
Negative Cycle Detection in Dynamic Graphs

Nitin Chandrachoodan, Shuvra S. Bhattacharyya∗and K.J.Ray Liu
Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742

(nitin,ssb,kjrliu@eng.umd.edu)

September 30, 1999

Abstract

We examine the problem of detecting negative cycles in a dynamic
graph, which is a fundamental problem that arises in electronic design
automation and systems theory [1, 2, 3, 4]. Previous approaches used for
this have tried to modify Dijkstra’s algorithm since it is the fastest known
Single-Source Shortest Path algorithm.
We introduce the concept of batch mode negative cycle detection, in

which a graph changes over time, and negative cycle detection needs to be
done periodically. Such scenarios arise, for example, during iterative de-
sign space exploration for hardware and software synthesis. We present an
algorithm for this problem, based on the Bellman-Ford algorithm, which
outperforms previous approaches.
We also show that this technique leads to very fast algorithms for the

computation of the maximum-cycle mean (MCM) of a graph, especially
for a certain form of sparse graph. Such sparseness often occurs in practice,
as demonstrated for example by the ISCAS 89/93 benchmarks.
We present experimental results that demonstrate the advantages of

our batch-processing techniques, and illustrate their application to design-
space exploration by developing an automated local-search technique for
multiple-voltage scheduling of iterative data-flow graphs.

1 Introduction

Detecting the presence of negative cycles in a weighted graph has several ap-
plications in systems theory[1]. One of the most important applications is to
determine whether a system of constraints has a feasible solution. Finding
minimum-cost flows in a network also require the detection of negative cycles.
There are also situations in which it is useful or necessary to maintain a

feasible solution to a set of difference constraints as a system evolves. Typical
examples of this would be real-time or interactive systems, where constraints are
added or removed one (or several) at a time, and after each such modification
it is required to determine whether the resulting system has a feasible solution
and if so, to find it. When more than one change is made at a time, we say that
the changes are being made in a “batch” mode.

∗Also with the University of Maryland Institute for Advanced Computer Studies

1

In this paper, we present an improved algorithm for the batch mode prob-
lem, and show how it can be used to derive a fast algorithm for the problem of
computing the maximum cycle-mean of a weighted digraph. We show by experi-
mental results that the resulting MCM algorithm is competitive with the fastest
known algorithm for calculating the cycle-mean (Howard’s algorithm [3, 5]).
We also present a search technique for finding Iterative-DFG schedules,

which uses the batch-mode negative cycle detection algorithm as a subrou-
tine. We illustrate the use of this local search technique by applying it to a
couple of problems from High-Level Synthesis, namely homogeneous multipro-
cessor scheduling and resource constrained scheduling for minimum power in
the presence of multiple voltage functional units.

2 Previous Work

[1] contains an extensive survey of algorithms for detecting negative cycles,
and they also present several problem families that can be used to test the
effectiveness of a cycle-detection algorithm. One surprising fact is that the best
known theoretical bound (O(nm)) for solving the shortest path problem (with
arbitrary weights) is also the best known time bound for the negative-cycle
problem.
Recently, there has been increased interest in the subject of dynamic algo-

rithms for solving problems[6, 7, 4]. This uses the fact that in several problems
where a graph algorithm such as shortest paths or transitive closure needs to
be solved, it is often the case that we need to repeatedly solve the problem on
variants of the original graph.
In our case, [4] presents an algorithm for maintaining shortest paths in arbi-

trary graphs which performs better than starting from scratch, while [8] presents
a generalization of the shortest path problem and shows how it can be used to
handle the case where there are few negative weight edges. In both these cases,
they have considered one change at a time (not batch mode), and the emphasis
has been on the theoretical time bound, rather than experimental analysis. [9]
contains an experimental study, but for the case of positive weight edges only.
The most significant work along the lines we propose is [2]. In this, the

authors use the observation that in order to detect negative cycles, it is not nec-
essary to maintain a tree of the shortest path lengths to each vertex. They then
suggest an improved algorithm based on Dijkstra’s algorithm, which is able to
recompute a feasible solution (or detect a negative cycle) in time O(m+n log n),
or in terms of output complexity (defined and motivated in [6]) O(||∆|| +
|∆| log |∆|). The output complexity is basically a measure of the total change in
input and output. Thus, the change in input would reflect the number of edges
which have been changed, while the change in output would count the total
number of nodes whose shortest paths (or equivalently the constraint solution)
need to be recomputed. Note that this work also considers the addition/deletion
of constraints only one at a time.
The above problem can be generalized to allow several changes to the graph

between calls to the negative cycle detection algorithm. In this case, the above
algorithms would take time linear in the number of changes. Such situations
would arise naturally in an interactive environment (if we prefer to accumulate
changes between refreshes of the state) or in design space-exploration, as can
be seen, for example, in section 5.2.

2

Algorithm 1 Batch Bellman-Ford Algorithm

Input: Graph G(V, E), dist(v), length(e)
Output: updated dist(v) such that ∀e = (u → v) ∈ E : dist(v) − dist(u) ≤
length(u→ v)

1: Q1← φ,Q2← φ
2: for all e ∈ E do
3: if dist(v)− dist(u) > length(u→ v) then
4: append u to Q1
5: end if

6: end for

7: while Q1 not empty do
8: u← pop(Q1)
9: for all v adjacent to u in G do
10: if dist(v)− dist(u) > length(u→ v) then
11: delete subtree rooted at v
12: if u was in the subtree deleted above then
13: negative cycle detected: return
14: else

15: make v a child of u {constructing subtree}
16: append v to Q2
17: end if

18: end if

19: end for

20: if Q2 is empty then
21: return {completed: dist satisfies constraints}
22: else

23: Q1← Q2, Q2← φ
24: end if

25: end while

In this paper, we show that our approach performs almost as well as the ap-
proach in [2] (experimentally) for changes made one at a time, and significantly
outperforms their approach for the batch mode (this is true even for relatively
small batch-sizes, as will be seen from the results). Also, at very large batch
sizes, our algorithm reduces to the normal Bellman-Ford algorithm, starting
from scratch, so we do not lose in performance.

3 The Modified Bellman-Ford Algorithm

In this section, we describe the modifications we have made to the Bellman-Ford
algorithm to adapt it to the problem of dynamic negative cycle detection, and
show the correctness of the modified version.
We first note that the problem of detecting negative cycles in a digraph is

equivalent to finding whether or not a set of difference inequality constraints
has a feasible solution. To see this, observe that if we have a set of difference
constraints of the form

xi − xj ≤ bij

we can construct a digraph with nodes corresponding to the xi, and edges such
that length(eij) = bij . Then, solving for shortest paths in this graph would
yield a set of distances dist which satisfy the constraints on xi. This graph is
henceforth referred to as the constraint graph.

3

The usual technique used to solve for dist is to introduce an imaginary vertex
s0 to act as a source, and edges from this vertex to each of the other vertices,
with length = 0. In this way, we can use a single-source shortest paths algorithm
to find dist from s0, and any negative cycles (infeasible solution) will occur only
in the original graph, since the new vertex and edges cannot create cycles. This
graph is referred to as the augmented graph [2].
The algorithm presented in Alg. 1 is basically Tarjan’s subtree disassembly

method for negative cycle detection (the modifications are in lines 2-6). It
works as follows: each time we find a constraint violation (i.e. an edge where
dist(v)−dist(u) > length(u→ v)), we adjust dist(v) so that equality is satisfied
in the constraint, and make v a child of u. In this way, as we proceed, we will
build a tree Tc of critical edges, rooted at s0. Also, when we make v a child
of u, we have now changed dist(v), and so the subtree rooted at v no longer
represents the correct dist values and critical edges at this stage. We therefore
delete this subtree rooted at v. If, in doing so, we happen to remove u from the
main tree rooted at s0, it means that we have encountered a negative cycle.
The modifications in lines 2-6 accomplish two purposes. The first is to

eliminate the need for explicitly introducing the augmenting vertex s0. This
can be done once we recognize that the only purpose served by this vertex is to
initialize the other vertices to a set of dist values which can then be updated
by the rest of the algorithm to obtain a correct solution. The other purpose
is that, when combined with the idea of retaining dist values between calls to
the routine, these lines have the effect of initializing the Q1 queue with only
those nodes which have been modified, and hence have an effect on the new dist
values.

3.1 Correctness of the method

The use of a shortest path routine to find a solution to a system of constraint
equations is based on the following 2 theorems (for proof see [10]).

Theorem 1 A system of difference constraints is consistent if and only if its
augmented constraint graph has no negative cycles if and only if its constraint
graph has no negative cycles.

Theorem 2 Let G be the augmented constraint graph of a consistent system of
constraints 〈V,C〉. Then D is a feasible solution for 〈V,C〉, where

D(u) = distG(s0, u)

In the above theorem, the constraint graph is defined as in sec. 3 above,
the augmented graph consists of this graph with an additional source vertex (s0)
which has 0-weight edges leading to all the other existing nodes, and consistency
means that a set of xi exist which satisfy all the constraints in the system.
The modifications that we have made can be seen to be correct if we relax

the definition of the augmented graph so that the augmenting edges (from s0)
do not have 0 weight. In other words:

Theorem 3 Consider a constraint graph augmented with a source vertex s0,
and edges from this vertex to every other vertex v, such that these augmenting

4

edges have arbitrary weight length(s0 → v). The system of constraints is con-
sistent if and only if the augmenting graph defined above has no negative cycles
if and only if its constraint graph has no negative cycles.

Proof: This theorem, which deals with the consistency of the system, is essen-
tially the same as Theorem 1. Clearly, since s0 does not have any in-edges,
no cycles can pass through it. So any cycles, negative or otherwise, which are
detected in the augmented graph, must have come from the original constraint
graph, which in turn would happen only if the constraint system was inconsistent
(by theorem 1). Also, any inconsistency in the original system would manifest
as a negative cycle in the constraint graph, and the above augmentation cannot
remove any such cycle. 2
Now for the validity of the solution:

Theorem 4 If G′ is the augmented graph with arbitrary weights as defined
above, and D(u) = distG′(s0, u) (single source shortest paths from s0), then

1. D is a solution to 〈V,C〉

2. Any solution to 〈V,C〉 can be converted into a solution to the constraint
system represented by G′ by adding a constant to each D(u).

Proof: The first part is obvious, by the definition of shortest paths.
Now we need to show that by augmenting the graph with arbitrary weight

edges, we do not prevent certain solutions from being found. To see this, first
note that any solution to a difference constraint system is modifiable by a con-
stant. i.e. we can add or subtract a constant to all the D(u) without changing
the validity of the solution.
In our case, if we have a solution to the constraint system which does not sat-

isfy the constraints posed by our augmented graph, it is clear that the constraint
violation can only be on one of the augmenting edges (since the underlying con-
straint graph is the same). Therefore, if we define

lmax = max
augmenting edges

length(e)

and
D′(u) = D(u)− lmax

we ensure that D′ satisfies all the constraints of the original graph, as well as
all the constraints on the augmenting edges. 2
So an augmented graph with arbitrary weights on the augmenting edges can

also be used to find a feasible solution to a constraint system. This means that,
once we have found a solution to the constraint system, we can now change the
augmented graph so that the weights on the edges are dist(snk(e)). Now even
if we change the underlying constraint graph in any way, we can use the new
augmented graph to run shortest paths and test the feasibility of the solution.
Note that now Tc (defined in section 3) may no longer be a tree rooted at

s0, but rather, it becomes a forest of trees, each rooted at some node. This
does not affect the correctness of the algorithm, since the criterion for negative
cycles remains the same in this case as well.
In Alg. 1, lines 1-6 implement the first step of the above process: they insert

only those vertices into Q1 which are affected as a result of the modifications we

5

augmenting vertex s 0

0

000
0

-1 2

-3

1

1

1

0

-1

-3

-2
-1

augmenting vertex

0 0

0 -1 -1
-2 -3

0

-1 1

1

-2

-3-3

2

1

-2
-2

A

B

C

DE

A

B

C

D
E

(A) Augmenting graph with 0 weight
 augmenting edges

(B) Augmenting graph with non-zero weight
 augmenting edges

Figure 1: Constraint graph

make to the graph. After this, the algorithm proceeds exactly along the lines of
the normal Bellman-Ford algorithm.
Figure 1 helps to illustrate the concepts that are explained in the previous

paragraphs. In part (B) of the figure, there is a change in the weight of one
vertex. But as we can see from the augmented graph, this will result in only
the single update to the affected vertex itself, and all the other vertices will get
their constraint satisfying values directly from the previous iteration.
In the rest of the paper, we refer to this algorithm as the “Batch Bellman-

Ford algorithm” or BBF algorithm, to stress the fact that it is particularly
efficient at handling batches of changes made to the constraint system.

4 Comparison against Other Incremental Algo-

rithms

We compare the BBF algorithm against (a) the incremental algorithm developed
in [2] for maintaining a solution to a set of difference constraints, and (b) a
straightforward modification of Howard’s algorithm [5], since it appears to be
the fastest algorithm to compute the cycle mean, and hence can also be used to
check for feasibility of a system.
We have implemented all the algorithms under the LEDA [11] framework

for uniformity. The tests were run on random graphs, with several random
variations performed on them thereafter. We kept the number of nodes constant
and changed only the edges. These changes were precomputed to ensure that
they did not add to the measurement of running time. They are of 3 types:

• Edge insertion: An edge is inserted into the graph, ensuring that multiple
edges between vertices do not occur.

• Edge deletions: An edge is chosen at random and deleted from the graph.
Note that, in general, this cannot cause any violations of constraints.

6

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

Constant total changes

Batch size

R
un

tim
e

(s
)

RSJM
BBF
Orig BF
Howard’s

Figure 2: Comparison of algorithms as batch size varies

• Edge weight change: An edge is chosen at random and its weight is changed
to another random number.

Figure 2 shows a comparison of the running time of the 3 algorithms on
random graphs. The graphs in question were randomly generated, had 1000
nodes and 2000 edges each, and a sequence of 10000 edge change operations
(as above) were applied to them. The X-axis shows the “granularity” of the
changes. That is, at one extreme, we apply the changes one at a time, and at
the other, we apply all the changes at once and then compute the correctness of
the result. Note that the batch nature is not used by algorithm RSJM, which uses
the fact that only one change occurs per test to look for negative cycles. As can
be seen, the algorithms which use the batch mode benefit greatly as the batch
size is increased, and even among these, the BBF algorithm far outperforms the
Howard algorithm, because the latter actually recomputes most of the cycle-
mean, which is far more than necessary.
Figure 3 shows a plot of what happens when we apply 1000 iterations to the

graph, but change the batch size, so that the total number of changes actually
varies from 1000 to 100,000. As expected, RSJM takes total time linear in the
number of changes. But the other algorithms take nearly constant time as the
batch size varies, which provides the benefit.
From the figures, we see, as expected, that the RSJM algorithm takes time

linear in the total number of changes. Howard’s algorithm also appears to take
more time when the number of changes increases. Figure 2 allows us to estimate
at what batch size each of the other algorithms becomes more efficient than the
RSJM algorithm. Note that the scale on this figure is logarithmic.
For large batch sizes, the BBF algorithm essentially reduces to the standard

algorithm. This can be seen in figure 2, where the two curves meet when the
batch size approaches the total number of changes.
Another point to note with regard to these experiments is that they represent

the relative behavior for graphs with 1000 nodes and 2000 edges. These numbers
were chosen to obtain reasonable run-times on the experiments. The effect of
changing the graph size is that for larger graphs, the advantage of the BBF
algorithm appears to be more pronounced.
In particular, for larger graphs, the “break-even” point, where the BBF algo-

rithm becomes more efficient than the RSJM algorithm, seems to shift downwards,
so that at 10000 nodes and 20000 edges, even a batch size of 2 is faster using

7

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Batch size

R
un

tim
e

(s
)

Varying batch size

RSJM
BBF
Orig. BF
Howard’s

Figure 3: Constant number of iterations at different batch sizes

the BBF algorithm.

5 Applications

5.1 Maximum Cycle Mean computation

The first application we consider is computation of the Maximum Cycle-Mean
of a weighted digraph. This is defined as the maximum over all directed cycles
of the sum of the arc weights divided by the number of “delay” elements on the
arcs. This measure plays an important role in discrete systems and embedded
systems [3], since it represents the greatest throughput that can be extracted
from the system.
To model this application, the edge weights on our graph consist of the value

length(u→ v) = delay(e)× P − exec time(u)

where length(e) refers to the weight of the edge, delay(e) refers to the number
of delay elements (flip-flops) on the edge, exec time(u) is the propagation delay
of the circuit element that is the source of the vertex, and P is the desired clock
period that we are testing the system for. In other words, if the graph with
weights as mentioned above does not have negative cycles, then P is a feasible
clock for the system. We can then perform a binary search in order to compute
P to any precision we require.
It is clear that the best performance bound that can be placed on the al-

gorithm as it stands is O(nm logT) where T is the maximum value of P that
we examine in the search procedure. However, we find that experimentally it
performs significantly faster than would be expected by this bound. One point
to note is that since we are doing a binary search on T , we are forced to set a
limit on the precision to which we compute our answer. In our experiments, we
have used 0.001, or 3 decimal places (with length(e) ∼ O(102)). Each additional
digit would require about a 10% increase in run-time. On the other hand, this
also gives us the freedom to work at lower precision when we are far away from
the exact solution, and increase precision as we get closer to an exact solution.
For an experimental study, we build on the work by Dasdan and Gupta

([3]), where the authors have conducted a fairly extensive study of algorithms
for this problem. They conclude that Howard’s algorithm ([5]) appears to be the

8

fastest experimentally, even though no theoretical time bounds indicate this. As
will be seen, our algorithm performs almost as well as Howard’s algorithm on
several useful sized graphs, and especially on the ISCAS 89 benchmarks, where
it typically performs better.
With regard to the ISCAS benchmarks, note that there is a slight ambiguity

in translating the netlists into graphs. This arises from the fact that a DFF
(D-type flip-flop) can either be treated as a single edge with a delay, with the
fanout proceeding from the sink of this edge, or as k separate edges with unit
delay emanating from the source node. In the former treatment, it makes more
sense to talk about the |D|/|V | ratio (|D| being the number of D flip-flops),
as opposed to the |D|/|E| ratio that we use in the experiments with random
graphs. However, the difference between the two treatments is not significant
and can be safely ignored.
For comparison purposes, we implemented our algorithm in the C program-

ming language, and compared it against the implementation provided by the
authors of [5]. Although the authors do not claim their implementation is the
fastest possible, it appears to be a reasonably efficient implementation, and we
could not find any obvious ways of improving it.
We also vary the number of edges with delays on them. For this, we need

to exercise care, since we may introduce cycles without delays on them. To
avoid this, we follow the policy of treating edges with delays as “back-edges”
in an otherwise acyclic graph [12]. This view is inspired by the structure of
circuits, where a delay element usually figures in the feedback portion of the
system. Unfortunately, one effect of this is that when we have low number of
delay edges, the resulting graph tends to have an asymmetric shape: it is like
an almost acyclic graph with only a few edges in the reverse direction. It is not
clear how to get around this problem in a fashion which does not destroy the
symmetry of the graph, since this requires solving the feedback arc set problem,
which is NP-hard.
Intuitively, however, for the above situation, we would expect our algorithm

to perform better. This is because, for the MCM problem, a change in the value
of P for which we are testing the system will cause changes in the weights of those
edges which have delays on them. If these are fewer, then we would expect that
fewer operations would be required overall when we retain information across
iterations. This is borne out by the experiments. The resulting graphs are
Fig. 4 for 20,000 edges and Fig. 5 for 200,000 edges, with the feedback edge
ratio varied from 0.1 to 0.9.
Note: For figures 6,7 and 8, we used the random graph generators SPRAND

from [1]. This assumes unit delays on all edges. Note that unit delays on
all edges decreases the benefit from using the incremental algorithm. We can
understand why this happens as follows: The algorithm performs a binary search
over several values of the iteration period. At each step, the weights of edges
in the graph are set to length(e) = delay(e) × P − w(e), where w(e) was the
original weight. So any time we decrease P, all edges that had delays on them
will get a new weight, and need to be re-analyzed. Because of this, having
fewer edges with delays is more helpful to the incremental algorithm. Since this
is normally the situation encountered in physical systems, we consider this a
useful behavior.
We note the following features from the experiments:

• If all edges have unit delay, our modifications do not provide much benefit,
as expected.

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
10000 nodes, 20000 edges

Feedback edge ratio

R
un

tim
e

(s
)

Mod. BF
Orig. BF
Howard’s

Figure 4: Comparison with Howard’s algorithm for 10000 nodes, 20000 edges

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70
10000 nodes, 200,000 edges

Feedback edge ratio

R
un

tim
e

(s
)

Mod. BF
Orig. BF
Howard’s

Figure 5: Comparison with Howard’s algorithm for 10000 nodes, 200000 edges

• When we vary the number of feedback edges, the benefit of the modifica-
tions becomes clear at low feedback ratios.

• From examining practical examples like the ISCAS benchmarks, we can
see that all of the circuits have |E|/|V | < 2, and |D|/|V | < 0.1, (|D| is
number of flip-flops, |V | is total number of circuit elements, and |E| is
number of edges). In this range of parameters, our algorithm performs
very well, even better than Howard’s algorithm in several cases (also see
Table 1 for the ISCAS results).

5.2 Local search for Scheduling

We also touch upon another application of our technique: for efficient searching
of schedules for iterative DFGs. The basic idea is that for scheduling an IDFG,
we need to (a) assign nodes to processors and (b) assign relative positions to the
nodes within each processor (for sharing). Once these two aspects are done, the
schedule for a given time constraint is determined by finding a feasible solution
to the constraint equations, which we do using the technique specified above.
The approach we have taken for the schedule search is:

10

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

14

16

18

Num nodes (=1/2 edges)

R
un

tim
e

(s
)

Mod. BF
Orig. BF
Howard’s

Figure 6: Comparison with Howard’s algorithm for E/V = 2 and D/V = 0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

2

4

6

8

10

12

14
Unit delay

Num edges

R
un

 ti
m

e
(s

)

Mod. BF
Orig. BF
Howard’s

Figure 7: Unit delay: varying edges

• Start with each node on its own processor, find a feasible solution on the
fastest possible processor

• Examine each node in turn, and try to find a place for it on another
processor (implementing sharing). In doing so, we are making a small
number of changes to the constraint system, and need to recompute a
feasible solution.

• In choosing the new position, choose one which has minimum power (or
area, or whatever cost we want to optimize).

• Additional “moves” that can be made include inserting a new processor
type and moving as many nodes onto it as possible, moving nodes in
batches from one processor to another etc.

• The technique also lends itself very well to application in schemes using
evolutionary improvement.

Each such “move” or modification that we make to the graph can be treated
as a set of edge-changes in the precedence/processor constraint graph, and a
feasible schedule would be found if the system does not have negative cycles.
In addition, the dist(v) values that are obtained from applying the algorithm
directly give us the starting times that will meet the schedule requirements.

11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Const edges, varying nodes

Num nodes

R
un

 ti
m

e
(s

)

Mod. BF
Orig. BF
Howard’s

Figure 8: Unit delay: varying nodes

Benchmark |E|/|V | |D|/|V | orig BF mod BF Howard

s38417 1.416 0.069 2.71 0.29 0.66
s38584 1.665 0.069 2.66 0.63 0.59
s35932 1.701 0.097 1.79 0.37 0.09
s15850 1.380 0.057 1.47 0.18 0.36
s13207 1.382 0.077 0.73 0.12 0.35
s9234 1.408 0.039 0.57 0.06 0.11
s6669 1.657 0.070 0.74 0.07 0.04
s4863 1.688 0.042 0.27 0.04 0.03
s3330 1.541 0.067 0.11 0.02 0.01
s1423 1.662 0.099 0.07 0.01 0.01

Table 1: Results for the 10 largest ISCAS 89/93 benchmarks

We have applied this technique to attack the multiple-voltage scheduling
problem addressed in [13]. The problem here is to find a schedule for the given
DFG that minimizes the overall power consumption, subject to fixed constraints
on the iteration period bound, and on the total number of resources available.
It is clear that the power savings are basically obtained through scheduling as
many adders as possible on 3.3V adders instead of 5V adders. We have used only
the basic resource types mentioned in the table to comare our results against
those in [13]. There is really no limit imposed by the algorithm itself on the
number of different kinds of resources that we can consider.
In tackling this problem, we have used only the most basic method, namely

moving nodes onto another existing processor. Already, the results match and
even outperform that obtained in [13]. In addition, the method has the benefit
that it can handle any number of voltages/processors, and can also easily be
extended to other problems, such as homogeneous processor scheduling etc.
Table 2 shows the power-savings that were obtained using this technique. S
and R power saving indicates the power savings (assuming 25 units for 5V
devices and 10.89 units for 3.3V devices) obtained by [13], while BBF power
savings refers to the results obtained using our algorithm. T is the overall
timing constraint (the maximum iteration period bound that we are aiming
for).
We have also tested the application of this technique to homogeneous proces-

sor scheduling. This problem is also NP-complete, and several heuristics exist

12

Benchmark Resource constraint T S and R power saving BBF power saving

Fifth-order {(2,+,5V), (2,+,3.3V), (2,*,5V)} 25 268.1(31.54%) 253.98(29.88%)
elliptic filter {(2,+,5V), (1,+,3.3V), (2,*,5V)} 25 155.21(18.26%) 141.1(16.6%)

{(2,+,5V), (2,+,3.3V), (2,*,5V)} 22 197.54(23.24%) 211.65(24.9%)
{(2,+,5V), (1,+,3.3V), (2,*,5V)} 21 112.88(13.28%) 112.88(13.28%)

FIR filter {(1,+,5V),(2,+,3.3V),(1,*,5V)} 15 169.32(29.45%) 197.54(34.36%)
{(1,+,5V),(2,+,3.3V),(2,*,5V)} 10 98.77(17.18%) 141.1(24.54%)

Table 2: Comparison against Sarrafzadeh and Raje (ISCAS 99)

for it. One of the best known is Range-chart scheduling ([12]).
We used the inputs used by [12] and tried the above technique, but this time

instead of using power, we use area (equiv. number of processors) as our cost
criterion. The processors are uniform, with + taking 1 unit of time on them,
and × taking 2 units of time. The results are shown in table 3. It is clear
that, while it does not achieve the best possible results, it is very close. Further
improvements in terms of moves as mentioned above can be tried to further
improve the results.

6 Conclusions

We have introduced a batch-processing approach (the BBF algorithm) to neg-
ative cycle detection in dynamically changing graphs. Our technique explicitly
addresses the common, practical scenario in which negative cycle detection must
be periodically performed after intervals in which a small number of changes are
made to the graph. We have also shown how our batch-processing approach can
be exploited to compute the maximum cycle mean of a weighted digraph, which
is a relevant metric for many problems in the design and analysis of circuits
and systems. We have compared our BBF technique, and BBF-based MCM
computation technique against the best known related work in the literature,
and have observed favorable performance.
The algorithms can be further extended to attack a scheduling problem,

by repeatedly trying different combinations of processor serialization, since the
speed of our algorithms allows a quick re-examination of the feasibility of the
system after each change. This greatly increases the number of possibilities that
we can consider within a given time, and can form the basis of effective local
search techniques, including genetic algorithm based techniques.
Since computing power is cheaply available now, it is increasingly worthwhile

to employ extensive search techniques for solving NP-hard analysis and design
problems such as scheduling.The availability of an efficient batch-processing
algorithm for negative cycle detection can make this process much more efficient.
We have demonstrated this concretely by employing our BBF algorithm within
the framework of a local search strategy for multiple voltage scheduling.

References

[1] B.Cherkassky and A.V.Goldberg, “Negative cycle detection algorithms,”
Tech. Rep. tr-96-029, NEC Research Institute, Inc., March 1996.

13

Example name T0 Prcgs Pmcm
Second-order 3 4 5

section 4 3 3
6 2 2
12 1 1

Jaumann 16 3 3
filter 17 2 3

21 2 2
33 1 1

All-pole 14 3 4

filter 15 3 3
16 2 2
31 1 1

16-point 2 16 16
FIR filter 3 11 11

4 8 8
5 7 7
6 6 6
7 5 5
8 4 4
11 3 3
16 2 2
31 1 1

Fifth-order 16 4 4
elliptic 17 3 3
filter 22 2 2

42 1 1

Table 3: Homogeneous processor scheduling, compared against Range-chart
guided scheduling

[2] G.Ramalingam, J.Song, L.Joskowicz, and R.E.Miller, “Solving systems of
difference constraints incrementally,” Algorithmica, vol. 23, pp. 261–275,
1999.

[3] A. Dasdan, S. S. Irani, and R. K. Gupta, “Efficient algorithms for optimum
cycle mean and optimum cost to time ratio problems,” in 36th Design
Automation Conference, pp. 37–42, ACM/IEEE, 1999.

[4] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, “Fully dynamic short-
est paths and negative cycle detection on digraphs with arbitrary arc
weights,” in ESA98, vol. 1461 of Lecture Notes in Computer Science,
(Venice, Italy), pp. 320–331, Springer, August 1998.

[5] J.Cochet-Terrasson, G.Cohen, S.Gaubert, M.McGettrick, and J.-
P.Quadrat, “Numerical computation of spectral elements in max-plus al-
gebra,” in Proc. IFAC Conf. on Syst. Structure and Control, 1998.

[6] G.Ramalingam, Bounded Incremental Computation. PhD thesis, University
of Wisconsin, Madison, August 1993. Revised version published by Springer
Verlag (1996) as Lecture Notes in Computer Science 1089.

[7] B.Alpern, R.Hoover, B.K.Rosen, P.F.Sweeney, and F.K.Zadeck, “Incre-
mental evaluation of computational circuits,” in Proc. 1st ACM-SIAM
Symposium on Discrete Algorithms, pp. 32–42, 1990.

14

[8] G. Ramalingam and T. Reps, “An incremental algorithm for a generaliza-
tion of the shortest-paths problem,” Journal of Algorithms, vol. 21, pp. 267–
305, 1996.

[9] D.Frigioni, M.Ioffreda, U.Nanni, and G.Pasqualone, “Experimental anal-
ysis of dynamic algorithms for single source shortest paths problem,” in
Proc. Workshop on Algorithm Engineering (WAE ’97), 1997.

[10] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms. Cam-
bridge, MA: MIT Press, 1990.

[11] K. Mehlhorn and S. Näher, “LEDA: A platform for combinatorial and geo-
metric computing,” Communications of the ACM, vol. 38, no. 1, pp. 96–102,
1995.

[12] S. M. H. de Groot, S. H. Gerez, and O. E. Herrmann, “Range-chart-guided
iterative data-flow graph scheduling,” IEEE Transactions on Circuits and
Systems - I, vol. 39, pp. 351–364, May 1992.

[13] S. Raje and M. Sarrafzadeh, “Scheduling with multiple voltages under re-
source constraints,” in Proc. ISCAS 99, 1999.

15

