
cars: A New Code Generation Framework forClustered ILP ProcessorsKrishnan Kailasy Kemal Ebcio�gluz Ashok Agrawala�y Department of Electrical & Computer Engineering z T. J. Watson Research Center� Institute for Advanced Computer Studies and IBM CorporationDepartment of Computer Science Yorktown Heights, NYUniversity of Maryland, College Park, MD kemal@watson.ibm.comfkrish,agrawalag@cs.umd.eduTechnical ReportUMIACS-TR-2000-55 / CS-TR-4165July 2000AbstractClustered ILP processors are characterized by a large number of non-centralized on-chip re-sources grouped into clusters. Traditional code generation schemes for these processors consistof multiple phases for cluster assignment, register allocation and instruction scheduling. Most ofthese approaches need additional re-scheduling phases because they often do not impose �niteresource constraints in all phases of code generation. These phase-ordered solutions have severaldrawbacks, resulting in the generation of poor performance code. Moreover, the iterative/back-tracking algorithms used in some of these schemes have large running times. In this reportwe present cars, a code generation framework for Clustered ILP processors, which combinesthe cluster assignment, register allocation, and instruction scheduling phases into a single codegeneration phase, thereby eliminating the problems associated with phase-ordered solutions.The cars algorithm explicitly takes into account all the resource constraints at each clusterscheduling step to reduce spilling and to avoid iterative re-scheduling steps. We also present anew on-the-y register allocation scheme developed for cars. We describe an implementationof the proposed code generation framework and the results of a performance evaluation studyusing the SPEC95/2000 and MediaBench benchmarks.Keywords: Code generation, Clustered ILP processors, Cluster scheduling, Register allocation,VLIW, Instruction-level parallelism. 1

1 IntroductionThere is a recent interest in statically [1, 2, 3, 4, 5] and dynamically [6, 7, 8, 9] scheduled ClusteredILP processor microarchitectures as a complexity-e�ective alternative to wide issue monolithicmicroprocessors for e�ectively utilizing a large number of on-chip resources with minimal impacton the cycle time. The function units are partitioned and resources such as register �le and cache areeither partitioned or replicated and then grouped together into on-chip clusters in these processors.All the local register �les share the same name space in the replicated register �le scheme, whereasin the partitioned register �le scheme each one of the local register �les has a unique name space.The clusters are usually connected via a set of inter-cluster communication buses or a point-to-pointnetwork [10].Several resources are required to execute an operation (OP) in a clustered processor. As ina single-cluster processor, the OPs need local resources in the cluster such as function units forexecution and registers/memory to save the results. In addition to this, the OPs often need sharedresources such as the inter-cluster communication mechanism to access those operands that residein remote clusters. Some form of copy operation (using either hardware techniques [8] or inter-cluster copy OPs) needs to be explicitly scheduled to access a remote register �le in the case ofa partitioned register �le scheme, or to maintain coherency in the case of a replicated register�le scheme. Clearly, a good code generation scheme is very crucial to the performance of theseprocessors in general and especially for statically scheduled clustered ILP processors in which eachone of these local and shared resources has to be explicitly reserved by the code generator on acycle-by-cycle basis.The basic functions1 that must be carried out the by the code generator for a clustered ILPprocessor are: 1) cluster assignment, 2) instruction scheduling, and 3) register allocation. Allof the three functions are closely inter-related to each other. If these functions are performedone after another, often their ordering can have a signi�cant impact on the performance of thegenerated code. For example, register allocation can a�ect cluster assignment and vice versa. Thisis because the register access delays (due to inter-cluster copy OPs) of an OP are dependent onthe proximity of the cluster in which the operand register is de�ned to the cluster that tries toaccess it. The ordering of cluster assignment and instruction scheduling steps can also a�ect theperformance of the compiled code. If scheduling is done before cluster assignment, it may notbe possible to incorporate inter-cluster copy OPs in the schedule made by the earlier schedulingstep, often necessitating a re-scheduling step after the cluster assignment. Cluster assignment ofan OP depends on the ready times of its operands and the availability of resources, which in turndepend on the cycle in which the OPs that de�ne the operands are scheduled. Therefore, clusterassignment, if carried out before the scheduling step can often result in poor resource utilizationand longer schedule lengths. There are several problems with the approaches using separate phasesfor register allocation and instruction scheduling [11, 12]. Global register assignment, if carriedout �rst, can create unnecessary dependences due to re-de�nition of registers, thereby restricting1We assume that operation selection has been already made.2

the opportunities for extracting ILP by instruction scheduler. Instruction scheduling if performedbefore register assignment can result in ine�cient use of registers, thereby increasing the registerpressure, possibly causing unnecessary spills.In general, phase-ordered solutions at each phase make a \best e�ort" attempt to get a feasiblecluster schedule, often making unrealistic assumptions such as in�nite resources (registers, functionunits, etc) or zero time copy operations resulting in poor performance code. Clearly, this phase-ordering problem can a�ect the performance of the code generated for clustered processors. Analternative approach is to iterate the cluster scheduling process until a feasible schedule meetingsome performance criteria is reached. The main drawback of these approaches is their large runningtime.In this report, we introduce a new code generation framework for clustered ILP processors calledcars (Combined cluster Assignment,Register allocation and instruction Scheduling). In cars, asthe name suggests, the cluster assignment, register allocation and instruction scheduling phases oftraditional code generation schemes are performed concurrently in a single phase, thereby avoidingthe drawbacks of the phase-ordered solutions mentioned above. In order to maximize the extractionof instruction-level parallelism (ILP), independent OPs (that do not cause exceptions) are oftencluster scheduled out-of-order in cars. To facilitate this as well as to combine register allocationwith cluster scheduling, we developed a new on-the-y register allocation scheme. The scheme doesnot rely on any information that depends on predetermined relative ordering of OPs such as the liveranges and interference graphs used by traditional register allocators. Our preliminary experimentalresults indicate that cars generates e�cient code for a variety of benchmark programs across aspectrum of eight di�erent clustered ILP processor con�gurations.Roadmap: In section 2 we describe the cars framework and algorithms. The details of animplementation of cars are given in section 3. We discuss the related work in section 4. Preliminaryresults of an experimental evaluation of cars are given in section 5, followed by some commentsand conclusions in section 6.2 Combined Cluster Assignment, Register Allocation and Instruc-tion Scheduling2.1 OverviewA generic clustered ILP processor model is shown in �gure-1. In this report we assume a partitionedregister �le architecture with local register �les containing registers with unique/private name space.However, our scheme can be easily adapted for replicated register �le architectures as well [13].We assume that an OP can only write to its local register �le and an explicit inter-cluster copyOP is needed to access a register from a remote cluster. These copy OPs use communicationfunction units (a local cluster resource) and inter-cluster communication network (a shared globalresource). Either single/multiple shared buses or point-to-point network may be used for inter-cluster communication. 3

Individual Cluster

...

FU Function Unit

. . .

CFU Communication Function Unit

CFU
0 1

n

n

CLUSTER
0 1

FU

CLUSTERCLUSTER LOCAL REGISTER FILE

INTER-CLUSTER COMMUNICATION NETWORK

INTER-CLUSTER COMMUNICATION NETWORK

FU FUFigure 1: Generic Clustered ILP Processor Model.Our code generation framework consists of 3 stages as shown in �gure-8(b). In the �rst stagesome of the data structures required for the cars algorithm are set up and initialized. The realwork is done in the second stage in which the combined cluster assignment, register allocation andinstruction scheduling (henceforth referred to as carscheduling) is carried out, followed by the �nalcode printing stage with peephole optimizations.The input to the code generator is a dependence ow graph (DFG) [14] with nodes representingOPs and directed edges representing data/control ow. The DEF-USE relationship between nodesis represented using the static single assignment (SSA) form [15] with a join and fork node at thebeginning and end of basic blocks respectively. Join node DEFs represent phis (� s) of SSA andfork node DEFs represent anti-phis (��1s). Join nodes are also scheduled by cars, even thoughthey do not consume any resources or issue slots, for implementing on-the-y register allocation(explained in section 2.3).The basic scheduling unit for cars can be a set of OPs created using any of the \region"formation or basic block grouping heuristics of the various global scheduling schemes such as su-perblock scheduling [16], hyperblock scheduling [17], treegion scheduling [18] or execution-basedscheduling [19]. These scheduling units, which we refer to as regions, are selected for schedulingstrictly in topological order. OPs within a region are scheduled in top down fashion. The outputof the code generator is a directed graph of tree-VLIWs [20].During code generation cars dynamically partitions the OPs in the scheduling region into aset of mutually exclusive aggregates (groups) | unscheduled, readylist, and vliws 2. Initiallyall the nodes in the DFG belong to the unscheduled aggregate. The data ready3 nodes in theunscheduled aggregate are identi�ed and moved into the readylist. The nodes in the ready listare selected based on a heuristic for carscheduling. After carscheduling, the nodes are moved tothe appropriate vliws. This process is repeated until all the nodes of the DFG are scheduled.2.2 Pre-cars initializationsThe pre-cars initialization stage is used for preprocessing information needed by the cars algo-rithm. For each node we compute its height and depth in the DFG, based on the height and depthof its dependent successor/predecessor nodes and its latency. Depth is the earliest execution cycle2vliws is a tree of aggregates.3A node becomes data ready when all of its dependent predecessor nodes are scheduled.4

of the OP, counting from the beginning of the DFG; height is the latest execution cycle of the OP,counting from the end of the DFG, in an in�nite resource machine. Associated with each SSA DEFthat needs to be register allocated, we maintain a RegMap structure. Inside the RegMap of a DEF,we keep the number of uses (use count) and the ID of the preferred register (prfrd reg map) tobe assigned to the DEF. DEFs and USEs of certain nodes such as the ones at the entry and exit ofthe procedure and call OPs must be assigned to speci�c registers as per the calling convention. Wemark such DEFs and USEs with a ag and initialize their prfrd reg map to the ID of the corre-sponding mapped register. The register allocator of cars uses another �eld of RegMap, the registermask bitvector (regmask bv) to prevent a set of registers from being allocated to certain DEFs. Forexample, we initialize regmask bv of those DEFs that are live across a call OP so that caller-saveregisters will not be allocated to them. We also identify and ag loop-invariant DEFs, back-edgeDEFs and loop-join-DEFs of nodes in loops. This information will be used by cars, for example toeliminate copy OPs along the back-edges of loops [13]. Physical registers are treated as a resourcein cars. Based on the input parametric description of the machine model, we initialize the registerresource structures and their bit-vector representations, local resource counters for function unitsand global resource counters for shared resources such as inter-cluster buses.2.3 On-the-y register allocation in carsRegisters are allocated on-the-y in cars without using live range information [21] or explicitinterference graphs [22]. In order to do this, it maintains and dynamically updates 1) the remainingnumber of uses (ruse count) of each physical register, 2) the availability of registers (lcl reg bvand glbl reg bv), and 3) preferred register mapping (prfrd reg map) of DEFs, as explained below.We use ruse count to identify and mark when a live register becomes dead. The ruse count ofa register is decremented whenever an OP that uses it is scheduled; when ruse count becomes zerowe mark the register as dead. Since the only information we have at any time during schedulingis the pre-computed use count of SSA DEFs in the current scheduling region, we initialize anddynamically update the ruse count as follows. As we start scheduling a new region, the DEFs(� s) of the join node are allocated the same register its scheduled predecessor forks' DEFs (��1s)are allocated. The pre-computed use count of join DEF is then added to its allocated register'sruse count. Similarly, prior to scheduling fork nodes at the exits of a region we update theruse count of registers used by ��1s of fork node. The number of unvisited join �s connected tothe fork's ��1 is added to the ruse count of the ��1's mapped register. This prevents markingthe registers allocated to DEFs that are live beyond the current scheduling region as dead (see theexample in �gure-2).In addition to ruse count, the availability (live or dead status) of registers are also maintainedin two bit-vectors { one representing the global status (glbl reg bv) and the other representingthe local (i.e., within the scheduling region) status (lcl reg bv). All registers that are not usedin the current scheduling region are marked as dead in lcl reg bv, whereas the status of registersin glbl reg bv does not depend on whether they are used in the current scheduling region ornot. We use the information in these two bit-vectors to identify non-interfering lifes in the current5

2 n1

d1

φ1

u3.1u3.2

...

3φ-1

-1

d1.use_count =2
r5.ruse_count =2

r5.ruse_count =0+2

r5.ruse_count =1

r5.ruse_count =0+4

r5.ruse_count =2

3.use_count =n
r5.ruse_count =0+n r5.ruse_count=1

r5.ruse_count =1
r5.ruse_count=3

r5.ruse_count =1+2

r5.ruse_count =2

 2.use_count =2

 1.use_count =2

φ

φ

φ
-1

-1

φ3.use_count = 4

 is the USE of DEF in CARScheduling orderxux.i i th
r5 d1

φ

register is allocated to DEF

3

u3.3

BC

φ2

u2.1

u2.2

to s of successor regionsφ

A

u1.1

Figure 2: An example illustrating ruse count update process in cars. Regions are carscheduled inthe order: A!B!C. The register r5 is not marked dead even after scheduling its last use u2.2 in B.scheduling region for e�cient use of registers as in a graph coloring based allocator [22]. Registersthat are marked dead in glbl reg bv may be allocated to any DEF if they are not masked byDEF's regmask bv. Also, a register from the set of registers that are marked as dead in lcl reg bvbut live in glbl reg bvmay be allocated to a DEF, if the DEF is not live beyond the current regionand the register does not belong to the set of preferred registers of all ��1s at the exits of the region.All of the above logic can be implemented by a set of logical operations on bit-vectors [13].
2

C

B

A

if(...){

 ...

 y = x + z;

}

else{

 ...

 y = x - z;

}

z = ... y;

BA

C

φ
-1

φ
-1

y x + z111

a) Source code

...

φ

b) SSA representation

...

(y) (y)
1 2

y (y , y)

z ... y
1 23

33

y x - z22Figure 3: An example illustrating the problem due to di�erent register mappings: If the SSA DEFs y1and y2 are mapped to r10 and r11 respectively, then y3 �(y1; y2) becomes a non-identity assignmentand hence cannot be ignored. To �x this problem, we have to insert a copy OP r11 r10 in block Aor r10 r11 in block B .The �s of a join node require copy OPs along its incoming edges if all of its predecessor ��1swere not allocated to the same register (see the example in �gure 3). To avoid these copy OPswe use the dynamically generated prfrd reg map information in the RegMap of DEFs as follows.The prfrd reg map of each DEF which is live beyond the current region is initialized when theDEF is register allocated. This prfrd reg map information is propagated to all the directly andindirectly connected �s of join nodes as shown in the �gure 4. (The set of directly and indirectlyconnected join DEFs may be thought of as a \web" of intersecting DEF-USE chains [23] { an6

a

φ φ φ

F F

J JJ

DEF

φ−1

DEF-USE edges

prfrd_reg_map

scheduling
region

current

propagation path

F Fork node

J Join node

a

e

c

f

cb b

e fd

φ

d

−1φ−1
FFigure 4: prfrd reg map propagation: �d and �e are the directly connected and �f is the indirectlyconnected �s of ��1a .object for register allocation in graph coloring based allocators). In general, if a DEF has an ��1use and there exist a valid prfrd reg map for any of the �s connected to this ��1, then we allocatethe register as speci�ed by that prfrd reg map to the DEF. Otherwise, we allocate a register thatis dead in glbl reg bv and propagate the prfrd reg map to all connected �s as explained above.Because the regions are scheduled strictly in topological order and registers that are live beyond thecurrent region are never marked dead, this scheme almost completely eliminates unnecessary copyOPs that might otherwise be needed to handle mismatches in the register mapping of incomingedges of �s.To those DEFs that have a �xed register mapping due to our calling convention, we allocateregisters as per their prfrd reg map initialized in the pre-cars stage. Copy OPs are insertedon-the-y during carscheduling for those DEFs that are live across call OPs, if necessary, bypreempting the scheduling of call OP.To avoid pseudo name dependencies we select registers for assignment in a round-robin fashionusing an e�cient data structure [13]. This data structure also allows us to quickly search for deadregisters in a cluster. Inside each physical register's resource structure, we also maintain a list ofSSA DEFs (belonging to the same live range) that are currently mapped to the register. Thisinformation is used for spilling a live range.Spilling: If there are no dead registers to assign to the DEF(s) of any of the OPs in the readylist,then a live register is selected for spilling, based on a set of heuristics [13]. In order to spill the liverange mapped to a register, spill store OPs are inserted in the DFG for the scheduled DEFs (if any)mapped to the register. These spill store OPs will be merged to one of the vliws aggregates bythe peephole compaction routine after carscheduling. The spilled register (now residing on stack)is renamed to a unique ID outside the name space of all local register �les. This facilitates easyidenti�cation of the DEFs mapped to spilled registers and their uses in the un-scheduled regions,so that spill load/store OPs can be inserted in the DFG and carscheduled on-the-y.2.4 The cars AlgorithmThe cars algorithm is given in �gure-5, which is a modi�ed version of the list-scheduling algo-rithm [24]. In order to �nd the best cluster to schedule an OP, we �rst compute the resource-constrained schedule cycle (lines 3-5 of �gure-5) in which the OP can be scheduled in each cluster7

Algorithm 1 cars: list-scheduler version1: while number of OPs in unscheduled 6= 0 do2: select an Op from readylist3: for i = 0 to MAX CLUSTERS do4: compute resource-constrained schedule cycle[i] for Op5: end for6: earliest cycle = minfschedule cycle[i]g7: if earliest cycle � current vliw cycle then8: update depth of OPs and processor resource counters9: allocate register(s) to DEF(s) of Op10: assign cluster and schedule Op in the current vliws aggregate11: insert and cluster schedule copy OP(s) (if required)12: update readylist13: else14: increment scheduling attempts of Op15: move Op back to readylist16: end if17: if current vliw cycle < minf depth of OPs in vliwsg then18: open a new vliws aggregate and increment current vliw cycle19: end if20: end while Figure 5: cars algorithm.based on the following factors: 1) the cycle in which its operands are de�ned, 2) the cluster inwhich its operands are located, 3) the availability of function unit in the current cycle, 4) the avail-ability of destination register, and 5) whether inter-cluster copy OP(s) can be scheduled or not onthe source node's cluster in a cycle earlier than the current cycle. Based on the earliest cyclecomputed (line 6), the OP will be either scheduled in the current cycle on one of the clusters4 cor-responding to earliest cycle (lines 7-10) or pushed back into the readylist after incrementingits scheduling attempts (lines 13-16). A new vliws aggregate will be created if none of the OPs inthe ready list can be scheduled in the current vliw cycle (lines 17-19). This process is repeateduntil all OPs in the unscheduled aggregate are cluster-scheduled.We use one of the commonly used heuristics { schedule those data ready OPs that are on thecritical path �rst { for selecting an OP from the ready list (line 2 of �gure-5). The sum of theOP's height and depth is used to identify OPs that are likely to be in the critical path(s) and toassign priority to the data ready OPs. The scheduling attempts variable associated with each OP(updated in line 14) is used to change the OP selection heuristics so that no OP in the ready listwill be repeatedly considered in succession for carscheduling. This also ensures termination of thealgorithm. The depth of a scheduled OP is often increased after scheduling due to �nite resourcesavailable in each cycle, causing the set of OPs in the critical path(s) to change dynamically duringthe cluster-scheduling process. Therefore, in order to greedily select OPs in the critical paths �rst,after scheduling each OP, we update the depth of the OP and the depth of all of its dependent nodesthat became data ready as a result of scheduling the OP (lines 8 and 12 of �gure-5). Coupled withthe prioritized selection of nodes in the critical path, this fully resource-aware cluster scheduling4If the OP can be scheduled on more than one cluster in the earliest cycle, then a cluster is selected forassignment based on a set of heurisitcs [13]. 8

−1

scheduling φ
 2 is visited whileφ

φ

C

−1
φ

-1
1

r5.ruse_count = 0+2

2.use_count = n2
r5.use_count = 0+n2

2.use_count = 2

...n2

φ

φ-1

φ2

2

d1 d1.use_count = n1
r5.ruse_count=n1

...n1

-1φ1

r5.ruse_count =1+0

r5.ruse_count = 1+n3

...n3

 3.use_count =1

φ 3.use_count = n3φ

φ-1

3

3

B

D

r5.ruse_count = 0+n4

...n4

φ 4.use_count = n4φ4

A

r5.ruse_count = 0+1
φ 1.use_count = 1

Figure 6: An example illustrating how ruse count is updated during on-the-y register allocation ofa live range which is live at the exit of the loop. Register r5 is allocated to DEF d1. Regions arecarscheduled in the order: A!B!C!D.approach lets cars assign and schedule OPs in the critical paths in appropriate clusters such away that the stretching of critical paths is minimal and subject to the �nite resource constraints oftarget machine.Often inter-cluster copy OPs have to be inserted in the DFG and retroactively scheduled inorder to access operands residing in remote clusters (line 11 of �gure-5). We use an operation-driven version of the cars algorithm for this purpose. In order to �nd the best VLIW to schedulethe copy OP, the algorithm searches all the vliws aggregates starting from the DEF cycle of theoperand (or from the cycle in which the join node of the current region is scheduled, if operandis not de�ned in the current region) to the current cycle. We use the tree VLIW instruction [20]representation so that independent OPs from multiple regions can be scheduled in the same vliwsaggregate. Due to lack of space, we will not further describe the details of operation-driven carsalgorithm and tree-VLIW scheduling, which may be found elsewhere [13].2.5 carscheduling cyclic regionsLoops are carscheduled similar to acyclic DFG. A loop-head join node becomes data ready whenall of its predecessor fork nodes, except the back-edge fork node(s), are scheduled. The ruse countupdate process is exactly similar to carscheduling acyclic regions as illustrated in �gure 6. However,some additional techniques are required to avoid unecessary insertion of copy OPs along the back-edges of loops due to mismatches in register mappings. In the following, we �rst describe theproblem using an example and then present our solution which uses the information obtained frompre-cars initialization pass. 9

for(i = a; i < b; i++){...}... = i ...;a) Source code of loop.
A: i1 agoto BB: i2 �2(i1; i4)if (i2 � b) goto D� � �i3 i2 + 1goto CC: i4 �3(i3)goto BD: i5 �4(i2)� � �b) Loop in SSA form.

φ2

-1φ1

use d2

r5

r5’

φ-1

2

φ4

r5’

r5

r5’

r5

OP

r5’

d1

r5

C

φ

φ-1

3

3

B

A

DFigure 7: An example illustrating prfrd reg map propagation during on-the-y register allocation of aloop. Regions are carscheduled in the order: A!B!C!D. Register r5 is allocated to DEF d1. Ifa di�erent register r50 is allocated to DEF d2, then a copy OP r50! r5 must be inserted along theback-edge �3 ��13 .Let us consider the live ranges associated with the loop index computation shown in �gure 7.We call the DEF which is connected to the loop-head join via back-edge of the loop, such as theDEF d2 of the OP which updates the loop index, as a back-edge DEF. The back-edge DEF d2does not have any preferred register assigned at the time of carscheduling its OP, because thesuccessor join DEFs (�3 and �4) of d2's fork use ��12 do not have their prfrd reg maps initializedyet. Consequently, the register allocator may choose a register r50, which is di�erent from the one(r5) mapped to �2, for allocation to d2. This necessitates a copy OP such as r50! r5 to be insertedalong the back-edge of the loop to take care of the mismatch between register maps of �3 and �2.cars eliminates such copy OPs as follows. During the pre-cars pass, for all back-edge DEFs thatare not loop-invarient (such as d2), we identify the loop-head join DEF that can be reached viathe back-edge of the loop (�2 in our example), and save this information in the back-edge DEF'sRegMap structure. Whenever such a back-edge DEF is encountered during carscheduling, we tryto allocate it the register assigned to its associated loop-head join DEF. In the above example,hence we allocate r5 to d2, since the join DEF associated with d2 is �2, thereby eliminating thecopy OP r50! r5. If there are no OPs in the back-edge block after scheduling the loop body, thescheme also help eliminate an extra branch by deleting the empty back-edge block.3 ImplementationWe have implemented a code generator based on cars on top of chameleon [25, 26] VLIW researchtestbed. The input to chameleon is object code (.o �les) produced by a modi�ed version of gcc10

compiler. An object-code translator processes these .o �les to generate an assembly-like sequentialrepresentation. The modi�ed version of the VLIW compiler with the cars-based backend takesthis sequential code as input and outputs VLIW code (tree-instructions) as shown in Figure-8(a).
gcc code

Object

translator

VLIW
translator

Executable
binaryVLIW Compiler

.o files .vinp files .vasm files

Instrumented
VLIW files

.s files)
(PowerPC

Modified

a) CHAMELEON VLIW research testbed:

VLIW compiler
backend

dependence graph,
loop clean up,
static memory
disambiguation

Conditional instrs.,
3-input instrs.,

etc.

unrolling, cloning,

etc.

Initial phase: Architectural
Optimizations:

ILP enhancing
optimizations:

pre-CARS
initializations

CARS
Peephole

optimizations,
Code printing

b) VLIW compilation stages:

MII reduction,

Dynamic

disambiguation
memory

Modified

(not used)Figure 8: Implementation of cars on the chameleon VLIW research testbed.The VLIW compiler �rst builds the DFG and then performs a series of optimizations as shownin �gure-8(b). Compilation is performed at procedure level and without function in-lining. Theprologue and epilogue code are added to the DFG after carscheduling the procedure. Thesepro/epilogue OPs are then cluster scheduled using cars. The vliws aggregates are then passedthrough a peephole optimizer and to the �nal code printing stage. The output of cars, the tree-VLIWs, are then instrumented and translated into PowerPC assembly code that emulate the targetClustered ILP processor.A parametric description of the target clustered machine model can be speci�ed to the codegenerator. The number, type and latency of function units in each cluster, any kind of arbitrarymapping of register name space to local register �les, number, type and latency of global intercon-nect are some of the con�gurable parameters that are currently supported by our code generator.A subset of the machine resource information is maintained on a per-VLIW basis during codegeneration.As of writing this report spilling is not fully implemented. Currently, akin to the Bulldog com-piler [27], our compiler exits if an OP cannot be scheduled even after making a constant number ofrepeated scheduling attempts. However, by controlling the extent of loop-unrolling, we are able tocompile 95-100% of all functions in the benchmark programs that we have used in the experimentalevaluation of cars (section 5). Moreover, in single cluster con�guration, cars could compile morenumber of functions without spilling compared to the unmodi�ed version of chameleon compiler(which performs register allocation after scheduling for single cluster machines). This clearly shows11

the ability of cars to pick di�erent OPs from the readylist until a register is available to sched-ule an OP. While compiling for clustered machines, the cars algorithm automatically migratescomputation to a cluster with lower register pressure.4 Related workTo the best of our knowledge cars is the �rst code generation scheme that combines the clus-ter assignment, instruction scheduling and register allocation phases for a partitioned register �leclustered ILP processor.Solutions for phase-ordering problem: Several schemes have been proposed to combine dif-ferent phases of code generation for clustered as well as non-clustered processors. The most recentone, the UAS algorithm [28, 29] for clustered VLIW processors by Ozer, Banerjia and Conte per-forms cluster assignment and scheduling of instructions in a single step, using a variation of listscheduling. The UAS algorithm, however, does not consider registers as a resource during clusterscheduling. In contrast, the cars algorithm treats registers as one of the resources and performson-the-y register allocation along with cluster scheduling in a resource-constrained manner.A variety of techniques have been proposed for combining register allocation and code schedul-ing of single cluster processors. Goodman and Hsu proposed an integrated scheduling techniquein which register pressure is monitored to switch between two scheduling schemes [30]. Operation-driven version of the cars algorithm is motivated by this work. However, unlike their scheme, weswitch to operation-driven scheduling only for scheduling inter-cluster copy OPs. Bradlee et al [31]proposed a variation of the Goodman-Hsu scheme and another technique. Pinter [32] proposed atechnique that incorporates scheduling constraints into the interference graph used by graph col-oring based allocators. Berson et al [33] proposed a technique based on measuring the resourcerequirement �rst and then using that information for integrating register allocation in local as wellas global schedulers. Brasier et al proposed a scheme called CRAIG [34] that makes uses of infor-mation obtained from a pre-pass scheduler for combining scheduling and register allocation phases.The compiler for TriMedia processor uses a technique much like the scheme in [33] to combineregister allocation and scheduling [35]. Hanono and Devadas [36], and Novak et al [37] proposedcode generation schemes for embedded processors, which combine the code selection, register allo-cation, and instruction scheduling phases. Early examples of techniques that did scheduling andregister allocation concurrently for single cluster VLIW machines include the resource-constrainedscheduling scheme by Moon and Ebcio�glu [38]. The fundamental di�erence between our schemeand all the above are: 1) the use of register mapping information and separate local and globalregister status during carscheduling, and 2) combining all the three phases involved instead oftwo. The vLaTTe compiler handles fast scheduling and register allocation together in the contextof a JAVA JIT compiler for a single cluster VLIW machine [39].Register allocation: Local register allocation via usage counts [40] is a well known technique.More recently, a number of fast global register allocation schemes have been proposed. For example,the Linear Scan register allocation scheme [21] by Poletto and Sarkar use live interval information12

to allocate registers in a single pass. All these schemes and the graph coloring based allocators [22]need the information about the precise ordering of OPs for computing interfering live ranges whichis only available after scheduling. The on-the-y register allocation scheme used in cars is notbased on any such information that is available only after scheduling the entire DFG.The preferred register map approach in cars is similar to the scheme proposed by Yang, Moonet al [41] for the LaTTe just-in-time compiler. However, LaTTe makes two passes (a \backwardsweep" collects information on preferred registers for OPs and a \forward sweep" performs registerassignment) for local register allocation of tree regions and it needs copy OPs due the mappingmismatches (as illustrated in Figure 3). In contrast, cars performs global register allocation ina single carscheduling pass using pre-computed use count of DEFs. Moreover, cars by designtries to prevent the mapping mismatches.Cluster Scheduling: Pioneering work in code generation for clustered VLIW processors is doneby Ellis [27]. The Multiow compiler [42] performs cluster assignment using a modi�ed version ofthe Bottom-Up Greedy (BUG) algorithm proposed by Ellis in a number of steps and then performsregister allocation and instruction scheduling in a combined manner. Desoli's Partial ComponentClustering (PCC) algorithm [43] for clustered VLIW DSP processors is an iterative algorithm thattreats the clustering problem as a combinatorial optimization problem. In the initial phases of thePCC algorithm, \partial components" of DAG are grown and then these partial components areassigned to clusters much like the cluster scheduling scheme using components, equivalent classesand virtual clusters [11] of the Multiow compiler. In the subsequent phases, the initial clusterassignments are further improved iteratively. In contrast, the cluster assignment approach of ourscheme is fundamentally di�erent from the recursive propagation of preferred list of functionalunits and cluster assignment as in the BUG algorithm. Cluster assignment, register allocation, andinstruction scheduling are performed concurrently in a resource-aware manner in cars.Another work is the cluster scheduling for the Limited Connectivity VLIW (LC-VLIW) archi-tecture [44]. Cluster scheduling for the LC-VLIW architecture is performed in three phases. Inthe �rst phase, the DAG is built from the compiled VLIW code for an ideal single cluster VLIWprocessor. The second phase uses a min-cut graph partitioning algorithm for code partitioning. Inthe third phase, the partitioned code is recompacted after inserting copy operations.The dynamic binary translation scheme used in DAISY performs \Alpha [6] style" clusterscheduling (without using inter-cluster copy OPs) along with register allocation for a duplicatedregister �le architecture [19, 3].Multiprocessor Scheduling: A large number of DAG clustering algorithms have been proposedfor multiprocessor task scheduling in the past [45]. Sarkar's partitioning algorithm [46] and themore recent ones such as Dominant Sequence Clustering (DSC) [47] and CASS-II [48] are examplesof such algorithms. The input to these algorithms is a DAG of tasks with known edge weightscorresponding to the inter-node communication delays. Clustering is carried out in multiple steps.In the �rst step, these algorithms assume an in�nite resource machine and each node is assumedto be in a di�erent cluster. A sequence of re�nement steps are performed in the second step, inwhich two clusters are merged by \zeroing" the edge weight (communication delay between nodes)13

based on di�erent heuristics. The clusters produced in the previous steps are merged together inthe third step so that the resulting number of clusters does not exceed the number of processorsin the multiprocessor. The compiler for the MIT RAW project, RAWCC [49], employs a greedytechnique based on the DSC algorithm for performing cluster scheduling in multiple phases. Incontrast, the cars algorithm performs cluster scheduling with register allocation in a single pass,always assuming a �nite resource machine. We use the same heuristics used by DSC, CASS-II andBUG algorithms to select data ready nodes in the critical path for cluster scheduling.Eichenberger and Nystrom proposed an iterative modulo scheduling scheme for clustered pro-cessors [10]. Fernandes et al proposed a distributed modulo scheduling scheme for clustered VLIWmachines that uses register queues for inter-cluster communication [50].5 Experimental ResultsSPEC CINT95 MediaBench SPEC CINT2000099.go rawcaudio 181.mcf124.m88ksim rawdaudio 197.parser126.gcc g721.encode129.compress g721.decode130.li epic132.ijpeg unepic134.perl147.vortexTable 1: Benchmark programs Function unit LatencyFix 1FP 2FP divide 9FP sqrt 9Load 1Branch 1Communication 1Table 2: Latencies of function units.We used a set of programs5 listed in Table-1 from the SPEC95 [51], MediaBench [52] and SPEC2000 [53]benchmark suites for performance evaluation. The compiled simulation binaries are run to comple-tion with the input data sets of corresponding benchmark programs. These instrumented binariesupon execution provide the number of times each tree VLIW instruction and each path in it areexecuted. For comparing the code generated for di�erent clustered machine con�gurations we usedthe total number of VLIWs executed as a metric, which corresponds to the in�nite cache executiontime in cycles.We used two base con�gurations { both are single cluster machines with 8 and 16 functionunits with latencies as listed in Table-2. Small changes in function unit latencies do not havemuch e�ect on the relative performance of code generated for single cluster vs. multi-clustermachines using cars. The register �le size of both base con�gurations are identical: 64 INT, 64FP and 16 condition bit registers. The 8 and 16 ALU machines can issue 8 and 16 OPs per cyclerespectively, of which at most 3 can be branch OPs on both con�gurations. The clustered machinesare con�gured such that the issue width and resources of the base machine are evenly divided andassigned to each cluster. We compared the number of cycles taken to execute the code generated5The functions that cannot be compiled due to high register pressure in these programs are compiled separatelyand treated as system calls for the compiled binary simulation. The same set of functions are excluded for all themachine con�gurations studied even though a subset of them could be compiled without spilling due to the variationsin register pressure of di�erent machine con�gurations. 14

09
9.

go
12

4.
m

88
ks

im
12

6.
gc

c
12

9.
co

m
pr

es
s

13
0.

li
13

2.
ijp

eg

13
4.

pe
rl

14
7.

vo
rt

ex
18

1.
m

cf
19

7.
pa

rs
er

ra
w

ca
ud

io
ra

w
da

ud
io

g7
21

.e
nc

od
e

g7
21

.d
ec

od
e

ep
ic

un
ep

ic

pe
gw

it

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

S
pe

ed
up

1 bus 2 cluster
1 bus 4 clusterFigure 9: Speedup for 8-ALU 1-bus con�gura-tions over single cluster. 09

9.
go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rt

ex
18

1.
m

cf
19

7.
pa

rs
er

ra
w

ca
ud

io
ra

w
da

ud
io

g7
21

.e
nc

od
e

g7
21

.d
ec

od
e

ep
ic

un
ep

ic

pe
gw

it

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

S
pe

ed
up

2 bus 2 cluster
2 bus 4 clusterFigure 10: Speedup for 8-ALU 2-bus con�gura-tions over single cluster.

09
9.

go
12

4.
m

88
ks

im
12

6.
gc

c
12

9.
co

m
pr

es
s

13
0.

li
13

2.
ijp

eg

13
4.

pe
rl

14
7.

vo
rt

ex
18

1.
m

cf
19

7.
pa

rs
er

ra
w

ca
ud

io
ra

w
da

ud
io

g7
21

.e
nc

od
e

g7
21

.d
ec

od
e

ep
ic

un
ep

ic

pe
gw

it

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

S
pe

ed
up

1 bus 2 cluster
1 bus 4 clusterFigure 11: Speedup for 16-ALU 1-bus con�gu-rations over single cluster. 09

9.
go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rt

ex
18

1.
m

cf
19

7.
pa

rs
er

ra
w

ca
ud

io
ra

w
da

ud
io

g7
21

.e
nc

od
e

g7
21

.d
ec

od
e

ep
ic

un
ep

ic

pe
gw

it

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

S
pe

ed
up

2 bus 2 cluster
2 bus 4 clusterFigure 12: Speedup for 16-ALU 2-bus con�gu-rations over single cluster.for 2-cluster and 4-cluster machines. Figures 9, 11, 10 and 12 show the speedup (ratio of numberof VLIWs executed) with respect to the corresponding base con�gurations of clustered machineswith single and two inter-cluster communication buses. Speedup higher than one was observedon clustered machines for some benchmarks. This is primarily due to the aggressive peepholeoptimizations done after carscheduling and also due to the non-linearity of the cluster-schedulingprocess. Similar observations were reported for the code generated using PCC algorithm [43]. Onaverage the additional number of cycles due to clustering compared to single cluster machines isless than 9.6% and 9.2% for 2-cluster machines with 16 and 8 ALUs, whereas the corresponding�gures for 4-cluster machines are 13.9% and 13.9%. This clearly shows the e�ciency and scalabilityof the cars-based code generation scheme. The cars algorithm tries to distribute computationacross clusters, fully utilizing the available inter-cluster communication bandwidth. This is evidentfrom the observed 10.1% increase in average performance while going from single bus to 2 buscon�gurations.Figure 13 shows the distribution of the number of inter-cluster copy OPs and other executed15

other OPs
Inter-cluster copy OPs

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

18
1.

m
cf

19
7.

pa
rs

er

ra
w

ca
ud

io

ra
w

da
ud

io

g7
21

.e
nc

od
e

g7
21

.d
ec

od
e

ep
ic

un
ep

ic

pe
gw

it

0

20

40

60

80

100

in
te

r-
cl

us
te

r
co

py
 O

P
s

vs
. o

th
er

 O
P

s

Figure 13: Percentage distribution of executed inter-cluster copy OPs vs. other OPs for clustered 8-ALUmachines. The set of four bars (left to right) for each benchmark program correspond to the machinecon�gurations 1 bus 4 clusters, 2 buses 4 clusters, 2 buses 2 clusters and 1 bus 2 clusters respectively.
09

9.
go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

18
1.

m
cf

19
7.

pa
rs

er

ra
w

ca
ud

io

ra
w

da
ud

io

g7
21

.e
nc

od
e

g7
21

.d
ec

od
e

ep
ic

un
ep

ic

pe
gw

it

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 b
us

 u
til

iz
at

io
n

(%
)

1 bus 4 clusters
1 bus 2 clusters
2 buses 4 clusters
2 buses 2 clusters

Figure 14: Average bus utilization for clustered 8-ALU machines.OPs for clustered 8-ALU machine con�gurations. We can see that the average number of executedinter-cluster copy OPs varies from 11% to 16% of the total number of executed OPs. Figure 14shows the average bus utilization for di�erent con�gurations of clustered 8-ALU machines studied.The observed high utilization of inter-cluster communication bus for the con�gurations that haveeither less number of buses or more number of clusters is a clear indication of the adaptive natureof cars-based code generation framework and its ability to distribute OPs across clusters in aresource-constrained manner.We believe that cars can generate more e�cient code than other schemes because of its capa-bility to use heuristics based on local register pressure feedback for better cluster assignment andscheduling, as well as its ability to reduce spilling caused by phase-ordering problem.16

6 ConclusionWe have presented cars, a new code generation framework for clustered ILP processors. Ourwork is motivated by the phase-ordering problems of code generators for clustered ILP processors.Our scheme completely avoids the phase-ordering problem by integrating the cluster assignment,instruction scheduling and register allocation into a single phase, which in turn helps eliminateunnecessary spills and other ine�ciencies due to multiple phases in code generation. The fullyresource-aware cluster scheduling scheme of cars not only helps avoid unnecessary stretching ofcritical paths in the code but also distribute computation evenly across the clusters wheneverpossible. We also described an e�cient on-the-y register allocation technique developed for cars.Even though the register allocation scheme is described in the context of code generation forclustered ILP processors, the technique is well suited for other applications such as \just-in-timecompilation" and dynamic binaray translation for e�ciently generating high performance code. Ourexperimental results show that cars-based code generation scheme is scalable across a wide rangeof clustered ILP processor con�gurations and generates e�cient code for a variety of benchmarkprograms.Incorporating software pipelining into cars and making an iterative version of cars for gener-ating highly optimized code for small DSP kernels are some of the directions we plan to explore inthe future.AcknowledgmentsWe would like to thank Mayan Moudgill and Erik Altman for their helpful suggestions on theimplementation of cars and modi�cation of the chameleon's VLIW translator for clustered ma-chine model, and Vance Waddle for providing us the NARC graph visualization software. We aregrateful to Manoj Franklin for helpful discussions and for his comments. The �rst author wouldlike to thank IBM Research for an year and a half long technical co-op position at IBM Thomas J.Watson Research Center during the initial phases of the work presented in this report.References[1] P. Faraboschi, G. Desoli, and J. Fisher, \Clustered instruction-level parallel processors," TechnicalReport HPL-98-204, HP Labs, Cambridge, Dec. 1998.[2] P. Faraboschi, J. Fisher, G. Brown, G. Desoli, and F. Homewood, \Lx: A Technology Platform forCustomizable VLIW Embedded Processing," in Proceedings of the 27th International Symposium onComputer Architecture, June 2000.[3] K. Ebcio�glu, J. Fritts, S. Kosonocky, M. Gschwind, E. Altman, K. Kailas, and T. Bright, \An Eight-IssueTree-VLIW Processor for Dynamic Binary Translation," in Proceedings of International Conference onComputer Design (ICCD'98), IEEE Press, Oct. 1998.[4] Texas Instruments, Inc., TMS320C62x/C67x Technical Brief, Apr. 1998. Digital Signal ProcessingSolutions, Literature No. SPRU197B. 17

[5] J. Fridman and Z. Green�eld, \The TigerSHARC DSP architecture," IEEE Micro, vol. 20, pp. 66{76,Jan./Feb. 2000.[6] R. E. Kessler, \The Alpha 21264 microprocessor," IEEE Micro, vol. 19, pp. 24{36, Mar./Apr. 1999.[7] S. Palacharla, N. P. Jouppi, and J. E. Smith, \Complexity-e�ective superscalar processors," in Pro-ceedings of the 24th Annual International Symposium on Computer Architecture (ISCA-97), vol. 25,2of Computer Architecture News, (New York), pp. 206{218, ACM Press, June2{4 1997.[8] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, \The multicluster architecture: Reducing cycletime through partitioning," in Proceedings of the 30th Annual IEEE/ACM International Symposium onMicroarchitecture (MICRO-97), (Los Alamitos), pp. 149{159, IEEE Computer Society, Dec.1{3 1997.[9] R. Canal, J. M. Parcerisa, and A. Gonzalez, \Dynamic cluster assignment mechanisms," in Proceedingsof the 6th International Conference on High-Performance Computer Architecture (HPCA-6), Jan. 2000.[10] E. Nystrom and A. E. Eichenberger, \E�ective cluster assignment for modulo scheduling," in Proceed-ings of the 31st Annual ACM/IEEE International Symposium on Microarchitecture (MICRO-98), (LosAlamitos), pp. 103{114, IEEE Computer Society, Nov. 30{Dec. 2 1998.[11] S. M. Freudenberger and J. C. Ruttenberg, \Phase ordering of register allocation and instructionscheduling," in Code Generation { Concepts, Tools, Techniques. Proceedings of the International Work-shop on Code Generation, May 1991 (R. Giegerich and S. L. Graham, eds.), (London), pp. 146{172,Springer-Verlag, 1992.[12] R. Motwani, K. V. Palem, V. Sarkar, and S. Reyen, \Combining register allocation and instructionscheduling," Technical Note CS-TN-95-22, Stanford University, Dept of Computer Science, Aug. 1995.[13] K. K. Kailas, Microarchitecture and Compilation Support for Clustered ILP Processors. PhD thesis,Dept. of Electrical & Computer Engineering, University of Maryland, College Park, 2000. in preperation.[14] K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P. Stodghill, \Dependence ow graphs: an alge-braic approach to program dependencies," in POPL '91. Proceedings of the eighteenth annual ACMsymposium on Principles of programming languages, pp. 67{78, 1991.[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, \E�ciently computing staticsingle assignment form and the control dependence graph," ACM Transactions on Programming Lan-guages and Systems, vol. 13, pp. 451{490, Oct. 1991.[16] W. mei W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G.Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery, \The superblock:An e�ective technique for VLIW and superscalar compilation," The Journal of Supercomputing, vol. 7,pp. 229{248, May 1993.[17] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, \E�ective compiler support forpredicated execution using the hyperblock," in Proceedings of the 25th Annual International Symposiumon Microarchitecture, pp. 45{54, Dec. 1992.[18] W. A. Havanki, S. Banerjia, and T. M. Conte, \Treegion scheduling for wide-issue processors," inProceedings of the 4th International Symposium on High-Performance Computer Architecture (HPCA-4) (Las Vegas), Feb. 1998.[19] K. Ebcio�glu, E. R. Altman, S. Sathaye, and M. Gishwind, Execution-based scheduling for VLIW Archi-tectures, pp. 1269{1280. Lecture Notes in Computer Science, Springer-Verlag, 1999. Proc. Europar '99.18

[20] K. Ebcio�glu, \Some design ideas for a VLIW architecture for sequential-natured software," in ParallelProcessing (Proc. IFIP WG 10.3 Working Conference on Parallel Processing, Pisa, Italy) (M. Cosnardand et al., eds.), pp. 3{21, North Holland, 1988.[21] M. Poletto and V. Sarkar, \Linear scan register allocation," ACM Transactions on Programming Lan-guages and Systems, vol. 21, pp. 895{913, Sept. 1999.[22] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein,\Register allocation via coloring," Computer Languages, vol. 6, no. 1, pp. 47{57, 1981.[23] S. S. Muchnick, Advanced compiler design and implementation, ch. 16. Morgan Kaufmann Publishers,San Francisco, CA., 1997.[24] E. G. Co�man, ed., Computer and job-shop scheduling theory. Wiley, New York., 1976.[25] J. H. Moreno, M. Moudgill, K. Ebcio�glu, E. Altman, C. B. Hall, R. Miranda, S.-K. Chen, and A. Polyak,\Simulation/evaluation environment for a VLIW processor architecture," IBM Journal of Research &Development: Performance analysis and its impact on design (PAID), vol. 41, no. 3, pp. 287{302, 1997.[26] M. Moudgill, \Implementing an Experimental VLIW Compiler," IEEE Technical Commit-tee on Computer Architecture Newsletter, pp. 39{40, June 1997. Also see the web-page:http://www.research.ibm.com/vliw/compiler.html.[27] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures. ACM Doctoral Dissertation Award; 1985,MIT Press, Cambridge, Mass., 1986.[28] E. Ozer, S. Banerjia, and T. Conte, \Uni�ed assign and schedule: A new approach to scheduling forclustered register �le microarchitectures," in Proceedings of the 31st Annual ACM/IEEE InternationalSymposium on Microarchitecture (MICRO-31), 1998. A detailed version is available as an ECE Depart-ment Technical Report NC 27695-7911, North Carolina State University, March 2000.[29] S. Banerjia, Instruction Scheduling and Fetch Mechanisms for Clustered VLIW Processors. PhD thesis,North Carolina State University, Raleigh, NC, 1998.[30] J. R. Goodman and W.-C. Hsu, \Code scheduling and register allocation in large basic blocks," inConference Proceedings 1988 International Conference on Supercomputing, pp. 442{452, July 1988.[31] D. G. Bradlee, S. J. Eggers, and R. R. Henry, \Integrating register allocation and instruction schedulingfor RISCs," in Architectural Support for Programming Languages and Operating Systems (ASPLOS-IV),pp. 122{131, 1991.[32] S. S. Pinter, \Register allocation with instruction scheduling: A new approach," SIGPLAN Notices,vol. 28, pp. 248{257, June 1993. Proceedings of the ACM SIGPLAN '93 Conference on ProgrammingLanguage Design and Implementation.[33] D. A. Berson, R. Gupta, and M. L. So�a, \Resource spackling: A framework for integrating registerallocation in local and global schedulers," in Proceedings of the IFIP WG 10.3 Working Conference onParallel Architectures and Compilation Techniques, PACT '94, pp. 135{145, Aug. 24{26, 1994.[34] T. S. Brasier, P. H. Sweany, S. J. Beaty, and S. Carr, \CRAIG: A practical framework for combining in-struction scheduling and register assignment," in Proceedings of the IFIP WG 10.3 Working Conferenceon Parallel Architectures and Compilation Techniques, PACT '95, pp. 11{18, June 1995.[35] J. Hoogerbrugge and L. Augusteijn, \Instruction scheduling for TriMedia," The Journal of Instruction-Level Parallelism, vol. 1, Feb. 1999. (http://www.jilp.org/vol1).19

[36] S. Hanono and S. Devadas, \Instruction selection, resource allocation, and scheduling in the Avivretargetable code generator," in Proceedings of 35th Design Automation Conference, pp. 510{515, 1998.[37] S. Novack, A. Nicolau, and N. Dutt, A Uni�ed Code Generation Approach Using Mutation Scheduling,ch. 12. Kluwer Academic Publishers, 1995.[38] S.-M. Moon and K. Ebcio�glu, \An e�cient resource-constrained global scheduling technique for super-scalar and VLIW processors," in 25th Annual International Symposium on Microarchitecture (MICRO-25), pp. 55{71, 1992.[39] S. Kim, S.-M. Moon, and K. Ebcio�glu, \vLaTTe: A Java Just-in-Time Compiler for VLIW with FastScheduling and Register Allocation," July 2000. submitted for publication.[40] R. A. Freiburghouse, \Register allocation via usage counts," Communications of the ACM, vol. 17,pp. 638{642, Nov. 1974.[41] B.-S. Yang, S.-M. Moon, S. Park, J. Lee, S. Lee, J. Park, Y. C. Chung, S. Kim, K. Ebcio�glu, andE. Altman, \LaTTe: A Java VM just-in-time compiler with fast and e�cient register allocation," inProceedings of the 1999 International Conference on Parallel Architectures and Compilation Techniques(PACT '99), pp. 128{138, Oct. 1999.[42] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S. O'Donnell, andJ. C. Ruttenberg, \The Multiow Trace Scheduling compiler," The Journal of Supercomputing, vol. 7,pp. 51{142, May 1993.[43] G. Desoli, \Instruction assignment for clustered VLIW DSP compilers: A new approach," HP LabsTechnical Report HPL-98-13, HP Labs, Jan. 1998.[44] A. Capitanio, N. Dutt, and A. Nicolau, \Partitioned register �les for VLIWs: A preliminary analysis oftradeo�s," in Proceedings of the 25th Annual International Symposium on Microarchitecture, (Portland,Oregon), pp. 292{300, IEEE Computer Society TC-MICRO and ACM SIGMICRO, Dec. 1{4, 1992.[45] I. Ahmad, K. Yu-Kwong, and W. Min-You, \Analysis, evaluation, and comparison of algorithms forscheduling task graphs on parallel processors," in Proceedings of the Second International Symposiumon Parallel Architectures, Algorithms, and Networks, pp. 207{213, June 1996.[46] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors, ch. 4. Research mono-graphs in parallel and distributed processing, MIT Press, Cambridge, MA., 1989.[47] T. Yang and A. Gerasoulis, \DSC: Scheduling parallel tasks on an unbounded number of processors,"IEEE Transactions on Parallel and Distributed Systems, vol. 5, pp. 951{967, Sept. 1994.[48] J. Liou and M. Palis, \A new heuristic for scheduling parallel programs on multiprocessor," in Pro-ceedings of International Conference on Parallel Architectures and Compilation Techniques (PACT'98),Oct.13{17 1998.[49] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amarasinghe, \Space-timescheduling of instruction-level parallelism on a Raw Machine," in Proceedings of the Eighth InternationalConference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-VIII), (San Jose, CA), Oct. 4{7, 1998.[50] M. M. Fernandes, J. Llosa, and N. Topham, \Distributed modulo scheduling," in Proceedings of the 5thInternational Conference on High-Performance Computer Architecture (HPCA-5 '99), Jan. 1999.20

[51] \SPEC CPU95 Benchmarks." on web http://www.spec.org/osg/cpu95/, June 2000. Standard Perfor-mance Evaluation Corporation, USA.[52] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, \MediaBench: A tool for evaluating and synthesizingmultimedia and communications systems," in Proceedings of the 30th Annual International Symposiumon Microarchitecture, pp. 330{335, Dec. 1{3, 1997.[53] J. L. Henning, \SPEC CPU2000: Measuring CPU Performance in the New Millennium," Computer,vol. 33, pp. 28{35, July 2000.

21

