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Chapter 1Introduction1.1 MotivationsThe human brain consists of two hemispheres, and in most people one hemisphere canperform better on some tasks than the other. This is called hemispheric specialization. Forexample, usually the left hemisphere is dominant/specialized for control of hand movements(which is why most people are right handed, since each hemisphere controls the opposite sideof the body) and for language. Conversely, the right hemisphere is dominant/specializedfor facial expression and processing of spatial information. The term lateralization refersto one hemisphere being more specialized for a speci�c task than the other, as in theseexamples. Its causes and mechanisms are not well understood and are a subject of activeresearch. Possible causes of lateralization include some anatomical asymmetries of the twohemispheres, biochemical di�erences, and the in
uence of the bundle of �bers connecting thetwo hemispheres, the corpus callosum. Whether the callosal in
uence is mostly excitatory(positive) or inhibitory (negative) is also not clear. Fig. 1.1 (taken from the online Websterdictionary [137]) shows one hemisphere of a split human brain, including the cross-sectionof corpus callosum. Better understanding of the causes, mechanisms and e�ects of brainlateralization can be very useful for biomedical applications, medicine, robotics, and otherareas.This dissertation focuses on studying a mathematical model of some aspects of the cere-bral cortex as a means of obtaining a better understanding of some hypothesized causes oflateralization. The cerebral cortex is the convoluted layer of gray matter over the outsideof the cerebral hemispheres (see Fig. 1) [1]. The cerebral cortex is the part of the brainmost closely associated with cognition (language, memory, etc.). Of direct relevance to theresearch described here is that several sensory and motor maps are found across the surfaceof the cerebral cortex. Cortical maps are the parts of the cerebral cortex that represent someaspect of the environment in a topology-preserving fashion. Figure 1.2 (taken from [59])shows schematically primary sensory and motor maps in the human brain. Every part ofhuman body surface is represented in corresponding regions of sensory and motor cortex. Foreach body part this representation is continuous, but di�erent parts take up di�erent areasof cortex. Areas of cortex corresponding to hands and face, especially lips, are relativelylarge, while the areas representing body trunk are quite small. Stimulation of a particularbody part will activate corresponding somatosensory cortex region, and activation of a motor1



Figure 1.1: Human brain viewed medially after vertical midline sectioning: 1 cerebral hemi-sphere, 2 corpus callosum, 3 ventricle, 4 fornix, 5 thalamus, 6 pituitary gland, 7 pons, 8medulla oblongata, 9 spinal cord, 10 cerebellum, 11 midbrain. Picture taken from [137].cortex region will cause muscle contraction in the corresponding body part.The goal of this research is to create a neural model of cortical map lateralization andasymmetry and to use it to examine possible causes and mechanisms of lateralization and therole of corpus callosum, both in the intact model and during recovery from a lesion (damage).Past work on understanding brain lateralization has largely focused on empirical researchinvolving humans and animals. The concept of using mathematical/computational modelsof hypothesized mechanisms of lateralization is relatively new, and while some work has beendone (see Chapter 2), this �eld is in its infancy. The intent is that the kind of theoreticalwork described here will complement experimental work on lateralization (which remains,after more than a century, very active) by critically examining in detail the implications oftheories about its underlying mechanisms.1.2 AccomplishmentsThis thesis describes a study with recurrently-connected neural models consisting of twohemispheric regions interacting via a simulated corpus callosum. The models are intendedonly as an abstract representation of two interacting cortical regions. The goal is to examinehow these regions might in
uence map formation in one another. While the models are sim-pli�ed from reality, they do capture some important neurobiological constraints: the modelhemispheric regions have a spatial organization, their interconnections are roughly homotopic(each element is connected to the symmetric one and its neighbors), and they self-organizeusing unsupervised (Hebbian) learning. Activations of individual elements (of which thehemispheric regions are comprised) are governed by coupled nonlinear ordinary di�erentialequations (ODEs), where coe�cients (called weights) change with time and their changesdepend on the activation levels. Simulation results are represented as pairs of receptive �eldmaps. Special measures are introduced for numerical evaluation of the map organization,2



Figure 1.2: Diagram of the area of sensory and motor cortex devoted to di�erent portions ofthe body. Each part of the human body is represented by a corresponding area in sensoryand motor cortex in a topography-preserving fashion. This �gure shows a vertical cross-section of a brain, through the sensory cortex for the left hemisphere and the motor cortexfor the right one. Body parts represented by speci�c cortical regions are drawn and namednext to them. Picture taken from [59].
3



lateralization, and mirror symmetry. Mathematical properties of those measures are proved.Systematic variations of the models were studied through computer simulations. Witheach simulation the underlying assumptions about cortical region asymmetry and callosalexcitatory/inhibitory strength were varied, and conditions resulting in map asymmetries weredetermined. The initial hypotheses were that map lateralization and asymmetries would arisefrom all of the underlying hemispheric asymmetries that were examined (cortical region size,excitability, plasticity, etc.), and that map lateralization and asymmetries would graduallyoccur as callosal connections became progressively more inhibitory. The actual situationproved to be more interesting, with only some factors causing persistent lateralization, andthe existence of a sharp transition between callosal strengths leading to lateralization.Many of these computationally observed phenomena are explained by theoretical analysisof total hemispheric activations in a simpli�ed model. The connection between a bifurcationpoint of the system of ODEs and the sharp transition in the model's computational behavioris established. More general understanding of topographic map formation and changes undervarious conditions is achieved by analysis of activation patterns (i.e., !-limit sets of the abovesystem of ODEs). It is shown how the activation patterns forming in the cortical regions atthe beginning of training can predict the map organization after training. Factors a�ectingthe activation patterns are also discussed.This is the �rst mathematical model to demonstrate spontaneous map lateralization andasymmetries, and it suggests that such models may be generally useful in better understand-ing the mechanisms of cerebral lateralization. The mathematical analysis of the models leadsto a better understanding of the mechanisms of self-organization in the topographic mapsbased on competitive distribution of activation and competitive learning.1.3 OverviewChapter 2 provides some general background information on brain lateralization, corticalmaps and their neural models, and then describes the S1 simulator which was used as abasis for the model in this study. Lateralization and asymmetries in the brain have been asubject of research in biology, psychology, cognitive science, and other disciplines for overa century. However, computer models of this phenomenon have appeared only recentlyand are very limited. Since this study deals with models of cortical maps, a brief reviewof previous models of cortical maps is also given. The S1 simulator is described in detail,including its architecture, connectivity, activation and learning rules, as well as visualizationand interpretation of its results using a special software package tmap.Chapter 3 describes a new model called S2 simulator, including its architecture, connec-tivity, activation dynamics, and learning rule. The model consists of two cortical regionsinterconnected by a simulated corpus callosum and receiving input from a single input layer.Activation levels of cortical elements (of which the cortical regions consist) are governedby a large system of nonlinear ODEs. The weights on connections from the input layer tothe cortical regions (which serve as coe�cients in the above system of ODEs) are initializedrandomly and then change periodically based on the cortical activations. These changes arecalled learning. The chapter also explains how the numerical simulations were organized and4



their results evaluated. The approach similar to the one used for the S1 simulator allows aquick qualitative estimate of map formation and lateralization. However, objective quantita-tive estimates are needed for a systematic study of simulation results with the S2 simulator.Metrics for objective topographic map organization, lateralization and mirror symmetry areintroduced, and their properties analyzed. The metrics estimate map organization for eachindividual cortical region, lateralization and mirror symmetry for map pairs. Importantmathematical properties of the metrics are proved.Chapter 4 presents simulation results for a symmetric S2 model as well as for several caseswhen some asymmetries have been introduced into the model. For each model asymmetrydependence of map organization, lateralization, and mirror symmetry on callosal in
uencesare studied systematically. Analysis of the results shows that not all asymmetries causelateralization, and for most model variations there are sharp transitions in organization,lateralization and mirror symmetry values as functions of the callosal strength.Chapter 5 contains results of the lesioning simulations and some analysis of them. Lesionsare used to model the e�ects of brain damage resulting from an accident or a stroke. Lesionsare introduced into the model by clamping activation levels for some cortical elements tozero. The e�ects of lesions on map formation are studied both acutely (immediately afterthe lesion) and chronically (after a retraining period), again for excitatory and inhibitorycallosal connections. The e�ect of diaschisis (reduction in activation of the other hemisphereafter a unilateral lesion) is observed with an excitatory corpus callosum. But participationof the other hemisphere in recovery after the lesion is mostly pronounced with inhibitoryinterhemispheric connections.Chapter 6 presents another bihemispheric model of cortical maps called the S4 simulator.This model uses the same activation and learning rules as the S2 simulator but allowsindependent inputs to the two cortical regions from the contralateral sensory surfaces. Thisis closer in architecture to much of real primary sensory cortex. The model allows twodi�erent ways of computing receptive �elds, and also the overlap of training inputs sentto the two cortical regions can be controlled. The e�ects of di�erent degrees of traininginput overlap are studied, along with the e�ects of varying callosal in
uences on the mapformation in the presence of various model asymmetries. Simulation results show that themost interesting phenomena occur when the training inputs are kept symmetric, so that themodel is equivalent to the S2 simulator. This gives support to the previous model.Mathematical analysis of the above (and some other) models is given in Chapter 7.First, it describes the results of theoretical analysis of the S1 simulator and similar modelsobtained by previous researchers. Then it explains the sharp transitions demonstrated inChapters 4 and 6, and helps to understand better the topographic map formation in themodels. For a slightly simpli�ed S2 model, a system of linear ordinary di�erential equations(ODE) for total hemispheric activations is obtained and analysed. In most cases the systemhas one �xed point, which is asymptotically stable for excitatory and slightly inhibitorycallosal connections, and asymptotically unstable for strongly inhibitory connections. Theexplanation of the e�ects of this change on map formation is given. Deeper analysis ofactivation patterns helps to explain some cases not explained by the �rst approach. It isshown how activation patterns observed in the cortical regions in the beginning of trainingcan predict weight and map organization after training, and how the activation patterns5



depend on model parameters.Chapter 8 contains concluding remarks and suggestions for future work in this area.
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Chapter 2BackgroundTo place the research in this dissertation in the context of related previous work, a briefsummary of several issues is given. The experimental work on hemispheric asymmetries andlateralization that motivates this modeling is described, and some previous mathematicalmodels of lateralization and cortical maps are characterized, establishing the novelty of theresults presented here.2.1 Hemispheric Asymmetries and LateralizationSeveral behavioral cerebral asymmetries exist in humans, e.g., unilateral hemispheric dom-inance for language tasks, handedness, visuospatial processing, emotion and its facial ex-pression, olfaction and attention [59, 120, 104, 36]. Much of the evidence for such qual-itative and quantitative asymmetries came from studies of de�cits in stroke and traumapatients, from special procedures applied to normal subjects and \split-brain" patients fol-lowing commisurotomy [46], and from functional imaging studies of higher cortical functionsand perceptual tasks [25]. There is enormous plasticity of the brain with respect to func-tional asymmetries. For example, left hemispherectomy in infants can result in the righthemisphere becoming remarkably skilled in language functions [39].A distinction relevant to this research is that between individual and population lateral-ization. Individual lateralization refers to the fact that a speci�c function is asymmetricallysupported by the two hemispheres. Population lateralization refers to the fact that not onlyis individual lateralization of a function occurring, but the lateralization tends statisticallyto favor one hemisphere over the other in a population. In this study we are concernedexclusively with individual lateralization.While the above hemispheric specializations are well known, their underlying causesare not well understood. Some potentially relevant factors include hemispheric anatomicalasymmetries [48, 81], higher-order dendritic branching [114], the ratio of gray matter towhite matter [53], important neurotransmitters such as dopamine and norepinephrine [126],and the threshold for motor evoked potentials [82].Another potential factor is hemispheric interactions via the largely homotopic connec-tions of the corpus callosum [66, 98]. It is unclear at present whether the predominantin
uence of the corpus callosum is excitatory or inhibitory. For example, an excitatory in-7




uence is suggested by the cellular components involved (mainly pyramidal cell to spinycell connections that are presumably excitatory), transcallosal diaschisis, and split-brainexperiments [66, 134]. An inhibitory in
uence is suggested by the occurrence of lateraliza-tion, directly measured inhibitory transcallosal e�ects, and transcranial magnetic stimulationstudies [34, 72, 125, 45, 87].While lateralization and functional cortical asymmetries have been most prominentlyassociated with higher cortical functions (language, spatial information processing, etc.),it has recently been demonstrated electrophysiologically that topographic maps in primarysensory and motor cortex also exhibit a rich range of patterns of individual lateralizationand asymmetry [17, 92]. Topographic cortical maps are regions of the cortical surface thatrepresent some aspect of the environment (visual space, body surface, etc.) in a topology-preserving fashion. In other words, they literally form detailed, two-dimensional mappingsof various sensory input or motor output spaces [70, 127].In one recent study with more than 100 animals, it was found that somatosensory, au-ditory and visual map asymmetries are almost always present in an individual animal'sprimary sensory cortex, even in the context of bilateral stimuli [17]. These map asymmetrieswere classi�ed as qualitative (complete lateralization; 40% of animals), quantitative (par-tial lateralization; 30%), topographic (no lateralization but asymmetric spatial distributionsor mosaic patterns; 10%), and quantitative-plus-topographic (lateralization and asymmet-ric spatial distribution; 20%). The dependence of asymmetries on callosal connectivity wasshown by the fact that callosal sectioning generally caused a partial or complete loss of mapasymmetries. Figure 2.1 (from [17]) illustrates direct and inverse dominance zones in severalsensory regions of cortex.In another series of experiments with six adult squirrel monkeys, detailed primary motorcortex forelimb maps were found to be both larger and more complex in the hemisphereopposite the preferred hand [92]. The causes of these map asymmetries are not known.2.2 Past Computational ModelsNeural models are a promising approach for developing a theoretical understanding of brainfunction and its disruption by stroke. In recent years neural models have increasingly beenadopted to study neurological, neuropsychological and psychiatric disorders, with two in-ternational meetings being held on this subject at the University of Maryland since 1995[108, 110].2.2.1 Previous Neural Models of Hemispheric InteractionsWhile there have been many previous neural models of cerebral cortex, very few have exam-ined aspects of hemispheric interactions via callosal connections. One model demonstratedthat oscillatory activity in one hemisphere could be transferred to the other via interhemi-spheric connections [3, 4]. Another demonstrated that inhibitory callosal connections pro-duced slower convergence and di�erent activity patterns in two simulated hemispheres [35].Additionally, a pair of error backpropagation networks were trained to learn a set of input-8



Figure 2.1: The topography of direct and inverse dominance zones in di�erent cortical areasin cats before (a) and after (b) corpus callosum section. 1,2 { direct and inverse dominancezones; I { visual, II { auditory, III { sensorimotor cortical areas. All pictures displaymosaic patterns. This picture is taken from [17].9



output associations simultaneously, and it was shown that slow interhemispheric connec-tions were not critical for short output times [112]. None of these previous neural modelsof hemispheric interactions examined the central issues in this research: lateralization offunctionality through synaptic weight changes (learning), and the interhemispheric e�ects ofsimulated focal lesions. None of these past models incorporates the spatial organization ofneocortex in their structure, the networks being fully/randomly connected (e.g., there couldbe no concept of cortical maps or focal lesions in these models). Other studies have relatedsimulation results to their implications for lateralization, but did not actually model twohemispheric regions interacting via callosal connections [75, 24]. A recent mixture-of-expertsbackpropagation model examined how unequal receptive �eld sizes in two networks couldlead to their specialization for learning spatial relations, but did not incorporate callosalconnections or represent cortical spatial relationships [67].Finally, there has been one symbol processing model of lateralization [76]. This model isneither a neural model nor a brain model. It does not demonstrate spontaneous lateralizationof functionality (i.e., it starts with assumed partial lateralization), does not examine theinterhemispheric e�ects of focal lesions, and does not represent cortical structure at all.Thus, these past studies have generally not looked directly at how lateralization or asym-metry of functions can arise spontaneously. An exception is a couple of recent computationalmodels developed in our research group in parallel with this study: of single word readinglateralization [109] and of letter identi�cation by left and right simulated visual cortices [115].In contrast to the work described in this dissertation, these were supervised learning modelsand they did not consider map lateralization.2.2.2 Previous Models of Cortical MapsSeveral neural network models of cortical maps have been described in the literature. Noneof these models involves multiple maps interacting via callosal connections, nor do theyexamine issues of lateralization or map asymmetry.Von der Malsburg's modelOne of the �rst computational models of cortical maps is the model of line orientation featurecells in visual cortex by von der Malsburg [129]. His model produces clusters of cortical cellsthat respond to similarly oriented input lines as a result of learning. Von der Malsburgshowed that orientation sensitive cells develop when competitive learning was used. At thetime, this was a major advance over previous thinking that genetically-predetermined, �xedstrength connections are necessary to generate orientation sensitive cells [63].Von der Malsburg's model simulates certain neurons found in cat and monkey primaryvisual cortex (area 17) [63, 64]. These neurons are selectively sensitive to line orientations,respond in clusters to stimuli, and form a computational map with respect to the orderingof the orientations of the visual line stimuli. His network had random weights initiallyand was trained using a competitive learning rule. This self-organizing network has theadvantages of needing far less genetically encoded information for its construction, a highinitial degree of plasticity, and an ability to adapt to a changing environment at any stage10



in its development. The initial plasticity is necessary to explain studies with young kittenswhere their visual cortical behavior was clearly a�ected by their environment [61, 20, 21].The ability to continuously adapt has obvious advantages and seems to occur in mammaliansensory cortical maps [68].Kohonen's Self-Organizing MapsKohonen has done extensive research on the principles of map formation in arti�cial neuralnetworks [74]. He showed that only a few basic principles are necessary for topographic mapformation. The most basic ingredient is a two-dimensional layer of nodes with a neighborhoodrelationship which is usually de�ned in terms of lateral connectivity between the nodes. Thiscan sometimes be viewed as a tessellation of a two-dimensional surface with the nodes at thevertices. The neighborhood relationship is important because the de�nition of a topographicmap is that neighboring nodes must have similar responses to input stimuli. In other words,neighboring map nodes must have similar receptive �elds (a node's receptive �eld is a regionof a sensory surface in which input stimuli elicit a response in the node), and that similarinput stimuli generate similar responses in the output layer. The second ingredient is anactivation rule for the output-layer nodes which generates similar responses for a node whenthat node is presented with similar input stimuli. The third ingredient is a learning rulewhich enables neighboring nodes to learn to have similar responses to input stimuli. Thefourth ingredient is a lateral interaction mechanism among neighboring nodes which forcesthem to learn to have similar responses to input stimuli. The last ingredient, which isonly necessary in order to have a globally consistent topographic map, is a mechanism forsmoothing out the topographic map between local neighborhoods.In order for a learning rule to insure that output-layer nodes have similar responses tosimilar input stimuli, a measure of similarity for input stimuli must be de�ned. The two mostcommon measurements of similarity for vector stimuli are the Euclidean distance betweenthe vector endpoints and the angle between the vectors as measured by the normalized dotproduct. The activation rule must insure that for each node similar input stimuli producesimilar responses. The learning rule must insure that a node which learns for a given inputstimulus will in the future be more responsive to similar input stimuli and less responsive todissimilar input stimuli. Thus, a node must learn for the input stimuli to which it responds.In order to have a topographic map, neighboring nodes must have similar responses to anygiven input stimulus. To achieve this, neighboring nodes must have similar incoming weightvectors which is accomplished by having neighboring nodes learn for highly overlapped setsof input stimuli. Excitatory lateral connections between neighboring cortical nodes can helpthem to learn for many of the same input stimuli, so their incoming weight vectors becomesimilar.The Biologically Oriented Models of Pearson, Grajski, ObermayerThe Pearson model is constructed of two two-dimensional layers: an input layer representingthe hand, and an output layer representing a portion of S1 somatosensory cortex [101].Nodes in the hand layer project in a divergent but topographically ordered fashion to the11



cortical layer. Nodes in the cortical layer model actual neurons, excitatory and inhibitory.The excitatory cortical nodes are the only ones receiving direct input from the land layer,inhibitory cortical nodes provide indirect lateral inhibition between the excitatory corticalnodes. The spread of activation is governed by a typical noncompetitive activation rule, butthe learning rule is essentially competitive.In the Pearson model the hand layer is subdivided into glabrous and dorsal regions, eachcortical node receives connections from both types of regions. There is also learning on theexcitatory connections between cortical nodes. The network is trained with small contiguousrectangular patches. Tight, stable clusters of cortical nodes tend to form after training. Themodel is able to account for experimental data that shows intermingled glabrous and dorsalcortical regions.The Pearson model is able to show some topographic map re�nement with training, andmap reorganization in response to repeated �nger stimulation. One of the drawbacks ofthe Pearson model is that topographic map formation is not measured or plotted in a veryaccurate way.The Grajski model focuses on accounting for the \inverse magni�cation rule", whichstates that there is an inverse relationship between cortical magni�cation and receptive �eldsize [52]. The cortical magni�cation of a skin region is the area of the cortical region whichresponds to the stimulation of a unit area of skin within the given skin region. The receptive�eld size of a cortical neuron is the area of the skin region which, when any portion ofthat skin region is stimulated, causes the cortical neuron to alter its response/activationlevel. The model shows how the dynamic instances of the inverse magni�cation rule can beaccounted for with learning.The Grajski model is similar to the Pearson model in structure and connectivity, but thehand layer is not divided into glabrous and dorsal regions, and there is an additional inter-mediate \subcortical" layer. The subcortical layer is used to increase the area of projectionfrom the hand layer to the cortical layer and to allow the subcortical layer to dynamicallya�ect the cortical inputs. The model uses a typical noncompetitive activation mechanismand a version of competitive learning. Again, no accurate plot of the detailed structure ofthe topographic map is provided.The Grajski model is used to perform three types of simulations: topographic map re�ne-ment, topographic map reorganization due to repetitive �nger stimulation, and topographicmap reorganization due to a focal cortical lesion. The model maintains the inverse magni-�cation rule for both topographic map reorganizations. However, in order for the model toachieve map reorganization after a focal cortical lesion, Grajski and Merzenich have to resortto randomizing all remaining weights and enhancing cortical excitation, so the reorganizationis not spontaneous.The Obermayer model [93] is a more general noncompetitive activation model explicitlybased on the work of Kohonen. It has full connectivity between its two layers: hand layerand cortical layer. That allows greater 
exibility for topographic map formation, but theabsence of an initial coarse map makes learning more di�cult.A major weakness of Kohonen topographic networks in general, and the Obermayermodelin particular, is the reliance on so called \shortcuts" (global operations) in place of actual12



activation dynamics. Another weakness for brain modeling is that the required full connec-tivity between the input and output layers is not neurophysiologically plausible. For theObermayer model, an output (cortical) node is designated the \winner" for a speci�c inputstimulus if the dot product of the input vector and the winner's incoming weight vector is thelargest dot product of the input vector with each of the input nodes' incoming weight vectors(note that this is a global, neurophysiologically-implausible operation). Lateral connectionsare then postulated (but not implemented) that would generate a Gaussian activation re-sponse of �xed amplitude and width (the width also slowly decreases with time) regardlessof the actual inputs to the cortical nodes. No activation dynamics are given or modeled toaccount for this response behavior; the desired activation levels are simply instantiated inthe cortical layer. This places a heavy burden on the postulated global lateral interactionsfor which no implementation has ever been demonstrated. The Gaussian activation responsemight be a reasonable approximation of a localized central-excitation, peristimulus-inhibitionresponse, which has been implemented with lateral excitatory and inhibitory interactions,but the very large initial width and the slow decrease in width over time of the Gaussianactivation response have yet to be implemented with lateral interactions. Regardless of thesemodeling approximations, results from Kohonen topographic networks still provide intuitionfor analyzing realistic models of topographic neural networks.The Obermayer model also generalizes the Kohonen plotting technique for topographicmaps in a way very similar to the plotting techniques developed for the competitive activationS1 model (described in section 3.1). The Obermayer model plots the center of each corticalnode's incoming weight vector as a point and connects the points of neighboring corticalnodes with lines. The Obermayer model also calculates a weighted width of the corticalnodes' incoming weight vectors similar to the competitive activation S1 width de�nition, butdoes not plot these widths as is done for the competitive activation S1 model. The Obermayermodel shows that, when contiguous patches are used as input, complete topographic mapformation often takes place but that sometimes topographic defects in the map are present.The defects are a result of local con
icts in the map which are not smoothed out by theinitial global processing. The Obermayer model uses both analysis and simulations to showthat the width of cortical nodes' incoming weight vectors (and correspondingly the size oftheir receptive �elds) is proportional to both the size of the input patches and the �nal sizeof the central-excitation activation response.Other Recent Models of Cortical MapsA self-organizing model of motor-control and sensorimotor maps was developed and studiedrecently [31, 30]. The maps developed clusters of elements responsible for each of the six\muscles" of a simulated arm. The alignment of clusters and their reorganization after asimulated lesion were studied both computationally and analytically. But this work didn'tconsider topographic maps or lateralization.Finally, a self-organizing model of topographic maps (S1 simulator) using competitivedistribution of activation was developed by Sutton, Reggia, and others [123, 124]. In contrastwith the models described in this thesis, the S1 model has a single cortical region. It is thesubject of the next section. 13



Figure 2.2: Internal structure (hexagonal tessellation) of the sensory surface and the corticalregion. Each vertex represents a node. Each node's six nearest neighbors are equidistant.2.3 S1 SimulatorThe Neural Modeling group at the Department of Computer Science at UMCP has developedan arti�cial neural network model of topographic maps which has been shown to reproducenot only map re�nement from initial very coarse topographic representation, but also mapplasticity exhibited under certain conditions, such as repetitive stimulation of a small areaor lesions of sensory1 or cortical regions [5, 6, 33, 123, 124, 133]. The model (called the S1simulator) is built on the ideas of self-organization, competitive distribution of activationand competitive learning. The bihemispheric models studied in this dissertation are basedin part on extending ideas from the S1 simulator, so it is described in detail here (following[123]).The competitive activation S1 model is a crude representation of a portion of the sen-sory surface and primary somatosensory (body sensation) cortex. The model assumes theexistence of a coarse initial topographic map from the sensory surface to the cortex (due tolimited topographic connectivity between the sensory surface and the cortex). This initiallycoarse map is then tuned by training the model with various inputs. The resulting well-tunedtopographic map becomes smooth and regular.2.3.1 ConnectivityThe model consists of two separate layers of nodes representing the sensory surface and thecortex. The input layer has no lateral connections and is assumed to have a well-de�nedtopographic organization with respect to the sensory inputs. However, input nodes are morethan just relays because they competitively distribute their output, and the weights fromsensory to cortical nodes are adaptive. The cortical layer is treated as a two-dimensionalsheet of nodes which are connected laterally in a regular fashion (Fig. 2.2). All corticalnodes have similar cortico-cortical and sensory-cortical connections. This is accomplishedby connecting together the opposite edges of the two-dimensional cortical sheet to form a1Technically this was viewed as representing the thalamus, a sensory way station along the a�erentpathway from body surface to cortex [124]. For simplicity, I will refer to this layer consistently as the\sensory layer" or \input layer" in the following. 14



torus, which is done to eliminate edge e�ects. The cortical nodes represent cortical columns;a cortical column being a group of cooperating cells within a small volume element in cerebralcortex.The competitive activation S1 model has two kinds of connections: sensory-cortical andcortico-cortical. Each input node sends connections to a di�erent topographically de�nedsubset of the cortical nodes (Fig. 2.3). Each cortical node sends connections to its six nearestneighbors (Fig. 2.2). All connections in S1 model are excitatory and competitive.
Sensory Surface

  (input layer)

Connections with weights

   Cortex

(output layer)

Figure 2.3: Topographical projection of sensory-cortical connections from one input nodein the sensory surface to the cortical layer in the S1 simulator. Each sensory node sendsactivation to the corresponding cortical node and its neighbors within a certain radius. Theweights on connections from the sensory surface to cortex change during learning.Using the same number of nodes and the same hexagonal structure for sensory andcortical layers produces a one-to-one correspondence between input and cortical nodes andallows the use of a notion of \hexagonal radius". An input node normally connects to itscorresponding cortical node and its neighbors within hexagonal radius of 4. The weightson these connections are initialized randomly: with probability 1/2 a weight is assigned theminimum weight value (0.0001); otherwise, the weight is randomly chosen with a uniformprobability from the range between the minimumand maximumweight values. Each corticalnode connects to its neighbors at hexagonal radius 1, and the weights on these connectionsare assumed to be equal.2.3.2 Activation RuleCompetitive distribution of activation was �rst described in [105]. Its essence is describedbelow.The update rule chosen for the competitive activation S1 model is designed to keep theactivation level bounded between zero and a speci�ed maximum value Max. The activation15



aj of cortical node j is governed by the di�erential equationddtaj(t) = csaj(t) + (Max� aj(t))inj(t) (2.1)where cs is a self-connection constant (usually negative, also called self-inhibition); the out-puts of sensory nodes, via the weighted a�erent connections, as well as the outputs ofother cortical nodes, via intracortical connections, are included in the inj(t) term: inj(t) =Pj outsji(t)+Pk outcki(t). The activation of sensory node j is also determined by (2.1), butfor sensory nodes the inj(t) term only represents the input from sensory receptors.The output dispersal rule for S1 model sensory surface isoutsji(t) = cp  wji(t)(aj(t) + q)Pk wki(t)(ak(t) + q)! ai(t) (2.2)where the constant q is a small positive number which serves two purposes: it varies thecompetitiveness of the output rule and prevents the denominator in (2.2) from ever beingzero, even when all ak(t) are zero. For the cortex the output dispersal rule is similar, butsince all weights on lateral connections between nearest neighbors are equal, we have:outcji(t) = clf  aj(t) + qPk(ak(t) + q)! ai(t) (2.3)2.3.3 Unsupervised LearningLearning in the Neural Networks usually proceeds by updating weights on connections be-tween elements and falls into one of the three categories: supervised learning, reinforcementlearning, and unsupervised learning. The term \supervised learning" refers to the situationwhen a neural network must learn a number of given input-output pairs, and then it cangeneralize by �nding an appropriate output for a new input. Reinforcement learning happenswhen the network's response to each input receives some kind of a grade, but no correct out-put is speci�ed. Finally, unsupervised learning (often also called self-organization) meansthat a network must discover some features or categories in the data it receives and �ndan appropriate output for each input without any additional information (i.e. without a\teacher").The S1 simulator uses unsupervised learning for map formation. One way of implement-ing unsupervised learning is Hebbian learning. The term \Hebbian learning" refers to amethod which increases the weights on connections between active elements. It is based onthe hypothesis by Hebb [56] that in a real brain a connection between two �ring neuronsgets stronger. This method works well, but has one serious drawback: it allows weights togrow without bounds. There are several modi�cations of the method, intended to keep theweights bounded, including Oja's rule [95], Linsker's, Yuille's, and others [60].Competitive learning rule [60, p.220] increases the weights between active input andoutput elements and decreases the weights on connections from inactive input to activeoutput elements, so that the entire weight vector remains normalized in some norm.16



Input stimuli in the form of hexagonal patches of radius 1 with centers located randomlyon the sensory surface are used to drive the self-organization. Input stimuli are induced onthe thalamic layer by providing input to speci�c sensory nodes. Since there are no lateralconnections in the sensory layer, this leads to activation of only the nodes receiving positiveinput, i.e. the nodes in a hexagonal patch of radius 1. Input stimuli of larger radius are alsopossible.After the activation in both layers converges to a stable distribution, sensory-corticalweights are updated according to the competitive learning rule�wji = �(ai �wji)aj (2.4)where � is the learning rate.Initially, a randomly generated incoming weight for each cortical node is normalized sothat Pi wji = 7, provided that input patches of radius 1 are used. Then, after an updateaccording to (2.4), the total change in the incoming weight for the cortical element j isXi �wji = �Xi (ai � wji)aj = �aj(Xi ai �Xi wji) = �aj(7� 7) = 0 (2.5)Thus, the weights remain normalized.2.3.4 Receptive Field Calculation and RepresentationThe receptive �eld of a cortical element is the set of sensory elements that, when stimulated,a�ect that cortical element's activation. In order to study and visualize topographic mapformation in S1 model the following quantitative approach to evaluating receptive �elds wasused by Sutton [123]. A cortical node's receptive �eld is de�ned to be that node's responsesto the sensory point stimulus set (which is taken to accurately re
ect the topography of thesensory surface). This is measured by a procedure where every sensory node is stimulated,one node at a time using an input of 1.0, and the cortical response is recorded.In order to compute the center and width of the receptive �eld, the sensory point stimuliare given explicit x, y coordinates. The uniform tesselation of the cortical layer and thefact that the input layer has a one-to-one correspondence with the cortical layer imposes arelative coordinate system on the sensory nodes. The distance between nearest neighborsis de�ned to be one \unit". The coordinates are always assigned so that the sensory nodecorresponding to the cortical node whose receptive �eld is being computed is at the origin.The x-axis is aligned so that one of the nearest neigbors of the node has coordinates (1,0).The following formulas are used to determine the center, width in the x dimension, width inthe y dimension, and the total response of the receptive �eld for cortical node j:trj =Xi aji ; (2.6)17



cxj =  Xi xiaji! =trj ; cyj =  Xi yiaji! =trj ; (2.7)rxj = vuut Xi (xi � cxj)2aji! =trj ; ryj = vuut Xi (yi � cyj)2aji! =trj ; (2.8)where aji is the activation level of cortical node j when a point stimulus is applied at sensorynode i, trj is the total response of cortical node j summed over all of the sensory pointstimuli, xi and yi are the coordinates of sensory node i, cxi and cyi are the coordinates forthe center of cortical node j's receptive �eld, and rxj, ryj are the horizontal and vertical\radii" of cortical node j's receptive �eld. The coordinates of the receptive �eld representlocations in the sensory layer.The receptive �elds are used to measure topographic map formation. The cortical con-nectivity de�nes a two-dimensional ordering of the cortical nodes and the cortical receptive�eld centers de�ne a two-dimensional ordering of the cortical responses. A topographic mapis plotted by placing points at the computed centers of the receptive �elds and connectingany two points which represent cortical nodes which are nearest neighbors.a. b.
Figure 2.4: Some results from the S1 simulator. Receptive �eld maps a. before training andb. after training. The map before training is uneven, and receptive �eld sizes (representedby ellipses) are large. After training the map is smooth and receptive �elds become small.This approach to representing map organization is illustrated in Fig. 2.4, produced bya software graphics package tmap implemented by C.Lynne D'Autrechy and later modi�edby David Montgomery. Speci�cally, each of the two pictures in Fig. 2.4 plots the centers ofreceptive �elds of a cortical region in the space of the sensory surface (i.e., it is not a picture ofthe cortical regions involved). For example, the vertices (nodes) in the right picture representthe centers of the receptive �elds of the cortical region after training plotted in the spaceof the sensory surface in Fig. 2.3. Each pair of receptive �eld centers (vertices) of nearestneighbor cortical elements is connected by a line segment, so there are six line segments foreach vertex. The entire grid in this picture shows that a fairly organized map is presentin the cortical region (i.e., the sensory surface projects in a smooth fashion onto the two-dimensional cortex surface), the typical result found after learning is complete. In contrast,18



Fig. 2.4a illustrates a case before training, when the connection weights are random and noorganized regions are present. Also, in both pictures in Fig. 2.4, each vertex is encircledby a small ellipse centered on the vertex that indicates the relative x and y radii of thereceptive �elds computed as described above. Along with regular receptive �eld locations,small receptive �elds (e.g., Fig. 2.4b) generally indicate highly organized map regions, whilelarger ones (e.g., Fig. 2.4a) indicate poor map formation.
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Chapter 3Basic S2 Model and Research MethodsThis chapter describes a bihemispheric model of cortical maps called the S2 model, experi-mental methods and baseline parameter set, and the metrics used to evaluate results of thesimulations.3.1 The S2 Model3.1.1 ConnectivityThe methods used in the S1 model of a single hemisphere self-organizing map [6, 124] de-scribed in Chapter 2 were adopted to a two-hemisphere model. The S2 model consists of twocortex regions interconnected via a corpus callosum, and receiving input connections from atwo-dimensional sensory surface, as shown in Fig. 3.1. Each hemispheric region or corticallayer represents a small patch of cerebral cortex. The model cortices are two{dimensional,with individual elements representing cortical columns. These elements hexagonally tessel-late the cortex, with each element having excitatory connections to its six nearest neighbors.Each cortical element connects via the corpus callosum to those elements lying within acertain hexagonal radius Rcc of the element homotopic to it in the opposite hemisphere. Inmost of our simulations the sensory surface and both cortical sets have the same number ofelements. Each sensory element sends input to its two corresponding cortical elements, onein each of the hemispheres, and their neighbors within certain radii RL and RR. As is oftendone in simulations of this sort to avoid edge e�ects, the opposite edges of a hemisphericregion are connected (forming a torus).The model architecture (with a single sensory surface) minimizes the likelihood thatasymmetries in input stimuli themselves would lead to lateralization/asymmetries in maps(i.e., as opposed to intrinsic hemispheric asymmetries or callosal in
uences). This model canonly be related to cortical regions receiving bilateral inputs, such as visual cortex for midlineretinal areas [122, 96, 44], or to special experimental situations where matched bilateralinput stimuli are used [17]. Later in this dissertation (chapter 6), a model with two sensorysurfaces is considered.Unsupervised competitive learning occurs on the connections from sensory surface S tothe left and right cortical sets L and R. Weights on these connections are initialized with20
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Sensory SurfaceFigure 3.1: The model of two interacting cortical regions.random values between 0:0001 and 1:0. Sensory stimuli in the form of random seven-elementhexagonal patches of activation are applied to drive the self{organization of the model.3.1.2 Activation RuleActivation and learning rules from S1 model were adopted for two hemispheres connected by acorpus callosum. A real{valued activation level aLi (t) is associated with the ith element of theleft cortical region, aRi (t) with the right homotopic element, and aSi (t) with the correspondingelement of the sensory surface. Just the equations for the left hemisphere are given; thosefor the right are analogous. Activation aLi (t) is governed by:daLi =dt = in+Li(M � aLi ) + (cs + in�Li)aLi (3.1)where cs < 0 is a self-inhibition constant, M > 0 is the maximal activation level, and initialactivation levels are all zero. With an inhibitory corpus callosum,in+Li =Xj cLLij aLj +Xk cLSik aSk ; (3.2)in�Li =Xm cLRim aRm: (3.3)The sums in (3.2) range over the six immediate neighbors j in the same cortical hemisphere,and over elements k in the sensory surface that send input to i. Index m in inhibitoryinput in�Li ranges over elements in the opposite hemisphere within radius Rcc of the elementhomotopic to i. When the corpus callosum is excitatory, the callosal termPm cLRim aRm insteadis added into in+Li, and self-inhibition is increased to prevent excessive hemispheric activationusing in�Li = �2:6K, where K is the callosal connection strength.Note that biological callosal connections are presumably excitatory, as discussed in Chap-ter 2, but the resultant transcallosal in
uences of one hemisphere on the other have oftenbeen argued to be inhibitory or competitive [34, 38, 72]. The parameter K re
ects thisresultant in
uence. 21



A \Mexican Hat" pattern of lateral interactions occurs in biological cortex and is widelyused in neural models of self-organizing maps [74]. As in earlier models, this is achieved byhaving each sensory element competitively distribute its output among the receiving corticalelements, and each cortical element among its nearest neighbors, usingcLSik = cLp wLik(aLi + q)Xn wLnk(aLn + q); cLLij = cLlf aLi + qXn (aLn + q): (3.4)Here q is a small constant (0.0001), cLp and cLlf are the input sensitivity and lateral feedbackconstants for the left hemisphere, and the sums in the denominators are over all elements ofone hemisphere connected to the given source of activation. Such competitive distributionof activation has repeatedly been shown in the past to produce Mexican Hat activationpatterns and topographic map formation similar to those produced by inhibitory connections[105, 6, 124].Intercortical connections work in a similar manner. Callosal strength to the left from theright hemisphere is designated as KLR, and to right from left as KRL, using just K whenthese are the same as is usually the case. For inhibitory callosal connections (K < 0), weuse cLRim = KLR(Xn aLn + q)�1:to normalize total callosal signal. For excitatory corpus callosum (K > 0), the in
uenceof the opposite hemisphere is distributed competitively, with KLR playing the role of cLp in(3.4): cLRim = KLR aLi + qXn (aLn + q): (3.5)3.1.3 Learning Rule and Receptive Field CalculationLearning occurs only on the connections from the sensory surface to the cortical regions.Self{organization proceeds according to an unsupervised learning rule�wLik = �L(aSk � wLik)aLi ; �wRik = �R(aSk � wRik)aRi ; (3.6)where �L, �R are the left and right hemisphere learning rates.Receptive �elds for the cortical nodes in S2 simulator are calculated very similarly toS1 simulator. Again, sensory nodes are activated, one at a time, and responses in bothcortical sets are recorded. Then the responses in the left cortical set are used to compute thereceptive �elds for the cortical elements in that set using formulas (2.6){(2.8), and similarlyin the right. 22



3.2 Experimental MethodsThe procedure followed in the computer simulations reported in the following chapter consistsof the following stages:1. weights on sensory-cortical connections are initiated randomly;2. the following is repeated thousands of times:(a) a randomly centered hexagonal patch of radius 1 (or 2 for the S4 simulator de-scribed in Chapter 6) is applied as input to the sensory surface;(b) activations in the sensory surface and both cortices change starting from 0 ac-cording to the ODEs (3.1) until they reach a stable pattern;(c) sensory-cortical weights are updated according to the learning rule (3.6);3. point stimuli are applied to the sensory surface (each node, one at a time) and corticalresponses are recorded as described in 2.3.4;4. receptive �elds are computed (and may be plotted for visualization of results);5. measures of organization, lateralization and mirror symmetry are computed.Using the two hemispheric region model described above, several series of simulationswere performed while parameters were varied systematically. For a baseline parameter setthe values shown in Table 3.1 were used. One parameter at a time was altered and thesymbol meaning baseline valuesize number of elements in a cortical set 16x16KLR, KRL callosal strengths from R to L and back variesK callosal strength when KLR = KRL = K variescLp , cRp input sensitivity in L and R 1.0cLlf , cRlf lateral feedback in L and R 0.6cs self-inhibition constant -2.0M maximal activation constant 3.0Rcc radius of corpus callosum connections 5RL, RR radii from S to L and R 3�L, �R learning rates for L and R 0.01Table 3.1: Baseline Parameter Values; L and R denote left and right cortex, S sensorysurface.resulting map organization, lateralization, and asymmetry were studied for callosal strengthsK ranging from -4 (strongly inhibitory) to +3 (strongly excitatory). Roughly 30 simulationswere performed for each model asymmetry, and about 40 simulations were done for the23



symmetric case. The program was implemented in programming language C, and simulationswere run on Sun SPARCstations.Model variations described below where callosal connections were e�ectively absent (K=0,or very small K values) are most consistent with much of primary sensorimotor cortex whichhas sparse callosal connections, while model variations with larger callosal weights and re-ceiving matched bilateral input stimuli are most consistent with axial/midline sensory cortexwhich has signi�cant callosal connections. For maximal comparability, the same seed for ran-dom weight generation was used in most runs. This seed was chosen as causing the leastlateralization in the symmetric case in numerous simulations with di�erent seeds. However,all major �ndings were veri�ed by additional simulations with several di�erent seeds.3.3 General Nature of Bihemispheric MapsWe now consider some speci�c examples of maps occuring with the S2 model, both to makesubsequent discussion more concrete, and for reference to make the metrics introduced inthe next section more intuitive.Fig. 3.2 shows representative examples of the maps observed during simulations withversions of the S2 model. Each part of Fig. 3.2 presents a pair of images indicating thetopographic maps for a pair of corresponding symmetric cortical regions like those illustratedin Fig. 3.1.Maps in Fig. 3.2 involve equal size cortical regions (both 16 x 16) except for (j) where theright cortical region is smaller (12 x 12). The smaller right region in Fig. 3.2j is evident inthat more vertices are plotted in the left picture. Inspection of these pairs of maps shows thatin some cases maps are disorganized bilaterally, as in Fig. 3.2a{c. In other cases, the mapsare well organized bilaterally (Fig. 3.2d), or on just one side (Fig. 3.2g,h). Finally, in somecases maps may form mosaic patterns that divide up the sensory surface in complementaryways as occurs experimentally [17], either in roughly equal (Fig. 3.2e) or quite unequal shares(Fig. 3.2f,i,j).3.4 MetricsIn addition to visual inspection of the resulting maps, the degree of cortical map organization,lateralization and mirror symmetry were measured using metrics described in our joint work[2]. Objective quantitative estimates of map organization, lateralization, and symmetryare necessary for a systematic study of the e�ects of various model parameters on mapformation and lateralization. Although objective in nature, these measures have been shownto correlate fairly well with subjective estimates (see Discussion at the end of this Chapter).Brie
y, the measures are:Organization measure: indicates the degree of topographic map formation in a single hemi-spheric region on a 0 (no map forms) to 1 (nearly perfect map) scale.Lateralization measure: ranges from �1, indicating complete map formation on the left andno map on the right, to 1 indicating the opposite.24



a. b.c. d.e. f.g. h.i. j.Figure 3.2: Pairs of cortical maps a{i are equal sized: a, b, c unorganized, pre-training;d organized and symmetric; e, f complementary mosaics; g, h, i asymmetric: left moreorganized than right; j the left hemisphere has more elements and is better organized.25



Mirror symmetry measure: ranges from 1 for a pair of cortical maps covering the sameregions in the sensory surface, to �1 for complementary maps covering di�erent regions.The above measures are computed as follows. For each cortical element n, a map M isdescribed by the o�sets of its receptive �eld center (cx(n), cy(n)) from the ideal position in aperfectly organized map, by the receptive �eld radii (rx(n), ry(n)), and the \total response"(tr(n)). These quantities are de�ned in equations (2.6){(2.8).Two di�erent approaches to measuring a map's organization are considered here. Theyevaluate map organization from di�erent points of view and work best in di�erent situations.One evaluates the map's \smoothness" and gives high organization values to the maps whereneighboring elements have very close o�sets and radii. This is called the \sigmoid di�eren-tial". It normally produces results similar to people's estimates of the degree of organization(see below), but sometimes it does not work well with the S2 model. For instance, in anunusual situation where one hemisphere does not get any activation at all, then its receptive�elds have o�sets 0 and radii 0, so the map looks like an ideal map (but with no ellipses) andgets an unappropriate organization value of 1, while in fact the weights have not organizedat all, and if some activation could be induced in the hemisphere (e.g., by removing intensecallosal inhibition), then it would be obvious that there is no organization.The second approach, called \organized area", is based on the observation that the orga-nized regions of a map usually consist of small triangles whose vertices have small receptive�eld radii and high total response values (the latter would help to avoid giving a high orga-nization value to the \empty" map just described). So the idea is to add together the areasof such triangles (assuming that the total area is 1).The two measures produce similar results for some maps, but di�er signi�cantly forothers. We are using one or the other depending on which works best in a particular case.Normally, the sigmoid di�erential measure works �ne. However, when simulated lesions(damage) are introduced into one cortical area, and it is desirable to measure recovery fromit, this approach gives counterintuitive results. Lesioning studies are described in detail inChapter 5, so here only a short explanation is given. Recovery from a lesion happens whenthe cortical elements on the boundary of damaged area shift and enlarge their receptive �eldsto cover the sensory region previously covered by their dead neighbors. This may make thewhole map look less smooth, so the sigmoid di�erential measure would decrease, when in factthe organization measure should increase. The organized area measure works much betterin this case.Below the formulas for the two measures are given.The \di�erential square distance" between two immediate neighbors n and n0 is computedasj(n; n0)j2 = (cx(n0)� cx(n))2 + (cy(n0)� cy(n))2 + (rx(n0)� rx(n))2 + (ry(n0)� ry(n))2:The sigmoid di�erential organization measure jjM jjS for map M is then computed asjjM jjS = 1N Xall M-nodes n sigmoid � ,s0B@ Xall neighbors n0 of n j(n; n0)j21CA 1226



Table 3.2: Values of Quantitative Measures for the Maps in Fig. 3.2map sigmoid di�. (SD) organized area lateralization mirrorleft right left right based on SD symmetrya 0.01 0.01 0.04 0.04 0.0 unde�nedb 0.25 0.28 0.48 0.57 0.03 -0.28c 0.59 0.61 0.74 0.77 0.02 0.13d 0.98 0.99 1.0 1.0 0.01 1.0e 0.62 0.64 0.38 0.36 0.02 -1.0f 0.47 0.78 0.20 0.67 0.31 -1.0g 0.83 0.07 1.0 0.06 -0.76 -0.88h 0.96 0.32 0.95 0.0 -0.64 -1.0i 0.82 0.29 0.61 0.08 -0.53 -1.0j 0.83 0.37 0.55 0.12 -0.46 -0.99where sigmoid�;s(x) = (1 + e�2s(x��))�1. Parameters � and s were chosen to approximatehuman estimates of organization values for various maps [2].The organized area measure jjM jjA is computed as the sum of areas of all triangles (formedby triples of immediate neighbor elements) having su�ciently small perimeter, su�cientlysmall radii of receptive �elds at all three vertices, and su�ciently large total responses in allthree vertices. The area is normalized so that the total area for an ideal map is 1:0.A simple di�erence of the organization values for right and left cortical maps (using anyof the two organization measures described) gives a lateralization measure: Lat(L;R) =jjRjj � jjLjj.The degree of mirror symmetry is estimated using a measure of the overlap of organizedregions oreg(L) in the left map L and oreg(R0) in the mirror image R0 of the right map R(those organized regions are the unions of the triangles used for the organized area mea-sure described above). Areas of the intersection (oreg(L) \ oreg(R0)), union and symmetricdi�erence (oreg(L)�oreg(R0)) of the above regions are used to de�nemap overlap(L;R) = area(oreg(L) \ oreg(R0))� area(oreg(L)�oreg(R0))area(oreg(L) [ oreg(R0))The intersection term measures the overlap of the organized regions, while the symmetricdi�erence term measures the discrepancy between these regions. When no organized regionsexist, map overlap is unde�ned.Table 3.2 gives the values of the quantitative measures for the maps shown in Fig. 3.2.For example, maps in Figs. 3.2a{d show increasing individual organization, while in eachcase the lateralization measure does not exceed 0.03, indicating that signi�cant lateraliza-tion has not occurred. Signi�cant lateralization is measured with many of the other mappairs shown, and is of greatest magnitude for Fig. 3.2g (lateralization = -0.72). The twomaps in Fig. 3.2d are mirror images of each other (mirror symmetry = 1.0), while those in27



Figs. 3.2e,f are complementary, representing largely disjoint portions of the sensory surface(mirror symmetry = -1.0).3.5 Properties of the MetricsThe above metrics have some important properties (�rst described in our joint paper [2]):Theorem 3.5.1. The organization measures described above (sigmoid di�erential and orga-nized area) satisfy the following properties:1. size independence: only the organization per processing element is measured.2. spatial homogeneity: if a map M is given and a new map M 0 is obtained from Mby any distance{preserving geometric transformation of the map associated with thereference locations of the elements of M , then M and M 0 have the same organizationmeasure.Proof. Property 1 is enforced by explicitly de�ning sigmoid di�erential organization asan average value over all elements and by normalizing the total area of an ideal map tobe 1:0. Property 2 follows from the fact that the expressions used in the de�nitions ofthe organization measures are independent of the particular nodes' (or triples) locations,depending only on the values cx, cy, rx, ry, tr. 2Theorem 3.5.2. Lateralization measure Lat(L;R) satis�es the following properties:1. antisymmetry: Lat(M;N) = �Lat(N;M);2. zero property: Lat(M;M) = 0;3. monotonicity: for a �xed jjLjj it is a strictly increasing function of jjRjj;4. boundedness: the maximal value of Lat(L;R) is 1 and it is achieved only when jjLjj = 0and jjRjj = 1, the minimal value is �1 achieved for jjLjj = 1 and jjRjj = 0.Proof. Properties 1-3 follow from the de�nition of the lateralization measure as thedi�erence of two organization measures. The last property also uses the fact that the orga-nization measures are bounded between 0 and 1, which combined with properties 1 and 3completes the proof. 2Finally, for the symmetry measureTheorem 3.5.3. For maps N and M , the measure sym(M;N) = map overlap(M;N) (if itis de�ned) satis�es the following three properties.28



1. invariance under left-right interchange:sym(M;N) = sym(N;M)2. equal shift independence: if ~M and ~N are obtained from M and N by adding the sameconstant dx to all the cx entries of M and N 0 (here N 0 is the mirror image of the mapN), and another constant dy to all the cy entries of M and N , then:sym( ~M; ~N ) = sym(M;N)3. normalization: sym(M;M) = 1 (3.7)Proof. Property 1 follows from the symmetry of the operators \, [, and �. Property2 follows from the fact that under the above conditions the organized regions oreg(M) andoreg(N 0) have the same shift, and hence the areas of their intersection, union and symmetricdi�erence don't change. (3.7) is a consequence of the fact that if M = N , then M�N isempty and so has area 0, and also M [N = M = M \ N . 23.6 DiscussionThe methods of computation and visualization of cortical receptive �elds presented in thelast chapter provide a very convenient way for representing simulation results. It is usuallyquite easy to estimate the results qualitatively by simply looking at the maps. However, suchqualitative estimates are not su�cient for a systematic rigorous study of map formation ina bihemispheric model. Objective quantitative measures are needed for such study. Themetrics for map organization, lateralization, and mirror symmetry developed in this chapterhave all the desired properties. On one hand, the metrics have the mathematical propertiesthat one would expect of such measures. On the other hand, their computed values tendto correspond also to subjective estimates of what these values should be. On ten samplepairs of maps presented to nine people (graduate students and faculty from the Universityof Maryland) [2], computing the metrics described above produces results which are veryclose to the average values of human estimates. A quantitative assessment of the closenessof the �t between human measurements and those produced by the measures is obtainedby representing each measure by the vector whose coordinates are the measurement valuesproduced by that measure for a given set of test examples. The mean absolute distancesbetween the vector representing the human scores and the vectors representing the measuresis then computed. The mean absolute distance between two vectors v;w 2 RN is de�nedby: kv � wk1 = 1N Pnk=1 jvk � wkj Thus, the mean absolute distance between two measuresapproximates the average di�erence, in absolute value, between the scores produced by thetwo measures for an arbitrarily chosen input map. The results are summarized in Table 3.3.Left and right hemisphere distances are given separately for each organization measure, whilea single distance is given for lateralization measure corresponding to each of the organization29



Table 3.3: Mean absolute distances to human scores: Organization and Lateralization.Measure Organization LateralizationLeft RightjjM jjS 0.04 0.03 0.03jjM jjA 0.09 0.10 0.06jjM jjH * * 0.04measures. The last line gives the mean absolute distance between average human lateraliza-tion values and the lateralization values computed as di�erence of the human estimates ofright and left organization values (jjM jjH).Finally, the value of mean absolute distance for mirror symmetry measure was 0.11 whentwo pairs of completely unorganized maps were excluded (recall that the symmetry measureis not de�ned for unorganized maps).Thus, all the mean absolute distances are quite low, indicating good agreement of themetrics descibed in this chapter with subjective estimates.
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Chapter 4Results from the S2 ModelThis chapter describes results of the simulations with the S2 model. For various modelasymmetries, callosal in
uences have been varied systematically from strongly inhibitory tostrongly excitatory, and resulting organization, lateralization, and mirror symmetry recorded.In the symmetric case (when all model parameters except random initial weights were sym-metric) no lateralization is observed for any callosal strength, and a very sharp transitionin organization and mirror symmetry appears near K = �1:4. For most asymmetric cases,sharp transitions occur in lateralization as well, with most lateralization appearing withstrongly inhibitory callosal in
uences.4.1 Symmetric Hemispheric RegionsBefore considering various hemispheric asymmetries, simulations with a symmetric versionof the model where the two hemispheric regions were identical except for the initial randomweights were done. Complete topographic maps similar to those in Fig. 3.2d form in bothhemispheres when corpus callosum connections are excitatory, absent, or weakly inhibitory.However, as callosal inhibition becomes stronger there is a sharp transition at roughly K = -1.4 from two complete maps to two complementary mosaic pattern maps similar to those inFig. 3.2e. Fig. 4.1 shows how the organization, lateralization and symmetry measures varyas the callosal strength K is systematically altered. Since the organization values on the leftand right are essentially the same, lateralization is very close to zero for all values of K.As seen in Fig. 4.1a, initial organization values are close to 0 for K < �1, but grownoticeably for positive K. This happens because inhibitory callosal connections \push" thereceptive �elds of corresponding cortical elements away from each other and hence from theirideal location in a perfectly organized map, while excitatory callosal connections \pull" thereceptive �elds of corresponding cortical elements closer to each other and to their ideal loca-tions, thus making the pretraining maps look more organized. Fig. 3.2a{c show pretrainingmaps for K = �2, K = 0 and K = 2 in the symmetric case.31
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Figure 4.1: Symmetric hemispheric regions (except for random initial weights). a. Organi-zation of left and right maps as a function of callosal strength K. Black lines { after training,gray lines { before training; solid lines - right hemisphere, dashed { left. b. Activation inthe two hemispheres. c. Lateralization and mirror symmetry after training. Solid line -lateralization, dashed line - mirror symmetry.4.2 Asymmetric Versions of the Model4.2.1 Asymmetric Cortical ExcitabilityAsymmetric cortical excitability has been associated experimentally with functional later-alization [82] and regionally may be implied by asymmetries in various neurotransmitterlevels [126]. In the S2 model, the learning rule is such that the higher the activation in onehemisphere, the faster it should self-organize. Conversely, a hemisphere that gets very littleor no activation cannot e�ectively learn a good topographic map. Several parameters of themodel can cause di�erent excitability in the two hemispheres. Fig. 3.2h,i show sample mapsresulting from a small di�erence in input sensitivity or lateral feedback (in both cases theleft hemisphere is more active). Fig. 4.2 summarizes the results of simulations when the twohemispheres had only a slightly di�erent input sensitivity favoring the left: cLp = 1:05 andcRp = 1:0. For approximately K > �1:2, symmetric highly organized maps always formedwithout lateralization (similar to Fig. 3.2d). For K < �1:2 however, strong lateralizationto the left always occurred, usually with mosaic patterns like those in Fig. 3.2i. Similarresults were obtained with mildly asymmetric maximal activation constants ML and MR,and with small asymmetries in lateral feedback strengths cLlf and cRlf . Small di�erences inthe strength of corpus callosum inhibition also caused signi�cant lateralization. With �xedKLR = �2, for example, when KRL < KLR complete lateralization to the left occurred, andfor KRL > KLR, the opposite occurred.4.2.2 Asymmetric Hemispheric SizesExperimentally-measured di�erences in hemispheric region sizes have been associated withfunction lateralization to the larger hemispheric region [48, 92]. To examine how asym-metric hemispheric region size in
uences lateralization, simulations were run with the two32
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Figure 4.2: Results with asymmetric input sensitivity (cLp = 1:05, cRp = 1:0). Same notationas in Fig. 4.1. The left hemisphere clearly dominates for roughly K < �1:2: its post-training organization is higher than the organization on the right. Activation on the left ismuch higher than the right, which is the main reason for the lateralization.hemispheric regions having di�erent numbers of elements: the left having 16x16 elements,the right 12x12, for a total of 256 vs. 144 elements. Fig. 4.3 shows the results as callosala. b. c.
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Figure 4.3: Simulation results for two hemispheric regions di�ering only in their numbers ofelements (left larger). Same notation as in Fig. 4.1.strength is varied. For excitatory, absent or mildly inhibitory callosal strengths (roughlyK > �1:2), both hemispheres formed highly organized and symmetric maps. For stronglyinhibitory callosal strengths (K < �1:2), marked map lateralization occurred, with a muchbetter organized map in the larger left region, and with complementary maps. Fig. 3.2jshows a typical example of the maps found under these latter conditions.Fig. 4.3b shows quite clearly that when inhibition is strong (roughlyK < �1:2), the initialactivation on the left was much higher than on the right. To remove this potentially biasingfactor, callosal inhibition strength was adjusted so that the inhibition from left to right wasslightly weaker than inhibition from right to left. A 5% di�erence produced nearly equalinitial activations on both sides for K < �1. The e�ect of this adjustment is demonstratedin Fig. 4.4. Lateralization is smaller, but is still present for su�ciently strong inhibition(K < �1:5), and the maps formed under these conditions remain complementary.33
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Figure 4.4: Results for the two hemispheric regions with di�erent numbers of elements, whenthe initial activations are equal. Same notation as Fig. 4.1.4.2.3 Asymmetric Learning RatesAnother possible cause of lateralization is a di�erence in synaptic plasticity in the two hemi-spheres. The biological existence of asymmetric plasticity is suggested by asymmetric hemi-spheric neurotransmitters [126], and directly indicated by asymmetric synaptogenesis duringdevelopment and early life [7]. Simulations were also run where all parameters of the twohemispheres were the same except initial random weights and the learning rates (left 0.01,right 0.001). Figs. 4.5 and 4.6 display simulation results for brief (16,000 inputs) and long-term (123,000 inputs) training, showing that initially the hemisphere with a higher learning
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Figure 4.6: Results for the two hemispheres with di�erent learning rates after about 16,000(a{c) and 123,000 (d{f) training inputs. Solid lines in (a,b,d,e) correspond to the righthemisphere with learning rate 0.001, the dashed lines to the left hemisphere with learningrate 0.01. After 16000 inputs the left hemisphere is dominant for K > �1:4. After verylong training the two hemispheres achieve about the same organization levels. Pretrainingorganization and activation are as in Fig. 4.1.
35



These results di�er from those with the asymmetries examined above in that the later-alization that occurs is more pronounced for K > �1:4. Given the asymmetry in learningrates, transient lateralization to the left would generally be expected for all values of K:the larger left learning rate would cause its map to organize more quickly, but the slowerright side would eventually catch up. The issue then is why transient lateralization doesnot occur with a strongly inhibitory corpus callosum. The reason is that, in general, as amap organizes the mean activation level in its hemispheric region falls (e.g., Fig. 4.1 in thesymmetric case). Lateralization does not occur with strongly inhibitory callosal connectionshere because the higher learning rate on the left is largely cancelled by simultaneously lowermean activation levels on the left that slow learning (see Fig. 4.6). These asymmetric meanactivation levels are not present for less inhibitory K for the reasons discussed in Sec. 7.3.K=-3 K=0
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Figure 4.7: Organization with di�erent learning rates during training (learning curves). Oneframe corresponds to 4096 inputs. Solid black line { right hemisphere, dashed line { lefthemisphere (with higher learning rate). The thick gray line shows the di�erence betweenorganizations in the two hemispheres. For K = �3 the di�erence is small, for larger valuesof K it �rst becomes large, but vanishes after longer training.4.2.4 Asymmetric Sensoricortical RadiiDi�erent connectivity patterns can also lead to lateralization in the model. For example,Fig. 4.8 plots organization, activation, lateralization and mirror symmetry, and Fig. 3.2gshows the maps after training, when di�erent sensoricortical radii are used (left radius 3,corresponding to 37 connections; right radius 4, or 61 elements.). This provides an examplewhere the hemisphere with lower activation levels became better organized. This surprisingresult is due to asymmetries in the activation patterns in the two cortical regions withinhibitory callosal connections. An example of such activation patterns is shown in Fig. 4.9.The pretraining hemispheric response to a small input patch is broken up into multiplecortical activation areas on the right by the intercortical inhibition from the more compactresponse on the left. Since good map formation requires learning in a compact neighborhood,the fractured activation patterns prevent map formation on the right.36
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Figure 4.8: Results with di�erent connection radii from S to L (3) and R (4) while callosalradius is 1. Same notation as in Fig. 4.1. For K < 0 post-training organization in the lefthemisphere is quite high while in the right hemisphere organization does not change almostat all. At the same time activation is higher in the right hemisphere. For K > 0 organizationand activation in both hemispheres decrease as K increases due to strong self-inhibition.a. b.
Figure 4.9: Activation in the (a) sensory surface and (b) the two cortical regions when radiiare as in Fig. 4.8. Black rectangles denote elements with no activation, lighter rectanglesmean higher activation. The activation in the left cortical region is concentrated at onelocation, while in the right it is dispersed, preventing map formation. K = �2.4.3 DiscussionThe results of the simulations presented in this chapter are summarized in Fig. 4.10 and areas follows. First, when callosal connections were absent (K = 0), in every case complete,mirror symmetric maps ultimately formed in both hemispheric regions without signi�cantlateralization. This �nding is consistent with experimental data suggesting that lateraliza-tion and complementary mosaic maps arise due to hemispheric interactions, even in regionslike auditory cortex with bilateral a�erent pathways and receiving matched bilateral inputstimuli [17]. Second, a sharp transition in model behavior was observed depending on cal-losal strength. For excitatory, absent or weakly inhibitory callosal strengths, complete andsymmetric mirror-image maps typically appeared in both hemispheric regions. In contrast,with stronger inhibitory callosal connections, partial to complete map lateralization tendedto occur, and the maps in each hemispheric region often became complementary (resem-bling mosaic patterns observed experimentally [17]). These results, along with those of the37
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clusion that it may have more general applicability. For example, viewed in an abstractsense, these results may relate to the diversi�cation of interconnected cortical regions in thesame hemisphere, such as those described in [43].
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Chapter 5Results of Lesioning the S2 SimulatorThis chapter examines the e�ects of sudden, localized damage to one of the map regionsin the S2 model. Map reorganization after a lesion (damage) is of interest for a numberof reasons. For example, a model that not only works the same as the real system beingmodeled, but also reacts to and recovers from damage in the same way, is more convincingthan a model which fails to respond similarly to damage. Further, the simulated focal lesionshere can be viewed as modeling ischemic stroke. An ischemic stroke is a sudden death of alocalized region of brain due to loss of blood 
ow and thus oxygen to that region. The di�uselesions might be viewed as simulating damage in di�use cortical diseases, e.g., Alzheimer'sdisease. In the following, background information on the e�ects of stroke on the other,intact hemisphere is given, along with a brief summary of previous neural models of stroke.Experimental methods are described, including the ten variations of the S2 model used forthe lesioning study. Finally, results of lesioning simulations with the ten model variations,where size and shape of the lesion were varied systematically, are presented and discussed.5.1 BackgroundSince the e�ects of a simulated lesion on the two model hemispheres are considered in thischapter, it is useful to brie
y consider the biomedical data on the e�ects of stroke on thetwo hemispheres, and previous neural models of stroke.5.1.1 Interhemispheric E�ects of Ischemic StrokeA stroke is a complex pathophysiological event [111]. Most relevant to this research is that,acutely following a hemispheric stroke, there is an immediate depression of neural activity,metabolism and cerebral blood 
ow contralaterally in the intact hemisphere [42, 90]. Suchchanges are referred to as transcallosal diaschisis. Their severity is proportional to theseverity of the damage and they persist for roughly three to four weeks after a stroke. Itis often accepted that transcallosal diaschisis is responsible for part of the clinical de�cit instroke [90]; including sensorimotor �ndings ipsilateral to the infarct [28], although this viewhas been challenged [22]. A presumably important mechanism responsible for transcallosaldiaschisis is loss of excitatory inputs to otherwise intact contralateral cortex, although other40



neurophysiological phenomena appear to be contributing factors [90]. Animal models havedemonstrated that the contralateral e�ects of an acute hemispheric infarct are reduced orabolished by prior sectioning of the corpus callosum [71, 88]. The presumptive mechanismof focal depression of the contralateral hemisphere is thus widely presumed to be loss offacilitation (dea�erentation) via the corpus callosum.The importance of hemispheric interactions during recovery from aphasia (impaired lan-guage) following left hemisphere language area damage is underscored by evidence that theright hemisphere plays a crucial role in the language recovery process in adults. Early evi-dence came from observations that recovery from aphasia due to a left hemisphere lesionwould relapse when a new, mirror-image right hemisphere lesion occurred [77]. Subse-quently, a series of studies has provided evidence of substantial right hemisphere respon-sibility for language recovery after left hemisphere strokes, using a wide variety of methods[72, 73, 99, 100, 117, 118]. During the last decade further evidence has come from sev-eral functional imaging studies, showing that recovered aphasics have increased activationin the right hemisphere in areas largely homotopic to the left hemisphere's language zones[132, 94, 27], but some of these studies have questioned how well these changes correlatewith the recovery process [8, 57, 58]. As a result, the issue is currently controversial andan active area of experimental investigation for which modeling provides a new investigativetechnique.5.1.2 Previous Neural Models of StrokeEarly models of damage to neural networks were based on abstract associative memories (e.g.,[135, 51]). More recent spatially-oriented neural models have been used to study acute focalcortical lesions, including work at the University of Maryland [108, 50, 119, 111, 124]. Thispast research has generally examined only unilateral cortical regions and local adaptation,and most often has looked at local post-lesion map reorganization. An exception is somerecent work on visual information processing where both left and right hemispheric regionshave been simulated [103, 91], and then one hemispheric region removed/isolated to simulateunilateral neglect phenomena. However, these latter studies have not modeled hemisphericinteractions via the corpus callosum, the e�ects of underlying hemispheric asymmetries, orvariable lesion sizes, as is done here. To our knowledge, neither these nor any other previousmodeling studies have investigated how the contralateral intact hemisphere might participatein recovery, nor how underlying cortical asymmetries and callosally-mediated hemisphericinteractions might in
uence the recovery process.As mentioned above, one of the important features of S1 simulator was its ability toreact correctly to changes in the environment, in particular, to cortical lesions. In this studythe e�ects of various model parameters on the extent of damage and recovery from a one-sided cortical lesion on the other intact cortical region in the bihemispheric S2 model areconsidered. 41



5.2 Experimental MethodsThe goal of this study is the analysis of the e�ects of various model features (including modelasymmetry, callosal in
uences, size and shape of the lesion) on the extent of damage andrecovery from a one-sided cortical lesion on both sides of the S2 model.To evaluate organization and lateralization of lesioned maps it is more convenient touse the organized area measure instead of sigmoid di�erential measure used in the previouschapter. The former measure works better in representing damage and recovery from lesions,since during recovery the \smoothness" of a map may su�er, making sigmoid di�erentialorganization lower, while in fact the area covered by the relatively good topographic mapincreases.In addition to the organization, lateralization and mirror symmetry measures describedabove, for the lesioned model mean activation of each cortical region was computed bydividing the total activation in that region caused by all possible single-element input stimuliby the number of cortical elements. When simulated lesions were present, the mean activationin the lesioned region could be computed in two ways: by dividing the total activation by thetotal number of elements, or only by the number of intact (unlesioned) elements remaining.The graphs in this chapter and Table 5.2 show both of these quantities.Lesions were introduced into the model after the initial training was completed and somekind of cortical maps formed in both cortical regions. For the lesioning experiments describedhere, ten variations of the basic model were used, as summarized in Table 5.1. These vari-ations represent four di�erent types of hemispheric asymmetry: symmetric (no hemisphericasymmetry except initial random weights), size 256/144 (left hemisphere has 16x16 elementsand right has 12x12), excitability 1.05/1.0 (using notation from (Levitan & Reggia, 1998)cLp = 1:05, cRp = 1:0), connectivity: radii of connections from input layer 3/4 (each elementof the input layer sends activation to 37 cortical elements on the left and to 61 elementson the right). Both positive (excitatory) and negative (inhibitory) callosal connections wereused for each type of asymmetry, and in some cases two di�erent strengths of inhibitoryconnection were used because they had produced qualitatively di�erent results in the intactmodel (see previous section). As a result of these variations, prelesion lateralization (usuallyto the left) varied from none (0:0) to almost complete (�0:84) in the ten model variations,as listed in Table 5.1 . The table also shows organization (organized area), lateralization,mean activation, and mirror symmetry measures in the corresponding intact models.Each lesion was introduced into the intact model by literally clamping to zero a randomlyselected subset of elements in one hemispheric region (di�use lesion) or a parallelogram-shaped contiguous subset of the region (focal lesion). Lesions of di�erent sizes were doneindependently, not progressively.We describe the general nature of the lesions in topographic maps, what is meant by maprecovery during simulations, and the results of simulations in which lesion size and shapewere systematically varied. 42



K=+1 K=-2a. b.c. d.e. f.g. h.i. j.Figure 5.1: Topographic maps in the two symmetric cortical regions: the left column cor-responds to excitatory callosal strength K = +1, the right column to inhibitory callosalstrength K = �2. a, b pre-lesion maps; c, d acute focal lesions; e, f chronic focal lesions;g, h acute di�use lesions; i, j chronic di�use lesions. All lesions are in the right hemisphericregion and are of size 64. 43



Table 5.1: Variations of Intact Model Used for Lesion Study.Asymmetry Callosal Organization Latera- Mirror Mean Activationstrength Left Right lization Symmetry Left RightSymmetric -2 0.39 0.45 0.06 -0.97 1.58 1.66-1 1.0 1.0 0.0 +1.0 1.76 1.76+1 1.0 1.0 0.0 +1.0 3.80 3.80-2 0.70 0.17 -0.53 -0.97 2.49 0.86Excitability -1 1.0 1.0 0.0 +1.0 2.36 1.161.05/1.0 +1 1.0 1.0 0.0 +1.0 3.84 3.84Size 256/144 -2 0.73 0.23 -0.50 -0.87 2.55 1.23+1 1.0 1.0 0.0 +1.0 3.56 6.22Connectivity -2 1.0 0.16 -0.84 -0.69 3.34 4.34radii 3/4 +0.5 1.0 1.0 0.0 +1.0 3.25 3.255.3 Nature of Topographic Map Response to LesionsFig. 5.1 shows representative examples of the e�ects of lesions in the maps observed duringsimulations in the symmetric case.The lesions introduced into the cortical regions for the present study are illustrated inthe right halves of topographic maps 5.1c{j. A focal lesion is represented graphically by arelatively large contiguous \hole" (c { f), and a di�use lesion consists of a number of small\holes" (g { j). By recovery from a lesion we mean the changes in the receptive �eld mapsthat lead to the \closing" of the holes (or at least reduction in their size). Biologically,this is analogous to the well-known phenomenon where nearby surviving neurons move theirreceptive �elds into the area previously represented by their dead neighbors [68]. Suchrecovery is illustrated in Fig. 5.1c and 5.1e, representing an acute focal lesion, and the samelesion after retraining (the latter state will be called chronic). Table 5.1 contains the valuesof our measures for the maps presented in Fig. 5.1.5.4 Results of Systematic Lesioning Simulations5.4.1 Symmetric CaseSimulated cortical lesions were done with symmetrical versions of the model in which allparameters in both cortical regions were identical except for the random initial weights.Because of the approximate symmetry, the results of left and right hemisphere lesions wereessentially the same, so we only show them for right lesions here.Figure 5.2 is a typical example that shows how organization in the two cortical regions insymmetric case changes with time after acute focal and di�use lesions of size 64 are introducedat time 0 in the right cortical region (recall that the cortical regions have size 16x16=25644



Table 5.2: Organization and Other Measures for Maps in Fig. 5.1Map K� Lesion Organization Latera-Mirror Mean Activationtype Left Right lizationSymm. Left Right R.intacta. +1 None 1.0 1.0 0.0 +1.0 3.80 3.80 3.80b. -2 None 0.39 0.45 0.06 -0.97 1.58 1.66 1.66c. +1 Acute Focal 1.0 0.65 -0.35 +0.30 3.59 3.56 4.75d. -2 Acute Focal 0.43 0.25 -0.18 -0.97 2.14 1.07 1.43e. +1 Chronic Focal 1.0 0.89 -0.11 +0.78 3.74 3.74 4.98f. -2 Chronic Focal 0.59 0.29 -0.30 -0.97 2.17 1.22 1.62g. +1 Acute Di�use 1.0 0.44 -0.56 -0.12 3.70 2.82 3.76h. -2 Acute Di�use 0.50 0.12 -0.38 -1.0 2.20 0.98 1.30i. +1 Chronic Di�use 1.0 0.44 -0.56 -0.11 3.82 2.91 3.88j. -2 Chronic Di�use 0.62 0.11 -0.51 -0.99 2.33 0.98 1.31�K = callosal strength.
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Figure 5.2: Time course for symmetric model recovery following 64-element right lesions.One time unit represents 32768 training inputs. The four graphs correspond to the cases ofexcitatory (K = +1, left column) and strongly inhibitory (K = �2, right column) callosalconnections, focal (top row) and di�use (bottom row) lesions.45



elements, so a 64-element lesion removes a quarter of the region). As this representativeexample shows, there is always an initial drop in organization of the lesioned hemispheric re-gion that persists, at least partially, and in general this drop is more pronounced with di�uselesions. With inhibitory callosal in
uences, organization in the unlesioned left hemisphericregion increases. Figure 5.1 shows the corresponding topographic maps before the lesions(Fig. 5.1a,b), right after the lesions (Fig. 5.1c,d,g,h), and after retraining (Fig. 5.1e,f,i,j),both for focal and di�use lesions. The case of weak inhibitory connections (K = �1) wasalso studied, since in the intact model (chapter 4) it exhibited behavior more close to theexcitatory case than to the strongly inhibitory case, and it was found that the lesioned modelbehaved very similarly to the case K = +1, so the results are not explicitly shown here.Fig. 5.1 also illustrates that the damage in one cortical region causes a di�erent reactionin the other one depending on the nature of their callosal connections. In case of excitatorycallosal in
uences both regions have excellent maps prior to the lesion (Fig. 5.1a). After oneregion su�ers damage, the other, intact, region remains unchanged acutely, although theremay be a small change for the worse in the intact region's organization when the lesion isvery large, and this may get slightly worse after retraining. This impairment is caused by thedecrease in stabilizing e�ects due to loss of homotopic excitatory input from the damagedregion. In the case of inhibitory connections, the contralateral e�ect of a lesion dependslargely on its location as the two maps are typically complementary (Fig. 5.1b). If mostof the damage occurs in the cortical elements not participating in the organized subregionsof the lesioned cortical region, then organizations of both cortical regions experience prac-tically no change. In contrast, if a substantial piece of an organized subregion is lesioned,the previously unorganized part in the opposite hemisphere becomes more organized im-mediately, and completely organized after retraining, so that organization in the damagedhemisphere decreases acutely and stays low, while the contralateral hemisphere gets betteracutely and even better later (see Fig. 5.1b,d,f). The unlesioned hemisphere, released fromthe transcallosal inhibition of the lesioned hemisphere, clearly has a latent tendency for maporganization that is normally suppressed.Figure 5.2 also illustrates that recovery (if any is present) is fastest right after the lesionand then slows down signi�cantly. This is similar to the actual pattern of recovery observedclinically after a stroke.The way cortical elements adjacent to a focal lesion shift and enlarge their receptive �eldsimmediately after the lesion (e.g. Fig. 2c,e for K = +1) and shift their receptive �elds afterretraining is very similar to the recovery pattern seen in the model of a single cortical regiondescribed in (Sutton et al.,1994) and also corresponds well to what is known to happenbiologically [68]. Activations of the individual elements close to the lesion increase acutelyand subside chronically, while the elements homotopic to the lesion in the contralateralhemisphere decrease their activation acutely and then restore most of it chronically. This isalso biologically plausible.When lesions of various sizes were applied, a \mass e�ect" (increased impairment due tolarger lesions) was clearly seen in terms of organization of the lesioned cortical region in bothacute and chronic cases, regardless of callosal connection strength. Figure 5.3 shows howorganization of both cortical regions changes with variations in the size of a focal right-sidelesion. The lesioned right hemispheric region's organization decreases acutely and remains46
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Figure 5.3: Organization versus lesion size in symmetric case for right focal lesions. Acutepost-lesion organization measures are on the left; chronic measures following a recovery pe-riod are on the right. Top row: excitatory callosal in
uences, middle row: weakly inhibitorycallosal in
uences, bottom row: strongly inhibitory callosal strength.47



decreased even after retraining (for all callosal strengths). Recovery on the right is substan-tial for excitatory and weakly inhibitory connections but very small for strongly inhibitoryconnections. As noted above, the post-lesion changes in the left (intact) cortical regiondepend much more on the callosal strength. For K = +1, large right lesions cause somedecrease in the left organization; for K = �1 the left organization is una�ected; and forK = �2 the improvement in left organization occurs acutely, especially with large rightlesions, and gets even better after retraining.The post-lesion changes in mean activation versus right-side lesion size are shown inFig. 5.4, and di�er qualitatively depending on whether callosal in
uences were excitatoryor inhibitory. For excitatory callosal in
uences (Fig. 5.4a, b) the mean activation levelsdecreased bilaterally, and for larger lesions the decrease was more pronounced on the sideof the lesion. Decreased activation on the right lesioned side was due to inactive lesionedelements, while in the intact left hemispheric region it was due to loss of transcallosal ex-citatory in
uences from the lesioned region. Surprisingly, the mean activation of just theremaining intact elements in the lesioned hemispheric region was increased (dotted line inFig. 5.4a, b), in spite of decreased transcallosal excitation from the intact hemisphere. Thiswas due e�ectively to the loss of intracortical lateral inhibitory in
uences from the lesionedarea on the remaining cortex, and the competitive distribution of a�erent activation.In contrast, with inhibitory callosal in
uences (Fig. 5.4c-f), the mean activation also fallsin the lesioned right hemispheric region. However, mean activation rises in the unlesioned lefthemisphere, dramatically so with larger lesions. Note that activation in the remaining intactelements of the lesioned right hemisphere now decreases (e.g., Fig. 5.4e,f) due to increasedinhibition from the more highly active unlesioned left hemispheric region.Di�use lesions are qualitatively similar in their e�ects to focal lesions, except they gener-ally cause a more serious drop in organization and almost no recovery on the damaged sidefor all corresponding values of K. Unlike the focal case for K = +1, the other side alwaysremains well-organized, even for large lesions. Mean activation levels post-lesion behavesimilarly to the focal case for K = �1. For the case where K = �2, the undamaged sideimproves its organization after retraining slightly better than in the focal case, and meanactivation of the impaired side decreases more than in the corresponding focal lesion case.5.4.2 Asymmetric CasesNow consider the results of introducing lesions into asymmetric models. In such cases lesionsof left (dominant) and right (non-dominant) hemispheres may cause di�erent e�ects, soconsider both.Asymmetric ExcitabilityAs mentioned above, asymmetric excitability causes signi�cant lateralization in the intactmodel when callosal in
uences are strongly inhibitory (the maps are complementary, but theside with higher excitability has a larger organized region), while for K = �1 both corticalregions develop complete symmetric maps. 48
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Figure 5.4: Mean activation versus lesion size in symmetric case for right focal lesions. Notethat the vertical scales on these graphs di�er. Same layout as Fig. 5.3. Shown are meanactivation levels for the left (dashed line) and right (dash-dot line) hemispheric regions, andfor just the right elements that remain intact following the lesion (dots).49



a.b. c.d. e.Figure 5.5: Pre-lesion (top) and post-lesion maps for asymmetric excitability case, K = �2.Left column: acute and chronic left-side 10x10 lesions, right column: acute and chronicright-side 10x10 lesions.Table 5.3: Organization and Other Measures for Maps in Fig. 5.5. K = �2Map Lesion Organization Latera-Mirror Mean Activationtype Left Right lizationSymm. Left Right intacta. None 0.70 0.17 -0.53 -0.97 2.49 0.86 *b. Left Acute Focal 0.30 0.29 -0.01 -0.98 1.30 1.93 2.13c. Right Acute Focal 0.75 0.07 -0.68 -0.97 2.93 0.43 0.71d. Left Chronic Focal 0.33 0.50 0.17 -0.97 1.46 1.87 2.40e. Right Chronic Focal 0.88 0.06 -0.82 -0.97 3.05 0.32 0.5250
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Figure 5.6: Organization versus lesion size in asymmetric excitability case for focal lesionsand K = �2. The left side was dominant (most organized) before the lesion (see Table 5.1).Top row: acute and chronic lesions on the right, bottom row - lesions on the left.
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Figure 5.7: Mean activation level of each hemispheric region versus lesion size in asymmetricexcitability case for focal lesions and K = �2. The left side was dominant before the lesion(see Table 5.1). Same layout as Fig. 5.6.
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Figure 5.5 shows pre-lesion and post-lesion maps for simulations with asymmetric ex-citability due to higher input sensitivity on the left with callosal strength K = �2. Table 5.3contains all metrics for those maps. Figures 5.6, 5.7 illustrate post-lesion organization andmean activation for this case both for lesions on the left and on the right side. For K = +1and K = �1 the results of lesions on either side are very similar to the symmetric case de-scribed above (see Fig. 5.3a{d), so the graphs for these cases are not shown. For K = �2 allrecovery happens in the intact side, independently of whether the dominant or non-dominantside is damaged. In general, the non-lesioned side increases its organization immediately fol-lowing a lesion, and with time this increases progressively, especially with larger lesions.Mean activation of the damaged side goes down, and that of the intact side increases, thesee�ects are more pronounced with larger lesions. Neither changes much during retraining.Di�use lesions cause much more damage than comparable focal lesions.Asymmetric ConnectivityAnother type of asymmetry that causes signi�cant lateralization in the intact model isasymmetric connectivity (see section 4.2.4). When each element of the input layer sendsits output to elements of the left cortical set within radius 3 of its homotopic element (37elements) and to the elements of the right cortical set within radius 4 (61 elements), aftertraining the topographic map on the left becomes well organized while the map on theright remains largely disorganized even for slightly inhibitory callosal connections. The toprow of Fig. 5.10 displays the maps developed by the intact model after initial training forK = 0:5 and K = �2. As before, excitatory callosal in
uence (K > 0) leads to completesymmetric maps in both cortical regions, while inhibitory callosal in
uence causes signi�cantlateralization (good map on the left and no organized regions on the right).Figures 5.8 and 5.9 illustrate simulation results for focal lesions for K = +0:5 and K =�2. When K = +0:5, the prelesion maps are full and symmetric. A lesion on either sidecauses the same loss of organization to the lesioned hemispheric region (Fig. 5.8a,b). Inaddition, loss of organization on the contralateral side is more pronounced than in any othercase we have considered. During recovery the maps change quite unexpectedly (probablybecause of the small callosal radius in this case). The process of recovery is shown in Fig. 5.10.When a lesion is introduced in the center of the left hemispheric region, the center of theright region becomes slightly less organized immediately (due to the loss of transcallosalexcitation). During additional training, as the \hole" in the left region becomes smaller,some map disturbance appears on its edges, and a much larger disturbance develops in theright hemispheric region, thus causing substantial decrease in contralateral organization.Mean activations for K = +0:5 (Fig. 5.9a,b) behave very similarly to the mean activationsin symmetric case for K = +1 (Fig. 5.4a,b).Like in other cases with excitatory callosal in
uences, a di�use lesion causes more pro-nounced damage in the lesioned side and practically no damage in contralateral side.For K = �2, a lesion in the non-dominant (right) hemispheric region causes no changesin the dominant one, even though mean activation of the remaining elements of the damagedhemispheric region increases dramatically with lesion size. Retraining improves organizationon the lesioned right side very slightly and only for small lesions. In contrast, when the53



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Different Radii, Right Lesion, K=+0.5, Acute

Size of parallelogram lesion

O
rg

an
iz

at
io

n 
of

 to
po

gr
ap

hi
c 

m
ap

s

Left 
Right

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Different Radii, Right Lesion, K=+0.5, Chronic

Size of parallelogram lesion

O
rg

an
iz

at
io

n 
of

 to
po

gr
ap

hi
c 

m
ap

s

Left 
Right

a. b.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Different Radii, Right Lesion, K=−2, Acute

Size of parallelogram lesion

O
rg

an
iz

at
io

n 
of

 to
po

gr
ap

hi
c 

m
ap

s

Left 
Right

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Different Radii, Right Lesion, K=−2, Chronic

Size of parallelogram lesion

O
rg

an
iz

at
io

n 
of

 to
po

gr
ap

hi
c 

m
ap

s

Left 
Right

c. d.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Different Radii, Left Lesion, K=−2, Acute

Size of parallelogram lesion

O
rg

an
iz

at
io

n 
of

 to
po

gr
ap

hi
c 

m
ap

s Left 
Right

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Different Radii, Left Lesion, K=−2, Chronic

Size of parallelogram lesion

O
rg

an
iz

at
io

n 
of

 to
po

gr
ap

hi
c 

m
ap

s

Left 
Right

e. f.
Figure 5.8: Organization versus lesion size in model with asymmetric connectivity for focallesions. Left column: acute lesions, right column: chronic lesions. Top row: excitatorycallosal strength; middle and bottom rows: strongly inhibitory callosal in
uences, right- andleft-side lesions respectively. The left side was dominant in the intact model (see Table 5.1).54
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Figure 5.9: Mean activation versus lesion size in case of asymmetric connectivity for focallesions. Same layout as Fig. 5.8. 55



Table 5.4: Organization and Other Measures for Maps in Fig. 5.10Map K� Lesion Organization Latera-Mirror Mean Activationtype Left Right lizationSymm. Left Right L.intacta. +0.5 None 1.0 1.0 0.0 +1.0 3.25 3.25 3.25b. -2 None 1.0 0.16 -0.84 -0.69 3.34 4.34 3.34c. +0.5 Acute Focal 0.83 0.98 0.15 0.69 3.13 3.17 3.64d. -2 Acute Focal 0.63 0.20 -0.43 -0.62 2.89 4.32 4.74e. +0.5 Focal 0.87 0.94 0.07 0.85 3.12 3.14 3.63f. -2 Focal 0.64 0.44 -0.20 -0.44 3.05 4.27 5.00g. +0.5 Chronic Focal 0.91 1.03 0.12 0.82 3.17 3.20 3.69h. -2 Chronic Focal 0.65 0.57 -0.08 -0.34 3.05 4.11 5.01�K = callosal strength.dominant (left) hemispheric region is lesioned and looses enough elements (about 20% ormore), the contralateral side begins to improve after retraining (Fig. 5.10, right column).With asymmetric connectivity, unlike with any other case, for K = �2 the mean activationof the remaining (intact) elements in the damaged hemisphere (either one) increases withlesion size while the activation of the other side stays �xed. However, the overall meanactivation of the damaged side is decreased with larger lesions.Asymmetric Size Hemispheric RegionsFinally, the case when the two cortical regions had di�erent numbers of elements is consid-ered: the left had 16x16=256 elements while the right had only 12x12=144 elements. Pre-lesion maps were again complete and symmetric for K = +1 and complementary with pro-nounced lateralization to the left forK = �2. For excitatory callosal connections the changescaused by lesions were similar to those in the symmetric case (Fig. 5.3a,b, Fig. 5.4a,b), ex-cept for one interesting phenomenon related to the fact that in the intact model the meanactivation of the elements of the smaller hemispheric region is higher than that of the largerhemispheric region (see Table 1). If the larger region is lesioned, the mean activation of itsremaining (intact) elements is higher with larger lesions (just as before), and becomes ap-proximately equal to the mean activation of the smaller hemispheric region when the numberof remaining elements in it equals the number of elements of the smaller region. For largerlesions the mean activation of the remaining elements increases quite rapidly, similar to thesymmetric case.When the connections are strongly inhibitory, the model reacts to the lesions similar tothe asymmetric excitability case described above (Figs. 5.6, 5.7). Namely, a lesion in eitherhemispheric region causes a drop in ipsilateral organization and some improvement in con-tralateral organization acutely, with additional contralateral improvement after retraining.All these phenomena are much more pronounced when the dominant hemisphere is lesioned,so that a lesion of about 35% or more causes lateralization to reverse. Mean activations ofthe two hemispheric regions behave similarly to corresponding organizations.56



K=+0.5 K=-2a. b.c. d.e. f.g. h.Figure 5.10: Snapshots of topographic map changes after focal lesions in the di�erent connec-tivity case (left column: 6x6 lesion for excitatory connections, right column: 10x10 lesionfor inhibitory connections). Top row: maps before the lesions; second row: acute lesions;third row: after short training (32768 inputs for K = +0:5, 98304 inputs for K = �2);bottom row: after longer training (131 thousand inputs for K = +0:5, 262 thousand inputsfor K = �2). 57



5.4.3 Summary of Lateralization ResultsTable 5.5 summarizes the results of simulations for lesions involving 56% of a hemisphericregion. For focal lesions, this corresponds to a 12x12 lesion in the standard 16x16 hemisphericregion, or to a 9x9 lesion in the smaller 12x12 cortical region in the case with size asymmetries.It presents the values of lateralization for focal and di�use lesions of each side of the modelright after the lesion and after retraining.Table 5.5: Post-Lesion Lateralization ValuesPrelesion Focal Di�useCase latera- Left Right Left Rightlization AcuteChronicAcuteChronicAcuteChronicAcuteChronicSymmetricK = �2 0.06 0.50 0.77 -0.43 -0.71 0.65 0.92 -0.63 -0.93K = �1 0 0.64 0.49 -0.64 -0.49 0.92 0.98 -0.92 -0.98K = +1 0 0.78 0.61 -0.78 -0.61 0.94 0.96 -0.94 -0.96ExcitabilityK = �2 -0.53 0.16 0.49 -0.76 -0.93 0.38 0.71 -0.89 -0.99K = �1 0 0.59 0.50 -0.68 -0.50 0.92 0.98 -0.91 -0.97K = +1 0 0.79 0.64 -0.78 -0.61 0.94 0.96 -0.94 -0.96SizeK = �2 -0.50 0.25 0.36 -0.77 -0.82 0.71 0.53 -0.89 -0.99K = +1 0 0.80 0.70 -0.75 -0.69 0.97 0.97 -0.98 -0.98ConnectivityK = �2 -0.84 -0.17 0.45 -0.94 -0.88 0.14 0.21 -1.0 -1.0K = +0:5 0 0.60 0.49 -0.60 -0.49 0.92 0.89 -0.92 -0.80The table illustrates the following trends in lateralization changes after a lesion:� di�use lesion always causes larger damage in the ipsilateral side than a focal one ofthe same size, and hence smaller lateralization when the dominant side is lesioned andlarger lateralization for a non-dominant side lesion;� the amount of post-lesion lateralization depends not only on the size and shape of thelesion, but also on pre-lesion lateralization, callosal in
uences, and type of asymmetryin the model;� retraining usually reduces lateralization when callosal in
uence is excitatory or weaklyinhibitory and increases lateralization when callosal in
uence is strongly inhibitory.5.5 DiscussionThe work described in this chapter examined the e�ects of simulated lesions on corticalmaps in versions of the S2 model. Both the details of the intact model (symmetric vs.58



asymmetric regions, callosal in
uences, etc.) and of the lesions (number of cortical elementslost, focal vs. di�use, etc.) have been systematically varied. This is the �rst investigation ofhow underlying cortical asymmetries and callosally-mediated hemispheric interactions mightin
uence the recovery process and how the contralateral intact hemisphere might participatein recovery.Simulations of sudden focal cortical lesions in this model showed that the larger the lesion,the greater the disruption of the maps on the lesioned side, regardless of the assumed roleof callosal connections. This expected increase in disorganization with increase in lesion sizewas modulated by the degree of pre-lesion lateralization. Speci�cally, the more lateralized amodel was initially, the more e�ect a left \dominant hemisphere" lesion had on overall maporganization relative to an equivalent right \non-dominant hemisphere" lesion, regardless ofthe underlying cause of lateralization. The occurrence of increased organization de�cits withlarger lesion size and/or dominant hemisphere damage, and the rapid-then-slow temporalpattern of recovery, are encouraging in demonstrating that, however simpli�ed the modelis compared to reality, it does capture some expected fundamental aspects of post-lesionobservations.More interestingly, the model's post-lesion behavior gives some insight into two currentlycontroversial issues concerning hemispheric interactions. First, as noted earlier in this disser-tation, it is not clear today whether each hemisphere exerts primarily an overall excitatoryor inhibitory in
uence on the opposite hemisphere via the corpus callosum. Most neuronssending axons through the corpus callosum are pyramidal cells, and these synapse mainly oncontralateral spiny cells [55, 66]. Such excitatory synaptic connections, as well as transcallosaldiaschisis and split brain experiments, suggest that the resultant transcallosal in
uences aremainly excitatory in nature [15]. However, this hypothesis is quite controversial [38]. Tran-scallosal monosynaptic postsynaptic potentials are subthreshold and of low amplitude, andare followed by stronger, more prolonged inhibition [125], suggesting to some that transcal-losal inhibitory in
uences are much more important [34, 72]. Recent transcranial magneticstimulation studies have also indicated that activation of one motor cortex region inhibitsthe contralateral one [45, 87], although it is di�cult to know what this response to such anon-physiological stimulus implies for normal physiological hemispheric interactions.The lesioning results with S2 model provide some support for the hypothesis that theoverall e�ects of callosal connections are predominantly excitatory. In general, regardless ofcallosal in
uences, acutely after a focal lesion to one hemispheric region in the model, theactivation levels in that hemispheric region decreased substantially, as occurs experimen-tally. However, the post-lesion changes in activation in the contralateral intact hemisphericregion depended on callosal in
uences. With excitatory callosal in
uences, lesions generallyresulted in an acute fall in averaged hemispheric activation in the intact, unlesioned hemi-sphere. In contrast, with versions of the model having inhibitory callosal in
uences, meanactivation in the unlesioned hemisphere generally increased substantially acutely after le-sions due to disinhibition. Experimental studies measuring regional cerebral blood 
ow andglucose metabolism have consistently demonstrated an acute fall in hemispheric activationfollowing cortical lesions, not only on the lesioned side but also in the contralateral non-lesioned hemispheric region [88, 27, 40, 22]. Thus, to the extent that cerebral metabolismand blood 
ow are coupled to cerebral activation, the model results with excitatory callosal59



connections best �t existing data. The increase in mean activation in the model's unlesionedhemisphere when callosal in
uences are inhibitory also appears to be inconsistent with thissame data.The second controversial issue concerning interhemispheric interactions for which thismodel has implications is the extent to which the non-lesioned hemisphere participates inrecovery following a lesion. There is substantial recent evidence that the unlesioned hemi-sphere is responsible for a signi�cant part of recovery from sensorimotor and language de�citsfollowing a stroke (e.g., [117, 118, 131, 132, 94, 27]). However, other studies have questionedthe role of the contralateral hemisphere in the recovery process (e.g., [8, 57, 58]). Very lit-tle is currently known about this issue speci�cally with respect to sensory maps, althoughone study has found changes in receptive �elds sizes contralateral to a partially denervatedcortical region [26].In many versions of S2 model, clear cut changes in contralateral maps occurred followinglesions. When full symmetric maps were present initially, generally little change was seen inthe map contralateral to the lesion. (An exception occurred when the hemispheric regions hadasymmetric connectivity, and lesions caused increased disorganization in the contralateralmap during the recovery period.) In such cases, there were two duplicate maps of the samesensory surface before lesioning, a fault-tolerant situation in which the built-in redundancyautomatically compensates for the lesion. In contrast, when complementary/antisymmetricmaps were present before lesioning, a single map of the full sensory surface was dividedacross the left and right hemispheric regions, similar to the mosaic maps found in someanimal cortices [17]. In these cases, lesioning of one map generally resulted in increased mapformation and organization in the contralateral, intact hemispheric region. These resultsrepresent testable predictions of the models that could readily be investigated using currentelectrophysiological methods similar to those in [17].Finally, note that di�use lesions in a cortical region generally had more pronounced e�ectsthan focal lesions of the same size. This �nding is in accordance with theoretical predictionsof post-lesion memory capacity changes in spatially-organized neural networks [113], andsuggests that such theoretical predictions apply to a wider range of models than initiallyconsidered.
60



Chapter 6S4 SimulatorThis chapter presents a second model, called the S4 model, that more closely matches inputconnectivity in much of biological cortex primary sensory regions. This model of corticalmaps is a generalization of the S2 simulator. The chapter describes the model and givessimulation results for the symmetric case and several model asymmetries. The results arequalitatively similar to those of the S2 simulator, but they also give insight into some im-portant details of topographic map formation.6.1 The Model
Callosum

Corpus

Left
Cortex

Right
Cortex

 Left Sensory
Surface

Right Sensory
SurfaceFigure 6.1: The model of two interacting cortical regions receiving inputs from two indepen-dent sources.The S2 simulator was the �rst model of bihemispheric cortical maps. It had a single, sharedsensory surface, and thus could represent only a small portion of real primary sensory cortex(i.e., midline regions). The primary sensory maps in the mammalian brain mostly receiveinputs only from contralateral sensory surfaces, so in order to simulate them more closely61



another model is needed. Figure 6.1 shows its high-level structure, which di�ers from the S2model in having two sensory surfaces. This model uses the same internal structure, activationand learning rules as S2 simulator, but it allows independent (or dependent, but di�erent)inputs to the two sensory sets. We refer to it here as the S4 simulator.Receptive �elds can be computed in two ways in the S4 simulator. One way of computingreceptive �elds, which seems most natural, is to give point stimuli to the left sensory surface(one at a time), record responses in the right cortex, and then compute receptive �elds forthe right cortex. Then a similar procedure is performed on the right sensory surface andleft cortex. A second way of computing receptive �elds mimics experiments described byBianki [17], where he uses bilateral stimuli to �nd asymmetries in the sensory maps. Thiscan be done by applying point stimuli in the corresponding nodes of both sensory sets at thesame time and recording cortical responses in both cortical sets. Both ways of computingreceptive �elds are used in this study, and the results are compared with each other and withthe S2 simulator.Experimental methods and baseline parameters used for the S4 simulator were identicalto those used for the S2 simulator, except the radius of input stimuli was 2 in most cases, andthe two sensory surfaces gave an additional degree of freedom in considering independent,symmetric, or nearly symmetric input stimuli.6.2 Results with the S4 SimulatorFig. 6.2 shows a few representative examples of the kinds of maps that emerge during learningin the S4 simulator. The speci�c maps that appear depend, for example, on whether thetwo cortical regions have identical or di�erent parameters (excitability, size, etc.), whetheroverall callosal in
uences are assumed to be excitatory or inhibitory, on the way of computingreceptive �elds, and on the training input stimuli overlap.In general, the maps observed are similar to those with the S2 simulator. For example,the vertices (nodes) in the left picture in Fig. 6.2b represent the centers of the receptive �eldsof the left cortical region after training plotted in the space of the sensory surface, just aswith the S2 model. The entire grid in this speci�c picture shows that a fairly organized mapis present in both cortical regions (i.e., the sensory surface projects in a smooth fashion ontothe two-dimensional cortex surface), the typical result found after learning when excitatorycallosal in
uences are present. In contrast, Fig. 6.2d,i illustrate cases with strong inhibitorycallosal in
uences where the well-organized parts of the right and left cortical regions aftertraining are complementary (antisymmetricwith respect to re
ection in the vertical midline).Values for organization, lateralization, and mirror symmetry for the maps in Fig. 6.2 are givenin Table 6.1.It is interesting to note that Fig. 6.2g,h,i,j all represent the S4 simulator results for thesymmetric case with K = �2. The only di�erence between them is the way of computingreceptive �elds (bilateral point stimuli for g and i, independent computation for h and j)and independent (for g and h) versus symmetric (for i and j) training inputs. All four pairsare clearly very di�erent, with h having complete symmetric maps, i fully complementarywith sharp boundaries between organized and unorganized subregions, and other two also62



a. b.c. d.e. f.g. h.i. j.Figure 6.2: Receptive �eld maps produced by the S4 simulator: (a) the maps before training(unorganized); (b) bilaterally organized maps after training; (c) the left map is better orga-nized than the right; (d),(i) organized regions are complementary; (e) maps are shifted andcurved; (f) cortical regions have di�erent size; (g{j) e�ects of di�erent ways of computingreceptive �elds and di�erent overlap of training input stimuli: (g), (h) independent stimuli,(i), (j) symmetric training stimuli, receptive �elds were computed independently for (h) and(j), and with bilateral point stimuli for all other map pairs shown here.63



Table 6.1: Values of Quantitative Measures for the Maps in Fig. 6.2map sigmoid di�. (SD) organized area lateralization mirrorleft right left right based on SD symmetrya 0.01 0.00 0.02 0.05 0.0 unde�nedb 0.98 0.99 1.0 1.0 0.01 1.0c 0.97 0.15 1.0 0.0 -0.82 -1.0d 0.67 0.66 0.40 0.38 -0.01 -1.0e 0.75 0.74 0.47 0.47 -0.01 -0.39f 0.97 0.20 0.93 0.01 -0.77 -1.0g 0.39 0.57 0.12 0.22 0.18 -0.94h 0.99 0.99 1.0 1.0 0.0 1.0i 0.52 0.58 0.23 0.27 0.06 -1.0j 0.68 0.73 0.46 0.50 0.05 -0.82complementary, but the boundaries are very vague. We will return to the discussion of thethese maps at the end of this chapter and in the next chapter, where the mechanics of mapformation is considered in detail.6.2.1 Varying Training Input OverlapSince the main di�erence between the S4 and the S2 simulators is the ability of the S4simulator to use di�erent input stimuli for training, it is natural to look at how di�erentdegrees of training input overlap a�ect map formation (for simplicity, in the symmetriccase). The term \training input overlap" can be de�ned as the number of sensory elementsin the intersection of an input stimulus in the left sensory surface and the mirror image of thetraining stimulus (at the same time) in the right sensory surface. Recall that in the symmetriccase the S2 simulator produced perfect maps for K > �1:4 and complementary (\mosaic")maps for K < �1:4. When the training inputs are independent in the S4 simulator, onewould expect the activations in the two cortical layers not to interfere with each other mostof the time, and so expect two complete maps to form quickly in both cortical layers forany K. With 100% overlap one would expect the S4 simulator to produce the same resultsas the S2 simulator. Hence the most interesting case to look at is K < �1:4, for instance,K = �2.Figure 6.3 shows results for the symmetric case, K = �2, when the overlap of traininginputs was varied from 0 to complete, with radii of the input patches 1 and 2. The reasonradius 2 is used (a hexagonal patch of radius 2 includes 19 nodes; a patch of radius 1, only7) is that with hexagonal radius 1 only a very limited number of overlap values is possible(0,1,2,4 and 7), and also with bigger training patches even independent random inputs havea higher chance of interacting, producing some interesting phenomena.Fig. 6.3 has two columns, corresponding to the two di�erent ways of computing receptive�elds in this model, described in section 6.1. The left column is based on bilateral computa-64
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Figure 6.3: Results of the S4 simulator for the symmetric case with varying training inputoverlap. Top: training inputs of radius 1, bottom: of radius 2. The horizontal axis is overlapof simultaneous left and right stimuli in every graph here. The left column corresponds tothe bilateral method for computing receptive �elds, the right column is based on independentcomputation of receptive �elds. 65



tion of receptive �elds, and the right column corresponds to independent point stimuli. The�gure illustrates several important observations:� results for radius 1 and 2 are qualitatively similar;� the di�erent ways of calculating receptive �elds produce very di�erent results, eventhough the same weight vectors are used;� map complementarity is much more pronounced when the training input overlap ishigher;� for some input overlap (usually close to 50%) the simulator produces \shifted" maps,i.e. nearly perfect maps but shifted in di�erent directions, such as in Fig. 6.2e.6.2.2 Symmetric CaseRadius 2 input stimuli were used for the simulations described below, with three di�erenttraining input overlap values: 0 for independent randomly-centered inputs, overlap 10 (nearly50% overlap), and overlap 19 (perfectly symmetric training inputs). Figure 6.4 shows resultsfor the symmetric case when K varied between -4 and 1. As in the S2 simulator, sharptransitions in organization and symmetry values appear between -1 and -1.5. No signi�cantlateralization is present.The sharp transitions appear both for independent and symmetric inputs, but for sym-metric inputs they appear independently of the method used for receptive �eld calculation,while for independent inputs only bilateral point stimuli reveal the transition. This is relatedto the di�erence in weight changes, to be discussed in the next chapter.6.2.3 Asymmetric CasesFigure 6.5 shows results for the asymmetric excitability case. Lateralization is noticeablefor inhibitory callosal connections, and is strongest when the training inputs are symmetric.Similar to the symmetric case, independent training inputs and independently computedreceptive �eld maps produce perfect symmetric maps for all values of K, while the sameweights and bilaterally computed receptive �elds lead to some lateralization and asymmetry.Independent calculation of receptive �elds after training with symmetric stimuli smoothesout most of the lateralization, but asymmetry persists.Overall, signi�cant lateralization and complementary maps were observed in the simula-tions with strongly inhibitory callosal in
uences and asymmetry in the size or excitability ofthe cortical regions. Asymmetric synaptic plasticity caused only transient (but very strongfor some callosal strengths) lateralization (Fig. 6.2c) which disappeared after further train-ing. Results for independent and symmetric training stimuli were in most cases surprisinglysimilar qualitatively. For asymmetric excitability though, lateralization was stronger forsymmetric stimuli. Figure 6.6 summarizes results for the various kinds of model asymme-try favoring the left side that were studied. It presents plots of lateralization for varyingcallosal strength for the cases when training stimuli were symmetric and when they were66
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Figure 6.4: Results of the S4 simulator for the symmetric case. Top: independent traininginputs, bottom: identical training inputs. The horizontal axis is the callosal in
uence Kin every graph here. The left column corresponds to the bilateral method for computingreceptive �elds, the right column is based on independent computation of receptive �elds.67
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Figure 6.5: Results of S4 simulator for asymmetric excitability case. Same notation as inFig. 6.4. 68



independent, but receptive �elds were computed bilaterally for both cases. For the asym-metric synaptic plasticity case only lateralization after short training is presented. In fact,asymmetric synaptic plasticity was the only case producing lateralization with independenttraining inputs and independently computed receptive �elds.
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Figure 6.6: Summary of lateralization results for all model asymmetries for independent(left) and symmetric (right) training inputs.6.3 DiscussionThe S4 simulator described in this chapter allows independent inputs to the left and rightcortical regions. This is similar to what happens in much of biological primary sensory maps,since each hemisphere of a real brain normally receives input mostly from the contralateralside of the body. The e�ects of various model asymmetries, excitatory and inhibitory callosalin
uences, and di�erent degrees of training input overlap were studied systematically. Thestudy of varying training input overlap shows that identical training inputs can produce mostof the interesting phenomena observed, thus justifying using a simpler model (with only onesensory surface) as with the S2 simulator.Observation of simulation results obtained with independent training inputs and withthe di�erent ways of computing receptive �elds gives insight into the map formation processwhich the S2 simulator could not give. Namely, it shows that for strongly inhibitory callosalin
uences even when the incoming cortical weights are well-organized, the receptive �eldmaps (computed bilaterally) are poorly organized. On the other hand, even when the weightsare not so well organized, independent calculation of receptive �elds may help to improvethe map organization.Consider a symmetric case with strongly inhibitory callosal connections. The four mapsproduced by the S4 simulator using symmetric and independent training inputs, bilateraland independent point stimuli during receptive �eld calculations are shown in Fig. 6.2g{j. The map h obtained with independent training stimuli and independent calculation ofreceptive �elds is nearly perfect. The map g, based on the same weights, but computed69



a. b.Figure 6.7: Incoming weight vectors after training for the symmetric S4 model with stronglyinhibitory callosal in
uences: a. Symmetric training inputs; b. Independent training inputs.with bilateral point stimuli, is quite di�erent. The organization of both of its parts is verylow (even lower than that of the complementary maps produced by the S2 simulator forsymmetric case), and the symmetry measure is close to -1. The map i is a typical example ofthe S2 simulator result, and map j is its smoothed out version. Fig. 6.7 presents the incomingweight vectors after training with symmetric (a) and independent (b) stimuli. Clearly, thetwo plots are quite di�erent (the weights in part a are very well organized, while in partb they are ready for producing complementary mosaic-type maps), and this di�erence isre
ected in the receptive �eld maps. Thus, both the weights and the method of receptive�eld computation play an important role in determining �nal map organization.
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Chapter 7Theoretical AnalysisThis chapter presents a mathematical analysis of some important aspects of the modelsdescribed in this dissertation. First, a summary of previous results for similar models isgiven. Then, analysis of total hemispheric activations for the S2 simulator leads to thediscovery of some bifurcations, and their role in the behavior of the model is explained.Another variation of the model, having even more competitive distribution of activation, isalso considered and analysed. Further, results with the S4 simulator reveal the relationshipbetween organization of the weights and of receptive �eld maps (depending on the way ofcomputing receptive �elds). This is also explained by the above bifurcation. Finally, it isshown that the activation patterns forming in the cortex in the beginning of training canpredict the organization of the weights after training. Namely, the average dot product ofactivations in the cortex and sensory surface correlates quite well with the �nal organizationof incoming weights. This is explained, and it is shown how this dot product, in turn,depends on the parameters of the model. Thus, the analysis makes it possible to predictmap organization (given all model parameters) before training.7.1 Past Related WorkThis section brie
y summarizes previous mathematical analysis of neural models using com-petitive distribution of activation.Several researchers attempted mathematical analysis of the activation dynamics in S1simulator and similar models. However, since the system of nonlinear equations (2.1) and(2.2) for all sensory and cortical elements is too complicated, various simpli�ed versions wereactually analysed. The ultimate goal of this research is the analysis of more complex modelsbased on the S1 simulator, so it is important to list the existing results of the S1 simulatoranalysis here.First we notice that the dynamics of activation of sensory nodes is not too hard toanalyse since there are no lateral connections: the nodes receiving constant positive inputquickly approach the maximum activation levelMax, while the nodes with no input stay atactivation level 0. These are the only two types of dynamics that can happen in the sensorylayer.Sutton [123] found that when no sensory input is present and all cortical nodes are71



assumed to have the same activation, that activation has a stable �xed point at 0 providedthat cs + clf Max < 0.Reggia and Edwards [107] considered a neural network with competitive distribution ofactivation, when the activation of node i is governed byai(t+ �) = ai(t) + �[ei(t) + ri + Xj2N cij(t)aj(t)] (7.1)where 0 < � � 1 represents the �neness of time quantization, ei(t) denotes the externalinput to node i at time t, ri is a constant bias at node i, and Pi2N cij(t) = c for anyj, where N denotes the whole network. Total external input is assumed to be constant(E) and de�ning R = Pi2N ri, they found two phase transitions for the total networkactivation A(t) = Pi2N ai: The total network activation asymptotically approaches a �xedpoint A� = �(E + R)=c whenever �2=� < c < 0 (as t ! 1). For c outside this intervalthe total activation diverges, i.e. grows without bounds. Thus, c = 0 and c = �2=� aretwo phase transitions. This result applied to the S1 simulator (where ODEs are replacedby Euler method approximations with time step �) leads to the conclusion that the totalactivation converges when cs + clf < 0 and � < �2=(cs + clf). Of course, the convergenceof the total activation is a necessary but not a su�cient condition for the convergence ofactivations of individual nodes.McFadden, Peng and Reggia [85] found local conditions for boundedness and divergenceof the entire activation vector in a more general model. In terms of model (7.1) their resultscan be formulated as follows: de�ne positive, negative and self-gains associated with node jas cjP = Xi2Pj cij(t); cjN = Xi2Nj cij(t); cjS = cjj(t);where Pj and Nj are the sets of nodes receiving positive and negative connections from thenode j respectively. Then parameterscj = cjP + cjN + cjS and Rj = cjP � cjNplay a signi�cant role in determining the behavior of the system. Namely, if the conditionscjS < �Rj and �(Rj � cjS) < 2 hold for any j then the system (7.1) is bounded for all choicesof initial values. Note that Rj is a Gershgorin radius derived from the jth column of theconnection matrix. Another theorem from [85] implies that in model (7.1) with zero externalinput, if either cjS > Rj or cjS < �2=� �Rj , then the system diverges for all nonzero initialvalues.Benaim and Samuelides [14] found a Lyapunov function and used it to prove convergencefor a competitive distribution model which was substantially di�erent from the S1 model.Their result was based on LaSalle's invariance principle and Hirsch's theorem [62]. Althoughit is not directly applicable to the models considered here, the approach seems to be promis-ing. In fact, McFadden [83] and Peng Wu [136] found Lyapunov functions for models whichare closer to S1 simulator and also used Hirsch's theorem to prove convergence.Finally, Yinong Chen and Reggia [32] considered a competitive distribution model very72



close to the S1 simulator. Under some simplifying assumptions, such as the absence oflateral connections in the cortical layer and only one input node, they proved convergenceof activations to a �xed point, coordinates of which were found explicitly.7.2 Simpli�ed S2 Model and Total ActivationsIn the simulations described in Chapters 4 and 6 a sudden transition occurs in model behaviorat a speci�c callosal strength (roughly K = �1:4 in the symmetric case, K = �1:2 in theasymmetric excitability case). For K above this strength, symmetric, non-lateralized andhighly organized maps occur, while for K below, lateralized and asymmetric mosaic patternmaps occur. What causes this transition or bifurcation in model behavior? Below the causeof a change in the dynamics of total hemispheric activations near K = �1:4 is shown andthen an explanation on how it leads to asymmetry in map formation is given.First, consider the di�erence in total activation of the left hemispheric region L versus theright R in the model. The activation dynamics described by (3.1){ (3.5) are highly nonlinearand di�cult to analyze. However, as in [107], a \linearized" version of these equations givesinsight into the model's dynamics. Consider equationsdaLidt = csaLi + in+Li + in�Li; (7.2)where aLi is the activation of element i in L, and in+Li and in�Li are inputs to that elementgiven by (3.2) to (3.5). By algebraic manipulations, for j 2 L, k 2 S, m 2 R we haveXi2L cLLij = cLlf; Xi2L cLSik = cLp ; Xi2L cLRim = KLR: (7.3)Analogous equations hold for the right hemispheric region R.Consider a �xed input pattern. Denote the total activation in the left hemisphere byAL, that in the right by AR, and that in the sensory surface by AS. Adding together theequations (7.2) for all elements i in the left hemisphere and using (3.2), (3.3) and (7.3) oneobtains: dALdt = csAL + cLlfAL + cLpAS +KLRAR (7.4)and a similar equation for the right hemisphere.7.3 Symmetric CaseIn the symmetric case, where cLlf = cRlf = clf , cLp = cRp = cp and KLR = KRL = K, subtractingdAR=dt from dAL=dt we have:d(AL �AR)dt = (cs + clf �K)(AL �AR): (7.5)73



This indicates that when K < cs + clf , an initial di�erence in activation levels of the twohemispheres will grow exponentially with time, while for K > cs + clf , this di�erence willdecay exponentially. With our baseline parameters this change is expected at K = cs +clf = �1:4, precisely where the transition occurs in the symmetric case simulations (seeFig. 4.1). A more involved analysis given below shows that similar changes in asymptoticbehavior of total hemispheric activations occur in a more general case for roughly the sameK (e.g., when the two hemispheres have di�erent excitation).How does this change in activation growth a�ect symmetry and lateralization? Withrandom initial weights, an input pattern quickly causes slightly di�erent initial levels ofactivation in the two hemispheres. With time, this initial di�erence will either disappear (forK > �1:4) or grow (for K < �1:4). In the former case, both hemispheres will have nearlyequal activation levels by the time a learning step occurs, and hence they will \learn" theinput at about the same speed (assuming equal learning rates), hence eventually developingcomplete and symmetric maps. In the latter case, by the time of learning one hemispheremay be largely inactive while the other is highly active, so the input is more e�ectivelylearned by the more active hemisphere, resulting in local lateralization of map formation.Recalling that the hemispheric regions are homotopically connected, this competition occurslocally between mirror image sections of the cortex. Thus a small part of the map can becomebetter organized on one side than the other. After a su�ciently long training period, a mosaicpattern is therefore likely to occur for K < �1:4. For symmetric hemisphere parametersby chance each hemisphere would be expected to be dominant on about the same numberof input patterns as the other, and so complementary maps but almost no lateralizationis expected. With asymmetric cortical excitability we would expect larger total activationmore often on the more active hemisphere, so that hemisphere will develop a map coveringa larger part of the sensory surface, which leads to lateralization.Consider the general linearized case (7.2) where the hemispheric regions may be asym-metric. Denote cs + cLlf = cL, cs + cRlf = cR, cLpAS = BL, and cRpAS = BR, givingdALdt = cLAL +KLRAR +BL; dARdt = KRLAL + cRAR +BR: (7.6)This is a system of two linear di�erential equations, with matrix  cL KLRKRL cR !, whosetrace is cL + cR (negative in our model), and whose determinant is cLcR �KRLKLR; it thushas a unique �xed point unless KRLKLR = cLcR. The �xed point, which is asymptoticallystable when KRLKLR < cLcR and asymptotically unstable when KRLKLR > cLcR, isA�L = �cRBL +KLRBRcLcR �KLRKRL ; A�R = �cLBR +KRLBLcLcR �KLRKRL : (7.7)In the symmetric case with baseline parameter values cL = cR = �1:4, BL = BR = 7:0,KLR = KRL = K, we have A�L = A�R = 7=(1:4 � K), so for K = 1:4 activation growswithout bound in the linearized model. However, the additional self-inhibition that we usefor K > 0 in simulations prevents this problem: as stated earlier for positive K instead ofcL = cR = �1:4 we use cL = cR = �1:4� 2:6K, which makes the behavior of the �xed point74



smooth for positiveK (although it is not di�erentiable atK = 0): A�L = A�R = 7=(1:4+1:6K).This �xed point remains asymptotically stable for all K > 0, facilitating symmetric mapformation in both hemispheres. Thus, in the symmetric case the �xed point remains bounded,and is asymptotically stable for all K > �1:4 and asymptotically unstable for K < �1:4.Thus, the following result has been justi�ed:Theorem 7.3.1. In the symmetric case the system (7.4) has a bifurcation point at K =cs + clf , and it causes a qualitative change in the behavior of the whole model.7.4 Di�erent ExcitabilityIn asymmetric cases, the coordinates of the �xed point behave more interestingly. Fordi�erent input sensitivity constants (cLp = 1:05 makes BL = 7:35, but cL = cR) the di�erenceA�L � A�R = (BL � BR)=(K � cL) remains quite small for K > �1, but gets very largeas K approaches cL = �1:4. Di�erent lateral feedback has a similar e�ect, except thebifurcation point changes slightly: when cL = �1:3 the �xed point becomes unstable for alarger K (K � �1:349). The di�erence of the total activations at the �xed point is given byA�L �A�R = BL(cL � cR)=(cLcR �K2) which is small for K > �1 and also goes up sharplynear the bifurcation point. Fig. 7.1 shows the dependence of the �xed point on K for variouscases. Here the additional self-inhibition for positive K is taken into account.a. b.
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Figure 7.1: Fixed point of system (7.6) in (a) the symmetric case and (b) with asymmetricinput sensitivities or lateral feedback coe�cients. Dashed line is total activation for the lefthemisphere, solid line for the right. In the symmetric case the values are equal and the twolines coincide; in the asymmetric case they are close except near K = �1:4.Finally, asymmetric excitability actually causes two transitions in the model's dynamics.While the coordinates of the asymptotically stable �xed point remain close to each other(for K � �1) we have a situation similar to the symmetric case for K > �1:4, so completesymmetric maps form. But when the asymptotically stable �xed point coordinates havedi�erent orders of magnitude (as happens between K = �1:2 and K = �1:4, see Fig. 7.1b),then the activation levels in the two hemispheres will di�er signi�cantly (with the left hemi-sphere always much more active), and most of the learning will occur in the left hemisphere.Thus, the post-training organization level on the left stays close to 1, while on the right it75



drops sharply. This also accounts for the \bumps" in the post-training activation levels inFig. 4.2b and the sharp changes in lateralization and mirror symmetry in Fig. 4.2c. Finally,at K < �1:4 the �xed point becomes asymptotically unstable, and any initial di�erencein the activations of two hemispheres will grow exponentially (like in symmetric case forK < �1:4). However, due to the asymmetry in excitability the left hemisphere is more likelyto have higher initial activation. This facilitates complementary map formation favoring themore active hemisphere.Thus, the following theorem has been proved:Theorem 7.4.1. The system (7.6) has a bifurcation point when K2 = cLcR, K < 0, andthe whole model has another qualitative change in its behavior when K approaches this pointfrom the right.7.5 Analysis of Another Variation of the Model, UsingCompetitive Distribution of Activation BetweenTwo CorticesAnother variation of S2 simulator is a model with the same overall structure as S2 simulator(see Fig. 3.1), but with slightly di�erent activation dynamics. Namely, each sensory nodenow distributes its output competitively not only to elements of each cortical set separately,but to elements in both sets simultaneously. Thus, instead of the �rst equation (3.4) we nowhave cLSik = cLp wLik(aLi + q)Xn wLnk(aLn + q) +Xm wRmk(aRm + q) (7.8)Yet another variation is obtained when the output of each sensory node is �rst dividedamong the left and right cortices proportional to their total activations at the moment, andthen distributed competitively among the recipient nodes in each cortex within its quota.This last version also allows for interesting theoretical analysis.When each sensory node distributes its activation competitively among the recipientnodes in both cortical sets, even the linearized model is very hard to study analytically.Indeed, the equation (7.8) will only let us get rid of the sum in the denominator if we addtogether activation equations for all elements in both cortical sets. In that case, assumingalso that cLp = cRp = cp, we get the following equation for the total activations:d(AL +AR)dt = cs(AL +AR) + cLlfAL + cRlfAR + cpAS +KLRAR +KRLAL: (7.9)Clearly this allows analysis only for the symmetric case. The equation for the overall acti-76



vation A = AL +AR is simple:dAdt = (cs + clf +K)A+ cpAS:As before, A will diverge (go to in�nity) if K > �(cs + clf), which is 1:4 for our baselineparameters. But again, this can be prevented if additional self-inhibition is used for positiveK. As mentioned above, the other variation of competitive distribution is when each sensorynode's output is �rst divided proportional to the total activations of cortical sets and thenwithin each set (we assume that the initial total activations are positive). The linearizedversion of this model leads to the following nonlinear system of ODEs for total activations(we again denote cs + cLlf = cL, cs + cRlf = cR, cLpAS = BL, and cRpAS = BR):dALdt = cLAL +KLRAR +BL ALAL +AR ; dARdt = KRLAL + cRAR +BR ARAL +AR :(7.10)For this system the analysis becomes more interesting. As before, for the symmetric casethe solution can be found explicitly. The �xed point is AL = AR = �B=(2(c+K)), whichis asymptotically stable for K < �c, goes to in�nity when K approaches �c, and becomesasymptotically unstable (and negative) for K > �c. It is important to note that even thoughthe �xed point becomes unstable for large K, the di�erence AL�AR will still converge to 0.This is easy to see if a change of variables is made: x = AL�AR; y = AL+AR, the systembecomes: dxdt = x(c�K) +Bxy ; dydt = y(c+K) +B:From the second equation y = � exp((c + K)t) � B=(c + K), and from the �rst equationdx=dt = x(c�K + B=y). For K > �c, y(t)! 1 as t grows, hence c �K + B=y becomesnegative very quickly even if it was positive at the beginning, so x(t)! 0. The consequenceof this result is the absence of sharp transitions in the model's behavior for this kind ofmodel for K > 0. In particular, the symmetry measure is expected to stay close to 1 in thesymmetric case for all K > 0 despite the competitive distribution of activation. Simulationshave con�rmed this prediction.However, for the asymmetric case the problem gets harder. It is still possible to �nd thecoordinates of the �xed point explicitly, but the expressions are too big to o�er any help inunderstanding of the dynamics. But using the idea of continuation method [97] can help. Inall model variations the parameters usually di�er from the symmetric case only slightly, andso we can analyse the behavior of the �xed point in an asymmetric case by starting from the�xed point in a close symmetric case and then varying a parameter a little at a time. Nobifurcations are observed in the parameter space except when KRLKLR = cLcR, and so thisapproach should work well. 77



7.6 Analysis of S4 simulatorThe S4 simulator, described in Chapter 6, is a generalization of the S2 simulator. In partic-ular, it is equivalent to the S2 simulator when symmetric training inputs are used and thereceptive �elds are computed with bilateral point stimuli. Thus, in such a case the analysisgiven in the previous sections applies to the S4 simulator as well.When the training stimuli applied to the left and right sensory surfaces are independent,the incoming weights for both cortices usually organize fairly well for all callosal strengths(except, perhaps, the case with asymmetric learning rates and short training), but the orga-nization and symmetry of receptive �eld maps depends very strongly on their way of calcu-lation. Calculated independently, the maps are nearly perfect, so there is nothing interestingto analyse. When calculated from bilateral point stimuli, the maps are less organized andasymmetric for strong inhibitory callosal in
uences, which is explained easily by Theorem7.4.1, since this asymmetry is again the result of asymmetric activation dynamics (recall thatreceptive �elds are computed using activations of cortical elements in response to sensorypoint stimuli).7.7 Activation Patterns and Weight ChangesThe results with the S4 simulator show that in the bihemispheric models, weights are not theonly factor a�ecting organization of receptive �elds. This is a very important observationfor the current study. It implies that one should look not only at the process of changingweights, but also at activation dynamics during receptive �eld calculation. Of course, theweight changes are very important.Strong lateralization observed in the S2 simulator for even slightly inhibitory callosalconnections when the connection radii were di�erent suggest that the shapes of activationpatterns forming in the cortices during training are extremely important for weight organi-zation and topographic map formation. In this section an attempt is made to measure theshape of an activation pattern so that would be predictive of map formation (or at leastweight organization) after training. First, a way to measure \goodness" of activation pat-terns is suggested, and then it is shown how it correlates with resulting map and weightorganization. Intuitively, the measure should give a high value to a bell-shaped, or at leastto a \convex" activation pattern, and a low value to a centrally-depressed activation pattern,as well as non-contiguous or simply very low activation.In fact, the importance of the shape of activation patterns for map formation was �rstpointed out by Armentrout in [5], when he was studying the noncompetitive version of theS1 simulator. He showed that \bell-shaped activity islands are required for topographic mapformation". Armentrout proved that in a \one-dimensional Kohonen network the orderedstates are absorbing if and only if the symmetric neighborhood function is non-increasingwith distance". Being absorbent means that \once weights become ordered subsequentlearning will not change this ordering" and is very desirable for good map formation. Hisanalysis and simulations (using noncompetitive version of the S1 simulator) showed that\centrally-depressed or non-contiguous ... activation patterns do not promote topographic78



map formation as nearby input vectors are mapped to separate output regions".Figure 7.2 presents some typical activation patterns found in the cortical regions undervarious combinations of model parameters for the S2 simulator. The top row shows acti-vations in the sensory surface (part a), left (center) and right (right) cortical regions whenall model parameters except random initial weights are symmetric, and callosal strength is0. Good activation patterns form in both cortical regions, and very good symmetric mapsform in them very quickly. The second row contains activation patterns for the symmetriccase with strongly inhibitory callosal in
uences. Supporting the analysis above, one corticalregion (left here) has very little activation, while the other (right in this �gure) has a goodactivation pattern. Similar situations happen in asymmetric excitability case with stronginhibitory connections.Finally, the bottom row of Fig. 7.2 shows activations for the asymmetric connectivitycase, when the radius of connections from the sensory surface to the right cortical region is4, and to the left one 3, with callosal radius 1 and input stimulus radius 2 (similar �gurewith input radius 1 is given on page 37). A \good" activation pattern (roughly bell-shaped)occurs in the left cortical region, and a \bad" one (centrally-depressed) in the right corticalregion. Such a situation leads to strong lateralization as a well-formed map does not appearin the left cortical region.Several approaches to evaluating the shape of activation patterns were tried. It turnedout that a simple dot product of cortical and sensory activations (averaged over �rst 50inputs) is a fairly good predictor of weight and map organization after training. The dotproduct is computed by adding together the products of activation levels in correspondingelements of one cortex and the sensory layer from which it receives input. Since the ac-tivation level of a sensory element is either 0 or 1, the dot product is e�ectively the totalactivation of the cortical elements directly corresponding to the active elements of the train-ing stimulus. Figure 7.3 shows this dependence for training inputs of radius 1 (parts a, c)and 2 (parts b, d), based on results of many simulations with various model asymmetries(except di�erent size, since it's hard to compute the dot product of activations for di�erentsize regions, and di�erent learning rates, since the rates a�ect map formation, but do nota�ect activation patterns in the beginning of training). The �gure has 2 points for eachsimulation, corresponding to left and right cortices.Taking into account the previous discussion of the e�ect of a bilateral way of computingreceptive �elds on map formation when the training stimuli were independent (see Chapter6), results of S4 simulator with independent training stimuli are used only for parts c and d,where weights are shown.Some scattering of the points is probably due to the fact that normally tens or hundredsof thousands of training inputs are needed for map formation, so perhaps the �rst 50 maynot be a su�cient sample. The �gures show that most points fall into the 95% con�denceinterval around the parabola computed as the least squares �t. For higher levels of dotproduct the parabolas level o�, showing that once the dot product is high enough, a goodmap will form (recall that map organization values are limited by 1). The graphs for traininginput radii 1 and 2 are given separately because it is not clear how to normalize the results sothat they could be given together. Simple division by the number of elements in the training79
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Figure 7.2: Activation in the (a, c, e) sensory surface and (b, d,f ) the two cortical regionswhen (a, b) symmetric case, no callosal connections, \good" activation patterns in bothcortical regions; (c, d) symmetric case, strongly inhibitory callosal connections, \good"activation pattern in the right cortical region, almost no activation in the left cortical region;(e, f) radii from the sensory surface to cortical regions are 3 and 4, callosal radius 1,inhibitory callosal connections, \good" pattern in the left and \bad" one in the right corticalregion. 80
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Figure 7.3: Organizations of topographic maps and incoming weights (vertical axes) aftertraining depend on dot product of activations of cortical and sensory elements before training(horizontal axes). The least squares quadratic approximation and 95% con�dence intervalsare also shown. (a, b) Map organization, (c, d) incoming weight organization; (a, c) traininginputs of radius 1; (b, d) training inputs of radius 2.
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patch does not work well, since the activation dynamics is highly nonlinear.7.8 Factors A�ecting Activation PatternsHere an analysis of activation dynamics in individual nodes is undertaken, in order to seehow the model parameters a�ect the resulting dot product of activations in sensory andcortical layers. In order to minimize the size of the nonlinear system of ODEs, the one-dimensional case is considered here. A small version of a one-dimensional S2 simulator hasbeen implemented in Matlab, using its ODE solver ode23, which implements Runge-Kuttamethod with adjustable time step. The small version has only 8 elements in each corticalset, and only 2 input nodes, each sending input to 5 elements in each cortical set. Callosalradius is 1. The additional self-inhibition for positive K was not used, since all the mostinteresting phenomena happen for negative K anyway. While it is a minimal con�gurationthat can be considered for analysis of activation patterns, it still has 16 nonlinear ODEs.The initially random weights create an additional problem, since they play an importantrole in activation dynamics.Numerous computations show that after initial active changes, solutions of the ODEsystem converge to �xed points for all values of K considered. Fig. 7.4 shows the behaviorof individual element activations as time goes from 0 to 40 that was observed for variousparameter sets. The �xed points stay nearly unchanged for most negative values of K, asshown in Fig. 7.5, where elements 1 through 8 correspond to the left cortical set, and 9through 16 to the right one.For negative K < �0:5, usually only two elements (forming a cluster) on each sideremain active after su�cient time has passed, and these elements on the left and rightsides tend to be in di�erent locations. This makes the dot product of cortical and sensoryactivations low, in fact, it is usually 0 on one side and around 1.2 on the other (see Fig. 7.6).Complete dominance of one side over the other (as could be expected from the analysis oftotal activations above) does not happen here because the callosal radius is too small.For K > �0:5, as the inhibition gets weaker, the clusters of active elements on both sidesbecome wider, more active and more symmetric, so that the dot products increase (up toaround 4 for K = 1) and become close to each other.Fig. 7.6 presents the dependence of dot product of cortical and sensory activations on K.For various initial weights and parameter variations this �gure remains amazingly similar,with only small changes near K = �0:5. Of course, for the symmetric case either left orright cortex can have higher dot product with sensory surface, while for the asymmetricexcitability case usually the left cortex (having higher excitability) has higher dot product.When the sensory-cortical radii are asymmetric and callosal in
uences inhibitory, theactivation pattern on the side with larger radius (right side here) is split into two parts withzeros in the middle (the middle here corresponds to the position of the input stimulus in thesensory layer). This split is caused by stronger inhibition from the other (left) side exactlyin the middle. Indeed, the elements in the middle of the right side receive inhibition frompractically all active elements on the left, while the positive activation from the input nodesis distributed (competitively!) over a larger number of right side elements, and those farther82
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Figure 7.4: Changes in activations of individual cortical elements in a simplemodel with time,K = �2:1. Top: the symmetric case; middle: asymmetric excitability; bottom: asymmetricconnectivity. All activations converge to �xed points after some time.83
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Figure 7.5: Fixed points of the system of 16 nonlinear ODEs as a function of K.away from the middle get less inhibition. This leads to the centrally-depressed activationpattern on the right side and makes its dot product with the sensory layer activation zero.At the same time, the activation cluster on the left side is closer to the center, thus makingthe dot product much higher than in other cases. Strong lateralization inevitably follows.A similar argument also applies to the two-dimensional model when callosal radius is small.This explains strong lateralization even for weakly inhibitory callosal in
uences described insection 4.2.4.7.9 DiscussionThe models described in the previous chapters have been analyzed here from various points ofview. The analysis of a simpli�ed (\linearized") version of the S2 simulator helps to explainthe sudden transitions in organization and symmetry observed in many simulations, as wellas lateralization and the \bumps" in post-training activation for the asymmetric excitabilitycase. It is shown how these phenomena depend on the stability and behavior of a �xed pointof a linear ODE system for total hemispheric activations. The behavior of the S4 simulatoris also explained by the above analysis.Another variation of the model, using competition for activation between the two corticalregions, is also considered and analyzed. For this model the ODEs for total activationsare also nonlinear. It is shown that no sharp transitions in the model's behavior shouldbe expected, and highly symmetric maps should form for positive K. Simulations havecon�rmed this prediction.Finally, it is demonstrated how activation patterns forming in the cortex in the beginningof training can predict weight and map organization after training. It is discovered that thedot product of activations in the cortical and sensory layers before training correlate with the84
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�nal (after training) weight organization (and map organization in certain cases). Formationof those activation patterns under various combinations of parameters is also discussed.
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Chapter 8Conclusions8.1 Results of this ResearchLateralization and asymmetries in the brain have been a subject of research in biology,psychology, cognitive science, and other disciplines for over a century. However, computermodels of interacting left and right hemispheric regions have appeared only recently andhave been very limited. Very few of them examined the e�ects of callosal connections andvarious asymmetries on spontaneous lateralization, and none considered lateralization andasymmetries in cortical maps. In this dissertation, several mathematicalmodels of lateraliza-tion and asymmetry in cortical maps have been created and analysed both computationallyand theoretically. The recurrently-connected neural models considered here are, of course,simpli�ed from biological reality. None the less, they do capture several key aspects of realhemispheric regions. They have a spatial organization that permits examination of maps,their interconnections are roughly homotopic, and they self-organize using unsupervised(Hebbian) learning.The main achievements described in this dissertation are as follows:1. The �rst models of left and right cortical maps interacting via a simulated corpuscallosum have been created and analyzed. The models are based on the ideas of self-organizing maps, competitive distribution of activation, and competitive learning.2. Metrics for objective quantitative evaluation of topographic map organization, later-alization and mirror symmetry have been introduced and analyzed. The metrics notonly have desired formal mathematical properties, but also correlate well with people'ssubjective estimates of map organization, lateralization, and mirror symmetry.3. The study of the e�ects of various model asymmetries on map lateralization has deter-mined that most of the asymmetries can cause lateralization, supporting the hypothesisthat lateralization is a multifactorial phenomenon.4. A systematic study of the e�ects of callosal in
uences on map formation in the sym-metric case and in the presence of model asymmetries shows that most lateralizationand map asymmetry occurs with inhibitory callosal in
uences, while symmetric well-organized maps develop when callosal in
uences are weak or excitatory. There are also87



sharp transitions in organization, lateralization, and mirror symmetry as the callosalin
uences become more inhibitory. These �ndings support the hypothesis that callosalin
uences are functionally inhibitory.5. In contrast, lesioning studies lead to the conclusion that diaschisis is most faithfullyreproduced with excitatory callosal in
uences. The e�ects of lesions on map formationhave been studied both acutely (immediately after the lesion) and chronically (aftera retraining period), for several model variations, having excitatory and inhibitorycallosal connections.6. Further, the intact hemisphere participates in the recovery process mostly with in-hibitory callosal in
uences. This may indicate that current theories of lateralizationare inadequate, but the experimental literature is ambiguous on these issues.7. Analysis of a bifurcation point of an ODE system explains the sudden transitions inthe model's behavior, and analysis of the shapes of activation patterns shows how topredict post-training organization based on the pre-training activation patterns. For aslightly simpli�ed S2 model, a system of linear ordinary di�erential equations (ODE)for total hemispheric activations was obtained and analyzed. In most cases the systemhas one �xed point, which is asymptotically stable for excitatory and slightly inhibitorycallosal connections, and asymptotically unstable for strongly inhibitory connections.The explanation of the e�ects of this change on map formation is given. Deeper analysisof activation patterns helps to explain some cases not explained by the �rst approach.It is shown how activation patterns observed in the cortical regions in the beginning oftraining can predict weight and map organization after training, and how the activationpatterns depend on model parameters. Theoretical analysis of the model's dynamicsexplains the key computational �ndings and helps to better understand the roles ofvarious model parameters in the map formation and lateralization.8.2 Future WorkSeveral directions of possible expansion for this research can be suggested.One is �nding another way of measuring activation patterns that works better in pre-dicting ultimate map organization than the dot product of activations used in this research.It is not clear at this point whether such a way exists.Another is further analysis of the behavior of the !-limit set (in particular, the �xed point)of the system of nonlinear ODEs for activations. Possible existence of bifurcations of variouskinds for the one-dimensional model can be checked by a continuation method, or usingspecialized software packages. Similar analysis for the two-dimensional case is desirable, butit is not clear how to approach it.Yet another direction is analysis of the relationship between the shape of activationpattern, learning rate, and �nal weight and map organization. In this dissertation the e�ectof activation shape on map formation was considered only for a �xed learning rate. Butsimulations with di�erent learning rates suggest that for some activation shapes smaller88



or larger learning rates may actually improve weight organization and map formation. Itwould be interesting to �nd an optimal learning rate for each value of goodness of activationpattern.Finally, other models can also be considered. The models described in this dissertationdisplay lateralization for inhibitory callosal strengths and diaschisis after a lesion (see Chap-ter 5) only for excitatory callosal connections. Thus, a more complex model is needed whichwould have both of the above e�ects with the same callosal strength.
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