IMPACTing SHOP: Foundations for
integrating HTN Planning and
Multi-Agency

Héctor Muiioz-Avilal, Jiirgen Dix¥, Dana S. Nau' and Yue Caof
fDepartment of Computer Science
University of Maryland
College Park, MD 20742, USA
IDepartment of Computer Science
University of Koblenz
Rheinau 1, D-56075 Koblenz, Germany

February 3, 2000

Abstract
Keywords: HTN-planning, multi-agents

In this paper we describe a formalism for integrating the SHOP HTN plan-
ning system with the IMPACT multi-agent environment. Our formalism pro-
vides an agentized adaptation of the SHOP planning algorithm that takes ad-
vantage of IMPACT’s capabilities for interacting with external agents, perform-
ing mixed symbolic/numeric computations, and making queries to distributed,
heterogeneous information sources (such as arbitrary legacy and/or specialized
data structures or external databases). We show that this agentized version of
SHOP will preserve soundness and completeness if certain conditions are met.

1 Introduction

In order to apply Al planning systems to complex real-world planning problems,
here are some of the challenges that must be addressed:

e The need to interact with external information sources [Chien et al., 1995].
The problem tends to be complicated by the fact that frequently the
information sources are heterogeneous and not necessarily centralized.
For example, in an information integration project developed for the US
Army, the information sources included a US Army route planner over
free terrain [Benton and Subrahmanian, 1994], a variety of US Army lo-
gistics data including specialized Oracle and nested multi-record TAADS

data [Schafer et al., 1998], a variety of US Army simulation data from a
massive program called JANUS, Training and Instrumentation Command,
a face recognition program, and so forth.

e The need to perform mized symbolic/numeric reasoning. For example,
[Nau et al., 1998] describes the need to reason about a variety of numeric
and symbolic conditions in order to do manufacturing planning and to
plan declarer play in the game of bridge.

o The need to coordinate multiple agents. For example, in planning the
movement of a cargo container from its point of origin to its ultimate
destination, a number of agents might participate in the control of the
container: for example, agents that load ships, higher level managers that
react to unusual incidents and so forth. The container agent would need
to take these into account in plan development.

Although a variety of approaches have been proposed for several of these
challenges, none of them has yet been completely solved—and no current theory
of planning addresses all of these challenges simultaneously.

In this paper we describe a formalism that addresses all of the above chal-
lenges simultaneously, by integrating the SHOP planning system with the IM-
PACT multi-agent environment. SHOP [Nau et al., 1999] is a very efficient
HTN planner. IMPACT [Subrahmanian et al., 2000, Eiter et al., 1999] provides
facilities for interacting with heterogeneous, distributed information sources (in-
cluding arbitrary legacy and/or specialized data structures or external databases),
combining symbolic and numerical information, and coordinating multiple agents.
Although we have developed our formalism only for SHOP, we believe that a
similar approach could be used to integrate other Al planners into IMPACT as
well.

Our work includes the following:

o a definition of the A-SHOP planning algorithm, an agentized version of
SHOP that runs in the IMPACT environment;

e formulation of the conditions needed for A-SHOP to be sound and com-
plete;

e proofs that A-SHOP is sound and complete if those conditions are met;

e an implementation of this formalism (work currently in progress).

2 Related Work

Several Al planning systems (most notably HTN planning systems such as SIPE
[Wilkins, 1988] and O-Plan [Currie and Tate, 1991], and SHOP [Nau et al., 1999])
have the ability to evaluate numeric conditions as attached procedures. How-
ever, the lack of a formal semantics for these attached procedures makes it

difficult to guarantee soundness and completeness. Integer Programming (IP)
models appear to have excellent potential as a uniform formalism for reasoning
about complex numeric and symbolic constraints during planning, and some
work is already being done on the use of IP for reasoning about resources
[Koehler, 1998, Kautz and Walser, 1999, Wolfman and Weld, 1999]. However,
that work is still work in progress, and a number of fundamental problems still
remain to be solved.

Approaches for planning with external information sources typically have in
common that the information extracted from the external information sources is
introduced in the planning system through built-in predicates [Etzioni et al., 1992,
Golden et al., 1994, Knoblock, 1996, Friedman and Weld, 1997]. For example,
a modified version of UCPOP uses information gathering goals to extract infor-
mation from the external information sources [Knoblock, 1996]. The informa-
tion gathering goals are used as preconditions of the operators. The primary
difficulty with this approach is that since it is not clear what the semantic of
the built-in predicates is, this makes it difficult to guarantee soundness and
completeness.

Distributed problem-solving has been the focus of research for many years
(e.g., [Davis and Smith, 1983]). With the advances in agent research (see for ex-
ample [Wooldridge and Jennings, 1995]), attention has been driven towards the
coordination of the decision making process between multiple agents. However,
much work is still needed in developing well-founded reasoning and negotiating
techniques, in particular in environments in which the agent must constantly be
on the lookout for changes (see [desJardins et al., 1999] for a recent survey).

3 HTN Planning with Ordered Task Decompo-
sitions: SHOP

Below we formalize the idea of ordered task decomposition that forms the ba-
sis of SHOP’s planning Hierarchical Task Network (HTN) algorithm. HTN
planning is a planning paradigm frequently used in applied research projects
[Wilkins, 1988, Currie and Tate, 1991]. One of the main reasons for the use of
HTN planning is its expressiveness, which allows it to encode not only knowl-
edge about the domain but also problem-solving strategies. HTN planning has
been shown to be more expressive than STRIPS planning [Erol et al., 1994].
Recently, an HTN planning system, SHOP, has been developed that uses a new
approach to HTN planning called ordered-task decomposition. SHOP outper-
forms several planning systems by orders of magnitude [Nau et al., 1999].

Definition 1 (State) A state O is a finite set of ground logical atoms. A
conjunct is a finite set of logical atoms. A state O satisfies a conjunct C modulo
a substitution v if, by definition, all ground instances of Cv are subsets of O.

Definition 2 (Primitive and Compound Tasks) A task is a list of the form
(s t1, ..., tn), where s is a symbol, called the task name, and ty, ..., t, are terms,

called the task’s arguments. A task is primitive if its task name is a primitive
task symbol Conversely, a task is compound if its task name is a compound task
symbol . abbreviated by t, is a list of tasks.

Definition 3 (Operator) An operator is an ezpression (: Op h Add Del),
where h (the head) is a primitive task and Add and Del are conjuncts (called
the add and delete lists). The set of variables in the tasks in Del and Add is a
subset of the set of variables in h.

An operator indicates how the state is modified when an operator is applied:
if v is a substitution such that hv is ground, the state, h”(O), resulting from
applying the operator to the state O, is defined by h"(O) =g4¢r (O — Delv) U
Addv (i.e., removing every atom in Del and adding every atom in Add).

Definition 4 (Method) A method is an expression (: Meth h Pre t), where
h (the method’s head) is a compound task, Pre (the method’s preconditions) is
a conjunct and t is a task list.

A method expression has the following meaning: to solve a compound task
t matching h with a substitution p it suffices to solve the tasks in ¢ provided
that the method is applicable to the current state, O. Formally, a method, m, is
applicable to t relative to O if h matches t with a substitution g and O satisfies
Prep. We denote with App(t, O), the set of all applicable methods to t relative
to O.

Definition 5 (ordered reduction tasks lists) The set of ordered reduction
tasks lists, red(t, O), is defined as follows:

red(t, 0) = UmeApp(hO) redsimpls(t7 O,m)

where redgimpie(t, O, m) is a simple ordered reduction of t by m relative to
O. Ift = (t1...ty) is a task list and t; is the first compound task in t, we define
redgimpie (t, O, m) as the set of all tasks lists of the form (t1..t;_1rjtjqi..tn)puy
where r; are the subtasks of m. The substitution p is the most general unifier
of the head of m and t and the substitution v is such that the precondition of m
satisfies the current state with v. The operation of replacing t with an element of
redsimpie (t, O, m) is called an application of the method m and replacing t with
an element of red(t, O) is called an ordered reduction or ordered decomposition
of t.

We use the term reduction (decomposition) instead of ordered reduction
(ordered decomposition). The definition of ordered reduction tasks lists for-
malizes the notion of ordered task decomposition; essentially, the first task in
the task list will be decomposed to primitive tasks, then the second one and so
forth. Ordered task decompositions are an especial form of HTNs as defined
in [Erol et al., 1994]; in ordered task decompositions the tasks in the task lists
are totally ordered and no truth constraints are defined.t

LA truth constraint indicates condition commitments such as (,[,#') indicating that the
condition [needs to be true between the tasks t and t'.

Definition 6 (Plan, Planning Problem) A planning problem is a triple (O, t,D),
where O is a state, t is a task list, and D is the list of methods and operators,
called the domain. A plan o is a completion of t at O, denoted by comp(t, O, D),

if o is a total ordering of the ground instances of t, provided that t is a primitive

task list (i.e., if all tasks in t are primitive). Otherwise, comp(t,O,D) is the
empty set (.

We can now define the set of all valid solution plans, sol(t, O, D), as charac-
terized in [Erol et al., 1994]:

Definition 7 (Solutions sol(t,O,D)) Let D be a planning domain, O an ini-
tial state and t a task list. solo(t, O, D) is defined inductively using the following
two rules

Rule 1: If 0 € comp(t, O, D) then o € sol(t, O, D).
Rule 2: Ift' € red(t,0,D) and o € comp(t',O,D) then o € sol(t, O, D).
The set of plans sol(t, O, D) is defined as follows:

soly(t,0,D) ={()},
soly (t,0, D) = comp(t, O, D)

0lt1(t, O, D) = Uy cred(e, 0,p) s0ln(t', O, D)

sol(t,0,D) =U,,., soln(t,0,D)

n<w

Now we present the SHOP ordered task decomposition algorithm. We then
show that it is sound and complete wrt. Definition 7.

The SHOP algorithm is depicted in Figure 1. The first subtask is analyzed
(step 2). If the task is primitive (step 3), a simple plan is obtained if possible
(steps 4 and 5) and the process continues with the remaining tasks (step 6).
If the task is compound (step 8), sub-tasking is performed if possible (steps
9-14). The procedure setSimpleReductions computes the set of ordered simple
reductions of t in 0. The procedure simplePlan finds an applicable operator
and applies it.

To prove soundness and completeness of the SHOP algorithm, we will show
that sol(t, I, D) is equal to the set of all plans generated by SHOP, solsyop(t, I, D).

Theorem 1 (Soundness) SHOP is sound, i.e.
solsaop(t, O, D) Csol(t, O, D).

Proof: We will show by induction that if 6 € solsgop(t, O, D) holds and 6 is
generated in n iterations, then 6 € sol,,(t, O, D).

procedure find-Plan(O,t, D)
return seek-plan(O, t, D, nil)
end find-Plan

procedure seek-Plan(O,t, D, p)
1. if t = nil then return the list (p)
2. t:= the first task in t; R := the remaining tasks
3. if t is primitive then
4. q := simplePlan(t, O)
5. if q # FAIL
6. return seek-plan(q(O), R, D, append(p,q))
7. else return FAIL
8. else
9. Reds = setSimpleReductions(t, Q)
10. for every r in Reds
11. ans = seek-plan(O, append(r, R), D, p)
12. if ans # FAIL then return ans
13. end for
14. return FAIL
end if
end

Figure 1: SHOP’s ordered task decomposition algorithm.

Base step (n = 0): Thus, t = () and SHOP returns the empty plan (step 1),
which is in soly(t, O, D).

Induction step (n = k+1): Let 6 the plan returned by SHOP after n + 1
iterations for t. Let t and R be the values of the assignments in step 2 at
iteration 1 of SHOP.

Case 1. if t is primitive, then 6 = ¢f’, where ¢ is a simple plan
for t (steps 3-6) and 6’ is a plan for R. By induction hypothesis
0" € soli(R,O,D)sol,(R,0,D) and because t is primitive {q} =
comp(t, 0, D) =soli (t, 0, D). Thus, ¢’ € solp+1 (R, O, D).

Case 2. If t is compound, then let ans be the successful plan meet-
ing the condition of step 12 and let r be the corresponding reduction.
Because ans is generated in k steps and ans is in solsgop(R, O, D),
then, ans € solg(R,O,D) holds. Thus, ans € solg+1(R,O,D).

Clearly, ans is equal to 6 because solsgop((tR),O,D) is equal to
50|SHOP((I'R); O, D)

Theorem 2 (Completeness) SHOP is complete, i.e.

sol(t, O, D) C solspop(t, O, D).

procedure setSimpleReductions(t, O)
Assign the empty set to Res
for every method m, (: Meth h Pre t), with u the
most general unifier of h and t and m applicable

to t relative to O L
for every substitution 6 in instances(Pre, O)

add tud into Res
end for
end for
return Res
end setSimpleReductions

Figure 2: Algorithm for simple reductions.

procedure simplePlan(t, O)
if there is an operator op = (: Op h D A) with v
the most general unifier of h and t then
apply(opv, O)
return opv
else
return FAIL
end if
end simplePlan

Figure 3: Algorithm for simple plan.

Proof: We will show by induction that if § € sol,(t, O, D) holds, then 6 is
generated by SHOP in at most n iterations.

Base step (n = 0): Thus, ¢ is the empty plan which is generated in 0 itera-
tions of SHOP (step 1).

Induction step (n = k+1): Let 6 be a plan in solg41(t, O, D).

Case 1. If € is in solg(t, O, D), 0 is generated by SHOP in at most
k steps by induction hypothesis.

Case 2. If § is not in sol, (t, O, D), there exists t’ in red(t, O, D) such
that 6 is in soly(t', O, D). By induction hypothesis 6 is generated in
at most k steps by SHOP to solve d'. Let t = (tR), where t is a
compound task reduced with t’. Thus, t' must be one of the simple
reductions for t generated at step 9. As a result, 6 is one of the
possible answers of step 11 meeting the condition of step 12 and,
thus, an answer of SHOP at k + 1 iterations for t.

Notice that in the soundness and completeness of the SHOP algorithm we
implicitly assumed that the centralized state requirement was satisfied: this as-
sumption was present in the use of the function instances(Pre, Q) in Figure 2

as well as for applying an operator to transform the state (i.e., apply(opv,O)
in Figure 3). This requirement is clearly satisfied in typical Al planning sys-
tems where the instances are found by examining the state, which is stored in
local memory together with the planning algorithm. In our framework, how-
ever, the knowledge about the state is distributed between several information
sources that are not even required to use a uniform language. Thus, we need
to re-define how SHOP evaluates its conditions and applies its operators. More
concretely, in the section after the next, we will state conditions to guarantee
that instances(Pre, Q) and apply(opv, O) can be evaluated.

4 An Architecture for Agent Integration: IM-
PACT

Most existing work on agents has assumed a purely logical description of agents.
This is very similar to most planning systems: the underlying representation
language is often first order logic (or a subset thereof) and other data can not
be incorporated easily.

The IMPACT project (see http://www.cs.umd.edu/projects/impact/)
[Subrahmanian et al., 2000, Eiter et al., 1999, Eiter and Subrahmanian, 1999])
aims at developing a powerful and flexible, yet easy to handle framework for the
interoperability of distributed heterogeneous sources of information. A method-
ology for transforming arbitrary software (legacy code) into an agent has been
developed. Agents act in their environment according to a well defined decision
policy. The actions an agent can take and the program to encode the agent’s
behavior are specified by the user through the IMPACT Agent Development
Environment. The main cycle an IMPACT agent goes through depends on the
notion of state of an agent. An IMPACT agent takes actions based on its cur-
rent state, its agent program and a chosen semantics. It then executes these
actions concurrently according to a specified notion of concurrency.

IMPACT agents are built on top of arbitrary software code. We view such
code formally as a triple S =g4¢f (7s, Fs,Cs) where:

1. Ts is the set of all data types managed by S,

2. Fs is a set of predefined functions which makes access to the data objects
managed by the agent available to external processes, and

3. Cs is a set of type composition operations. A type composition operator
is a partial n-ary function ¢ which takes as input types 7y,...,7, and
yields as a result a type ¢(71,...,7,). As cis a partial function, ¢ may
only be defined for certain arguments 7, ... ,7,, i.e., ¢ is not necessarily
applicable on arbitrary types.

Intuitively, Ts is the set of all data types that are managed by the agent. Fs
intuitively represents the set of all function calls supported by the package S’s
application programmer interface (API). Cs is the set of ways of creating new
data types from existing data types.

Definition 8 (State of an Agent) At any given point t in time, the state of
an agent, denoted Os(t), is the set of all objects the agent currently has—the
types of these objects must be either in the base set of types in Ts or must be a
type obtained by composition using the composition operations in Ts.

Suppose we consider a body § = (75, Fs) of software code that an agent is
built on top of. For the agent to perform logical reasoning on top of such third
party data structures and code, the agent must have a language within which
it can reason about the agent state. In this section, we introduce the important
concept, of a code call atom—this is the basic syntactic object used to access
multiple heterogeneous data sources.

Given any type 7 € Ts, we assume that there is a set Var(r) of variable
symbols ranging over 7. If X € Var(r) is such a variable symbol, and if 7 is
a complex record type having fields fy,...,f,, then we require that X.f; be a
variable of type 7; where 7; is the type of field £;. In the same vein, if £; itself
has a sub-field g of type v, then X.f;.g is a variable of type ~y, and so on. In this
case, we call X a root-variable, and the variables X.f;, X.f;.g, etc. path-variables.
For any path variable Y of the form X.path, where X is a root variable, we refer
to X as the root of Y, denoted by root(Y); for technical convenience, root(X),
where X is a root variable, refers to itself.

Definition 9 (Code Call S:f(dy,... ,dn)) SupposeS =4ef (Ts,Fs,Cs) is some
software code and f € Fs is a predefined function with n arguments, and

dy,...,dy are objects or variables such that each d; respects the type require-
ments of the i ’th argument of f. Then,
S:f(dla"' ;dn)
is a code call. A code call is ground if all the d;’s are objects.
Intuitively, the syntactic string S:f(ds,...,d,) may be read as: ezecute
function f as defined in package S on the arguments dy, ... ,dy.

We assume that the output signature of any code call is an object of type
set.

In general, as we will see later, code calls are executable when they are
ground. Thus, non-ground code calls must be instantiated prior to attempts to
execute them.

A code call according to Definition 9 executes an API function and returns
as output a set of objects of the appropriate output type. Code-call atoms are
logical atoms that are layered on top of code-calls. They are defined through
the following inductive definition.

Definition 10 (Code Call Atom in(X, cc)) If cc is a code call, and X is ei-
ther a variable symbol, or an object of the output type of cc, then in(X, cc) and
not_in(X, cc) are code call atoms.

not_in(X, cc) succeeds just in case X is not in the set of objects returned by
the code call cc.

Code call atoms, when evaluated, return boolean values, and thus may be
thought of as special types of logical atoms. Intuitively, a code call atom of
the form in(X, cc) succeeds just in case X can be set to a pointer to one of the
objects in the set of objects returned by executing the code call.

We will now define code call conditions. Intuitively, a code call condition
is nothing more than a conjunction of atomic code calls, with some additional
syntax that “links” together variables occurring in the atomic code calls. The
following definition expresses this intuition.

Definition 11 (Code Call Condition x) A code call condition x is defined
as follows:

1. Every code call atom is a code call condition.
2. If s,t are either variables or objects, then s = t is a code call condition.

3. If s,t are either integer/real valued objects, or are variables over the in-
tegers/reals, then s < t,s > t,s > t,s < t are code call conditions.

4. If x1,x2 are code call conditions, then x1 & X2 is a code call condition.

A code call condition satisfying any of the first three criteria above is an atomic
code call condition.

The following definition specifies what a solution of a code call condition is.
Intuitively, code call conditions are evaluated against an agent state—if the state
of the agent changes, the solution to a code call condition may also undergo a
change.

Definition 12 (Code Call Solution) Suppose x is a code call condition in-
volving the variables X =q40p {X1,...,X,}, and suppose S =41 (Ts,Fs,Cs) is
some software code. A solution of x w.r.t. Ts in a state Os is a legal assign-
ment of objects o1, ... ,0, to the variables X1, ..., X,, written as a compound
equation X := o, such that the application of the assignment makes x true in
state Os.

We denote by Sol(x) 75,05 (omitting subscripts Os and Ts when clear from
the context), the set of all solutions of the code call condition x in state Os,
and by O_Sol(x) 75,05 (where subscripts are occasionally omitted) the set of all
objects appearing in Sol(x)7s 0

Definition 13 (Action; Action Atom) An action « consists of siz compo-
nents:

Name: A name, usually written a(Xy,...,X,), where the X;’s are root vari-
ables.
Schema: A schema, usually written as (11,...,7,), of types. Intuitively, this

says that the variable X; must be of type ;, for all 1 <i < mn.

10

Action Code: This is a body of code that executes the action.

Pre: A code-call condition x, called the precondition of the action, denoted by
Pre(a) (Pre(a) must be safe modulo the variables X, ... ,X,,);

Add: a set Add(a) of code-call conditions;

Del: a set Del(a) of code-call conditions.

We close this section with the definition of action atom. An action atom is
a formula a(ty,... ,t,), where t; is a term, i.e., an object or a variable, of type
T, foralli=1,... ,n.

5 IMPACTing SHOP

SHOP is an efficient HTN planner. SHOP works by applying methods to com-
pound tasks to decompose them into simpler tasks, and keeps decomposing tasks
until primitive tasks are reached that can be executed directly using operators
(see [Nau et al., 1999] for details). The integration of SHOP with the IMPACT
multi-agent environment requires three steps:

1. Replace the atoms in SHOP’s preconditions, add-lists, and delete-lists
with code call conditions.

2. Agentize SHOP so that it can communicate with other IMPACT agents.

3. Make adjustments to SHOP’s planning algorithm.

5.1 Modifying SHOP’s Atoms

The first step is to modify the atoms in SHOP’s preconditions and effects, so
that SHOP’s preconditions will be evaluated by IMPACT’s code call mechanism
and the effects will change the state of the IMPACT agents. This is a fundamen-
tal change in the representation of SHOP. In particular, it requires replacing
SHOP’s methods and operators with agentized methods and operators. These
are defined below.

Definition. An agentized method is an expression (: AgentMeth hx t) where
h (the method’s head) is a compound task, x (the method’s preconditions) is a
code call condition and t is a task list.

The definition of agentized method differs from the definition of method in
SHOP in that the preconditions are IMPACT’s code call conditions.

11

Definition. An agentized operator is an expression (: AgentOp h Xadd Xdel),
where h (the head) is a primitive task and xqqq and xqe; are code call conditions
(called the add- and delete-lists). The set of variables in the tasks in yqqq4 and
Xdet 18 a subset of the set of variables in h.

Agentized operators differ from SHOP’s operators in that the add- and
delete-lists are code call conditions.

Figure 4 shows a method for our application to military logistics planning.
The method indicates how to transport a cargo that has a certain weight between
2 locations. The method calls the statistics agent three times, in order to
evaluate the distance between two geographic locations, the authorized range
of a certain aircraft type (the authorized range is lower than the real distance
that the aircraft can fly), and the authorized capability (in metric tones) of an
aircraft. The method calls the supplier agent to evaluate the cargo planes that
are available at a location.

Head:
AirTransport(LocFrom, LocTo, Cargo, CargoWeight)

Preconditions:
in(CargoPL, supplier: cargoPlane(locFrom))&
in(Dist, statistics: distance(locFrom, locTo))&
in(DCargoPL, statistics: authorRange(CargoPL))&
Dist < DCargoPL&
in(CCargoPL, statistics: authorCapacity (CargoPL))&
CargoWeight < CCargoPL&

Subtasks:
load(Cargo, locFrom)
fly(Cargo, LlocFrom, LocTo)
unload (Cargo,locTo)

Figure 4: Agentized method for a military logistics problem.

5.2 Agentizing SHOP

To agentize SHOP, we can use the general-purpose agentizing algorithm de-
scribed in [Subrahmanian et al., 2000]. This enables SHOP to communicate
with other IMPACT agents and vice-versa. The algorithm basically outputs
a protocol that presents the procedure calls of the software in a standardized
format that allows other agents to communicate with it. For the particular
situation of a planning system the protocol includes a call to a procedure that
receives as input a problem description and outputs a solution plan (please refer
to [Subrahmanian et al., 2000] for a detailed discussion of the algorithm).

12

5.3 A-SHOP: Modifying the SHOP Algorithm

On the top level, the A-SHOP algorithm is the same as the SHOP algorithm
(see Figure 1). The first subtask is analyzed (step 2). If the task is primitive
(step 3), a simple plan is obtained if possible (steps 4 and 5) and the process
continues with the remaining tasks (step 6). If the task is compound (step 8),
subtasking is performed if possible (steps 9-14).

There are two changes that must be made to the SHOP algorithm at a lower
level when evaluating simplePlan(t, O) (Figure 3) and setSimpleReductions(t, O)
(Figure 2). That is, when applying an operator and evaluating a method’s pre-
conditions:

Change to simplePlan(t,O): apply(opv, O) now means to apply the changes
indicated in the actions. i.e. execute the code of each action (Definition 13)
to make sure the add- and delete-lists are taken into account. Note that
in the simplest case, such code could be just the update described by

h"(O) =gef (O — Delv) U Add v,

whereas it could also be a sophisticated implementation for manipulating
the data objects of the software the agent is built upon.

Change to setSimpleReductions(t,0): the call to instances(precs(m), Q)
now evaluates a code call condition in IMPACT instead of a collection
of predicates directly in the state. As explained in the previous section,
evaluating a code call condition reduces to evaluating code call atoms of
the form in(X, cc), where cc is a code call accessing external data sources.
These code calls are executed only as needed and we have to make sure
(using appropriate syntactical conditions) that code calls (1) can be exe-
cuted and (2) return a finite answer. We explain in the next section how
we accomplish this for agents based on arbitrary software S.

Completeness and Correctness of A-SHOP. The changesindicated above
ensure that the proofs of soundness and correctness for SHOP are valid provided
that we can establish conditions under which the evaluating IMPACT’s actions
and code call conditions can be evaluated. This will be discussed later.

6 Example of an Application Domain

Military logistics planning is an example of a domain where the SHOP-IMPACT
framework can be very useful. In particular with respect to logistics planning
for the US Armed Forces: first, information about the different assets is not cen-
tralized, second, the information sources are heterogeneous, comprising different
database management systems (DBMS).

Figure 5 shows some of the code-calls for this application. The first three
code-calls access the agent statistics and return the distance between two ge-
ographic locations, the authorized range of a certain aircraft type (the autho-
rized range is lower than the real distance that the aircraft can fly), and the

13

statistics: distance(locl, loc2)
statistics: authorRange(aircraft)
statistics: authorCapacity(aircraft)
supplier: cargoPlane(loc)

Figure 5: Code-calls in the military logistics domain.

authorized capability (in metric tones) of an aircraft. The last code-call accesses

the agent supplier and returns the cargo planes that are available at a location.
Figure 4 illustrates a simple agentized method which mounts a cargo in an

airplane provided that the airplane has the adequate range and capacity.

7 Evaluating Code-call Conditions and Apply-
ing Actions in IMPACT

We have seen that the code call mechanism of IMPACT transfers data in ar-
bitrary format (in fact arbitrary software calls) into a logical representation,
which can be used in the planning process for SHOP. This allows us to for-
mulate code call conditions: as statements in a logical language referring to
arbitrary software functions.

To evaluate code call conditions (i.e., to determine whether they hold or
not), we have to impose various restrictions on the underlying code calls. We
have to ensure that code calls are

1. executable (i.e., return an answer),
2. only return finitely many answers.

Let us illustrate these problems with suitable examples.

Example 1 (Executable Code Call, Part 1) We consider a software pack-
age math which provides several functions to handle integers (most agents
will have available similar packages to do simple calculations). The code call
math: geq(X) enumerates all integers greater or equal to X.

The code call math: geg(X) is not executable, because it is not ground. Ounly
if the variable X is assigned a certain value, the code call can be executed.

To ensure that code calls are always ground, we introduce the following
safety condition:

Definition 14 (Safe Code Call (Condition)) A code call S:f(dy,...,dn)
is safe if and only if each d; is ground. A code call condition x1 & ...& xn,
n > 1, is safe if and only if there exists a permutation ™ of x1,- .., Xn Such that
for every i =1,... n the following holds:

14

1. If Xx(i) i a comparison sy op sy, then

1.1 at least one of s1,s9 is a constant or a variable X such that root(X)
belongs to RVy (i) =aer {root(Y) | 3j <i s.t. Y occurs in Xn(j)};

1.2 if s; is neither a constant nor a variable X such that root(X) €
RV, (i), then s; is a root variable.

2. If Xr(i) is a code call atom of the form in(X, (1), cCr(z)) ornot_in(X, (), cCr(z)),
then the root of each variable Y occurring in ccy(;) belongs to RV (i), and
either X3y is a root variable, or root(Xy(y)) is from RV (i).

Intuitively, a code call is safe if we can reorder the code call atoms occurring in
it in such a way that we can evaluate these atoms left to right, assuming that
root variables are incrementally bound to objects.

In [Eiter et al., 1999, Eiter and Subrahmanian, 1999, Subrahmanian et al., 2000]

the authors developed algorithms to check safety for a given code call condi-
tion. Safety is a compile-time check that ensures that all code calls generated
at run-time have instantiated parameters. However, executability of a code call
condition does not depend solely on safety, as the next example shows.

Example 2 (Executable Code Call, Part 2) We consider the code call

in(X, math: geq(25)) &
in(Y, math: square(X)) &
Y <2000,

which constitutes all numbers that are less than 2000 and that are squares of an
integer greater than or equal to 25.

Clearly, over the integers there are only finitely many ground substitutions that
cause this code call condition to be true. Furthermore, this code call condition
is safe. However, its evaluation may never terminate. The reason for this is that
safety requires that we first compute the set of all integers that are greater than
25, leading to an infinite computation. This means that in general, we must
impose some restrictions on code call conditions to ensure that they are finitely
evaluable.

Indeed, it is well-known that deciding whether or not a function is finite is

undecidable, therefore we assume that the developer of an agent examines the
code calls supported by a given data structure and specifies which of them are
finite and which are not.

Note that the following definitions are important for the general case, when

an agent is build upon arbitrary code. For most applications, like our military
logistics domain, the safety requirement is completely sufficient.

Definition 15 (Binding Pattern) Suppose we consider a code call S : f(ay, ...

’ an)

where each a; is of type 7;. A binding pattern for S: f(ai,... ,an) is an n-tuple
(bt1,...,bt,) where each bt; (called a binding term) is either:

15

1. A value of type 1;, or

2. The expression b denoting that this arqument is bound to an unknown
value.

We require that the agent developer must specify a finiteness predicate that
may be defined via a finiteness table having two columns—the first column is
the name of the code call, while the second column is a binding pattern for the
function in question. Intuitively, suppose we have a row of the form

(S:f(a1,a2,a3),(2,5,h))

in the finiteness table. Then this row says that the answer returned by any code
call of the form S:f(—,5,—) is finite. In other words, as long as the second
argument of this code call is 5, the answer returned is finite, irrespective of the
values of the first and third arguments. Clearly, the same code call may occur
many times in a finiteness table with different binding patterns.

Definition 16 (Ordering on Binding Patterns) We say a binding pattern
(bt1,...,bty) is equally or less informative than another binding pattern (bty, ... ,bt.)
if, by definition, for all 1 <i < n, bt; < bt}.

We will say (bty, ... ,bt,) is less informative than (bt, ... ,bt)) if and only if it

is equally or less informative than (bt},... ,bt]) and (bt},... ,bt)) is not equally
or less informative than (bty,...,bt,). If (bt],...,bt]) is less informative than
(bt1,...,bt,), then we will say that (bty,...,bt,) is more informative than
(bt,...,bt).

Suppose now that the developer of an agent specifies a finiteness table
FINTAB. The following definition specifies what it means for a specific code
call atom to be considered finite w.r.t. FINTAB.

Definition 17 (Finiteness) Suppose FINTAB is a finite finiteness table , and
(bt1,...,bty) is a binding pattern associated with the code call S:f(---). Then
FINTAB is said to entail the finiteness of S: f(bty,...,bt,) if, by definition,
there exists an entry of the form (S:f(...),(bt},...,bt))) in FINTAB such that
(bt1,...,bt,) is more informative than (bt},... , bt]).

Definition 18 (Strong Safety) A safe code call condition x = x1& ... & xn
is strongly safe w.r.t. a list X of oot variables if, by definition, there is a
permutation ™ witnessing the safety of x modulo X such that foreach 1 <i<mn,
Xn(i) 18 strongly safe modulo X, where strong safety of X (;) is defined as follows:

1. Xr(i) 18 a code call atom.
Here, let the code call of Xx(;) be S:f(t1,...,ta) and let the binding pat-
tern

S:f(bty,...,bty) be defined as follows:

(a) If t; is a value, then bt; = t;.

16

(b) Otherwise t; must be a variable whose root occurs either in X orin
Xn(j) for some j < i. In this case, bt; =b.

Then, xr(:) is strongly safe if, by definition, FINTAB entails the finiteness
of S:f(bty,...,bty).

2. X (i) is's ;é t.
In this case, X () is strongly safe if, by definition, each of s and t is either
a constant or a variable whose root occurs either in X or in Xn(j) for some
Jj <.

3. Xrs) ISs<tors<t.
In this case, xx(i) s strongly safe if, by definition, t is either a constant or
a variable whose root occurs either in X or somewhere in Xr(j) for some
Jj <.

4. Xr(i) IS8 >tors>t.
In this case, X () is strongly safe if, by definition, t < s ort <'s, respec-
tively, are strongly safe.

Algorithms to check strong safety are developed in [Subrahmanian et al., 2000].

We can now discuss the conditions for preserving soundness and complete-
ness in A-SHOP. Consider the agentized method shown in Figure 4. It is rea-
sonable to assume that the developer has defined FINTAB to entail code calls
such as supplier: cargoPlane(locFrom). This means that the rows of FINTAB
will have the form (supplier: cargoPlane(X), (b)), which says that calling any
of these code calls with any values will succeed. Under these circumstances,
it is easy to see that the method’s precondition is strongly safe provided that
the arguments of the method’s head are instantiated. The reason is that the
variable CargoPL is instantiated before DCargoPl and CCargoPl. Thus the
code call is always ground.

We close this section by stating the conditions under which we can ensure
the soundness and correctness of SHOP in IMPACT’s multi-agent environ-
ment. Our next theorem ensures the evaluation of agentized methods under
the strongly safeness condition.

Theorem 3 Let O be a state, (: AgentMeth hxt) an agentized method
and (: AgentOp h Xadd Xdet) an agentized operator. If the precondition x is
strongly safe, the problem of deciding whether x holds in O can be algorith-
mically solved. If the add and delete-lists xqqq and Xqer are strongly safe, the
problem of applying the agentized operator to O can be algorithmically solved.

The next result is the main theorem in this paper: it states the correctness
and completeness of SHOP if code-calls in methods and operators are strongly
safe.

17

Theorem 4 Let O be a state and D be a collection of agentized methods and
operators. If all the preconditions in the agentized methods and add and delete-
lists in the agentized operators are strongly safe, then A-SHOP is correct and
complete.

8 Implementation

The complete version of SHOP is built in LISP and includes the abilities to do
Horn-clause inferencing and to make calls for the LISP evaluator. The former
one is used to infer conditions from the current state and the latter one is
used to add expressiveness during planning. For example, SHOP can compute
numerical expressions. SHOP can be downloaded from the <URL:http://www.
cs.umd.edu/projects/shop/>

A version of IMPACT is running on a Windows platform. This version
has been built primarily in JAVA. The implementation of IMPACT uses a pre-
existing software package developed at the University of Maryland called Web-
Hermes [Adali, S., et al., 1997] which supports execution of code call conditions
over a wide variety of data structures and software packages. These currently
include (or have included in the past), relational database management systems
(Oracle, Ingres, Dbase, Paradox), an object oriented system (ObjectStore), a
multimedia system called MACS [Brink et al., 1995], a video information sys-
tem called AVIS [Adali et al., 1996], a geographic data structure called a PR-
quadtree, arbitrary flat files (as long as their schemas are specified), a US Army
route planner over free terrain [Benton and Subrahmanian, 1994], a variety of
US Army logistics data including specialized Oracle and nested multirecord
TAADS data [Schafer et al., 1998], a variety of US Army simulation data from
a massive program called JANUS deployed by the Simulation, Training and
Instrumentation Command, a face recognition program, and so on.

To facilitate the integration of SHOP in IMPACT, we re-implemented SHOP
in JAVA. The java version of SHOP include neither the Horn clause evaluator
nor the calls to the LISP evaluator. However, such things could easily be added
through the use of the IMPACT framework, without needing any modifications
to the current JAVA implementation of SHOP. In particular, we could take a
theorem prover, agentize it using IMPACT methods and call the agent using an
appropriate code-call condition ([Subrahmanian et al., 2000] describes a step by
step process to agentize a program and incorporate it as an agent into IMPACT).
The same can be done for evaluations. In particular, a mathematical agent,
math, is currently available in IMPACT to evaluate some numerical expressions.

We have built a communication module from SHOP to the IMPACT multi-
agent environment that allows the execution of code-call conditions in IMPACT
starting from SHOP. We are currently building a second communication module
that communicates the results of the execution of IMPACT’s actions back into
SHOP.

18

9 Discussion

Note that A-SHOP does not have any information about the state stored locally
as it is usual in AI planning. However, we could if needed simulate having a
local state by simply defining an agent that manages the state and having all
code call conditions refer to that agentized state. Intermediate approaches such
as Knoblock’s (1996) which updates the current state by gathering information
from external sources can also be subsumed in our integration: again we could
have an specialized agent managing the partial state of the world.

The use of IMPACT’s code call atoms differs from the built-in predicates of
other approaches in that, first, code calls provide a well-defined semantics which
allows us to state the conditions for preserving soundness and completeness of
SHOP. Second, the integration of SHOP in the IMPACT environment allows
us to address the challenges stated in the introduction:

¢ Mixed symbolic/numeric reasoning. Notice that the precondition of
the method shown in Figure 4 supposes a combination symbolic and nu-
meric reasoning. On the one hand, this method is used as a means for de-
composing the task, AirTransport(LocFrom, LocTo, Cargo, CargoWeight),
which is essentially a symbolic process. On the other hand, some of its
preconditions are numerical comparisons (i.e., Dist < DCargoPL&). This
is a simple illustration of a greater potential: by decoupling the evaluation
of preconditions from the planning process itself we are gaining flexibil-
ity. Specialized agents performing complex numerical information can be
plugged in.

e Distributed, heterogeneous information sources. One important
effect of integrating A-SHOP within IMPACT is that it allows to gather
information from distributed, heterogeneous information sources without
requiring knowledge about how and where these resources are located. For
example, in the method shown in Figure 4 determining the statistics of
a certain airplane may simply require access to a local database whereas
determining if any such airplanes are available in a certain location may
require access a remotely located spreadsheet. Recently, it has been ob-
served that handling resources separate from the planning process may
improve the performance [Srivastava and Kambhampati., 1999].

e Coordination of multiple agents. Every time A-SHOP does a code
call, a request to contact an external agent is made. the IMPACT multi-
agent environment coordinates this process. In principle, this could be
used not only to communicate A-SHOP with the other agents, but also
to coordinate multiple versions of A-SHOP itself. We have not yet imple-
mented multiple copies of A-SHOP running concurrently, but we hope to
do so in the near future.

19

10 Conclusion

We have developed A-SHOP, a modified version of the SHOP planning algo-
rithm that takes advantage of the capabilities provided by the IMPACT multi-
agent environment. A-SHOP can plan with heterogeneous, distributed infor-
mation sources, combine symbolic and numerical information and interact with
multiple agents.

In A-SHOP, SHOP’s preconditions, add-lists and delete-lists are replaced
with code call conditions. IMPACT’s code call conditions provide a well-defined
syntax and most important they also provide a well-defined semantics. In par-
ticular, we have shown that A-SHOP is sound and complete provided that the
code calls are strongly safe.

Knowledgments

We want to thank V. S. Subrahmanian who suggested using code call conditions
in heterogeneous planning. We also want to thank Leonard A. Breslow and
Peter Baumgartner for proof-reading early versions of this paper. This work
was supported in part by the following grants and contracts: Army Research
Laboratory DAALO01-97-K0135, Naval Research Laboratory N00173981G007,
Air Force Research Laboratory F306029910013, and NSF DMI-9713718.

References

[Adali et al., 1996] Adali, S., Candan, K. S., Chen, S.-S., Erol, K., and Subrah-
manian, V. S. (1996). Advanced Video Information Systems:Data Structures
and Query Processing. Multimedia Systemns, 4(4):172-186.

[Adali, S., et al., 1997] Adali, S., et al. (1997). Web hermes user manual. http:
//www.cs.umd.edu/projects/hermes/UserManual/index.html.

[Benton and Subrahmanian, 1994] Benton, J. and Subrahmanian, V. S. (1994).
Using Hybrid Knowledge Bases for Missile Siting Problems. In Society, I. C.,
editor, Proceedings of the Conference on Artificial Intelligence Applications,
pages 141-148.

[Brink et al., 1995] Brink, A., Marcus, S., and Subrahmanian, V. (1995). Het-
erogeneous Multimedia Reasoning. IEEE Computer, 28(9):33-39.

[Chien et al., 1995] Chien, S., Hill, R., Wang, X., and Estlin, T. (1995). Why
real-world planning is difficult: A tale of two applications. In Proceedings of
the 3rd Europ. Workshop on Planning (EWSP-95).

[Currie and Tate, 1991] Currie, K. and Tate, A. (1991). O-plan: the open plan-
ning architecture. Artificial Intelligence, 52(1).

20

[Davis and Smith, 1983] Davis, R. and Smith, R. (1983). Negotiation as a
Metaphor for Distributed Problem Solving. Artificial Intelligence, 20(1).

[desJardins et al., 1999] desJardins, M. E., Durfee, E. H., Jr., C. L. O., and
Wolverton, M. J. (1999). A survey of research in distributed, continual plan-
ning. AI Magazine, 20(4).

[Eiter et al., 1999] Eiter, T., Subrahmanian, V., and Pick, G. (1999). Heteroge-
neous Active Agents, I: Semantics. Artificial Intelligence, 108(1-2):179-255.

[Eiter and Subrahmanian, 1999] Eiter, T. and Subrahmanian, V. S. (1999).
Heterogeneous Active Agents, II: Algorithms and Complexity. Artificial In-
telligence, 108(1-2):257-307.

[Erol et al., 1994] Erol, K., Hendler, J., and Nau, D. (1994). Umcp: A sound
and complete procedure for hierarchical task-network planning. In Proceedings
of AIPS-94.

[Etzioni et al., 1992] Etzioni, O., Weld, D., Draper, D., Lesh, N., and
Williamson, M. (1992). An approach to planning with incomplete informa-
tion. In Proceedings of KR-92.

[Friedman and Weld, 1997] Friedman, M. and Weld, D. (1997). Efficiently ex-
ecuting information-gathering plans. In Proceedings of IJCAI-97.

[Golden et al., 1994] Golden, K., Etzioni, O., and Weld, D. (1994). Omnipo-
tence without omniscience: efficient sensor management for planning. In
Proceedings of AAAI-9.

[Kautz and Walser, 1999] Kautz, H. and Walser, J. P. (1999). State-space Plan-
ning by Integer Optimization. In Proceedings of the 17th National Conference
of the American Association for Artificial Intelligence, pages 526—533.

[Knoblock, 1996] Knoblock, C. (1996). Building a planner for information gath-
ering: a report from the trenches. In Proceedings of AIPS-96.

[Koehler, 1998] Koehler, J. (1998). Planning under Resource Constraints. In
Proceedings of the 13th FEuropean Conference on Artificial Intelligence, pp
489-495.

[Nau et al., 1999] Nau, D., Cao, Y., Lotem, A., and Mufioz-Avila, H. (1999).
Shop: Simple hierarchical ordered planner. In Proceedings of IJCAI-99.

[Nau et al., 1998] Nau, D. S., Smith, S. J. J., and Erol, K. (1998). Control
Strategies in HTN Planning: Theory versus Practice. In AAAI-98/IAAI-98
Proceedings, pages 1127-1133.

[Schafer et al., 1998] Schafer, J., Rogers, T. J., and Marin, J. (1998). Net-
worked Visualization of Heterogeneous US Army War Reserves Readiness
Data. In Jajodia, S., Ozsu, T., and Dogac, A., editors, Advances in Mul-
timedia Information Systems, 4th International Workshop, MIS’98, volume

21

1508 of Lecture Notes in Computer Science, pages 136—147, Istanbul, Turkey.
Springer-Verlag.
[Srivastava and Kambhampati., 1999] Srivastava, B. and Kambhampati., S.

(1999). Scaling up planning by teasing out resource scheduling. In ASU
CSE TR 99-005. To appear in ECP-99.

[Subrahmanian et al., 2000] Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T.,
Kraus, S., Ozcan, F., and Ross, R. (2000). Heterogenous Active Agents. MIT
Press.

[Wilkins, 1988] Wilkins, D. (1988). Practical planning - extending the classical
AT planning paradigm. Morgan Kaufmann.

[Wolfman and Weld, 1999] Wolfman, S. A. and Weld, D. S. (1999). The LPSAT
Engine and its Application to Resource Planning. In Proceedings of the 15th
International Joint Conference on Artificial Intelligence, pages 310-317.

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. (1995). In-
telligent agents: Theory and practice. Knowledge Engineering Reviews, 10(2).

22

