
IMPACTing SHOP: Foundations forintegrating HTN Planning andMulti-AgencyH�ector Mu~noz-Avilay, J�urgen Dixz, Dana S. Nauy and Yue CaoyyDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742, USAzDepartment of Computer ScienceUniversity of KoblenzRheinau 1, D-56075 Koblenz, GermanyFebruary 3, 2000AbstractKeywords: HTN-planning, multi-agentsIn this paper we describe a formalism for integrating the SHOP HTN plan-ning system with the IMPACT multi-agent environment. Our formalism pro-vides an agentized adaptation of the SHOP planning algorithm that takes ad-vantage of IMPACT's capabilities for interacting with external agents, perform-ing mixed symbolic/numeric computations, and making queries to distributed,heterogeneous information sources (such as arbitrary legacy and/or specializeddata structures or external databases). We show that this agentized version ofSHOP will preserve soundness and completeness if certain conditions are met.1 IntroductionIn order to apply AI planning systems to complex real-world planning problems,here are some of the challenges that must be addressed:� The need to interact with external information sources [Chien et al., 1995].The problem tends to be complicated by the fact that frequently theinformation sources are heterogeneous and not necessarily centralized.For example, in an information integration project developed for the USArmy, the information sources included a US Army route planner overfree terrain [Benton and Subrahmanian, 1994], a variety of US Army lo-gistics data including specialized Oracle and nested multi-record TAADS1

data [Schafer et al., 1998], a variety of US Army simulation data from amassive program called JANUS, Training and Instrumentation Command,a face recognition program, and so forth.� The need to perform mixed symbolic/numeric reasoning. For example,[Nau et al., 1998] describes the need to reason about a variety of numericand symbolic conditions in order to do manufacturing planning and toplan declarer play in the game of bridge.� The need to coordinate multiple agents. For example, in planning themovement of a cargo container from its point of origin to its ultimatedestination, a number of agents might participate in the control of thecontainer: for example, agents that load ships, higher level managers thatreact to unusual incidents and so forth. The container agent would needto take these into account in plan development.Although a variety of approaches have been proposed for several of thesechallenges, none of them has yet been completely solved|and no current theoryof planning addresses all of these challenges simultaneously.In this paper we describe a formalism that addresses all of the above chal-lenges simultaneously, by integrating the SHOP planning system with the IM-PACT multi-agent environment. SHOP [Nau et al., 1999] is a very e�cientHTN planner. IMPACT [Subrahmanian et al., 2000, Eiter et al., 1999] providesfacilities for interacting with heterogeneous, distributed information sources (in-cluding arbitrary legacy and/or specialized data structures or external databases),combining symbolic and numerical information, and coordinating multiple agents.Although we have developed our formalism only for SHOP, we believe that asimilar approach could be used to integrate other AI planners into IMPACT aswell.Our work includes the following:� a de�nition of the A-SHOP planning algorithm, an agentized version ofSHOP that runs in the IMPACT environment;� formulation of the conditions needed for A-SHOP to be sound and com-plete;� proofs that A-SHOP is sound and complete if those conditions are met;� an implementation of this formalism (work currently in progress).2 Related WorkSeveral AI planning systems (most notably HTN planning systems such as SIPE[Wilkins, 1988] and O-Plan [Currie and Tate, 1991], and SHOP [Nau et al., 1999])have the ability to evaluate numeric conditions as attached procedures. How-ever, the lack of a formal semantics for these attached procedures makes it2

di�cult to guarantee soundness and completeness. Integer Programming (IP)models appear to have excellent potential as a uniform formalism for reasoningabout complex numeric and symbolic constraints during planning, and somework is already being done on the use of IP for reasoning about resources[Koehler, 1998, Kautz and Walser, 1999, Wolfman and Weld, 1999]. However,that work is still work in progress, and a number of fundamental problems stillremain to be solved.Approaches for planning with external information sources typically have incommon that the information extracted from the external information sources isintroduced in the planning system through built-in predicates [Etzioni et al., 1992,Golden et al., 1994, Knoblock, 1996, Friedman and Weld, 1997]. For example,a modi�ed version of UCPOP uses information gathering goals to extract infor-mation from the external information sources [Knoblock, 1996]. The informa-tion gathering goals are used as preconditions of the operators. The primarydi�culty with this approach is that since it is not clear what the semantic ofthe built-in predicates is, this makes it di�cult to guarantee soundness andcompleteness.Distributed problem-solving has been the focus of research for many years(e.g., [Davis and Smith, 1983]). With the advances in agent research (see for ex-ample [Wooldridge and Jennings, 1995]), attention has been driven towards thecoordination of the decision making process between multiple agents. However,much work is still needed in developing well-founded reasoning and negotiatingtechniques, in particular in environments in which the agent must constantly beon the lookout for changes (see [desJardins et al., 1999] for a recent survey).3 HTN Planning with Ordered Task Decompo-sitions: SHOPBelow we formalize the idea of ordered task decomposition that forms the ba-sis of SHOP's planning Hierarchical Task Network (HTN) algorithm. HTNplanning is a planning paradigm frequently used in applied research projects[Wilkins, 1988, Currie and Tate, 1991]. One of the main reasons for the use ofHTN planning is its expressiveness, which allows it to encode not only knowl-edge about the domain but also problem-solving strategies. HTN planning hasbeen shown to be more expressive than STRIPS planning [Erol et al., 1994].Recently, an HTN planning system, SHOP, has been developed that uses a newapproach to HTN planning called ordered-task decomposition. SHOP outper-forms several planning systems by orders of magnitude [Nau et al., 1999].De�nition 1 (State) A state O is a �nite set of ground logical atoms. Aconjunct is a �nite set of logical atoms. A state O satis�es a conjunct C moduloa substitution � if, by de�nition, all ground instances of C� are subsets of O.De�nition 2 (Primitive and Compound Tasks) A task is a list of the form(s t1; :::; tn), where s is a symbol, called the task name, and t1, ..., tn are terms,3

called the task's arguments. A task is primitive if its task name is a primitivetask symbol Conversely, a task is compound if its task name is a compound tasksymbol . abbreviated by t, is a list of tasks.De�nition 3 (Operator) An operator is an expression (: Op h Add Del),where h (the head) is a primitive task and Add and Del are conjuncts (calledthe add and delete lists). The set of variables in the tasks in Del and Add is asubset of the set of variables in h.An operator indicates how the state is modi�ed when an operator is applied :if � is a substitution such that h� is ground, the state, h�(O), resulting fromapplying the operator to the state O, is de�ned by h�(O) =def (O �Del �) [Add � (i.e., removing every atom in Del and adding every atom in Add).De�nition 4 (Method) A method is an expression (:Meth h Pre t), whereh (the method's head) is a compound task, Pre (the method's preconditions) isa conjunct and t is a task list.A method expression has the following meaning: to solve a compound taskt matching h with a substitution � it su�ces to solve the tasks in t� providedthat the method is applicable to the current state, O. Formally, a method, m, isapplicable to t relative to O if h matches t with a substitution � and O satis�esPre�. We denote with App(t;O), the set of all applicable methods to t relativeto O.De�nition 5 (ordered reduction tasks lists) The set of ordered reductiontasks lists, red(t;O), is de�ned as follows:red(t;O) = Sm2App(t;O) redsimple(t;O;m)where redsimple(t;O;m) is a simple ordered reduction of t by m relative toO. If t = (t1:::tn) is a task list and tj is the �rst compound task in t, we de�neredsimple(t;O;m) as the set of all tasks lists of the form (t1:::tj�1rjtj+1:::tn)��where ri are the subtasks of m. The substitution � is the most general uni�erof the head of m and t and the substitution � is such that the precondition of msatis�es the current state with �. The operation of replacing t with an element ofredsimple(t;O;m) is called an application of the method m and replacing t withan element of red(t;O) is called an ordered reduction or ordered decompositionof t.We use the term reduction (decomposition) instead of ordered reduction(ordered decomposition). The de�nition of ordered reduction tasks lists for-malizes the notion of ordered task decomposition; essentially, the �rst task inthe task list will be decomposed to primitive tasks, then the second one and soforth. Ordered task decompositions are an especial form of HTNs as de�nedin [Erol et al., 1994]; in ordered task decompositions the tasks in the task listsare totally ordered and no truth constraints are de�ned.11A truth constraint indicates condition commitments such as (t; l; t0) indicating that thecondition l needs to be true between the tasks t and t0.4

De�nition 6 (Plan, Planning Problem) A planning problem is a triple (O; t;D),where O is a state, t is a task list, and D is the list of methods and operators,called the domain. A plan � is a completion of t at O, denoted by comp(t;O;D),if � is a total ordering of the ground instances of t, provided that t is a primitivetask list (i.e., if all tasks in t are primitive). Otherwise, comp(t;O;D) is theempty set ;.We can now de�ne the set of all valid solution plans, sol(t;O;D), as charac-terized in [Erol et al., 1994]:De�nition 7 (Solutions sol(t;O;D)) Let D be a planning domain, O an ini-tial state and t a task list. sol0(t;O;D) is de�ned inductively using the followingtwo rulesRule 1: If � 2 comp(t;O;D) then � 2 sol(t;O;D).Rule 2: If t0 2 red(t;O;D) and � 2 comp(t0;O;D) then � 2 sol(t;O;D).The set of plans sol(t;O;D) is de�ned as follows:sol0(t;O;D) = f()g,sol1(t;O;D) = comp(t;O;D)soln+1(t;O;D) = St02red(t;O;D) soln(t0;O;D)sol(t;O;D) = Sn<! soln(t;O;D)Now we present the SHOP ordered task decomposition algorithm. We thenshow that it is sound and complete wrt. De�nition 7.The SHOP algorithm is depicted in Figure 1. The �rst subtask is analyzed(step 2). If the task is primitive (step 3), a simple plan is obtained if possible(steps 4 and 5) and the process continues with the remaining tasks (step 6).If the task is compound (step 8), sub-tasking is performed if possible (steps9-14). The procedure setSimpleReductions computes the set of ordered simplereductions of t in O. The procedure simplePlan �nds an applicable operatorand applies it.To prove soundness and completeness of the SHOP algorithm, we will showthat sol(t; I;D) is equal to the set of all plans generated by SHOP, solSHOP(t; I;D).Theorem 1 (Soundness) SHOP is sound, i.e.solSHOP(t;O;D) � sol(t;O;D):Proof: We will show by induction that if � 2 solSHOP(t;O;D) holds and � isgenerated in n iterations, then � 2 soln(t;O;D).5

procedure �nd-Plan(O; t;D)return seek-plan(O; t;D; nil)end �nd-Planprocedure seek-Plan(O; t;D; p)1. if t = nil then return the list (p)2. t:= the �rst task in t; R := the remaining tasks3. if t is primitive then4. q := simplePlan(t;O)5. if q 6= FAIL6. return seek-plan(q(O); R;D; append(p; q))7. else return FAIL8. else9. Reds = setSimpleReductions(t;O)10. for every r in Reds11. ans = seek-plan(O; append(r;R);D; p)12. if ans 6= FAIL then return ans13. end for14. return FAILend ifendFigure 1: SHOP's ordered task decomposition algorithm.Base step (n = 0): Thus, t = ; and SHOP returns the empty plan (step 1),which is in sol0(t;O;D).Induction step (n = k+1): Let � the plan returned by SHOP after n + 1iterations for t. Let t and R be the values of the assignments in step 2 atiteration 1 of SHOP.Case 1. if t is primitive, then � = q�0, where q is a simple planfor t (steps 3-6) and �' is a plan for R. By induction hypothesis�0 2 solk(R;O;D)solk(R;O;D) and because t is primitive fqg =comp(t;O;D) = sol1(t;O;D). Thus, q�0 2 solk+1(R;O;D).Case 2. If t is compound, then let ans be the successful plan meet-ing the condition of step 12 and let r be the corresponding reduction.Because ans is generated in k steps and ans is in solSHOP(R;O;D),then, ans 2 solk(R;O;D) holds. Thus, ans 2 solk+1(R;O;D).Clearly, ans is equal to � because solSHOP((tR);O;D) is equal tosolSHOP((rR);O;D).Theorem 2 (Completeness) SHOP is complete, i.e.sol(t;O;D) � solSHOP(t;O;D):6

procedure setSimpleReductions(t;O)Assign the empty set to Resfor every method m, (:Meth h Pre t), with � themost general uni�er of h and t and m applicableto t relative to Ofor every substitution � in instances(Pre;O)add t�� into Resend forend forreturn Resend setSimpleReductionsFigure 2: Algorithm for simple reductions.procedure simplePlan(t;O)if there is an operator op = (: Op h D A) with �the most general uni�er of h and t thenapply(op �;O)return op �elsereturn FAILend ifend simplePlanFigure 3: Algorithm for simple plan.Proof: We will show by induction that if � 2 soln(t;O;D) holds, then � isgenerated by SHOP in at most n iterations.Base step (n = 0): Thus, � is the empty plan which is generated in 0 itera-tions of SHOP (step 1).Induction step (n = k+1): Let � be a plan in solk+1(t;O;D).Case 1. If � is in solk(t;O;D), � is generated by SHOP in at mostk steps by induction hypothesis.Case 2. If � is not in solk(t;O;D), there exists t0 in red(t;O;D) suchthat � is in solk(t0;O;D). By induction hypothesis � is generated inat most k steps by SHOP to solve d0. Let t = (tR), where t is acompound task reduced with t0. Thus, t0 must be one of the simplereductions for t generated at step 9. As a result, � is one of thepossible answers of step 11 meeting the condition of step 12 and,thus, an answer of SHOP at k + 1 iterations for t.Notice that in the soundness and completeness of the SHOP algorithm weimplicitly assumed that the centralized state requirement was satis�ed: this as-sumption was present in the use of the function instances(Pre;O) in Figure 27

as well as for applying an operator to transform the state (i.e., apply (op �;O)in Figure 3). This requirement is clearly satis�ed in typical AI planning sys-tems where the instances are found by examining the state, which is stored inlocal memory together with the planning algorithm. In our framework, how-ever, the knowledge about the state is distributed between several informationsources that are not even required to use a uniform language. Thus, we needto re-de�ne how SHOP evaluates its conditions and applies its operators. Moreconcretely, in the section after the next, we will state conditions to guaranteethat instances(Pre;O) and apply(op �;O) can be evaluated.4 An Architecture for Agent Integration: IM-PACTMost existing work on agents has assumed a purely logical description of agents.This is very similar to most planning systems: the underlying representationlanguage is often �rst order logic (or a subset thereof) and other data can notbe incorporated easily.The IMPACT project (see http://www.cs.umd.edu/projects/impact/)[Subrahmanian et al., 2000, Eiter et al., 1999, Eiter and Subrahmanian, 1999])aims at developing a powerful and
exible, yet easy to handle framework for theinteroperability of distributed heterogeneous sources of information. A method-ology for transforming arbitrary software (legacy code) into an agent has beendeveloped. Agents act in their environment according to a well de�ned decisionpolicy. The actions an agent can take and the program to encode the agent'sbehavior are speci�ed by the user through the IMPACT Agent DevelopmentEnvironment. The main cycle an IMPACT agent goes through depends on thenotion of state of an agent. An IMPACT agent takes actions based on its cur-rent state, its agent program and a chosen semantics. It then executes theseactions concurrently according to a speci�ed notion of concurrency.IMPACT agents are built on top of arbitrary software code. We view suchcode formally as a triple S =def (TS ;FS ; CS) where:1. TS is the set of all data types managed by S,2. FS is a set of prede�ned functions which makes access to the data objectsmanaged by the agent available to external processes, and3. CS is a set of type composition operations. A type composition operatoris a partial n-ary function c which takes as input types �1; : : : ; �n andyields as a result a type c(�1; : : : ; �n). As c is a partial function, c mayonly be de�ned for certain arguments �1; : : : ; �n, i.e., c is not necessarilyapplicable on arbitrary types.Intuitively, TS is the set of all data types that are managed by the agent. FSintuitively represents the set of all function calls supported by the package S'sapplication programmer interface (API). CS is the set of ways of creating newdata types from existing data types. 8

De�nition 8 (State of an Agent) At any given point t in time, the state ofan agent, denoted OS(t), is the set of all objects the agent currently has|thetypes of these objects must be either in the base set of types in TS or must be atype obtained by composition using the composition operations in TS .Suppose we consider a body S = (TS ;FS) of software code that an agent isbuilt on top of. For the agent to perform logical reasoning on top of such thirdparty data structures and code, the agent must have a language within whichit can reason about the agent state. In this section, we introduce the importantconcept of a code call atom|this is the basic syntactic object used to accessmultiple heterogeneous data sources.Given any type � 2 TS , we assume that there is a set V ar(�) of variablesymbols ranging over � . If X 2 V ar(�) is such a variable symbol, and if � isa complex record type having �elds f1; : : : ; fn, then we require that X:fi be avariable of type �i where �i is the type of �eld fi. In the same vein, if fi itselfhas a sub-�eld g of type
, then X:fi:g is a variable of type
, and so on. In thiscase, we call X a root-variable, and the variables X:fi, X:fi:g, etc. path-variables.For any path variable Y of the form X:path, where X is a root variable, we referto X as the root of Y, denoted by root(Y); for technical convenience, root(X),where X is a root variable, refers to itself.De�nition 9 (Code Call S : f (d1; : : : ; dn)) Suppose S =def (TS ;FS ; CS) is somesoftware code and f 2 FS is a prede�ned function with n arguments, andd1; : : : ; dn are objects or variables such that each di respects the type require-ments of the i'th argument of f . Then,S : f (d1; : : : ; dn)is a code call. A code call is ground if all the di's are objects.Intuitively, the syntactic string S : f (d1; : : : ; dn) may be read as: executefunction f as de�ned in package S on the arguments d1; : : : ; dn.We assume that the output signature of any code call is an object of typeset.In general, as we will see later, code calls are executable when they areground. Thus, non-ground code calls must be instantiated prior to attempts toexecute them.A code call according to De�nition 9 executes an API function and returnsas output a set of objects of the appropriate output type. Code-call atoms arelogical atoms that are layered on top of code-calls. They are de�ned throughthe following inductive de�nition.De�nition 10 (Code Call Atom in(X; cc)) If cc is a code call, and X is ei-ther a variable symbol, or an object of the output type of cc, then in(X; cc) andnot in(X; cc) are code call atoms.not in(X; cc) succeeds just in case X is not in the set of objects returned bythe code call cc. 9

Code call atoms, when evaluated, return boolean values, and thus may bethought of as special types of logical atoms. Intuitively, a code call atom ofthe form in(X; cc) succeeds just in case X can be set to a pointer to one of theobjects in the set of objects returned by executing the code call.We will now de�ne code call conditions. Intuitively, a code call conditionis nothing more than a conjunction of atomic code calls, with some additionalsyntax that \links" together variables occurring in the atomic code calls. Thefollowing de�nition expresses this intuition.De�nition 11 (Code Call Condition �) A code call condition � is de�nedas follows:1. Every code call atom is a code call condition.2. If s; t are either variables or objects, then s = t is a code call condition.3. If s; t are either integer/real valued objects, or are variables over the in-tegers/reals, then s < t; s > t; s � t; s � t are code call conditions.4. If �1; �2 are code call conditions, then �1&�2 is a code call condition.A code call condition satisfying any of the �rst three criteria above is an atomiccode call condition.The following de�nition speci�es what a solution of a code call condition is.Intuitively, code call conditions are evaluated against an agent state|if the stateof the agent changes, the solution to a code call condition may also undergo achange.De�nition 12 (Code Call Solution) Suppose � is a code call condition in-volving the variables X =def fX1; : : : ; Xng, and suppose S =def (TS ;FS ; CS) issome software code. A solution of � w.r.t. TS in a state OS is a legal assign-ment of objects o1; : : : ; on to the variables X1; : : : ; Xn, written as a compoundequation X := o, such that the application of the assignment makes � true instate OS .We denote by Sol(�)TS ;OS (omitting subscripts OS and TS when clear fromthe context), the set of all solutions of the code call condition � in state OS ,and by O Sol(�)TS ;OS (where subscripts are occasionally omitted) the set of allobjects appearing in Sol(�)TS ;OSDe�nition 13 (Action; Action Atom) An action � consists of six compo-nents:Name: A name, usually written �(X1; : : : ; Xn), where the Xi's are root vari-ables.Schema: A schema, usually written as (�1; : : : ; �n), of types. Intuitively, thissays that the variable Xi must be of type �i, for all 1 � i � n.10

Action Code: This is a body of code that executes the action.Pre: A code-call condition �, called the precondition of the action, denoted byPre(�) (Pre(�) must be safe modulo the variables X1, : : : ,Xn);Add: a set Add(�) of code-call conditions;Del: a set Del(�) of code-call conditions.We close this section with the de�nition of action atom. An action atom isa formula �(t1; : : : ; tn), where ti is a term, i.e., an object or a variable, of type�i, for all i = 1; : : : ; n.5 IMPACTing SHOPSHOP is an e�cient HTN planner. SHOP works by applying methods to com-pound tasks to decompose them into simpler tasks, and keeps decomposing tasksuntil primitive tasks are reached that can be executed directly using operators(see [Nau et al., 1999] for details). The integration of SHOP with the IMPACTmulti-agent environment requires three steps:1. Replace the atoms in SHOP's preconditions, add-lists, and delete-listswith code call conditions.2. Agentize SHOP so that it can communicate with other IMPACT agents.3. Make adjustments to SHOP's planning algorithm.5.1 Modifying SHOP's AtomsThe �rst step is to modify the atoms in SHOP's preconditions and e�ects, sothat SHOP's preconditions will be evaluated by IMPACT's code call mechanismand the e�ects will change the state of the IMPACT agents. This is a fundamen-tal change in the representation of SHOP. In particular, it requires replacingSHOP's methods and operators with agentized methods and operators. Theseare de�ned below.De�nition. An agentized method is an expression (: AgentMeth h� t) whereh (the method's head) is a compound task, � (the method's preconditions) is acode call condition and t is a task list.The de�nition of agentized method di�ers from the de�nition of method inSHOP in that the preconditions are IMPACT's code call conditions.
11

De�nition. An agentized operator is an expression (: AgentOp h�add �del),where h (the head) is a primitive task and �add and �del are code call conditions(called the add- and delete-lists). The set of variables in the tasks in �add and�del is a subset of the set of variables in h.Agentized operators di�er from SHOP's operators in that the add- anddelete-lists are code call conditions.Figure 4 shows a method for our application to military logistics planning.The method indicates how to transport a cargo that has a certain weight between2 locations. The method calls the statistics agent three times, in order toevaluate the distance between two geographic locations, the authorized rangeof a certain aircraft type (the authorized range is lower than the real distancethat the aircraft can
y), and the authorized capability (in metric tones) of anaircraft. The method calls the supplier agent to evaluate the cargo planes thatare available at a location.Head:AirTransport (LocFrom; LocTo; Cargo; CargoWeight)Preconditions:in(CargoPL; supplier : cargoPlane(locFrom))&in(Dist; statistics : distance(locFrom; locTo))&in(DCargoPL; statistics : authorRange(CargoPL))&Dist � DCargoPL&in(CCargoPL; statistics : authorCapacity (CargoPL))&CargoWeight � CCargoPL&Subtasks:load(Cargo; locFrom)
y(Cargo; locFrom; LocTo)unload(Cargo; locTo)Figure 4: Agentized method for a military logistics problem.5.2 Agentizing SHOPTo agentize SHOP, we can use the general-purpose agentizing algorithm de-scribed in [Subrahmanian et al., 2000]. This enables SHOP to communicatewith other IMPACT agents and vice-versa. The algorithm basically outputsa protocol that presents the procedure calls of the software in a standardizedformat that allows other agents to communicate with it. For the particularsituation of a planning system the protocol includes a call to a procedure thatreceives as input a problem description and outputs a solution plan (please referto [Subrahmanian et al., 2000] for a detailed discussion of the algorithm).
12

5.3 A-SHOP: Modifying the SHOP AlgorithmOn the top level, the A-SHOP algorithm is the same as the SHOP algorithm(see Figure 1). The �rst subtask is analyzed (step 2). If the task is primitive(step 3), a simple plan is obtained if possible (steps 4 and 5) and the processcontinues with the remaining tasks (step 6). If the task is compound (step 8),subtasking is performed if possible (steps 9{14).There are two changes that must be made to the SHOP algorithm at a lowerlevel when evaluating simplePlan(t;O) (Figure 3) and setSimpleReductions(t;O)(Figure 2). That is, when applying an operator and evaluating a method's pre-conditions:Change to simplePlan(t;O): apply (op �;O) now means to apply the changesindicated in the actions. i.e. execute the code of each action (De�nition 13)to make sure the add- and delete-lists are taken into account. Note thatin the simplest case, such code could be just the update described byh�(O) =def (O �Del �) [Add �;whereas it could also be a sophisticated implementation for manipulatingthe data objects of the software the agent is built upon.Change to setSimpleReductions(t;O): the call to instances(precs(m);O)now evaluates a code call condition in IMPACT instead of a collectionof predicates directly in the state. As explained in the previous section,evaluating a code call condition reduces to evaluating code call atoms ofthe form in(X; cc), where cc is a code call accessing external data sources.These code calls are executed only as needed and we have to make sure(using appropriate syntactical conditions) that code calls (1) can be exe-cuted and (2) return a �nite answer. We explain in the next section howwe accomplish this for agents based on arbitrary software S.Completeness and Correctness ofA-SHOP. The changes indicated aboveensure that the proofs of soundness and correctness for SHOP are valid providedthat we can establish conditions under which the evaluating IMPACT's actionsand code call conditions can be evaluated. This will be discussed later.6 Example of an Application DomainMilitary logistics planning is an example of a domain where the SHOP-IMPACTframework can be very useful. In particular with respect to logistics planningfor the US Armed Forces: �rst, information about the di�erent assets is not cen-tralized, second, the information sources are heterogeneous, comprising di�erentdatabase management systems (DBMS).Figure 5 shows some of the code-calls for this application. The �rst threecode-calls access the agent statistics and return the distance between two ge-ographic locations, the authorized range of a certain aircraft type (the autho-rized range is lower than the real distance that the aircraft can
y), and the13

statistics : distance(loc1; loc2)statistics : authorRange(aircraft)statistics : authorCapacity (aircraft)supplier : cargoPlane(loc)Figure 5: Code-calls in the military logistics domain.authorized capability (in metric tones) of an aircraft. The last code-call accessesthe agent supplier and returns the cargo planes that are available at a location.Figure 4 illustrates a simple agentized method which mounts a cargo in anairplane provided that the airplane has the adequate range and capacity.7 Evaluating Code-call Conditions and Apply-ing Actions in IMPACTWe have seen that the code call mechanism of IMPACT transfers data in ar-bitrary format (in fact arbitrary software calls) into a logical representation,which can be used in the planning process for SHOP. This allows us to for-mulate code call conditions: as statements in a logical language referring toarbitrary software functions.To evaluate code call conditions (i.e., to determine whether they hold ornot), we have to impose various restrictions on the underlying code calls. Wehave to ensure that code calls are1. executable (i.e., return an answer),2. only return �nitely many answers.Let us illustrate these problems with suitable examples.Example 1 (Executable Code Call, Part 1) We consider a software pack-age math which provides several functions to handle integers (most agentswill have available similar packages to do simple calculations). The code callmath : geq(X) enumerates all integers greater or equal to X.The code callmath : geq(X) is not executable, because it is not ground. Onlyif the variable X is assigned a certain value, the code call can be executed.To ensure that code calls are always ground, we introduce the followingsafety condition:De�nition 14 (Safe Code Call (Condition)) A code call S : f (d1; : : : ; dn)is safe if and only if each di is ground. A code call condition �1& : : :&�n,n � 1, is safe if and only if there exists a permutation � of �1; : : : ; �n such thatfor every i = 1; : : : ; n the following holds:14

1. If ��(i) is a comparison s1 op s2, then1.1 at least one of s1; s2 is a constant or a variable X such that root(X)belongs to RV�(i) =def froot(Y) j 9j < i s.t. Y occurs in ��(j)g;1.2 if si is neither a constant nor a variable X such that root(X) 2RV�(i), then si is a root variable.2. If ��(i) is a code call atom of the form in(X�(i); cc�(i)) or not in(X�(i); cc�(i)),then the root of each variable Y occurring in cc�(i) belongs to RV�(i), andeither X�(i) is a root variable, or root(X�(i)) is from RV�(i).Intuitively, a code call is safe if we can reorder the code call atoms occurring init in such a way that we can evaluate these atoms left to right, assuming thatroot variables are incrementally bound to objects.In [Eiter et al., 1999, Eiter and Subrahmanian, 1999, Subrahmanian et al., 2000]the authors developed algorithms to check safety for a given code call condi-tion. Safety is a compile-time check that ensures that all code calls generatedat run-time have instantiated parameters. However, executability of a code callcondition does not depend solely on safety, as the next example shows.Example 2 (Executable Code Call, Part 2) We consider the code callin(X;math : geq(25))&in(Y;math : square(X))&Y � 2000;which constitutes all numbers that are less than 2000 and that are squares of aninteger greater than or equal to 25.Clearly, over the integers there are only �nitely many ground substitutions thatcause this code call condition to be true. Furthermore, this code call conditionis safe. However, its evaluation may never terminate. The reason for this is thatsafety requires that we �rst compute the set of all integers that are greater than25, leading to an in�nite computation. This means that in general, we mustimpose some restrictions on code call conditions to ensure that they are �nitelyevaluable.Indeed, it is well-known that deciding whether or not a function is �nite isundecidable, therefore we assume that the developer of an agent examines thecode calls supported by a given data structure and speci�es which of them are�nite and which are not.Note that the following de�nitions are important for the general case, whenan agent is build upon arbitrary code. For most applications, like our militarylogistics domain, the safety requirement is completely su�cient.De�nition 15 (Binding Pattern) Suppose we consider a code call S : f (a1; : : : ; an)where each ai is of type �i. A binding pattern for S : f (a1; : : : ; an) is an n-tuple(bt1; : : : ; btn) where each bti (called a binding term) is either:15

1. A value of type �i, or2. The expression [denoting that this argument is bound to an unknownvalue.We require that the agent developer must specify a �niteness predicate thatmay be de�ned via a �niteness table having two columns|the �rst column isthe name of the code call, while the second column is a binding pattern for thefunction in question. Intuitively, suppose we have a row of the formhS : f (a1; a2; a3); ([; 5; [)iin the �niteness table. Then this row says that the answer returned by any codecall of the form S : f (�; 5;�) is �nite. In other words, as long as the secondargument of this code call is 5, the answer returned is �nite, irrespective of thevalues of the �rst and third arguments. Clearly, the same code call may occurmany times in a �niteness table with di�erent binding patterns.De�nition 16 (Ordering on Binding Patterns) We say a binding pattern(bt1; : : : ; btn) is equally or less informative than another binding pattern (bt01; : : : ; bt0n)if, by de�nition, for all 1 � i � n, bti � bt0i.We will say (bt1; : : : ; btn) is less informative than (bt01; : : : ; bt0n) if and only if itis equally or less informative than (bt01; : : : ; bt0n) and (bt01; : : : ; bt0n) is not equallyor less informative than (bt1; : : : ; btn). If (bt01; : : : ; bt0n) is less informative than(bt1; : : : ; btn), then we will say that (bt1; : : : ; btn) is more informative than(bt01; : : : ; bt0n).Suppose now that the developer of an agent speci�es a �niteness tableFINTAB. The following de�nition speci�es what it means for a speci�c codecall atom to be considered �nite w.r.t. FINTAB.De�nition 17 (Finiteness) Suppose FINTAB is a �nite �niteness table , and(bt1; : : : ; btn) is a binding pattern associated with the code call S : f (� � �). ThenFINTAB is said to entail the �niteness of S : f (bt1; : : : ; btn) if, by de�nition,there exists an entry of the form hS : f (: : :); (bt01; : : : ; bt0n)i in FINTAB such that(bt1; : : : ; btn) is more informative than (bt01; : : : ; bt0n).De�nition 18 (Strong Safety) A safe code call condition � = �1& : : :&�nis strongly safe w.r.t. a list ~X of root variables if, by de�nition, there is apermutation � witnessing the safety of � modulo ~X such that for each 1 � i � n,��(i) is strongly safe modulo ~X, where strong safety of ��(i) is de�ned as follows:1. ��(i) is a code call atom.Here, let the code call of ��(i) be S : f (t1; : : : ; tn) and let the binding pat-ternS : f (bt1; : : : ; btn) be de�ned as follows:(a) If ti is a value, then bti = ti.16

(b) Otherwise ti must be a variable whose root occurs either in ~X or in��(j) for some j < i. In this case, bti = [.Then, ��(i) is strongly safe if, by de�nition, FINTAB entails the �nitenessof S : f (bt1; : : : ; btn).2. ��(i) is s 6= t.In this case, ��(i) is strongly safe if, by de�nition, each of s and t is eithera constant or a variable whose root occurs either in ~X or in ��(j) for somej < i.3. ��(i) is s < t or s � t.In this case, ��(i) is strongly safe if, by de�nition, t is either a constant ora variable whose root occurs either in ~X or somewhere in ��(j) for somej < i.4. ��(i) is s > t or s � t.In this case, ��(i) is strongly safe if, by de�nition, t < s or t � s, respec-tively, are strongly safe.Algorithms to check strong safety are developed in [Subrahmanian et al., 2000].We can now discuss the conditions for preserving soundness and complete-ness in A-SHOP. Consider the agentized method shown in Figure 4. It is rea-sonable to assume that the developer has de�ned FINTAB to entail code callssuch as supplier : cargoPlane(locFrom). This means that the rows of FINTABwill have the form hsupplier : cargoPlane(X); ([)i, which says that calling anyof these code calls with any values will succeed. Under these circumstances,it is easy to see that the method's precondition is strongly safe provided thatthe arguments of the method's head are instantiated. The reason is that thevariable CargoPL is instantiated before DCargoPl and CCargoPl. Thus thecode call is always ground.We close this section by stating the conditions under which we can ensurethe soundness and correctness of SHOP in IMPACT's multi-agent environ-ment. Our next theorem ensures the evaluation of agentized methods underthe strongly safeness condition.Theorem 3 Let O be a state, (: AgentMeth h� t) an agentized methodand (: AgentOp h�add �del) an agentized operator. If the precondition � isstrongly safe, the problem of deciding whether � holds in O can be algorith-mically solved. If the add and delete-lists �add and �del are strongly safe, theproblem of applying the agentized operator to O can be algorithmically solved.The next result is the main theorem in this paper: it states the correctnessand completeness of SHOP if code-calls in methods and operators are stronglysafe. 17

Theorem 4 Let O be a state and D be a collection of agentized methods andoperators. If all the preconditions in the agentized methods and add and delete-lists in the agentized operators are strongly safe, then A-SHOP is correct andcomplete.8 ImplementationThe complete version of SHOP is built in LISP and includes the abilities to doHorn-clause inferencing and to make calls for the LISP evaluator. The formerone is used to infer conditions from the current state and the latter one isused to add expressiveness during planning. For example, SHOP can computenumerical expressions. SHOP can be downloaded from the <URL:http://www.cs.umd.edu/projects/shop/>A version of IMPACT is running on a Windows platform. This versionhas been built primarily in JAVA. The implementation of IMPACT uses a pre-existing software package developed at the University of Maryland called Web-Hermes [Adali, S., et al., 1997] which supports execution of code call conditionsover a wide variety of data structures and software packages. These currentlyinclude (or have included in the past), relational database management systems(Oracle, Ingres, Dbase, Paradox), an object oriented system (ObjectStore), amultimedia system called MACS [Brink et al., 1995], a video information sys-tem called AVIS [Adali et al., 1996], a geographic data structure called a PR-quadtree, arbitrary
at �les (as long as their schemas are speci�ed), a US Armyroute planner over free terrain [Benton and Subrahmanian, 1994], a variety ofUS Army logistics data including specialized Oracle and nested multirecordTAADS data [Schafer et al., 1998], a variety of US Army simulation data froma massive program called JANUS deployed by the Simulation, Training andInstrumentation Command, a face recognition program, and so on.To facilitate the integration of SHOP in IMPACT, we re-implemented SHOPin JAVA. The java version of SHOP include neither the Horn clause evaluatornor the calls to the LISP evaluator. However, such things could easily be addedthrough the use of the IMPACT framework, without needing any modi�cationsto the current JAVA implementation of SHOP. In particular, we could take atheorem prover, agentize it using IMPACT methods and call the agent using anappropriate code-call condition ([Subrahmanian et al., 2000] describes a step bystep process to agentize a program and incorporate it as an agent into IMPACT).The same can be done for evaluations. In particular, a mathematical agent,math, is currently available in IMPACT to evaluate some numerical expressions.We have built a communication module from SHOP to the IMPACT multi-agent environment that allows the execution of code-call conditions in IMPACTstarting from SHOP. We are currently building a second communication modulethat communicates the results of the execution of IMPACT's actions back intoSHOP. 18

9 DiscussionNote that A-SHOP does not have any information about the state stored locallyas it is usual in AI planning. However, we could if needed simulate having alocal state by simply de�ning an agent that manages the state and having allcode call conditions refer to that agentized state. Intermediate approaches suchas Knoblock's (1996) which updates the current state by gathering informationfrom external sources can also be subsumed in our integration: again we couldhave an specialized agent managing the partial state of the world.The use of IMPACT's code call atoms di�ers from the built-in predicates ofother approaches in that, �rst, code calls provide a well-de�ned semantics whichallows us to state the conditions for preserving soundness and completeness ofSHOP. Second, the integration of SHOP in the IMPACT environment allowsus to address the challenges stated in the introduction:� Mixed symbolic/numeric reasoning. Notice that the precondition ofthe method shown in Figure 4 supposes a combination symbolic and nu-meric reasoning. On the one hand, this method is used as a means for de-composing the task, AirTransport(LocFrom; LocTo; Cargo; CargoWeight),which is essentially a symbolic process. On the other hand, some of itspreconditions are numerical comparisons (i.e., Dist � DCargoPL&). Thisis a simple illustration of a greater potential: by decoupling the evaluationof preconditions from the planning process itself we are gaining
exibil-ity. Specialized agents performing complex numerical information can beplugged in.� Distributed, heterogeneous information sources. One importante�ect of integrating A-SHOP within IMPACT is that it allows to gatherinformation from distributed, heterogeneous information sources withoutrequiring knowledge about how and where these resources are located. Forexample, in the method shown in Figure 4 determining the statistics ofa certain airplane may simply require access to a local database whereasdetermining if any such airplanes are available in a certain location mayrequire access a remotely located spreadsheet. Recently, it has been ob-served that handling resources separate from the planning process mayimprove the performance [Srivastava and Kambhampati., 1999].� Coordination of multiple agents. Every time A-SHOP does a codecall, a request to contact an external agent is made. the IMPACT multi-agent environment coordinates this process. In principle, this could beused not only to communicate A-SHOP with the other agents, but alsoto coordinate multiple versions of A-SHOP itself. We have not yet imple-mented multiple copies of A-SHOP running concurrently, but we hope todo so in the near future.
19

10 ConclusionWe have developed A-SHOP, a modi�ed version of the SHOP planning algo-rithm that takes advantage of the capabilities provided by the IMPACT multi-agent environment. A-SHOP can plan with heterogeneous, distributed infor-mation sources, combine symbolic and numerical information and interact withmultiple agents.In A-SHOP, SHOP's preconditions, add-lists and delete-lists are replacedwith code call conditions. IMPACT's code call conditions provide a well-de�nedsyntax and most important they also provide a well-de�ned semantics. In par-ticular, we have shown that A-SHOP is sound and complete provided that thecode calls are strongly safe.KnowledgmentsWe want to thank V. S. Subrahmanian who suggested using code call conditionsin heterogeneous planning. We also want to thank Leonard A. Breslow andPeter Baumgartner for proof-reading early versions of this paper. This workwas supported in part by the following grants and contracts: Army ResearchLaboratory DAAL01-97-K0135, Naval Research Laboratory N00173981G007,Air Force Research Laboratory F306029910013, and NSF DMI-9713718.References[Adali et al., 1996] Adali, S., Candan, K. S., Chen, S.-S., Erol, K., and Subrah-manian, V. S. (1996). Advanced Video Information Systems:Data Structuresand Query Processing. Multimedia Systems, 4(4):172{186.[Adali, S., et al., 1997] Adali, S., et al. (1997). Web hermes user manual. http://www.cs.umd.edu/projects/hermes/UserManual/index.html.[Benton and Subrahmanian, 1994] Benton, J. and Subrahmanian, V. S. (1994).Using Hybrid Knowledge Bases for Missile Siting Problems. In Society, I. C.,editor, Proceedings of the Conference on Arti�cial Intelligence Applications,pages 141{148.[Brink et al., 1995] Brink, A., Marcus, S., and Subrahmanian, V. (1995). Het-erogeneous Multimedia Reasoning. IEEE Computer, 28(9):33{39.[Chien et al., 1995] Chien, S., Hill, R., Wang, X., and Estlin, T. (1995). Whyreal-world planning is di�cult: A tale of two applications. In Proceedings ofthe 3rd Europ. Workshop on Planning (EWSP-95).[Currie and Tate, 1991] Currie, K. and Tate, A. (1991). O-plan: the open plan-ning architecture. Arti�cial Intelligence, 52(1).20

[Davis and Smith, 1983] Davis, R. and Smith, R. (1983). Negotiation as aMetaphor for Distributed Problem Solving. Arti�cial Intelligence, 20(1).[desJardins et al., 1999] desJardins, M. E., Durfee, E. H., Jr., C. L. O., andWolverton, M. J. (1999). A survey of research in distributed, continual plan-ning. AI Magazine, 20(4).[Eiter et al., 1999] Eiter, T., Subrahmanian, V., and Pick, G. (1999). Heteroge-neous Active Agents, I: Semantics. Arti�cial Intelligence, 108(1-2):179{255.[Eiter and Subrahmanian, 1999] Eiter, T. and Subrahmanian, V. S. (1999).Heterogeneous Active Agents, II: Algorithms and Complexity. Arti�cial In-telligence, 108(1-2):257{307.[Erol et al., 1994] Erol, K., Hendler, J., and Nau, D. (1994). Umcp: A soundand complete procedure for hierarchical task-network planning. In Proceedingsof AIPS-94.[Etzioni et al., 1992] Etzioni, O., Weld, D., Draper, D., Lesh, N., andWilliamson, M. (1992). An approach to planning with incomplete informa-tion. In Proceedings of KR-92.[Friedman and Weld, 1997] Friedman, M. and Weld, D. (1997). E�ciently ex-ecuting information-gathering plans. In Proceedings of IJCAI-97.[Golden et al., 1994] Golden, K., Etzioni, O., and Weld, D. (1994). Omnipo-tence without omniscience: e�cient sensor management for planning. InProceedings of AAAI-94.[Kautz and Walser, 1999] Kautz, H. and Walser, J. P. (1999). State-space Plan-ning by Integer Optimization. In Proceedings of the 17th National Conferenceof the American Association for Arti�cial Intelligence, pages 526{533.[Knoblock, 1996] Knoblock, C. (1996). Building a planner for information gath-ering: a report from the trenches. In Proceedings of AIPS-96.[Koehler, 1998] Koehler, J. (1998). Planning under Resource Constraints. InProceedings of the 13th European Conference on Arti�cial Intelligence, pp489-493.[Nau et al., 1999] Nau, D., Cao, Y., Lotem, A., and Mu~noz-Avila, H. (1999).Shop: Simple hierarchical ordered planner. In Proceedings of IJCAI-99.[Nau et al., 1998] Nau, D. S., Smith, S. J. J., and Erol, K. (1998). ControlStrategies in HTN Planning: Theory versus Practice. In AAAI-98/IAAI-98Proceedings, pages 1127{1133.[Schafer et al., 1998] Schafer, J., Rogers, T. J., and Marin, J. (1998). Net-worked Visualization of Heterogeneous US Army War Reserves ReadinessData. In Jajodia, S., Ozsu, T., and Dogac, A., editors, Advances in Mul-timedia Information Systems, 4th International Workshop, MIS'98, volume21

1508 of Lecture Notes in Computer Science, pages 136{147, Istanbul, Turkey.Springer-Verlag.[Srivastava and Kambhampati., 1999] Srivastava, B. and Kambhampati., S.(1999). Scaling up planning by teasing out resource scheduling. In ASUCSE TR 99-005. To appear in ECP-99.[Subrahmanian et al., 2000] Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T.,Kraus, S., �Ozcan, F., and Ross, R. (2000). Heterogenous Active Agents. MITPress.[Wilkins, 1988] Wilkins, D. (1988). Practical planning - extending the classicalAI planning paradigm. Morgan Kaufmann.[Wolfman and Weld, 1999] Wolfman, S. A. and Weld, D. S. (1999). The LPSATEngine and its Application to Resource Planning. In Proceedings of the 15thInternational Joint Conference on Arti�cial Intelligence, pages 310{317.[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. (1995). In-telligent agents: Theory and practice. Knowledge Engineering Reviews, 10(2).

22

