
A Comparison of the Memory Managementsub-systems in FreeBSD and LinuxRohit DubeInstitute for Advanced Computer Studies and Department of Computer ScienceUniversity of MarylandCollege Park, MD 20742Current Email: rohitd@dnrc.bell-labs.comCS-TR-3929, UMIACS-TR-98-45September 25, 1998AbstractIn this article we seek to compare the memory management sub-systems of two pop-ular and freely available operating systems - FreeBSD and Linux. First a framework isdeveloped, spelling out the components of a generic and modern memory managementsystem. The framework is then used in a design level comparison of memory managementin the two operating systems.1 IntroductionGiven that FreeBSD ([6]) and Linux ([7]) are two of the most popular (free) Unix derivatives,and that the memory management sub-system is an important constituent of any operatingsystem, one would expect technical material comparing memory management in the two OSs.Unfortunately no such material exists. This article is designed to �ll the gap and provide adesign level comparison of memory management between the two systems.Note that we restrict our attention to design issues { no performance evaluation is at-tempted. Further the focus of the article is on core memory management for uni-processorsystems. Issues concerning multiprocessor systems and interaction with various types of I/Odevices are omitted. (Symmetric Multi-processing and disk and network performance en-hancements are being actively worked on in both communities. A discussion of their impacton memory management is out of the scope of this article.) The discussion is kept hard-ware independent where ever possible; where it is important to discuss hardware dependentconcepts, an Intel x86 ([2], [10]) architecture is assumed.We start by tracing a brief history of memory management in the two OSs in section 2.This is followed by the description of a generic memory management system in section 3which serves as a framework for the comparison which follows in sections 4, 5 and 6. We closewith some some notes in section 7.
1

2 History and In
uencesFreeBSD, like NetBSD ([8]) and OpenBSD ([9]) is a 4.4BSD ([14]) derivative. Unlike itscousins, FreeBSD is solely targeted towards Intel x86 hardware1. Like the other BSDs though,FreeBSD derives the basic memory management code from 4.4BSD which in turn was based ona Mach [16] like design and experience gained from implementing and running 4.3BSD ([13]).In recent (2.x and 3.x) releases, the FreeBSD team has extensively modi�ed the 4.4BSD code,adding features and making the implementation more e�cient.The in
uences on the Linux memory management are a lot less clear. To the best of theauthors knowledge, early Linux versions had a memory management system which derivedfrom System V release 2 as described in [3] (implementation details can be found in [17] and[4]). In recent (2.x) kernels, the memory management system has been completely revamped.Unlike FreeBSD, Linux runs on multiple hardware architectures including Intel x86.3 A Generic Memory Management FrameworkTo make application programming easier, modern OSs allow user processes to address memoryin access of that actually available through the popular concept of virtual memory (VM). WithVM, the available physical memory can be thought of as a cache for data and code fetched fromsecondary memory. This requires hardware support to allow loading of data and instructionsfrom secondary storage into main memory on the
y. The memory management hardware mayexport a segmented2 and or a paged3 view of memory to software. In addition the hardwareimplements the logic to translate a virtual memory address presented to it, to a physicalmemory address and report an exception if the translation is not possible. To handle theidiosyncrasies of di�erent memory management hardware, OSs implement a hardware addresstranslation (HAT) layer ([12]) which abstracts away the memory management hardware andexports a hardware independent interface to the rest of the OS. Further they implement apage level allocator which sits on top of the HAT and exports a page interface to the kernelmemory allocator and the paging system ([18]). The kernel memory allocator handles dynamicmemory allocation for kernel modules and allocates memory to the kernel in addition to thatreserved for it at boot time. The paging system is part of the VM system and handles memoryallocation for user processes. In addition the paging system may handle memory requests forthe (�le system) bu�er cache. This layered approach to memory management ([1], [18]) isdepicted pictorially in �gure 1.A few words about the Intel x86 memory management unit ([10]) are in order beforewe go on to discussing the other layers. Intel x86 supports both segmentation and paging.The segmentation and paging units are independent of each other allowing for four di�erentorganizations. When the memory management hardware is presented with a virtual memoryaddress (VMA), it goes through 2 stages of translations - the �rst from the VMA to a linearmemory address (LMA) obtained by taking the o�set from the selected segments base register,and then from the LMA to the physical memory address (PMA) using 2 level page tables.Most Unix implementations run with paging enabled for user processes and disabled for kernelmodules. On the other hand, segmentation is enabled for both the kernel and user processes1In recent times, work has started on an Alpha port.2A segment is a variable length chunk of logically related words.3A page is a �xed-length block of words. 2

Kernel Memory

Management

Memory Management Hardware

Hardware Address Translation

Page Layer

Paging System

Figure 1: A generic layered Memory Management designand is used to provide memory protection, kernel entry and context switching. User processesdon't see segments, but only a single
at address space with varying protection, as the baseaddress of all the segments is set to 0.The HAT layer provides an interface using which the higher layers can load and unloadtranslations from an address space to a set of pages and change the protection on thesepages, unload translations to a set of pages from a set of address spaces and manipulatethe referenced and modi�ed status of a page. This HAT interface is used to enforce varioushigher level memory management policies independent of the hardware. The HAT itselfconsists of a machine-independent portion which implements the interface to the page layerand a machine-dependent portion which rolls various machine architectures into a uni�ed andvirtual machine model using either a generic data structure or a generic set of functions whichare set to machine dependent implementations at compile time.The page level allocator hands out pages to the kernel memory allocator and the pagingsystem on demand. Since a full page is often an over-kill for temporary storage that a kernelmodule may need, a kernel memory allocator which implements a policy like the buddy-system or power-of-two allocation ([18]) to handout smaller chunks of memory is includedin the kernel. The paging system implements the major VM policies like demand pagingand swapping. Detailed descriptions of these concepts are available in literature elsewhere sowe'll stick to the di�erences between the FreeBSD and the Linux implementations which arediscussed in section 6.4 Hardware Address TranslationFreeBSD currently runs only on the x86 architecture. Portability requirements are thusminimal and as such the related HAT functionality can be dispensed with. But since theFreeBSD memory management system derives from Mach ([14], [16]), it inherits the x86speci�c part of the Pmap module. The Pmap module provides a common abstracted interfaceacross multiple hardware platforms, by requiring a hardware speci�c implementation of aset of functions. As long as this set of functions is implemented, the rest of the memorymanagement system is independent of the hardware. On the other hand, Linux HAT ([4],[17]) works by rolling in the architecture speci�c data structures (typically some page tableor extended TLB organization) into 3-level kernel page tables at compile time. All operations3

are then carried out uniformly over this data structure.5 The Page Layer and Kernel Memory AllocationBoth FreeBSD and Linux use the buddy-system in their page level allocators. Older versionsof both these OSs used just this for kernel memory allocation too. The buddy-system is notparticularly suited for kernel memory allocation as the kernel requires short living memorychunks in odd sizes which causes the buddy-system based allocator to coalesce blocks fre-quently, slowing down the allocation process ([18]). Due to this, a number of OSs, includingFreeBSD and Linux, have moved away from buddy-system based kernel memory allocators.FreeBSD adopted the zone allocator, which runs on top of the buddy-system based allo-cator in the page layer. Kernel modules register with the zone allocator, specifying the rangeof memory sizes (i.e. zones) they are likely to ask for at run time. The zone allocator in turngrabs pages from the page layer (allocator) and carves them into smaller ready-to-go chunksfor each zone. At run time, most memory requests are satis�ed by these preallocated chunks.A memory free request returns the chunk to the free list for the zone the chunk was allocatedfrom. A background garbage collector looks for free pages to return to the page layer. Notall modules in the FreeBSD kernel use the zone allocator { modules which predate the zoneallocator, continue to use the buddy-system.Linux adopted the slab allocator ([5]) which is a modi�ed and object-oriented version of thezone algorithm. Kernel modules provide the allocator with a constructor a deconstructor alongwith the object size. The allocator maintains a cache per object. The constructor is used onthe object only when it is brought into the cache and the deconstructor is used when the objectis drained out from the cache. Between these two events, the construction/deconstructionoverhead is avoided. The slab allocator does not do any garbage collection by itself, but relieson the page layer to reclaim free pages when needed.Detailed information about all these methods can be found in [5], [14], and [18] and thereferences therein.6 The Paging SystemBoth FreeBSD and Linux implement a VM sub-system based on demand paging and swapping.Most of this functionality lies in the paging system which keeps track of the contents and usageof pages obtained from the page layer. Both OSs maintain a pool of replaceable pages, whichis added to by the page replacement module and drained by requests for memory from userprocesses. Dirty pages are swapped to secondary storage whenever the pool of pages fallbelow a low-water-mark.The following paragraphs discuss the subtle di�erences between the techniques employedby the two OSs:Swapping On running out of physical memory, FreeBSD swaps out entire idle processes.FreeBSD is able to use any device for swapping. Hence it can swap across NFS, intoa Memory File system or into �les by using them as devices. Linux on the other handjust freezes some processes when physical memory is in short supply and relies on pagereplacement to get rid of the dirty pages to a swap partition or into swap �les.4

Page Replacement FreeBSD uses Global-LRU across all the user pages. FreeBSD alsoemploys page-coloring ([11]) to pick the page to be replaced from the pool of pagesavailable for replacement in order to evenly distribute pages colliding in the cache.Linux uses an approximation to Global Least Regularly Used, biasing page replacementtowards pages which have a lower page fault rate.Contention with the File System As [15] points out, older OSs partitioned physical mem-ory statically between the �le system and VM. This often led to suboptimal use of thememory available. Both FreeBSD and Linux have a uni�ed �le system bu�er cache andVM, with the �le system implemented on top of the VM. Some additional memory isneeded by the �le system to hold its meta-data. This resides in a dynamic cache onboth systems.7 Closing NotesDuring the process of writing this article, it became very clear to the authors that com-prehensive, reliable and up-to-date documentation on the design and implementation of bothFreeBSD and Linux is lacking. But perhaps this is to be expected as the developer communityin both the camps is geographically diverse and the projects themselves are largely unfundedand therefore run informally. Given this and the moving target nature of the subject of thisarticle, nailing down the salient similarities and di�erences between the two systems, provedto be very tedious.Surprisingly, both camps have implemented very similar features in their memory man-agement sub-systems. Again, perhaps this is to be expected { the two communities keep tabson each other (at some level) and are able to �nd the time and resources to implement afeature which has proven its worth in the other camp or in the research community.AcknowledgmentsWe would like to thank Shamik Sharma and Anurag Acharya for discussions on general VMconcepts, David Greenman, John Dyson and Thomas Graichen for help with FreeBSD speci�cissues and Douglas Jardine and Michael Johnson for help with Linux speci�cs. We also thankthe Department of Computer Science at the University of Maryland, College Park for lettingus use their computing facilities to prepare this article.DisclaimersAny opinions in this article are the authors alone and do not represent the opinions of any ofthe authors previous or present employers. Further this article does not re
ect the views ofany of the net-projects discussed. This article was written in September 1997 but publisheda year later.References[1] V. Abrossimov, M. Rozier, and M. Shapiro. Generic Virtual Memory Management forOperating System Kernels. In SOSP. ACM, 1989.5

[2] D. Anderson and T. Shanley. Pentium Processor System Architecture. Addison-Wesley,second edition, 1995.[3] M.J. Bach. The Design of the UNIX Operating System. Prentice-Hall, 1986.[4] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Verworner. LinuxKernel Internals. Addison-Wesley, 1996.[5] J. Bonwick. An Object-Caching Memory Allocator. In Summer Technical Conference.USENIX, 1994.[6] Various Contibutors. The FreeBSD Project. Sources and Information available fromhttp://www.freebsd.org.[7] Various Contibutors. The Linux Project. Sources and Information available fromhttp://www.linux.org.[8] Various Contibutors. The NetBSD Project. Sources and Information available fromhttp://www.netbsd.org.[9] Various Contibutors. The OpenBSD Project. Sources and Information available fromhttp://www.openbsd.org.[10] J.P. Hayes. Computer Architecture and Organization. McGraw-Hill, second edition, 1988.[11] R.E. Kessler and M.D. Hill. Page Placement Algorithms for Large Real-Indexed Caches.ACM TOCS, 10(4), 1992.[12] Y.A. Khalidi, V.P. Joshi, and D. Williams. A Study of the Structure and Performance ofMMU Handling Software. Technical Report SMLI TR-94-28, SUN Microsystems Labora-tories, Inc., 1994. Available at http://www.sunlabs.com/technical-reports/1994/smli tr-94-28.ps.[13] S.J. Le�er, M.K. McKusick, M.J. Karels, and J.R. Quarterman. The Design and Imple-mentation of the 4.3BSD UNIX Operating System. Addison-Wesley, 1988.[14] M.K. McKusick, K. Bostic, M.J. Karels, and J.R. Quarterman. The Design and Im-plementation of the 4.4BSD Operating System. Addison-Wesley, 1996. The chapter onMemory Management is co-authored by M. Hibler.[15] M.N. Nelson. Virtual Memory vs The FileSystem. Technical Report 4, DEC Western Research Laboratory, 1990. Available atftp://gatekeeper.dec.com/pub/DEC/WRL/research-reports/WRL-TR-90.4.ps.[16] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W. Bolosky, andJ. Chew. Machine-Independent Virtual Memory Management for Paged Uniprocessorand Multiprocessor Architectures. In ASPLOS. ACM, 1987.[17] D.A. Rushling. The Linux Kernel. Draft Version 0.1-10(30) dated April 1997. Availableat http://sunsite.unc.edu/mdw/LDP/tlk.[18] U. Vahalia. UNIX Internals: The New Frontiers. Prentice-Hall, 1996.6

