................... T
.............. L ¢ R
.......... Ot
...... L T
............. Ottt
....... Ot e

At present, the code implementing the above display method is “commented out” in the
simulator source file. The second display method, described in the following, is used by
default. With this second method, priority is given to displaying agents and further details
about them in res.disp as follows. If one or more agents are present in a cell, only their type
is indicated, and any food or predators in the same cell cannot be seen. When a single agent
is present in a cell, its type is indicated as:

n NC agent
f FO agent
p PO agent
b FP agent

When multiple agents are present in the same cell, their types are:

N NC agents
F FO agents
p PO agents
B F'P agents
M mixture of different types

Symbols used to designate cell contents when no agents are present in a cell are:

. cell is empty
« predator present, but no agents (food cannot be seen)
+ food present only

Here is an example of how the default res.disp file typically appears:

................ pp.....£.......f pM..fb.... BT .. D
..... £ bn.f.n...b...n.b...n fp..n.P.....p.boL L
P +..p..f.n p-b....... +..p..... b i n.b.b.b
..... Mf aM.... Mfn...........Mnf.p..£f......f...f b
£ f.o.o... fpn..... f.o.o... p...t.F n T
b.fb..... Peve-n- n.n.fpp......... < I nnp. .p
o+ SO p..pn..p
£ n...f.....o f...ppp.b.bx.
........ M..fb.......pn......p...M.....p....M...£.. . f..nf.p.n
b..... n...p IS ¢ I b..... b b..... Do
............. b..b..poi P M
N...... p-b..... p.on.fo i Foooooooo. b......
P-PP---vvvvn-. PP ffb. fo.o.... N.o.......... b
Moo *1 5 | foooiaii + M..... b
b..M.b..bn...... Peveviennnn F..p...nP........ f.b..... ppnb.....
Poor e e Mpb.M. . M.f..p.n....... pf........ b
£ b..... f.o...0.. Mpf n.n..... b........ bp...nnP.p.np
M...... b........ Peveeenn. S n...Fppb M...f..n.......
£ Pevvvnennnnn f.o...0.. M. bn....... .. oo il N......
f B...n...b... .o n.Mf....P......... f..+..M
.......... f.f Mbp f.... x. . .n...nf.. M p...bn
nf........ D..Pevvenn. b f..fb...... . fo.o....
e b....... b..np..f..... Peev--- B...... M........
....... M...f..n..fp.nb....n.......n....n......pf *n.b*bf
£ f...b.n.+b...b.p... b Mool n
n..n P *¥..b.b.fM.b.. . f...pp..... bon....... fo.o.o. M
n..M...b..n.b..M...n....... ..., +..... D...... P f.o.o... M..p
p--n..... D....... n...bf....... fn.b..n...f...ponp.n...n.......
bnb.p.b..n..... f.£. M. ... L Do, p.-.-b..n..n..b
p..-.f...... £ nf ff.. nb........ b...... nb..b

Finally, an excerpt from an example res.log file is shown below. This file notes significant
events, message postings, and details about agents whose state is other than WANDER.
(Much of this information might be better displayed graphically in res.disp in a future version
of the simulator.) For example, at iteration 15 it is noted that a new food site has been
created at (1,2), and that agent al2 at (6,19) dies due to predator pl, as was noted above.
The excerpt from file res.log is:

14: a3 dies, captured by p3 at (16,21)

14: a11(9,22) FLEE heading (1,-1) gazing (1,-1) consumed 0

14: a8(4,13) CONSUME heading (0,-1) gazing (0,-1) consumed 3
Foods seen: (4,13,14)

14: a7(4,30) FORAGE heading (1,1) gazing (1,1) consumed O
Foods seen: (5,38,2)

15: Creating 1 new agent(s), randomly placed, directed

15: Create 1 food site(s) at (1,2)

15: p1(7,19) begins pursuit of al2(6,19)

15: al2 dies, captured by pl at (6,19)

15: a11(10,21) FLEE heading (1,-1) gazing (1,-1) consumed 0

15: a8(4,13) CONSUME heading (0,-1) gazing (0,-1) consumed 3
Foods seen: (4,13,15)

15: a7(5,31) FORAGE heading (1,1) gazing (1,1) consumed O
Foods seen: (5,38,2)

The posting of messages is also noted in the res.log file (not illustrated above). For
example, at iteration 17 the two lines

17: a2(4,4) sees 10 food units at (1,2)
17: MSGs: (F00D,4,4,a2)

appear signifying that agent a2 emitted a FOOD signal at this time when it first detected
the new food site at (1,2). (In Version 2, food signals are emitted when agents first arrive
at a food site, not when agents first see the food.)

FOOD

Food is initially placed at random locations throughout the world. Food sites are static
and passive (“edible plants”). Parameters control the amount of initial food per site and
the initial number of sites to be created. A computed value targetfoods (product of initial
number of food sites and amount of food per site) indicates the target total number of food
units to be present. If the amount of food present at any time falls sufficiently below this
target, one or more new randomly-located food sites are generated to restore food levels
(the total food present may transiently exceed the target). The number of food units at any
one location, once created, remains constant unless consumed by an agent at that site. At
present, each agent at a site can consume a maximum of one unit of food per iteration.

Food parameters/variables:

numfoods = number of initial food sites (randomly placed)

totfoods = total number of food sites generated

curfoods = all foods currently in the world

foodsize = number of food units placed in each new food site

targetfoods = target total amount of food to be present

foodrange = amount below targetfoods at which a new, randomly-placed food site is created

PREDATORS

Predators are simple, eternal, mobile, non-adaptive, non-evolving “machines” that hunt
and kill agents. Predators receive no reward/punishment for their success/failure. Predators
exist in one of three states: quiescent, searching, and pursuing. Predators enter the quiescent
state initially (to allow randomly placed nearby agents a chance to detect them and escape),
following a kill, and following an unsuccessful chase. During the quiescent state the predator
is completely idle and of no danger to agents. After a predetermined time, the quiescent
state ends and predators automatically enter the searching state. Predators in the searching
state move around in a quasi-random fashion, searching for agents in nearby cells. On each
iteration in this state, the predator moves one cell, in the same direction as previously with
a predetermined probability p, or in a new randomly-chosen direction with probability 1 — p.
Predators can see any agents within a certain pre-determined distance predrange in any
direction (view is blocked only by world boundaries at present). When a predator first
sees one or more agents, it randomly selects one of the closest ones and enters the pursuit
state with the selected agent as a target. In that state the predator repeatedly moves
directly towards the selected agent until either it catches the agent (by landing on the cell
occupied by the agent), it catches another agent inadvertently (by entering the cell of that
other agent while pursuing a different one), or its pursuit time exceeds a pre-determined
maximum (the agent escapes). In all of these cases the predator subsequently enters the
quiescent state. Predators can also hear messages issued by communicating agents within
a distance predhearrange (usually set to be greater than predrange, the distance a predator
can see). If a searching predator hears a message, it changes its direction to be towards the
source of the message. In this sense, communication has a cost for agents in that it can
attract predators.

Predator parameters/variables:
numpreds = number of initial predators (randomly placed)
totpreds = total number of predators created

(should be same as numpreds at end of simulation)
predators = all predators currently in the world (list)
predrange = distance a predator can “see”

(must be less than half the smallest world dimension)
predhearrange = distance a predator can “hear”
predrest = time predator stays in quiescent state
peont = probability of continuing searching in same direction
maz-pursuit = maximum time an agent can be pursued before resting

AGENTS

The population of mobile agents are able to “see” a limited region in their neighborhood
and may also be able to send/receive messages to/from other nearby agents. From such
information each agent constructs a very limited “internal model” of the world in which it
exists. This internal model represents the existence and location of nearby predators and
food (and later perhaps other agents), but is potentially limited by memory capacity and

10

may contain inaccurate information (for example, the location of a potential food source
that was consumed by another agent since it was discovered; or, the location of a predator
that has moved).

Agents in our model start where many past modeling efforts have ended: they have
built-in, preprogrammed behaviors for avoiding predators, for seeking food or mates, and
for other non-communication tasks. Such behaviors can lead to successful survival in the
absence of communication. Our focus is on emergent communication that supplements this
preprogrammed behavioral repertoire, leading to increased survival and fitness due to a better
internal world model and cooperative actions. For example, as noted above, since agents can
only “see” a small region in front of their location, the ability of agents to warn other nearby
agents of the presence of predators could give communicating agents an increased chance of
survival and hence reproduction. Communication could also convey a selective advantage in
obtaining food/mates.

At the beginning of a simulation, a prespecified number of agents of prespecified types
are initially placed in random locations throughout the world. As agents “die” during a sim-
ulation, they are generally replaced so that the population size is roughly constant. Details
of how replacement is done can be varied from simulation to simulation, and is described
further below.

Non-communicating (NC) agents essentially serve as controls for comparison with com-
municating agents. Fach NC agent is represented as a table of information containing the
agent’s location, direction of movement, direction of gaze, its current “food stores”, the total
amount of food it has consumed since its creation, memory of recent predators/food sites
seen, etc. Food stores represent the current food reserves accumulated by an agent. Each
time an agent consumes a unit of food, its food stores increase by 1. On the other hand,
all agent food stores are decremented by 1 periodically, so an agent’s food stores may rise
and fall during a simulation. An agent will die if: 1. its food stores reach zero; 2. it is
captured by a predator; or 3. it reaches a predetermined maximum age. Prior to starting
a simulation, many parameters concerning agents can be adjusted to determine the agent
population size, the distance an agent can “see”, the maximum food stores an agent can
accumulate, how frequently food stores are decremented, the maximum age an agent can
have, memory capacity, etc.

Communicating agents include all of the features of NC agents plus the ability to is-
sue/receive messages. A single message consists of a label or signal, either FOOD or PRED,
that is issued when an agent first sees a nearby predator or arrives at a food site. The
only other information associated with the message is the location of the agent issuing the
message. A message may be received only by other agents within a prespecified distance.
This distance may be made any desired value prior to starting a simulation, e.g., it can be
made so large that all agents can potentially communicate with all others.

Communicating agents come in three varieties. A communicating agent may send/receive
messages about food-only (FO agents), predators-only (OP agents), or both (FP agents).
Whether an agent object’s class is NC, FO, OP or FP is determined by its chromosome as

11

described later in this report.

An agent’s behavior is governed by the state it is in. There are six possible states as listed
below. Any type of agent can be in any of these states unless explicitly indicated otherwise.

WANDER: In this state an agent has no current goal: it knows of no food sites or predators.
It therefore wanders aimlessly in the hope of discovering a food source. All agents start
in this state, and may revert to it later. If the agent sees a food site/predator (or if a
communicating agent processes a message about food or a predator), or has a memory of

food sites or predators, the agent leaves this state to FLEE, AVOID, FORAGE or SEARCH

states as appropriate

FLEE: An agent will immediately enter this state if it sees a predator regardless of all other
information (highest priority state). The agent selects the closest predator it sees if there
is more than one, and for a prespecified time moves directly away from that predator. It
then checks whether it is sufficiently far from the pursuing predator before terminating this
state. This behavior is currently configured so that the alerted fleeing agent will escape,
unless it runs into a boundary (“cornered”) or is within the range of another undetected
predator that captures it. After flight, the agent switches to the WANDER state, where its
next course of action is determined as above.

AVOID: This state only applies to OP and FP communicating agents, i.e., only to agents
that communicate about predators. It is entered if an agent processes a message about the
presence of a predator. The alerted agent moves directly away from the message source (not
away from the predator’s location, which is uncertain but presumably close to the message
source). The agent first looks backwards (to localize the predator if possible) and then
forwards (to avoid running into another predator) as it moves. As with any other state, if an
agent in state AVOID sees a predator, this takes precedence and the agent enters the state
FLEE.

FORAGE: An agent will enter this state if it is not fleeing or avoiding a predator, and if it
has seen a food location. If so, it knows the exact location of the food site (or sites), selects
the closest, and moves towards it, looking in the direction of its movement. It changes to
the state CONSUME upon arrival at the target food site. Note that it is possible that food
may no longer be present at a site where it was previously observed if it has already been
consumed by other agents. If food is still present, the agent issues a message upon arriving
at the food site indicating that it has found food (assuming the agent is an FO or FP agent).

CONSUME: Upon arrival at a food site, if an agent’s food stores are below their maximum
capacity, the agent consumes one unit of food per iteration until full. It will remain at the
food site until either all food is gone there or it is forced to flee/avoid a predator. If the
agent has filled its internal food store to capacity, it simply remains in the CONSUME state
at the food site but does not consume any food until its food stores are decremented. When
the food at that site is exhausted, the agent enters the WANDER state to determine its next
action.

SEARCH: This state only applies to FO and FP communicating agents, i.e., only to agents

12

that communicate about food. If an agent has not seen food or predators, and is not avoiding
a predator it learned of from a message, it will enter the state SEARCH to look for the closest
food site about which it has received a message. The agent in this state moves towards the
message source (which was the food location) until a food source is seen or the agent arrives
at the food location (assuming it does not see or hear of a predator in the mean time). The
agent then enters the WANDER state, and other states (FORAGE) as appropriate.

Agent parameters/variables:

numagents = number of initial agents (randomly placed)

totagents = total number of agents ever generated

agents = list of all agents currently in the world

agentrange = distance to center of visual field

agenthearrange = max distance at which messages can be received

mazbeliefs = max number of agent memories

acont = prob. wandering agent continues in same direction

avoidtime = num iterations to spend in avoid state

foodcapac = max amount of food stores

reaptime = interval at which food stores are decremented (also, in current version, this is
times at which agents’ deaths due to starvation or old age are checked for)

mazage = older agents die of old age

POPULATION ISSUES

Each agent has a two bit “chromosome” where the first bit indicates whether or not the
agent sends and receives FOOD messages and the second bit indicates whether or not it
sends and receives PRED messages (messages about predators). Thus, an agent with the
chromosome 01 processes just PRED messages, i.e., it is an OP agent. Chromosome values
are assigned at the time an agent is created and once assigned are fixed.

The number of NC agents that are to be placed in the world at the beginning of a
simulation is specified as the value of the parameter numNC. For example, it numNC is set
to 40, then 40 NC agents will be placed at random locations in the world before a simulation
begins. The initial numbers of FO, OP and FP agents are determined similarly by the
values of numFO, numOP and numFP, respectively. The sum of these initial quantities,
numagents = numNC 4+ numFO + numPO 4 numF P, is a target value for the total
number of agents to be present throughout a simulation.

If the actual number of agents present during a simulation drops below numagents due
to death of agents, the simulator automatically creates enough new agents to replace those
that have died and places them in the world at the beginning of the next iteration. The
class of each new replacement agent is determined depending on the mode of operation of the
simulator. The mode of a simulation is one of the following, mutually-exclusive possibilities:

NC, FO, OP or FP: All new agents are of the specified type. For example, suppose one
wishes to measure how well NC agents survive under a specific set of parameter settings
in the simulator. This might be determined by setting numNC to 100, thus indicating 100

13

initial NC agents, and having no other class of agents present initially. If mode is set to
NC, any replacement agents will also be of the class NC. With such settings, the number of
deaths of agents due to starvation, predation and old age over some period of time would
form one measure of how successful NC agents are under the given conditions. New agents
in any of these four modes are placed randomly in the world.

RAND: All new agents have randomly generated bits forming their chromosome. Thus,
roughly one in four new agents falls in each class. New agents in this mode are also placed
randomly in the world.

EVOLVE: This is the mode that is used most often with the simulator. New agents are
evolved through simulated natural selection, mutation and crossover operations. Simulated
evolution is similar to what occurs with traditional genetic algorithms using tournament se-
lection, but involves incremental replacement of dead agents rather than discrete generations,
and may take into account spatial relations of parent/child agents.

The last of these possible modes, EVOLVE, deserves further explanation. In this mode,
three steps occur: 1. selection of two parents, 2. generation of two children, and 3. placement
of children into the world. These steps are repeated as many times as necessary to restore
the population to at least the target population size. Fach time the steps are repeated, two
children are produced and added to the population.

1. Parent selection: Tournament selection is used to identify two parent agents to reproduce?.
In a tournament, a small set of candidate agents are picked, and the two of these candidate
agents with the highest fitness are selected for reproduction (ties are resolved arbitrarily).
The default explicit fitness measure built into the simulator is the current food stores pos-
sessed by an agent!. Two variables govern the tournament selection process. Variable
toursize, usually a small positive integer k& > 2, specifies the number of candidate agents
used in a tournament. The larger that k is, the more competitive the selection process
(but the more computationally expensive the tournament). The other variable, locnpars,
determines how the k agents are selected to be candidate parents in a tournament. If
locnpars = RANDOM, then k candidate agents are selected randomly and independently
from the current population of agents. This initial selection of candidates is done without
regard for agent fitness or the spatial location of agents. Thus, the probability that an agent
of class NC, OP, etc, is selected to participate in a tournament is the fraction of the pop-
ulation of that class at the time candidate selection is done. If locnpars = SPATIAL,
then one candidate agent is picked at random from the current agent population, while the
remaining candidate agents are then the £ — 1 closest neighbor agents to the first one chosen
(ties resolved arbitrarily). When loenpars = SPATIAL, another parameter maxrad comes
into play. The positive integer mazrad determines the maximum distance from the first can-

3The term “tournament selection” is used here in the sense that term is usually used in the genetic
algorithms and genetic programming literature.

*This is readily changed by modifying the single function fitness in the code. For example one might
alternatively use food consumed divided by an agent’s age, or the total number of food units consumed by
an agent since birth or the number of times an agent has successfully fled from predators, or many other
quantities.

14

didate agent that can be searched for the other k£ — 1 closest agents to be in the tournament.
If the needed k — 1 agents are not within this distance, less than k£ — 1 will be used, so when
locnpars = SPATIAL, fewer than toursize agents might be used in some tournaments. If
even a second agent cannot be found within distance mazrad, this particular tournament is
aborted and the original agent is rechosen.

As noted above, selection of the toursize agents that are to participate in a tournament
is done without regard to their fitness. An agent’s explicit fitness measure is only used in
subsequently selecting the two most fit of the k candidate agents to be the actual reproducing
parents. As a result of the above method of selecting parent agents, if the tournament size
k = 2 is used, the explicit measured fitness of agents does not enter into parent selection
process at all (only the “implicit fitness” of having survived predators, starvation, etc. and
thus remaining in the population plays a role).

2. Generation of children: From the two parent agents selected as described above, two
new children agents are created and added to the population. One new child agent has its
genome set to that of one parent, while the other new child agent has its genome set to that
of the other parent. The following modifications are then made to the chromosomes of the
child agents:

e with probability pmfthe food bit in each child agent’s chromosome is mutated (flipped);

e with probability pmp the predator bit in each child agent’s chromosome is mutated
(flipped); and
e with probability pe, crossover occurs (there is only one crossover point possible).
Note that the chromosomes of the two child agents may end up by chance to be equivalent
to those of the two parent agents, and will end up with certainty to be equivalent to those
of the parents if pmf = pmp = pe = 0.0.

3. Placement of children: The above process generates two new agents to be placed in the
world. These new agents replace others that have died during the last iteration, and not
the parent agents which remain in the world. How the new agents are placed in the world
depends on the value of parameter locnkids. If locnkids = RANDOM, the two new
agents are placed at random locations in the world. Otherwise, locnkids must be a small
non-negative integer designating the radius of the neighborhood around the parent agents in
which the new agents are to be randomly placed. The child agent derived from each agent is
placed within the neighborhood of the parent agent from which it was derived. For example,
if locnkids = 0, each child agent will be placed within the same cell as the parent agent
from which it was derived (it will differ in its orientation, etc.). If loenkids = 2, each child
agent will be placed at a random location of the 5x5 neighborhood centered on its parent
agent. The initial direction of movement of child agents is random.

Parameters/variables related to population evolution:
numNC, numFO, numOP, numFP = initial numbers of NC, FO, OP and FP agents,
respectively
genome-size = number of chromosome bits (2 in this version of simulator; do not change)
negenome, fogenome, opgenome, fpgenome
= computed number of NC, FO, OP and FP agents generated, respectively

15

toursize = tournament size during selection (integer > 2)
loenpars = RANDOM or SPATTAL
pmf = probability of mutating a food bit in a chromosome
pmp = probability of mutating a predator bit in a chromosome
pc = probability of crossover
maxrad = maximum radius allowed in spatial selection process
(must be less than half the smallest world dimension)
locnkids = RANDOM, or non-negative integer representing the maximum distance from
parent that a child may be placed (initial agents are always placed randomly; only evolved
child agents may be placed spatially)

USING THE SIMULATOR

The simulator is implemented in Allegro Common Lisp. Save the simulator in a single
file which will be called main.lsp here. To start an interpreted simulation, simply sign onto
Allegro and enter

(load “main.lsp”)

at the prompt in the same directory in which Allegro was started. The simulation is set
to run automatically and to terminate after tmax iterations. The results will appear in
the files res.state, res.disp and res.log as described above. The simulator can be compiled
and runs qualitatively faster once compiled. Any non-trivial simulation should be run after
compilation. The simulator can be compiled and loaded, for example, after starting lisp, by
entering

:cf main.lsp

:1d main

Parameters that can affect a simulation are located at the beginning of the simulator file.
These are largely set at arbitrary values used in a recent simulation. Due to the stochastic
nature of simulations, precise results may vary upon repeating a simulation, so any specific
simulation should be run multiple times to obtain confidence in the results. Note that the
tracing and display of world states on every iteration can be a substantial factor in slowing

the system.
The last two lines of the simulator file are:
(control)
(exit)

These start a simulation and terminate the lisp session, respectively. Elimination of the call
to (exit) at the end of the file will leave you talking to the lisp interpreter at the end of a
simulation (this might be useful should one want to inspect data structures at that time).
Eliminating both (control) and (exit) will load the simulator but not start a simulation.

A Perl script has been written that allows one to run several instances of a simulation
(with the same simulation parameters) in parallel on a pool of Unix workstations. Each
instance is the same simulation but with a different random seed. After all instances have

16

terminated, the output files of each instance are parsed by the script. Among other things,
the script averages over all output values of all instances and displays averaged results.

Distance measures in the simulator are not Euclidean. The distance between two points
is the minimum number of cell-to-immediate-neighbor-cell steps required to move between
those points, where individual steps are horizontal, vertical, or diagonal. Thus all cells
equidistant from a specific given cell form a square.

SOME FINAL COMMENTS

The simulator described here has several obvious limitations, including:

1. Not optimized for speed (slow) in that the implementation is done in Lisp

2. No interface for the non-programmer; no graphics interface

3. Rather impoverished world (does not have landmarks, water, prey, sound,
speed variations, cover, visual obstacles, more than one predator, noise,
more than one food type (none mobile; isolated and not clusters; poisons),
seasons; day /night; non-communication interactions between agents
(awareness; fight over food; mating; cooperation)

Two issues that may merit further evaluation and modification in future versions of the
simulator are:

1. The simple, fast movetowards function currently used biases entities to move towards
their targets from horizontal/vertical directions (and not diagonal directions) as they get
closer to the target. This could be fixed in movetowards by computing a normalized direction
vector pointing at the target, and using its components as probabilities of moving in the
corresponding coordinate directions. Cost: Extra real-valued arithmetic, and complexity.

2. Agent visual scan should create base (width) and scan out from there progressively to
permit extension to obstacles by blocking outward progression. Now it just selects a block
of cells in the correct direction and scans all of its cells.

At present, the simulator is being used for a series of experiments to determine conditions
under which signaling emerges. The results of these experiments will be the subject of a
future report.

17

