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ABSTRACT

The role of software is becoming increasingly important in the impletation of DSP applications. As this trend in-
tensifies, and the complexity of applications escalates, we are seeing an inareadedr automated tools to aid in the
development of DSP software. This paper reviews the state of the programming language and compiler technology
for DSP software implementation. In particular, we review technigoesigh level, block-diagram-based modeling of
DSP applications; the translation of block diagram specifications inttieftiC programs using global, target-independent
optimization techniques; and the compilation of C programs into stieathinachine code for programmable DSP proces-
sors, using architecture-specific and retargetable back-end optimizationsar teview, we also point out some important
directions for further investigation.

1 Introduction

Although dedicated hardware can provide significant speed and power cormuagbtantages for signal processing appli-
cations [1], extensive programmability is becoming an increasinglyal@si feature of implementation platforms for VLSI
signal processing. The trend towards programmable platforms is foglight time-to-market windows, which in turn result
from intense competition among DSP product vendors, and from the eapiution of technology, which shrinks the life
cycle of consumer products. As a result of short time-to-market wisddesigners are often forced to begin architecture
design and system implementation before the specification of a produdlyicdmpleted. For example, a portable com-
munication product is often designed before the signal transmistsadards under which it will operate are finalized, or
before the full range of standards that will be supported by theymtad agreed upon. In such an environment, late changes
in the design cycle are mandatory. The need to quickly make such late chengéss the use of software. Furthermore,
whether or not the product specification is fixed beforehand, software-brapéehientations using off-the-shelf processors
take significantly less verification effort compared to custom hardwaré@odu

Although the flexibility offered by software is critical in DSP apgations, the implementation of production quality DSP
software is an extremely complex task. The complexity arises fromiteesity of critical constraints that must be satisfied;
typically these constraints involve stringent requirements on meduch as latency, throughput, power consumption, code
size, and data storage requirements. Additional constraints includedueto ensure key implementation properties such as
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bounded memory requirements and deadlock-free operation. As a resiki, developers of software for general-purpose
platforms, DSP software developers routinely engage in meticuloisgand simulation of program code at the assembly
language level.

Important industry-wide trends at both the programming langueggd bind the processor architecture level have had
a significant impact on the complexity of DSP software developmenthéarchitectural level, a specialized class of mi-
croprocessors has evolved that is streamlined to the needs of DSP appdicalibese DSP-oriented processors, called
programmable digital signal processors (PDSPs), employ a variepgofad-purpose architectural features that support com-
mon DSP operations such as digital filtering, and fast Fourier transff@n8, 4]. At the same time, they often exclude
features of general purpose processors, such as extensive memory managppehttbat are not important for many DSP
applications.

Due to various architectural irregularities in PDSPs, which are reqtimetheir exceptional cost/performance and
power/performance trade-offs [2], compiler techniques for general-ganpmcessors have proven to be inadequate for ex-
ploiting the power of PDSP architectures from high level language#\&a result, the code quality of high-level procedural
language (such as C) compilers for PDSPs has been several hundreds of persenthan manually-written assembly
language code [6, 52]. This situation has necessitated the widespreddassembly-language coding, and tedious perfor-
mance tuning, in DSP software development. However, in recent yeagsificsint research community has evolved that is
centered around the development of compiler technology for PDSPs. Thimeeity has begun to narrow the gap between
compiler-generated code and manually optimized code.

It is expected that innovative processor-specific compilation technigu®ESPs will provide a significant productivity
boost in DSP software development, since such techniques will us tlléake the step from assembly programming of
PDSPs to the use of high-level programming languages. The keyaipto reduce the overhead of compiler-generated
code is the development of DSP-specific compiler optimization techniguésle classical compiler technology is often
based on the assumption of a regular processor architecture, DSP-spehifiicjies are designed to be capable of exploiting
the special architectural features of PDSPs. These include special purpistersein the data path, dedicated memory
address generation units, and a moderate degree of instruction-lexi jm.

To illustrate this, consider the architecture of a popular fixed-de8®P (TI TMS320C25) in fig. 1. Its data path com-
prises the registers TR, PR, and ACCU, each of which plays a specifiairoteimunicating values between the functional
units of the processor. This structure allows for a very efficient @mantation of DSP algorithms (e.g. filtering algo-
rithms). More regular architectures (e.g. with general-purposeteggjsvould, for instance, require more instruction bits for
addressing the registers and more power for reading and writinggrsteefile.

From a compiler viewpoint, the mapping of operations, program viesaland intermediate results to the data path in
fig. 1 must be done in such a way, that the amount of data transferdgtistrsibetween the registers is minimized. The address
generation unit (AGU) comprises a special ALU and is capable of performitigasl arithmetic in parallel to the central data
path. In particular, it provides parallel auto-increment instructionsiftiress registers. As we will show later, exploitation
of this feature in a compiler demands for an appropriate memory layouogfam variables. Besides the AGU, also the
data path offers a certain degree of instruction-level parallelism.rstance, loading a memory value into register TR and
accumulating a product stored in PR can be performed in parallel withirgkesimachine instruction. Since such parallelism
cannot be explicitly described in programming languages like C, corspiked to carefully schedule the generated machine
instructions, so as to exploit the potential parallelism and to genfasitand dense code.

Further architectural features frequently present in PDSPs include parallebm banks (providing higher memory
access bandwidth), chained operations (such as multiply-accumulate), spéleraktid operations (such as addition with
saturation), and mode registers (for switching between differentnaeiic modes).

For most of the architectural features mentioned above, dedicated code optimteahniques have been developed
recently, an overview of which will be given in section 3. Many of theséwoigations are computationally complex, resulting



in a comparatively low compilation speed. This is intensified by the faadt ¢bmpilers for PDSPs, besides the need for
specific optimization techniques, have to deal with piiase coupling problemThe compilation process is traditionally
divided into the phases of code selection, register allocation, andiétistn scheduling, which have to be executed in a
certain order. For all possible phase orders, the approach of separatdatiomphases results in a code quality overhead,
since each phase may impose obstructing constraints on subsequent phadesyould not have been necessary from a
global viewpoint. While for regular processor architectures like@d$his overhead is moderate and thus tolerable, it is
typically much higher for irregular processor architectures as found iBA2D Therefore, it is desirable to perform the
compilation phases in a coupled fashion, where the different phases Ipatxaiange information so as to achieve a global
optimum.

Even though phase-coupled compiler techniques lead to a further increasepilatiom time, it is widely agreed in
the DSP software developer community that high compilation speechmsiofi lower concern than high code quality. Thus,
compilation times of minutes or even hours may be perfectly acceptable in caaeg. This fact gives good opportunities
for novel computation-intensive approaches to compiling high levejuages for PDSPs, which however would not be
acceptable in general-purpose computing.

Besides pure code optimization issues, the large variety of PDSHsgtaotdard "off-the-shelf” processors and appli-
cation specific processors) currently in use create a problem of economiuilfgast compiler construction. Since code
optimization techniques for PDSPs are highly architecture-specific byeyatinuge amount of different optimization tech-
niques were required to build efficient compilers for all PDSPs availabta® market. Therefore, in this paper we will also
briefly discuss techniques fogtargetable compilationRetargetable compilers are capable of generating code not only for a
single target processor but for a class of processors, thereby redueingrttber of compilers required. This is achieved by
providing the compiler with a description of the machine for whichec@dto be generated, instead of hard-coding the ma-
chine description in the compiler. We will mention different approactigsacessor modeling for retargetable compilation.
Retargetability permits to quickly generate compilers for new procesHatse processor description formalism is flexible
enough, then retargetable compilers may also assist in customizing anaotiffly predefined processor architecture for a
given application.

At the system specification level, the past several years have seen increasddlassk-diagram based, graphical
programming environments for digital signal processing. Such gtapprogramming environments, which enable DSP
systems to be specified as hierarchies of block diagrams, offer several ampadivantages. Perhaps the most obvious of
these advantages is their intuitive appeal. Although visual progragiamguages have seen limited use in many application
domains, DSP system designers are used to thinking of systems in démgnaphical abstractions, such as signal flow
diagrams, and thus, block diagram specification via a graphical user intesfacednvenient and natural programming
interface for DSP design tools.

An illustration of a block diagram DSP system, developed using thiely design environment [7], is shown in fig. 2.
This is an implementation of a discrete wavelet transform [8] applicafitne top part of the figure shows the highest level
of the block diagram specification hierarchy. Many of the blocks in the spatidh arehierarchical which means that the
internal functionality of the blocks are also specified as block diagramstétfieilslock diagrams). Blocks at the lowest level
of the specification hierarchy, such as the individual FIR filters, are spédifia meta-C language (C augmented with special
constructs for specifying block parameters and interface information).

In addition to offering intuitive appeal, the specification of systemterms of connections between pre-defined, en-
capsulated functional blocks naturally promotes desirable softwareesrgig practices such as modularity and code reuse.
As the complexity of applications increases continually while timeatrket pressures remain intense, reuse of design effort
across multiple products is becoming more and more crucial to meetiedpgpevent schedules.

In addition to their syntactic and software engineering appeal, there aralaen of more technical advantages of graph-
ical DSP tools. These advantages hinge on the use of appropriate mbdetsputation to provide the precise underlying



block diagram semantics. In particular, the uselafaflow model®f computation can enable the application of powerful
verification and synthesis techniques. Broadly speaking, dataflow modwlivlges representing an application as a directed
graph in which the graph vertices represent computations and edges reprg®ahtimmmunication channels between com-
putations. Dataflow-based graphical specification formats are used wideljnmexial DSP design tools such as COSSAP
by Synopsys, the Signal Processing Worksystem by Cadence, and thecAd\@asign System by Hewlett-Packard. These
three commercial tools all employ tteynchronous dataflomnodel [9], the most popular variant of dataflow in existing

DSP design tools. Synchronous dataflow specification allows boundedmndetermination and deadlock detection to be
performed comprehensively and efficiently at compile time. In contrast, dfatmese verification problems are in general

impossible to solve (in finite time) for general purpose prograngtanguages such as C.

Potentially the most useful benefit of dataflow-based graphical progragrenmvironments for DSP is that carefully-
specified graphical programs can expose coarse-grain structure of theyimgald orithm, and this structure can be exploited
to improve the quality of synthesized implementations in a wide waggwvays. For example, the process of scheduling —
determining the order in which the computations in an application wétate — typically has a large impact on all of the
key implementation metrics of a DSP system. A dataflow-based system spaxnifedgioses high-level scheduling flexibility
that is often not possible to deduce manually or automatically from an agséanguage or high-level procedural language
specification. This scheduling flexibility can be exploited by a synshesl to streamline an implementation based on the
given set of performance and cost constraints. We will elaborate on dataflsed scheduling in sections 2.1.2 and 2.2.

Although graphical dataflow-based programming tools for DSP have egwreasingly popular in recent years, the
use of these tools in industry is largely limited to simulation aratqtyping. The quality of today’s graphical programming
tools is not sufficient to consistently deliver production-qualiyplementations. As with procedural language compilation
technology for PDSPs, synthesis from dataflow-based graphical specif&affers significant promise for the future, and is
an important challenge confronting the DSP design and implementatiearobscommunity today. Furthermore, these two
forms of compiler technology are fully complementary to one anothemikeire of dataflow and C (or any other procedural
language), as described in the example of fig. 2, is an especially attractivécsgieei format. In this format, coarse-grain
“subprogram” interactions are specified in dataflow, while the functignafiindividual subprograms is specified in C. Thus,
dataflow synthesis techniques optimize the final implementation at #vesnbprogram level, while C compiler technology
is required to perform fine-grained optimization within subprograms.

This paper motivates the problem of compiler technology developmem@$ér software implementation, provides a
tutorial overview of modeling and optimization issues that are irelvn the compilation of DSP software, and provides
a review of techniques that have been developed by various researchersdssagiiine of these issues. The first part of
our overview focuses on coarse-grain software modeling and optimizatoas pertinent to the compilation of graphical
dataflow programs, and the second part focuses on fine-grained issues that trescompilation of high level procedural
languages such as C.

These two levels of compiler technology (coarse-grain and fine grain) armonin referred to asoftware synthesis
andcode generatioyrespectively. More specifically, by software synthesis, we mean the atedrderivation of a software
implementation (application program) in some programming languagsd library of subprogram modules, a subset
of selected modules from this library, and a specification of how these selmttddles interact to implement the target
application. Fig. 2 is an example of a program specification that is seifablsoftware synthesis. Here, synchronous
dataflow semantics are used to specify subprogram interactions. In se2tigrezxplore software synthesis issues for DSP.

On the other hand, code generation refers to the mapping of a softwdsmientation in some programming language
to an equivalent machine program for a specific programmable processsr.tii@mapping of a C program on to the specific
resources of the datapath in fig. 1 is an example of code generation. WeeeR@B code generation technology in section
3.



2 Compilation of dataflow programs to application programs

2.1 Dataflow modeling of DSP systems

To perform simulation, formal verification, or any kind of compilatfoom block-diagram DSP specifications, a precise set
of semantics is needed that defines the interactions between different comaltalticks in a specification. Dataflow-based
computational models have proven to provide block-diagram semangicaréh both intuitive to DSP system designers, and
efficient from the point of view of verification and synthesis.

In the dataflow paradigm, a computational specification is represented as adigeaph. Vertices in the graph (called
actorg correspond to the computational modules in the specification. In nataflawv-based DSP design environments,
actors can be of arbitrary complexity. Typically, they range from elemgiojaerations such as addition or multiplication to
DSP subsystems such as FFT units or adaptive filters.

An edge(v, v2) in a dataflow graph represents the communication of data #roto v,. More specifically, an edge
represents a FIFO (first-in-first-out) queue that buffers data sarftplemns) as they pass from the output of one actor to the
input of another. Ife = (vy,v2) is a dataflow edge, we writerc(e) = vy, andsnk(e) = v,. When dataflow graphs are
used to represent signal processing applications, a dataflowedtlgea non-negative integer deldyi(e) associated with
it. The delay of an edge gives the number of initial data values that are qoaubd edge. Each unit of dataflow delay is
functionally equivalent to the ! operator: the sequence of data valdigs} generated at the input of the acterk(e) is
equal to the the shifted sequenies, _4(c) }, Where{z, } is the data sequence generated at the output of the aete.

2.1.1 Consistency

Under the dataflow model, an actor can execute at any time that it has sufficieahdditanput edges. An attempt to execute
an actor when this constraint is not satisfied is said to cauer underflowon all edges that do not contain sufficient data.
For dataflow modeling to be useful for DSP systems, the execution afsatiast also accommodate input data sequences
of unbounded length. This is because DSP applications often involmatipns that are applied repeatedly to samples in
indefinitely long input signals. For an implementation of a dataflow $ijgation to be practical, the execution of actors must
be such that the number of tokens queued on each FIFO buffer (dataflow edtjegmais bounded throughout the execution
of the dataflow graph. In other words, there should nafiti@ounded data accumulatiam any edge in the dataflow graph.

In summary, executing a dataflow specification of a DSP system involvelitwvdamental, processor-independent re-
quirements — avoiding buffer underflow and avoiding unbounded dataradation (buffering). The dataflow model im-
poses no further constraints on the sequence in which computationsjastwexecuted. On the other hand, in procedural
languages, such as C and FORTRAN, the ordering of statements as well as tieastrol-flow constructs imply sequenc-
ing constraints beyond those that are required to satisfy data depessleBygiavoiding theverspecificatiorof execution
ordering, dataflow specifications provide synthesis tools with feXifflility to streamline the execution order to match the
relevant implementation constraints and optimization objectives. Ehisife of dataflow is of critical importance for DSP
implementation since, as we will see throughout the rest of this sedhienexecution order has a large impact on most
important implementation metrics, such as performance, memory requireieth{sower consumption.

The term “consistency” refers to the two essential requirements of DSPadatgiecifications — the absence of over-
flow and unbounded data accumulation. We say thedrasistendataflow specification is one that can be implemented
without any chance of buffer underflow or unbounded data accumulaticar(flegs of the input sequences that are applied to
the system). If there exist one or more sets of input sequences fonwhderflow and unbounded buffering are avoided, and
there also exist one or more sets for which underflow or unboundéelimgf results, we say that a specificatiompéatially
consistent A dataflow specification that is neither consistent nor partially consigeralled aninconsistent specification
More elaborate forms of consistency based on a probabilistic intatfimef token flow are explored in [10].



Clearly, consistency is a highly desirable property for DSP softwapmementation. For most consistent dataflow
graphs, tight bounds can be derived on the numbers of data values that ¢data that has been produced but not yet
consumed) on the individual edges (buffers). For such graphs, adirbu#mory allocation can be performed statically, and
thus, the overhead of dynamic memory allocation can be avoided entirely.isTa valuable feature when attempting to
derive a streamlined software implementation.

2.1.2 Scheduling

A fundamental task in synthesizing software from an SDF specificatiomioflschedulingwhich refers to the process of
determining the order in which the actors will be executed. Schedulieghier dynamic or static. Istatic schedulingthe
actor execution order is specified at synthesis time, and is fixed — in partitidarder is not data-dependent. To be useful
in handling indefinitely long input data sequences, a static schedulebraperiodic A periodic, static schedule can be
implemented in a finite amount of program memory space by encapsulatipgoiipem code for one period of the schedule
within an infinite loop. Indeed, this is how such schedules are maest @fiplemented in practice.

In dynamic schedulingthe sequence of actor executiosshedulg is not specified during synthesis, and run-time
decision-making is required to ensure that actors are executed only whereipgctive input edges have sufficient data.
Disadvantages of dynamic scheduling include the overhead (executioanisgower consumption) of performing schedul-
ing decisions at run-time, and decreased predictability, especially in detegmvhether or not any relevant real-time con-
straints will be satisfied. However, if the data production/congiongpehavior of individual actors exhibits significant data-
dependence, then dynamic scheduling may be required to avoid buffer undemtiainbounded data accumulation. Further-
more, if the performance characteristics of actors are impossible to estaoatrately, then effective dynamic scheduling
leads to better performance by adaptively streamlining the scheduleiendiotmatch the dynamic characteristics of the
actors.

For most DSP applications, including the vast majority of applicatibat are amenable to the SDF model mentioned in
section 1, actor behavior is highly predictable. For such applicatioren ¢he tight cost and power constraints that are typical
of embedded DSP applications, itis highly desirable to avoid dynachiediuling overhead as much as possible. The ultimate
goal under such a high level of predictability is a (periodic) static sgleedf it is not possible to construct a static schedule,
then it is desirable to identify “maximal” subsystems that can be schedtsgdadly, and use a small amount of dynamic
decision-making to coordinate the execution of these statically-sadubsystems. Schedules that are constructed using
such a hybrid, mostly static approach are catjedsi-static schedules

2.1.3 Synchronous dataflow

A dataflow computation modekln be viewed as a subclass of dataflow graph specifications. A wide varietyafibdat
computational models can be conceived depending on restrictions that aenngpothe manner in which dataflow actors
consume and produce data. For examgy@chronous dataflow (SDR)hich is the simplest and currently the most popular
form of dataflow for DSP, imposes the restriction that the number afeties produced by an actor onto each output edge
is constant, and similarly the number of data values consumed by an actoeéah input edge is constant. Thus, an SDF
edgee has two additional attributes — the number of data values producededmtaeach invocation of the source actor,
denotedprd(e), and the number of data values consumed fedmg each invocation of the sink actor, denoted (e).

The example shown in fig. 2 conforms to the SDF model. An SDF absiracfia scaled-down and simplified version
of this system is shown in fig. 3. Here each edge is annotated with theamahttata values produced and consumed by the
source and sink actors, respectively. For examplé((B,C)) = 1, andcens((B,C)) = 2.

The restrictions imposed by the SDF model offer a number of impoadvantages.

e Simplicity. Intuitively, when compared to more general types of dataflowractctors that produce and consume



data in constant-sized packets are easier to understand, develop, interfédes Bctors, and maintain. This property
is difficult to quantify; however, the rapid and extensive adoptibSDF in DSP design tools clearly indicates that
designers can easily learn to think of functional specifications in term&@ B+ model.

e Static scheduling and memory allocation. For SDF graphs, there is no meesbtrt to dynamic scheduling, or even
quasi-static scheduling. For a consistent SDF graph, underflow armbinded data accumulation can always be
avoided with a periodic, static schedule. Moreover, tight bounds &armccupancy can be computed efficiently. By
avoiding the run-time overheads associated with dynamic schedulindyeradnic memory allocation, efficient SDF
graph implementations offer significant advantages when cost, power, orrparfce constraints are severe.

e Consistency verification. A dataflow model of computation tegidabledataflow model if it can be determined in
finite time whether or not an arbitrary specification in the model is cte1#isWe say that a dataflow model ibiaary-
consistency moddi every specification in the model is either consistent or inconsistartHer words, a model is a
binary-consistency model if it contains no partially consistent spediitatAll of the decidable dataflow models that
are used in practice today are binary-consistency models.

Binary consistency is convenient from a verification point of view siogesistency becomes an inherent property
of a specification: whether or not buffer underflow or unbounded data acatioruhrises is not dependent on the
input sequences that are applied. Of course, such convenience comes at the ekpestsieted applicability. A
binary-consistency model cannot be used to specify all applications.

The SDF model is a binary-consistency model, and efficient verification itpods exist for determining whether or
not an SDF graph is consistent. Although SDF has limited expresswendn exchange for this verification efficiency,
the model has proven to be of great practical value. SDF encompasses a broag@marinclass of signal processing
and digital communications applications, including modems, multfiiée banks [8], and satellite receiver systems,
justto name a few [9, 11, 12].

For SDF graphs, the mechanics of consistency verification are closely redatiee inechanics of scheduling. The
interrelated problems of verifying and scheduling SDF graphs are destirssletail below.

2.1.4 Static scheduling of SDF graphs

The first step in constructing a static schedule for an SDF géagh (V, E) is determining the number of timégA) that
each actordA € V should be invoked in one period of the schedule. To ensure that theudelmztiod can be repeated
indefinitely without unbounded data accumulation, the constraint

i(src(e))prd(e) = i(snk(e))cns(e),
foreveryedgee € £ (1)
must be satisfied. The system of equations (1) is called the sefafice equationfor G.
Clearly, a useful periodic schedule can be constructed only if the balanaé@thave a positive integer solution

(e*(A) > 0forall A € V). Lee and Messerschmitt have shown that for a general SDF g¥apkactly one of the following
conditions holds [9]:

e The zero vector is the only solution to the balance equations, or

e There exists aninimal positive integer solutiog to the balance equations, and thus every positive integer soliition
satisfies’(A) > ¢(A) for all A. This minimal vectoy is called therepetitions vectoof G.



If the former condition holds, the@ is inconsistent. Otherwise, a bounded buffer periodic schedule can bewderd
provided that it is possible to construct a sequence of actor executiohgfsat buffer underflow is avoided, and each actor
A is executed exactly(A) times. Given a consistent SDF graph, we refer to an execution sequence igfessttese
two properties as ®&alid schedule periador simply avalid schedule Clearly, a bounded memory static schedule can be
implemented in software by encapsulating the implementation of any \letsile within an infinite loop.

A linear-time O(] V | + | E |)) algorithm to determine whether or not a repetitions vector existsi@odmpute a
repetitions vector whenever one does exist can be found in [11].

For example, consider the SDF graph shown in fig. 3. The repetitionsna@mnponents for this graph are given by

q(A) =q(B) =q(P) =q(Q) = 4
q(C) =q(D) =q(E) = q(H) =q(M) =¢(N) =q(0) = 2
q(F) =q(G) =q(I) =q(J) =q(K) =q(L) = 1 2

If a repetitions vector exists for an SDF graph, but a valid schedulerdieist, then the graph is said todeadlocked
Thus, an SDF graph is consistent if and only if a repetitions vectotsex@sd the graph is not deadlocked. In general, whether
or nota graph is deadlocked depends on the edge difal(z) | e € E} as well the production and consumption parameters
{src(e)} and{snk(e)}. An example of a deadlocked SDF graph is given in fig. 4. An annotatiomeoformnD next to an
edge in the figure represents a delay.afnits. Note that the repetitions vector for this graph is given by

q(4) =3,4(B) =2,¢(C) = 1. ®3)

Once a repetitions vecter has been computed, deadlock detection and the construction of a valid schedbke can
performed concurrently. Premature termination of the scheduling prozeduermination before each actdrhas been
fully scheduledscheduled;(A) times) — indicates deadlock. One simple approach is to schedule actor ivecatie
at a time and simulate the buffer activity in the dataflow graph accordumgiy all actors are fully scheduled. The buffer
simulation is necessary to ensure that buffer overflow is avoided. A psedd specification of this simple approach can
be found in [11]. Lee and Messerschmitt show that this approach termimaemturely if and only if the input graph is
deadlocked, and otherwise, regardless of the specific order in which act@aslected for scheduling, a valid schedule is
always constructed [13].

In summary, SDF is currently the most widely-used dataflow model in cential and research-oriented DSP design
tools. Commercial tools that employ SDF semantics include SimulinKtey Math Works, SPW by Cadence, and HP
Ptolemy by Hewlett Packard. SDF-based research tools include Gabriel [d4kaaral key domains in Ptolemy [7], from
from U.C. Berkeley; and ASSIGN from Carnegie Mellon [15]. The SDédei offers efficient verification of consistency
for arbitrary specifications, and efficient construction of static scheduolesllf consistent specifications. Our discussion
above outlined a simple, systematic technique for constructing a statedule whenever one exists. In practice, however,
it is preferable to employ more intricate scheduling strategies thatceful account of the costs (performance, memory
consumption, etc.) of the generated schedules. In section 2.2, we willsgisechniques for streamlined scheduling of SDF
graphs based on the constraints and optimization objectives of the tamggledhentation. In the remainder of this section,
we discuss a number of useful extensions to the SDF model.

2.1.5 Cyclo-static dataflow

Cyclo-static dataflow (CSDF) and scalable synchronous dataflow (desanilsedtion 2.1.6) are presently the most widely-
used extensions of SDF. In CSDF, the number of tokens produced andhoedidy an actor is allowed to vary as long the



variation takes the form of a fixed, periodic pattern [16, 17]. More gedgj each actor A in a CSDF graph has associ-
ated with it afundamental period-(4) € {1,2,...}, which specifies the number phasesn one minimal period of the
cyclic production/consumption pattern df For each input edgeto A, the scalar SDF attributens(e) is replaced by a
7(A)-tupleC. 1,Ce 2, ...,Ce r(a), Where eaclt’, ; is a nonnegative integer that gives the number of data values consumed
from e by A in theith phase of each period of. Similarly, for each output edge prd(e) is replaced by a(A)-tuple

Pe1, P2, ..., P, r(a), Which gives the numbers of data values produced in successive phases of

A simple example of a CSDF actor is illustrated in fig. 5(a). This aca conventionatiownsamplelactor (with
downsampling factor 3) from multirate signal processing. Functigreatiownsampler, performs the functigpi] = =[N (i —

1) + 1], where fork = 1,2, ..., y[k] andz[k] denote the; data values produced and consumed, respectively. Thus, for every
input value that is copied to the outpiX, — 1 input values are discarded. As shown in fig. 5(b)doe 3, this functionality

can be specified by a CSDF actor that éaphases. A data value is consumed on the input foNaflhases, resulting in

the N-componentonsumption tuplé¢l,1,...,1); however, a data value is produced onto the output edge only on ¢he fir
phase, resulting in theroduction tuplg(1,0,0, . ..,0).

Like SDF, CSDF is a binary consistency model, and it is possibletfopm efficient verification of bounded memory
requirements and buffer underflow avoidance for CSDF graphs [17hé&munbre, static schedules can always be constructed
for consistent CSDF graphs.

A CSDF actorA can easily be converted into an SDF actdrsuch that if identical sequences of input data values are
applied toA and A’, then identical output data sequences result. Sdahetionally equivalenSDF actorA’ can be derived
by having each invocation of’ implement one fundamental CSDF periodd(that is,7(A) successive phases dj. Thus,
for each input edge’ of A, the SDF parameters ef are given by

o del(e') = del(e),
o prd(e') = Y7 P, ;, and
o cns(e) =1 Ce

wheree is the corresponding input edge to the CSDF actor Applying this conversion to the downsampler example
discussed above gives an “SDF equivalent” downsampler that consumes ablgdkput data values on each invocation,

and produces a single data value, which is a copy of the first value implu block. The SDF equivalent for fig. 5(a) is

illustrated in fig. 5(b).

Since any CSDF actor can be converted to a functionally equivalent SDF adwllovts that CSDF does not offer
increased expressive power at the level of individual actor functior(@ipyt-output mappings). However, the CSDF model
can offer increased flexibility in compactly and efficiently represenititgractions between actars

As an example of increased flexibility in expressing actor interactiomsider the CSDF specification illustrated in fig.
6. This specification represents a recursive digital filter computatidmedform

Y = k*yn_1 + kz, + 20 — 1. (4)

In fig. 6, the two-phase CSDF actor labelédepresents a scaling (multiplication) by the constant faktdn each of
its two phases, actot consumes a data value from one of its input edges, multiplies the dlata byk, and produces the
resulting value onto one of its output edges. The CSDF specificatifig.df thus exploits our ability to compute (4) using
the equivalent formulation

Yn = k(kynfl + wn) +zn — ]-7 (5)

which requires only addition blocks ardscaling blocks. Furthermore, the tvkescaling operations contained in ( 5) are
consolidated into a single CSDF actor (actr



Such consolidation of distinct operations from different data stredfessawo advantages. First, it leads to more
compact representations since fewer vertices are required in the CSDF gapargeé or complex applications, this can
result in more intuitive representations, and can reduce the time egquirperform various analysis and synthesis tasks.
Second, it allows a precise modelingrefource sharinglecisions — pre-specified bindings of multiple operations in a DSP
application onto individual hardware resources (such as functional) umisoftware resources (such as subprograms) —
within the framework of dataflow. Such pre-specified bindings may arisa €onstraints imposed by the designer, and from
decisions taken during synthesis or design space exploration.

The ability to compactly and precisely model the sharing of actors in C$&®ssfrom the ability to selectively “turn
off” data dependencies from arbitrary subsets of input edges in any gieee joifi an actor. In contrast, an SDF actor requires
at least one data value on each input edge before it can be invoked. In thecpreS@edback loops, this requirement may
preclude a shared representation of an actor in SDF, even though it maydieleots achieve the desired sharing using a
functionally equivalent CSDF actor. This is illustrated in fig. 7, whighlerived from the CSDF specification of fig. 6 by
replacing the “shared” CSDF actor with its functionally equivalent SDF tempiart. Since the graph of fig. 7 contains a
delay-free cycle, clearly we can conclude that the graph is deadlocked, and thlid sctedule does not exist. In other
words, this is an inconsistent dataflow specification. In contrast, it ity easified that the scheduld, FDBA,CEG is a
valid schedule for the CSDF specification of fig. 6, whdreand A, denote the first and second phases of the CSDF actor
A, respectively.

Similarly, an SDF model of &ierarchical actormay introduce deadlock in a system specification, and such deadlock
can often be avoided by replacing the hierarchical SDF actor with a functyaelivalent hierarchical CSDF actor. Here,
by a hierarchical SDF actor we mean an actor whose internal functionality igisddmy an SDF graph. The utility of CSDF
in constructing hierarchical specifications is illustrated in fig. 8.

CSDF also offers decreased buffering requirements for some applicationfiugtration is shown in fig. 9. Fig. 9(a)
depicts a system in whicN -element blocks of data are alternately distributed from the data soume pyocessing modules
M, and M. The actor that performs the distribution is modeled as a two-phaB& @8tor that inputs arV-element data
block on each phase, sends the input block#toin the first phase, and sends the input block£e in the second phase. It
is easily seen that the CSDF specification of fig. 9(a) can be implemented wiffeadf size N on each of the three edges.
Thus, the total buffering requirementdgv for this specification.

If we replace the CSDF “block-distributor” actor with its functioryadiquivalent SDF counterpart, then we obtain the
pure SDF specification depicted in fig. 9(b). The SDF version of theilolisor must process two blocks at a time to conform
to SDF semantics. As a result, the edge that connects the data sourcditrthetor requires a buffer of sizaV. Thus, the
total buffering requirement of the SDF graph of fig. 9(b}.i€, which is 33% greater than the CSDF version of fig. 9(a).

Yet another advantage offered by CSDF is that by decomposing actors intr ¢efinl (phase-level) of specification
granularity, basic behavioral optimizations such as constant propagattbdead code elimination [18, 54] are facilitated
significantly [19]. As a simple example of dead code elimination wiBDE, consider the CSDF specification shown in fig.
10(a) of a multirate FIR filtering system that is expressed in termsasithmultirate building blocks. From this graph, the
equivalent expanded homogeneous SDF grapbwn in fig. 10(b), can be derived using concepts discussed in [Iniifie
expanded graph, each actor corresponds to a single phase of a CSDF actimgte engocation of an SDF actor within a
single period of a periodic schedule. From fig. 10(b) it is apparenthieatesults of some computations (SDF invocations or
CSDF phases) are never needed in the production of any of the systenso@pch computations correspondiead code
and can be eliminated during synthesis without compromising correctResthis example, the complete set of subgraphs
that correspond to dead code is illustrated in fig. 10(b). Parks, Pidd,emshow that such “dead subgraphs” can be detected
with a straightforward algorithm [19].

In summary, CSDF is a useful generalization of SDF that maintains thpegies of binary consistency, efficient veri-
fication, and static scheduling while offering a more rich range of4atéor communication patterns, improved support for
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hierarchical specifications, more economical data buffering, and improvedgdpr basic behavioral optimizations. CSDF
concepts are used in a number of commercial design tools susBRCanvady Angeles Design Systems, akdtuoso
Synchrdby Eonic Systems.

2.1.6 Scalable synchronous dataflow

The scalable synchronous dataflow (SSDF) model is an extension of DErthbles software synthesis wdctorized
implementations, which exploit the facility for efficient block procegsin many DSP applications [20]. The internal (host
language) specification of an SSDF actoassumes that the actor will be executed in groug$,gfA) successive invocations,
which operate onl{, (A) cns(e))-unit blocks of data at a time from each input edg&uch block processing reduces the rate
of inter-actor context switching, and context switching between suceessle segments within complex actors, and it also
may improve execution efficiency significantly on deeply pipelined architestul hevectorization parametel, of each
SSDF actor is selected carefully during synthesis. This selection shelldded on constraints imposed by the SSDF graph
structure; the memory constraints and performance requirements of ge¢ &mplication; and on the following extended
version of the SDF balance equation (1) constraints

Ny (sre(e))q(sre(e))prd(e) = Ny(snk(e))q(snk(e))cns(e),
for every edge e inthe SSDF graph (6)

whereq is the repetitions vector of the SDF graph that results when the vectonzmtirameter of each actor is set to unity.
Since the utility of SSDF is closely tied to optimized synthesis tegines, we defer detailed discussion of SSDF to section
2.2.4, which focuses on throughput-oriented optimization issuesoftware synthesis.

SSDF is a key specification model in the popular COSSAP design toaldsbriginally developed by Cadis and the
Aachen University of Technology [21], and is now developed by Synopsys

2.1.7 Other dataflow models

The SDF, CSDF, and SSDF models discussed above are all used in wisteilgtded DSP design tools. A number of more
experimental DSP dataflow models have also been proposed in recent yeavaghlthese models all offer additional insight
on dataflow modeling for DSP, further research and development is req@fecelihe practical utility of these models is
clearly understood. In the remainder of this section, we briefly reviemesof these experimental models.

The multidimensional synchronous dataflow model (MDSDF), propbgéee [22], and explored further by Murthy [23],
extends SDF concepts to applications that operate on multidimensignalsisuch as those arising in image and video pro-
cessing. In MDSDF, each actor produces and consumes data in unigimiensional cubes, wherecan be arbitrary, and
can differ from actor to actor. The “synchrony” requirement in MDSDF camstreach production and consumpticaube
to be of fixed sizes; x s2 X ... X s, Where eacly; is a constant. For example, an image processing actor that expands a
512 x 512—pixel image segment intol24 x 1024 segment would have the MDSDF representation illustrated in fig. 11.

We say that a dataflow computation modesiatically schedulablé a static schedule can always be constructed for
a consistent specification in the model. For SDF, CSDF, and MDSDF,ybatarsistency and static schedulability both
hold. The well-behaved dataflow (WBDF) model [24], proposed by Gaejr@arajan, and Panangaden, is an example of
a binary-consistency model that is not statically schedulable. The WB&dehpermits the use of a limited set of data-
dependent control-flow constructs, and thus requires dynamic schedolgeneral. However the use of these constructs is
restricted in such a way that that the inter-related properties of binarsistency and efficient bounded memory verification
are preserved, and the construction of efficient quasi-static schedulediiattti
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The boolean dataflow (BDF) model [25] is an example of a DSP dataflow modehich binary consistency does not
hold. BDF introduces the concept obntrol inputs which are actor inputs that affect the number of tokens produced and
consumed at other input/output ports. In BDF, the values of comimlts are restricted to the sgf, F'}. The number of
tokens consumed by an actor from a non-control input edge, or produaedrmatitput edge is restricted to be constant, as in
SDF, or a function of one or more data values consumed at control irpiDES attains greatly increased expressive power by
allowing data-dependent production and consumption rates. In exchamgeothe intuitive simplicity and appeal of SDF is
lost; static scheduling cannot always be employed; and the problemsiofied memory verification and deadlock detection
becomeundecidabld26], which means that in general, they cannot be solved in finite time.eMervheuristics have been
developed for constructing efficient quasi-static schedules, and attgmptuerify bounded memory requirements. These
heuristics have been shown to work well in practice [26]. A natural eidare BDF, callednteger-controlled datafloythat
allows control tokens to take on arbitrary integer values has been exjdizd.

2.2 Optimized synthesis of DSP software from dataflow specifications

In section 2.1, we reviewed several dataflow models for high-levetklbdiiagram specification of DSP systems. Among
these models, SDF and the closely related SSDF model are the most mattiris. this section we examine fundamental
trade-offs and algorithms involved in the synthesis of DSP softfvane SDF and SSDF graphs. Except for the vectorization
approaches discussed in section 2.2.4, the techniques discussed in thisagay equally well to both SDF and SSDF. For
clarity, we present these techniques uniformly in the context of SDF.

2.2.1 Threaded implementation of dataflow graphs

A software synthesis tools generates application programs by piecieth&ygcode modules from a predefined library of
software building blocks. These code modules are defined in terms tdrtiet language of the synthesis tool. Most SDF-
based design systems use a model of synthesis dalleading Given an SDF representation of a block-diagram program
specification, a threaded synthesis tool begins by constructing a jpesadtbdule. The synthesis tool then steps through the
schedule and for each actor instant¢hat it encounters, it inserts the associated code madldrom the given library
(inline threading, or inserts a call to a subroutine that invokés (subprogram threading Threaded tools may employ
purely inline threading, purely subroutine threading, or a mitof inline and subprogram-based instantiation of actor
functionality (ybrid threading. The sequence of code modules / subroutine calls that is generated frataflawd graph

is processed by a buffer management phase that inserts the necessary target ptatgments to route data appropriately
between actors.

2.2.2 Scheduling tradeoffs

In this section, we provide a glimpse at the complex range of traidetiodit are involved during the scheduling phase of
the synthesis process. At present, we consider only inline threa&ulgprogram and hybrid threading are considered in
section 2.2.5. Synthesis techniques that pertain to SSDF, which areshscin section 2.2.4, can be applied with similar
effectiveness to inline, subprogram or hybrid threading.

Scheduling is a critical task in the synthesis process. In a softwarenmentation, scheduling has a large impact on
key metrics such as program and data memory requirements, performance, anad¢@esumption. Even for a simple SDF
graph, the underlying range of trade-offs may be very complex. For giearmonsider the SDF graph in fig. 12(a). The
repetitions vector components for this graph@&) = 1, ¢(Y") = ¢(Z) = 10. One possible schedule for this graph is given

by

S1=YZYZYZYZYZXYZYZYZYZYZ. @)
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This schedule exploits the additional scheduling flexibility affbby the delays placed on ed@¥, Y). Recall that
each delay results in an initial data value on the associated edge. Thus, i fityelexecutions oY can occur befor&X is
invoked, which leads to a reduction in the amount of memory requiredsfiarlaliffering.

To discuss such reductions in buffering requirements precisely, we nesddefinitions. Given a schedule, theffer
sizeof an SDF edge is the maximum numbelioé tokengtokens that are produced but not yet consumed) that coexist on
the edge throughout execution of the schedule. Aiféer requirementf a schedules, denotedbuf (S), is the sum of the
buffer sizes of all of the edges in the given SDF graph. For example, itily gasfied thatbuf (S;) = 11.

The quantitybuf (S) is the number of memory locations required to implement the dataflovetsuffi the input SDF
graph assuming that each buffer is mapped to a separate segment of memsris &hiatural and convenient model of
buffer implementation. It is used in SDF design tools such as Cadence’'ss8BWie SDF-related code generation domains
of Ptolemy, Furthermore, scheduling techniques that employ this mdgferodel do not preclude the sharing of memory
locations across multiple, non-interfering edges (edges whose lifetimaet overlap): the resulting schedules can be post-
processed by any general technique for array memory allocation, such as thkaeowetfirst-fit or best-fit algorithms. In this
case, the scheduling techniques, which attempt to minimize the sum ofdivedual buffer sizes, employ a buffer memory
metric that is an upper bound approximation to the final buffer memoty cos

One problem with the schedufg under the assumed inline threading model is that it consumes a relasixgdydmount
of program memory. Ik(A) denotes the code size (number of program memory words required) for andadteen the
code size cost af; can be expressed agX) + 10x(Y) + 10x(Z).

By exploiting the repetitive subsequences in the schedule to orgamgeaablooping structures, we can reduce the code
size cost required for the actor execution sequence implemenigd Bye structure of the resulting software implementation
can be represented by tlewped schedule

Sy =(5YZ)X(5YZ). ®)

Each parenthesized terfmT1 1> ...T,,) (called aschedule loopin such a looped schedule represents the successive repeti-
tion n times of the invocation sequenégTs, ... T,,. EachiterandT; can be an instantiatiormppearancgof an actor, or a
looped subschedule. Thus, this notation naturally accommodates negied loo

Given an arbitrary firing sequendé (that is, a schedule that contains no schedule loops), and a set of codesize
for all of the given actors, a looped schedule can be derived that minimizést#ti code size (over all looped schedules that
haveF' as the underlying firing sequence) using an efficient dynamic programngiagthim [28] called CDPPO. ltis easily
verified that the schedulg, achieves the minimum total code size for the firing sequéhder any given values of(X),
k(Y), andk(Z). In general, however, the the set of looped schedules that minimize teestzmdcost for a firing sequence
may depend on the relative costs of the individual actors [28].

Schedules’; andsS, both attain the minimum achievable buffer requirement of 11 for fighb%iever,S, will generally
achieve a much lower code size cost. The code size caSt chn be approximated a§ X)) + 2x(Y) + 2x(Z). This
approximation neglects the code size overhigg@sh) of implementing the schedule loops (parenthesized terms) within
In practice, this approximation rarely leads to misleading results. Téwirig overhead is typically very small compared
to the code size saved by consolidating actor appearances in the schedulés &specially true for the large number
of DSP processors that employ so-called “zero-overhead looping” facilRles§cheduling techniques that abandon this
approximation, and incorporate looping overhead are examined in seci@n 2

Itis possible to reduce the code size cost below what is achievalsig ypwever, this requires an increase in the buffer-
ing cost. For example, consider the schedije= X (10Y)(10Z). Such a schedule is calledsagle appearance schedule
since it contains only one instantiation of each actor. Clearly (under th@@mation of negligible looping overhead), any
single appearance schedule gives a minimal code size implementation of avdgtafbh. However, a penalty in the buffer
requirement must usually paid for such code size optimality.
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For example, the code size cost$fis (k(X) + x(Y")) less than that of; howeverbuf (S3) = 25, while buf (Ss) is
only 11.

Beyond code size optimality, another potentially important benefitloéduleS; is that it minimizes the average rate at
which inter-actor context switching occurs. This schedule incurs 3 xtsuétches (also called actor activations) per schedule
period, whileS; andS- both incur 21. Such minimization of context switching can significaimigrove throughput and
power consumption. The issue of context switching, and the systeamaistruction of minimum-context-switch schedules
are discussed further in section 2.2.4.

An alternative single appearance schedule for fig. 124is= X (10Y Z). This schedule has the same optimal code
size cost as;. However its buffer requirement of 16 is lower than thatSgfsince execution of actors and Z is fully
interleaved, which limits data accumulation on the ege?). This interleaving, however, brings the average rate of context
switches to 21; and thusj; is clearly advantageous in terms of this metric.

In summary, there is a wide, complex range of trade-offs involved mh®&sizing an application program from a
dataflow specification. This is true even when we restrict ourselves teiimiplementations, which entirely avoid the
(call/return/parameter passing) overhead of subroutines. In the remaintiés section, we review a number of techniques
that have been developed for addressing some of these complex tradgesfiens 2.2.3 and 2.2.4 focus primarily on inline
implementations. In section 2.2.5, we examine some recently-devdiegiatques that have been developed to incorporate
subroutine-based threading into the design space.

2.2.3 Minimization of memory requirements

Minimizing program and data memory requirements is critical in many embeD&# applications. On-chip memory
capacities are limited, and the speed, power, and financial cost penalties of Emuiffischip memory may be prohibitive
or highly undesirable. Three general avenues have been investigated fimizirig memory requirements — minimization
of the buffer requirement, which usually forms a significant componfthisoover all data space cost; minimization of code
size; and joint exploration of the trade-off involving code size arftelbuequirements.

It has been shown that the problem of constructing a schedule that masirttie buffer requirement over all valid
schedules is NP-complete [11]. Thus, for practical, scalable algorithensjust resort to heuristics. Ade [29] has developed
techniques for computing tight lower bounds on the buffer requireficera number of restricted subclasses of delayless,
acyclic graphs, including arbitrary-length chain-structured graplbseSof these bounds have been generalized to handle
delays in [11]. Approximate lower bounds for general graphs are denivi®]. Cubric and Panangaden have presented an
algorithm that achieves optimum buffer requirements for acyclic SDFgrt@|t may have one or more independent, undi-
rected cycles [31]. An effective heuristic for general graphs, which is eyagln the Gabriel [14] and Ptolemy [7] systems,
is given in [11]. Govindarajan, Gao, and Desai have developed an SDF miffenization algorithm for multiprocessor
implementation [32]. This algorithm minimizes the buffer memory @a&r all multiprocessor schedules that have optimal
throughput.

For complex, multirate applications — which are the most challengingnemory management — the structure of
minimum buffer schedules is in general highly irregular [33, 11]. Swattedules offer relatively few opportunities to organize
compact loop structures, and thus have very high code size costs unded iimhplementations. Thus, such schedules are
often not useful even though they may achieve very low buffer requiremé&uhedules at the extreme of minimum code
size, on the other hand, typically exhibit a much more favorable tréfdeetween code and buffer memory costs [34].

These empirical observations motivate the problem of code size miniariz#t central goal when attempting to mini-
mize code size for inlined implementations is that of constructingglessppearance schedule whenever one exists. A valid
single appearance schedule exists for any consistent, acyclic SDF gragtherfore, a valid single appearance schedule
can be derived easily from any topological sortdpological sortof a directed acyclic grap&' is a linear ordering of all its
vertices such that for each ed@e y) in G, x appears beforg in the ordering) of an acyclic grapgh: if (41, As,..., An)
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is a topological sort of7, then it is easily seen that the single appearance schégule) A1) (q(Az2)Az) ... (q(Am)Anm) IS
valid. For a cyclic graph, a single appearance schedule may or may nadepéstding on the location and magnitude of de-
lays in the graph. An efficient strategy, called ttmose Interdependence Algorithm Framework (LIAS been developed
that constructs a single appearance schedule whenever one exists [8&griRore, for general graphs, this approach guar-
antees that all actors that are not contained in a certain type of subgraph tiggithdinterdependent subgraphsill have
only one appearance in the generated schedule [36]. In practice, tightlyapeardent subgraphs arise only very rarely, and
thus, the LIAF technique guarantees full code size optimality for rapptications. Because of its flexibility and provable
performance, the LIAF is employed in a number of widely used tools, dictuPtolemy and Cadence’s SPW.

The LIAF constructs a single appearance schedule by decomposing thiegraph into a hierarchy of acyclic sub-
graphs, which correspond to an outer-level hierarchy of nested loops igetierated schedule. The acyclic subgraphs in
the hierarchy can be scheduled with any existing algorithm that conssingie appearance schedules for acyclic graphs.
The particular algorithm that is used in a given implementation of tid-li called theacyclic scheduling algorithmFor
example, the topological-sort-based approach described above could kasubkedacyclic scheduling algorithm. However,
this simple approach has been shown to lead to relatively large buffer eatgrits [11]. This motivates a key problem in
the joint minimization of code and data for SDF specifications. Thifiéspgroblem of constructing a single appearance
schedule for an acyclic SDF graph that minimizes the buffer requirementdiwealid single appearance schedules. Since
any topological sort leads to a distinct schedule for an acyclic graphhamlimber of topological sorts is not polynomially
bounded in the graph size, exhaustive evaluation of single appearancealssheadot tractable. Thus, as with the (arbitrary
appearance) buffer minimization problem, heuristics have been explores cAmvplementary, low-complexity heuristics,
called APGAN [37] and RPMC [38], have proven to be effective on practicaliadpns when both are applied, and the
best resulting schedule is selected. Furthermore, it has been formally shatnAPGAN gives optimal results for a broad
class of SDF systems. Thorough descriptions of APGAN, RPMC, antlfig and their inter-relationships can be found
in [11, 34]. A scheduling framework for applying these techniques tittiprocessor implementations is described in [39].
Recently-developed techniques for efficient sharing of memory among reuiififers from a single appearance schedule
are developed in [40, 41].

Although APGAN and RPMC provide good performance on many applicgtithese heuristics can sometimes pro-
duce results that are far from optimal [42]. Furthermore, as discussstiion 1, DSP software tools are allowed to spend
more time for optimization of code than what is required by low-coxipledeterministic algorithms such as APGAN and
RPMC. Motivated by these observations, Zitzler, Teich, and Bhattachaaseadeveloped an effective stochastic optimiza-
tion methodology, called GASAS, for constructing minimum buffergé appearance schedules [43, 44]. The GASAS
approach is based on a genetic algorithm [45] formulation in which tmpcédl sorts are encoded as “chromosomes,” which
randomly “mutate” and “recombine” to explore the search space. Each topologital he evolution is optimized by the
efficient, local search algorithm CDPPO [28], which was mentioned earlier iloeez.2. Using dynamic programming,
CDPPO computes a minimum memory single appearance schedule for a gietogioal sort. To exploit the valuable opti-
mality property of APGAN whenever it applies, the solution generatedP@AN is included in the initial population, and
anelitist evolution policy is enforced to ensure that the fittest individuabgisvsurvives to the next generation.

2.2.4 Throughput optimization

At the Aachen University of Technology, as part of the COSSAP desigmammient (now developed by Synopsys) project,
Ritz, Pankert, and Meyr have investigated the minimization of of théextiswitch overhead, or the average rate at which
actor activationoccur [20]. As discussed in section 2.2.2, an actor activation occurs whamnenvgistinct actors are invoked
in succession; for example, the sched@&B)(5A4))(5C) for fig. 13 results in five activations per schedule period.
Activation overhead includes saving the contents of registers that atehysthe next actor to invoke, if necessary,
and loading state variables and buffer pointers into registers. The dafagpuping multiple invocations of the same actor
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together to reduce context-switch overhead is referredveetsrization The SSDF model, discussed in section 2.1.6, allows
the benefits of vectorization to extend beyond the actor interface levef-@tor context switching). For example, context
switching between successive sub-functions of a complex actor can bezedavierN, invocations of the sub-functions,
whereN, is the given vectorization parameter.

Ritz estimates the average rate of activations for a periodic schédak the number of activations that occur in
one iteration ofS divided by the blocking factdrof S. This quantity is denoted by,.;(S) For example, for fig. 13,
Noct((2(2B)(5A))(5C)) = 5, and N, ((4(2B)(5A4))(10C)) = 9/2 = 4.5. If for each actor, each invocation takes the
same amount of time, and if we ignore the time spent on computatiotisthat directly associated with actor invocations
(for example, schedule loops), théf,.;(S) is directly proportional to the number of actor activations per unietirfror
consistent acyclic SDF graph§,; clearly can be made arbitrarily large by increasing the blocking factor sritlgi thus,
as with the problem of constructing compact schedules, the extent to thieictctivation rate can be minimized is limited by
the cyclic regions in the input SDF specification.

The technique developed in [20] attempts to find a valid single appearenedide that minimized/, ., over all valid
single appearance schedules. Note that minimizing the number of acts/att@s not imply minimizing the number of
appearances. As a simple example, consider the SDF graph in fig. 14. It carifleelwhat for this graph, the lowest value of
N..: that is obtainable by a valid single appearance scheddl&dsand one valid single appearance schedule that achieves
this minimum rate i§48)(4A)(4C). However, valid schedules exist that are not single appearance scheduléstdrale
values of N, below0.75; for example, the valid schedu{dB)(4A)(3B)(3A)(7C) contains two appearances each4of
andB , and satisfieV,.; = 5/7 = 0.71.

Thus, since Ritz's vectorization approach focuses on single appearance sshrduprimary objective of the techniques
in [20] is implicitly code size minimization. This is reasonable siit@ractice, code size is often of critical concern. The
overall objective is in [20] is to construct a minimum activation impégration over all implementations that have minimum
code size.

Ritz defines theelative vectorization degreaf a simple cycle (a cyclic path in the graph in which no proper sub-isat
cyclic) C in a consistent, connected SDF graph by

Na(C) = maz({min({Dc(B) | B € parallel(a)}) |
a € edges(C)}), 9)

where
B del()
Do) = | toreta)prita)? 4o

is the delay on edge normalized by the total number of tokens exchanged @ma minimal schedule period @f, and

parallel(a) = {0 € edges(G) |
(sre(B) = sre(a)) and (snk(B) = snk(a))}

is the set of edges with the same source and sink &fere,edges(G) simply denotes the set of edges in the SDF gr@ph

For example, ifG denotes the SDF graph in fig. 13, apdlenotes the cycle i whose associated graph contains the
actorsA andB, thenD¢(x) = [10/20]| = 0; and if G denotes the graph in fig. 14 anddenotes the cycle whose associated
graph containst andC, thenDg(x) = |7/1] = 7.

1Every periodic schedule invokes each actosome multiple ofg(A) times. This multiple, denoted by, is called theblocking factor A minimal
periodic schedulés one that satisfieg = 1. For memory minimization, there is no penalty in restrigttonsideration to minimal schedules [11]. When
attempting to minimizeV,.:, however, it is in general advantageous to consitier 1.
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Ritz et. al postulate that given a strongly connected SDF graph, a vadjtesippearance schedule that minimigg,
can be constructed from@mplete hierarchizatigrwhich is a cluster hierarchy such that only connected subgraphs are
clustered, all cycles at a given level of the hierarchy have the same relatit@ization degree, and cycles in higher levels
of the hierarchy have strictly higher relative vectorization degrees thelesin lower levels. Fig. 15 depicts a complete
hierarchization of an SDF graph. Fig. 15(a) shows the original SDF gtaeq(A, B,C, D) = (1,2,4,8). Fig. 15(b)
shows the top level of the cluster hierarchy. The hierarchical detaepresentsubgraph({B,C, D}), and this subgraph
is decomposed as shown in fig. 15(c), which gives the next level of tleteclhierarchy. Finally, fig. 15(d) shows that
subgraph({C, D}) corresponds t6, and is the bottom level of the cluster hierarchy.

Now observe that the relative vectorization degree of the fundamentalioyidf). 15(c) with respect to the original SDF
graph is|16/8] = 2, while the relative vectorization degree of the fundamental cycle irlBp) is|12/2] = 6; and the
relative vectorization degree of the fundamental cycle in fig. 15(d2¢8| = 1. We see that the relative vectorization degree
decreases as we descend the hierarchy, and thus the hierarchization depictedirs fapniplete. The hierarchization step
defined by each of the SDF graphs in figs. 15(b)-(d) is calledraponentf the overall hierarchization.

Ritz's algorithm [20] constructs a complete hierarchization by firstueataig the relative vectorization degree of each
fundamental cycle, determining the maximum vectorization degree, and trsteralg the graphs associated with the funda-
mental cycles that do not achieve the maximum vectorization degree. Tleissgris then repeated recursively on each of the
clusters until no new clusters are produced. In general, this bottooongiruction process has unmanageable complexity.
However, this normally doesn’t create problems in practice since tbhagdyr connected components of useful signal pro-
cessing systems are often small, particularly in large grain descripi@tails on Ritz’s technique for translating a complete
hierarchization into a hierarchy of nested loops can be found in [20]. A gkm@timal algorithm for vectorization of SSDF
graphs based on the complete hierarchization concept discussed above is R@n Joint minimization of vectorization
and buffer memory cost is developed in [12], and adaptations of the ngfitm@nsformation to improve vectorization for SDF
graphs is addressed in [46, 47].

2.2.5 Subroutine insertion

The techniques discussed above assume a fixed threading mode. In pattieylao not attempt to exploit the flexibility
offered by hybrid threading. Sung, Kim, and Ha have developed an apptioaicemploys hybrid threading to share code
among different actors that have similar functionality [48]. For exiaygm application may contain several FIR filter blocks
that differ only in the number of taps, and the set of filter coefficienteséhare called differeimstanceof a parameterized
FIR module in the actor library. Their approach decomposes the code asdowitit an actor instance into the actamtext
and actorreferencecode, and carefully weighs the benefit of each code sharing opportunityheitassociated overhead.
The overheads stem from the actor context component, which includedastpecific state variables, and buffer pointers.
Code must be inserted to manage this context so that each invocation sifatesl code block (the “reference code”) is
appropriately customized to the associated instance.

Also, the GASAS framework has been significantly extended to considkiptawappearance schedules, and selectively
apply hybrid threading to reduce the code size cost of highly irregalaedules, which cannot be accommodated by compact
loop structures [49]. Such irregularity often arises when explottiegspace of schedules whose buffer requirements are
significantly lower than what is achievable by single appearance schedu]esTié objective of this genetic-algorithm-
based exploration of hybrid threading and loop scheduling is to effigienmpute Pareto-fronts in the multidimensional
design evaluation space of program memory cost, buffer requirement, acdtiex time overhead.

The intelligent use of hybrid threading and code sharsulpfoutine insertion optimizatiopsan achieve lower code size
costs that what is achievable with single appearance schedules that useiooavériining. If an inlined single appearance
schedule fits within the available on-chip memory, it is not worttuiming the overhead of subroutine insertion. However,
if an inline implementation is too large to be held on-chip, then sutime insertion optimizations can eliminate, or greatly
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reduce the need for off-chip memory accesses. Since off-chip memory acces$as sigmificant execution time penalties,
and large power consumption costs, subroutine insertion enables escbmuftivare developers to exploit an important part
of the design space.

2.2.6 Summary

In this section we have reviewed a variety of algorithms for addrgsgitimization trade-offs during software synthesis. We
have illustrated some of the analytical machinery used in SDF optimizatgorithms by examining in some detail Ritz’s
algorithm for minimizing actor activations. Since CSDF, MDSDF, WBBRd BDF are extensions of SDF, the techniques
discussed in this section can also be applied in these more general mogaldidalar, they can be applied to any SDF sub-
graphs that are found. It is important to recognize this when develapinsing a DSP design tool since in DSP applications
that are not fully amenable to SDF semantics, a significant subset ofrtbédinality can usually be expressed in SDF. Thus
the techniques discussed in this section remain useful even in DSPHabétploy more general dataflow semantics.

Beyond their application to SDF subsystems, however, the exteokionst of the techniques developed in this section
to more general dataflow models is a non-trivial matter. To achieve belsresth these more general models, new synthesis
approaches are required that take into account distinguishing charactefigtiesmodels. The most successful approaches
will combine these new approaches for handling the full generalityeftsociated models, with the techniques that exploit
the structure of pure SDF subsystems.

3 Compilation of application programs to machine code

In this section, we will first outline the state of the art in the areeompilers for PDSPs. As indicated by several empirical
studies, the major problem with current compiler is their inabilityéaerate machine code of sufficient quality. Next, we will
discuss a number of recently developed code generation and optimizatioigtexymvhich explicitly take into account DSP-
specific architectures and requirements in order to improve code qualigllyi-we will mention key techniques developed
for retargetable compilation.

3.1 State of the art

Today, the most widespread high-level programming language for PIESRNSI C. Even though there are more DSP-
specific languages, such as the data flow language DFL [50], the pop@adthigh flexibility of C as well as the large
amount of existing "legacy code” has so far largely prevented the useogfgnming languages more suitable for DSP
programming. C compilers are available for all important DSP famiesh as Texas Instruments TMS320xx, Motorola
56xxx, or Analog Devices 21xx. In most cases, the compilers are probigldte semiconductor vendors themselves.

Due to the large semantical gap between the C language and PDSP instretdiomany of these compilers make
extensions to the ANSI C standard by permitting the use of "compitensics”, for instance in the form of compiler-known
functions which are expanded like macros into specific assembly instngctilntrinsics are used to manually guide the
compiler in making the right decisions for generation of efficient code. é¥aw such an ad-hoc approach has significant
drawbacks. First, the source code deviates from the language standaschalonger machine-independent. Thus, porting
of software to another processor might be a very time-consuming taskn§, the programming abstraction level is lowered
and the efficient use of compiler intrinsics requires a deep knowledge afitdrnal PDSP architecture.

Unfortunately, machine-specific source code today is a must wheneveldngage is used for programming PDSPs.
The reason is the poor quality of code generated by compilers from pla8i 8ode. The overhead of compiler-generated
code as compared to hand-written, heavily optimized assembly code has beéfieglisnthe DSPStone benchmarking
project [6]. In that project, both code size and performance of compilezrgéed code have been evaluated for a number
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of DSP kernel routines and different PDSP architectures. The resultssdhibyat the compiler overhead typically ranges
between 100 and 700 % (with the reference assembly code set to 0 % overhead$. dlisolutely insufficient in the area
of DSP, where real-time constraints as well as limitations on programamesize and power consumption demand for an
extremely high utilization of processor resources. Therefore, an overheadhgiler-generated code close or equal to zero
is most desirable.

In another empirical study [51], DSP vendors have been asked to comiteoh G benchmark programs existing in
two different versions, one being machine-independent and the othertbeadfor the specific processor. Again, the results
showed that using machine-independent code causes an unacceptable overhead uraldgde terms of code size and
performance.

These results make the practical use of compilers for PDSP softwarepgmasit questionable. In the area of general
purpose processors, such as RISCs, the compiler overhead typicallyodess@ed 100 %, so that even for DSP applications
using a RISC together with a good compiler may result in a more effigigrieimentation than using a PDSP (with potentially
much higher performance) wasting most of its time executing unnecessamcition cycles due to a poor compiler. Similar
arguments hold, if code size or power consumption are of major concern.

As a consequence, the largest part of PDSP software is still writtenemadglanguages, which implies a lot of well-
known drawbacks, such as high development costs, low portabilityhigmdmaintenance and debugging effort. This has
been quantified in a study by Paulin [52], who found that for a certainf§26® applications about 90 % of DSP code lines
are written in assembly, while the use of C only accounts for 10 %.

As both DSP processors and DSP applications tend to become more and mpiexcdhe lack of good C compilers
implies a significant productivity bottleneck. About a decade ago, researsteted to analyze the reasons for the poor
code quality of DSP compilers. A key observation was that classical codeagieneechnology, mainly developed for RISC
and CISC processor architectures, is hardly suitable for PDSPs, buiethdd SP-specific code generation techniques were
required. In the following, we will summarize a number of recent tealesq In order to put these techniques into context
with each other, we will first give an overview about the main phases in tatigp. Then, we will focus on techniques
developed for particular problems in the different compilation phases.

3.2 Overview of the compilation process

The compilation of an application program into machine code, as illustirafegl 16, starts with several source code analysis
phases.

Lexical analysis: The character strings denoting atomic elements of the source code (&lenkiiywords, operators, con-
stants) are grouped intokensi.e. numerical identifiers, which are passed to the syntax analyzer. Lexicgbisnial
typically performed by a scanner, which is invoked by the syntax analyzeravbea new token is required. Scanners
can be automatically generated from a language specification with tools liKe "le

Syntax analysis: The structure of programming languages is mostly described dgn#ext-free grammarconsisting of
terminals (or tokens), nonterminals, and rules. The syntax analyzearser, accepts tokens from the scanner, until
a matching grammar rule is detected. Each rule corresponds to a priméiverat of the programming language, for
instance an assignment. If a token sequence does not match any rule, a symtexegnitted. The result of parsing a
program is asyntax treewhich accounts for the structure of a given program. Parsers can be cam¥egienerated
from grammar specifications with tools like "yacc’.

Semantical analysis: During semantical analysis, a number of correctness tests are performéusteoce, all used identi-
fiers must have been declared, and functions must be called with parameters daaceawith their interface specifi-
cation. Failure of semantical analysis results in error messages. Addligicasymbol tablds built, which annotates
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each identifier with its type and purpose (e.g. type definition, glob&aal variable). Semantical analysis requires
a traversal of the syntax tree. Frequently, semantical analysis is cougledymitax analysis by means aftribute
grammars These grammars support the annotation of information like tygeigrose to grammar symbols, and thus
help to improve the modularity of analysis. Tools like "ox” [53] aeailable for automatic generation of combined
syntax and semantical analyzers from grammar specifications.

The result of source code analysis isiatermediate representatidiiR), which forms the basis for subsequent compi-
lation phases. Both graph-based and statement-based IRs are in use. GeabliRbaklrectly model the interdependencies
between program operations, while statement-based IRs essentially ofrmsishissembly-like sequence of simple assign-
ments (three-address code) and jumps.

In the next phase, several machine-independent optimizations are applfesidenerated IR. A number of such IR
optimizations have been developed in the area of compiler constructihnfigportant techniques include constant folding,
common subexpression elimination, and loop-invariant code motion.

The techniques mentioned so far are largely machine-independent and may bearseligh-level language compiler.
DSP-specific information comes into play only during the code genergiimse, when the optimized IR is mapped to
concrete machine instructions. Due to the specialized instruction SBBI#Ps, this is the most important phase with respect
to code quality. Due to computational complexity reasons, code geneigitio turn subdivided into different phases. Itis
important to note that for PDSPs this phase structuring significdiffers from compilers for general purpose processors.
For the latter, code generation is traditionally subdivided into ¢iewing phases.

Code selection: The selection of a minimum set of instructions for a given IR with ee$jo a cost metric like performance
(execution cycles) or size (instruction words).

Register allocation: The mapping of variables and intermediate results to a limited set ohblaiphysical registers.

Instruction scheduling: The ordering of selected instructions in time while minimizing toeber of instructions required
for temporarily moving register contents to memosypi(l codg and minimizing execution delay due to instruction
pipeline hazards.

Such a phase organization is not viable for PDSPs due to several redafhils. general purpose processors often
have a large, homogeneous register file, PDSPs tend to show a data p#tcanehwith several distributed registers or
register files of very limited capacity. An example has already been given if.fifjherefore, classical register allocation
techniques like [55] are not applicable, but register allocation has t@bermed together with code selection in order to
avoid large code quality overheads due to superfluous data moves betgesterse Furthermore, instruction scheduling
for PDSPs has to take into account the moderate degriasstofiction-level parallelisn{ILP) offered by such processors.
In many cases, several mutually independent instructions may be groupecdeteecuted in parallel, thereby significantly
increasing performance. This parallelization of instructions is frequeatledcode compactionAnother important area of
code optimization for PDSPs concerns the memory accesses performed byanpr&pth the exploitation of potentially
available multiple memory banks and the efficient computation of memaiseades under certain restrictions imposed by
the processor architecture have to be considered, which are hardly iesgesnéral purpose processors. We will therefore
discuss techniques using a different structure of code generation phases.

Sequential code generation:Even though PDSPs generally permit the execution of multiple ictstms in parallel, it is
often reasonable to temporarily consider a PDSP as a sequential machine ewdnicies instructions one-by-one.
During sequential code generation, IR blocks (statement sequences) are nappgdential assembly code. These
blocks are typicallyasic blockswhere control flow enters the block at its beginning and leaves the btookst once
at its end with a jump. Sequential code generation aims at simultaneousipizing the costs of instructions both for
operations and data moves between registers and memory while negle&ing IL
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Memory access optimization: Generation of sequential code makes the order of memory accesses in a progrenmknis
knowledge is exploited to optimize memory access bandwidth by paititiche variables among multiple memory
banks and to minimize the additional code needed for address computations.

Code compaction: This phase analyzes interdependencies between generated instructions and apiustiaggxotential
parallelism between instructions under the resource constraints imppsld processor architecture and the instruc-
tion format.

3.3 Sequential code generation

Basic blocks in the IR of a program are graphically representedaty flow graphgDFGs). A DFGG = (V,E) is a
directed acyclic graph, where the noded/imepresent operations (arithmetic, Boolean, shifts, etc.), memory access#s (lo
and stores), and constants. The edgdsét V' x V represents the data dependencies between DFG nodes. If an operation
represented by a node requires a value generated by an operation denoted then(v, w) € E. DFG nodes with more
than one outgoing edge are callemmmon subexpressioftS8SES). As an example, fig. 17 shows a piece of C source code,
whose DFG representation (after detection of CSESs) is depicted in fig. 18.

Code generation for DFGs can be visualized as a process of covering a DFGilaplanstruction patterns Let us
consider a processor with instructions ADD, SUB, and MUL, to perfaddition, subtraction, and multiplication, respec-
tively. One of the operands is expected to reside in memory, whiletther one has to be first loaded into a register by
a LOAD instruction. Furthermore, writing back a result to memory nexgua separate STORE instruction. Then, a valid
covering of the example DFG is then one shown in fig. 19.

Available instruction patterns are usually annotated witlost valuereflecting their size or execution speed. The goal
of code generation is to find a minimum cost covering of a given DFG hguioison patterns. The problem is that in general
there exist numerous different alternative covers for a DFG. For iost#ithe processor offers a MAC (multiply-accumulate)
instruction, as found in most PDSPs, and the cost value of MAC iglessthe sum of the costs of MUL and ADD, then it
might be favorable to select that instruction (fig. 20).

However, using MAC for our example DFG would be less useful, becawesenultiply operation in this case is a
CSE. Since the intermediate multiply result of a MAC is not storedum@ye, a potentially costly recomputation would be
necessary.

3.3.1 Tree based code generation

Optimal code generation for DFGs is an exponential problem, even forsimple instruction sets [54]. A solution to this
problem is to decompose a DFG into a setlafa flow treegDFTs) by cutting the DFG at its CSEs and inserting dedicated
DFG nodes for communicating CSEs between the DFTs (fig. 21). This dexsitiop introduces scheduling precedences
between the DFTs, since CSEs must be written before they are read (dasivesliarfig. 21). For each of the DFTs, code
can be generated separately and efficiently. Liem [57] has proposed a data stiorotdficient tree pattern matching capable
of handling complex operations like MAC.

For PDSPs, also the allocation of special purpose registers durifigcD¥ering is extremely important, since only
covering the operators in a DFG by instruction patterns does not tek@dsount the costs of instructions needed to move
operands and results to their required locations. Wess [58] has propeseaskt otrellis diagramsto also include data move
costs during DFT covering.

Araujo and Malik [60] showed how the powerful standard techniqueeefpattern matching with dynamic programming
[56] widely used in compilers for general purpose processors can be effgctpplied also to PDSPs with irregular data
paths. Tree pattern matching with dynamic programming solves the @adeagion problem by parsing a given DFT with
respect to an instruction-set specification given as@grammar Each rule in such a tree grammar is attributed with a cost
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value and corresponds to one instruction pattern. Optimal DFT coveobga@med by computing an optimal derivation of

a given DFT according to the grammar rules. This requires only two palse#srfi-up and top-down) over the nodes of
the input DFT, so that the runtime is linear in the number of DFTesodCode generators based on this paradigm can be
automatically generated with tools like "twig” [56] and "iburg” [59].

The key idea in the approach by Araujo and Malik is the useegister-specifiénstruction patterns or grammar rules.
Instead of separating detailed register allocation from code selection as sicalasompiler construction, the instruction
patterns contain implicit information on the mapping of operands andtsds special purpose registers. In order to illustrate
this, we consider an instruction subset of the TI TMS320C25 DSP almeadtioned in section 1 (see also fig. 1. This PDSP
offers two types of instructions for addition. The first one (ADd2)ds a memory value to the accumulator register ACCU,
while the second one (APAC) adds the value of the product registews RRCU. In compilers for general purpose processors,
a distinction of storage components is made only between (general piirpgsters and memory. In a grammar model used
for tree pattern matching with dynamic programming, the above twaictions would thus be modeled as follows:

reg: PLUS(reg, men
reg: PLUS(reg,reqg)

The symbols "reg” and "mem” are grammar nonterminals, while "PLUS"” igangnar terminal symbol representing an
addition. The semantics of such rules is that the correspondingdtisticomputes the expression on the right hand side and
stores the result in a storage component represented by the left hand/bigie parsing a DFT with respect to these patterns
it would be impossible to incorporate the costs of moving valu#soim ACCU and PR, but the detailed mapping of "reg”
to physical registers would be left to a later code generation phaseblycstsine expense of code quality losses. However,
when using register-specific patterns, instructions ADD and APAQdvoel modeled as:

accu: PLUS(accu, mrem
accu: PLUS(accu, pr)

Using a separate nonterminal for each special purpose register permitsd& imstructions for pure data moves, which
in turn allows the code generator to simultaneously minimize the @déstach instructions. As an example, consider the
TMS320C25 instruction PAC, which moves a value from PR to ACCUhintree grammar, the following rule (a so-called
chain rulé for PAC would be included:

accu: pr

Since using the PAC rule for derivation of a DFT would incur addisibcosts, the code generator implicitly minimizes the
data moves when constructing the optimal DFT derivation.

Generation of sequential assembly code also requires to determine a tetalguaf selected instructions in time. DFGs
and DFTs typically only impose a partial ordering, and the remainingduding freedom must be exploited carefully. This is
due to the fact, that special purpose registers generally have vergdistiirage capacity. On the TMS320C25, for instance,
each register may hold only a single value, so that unfavorable schgdigaisions may require to spill and reload register
contents to/from memory, thereby introducing additional code. In dad#ustrate the problem, consider a DETwhose
root node represents an addition, for which the above APAC instrubtis been selected. Thus, the addition operands must
reside in registers ACCU and PR, so that the left and right sublTieasdT, of 7' must deliver their results in these registers.
When generating sequential code Tarit must be decided wheth&k or 75 should be evaluated first. If some instruction in
T, writes its result to PR, thel; should be evaluated first in order to avoid a spill instruction, bex@usvrites its result to
PR as well and this value is "live” until the APAC instruction for thet of T" is emitted. Conversely, if some instruction for
T, writes register ACCU, theff, should be scheduled first in order to avoid a register contention@@2A In [60], Araujo
and Malik formalized this observation and provided a formal criteriortlierexistence of a spill-free schedule for a given
DFT. This criterion refers to the structure of the instruction set fardnstance, holds for the TMS320C25. When using an
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appropriate scheduling algorithm, which immediately follows froat ttriterion, then optimal spill-free sequential assembly
code can be generated for any DFT.

3.3.2 Graph based code generation

Unfortunately, the DFT-based approach to code generation may affect codsy,dueduse it performs only a local opti-
mization of code for a DFG within the scope of the single DFTs. Tleegfresearchers have investigated techniques aiming
at optimal or near-optimal code generation for full DFGs. Liao [61] hasgmted a branch-and-bound algorithm minimizing
the number of spills in accumulator-based machines, i.e. processors wbstreamputed values have to pass a dedicated
accumulator register. In addition, his algorithm minimizes the nurabiastructions needed for switching between different
computation modes. These modes (e.g. sign extension or produanshiés) are special control codes stored in dedicated
mode register order to reduce the instruction word length. If the operationksiwia DFG have to be executed with differ-
ent modes, the sequential schedule has a strong impact on the numbénatimss for mode switching. Liao’s algorithm
simultaneously minimizes accumulator spills and mode switchinguastns. However, due to the time-intensive optimiza-
tion algorithm, optimality cannot be achieved for large basic blockse @ode generation technique in [62] additionally
performs code selection for DFGs, but also requires high compilatioestfor large blocks.

A faster heuristic approach has been given in [63]. It also relies on the desitiop of DFGs into DFTS, but takes into
account architectural information when cutting the CSEs in a DFG. In saises, the machine instruction set itself enforces
that CSEs have to pass the memory anyway, which again is a consequenderefjtiiar data paths of PDSPs. The proposed
technique exploits this observation by assigning those CSEs tamemith highest priority, while others might be keptin a
register, resulting in more efficient code.

Kolson et al. [64] have focused on the problem of code generation fgutar data paths in the context of program
loops. While the above techniques deal well with special purpose eegjistbasic blocks, the do not take into account the
data moves required between different iterations of a loop body. This egayre the execution of a number of data moves
between those registers holding the results at the end of one iteaatibiihose registers where operands are expected at the
beginning of the next iteration. Both an optimal and a heuristicrélyn have been proposed for minimizing the data moves
between loop iterations.

3.4 Memory access optimization

During sequential code generation, memory accesses are usually treated orliplisgiy” without particular reference to
a certain memory bank or memory addresses. The detailed implementation ofyremmesses is typically left to a separate
code generation phase.

3.4.1 Memory bank partitioning

There exist several PDSP families having the memory organized in fievedit banks (typically called X and Y memory),
which are accessible in parallel. Examples are Motorola 56xxx and Analogé&¥e21xx. Such an architecture allows to
simultaneously load two values from memory into registers and is threreéry important for DSP applications like digital
filtering or FFT, involving component-wise access to different data arr&yploiting this feature in a compiler means, that
symbolic memory accesses have to be partitioned into X and Y memory accesaeh away, that potential parallelism is
maximized. Sudarsanam [65] has proposed a technique to perform thiszgiitbn. There is a strong mutual dependence
between memory bank partitioning and register allocation, because values ftertain memory bank can only be loaded
into certain registers. The proposed technique starts from symdesjigential assembly code and uses a constraint graph
model to represent these interdependencies. Memory bank partitioninggstérrallocation are performed simultaneously
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by labeling the constraint graph with valid assignments. Due to theotisimulated annealing, the optimization is rather
time-intensive, but may result in significant code size improvementadasated by experimental data.

3.4.2 Memory layout optimization

As one cost metric, Sudarsanam’s technique also captures the cost oftinegwneeded for address computations. For
PDSPs which typically show very restricted address generation capabddigisss computations are another important area
of code optimization. Fig. 22 shows the architecture oaddress generation unfAGU) as it is frequently found in PDSPs.

Such an AGU operates in parallel to the central data path and contains a separdsubtidetor for performing op-
erations oraddress registerARs). ARs store the effective addresses foriradlirect memory accesses, except for global
variables typically addressed direct mode. Modify registersfMRs) are used to store frequently required address modify
values. ARs and MRs are in turn addressed by AR and MR pointers. SincaltdRR or MR file sizes are 4 or 8, these
pointers are short indices of 2 or 3 bits, either stored in the ingtruetord itself or in special small registers.

There are different means for address computation, i.e., for changingltheeof AGU registers.

AR load: Loading an AR with an immediate constant (from the instruction word).

MR load: Loading a MR with an immediate constant.

AR modify: Adding or subtracting an immediate constant to/from an AR.
Auto-increment and auto-decrement: Adding or subtracting the constant 1 to/from an AR.
Auto-modify: Adding or subtracting the contents of one MR to/from an AR.

While details like the size of AR and MR files or the signed-ness of fga@dilues may vary for different processors, the
general AGU architecture from fig. 22 is actually found in a large numbebD&H. It is important to note that performing
address computations using the AGU in parallel to other instructggmerally only possible, if the AGU does not use
the instruction word as a resource. The wide immediate operand for ARI&bad and AR modify operations usually
leaves no space to encode further instructions within the same instruatrd, so that these two types of AGU operations
require a separate non-parallel instruction. On the other hand, th@skoperations not using the instruction word can
mostly be executed in parallel to other instructions, since only iateék@U resources are occupied. We call these address
computationsero-cost operationsIn order to maximize code quality in terms of performance and size it vsoably
necessary to maximize the utilization of zero-cost operations.

A number of techniques have been developed which solve this problerngscalar variablesn a program. They
exploit the fact, that when the sequence of variable accesses is known aftemts@quode generation, a gootemory layout
for the variables can still be determined. In order to illustrate thippese a program block containing accesses to the
variables

V ={a,b,c,d}

is given, and the variable access sequence is
S =(b,d,a,c,d,a,c b, a,d, a,c,d)

Furthermore, let the address space reservelitbe A = {0, 1,2, 3} and let one AR be available to compute the addresses
according to the sequenée Consider a memory layout whevéis mapped tad in lexicographic order (fig. 23 a).

First, AR needs to be loaded with the address 1 of the first elebnent. The next access takes placedtavhich is
mapped to address 3. Therefore, AR must be modified with a value of +2. élt@ccess refers i@ which requires to
subtract 3 from AR, and so forth. The complete AGU operation sequencgifogiven in fig. 23 a). According to our cost
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metric, only 4 out of 13 AGU operations happen to be zero-cost operaaons-increment or decrement), so that a cost of
9 extra instructions for address computations is incurred. Howewnercan find a better memory layout for(fig. 23 b),
which leads to only 5 extra instructions, due to a better utilizatfaeoo-cost operations. An even better addressing scheme
is possible if a modify register MR is available. Since the addreddifien2 is required three times in the AGU operation
sequence from fig. 23 b), one can assign the value 2 to MR (one exiaciish) but reuse this value three times at zero cost
(fig. 23 c), resulting in a total cost value of only 3.

How can such "low cost” memory layouts be constructed ? A first approach has tgersed by Bartley [66] and has
later been refined by Liao [67]. Both use atcess grapto model the problem.

The nodes of the edge-weighted access g@ph (V, £, w) correspond to the variable set, while the edges represent
transitionsbetween variable pairs in the access sequéhcén edgee = (v,w) € E is assigned an integer weight if
there aren transitions(v, w) or (w, v) in S. Fig. 24 shows the access graph for our example. Since any memory laydut fo
implies a linear order of” and vice versa, any memory layout corresponds to a Hamiltonian péthiia., a path touching
each node exactly once. Informally, a "good’ Hamiltonian path obviousbukl contain as many edges of high weight
as possible, because including these edges in the path implies that thgpomding variable pairs will be adjacent in the
memory layout, which in turn makes auto-increment/decrementaddresssiblpotn other words, maximum Hamiltonian
pathin G has to be found, in order to obtain an optimal memory layout, whichrturfately is an exponential problem.

While Bartley [66] first proposed the access graph model, Liao [67]igeavan efficient heuristic algorithm to find
maximum paths in the access graph. Furthermore, Liao proposed a generabz &t algorithm for the case of an arbitrary
numberk of ARs. By partitioning the variable s&tinto k£ groups, thé-AR problem is reduced te different 1-AR problems,
each being solvable by the original algorithm.

Triggered by this work, a number of improvements an generalizations thes found. Leupers [68] improved the
heuristic for the 1-AR case and proposed a more effective partitidairtge k-AR problem. Furthermore, he provided a first
algorithm for the exploitation of MRs to reduce addressing costssVedgorithm [69] constructs memory layouts for AGUs
with an auto-increment range of 2 instead of 1, while in [70] a generalizébioan arbitrary integer auto-increment range
was presented. The genetic algorithm based optimization given in [71]ajeesrthese techniques for arbitrary register file
sizes and auto-increment ranges while also incorporating MRs into meayayticonstruction.

3.5 Code compaction

Code compaction is typically executed as the last phase in code generatibis paint of time, all instructions required to
implement a given application program have been generated, and the goal aocoplaction is to schedule the generated
sequential code into a minimum number of parallel machine instructimresntrol stepsunder the constraints imposed by
the PDSP architecture and instruction set. Thus, code compaction isuatwrihe resource constrained scheduling problem.

Input to the code compaction phase is usualiependency grapf’ = (V, E), whose nodes represent the instructions
selected for a basic block, while edges denote scheduling precedences. Thierecatges of such precedences:

Data dependencies:Two instructions/; and I, are data dependent, if generates a value read lby. Thus,I; must be
scheduled befors,.

Anti dependencies: Two instructionsl; and I, are anti dependent, if; potentially overwrites a value still needed by
Thus,I; must not be scheduled befafge

Output dependencies: Two instructionsl; andl, are output dependent, if and I, write their results to the same location
(register or memory cell). Thug; andl, must be scheduled in different control steps.

Additionally, incompatibilityconstraintd; ¢ I, between instruction paifd;, I>) have to be obeyed. These constraints
arise either from processor resource limitations (e.g. only onepliattavailable) or from the instruction format, which may
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prevent the parallel scheduling of instructions even without a resaranflict. In either case, if; % I, thenl; andl, must
be scheduled in different control steps.

The code compaction problem has already been studied in the early eightiestidéticontext ofrery long instruction
word (VLIW) processors, showing a large degree of parallelism at theuictsdn level. A number of different compaction
heuristics have been developed for VLIW machines [73]. However, evegti®DSPs resemble VLIW machines to a certain
extent, VLIW compaction techniques are not directly applicable to PDSRs.rdason is that instruction-level parallelism
(ILP) is typically much more constrained in PDSPs than in VLIWS, becass®y very long instruction words for PDSPs
would lead to extremely high code sizes. Furthermore, PDSP instriseterirequently shoalternative opcodet perform
a certain machine instruction.

As an example, consider the TI TMS320C25 instruction set. This P8R anstructions ADD and MPY to perform
addition and multiplication. However, there is also a multiply-acclateunstruction MPYA, which performs both operations
in parallel and thus faster. Instruction MPYA may be considered as an alterogaiode both for ADD and MPY, but its use
is strongly context dependent. Only if an addition and a multiplicatian be scheduled in parallel for a given dependency
graph, MPYA may be used. Otherwise, using MPYA instead of either ADD BiYMould lead to an incorrect program
behavior after compaction, because MPYA overwrites two registers (PR@@4U} thus potentially causing undesired side
effects.

In addition, code running onf PDSPs in most cases has to meet real-tirsgaints, which cannot be guaranteed by
heuristics. Due to these special circumstances, DSP-specific code compadhioigqties have been developed. In Timmer's
approach [74], both resource and timing constraints are considered dada compaction. A bipartite graph is used to model
possible assignments of instructions to control steps. In impbfeature of Timmer's technique is that timing constraints
areexploitedin order to quickly find exact solutions for compaction problem instan€aemobility of an instruction is the
interval of control steps, to which an instruction may be assignedialbeunds on mobility can be achieved by performing
an ASAP/ALAP analysis on the dependency graph, which accounts for thestatid the latest control step in which an
instruction may be scheduled without violating dependencies. An addiggecution interval analysi®ased on both timing
and resource constraints is performed to further restrict the mobflitystructions. The remaining mobility on the average
is low, and a schedule meeting all constraints can be determined quicklyrapehband-bound search.

Another DSP-specific code compaction technique was presented in [75], &lbachxploits the existence of alternative
instruction opcodes. The code compaction problem is transformed inltateger Linear Programmingroblem. In this
formulation, a set of integesolution variablesaccount for the detailed scheduling of instructions, while all precedences
and constraints are modeled as linear equations and inequations on thensadwiables. The Integer Linear Program is
then solved optimally using a standalver, such as "Ipsolve” [76]. Since Integer Linear Programming is an exponential
problem, the applicability of this technique is restricted to small talerate size basic blocks, which however is sufficient in
most practical cases.

In order to illustrate the impact of code compaction on code quality asaséi cooperation with other code generation
phases, we use a small C program for complex number multiplication asarpte.

int ar,ai,br,bi,cr,ci;

ar * br - ai * bi ;
ar * bi +ai * br ;

cr
ci

For the TI TMS320C25, the sequential assembly code, as generated by teshmigntioned in section 3.3, would be
the following.

LT ar /1 TR ar
MPY br /! PR=TR * br
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PAC /1 ACCU = PR

LT ai /] TR = ai
MPY bi /! PR=TR * bi
SPAC /1 ACCU = ACCU - PR

SACL cr // cr = ACCU
LT ar /1 TR = ar
MPY bi /! PR=TR * bi

PAC /1l ACCU = PR

LT ai /[l TR = ai

MPY br /1l PR=TR * br
APAC /1 ACCU = ACCU + PR

SACL ci [// ci = ACCU
This sequential code shows the following (symbolic) variable accesesequ
S = (ar,br,ai, bi, cr,ar, bi,ai, br, ci)

Suppose, one address register AR is available for computing the mahresses according$o Then, the memory layout
optimization mentioned in section 3.4.2 would compute the follgvaddress mapping of the variables to the address space
[0,5].

Ci
br
ai
bi
cr
ar

g~ WONPF O

We can now insert the corresponding AGU operations into the sequential aad invoke code compaction. The
resulting parallel assembly code makes use of parallelism both withidataepath itself and with respect to parallel AGU
operations (auto-increment and decrement).

LARK 5 // load AR with &ar

LT * /'l TR = ar

SBRK 4 /] AR -= 4 (&br)

MPY *+ /] PR = TR * br, AR++ (&ai)

LTP *+ // TR = ai, ACCU = PR AR++ (&bi)
MPY *+ [/ PR =TR* bi, AR++ (&cr)

SPAC /1 ACCU = ACCU - PR
SACL *+ [/ cr = ACCU, AR++ (&ar)
LT * /'l TR = ar

SBRK 2 // AR-=2

MPY *- [/ PR=TR* bi, AR- (&ai)

LTP *- // TR = ai, ACCU = PR AR - (&br)
MPY *- // PR=TR* br, AR- (&i)

APAC // ACCU = ACCU + PR

SACL * /] ci = ACCU

Even though address computations for the variables have been insegtegkutiing code is only one instruction larger
than the original symbolic sequential code. This is achieved by a hiliratibn of zero-cost address computations (only
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two extra SBRK instructions) as well as parallel LTP instructiondctviperform two data moves in parallel. This would not
have been possible without memory layout optimization and code corapacti

3.6 Phase coupling

Even though code compaction is a powerful code optimization techniglyethendirect coupling of sequential and parallel
code generation phases can yield globally optimal results. Phase-coupleidjtieshinequently have to resort to heuristics
due to extremely large search spaces. However, heuristics for phase-coupdeger®ration still may outperform exact
techniques solving only parts of the code generation problem. Inebttos we therefore summarize important approaches
to phase-coupled code generation for PDSPs.

Early work [77, 78] combined instruction scheduling witkla@a routingphase. In any step of scheduling, data routing
performs detailed register allocation based on resource availability indestme with a partial schedule constructed so far.
In this way, the scheduling freedom (mobility) of instructions cartye not obstructed by unfavorable register allocation
decisions made earlier during code generation. However, significant b#srto be spent for avoidance stheduling
deadlockswhich restrict the applicability of such techniques to simple PDSP t&atires.

Wilson’s approach to phase coupled code generation [79] is also base@gerlhinear Programming. In his formula-
tion, the complete search space, including register allocation, code se)esttbcode compaction is explored at once. While
this approach permits the generation of provable optimal code for blasiksh the high problem complexity also imposes
heavy restrictions on applicability for realistic programs and PDSPs.

An alternative Integer Linear Programming formulation has been gived0in By better taking into account the detailed
processor architecture, optimal code could be generated for small size exéongiesT| TMS320C25 DSP.

A more practical phase coupling technique is Mutation Scheduling [8ating instruction scheduling, a set wiuta-
tionsis maintained for each program value. Each mutation represents an alternatieméntation of value computation.
For instance, mutations for a common subexpression in a DFG may ésladng the CSE in some special purpose register
or recomputing it multiple times. For other values, mutations are géegby application of algebraic rules like commuta-
tivity or associativity. In each scheduling step, the best mutation for ealcle to be scheduled is chosen. While Mutation
Scheduling represents an "ideal” approach to phase coupling, its efficacy britiepends on the scheduling algorithm used
as well as on the number of mutations considered for each value.

A constraint driven approach to phase-coupled code generation for PDSBsasfed in [82]. In that approach, alterna-
tives with respect to code selection, register allocation, and schedulingtaireed as long as possible during code generation.
Restrictions imposed by the processor architecture are explicitly mddethe form of constraints, which ensure correctness
of the generated code. The implementation makes useafstraint logic programmingnvironment. For several examples
it has been demonstrated that the quality of the generated code is equal tiohtwad-avritten assembly code.

3.7 Retargetable compilation

As systems based on PDSPs mostly have to be very cost-efficient, a caughatatge number of different standard ("off-
the-shelf”) PDSPs are available on the semiconductor market at the saeneRiom this variety, a PDSP user may select
that processor architecture which matches his requirements at minimumiacsgige of the large variety of standard DSPs,
however, it is still unlikely that a customer will find a processor itlealatching one given application. In particular, using
standard processors in the form of cores (layout macro cells) for systeraszhip may lead to a waste of silicon area. For
mobile applications, also the electrical power consumed by a standard pmoessbe too high.

As a consequence, there is a trend towards the use of a new class of PDi8Bappdication specific signal processors
(ASSPs). The architecture of such ASSPs is still programmable, loustemized for restricted application areas. A well-
known example is the EPICS architecture [83]. A number of furtherPsS&e mentioned in [52].
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The increasing use of ASSPs for implementing embedded DSP systemsileadsven larger variety of PDSPs. While
the code optimization techniques mentioned in the previous sectigmschiehprove the practical applicability of compilers
for DSP software development, they do not answer the question: Whaviite compilers for all these different PDSP
architectures ? Developing a compiler for each new ASSP, possibly havavg production volume and product lifetime, is
not economically feasible. Still, the use of compilers for ASSPs instéadsembly programming is still highly desirable.

Therefore, researchers have looked at technology for develogiagetable compilets Such compilers are not re-
stricted to generating code for a singgeget processqrbut are sufficiently flexible to be reused for a whole class of PDSPs.
More specifically, we call a compiler retargetable, if adapting the compilenewatarget processor does not involve rewrit-
ing a large part of the compiler source code. This can be achieved byaemal processor modelgVvhile in a classical,
target-specific compiler the processor model is hard-coded in the compilerescode, a retargetable compiler can read an
external processor model as an additional input specified by the user and geoeiafor the target processor specified by
the model.

3.7.1 The RECORD compiler system

An example of a retargetable compiler for PDSPs is the RECORD systéng&oarse overview of which is given in
fig. 25. In RECORD, processor models are given in the hardware desarlptiguage (HDL) MIMOLA, which resembles
structural VHDL. A MIMOLA processor model captures the register tranigivel structure of a PDSPs, including controller,
data path, and address generation units. Alternatively, the puredtistriset can be described, while hiding the internal
structure. Using HDL models is a natural way of describing processowaaegwith a large amount of modeling flexibility.
Furthermore, the use of HDL models reduces the number of different parce®dels required during the design process,
since HDL models can be used also for hardware synthesis and simulation.

Sequential code generation in RECORD is based on the data flow tree (DEE] explained in section 3.3.1. The
source program, given in the programming language DFL, is firstfvamed into an intermediate representation, consisting
of DFTs. The code generator is automatically generated from the HDL procassiel by means of the iburg tool [59].
Since iburg requires a tree grammar model of the target instructionoseg, greprocessing of the HDL model is necessary.
RECORD uses ainstruction set extractiophase to transform the structural HDL model into an internal model ef th
machine instruction set. This internal model captures the behavioedéhbie machine instructions as well as the constraints
on instruction-level parallelism.

During sequential code generation, the code generator generated by meanyg id imed to map DFTSs into target
specific machine code. While mapping, RECORD exploits algebraic rikesdimmutativity and associativity of operators to
increase code quality. The resulting sequential assembly code is fuptiireized by means of memory access optimization
(section 3.4) and code compaction (section 3.5). An experimental evaldatidhe TI TMS320C25 DSP showed, that
thanks to these optimizations RECORD on the average generates sighyifizarger code than a commercial target specific
compiler, however at the expense of lower compilation speed. FurtheyREECORD is easily retargetable to different
processor architectures. If a HDL model is available, then generation of paycgsecific compiler components typically
takes less than one workstation CPU minute. This short turnaroommedgermits to use a retargetable compiler also for
quickly exploring different architectural options for an ASSP, e.gth wespect to the number of functional units, register file
sizes, or interconnect structure.

3.7.2 Further retargetable compilers

A widespread example for a retargetable compiler is the GNU compiler "gc¢” f3Bce gcc has been mainly designed for
CISC and RISC processor architectures, it is based on the assumptiguiafrnerocessor architectures and thus is hardly
applicable to PDSPs.
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The MSSQ compiler [86] has been an early approach to retargetable compilagoiopedDL models, however without
specific optimizations for PDSPs.

In the CodeSyn compiler [57], specifically designed for ASSPs, the tprgegssor is heterogeneously described by the
set of available instruction patterns, a graph model representing th@aldt, and a resource classification that accounts for
special purpose registers.

The CHESS compiler [87] uses a specific language called nML for descrénigetiprocessor architectures. It generates
code for a specific ASSP architectural style and therefore employs specialeoeiation and optimization techniques [88].
The nML language has also been used in a retargetable compiler project at Ca@nce [8

Several code optimizations mentioned in this paper [61, 62, 60, 68 basn implemented in the SPAM compiler at
Princeton University and MIT. Although SPAM can be classified as a retalgetaimpiler, it is more based on exchangeable
software modules performing specific optimization instead of an extergdt processor model.

Another approach to retargetable code generation for PDSPs is the AVIMileof®P], which uses a special language
(ISDL [91]) for modeling VLIW-like processor architectures.

As compilers for standard DSPs and ASSPs become more important anetaiéegompiler technology gets more
mature, several companies have started to sell commercial retargetable cowithlepecial emphasis on PDSPs. Examples
are the CoSy compiler development system by ACE, the commercial velfsibe GHESS compiler, as well as Archelon’s
retargetable compiler system. Detailed information about these recenaspftvoducts is available on the World Wide Web
[92, 93, 94].

4 Conclusions

This paper has reviewed that state of the artin front- and back-end designadion technology for DSP software implemen-
tation. We have motivated a design flow that begins with a high-lévetarchical block diagram specification; synthesizes
a C-language application program or subsystem from this specificatidnthan compiles the C program into optimized
machine code for the given target processor. We have reviewed severdlameputational models that provide efficient
semantics for the block diagram specifications at the front end of thisrd#eig, We then examined the vast space of im-
plementation trade-offs one encounters when synthesizing softwaretiesm computational models, in particular from the
closely-related synchronous dataflow (SDF) and scalable synchronouswd&#DF) models, which can be viewed as key
“common denominators” of the other models. Subsequently, we examivexiesy of useful software synthesis techniques
that address important subsets of and prioritizations of relevamhization metrics.

Complementary to software synthesis issues, we have outlinedatieeaftthe-art in compilation of efficient machine
code from application source programs. Taking the step from asseadytb C-level programming of DSPs demands
for special code generation techniques beyond the scope of classical coeydileolbgy. In particular, this concerns code
generation, memory access optimization, and exploitation of instrulstiet parallelism. Recently, also the problem of
tightly coupling these different compilation phases in order to genexegsdefficient code has gained significant research
interest. In addition, we have motivated the use of retargetable carspithich are important for programming application-
specific DSPs.

In our overview, we have highlighted useful directions for furtbieidy. A particularly interesting and promising direc-
tion, which remains largely unexplored, is the investigation of tikeraction between software synthesis and code generation
— that is, the development of synthesis techniques that explicithhaid@de generation process, and code generation tech-
nigues that incorporate high-level application structure that issegbduring synthesis.
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Figure 2: The top-level block diagram specification of a discrete wavelesfiorm application implemented in Ptolemy [7].
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Figure 3: An illustration of an explicit SDF specification.
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Figure 4: A deadlocked SDF graph.

(1,1,2) (1,0,0) 3

Y ¢3 RS Y ¢3 - -

(@) (b)

Figure 5: CSDF and SDF versions of a downsampler block.
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Figure 6: An example that illustrates the compact modeling of resohiaréng using CSDF. The actor label@denotes a
dataflowfork, which simply replicates its input tokens on all of its output edge® [dtver portion of the figure gives a valid
schedule for this CSDF specification. Herg, and A, denote the first and second phases of the CSDF actor
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Figure 7: The SDF version of the specification in fig. 6.
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Figure 8: An example that illustrates the utility of cyclo-statitaflow in constructing hierarchical specifications. Grouping
the actorsA and B into the hierarchical SDF actét, as shown in (b), results in a deadlocked SDF graph. In contrast, an
appropriate CSDF model of the hierarchical grouping, illustrated irafa)ids deadlock. The two phases of the hierarchical
CSDF actof' in (c) are specified in the lower right corner of the figure along with ahsdhedule for the CSDF specification.
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Figure 9: An example of the use of CSDF to decrease buffering requitsmen
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Figure 12: A simple example that we use to illustrate trade-offslired in compiling SDF specifications.
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Figure 13: An example that we use to illustrate ftig.; metric.

Figure 14: This example illustrates that minimizing actor activatoiwes not imply minimizing actor appearances.
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Figure 16:Compilation phases

int a, b,c,d, x,y,z;

void f()

{

X = a b;

y = a b- ¢ * d;
zZ =c* d;

Figure 17:Example C source code
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Figure 22:Address generation unit

LOADAR,1 b LOAD AR, 3 b LOADAR,3 b
AR +=2 d AR -- d AR -- d
AR-=3 a AR -- a AR - a
AR +=2 c AR -- c AR -- c
0| _a | AR++ d 0L ¢ | AR+=2 0l c LOAD MR, 2
1. b | AR=3 a 11 a | AR-- a 1l a AR+=MR d
2| ¢ AR +=2 c 2| d | AR~ c 2| d AR - a
3[ d AR - b 3 b AR += 3 b 3 b AR - c
AR -- a AR -=2 a AR +=3 b
AR +=3 d AR ++ d AR -=MR a
AR-=3 a AR -- a AR ++ d
AR +=2 c AR -- c AR -- a
cost:9 AR d cost:5  AR*=2 d cost: 3 QS += MR q
a) b) c)

Figure 23:Alternative memory layouts and AGU operation sequences
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Figure 24:Access graph model and maximum weighted path

43



MIMOLA HDL
processor model

instruction set
extraction

code generator

generation with iburg
sequential code

generation

DFL source program

mapping to DFTs

sequential
assembly code

memory access optimization
code compaction

parallel assembly code

Figure 25:Coarse architecture of the RECORD system
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