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Recent experimental work in neurobiology has defined asymmetries and lateralization
in the topographic maps found in mirror-image regions of the sensorimotor cerebral cortex.
However, the mechanisms underlying these asymmetries are currently not established, and
in some cases are quite controversial. In order to explore some possible causes of map asym-
metry and lateralization, several neural network models of cortical map lateralization and
asymmetries based on self-organizing maps are created and studied both computationally and
theoretically. Activation levels of the elements in the models are governed by large systems of
highly nonlinear ordinary differential equations (ODEs), where coefficients change with time
and their changes depend on the activation levels. Special metrics for objective evaluation of
simulation results (represented as paired receptive field maps) are introduced and analysed.
The behavior of the models is studied when their parameters are varied systematically and
also when simulated lesions are introduced into one of the hemispheric regions. Some very
sharp transitions and other interesting phenomena have been found computationally. Many
of these computationally observed phenomena are explained by theoretical analysis of total
hemispheric activation in a simplified model. The connection between a bifurcation point
of the system of ODEs and the sharp transition in the model’s computational behavior is
established. More general understanding of topographic map formation and changes under
various conditions is achieved by analysis of activation patterns (i.e., w-limit sets of the above
system of ODEs). This is the first mathematical model to demonstrate spontaneous map
lateralization and asymmetries, and it suggests that such models may be generally useful in
better understanding the mechanisms of cerebral lateralization. The mathematical analysis
of the models leads to a better understanding of the mechanisms of self-organization in the
topographic maps based on competitive distribution of activation and competitive learning.
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Chapter 1

Introduction

1.1 Motivations

The human brain consists of two hemispheres, and in most people one hemisphere can
perform better on some tasks than the other. This is called hemispheric specialization. For
example, usually the left hemisphere is dominant /specialized for control of hand movements
(which is why most people are right handed, since each hemisphere controls the opposite side
of the body) and for language. Conversely, the right hemisphere is dominant/specialized
for facial expression and processing of spatial information. The term lateralization refers
to one hemisphere being more specialized for a specific task than the other, as in these
examples. Its causes and mechanisms are not well understood and are a subject of active
research. Possible causes of lateralization include some anatomical asymmetries of the two
hemispheres, biochemical differences, and the influence of the bundle of fibers connecting the
two hemispheres, the corpus callosum. Whether the callosal influence is mostly excitatory
(positive) or inhibitory (negative) is also not clear. Fig. 1.1 (taken from the online Webster
dictionary [137]) shows one hemisphere of a split human brain, including the cross-section
of corpus callosum. Better understanding of the causes, mechanisms and effects of brain
lateralization can be very useful for biomedical applications, medicine, robotics, and other
areas.

This dissertation focuses on studying a mathematical model of some aspects of the cere-
bral cortex as a means of obtaining a better understanding of some hypothesized causes of
lateralization. The cerebral cortex is the convoluted layer of gray matter over the outside
of the cerebral hemispheres (see Fig. 1) [1]. The cerebral cortex is the part of the brain
most closely associated with cognition (language, memory, etc.). Of direct relevance to the
research described here is that several sensory and motor maps are found across the surface
of the cerebral cortex. Cortical maps are the parts of the cerebral cortex that represent some
aspect of the environment in a topology-preserving fashion. Figure 1.2 (taken from [59])
shows schematically primary sensory and motor maps in the human brain. Every part of
human body surface is represented in corresponding regions of sensory and motor cortex. For
each body part this representation is continuous, but different parts take up different areas
of cortex. Areas of cortex corresponding to hands and face, especially lips, are relatively
large, while the areas representing body trunk are quite small. Stimulation of a particular
body part will activate corresponding somatosensory cortex region, and activation of a motor



Figure 1.1: Human brain viewed medially after vertical midline sectioning: 1 cerebral hemi-
sphere, 2 corpus callosum, 3 ventricle, 4 fornix, 5 thalamus, 6 pituitary gland, 7 pons, 8
medulla oblongata, 9 spinal cord, 10 cerebellum, 11 midbrain. Picture taken from [137].

cortex region will cause muscle contraction in the corresponding body part.

The goal of this research is to create a neural model of cortical map lateralization and
asymmetry and to use it to examine possible causes and mechanisms of lateralization and the
role of corpus callosum, both in the intact model and during recovery from a lesion (damage).
Past work on understanding brain lateralization has largely focused on empirical research
involving humans and animals. The concept of using mathematical/computational models
of hypothesized mechanisms of lateralization is relatively new, and while some work has been
done (see Chapter 2), this field is in its infancy. The intent is that the kind of theoretical
work described here will complement experimental work on lateralization (which remains,
after more than a century, very active) by critically examining in detail the implications of
theories about its underlying mechanisms.

1.2 Accomplishments

This thesis describes a study with recurrently-connected neural models consisting of two
hemispheric regions interacting via a simulated corpus callosum. The models are intended
only as an abstract representation of two interacting cortical regions. The goal is to examine
how these regions might influence map formation in one another. While the models are sim-
plified from reality, they do capture some important neurobiological constraints: the model
hemispheric regions have a spatial organization, their interconnections are roughly homotopic
(each element is connected to the symmetric one and its neighbors), and they self-organize
using unsupervised (Hebbian) learning. Activations of individual elements (of which the
hemispheric regions are comprised) are governed by coupled nonlinear ordinary differential
equations (ODEs), where coefficients (called weights) change with time and their changes
depend on the activation levels. Simulation results are represented as pairs of receptive field
maps. Special measures are introduced for numerical evaluation of the map organization,
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lateralization, and mirror symmetry. Mathematical properties of those measures are proved.

Systematic variations of the models were studied through computer simulations. With
each simulation the underlying assumptions about cortical region asymmetry and callosal
excitatory/inhibitory strength were varied, and conditions resulting in map asymmetries were
determined. The initial hypotheses were that map lateralization and asymmetries would arise
from all of the underlying hemispheric asymmetries that were examined (cortical region size,
excitability, plasticity, etc.), and that map lateralization and asymmetries would gradually
occur as callosal connections became progressively more inhibitory. The actual situation
proved to be more interesting, with only some factors causing persistent lateralization, and
the existence of a sharp transition between callosal strengths leading to lateralization.

Many of these computationally observed phenomena are explained by theoretical analysis
of total hemispheric activations in a simplified model. The connection between a bifurcation
point of the system of ODEs and the sharp transition in the model’s computational behavior
is established. More general understanding of topographic map formation and changes under
various conditions is achieved by analysis of activation patterns (i.e., w-limit sets of the above
system of ODEs). It is shown how the activation patterns forming in the cortical regions at
the beginning of training can predict the map organization after training. Factors affecting
the activation patterns are also discussed.

This is the first mathematical model to demonstrate spontaneous map lateralization and
asymmetries, and it suggests that such models may be generally useful in better understand-
ing the mechanisms of cerebral lateralization. The mathematical analysis of the models leads
to a better understanding of the mechanisms of self-organization in the topographic maps
based on competitive distribution of activation and competitive learning.

1.3 Overview

Chapter 2 provides some general background information on brain lateralization, cortical
maps and their neural models, and then describes the S1 simulator which was used as a
basis for the model in this study. Lateralization and asymmetries in the brain have been a
subject of research in biology, psychology, cognitive science, and other disciplines for over
a century. However, computer models of this phenomenon have appeared only recently
and are very limited. Since this study deals with models of cortical maps, a brief review
of previous models of cortical maps is also given. The S1 simulator is described in detail,
including its architecture, connectivity, activation and learning rules, as well as visualization
and interpretation of its results using a special software package tmap.

Chapter 3 describes a new model called 52 simulator, including its architecture, connec-
tivity, activation dynamics, and learning rule. The model consists of two cortical regions
interconnected by a simulated corpus callosum and receiving input from a single input layer.
Activation levels of cortical elements (of which the cortical regions consist) are governed
by a large system of nonlinear ODEs. The weights on connections from the input layer to
the cortical regions (which serve as coefficients in the above system of ODEs) are initialized
randomly and then change periodically based on the cortical activations. These changes are
called learning. The chapter also explains how the numerical simulations were organized and



their results evaluated. The approach similar to the one used for the S1 simulator allows a
quick qualitative estimate of map formation and lateralization. However, objective quantita-
tive estimates are needed for a systematic study of simulation results with the S2 simulator.
Metrics for objective topographic map organization, lateralization and mirror symmetry are
introduced, and their properties analyzed. The metrics estimate map organization for each
individual cortical region, lateralization and mirror symmetry for map pairs. Important
mathematical properties of the metrics are proved.

Chapter 4 presents simulation results for a symmetric S2 model as well as for several cases
when some asymmetries have been introduced into the model. For each model asymmetry
dependence of map organization, lateralization, and mirror symmetry on callosal influences
are studied systematically. Analysis of the results shows that not all asymmetries cause
lateralization, and for most model variations there are sharp transitions in organization,
lateralization and mirror symmetry values as functions of the callosal strength.

Chapter 5 contains results of the lesioning simulations and some analysis of them. Lesions
are used to model the effects of brain damage resulting from an accident or a stroke. Lesions
are introduced into the model by clamping activation levels for some cortical elements to
zero. The effects of lesions on map formation are studied both acutely (immediately after
the lesion) and chronically (after a retraining period), again for excitatory and inhibitory
callosal connections. The effect of diaschisis (reduction in activation of the other hemisphere
after a unilateral lesion) is observed with an excitatory corpus callosum. But participation
of the other hemisphere in recovery after the lesion is mostly pronounced with inhibitory
interhemispheric connections.

Chapter 6 presents another bihemispheric model of cortical maps called the S4 simulator.
This model uses the same activation and learning rules as the S2 simulator but allows
independent inputs to the two cortical regions from the contralateral sensory surfaces. This
is closer in architecture to much of real primary sensory cortex. The model allows two
different ways of computing receptive fields, and also the overlap of training inputs sent
to the two cortical regions can be controlled. The effects of different degrees of training
input overlap are studied, along with the effects of varying callosal influences on the map
formation in the presence of various model asymmetries. Simulation results show that the
most interesting phenomena occur when the training inputs are kept symmetric, so that the
model is equivalent to the S2 simulator. This gives support to the previous model.

Mathematical analysis of the above (and some other) models is given in Chapter 7.
First, it describes the results of theoretical analysis of the S1 simulator and similar models
obtained by previous researchers. Then it explains the sharp transitions demonstrated in
Chapters 4 and 6, and helps to understand better the topographic map formation in the
models. For a slightly simplified S2 model, a system of linear ordinary differential equations
(ODE) for total hemispheric activations is obtained and analysed. In most cases the system
has one fixed point, which is asymptotically stable for excitatory and slightly inhibitory
callosal connections, and asymptotically unstable for strongly inhibitory connections. The
explanation of the effects of this change on map formation is given. Deeper analysis of
activation patterns helps to explain some cases not explained by the first approach. It is
shown how activation patterns observed in the cortical regions in the beginning of training
can predict weight and map organization after training, and how the activation patterns



depend on model parameters.

Chapter 8 contains concluding remarks and suggestions for future work in this area.



Chapter 2

Background

To place the research in this dissertation in the context of related previous work, a brief
summary of several issues is given. The experimental work on hemispheric asymmetries and
lateralization that motivates this modeling is described, and some previous mathematical
models of lateralization and cortical maps are characterized, establishing the novelty of the
results presented here.

2.1 Hemispheric Asymmetries and Lateralization

Several behavioral cerebral asymmetries exist in humans, e.g., unilateral hemispheric dom-
inance for language tasks, handedness, visuospatial processing, emotion and its facial ex-
pression, olfaction and attention [59, 120, 104, 36]. Much of the evidence for such qual-
itative and quantitative asymmetries came from studies of deficits in stroke and trauma
patients, from special procedures applied to normal subjects and “split-brain” patients fol-
lowing commisurotomy [46], and from functional imaging studies of higher cortical functions
and perceptual tasks [25]. There is enormous plasticity of the brain with respect to func-
tional asymmetries. For example, left hemispherectomy in infants can result in the right
hemisphere becoming remarkably skilled in language functions [39].

A distinction relevant to this research is that between individual and population lateral-
ization. Individual lateralization refers to the fact that a specific function is asymmetrically
supported by the two hemispheres. Population lateralization refers to the fact that not only
is individual lateralization of a function occurring, but the lateralization tends statistically
to favor one hemisphere over the other in a population. In this study we are concerned
exclusively with individual lateralization.

While the above hemispheric specializations are well known, their underlying causes
are not well understood. Some potentially relevant factors include hemispheric anatomical
asymmetries [48, 81], higher-order dendritic branching [114], the ratio of gray matter to
white matter [53], important neurotransmitters such as dopamine and norepinephrine [126],
and the threshold for motor evoked potentials [82].

Another potential factor is hemispheric interactions via the largely homotopic connec-
tions of the corpus callosum [66, 98]. It is unclear at present whether the predominant
influence of the corpus callosum is excitatory or inhibitory. For example, an excitatory in-



fluence is suggested by the cellular components involved (mainly pyramidal cell to spiny
cell connections that are presumably excitatory), transcallosal diaschisis, and split-brain
experiments [66, 134]. An inhibitory influence is suggested by the occurrence of lateraliza-
tion, directly measured inhibitory transcallosal effects, and transcranial magnetic stimulation
studies [34, 72, 125, 45, 87].

While lateralization and functional cortical asymmetries have been most prominently
associated with higher cortical functions (language, spatial information processing, etc.),
it has recently been demonstrated electrophysiologically that topographic maps in primary
sensory and motor cortex also exhibit a rich range of patterns of individual lateralization
and asymmetry [17, 92]. Topographic cortical maps are regions of the cortical surface that
represent some aspect of the environment (visual space, body surface, etc.) in a topology-
preserving fashion. In other words, they literally form detailed, two-dimensional mappings
of various sensory input or motor output spaces [70, 127].

In one recent study with more than 100 animals, it was found that somatosensory, au-
ditory and visual map asymmetries are almost always present in an individual animal’s
primary sensory cortex, even in the context of bilateral stimuli [17]. These map asymmetries
were classified as qualitative (complete lateralization; 40% of animals), quantitative (par-
tial lateralization; 30%), topographic (no lateralization but asymmetric spatial distributions
or mosaic patterns; 10%), and quantitative-plus-topographic (lateralization and asymmet-
ric spatial distribution; 20%). The dependence of asymmetries on callosal connectivity was
shown by the fact that callosal sectioning generally caused a partial or complete loss of map
asymmetries. Figure 2.1 (from [17]) illustrates direct and inverse dominance zones in several
sensory regions of cortex.

In another series of experiments with six adult squirrel monkeys, detailed primary motor
cortex forelimb maps were found to be both larger and more complex in the hemisphere
opposite the preferred hand [92]. The causes of these map asymmetries are not known.

2.2 Past Computational Models

Neural models are a promising approach for developing a theoretical understanding of brain
function and its disruption by stroke. In recent years neural models have increasingly been
adopted to study neurological, neuropsychological and psychiatric disorders, with two in-
ternational meetings being held on this subject at the University of Maryland since 1995
[108, 110].

2.2.1 Previous Neural Models of Hemispheric Interactions

While there have been many previous neural models of cerebral cortex, very few have exam-
ined aspects of hemispheric interactions via callosal connections. One model demonstrated
that oscillatory activity in one hemisphere could be transferred to the other via interhemi-
spheric connections [3, 4]. Another demonstrated that inhibitory callosal connections pro-
duced slower convergence and different activity patterns in two simulated hemispheres [35].
Additionally, a pair of error backpropagation networks were trained to learn a set of input-
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Figure 2.1: The topography of direct and inverse dominance zones in different cortical areas
in cats before (a) and after (b) corpus callosum section. 1,2 — direct and inverse dominance
zones; [ — visual, Il - auditory, III - sensorimotor cortical areas. All pictures display

mosaic patterns. This picture is taken from [17].



output associations simultaneously, and it was shown that slow interhemispheric connec-
tions were not critical for short output times [112]. None of these previous neural models
of hemispheric interactions examined the central issues in this research: lateralization of
functionality through synaptic weight changes (learning), and the interhemispheric effects of
simulated focal lesions. None of these past models incorporates the spatial organization of
neocortex in their structure, the networks being fully /randomly connected (e.g., there could
be no concept of cortical maps or focal lesions in these models). Other studies have related
simulation results to their implications for lateralization, but did not actually model two
hemispheric regions interacting via callosal connections [75, 24]. A recent mixture-of-experts
backpropagation model examined how unequal receptive field sizes in two networks could
lead to their specialization for learning spatial relations, but did not incorporate callosal
connections or represent cortical spatial relationships [67].

Finally, there has been one symbol processing model of lateralization [76]. This model is
neither a neural model nor a brain model. It does not demonstrate spontaneous lateralization
of functionality (i.e., it starts with assumed partial lateralization), does not examine the
interhemispheric effects of focal lesions, and does not represent cortical structure at all.

Thus, these past studies have generally not looked directly at how lateralization or asym-
metry of functions can arise spontaneously. An exception is a couple of recent computational
models developed in our research group in parallel with this study: of single word reading
lateralization [109] and of letter identification by left and right simulated visual cortices [115].
In contrast to the work described in this dissertation, these were supervised learning models
and they did not consider map lateralization.

2.2.2 Previous Models of Cortical Maps

Several neural network models of cortical maps have been described in the literature. None
of these models involves multiple maps interacting via callosal connections, nor do they
examine issues of lateralization or map asymmetry.

Von der Malsburg’s model

One of the first computational models of cortical maps is the model of line orientation feature
cells in visual cortex by von der Malsburg [129]. His model produces clusters of cortical cells
that respond to similarly oriented input lines as a result of learning. Von der Malsburg
showed that orientation sensitive cells develop when competitive learning was used. At the
time, this was a major advance over previous thinking that genetically-predetermined, fixed
strength connections are necessary to generate orientation sensitive cells [63].

Von der Malsburg’s model simulates certain neurons found in cat and monkey primary
visual cortex (area 17) [63, 64]. These neurons are selectively sensitive to line orientations,
respond in clusters to stimuli, and form a computational map with respect to the ordering
of the orientations of the visual line stimuli. His network had random weights initially
and was trained using a competitive learning rule. This self-organizing network has the
advantages of needing far less genetically encoded information for its construction, a high
initial degree of plasticity, and an ability to adapt to a changing environment at any stage

10



in its development. The initial plasticity is necessary to explain studies with young kittens
where their visual cortical behavior was clearly affected by their environment [61, 20, 21].
The ability to continuously adapt has obvious advantages and seems to occur in mammalian
sensory cortical maps [68].

Kohonen’s Self-Organizing Maps

Kohonen has done extensive research on the principles of map formation in artificial neural
networks [74]. He showed that only a few basic principles are necessary for topographic map
formation. The most basic ingredient is a two-dimensional layer of nodes with a neighborhood
relationship which is usually defined in terms of lateral connectivity between the nodes. This
can sometimes be viewed as a tessellation of a two-dimensional surface with the nodes at the
vertices. The neighborhood relationship is important because the definition of a topographic
map is that neighboring nodes must have similar responses to input stimuli. In other words,
neighboring map nodes must have similar receptive fields (a node’s receptive field is a region
of a sensory surface in which input stimuli elicit a response in the node), and that similar
input stimuli generate similar responses in the output layer. The second ingredient is an
activation rule for the output-layer nodes which generates similar responses for a node when
that node is presented with similar input stimuli. The third ingredient is a learning rule
which enables neighboring nodes to learn to have similar responses to input stimuli. The
fourth ingredient is a lateral interaction mechanism among neighboring nodes which forces
them to learn to have similar responses to input stimuli. The last ingredient, which is
only necessary in order to have a globally consistent topographic map, is a mechanism for
smoothing out the topographic map between local neighborhoods.

In order for a learning rule to insure that output-layer nodes have similar responses to
similar input stimuli, a measure of similarity for input stimuli must be defined. The two most
common measurements of similarity for vector stimuli are the Euclidean distance between
the vector endpoints and the angle between the vectors as measured by the normalized dot
product. The activation rule must insure that for each node similar input stimuli produce
similar responses. The learning rule must insure that a node which learns for a given input
stimulus will in the future be more responsive to similar input stimuli and less responsive to
dissimilar input stimuli. Thus, a node must learn for the input stimuli to which it responds.

In order to have a topographic map, neighboring nodes must have similar responses to any
given input stimulus. To achieve this, neighboring nodes must have similar incoming weight
vectors which is accomplished by having neighboring nodes learn for highly overlapped sets
of input stimuli. Excitatory lateral connections between neighboring cortical nodes can help
them to learn for many of the same input stimuli, so their incoming weight vectors become
similar.

The Biologically Oriented Models of Pearson, Grajski, Obermayer

The Pearson model is constructed of two two-dimensional layers: an input layer representing
the hand, and an output layer representing a portion of S1 somatosensory cortex [101].
Nodes in the hand layer project in a divergent but topographically ordered fashion to the
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cortical layer. Nodes in the cortical layer model actual neurons, excitatory and inhibitory.
The excitatory cortical nodes are the only ones receiving direct input from the land layer,
inhibitory cortical nodes provide indirect lateral inhibition between the excitatory cortical
nodes. The spread of activation is governed by a typical noncompetitive activation rule, but
the learning rule is essentially competitive.

In the Pearson model the hand layer is subdivided into glabrous and dorsal regions, each
cortical node receives connections from both types of regions. There is also learning on the
excitatory connections between cortical nodes. The network is trained with small contiguous
rectangular patches. Tight, stable clusters of cortical nodes tend to form after training. The
model is able to account for experimental data that shows intermingled glabrous and dorsal
cortical regions.

The Pearson model is able to show some topographic map refinement with training, and
map reorganization in response to repeated finger stimulation. One of the drawbacks of
the Pearson model is that topographic map formation is not measured or plotted in a very
accurate way.

The Grajski model focuses on accounting for the “inverse magnification rule”, which
states that there is an inverse relationship between cortical magnification and receptive field
size [52]. The cortical magnification of a skin region is the area of the cortical region which
responds to the stimulation of a unit area of skin within the given skin region. The receptive
field size of a cortical neuron is the area of the skin region which, when any portion of
that skin region is stimulated, causes the cortical neuron to alter its response/activation
level. The model shows how the dynamic instances of the inverse magnification rule can be
accounted for with learning.

The Grajski model is similar to the Pearson model in structure and connectivity, but the
hand layer is not divided into glabrous and dorsal regions, and there is an additional inter-
mediate “subcortical” layer. The subcortical layer is used to increase the area of projection
from the hand layer to the cortical layer and to allow the subcortical layer to dynamically
affect the cortical inputs. The model uses a typical noncompetitive activation mechanism
and a version of competitive learning. Again, no accurate plot of the detailed structure of
the topographic map is provided.

The Grajski model is used to perform three types of simulations: topographic map refine-
ment, topographic map reorganization due to repetitive finger stimulation, and topographic
map reorganization due to a focal cortical lesion. The model maintains the inverse magni-
fication rule for both topographic map reorganizations. However, in order for the model to
achieve map reorganization after a focal cortical lesion, Grajski and Merzenich have to resort
to randomizing all remaining weights and enhancing cortical excitation, so the reorganization
i1s not spontaneous.

The Obermayer model [93] is a more general noncompetitive activation model explicitly
based on the work of Kohonen. It has full connectivity between its two layers: hand layer
and cortical layer. That allows greater flexibility for topographic map formation, but the
absence of an initial coarse map makes learning more difficult.

A major weakness of Kohonen topographic networks in general, and the Obermayer model
in particular, is the reliance on so called “shortcuts” (global operations) in place of actual
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activation dynamics. Another weakness for brain modeling is that the required full connec-
tivity between the input and output layers is not neurophysiologically plausible. For the
Obermayer model, an output (cortical) node is designated the “winner” for a specific input
stimulus if the dot product of the input vector and the winner’s incoming weight vector is the
largest dot product of the input vector with each of the input nodes’ incoming weight vectors
(note that this is a global, neurophysiologically-implausible operation). Lateral connections
are then postulated (but not implemented) that would generate a Gaussian activation re-
sponse of fixed amplitude and width (the width also slowly decreases with time) regardless
of the actual inputs to the cortical nodes. No activation dynamics are given or modeled to
account for this response behavior; the desired activation levels are simply instantiated in
the cortical layer. This places a heavy burden on the postulated global lateral interactions
for which no implementation has ever been demonstrated. The Gaussian activation response
might be a reasonable approximation of a localized central-excitation, peristimulus-inhibition
response, which has been implemented with lateral excitatory and inhibitory interactions,
but the very large initial width and the slow decrease in width over time of the Gaussian
activation response have yet to be implemented with lateral interactions. Regardless of these
modeling approximations, results from Kohonen topographic networks still provide intuition
for analyzing realistic models of topographic neural networks.

The Obermayer model also generalizes the Kohonen plotting technique for topographic
maps in a way very similar to the plotting techniques developed for the competitive activation
S1 model (described in section 3.1). The Obermayer model plots the center of each cortical
node’s incoming weight vector as a point and connects the points of neighboring cortical
nodes with lines. The Obermayer model also calculates a weighted width of the cortical
nodes’ incoming weight vectors similar to the competitive activation S1 width definition, but
does not plot these widths as is done for the competitive activation S1 model. The Obermayer
model shows that, when contiguous patches are used as input, complete topographic map
formation often takes place but that sometimes topographic defects in the map are present.
The defects are a result of local conflicts in the map which are not smoothed out by the
initial global processing. The Obermayer model uses both analysis and simulations to show
that the width of cortical nodes’ incoming weight vectors (and correspondingly the size of
their receptive fields) is proportional to both the size of the input patches and the final size
of the central-excitation activation response.

Other Recent Models of Cortical Maps

A self-organizing model of motor-control and sensorimotor maps was developed and studied
recently [31, 30]. The maps developed clusters of elements responsible for each of the six
“muscles” of a simulated arm. The alignment of clusters and their reorganization after a
simulated lesion were studied both computationally and analytically. But this work didn’t
consider topographic maps or lateralization.

Finally, a self-organizing model of topographic maps (S1 simulator) using competitive
distribution of activation was developed by Sutton, Reggia, and others [123, 124]. In contrast
with the models described in this thesis, the S1 model has a single cortical region. It is the
subject of the next section.
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Figure 2.2: Internal structure (hexagonal tessellation) of the sensory surface and the cortical
region. Each vertex represents a node. Each node’s six nearest neighbors are equidistant.

2.3 S1 Simulator

The Neural Modeling group at the Department of Computer Science at UMCP has developed
an artificial neural network model of topographic maps which has been shown to reproduce
not only map refinement from initial very coarse topographic representation, but also map
plasticity exhibited under certain conditions, such as repetitive stimulation of a small area
or lesions of sensory' or cortical regions [5, 6, 33, 123, 124, 133]. The model (called the S1
simulator) is built on the ideas of self-organization, competitive distribution of activation
and competitive learning. The bithemispheric models studied in this dissertation are based
in part on extending ideas from the S1 simulator, so it is described in detail here (following

[123]).

The competitive activation S1 model is a crude representation of a portion of the sen-
sory surface and primary somatosensory (body sensation) cortex. The model assumes the
existence of a coarse initial topographic map from the sensory surface to the cortex (due to
limited topographic connectivity between the sensory surface and the cortex). This initially
coarse map is then tuned by training the model with various inputs. The resulting well-tuned
topographic map becomes smooth and regular.

2.3.1 Connectivity

The model consists of two separate layers of nodes representing the sensory surface and the
cortex. The input layer has no lateral connections and is assumed to have a well-defined
topographic organization with respect to the sensory inputs. However, input nodes are more
than just relays because they competitively distribute their output, and the weights from
sensory to cortical nodes are adaptive. The cortical layer is treated as a two-dimensional
sheet of nodes which are connected laterally in a regular fashion (Fig. 2.2). All cortical
nodes have similar cortico-cortical and sensory-cortical connections. This is accomplished
by connecting together the opposite edges of the two-dimensional cortical sheet to form a

!Technically this was viewed as representing the thalamus, a sensory way station along the afferent
pathway from body surface to cortex [124]. For simplicity, I will refer to this layer consistently as the
“sensory layer” or “input layer” in the following.
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torus, which is done to eliminate edge effects. The cortical nodes represent cortical columns;
a cortical column being a group of cooperating cells within a small volume element in cerebral
cortex.

The competitive activation S1 model has two kinds of connections: sensory-cortical and
cortico-cortical. Each input node sends connections to a different topographically defined
subset of the cortical nodes (Fig. 2.3). Each cortical node sends connections to its six nearest
neighbors (Fig. 2.2). All connections in S1 model are excitatory and competitive.

Cortex
(out

Conn%,ti o7é with weights

Sensory Surface
(inputlayer)

Figure 2.3: Topographical projection of sensory-cortical connections from one input node
in the sensory surface to the cortical layer in the S1 simulator. Each sensory node sends
activation to the corresponding cortical node and its neighbors within a certain radius. The
weights on connections from the sensory surface to cortex change during learning.

Using the same number of nodes and the same hexagonal structure for sensory and
cortical layers produces a one-to-one correspondence between input and cortical nodes and
allows the use of a notion of “hexagonal radius”. An input node normally connects to its
corresponding cortical node and its neighbors within hexagonal radius of 4. The weights
on these connections are initialized randomly: with probability 1/2 a weight is assigned the
minimum weight value (0.0001); otherwise, the weight is randomly chosen with a uniform
probability from the range between the minimum and maximum weight values. Fach cortical
node connects to its neighbors at hexagonal radius 1, and the weights on these connections
are assumed to be equal.

2.3.2 Activation Rule

Competitive distribution of activation was first described in [105]. Its essence is described
below.

The update rule chosen for the competitive activation S1 model is designed to keep the
activation level bounded between zero and a specified maximum value Maxz. The activation
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a; of cortical node j is governed by the differential equation

d .
Eaj(t) = c,ai(t) + (Max — a;(t))in;(t) (2.1)

where ¢ is a self-connection constant (usually negative, also called self-inhibition); the out-
puts of sensory nodes, via the weighted afferent connections, as well as the outputs of
other cortical nodes, via intracortical connections, are included in the in;(t) term: in;(t) =
> outsi(t) + 3", outey;(t). The activation of sensory node j is also determined by (2.1), but
for sensory nodes the in;(t) term only represents the input from sensory receptors.

The output dispersal rule for S1 model sensory surface is

iy — e [ wi®lat) +q)
outsiilt) = p(zkwmw(ak(mq)) ) (22)

where the constant ¢ is a small positive number which serves two purposes: it varies the
competitiveness of the output rule and prevents the denominator in (2.2) from ever being
zero, even when all ai(t) are zero. For the cortex the output dispersal rule is similar, but
since all weights on lateral connections between nearest neighbors are equal, we have:

B o) +q \
OUtC]‘Z'(t) = Cf (—Zk(ak(t) I q)) Z(t) (23)

2.3.3 Unsupervised Learning

Learning in the Neural Networks usually proceeds by updating weights on connections be-
tween elements and falls into one of the three categories: supervised learning, reinforcement
learning, and unsupervised learning. The term “supervised learning” refers to the situation
when a neural network must learn a number of given input-output pairs, and then it can
generalize by finding an appropriate output for a new input. Reinforcement learning happens
when the network’s response to each input receives some kind of a grade, but no correct out-
put is specified. Finally, unsupervised learning (often also called self-organization) means
that a network must discover some features or categories in the data it receives and find
an appropriate output for each input without any additional information (i.e. without a
“teacher”).

The S1 simulator uses unsupervised learning for map formation. One way of implement-
ing unsupervised learning is Hebbian learning. The term “Hebbian learning” refers to a
method which increases the weights on connections between active elements. It is based on
the hypothesis by Hebb [56] that in a real brain a connection between two firing neurons
gets stronger. This method works well, but has one serious drawback: it allows weights to
grow without bounds. There are several modifications of the method, intended to keep the
weights bounded, including Oja’s rule [95], Linsker’s, Yuille’s, and others [60].

Competitive learning rule [60, p.220] increases the weights between active input and
output elements and decreases the weights on connections from inactive input to active
output elements, so that the entire weight vector remains normalized in some norm.
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Input stimuli in the form of hexagonal patches of radius 1 with centers located randomly
on the sensory surface are used to drive the self-organization. Input stimuli are induced on
the thalamic layer by providing input to specific sensory nodes. Since there are no lateral
connections in the sensory layer, this leads to activation of only the nodes receiving positive
input, i.e. the nodes in a hexagonal patch of radius 1. Input stimuli of larger radius are also
possible.

After the activation in both layers converges to a stable distribution, sensory-cortical
weights are updated according to the competitive learning rule

Awﬁ = e(ai — w]‘i)a]‘ (24)

where ¢ is the learning rate.

Initially, a randomly generated incoming weight for each cortical node is normalized so
that 3, w;; = 7, provided that input patches of radius 1 are used. Then, after an update
according to (2.4), the total change in the incoming weight for the cortical element j is

ZAwﬂ—eZ a; — wj;)a —ea]Zaz Zwﬂ ca;(T=T7)=0 (2.5)

Thus, the weights remain normalized.

2.3.4 Receptive Field Calculation and Representation

The receptive field of a cortical element is the set of sensory elements that, when stimulated,
affect that cortical element’s activation. In order to study and visualize topographic map
formation in S1 model the following quantitative approach to evaluating receptive fields was
used by Sutton [123]. A cortical node’s receptive field is defined to be that node’s responses
to the sensory point stimulus set (which is taken to accurately reflect the topography of the
sensory surface). This is measured by a procedure where every sensory node is stimulated,
one node at a time using an input of 1.0, and the cortical response is recorded.

In order to compute the center and width of the receptive field, the sensory point stimuli
are given explicit x, y coordinates. The uniform tesselation of the cortical layer and the
fact that the input layer has a one-to-one correspondence with the cortical layer imposes a
relative coordinate system on the sensory nodes. The distance between nearest neighbors
is defined to be one “unit”. The coordinates are always assigned so that the sensory node
corresponding to the cortical node whose receptive field is being computed is at the origin.
The z-axis is aligned so that one of the nearest neighors of the node has coordinates (1,0).
The following formulas are used to determine the center, width in the  dimension, width in
the y dimension, and the total response of the receptive field for cortical node j:

tr; = Zaﬁ , (2.6)

17



Zwia]‘i Jtri,  cy; = Zyiajz’ /trj (2.7)

ray = Y (i —cxp)2ay ) [try . vy = | D (v — cyy)Pagi | [trg (2.8)

7 7

where a;; is the activation level of cortical node 57 when a point stimulus is applied at sensory
node ¢, {r; is the total response of cortical node j summed over all of the sensory point
stimuli, #; and y; are the coordinates of sensory node ¢, cx; and cy; are the coordinates for
the center of cortical node j’s receptive field, and ra;, ry; are the horizontal and vertical
“radii” of cortical node j’s receptive field. The coordinates of the receptive field represent
locations in the sensory layer.

The receptive fields are used to measure topographic map formation. The cortical con-
nectivity defines a two-dimensional ordering of the cortical nodes and the cortical receptive
field centers define a two-dimensional ordering of the cortical responses. A topographic map
is plotted by placing points at the computed centers of the receptive fields and connecting
any two points which represent cortical nodes which are nearest neighbors.
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Figure 2.4: Some results from the S1 simulator. Receptive field maps a. before training and
b. after training. The map before training is uneven, and receptive field sizes (represented
by ellipses) are large. After training the map is smooth and receptive fields become small.

This approach to representing map organization is illustrated in Fig. 2.4, produced by
a software graphics package tmap implemented by C.Lynne D’Autrechy and later modified
by David Montgomery. Specifically, each of the two pictures in Fig. 2.4 plots the centers of
receptive fields of a cortical region in the space of the sensory surface (i.e., it is not a picture of
the cortical regions involved). For example, the vertices (nodes) in the right picture represent
the centers of the receptive fields of the cortical region after training plotted in the space
of the sensory surface in Fig. 2.3. Each pair of receptive field centers (vertices) of nearest
neighbor cortical elements is connected by a line segment, so there are six line segments for
each vertex. The entire grid in this picture shows that a fairly organized map is present
in the cortical region (i.e., the sensory surface projects in a smooth fashion onto the two-
dimensional cortex surface), the typical result found after learning is complete. In contrast,

18



Fig. 2.4a illustrates a case before training, when the connection weights are random and no
organized regions are present. Also, in both pictures in Fig. 2.4, each vertex is encircled
by a small ellipse centered on the vertex that indicates the relative x and y radii of the
receptive fields computed as described above. Along with regular receptive field locations,
small receptive fields (e.g., Fig. 2.4b) generally indicate highly organized map regions, while
larger ones (e.g., Fig. 2.4a) indicate poor map formation.
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Chapter 3

Basic S2 Model and Research Methods

This chapter describes a bihemispheric model of cortical maps called the S2 model, experi-
mental methods and baseline parameter set, and the metrics used to evaluate results of the
simulations.

3.1 The S2 Model

3.1.1 Connectivity

The methods used in the S1 model of a single hemisphere self-organizing map [6, 124] de-
scribed in Chapter 2 were adopted to a two-hemisphere model. The S2 model consists of two
cortex regions interconnected via a corpus callosum, and receiving input connections from a
two-dimensional sensory surface, as shown in Fig. 3.1. Each hemispheric region or cortical
layer represents a small patch of cerebral cortex. The model cortices are two-dimensional,
with individual elements representing cortical columns. These elements hexagonally tessel-
late the cortex, with each element having excitatory connections to its six nearest neighbors.
Each cortical element connects via the corpus callosum to those elements lying within a
certain hexagonal radius R.. of the element homotopic to it in the opposite hemisphere. In
most of our simulations the sensory surface and both cortical sets have the same number of
elements. Each sensory element sends input to its two corresponding cortical elements, one
in each of the hemispheres, and their neighbors within certain radii By and Rgr. As is often
done in simulations of this sort to avoid edge effects, the opposite edges of a hemispheric
region are connected (forming a torus).

The model architecture (with a single sensory surface) minimizes the likelihood that
asymmetries in input stimuli themselves would lead to lateralization/asymmetries in maps
(i.e., as opposed to intrinsic hemispheric asymmetries or callosal influences). This model can
only be related to cortical regions receiving bilateral inputs, such as visual cortex for midline
retinal areas [122, 96, 44], or to special experimental situations where matched bilateral
input stimuli are used [17]. Later in this dissertation (chapter 6), a model with two sensory
surfaces is considered.

Unsupervised competitive learning occurs on the connections from sensory surface S to
the left and right cortical sets L and R. Weights on these connections are initialized with
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Figure 3.1: The model of two interacting cortical regions.

random values between 0.0001 and 1.0. Sensory stimuli in the form of random seven-element
hexagonal patches of activation are applied to drive the self-organization of the model.

3.1.2 Activation Rule

Activation and learning rules from S1 model were adopted for two hemispheres connected by a
corpus callosum. A real-valued activation level a?(¢) is associated with the :'* element of the
left cortical region, af*(¢) with the right homotopic element, and a?(¢) with the corresponding
element of the sensory surface. Just the equations for the left hemisphere are given; those
for the right are analogous. Activation al'(¢) is governed by:

daL/dt mLZ(M — af) + (es + inii)af (3.1)

where ¢; < 0 is a self-inhibition constant, M > 0 is the maximal activation level, and initial
activation levels are all zero. With an inhibitory corpus callosum,

iy = bl + 3 (3.2

g, = X bl (33)

The sums in (3.2) range over the six immediate neighbors j in the same cortical hemisphere,
and over elements k£ in the sensory surface that send input to 2. Index m in inhibitory
input tny; ranges over elements in the opposite hemisphere within radius R.. of the element

homotopic to 7. When the corpus callosum is excitatory, the callosal term ¥, cZ%al? instead
is added into inf;, and self-inhibition is increased to prevent excessive hemispheric activation
using iny; = —2.6 K, where K is the callosal connection strength.

Note that biological callosal connections are presumably excitatory, as discussed in Chap-
ter 2, but the resultant transcallosal influences of one hemisphere on the other have often
been argued to be inhibitory or competitive [34, 38, 72]. The parameter K reflects this
resultant influence.
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A “Mexican Hat” pattern of lateral interactions occurs in biological cortex and is widely
used in neural models of self-organizing maps [74]. As in earlier models, this is achieved by
having each sensory element competitively distribute its output among the receiving cortical
elements, and each cortical element among its nearest neighbors, using

LS L wh(al +q) L L af +q ‘
U el e’ T e+ )

(3.4)

Here ¢ is a small constant (0.0001), c]]; and c{;? are the input sensitivity and lateral feedback
constants for the left hemisphere, and the sums in the denominators are over all elements of
one hemisphere connected to the given source of activation. Such competitive distribution
of activation has repeatedly been shown in the past to produce Mexican Hat activation
patterns and topographic map formation similar to those produced by inhibitory connections
[105, 6, 124].

Intercortical connections work in a similar manner. Callosal strength to the left from the
right hemisphere is designated as K*®, and to right from left as K?¥, using just K when
these are the same as is usually the case. For inhibitory callosal connections (K < 0), we

L = KPS at )

to normalize total callosal signal. For excitatory corpus callosum (K > 0), the influence
of the opposite hemisphere is distributed competitively, with K> playing the role of c]]; in
(3.4):

use
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LR _ [{LR a; + q (35)
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3.1.3 Learning Rule and Receptive Field Calculation

Learning occurs only on the connections from the sensory surface to the cortical regions.
Self-organization proceeds according to an unsupervised learning rule

Aw{jg = eL(af — wﬁg)aL, Aw;, = GR(af — wg)aﬁ, (3.6)

K3 K3

where €7, ep are the left and right hemisphere learning rates.

Receptive fields for the cortical nodes in S2 simulator are calculated very similarly to
S1 simulator. Again, sensory nodes are activated, one at a time, and responses in both
cortical sets are recorded. Then the responses in the left cortical set are used to compute the
receptive fields for the cortical elements in that set using formulas (2.6)—(2.8), and similarly
in the right.
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3.2 Experimental Methods

The procedure followed in the computer simulations reported in the following chapter consists
of the following stages:

1. weights on sensory-cortical connections are initiated randomly;
2. the following is repeated thousands of times:

(a) a randomly centered hexagonal patch of radius 1 (or 2 for the S4 simulator de-
scribed in Chapter 6) is applied as input to the sensory surface;

(b) activations in the sensory surface and both cortices change starting from 0 ac-
cording to the ODEs (3.1) until they reach a stable pattern;

(c) sensory-cortical weights are updated according to the learning rule (3.6);

3. point stimuli are applied to the sensory surface (each node, one at a time) and cortical
responses are recorded as described in 2.3.4;

4. receptive fields are computed (and may be plotted for visualization of results);

5. measures of organization, lateralization and mirror symmetry are computed.

Using the two hemispheric region model described above, several series of simulations
were performed while parameters were varied systematically. For a baseline parameter set
the values shown in Table 3.1 were used. One parameter at a time was altered and the

symbol meaning baseline value
size number of elements in a cortical set 16x16
KMt KEE | callosal strengths from R to L and back varies
K callosal strength when K™% = KF*' = K varies
cﬁ, cf input sensitivity in L and R 1.0
cﬁ, cﬁf lateral feedback in L and R 0.6
Cs self-inhibition constant -2.0
M maximal activation constant 3.0
R.. radius of corpus callosum connections 5
Rr, Rr radii from S to L and R 3
€1, €R learning rates for I and R 0.01

Table 3.1: Baseline Parameter Values; L and R denote left and right cortex, S sensory
surface.

resulting map organization, lateralization, and asymmetry were studied for callosal strengths
K ranging from -4 (strongly inhibitory) to 43 (strongly excitatory). Roughly 30 simulations
were performed for each model asymmetry, and about 40 simulations were done for the
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symmetric case. The program was implemented in programming language C, and simulations
were run on Sun SPARCstations.

Model variations described below where callosal connections were effectively absent (K=0,
or very small K values) are most consistent with much of primary sensorimotor cortex which
has sparse callosal connections, while model variations with larger callosal weights and re-
ceiving matched bilateral input stimuli are most consistent with axial/midline sensory cortex
which has significant callosal connections. For maximal comparability, the same seed for ran-
dom weight generation was used in most runs. This seed was chosen as causing the least
lateralization in the symmetric case in numerous simulations with different seeds. However,
all major findings were verified by additional simulations with several different seeds.

3.3 General Nature of Bihemispheric Maps

We now consider some specific examples of maps occuring with the S2 model, both to make
subsequent discussion more concrete, and for reference to make the metrics introduced in
the next section more intuitive.

Fig. 3.2 shows representative examples of the maps observed during simulations with
versions of the S2 model. Each part of Fig. 3.2 presents a pair of images indicating the
topographic maps for a pair of corresponding symmetric cortical regions like those illustrated

in Fig. 3.1.

Maps in Fig. 3.2 involve equal size cortical regions (both 16 x 16) except for (j) where the
right cortical region is smaller (12 x 12). The smaller right region in Fig. 3.2j is evident in
that more vertices are plotted in the left picture. Inspection of these pairs of maps shows that
in some cases maps are disorganized bilaterally, as in Fig. 3.2a—c. In other cases, the maps
are well organized bilaterally (Fig. 3.2d), or on just one side (Fig. 3.2g,h). Finally, in some
cases maps may form mosaic patterns that divide up the sensory surface in complementary
ways as occurs experimentally [17], either in roughly equal (Fig. 3.2e) or quite unequal shares

(Fig. 3.2£,i,j).

3.4 Metrics

In addition to visual inspection of the resulting maps, the degree of cortical map organization,
lateralization and mirror symmetry were measured using metrics described in our joint work
[2]. Objective quantitative estimates of map organization, lateralization, and symmetry
are necessary for a systematic study of the effects of various model parameters on map
formation and lateralization. Although objective in nature, these measures have been shown
to correlate fairly well with subjective estimates (see Discussion at the end of this Chapter).
Briefly, the measures are:

Organization measure: indicates the degree of topographic map formation in a single hemi-
spheric region on a 0 (no map forms) to 1 (nearly perfect map) scale.

Lateralization measure: ranges from —1, indicating complete map formation on the left and
no map on the right, to 1 indicating the opposite.
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Figure 3.2: Pairs of cortical maps a—i are equal sized: a, b, ¢ unorganized, pre-training;
d organized and symmetric; e, f complementary mosaics; g, h, 1 asymmetric: left more

organized than right; j the left hemisphere has more elements and is better organized.
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Mirror symmetry measure: ranges from 1 for a pair of cortical maps covering the same
regions in the sensory surface, to —1 for complementary maps covering different regions.

The above measures are computed as follows. For each cortical element n, a map M is
described by the offsets of its receptive field center (cz(n), cy(n)) from the ideal position in a
perfectly organized map, by the receptive field radii (ra(n), ry(n)), and the “total response”
(tr(n)). These quantities are defined in equations (2.6)—(2.8).

Two different approaches to measuring a map’s organization are considered here. They
evaluate map organization from different points of view and work best in different situations.
One evaluates the map’s “smoothness” and gives high organization values to the maps where
neighboring elements have very close offsets and radii. This is called the “sigmoid differen-
tial”. It normally produces results similar to people’s estimates of the degree of organization
(see below), but sometimes it does not work well with the S2 model. For instance, in an
unusual situation where one hemisphere does not get any activation at all, then its receptive
fields have offsets 0 and radii 0, so the map looks like an ideal map (but with no ellipses) and
gets an unappropriate organization value of 1, while in fact the weights have not organized
at all, and if some activation could be induced in the hemisphere (e.g., by removing intense
callosal inhibition), then it would be obvious that there is no organization.

The second approach, called “organized area”, is based on the observation that the orga-
nized regions of a map usually consist of small triangles whose vertices have small receptive
field radii and high total response values (the latter would help to avoid giving a high orga-
nization value to the “empty” map just described). So the idea is to add together the areas
of such triangles (assuming that the total area is 1).

The two measures produce similar results for some maps, but differ significantly for
others. We are using one or the other depending on which works best in a particular case.
Normally, the sigmoid differential measure works fine. However, when simulated lesions
(damage) are introduced into one cortical area, and it is desirable to measure recovery from
it, this approach gives counterintuitive results. Lesioning studies are described in detail in
Chapter 5, so here only a short explanation is given. Recovery from a lesion happens when
the cortical elements on the boundary of damaged area shift and enlarge their receptive fields
to cover the sensory region previously covered by their dead neighbors. This may make the
whole map look less smooth, so the sigmoid differential measure would decrease, when in fact
the organization measure should increase. The organized area measure works much better
in this case.

Below the formulas for the two measures are given.

The “differential square distance” between two immediate neighbors n and n’ is computed
as

[(n,n")* = (ex(n) = ex(n))* + (ey(n') — ey(n))* + (ra(n’) = ra(n))* + (ry(n) — ry(n))*.

The sigmoid differential organization measure ||M||s for map M is then computed as

1 ! .
IMls=5 Y sigmoid o, > ()

all M-nodes n all neighbors n’ of n
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Table 3.2: Values of Quantitative Measures for the Maps in Fig. 3.2

map | sigmoid diff. (SD) || organized area || lateralization | mirror
left right left right based on SD | symmetry
a | 0.01 0.01 0.04 0.04 0.0 undefined
b |0.25 0.28 0.48 0.57 0.03 -0.28
c |0.59 0.61 0.74 0.77 0.02 0.13
d ]0.98 0.99 1.0 1.0 0.01 1.0
e |0.62 0.64 0.38 0.36 0.02 -1.0
f 1047 0.78 0.20 0.67 0.31 -1.0
g |0.83 0.07 1.0 0.06 -0.76 -0.88
h ]0.96 0.32 0.95 0.0 -0.64 -1.0
1 ]0.82 0.29 0.61 0.08 -0.53 -1.0
j 0.83 0.37 0.55 0.12 -0.46 -0.99

where sigmoid, ,(z) = (14 ¢ *"=7)7!_ Parameters 7 and s were chosen to approximate
human estimates of organization values for various maps [2].

The organized area measure || M||4 is computed as the sum of areas of all triangles (formed
by triples of immediate neighbor elements) having sufficiently small perimeter, sufficiently
small radii of receptive fields at all three vertices, and sufficiently large total responses in all
three vertices. The area is normalized so that the total area for an ideal map is 1.0.

A simple difference of the organization values for right and left cortical maps (using any
of the two organization measures described) gives a lateralization measure: Lat(L, R) =
R[] = I[L1]

The degree of mirror symmetry is estimated using a measure of the overlap of organized
regions oreg(L) in the left map L and oreg(R’) in the mirror image R’ of the right map R
(those organized regions are the unions of the triangles used for the organized area mea-
sure described above). Areas of the intersection (oreg(L) Noreg(R')), union and symmetric
difference (oreg(L)Aoreg(R’')) of the above regions are used to define

area(oreg(L) Noreg(R')) — area(oreg(L)Aoreg(R'))
area(oreg(L) U oreg(R'))

map-overlap(L, R) =

The intersection term measures the overlap of the organized regions, while the symmetric
difference term measures the discrepancy between these regions. When no organized regions
exist, map overlap is undefined.

Table 3.2 gives the values of the quantitative measures for the maps shown in Fig. 3.2.
For example, maps in Figs. 3.2a—d show increasing individual organization, while in each
case the lateralization measure does not exceed 0.03, indicating that significant lateraliza-
tion has not occurred. Significant lateralization is measured with many of the other map
pairs shown, and is of greatest magnitude for Fig. 3.2g (lateralization = -0.72). The two
maps in Fig. 3.2d are mirror images of each other (mirror symmetry = 1.0), while those in
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Figs. 3.2e.f are complementary, representing largely disjoint portions of the sensory surface
(mirror symmetry = -1.0).

3.5 Properties of the Metrics

The above metrics have some important properties (first described in our joint paper [2]):

Theorem 3.5.1. The organization measures described above (sigmoid differential and orga-
nized area) satisfy the following properties:

1. size independence: only the organization per processing element is measured.

2. spatial homogeneity: if a map M is given and a new map M’ is obtained from M
by any distance—preserving geometric transformation of the map associated with the
reference locations of the elements of M, then M and M’ have the same organization
measure.

Proof. Property 1 is enforced by explicitly defining sigmoid differential organization as
an average value over all elements and by normalizing the total area of an ideal map to
be 1.0. Property 2 follows from the fact that the expressions used in the definitions of
the organization measures are independent of the particular nodes’ (or triples) locations,
depending only on the values cz, cy, rz, ry, tr. a

Theorem 3.5.2. Lateralization measure Lat(L, R) satisfies the following properties:

1. antlisymmetry:

Lat(M, N) = —Lat(N, M);

2. zero property:
Lat(M, M) = 0;

3. monotonicity: for a fized ||L|| it is a strictly increasing function of ||R||;

4. boundedness: the maximal value of Lat(L, R) is 1 and it is achieved only when ||L|| = 0
and ||R|| = 1, the minimal value is —1 achieved for ||L|] =1 and ||R|| = 0.

Proof. Properties 1-3 follow from the definition of the lateralization measure as the
difference of two organization measures. The last property also uses the fact that the orga-
nization measures are bounded between 0 and 1, which combined with properties 1 and 3
completes the proof. a

Finally, for the symmetry measure

Theorem 3.5.3. For maps N and M, the measure sym(M, N) = map_overlap(M, N) (if it
is defined) satisfies the following three properties.
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1. invariance under left-right interchange:

sym(M, N) = sym(N, M)

2. equal shift independence: if M and N are obtained from M and N by adding the same
constant dx to all the cx entries of M and N' (here N' is the mirror image of the map
N), and another constant dy to all the cy entries of M and N, then:

Sym(M,N) = sym(M, N)

3. normalization:

sym(M, M) =1 (3.7)

Proof. Property 1 follows from the symmetry of the operators N, U, and A. Property
2 follows from the fact that under the above conditions the organized regions oreg(M) and
oreg(N') have the same shift, and hence the areas of their intersection, union and symmetric
difference don’t change. (3.7) is a consequence of the fact that if M = N, then MAN is
empty and so has area 0, and also MUN = M = MnNN. O

3.6 Discussion

The methods of computation and visualization of cortical receptive fields presented in the
last chapter provide a very convenient way for representing simulation results. It is usually
quite easy to estimate the results qualitatively by simply looking at the maps. However, such
qualitative estimates are not sufficient for a systematic rigorous study of map formation in
a bihemispheric model. Objective quantitative measures are needed for such study. The
metrics for map organization, lateralization, and mirror symmetry developed in this chapter
have all the desired properties. On one hand, the metrics have the mathematical properties
that one would expect of such measures. On the other hand, their computed values tend
to correspond also to subjective estimates of what these values should be. On ten sample
pairs of maps presented to nine people (graduate students and faculty from the University
of Maryland) [2], computing the metrics described above produces results which are very
close to the average values of human estimates. A quantitative assessment of the closeness
of the fit between human measurements and those produced by the measures is obtained
by representing each measure by the vector whose coordinates are the measurement values
produced by that measure for a given set of test examples. The mean absolute distances
between the vector representing the human scores and the vectors representing the measures
is then computed. The mean absolute distance between two vectors v,w € RY is defined
by: ||v — w|li = % Y=y [vk — wi| Thus, the mean absolute distance between two measures
approximates the average difference, in absolute value, between the scores produced by the
two measures for an arbitrarily chosen input map. The results are summarized in Table 3.3.
Left and right hemisphere distances are given separately for each organization measure, while
a single distance is given for lateralization measure corresponding to each of the organization
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Table 3.3: Mean absolute distances to human scores: Organization and Lateralization.

Measure | Organization | Lateralization
Left  Right
||M]|s |0.04 0.03 0.03
[|M]|4 |0.09 0.10 0.06
|| M| * * 0.04

measures. The last line gives the mean absolute distance between average human lateraliza-
tion values and the lateralization values computed as difference of the human estimates of
right and left organization values (||M||x).

Finally, the value of mean absolute distance for mirror symmetry measure was 0.11 when
two pairs of completely unorganized maps were excluded (recall that the symmetry measure
is not defined for unorganized maps).

Thus, all the mean absolute distances are quite low, indicating good agreement of the
metrics descibed in this chapter with subjective estimates.
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Chapter 4

Results from the S2 Model

This chapter describes results of the simulations with the S2 model. For various model
asymmetries, callosal influences have been varied systematically from strongly inhibitory to
strongly excitatory, and resulting organization, lateralization, and mirror symmetry recorded.
In the symmetric case (when all model parameters except random initial weights were sym-
metric) no lateralization is observed for any callosal strength, and a very sharp transition
in organization and mirror symmetry appears near K = —1.4. For most asymmetric cases,
sharp transitions occur in lateralization as well, with most lateralization appearing with
strongly inhibitory callosal influences.

4.1 Symmetric Hemispheric Regions

Before considering various hemispheric asymmetries, simulations with a symmetric version
of the model where the two hemispheric regions were identical except for the initial random
weights were done. Complete topographic maps similar to those in Fig. 3.2d form in both
hemispheres when corpus callosum connections are excitatory, absent, or weakly inhibitory.
However, as callosal inhibition becomes stronger there is a sharp transition at roughly K = -
1.4 from two complete maps to two complementary mosaic pattern maps similar to those in
Fig. 3.2e. Fig. 4.1 shows how the organization, lateralization and symmetry measures vary
as the callosal strength K is systematically altered. Since the organization values on the left
and right are essentially the same, lateralization is very close to zero for all values of K.

As seen in Fig. 4.1a, initial organization values are close to 0 for K < —1, but grow
noticeably for positive K. This happens because inhibitory callosal connections “push” the
receptive fields of corresponding cortical elements away from each other and hence from their
ideal location in a perfectly organized map, while excitatory callosal connections “pull” the
receptive fields of corresponding cortical elements closer to each other and to their ideal loca-
tions, thus making the pretraining maps look more organized. Fig. 3.2a—c show pretraining
maps for K = —2, K =0 and K = 2 in the symmetric case.

31



Organi zat i on Activation Lateralization and Mirror Symmetry

Figure 4.1: Symmetric hemispheric regions (except for random initial weights). a. Organi-
zation of left and right maps as a function of callosal strength K. Black lines — after training,
gray lines — before training; solid lines - right hemisphere, dashed — left. b. Activation in
the two hemispheres. c. Lateralization and mirror symmetry after training. Solid line -
lateralization, dashed line - mirror symmetry.

4.2 Asymmetric Versions of the Model

4.2.1 Asymmetric Cortical Excitability

Asymmetric cortical excitability has been associated experimentally with functional later-
alization [82] and regionally may be implied by asymmetries in various neurotransmitter
levels [126]. In the S2 model, the learning rule is such that the higher the activation in one
hemisphere, the faster it should self-organize. Conversely, a hemisphere that gets very little
or no activation cannot effectively learn a good topographic map. Several parameters of the
model can cause different excitability in the two hemispheres. Fig. 3.2h.i show sample maps
resulting from a small difference in input sensitivity or lateral feedback (in both cases the
left hemisphere is more active). Fig. 4.2 summarizes the results of simulations when the two
hemispheres had only a slightly different input sensitivity favoring the left: c]]; = 1.05 and
R — 1.0. For approximately K > —1.2, symmetric highly organized maps always formed

P
without lateralization (similar to Fig. 3.2d). For K < —1.2 however, strong lateralization

C

to the left always occurred, usually with mosaic patterns like those in Fig. 3.2i. Similar
results were obtained with mildly asymmetric maximal activation constants Mj; and Mg,
and with small asymmetries in lateral feedback strengths cff and cﬁc. Small differences in
the strength of corpus callosum inhibition also caused significant lateralization. With fixed
KM = —2 for example, when KF < KR

for K¥ > KB the opposite occurred.

complete lateralization to the left occurred, and

4.2.2 Asymmetric Hemispheric Sizes

Experimentally-measured differences in hemispheric region sizes have been associated with
function lateralization to the larger hemispheric region [48, 92]. To examine how asym-
metric hemispheric region size influences lateralization, simulations were run with the two
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Organi zation Act 1 vation

Lateralization and Mirror Symmetry

Figure 4.2: Results with asymmetric input sensitivity (c]j; = 1.05, cf = 1.0). Same notation
as in Fig. 4.1. The left hemisphere clearly dominates for roughly K < —1.2: its post-
training organization is higher than the organization on the right. Activation on the left is
much higher than the right, which is the main reason for the lateralization.

hemispheric regions having different numbers of elements: the left having 16x16 elements,
the right 12x12, for a total of 256 vs. 144 elements. Fig. 4.3 shows the results as callosal

Organi zation Act1vation

Lateralization and Mirror Symmetry

Figure 4.3: Simulation results for two hemispheric regions differing only in their numbers of
elements (left larger). Same notation as in Fig. 4.1.

strength is varied. For excitatory, absent or mildly inhibitory callosal strengths (roughly
K > —1.2), both hemispheres formed highly organized and symmetric maps. For strongly
inhibitory callosal strengths (K < —1.2), marked map lateralization occurred, with a much
better organized map in the larger left region, and with complementary maps. Fig. 3.2;
shows a typical example of the maps found under these latter conditions.

Fig. 4.3b shows quite clearly that when inhibition is strong (roughly K < —1.2), the initial
activation on the left was much higher than on the right. To remove this potentially biasing
factor, callosal inhibition strength was adjusted so that the inhibition from left to right was
slightly weaker than inhibition from right to left. A 5% difference produced nearly equal
initial activations on both sides for K < —1. The effect of this adjustment is demonstrated
in Fig. 4.4. Lateralization is smaller, but is still present for sufficiently strong inhibition
(K < —1.5), and the maps formed under these conditions remain complementary.
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Figure 4.4: Results for the two hemispheric regions with different numbers of elements, when
the initial activations are equal. Same notation as Fig. 4.1.

4.2.3 Asymmetric Learning Rates

Another possible cause of lateralization is a difference in synaptic plasticity in the two hemi-
spheres. The biological existence of asymmetric plasticity is suggested by asymmetric hemi-
spheric neurotransmitters [126], and directly indicated by asymmetric synaptogenesis during
development and early life [7]. Simulations were also run where all parameters of the two
hemispheres were the same except initial random weights and the learning rates (left 0.01,
right 0.001). Figs. 4.5 and 4.6 display simulation results for brief (16,000 inputs) and long-
term (123,000 inputs) training, showing that initially the hemisphere with a higher learning

Different Learning Rates. Lateralization Changes with Time

=

--- Before Training
---  After 16000 Inputs
——  After 123000 Inputs

o
©

o
o

N
~
T

o
N}

Lateralization in Topographic Map Formation

-0.

8,
-1
4

-3 -2 -1 0 1 2 3
Corpus Callosum Strength K

Figure 4.5: Lateralization as a function of K with asymmetric learning rates. Lateralization
is significant for K’ > —1 after brief training, but subsequently essentially vanishes.

rate organizes faster. However, after sufficiently long training, the difference in organization
values becomes much smaller. For this type of simulations, much more transient lateral-
ization occurs with excitatory and weak inhibitory callosal connections than with strongly
inhibitory ones. For example, Fig. 4.7 shows that for X' = —3 both hemispheres learn very
slowly, while for K = 0 the one with higher learning rate learns much faster than the other.
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Organi zat1 on Activation Mrror Symetry

-4 -3 -2 -1 1 2 3

Mrror Symetry

Figure 4.6: Results for the two hemispheres with different learning rates after about 16,000
(a—c) and 123,000 (d—f) training inputs. Solid lines in (a,b,d,e) correspond to the right
hemisphere with learning rate 0.001, the dashed lines to the left hemisphere with learning
rate 0.01. After 16000 inputs the left hemisphere is dominant for K > —1.4. After very
long training the two hemispheres achieve about the same organization levels. Pretraining
organization and activation are as in Fig. 4.1.
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These results differ from those with the asymmetries examined above in that the later-
alization that occurs is more pronounced for K > —1.4. Given the asymmetry in learning
rates, transient lateralization to the left would generally be expected for all values of K:
the larger left learning rate would cause its map to organize more quickly, but the slower
right side would eventually catch up. The issue then is why transient lateralization does
not occur with a strongly inhibitory corpus callosum. The reason is that, in general, as a
map organizes the mean activation level in its hemispheric region falls (e.g., Fig. 4.1 in the
symmetric case). Lateralization does not occur with strongly inhibitory callosal connections
here because the higher learning rate on the left is largely cancelled by simultaneously lower
mean activation levels on the left that slow learning (see Fig. 4.6). These asymmetric mean
activation levels are not present for less inhibitory K for the reasons discussed in Sec. 7.3.

K=-3 o K=0
Organi zation Organi zation
1
1 —
r
0.8 {
0.8 '1
0.6
0.6
0.4
0.2
Frame
Frame

0 5 10 15 20 25 30

Figure 4.7: Organization with different learning rates during training (learning curves). One
frame corresponds to 4096 inputs. Solid black line — right hemisphere, dashed line — left
hemisphere (with higher learning rate). The thick gray line shows the difference between
organizations in the two hemispheres. For K = —3 the difference is small, for larger values
of K it first becomes large, but vanishes after longer training.

4.2.4 Asymmetric Sensoricortical Radii

Different connectivity patterns can also lead to lateralization in the model. For example,
Fig. 4.8 plots organization, activation, lateralization and mirror symmetry, and Fig. 3.2g
shows the maps after training, when different sensoricortical radii are used (left radius 3,
corresponding to 37 connections; right radius 4, or 61 elements.). This provides an example
where the hemisphere with lower activation levels became better organized. This surprising
result is due to asymmetries in the activation patterns in the two cortical regions with
inhibitory callosal connections. An example of such activation patterns is shown in Fig. 4.9.
The pretraining hemispheric response to a small input patch is broken up into multiple
cortical activation areas on the right by the intercortical inhibition from the more compact
response on the left. Since good map formation requires learning in a compact neighborhood,
the fractured activation patterns prevent map formation on the right.
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Organi zat1 on Act 1 vation

Lateralization and Mirror Symmetry

I e

Figure 4.8: Results with different connection radii from S to L (3) and R (4) while callosal
radius is 1. Same notation as in Fig. 4.1. For K < 0 post-training organization in the left
hemisphere is quite high while in the right hemisphere organization does not change almost
at all. At the same time activation is higher in the right hemisphere. For K" > 0 organization
and activation in both hemispheres decrease as K increases due to strong self-inhibition.

Figure 4.9: Activation in the (a) sensory surface and (b) the two cortical regions when radii
are as in Fig. 4.8. Black rectangles denote elements with no activation, lighter rectangles
mean higher activation. The activation in the left cortical region is concentrated at one
location, while in the right it is dispersed, preventing map formation. K = —2.

4.3 Discussion

The results of the simulations presented in this chapter are summarized in Fig. 4.10 and are
as follows. First, when callosal connections were absent (K = 0), in every case complete,
mirror symmetric maps ultimately formed in both hemispheric regions without significant
lateralization. This finding is consistent with experimental data suggesting that lateraliza-
tion and complementary mosaic maps arise due to hemispheric interactions, even in regions
like auditory cortex with bilateral afferent pathways and receiving matched bilateral input
stimuli [17]. Second, a sharp transition in model behavior was observed depending on cal-
losal strength. For excitatory, absent or weakly inhibitory callosal strengths, complete and
symmetric mirror-image maps typically appeared in both hemispheric regions. In contrast,
with stronger inhibitory callosal connections, partial to complete map lateralization tended
to occur, and the maps in each hemispheric region often became complementary (resem-
bling mosaic patterns observed experimentally [17]). These results, along with those of the
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Results of Various Model Asymmetries
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Figure 4.10: Lateralization as a function of K for various types of asymmetry. Lateralization
is significant for most asymmetries when K < —1, but for different radii it is large when
K < —0.1, and for different learning rates it is transiently larger for K > —1.

earlier phoneme sequencing model [109], provide support for the hypothesis that the corpus
callosum plays a functionally inhibitory role [72, 34].

Third, lateralization occurred readily toward the side having a larger cortical region,
higher excitability, or more focused input connectivity. These factors produced lateralization
more or less independently. This suggests that biological lateralization may be a multifacto-
rial process, consistent with the phoneme sequencing model and consistent with arguments
that current experimental data does not support the concept of a single underlying factor
causing human behavioral lateralization [59, pp. 54-64]. These results are also consistent
with the general concept that initial small quantitative differences in hemispheric regions
can ultimately give rise to qualitative differences. Finally, it was observed that asymmet-
ric synaptic plasticity had only a transitory effect on lateralization of map formation. In
contrast, asymmetric plasticity in the phoneme sequencing model [109] led to marked, per-
sistent functional lateralization. The difference occurs because map formation here is based
on an unsupervised learning rule, whereas it was controlled by an error-correction process
in the earlier phoneme sequencing model (once one hemisphere learned to control phoneme
sequencing, the error dropped to zero and the other hemisphere stopped learning). The
key implication here is that for biological lateralization the effects of asymmetric synaptic
plasticity may vary dramatically depending on whether supervised or unsupervised learning
is involved.

While the work described here has been primarily motivated by recent experimental
studies demonstrating lateralization and asymmetries in cortical sensory maps, note in con-
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clusion that it may have more general applicability. For example, viewed in an abstract
sense, these results may relate to the diversification of interconnected cortical regions in the
same hemisphere, such as those described in [43].
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Chapter 5

Results of Lesioning the S2 Simulator

This chapter examines the effects of sudden, localized damage to one of the map regions
in the S2 model. Map reorganization after a lesion (damage) is of interest for a number
of reasons. For example, a model that not only works the same as the real system being
modeled, but also reacts to and recovers from damage in the same way, is more convincing
than a model which fails to respond similarly to damage. Further, the simulated focal lesions
here can be viewed as modeling ischemic stroke. An ischemic stroke is a sudden death of a
localized region of brain due to loss of blood flow and thus oxygen to that region. The diffuse
lesions might be viewed as simulating damage in diffuse cortical diseases, e.g., Alzheimer’s
disease. In the following, background information on the effects of stroke on the other,
intact hemisphere is given, along with a brief summary of previous neural models of stroke.
Experimental methods are described, including the ten variations of the S2 model used for
the lesioning study. Finally, results of lesioning simulations with the ten model variations,
where size and shape of the lesion were varied systematically, are presented and discussed.

5.1 Background

Since the effects of a simulated lesion on the two model hemispheres are considered in this
chapter, it is useful to briefly consider the biomedical data on the effects of stroke on the
two hemispheres, and previous neural models of stroke.

5.1.1 Interhemispheric Effects of Ischemic Stroke

A stroke is a complex pathophysiological event [111]. Most relevant to this research is that,
acutely following a hemispheric stroke, there is an immediate depression of neural activity,
metabolism and cerebral blood flow contralaterally in the intact hemisphere [42, 90]. Such
changes are referred to as transcallosal diaschisis. Their severity is proportional to the
severity of the damage and they persist for roughly three to four weeks after a stroke. It
is often accepted that transcallosal diaschisis is responsible for part of the clinical deficit in
stroke [90]; including sensorimotor findings ipsilateral to the infarct [28], although this view
has been challenged [22]. A presumably important mechanism responsible for transcallosal
diaschisis is loss of excitatory inputs to otherwise intact contralateral cortex, although other
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neurophysiological phenomena appear to be contributing factors [90]. Animal models have
demonstrated that the contralateral effects of an acute hemispheric infarct are reduced or
abolished by prior sectioning of the corpus callosum [71, 88]. The presumptive mechanism
of focal depression of the contralateral hemisphere is thus widely presumed to be loss of
facilitation (deafferentation) via the corpus callosum.

The importance of hemispheric interactions during recovery from aphasia (impaired lan-
guage) following left hemisphere language area damage is underscored by evidence that the
right hemisphere plays a crucial role in the language recovery process in adults. Early evi-
dence came from observations that recovery from aphasia due to a left hemisphere lesion
would relapse when a new, mirror-image right hemisphere lesion occurred [77]. Subse-
quently, a series of studies has provided evidence of substantial right hemisphere respon-
sibility for language recovery after left hemisphere strokes, using a wide variety of methods
[72, 73, 99, 100, 117, 118]. During the last decade further evidence has come from sev-
eral functional imaging studies, showing that recovered aphasics have increased activation
in the right hemisphere in areas largely homotopic to the left hemisphere’s language zones
[132, 94, 27], but some of these studies have questioned how well these changes correlate
with the recovery process [8, 57, 58]. As a result, the issue is currently controversial and
an active area of experimental investigation for which modeling provides a new investigative
technique.

5.1.2 Previous Neural Models of Stroke

Early models of damage to neural networks were based on abstract associative memories (e.g.,
[135, 51]). More recent spatially-oriented neural models have been used to study acute focal
cortical lesions, including work at the University of Maryland [108, 50, 119, 111, 124]. This
past research has generally examined only unilateral cortical regions and local adaptation,
and most often has looked at local post-lesion map reorganization. An exception is some
recent work on visual information processing where both left and right hemispheric regions
have been simulated [103, 91], and then one hemispheric region removed/isolated to simulate
unilateral neglect phenomena. However, these latter studies have not modeled hemispheric
interactions via the corpus callosum, the effects of underlying hemispheric asymmetries, or
variable lesion sizes, as is done here. To our knowledge, neither these nor any other previous
modeling studies have investigated how the contralateral intact hemisphere might participate
in recovery, nor how underlying cortical asymmetries and callosally-mediated hemispheric
interactions might influence the recovery process.

As mentioned above, one of the important features of S1 simulator was its ability to
react correctly to changes in the environment, in particular, to cortical lesions. In this study
the effects of various model parameters on the extent of damage and recovery from a one-
sided cortical lesion on the other intact cortical region in the bihemispheric 52 model are
considered.
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5.2 Experimental Methods

The goal of this study is the analysis of the effects of various model features (including model
asymmetry, callosal influences, size and shape of the lesion) on the extent of damage and
recovery from a one-sided cortical lesion on both sides of the S2 model.

To evaluate organization and lateralization of lesioned maps it is more convenient to
use the organized area measure instead of sigmoid differential measure used in the previous
chapter. The former measure works better in representing damage and recovery from lesions,
since during recovery the “smoothness” of a map may suffer, making sigmoid differential
organization lower, while in fact the area covered by the relatively good topographic map
increases.

In addition to the organization, lateralization and mirror symmetry measures described
above, for the lesioned model mean activation of each cortical region was computed by
dividing the total activation in that region caused by all possible single-element input stimuli
by the number of cortical elements. When simulated lesions were present, the mean activation
in the lesioned region could be computed in two ways: by dividing the total activation by the
total number of elements, or only by the number of intact (unlesioned) elements remaining.
The graphs in this chapter and Table 5.2 show both of these quantities.

Lesions were introduced into the model after the initial training was completed and some
kind of cortical maps formed in both cortical regions. For the lesioning experiments described
here, ten variations of the basic model were used, as summarized in Table 5.1. These vari-
ations represent four different types of hemispheric asymmetry: symmetric (no hemispheric
asymmetry except initial random weights), size 256/144 (left hemisphere has 16x16 elements
and right has 12x12), excitability 1.05/1.0 (using notation from (Levitan & Reggia, 1998)
c]]; = 1.05, cf = 1.0), connectivity: radii of connections from input layer 3/4 (each element
of the input layer sends activation to 37 cortical elements on the left and to 61 elements
on the right). Both positive (excitatory) and negative (inhibitory) callosal connections were
used for each type of asymmetry, and in some cases two different strengths of inhibitory
connection were used because they had produced qualitatively different results in the intact
model (see previous section). As a result of these variations, prelesion lateralization (usually
to the left) varied from none (0.0) to almost complete (—0.84) in the ten model variations,
as listed in Table 5.1 . The table also shows organization (organized area), lateralization,
mean activation, and mirror symmetry measures in the corresponding intact models.

Each lesion was introduced into the intact model by literally clamping to zero a randomly
selected subset of elements in one hemispheric region (diffuse lesion) or a parallelogram-
shaped contiguous subset of the region (focal lesion). Lesions of different sizes were done
independently, not progressively.

We describe the general nature of the lesions in topographic maps, what is meant by map
recovery during simulations, and the results of simulations in which lesion size and shape
were systematically varied.
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Figure 5.1: Topographic maps in the two symmetric cortical regions: the left column cor-
responds to excitatory callosal strength K = +1, the right column to inhibitory callosal
strength K = —2. a, b pre-lesion maps; ¢, d acute focal lesions; e, f chronic focal lesions;

g, h acute diffuse lesions; 1, j chronic diffuse lesions. All lesions are in the right hemispheric
region and are of size 64.
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Table 5.1: Variations of Intact Model Used for Lesion Study.

Asymmetry | Callosal | Organization | Latera- Mirror Mean Activation
strength | Left Right | lization | Symmetry | Left Right
Symmetric -2 0.39 045 0.06 -0.97 1.58 1.66
-1 1.0 1.0 0.0 +1.0 1.76 1.76
+1 1.0 1.0 0.0 +1.0 3.80 3.80
-2 0.70  0.17 -0.53 -0.97 2.49 0.86
Excitability -1 1.0 1.0 0.0 +1.0 2.36 1.16
1.05/1.0 +1 1.0 1.0 0.0 +1.0 3.84 3.84
Size 256 /144 -2 0.73  0.23 -0.50 -0.87 2.55 1.23
+1 1.0 1.0 0.0 +1.0 3.56 6.22
Connectivity -2 1.0 0.16 -0.84 -0.69 3.34 4.34
radii 3/4 +0.5 1.0 1.0 0.0 +1.0 3.25 3.25

5.3 Nature of Topographic Map Response to Lesions

Fig. 5.1 shows representative examples of the effects of lesions in the maps observed during
simulations in the symmetric case.

The lesions introduced into the cortical regions for the present study are illustrated in
the right halves of topographic maps 5.1c—j. A focal lesion is represented graphically by a
relatively large contiguous “hole” (c — f), and a diffuse lesion consists of a number of small
“holes” (g —j). By recovery from a lesion we mean the changes in the receptive field maps
that lead to the “closing” of the holes (or at least reduction in their size). Biologically,
this is analogous to the well-known phenomenon where nearby surviving neurons move their
receptive fields into the area previously represented by their dead neighbors [68]. Such
recovery is illustrated in Fig. 5.1c and 5.1e, representing an acute focal lesion, and the same
lesion after retraining (the latter state will be called chronic). Table 5.1 contains the values
of our measures for the maps presented in Fig. 5.1.

5.4 Results of Systematic Lesioning Simulations

5.4.1 Symmetric Case

Simulated cortical lesions were done with symmetrical versions of the model in which all
parameters in both cortical regions were identical except for the random initial weights.
Because of the approximate symmetry, the results of left and right hemisphere lesions were
essentially the same, so we only show them for right lesions here.

Figure 5.2 is a typical example that shows how organization in the two cortical regions in
symmetric case changes with time after acute focal and diffuse lesions of size 64 are introduced
at time 0 in the right cortical region (recall that the cortical regions have size 16x16=256
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Table 5.2: Organization and Other Measures for Maps in Fig. 5.1

Map, K~ Lesion Organization |Latera- Mirror‘ Mean Activation
type Left  Right lizationSymm.‘ Left Right R.intact

+1 None 1.0 1.0 0.0 | +1.03.80 3.80 3.80
-2 None 0.39 045 0.06 |-0.97 | 1.58 1.66 1.66
+1 | Acute Focal | 1.0 0.65 | -0.35 |+0.30] 3.59  3.56 4.75
-2 | Acute Focal | 0.43 0.25 | -0.18 |-0.97|2.14 1.07 1.43
Chronic Focal | 1.0 0.89 | -0.11 |+0.78] 3.74 3.74 4.98
-2 | Chronic Focal | 0.59  0.29 | -0.30 |-0.97 | 2.17 1.22 1.62
+1 | Acute Diffuse | 1.0 0.44 -0.56 | -0.12 | 3.70  2.82 3.76
-2 | Acute Diffuse | 0.50  0.12 | -0.38 | -1.0 | 2.20 0.98 1.30
+1 (Chronic Diffuse| 1.0 0.44 |-0.56 |-0.11 | 3.82 291 3.88
-2 (Chronic Diffusel 0.62  0.11 -0.51 |-0.99 ] 2.33  0.98 1.31

*K = callosal strength.
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elements, so a 64-element lesion removes a quarter of the region). As this representative
example shows, there is always an initial drop in organization of the lesioned hemispheric re-
gion that persists, at least partially, and in general this drop is more pronounced with diffuse
lesions. With inhibitory callosal influences, organization in the unlesioned left hemispheric
region increases. Figure 5.1 shows the corresponding topographic maps before the lesions
(Fig. 5.1a,b), right after the lesions (Fig. 5.1c,d,g,h), and after retraining (Fig. 5.1e,f,i,j),
both for focal and diffuse lesions. The case of weak inhibitory connections (K = —1) was
also studied, since in the intact model (chapter 4) it exhibited behavior more close to the
excitatory case than to the strongly inhibitory case, and it was found that the lesioned model
behaved very similarly to the case K = +1, so the results are not explicitly shown here.

Fig. 5.1 also illustrates that the damage in one cortical region causes a different reaction
in the other one depending on the nature of their callosal connections. In case of excitatory
callosal influences both regions have excellent maps prior to the lesion (Fig. 5.1a). After one
region suffers damage, the other, intact, region remains unchanged acutely, although there
may be a small change for the worse in the intact region’s organization when the lesion is
very large, and this may get slightly worse after retraining. This impairment is caused by the
decrease in stabilizing effects due to loss of homotopic excitatory input from the damaged
region. In the case of inhibitory connections, the contralateral effect of a lesion depends
largely on its location as the two maps are typically complementary (Fig. 5.1b). If most
of the damage occurs in the cortical elements not participating in the organized subregions
of the lesioned cortical region, then organizations of both cortical regions experience prac-
tically no change. In contrast, if a substantial piece of an organized subregion is lesioned,
the previously unorganized part in the opposite hemisphere becomes more organized im-
mediately, and completely organized after retraining, so that organization in the damaged
hemisphere decreases acutely and stays low, while the contralateral hemisphere gets better
acutely and even better later (see Fig. 5.1b,d,f). The unlesioned hemisphere, released from
the transcallosal inhibition of the lesioned hemisphere, clearly has a latent tendency for map
organization that is normally suppressed.

Figure 5.2 also illustrates that recovery (if any is present) is fastest right after the lesion
and then slows down significantly. This is similar to the actual pattern of recovery observed
clinically after a stroke.

The way cortical elements adjacent to a focal lesion shift and enlarge their receptive fields
immediately after the lesion (e.g. Fig. 2c,e for K = +1) and shift their receptive fields after
retraining is very similar to the recovery pattern seen in the model of a single cortical region
described in (Sutton et al.,1994) and also corresponds well to what is known to happen
biologically [68]. Activations of the individual elements close to the lesion increase acutely
and subside chronically, while the elements homotopic to the lesion in the contralateral
hemisphere decrease their activation acutely and then restore most of it chronically. This is
also biologically plausible.

When lesions of various sizes were applied, a “mass effect” (increased impairment due to
larger lesions) was clearly seen in terms of organization of the lesioned cortical region in both
acute and chronic cases, regardless of callosal connection strength. Figure 5.3 shows how
organization of both cortical regions changes with variations in the size of a focal right-side
lesion. The lesioned right hemispheric region’s organization decreases acutely and remains
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decreased even after retraining (for all callosal strengths). Recovery on the right is substan-
tial for excitatory and weakly inhibitory connections but very small for strongly inhibitory
connections. As noted above, the post-lesion changes in the left (intact) cortical region
depend much more on the callosal strength. For K = +1, large right lesions cause some
decrease in the left organization; for K = —1 the left organization is unaffected; and for
K = —2 the improvement in left organization occurs acutely, especially with large right
lesions, and gets even better after retraining.

The post-lesion changes in mean activation versus right-side lesion size are shown in
Fig. 5.4, and differ qualitatively depending on whether callosal influences were excitatory
or inhibitory. For excitatory callosal influences (Fig. 5.4a, b) the mean activation levels
decreased bilaterally, and for larger lesions the decrease was more pronounced on the side
of the lesion. Decreased activation on the right lesioned side was due to inactive lesioned
elements, while in the intact left hemispheric region it was due to loss of transcallosal ex-
citatory influences from the lesioned region. Surprisingly, the mean activation of just the
remaining intact elements in the lesioned hemispheric region was increased (dotted line in
Fig. 5.4a, b), in spite of decreased transcallosal excitation from the intact hemisphere. This
was due effectively to the loss of intracortical lateral inhibitory influences from the lesioned
area on the remaining cortex, and the competitive distribution of afferent activation.

In contrast, with inhibitory callosal influences (Fig. 5.4c-f), the mean activation also falls
in the lesioned right hemispheric region. However, mean activation rises in the unlesioned left
hemisphere, dramatically so with larger lesions. Note that activation in the remaining intact
elements of the lesioned right hemisphere now decreases (e.g., Fig. 5.4e,f) due to increased
inhibition from the more highly active unlesioned left hemispheric region.

Diffuse lesions are qualitatively similar in their effects to focal lesions, except they gener-
ally cause a more serious drop in organization and almost no recovery on the damaged side
for all corresponding values of K. Unlike the focal case for K = 41, the other side always
remains well-organized, even for large lesions. Mean activation levels post-lesion behave
similarly to the focal case for K = £1. For the case where K = —2, the undamaged side
improves its organization after retraining slightly better than in the focal case, and mean
activation of the impaired side decreases more than in the corresponding focal lesion case.

5.4.2 Asymmetric Cases

Now consider the results of introducing lesions into asymmetric models. In such cases lesions
of left (dominant) and right (non-dominant) hemispheres may cause different effects, so
consider both.

Asymmetric Excitability

As mentioned above, asymmetric excitability causes significant lateralization in the intact
model when callosal influences are strongly inhibitory (the maps are complementary, but the
side with higher excitability has a larger organized region), while for K = £+1 both cortical
regions develop complete symmetric maps.
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Figure 5.5: Pre-lesion (top) and post-lesion maps for asymmetric excitability case, K = —2.

Left column: acute and chronic left-side 10x10 lesions, right column: acute and chronic

right-side 10x10 lesions.

Table 5.3: Organization and Other Measures for Maps in Fig. 5.5. K = —2

Lesion
type

Map,

Organization

Latera- Mirror‘

Mean Activation

Left

Right

lizationSymm.‘ Left

Right

intact

None
Left Acute Focal
Right Acute Focal
Left Chronic Focal

oo T

Right Chronic Focal

0.70
0.30
0.75
0.33
0.88

0.17
0.29
0.07
0.50
0.06

-0.53
-0.01
-0.68
0.17
-0.82

-0.97
-0.98
-0.97
-0.97
-0.97

2.49
1.30
2.93
1.46
3.05

0.86
1.93
0.43
1.87
0.32

*

2.13
0.71
2.40
0.52
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Figure 5.5 shows pre-lesion and post-lesion maps for simulations with asymmetric ex-
citability due to higher input sensitivity on the left with callosal strength K = —2. Table 5.3
contains all metrics for those maps. Figures 5.6, 5.7 illustrate post-lesion organization and
mean activation for this case both for lesions on the left and on the right side. For K = +1
and K = —1 the results of lesions on either side are very similar to the symmetric case de-
scribed above (see Fig. 5.3a—d), so the graphs for these cases are not shown. For K = —2 all
recovery happens in the intact side, independently of whether the dominant or non-dominant
side is damaged. In general, the non-lesioned side increases its organization immediately fol-
lowing a lesion, and with time this increases progressively, especially with larger lesions.
Mean activation of the damaged side goes down, and that of the intact side increases, these
effects are more pronounced with larger lesions. Neither changes much during retraining.
Diffuse lesions cause much more damage than comparable focal lesions.

Asymmetric Connectivity

Another type of asymmetry that causes significant lateralization in the intact model is
asymmetric connectivity (see section 4.2.4). When each element of the input layer sends
its output to elements of the left cortical set within radius 3 of its homotopic element (37
elements) and to the elements of the right cortical set within radius 4 (61 elements), after
training the topographic map on the left becomes well organized while the map on the
right remains largely disorganized even for slightly inhibitory callosal connections. The top
row of Fig. 5.10 displays the maps developed by the intact model after initial training for
K = 0.5 and K = —2. As before, excitatory callosal influence (K > 0) leads to complete
symmetric maps in both cortical regions, while inhibitory callosal influence causes significant
lateralization (good map on the left and no organized regions on the right).

Figures 5.8 and 5.9 illustrate simulation results for focal lesions for K = 40.5 and K =
—2. When K = +40.5, the prelesion maps are full and symmetric. A lesion on either side
causes the same loss of organization to the lesioned hemispheric region (Fig. 5.8a,b). In
addition, loss of organization on the contralateral side is more pronounced than in any other
case we have considered. During recovery the maps change quite unexpectedly (probably
because of the small callosal radius in this case). The process of recovery is shown in Fig. 5.10.
When a lesion is introduced in the center of the left hemispheric region, the center of the
right region becomes slightly less organized immediately (due to the loss of transcallosal
excitation). During additional training, as the “hole” in the left region becomes smaller,
some map disturbance appears on its edges, and a much larger disturbance develops in the
right hemispheric region, thus causing substantial decrease in contralateral organization.
Mean activations for K = +0.5 (Fig. 5.9a,b) behave very similarly to the mean activations
in symmetric case for K = +1 (Fig. 5.4a,b).

Like in other cases with excitatory callosal influences, a diffuse lesion causes more pro-
nounced damage in the lesioned side and practically no damage in contralateral side.

For K = —2, a lesion in the non-dominant (right) hemispheric region causes no changes
in the dominant one, even though mean activation of the remaining elements of the damaged
hemispheric region increases dramatically with lesion size. Retraining improves organization
on the lesioned right side very slightly and only for small lesions. In contrast, when the
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Table 5.4: Organization and Other Measures for Maps in Fig. 5.10

Map, K~ Lesion Organization [Latera-Mirror|  Mean Activation
type Left  Right [lizationSymm. Left Right L.intact
+0.5 None 1.0 1.0 0.0 | +1.0|3.25 3.25 3.25

-2 None 1.0 0.16 | -0.84 |-0.69 | 3.34 4.34 3.34
+0.5 | Acute Focal | 0.83  0.98 0.15 | 0.69 | 3.13 3.17 3.64
-2 | Acute Focal | 0.63  0.20 | -0.43 | -0.62 | 2.89 4.32 4.74
Focal 0.87  0.94 0.07 | 0.85 | 3.12 3.14 3.63
-2 Focal 0.64 044 | -0.20 | -0.44 | 3.05  4.27 5.00
+0.5 |Chronic Focal 0.91 1.03 0.12 | 0.82 | 3.17 3.20 3.69
-2 |Chronic Focall 0.65  0.57 | -0.08 | -0.34 | 3.05 4.11 5.01

FR 0 a0 Ty
_'_
o
38

*K = callosal strength.

dominant (left) hemispheric region is lesioned and looses enough elements (about 20% or
more), the contralateral side begins to improve after retraining (Fig. 5.10, right column).
With asymmetric connectivity, unlike with any other case, for K = —2 the mean activation
of the remaining (intact) elements in the damaged hemisphere (either one) increases with
lesion size while the activation of the other side stays fixed. However, the overall mean
activation of the damaged side is decreased with larger lesions.

Asymmetric Size Hemispheric Regions

Finally, the case when the two cortical regions had different numbers of elements is consid-
ered: the left had 16x16=256 elements while the right had only 12x12=144 elements. Pre-
lesion maps were again complete and symmetric for K = +1 and complementary with pro-
nounced lateralization to the left for K’ = —2. For excitatory callosal connections the changes
caused by lesions were similar to those in the symmetric case (Fig. 5.3a,b, Fig. 5.4a,b), ex-
cept for one interesting phenomenon related to the fact that in the intact model the mean
activation of the elements of the smaller hemispheric region is higher than that of the larger
hemispheric region (see Table 1). If the larger region is lesioned, the mean activation of its
remaining (intact) elements is higher with larger lesions (just as before), and becomes ap-
proximately equal to the mean activation of the smaller hemispheric region when the number
of remaining elements in it equals the number of elements of the smaller region. For larger
lesions the mean activation of the remaining elements increases quite rapidly, similar to the
symmetric case.

When the connections are strongly inhibitory, the model reacts to the lesions similar to
the asymmetric excitability case described above (Figs. 5.6, 5.7). Namely, a lesion in either
hemispheric region causes a drop in ipsilateral organization and some improvement in con-
tralateral organization acutely, with additional contralateral improvement after retraining.
All these phenomena are much more pronounced when the dominant hemisphere is lesioned,
so that a lesion of about 35% or more causes lateralization to reverse. Mean activations of
the two hemispheric regions behave similarly to corresponding organizations.
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Figure 5.10: Snapshots of topographic map changes after focal lesions in the different connec-
tivity case (left column: 6x6 lesion for excitatory connections, right column: 10x10 lesion
for inhibitory connections). Top row: maps before the lesions; second row: acute lesions;
third row: after short training (32768 inputs for K = +0.5, 98304 inputs for K = —2);
bottom row: after longer training (131 thousand inputs for K’ = 40.5, 262 thousand inputs

for K = —2).
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5.4.3 Summary of Lateralization Results

Table 5.5 summarizes the results of simulations for lesions involving 56% of a hemispheric
region. For focal lesions, this corresponds to a 12x12 lesion in the standard 16x16 hemispheric
region, or to a 9x9 lesion in the smaller 12x12 cortical region in the case with size asymmetries.
It presents the values of lateralization for focal and diffuse lesions of each side of the model
right after the lesion and after retraining.

Table 5.5: Post-Lesion Lateralization Values

Prelesion Focal Diffuse
Case latera- Left Right Left Right
lization |AcuteChronidAcuteChronidAcuteChronicAcuteChronid
Symmetric
K=-2 0.06 |0.50 0.77 [-0.43 -0.71 |0.65 0.92 |-0.63 -0.93
K=-1 0 0.64 0.49 |-0.64 -0.49 {0.92 0.98 |-0.92 -0.98
K =+1 0 0.78 0.61 |-0.78 -0.61 {0.94 0.96 |-0.94 -0.96
Excitability
K=-2 -0.53 | 0.16 0.49 |-0.76 -0.93 |0.38 0.71 |-0.89 -0.99
K=-1 0 0.59 0.50 |-0.68 -0.50 |0.92 0.98 |-0.91 -0.97
K =+1 0 0.79 0.64 |-0.78 -0.61 {0.94 0.96 |-0.94 -0.96
Size
K=-2 -0.50 |0.25 0.36 |-0.77 -0.82 |0.71 0.53 |-0.89 -0.99
K =+1 0 0.80 0.70 |-0.75 -0.69 {0.97 0.97 |-0.98 -0.98
Connectivity
K=-2 -0.84 |-0.17 0.45 |-0.94 -0.88 |0.14 0.21 |-1.0 -1.0
K =+40.5 0 0.60 0.49 |-0.60 -0.49 {0.92 0.89 |-0.92 -0.80

The table illustrates the following trends in lateralization changes after a lesion:

o diffuse lesion always causes larger damage in the ipsilateral side than a focal one of
the same size, and hence smaller lateralization when the dominant side is lesioned and
larger lateralization for a non-dominant side lesion;

e the amount of post-lesion lateralization depends not only on the size and shape of the
lesion, but also on pre-lesion lateralization, callosal influences, and type of asymmetry
in the model;

o retraining usually reduces lateralization when callosal influence is excitatory or weakly
inhibitory and increases lateralization when callosal influence is strongly inhibitory.

5.5 Discussion

The work described in this chapter examined the effects of simulated lesions on cortical
maps in versions of the S2 model. Both the details of the intact model (symmetric vs.
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asymmetric regions, callosal influences, etc.) and of the lesions (number of cortical elements
lost, focal vs. diffuse, etc.) have been systematically varied. This is the first investigation of
how underlying cortical asymmetries and callosally-mediated hemispheric interactions might
influence the recovery process and how the contralateral intact hemisphere might participate
in recovery.

Simulations of sudden focal cortical lesions in this model showed that the larger the lesion,
the greater the disruption of the maps on the lesioned side, regardless of the assumed role
of callosal connections. This expected increase in disorganization with increase in lesion size
was modulated by the degree of pre-lesion lateralization. Specifically, the more lateralized a
model was initially, the more effect a left “dominant hemisphere” lesion had on overall map
organization relative to an equivalent right “non-dominant hemisphere” lesion, regardless of
the underlying cause of lateralization. The occurrence of increased organization deficits with
larger lesion size and/or dominant hemisphere damage, and the rapid-then-slow temporal
pattern of recovery, are encouraging in demonstrating that, however simplified the model
is compared to reality, it does capture some expected fundamental aspects of post-lesion
observations.

More interestingly, the model’s post-lesion behavior gives some insight into two currently
controversial issues concerning hemispheric interactions. First, as noted earlier in this disser-
tation, it is not clear today whether each hemisphere exerts primarily an overall excitatory
or inhibitory influence on the opposite hemisphere via the corpus callosum. Most neurons
sending axons through the corpus callosum are pyramidal cells, and these synapse mainly on
contralateral spiny cells [55, 66]. Such excitatory synaptic connections, as well as transcallosal
diaschisis and split brain experiments, suggest that the resultant transcallosal influences are
mainly excitatory in nature [15]. However, this hypothesis is quite controversial [38]. Tran-
scallosal monosynaptic postsynaptic potentials are subthreshold and of low amplitude, and
are followed by stronger, more prolonged inhibition [125], suggesting to some that transcal-
losal inhibitory influences are much more important [34, 72]. Recent transcranial magnetic
stimulation studies have also indicated that activation of one motor cortex region inhibits
the contralateral one [45, 87|, although it is difficult to know what this response to such a
non-physiological stimulus implies for normal physiological hemispheric interactions.

The lesioning results with S2 model provide some support for the hypothesis that the
overall effects of callosal connections are predominantly excitatory. In general, regardless of
callosal influences, acutely after a focal lesion to one hemispheric region in the model, the
activation levels in that hemispheric region decreased substantially, as occurs experimen-
tally. However, the post-lesion changes in activation in the contralateral intact hemispheric
region depended on callosal influences. With excitatory callosal influences, lesions generally
resulted in an acute fall in averaged hemispheric activation in the intact, unlesioned hemi-
sphere. In contrast, with versions of the model having inhibitory callosal influences, mean
activation in the unlesioned hemisphere generally increased substantially acutely after le-
sions due to disinhibition. Experimental studies measuring regional cerebral blood flow and
glucose metabolism have consistently demonstrated an acute fall in hemispheric activation
following cortical lesions, not only on the lesioned side but also in the contralateral non-
lesioned hemispheric region [88, 27, 40, 22]. Thus, to the extent that cerebral metabolism
and blood flow are coupled to cerebral activation, the model results with excitatory callosal
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connections best fit existing data. The increase in mean activation in the model’s unlesioned
hemisphere when callosal influences are inhibitory also appears to be inconsistent with this
same data.

The second controversial issue concerning interhemispheric interactions for which this
model has implications is the extent to which the non-lesioned hemisphere participates in
recovery following a lesion. There is substantial recent evidence that the unlesioned hemi-
sphere is responsible for a significant part of recovery from sensorimotor and language deficits
following a stroke (e.g., [117, 118, 131, 132, 94, 27]). However, other studies have questioned
the role of the contralateral hemisphere in the recovery process (e.g., [8, 57, 58]). Very lit-
tle is currently known about this issue specifically with respect to sensory maps, although
one study has found changes in receptive fields sizes contralateral to a partially denervated
cortical region [26].

In many versions of 52 model, clear cut changes in contralateral maps occurred following
lesions. When full symmetric maps were present initially, generally little change was seen in
the map contralateral to the lesion. (An exception occurred when the hemispheric regions had
asymmetric connectivity, and lesions caused increased disorganization in the contralateral
map during the recovery period.) In such cases, there were two duplicate maps of the same
sensory surface before lesioning, a fault-tolerant situation in which the built-in redundancy
automatically compensates for the lesion. In contrast, when complementary/antisymmetric
maps were present before lesioning, a single map of the full sensory surface was divided
across the left and right hemispheric regions, similar to the mosaic maps found in some
animal cortices [17]. In these cases, lesioning of one map generally resulted in increased map
formation and organization in the contralateral, intact hemispheric region. These results
represent testable predictions of the models that could readily be investigated using current
electrophysiological methods similar to those in [17].

Finally, note that diffuse lesions in a cortical region generally had more pronounced effects
than focal lesions of the same size. This finding is in accordance with theoretical predictions
of post-lesion memory capacity changes in spatially-organized neural networks [113], and
suggests that such theoretical predictions apply to a wider range of models than initially
considered.

60



Chapter 6

S4 Simulator

This chapter presents a second model, called the S4 model, that more closely matches input
connectivity in much of biological cortex primary sensory regions. This model of cortical
maps 1s a generalization of the S2 simulator. The chapter describes the model and gives
simulation results for the symmetric case and several model asymmetries. The results are
qualitatively similar to those of the S2 simulator, but they also give insight into some im-
portant details of topographic map formation.

6.1 The Model

Corpus
D~ — ——0

\ Callosum /
L eft

Cortex

Left Sensory Right Sensory
Surface Surface

Figure 6.1: The model of two interacting cortical regions receiving inputs from two indepen-
dent sources.

The 52 simulator was the first model of bihemispheric cortical maps. It had a single, shared
sensory surface, and thus could represent only a small portion of real primary sensory cortex
(i.e., midline regions). The primary sensory maps in the mammalian brain mostly receive
inputs only from contralateral sensory surfaces, so in order to simulate them more closely
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another model is needed. Figure 6.1 shows its high-level structure, which differs from the 52
model in having two sensory surfaces. This model uses the same internal structure, activation
and learning rules as S2 simulator, but it allows independent (or dependent, but different)
inputs to the two sensory sets. We refer to it here as the S4 simulator.

Receptive fields can be computed in two ways in the 54 simulator. One way of computing
receptive fields, which seems most natural, is to give point stimuli to the left sensory surface
(one at a time), record responses in the right cortex, and then compute receptive fields for
the right cortex. Then a similar procedure is performed on the right sensory surface and
left cortex. A second way of computing receptive fields mimics experiments described by
Bianki [17], where he uses bilateral stimuli to find asymmetries in the sensory maps. This
can be done by applying point stimuli in the corresponding nodes of both sensory sets at the
same time and recording cortical responses in both cortical sets. Both ways of computing
receptive fields are used in this study, and the results are compared with each other and with
the 52 simulator.

Experimental methods and baseline parameters used for the S4 simulator were identical
to those used for the 52 simulator, except the radius of input stimuli was 2 in most cases, and
the two sensory surfaces gave an additional degree of freedom in considering independent,
symmetric, or nearly symmetric input stimuli.

6.2 Results with the S4 Simulator

Fig. 6.2 shows a few representative examples of the kinds of maps that emerge during learning
in the S4 simulator. The specific maps that appear depend, for example, on whether the
two cortical regions have identical or different parameters (excitability, size, etc.), whether
overall callosal influences are assumed to be excitatory or inhibitory, on the way of computing
receptive fields, and on the training input stimuli overlap.

In general, the maps observed are similar to those with the S2 simulator. For example,
the vertices (nodes) in the left picture in Fig. 6.2b represent the centers of the receptive fields
of the left cortical region after training plotted in the space of the sensory surface, just as
with the 52 model. The entire grid in this specific picture shows that a fairly organized map
is present in both cortical regions (i.e., the sensory surface projects in a smooth fashion onto
the two-dimensional cortex surface), the typical result found after learning when excitatory
callosal influences are present. In contrast, Fig. 6.2d,1 illustrate cases with strong inhibitory
callosal influences where the well-organized parts of the right and left cortical regions after
training are complementary (antisymmetric with respect to reflection in the vertical midline).
Values for organization, lateralization, and mirror symmetry for the maps in Fig. 6.2 are given

in Table 6.1.

It is interesting to note that Fig. 6.2g.h.i,j all represent the 54 simulator results for the
symmetric case with K = —2. The only difference between them is the way of computing
receptive fields (bilateral point stimuli for g and i, independent computation for h and j)
and independent (for g and h) versus symmetric (for i and j) training inputs. All four pairs
are clearly very different, with h having complete symmetric maps, 1 fully complementary
with sharp boundaries between organized and unorganized subregions, and other two also
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Figure 6.2: Receptive field maps produced by the S4 simulator: (a) the maps before training
(unorganized); (b) bilaterally organized maps after training; (c) the left map is better orga-
nized than the right; (d),(i) organized regions are complementary; (e) maps are shifted and
curved; (f) cortical regions have different size; (g—j) effects of different ways of computing
receptive fields and different overlap of training input stimuli: (g), (h) independent stimuli,
(i), (j) symmetric training stimuli, receptive fields were computed independently for (h) and
(j), and with bilateral point stimuli for all other map pairs shown here.

63



Table 6.1: Values of Quantitative Measures for the Maps in Fig. 6.2

lateralization

map | sigmoid diff. (SD) || organized area mirror
left right left right based on SD | symmetry
a | 0.01 0.00 0.02 0.05 0.0 undefined
b |0.98 0.99 1.0 1.0 0.01 1.0
c |097 0.15 1.0 0.0 -0.82 -1.0
d ]0.67 0.66 0.40 0.38 -0.01 -1.0
e |0.75 0.74 0.47 0.47 -0.01 -0.39
f 1097 0.20 0.93 0.01 -0.77 -1.0
g 10.39 0.57 0.12 0.22 0.18 -0.94
h ]0.99 0.99 1.0 1.0 0.0 1.0
11052 0.58 0.23 0.27 0.06 -1.0
j 0.68 0.73 0.46 0.50 0.05 -0.82

complementary, but the boundaries are very vague. We will return to the discussion of the
these maps at the end of this chapter and in the next chapter, where the mechanics of map
formation is considered in detail.

6.2.1 Varying Training Input Overlap

Since the main difference between the S4 and the S2 simulators is the ability of the S4
simulator to use different input stimuli for training, it is natural to look at how different
degrees of training input overlap affect map formation (for simplicity, in the symmetric
case). The term “training input overlap” can be defined as the number of sensory elements
in the intersection of an input stimulus in the left sensory surface and the mirror image of the
training stimulus (at the same time) in the right sensory surface. Recall that in the symmetric
case the S2 simulator produced perfect maps for K > —1.4 and complementary (“mosaic”)
maps for K < —1.4. When the training inputs are independent in the S4 simulator, one
would expect the activations in the two cortical layers not to interfere with each other most
of the time, and so expect two complete maps to form quickly in both cortical layers for
any K. With 100% overlap one would expect the S4 simulator to produce the same results
as the S2 simulator. Hence the most interesting case to look at is ' < —1.4, for instance,
K =-2.

Figure 6.3 shows results for the symmetric case, K = —2, when the overlap of training
inputs was varied from 0 to complete, with radii of the input patches 1 and 2. The reason
radius 2 is used (a hexagonal patch of radius 2 includes 19 nodes; a patch of radius 1, only
7) is that with hexagonal radius 1 only a very limited number of overlap values is possible
(0,1,2,4 and 7), and also with bigger training patches even independent random inputs have
a higher chance of interacting, producing some interesting phenomena.

Fig. 6.3 has two columns, corresponding to the two different ways of computing receptive
fields in this model, described in section 6.1. The left column is based on bilateral computa-

64



Org for K2/Rad1/Recfield1 Org for K2/Rad1/Recfield2

[y
[y

//\l b -, (/’\ x
AN -- L N\ S,
Sos /0 N |k S oo
=1 4 ~ - -~ - P
© /, b © =~
N N AN N
§06// Yoo éoe
= = = = Left
Ooa4a O o04t-| = Right
0 2 4 6 8 0 2 4 6 8
Activations for K2/Rad1/Recfield1l Activations for K2/Rad1/Recfield2
4 4
c 35 : = = Left c 3.5
= Right S
K] K] I
g’ P D
Eo51 4 '\\ £25
< o N < - - Left
21, S 2 + = Right
7 N —_—— -
15 = 15
0 2 4 6 8 0 2 4 6 8
Mirror Symmetry for K2/Rad1l/Recfieldl Mirror Symmetry for K2/Rad1/Recfield2
1 1
> 05 > 05
E z
0 0
£ €
> >
05 /\ 9N -05
-1 -1
0 2 4 6 8 0 2 4 6 8
Overlap Overlap
Org for K2/Rad2/Recfield1 Left/Right Org for K2/Rad2/Recfield2
1 1 = =
Left | /\ \ 1 T Y~
c - c . —— ——
S08[ | =" Right |, \ Sosf\
g R g
S 0.6 N / 5 0.6
AN ! 2 - - Left
’ -
Ooafyf -~/ O 0.4} | = Right
/7 Ny
0 5 10 15 20 0 5 10 15 20
Activations for K2/Rad2/Recfieldl Activations for K2/Rad2/Recfield2
4 4 e
- ~ \, '~
35 |= - Left X O R e P PR -
s 3 = Right 5 X ~-o- -~____
g g
£ 25 7N 525
N
< 4 ~ < = = Left
2 N 4 —im= = 2 |'=" Right
N~
15 15
0 5 10 15 20 0 5 10 15 20
Mirror Symmetry for K2/Rad2/Recfield1 Mirror Symmetry for K2/Rad2/Recfield2
1 1
> 05 > 05
E E
0 0
£ £
> >
N -05 ‘/\ : N -05
-1 -1
0 5 10 15 20 0 5 10 15 20
Overlap Overlap

Figure 6.3: Results of the 54 simulator for the symmetric case with varying training input
overlap. Top: training inputs of radius 1, bottom: of radius 2. The horizontal axis is overlap
of simultaneous left and right stimuli in every graph here. The left column corresponds to
the bilateral method for computing receptive fields, the right column is based on independent
computation of receptive fields.
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tion of receptive fields, and the right column corresponds to independent point stimuli. The
figure illustrates several important observations:

o results for radius 1 and 2 are qualitatively similar;

o the different ways of calculating receptive fields produce very different results, even
though the same weight vectors are used;

e map complementarity is much more pronounced when the training input overlap is

higher;

e for some input overlap (usually close to 50%) the simulator produces “shifted” maps,
i.e. nearly perfect maps but shifted in different directions, such as in Fig. 6.2e.

6.2.2 Symmetric Case

Radius 2 input stimuli were used for the simulations described below, with three different
training input overlap values: 0 for independent randomly-centered inputs, overlap 10 (nearly
50% overlap), and overlap 19 (perfectly symmetric training inputs). Figure 6.4 shows results
for the symmetric case when K varied between -4 and 1. As in the S2 simulator, sharp
transitions in organization and symmetry values appear between -1 and -1.5. No significant
lateralization is present.

The sharp transitions appear both for independent and symmetric inputs, but for sym-
metric inputs they appear independently of the method used for receptive field calculation,
while for independent inputs only bilateral point stimuli reveal the transition. This is related
to the difference in weight changes, to be discussed in the next chapter.

6.2.3 Asymmetric Cases

Figure 6.5 shows results for the asymmetric excitability case. Lateralization is noticeable
for inhibitory callosal connections, and is strongest when the training inputs are symmetric.
Similar to the symmetric case, independent training inputs and independently computed
receptive field maps produce perfect symmetric maps for all values of K, while the same
weights and bilaterally computed receptive fields lead to some lateralization and asymmetry.
Independent calculation of receptive fields after training with symmetric stimuli smoothes
out most of the lateralization, but asymmetry persists.

Overall, significant lateralization and complementary maps were observed in the simula-
tions with strongly inhibitory callosal influences and asymmetry in the size or excitability of
the cortical regions. Asymmetric synaptic plasticity caused only transient (but very strong
for some callosal strengths) lateralization (Fig. 6.2¢) which disappeared after further train-
ing. Results for independent and symmetric training stimuli were in most cases surprisingly
similar qualitatively. For asymmetric excitability though, lateralization was stronger for
symmetric stimuli. Figure 6.6 summarizes results for the various kinds of model asymme-
try favoring the left side that were studied. It presents plots of lateralization for varying
callosal strength for the cases when training stimuli were symmetric and when they were
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Figure 6.4: Results of the S4 simulator for the symmetric case
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in every graph here. The left column corresponds to the bilateral method for computing
receptive fields, the right column is based on independent computation of receptive fields.
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independent, but receptive fields were computed bilaterally for both cases. For the asym-
metric synaptic plasticity case only lateralization after short training is presented. In fact,
asymmetric synaptic plasticity was the only case producing lateralization with independent
training inputs and independently computed receptive fields.

Lateralization for various asymmetries, Indep.Inputs Lateralization for various asymmetries, Symm.Inputs
1 ] 1 1F ]
Symmetric Case co Symmetric Case
0.8 | —— Diff. Excitability b 0.8 | —— Diff. Excitability
o6kl T Different Size | o6kl 77 Different Size
: --- Synaptic Plasticity : --- Synaptic Plasticity
0.4r b 0.4r

0.21 0.21

Lateralization
o
Lateralization
o
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-0.4r -0.4r
-0.61 -0.61
-0.8f e Yoo i —0.8F
-1 -1
-3 -2 1 -3 -2 1

-1 -1
Callosal Strength Callosal Strength

Figure 6.6: Summary of lateralization results for all model asymmetries for independent
(left) and symmetric (right) training inputs.

6.3 Discussion

The S4 simulator described in this chapter allows independent inputs to the left and right
cortical regions. This is similar to what happens in much of biological primary sensory maps,
since each hemisphere of a real brain normally receives input mostly from the contralateral
side of the body. The effects of various model asymmetries, excitatory and inhibitory callosal
influences, and different degrees of training input overlap were studied systematically. The
study of varying training input overlap shows that identical training inputs can produce most
of the interesting phenomena observed, thus justifying using a simpler model (with only one
sensory surface) as with the S2 simulator.

Observation of simulation results obtained with independent training inputs and with
the different ways of computing receptive fields gives insight into the map formation process
which the S2 simulator could not give. Namely, it shows that for strongly inhibitory callosal
influences even when the incoming cortical weights are well-organized, the receptive field
maps (computed bilaterally) are poorly organized. On the other hand, even when the weights
are not so well organized, independent calculation of receptive fields may help to improve
the map organization.

Consider a symmetric case with strongly inhibitory callosal connections. The four maps
produced by the S4 simulator using symmetric and independent training inputs, bilateral
and independent point stimuli during receptive field calculations are shown in Fig. 6.2g—
J- The map h obtained with independent training stimuli and independent calculation of
receptive fields is nearly perfect. The map g, based on the same weights, but computed
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Figure 6.7: Incoming weight vectors after training for the symmetric S4 model with strongly
inhibitory callosal influences: a. Symmetric training inputs; b. Independent training inputs.

with bilateral point stimuli, is quite different. The organization of both of its parts is very
low (even lower than that of the complementary maps produced by the S2 simulator for
symmetric case), and the symmetry measure is close to -1. The map i is a typical example of
the S2 simulator result, and map j is its smoothed out version. Fig. 6.7 presents the incoming
weight vectors after training with symmetric (a) and independent (b) stimuli. Clearly, the
two plots are quite different (the weights in part a are very well organized, while in part
b they are ready for producing complementary mosaic-type maps), and this difference is
reflected in the receptive field maps. Thus, both the weights and the method of receptive
field computation play an important role in determining final map organization.
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Chapter 7

Theoretical Analysis

This chapter presents a mathematical analysis of some important aspects of the models
described in this dissertation. First, a summary of previous results for similar models is
given. Then, analysis of total hemispheric activations for the S2 simulator leads to the
discovery of some bifurcations, and their role in the behavior of the model is explained.
Another variation of the model, having even more competitive distribution of activation, is
also considered and analysed. Further, results with the 54 simulator reveal the relationship
between organization of the weights and of receptive field maps (depending on the way of
computing receptive fields). This is also explained by the above bifurcation. Finally, it is
shown that the activation patterns forming in the cortex in the beginning of training can
predict the organization of the weights after training. Namely, the average dot product of
activations in the cortex and sensory surtace correlates quite well with the final organization
of incoming weights. This is explained, and it is shown how this dot product, in turn,
depends on the parameters of the model. Thus, the analysis makes it possible to predict
map organization (given all model parameters) before training.

7.1 Past Related Work

This section briefly summarizes previous mathematical analysis of neural models using com-
petitive distribution of activation.

Several researchers attempted mathematical analysis of the activation dynamics in S1
simulator and similar models. However, since the system of nonlinear equations (2.1) and
(2.2) for all sensory and cortical elements is too complicated, various simplified versions were
actually analysed. The ultimate goal of this research is the analysis of more complex models
based on the S1 simulator, so it is important to list the existing results of the S1 simulator
analysis here.

First we notice that the dynamics of activation of sensory nodes is not too hard to
analyse since there are no lateral connections: the nodes receiving constant positive input
quickly approach the maximum activation level Max, while the nodes with no input stay at
activation level 0. These are the only two types of dynamics that can happen in the sensory
layer.

Sutton [123] found that when no sensory input is present and all cortical nodes are
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assumed to have the same activation, that activation has a stable fixed point at 0 provided
that ¢, + ¢y Max < 0.

Reggia and Edwards [107] considered a neural network with competitive distribution of
activation, when the activation of node ¢ is governed by

ai(t +8) = ai(t) + 6[es(t) +ri + Y cij(t)a;(t)] (7.1)

JEN

where 0 < 6 < 1 represents the fineness of time quantization, e;(f) denotes the external
input to node ¢ at time ¢, r; is a constant bias at node ¢, and Y ,cn¢;;(t) = ¢ for any
7, where N denotes the whole network. Total external input is assumed to be constant
(F) and defining R = Y ;cny 74, they found two phase transitions for the total network
activation A(t) = Y ;eny @i The total network activation asymptotically approaches a fixed
point A* = —(E 4+ R)/c whenever —2/6 < ¢ < 0 (as t — o0). For ¢ outside this interval
the total activation diverges, i.e. grows without bounds. Thus, ¢ = 0 and ¢ = —2/é are
two phase transitions. This result applied to the SI simulator (where ODEs are replaced
by Euler method approximations with time step 6) leads to the conclusion that the total
activation converges when ¢, + ¢y < 0 and 6 < —2/(¢s + ¢5). Of course, the convergence
of the total activation is a necessary but not a sufficient condition for the convergence of
activations of individual nodes.

McFadden, Peng and Reggia [85] found local conditions for boundedness and divergence
of the entire activation vector in a more general model. In terms of model (7.1) their results
can be formulated as follows: define positive, negative and self-gains associated with node j

cp = cij(t), eny= > cjlt), c&=cj(t)

ieP; iEN,

as

where P; and N; are the sets of nodes receiving positive and negative connections from the
node j respectively. Then parameters

d=cp+cy+cs and R =cp—cy

play a significant role in determining the behavior of the system. Namely, if the conditions
ck < —R7 and §(R’ — c%) < 2 hold for any j then the system (7.1) is bounded for all choices
of initial values. Note that R’ is a Gershgorin radius derived from the jth column of the
connection matrix. Another theorem from [85] implies that in model (7.1) with zero external
input, if either ¢§ > R’ or ¢k < —2/§ — I/, then the system diverges for all nonzero initial
values.

Benaim and Samuelides [14] found a Lyapunov function and used it to prove convergence
for a competitive distribution model which was substantially different from the S1 model.
Their result was based on LaSalle’s invariance principle and Hirsch’s theorem [62]. Although
it is not directly applicable to the models considered here, the approach seems to be promis-
ing. In fact, McFadden [83] and Peng Wu [136] found Lyapunov functions for models which
are closer to S1 simulator and also used Hirsch’s theorem to prove convergence.

Finally, Yinong Chen and Reggia [32] considered a competitive distribution model very
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close to the S1 simulator. Under some simplifying assumptions, such as the absence of
lateral connections in the cortical layer and only one input node, they proved convergence
of activations to a fixed point, coordinates of which were found explicitly.

7.2 Simplified S2 Model and Total Activations

In the simulations described in Chapters 4 and 6 a sudden transition occurs in model behavior
at a specific callosal strength (roughly K = —1.4 in the symmetric case, K = —1.2 in the
asymmetric excitability case). For K above this strength, symmetric, non-lateralized and
highly organized maps occur, while for K below, lateralized and asymmetric mosaic pattern
maps occur. What causes this transition or bifurcation in model behavior? Below the cause
of a change in the dynamics of total hemispheric activations near K = —1.4 is shown and
then an explanation on how it leads to asymmetry in map formation is given.

First, consider the difference in total activation of the left hemispheric region L versus the
right R in the model. The activation dynamics described by (3.1)- (3.5) are highly nonlinear
and difficult to analyze. However, as in [107], a “linearized” version of these equations gives
insight into the model’s dynamics. Consider equations

dat
dt

= csaf + mzl +ng,, (7.2)

where al is the activation of element ¢ in L, and inf; and in}, are inputs to that element
given by (3.2) to (3.5). By algebraic manipulations, for j € L, k € S, m € R we have

LL _ L LS _ L LR LR
Yot =cp D ar =, > =K (7.3)
€L €L icL
Analogous equations hold for the right hemispheric region R.

Consider a fixed input pattern. Denote the total activation in the left hemisphere by
Ap, that in the right by Ag, and that in the sensory surface by Ag. Adding together the
equations (7.2) for all elements ¢ in the left hemisphere and using (3.2), (3.3) and (7.3) one
obtains:

dA
d—tL = CsAL + CﬁAL + C]%AS + ](LRAR (74)

and a similar equation for the right hemisphere.

7.3 Symmetric Case

In the symmetric case, where cﬁ = cﬁf = ¢y, k' = =, and K1 = K® = K subtracting

2 A
dAg/dt from dAy/dt we have:

d(Ar — AR)

di = (CS + Cif — [X’)(AL — AR) (75)
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This indicates that when K < ¢, 4+ ¢, an initial difference in activation levels of the two
hemispheres will grow exponentially with time, while for K > ¢, + ¢, this difference will
decay exponentially. With our baseline parameters this change is expected at K = ¢; +
¢f = —1.4, precisely where the transition occurs in the symmetric case simulations (see
Fig. 4.1). A more involved analysis given below shows that similar changes in asymptotic
behavior of total hemispheric activations occur in a more general case for roughly the same
K (e.g., when the two hemispheres have different excitation).

How does this change in activation growth affect symmetry and lateralization? With
random initial weights, an input pattern quickly causes slightly different initial levels of
activation in the two hemispheres. With time, this initial difference will either disappear (for
K > —1.4) or grow (for K < —1.4). In the former case, both hemispheres will have nearly
equal activation levels by the time a learning step occurs, and hence they will “learn” the
input at about the same speed (assuming equal learning rates), hence eventually developing
complete and symmetric maps. In the latter case, by the time of learning one hemisphere
may be largely inactive while the other is highly active, so the input is more effectively
learned by the more active hemisphere, resulting in local lateralization of map formation.
Recalling that the hemispheric regions are homotopically connected, this competition occurs
locally between mirror image sections of the cortex. Thus a small part of the map can become
better organized on one side than the other. After a sufficiently long training period, a mosaic
pattern is therefore likely to occur for K < —1.4. For symmetric hemisphere parameters
by chance each hemisphere would be expected to be dominant on about the same number
of input patterns as the other, and so complementary maps but almost no lateralization
is expected. With asymmetric cortical excitability we would expect larger total activation
more often on the more active hemisphere, so that hemisphere will develop a map covering
a larger part of the sensory surface, which leads to lateralization.

Consider the general linearized case (7.2) where the hemispheric regions may be asym-
metric. Denote ¢, + c{;? =cp, cs + cﬁf = cp, c]];AS = By, and cfAS = Bp, giving

dAL dAR

W = CLAL—I-[X’LRAR—I-BL, 7 == [X’RLAL—I-CRAR—I-BR. (76)
P . . . . . . Cy, [X’LR
This is a system of two linear differential equations, with matrix KRL , whose
R

trace is ¢g, + cg (negative in our model), and whose determinant is ¢pcp — KRR 3t thus
has a unique fixed point unless K% K*F = ¢;cr. The fixed point, which is asymptotically
stable when KFF KPR < ¢rep and asymptotically unstable when KFF KPR > ¢rep, is

—CRBL + [X’LRBR —CLBR + [X’RLBL

A = A% = . 7.7
L™ ¢ep— KLRKRL® “"R™ o on  KLRERL (7.7)

In the symmetric case with baseline parameter values ¢, = ¢g = —1.4, B = Br = 7.0,
KB = KBL = K| we have A} = A% = 7/(1.4 — K), so for K = 1.4 activation grows
without bound in the linearized model. However, the additional self-inhibition that we use
for K > 0 in simulations prevents this problem: as stated earlier for positive K instead of
¢, = cp = —1.4 weuse ¢, = cg = —1.4 — 2.6 K, which makes the behavior of the fixed point
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smooth for positive K (although it is not differentiableat K = 0): A} = Ay = 7/(1.44+1.6K).
This fixed point remains asymptotically stable for all K > 0, facilitating symmetric map
formation in both hemispheres. Thus, in the symmetric case the fixed point remains bounded,
and is asymptotically stable for all K > —1.4 and asymptotically unstable for K < —1.4.

Thus, the following result has been justified:

Theorem 7.3.1. In the symmetric case the system (7.4) has a bifurcation point at K =
¢s + ¢y, and it causes a qualitative change in the behavior of the whole model.

7.4 Different Excitability

In asymmetric cases, the coordinates of the fixed point behave more interestingly. For
different input sensitivity constants (c]j; = 1.05 makes By, = 7.35, but ¢, = ¢g) the difference
A} — Ay, = (B — Br)/(K — ¢1) remains quite small for K' > —1, but gets very large
as K approaches ¢, = —1.4. Different lateral feedback has a similar effect, except the
bifurcation point changes slightly: when ¢; = —1.3 the fixed point becomes unstable for a
larger K (K ~ —1.349). The difference of the total activations at the fixed point is given by
A — A% = Br(cr — cr)/(cper — K?) which is small for K > —1 and also goes up sharply
near the bifurcation point. Fig. 7.1 shows the dependence of the fixed point on K for various
cases. Here the additional self-inhibition for positive K is taken into account.

a AL AR b. AL AR
8 8
6
4
2
4 2 2 4 K K
-2
4 4

Figure 7.1: Fixed point of system (7.6) in (a) the symmetric case and (b) with asymmetric
input sensitivities or lateral feedback coefficients. Dashed line is total activation for the left
hemisphere, solid line for the right. In the symmetric case the values are equal and the two
lines coincide; in the asymmetric case they are close except near K = —1.4.

Finally, asymmetric excitability actually causes two transitions in the model’s dynamics.
While the coordinates of the asymptotically stable fixed point remain close to each other
(for K > —1) we have a situation similar to the symmetric case for K > —1.4, so complete
symmetric maps form. But when the asymptotically stable fixed point coordinates have
different orders of magnitude (as happens between K = —1.2 and K = —1.4, see Fig. 7.1b),
then the activation levels in the two hemispheres will differ significantly (with the left hemi-
sphere always much more active), and most of the learning will occur in the left hemisphere.
Thus, the post-training organization level on the left stays close to 1, while on the right it
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drops sharply. This also accounts for the “bumps” in the post-training activation levels in
Fig. 4.2b and the sharp changes in lateralization and mirror symmetry in Fig. 4.2c. Finally,
at K < —1.4 the fixed point becomes asymptotically unstable, and any initial difference
in the activations of two hemispheres will grow exponentially (like in symmetric case for
K < —1.4). However, due to the asymmetry in excitability the left hemisphere is more likely
to have higher initial activation. This facilitates complementary map formation favoring the
more active hemisphere.

Thus, the following theorem has been proved:

Theorem 7.4.1. The system (7.6) has a bifurcation point when K* = crep, K < 0, and
the whole model has another qualitative change in its behavior when K approaches this point
from the right.

7.5 Analysis of Another Variation of the Model, Using
Competitive Distribution of Activation Between
Two Cortices

Another variation of 52 simulator is a model with the same overall structure as S2 simulator
(see Fig. 3.1), but with slightly different activation dynamics. Namely, each sensory node
now distributes its output competitively not only to elements of each cortical set separately,
but to elements in both sets simultaneously. Thus, instead of the first equation (3.4) we now
have

LiaL
i =6 LT vl S Q)R R (7.8)

n

Yet another variation is obtained when the output of each sensory node is first divided
among the left and right cortices proportional to their total activations at the moment, and
then distributed competitively among the recipient nodes in each cortex within its quota.
This last version also allows for interesting theoretical analysis.

When each sensory node distributes its activation competitively among the recipient
nodes in both cortical sets, even the linearized model is very hard to study analytically.
Indeed, the equation (7.8) will only let us get rid of the sum in the denominator if we add
together activation equations for all elements in both cortical sets. In that case, assuming

also that c]]; = cf = ¢,, we get the following equation for the total activations:
d(Ar + A , .
% = CS(AL + AR) + CﬁAL + CﬁcAR + CpAS + [XLRAR + [XRLAL.

(7.9)

Clearly this allows analysis only for the symmetric case. The equation for the overall acti-
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vation A = A, + Ag is simple:

% = (CS + Cif + [X’)A + CpAs.
As before, A will diverge (go to infinity) if K > —(e¢s + ¢), which is 1.4 for our baseline
parameters. But again, this can be prevented if additional self-inhibition is used for positive
K.

As mentioned above, the other variation of competitive distribution is when each sensory
node’s output is first divided proportional to the total activations of cortical sets and then
within each set (we assume that the initial total activations are positive). The linearized
version of this model leads to the following nonlinear system of ODEs for total activations
(we again denote ¢; + c{;? = ¢y, ¢, + cﬁf = cp, c]];AS = By, and cfAS = Bg):

— =c AL+ K" Ap+ B ) = K" Ap + cRAr + Bp———.
di CrLAL R LAL_I_AR di L CRAR RAL‘|‘AR(710)

For this system the analysis becomes more interesting. As before, for the symmetric case
the solution can be found explicitly. The fixed point is Ay, = Ap = —B/(2(c + K)), which
is asymptotically stable for K < —¢, goes to infinity when K approaches —¢, and becomes
asymptotically unstable (and negative) for K > —c. It is important to note that even though
the fixed point becomes unstable for large K, the difference A, — Ar will still converge to 0.
This is easy to see if a change of variables is made: * = A — A, y = Ar + Apg, the system
becomes:

Cfl—f = 2(c— K) +B§; fl—?; —y(c+ K) + B.

From the second equation y = aexp((c+ K)t) — B/(c + K), and from the first equation
de/dt = (¢ — K + B/y). For K > —¢, y(t) — oo as t grows, hence ¢ — K 4+ B/y becomes
negative very quickly even if it was positive at the beginning, so x(¢) — 0. The consequence
of this result is the absence of sharp transitions in the model’s behavior for this kind of
model for K > 0. In particular, the symmetry measure is expected to stay close to 1 in the
symmetric case for all A > 0 despite the competitive distribution of activation. Simulations
have confirmed this prediction.

However, for the asymmetric case the problem gets harder. It is still possible to find the
coordinates of the fixed point explicitly, but the expressions are too big to offer any help in
understanding of the dynamics. But using the idea of continuation method [97] can help. In
all model variations the parameters usually differ from the symmetric case only slightly, and
so we can analyse the behavior of the fixed point in an asymmetric case by starting from the
fixed point in a close symmetric case and then varying a parameter a little at a time. No
bifurcations are observed in the parameter space except when KFX K = ¢;cp, and so this
approach should work well.
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7.6 Analysis of S4 simulator

The S4 simulator, described in Chapter 6, is a generalization of the S2 simulator. In partic-
ular, it is equivalent to the S2 simulator when symmetric training inputs are used and the
receptive fields are computed with bilateral point stimuli. Thus, in such a case the analysis
given in the previous sections applies to the S4 simulator as well.

When the training stimuli applied to the left and right sensory surfaces are independent,
the incoming weights for both cortices usually organize fairly well for all callosal strengths
(except, perhaps, the case with asymmetric learning rates and short training), but the orga-
nization and symmetry of receptive field maps depends very strongly on their way of calcu-
lation. Calculated independently, the maps are nearly perfect, so there is nothing interesting
to analyse. When calculated from bilateral point stimuli, the maps are less organized and
asymmetric for strong inhibitory callosal influences, which is explained easily by Theorem
7.4.1, since this asymmetry is again the result of asymmetric activation dynamics (recall that
receptive fields are computed using activations of cortical elements in response to sensory
point stimuli).

7.7 Activation Patterns and Weight Changes

The results with the S4 simulator show that in the bihemispheric models, weights are not the
only factor affecting organization of receptive fields. This is a very important observation
for the current study. It implies that one should look not only at the process of changing
weights, but also at activation dynamics during receptive field calculation. Of course, the
weight changes are very important.

Strong lateralization observed in the 52 simulator for even slightly inhibitory callosal
connections when the connection radit were different suggest that the shapes of activation
patterns forming in the cortices during training are extremely important for weight organi-
zation and topographic map formation. In this section an attempt is made to measure the
shape of an activation pattern so that would be predictive of map formation (or at least
weight organization) after training. First, a way to measure “goodness” of activation pat-
terns is suggested, and then it is shown how it correlates with resulting map and weight
organization. Intuitively, the measure should give a high value to a bell-shaped, or at least
to a “convex” activation pattern, and a low value to a centrally-depressed activation pattern,
as well as non-contiguous or simply very low activation.

In fact, the importance of the shape of activation patterns for map formation was first
pointed out by Armentrout in [5], when he was studying the noncompetitive version of the
S1 simulator. He showed that “bell-shaped activity islands are required for topographic map
formation”. Armentrout proved that in a “one-dimensional Kohonen network the ordered
states are absorbing if and only if the symmetric neighborhood function is non-increasing
with distance”. Being absorbent means that “once weights become ordered subsequent
learning will not change this ordering” and is very desirable for good map formation. His
analysis and simulations (using noncompetitive version of the SI simulator) showed that
“centrally-depressed or non-contiguous ... activation patterns do not promote topographic
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map formation as nearby input vectors are mapped to separate output regions”.

Figure 7.2 presents some typical activation patterns found in the cortical regions under
various combinations of model parameters for the S2 simulator. The top row shows acti-
vations in the sensory surface (part a), left (center) and right (right) cortical regions when
all model parameters except random initial weights are symmetric, and callosal strength is
0. Good activation patterns form in both cortical regions, and very good symmetric maps
form in them very quickly. The second row contains activation patterns for the symmetric
case with strongly inhibitory callosal influences. Supporting the analysis above, one cortical
region (left here) has very little activation, while the other (right in this figure) has a good
activation pattern. Similar situations happen in asymmetric excitability case with strong
inhibitory connections.

Finally, the bottom row of Fig. 7.2 shows activations for the asymmetric connectivity
case, when the radius of connections from the sensory surface to the right cortical region is
4, and to the left one 3, with callosal radius 1 and input stimulus radius 2 (similar figure
with input radius 1 is given on page 37). A “good” activation pattern (roughly bell-shaped)
occurs in the left cortical region, and a “bad” one (centrally-depressed) in the right cortical
region. Such a situation leads to strong lateralization as a well-formed map does not appear
in the left cortical region.

Several approaches to evaluating the shape of activation patterns were tried. It turned
out that a simple dot product of cortical and sensory activations (averaged over first 50
inputs) is a fairly good predictor of weight and map organization after training. The dot
product is computed by adding together the products of activation levels in corresponding
elements of one cortex and the sensory layer from which it receives input. Since the ac-
tivation level of a sensory element is either 0 or 1, the dot product is effectively the total
activation of the cortical elements directly corresponding to the active elements of the train-
ing stimulus. Figure 7.3 shows this dependence for training inputs of radius 1 (parts a, c)
and 2 (parts b, d), based on results of many simulations with various model asymmetries
(except different size, since it’s hard to compute the dot product of activations for different
size regions, and different learning rates, since the rates affect map formation, but do not
affect activation patterns in the beginning of training). The figure has 2 points for each
simulation, corresponding to left and right cortices.

Taking into account the previous discussion of the effect of a bilateral way of computing
receptive fields on map formation when the training stimuli were independent (see Chapter
6), results of 54 simulator with independent training stimuli are used only for parts ¢ and d,
where weights are shown.

Some scattering of the points is probably due to the fact that normally tens or hundreds
of thousands of training inputs are needed for map formation, so perhaps the first 50 may
not be a sufficient sample. The figures show that most points fall into the 95% confidence
interval around the parabola computed as the least squares fit. For higher levels of dot
product the parabolas level off, showing that once the dot product is high enough, a good
map will form (recall that map organization values are limited by 1). The graphs for training
input radii 1 and 2 are given separately because it is not clear how to normalize the results so
that they could be given together. Simple division by the number of elements in the training
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Figure 7.2: Activation in the (a, c, e) sensory surface and (b, d,f ) the two cortical regions
when (a, b) symmetric case, no callosal connections, “good” activation patterns in both
cortical regions; (c, d) symmetric case, strongly inhibitory callosal connections, “good”
activation pattern in the right cortical region, almost no activation in the left cortical region;
(e, f) radii from the sensory surface to cortical regions are 3 and 4, callosal radius 1,
inhibitory callosal connections, “good” pattern in the left and “bad” one in the right cortical
region.
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Figure 7.3: Organizations of topographic maps and incoming weights (vertical axes) after
training depend on dot product of activations of cortical and sensory elements before training
(horizontal axes). The least squares quadratic approximation and 95% confidence intervals
are also shown. (a, b) Map organization, (c, d) incoming weight organization; (a, c¢) training
inputs of radius 1; (b, d) training inputs of radius 2.
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patch does not work well, since the activation dynamics is highly nonlinear.

7.8 Factors Affecting Activation Patterns

Here an analysis of activation dynamics in individual nodes is undertaken, in order to see
how the model parameters affect the resulting dot product of activations in sensory and
cortical layers. In order to minimize the size of the nonlinear system of ODEs, the one-
dimensional case is considered here. A small version of a one-dimensional S2 simulator has
been implemented in Matlab, using its ODE solver ode23, which implements Runge-Kutta
method with adjustable time step. The small version has only 8 elements in each cortical
set, and only 2 input nodes, each sending input to 5 elements in each cortical set. Callosal
radius is 1. The additional self-inhibition for positive KA was not used, since all the most
interesting phenomena happen for negative K anyway. While it is a minimal configuration
that can be considered for analysis of activation patterns, it still has 16 nonlinear ODEs.
The initially random weights create an additional problem, since they play an important
role in activation dynamics.

Numerous computations show that after initial active changes, solutions of the ODE
system converge to fixed points for all values of K considered. Fig. 7.4 shows the behavior
of individual element activations as time goes from 0 to 40 that was observed for various
parameter sets. The fixed points stay nearly unchanged for most negative values of K, as
shown in Fig. 7.5, where elements 1 through 8 correspond to the left cortical set, and 9
through 16 to the right one.

For negative K < —0.5, usually only two elements (forming a cluster) on each side
remain active after sufficient time has passed, and these elements on the left and right
sides tend to be in different locations. This makes the dot product of cortical and sensory
activations low, in fact, it is usually 0 on one side and around 1.2 on the other (see Fig. 7.6).
Complete dominance of one side over the other (as could be expected from the analysis of
total activations above) does not happen here because the callosal radius is too small.

For K > —0.5, as the inhibition gets weaker, the clusters of active elements on both sides
become wider, more active and more symmetric, so that the dot products increase (up to
around 4 for K = 1) and become close to each other.

Fig. 7.6 presents the dependence of dot product of cortical and sensory activations on K.
For various initial weights and parameter variations this figure remains amazingly similar,
with only small changes near K' = —0.5. Of course, for the symmetric case either left or
right cortex can have higher dot product with sensory surface, while for the asymmetric
excitability case usually the left cortex (having higher excitability) has higher dot product.

When the sensory-cortical radii are asymmetric and callosal influences inhibitory, the
activation pattern on the side with larger radius (right side here) is split into two parts with
zeros in the middle (the middle here corresponds to the position of the input stimulus in the
sensory layer). This split is caused by stronger inhibition from the other (left) side exactly
in the middle. Indeed, the elements in the middle of the right side receive inhibition from
practically all active elements on the left, while the positive activation from the input nodes
is distributed (competitively!) over a larger number of right side elements, and those farther
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connectivity. All activations converge to fixed points after some time.
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Figure 7.5: Fixed points of the system of 16 nonlinear ODEs as a function of K.

away from the middle get less inhibition. This leads to the centrally-depressed activation
pattern on the right side and makes its dot product with the sensory layer activation zero.
At the same time, the activation cluster on the left side is closer to the center, thus making
the dot product much higher than in other cases. Strong lateralization inevitably follows.
A similar argument also applies to the two-dimensional model when callosal radius is small.
This explains strong lateralization even for weakly inhibitory callosal influences described in
section 4.2.4.

7.9 Discussion

The models described in the previous chapters have been analyzed here from various points of
view. The analysis of a simplified (“linearized”) version of the 52 simulator helps to explain
the sudden transitions in organization and symmetry observed in many simulations, as well
as lateralization and the “bumps” in post-training activation for the asymmetric excitability
case. It is shown how these phenomena depend on the stability and behavior of a fixed point
of a linear ODE system for total hemispheric activations. The behavior of the S4 simulator
is also explained by the above analysis.

Another variation of the model, using competition for activation between the two cortical
regions, is also considered and analyzed. For this model the ODEs for total activations
are also nonlinear. It is shown that no sharp transitions in the model’s behavior should
be expected, and highly symmetric maps should form for positive K. Simulations have
confirmed this prediction.

Finally, it is demonstrated how activation patterns forming in the cortex in the beginning
of training can predict weight and map organization after training. It is discovered that the
dot product of activations in the cortical and sensory layers before training correlate with the
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final (after training) weight organization (and map organization in certain cases). Formation
of those activation patterns under various combinations of parameters is also discussed.
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Chapter 8

Conclusions

8.1 Results of this Research

Lateralization and asymmetries in the brain have been a subject of research in biology,
psychology, cognitive science, and other disciplines for over a century. However, computer
models of interacting left and right hemispheric regions have appeared only recently and
have been very limited. Very few of them examined the effects of callosal connections and
various asymmetries on spontaneous lateralization, and none considered lateralization and
asymmetries in cortical maps. In this dissertation, several mathematical models of lateraliza-
tion and asymmetry in cortical maps have been created and analysed both computationally
and theoretically. The recurrently-connected neural models considered here are, of course,
simplified from biological reality. None the less, they do capture several key aspects of real
hemispheric regions. They have a spatial organization that permits examination of maps,
their interconnections are roughly homotopic, and they self-organize using unsupervised

(Hebbian) learning.

The main achievements described in this dissertation are as follows:

1. The first models of left and right cortical maps interacting via a simulated corpus
callosum have been created and analyzed. The models are based on the ideas of self-
organizing maps, competitive distribution of activation, and competitive learning.

2. Metrics for objective quantitative evaluation of topographic map organization, later-
alization and mirror symmetry have been introduced and analyzed. The metrics not
only have desired formal mathematical properties, but also correlate well with people’s
subjective estimates of map organization, lateralization, and mirror symmetry.

3. The study of the effects of various model asymmetries on map lateralization has deter-
mined that most of the asymmetries can cause lateralization, supporting the hypothesis
that lateralization is a multifactorial phenomenon.

4. A systematic study of the effects of callosal influences on map formation in the sym-
metric case and in the presence of model asymmetries shows that most lateralization
and map asymmetry occurs with inhibitory callosal influences, while symmetric well-
organized maps develop when callosal influences are weak or excitatory. There are also
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sharp transitions in organization, lateralization, and mirror symmetry as the callosal
influences become more inhibitory. These findings support the hypothesis that callosal
influences are functionally inhibitory.

5. In contrast, lesioning studies lead to the conclusion that diaschisis is most faithfully
reproduced with excitatory callosal influences. The effects of lesions on map formation
have been studied both acutely (immediately after the lesion) and chronically (after
a retraining period), for several model variations, having excitatory and inhibitory
callosal connections.

6. Further, the intact hemisphere participates in the recovery process mostly with in-
hibitory callosal influences. This may indicate that current theories of lateralization
are inadequate, but the experimental literature is ambiguous on these issues.

7. Analysis of a bifurcation point of an ODE system explains the sudden transitions in
the model’s behavior, and analysis of the shapes of activation patterns shows how to
predict post-training organization based on the pre-training activation patterns. For a
slightly simplified S2 model, a system of linear ordinary differential equations (ODE)
for total hemispheric activations was obtained and analyzed. In most cases the system
has one fixed point, which is asymptotically stable for excitatory and slightly inhibitory
callosal connections, and asymptotically unstable for strongly inhibitory connections.
The explanation of the effects of this change on map formation is given. Deeper analysis
of activation patterns helps to explain some cases not explained by the first approach.
It is shown how activation patterns observed in the cortical regions in the beginning of
training can predict weight and map organization after training, and how the activation
patterns depend on model parameters. Theoretical analysis of the model’s dynamics
explains the key computational findings and helps to better understand the roles of
various model parameters in the map formation and lateralization.

8.2 Future Work

Several directions of possible expansion for this research can be suggested.

One is finding another way of measuring activation patterns that works better in pre-
dicting ultimate map organization than the dot product of activations used in this research.
It is not clear at this point whether such a way exists.

Another is further analysis of the behavior of the w-limit set (in particular, the fixed point)
of the system of nonlinear ODEs for activations. Possible existence of bifurcations of various
kinds for the one-dimensional model can be checked by a continuation method, or using
specialized software packages. Similar analysis for the two-dimensional case is desirable, but
it is not clear how to approach it.

Yet another direction is analysis of the relationship between the shape of activation
pattern, learning rate, and final weight and map organization. In this dissertation the effect
of activation shape on map formation was considered only for a fixed learning rate. But
simulations with different learning rates suggest that for some activation shapes smaller

88



or larger learning rates may actually improve weight organization and map formation. It
would be interesting to find an optimal learning rate for each value of goodness of activation
pattern.

Finally, other models can also be considered. The models described in this dissertation
display lateralization for inhibitory callosal strengths and diaschisis after a lesion (see Chap-
ter 5) only for excitatory callosal connections. Thus, a more complex model is needed which
would have both of the above effects with the same callosal strength.
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