Analysis and Applications of Receptive Safety Properties in
Concurrent Systems'

Gilberto Matos

!This research is Supported by the Office of Naval Research under contract ONR N000149410320

ABSTRACT:

Formal verification for complex concurrent systems is a computationally intensive and, in some
cases, intractable process. The complexity is an inherent part of the verification process due to
the system complexity that is an exponential function of the sizes of its components. However,
some properties can be enforced by automatically synchronizing the components, thus elimi-
nating the need for verification. Moreover, the complexity of the analysis required to enforce
the properties grows incrementally with addition of new components and properties that make
the system complexity grow exponentially. The properties in question are the receptive safety
properties, a subset of safety properties that can only be violated by component actions. The
receptive safety properties represent the realizable subset of the general safety properties because
a system that satisfies any non-receptive safety properties must satisfy related receptive safety
properties. This implies that any system with realizable safety requirements can be described
as a set of components and receptive safety properties that specify the component interaction
that satisfies the requirements. We have developed a method that automatically synchronizes
complex concurrent systems to enforce their receptive safety properties. Many non—safety and
non-receptive properties can be represented using receptive safety properties, and automated
synchronization can be used to enforce them.

Contents

1 Introduction 6
1.0.1 Components, Interaction and Synchronization 6

1.0.2 Enforcement vs. Verification o oL, 7

1.0.3 Scope of the Thesis 8

1.0.4 Overview of the Thesis o 9

1.1 Related Work oL o 10
1.1.1 System Control, Synchronization and Receptiveness 10

1.1.2 Composability of Safety Properties 11

1.1.3 Verification of Safety Properties 11

1.2 Design Notations for Reliable Concurrent Systems 12
1.3 Requirement Decomposition and Enforcement 13
1.3.1 Interface Specifications, Verification and Synthesis 14

2 Systems, Components and Interaction Properties 16
2.1 Open Control Systems L e 16
2.1.1 Dining Philosophers L 17

2.2 Systems as Sets of Components Lo oo 18
2.3 Semantic Models of System Execution 0. 0. 20
2.3.1 Agent Set Semantic Model Lo oo 20

2.4

2.5

2.6

2.7

2.8

2.9

The

3.1

3.2

3.3

3.4

3.5

3.6

3.7

2.3.2 Synchronous Transitions Semantic Model 21

System Interaction and its Properties L oo, 22
2.4.1 Finite State Representation of Safety Properties 24
Realizability and Receptiveness oo 25
Receptive Safety Properties oL Lo 27
Enforcement of Receptive Safety Properties 28
2.7.1 Possible and Reachable Safety Violations 29
2.7.2 Synchronization by Delayed Transition Mechanism 29
Subclasses of Receptive Safety Properties 0. 31
2.8.1 Synchronization for Different Types of Receptive Properties 31
Guidelines for System Definition 00 0oL, 34
GenEx Toolset 36
System Development Using the Genkx Toolset 37
Automated Computation of Synchronization Conditions 38
Reachability Analysis of Receptive Safety Rule Violations 39
3.3.1 Reachability Graph Construction Algorithm 40
3.3.2 Analysis and Automated Synchronization for the Reachability Analysis
Method o 41
Static Detection of Possible Safety Violations 44
3.4.1 Comparison of the Static and the Reachability Analysis Method 44
Formal Model Generator L 47
3.5.1 Implicit Rule Generation oL, 47
Code Generator o e 48
Runtime Support Kernel 0o o oL 51
3.7.1 Distributed Execution Support oo 52

3.8 Accessory toolso L
3.8.1 Secript Generatoro Lo e
3.8.2 Specification Analysis Tools o oo
3.8.3 Visualization and Debugging Tool

3.9 Summary e e e e e

Dining Philosophers

4.1 Classic Solutions e e e e e e

4.2 Automated Synchronization for Dining Philosophers
4.2.1 Liveness of the Synchronized Philosophers
4.2.2 Explicit Starvation Freedom Enforcement

4.3 Complexity Growth for Dining Philosophers,

4.4 SUIMMATY .« . ¢ v v vt e e s e e e e e e e e e e e e

Production Cell Controller

5.1 Production Cell System
5.1.1 Components o o e e e e
5.1.2 Safety Rules o . o
5.1.3 Synchronization of the Production Cell Controller

5.2 Two Press Production Cell System oL,

5.3 Fault Tolerant Production Cell Controller
5.3.1 Failure Detection and Recovery oL,

5.4 Benefits of Using GenEx to Synchronize the Production Cell Controller

B.D Summary ... e e e e e e e

Reliability of Automated Synchronization

6.1 Correctness and Decomposability of GenEx Synchronization

6.2

6.3

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

Closure of Regular Languages Under Intersection
Compositional Enforcement of System Requirements
Enforcement of Receptive Safety Rules
Nonconflicting Nature of Safety Enforcement

Correctness of Integrated Systems

Design Patterns for Deadlock—Free Systems

6.2.1

6.2.2

Patterns for Deadlock—Free Design Using Limited Resource Access Rules

Deadlock—Free Systems using Sequencing Rules

Detection of Non-receptive Safety Properties

6.3.1

Detection of Time Dependent Safety Rules

6.4 FEnforcement of Non—receptive Safety Properties

Automated Synchronization in Reengineering

7.1 The AEGIS Tracking System

7.1.1
7.2
7.3
7.4
7.5
Conclusion

Synchronization by a Controller Process

Automated data processing extraction Lo o L.

System Specificationo oL oL L

Requirement Modifications Lo

SUMMATY © v v v v v e e e e e e e e e e e e e e e e e e e

.1 Future Work e

8.1.1

8.1.2

8.1.3

Extension of the Property Domain
Optimized Synchronization Mechanism

Dynamic Reconfiguration, Migration and Substitution

87

89

91

92

94

96

96

97

98

99

100

101

102

Chapter 1

Introduction

Modern software systems must address diverse requirements including user profiles, heteroge-
neous hardware, distributed execution, reusability and maintainability, in addition to the classic
set of requirements like correctness, performance, reliability, fault tolerance and security. The
complexity of the combined requirements can be overwhelming and designers usually try to re-
duce it using decomposition. Concurrent systems include multiple autonomous processes that
interact with each other and the environment. These processes are considered to be components of
the system. This thesis explores how the interaction between components can be specified using
receptive safety properties, a class of system properties that can be enforced automatically at the
system level. We introduce a toolset, GenFz, that integrates the components with automatically
generated synchronization mechanisms that enforce the specified receptive safety properties while
preserving the component functionality.

1.0.1 Components, Interaction and Synchronization

Components in a concurrent system can interact in a variety of ways, from shared memory and
message passing methods to explicit synchronization mechanisms like semaphores. In systems
that interact with the environment, components may also interact indirectly through environment
reactions. Component interaction determines how the system as a whole satisfies its requirements.
Consequences of incorrect interactions range from loss of performance to total and catastrophic
system failures, while correct interaction is required in reliable and high performance systems. We
can specify the desired interaction by a set of system safety and liveness properties, and designs
that satisfy those properties are considered correct. These interaction properties are usually both
conceptually and computationally simple, given that the components encapsulate the complex
functionality of the system.

Despite the simplicity of individual interaction properties, the aggregate complexity of the system
behavior tends to be an exponential function of the number of components. The combinatorial
complexity of concurrent system behavior makes them hard to analyze and verify using formal
methods, and increases the need for reliable design methods. Many interaction properties are, or
can be represented by receptive safety properties. These properties specify the interactions that

can guarantee the safety and reliability, or improve the performance, fault tolerance, and real-
time behavior of the system. Synchronization in a concurrent system has the role of adjusting
the behavior of individual components to the behavior of the system, to keep the system in
a consistent and safe global state. Our research shows that receptive safety properties can be
enforced by automatically synchronizing the components.

The specification of each component determines what the its next action is in any system state,
and we assume that the resulting behavior is correct with respect to the components’ functional
requirements. Information about other components in the system is necessary to determine when
that action is acceptable. System synchronization modifies the when decisions made by the in-
dividual components, and superimposes additional delays on some of those actions as required
by the synchronization mechanism. When the what and when aspects of the system’s behav-
ior can be separated, i.e. when the functional and interaction requirements can be expressed
independently, then receptive safety rules can be enforced by implicit synchronization, using au-
tomatically generated code stubs that modify the component behavior to satisfy the interaction
properties. When the interaction between components is specified and enforced at the system
level, the components’ design is simplified because they must satisfy only their functional require-
ments. The use of simpler components and automated synchronization simplifies the software
integration process.

1.0.2 Enforcement vs. Verification

System correctness is defined as consistency with a set of system requirements or specifications.
To declare a system correct, all of its behaviors must satisfy the relevant system requirements.
Consistency of a system with its requirements can be verified manually or by using automated
model checking or proof techniques. Model checking tools [McM93] can verify that a system
implementation satisfies all defined requirements by analyzing a symbolic representation of its
state space. Proof techniques generally support the user in the construction of proofs that the
system implementation implies that its requirements are satisfied. These formal verification
methods are widespread in the research environments, but their acceptance in the industrial and
development organizations is lagging.

One of the biggest problems with the formal verification approach is their complexity and the
stringent training requirements for their users. The most accessible and accepted formal methods
are based on the finite state machine formalism, being the best understood and most often used
in programming. Even when componentsare finite state machines, the complexity of the system
behavior is an exponential function of the number of components. Many verification tools attempt
to reduce the complexity by various methods, but the verification in the general case requires a
level of complexity proportional to the complexity of the system behavior.

Formal verification is gaining acceptance in practical design environments wherever the system
reliability is paramount. Some factors contributing to the wider use of formal verification are
increased complexity and criticality of software systems, regulatory requirements, and improve-
ments in the computer performance that makes more complex systems verifiable in acceptable
time.

In some systems, it is easier to modify the components to enforce some system property than
it is to verify whether the system satisfies the properties. The problem with formal verification,
even for finite state based systems is that the system behavior is related to the data processing in
the components. Verification must take into account the influence of the computed data values
on component behavior, and the possibly infinite or erroneous computations that may interfere
with the system.

Receptive safety properties define the correct and incorrect sequences of system actions in a
time—independent form. Their time—independent nature means that every incorrect execution
trace contains a specific action that causes a property violation. Preconditions of the property
violations can be determined from the property specifications, as can the violating actions and the
components that cause them. Enforcement of the receptive safety properties is both conceptually
and technically simple, requiring a delay of the violating components as long as the violation
preconditions are satisfied by the system state. Only the actions that cause the safety violations
need to be delayed, while all other actions can remain unchanged and execute when enabled
without delay. The complexity of the analysis needed for safety enforcement is therefore limited
to the number of possible safety violations, and is not necessarily proportional to the state space
of the system or its parts.

1.0.3 Scope of the Thesis

This thesis develops and implements a theory for automated software synchronization, driven by
receptive safety rules. This requires developing a formal model of component synchronization,
relating this model to the receptive safety rules, and constructing a program that implements
the synchronization based on an analysis of component interaction with respect to system rules.
Boundaries of this investigation have been chosen to concentrate it on practical issues and to
limit the scope of the project.

First, only receptive safety properties are used to define the desired system behavior, and synchro-
nize the components to enforce it. Many safety properties used in practice are non—-receptive, and
they can not be automatically enforced by our method. However the non—receptive properties can
not be satisfied completely even by manual system design; a system that satisfies a non-receptive
safety property, also satisfies a more restricted receptive safety property. Receptiveness of safety
properties is an important issue in the practical implementation of reliable software.

Another restriction is that the thesis is primarily concerned with the control aspect of component
and system behavior. Methods for design and analysis of control and data processing systems
exhibit important differences, due to the different nature of the two aspects of computation. Data
processing is primarily concerned with the relationship between complex sets of values, possibly
non—discrete ones. Conversely, the control aspect of computing has to do with the sequencing of
system events, a definitely discrete domain.

Our synchronization method uses finite state machines to specify both components and sequenc-
ing rules. Restriction to finite state machines may seem to be very limiting, but in practice
it is rare to find safety rules more complex than regular languages. Components defined using
most modern programming languages exhibit a finite state behavior as modeled by their control

graph. This restriction is not of primary importance for automated synchronization, because the
analysis and enforcement mechanism could handle the use of pushdown automata corresponding
to components and safety rules in the context free domain, or state—based representations of even
more complex languages.

Finally, the implementation of this method works with a specific FSM notation geared toward the
specification of system properties. This notation is theoretically equivalent to the FSM notations
used in other formal design methods, but in practical terms it makes a clear distinction between
the component states and signal values, important from the standpoint of their effect on the
system behavior.

1.0.4 OQverview of the Thesis

The organization of this thesis reflects its orientation toward practical applications. Besides
presenting the formal foundations of the method, we make heavy use of examples to show how
our method and the supporting GenEx toolset can be applied in complex system development.
The remainder of chapter 1 gives an overview of related work in this area.

Chapter 2 gives an extended introduction of the terms and notations used in this document,
as well as the classification of system properties and their relationship to the realizability of
the systems. The most important notion in this thesis is that of a receptive safety property
that describes a set of system properties whose realizability is not affected by the environmental
events. We also introduce the finite state notations accepted by our system and the basics of the
delayed transition mechanism we use to synchronize components.

Chapter 3 describes the GenEx toolset and its main functions. We describe the details of the
input notations for GenEx and how the components and safety rules are related to each other.
We also describe some of the problems that may occur in designing systems using GenkEx, and
the ways to detect and solve them.

Chapter 4 describes the design of a reliable and starvation free dining philosophers system us-
ing the automated synchronization to produce the integrated system. This example shows how
Genkx supports the use of simpler components by eliminating the need for explicit use of syn-
chronization mechanisms. Our synchronization mechanism satisfies the starvation freedom for
the philosophers, and we also show how the starvation freedom can be represented by an explicit
receptive safety property and enforced.

Chapter 5 introduces another example of automated synchronization used in a complex concurrent
system. The production cell controller was used as the basis for a case study of concurrent system
design and verification methods [LL95]. We show how a controller for this system can be designed
and automatically synchronized using GenEx, and how easy it is to modify that controller to
implement a more complex fault tolerant version.

Chapter 6 includes the formal consideration of the compositional nature of finite state implemen-
tations of components and receptive safety properties. It also contains a description of several
patterns for system design that guarantee the deadlock freedom of the automatically synchro-

nized applications. Finally, this chapter also includes some examples showing how receptive safety
properties can be used to enforce nonreceptive properties like real-time execution.

Chapter 7 describes the use of Genlix in the reengineering of an existing system, where the
component code can be reused and automatically synchronized to satisfy the original requirements
and facilitate further modifications.

1.1 Related Work

This section shows some related approaches in the design and verification of concurrent systems.
Theoretical work by Abadi and Lamport [AL93] established a framework for the proof of cor-
rectness and safety of systems synchronized automatically using GenEx. They also identified the
receptive safety properties and defined the relationship between receptiveness and realizability.
Other approaches are practical design methods dealing in different ways with the individual and
aggregate behavior of components in a system. Some of these methods attempt to automate the
verification of user—designed synchronized systems. Our approach in GenEx is to automate the
design of one aspect of the system components, that related to their control behavior. We modify
the components to make the system enforce a given set of receptive safety properties.

1.1.1 System Control, Synchronization and Receptiveness

Clarke [EC82, CE82] has shown that properties of the control aspect for many systems are simpler
than the properties of their data processing, and that the implementation of these two aspects can
be separated. He discussed the generation of synchronization skeletons from temporal descriptions
of system behavior. This approach was mostly theoretical because the discussed complexity of
analysis exceeded exponential growth. While the method was not practically applicable to even
medium size systems, it introduced the notion of enforcement for aggregate system properties.
The intractability of analysis in this method stems from the unrestricted nature of temporal
properties that are enforced; our method selects a restricted set of properties whose enforcement
requires dramatically lower complexity of analysis.

The concept of property receptiveness, introduced by Dill [Dil88], gives an intuitive classification
of properties for open systems. Open systems consist of a controller and its environment and
the interaction between them determines the system behavior. The environment in open systems
can not be controlled, and no restrictions can be imposed on its behavior. Dill distinguishes
properties that require restrictions on the environment behavior from those that can be satisfied
by a system regardless of the environment actions. Receptive properties are those whose valid
behaviors are closed under concatenation of environment events.

Receptiveness was further developed by Abadi and Lamport [AL93], through the relationship
between a property and a controlled agent set that can enforce it. Moreover, they isolated
safety properties as a specific domain of receptive properties that can be preserved under com-
position. Receptiveness is also strongly related to the concepts of realizable and unrealizable
properties [AWS89]. Intuitively, a rule is receptive if a system can enforce that rule regardless

10

of environment actions. In general, any rule that can be violated by a sequence of environment
actions is nonreceptive because no strategy of the system can prevent the violation from happen-
ing. A safety rule that restricts only controlled components is receptive because no environment
action can force the rule violation as long as the system uses a safe synchronization strategy for
the components.

1.1.2 Composability of Safety Properties

The work on specification composition [AL93] proved that a composed system preserves some
types of properties enforced by its components. These results make a clear distinction between the
composability of safety properties, and that of more complex properties that include liveness, and
fair behaviors. When a subsystem satisfies a given safety property, provided a set of assumptions
in the form of safety rules is valid, the composed system satisfies the safety property unless some
part of the system violates its assumptions. Composability of safety rule enforcement is rooted
in the restrictive nature of their enforcement. Safety properties can be enforced by restricting
component execution using synchronization mechanisms, and composition of restrictions is also
a restriction.!

Reachability, liveness and real-time properties may require the completion of certain transitions
as a way to enforce them. A composition of two such properties may require the simultaneous
completion of incompatible transitions, thus making the system that satisfies the composed spec-
ifications unrealizable. This shows that composition of non—safety properties is a harder problem
than that of safety, and that those two classes of properties should not be treated as equals. The
specification composition method can be generalized to these types of properties if their precon-
ditions can be specified in the form of safety properties. These safety properties can be enforced
by automated synchronization, and provide a tool for enforcing the nonreceptive properties.

1.1.3 Verification of Safety Properties

Correctness verification is an essential part of the development of complex concurrent and dis-
tributed applications. Testing can provide an estimate of the system reliability and correctness,
but it covers only a subset of all executions, so errors can remain undetected. Formal checking
efforts in the area of concurrent systems have been concentrated in two major areas: proving
temporal properties of finite system abstractions, and trying to prove that implementations sat-
isfy the specifications. Proving correctness of abstract descriptions is of limited use because of
the possible discrepancies between the implementation and the description. In general the scala-
bility of this approach is limited by the complexity of the system. When complexity is kept low,
mcb [Bro86, CES86] can successfully and efficiently check formulas in first order temporal logic
CTL.

Proofs on real code are rarely used because their complexity is generally unacceptably high,
and they are often undecidable. Some systems try to extract abstract information from the

'To illustrate this, consider an example: given any set of time-independent safety rules with consistent initial
states, a system that stays in an acceptable initial state trivially satisfies the safety rules. This example shows the
conceptual simplicity of composing systems for safety as well as a potential pitfall in automated synchronization.

11

source and do partial analysis. STeP [ZM194] tries to prove the given assertions automatically
and when that fails it lets the designer guide the proof by choosing the assertions that are
to be proved. Analyzer [CG94, Che96] requires additional information related to the abstract
component description to be inserted in the source code, and combines it with the program
reachability graph to check the consistency of the program and SCR [Hen80] style specifications.
Due to the undecidability of the program behavior, this analysis is either optimistic or pessimistic,
and exact analysis is impossible. However, he requirement to annotate the code for analysis has
a positive side—effect, it forces the designer to understand and document the relationship and
the mapping between the specifications and the code. These two systems both support the
idea that automatic checking is unable to deal with the data processing aspect of computation,
and human involvement is required in system validation and verification. GenkEx is defined in
the domain of system interaction, where automated verification and synchronization is possible
because it is isolated from the data processing aspect, and its complexity is inherently limited to
the finite—state domain.

Compositional and symbolic model checking are two approaches that try to reduce the complex-
ity of the state space representations. Compositional model checking [CLM89], [F(G94] tries to
limit the complexity by constructing abstractions that can represent system components in fur-
ther analysis of the given properties. By eliminating states that are irrelevant to the property, it
can achieve significant reduction in the complexity of the analysis. This approach is orthogonal
to automatic synchronization, and the same abstraction and removal of irrelevant states can be
used in GenEx to reduce the complexity of the reachability analysis. Symbolic model check-
ing [BCM™90] relies on the symbolic representation of the state space, where regularities in the
state space are exploited to minimize the complexity of the representation. These techniques are
very powerful analysis tools, but they require the designer to correct all inconsistencies. Also the
correctness of the abstraction in no way guarantees the correctness of the implementation done
by hand, a fact that reduces the practical applicability of those systems.

1.2 Design Notations for Reliable Concurrent Systems

Formal verification suffers from the system complexity and state space explosion problems, as well
as high requirements for user training. Many programming languages and specification notations
have been developed to help produce reliable concurrent systems, where some properties or
behaviors are guaranteed by design, and do not require any verification. One of the first broadly
used formal notations for concurrent systems was StateCharts [Har87], a graphical notation
using states and transitions to represent complex systems. They use hierarchical clustering and
refinement to specify complex components from sets of simpler ones. Simple components may be
combined sequentially or in parallel within a larger subsystem, and transitions can be combined
to represent different forms of component interaction. The explicit graphical nature of this model
makes the system structure behavior and structure very intuitive, making it easier for the users
to understand the implications of their design decisions. The computational complexity of the
system used for formal verification remains proportional to a product of the parallel subsystems,
possibly exponential for larger systems.

12

Several programming languages for reliable concurrent systems are based on the tabular approach,
where every component is defined by a table specifying its reactions to specific system states.
Two examples of this approach are SCR [Hen80, AFB*88] and RSML [LHHR94]. The tabular
approach has the advantage of being simple for the end users to understand and comment on
from the domain knowledge point of view. The tabular notation makes these languages simple
to automatically analyze for completeness and consistency [HL96], and refine their behavior
by modifying the specification table [AG93]. We use this basic notation for the component
specifications in GenEx, because of the simplicity of component behavior modifications.

Several systems have used the code generation to implement synchronized concurrent systems,
LUSTRE [CRR91] and Esterel[BG92] being based on a similar model of computation as GenEx.
These systems use a synchronous transitions model of computation, where every component
executes one action in every system cycle. The synchronous transitions model makes them
simple to analyze and generate code for. Both LUSTRE and Esterel support the verification of
given system properties versus the system behavior. GenEx differs from these languages because
instead of verifying that the specified system satisfies the given properties, it actually computes
the necessary synchronization of the components that makes the system enforce receptive safety
properties. This difference is fundamental because GenkEx allows the programmer to give a partial
system description, and have it automatically refined to satisfy the given set of rules; the other
systems would notify the programmer if the description satisfies the rules and if not, the design
would require some changes by the programmer. Apart from requiring high skill, the manual
refinement might also involve sizeable effort because the physical size of the description might
have to increase.

Labeled transition system(LTS) [CK95, CK96, CGK97] is another finite state notation for com-
ponent specifications that uses a synchronous transition model. The assumptions in this model
are even more restrictive than the other synchronous transition models because the set of com-
ponents that will execute a transition in any given cycle is determined based on the system state
after the previous transition is completed. A transition with the label [can be executed only if all
components that use that label for any transition have a transition with that label enabled. This
formalism makes it trivial to enforce certain types of safety properties, by adding a component
that uses a labeled transition when it is safe, and disables it when it may cause a safety violation.
The problem with the LTS approach is that the constraint is very restrictive and results in very
easy occurrence of deadlock states when all labels are disabled.

1.3 Requirement Decomposition and Enforcement

The concept of product state machines, as described in [Lim93, Lim96], is conceptually very
similar to GenkEx. The main difference between them is the scalability. In this system, the
global reachability graph is constructed and then restricted to eliminate violation states. The
restricted graph is then used in the execution. The reachability graph may be too complex to be
useful in practice, even using their abstraction and composition trechniques to reduce the state
space. Other similar approaches exist in the hardware design area where the behavior of circuits
can be completely modeled and the sequential circuit is generated as an instance of the verified

13

model. Conceptually, Genkx does the same thing, but the emphasis is on the local analysis
and synchronization of components, and the complexity is kept low because the synchronization
mechanism for every safety rule is independent.

Another related concept is that of Safety Kernel [WK95] that is less formal, but involves the code
generation capability and automatic safety implementation. This centralized, and more impor-
tantly sequential, paradigm makes the code generation trivial by reducing it to a simple runtime
check of the desired property. The main shortcoming of this system is its centralized safety ker-
nel, making it useful in its domain of physical safety enforcement, but not really applicable to
the concurrent and potentially distributed systems. Despite this shortcoming, the system is an
example of how simple methods can solve complex problems, given the right domain.

Brewer and Kuszmaul [BK93] investigated the impact of synchronizationon system performance,
and found that synchronization in some cases can contribute to improving the performance of a
system beyond what could be achieved by asynchronous execution. This shows that performance
requirements can sometimes be reduced to safety properties which can be enforced using synchro-
nization. We will show later how other non—safety properties can often be reduced to receptive
safety properties and enforced by automated synchronization.

Aspect—oriented computing [KILT97] is closely related to our work by its emphasis on separating
different aspects of system behavior and the use of automated integration to generate system
implementations. This field is very broad, and involves many types of system properties, and
different types of systems and objects. The idea in aspect based computing is that the user
supplements the component sources with descriptions of some global aspects of component in-
teraction. Aspects guide the integration of the procedural components, according to the aspect
?weaving” rules given with the aspect descriptions. This makes components reusable across many
applications regardless of their global structure and requirements, and makes the aspects reusable
in many applications with similar global properties regardless of the system components.

Genkx defined systems have a similar structure to aspect based computing, where components
are the main building blocks, safety rules are the aspects the system should satisfy, and the com-
putation and decomposition of synchronization conditions corresponds to the aspect "weaving”
method. The GenEx approach is focused on one class of aspects and comes with a predefined
integration method for enforcing them. By limiting the approach to a certain class of systems,
we can make better tools for integration and system verification, allowing us to automatically
generate correct implementations.

1.3.1 Interface Specifications, Verification and Synthesis

Garlan and others [GS93, AG94] investigated the interface specifications from the standpoint of
external control, and introduced the concept of glue protocols. Behavior of individual component
interfaces is a set of possible execution traces, but some traces incompatible with the glue are made
unreachable to make the interface consistent with the glue. The interface and glue specifications
are manually designed, and may be verified for consistency and compatibility. Another similar
approach was developed by Katz [Kat93], where control constructs are superimposed on the
behavior of the components to achieve specific system behaviors.

14

Yellin and Strom [YS97] discuss the automated synthesis of interface adaptors according to finite
state protocol descriptions for the connectors being interfaced. This work is conceptually similar
to the GenEx synchronization, but lacks the modular nature in the adaptor synthesis, and is
limited to the message passing constraints, not the component behavior itself. Modularity of the
synchronization process makes Genkx applicable for systems with complex interactions between
multiple components. The adaptor synthesis approach is defined for interfaces between two
components, and all constraints for a given interface are handled together, potentially leading
to exponential complexity of the adaptor. While they work with interfaces and parameters of
non—finite state nature, they extract a finite state specification using a dependence mapping of
parameters. The mapping specifies a partial order for the messages according to the dependence
between their parameters. This partial order makes a finite state structure where the synthesis
by state enumeration is possible.

Park and Miller [PM97] worked on automatic synthesis of interfaces to implement a service spec-
ification involving a number of components with real-time characteristics. Their work is based
on timed finite state machines, and the individual protocol synthesis concentrates on interval
planning, and introduction of synchronizing actions in the machines. Since the system handles
real-time requirements, it has no guarantee of success, but does guarantee to satisfy a maximal
set of requirements. As in the case of Yellin and Strom, the complexity of this method is propor-
tional to the size of the service specification, reducing its applicability for complex systems and
interactions when the full specification is a composition of numerous components.

15

Chapter 2

Systems, Components and
Interaction Properties

Concurrent systems are a very active research area, and numerous notations and supporting
semantic domains have been developed. These systems are based on various divergent and even
conflicting assumptions. These assumptions deal with the semantics of component execution,
whether they execute asynchronously [Hen80], synchronously [HLR92, BG92], or with runtime
determination of synchronization requirements [CK95]. Other important differences between
concurrent system specification methods arise in the area of time, where some systems assume a
continuous timeline model [GMM90], some operate with finite intervals and a timeline made of
discrete events [BG92], and others work with branching time model [McM93, CLM89].

In this chapter we will define the type of concurrent systems that our system handles, as well
as the semantics of their behavior and properties. We will introduce the assumptions of our
semantic model and show that it is a subset of a more general semantic model used to define
the relationship between system properties, components and realizability. We will also give an
overview of the theory of system realizability, and a classification of system properties that identi-
fies the properties that can be enforced automatically. We use the delayed transition mechanism,
introduced in Section 2.7, to synchronize the components and enforce the properties. Section 2.8
describes some types of enforceable properties and shows the synchronization mechanisms they
require.

2.1 Open Control Systems

Our synchronization method and the associated analysis tools are specifically designed to process
open control systems. Open control systems are interactive systems where some events may be
unpredictable, possibly controlled by a malicious environment entity. Our goal is to design a
controller that will enforce the required system behaviors, assuming the environment behavior
satisfies a set of assumptions. The environment comprises all parts of the system that are not

16

OBSERVABLE
SYSTEM
STATE

CONTROLLER |=— ENVIRONMENT

L

SYSTEM STATE
UNOBSERVABLE
Y CONTROLLE

REQUIREMENT OBSERVER

Figure 2.1: The structure of an open control system

directly controlled by the controller Some events may be completely or partially controlled by
the environment, as shown in Figure 2.1. The controller monitors the observable state of the
environment and uses a predefined and limited range of actions to influence the environment
behavior. The environment reacts to controller actions, and the interaction between the controller
and the environment produces the system behavior. User specifies the system requirements to
accept or reject individual system behaviors based on the occurrence of specific events or lack
thereof. Some aspects of environment behavior may be unobservable by the controller, but still
contribute to the system state, and may influence the satisfaction of system requirements.

The controller essentially plays a game with the environment, where the controller wins if the
system requirements are satisfied and the environment wins if some requirement can be violated.
Controller tries to prevent the system behavior from violating any requirements, always assuming
that the environment has the opposite goal. In this game oriented abstraction, the controller is
sald to implement a strategy, and a winning strategy is one where the environment does not
have any possible action that may violate the system requirements. In practice, a program (a
set of system specifications) represents a winning strategy iff it can be proved to satisfy the
requirements regardless of the given inputs or the timing of the environmental events.

2.1.1 Dining Philosophers

We will illustrate these concepts using the dining philosophers example. The system consists
of a set of processes (philosophers) which perform two functions, thinking and eating. The
philosophers’ behavior is simple, they think until they get hungry, and eat until they stop being

17

hungry. Every philosopher can think regardless of the state of the other philosophers, but due to
the lack of forks on the table there are constraints on when they can eat. There is exactly one
fork between each two chairs, and every philosopher needs both adjacent forks for eating. This
means that when one philosopher is using the two adjacent forks to eat, the two neighboring
philosophers cannot eat.

The dining philosophers can be viewed as an open control system, where the environment controls
the hunger of the philosophers, while their decisions to start and stop eating are considered to be
controller actions. The assumption about the environment behavior is that a philosopher that eats
eventually stops being hungry. The requirements for the system behavior define the interaction
between the philosophers, in this case the constraints on when they are allowed to eat. Another
system requirement is that any hungry philosopher eventually gets to start eating. The game
theory aspect of system design is simple in this case because the controller has total visibility of
the system state, and its actions can be determined based on the current situation. This system
has been extensively studied in literature, both for synchronization design [Dij, Hoa78] and for
system verification [YY91]. We will use this system to illustrate different aspects of automated
synchronization.

2.2 Systems as Sets of Components

The modular architecture of software systems is based on active concurrent components that
communicate through passive interfaces. A component can be described by its control behavior
and its data processing aspect. The control behavior of a component determines the sequence
of its actions, while the data processing aspect specifies the data that is used and produced by
the component during specific control actions. The data processing aspect includes potentially
undecidable problems, and is hard to analyze and verify for correctness. The control behavior is
generally simpler than the data processing, and often can be represented by regular languages or
finite state machines (FSM in the remainder of this document). The regular language domain of
control behaviors makes it possible to effectively analyze and verify their correctness using formal
methodology.

Many formal methods for concurrent software design use FSMs to model the components. FSMs
roughly represent the control graph of component implementation. The data processing aspect
is implemented separately, but linkable to the final implementation. Systems are composed by
executing the components concurrently, in some cases in lockstep with each component executing
one transition in parallel, and this model is known as the synchronous transition model.

In our system we use components defined in the form of Mealy finite state machines [JEH79],
whose output depends on the executed transition. Every component is defined as a tuple
(S, A,I,7) where S is a set of states, A is a set of boolean system variables the component can
read or write, I is the initial state, and 7 : (5 x 24) — (5 x 24) is the transition relation mapping
component state and inputs to the next state and the component outputs. The component can
read and write the same set of variables and can use any combination of variables to determine
the enabled transitions. This makes its alphabet the set of all possible combinations of boolean

18

PHILOSOPHER mode([philo],[[hungry]]).
¢ init([philo],[thinking] ,[[1])-

©Hungry/ Pick_Forks © trans([philo] [thinking] [eating] [[t]]).
Thinking Eating . o o
"Hungry / Drop. Forks trans([philo],[thinking],[thinking] ,[[]]).
' - trans([philo],[eating],[thinking],[[f]]).
trans([philo],[eating],[eating],[[t]]).

a) b)

Figure 2.2: The control structure of a philosopher

values for the variables in A, represented above by the powerset 24, This definition of component
behavior is similar to the tabular approaches in SCR [Hen80, AFB*88] and RSML [LHHR94].

Variables used to determine the enabled transitions for a given component are considered to
be monitored, while the variables altered by its effects are controlled as defined in the SCR
notation [Hen80]. Variables may be used for communication between components when they
would be controlled by some components and monitored by others. From the standpoint of a
controller system, variables are controlled if they are controlled by any of its components, and
monitored if they are controlled by its environment. The main distinction between monitored
and controlled variables is the independence of the monitored variables from system state and
component transitions. The monitored variables can have arbitrary values at any point in time,
while the controlled variable values are a function of the controller behavior.

The dining philosophers system consists of a set of components (philosophers) with identical
behavior. The behavior of a philosopher is given in Figure 2.2a), using the finite state machine
notation. The FSM notation is elementary with each transition labeled by an ordered pair
condition/effect where the condition represents the enabling condition for the transition and
the effect represents the change in system state that results from the completion of the transition.
Each philosopher component monitors the respective boolean variable hungry and determines the
enabled transitions based on its values. Figure 2.2b) shows the same specification in the form of
Prolog predicates, used by our automated synchronization tools.

Predicate mode declares an ordered list of system variables referenced by the component. This list
specifies the positions where the variable values will appear in the specifications of the component
behavior. Predicate init specifies the initial state of the component and the initial values of its
controlled variables, value in this list determines the variable whose value it sets. Every variable
can be referenced in 3 possible ways: [t] for true, [f] for false or [] for undefined. Philosophers
only use monitored variables that specify whether they are hungry or not, so initial values in
this case are left blank. Predicate trans specifies a transition by giving its source and destination
states, its enabling condition and the effect on the controlled variables. The enabling conditions
for the transitions depend on the monitored variables, so they specify the required values. Since
philosophers have no controlled variables, the transition effect list includes only bank elements.

19

2.3 Semantic Models of System Execution

The system behavior can be described as a game between the controller and the environment.
The basic rules of this game are described by the semantic execution model that specifies when
the players can make a move and what are the legal moves at any instant. The interaction
between control systems and environments was studied by Abadi and Lamport [AL93], and we
will use their classification of properties and their relationship to controller strategies to clarify
the need for identifying receptive safety properties. This classification and theorem proofs are
based on the agent set semantic model. This semantic model represents the controller actions as
atomic and as members of a predefined set, and provides an elegant notation for defining system
properties and reasoning about their relationship.

Our research concentrates on the composability of systems from independent components, and we
selected a different but related semantic execution model. The synchronous transition model [McM93,
BG92] defines controller actions as a combination of parallel component actions, and specifies
strict interleaving between the controller and environment actions. This semantic model is based

on the states of the individual components and the system variables, and is more oriented to-
ward practical system design where individual components are the primary building block. The
synchronous transitions semantic model represents a special case of the agent set model, and
the theory of receptive safety properties developed for the agent set model also applies to the
synchronous component execution model.

2.3.1 Agent Set Semantic Model

The agent set semantic model describes system behaviors using states and agents. We will give
a short overview of their definitions, and more details can be found in [AL93].

Definition 2.1 A state is an element of a nonempty set S of states. Fvery element of S repre-
sents the state, al some instant, of the system universe. System state represents a combination
of the current controller state and environment state.

Definition 2.2 An agent is an element of a nonempty set A. A set of agents i1 is an agent
set if it is a nonempty proper subset of A.

Agents in the agent set semantic model represent the entities that change the system state. The
set of agents A is divided into two disjoint nonempty subsets p and - = A — pu, that represent
the agents controlled by the controller and the environment respectively. The disjointness of
the controller and environment agent sets implies that they always execute in some interleaving
pattern and never in parallel. Both agent sets can be reduced to a single agent each, representing
all disjoint controller and environment actions [AWS&9].

The following definitions introduce the notion of system behavior in this semantic model.

20

Definition 2.3 A behavior prefix is a sequence

al a2
Sg —> 81 — S92...

where each s; is a state and each a; is an agent that modifies the system state s;_1 into s;. A
behavior prefix is either infinite or ends in a state s,, for some m > 0.

Definition 2.4 A behavior is an infinite behavior prefix.

2.3.2 Synchronous Transitions Semantic Model

We use synchronous transitions as the semantic model of controller behavior. This model assumes
that the controller is composed from a set of components, executing in parallel. Every compo-
nent selects one enabled transition in every system cycle and they all execute the transitions
synchronously. The enabling conditions of component transitions are defined as a function of the
system state, including both controlled and monitored system variables. Every component must
select some transition in every cycle, and for every state there is an implicit default self-loop
transition that is enabled in the absence of other enabled transitions. The effect of the completed
transitions results in the change of component states and controlled variable values. To simplify
the composition of transitions, every controlled variable should be controlled by at most one
component; more complex variables can be represented as boolean functions of simple variables.
Parallel component transitions represent a controller action, and changes in monitored variables
represent the effects of environment actions. The controller and environment actions are strictly
interleaved, so that an environment action is allowed after every controller action.

The system can be represented by an equivalent finite state machine that represents the combined
behavior of the components. This equivalent FSM has a state for every combination of component
states reachable in the system execution. The input alphabet of the equivalent FSM contains
symbols that represent all combinations of monitored system variables. The output alphabet is
defined similarly, as a set of symbols representing the combinations of controlled variable values.
Given two components Cy = (51, A1, [1,71) and Cy = (52, Az, I3, 72), the equivalent combined
FSM is defined as Cey = (S¢q, Aegy Legs Teq) Where Seq = 51 X 89, Aeg = A3 U Ag, Iy = 1 X)
and the transition set is defined as 7., : (S, x 24¢9) — (9., x 24¢). If component transitions
include 7(sls,als) = (sld,ald) and 73(s2s,a2s) = (s2d,a2d), and the enabling conditions
of those transitions are consistent, als N a2s # @, then the combined transition set includes
Teg((sls, s2s), (als N a2s)) = ((sld, s2d),(ald U a2d)). This definition of combined transitions
implies that two component transitions can be combined when their enabling conditions are not
contradictory. The controlled variables are controlled by at most one component, so the effects
of transitions by distinct components are always consistent and can be combined. We say that a
combined transition includes a specific individual component transition, if the combined transition
represents the parallel execution of that component transition with arbitrary transitions of other
components.

For any system defined using the synchronous transition model, we can construct its representa-
tion in the agent set semantic model, by representing the controller actions as agents and enforcing
strict interleaving of controller and environment agents. For the system Cey = (Seq, Aeqy Leg, Teq)
in the synchronous transition semantic model, we can construct a system SY Sqs = (5, 1, ~p)

21

using the agent set semantic model with the identical set of possible behaviors. The set of states
S = 8e¢g X 244 % {1,2} corresponds to all combinations of system component states and all values
of system variables. The last part of the Cartesian product is a phase selector that specifies the
interleaving between the controller and the environment. The environment agent set consists of a
single agent a-,, enabled when the current state of the behavior prefix contains a phase selector
value of 1. The effect of the environment agent on the system state is to change the value of the
phase selector from 1 to 2, and to change the values of any subset of monitored variables. The
controlled agent set p also consists of a single agent a, enabled when the phase selector in the
current state has the value 2. The effect of the agent a, on the current state is the union of the
effect of a transition in 7., enabled by the current system states and variables, and the change of
value of the phase selector from 2 to 1.

This system is obviously defined using a state set and a set of agents. The set of agents contains
two subsets g and —p corresponding to the controller and environment actions respectively. The
agent sets are disjoint since their effects on the system state always include a different effect on
the phase selector variable. The inclusion of the phase selector in the enabling conditions of the
agents makes the selection of enabled agent set deterministic in every state of the system, and
enforces strict interleaving between the controller and the environment. This mapping shows
that our semantic model represents a special case of the model used by Abadi and Lamport, and
that their classification of properties and their relationship between properties apply to systems
designed using our model.

2.4 System Interaction and its Properties

The behavior of the controller is more complex than just the parallel execution of its components.
Behavior of all components and their interaction both contribute to determine the overall behavior
of the controller. In addition to the specification of every component’s individual behavior, we
want to explicitly define their aggregate behavior as a part of the controller specification. We can
specify the acceptable and unacceptable controller behaviors by defining controller properties.
The following definitions specify the relationship between properties and system behaviors.

Definition 2.5 A stuttering step occurs when the execution of an enabled agent results in an
unchanged system state. Two behaviors are stuttering equivalent iff they consist of the same
sequences of system states, with different number of stuttering steps.

Definition 2.6 A property is a set of behaviors closed under stuttering equivalence. If a prop-
erty accepts one behavior, it will accept variations of that behavior where events occur in the same
order, but at different intervals.

A designer’s goal is to produce a controller that will satisfy a set of required system properties.
The controller influences the system behavior by executing some of its agents enabled in a given
state. The enabling conditions and effects of the controller agents define the behavior of the

22

controller and what system behaviors will be enforced by it. These agents form the controller
strategy. The strategy defines the behavior of the controller, but the behavior of the system is
defined as the result of the interaction between the controller and the environment.

Definition 2.7 A p—strategy is a partial function mapping behavior prefives to agents in the
controlled agent set pu. Any behavior prefiz that is not mapped to an agent in p must enable an
environment agent, or represents the halting state for the system.

Definition 2.8 A p—outcome of a p—strategy f is a behavior o such that for every behavior
prefiz 0., followed by a p—agent a,, the function f includes f(o,,) = a,. A p—outcome is fair iff
it is achieved by executing agents in —p an infinite number of times.

The fairness requirement eliminates infinite sequences of actions generated by the controller
strategy without any environment reactions. An unfair system, according to this definition, is
infinitely faster than the environment or blocks its execution; unfair systems can not be classified
as being open with respect to the environment, or as being realizable in practice.

Definition 2.9 Iff is a p—strategy, then O,(f) is the set of all fair p—outcomes of f.

Interaction properties are often classified as safety and liveness properties. Safety rules are
generally defined as rules that specify that certain bad states will not occur during execution, while
liveness specifies that good states will eventually occur. This informal and practical definition
restricts the domain of safety properties because it ignores the possibility that some states may
be bad only after the occurrence of some sequence of events. Similarly, liveness properties may
require some preconditions to occur before they require the eventual occurrence of some state.
A formal definition for these types of properties is based on the finiteness of the execution traces
that violate the properties. If all violations of a given property are detectable on finite traces,
that is a safety property, while the liveness properties apply only to infinite execution traces.
Some hybrid properties may be violated by both finite and infinite execution traces, but all such
properties can be decomposed into pure safety and liveness properties.

Definition 2.10 A safety property may reject a behavior only if that behavior contains a finite
prefix that violates the property.

Definition 2.11 A liveness property cannot be violated by any finite behavior prefiz, but it
may reject some infinite system behaviors.

Since safety rules can be verified on finite execution traces, the preconditions of their violations
must occur along those traces. That means that the occurrence of safety violations can be
predicted, and corrective actions can be taken by the system and its components to avoid the
violations. The same principle does not apply to the liveness properties whose violations only
occur on infinite traces. A useful concept in reasoning about system properties is the safety
closure [AWZ88], which defines a safety approximaton for arbitrary properties.

23

MUTEX_12 1-BOUND_12

!

Philol = Eating & Philo2 = Eating hungry2 & Thinking2 & Eatingl
SAFE_OK REJECT IDLE

Thinkingl

Eatingl
REJECT

Figure 2.3: Mutual exclusion and 1-bounded overtaking for dining philosophers

IN_ACCESS

restrict_comps([mutex_12],[[philo1],[philo2]],[]).
init_r([mutex_12],[safe_OK],[[thinking],[thinking]],[]).
trans_r([mutex_12],[safe_OK],[reject] [[eating],[eating]],[]).
trans_r([mutex_12],[safe_OK],[safe_OK],[[1,[11.[1)-

a) b)

Definition 2.12 The safety closure P of a property P is the smallest safety property that
accepts all behaviors accepted by P.

2.4.1 Finite State Representation of Safety Properties

The safety properties in our system are defined using the same formalism used for the components,
the finite state machines. Safety rules are defined as finite state machines whose behavior depends
on the system states, similarly to the Esterel concept of Observer [BG92]. A safety rule observes
the components in the sense that it uses their states to determine its enabled transitions. In
practice, this means that the components and safety rules are interleaved during execution, and
the states of both components and safety rule observers combined represent the system state.

Every safety property is defined as P = (5, (CUA), I, 7, R) where S is a set of states, C is the set
of states for components observed by the property, A is the set containing all variables that the
safety property can read, I is the initial state, and 7 : (5 x 26Y4) — (S U {R}) is the transition
relation mapping the safety rule state and inputs to the next state. Transitions of the safety
rule FSM are enabled by combinations of states of the referenced components and the values of
system variables. The last parameter R specifies the rejecting state that represents the safety
violation for this rule. All other states for a safety rule FSM are accepting states.

In the dining philosophers example, safety rules refer to component pairs and Figure 2.3 shows
two rules that specify the interaction between two adjacent philosophers. The first rule accepts
all system behaviors except those where the two adjacent philosophers are in their FATING
state simultaneously. This rule represents the mutual exclusion requirement for two identified
components and it monitors the states of those two components waiting for the safety violation.
This FSM reacts to the occurrence of a safety violation by executing its transition to the state
REJECT. The overall system behavior can be specified by asserting mutual exclusion safety
properties for every pair of adjacent philosophers. Figure 2.3a) shows the mutual exclusion
property both in the form of a graphical FSM and in Prolog specifications accepted by our
automated synchronization tool. The predicate restrict_comps specifies the components whose
states are used to compute the enabling conditions of the safety rule FSM, while the init_r and

24

trans_r predicates specify the initial state and the transitions of the safety rule. The initial state
can specify the expected initial states of some of the restricted components, and the transitions
can use both the component states and a set of system variables in their enabling conditions.

The second property shown in Figure 2.3b) is the 1-bounded overtaking property, and it can be
used to specify balanced table access by all philosophers. This property rejects those behaviors
that have one philosopher eating repeatedly while one of its neighbors is hungry and waiting to
eat. The enforcement of this property in a dining philosopher system implies that the starvation
freedom holds, because every philosopher must be allowed to eat after waiting for each of its two
neighbors to eat once. This safety property implies that the philosopher access is fair.

For every safety rule, we can define the set of its referenced components, Ref(S5p), as the set of
components whose states are used in the enabling conditions of the safety property. We can also
define the set of restricted components, Res(Sp), as the set of components whose behavior may
be restricted by the property. The referenced components set contains all components whose
state is used in some transition of the safety rule, while the restricted components set contains
those referenced by some transition to the REJECT state. The component sets defined for the
mutual exclusion and 1-bounded overtaking are the following:

Ref(Mutex12) = {philol, philo2}, Res(Mutex12) = {philol, philo2}
Re f(Boundl12) = {philol, philo2}, Res(Boundl12) = {philol}

We can also distinguish between several types of transitions within safety properties. The transi-
tions leading to the REJECT state are the violating transitions and they occur when the behavior
of the system becomes unacceptable by the safety property. If a state has some outgoing violating
transitions, all other outgoing transitions from that state are called synchronization transitions.
Synchronization transitions may remove a restriction on the execution of some component, and
allow that component to advance if it was in a delayed state. All other transitions in a safety
rule are observer transitions because their purpose is to make the safety rule follow the behavior
of the system. The mutual exclusion property contains only one wviolating transition because it
defines an invariant condition. In the case of the 1-bounded overtaking property, the transition
from DONE_ACCESSto REJECT s the violating transition while the one from DONE_ACCESS
to IDLF is a synchronization transition. Transitions to and from the state IN.ACCESS are the
observer transitions for this property.

2.5 Realizability and Receptiveness

Safety properties classify system behaviors based on their membership in the property behavior
sets. Acceptable behaviors belong to the intersection of the safety property behavior sets, and the
unacceptable ones violate one or more safety properties. Unacceptable system behaviors violate a
safety rule due to the occurrence of some property—specific violating event, whether caused by the
controller or by its environment. Safety properties whose violations are caused by environment
agents may be independent from the controller and thus impossible for it to enforce. Making
these safety properties a part of system requirements, makes the system unrealizable. The system

25

is unrealizable because its requirements can be violated regardless of the controller design. An
example of an unrealizable safety property is a requirement for freedom from user reset. This
property is violated when the user resets the system, and there is no way the controller can
prevent it, so it can’t satisfy the property. In order to automatically enforce system properties,
we must be able to distinguish between properties that can be enforced by the controller and
those whose violations may be unavoidable. The following definitions introduce the concept of
property realizability.

Definition 2.13 A p—strategy f satisfies a property P iff O,(f) C P. A winning strategy
satisfies all required properties for a system.

Definition 2.14 The realizable part R,(P) of a property P is the union of all sets O,(f),
such that f is a p—strategy and O,(f) C P

Definition 2.15 A property P is p—realizable iff R,(P) is nonempty.

There are some safety properties whose violations are caused by environmental events, but only
after specific system behaviors. While these properties are realizable, they lead to problems
in system testing. These properties accept some behaviors that can only be an outcome of
incorrect controller strategies because the environment does not exhibit its worst case behavior.
The problem is that the same controller behaviors can result in safety violations, when the
environment executes the violating actions. In order to enforce those properties, the controller
strategy must be restricted to generate a set of outcomes that is a subset of the property.

We have shown that safety properties can be unrealizable, but even the enforcement of realiz-
able ones may require severe restrictions of the component and system behavior. The severity
of the necessary restrictions may be so great to prevent the system from fulfilling its functional
requirements. One such property is the requirement that reset does not occur while the system
executes some important action; it is trivially realized by not allowing the system to ever execute
the action. Receptiveness provides a tool for distinguishing between realizable and unrealizable
safety properties. Distinguishing between these properties enables us to use the automated syn-
chronization method only for the properties that can be enforced with the preservation of system
functionality.

The intuitive distinction between these properties is that the unrealizable ones require restrictions
on the environment events, while the realizable properties can be satisfied by controller strategies.
Dill [Dil88] introduced the notion of receptiveness as the lack of restrictions on external events.
The term receptive property suggests that the property is not influenced by the environment,
regardless of its behavior. Abadi and Lamport applied this notion to the system properties,
defining a property to be receptive if all behaviors it accepts belong to outcome sets of winning
strategies. They also proved that a receptive safety property can only be violated by a controlled
event, making receptiveness for safety properties equivalent to the limitation of constraints to the
controller actions. The following definitions formally introduce the notion of receptiveness and
its relationship with controller behavior.

26

Definition 2.16 A p—receptive property P is equal to its realizable part R, (P).

The name for receptive safety properties is derived from the relationship between the strategies
that enforce those properties and the environment. Any strategy that satisfies a receptive safety
property does so regardless of the environment behavior, meaning that it is prepared to react
to the environment events without restricting them. This strategy treats the environment as an
unconstrained input.

The receptiveness of safety rules is a theoretical concept, but it has profound implications on the
realizability of properties. The realizability of all properties is based on their nonempty realizable
part. Since the realizable part is a set of behaviors it is also a property. The following theorem
shows the relationship between the realizability and receptiveness for arbitrary system properties.

Theorem 2.1 For any property P defined as a set of acceptable behaviors, its realizable part
R, (P) is a receptive property.

Proof: Proof in [AL93]

This theorem shows that for any realizable property, there exists a receptive property that must
be satisfied by any implementation that satisfies the original property. The importance of the
receptive properties is even greater in the safety domain, because any receptive safety property
constrains only the controlled agent set.

Theorem 2.2 A receptive safety property constrains at most the controller agents.

Proof: Proof in [AL93]

A corollary to theorem 2.2 is that violations of receptive safety properties are always caused by
a controlled agent. The controlled agents in our semantic model represent groups of component
transitions and one or more of the components must cause the event that triggers the safety
violation. By delaying the components that cause the violation, the violation itself is delayed
while the other components may proceed with their execution. If the system state changes while
components are delayed, the safety violation preconditions may no longer hold, thus allowing
the delayed components to proceed while preserving the safety of the system. Any receptive
safety property can be enforced by restricting the behavior of components that may cause its
violations. This establishes a basis for the enforcement of receptive safety rules by automated
synchronization of components.

2.6 Receptive Safety Properties

The previous sections represent a theoretical overview of the behavior based system properties.
We now need to show some extensions that apply specifically to the safety properties and their

27

realizability. These theorems are simple extensions to the work in [AL93], but were not clearly
expressed there, probably because their goal was to prove composition of working components
rather than deal with automated property enforcement. The following theorems show that any
realizable safety property can be represented in the form of constraints on system component
execution.

Theorem 2.3 The realizable part of a realizable safety property is a safety property.
Proof:

Abadi and Lamport proved that the realizable part of a property may be represented as
R,(P)=R,(P)NP

where R, (P) represents the safety closure of a property. The property P is a safety property so
R, (P) C
Rp(P) = p(P)

The realizable part of a safety property is equal to its safety closure, so it is a safety property as
well.

Theorem 2.4 Realizable parts of safety properties are receptive safety properties and constrain
at most the component actions.

Proof:

Theorem 2.1 shows that the realizable part of any property is receptive. Theorem 2.3 shows that
the realizable part of a safety property is a safety property. Since the realizable part is a receptive
safety property, by theorem 2.2 it constrains at most the controlled agents. The constraint on the
controlled agents maps to constraints on the components whose actions combine to define those
agents.

The last theorem shows that the realizable parts of safety properties can be enforced by con-
straining components whose behavior contributes to the safety violations. We will show how the
conditions for these constraints can be computed from the description of the components and
receptive safety rules using simple behavior analysis. We will also show how the constraints can
be incorporated into executable applications that enforce multiple receptive safety properties.

2.7 Enforcement of Receptive Safety Properties

The specification of system components defines a controller strategy f where components execute
one enabled transition in every iteration. This strategy produces a set of outcomes that may
or may not satisfy the system requirements. We will show how receptive safety properties can
be enforced by producing a modified controller strategy fs where the components synchronize

28

to enforce the properties. Theorem 2.2 shows that a receptive property can only be violated
by controlled actions, and therefore a controller strategy that avoids the violating actions will
satisfy the properties. We can analyze the system behaviors generated by the strategy f, find the
preconditions of safety violations, and use them to enable the modified agents that enforce the
safety properties.

2.7.1 Possible and Reachable Safety Violations

We define a safety violation to be possibleif the states that cause the safety violation do exist in the
referenced components. This means that we can select a combination of states for the components
and the safety rule, and a combination of monitored variables that cause the components to
execute the transitions that violate the safety. A state is reachable if it is contained in some
behavior in the outcome set O,(f). Obviously every reachable safety violation is possible, but
some possible violations may not be reachable.

The possible safety violations have very little meaning in the context of system verification,
because every receptive safety property will have possible violations. Only a proof of their reach-
ability means that the system is unsafe, and conversely only a proof that they are unreachable
validates the safety of the system. In the context of safety enforcement, it is not necessary to
know whether a particular safety violation is reachable, since our goal is to make it provably
unreachable. The distinction between the possible and reachable safety violations is important
because static analysis can detect the possible violations while reachability analysis is required
for the reachable ones. The use of possible safety violations makes it possible to analyze and
synchronize systems whose complexity makes reachability analysis prohibitively expensive, due
to their complexity.

If static analysis detects a possible safety violation state, and we produce a new strategy fs that
activates a different agent when its precondition holds, we guarantee that the safety violation
is unreachable in the behaviors belonging to the outcome set O,(fs). This applies to all safety
violations, regardless of whether they were reachable in the system controlled by the strategy
- If a safety violation was unreachable with strategy f, its precondition may never be satisfied,
and the modified agents will not be executed.. This shows that synchronizing a system to avoid
possible but unreachable safety violations results in a system that satisfies the safety properties
and preserves as much of the original strategy as possible.

2.7.2 Synchronization by Delayed Transition Mechanism

The word synchronous is a combination of the Greek words syn meaning same and chronos mean-
ing time. It describes certain events as occurring at the same time or with the same periodicity.
Synchronization is the process of making the events occur simultaneously. In the domain of
computer science, synchronization has a broader meaning of making events occur at appropri-
ate times or intervals, as defined by the system specification. In the domain of concurrent and
distributed computing, synchronization includes the adjustment of local clocks within specified
tolerances; synchronization also refers to the system activities whose goal is to influence the
temporal ordering of certain system events.

29

ORIGINAL SYNCHRONIZED
TRANSITION DELAYED TRANSITION

SRC SRC

REQ & ERRCOND
REQ & 'ERRCOND

ERRCOND
REQ

IERRCOND

(a) DEST (b) DEST

Figure 2.4: Overview of delayed transition implementation

One example of synchronization are barriers whose purpose is to make components execute a
certain operation only when all components are ready. Conversely, locks guarantee that some
sets of events do not occur simultaneously while their ordering is unrestricted. More general
synchronization tools like semaphores or blocking messages can enforce both inclusion, exclusion
and arbitrary ordering of events. The common element for these synchronization mechanisms is
the delayed execution concept, where the component actions are blocked as long as necessary to
enforce some system behavior.

The synchronization mechanism in Genkx is based on the delaying of component transitions.
Delayed transitions are implemented by introducing one additional state where the FSM blocks
as long as the completion of the transition may cause a safety violation. Figure 2.4(b) illustrates
the implementation of a delayed transition for the transition in Figure 2.4(a). If the safety analysis
finds that the transition could lead to a safety violation, the delayed transition is added to block
the component whenever the safety violation preconditions hold. The enabling condition of the
original transition REQ is combined with the condition ERRCOND that is the precondition
of the detected safety violation, and the resulting conditions enable the delayed transition. The
delayed transition leads to a state DELAY that, for safety monitoring purposes, represents an
extension of the source state SRC. The original transition from the state SRC' to the state
DEST will be enabled only when its enabling condition REQ is satisfied and the safety violation
precondition ERRCOND is not.

The transition from the delayed to the destination state will occur only when there is no potential
for a safety violation. The transition occurs even if the original enabling condition of the transition
no longer holds because the semantic of the component specification is that the enabling condition,
once activated, determines the next state for the component. Since the delayed state is considered
to be the same as the source state, the transition to the DEST state must be completed to satisfy

30

the functional specification of the component.

2.8 Subclasses of Receptive Safety Properties

Receptive safety properties are defined as safety properties whose violations are caused by the
component actions. We can distinguish two basic types of violations caused by the components.
The simplest type is a sequencing violation, caused by an action of one component independently
from the actions of other components. A more complex type of violation is caused by a com-
bination of states for several components, and we call that a limited resource access violation.
If all violations for a given safety property are of the sequencing type, that property is called a
sequencing property. Similarly, if all violations of a safety property are of the limited resource
access type, that property is called a limited resource access property. Examples of both types
of properties are given in Figure 2.3, where the 1-bounded overtaking is a sequencing property
and the mutual exclusion is a limited resource access property. Properties including both types
of violations can be decomposed into two properties of the individual type.

The 1-bounded overtaking property references two components, but the only transition to the
REJECT state is caused by the first philosopher in state FATING. This property is violated if
the first philosopher starts to eat while the safety property FSM is in the state DONE_ACCESS.
The violation by a single component makes the 1-bounded overtaking a sequencing property.

The mutual exclusion property violations require the simultaneous FATING by both philosophers,
and this condition can occur when one philosopher joins another that is already eating, or when
two philosophers get hungry at the same time and simultaneously enter the FATING state. If one
philosopher is eating, the mutual exclusion is enforced by delaying the other one until the fork
between them is free. When both philosophers try to access the FATING state simultaneously,
the mutual exclusion can be enforced by delaying one component and allowing the other one to
proceed. The choice of delayed component should be nondeterministic and fair.

2.8.1 Synchronization for Different Types of Receptive Properties

Sequencing properties specify the global behavior in terms of allowed sequences of events, by
rejecting the occurrence of individual component states. This means that a transition to the
REJECT state for the safety rule is enabled by the occurrence of a particular state for one
component, independently from the behavior of other components in the system. The only way
to prevent this safety violation is to delay the component until the safety rule monitor leaves
its current state. The synchronization condition that enables a delayed transition of the first
philosopher to enforce the 1-bounded overtaking is:
Delay = (philol = thinking) A hungryl A (boundl2 = access_done)

While a single rule may impose restrictions on the behaviors of several components, these re-

strictions depend only on the state of the receptive safety property FSM and the respective
components. The safety violation is caused by a single component regardless of any simultaneous

31

actions by the other components. Every possible safety violation of a sequencing property can
be avoided by delaying one system component.

The subclass of limited resource access properties specifies requirements like the mutual exclusion,
whose violations may be a result of simultaneous accesses by two or more components to a
critical section where exclusive access is required. Our model assumes synchronous execution of
a single transition by all components, so two or more of them could enter the critical section
simultaneously, thus causing a safety violation. This safety violation would not occur if only one
component had entered its critical section, so not all components must be delayed to enforce the
property. In the case of the dining philosophers, a single philosopher making the transition from
THINKING to FATING does not cause a violation, but two adjacent philosophers making the
same transition do. We will use this example to describe the method of computing the component
synchronization conditions for limited resource access rules.

The precondition for the safety violation by simultaneous entry into the FATING state consists
of the state that precedes the violation and the conditions that enable the transitions to occur.
The safety violation precondition for one pair of adjacent philosophers is given below:

SV _Condl12 = ((philol = thinking) A (philo2 = thinking) A hungryl A hungry?2

When the safety violation precondition holds, some of the components must be delayed in order
to preserve the safety of the execution. For limited resource properties, all components but
one referenced in the violation transition are allowed to proceed without causing the violation.
In the case of mutual exclusion of philosophers, that means that one component is allowed to
access the FATING state while the other one is delayed waiting for its turn. The synchronization
conditions of the two philosophers need to be consistent so that exactly one component is delayed
to preserve this property. We derive the individual synchronization conditions from the safety
violation precondition having three rules in mind:

e Complete coverage of the violation precondition.
The union of individual components’ synchronization conditions must cover all system states
that satisfy the violation precondition. Incomplete coverage means that in some cases the
safety violation might occur regardless of the synchronization because no components are
delayed. If two components must be delayed to prevent a safety violation, then the complete
coverage principle means that any state that satisfies the violation precondition, enables
the delayed transitions for at least two components.

¢ Minimal coverage of the violation precondition.
This principle implies that no unnecessary components will be delayed in the synchroniza-
tion for any particular safety rule. If one delayed component satisfies the property, the
intersection of its synchronization condition with those of the other components will be
empty. Similarly, if only two components must be delayed, the intersections of synchroniza-
tion conditions for any three components will be empty.

!Every violating transition is enabled by a combination of component states, and if one component is not in
the specified state, the violation does not occur. Compound safety properties such as mutual exclusion of multiple
components are decomposed into simple pairwise exclusions. Every pairwise exclusion requires the delay of one
component, but the compound effect of all properties is that all but one component must be delayed.

32

e No component can be predefined for delays in particular system states.
The complete and minimal coverage principles can be trivially satisfied by picking one
(or more, as necessary) component, and delaying it every time the violation preconditions
hold. This creates an asymmetric system, and can lead to implementations with a number
of undesirable characteristics, such as unnecessary deadlocks, livelocks or starvation of
components. The synchronization conditions need to satisfy some form of fairness in the
selection of delayed components.

In the case of the philosophers and their mutual exclusion, one delayed philosopher is always
sufficient to guarantee the preservation of the safety property referencing two philosophers. The
relationship between the individual synchronization conditions and the violation precondition is
specified by the following system of equations:
Delayl v Delay2 = SV _Cond
Delayl A Delay?2 = false

These equations correspond to the complete and minimal coverage requirements in the case of one
delayed component out of two. Similar equation systems can be created for any other combination
of numbers of total and delayed components. A number of different values for Delay1 and Delay2
would satisfy this equation set, but the third principle(fairness) requires them to occur with
equal frequency for all combinations of safety violation preconditions. This implies that we need
a nondeterministic selection facility that enables the delayed transitions for either component.
A simple solution to this problem is the introduction of a nondeterministic selection signal,
ndet_prio_21 that represents the nondeterministic relative priority of the components. Then the
delay conditions for the two components are:

Delayl = SV _Cond A ndet_prio 21

Delay2 = SV _Cond N —ndet_prio 21

These two delay conditions satisfy the equation system, and also satisfy the third principle, since
no component is treated preferentially regardless of the system state. The nondeterministic signal
ndet_prio_21 enables the delayed transition of the first philosopher when it has the value true,
and thus allows the second philosopher to advance into the state eating. The second component
is delayed and the first is allowed to proceed when this signal has the value false. This signal
amounts to a decision on the relative priority between the first and second components, thus its
name. Similar signals may be used to order all pairs of components and produce a total ordering
of all components.

This structure of synchronization conditions can be used even for the complex safety violations
caused by the occurrence of three or more simultaneous actions. If k¥ components can proceed but
the (k4 1)th must be delayed, the relationship between the individual synchronization conditions
and their specification are as follows:
Delayl Vv Delay2V ...Delay(k+ 1) = SV _Cond
Delayl A Delay2 A ...Delay(k + 1) = false
Delay, = SV _cond A ndet_prio 21 A ... A ndet_prio(k + 1)1

This is the most complex synchronization condition that can occur with our specification of

safety rules, because the enabling conditions of the violating conditions are simple conjunctions
of component states. For any such conjunction it is sufficient to delay one component to guarantee

33

that the safety property is preserved.

2.9 Guidelines for System Definition

Our method modifies given component specifications by delaying some of their actions in order
to preserve the safety of the system behavior. Behavior of the modified components is stuttering—
equivalent to the behavior of the originals, but it is unlikely to be identical if the component has
the potential for causing safety violations. The synchronized application is guaranteed to satisfy
the specified receptive safety rules, but inconsistent specifications of components and safety rules
may lead to the occurrence of deadlocks or the undetected occurrence of safety violations.

The system specification must be partitioned into components and receptive safety rules, and
this decomposition is determined by the nature of the specified functionality. Components should
specify the functional aspect of system behavior, while the receptive safety properties specify the
constraints on interactions between the components. Our method is most effective in enforcing
partial ordering of actions for separate components. Enforcement of simultaneous actions or
selection of actions requires specific component design. Behavior requiring limited time reaction
can not be specified as a receptive safety rule, so it must be implemented at the component level
or by enforcing its realizable part. Time-dependent properties can be automatically detected as
potentially nonreceptive, and the user warned of their existence.

The following list illustrates some of the basic guidelines for system decomposition and specifi-
cation.

¢ Components are related to one controlled signal, or a set of closely related signals. Signals
are closely related if they change value simultaneously or if their intervals of activity are
mutually exclusive. Generally, the signals controlling one physical device, or one aspect of
the behavior of a complex device are closely related and should be specified by one compo-
nent. This way of decomposing systems produces simple components whose interaction is
specified by simple receptive safety properties.

o States embody the decision—making capabilities of a component. A component stays in a
state until it can select another state to go to. Components should employ a greedy strategy
in their behavior decisions, their transitions should be enabled as soon as the state of the
system and the environment is such that the transition will eventually be completed. The
automated synchronization will ensure that the selected transitions are not completed as
long as that may violate the receptive safety properties.

e The components should be defined using a state oriented semantics, where their transitions
have no meaning to the overall system behavior. The receptive safety properties are defined
as sequences of states, and only component states can be used to detect safety violations.
In cases when individual transitions are important for the system behavior, the safety
properties must detect their source state, and then reject their destination state until the
transition becomes acceptable.

34

e Controller actions with limited time requirements must be specified as transitions of indi-
vidual components. In order to guarantee that the behavior is preserved in a synchronized
system, the safety rules must not impose constraints on the completion of those transitions.

e Safety properties specify the interpretation of the interaction between two or more compo-
nents. A safety property is defined using the states of components to enable its transitions,
and it reaches the predefined REJECT state when the component interaction is unaccept-

able.

e If a component transition is delayed by some state of a safety rule, the actions of other
referenced components must be able to make that transition acceptable to the safety rule.
If this condition is not met, a safety rule may block a component forever thus removing its
function from the system.

35

Chapter 3

The GenEx Toolset

We use receptive safety properties to specify acceptable interactions between system components.
The receptiveness guarantees that the properties can be enforced by synchronizing the compo-
nents. We developed a set of analysis and code generation procedures, integrated in the Genkx
toolset, that compute the necessary synchronization conditions and produce an executable imple-
mentation of the desired controller. This chapter contains the description of the GenkEx toolset
and the design and development methods it supports.

The GenEx toolset contains a number of independent tools whose functionality can be inte-
grated to analyze systems and produce executable applications. The analysis tools detect the
violations of safety rules and compute the synchronization conditions for individual components.
Integration and code generation tools combine the component specifications with the associated
synchronization mechanisms and produce executable C code or formal models for the system.
The generated code links with an environment dependent runtime support library that imple-
ments the underlying semantic model. Additional verification and analysis tools can detect if the
asserted system properties are nonreceptive or inconsistent with the referenced components. The
functionality of these tools is integrated using an automated script generator.

In the Section 3.1 we describe the basic steps in the production of automatically synchronized
concurrent systems. The following three sections describe the tools used to analyze the component
behavior with respect to the safety properties and compute their synchronization conditions.
Section 3.6 describes the code generation algorithm and its results, while Section 3.7 describes
the runtime support library. Finally, Section 3.8 introduces a number of auxiliary tools such
as the script generator that integrates the functionality of the other system tools, verification
algorithms for system consistency, and a runtime visualization tool.

36

3.1 System Development Using the GenEx Toolset

Genkix tools automate the synchronization and integration of controller components, and produce
an implementation of the controller that satisfies the given receptive safety properties. The
system designer must, manually or using other tools, generate the component specifications and
the receptive safety properties. The components and safety rules are specified using finite state
machines, and the safety rule transitions are enabled by the states of the components whose
interaction constraints they describe. The following list illustrates the major steps in the system
design using automated synchronization supported by GenEx, with the pluses denoting the steps
performed by the automated tools.

— Define System Components. The components are concurrent elements of the controller,
and their goals are largely independent. In the case of the dining philosophers, one compo-
nent models each philosopher, and the guidelines in Section 2.9 describe how the components
should be defined in more complex examples. Components must be defined by finite state
machines defined in a tabular form, either with their local signals or using the global signal
set for the system.

— Specify System Requirements as Receptive Safety Properties. The system require-
ments specify a set of properties that the controller strategy must satisfy. These properties
can be automatically enforced only if they are represented in the receptive safety form.
For all realizable safety properties, their realizable part is a receptive safety property that
can be enforced automatically. Some liveness properties contain behavior subsets that are
receptive safety properties, and those liveness properties can be enforced automatically us-
ing Genkx. Required properties can be analyzed independently to find receptive safety
properties that represent them.

+ Verify Consistency and Receptiveness of the Properties. This automated step com-
pares given receptive safety properties with the system components and attempts to verify
that the enabling conditions for the property transitions use existing states of the referenced
components. Safety properties are receptive if they impose no restrictions on the behav-
ior of the environment, represented by the monitored variables. Time is also a monitored
variable, and the receptive properties must not be violated by time-related events. GenEx
toolset includes a mechanism that verifies all of these factors, and can even suggest possible
rule modification that eliminate problems like time—dependence.

+ Analyze and Enforce the Receptive Safety Properties. The receptive safety properties
reject some controller behaviors, and system behavior analysis detects those violations and
finds the components that cause them. Components are modified to delay the actions that
cause the safety violations, making the violations unreachable. The analysis of every safety
property is independent and global analysis is not required. Total complexity of this process
is equal to the sum of the analysis complexity for the individual safety properties.

+ Generate a Controller Implementation. GenEx includes the capability to generate a
controller implementation in C, whose structure makes it easy to link to data processing
code segments and to system interface functions. The generated code makes no assumptions

37

about the execution environment and supports different implementations, ranging from
single centralized process to distributed execution with multiple processes.

+ Generate a Controller and System Model. The formal model of the system or its parts
can be used to verify the correctness of the design using the symbolic model checking tool
SMV [McM93]. While GenEx synchronizes the components to enforce the given receptive
safety properties, and the generated controller is guaranteed to satisfy them, other system
requirements may be violated. If the receptive safety properties are not consistent with
each other or with the components, the intersection of their behaviors may be empty or
limited to behaviors where sets of components are deadlocked. A partial or total system
model can be generated using the SMV notation to verify that subsystems execute correctly
together.

Software development using GenEx is applicable to component—based systems where the compo-
nent interaction is in the domain of control behavior rather than the data processing. Component
design should be partitioned into a control-oriented structure and data processing segments re-
lated to specific control actions. Component control structure is synchronized with the other
components, and the generated code includes calls to the data processing code segments supplied
by the designer.

Automated synchronization of control systems produces sets of modified components that include
the functionality of the original components, but also satisfy the receptive safety rules that specify
the component interaction. The code generated for the synchronized components can be linked
with a runtime support kernel, and compiled into an executable application.

3.2 Automated Computation of Synchronization Conditions

The enforcement of receptive safety properties requires individual components to delay their ac-
tions when completion of those actions may violate the properties. To avoid having a centralized
scheduler that becomes a bottleneck for distributed systems, we enable the components to deter-
mine when their actions are safe to complete. Every transition that has the potential to violate
some receptive safety property is modified to satisfy a minimal delay required to preserve the
property. When the system state satisfies the preconditions of a safety violation, the enabling
conditions for the delayed transitions of one or more components become true, making those
components stay in their previous state. Delay conditions for the components are constructed to
become true only when the completion of the respective transitions may cause safety violations,
and to remain false when the behavior of a component is safe.

Our method analyzes the system behavior and, upon finding safety violations, modifies individual
components to make those safety violations unreachable. The modification of any component
results in a modified reachability graph for the whole system, and possibly makes new safety
violations reachable. Since the system state space is finite, the number of possible safety violation
states must also be finite. Repeated execution of the analysis algorithm would lead to a fixed point
where all reachable safety violations have been detected and corrected, and the system behavior

38

satisfies the receptive safety rules. The problem with such an approach is that executing the
reachability analysis an unspecified number of times may require unacceptable amounts of time
and CPU resources, and is thus not a practical approach.

We modify the components before the analysis by adding nondeterministic delayed transitions to
any transition that may cause any safety violation. By analyzing the behavior of the modified
components, our system can detect all reachable safety violations, even those that become reach-
able only after component behavior is modified to prevent other violations. The complexity of
the analysis for components with nondeterministic delayed transitions is obviously bigger than it
would have been for the original component specifications without delays. Since many if not all
of the delayed transitions must eventually be added to the components in order to prevent the
safety violations, the complexity of the analysis is similar to the last analysis-correction iteration
if the fixed point approach had been used.

We have developed two different methods for analyzing the system behavior and computing
synchronization conditions. The first approach is based on reachability analysis of the system
behaviors, its advantages are the capability for exact determination of safety violations and for
the detection of reachable deadlock states. The other approach is static, based on backward
tracking of combined violation transitions. The next two sections describe these synchronization
algorithms.

3.3 Reachability Analysis of Receptive Safety Rule Violations

Reachability analysis of system behavior is a well known method for verifying correctness of a
system with respect to its safety requirements [CES86]. The strength of this method is that
it naturally produces proof for the detected safety violations, by tracing back along the path
from the starting state to the violating one. The safety violation sequence helps the user in the
reconstruction of the causes that lead to the violation, making this method useful in testing and
debugging. Reachability analysis is limited in use to relatively small systems whose state space
can be represented and analyzed efficiently. Complexity of the state space is, as a general rule,
proportional to the product of the sizes of its components, thus making the reachability analysis
an exponentially large problem for systems with numerous components.

We use reachability analysis in the context of safety enforcement, specifically for receptive safety
properties. The controlled violations of receptive safety properties mean that every property
defines a subset of components that can violate it, and those are the components that need to
be synchronized to satisfy the properties. We can restrict the reachability analysis to the set
of potentially violating components, and thus reduce the complexity of the reachability analysis
graph to a fraction of the overall system complexity. The complexity of the reachability graph
for any single safety rule depends only on the number and complexity of components referenced
by that rule.

39

Initialize state set S with the initial state I, representing the initial
states for all components and the safety rule monitor
- Initialize transition set T as empty
- Mark state I as leaf
- Loop
- Get a leaf state s in S
- Foreach combination t of nondeterministic component
transitions enabled in state s
- Find enabling condition ¢ that satisfies the enabling
conditions of all component transitions in t
- Create a state comp_st containing the destination states of
transitions in t, with the monitored variable values specified in c¢
- Identify the safety monitor state sm in state s, and compute its next
state sm_next that occurs as a reaction to state comp_st
Create a state new_state by combining the comp_st with the
new safety monitor state sm_next.
- If new_state is not in the set S, add it to the set and mark it as leaf.
- If state sm_next is REJECT, mark new _state as processed_state.
- Add the tuple(s, ¢, t, new_state) to transition set T.
- Endfor
- Mark state s as processed_state
- Until S has no more leaf nodes

Figure 3.1: Finite State Machine Composition Algorithm

3.3.1 Reachability Graph Construction Algorithm

The descriptions of components referenced by the safety rule are combined to generate an equiv-
alent FSM representation for the component behavior, as described in the semantic model in
section 2.3.2. The component reachability graph is combined with the FSM representation of the
receptive safety rule to find the safety violations states. The combination algorithm is given in
Figure 3.1 in a pseudocode form. This algorithm conducts a breadth—first search of the system
state space, expanding all states except those that violate the safety property. Since these safety
violation states will be made unreachable by the component synchronization, their successor
states will also be unreachable and are thus irrelevant for the analysis.

The expansion of every system state is driven by the number of individual component transitions
enabled in that state. For every combination of component transitions, the algorithm attempts
to find an enabling condition that activates all selected transitions. If the enabling condition
exists, the selected combination of transitions can occur during execution, and the resulting state
is added to the reachability graph. We use the selection of component rather than the selection
of input combinations in order to reduce the complexity of the analysis. The input consists
of a number of independent monitored variables, so there are up to 2"*™-Y%"$ combinations of
their possible values. When combining transitions, the complexity for each state is limited by the
product of the number of outgoing transitions for each component state. The number of outgoing
transitions is at least 2 for every state since every state has a default self-loop transition, but the

40

number of components referenced by the receptive safety rules tends to be small, thus keeping
the number of combinations within bounds for practical analysis. The enabling condition for a
selected set of transitions is the intersection of their individual enabling conditions.

The resulting state must also be characterized by the state of the safety rule monitor for the
enforced receptive safety property. The safety rule monitor acts as an observer of the component
states, so its state is a function of component behavior. The state of the safety monitor is not
a function of the component states, but of the states along the behavior prefix leading to the
current state. This means that different paths leading the components to the same states may
cause the safety rule observer to reach different states. An example of this is the 1-bounded
overtaking property, that allows the second philosopher to enter its FATING state once while
the first one is waiting, but rejects it when it occurs a second consecutive time.

3.3.2 Analysis and Automated Synchronization for the Reachability Analysis Method

The primary goal of the analysis phase is to find whether a safety rule is satisfied by the system
and, if it is not, to compute the synchronization conditions that make the system safe. The
combined reachability graph contains all reachable states of the system, including safety violation
states. It also contains the predecessor states of the safety violations, and the transitions to the
violation states with their enabling conditions. The predecessor of the violation state and the
enabling condition of the violating transition define the precondition of the safety violation. The
safety violation preconditions specify when some components must be delayed to preserve the
safety. The violation preconditions do not identify the components or specify how many of them
need to be delayed to preserve the safety.

All safety violations of receptive safety properties are caused by component actions. The same
enabling conditions that activate a violating transition also enable its nondeterministic delayed
versions that preserve the safety. By comparing a violating combined transition with one that
preserves the safety under the same enabling conditions, we can identify a set of components that
may contribute to cause the safety violation. Delaying all those components guarantees that the
detected violating transition does not occur, but the safety may be preserved even by delaying
just a subset of these components.

To identify minimal delay requirements, we must identify combined transitions in the reachability
graph with the minimal difference in the number of delayed components. We are looking for a
safety preserving combined transition that differs from the violating transition by the included
transition of exactly one component. Further, that component should complete its transition in
the combined violating transition while being delayed in the safety preserving combined transition.
The component that is delayed in the safety preserving combined transition is identified as one
cause of the violation, and it must be delayed to prevent the occurrence of this particular safety
violation. The pattern of system states shown in Figure 3.2 illustrates the relationship between the
reachable states used to identify the minimal set of delayed components. State FF represents the
mutual exclusion violation with two adjacent philosophers in their FATING state, T'T represents
them in the THINKING state, and ED represents the first philosopher in the FATING state and
the second in the THINKING_DFLAY state. Both transitions t and td are enabled by the same
condition, namely (hungryl A hungry2). Combined transition td includes a delayed transition

41

Source State

sl—= TT
One Component o
elaved State reached when the first philosopher
D ay completes the transition to EATING
state, and the second one is delayed.
When both philosophers compl ete their
Both Components sv—=| EE transition, they trigger a safety violation.
Compl ete Transitions A comparison with adelayed transition

that preserves the safety pointsto
T the component that should be delayed.

Safety violation

Figure 3.2: Analysis domain for one safety violation

for the second philosopher, instead of the completed transition to the FATING state that causes
the safety violation. The comparison of these two combined transitions identifies the second
philosopher as one possible cause of the safety violation, and shows that the violation is avoided
by delaying the second philosopher. A separate analysis that uses another delayed version of the
transition t will detect the conditions for avoiding this violation by delaying the first philosopher.

The algorithm that computes the component synchronization conditions is given in Figure 3.3,
and it looks for this pattern of combined transitions in the system reachability graph. When
it detects two such transitions, it identifies the component that needs a delay, and the minimal
conditions that should enable their delay to prevent the safety violation. The algorithm uses
variable names introduced in Figure 3.2 for the combined transitions and states. The enabling
conditions of the combined transitions, and the invariant of the source state s1 form the safety
violation precondition.

The synchronization conditions for the component must incorporate another parameter, the non-
deterministic relative priority condition described in section 2.8.1. This parameter is important
for the limited resource access rules whose violations may be caused by the simultaneous occur-
rence of multiple component actions, while the individual actions preserve the safety. If several
components attempt to enter the critical section, the choice between them must be nondeter-
ministic to guarantee the fairness of the implementation. The comparison between a violating
combined transition and its delayed version that preserves the safety results in the identification
of a component that must be delayed. The identified component is said to have a lower priority
than all components that complete their individual transitions in the safety preserving combined
transition.

42

- Foreach safety violation state sv in S do
- Foreach transition t in T whose destination is sv
- Identify source state of t in sl, and its enabling condition in cv
- Identify set of components CV whose state in the system state sv
is a delayed state, and store the number of components in CV as nv
- Foreach transition td in T whose source state is sl
and enabling condition is cv
- Identify destination state of td in sd.
- If sd is a rejecting state then goto Next Delayed
- Identify set of components CD whose state in the system state sd
is a delayed state, and store the number of components in CD as nd
- If (nd #nv+ 1)or(CV ¢ CD) then goto Next Delayed
- Identify component C as C'D - CV
- If any component except C uses a different transition in
t and td then goto Next Delayed
- Identify the state of component C in system states sl, sd, sv
in csl, csd, csv respectively
- Identify set of components CP whose state in the system state sd
is not delayed, and is different from their state in sl
- Create the priority condition cp that is true when all components in CP
have higher priority than C
- Create a transition for component C from state csl to csd
with the enabling transition cv Acp
- Modify the enabling conditions of the transition from esl to csv
to exclude the condition cv Acp
:Label Next Delayed
- Endfor
- Endfor
- Endfor

Figure 3.3: Algorithm for computation of component synchronization conditions

In the case of the two philosophers, shown in Figure 3.2, the second philosopher is said to have
lower priority, and its delaying condition is computed as:
S_Cond2 = hungryl A hungry2 A ndet_prio_12

Another delayed combined transition exists that takes the first philosopher to its THINK-
ING_DFELAY state while the second one completes the transition to FATING. When that com-
bined transition is compared with the violating transition, the first philosopher is identified as
the component that must be delayed with the synchronization condition:

S_Condl = hungryl A hungry2 A —ndet _prio_12

By examining all combinations of violating transitions with their delayed alternatives, our al-
gorithm will identify all components whose delays may enforce a safety property. It generates
synchronization conditions for each of the components and the aggregate effect of all these syn-
chronizations is that the safety violations will be avoided by delaying a minimal number of

43

components.

3.4 Static Detection of Possible Safety Violations

The reachability analysis of component subsets detects all reachable violations of a given safety
rule, and computes the necessary synchronization that will make the components satisfy the rule.
The drawback of this method is that the complexity of the reachability graph may be an expo-
nential function of the number of referenced components and their sizes. Given safety rules that
reference several complex components, the complexity and the required time for analysis may
become excessive for use in a practical development environment. Another potential problem
with this approach is the redundancy of the generated synchronization conditions, The synchro-
nization conditions computed for each of those states may not be equivalent and thus will all be
implemented in the integrated system. Their redundancy will increase the condition evaluation
overhead and decrease the performance of the application.

In the earlier discussion, we mentioned the difference between reachable and possible safety vi-
olations. We can use the possible violations to compute the synchronization conditions without
constructing a reachability graph for the subset of components. The predecessor state of a safety
violation and the respective violating transitions define the violation preconditions, Since the
immediate violation precondition states determine the delayed components and their synchro-
nization conditions, the previous states in the trace leading to the safety violation are irrelevant
for the purpose of enforcing safety.

The static method for detecting possible safety violations is based on the backtracking of compo-
nent transitions from a safety violation state. Every safety violation is specified as a transition
to the REJECT state of the safety rule observer. The enabling conditions for that transition
specify the states of individual components that contribute to cause the violation. The safety
violation preconditions are all combinations of component states whose next state enables the
given violation. This algorithm is given in Figure 3.4.

In the dining philosophers example, the static analysis method detects the same violation states
and preconditions and produces the same delay conditions to enable the delayed transitions.
The equivalent results are due to the simplicity of the components and their independence with
respect to monitored variables that enable their transitions.

3.4.1 Comparison of the Static and the Reachability Analysis Method

In the preceding description of the reachability and static analysis methods, we have shown how
both methods detect the safety violation preconditions for the given safety rules, and how the
preconditions are used to determine the delayed components and their synchronization conditions.
The difference between these two methods is mainly in their complexity and sometimes in the
efficiency of the generated applications. Figure 3.5 illustrates the parts of the system behavior
graph analyzed by the reachability and static analysis methods. The reachability method must
generate the full reachability graph for the components referenced by the safety property and

44

- Foreach violating transition tv in safety rule Safe do
- Identify set of components CV whose states enable the transition tv
- Foreach combined transition t_comb of components in CV whose destination
state enables the transition tv
- Identify the source state s_prev and the enabling condition
c_comb for the transition t_comb
- Create safety violation precondition cv_pre, satisfied when c_comb
is true and the components are in states specified in s_prev
- Foreach component C in CV do
- Identify set of priority components SP whose transitions
in t_comb are between distinct states.
- Create priority condition c¢_prio that encodes the nondeterministic
priority signals when all components in SP have higher priority than C
- Create synchronization condition for c¢_sync = cv_pre A c_prio
- Identify transition tc of component C in combined transition t_comb
- Add delayed version of transition tec to component C enabled by c_sync
- Modify the enabling conditions of the transition tc
to exclude the condition c_sync
- Endfor
- Endfor
- Endfor

Figure 3.4: Algorithm for static computation of synchronization conditions

then identify state patterns on this graph. The static analysis method identifies all possible
safety violations and uses backward tracing from the safety violation states to construct their
possible predecessors. The row of encircled states in Figure 3.5 represents the possible violation
predecessor states generated by the static violation analysis method. The intersection of the state
spaces analyzed by these methods is the set of reachable safety violations and their preconditions,
the very set of violations the system must be synchronized to prevent.

The complexity of the reachability analysis is proportional to the size of the combined behavior
graph for the set of components. For large components and for safety rules that reference many
non—trivial components, the complexity of the reachability graph will make this method non—
viable. However, for subsystems with a few simple components, the complexity of the reachability
graphs is trivial for the capacity of current computers. The reachability graph analysis can detect
behavior anomalies such as deadlocks for some component subsets and alert the user.

The static violation analysis method has a significant advantage over the reachability method in
the synchronization of complex systems, because their reachability graphs may be too large to be
exhaustively analyzed. The static method may be preferable even in systems whose reachability
graphs can be effectively analyzed, because it may generate simpler sets of synchronization condi-
tions, without partial overlapping as in the case of reachability analysis. The main disadvantage
of the static analysis approach is the potential unreachability of many possible safety violations.
This can occur in systems with overlapping safety properties, systems where the components are
enabled by shared monitored signals, or those using automated synchronization in combination

45

REACHABLE UNREACHABLE
STATES BUT POSSIBLE STATES

REMAINDER OF THE
REACHABILITY GRAPH

SAFETY VIOLATION
PRECONDITIONS

| REJECT)

\ Vs

N -

Figure 3.5: State space required for the two analysis methods

with other synchronization mechanisms. If the component behaviors are strongly correlated, some
possible safety violations may not be reachable and the synchronization conditions computed for
their preconditions are unnecessary. These unnecessary synchronization conditions will never be
enabled since they only occur on unreachable states, so they will have no influence on the system
behavior. The existence of unnecessary synchronization conditions results in increased execution
overhead.

The main trade—off in the selection of the analysis method depends on the size of the analyzed
state spaces, as shown in Figure 3.5. If the state space of possible safety violations is much smaller
than the state space of the reachability graph, the static analysis method is faster and it may be
the only option if the complexity of the reachability graph exceeds the available resources. If the
state spaces are of comparable size, the reachability analysis algorithm may produce more efficient
synchronization code. Reachability analysis can also be used to verify that the synchronized
system is deadlock—free, or that it satisfies some time—dependent properties.

46

3.5 Formal Model Generator

The GenEx toolset produces integrated systems that satisfy given sets of receptive safety rules.
The synchronization does not ensure the correctness of the system with respect to any other
types of properties, except those that may be implied by the satisfied receptive properties. Model
checking of the system is necessary to verify the functionality of the synchronized system. If the
given safety rules have some real-time requirements, or if a set of safety rules is inconsistent
with the system, the synchronization may result in the existence of deadlocked states. Another
possible source of deadlocks is the circular dependence between components synchronized for
limited resource access properties. Liveness and real-time properties are not enforced, and may
be violated by the delays used to synchronize the components. The synchronized system can even
exhibit safety failures if the synchronization rules were incorrectly specified, or missing. Formal
system verification is a useful technique that can have a major influence on the production of
correct, functional and reliable systems. GenEx produces formal models of the system or its
subsystems to allow the users to verify the correctness of the generated synchronized systems
with respect to the implicit and explicit correctness criteria.

GenEx generates models of the synchronized system in the SMV [McM93] notation that allows
symbolic model checking; However, the complexity of the synchronized systems quickly grows
out of the range that can be verified in practice, even with symbolic model checking. We address
the system complexity problem by providing a flexible tool that generates different versions of
the model, and works with whole or partial systems. The model versions differ by their time and
memory requirements, and by the fidelity of system representation. The partial model generation
capability provides the possibility to verify properties on subsets of components; this capability
is very important for large systems where some properties may not depend on the behavior of all
components.

The toolset can generate two different models, one optimized for faster verification, and the other
that minimizes memory use and increases the probability that the model fits in the available
memory. The speed—optimized version models the component and safety rule transitions as
separate cycles, each resulting in a new system state. The number of reachable states using this
model is larger than for the actual application, but the state computation is simple. The result is a
memory—intensive but comparatively fast analysis, requiring the rules and fairness descriptions to
account for the transitional states by including the phase information. The memory—use optimized
version generates one state to represent every reachable system state, but the computation of each
state is a complex process having to account for the different phases for execution of component
and safety rule transitions. This model has the advantage that CTL formulae for the desired
properties only refer to the system behavior, but the computation of next state is more complex
thus requiring more time for the overall analysis.

3.5.1 Implicit Rule Generation
One of the main obstacles to the wider use of formal methods in industrial applications is the

expertise required to use them in practice. Our toolset also provides rule generation support
for some often required types of properties. These include local deadlock freedom, reachability,

47

immediate state succession, and liveness. These rules are generated for all components and all
states, and the user can pick those necessary and include them in the verification.

Deadlocks can involve components that are not referenced by a single rule, so the full system
may have to be checked. The complexity of industrial scale systems is probably beyond the
capabilities of SMV, so other approaches to deadlock detection are necessary. As in the case of
safety violation detection, a static method can be used to verify the existence of deadlocks.

Static deadlock search method is based on a search for cycles in the delay—dependency graph.
This graph can be constructed from the component and safety rule definitions, without combining
their behaviors, and is therefore of polynomial complexity. The drawback of this method is that
it can report unreachable deadlocks that prevent the user from using a deadlock—free system until
a more detailed analysis proves its correctness.

Together with deadlock verification, model checking tools can verify that the synchronized sys-
tem satisfies some reachability, liveness or real-time specifications. These are not receptive safety
properties, and cannot be enforced by our synchronization method. These properties are very
important for the correctness of a system, so even if enforcing them is not an option, their
preservation should be formally verified. Automatically computed synchronization conditions
that guarantee safety are also minimal in the sense that no acceptable states are made unreach-
able. This guarantees the preservation of all reachability and liveness properties, as long as they
are consistent with the safety properties of the system.! Model checking can be done with the
original components, and all the properties that can be satisfied without violating safety will be
preserved in the synchronized system.

3.6 Code Generator

Code Generator produces executable versions of all synchronized components, as well as interfaces
to the runtime support environment and links to the data processing code. Code is produced
in C, since this is the most commonly used language in the area of embedded control systems
which are the most likely targets for the application of GenEx synchronization. Main goals of the
code generation are the speed and the flexibility of the code, as well as a compact and intuitive
structure that can be mapped to the original specification and facilitates application testing and
debugging.

Generated applications have a simple structure. Every component and safety rule is implemented
as an independent set of procedures that represent the behavior of the corresponding finite state
machine. In Figures 3.6- 3.8 we show three procedures representing the main parts of the im-
plementation of a dining philosopher. The main procedure for an automatically synchronized
philosopher is in Figure 3.6. This procedure is called once in each system execution to select
an enabled transition for the component and execute it. This procedure merely selects a state—
specific procedure for the current component state , and then updates the currentstate variable

VA reachability property is inconsistent with the safety when the only way to satisfy the reachability requires
safety violations.

48

SMG_philol()
{
newstate= -1;
trans=0;
if (currentstate[MD_philo1]==_ST philol_in__thinking)
{SMG philol__in_thinking();}
if (currentstate[MD_philo1]==_ST philol_thinking eating delay_.1)
{SMG_philol_thinking eating delay_ 1();}
if (currentstate[MD_philo1]==_ST philol_in__eating)
{SMG_philol__in__eating();}
if (newstate != -1){currentstate[MD philol]=newstate; change=1;}

Figure 3.6: Main procedure for a philosopher component

with the resulting state.

The state—specific procedure for the philosopher in state THINKING is partially shown in Fig-
ure 3.7. It evaluates the enabling conditions of the component transitions in order of their
definition in the Prolog specification. The first transition whose enabling condition is satisfied
will be selected for execution, and the remaining transitions will be ignored. Delayed transitions
are first in the order of evaluation and, if any of them is enabled, the original transition to state
FATING will not even be considered for execution. The original transition, shown in the bot-
tom of the procedure, will be evaluated for execution when its completion would be safe, so it
only requires an evaluation of its original enabling conditions. When a transition is selected, its
destination state is selected as the new state for the component, and the action associated with
the transition is executed.

The action procedure shown in Figure 3.8 corresponds to the transition from the state THINKING
to state FATING. This procedure contains the effects of a specific transition on the system
variables as well as links to the data processing code. Action procedures control two types of
variables, the control variables defined in the component specification, and the variables carrying
state data for synchronization with other components. The illustrated procedure modifies two
variables used to represent the state of the first philosopher in the transition selection by other
components.? Another purpose of the action procedures is to link the data processing code
supplied by the user, and this action procedure allows the user to supply a procedure executed
when the philosopher is allowed to eat, probably including the picking of the two forks. The user
procedure must have a predefined name philol_eating_enter and must be accompanied by the
definition of a preprocessor variable PHILO1_EATING_ENTER.

Action procedures do not modify the value of the variables directly or immediately, they issue
requests for modification that will be stored in a buffer until all components complete their
transitions. Once all transition effects are accumulated, the new system state is computed by
applying them all in parallel. The effects are applied in the order of component evaluations, but

2Notice how the second transition in the state-specific procedure consults the variable representing the second

philosopher in state FATING.

49

SMG_philoi_in_thinking()
{
if ((sig1[SG_hungry1]l==1)&&(sigl[SG_hungry2]==1)&&
(sig1[SG_excl12_safety 0K]==1)&%&
((num==0) | | ((num== -1)&&(newstate== -1)) || (num==1)))
{newstate=_ST philol_thinking eating delay_1; SMG.action_ 24(); }
else
if ((sig1[SG_hungry1]l==1)&&(sigl[SG_hungry2]==1)&&
(sig1[SG philo2_ eatingl==1)&&
((num==0) | | ((num== -1)&&(newstate== -1)) || (num==1)))
{newstate=_ST philol_thinking eating delay_1; SMG.action_ 24(); }

else
if((sigl1[SG hungry1]==1)&&(sigl[SG_philo2__eating]==1)&&
((num==0) | | ({(num== -1)&&(newstate== -1)) || (num==1)))
{newstate=_ST philol_in_eating; SMG_action_ 25(); }

Figure 3.7: Procedure for philosopher in state THINKING

SMG_action_25()

{

#ifdefn PHILO1 EATING_ENTER
philol_eating enter();
#endif
set("philol_eating");
reset("philol_thinking") ;

}
Figure 3.8: Action procedure for transition from THINKING to FATING

since the controlled variable sets of components are disjoint, no conflicts will arise.

Since code is generated for individual component states and not for the combined system states,
the size of the generated code is smaller than the combined state space of the synchronized
system. It is roughly proportional to the sum of the sizes of all synchronized components, while
the system state space can be as large as the their product. This means that our method will
not lead to code explosion where the system implementation is as complex as its state space.

Components can be grouped for execution in arbitrary ways, in a variety of execution environ-
ments. The runtime support kernel currently exists for both single process, multiple processes
on a single machine, and heterogeneous distributed execution. Regardless of the execution envi-
ronment, the generated code includes the specification for all components and safety rules in the
system, thus making it possible to migrate or replicate components for reliability with minimal
cost. These activities are not supported by automated tools, but the code structure makes them

50

trivial for components without data processing dependencies.

3.7 Runtime Support Kernel

The goal of this research is production of a practical method for synchronization and integration
of concurrent software systems. The most important characteristic of the generated code is its
accurate representation of the formal model used in the analysis. Another important parameter
of practical use is the executable nature of the generated applications. For a generated system
to be considered practically useful, it has to be simple to extend or integrate with externally
generated code. The concurrent nature of the target applications may require execution on
separate machines, so execution support is needed for heterogeneous distributed systems.

Genkx addresses these concerns by providing an open linking interface,and heterogeneous dis-
tributed execution support. The structure of the executable code directly models the structure
of the specified system. Every component and receptive safety rule is represented by its finite
state implementation, independent from the nature of the execution environment. The simplest
execution environment is the integration into a single process, and we will introduce the structure
and execution ordering for that example. We will also show that the executable code correctly
implements the assumptions about the execution environment made in our formal model.

The generated code is structured as a set of concurrent finite state machines, controlled by the
execution support routines that perform the exchange of state data between components and
safety rules regardless of their geographic placement. The environment interface routines sample
the monitored variables once in every cycle, and update the system state information with their
values. Each finite state machine determines its enabled transition, based on the previous system
state and the resulting values of monitored variables, and executes it. The effects of the transitions
are accumulated until all transitions are done, when they can be broadcast throughout the system
as one atomic state change. While the execution of all component transitions does not necessarily
occur simultaneously their effect is equal to a parallel execution. The equivalence of the execution
environment with the synchronous transition model means that the synchronization mechanism
produced for this semantic model satisfies the safety properties in the implementation.

The receptive safety rules are implemented as finite state machines, with a similar semantics
to that of the components. Their transitions are executed in a sequence, but based on the
identical state data, and therefore equivalent to a simultaneous execution. The safety rules act
as observers, using the results of components’ transitions to determine their enabled transitions.
The transitions for the safety rules occur in a second phase, after the components make their
transitions and their effects are incorporated in the system state. The results of the safety
rule observer transitions are accumulated during their execution in every phase and, when all
safety rule observers complete a transition, their effects are propagated to the system state. The
results of safety rule observer transitions are a part of the system state and are available to the
components for use in determining the enabling conditions in the following execution cycle.

The overall execution structure is given below:

51

Initialize the component and safety rule observer states.
Initialize signals
loop
input monitored signals
execute component transitions
propagate effects to state data
output controlled signals
execute safety rule transitions
propagate effects to state data
end loop

This sequence is implemented by the execution support routines that call the components and
the safety rule observers to make their transitions. The execution support routines also take care
of propagating the transition effects to make them accessible to all components, and invoke the
user supplied input and output operations. This execution structure satisfies our assumptions
about the relationship between the components, signals and safety rules. It is also an extendible
execution structure, allowing the embedding of data processing segments in the component code
without violating the synchronous execution assumption.

3.7.1 Distributed Execution Support

In the case of distributed execution, we use Polylith [Pur94] to provide a heterogeneous commu-
nication mechanism that supports the synchronization and state data broadcasting throughout
the system. Polylith is a software bus implementation, providing platform independent high level
communication support. The structure of distributed applications is a star of synchronized pro-
cesses, with the control process in the center. The execution sequence is the same as in the single
process case, with an additional propagation phase occurring between the input and the com-
ponent transitions. This phase can be skipped if there are no properties of the limited resource
type that require the components to know other components’ states and monitored signals. The
distribution of components and safety rules between the distributed processes is left to the user,
with a set of common-—sense guidelines.

¢ Component locality. Every component should be in a process located on a host where
its inputs and/or outputs are.

¢ Grouping by shared data. Component clusters that share large sets of controlled or mon-
itored signals should be grouped. This also applies to components with strong interaction,
specially limited resource access rules that require more information for synchronization.

e Safety rule observer locality. Safety rule observers should be on a leaf node if all
components they constrain are on that leaf node. Other safety rule observers should be
located at the center node to minimize the communication time.

The most important parameter for distributed execution is the communication overhead, and it
depends on the geographical distribution of the network and on the amount of transmitted data.

52

Our distributed runtime support kernel transmits only the signal change vectors instead of the
entire system state information. Since only a part of the signals, hopefully a small one, is changed
in every cycle, the change vectors will be short and take a short time to transmit. The locality
of components and safety rules plays an important role in minimizing the communication cost,
because the systems can be customized to transmit only the parts of their change vectors needed
for synchronization.

3.8 Accessory tools

In addition to the main analysis, generation and runtime support tools, Genkx also includes a
number of script generation and syntax verification tools. The purpose of these accessory tools
is to simplify the synchronization and integration process, and to provide a filtering mechanism
that quickly detects simple inconsistencies within the specification.

3.8.1 Script Generator

The script generator takes the specification of the relationship between the receptive safety rules
and the components, and produces a script that includes all operations needed to verify the
consistency of the system and produce an executable system that satisfies the specifications. The
script consists of a list of commands whose invocation results in the generation of an executable
system implementation. The script contains invocations for both static and reachability analysis
of the safety, and the user chooses the method to apply for any given system. Some of the
commands in the script are independent and can be executed in parallel, reducing the time
needed to complete the integration.

The script generator produces a list of commands and files with Prolog predicates. The com-
mands are in the form of Prolog invocations using the files as command sources. Each Prolog
predicate file directs the interpreter to load the necessary predicate data and function specifica-
tions, process the data and output the result into a new predicate data file. The predicate data
files serve as the communication mechanisms between distinct integration phases. The script for
the synchronization of dining philosophers is given in Figure 3.9, and it contains the following
commands.

e The first script command verifies the correctness of the relationship between the components
and safety rules, and introduces the prototypes of delayed transitions into the components
where they may be necessary. It also combines all signals used by the components and safety
rules into a shared signal array that will be used for system state sharing, and generates
the prototypes of delayed transitions for all transitions that may cause safety violations.

e The second script command includes the verification of correctness of component descrip-
tions, where the transitions are verified for the proper condition list length, and similarly
for the appropriate effect list length. The safety rules are verified for the proper enabling
conditions. A safety rule transition must use valid component states for enabled transitions.

53

prolog <scripts/expand components.txt
prolog <scripts/global data.txt

prolog <scripts/rule philo_excli2.txt
prolog <scripts/rule philo_excl23.txt
prolog <scripts/rule philo_excl34.txt
prolog <scripts/rule philo_excl4l.txt
prolog <scripts/do_static_sync.txt
prolog <scripts/priority philo_excll2.txt
prolog <scripts/priority philo_excl23.txt
prolog <scripts/priority philo_excl34.txt
prolog <scripts/priority philo_excl4l.txt
cat philo_exp.spec >>philo_all_joint_uniq.spec
prolog <scripts/output_smv.model.txt
prolog <scripts/output_exec model.txt

Figure 3.9: Script file for the synchronization of four dining philosophers

Another type of verification is the receptiveness of the safety rule, where nonreceptive safety
rules are detected by their constraints on environment events or their time dependent na-
ture.

e The script also includes two sets of commands for computing the synchronization conditions.
The reachability analysis of component subsets is specified for each safety rule separately,
and each analysis may be executed in parallel on a different machine. The static analysis,
due to its lower complexity is combined into a single command for all safety rules.

e Another set of commands adjusts the delayed transitions to include the priority signals,
separately for each safety rule. This set of commands may also be executed in parallel.

e The original transitions are combined with the delayed transitions, thus producing a system
with synchronized components.

o A command for generating executable implementation of the system produces a system
specification in a SCR like form accepted by our code generator.

¢ A model generation command produces SMV models of the controller or subsets of its com-
ponents and safety rules. These models are useful in formally verifying that the generated
system satisfies deadlock freedom or other liveness properties.

3.8.2 Specification Analysis Tools
The specifications of components and receptive safety rules have to conform to a number of

consistency and correctness rules in order to produce an executable and reliable system. The
following rules are supported by automated verification tools.

e Correct signal lists. In the tabular specification language, the length of the enabling
condition list has to be correct for the transition to be included in the component. If a

54

transition is found with incorrect length of the condition list, an error report is generated
to the user. This analysis is completed before the synchronization process starts because
it usually implies that a component is functionally incorrect and the synchronized system
will be incorrect too.

Condition Overlapping and Completeness. Overlapping condition sets imply that the
component or safety rules are defined as nondeterministic finite state machines. While the
determinism can be imposed at runtime by giving higher priority to the earlier transitions
in the list, the reachability analysis is made more complex and more restrictive if different
nondeterministic paths lead to different safety violations. The completeness of the enabling
conditions in a given state is not a problem for the execution since a default self loop
transition is always enabled and preserves the safety. However, incomplete set of transitions
may be an indicator of incorrectly specified components and safety rules. Both overlapping
and completeness can be verified by our tools, and if either is violated the user gets a
warning documenting the violation.

Consistency between safety rules and components. The safety rules are defined as
finite state machines whose transitions are enabled by combinations of component states. If
a safety rule transition requires a state that does not exist in the component, that transition
is never going to get executed. Detection of undefined states in safety rule transitions is an
error and is reported to the user.

Unique signal controller. Every signal has at most one component controlling its value.
If multiple components control a single signal, the value of the signal may be inconsistent
with what the components expect due to their interleaved execution. The controlled signal
lists are computed as part of the integration and synchronization process, for code optimiza-
tion purposes. If some lists are found to intersect, that implies the respective components
share control of a single signal, and the user is informed by a warning.

Safety rule receptiveness. The receptiveness of safety rules is a precondition for suc-
cessful enforcement by component synchronization. The basic condition of receptiveness
is that the safety rule can not be violated by monitored signals. While all signals can be
used by the safety rules to enable their transitions, the transitions to reject state must be
enabled only by combinations of component states. Rejecting transitions that use signals
in the enabling conditions are reported as errors.

Time dependent safety rule detection. The synchronization process produces delayed
transitions for components when their transitions lead to states that may activate a rejecting
transition by some safety rule. This synchronization process effectively uses a one step
lookahead to detect transitions that immediately cause safety violations. A possible problem
with this enforcement strategy is the possibility that the safety rule observer will arrive at
a state with the components already enabling its rejecting transition. Delaying components
in this case will not help the enforcement of the safety because the only way to prevent a
violation is to force a component out of the state that causes the violation. The violation
can be prevented by a timely action that cannot be enforced by delays, so this property is
potentially time dependent. Time dependent safety rules are detected by finding transitions
that can be enabled by conditions that enable violating transitions in the next safety rule
state. Detected time dependent rules are reported as warnings, since the time dependent

55

safety violations may not be reachable in actual executions. If they are reachable, they will
make the safety rule monitors reach their reject states and will be reported at runtime. j

3.8.3 Visualization and Debugging Tool

In addition to the generation of code for the application, the code generator also includes a
placement routine that produces the drawing coordinates for the system visualization. The
components are represented as sets of states connected by transitions on a two—dimensional grid.
The states are grouped in a way to avoid intersection between transitions in distinct components.
The generated visualization information includes state positions in the grid, state adjacency as
represented by transitions, and state names that identify individual states. The set of system
signals is also represented graphically as a list of boolean switches.

The generated code supports the integration with a visual animation tool that allows interactive
testing and debugging. The tool represents the system at the level of formal components, safety
rule observers and signals, and provides an intuitive and familiar model of execution. This visu-
alization tool is based on the xtango [Sta90, Sta92] algorithm animation engine, and is embedded
in the execution support kernel.

The animation tool represents the components and safety rule observers as graphs, showing their
current and previously visited states. The signals are represented as switches and interactively
modifiable, to allow the user to control the system execution. This tool can be used both as a
prototype for visualizing and understanding the interactions between the components, and as an
interactive debugger allowing low—level control over the execution. It can be linked to integrated
applications that include embedded data processing, and can be used in parallel with a standard
debugger to analyze the data computation aspect of the application.

Our visualization tool has some capabilities that are not present in standard debuggers, but
are very useful in formal finite state-based systems. The finite state space makes it possible
to reconstruct previous states by backtracking the execution, without loss of information or
inconsistencies in the state data. We can single step the execution of the control aspect of an
application both forward and backward, to memorized previous states.> Execution sequences can
be memorized, and rerun under different conditions to analyze the system reactions to different
environment behaviors.

The capability to reconstruct previous states provides a powerful technique for reconstructing the
causes of some undesirable system behavior. The integrated system enforces the given receptive
safety properties, but it may violate some real-time and liveness properties in the process of
synchronization. Fven receptive safety properties may be violated if the safety rules used to
model those properties are incorrect or inconsistent with the components. Those failures can be
detected during debugging, and the executions can be traced backwards, reconstructing previous
states until the root causes of a violation are detected.

*The reconstruction of the component states and signal values is reliable, because it is based on memorized
traces. If an application is already linked with data processing code, it may contain some implicit internal state
data that will not be reconstructed. For those applications, the reconstructed control states are correct and can
be used for tracing backwards, but going forward again may lead to state corruption due to the possible influence
of data processing code on the interaction.

56

3.9 Summary

Genkix toolset consists of a number of analysis, generation and visualization tools that support
the design of synchronized concurrent systems that enforce the requirements given as receptive
safety properties. Genkix tools simplify the specification of system components by reducing the
need for explicit synchronization. The automated synchronization of components liberates the
designer from a conceptually simple task with a potential for high combinatorial complexity. The
code generation and runtime support library make the resulting application easy to replicate
or relocate to a different execution environment. Finally, the visualization and debugging tool
provides a very powerful intuitive interface to verify that the behavior of the synchronized system
is what the user intended it to be.

57

Chapter 4

Dining Philosophers

The dining philosophers is one of the classic synchronization problems. We have shown in the
previous chapters how the philosopher behavior and interactions can be specified and automat-
ically synchronized to produce a functional and correct implementation of this system. In this
chapter we will show some details of the system specification and of the computation of synchro-
nization conditions. We will also explain how our method avoids deadlocks and starvation in the
synchronization for this and any other exclusion based system.

Dijkstra introduced the dining philosophers problem [Dij] and analyzed its mutual exclusion
requirements and possible implementations. A group of n philosophers is alternatively thinking
and dining at a round table, but they are restricted by the lack of forks at the table. There are
only n forks at the table, one between every two plates and every philosopher can eat only when
both adjacent forks are available. The purpose of this system is to synchronize the philosophers
so they can all eat, in some order since the adjacent ones cannot do it simultaneously. This
system has a progress requirement specifying that any philosopher that becomes hungry will
eventually be allowed to approach the table, take both adjacent forks and eat. This implies that
the philosophers must avoid deadlocks, livelocks, and starvation of individual philosophers by
their neighbors.

4.1 Classic Solutions

Dijkstra gives two algorithms that make the philosophers synchronize their accesses to the table,
and satisfy the progress property. He also modeled the system as a polygon where nodes represent
the philosopher and edges represent their mutual exclusion requirements; this is a simple and
intuitive model of the system. One algorithm uses global mutual exclusion to isolate the critical
actions where the philosophers access shared data structures that hold the ordering information
in the form of a matrix of dependency edges. The second algorithm uses distinct semaphores to
enforce mutual exclusion between adjacent philosophers. The semaphores can only be accessed
in a predefined order to prevent deadlocks. These algorithms avoid starvation by enforcing either

58

FIFO access in order of requests, or 1-bounded overtaking for some pairs of philosophers. This
property specifies that one philosopher can eat at most once while an adjacent philosopher is
hungry. Both the 1-bounded overtaking property and FIFO access are proper subsets of the
realizable part of the starvation freedom property, and thus limit the execution to unnecessarily
restricted patterns. The limitation is evident in the fact that a philosopher that is still waiting
for some resources can be the only one blocking another philosopher. If the philosophers take
control of the resources atomically, the resources are only taken when they can be immediately
used.

Some later approaches to this problem use the forks as the synchronization mechanism whereby
one philosopher can take the fork, and the other adjacent philosopher is then blocked waiting
for that fork to become available. The forks are essentially equivalent to the semaphores that
enforce the mutual exclusion of pairs of adjacent philosophers in the second Dijkstra’s algorithm.
The explicit nature of the forks used as a synchronization mechanism leads to the analysis of
their ordering, and the impact of that ordering on the system execution. Synchronization with
sets of semaphores has one inherent problem in the occurrence of deadlocks whenever the access
patterns to the semaphores create a closed circuit. If all philosophers reach for the fork on one
side first, and then for the other one, they could potentially all pick the first fork simultaneously
and get deadlocked. The deadlock occurs because no forks are available, and every philosopher
is waiting for another fork, thus not releasing the fork they are holding. The existence of this
deadlock state implies that the progress property is not satisfied by the system.

One type of solution to this is the introduction of a global limitation on the number of philosophers
that may be trying to pick the forks and eat at the same time. It has been shown that by allowing
at most n — 1 of the philosophers to attempt to eat, the cycle in semaphore access can never be
closed because at least one philosopher is always out of the critical section. This limitation on
the number of philosophers in the Dining Room is usually implemented in the form of a counting
semaphore with the capacity n — 1, that the components(philosophers) access before trying to
reach for the forks(local semaphores), and release after returning the forks . A problem with this
solution is the potential for the serialization of accesses because when n — 1 philosophers all have
one fork, only one of them can pick another and eat. When the philosopher returns the forks and
exits the dining room, only one other philosopher is allowed to pick its two forks and eat. The
probability of the occurrence of serialized access grows with the higher access frequency, making
this design a serious bottleneck. Reducing the number of philosophers allowed in the dining room
does not solve this problem and might not even alleviate it. All the philosophers allowed in the
dining room may still be serialized, and they block the philosophers whose forks are available
from entering the dining room.

Another type of solution for this problem is based on the breaking of the symmetry between the
philosophers, by making one or more philosophers reach for their forks in the opposite order.
This way at most n — 1 forks may be picked simultaneously, and one fork is always available
or some philosopher is eating and will make both forks available when done. By reordering the
semaphore access for one philosopher, the cycle in access to the semaphores is broken and no
further deadlocks can occur. The shortcomings of this solution must do with the maintenance
of different implementations for the same component behavior, and the serialization of accesses
under heavier load. To address the serialization issue, the even/odd philosophers need to access
their forks in opposite order. This produces a system with reasonable performance, but with

59

PHILOSOPHER mode([philo],[[hungry]]).
¢ init([philo],[thinking] ,[[1])-

©Hungry/ Pick_Forks © trans([philo] [thinking] [eating] [[t]]).
Thinking Eating . o o
"Hungry / Drop. Forks trans([philo],[thinking],[thinking] ,[[]]).
' - trans([philo],[eating],[thinking],[[f]]).
trans([philo],[eating],[eating],[[t]]).

a) b)

Figure 4.1: Description of one philosopher

some problems related to its configuration and maintenance.

These approaches show the tradeoffs that sometimes must be made between the simplicity and
elegance of a system design and the performance of its implementation. The cause of the prob-
lems in this case is the inappropriate level of atomicity for the synchronization mechanism. The
semaphores can enforce mutual exclusion between two philosophers, but every philosopher has
to access two semaphores to synchronize with both of its neighbors. Since two separate synchro-
nization calls are needed, the process is not atomic, and the interleaving with other components
becomes critical. To keep the interleaving controlled and acceptable, we sometimes need to
introduce arbitrary asymmetrical restrictions on individual component behaviors.

4.2 Automated Synchronization for Dining Philosophers

We present a different approach to synchronizing the dining philosophers, one based on automated
synchronization and with the appropriate atomicity for the problem. In our case the forks are
no longer used as the synchronization mechanism, they are merely the limited resource that is
the cause for the synchronization. The synchronization mechanism is produced by analyzing the
component behavior with respect to the specified interaction properties. The synchronization for
limited resource access properties was described in Section 2.8.1, using the mutual exclusion of
two philosophers. We will quickly repeat the results of that analysis and explain how they apply
to the integrated system with synchronization for multiple properties.

The specification of one philosopher component is given in Figure 4.1, using the same FSM nota-
tion as in earlier examples. The behavior of a philosopher consists of two states, THINKING and
FATING, and the transitions between them are caused by the hungry signal for the philosopher.
The transition from THINKING to FATING is enabled when the philosopher is hungry, and
it includes the actions needed to pick the forks; since forks are not used as a synchronization
mechanism, they can be omitted from the system specification.

This specification represents the functional behavior of the philosopher, and it has to be modified
to satisfy the mutual exclusion requirements of the system.

Since each philosopher needs to have both adjacent forks to eat, two adjacent philosophers can

60

PHILO EXCL_12

!

Philol = Eating & Philo2 = Eating
SAFE_OK REJECT

Figure 4.2: Philosopher mutual exclusion

Delay2 = (philol = eating) V (philo3 = eating) V
(philol = thinking A hungryl A —ndet_prio21) Vv
(philo3 = thinking A hungry3 A ndet_prio_32)
Proceed2 = = Delay?2

Figure 4.3: Compound enabling conditions for the second philosopher

not eat simultaneously. We use this restriction to create the receptive safety properties that
the system must satisfy. The mutual exclusion property for two adjacent philosophers is given in
Figure 4.2, and it allows at most one of them to be in the FATING state at any time. The mutual
exclusion property is asserted for every pair of adjacent philosophers, and this set of properties
makes the system’s global interaction specification. We can use these components and receptive
safety properties to specify the system exactly as described in Dijkstra’s original model; we assert
the desired mutual exclusion rules for every pair of adjacent philosophers as edges in the polygon
model.

The safety violations can occur when one philosopher is FATING and its neighbor attempts to
do the same, or when two adjacent philosophers get hungry at the same instant, and execute
the transition to FATING state simultaneously. The following synchronization conditions are
produced to delay the second philosopher and prevent it from violating its mutual exclusion
property with the first one.
Delay(1) = (philol = eating) A hungryl
Delay(2) = (philol = thinking) A hungryl A —ndet_prio_21

Similar synchronization conditions are computed for the mutual exclusion of the second philoso-
pher with its other neighbor, and for all other philosophers and their mutual exclusion constraints.
When the philosopher is synchronized with both adjacent philosophers, its delayed transition will
be enabled whenever one of the adjacent philosophers is either eating or has a higher priority
and is ready to make a transition to the FATING state. The transition to the FATING state
is enabled when all delay conditions associated with it are false. The compound enabling condi-
tions for the second philosopher are given in Figure 4.3, and the delay condition shows how all
reasons for a delayed transition can be aggregated into a single boolean expression for evaluation
purposes. Computing the condition that enables the philosopher to proceed could be a complex
task in the case of a component with many states and many interactions. Fortunately we do
not need to produce the boolean expression in DNF form since, for execution purposes, we can
enable the transition whenever the delay condition produces the value false.

61

4.2.1 Liveness of the Synchronized Philosophers

The synchronized philosophers satisfy the safety rules used to compute their synchronization
conditions. The safety rules specify that the adjacent philosophers must eat at distinct times,
and a hungry philosopher waits for its neighbors to finish eating. Beside the safety of the system,
we want to verify its consistency with some liveness properties.

Liveness properties specify that a system eventually reaches some desired state starting from a
state that satisfies its preconditions. The progress property requires that the any hungry philoso-
pher will eventually be allowed to eat. Two conditions may occur that prevent the component
from ever reaching a reachable goal state. The component can get involved in a deadlock where
a number of components are blocked waiting on each other to release some resource. Another
problem is the possibility of starvation where one component infinitely waits for a resource that
will not become available.

Deadlock states occur as a result of the components requesting resources nonatomically, and
in different orders. If component accesses to some resources form a cycle, then deadlocks are
possible. In the case of dining philosophers, every philosopher atomically requests to be allowed
to the table, at a time when none of the adjacent philosophers is. Since the resource (license to
eat) is acquired atomically, no cyclic request dependencies exist, and deadlock is impossible.

The starvation problem may occur when a component competes for a resource with a group of
components that do not require exclusive access between them. Some components in the group
can keep the resources locked for the group while others release them, perform noncritical tasks,
and return to the critical section. This way each component in the group sometimes exits the
critical section, but they as a group can block the access to the critical resource forever. In the
case of dining philosophers, starvation occurs when two philosophers deny access to the table to
the philosopher between them by always overlapping their accesses to the FATING state.

In our implementation of the dining philosophers, this pattern is possible for finite executions,
but the starvation can not be indefinite because the nondeterministic relative priority signals
implement what amounts to extreme fairness. Extreme fairness is defined in [Fra86] [Mai93]
and it applies to systems with probabilistic choice of possible executions. When a path to the
desired state has some finite probability from an infinitely often occurring state, the desired
state is eventually reached along all paths. Extereme fairness is also required for the exit of the
philosophers from the critical section because strng fairness there is insufficient to guarantee the
starvation freedom. Two philosophers that enter the critical section in overlapping intervals can
starve a philosopher between them while their exits from the critical section clearly satisfy the
strong fairness.

The fairness assumptions needed to prove the starvation freedom are that the hungry signals are
independent from the states of other components in the system, and that when a philosopher is
FATING, there is a minimal constant probability p that the hungry signal becomes false during
any cycle. This assumption is more restrictive than the weak and strong fairness assumptions
about the components leaving the critical section, but this restriction is required to satisfy the
starvation freedom when philosophers do not reserve one fork waiting for the other. The assump-
tion about the nondeterministic relative priorities is that they have a 0.5 probability of giving

62

priority to any of the referenced components.

Theorem 4.1 (Hungryl = true) leads—to (Philol = Fating)

Proof: Assume that the inverse of the statement holds, namely that there is an infinite path
where (Hungryl = true) holds, but (Philol = FATING) never occurs. If the philosopher is in the
state THINKING in the first state on this path, its transition to THINKING_DELAY is enabled

and immediately executed. Thus the philosopher has to be in the state THINKING_DELAY with
(Hungryl = true) for an infinite period.

The only thing preventing the philosopher from advancing to the EATING state is the fact that
at least one of its neighbors is eating. The probability that the eating neighbor stops being hungry
in the next state is p, and the probability that the other neighbor is allowed to enter its eating
state before Philol is 0.5. There is a p/2 probability that Philol can advance to its EATING
state without violating the exclusion properties. On an infinite execution, the probability of this
transition being taken at least once is 1. Therefore a state with philosopher in EATING state
s reachable, contradicting the assumed existence of an infinite starvation path. This proves that
our design for the dining philosophers system is starvation free.

4.2.2 Explicit Starvation Freedom Enforcement

The guarantee of starvation freedom based on the nondeterministic priorities is a theoretical
construction, but for practical purposes we may need a more specific restriction on the period
a philosopher will wait before it is allowed to eat. That is exactly what the original Dijkstra’s
algorithms do by enforcing the receptive properties of FIFO and partial 1-bounded overtaking
for the philosophers. These properties are not documented anywhere as a part of the system
specification, thus making it impossible to reason about the system behavior and performance
without analyzing the implementation code. GenEx allows the explicit specification of these
properties, and automatically implements them by synchronizing the components.

The starvation freedom property is implied by the receptive safety properties specifying FIFO ac-
cess and 1-bounded overtaking. We can assert the 1-bounded overtaking property as a constraint
on the interaction between any pair of adjacent philosophers. This makes the starvation freedom
explicit and limits the wait for those philosophers. The waiting period is obviously not defined as
a function of specific timing intervals because that would make it a non-receptive property. To
make the rules receptive, the interval that one philosopher can spend waiting should be specified
in terms of controlled events occurring in the system. In the case of 1-bounded overtaking, the
events of interest are the access to the state FATING by the adjacent philosopher.

The 1-bounded overtaking property is given in Figure 4.4. This safety rule is activated when
the second philosopher is hungry, and the first one is eating. After the first philosopher exits the
FATING state, the safety rule goes to the state DONE_ACCESS where it rejects repeated access
to FATING by the first philosopher. The safety rule leaves the state DONE_ACCESS once the
second philosopher reaches the FATING state and the starvation is avoided. Similar rules can
be imposed for other pairs of philosophers to specify the interleaving of their eating.

63

hungry2 & Thinking2 & Eatingl

IN_ACCESS

Thinkingl

Eating2

Eatingl

DONE_ACCESS REJECT

Figure 4.4: The 1-bounded overtaking property for a pair of philosophers

4.3 Complexity Growth for Dining Philosophers

The complexity of the state space for the dining philosophers is an exponential function of the
number of philosophers, with up to 3Vrrite states [YY91]. Every philosopher has 3 possible states,
where the second state is reached when the philosopher takes one fork. In our implementation,
every philosopher has only two states related to their functional behavior, and the delayed state
that is added to the components is reachable when a component is waiting to access the critical
section. The analysis of this state space is clearly not a viable way to find the safety violations
and compute the synchronization conditions that prevent them.

The analysis of the dining philosophers implementation does not require full state space traversals
as was shown by Young and Yeh [YY91, Yeh93]. Their method extracted the regularity of the
philosopher definition to reduce the complexity of the part of the state space that it had to
analyze, and limited its growth to a linear function of the number of philosophers. Constrained
expressions [ABCT91] provide another way of analyzing the behavior of the philosophers where
the time requirements are a linear function of the number of philosophers.

Receptive safety rules in the dining philosophers example are defined for pairs of components,
so only those components can violate the rules and need to be analyzed and modified to make
the system satisfy the properties. For every safety property, there are two components whose
behavior must be analyzed in order to enforce the safety, and all other components can be ignored.
The reachability graph for mutual exclusion enforcement for any pair of philosophers consists of
at most 9 states since each philosopher has 3. Every accepting state in the graph has an outgoing
violating transition, so every state must also be analyzed using the static analysis algorithm. The
analysis must be performed on all pairs of adjacent philosophers, so the total complexity of the
analysis needed to enforce the mutual exclusion is:
N _States = 9% N_philo

The same complexity of the reachability and static analysis is a result of the simplicity of the
components and safety rules that makes every possible violation reachable, and every reachable

64

state a potential source of safety violations. For more complex properties, the difference between
the reachability and static analysis becomes much clearer. The state space for the reachability
analysis of 1-bounded overtaking could have up to 36 states since the safety property has four
states including the REJFECT. There are less than 15 actual reachable states, and only two of
them are predecessors of safety violations. The safety violations occur when the first philosopher
enters the FATING state while the safety property is in the DONFE_ACCESS state and the
second philosopher is in state THINKING_DELAY. Using the static analysis, only the sources of
possible safety violations are examined, and in that case we can see that the current state of the
second philosopher is irrelevant for the safety violation, and that only the FATING by the first
philosopher with the safety rule in state DONE_ACCESS can cause a violation. The complexity
of the static analysis in this case is about 5 times lower then the reachability analysis.

This reduction in complexity is the result of the independence between all mutual exclusion
properties. The symmetric nature of the problem was not taken advantage of and every pair of
components is synchronized by performing the analysis of their behavior. Since all components
and their interactions are identical, the synchronization conditions for every component are sym-
metrical, each defined based on the states of the adjacent philosophers. The analysis of a single
pair of philosophers produces all the information that is necessary to compute the synchronization
conditions for this system. The synchronization conditions can be replicated for all other pairs of
components, using replication and string substitution to generate the synchronization conditions
for all philosophers. The complexity of the analysis for this system is a constant value since only
one pair has to be analyzed. This approach however still requires linear time complexity because
the new delayed transitions must be generated for every component.

The dining philosophers problem can be generalized to include mutual exclusion constraints on
an arbitrary adjacency graph. The process algebra and constrained expressions approaches that
use the regularity of the dining philosophers to reduce the complexity could fail because of the
irregular structure. The GenEx approach would still work linearly, whether by analyzing all pairs
that require mutual exclusion, or by analyzing one pair in constant time and then replicating the
synchronization conditions for all philosophers.

4.4 Summary

We have shown how the dining philosophers system can be implemented using the GenEx toolset.
Our implementation is very natural and simple to construct from the specification of the required
mutual exclusions. The automatically generated synchronization is atomic and therefore the sys-
tem is deadlock free. The nondeterministic priorities enforce extreme fairness for the component
actions, and the implemented system is starvation free. We have also shown how additional
receptive safety rules can restrict the interaction to enforce stronger progress properties.

65

Chapter 5

Production Cell Controller

In this chapter we will give an example of the use of our method in an industrial application. This
example will show how the complex behavior of the system can be decomposed into individual
component behaviors and interaction between pairs of components. System requirements include
nonreceptive safety, bounded reaction time and fault tolerance. We give a receptive representation
of these system requirements and show how they are enforced by automated synchronization. The
automated synchronization process analyzes the system behavior and modifies the components
to make them enforce the specified receptive properties. The analysis is static and limited to
subsets of components, and the generated implementation enforces all properties by allowing
each component to locally determine its actions based on the system state information.

The Production Cell system was the object of a large case study involving over a dozen lead-
ing formal design and verification methods [LL95]. The goal of the case study was to produce
a controller for the production cell and to verify its correctness. Most of the implementations
limited themselves to the implementation without verifying its correctness. The main obstacle
to the verification of this controller is that the state space for the system was estimated at fifty
million states. This implies that the verification process entails excessive computational com-
plexity. We will show how, using our method, the production cell controller can be automatically
generated by the integration of individual device controllers. The components of the controller
are modified by adding the automated synchronization that enforces the receptive properties of
the system. The synchronization conditions are computed to satisfy some of the receptive safety
requirements, thus making their verification unnecessary. More importantly, the analysis needed
to automatically synchronize the components of the production cell controller is dramatically
lower than the analysis that would be required for the verification of the same properties.

A second Production Cell system was proposed as a subject for further study, with somewhat
modified components and more complex requirements including fault tolerance and runtime re-
configuration. We use the original production cell system to introduce the problem and show
one design of the controller. We use the second production cell system to show how the system
can be evolved to satisfy nontrivial changes in specifications and requirements. The controller
that we designed for the second production cell required minimal modifications of the system

66

DEPOSIT BELT

ARM2
CRANE
ROBOT
PRESS
FEED BELT ARM

ROTATING TABLE

PRESS1

Figure 5.1: The Production Cell system

components, allowing a high level of reuse.

5.1 Production Cell System

The production cell system in Figure 5.1 is a medium complexity industrial system with safety,
reliability, real-time and liveness requirements. The goal of this system is to transport metal
blanks to a press to be processed, and then transport them out of the processing system. For
simulation purposes, the system is implemented as a closed loop where processed metal blanks are
returned to the entry point. The system contains six devices that respond to control directives
from a controller and return sensor data about their position and about detection of metal blanks
on the conveyor belts. The devices are: 1) a feed belt that brings the new metal blanks and
deposits them on the rotating table, 2) a rotating table that positions the blanks to be picked up
by the robot, 3) a rotating robot with two extensible hands for loading and unloading the press,
4) a press that processes the metal blanks deposited by the robot, 5) a deposit belt where the
robot places the processed metal blanks, and 6) a traveling crane that closes the loop by bringing
the blanks from the deposit belt to the feed belt. A controller for this system has to direct the
behavior of each device keeping their combined behaviors within the set of specified properties.

The system has two types of safety requirements: 1) mobility restrictions for individual com-

67

ponents, and 2) collision and blank loss avoidance requirements that describe safe interactions
between system devices. The system can be controlled by moving one device at a time to com-
plete their part of the processing, so the system is realizable. Since the system is realizable, there
exists a receptive representation of its behavior, and of every individual required property. When
the properties are formulated in receptive form, each of them can be satisfied by controlling the
components it references. The property receptiveness allows the partition of the analysis and
integration process.

The goal of the controller is to synchronize the devices to accept the blanks, press them and
deposit the pressed blanks on the deposit belt, while restricting their movement to safe ranges
and avoiding collisions. A single component that controls this system would suffer of insufficient
parallelism of execution and the resulting inefficiency, or its size and complexity would make
it infeasible to design. A simpler and more reliable way to control this system is using simple
controllers for each device, integrated for safe and reliable interaction. Every component operates
its assigned device at peak performance, while respecting the constraints that guarantee the safe
execution of the system. This architecture allows us to take advantage of the parallelism in the
system without having to exhaustively analyze all system states.

Some devices have individual mobility restrictions that specify the extremes of their movement,
and exceeding those limits damages the devices. They also have positioning requirements that
specify their position where interaction with other devices will succeed. In some cases, like the
rotating table, the extreme safe elevation corresponds to the position required for the robot to pick
up the blank. Mobility restrictions and positioning requirements are of real-time nature, because
the controller has to react and stop a moving device within a predefined time interval (immediately
for the rotating table). The safety of the system is also violated by component collisions and by
the inappropriate handling that results in metal blanks being dropped. Collisions occur when
two machines work in the same area, while metal blanks can be dropped when the machines are
not in compatible states for transferring them, e.g. when the feeding belt unloads a blank with
the rotating table in a high or diagonal position. These safety violations are time—independent
and depend only on the component interaction.

The time—dependent requirements for the components to stop their movement in desired positions
must be implemented within the component specifications, because they are not of the receptive
nature that can be enforced by our synchronization mechanism. Time—-independent safety prop-
erties are specified in the receptive safety rule form, and asserted as constraints on the behavior
of the components. We analyze the components and receptive rules using GenEx to produce a
synchronized and executable controller application.

The system also has a liveness requirement that every blank that enters the system eventually has
to be processed. This liveness requirement is the highest end—to—end functional requirement of
this system; its satisfaction makes this system useful. The liveness property can not be formulated
in the form of a receptive safety property, and logically can not be enforced using component
delays. We will introduce one pattern for the specification of components and safety rules that
create no deadlocks and consequently preserve the liveness of the system.

68

5.1.1 Components

The desired behavior of the individual machines is outlined in the task description of the produc-
tion cell system. We designed our controller components to satisfy those behaviors by initiating
and halting their movement in the correct sequence and in a timely fashion. The timeliness
applies in particular to the enforcement of real-time requirements for stopping a machine when
it reaches a desired or extreme position. These properties must be satisfied by the component
design because they can not be enforced by imposing additional delays.

Fach individual component is defined as a finite state machine(FSM). Every transition has an
enabling condition that activates it, and the completion of the transition may result in changes
to some system variables. Generally, the components use monitored environment variables for
enabling conditions, and change the signals that control the movement of the devices in the
system. Some of the controlled signals serve as system memory, to help relate later decisions to
previous behaviors. Figure 5.2 shows the finite state machine specification of two components.
We use a single component to control every device except the robot that is controlled by three
interacting components, one for each arm and one for the base.

The states embody the decision making properties of the components, where the selection of a
transition determines the future behavior of the component. Transitions represent the component
actions, taking them from one state to another and changing the values of the controlled signals in
the process. The components in our system are designed to perform two functions: they specify
the finite state sequences of a device movements, and they implement the time-dependent aspect
of control requirements, such as mobility restrictions and correct positioning.

Press sensors distinguish three of its positions as interesting for the system behavior. When the
press reaches its high position, a loaded blank is successfully pressed, and the press opens so that
the blank can be picked, and closes to its middle position to be loaded with a new blank. Metal
blanks are loaded on the press by the first robot arm when the press is in its middle position,
and the second robot arm picks processed blanks from the press in its low position. The press
controller initializes the press by bringing it to the middle position, and then requires a cyclical
sequence: close to high position, stop, open to low position, stop, close to middle position, stop.
The press may be in any initial position, including the undetectable ones, so the controller has
to close the press to detect its position and then guide it to the middle position. The behavior
of the press controller is illustrated in Figure 5.2. The transitions that stop the press movement
satisfy the time dependent requirements for correct press positioning and respect for maximal
movement range.

The behavior of the robot, as specified in the production cell study is as follows: first arm picks
a new blank from the rotating table, second arm picks a processed blank from the press, second
arm drops the blank on the deposit belt and finally the first arm drops its blank on the press.
This behavior can be executed while the robot rotates counterclockwise from its rightmost to
its leftmost position. The robot has three actuators, one for the base rotation and two for arms
extension, and most of the time only one of them can be active. Robot rotation while any of the
arms is not completely retracted may lead to a collision between the robot and the press. These
signals are closely related, according to the component definition guidelines given in section 2.9,
so the robot could be controlled by one component. The signal dependency is restricted to mutual

69

| ROBOT ARM 1

RET_POS/ STOP ;/ EXTEND, Mag_ON EXT_POS/ STOP
ARM_TABLE

-/ RETRACT -/ RETRACT
EXT_POS/
STOP, Mag_OFF -/ EXTEND RET_POS/ STOP
ARM_PRESS LOADED RETR_LOADED
PRESS
SENS on/- -/ CLOSE HI_POS/ STOP
MID_LOADED CLOSE_LOADED

MID_POS/ STOP -/ OPEN

-/ CLOSE SENS off /- LOW_POS/ STOP
= LOW_LOADED = OPEN_LOADED

Figure 5.2: Components of the Production Cell system

exclusion, i.e. the rotation and arm extension signals are never active at the same time. Mutual
exclusion can be enforced on separate components by the safety rules, so we can specify the robot
using three simpler components instead of one complex one.

The arms alternatively extend and retract, turning the magnets on and off when they need to pick
or drop a blank. The arm controllers control both the arm extension and the magnet activation
because the magnets are trivial to include as part of arm behavior. The behavior of the arms
is simple, extracted from the robot behavior specifications. Both arms initialize by retracting to
allow the robot to rotate to the position where the first arm points to the rotating table. The
first arm extends with magnet on to the table and then extends again to reach the press; upon
reaching the press the magnet is deactivated thus placing the blank on the press, and the arm is
retracted to allow rotation back toward the rotating table. The second arm first extends toward
the press with activated magnet and then retracts first to the deposit belt where the magnet is
deactivated, and then to its minimum extension where it allows robot rotation. The behavior of
the robot arms is shown in Figure 5.2.

The robot base rotates, positioning the robot arms in a way to interact with the press, rotating
table or deposit belt. The robot base operates in a predefined cycle: rotate clockwise until arm1
points to table, stop, rotate counterclockwise stopping when arm2 points to press, and when
arm?2 points to deposit belt and finally when arm1 points to press. This control sequence is not
appropriate for the initial state when the press is empty, so the second arm has nothing to pick.

70

ARM1_PRESS1

Press = Mid_Empty

Arml = Extend

Arml = Extend

PRS_READY

Press = Close

Press = Close

UNLOADED

Figure 5.3: One safety rule for the Production Cell

Table=Rise_Inline

Arml = Retracted

Arml = Extend

The initial rotation of the base will skip the positions where the second robot arm can interact
with other devices, so that arm will be idle until the next rotation when the press is already
loaded. The robot base uses a controlled variable that initially indicates the press to be empty,
and is modified to indicate a loaded press after the first rotation. When this controlled variable
is false, the robot base only stops in the states where the first arm picks and drops a blank, and
when it is true it stops in all selected positions.

5.1.2 Safety Rules

The component descriptions are completely independent, each component responding only to the
device sensor inputs. However, it is clear from the description of the system that the components
must be synchronized to pass the metal blanks. If the robot arm extends while the press is
above its middle position, the two devices will collide, and if it drops a metal blank while the
press is loaded, the two metal blanks will collide. Another requirement violation occurs if the
robot drops the blank while the press is too low, because that makes the fall unsafe. These
components must be synchronized to satisfy the requirements violated by the previous scenarios.
These safety violations are unobservable by the controller components because the controller
only receives information on specified device positions, while a collision may occur when both
devices are in the indistinguishable intermediate positions. However, the safety violations in the
physical system are caused by previous decisions by the controller and its components. We need
to map the safety requirements to decisions of controller components in order to integrate them
into a safe and reliable system. The press waits for the robot arm to deposit the metal blank
and retract, than it closes to process the blank. The robot waits for the press to return to its
middle position when the new blank can be deposited. This informal description of the desired
interaction between the components is easily formalized into a receptive safety rule requiring that
behavior.

The safety rule ARM1_PRESS in Figure 5.3 specifies the interaction between the press and
the first robot arm. The first robot arm loads the press when it is empty and in its middle
position. The robot arm may collide with the press if it starts to extend before the press stops
in its middle position, or if the press starts to raise before the robot arm retracts after loading

71

it. The safety rule specifies that the robot arm has to wait for the press to stop in its middle
position before extending, and that the press stays in that position until the robot arm retracts
after dropping the blank on the press. The rule prohibits the press from closing until the robot
arm loads it and retracts, and it prohibits the arm form extending until the press is stopped in
its middle position where it can receive a new blank. Since the rule restricts only component
actions, it is a receptive safety property, and can be enforced by GenEx. Note that the rule
imposes no constraints on the component actions that stop the device movement because these
transitions enforce the time—dependent aspects of behavior. Also, every state of the safety rule
constrains only one of the referenced components. The other component is allowed to proceed,
and its actions will eventually lead the safety rule to a state where the constraint is removed and
imposed on another component. This is the pattern of safety rule definition that we introduced
in chapter 2.

This receptive safety rule enforces what is basically a handshaking algorithm for the robot_arml
and the press components. [t requires a specific interleaving of transitions by the two compo-
nents, insuring that the robot arm unloads the metal blank on the press. Although the compo-
nents are defined independently, this rule references both of them, telling the Genkx synchroniza-
tion tool to analyze them together and to modify their interaction by delaying one or the other
and allowing them to complete the delayed transitions only when they preserve the safety. The in-
dependence between the components simplifies design and maintenance and promotes component
reuse for similar systems.

The safety rule ARM1_BASE synchronizes the behavior of the first robot arm and the robot
base. Possible safety problems caused by bad interactions between the robot base and arms occur
when the arms extend while the base is rotating, so the arms can collide with the press. If the
first robot arm extends to drop a blank at a time when it is not turned toward the press, the
blank is dropped in an unsafe location causing a different safety violation. Another problem
can occur that does not cause a physical collision, but makes the system state inconsistent and
leads to other failures; if the first robot arm extends to pick a blank when it is not turned to
the rotating table, the table then rotates back to the feed belt and accepts another blank thus
causing a collision.

The basic safety that the rule requires is that the arm extends only when the base is stationary
in states where the arm points to the table or a selected press. Once the robot arm starts to
extend, the base remains stationary until the arm retracts. This rule entails two instances of
handshaking in a sequence, one for picking the blank from the table and the other for dropping
it on the press. A similar rule is necessary to synchronize the second robot arm with the robot
base, and it has one difference related to the possibility that the arm might not need to extend
and pick a blank if the press is empty. The base is restricted from rotating only if the press is
loaded and the arm is ready to extend. The base may resume rotation if the arm is retracted
and waiting for a loaded press to be selected.

The robot arms interact directly with the press, so their interaction has to be specified using
a pair of safety rules. These safety rules specify the position of the press that allows the robot
arms to extend to the press, and that the press has to remain in that state until the arms retract.
These rules guarantee that the press is in the right position for the arms to drop or pick the
blank, and that the press will not close and cause a collision before the arms retract. The rule

72

- ~

" DELAY_ARM1)
. PZals -7

DELL/- .-~

PRESS .

-

SENSon/- X 'not(DEL1)/CLOSE~ " HI_POS/STOP
MID_EMPTY MID_LOADED CLOSE_LOADED CLOSED

MID_POS/ STOP -/ OPEN

NOWDEL2) /CLOSE ™\ SENSoff/- "\ LOW_POS/STOP
CLOSE_EMPTY LOW_EMPTY LOW_LOADED OPEN_LOADED

not(DEL 1) / CLOSE

~<----n

not(DEL2)/ CLOSE .-~
. DEL2/-

-
-

e - TTos \%/
{ DELAY_ARM2) OPEN_EMPTY PRESS INIT

Figure 5.4: A modified version of the press component

A
1
]
1
_ -4

ARM1_PRESS1 enforces the following sequence of events: press empty in mid position, arm1
extending to press, arml drops blank, arm1 retracted, press closes to process the blank. The
synchronization of the second robot arm with the presses is specified by the rule ARM2_BASE
and the sequence: press loaded in low position, arm2 extending to press, arm?2 picks blank, arm2
retracted , press closes to middle position.

5.1.3 Synchronization of the Production Cell Controller

The components specify the functional behavior of the system and determine what actions indi-
vidual devices will perform. The receptive safety rules specify the subsets of the set of possible
system executions that are acceptable with respect to the component interaction. The behaviors
that violate some of the safety rules are considered unacceptable, and should not occur in the
executable application. The components specify what their next action is, but they are not re-
quired to be immediate. The system requirements are mapped to the component level, and they
are enforced by delaying the components that have the potential to violate the receptive safety
properties.

The process of making the components use other components’ state data in determining their
transitions is automated. The goal of the component modifications is to synchronize them,
and make their behavior sensitive to the system state. The automated synchronization of local
controllers requires safety analysis for all safety rules and the related components. All potential
safety violations are detected, and their preconditions are used to compute the synchronization
conditions for the components. The synchronization conditions enable the components transitions
to a delayed state where they remain while they are a potential cause of safety violations.

73

The synchronized version of the press component is given in Figure 5.4. Two transitions of the
original press had the potential to violate the receptive safety rules that specified the interac-
tion between the press and the robot arms. These transitions are modified by the addition of
delayed states, shown using dashed lines. The delayed states are reachable only when the com-
pletion of the original transition would lead to a safety violation, and as long as those conditions
persist the press component stays in the delayed state. The transition from LOW_EMPTY to
CLOSE_EMPTY is delayed as long as ARM2_PRESS is in state A2P_PICKING. The safety
rule stays in the state A2P_PICKING until the robot arm returns to the retracted position where
the press can no longer collide with it once it starts to close. A similar delay applies to the
transition from state MID_LOADED to CLOSE_LOADED where the press has to wait for the
first robot arm to retract before being allowed to close.

5.2 Two Press Production Cell System

We will now examine a variation of the production cell system, to show how the automated
synchronization approach helps us reuse the functional description for the device controllers.
The production cell is expanded to include another identical press, on the assumption that the
press is the bottleneck device in the system. By using both presses in parallel, the performance
of the system improves because the robot can pick a processed blank from one press and place a
new one while the other press is processing its blank.

This production cell system has two identical presses, both reachable by the rotating robot, and
identical in construction and controls to the press used in the first system. The original controller
can be reused as a generic press controller and instantiated for the two presses using their specific
control and sensor signals. The controllers for the two robot arms can be reused without any
changes, since both presses are located at the same distance from the robot, thus requiring same
arm extension. Since their interaction with both presses is equivalent, the robot arms have no
need to distinguish between them.

The largest changes occur with the robot base whose functionality has to expand to handle two
presses. The base has to recognize six different positions where it has to stop the rotation to
allow the robot arms to interact with other devices. The robot base controller executes the press
selection, and guides the robot to the appropriate positions where the arms can pick and drop the
blanks on other machines. The robot base controller selects the presses in alternated order, so
each press is used as much as possible. The press selection is based on a controlled variable that
represents the previous selection, and its value remains constant until the other press is selected.
The robot base controller uses two controlled signals, one for each press, to handle the initial
interaction with the empty presses.

Depending on the press selection, the robot base goes through two different sequences of oper-
ations in every rotation. If the first press is selected, the robot base allows the second arm to
pick a blank off the press, rotates to point the first arm to the table, stops, rotates to point the
first arm to the first press, stops, and rotates to point the second arm to the deposit belt. If the
second press is selected, the first arm accesses the table first, then the second arm accesses both

74

ARM1_PRESSL
|

PRS_LOADED

Base = Select_first

Arml = Ext_to_press

SELECTED

Base = Select_one &

- Press = Mid_pos
Press=Mid_pos

Press = Mid_pos

Base = Select_one
= SEL_|

Press=Rise _to_top

Press=Rise _to_top

Arml = Ext_to_press

Arm1 = Retracted_Empty Press= Rise_to_top

ARM_ACTIVE

Figure 5.5: A safety property for the two press production cell system

the press and the deposit belt, and finally the first arm accesses the second press. In the initial
rotations with empty presses, the operations of the second arm are skipped and the correspond-
ing signals are set after the presses are loaded. After a rotation is completed, the robot base
rotates clockwise to the position where second arm points to the first press where next rotation
can start. The robot base is the most complex component in the system, because it embodies
both the sequencing and the decision aspects of this production cell.

The safety rules for the presses and robot arms need to be modified, and they must reference the
robot base for information on the press selection. The safety rule for the press that is not selected
for loading should not interfere with the behavior of the robot arms. This effect was not apparent
in the single press system because there were no two safety rules that would alternatively block a
single transition. The safety rule ARM1_PRESS1 is given in Figure 5.5, and it shows how the
safety rule interleaving works. The rule accepts all behaviors until it gets enabled by the selection
of the first press, and then starts to reject behaviors that lead to safety violations involving the
first press. When the desired interaction is completed, the rule deactivates and again waits for
the first press to be selected.

5.3 Fault Tolerant Production Cell Controller

The above described controller satisfies all safety, real-time and liveness requirements of the
Production Cell. We will show how the controller can be expanded to ensure fault tolerance for
the system. This example is a better approximation to the system requirements in the Production
Cell2 case study, that includes the two press production cell and imposes additional fault tolerance
requirements. The actual production cell 2 study assumes that all devices are failure prone, while
we limit failures to the two presses. We consider press failures to be more “interesting” because
the system can keep operating when one press fails. Failures of any other device require the
system to stop execution until the device recovers and then restart. The most important aspect

75

of the restart is the gathering of information about the state and position of components and
blanks, a subject unrelated to our research.

The presses are the failure prone devices, and their design is enhanced with the addition of sensors
that detect the presence of metal blanks on the press. The mechanical press failures affect their
control mechanism making them nonresponsive to controller commands. Sensor failures make
their output fixed at the value false, thus making it impossible to detect a blank on the press or
to position the press in one of the predefined positions. To ensure fault tolerance, the controller
has to detect press failures and reconfigure the system to use only the functional press until the
failed one recovers. If both presses fail, the controller leads the system to a safe state, and waits
there until the presses recover to a functional state. The controller raises an alarm whenever
it detects a failure, and deactivates it when it gets a recovery signal from the production cell
operator. The recovery signal is given when all devices are back in operative condition.

5.3.1 Failure Detection and Recovery

Failure detection is a problem outside of the scope of this research, and we will explain the basics
of our approach, while concentrating on the interaction control. From the standpoint of the
system controller, failures are not necessarily observable events, and in practice they are most
often not directly observable. However, they must be indirectly observable! and the controller
tries to detect them by comparing the expected correct behavior of the press with the actual
behavior to detect previous failures.

Failure detection is a real-time requirement while non—interaction with a failed press is a matter
of decision and sequencing. The failure detection, like other real-time requirements, is enforced
by the controller components, as part of their functional behavior. The failure detection task is
handled by the press monitors, two equivalent components each instantiated for one press. The
press monitors track the actions of the press controller and the monitored variables representing
the press position, and raise a fault alarm when the press shows unacceptable sensor inputs. The
press monitor reinitializes together with the press controller when the user signals the system is
fully recovered. The press controller and monitor interact using their controlled variables, the
press activation signals and the press failure signal, and both have access to the monitored signals
representing press position. Monitor also uses some robot control signals to distinguish picked
blanks from sensor failures.

The press monitor reacts to the following inconsistencies in the press behavior:

e Failed position sensor.
When the press is stopped in one of its three positions and the appropriate position sensor
turns false without a movement command, the press monitor declares a press failure.

e Failure to reach a position.
When the press is moving from one position to another, if it fails to reach its destination

'If a failure is totally unobservable, meaning that the behavior after the failure is equivalent to the behavior
without the failure, then the failure is irrelevant for the controller and the system.

76

in a predefined amount of time the press monitor declares a press failure due to mechanical
or position sensor problems.

o Failed blank detector.
When the press is loaded with a blank, and the detection sensor has the value false, the
sensor is assumed to have failed and a press failure is declared.

The specification of press behavior has to be changed to account for the possibility of failures
and the subsequent recovery. A version of the press controller with fault detection and recovery
is shown in Figure 5.6. Since a failure can be detected with the press in any state, every state has
an additional transition to the PRESS_FAILFD state, enabled by the failure signal from the press
monitor. The press controller remains in the failed state until the press monitor deactivates the
failure signal, after receiving the recovery signal. After the recovery, the press has to repeat the
initialization protocol, to detect its current level and whether it is loaded or not. If the press is
loaded after a recovery, it may be impossible to determine whether the blank has been processed
or not. Due to the indirect and delayed detection of some failures, a blank may be processed by
the press without the press detecting it arrived to the upper position. This nondeterminism is
resolved by assuming that a blank found on the press at initialization or recovery should not be
processed, since it may be incorrectly positioned or already pressed.

The initialization sequence for the press is used both at the start of execution and after a recovery,
and it has to be able to restart the press from any position and regardless of the existence of a
blank on the press. If the press is initialized without a blank, it moves to the middle position to
be loaded, and if it is already loaded at initialization, it moves to the lower position to allow the
robot to pick the blank.

Other components that must react to the press failures are the robot arms. They must be able
to interrupt an initiated approach to a press, to avoid colliding with it or unloading a blank with
the press out of proper position. The robot arm controllers react to press failures only when the
arm is extending toward the failed press, making the arm return to its retracted position to try
restart the approach once a press is available and functional. A robot arm controller that reacts
to press failures is also given in Figure 5.6.

The faults can occur at any time, and with the system and its components in any state. In
addition to the real-time reactions to failures, the overall behavior of the system has to change
after a failure, to recover the system to a consistent state. The production cells without fault
tolerance have a defined repetitive behavior after they complete the initial loading. At the end
of every rotation both robot arms are empty, and both presses are loaded. When presses fail,
some actions in a rotation are completed and some must be aborted or ignored so at the end of
a rotation some press may be empty, and the first robot arm may still be carrying a blank that
was to be loaded on the failed press. The behavior of the robot base needs some modifications
to account for the possibility that the first robot arm is loaded in the starting position, and that
the picking of a blank from the rotating table has to be skipped. Another possible effect of press
failures is that the press is loaded after recovery. The behavior of the robot base already handles
this situation in the initial state, but now it can also occur after a failure.

The safety rules that specify the interaction between the presses and the robot arms need an

7

| ROBOT ARM 1

RET_POS/ STOP ;/ EXTEND, Mag_ON EXT_POS/ STOP
ARM_TABLE

-/ RETRACT -/ RETRACT
EXT_POS/

STOP, Mag_OFF -/ EXTEND RET_POS/STOP

ARM_PRESS LOADED RETR_LOADED
~ . 7
*~. PRS_FAIL / STOP -~ -/ RETRACT
s s, -7 7777 -~
{ PRESS FAIL
PRESS

MID_POS/ STOP SENS on/ - -/ CLOSE

CLOSE_EMPTY MID_LOADED
-/ CLOSE HI_POS/ STOP

SENS off /- LOW_POS/ STOP, -/ OPEN
LOW_EMPTY = LOW_LOADED = OPEN_LOADED
7

_.~" SENS on/-
|

SENS off / - { IPRSFAIL/- "~ "™~ PRS FAIL/STOP
OPEN_EMPTY <o -STo-i-- 4 PRESSFAIL =-=----%

Figure 5.6: Fault reactive version of the press and the robot arm

LOW_POS/ STOP

additional failure state where they go when the respective press fails and stay until it recovers.
While in their PRESS_FAILED state, these rules impose no restrictions on the behavior of the
robot arms, and they react to the press recovery by going back to the initialization state, just
like the press itself.

Since the behavior of the robot arms is modified, the safety rules for their interaction also must
be slightly changed. The safety rules require the base to wait for the robot arms to complete
their interaction with the presses, but in the case of press failure the arms abort the interac-
tion, requiring to repeat it with an available press. The safety rule has to react to the aborted
interaction, by returning to the initial state for that interaction. The rule ARM1_BASE also
needs an additional state to return to the start of the rotation with the arm loaded. This way
the arm is not required to pick another blank off the rotating table before depositing the blank
it is currently holding on the press.

An additional safety rule specifies the requirements for a press recovery. If a failed press recovers
too quickly during the same rotation when it failed, it may lead the first arm to drop a new blank

78

on the loaded press, causing a collision. In order to simplify the system we specify a sequencing
rule that requires the failed presses and their monitors to delay their recovery until the end of a
rotation and the beginning of the next one. That way the system initiates a rotation with reliable
state data and any subsequent failures remain in force during the entire robot rotation.

These minimal modifications are sufficient to handle all the possible executions that occur as a
result of press failures. The press monitors encapsulate the complexity of failure detection, and
force the presses to their failed states. The robot arms also have a small role in reacting to press
failures during interactions. The safety rules specify the additional acceptable execution traces
that capture the state space of fault consequences and recoveries.

5.4 Be“efits of Using GenEx to Synchronize the Production Cell Con-
troller

The use of GenEx allows us to specify the components of a production cell controller indepen-
dently, and to integrate them into a functional system that satisfies the specified safety rules and
preserves the time—critical behavior of the components. By using the receptive safety proper-
ties to describe the desired interactions between the components, we can specify the aggregate
behavior of the system and have it automatically synchronized to satisfy the desired properties.
The compositional nature of the generated applications allows us to create very complex systems
using simple components, simple receptive safety properties. The enforcement of receptive safety
properties is based on the analysis of violation preconditions, computationally far simpler than
the reachability analysis. This means that all the design benefits come at a lower cost than doing
formal and exhaustive system verification.

The local and functional emphasis in the component design provides a decoupling mechanism that
allows us to create components independently, even if those components must interact. Every
component defines its own behavior and determines its sequence of actions, while the system
synchronization mechanism transparently delays the components that may violate the desired
system properties.

The creation of complex systems is reduced to local decisions on the function and interaction
between independent components. If the functional behavior of the components can be combined,
their coupling is just a question of specifying the constraints for their interaction. Complex
systems can be designed by combining the components whose functions they require, and adding
the interaction properties in the form of receptive safety properties. Since the safety properties
are specified for small subsets of components in direct interaction, even the safety properties tend
to be simple and organized into patterns that facilitate their reuse in different systems.

The reusability is illustrated by showing the simplicity of modifying the system to use two presses
instead of one. The behavior of most components remains identical as in the single press example,
with the exception of the robot base that has to recognize previously undefined positions and
enforce the alternation between the presses. The safety rules require some modifications if they
deal with the modified components, otherwise they can be reused in their entirety from the single
press system controller.

79

The use of automated synchronization also supports the modification of a system through the
addition of new requirements, such as fault tolerant behavior. We’ve shown that the system can
be upgraded to a fault tolerant version by modifying the components to include local reactions to
detected failures, and by similarly making the safety rules deactivate on a detected press failure,
and reactivate once the press recovers. The decoupling of the components makes it possible to
seamlessly remove and add components to the executing system, depending on the need and
availability.

5.5 Summary

We have shown how a medium complexity system can be synchronized to satisfy its require-
ments using our method. The complexity of the system was estimated to be around 50 million
states [LL95], a hard problem to analyze even using the best of the existing automated verifica-
tion tools. The complexity of the analysis required to synchronize the system for the specified
properties was up to 500 states for the reachability analysis, and up to 20 states per property us-
ing static analysis. This reduced complexity is a result of decomposing the analysis by referenced
components, and looking only for possible violations.

80

Chapter 6

Reliability of Automated
Synchronization

In this Chapter we will show how the requirements of complex systems can be specified using
simple receptive safety properties, and that enforcing each receptive safety property indepen-
dently produces a system that satisfies all of its receptive safety requirements. We will also show
that our synchronization mechanism can enforce any receptive safety property, and that the en-
forcement of one property will not contribute to violations of any other properties. We will also
describe a set of patterns for system design that specify ways to produce deadlock—free synchro-
nized systems. Finally, we will show how we can distinguish receptive safety properties from
the nonreceptive safety properties which can not be enforced using our method, and how some
nonreceptive properties can be implemented manually or modified for automatic enforcement.

6.1 Correctness and Decomposability of GenEx Synchronization

Our automated synchronization method must satisfy several conditions to become a useful tool
in the development of complex concurrent systems. It must produce systems that satisfy their
requirements and it must produce them quickly. The correctness with respect to the requirements
is ensured by enforcing the receptive safety properties that represent the system requirements.
Another correctness requirement is the guarantee that the synchronization mechanisms are com-
posable, i.e. that their integration preserves the features of all individual safety properties. The
complexity of the analysis is reduced by partitioning it for individual receptive safety properties,
and using a static violation detection method. In this section we will show that the automatically
computed synchronization mechanism satisfies the receptive safety property it was computed for.
We will also show that these mechanisms can be combined to enforce multiple properties simul-
taneously.

81

6.1.1 Closure of Regular Languages Under Intersection

The closure of the set of regular languages under intersection shows one way of using simple
languages to specify complex ones. Take the 1-bounded overtaking property for dining philoso-
phers, shown in Figure 4.4. This property specifies that the first philosopher can eat at most once
while the second philosopher is hungry. This property is specified by a finite state machine and
therefore defines a regular language we will call L1. Assume an equivalent 1-bounded overtaking
property is asserted to limit the number of accesses by the third philosopher while the second
one is hungry, and we call the respective regular language L2.

The regular language I. = L1 N L2 is the intersection of the two languages describing the system
behavior. This language describes the set of system behaviors where the second philosopher waits
for its two neighbors to eat at most once while it is hungry. This limitation on the number of
accesses by the adjacent philosophers guarantees that the second philosopher can not be starved.
Since both L1 and L2 are regular languages, by closure of regular language intersection [JEH79],
so is the language L. Knowing that L is a regular language guarantees that a finite state machine
M(L) can be produced. M(L) accepts system behaviors if they belong to the language L1 N L2,
and rejects them otherwise.

If L defines a realizable property, there is a strategy f(L) that satisfies the property. We have
shown how a strategy f(L) can be based on observing the state of M(L) and preventing the
component actions that would lead to violations of the property. By enforcing the receptive
safety property L, we would effectively enforce both L1 and L2.

The finite state representations of L1 and L2 are FSMs with three non—rejecting states and one
violation transition, while the M(L) has 9 non-rejecting states and 7 distinct violating transi-
tions. While the finite state representations of L1 and L2 are simple, the complexity of FSM
representation of a language intersection can be an exponential function of the number of inter-
sected languages. This is because the size of the FSM for L is proportional to the complexity
of the desired behavior. However, we can show that there exists an equivalent structure to the
M(L) whose implementation does not require the explicit enumeration of all state combinations.

Languages L1 and L2 are simple regular languages, corresponding to FSMs M(L1) and M(1.2) that
accept all behaviors acceptable by the individual languages and reject them otherwise. Parallel
execution of M(L1) and M(L2) using the system events as input to both FSMs produces a system
whose states are ordered pairs of states for the two FSMs. A behavior is accepted as long as both
FSMs are in a non-rejecting state, and rejected when any of the individual FSMs rejects it. The
state space of this system is equivalent to the state space of M(L). The complexity of the code
for this implementation is equal to the sum of the sizes of the FSMs for the individual languages,
drastically smaller than the size of the combined state space required by the FSM M(L).

6.1.2 Compositional Enforcement of System Requirements
Most complex systems have multiple behavior requirements, and all those requirements must be

satisfied by the system execution. Every requirement is defined as a property, a set of acceptable
execution traces. The overall requirements for the system are equal to the intersection of the

82

properties that specify the individual requirements. The system is realizable if there is a strategy
for the controller that generates only behaviors that belong to the requirement property inter-
section. We will show that the controller for a realizable system can be produced by satisfying
the individual requirements.

Theorem 6.1 A realizable controller can be implemented by enforcing the realizable parts of its
individual requirements.

Proof:

Given a set of required properties Ry, Ro,...Ry, they define a compound property Rog = Ry N
Ro...Ry. Since the system is realizable, all properties have nonempty realizable parts

(Vi € [0, k])(Rp; = R,(R; A Rp; # 0)

Assume there exists a pi—strategy f that satisfies Rpy, Rps, ...Rpg. Then, by definition of realizable
parts and
(Vi e [1,k)(Ou(f) € Rpi)
Ou(f) € Ro
Ou(f) C Rpo

Since the set of all fair outcomes of f is a subset of the realizable part of the system requirements,
f is a winning strategy.

6.1.3 Enforcement of Receptive Safety Rules

Theorem 6.1 shows that a system with complex requirements can be produced by enforcing the
individual requirements. We will now show that our analysis and synchronization method can
enforce individual receptive safety properties by delaying the violating transitions.

Theorem 6.2 Given a setl of component specifications and receptive safety properties Rpl, ... Rpk,
Genlr automated synchronization method enforces the properties Rgl,...Rgk where ¥i : Rgi C
Rpe.

Proof :

Analysis of the component behavior with respect to a receptive safety property detects all possible
safety violations, and GenFx modifies the components by adding delayed transitions enabled by
the preconditions of the safety violations. The delayed transitions prevent the components from
reaching the states that cause the property violations.

Controller implements a strategy S and we define property Rg to be the outcome set of S. This
outcome set excludes all behaviors rejected by the property Rp, and therefore Rg C Rp.

This theorem shows that automated synchronization using GenEx can produce controller im-
plementations for realizable systems defined using receptive safety properties. The difference

83

between the behavior of the generated implementation and the realizable part of the required
properties represents the possibility that the synchronization produced by local analysis may not
be globally optimal. This manifests itself in the form of delayed component transitions, when
their completion would have preserved the safety. The nonoptimal synchronization conditions
can be generated only for the limited resource access properties. The following example shows
how these unnecessary delays occur, and how they could be avoided using global analysis.

Example:

Assume the first philosopher has some receptive safety property SP1 imposing a constraint on
its return to the THINKING state after FPATING. This means that it will also have a delayed
state FATING_DFLAY, where it waits to safely return to THINKING. A delayed transition
implies that the first philosopher may not leave the FATING state immediately after the variable
hungryl becomes false. In the analysis of the philosopher mutual exclusion for the first and
second philosopher, the condition —hungryl no longer guarantees that in the next state the
first philosopher will be in the state THINKING. The synchronization condition produced by
analyzing the components is:
Delay2 = (philol = eating)

The second philosopher must wait for the first one to completely exit the critical state FATING
before being allowed to safely reach its critical state. In the original dining philosophers system,
one philosopher is allowed to proceed as soon as its neighbors are not hungry, meaning the
philosopher can start FATING simultaneously with the adjacent philosopher that moves to state
THINKING. With a delayed transition enabled by the condition Delay2, the second philosopher
will not advance until the state of the first philosopher changes, so it waits an extra cycle.

This delay is obviously unnecessary if the safety rule SP1 is in a state where the first philosopher
can safely advance to the state THINKING. To allow the second philosopher to advance in these
situations, it would need to observe the state of the SP1 property monitor in its synchronization
conditions. If the mutual exclusion and the property SP1 were combined into a single finite state
property, the synchronization conditions for the combined property could exploit the dependence
to reduce the delays for the second philosopher. This benefit would come at the cost of more
complex analysis and more specific synchronization conditions with higher computation overhead.

DELAY = (ARM1_PRESSinPRS_READY)V (ARM1_PRESSinUNLOADING)

Nonoptimal delays cause different types of problems for executable systems. A nonoptimal delay
causes the component to delay the completion of a transition by one interval until it can verify
that the other component in contention for the limited resource has completed its transition out
of the access state. The delay results in a reduction of performance due to the unnecessary wait
until the component in the access state advances to its next critical section, and releases the one
previously held. If the limited access properties apply to a cycle of consecutive states for a set
of components, the unnecessary delays may form a cyclic dependency and result in a component
deadlock. These deadlocks, as well as the reduction in performance due to delays, can be re-
solved and the component delays reduced using global dependency analysis techniques. Another
approach to reducing the effects of nonoptimal component delays is the use of a system design
pattern that breaks the dependency cycles and makes the consequent deadlocks unreachable. We

84

will discuss this approach in section 6.2

6.1.4 Nonconflicting Nature of Safety Enforcement

We have shown that our synchronization method can enforce individual receptive safety prop-
erties by delaying components whose actions may violate the safety. We have also shown that
by enforcing the individual receptive safety properties, we can produce a system that satisfies
all those properties simultaneously. It also satisfies all nonreceptive properties whose receptive
parts include the intersection of the enforced properties. The next theorem will show that the
synchronization mechanisms that enforce individual receptive safety properties can be combined
into a controller that enforces all those properties.

Theorem 6.3 A delayed transition that enforces a receptive safety property P1 can not cause a
violation of another receptive safety property P2.

Proof:

Assume, on the contrary that the delayed transition T causes a violation of the safety rule P2.
Transition T starts at state S1 and sinks in state S1d of a component comp, and the state S1d
s the delayed state where the component remains to avoid violating the receptive safety property
P1. The system state preceding the safety violation consists of the states Sr2 for the property P2
and S1 for the delayed component. The transition T is executed and S1d becomes the new state
of the component comp, activating the P2 transition to the state REJECT. The transition to
the REJECT state is enabled by the current system state including the state S1d, and the safety
property P2 executes the transition and detects the safety violation.

From the standpoint of the component, the transition from S1 to S1d does not count as a state
change, so it does not cause any event observable by the safety property. That means that the
safety property P2 is either violated by a different controlled event, or that the property P2
is a nonreceptive property and that it was violated by an environment event. Both possibilities
contradict the assumptions of the theorem, and therefore the assumption that the transition T was
the cause of the violation is false. The delayed transitions can not cause safety violations for the
receptive safety properties.

This theorem proves that when GenEx modifies the components by adding the delayed transitions
that enforce the receptive safety properties, the integrated system satisfies all properties. Since all
receptive safety properties are enforced, the implementation satisfies its realizable requirements.

6.1.5 Correctness of Integrated Systems

We have shown that system interaction requirements, given in the form of receptive safety prop-
erties, can be represented independently, and components can be synchronized to enforce them.
We have also shown that a strategy that enforces individual system requirements in effect en-
forces their intersection, which is the combined requirement of the system. Finally we have shown

85

that the synchronization mechanism that enforces one receptive safety property can not enforce
a behavior that violates other system requirements.

This means that, given a set of components and receptive safety properties that specify the
system requirements, our method produces synchronization mechanisms that enforce each re-
ceptive safety property individually. Since these synchronization mechanisms are nonconflicting,
the generated system enforces all of its required properties and satisfies its aggregate behavior
requirements. Since the system includes a separate safety observer for each property rather than
a combined state machine for all properties, the size of the generated code can remain smaller
than the system state space.

6.2 Design Patterns for Deadlock—Free Systems

Deadlocks occur as a side effect of enforcing safety rules inconsistent with the component be-
haviors or with each other. When GenEx synchronizes a system to satisfy some safety rule, the
component transitions are delayed for as long as the violation preconditions for that rule are
satisfied by the system state. If the violation preconditions can not be invalidated by the con-
tinued execution of other components or environmental events, the delayed component remains
blocked in the same state. If other components might invalidate the synchronization conditions,
but are themselves blocked waiting for other components’ actions, the system may deadlock with
all blocked components waiting for each other to enable their progress.

The verification of deadlock freedom is a complex problem because it requires finding the pos-
sible deadlock states and then proving that those states are unreachable. The complexity of
the reachability analysis is comparable to the complexity of the system state space, and makes
this approach non—viable for complex systems. Instead of detecting deadlocks, we will provide
simple design patterns that ensure the freedom from deadlocks for the synchronized application.
The design patterns specify the form of the system safety rules and their relationship with the
components, that will guarantee the deadlock freedom. The main goal of these patterns is to
avoid the reachability analysis, and use static analysis instead.

No restrictions on the structure of the components are necessary to guarantee the deadlock
freedom of a synchronized system, and they would not be acceptable because the main guideline
in component design is their intended functionality. The components of process control systems
generally have a cyclic control structure, corresponding to the nonterminating nature of the
applications, but some initialization activities may require acyclic components or acyclic segments
initializing the cyclic components. The structure is captured as a finite state machine, and can be
analyzed using static methods. We regard the component control graph as consisting of advancing
edges that lead it to new states, and returning edges that take the component to previously visited
states.

86

6.2.1 Patterns for Deadlock—Free Design Using Limited Resource Access Rules

Limited resource access properties specify combinations of component states that should not occur
simultaneously. The synchronization mechanism that enforces limited resource access allows the
specified number of components to access, while making all others wait for the resources to become
available. A component that holds some exclusive resource blocks all components waiting for that
resource, and a cyclic blocking pattern produces a deadlock. The dining philosophers system is
one example of deadlock—free design using limited resource access rules. We will now show a
design pattern that guarantees that a set of components can satisfy a set of limited resource
access rules and be deadlock-free.

The design of the dining philosophers illustrates a simple instance of a system where the receptive
safety properties can be automatically enforced without the risk of generating deadlocks. There
are no deadlocks because the philosophers are synchronized to either enter the critical section
or wait in the THINKING_DELAY state. Since any philosopher in the state FATING must
eventually go back to THINKING, it will make the shared resources (forks) available to the
adjacent philosophers. The key to deadlock freedom in this system is the atomic nature of
resource allocation. A philosopher waits until all the resources it needs for the FATING state
are available, and then allocates them all.

We will define a mapping of component states to the set of natural numbers that will help
us specify deadlock—free systems satisfying limited resource access properties. For the set of
components’ states S, = S1U S U..., the mapping M : S, — N maps every state to a natural
number, and based on this mapping the transitions of individual components are classified as
being advancing or returning. A transition from state S1 to S2 is an advancing transition if
M(S51) < M(52), and a returning transition if M(S1) > M(S52). Two distinct states connected
by a transition must be mapped to different numbers.

The deadlock freedom is guaranteed iff the limited resource access rules are specified in a way
that satisfies two conditions for some mapping M:

e All limited resource access properties apply to states of distinct components that map to
the same value.

e There exists a value kin the mapping and every simple cycle for every component contains
a state S¢pee : M(Sfree) = k, such that no limited resource access properties apply to any
of those states.

Systems satisfying these conditions will have the form of a sequence of layers with arbitrary
mutual exclusion requirements within individual layers, as illustrated in Figure 6.1a). The figure
shows three components whose transitions are represented by full lines, and every state is marked
with its mapping value. The dashed lines in the figure represent the mutual exclusion between
the specified states. Every cycle for every component includes a state whose mapping is the
number I, and those states are free from access restrictions.

The requirement for the mutual exclusion properties to apply to states within a single layer guar-
antees that the specified system is realizable, deadlock free, and starvation free. The requirement

87

Layered Exclusion Single Lock-Multiple Unlock

W=

M3(—=(2

099

A -
/ 7,
PN
/’\ /N
,

|

P N

M2 (=239

i

a) b)

Figure 6.1: Patterns for deadlock—free design using limited resource access rules

for a layer of states with no restrictions guarantees that the implementation generated using
local analysis will also be deadlock free. Deadlock freedom results from the fact that there is
always some component that can complete its selected transition. That component is either in
a state whose successor is the unconstrained state, or its next state requires currently available
resources. Components advance until they eventually reach the unconstrained state. As a com-
ponent enters its unconstrained state, it frees the resources reserved by its predecessor state, thus
allowing other components to advance and free resources in previous exclusion layers. The proof
of starvation freedom from the dining philosophers chapter applies to this system, and guarantees
that every component will eventually be allowed to proceed to its next state, assuming strong
extreme fairness for components leaving their critical states.

This design pattern requires the components to access the shared areas in the same order and
that may not always be practical or appropriate. Another design pattern exists that allows
the limited resource access properties to reference component states in arbitrary order. The
implementation of a system with limited resource access properties will be deadlock—free if the
specification satisfies the following conditions:

o If state S2 is a successor of state S1 in component Cl, and a nonempty set of limited
resource access properties applies to the state S1, any constraints on the access to state 52
must apply to states referenced by the constraints on S1.

e Along any simple cycle in any component, there must be a state with no restrictions on
access

This design pattern models the single lock—multiple unlock strategy often used in the design of
databases and concurrent systems, and it is illustrated in Figure 6.1b). The component transitions
and mutual exclusion properties are again shown using full and dashed lines, respectively. The
states are identified by alphabet letters for the first component and by numbers for the second,

88

and we will refer to the mutual exclusion properties by the names of states they reference. Thus
A2 represents the mutual exclusion for state A of M1 and state 2 of M2. This example shows
that states 2, 3, 4 of M2 are subject to decreasingly restrictive mutual exclusion properties,
thus the transitions within this sequence can never be blocked by the states of the component
M1. Since every cycle in a component has a state without mutual exclusion restrictions, the
component eventually releases the locked resources and allows the other components to access
them.

6.2.2 Deadlock—Free Systems using Sequencing Rules

Sequencing properties are defined by the fact that their violating transitions are enabled by the
state of one component. Every violating transition for a sequencing property can thus restrict
the execution for at most one component. A specific state of a sequencing property can restrict
as many components as it has outgoing violating transitions enabled by states of different com-
ponents. These restrictions remain in force at least until one of the synchronization transitions
for that state is enabled. The restricted components are essentially waiting to be released by the
components that enable the outgoing synchronization transitions. A deadlock occurs if there is
a cyclic waiting pattern for the states of a set of safety properties and their respective restricted
components.

We have shown in section 6.1.3 that synchronization mechanism for sequencing properties is op-
timal even when it is produced based on local analysis. That means that deadlocks can be caused
by sequencing properties only if the properties are inconsistent with the system components. The
production cell is one example of a system specified using only sequencing safety properties. The
restrictions imposed by the sequencing properties in this system always apply to one state of one
component, while the other restricted component enables safety rule transitions and eventually
causes it to arrive in a state where the blocked component is allowed to proceed with its execution.

The design pattern for the deadlock—free sequencing systems imposes certain constraints on the
structure of the sequencing rules. Every sequencing rule is limited to restricting at most two
components, and unrestricted components may be referenced only by observer transitions. In
any state of the sequencing property, only one of the restricted components may be used to
enable violating transitions, while the other enables the synchronization transitions leading to
the relaxation or removal of the restriction. Sequencing properties with this structure can only
restrict one component at a time, and wait for the other one to relax the restriction or remove
it altogether. The waiting pattern in this case corresponds to a directed graph and deadlocks
can occur if there are cycles in this graph. Sequencing properties with this structure specify
interleaving for specific actions of two components.

The first deadlock—free design pattern is the acyclic restriction graph for sequencing rules and
components. Nodes in this graph correspond to the components and sequencing properties, and
every sequencing property has an undirected edge connecting it to its restricted components. Any
cycle in this graph represents one or more possible deadlock states, and an acyclic graph implies
that deadlocks will never be caused by the sequencing properties. Deadlocks require cycles in the
reference graph because the sequencing rules can block at most one component at any time while
waiting for an action by the other. Any component referenced by only one sequencing rule can

89

either be blocked or be free to proceed and enable synchronization transitions of the sequencing
rule thus unblocking the other restricted component. Since the graph contains no cycles, there
can be only finite sequences of components blocking each other through the sequencing rules.

The feed_belt in the second version of the production cell is referenced by only one sequencing
property, and as such can not be the cause of a deadlock state. The robot and the presses in the
production cell system and their sequencing properties form a cyclic restriction graph, and could
potentially deadlock, and then block the rot_table and the feed_belt, propagating the effect of
the deadlock. This possible deadlock is not reachable, and we will describe a design pattern for
sequencing properties that guarantees deadlock—freedom even if the restriction graph contains
cycles.

If the acyclic assumption is not satisfied, the specification of deadlock—free systems using se-
quencing properties requires additional constraints on the structure of the properties and their
relationship to the components. The constraints informally require the safety properties to have
their cyclic behavior synchronized with the components they restrict. When the components
complete their cycles, the safety properties also reach the states where they started the cycle and
are ready to impose the same deadlock—free restriction sequence.

Every sequencing property state with outgoing violating transitions blocks transitions of one re-
stricted component while waiting for the other to reach a specific state. The blocked transition
of one component is said to be waiting for a transition of the other restricted component that
causes the safety rule observer to advance and remove the block. We can define a waiting depen-
dency relation Waits, between transitions of components restricted by a sequencing property. If
a transition tI of component C1 is blocked waiting for transition t2 of component C2 with the
safety property P in state sp, we define that Waits((C'1,t1),(C2,t2),(P, sp)) holds.

We will describe the design pattern for deadlock—free design using sequencing rules defined as a
simple sequence of advancing accepting transitions, with possibly multiple returning accepting
transitions. Violating transitions can not make a part of a cyclic behavior, because they lead to
REJECT states which have no outgoing transitions. The 1-bound overtaking property defined for
the dining philosophers and shown in Figure 4.4 has one simple cycle of accepting states, and it
is an example of a safety rule with one sequence of advancing transitions followed by a returning
transition. These properties have no conditional branches or alternative paths, but the approach
can be generalized to properties with branching and alternative ways of reaching the returning
transitions. Any sequencing property with multiple alternative ways of completing a cycle can be
decomposed into linear properties whose advancing sequence represents one individual execution
path of the original property.

System consisting of components and sequencing properties is deadlock—free if there exists a
mapping M for the states of all components S = (57 U Sz U ...) and sequencing properties P =
(PyU Py U...), and a mapping M1 for the component transitions 7 = (7 U3 U ...), where:

o M:((SUP)— NandM1:17— N
o (Vter)M(sre(t)< M1(t) < M(dest(t)
o Waits((C1,11),(C2,12),(P,sp)) = M1(C2,12) < M1(C1,11)

90

o Waits((C1,t1),(C2,2),(P, s1)AWaits((C2,13),(C1,t4), (P, s2)AM (P, s1) < M(P, s2) =
M1((C1,t1)) < M1((C1,t4))

o Waits((C1,t1),(C2,2),(P, s1)AWaits((C'1,13),(C2,t4), (P, s2)AM (P, s1) < M(P, s2) =
(M1((C1,t1)) < M1((C1,t3)) A M1((C2,12)) < M1((C2,t4)))

¢ Any execution of components C1 and C2 up to a returning transition, leads all sequencing
properties P, where Res(P) = {C'1,C2} to their initial state of the cycle.

This mapping function labels every state and transition in the system, and its existence guarantees
that the first execution of the advancing paths for the components and the sequencing properties
will not cause a deadlock. The last condition specifies that the sequencing properties are cycle—
synchronized with the components and return to the initial state of the cycle when the components
do. This means that the execution of the system returns to a state that is equivalent to the initial
state after every cycle. The deadlock freedom proven for the first execution of the system cycle
thus holds in the subsequent transitions.

6.3 Detection of Non-receptive Safety Properties

Safety properties are defined as sets that can exclude a behavior only if some of its finite prefixes
violates the property. Receptive safety properties are the subset of safety properties whose
violations are caused by controlled actions. The class of safety properties includes many non—
receptive properties, classified into two main groups as properties violated by environmental
events, and time—dependent properties. Our method enforces only the receptive safety properties
by delaying the occurrence of controlled actions that violate the properties. An effective method
for enforcing receptive safety properties must be able to identify the potentially non—receptive
properties, and warn the user about their existence.

The only way to verify that a safety property is not receptive is to detect a violation that is caused
by an environmental event. This requires a full reachability analysis of the system behavior that
may not be viable for complex systems. Static analysis can detect potentially nonreceptive
properties by detecting possible safety violations caused by the environment that may not be
reachable. These potential environment safety violations are reported to the designer who can
choose to redesign the rules if they really are nonreceptive, or to implement them if the violations
are unreachable in the system.

To identify the properties whose violations are results of environmental events, our method looks
for violating transitions whose enabling conditions include monitored variables. Those transitions
are, at least partially, controlled by the environment possibly making the properties they belong
to nonreceptive. User can choose to enforce those properties using GenkEx, regardless of their
possible nonreceptive nature. GenkEx will synchronize the components to prevent the safety
violations caused by the controller, while ignoring the violations caused by the environment.
This approach produces a reliable safe system when the monitored variables that enable the
violating transitions are partially dependent on the system and the user can verify that they will
not cause any safety violations.

91

6.3.1 Detection of Time Dependent Safety Rules

Time—dependent properties are identified by the fact that their violations may occur indepen-
dently of any explicitly defined event in the system. The term event refers to the occurrence of a
condition due to a change in the system state. A violation can occur without the occurrence of
an event, iff any state for the FSM representation of the property is reachable with its violating
conditions already holding. When the violating condition holds at arrival to a particular state
and does not become invalid in the next execution cycle, that safety rule reaches its REJECT
state. This safety violation may not occur if the components execute the appropriate transitions
to make the violating condition invalid in the next cycle, before the transitions for the safety
rule FSMs are executed. This property accepts certain system behaviors without accepting the
same behaviors after a longer delay, thus it is clearly a time-dependent property.! While this
property shows the potential of being time—-dependent, it is by no means a given that it actually
is, because the path that reaches the time—dependent violation may not be possible due to the
component dependencies and synchronization resulting from other rules.

As was the case with safety properties whose receptiveness was questionable due to their reliance
on environmental properties, GenEx can detect the potentially time-dependent safety rules and
warn the user of their existence. Those rules can be used to synchronize the components and,
provided the time—dependent execution sequences are unreachable, the system will satisfy the
rules. The detection of possible time—dependent safety rules is done automatically, based on
the relationship between the incoming and violating transitions for a state of a safety rule. For
every state we need to compute its rejecting conditions and its incoming invariant, and if those
intersect, a time—dependent safety violation can occur. The incoming invariant of a given state
equals the union of the enabling conditions of all incoming transitions, and the rejecting condition
is the union of the enabling conditions of all violating transitions leaving that state.

The incoming transitions, their enabling conditions and source states define the incoming invari-
ants for safety rule states.The union of enabling conditions for the violating transitions with a
source in a given state defines the rejecting condition for that state. If the set of rejecting con-
ditions for a particular state intersects its incoming invariant condition, that state may require
time—dependent behavior.

The pseudocode algorithm in Figure 6.2 illustrates the time-dependent property detection. For
every violating transition with source state st, this algorithm analyzes the incoming invariants
for the state st, and the enabling condition for the violating transition. If the enabling condition
of the violating transition intersects the incoming invariant of the source state, the source state
imposes a possible time—dependent requirement on the system behavior.

The safety rule ARM1_PRESS1 given in Figure 5.5 in the two press system is an example of a
potentially time—dependent property whose time—dependent execution sequences are unreachable.
We will show how this detection algorithm finds the possible time-dependent requirement in
the safety rule, and also show what makes this time—dependent restriction unreachable. The
safety rule restricts the components robot_arml and pressl and also references the robot_base

It is not a real-time property since our system has no time guarantees cycle execution, but the requirement of
this rule is that a certain action be completed by the immediate successor state making it a hard quasi-real-time

property.

92

- Foreach safety property P in the system
- Foreach viclating transition tv in P
- Identify source state of tv in st
- Identify enabling condition of tv in cv
- Foreach transition t_in with destination st
- Identify source state of t_in in sl
- Initialize c_ex, exiting invariant condition of state sl as true
- Foreach viclating transition tr with source state sl
- c_ex = c_ex N ~(enabling_condition(tr))
- Endfor
- Identify enabling condition of t_in in c_in
- Incoming invariant of st is c_inv = c_exNc_in
- If ciinvNev # () then output sl and st
as a possible time--dependent path for P
- Endfor
- Endfor
- Endfor

Figure 6.2: Pseudocode algorithm for identification of time—dependent safety rules

component.

The time—dependent requirement of this safety rule is detected when tv identifies the vio-
lating transition from the state SELECTED with enabling condition ¢v = (robot_arml =
EXT_TO_PRESS), and t_in identifies the transition from PRS_LOADED to SELECTED with
enabling condition c_in = (robot_base = SELECT_FIRST). The state PRS_LOADED has
no outgoing violating transitions, and its exiting invariant c_ex is true. The incoming invari-
ant of the state SELECTED is equal to c_in, the enabling condition of the incoming transition
t_in. The intersection of c_in and ¢v is not empty, so if the robot_armil starts to extend to
press before the robot_base reaches the state Select_FIRST, the safety property would impose
a requirement for the first arm to leave the FXT_TO_PRFESS state immediately.

This safety property would impose time—dependent requirements if the components robot_arm1
and robot_base happened to be in a specific pasir of states at the same instant. However, another
safety rule ARM1_BASE blocks the robot_arm1 from entering the state FXT_TO_PRESS until
the robot base is positioned with the first arm pointing to the rotating table or the selected press.
This makes the time—dependent safety violation of the rule ARM1_PRESS1 unreachable, and
thus the rule is a receptive safety property when combined with the ARM1_BASE property.
The exact verification of time—dependency for the safety rules is impossible, in the general case,
without the full reachability analysis of the system. Static verification can show that a property
has the potential for time—dependent behavior, and identify the possible violation sequences by
analyzing a single safety property.

93

6.4 Enforcement of Non—receptive Safety Properties

An alternative way of enforcing the real-time, reachability and liveness rules uses the concept of
a realizable part for the property. Every property of a system has a realizable part, consisting
of all system executions that satisfy the property without the possibility of its violations. The
realizable part of a safety property is a receptive safety property, and as such can be enforced using
Genkx automated synchronization. This approach may be used to enforce real-time properties
and safety properties whose violations are caused by environment events.

The production cell example shows the application of this technique to make a safe and reliable
system. The safety properties that specify the occurrence of collisions and unsafely dropped
blanks, use only sensor signals and/or timing data to determine whether a safety violation has
occurred. The collisions between the robot arms and presses do not occur immediately when the
press starts to rise, but if the press starts to rise before the arm is retracted,it becomes a question
of timing whether the collision will occur. The only controlled action that determines the collision
occurrence is the press closing. We construct the receptive safety rule that rejects press closing
until the robot retracts. This rule specifies a realizable part of the collision freedom property,
and is thus enforceable using GenEx. If some information was available on the relative speeds of
the press and the robot arm, the realizable part might include some additional behaviors where
press may start closing after a predefined interval without waiting for the robot arm to retract
completely. Without restriction on the speeds, the observable event of a retracted arm is the
only condition that guarantees the collision freedom for these devices.

Similar approach is needed with real-time properties whose enforcement can not be implemented
within a single component. As we have shown earlier, some real-time properties can be imple-
mented by the individual components and preserved by not specifying those component tran-
sitions as violating conditions for any safety rule. Other, more complex properties may not
be implementable within a single component and may require synchronization between several
components. These must be enforced by enforcing their realizable parts.

We will demonstrate this on a multiple server system with two classes of client requests, high
priority real-time requests with minimal CPU requirements and long running non-real-time
requests. The high priority tasks can be executed on either server, while the low priority tasks
may be server specific, and can not be preempted once they start. Assume for simplicity reasons
that the system has two servers, and that each of them has the capacity to handle all real—
time requests. The real-time property requires the availability of resources to process the high
priority requests, and this condition is satisfied if one server is always reserved for the real—
time requests. The lower priority tasks require specific servers, so the available server must be
switched periodically. The realizable part of the real-time execution property can be specified
as all behaviors where at most one server can be executing a low priority task. The available
capacity for the lower priority tasks is equal to one server, and if more is required the requests will
get queued until overflow or the server will become a bottleneck resource for the system. Even
if the servers are overloaded with the lower priority tasks, the high priority real-time tasks will
always have an available server to execute them. The slowdown of the lower priority processing
is the result of the CPU idling that is required to satisfy the real-time requirement, and is not a
side effect of the automated synchronization.

94

This system is scalable to any number of servers with any distribution of servers for real-time
tasks. The system can also be modified for different types of tasks, possibly with better infor-
mation on the expected running time. An upper limit on the running time of low priority tasks
would allow us to design a better availability function with higher CPU utilization.

95

Chapter 7

Automated Synchronization in
Reengineering

Reengineering is the process of converting existing software into new applications suitable for
different environment conditions. The term reengineering is more restricted then reuse, because it
assumes the production of new software mostly from the components of the existing applications,
while reuse envisions the use of some components in a number of systems. Reengineering is thus
driven more by changes in underlying technology then by new functional requirements. Some
examples of technology changes that drive the need for reengineering are the migration toward
distributed execution, visual interfaces and collaborative environments like the Internet. All of
these advances require ever higher levels of parallelism and availability of system functions. The
increases in parallelism and availability increase the system complexity and the importance of
controlling the component interactions. We will show how Genkx can be used to simplify this
process, even for existing applications defined in a sequential programming language.

7.1 The AEGIS Tracking System

The AEGIS system tracks a number of moving objects and attempts to classify them based on
their friendly or unfriendly nature and their proximity and movement toward strategic targets.
The algorithms used in the classification are not dependent on synchronization, and they are
encapsulated in one component making them irrelevant for the system interaction. The system
also requires information gathering and graphical presentation of the processed data. The original
system design is based on a set of independent processes sharing a common data repository.

Each component of the system has a specific function and cooperates with other components
to satisfy the system requirements. The initialization of the system is performed by a loader
that requires exclusive access to the shared memory. After the loader completes its function, the
spreadsheet and tracker are allowed to start executing and accessing the shared memory. The

96

spreadsheet executes independently from the other components and has no further synchroniza-
tion requirements. The spreadsheet acts as a producer of data, and all of its updates are atomic,
so the consumers can read them at any time and get consistent data. The tracker component
uses the data produced by the spreadsheet, and computes the parameters to be used by the
display and list components. The display and list can only function when data is available from
the tracker, so they have to synchronize with the tracker and access the shared memory after the
tracker’s acceses.

7.1.1 Synchronization by a Controller Process

The manual implementation of the AEGIS Tracker is synchronized by a controller process and by
implicit delays in some components. The controller synchronization is based on message passing,
where components send the controller a message when they complete their critical actions, and
the controller sends messages to the components that can proceed with their actions. This is
a simple and efficient method for synchronizing small numbers of components for a serialized
protocol. If additional constraints on interaction need to be imposed, the controller design is not
scalable and would become a bottleneck instead of facilitating the component interaction.

However, the synchronization by the controller process makes it very simple to identify the
interaction constraints in the system. A message arriving at the controller represents a system
state where some actions are enabled, and outgoing messages correspond to the components
whose actions are enabled. We can reconstruct the interaction requirements that the controller
is enforcing, and specify them in a formal notation to use them for automated synchronization.

The first message the controller awaits is the message from the loader, confirming the initialization
is complete. After receiving the message from the loader, the controller sends a message enabling
the spreadsheet, and enters the body of the execution loop. The main loop consists of the tracker
activation, where the controller sends the tracker a message allowing it to start processing the
tracking data. When the tracker is done, it sends a message to the controller, and the controller
then activates the display and list component, using appropriate messages. After activating the
display and list, the controller goes back to the beginning of its loop and activates the tracker
again.

The tracker component includes local delays that make it relinquish control of the CPU even
when it is active. Without the delays, the tracker takes all available CPU capacity, thus blocking
the interactive components. This implicit synchronization is never documented, and it is hard to
reconstruct its purpose.

The control aspect of component structure is very simple, and driven by the synchronization
mechanism. Each component has an initialization, and an active and passive state. The active
state is when the component is executing its function, and the passive state is when it is done, or
waiting to be allowed to activate again. The loader and tracker send messages to the controller
when they leave the active state and enter the passive state. The entrance to the active state
for all components except the loader is conditional upon the reception of a message from the
controller.

97

7.2 Automated data processing extraction

The components of this system have significant data processing functionality, within a simple
control structure. Our method operates with formal control structures, but the data processing
aspect has to be preserved for the generated application to be equivalent to the original. We need
to extract the data processing code embedded in the control structure of the component, and
link it with the code generated for the synchronized components. The first step in this process is
defining the semantics of the connection between the control structure and data processing code.

We consider the components to have a finite state control behavior that roughly corresponds to
the control structure of the component implementation in a sequential programming language.
Part of this control structure is unrelated with the interaction between the component and the
rest of the system, so it can be abstracted away in the representation whose goal is system
synchronization. The abstracted part of of the component can be assumed to implement its
data processing functionality. A simple example of the partition into control and data oriented
functionality is given in Figure 7.1, using the code for the tracker component of the AEGIS
system. The left side of the figure shows the structure of the manually designed component,
and the right side shows the equivalent description in the form of a control oriented FSM and
embedded data processing code segments. The data processing code is implemented in the
form of procedures associated with FSM transitions, and called when their respective transitions
are executed. This example distinguishes between two types of data processing code: the real
local data processing and the messages between the tracker and the controller. The local data
processing is a part of the component functional description, while the messages represent the
manual implementation of the synchronization mechanism.

A functional description of the tracker component is derived from the synchronized one by
removing its synchronization mechanisms. The purely functional component consists of its control
structure, and the associated data processing code. Given the structure in the Genkx notation, an
implementation of this component can be generated to automatically include the links to the data
processing procedures. The component preserves the data processing linkage information even
when its structure is modified for synchronization purposes. After the system is synchronized,
the generated code for each component preserves the functional behavior of the original.

We use an automated code extraction tool to separate the data processing component code from
their control structure while preserving their relationship and the control dependencies. The
tool requires the user to annotate the code that has to be extracted, by specifying the beginning
and end of the data processing code associated with individual states. The code between the
annotations is extracted into procedures to be called on entry to the respective states. This tool
can handle embedded annotations where the data processing code for some states is between data
processing code segments associated with another state. An example of this is when the code for
one state ends in a conditional branch, and both branches include code for successor states.

The extracted code is copied into a separate header file, and grouped into procedures called by
the generated code for the component control structure. Once the components are synchronized
and the code for them is generated, the executable application can be created by adding the data
processing code and the execution support kernel and compiling the system.

98

Tracker_Initialization

Read(Tracker_enbl)

Tracker_Initialization

Two nested loops:
Looking for objects
and processing their

position, speed,etc.
Read(Tracker_enbl)

Two nested loops:
Looking for objects
and processing their
position, speed,etc.

Write(Tracker_done)

Write(Tracker_done)

Figure 7.1: Tracker code structure

7.3 System Specification

The AEGIS system is specified as a set of finite state components and receptive safety rules that
describe their interactions. The control aspect of component behavior is almost trivial, as shown
by the tracker component FSM description in Figure 7.1. The behavior of the display and
list components is identical to the tracker, while the loader and the spreadsheet operate as
sequences with a self-looping transition in the last state.

The receptive safety rules are defined based on the system interaction requirements derived from
the specification of the controller component in the manually designed version. The first of the
two safety rules is shown in Figure 7.2a), and it ensures the safety of the system initialization by
blocking the tracker and the spreadsheet access to the shared memory until the loader sets
the initial values. When the loader completes the initialization, it proceeds to the LO_DONFE
state and enables the transition of the safety rule INIT_SEQUENCE from INIT_ENABLED
to the state SYS_ENABLFED where the spreadsheet and the tracker component can access the
shared memory.

The second receptive safety rule for this system, shown in Figure 7.2b), specifies the valid se-
quences of accesses to the shared memory by the tracker and the display and list components.
The display and list are blocked in their access to the shared memory until the tracker com-
pletes its access. This safety rule has a looping structure and it blocks the display and list
whenever the tracker is waiting to enter the TR_ACTIVE state.

99

a INIT_SEQUENCE b) LOOP_SEQUENCE
| |

INIT_ENABLED)~_SPreadsheet = Sp_active TR_ENABLED

Tracker = Tr_Active
Tracker = Tr_done
Loader = Lo_done
Tracker = Tr_active

SYS_ENABLED @

Figure 7.2: Receptive safety rules for the AEGIS system

Display = Di_active
List = Li_active

Automated synchronization using Genkx produces an integrated system where the components
consult the safety rules’ state data in determining their enabled transitions. The synchroniza-
tion of the components works independently of the runtime organization of the systems. The
same generated code can, depending on the runtime support library, execute in a single process
form or as a collection of distributed processes comprising one or more components and safety
rules. This flexibility makes the automatically generated aegis system portable to a variety of
environments including those without support for multiprocess execution required by the original
manual implementation.

7.4 Requirement Modifications

Previous section has demonstrated how the control aspect of the aegis system can be separated
from the data processing, and how the system can be reintegrated using automated synchroniza-
tion. The resulting application is equivalent to the original implementation synchronized by a
manually designed controller. If the system synchronization requirements change, increasing the
controller complexity, a manual implementation may become a source of errors and ineficiencies.
The system synchronized using GenEx can be modified by adding new receptive properties to the
specification and the components will be automatically modified to enforce the new properties.

We can see that in the manual implementation, the tracker never waits for the display and
list components to complete their actions before going back to the ACTIVFE state. This means
that the purpose of the synchronization is not to enforce exclusion of memory accesses, but to
slow the display and list and reduce their CPU usage.! Neither tracker nor the display of list
components have any sort of synchronization with the spreadsheet component, even though
they are involved in reader—writer interaction on the shared memory. This causes no problems
in the original implementation because the spreadsheet performs atomic updates of the values in
the shared memory since at most one element of the spreadsheet, the one under the cursor, can
be modified at a time. Were the spreadsheet to be substituted by a radar tracking device, all

!The tracker can access the shared memory before the display and list components complete their accesses
previously authorized by the controller.

100

values would become modifiable at any time, and the question of shared memory updates would
become critical.

Let us assume the specifications change, and require the mutual exclusion between the writer
(spreadsheet or whatever substitutes it) and the readers. This requires an additional safety
property that specifies that the writer can not be active writing data to shared memory while the
readers are reading it. The simplest way to manually enforce this rule is to serialize the accesses
of all four components, by requiring the controller to allow their accesses in a specific order. This
imposes an unnecessary restriction on the execution of the critical components in the system, the
tracker and the data acquisition component (the spreadsheet in the original implementation).
These components must be executed regularly in order to guarantee the timely identification of
the observed objects.

We can specify a modified system where the tracker and observer have higher priorities than
the display and list, and all components require exclusive access to the shared memory. The
exclusive access for the display and list serves to reduce the latency of the activation for the
tracker and observer, since our system can not enforce preemptive priority. Additional con-
straint for the initial order of activation specifies that the observer activates first, the tracker
is next, and the display and list can activate later.

The receptive safety rules for mutual exclusion and priority access are defined by simple finite
state machines. The observer and tracker also must enforce bounded overtaking described
to prevent any one of them from using too much CPU. When all these properties are specifies,
Genkx produces a new synchronized implementation of the AEGIS system satisfying all modified
requirements.

7.5 Summary

We have shown how a manually implemented and synchronized system can be modified into a set
of components with data processing calls. These components can be automatically synchronized
for any set of receptive safety properties and, assuming the properties define a realizable system,
synchronized using GenEx and used to produce a reliable safe implementation.

101

Chapter 8

Conclusion

We have identified a subset of safety properties that can be enforced at the system level with-
out requiring explicit synchronization mechanisms at the component level. We have developed a
methodology and the supporting tools for the automated synchronization of concurrent software
systems that enforces their receptive safety properties. By limiting the domain of enforcement to
the receptive safety properties, we eliminated the need for the computationally costly reachability
analysis. The constraint to receptive safety properties is not an overly restrictive requirement,
since they are the only safety properties that can be enforced by open systems. Our synchroniza-
tion method partitions the system analysis, and uses static techniques to drastically reduce the
complexity of violation detection, as well as prevention.

8.1 Future Work

We currently have a functional set of tools that analyze systems with receptive safety require-
ments, and produce synchronized implementations that satisfy those requirements. Qur tools also
support model generation needed for formal system verification, and graphical representation of
system state that makes system verification more intuitive. The generated applications are hard-
ware and enviroment independent thus giving a lot of configuration flexibility to the user. This
synchronization method could be improved by reducing some of the restrictions imposed by the
definition of property domain, and by the current implementation method. Other improvements
may be achieved in the runtime flexibility of the generated applications.

8.1.1 Extension of the Property Domain

Our method can synchronize systems to satisfy any set of finite state receptive properties. An
obvious extension is to the set of context—free receptive properties, and also for context sensitive
and unrestricted domain. The mechanism we use to enforce finite state receptive properties
can enforce more complex properties, with only one additional reqirement. The enforcement

102

of receptive properties demands the identification of violating transitions, thus the properties
have to be represented in a form that makes their violating transitions explicit to the analyzer.
Pushdown automata (PDA) style of representation for context—free receptive properties satisfies
this condition.?

The receptiveness of a property is the fundamental condition that makes it possible to automati-
cally produce an implementation that satisfies it. However, for many nonreceptive but realizable
properties there exists a receptive property that represents their realizable part as defined in
chapter 2. In some cases it may be possible to produce receptive properties by strenghtening the
constraints of the given nonreceptive properties. One example where this may work was discussed
in chapter 6 as time-dependent safety properties. The possibility of modifying time-dependent
properties to ensure that incoming transitions are enabled by non-violating component states
shows how this approach may work in some cases.

Another avenue of further research is the verification that the receptive properties are minimally
and sufficiently restrictive to imply some non-receptive properties. The sufficient restriction
means that a receptive property does imply the satisfaction of a non—receptive property, and
the minimality implies that no unnecessary restrictions are made by the receptive property. If a
receptive safety property is minimally and sufficiently restrictive, then it describes the receptive
part of the respective nonreceptive property.

8.1.2 Optimized Synchronization Mechanism

The implementation of the synchronized systems is automatically generated from the component
specifications and the modifications required by the synchronization. The code for each com-
ponent contains procedures for every state, and they determine what transition is enabled for
the current state. Only the procedure for the current state is executed, so the overhead in the
execution is not excessive, but it can always be reduced. Some possible optimizations in the
executable code include the elimination of redundant conditions, unreachable transitions, and
the use of binary decision diagrams to shorten the decision tree.

The transitive blocking of sets of components synchronized for limited resource access properties
leads to unnecessary slowing down that can be eliminated using global runtime analysis. The
transitive and even cyclic blocking that causes deadlocks can be detected and components can be
enabled to advance simultaneously while preserving the safety. This capability requires a global
system state analyzer that detects the occurrence of transitive blocking patterns, and a different
implementation of delayed transitions that disables the delays when based on a particular bypass
signal.

An important source of inefficiency for systems synchronized using our method is the complete
synchronous execution assumption. This assumption can and should be weakened, specially
in distributed systems where the communication is both expensive and time consuming. The
synchronization between components is required only when they may lead to the occurrence of

! Context—free or higher order languages are not closed under intersection, so their equivalent representation may
not be a PDA. The synchronization conditions would be based on the states of the individual PDAs representing
the receptive safety properties, so these properties would be enforced similarly to the finite state ones.

103

safety violations, and they can be allowed to execute freely when their actions have no influence
on the system safety. Also the synchronization between certain components can be contained in a
geographically or topologically limited area of the system without forcing synchronous execution
with other non—local components. If a component can determine a unique enabled transition
without knowledge of other components’ states and system signals, it can execute asynchronously
from other components.

8.1.3 Dynamic Reconfiguration, Migration and Substitution

The present implementaton of the synchronized systems is configurable to different execution
environments, but only at compilation time. Once the application starts to execute, no com-
ponents or receptive safety properties can be modified or added to the system. Systems with
uninterrupted execution requirements demand the capability for removing subsystems from a
running application and swapping new implementations in their place. The addition and modi-
fication of requirements is another example of a desirable runtime capability, as is the migration
of components or subsystems.

These capabilities require no modifications to the analysis and computation of synchronization
conditions, and their implementation is purely a question of different runtime structure of the
applications. The support for the migration aspect can be inserted into the runtime support and
requires minimal alterations of the user code that will enable the migration of data structures
used by a component’s data processing part. Both dynamic reconfiguration and substitution
may require a different implementation structure for the components, where the evaluation of
synchronization conditions is separated from the body of the component implementation, so
that changes in the system have no influence on components’ state and data processing. Both
dynamic reconfiguration and substitution may require the user to specify the system states when
the transformations are allowed, and how to get to those states.

104

Bibliography

[ABCT91]

[AFB*8S]

[AG93]

[AG94]

[AL93]

[AWS9]

[AWZ8S]

[BCM+90]

[BG92]

[BK93]

G. S. Avrunin, U. A. Buy, J. Corbett, L. Dillon, and J. Wileden. “Experiments with
an improved constrained expression toolset”. In Proceedings of TAV4, October 1991.

T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Parnas, and J. Shore. “Software
Requirements for the A-TE Aircraft”. Technical report, Naval Research Laboratory,
March 1988.

J.M. Atlee and J. Gannon. “State-Based Model Checking of Event-Driven System
Requirements”. IEFE Transactions on Software FEngineering, pages 22-40, January
1993.

R. Allen and D. Garlan. “Formalizing Architectural Connection”. In Proceedings of
the 16th International Conference on SW Engineering, 1994.

Martin Abadi and Leslie Lamport. “Composing Specifications”. ACM Transactions
on Programming Languages and Systems, 15:73-132, January 1993.

Martin Abadi and Leslie Lamportand Pierre Wolper. “Realizable and Unrealizable
Specifications of Reactive Systems”. Lecture Notes in Computer Science, 372:1-17,
1989.

Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. “Detecting Equality
of Variables in Programs”. In Proceedings of the Fifteenth Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, pages 1-11, San
Diego, California, January 1988.

J.R. Burch, E.M. Clarke, K.L.. McMillan, D.J. Dill, and L.J. Hwang. “Symbolic Model
Checking: 10?0 States and Beyond”. In Proceedings of the Fifth Annual Symposium
on Logic in Computer Science, pages 428-439, June 1990.

G. Berry and G. Gonthier. “The Esterel Synchronous Programming Language: De-
sign, Semantics, Implementation”. Secience of Computer Programming, November
1992.

Eric A Brewer and Bradley C. Kuszmaul. “How to Get Good Performance from the
CMb5 Data Network”. In Proceedings of the 1994 International Parallel Processing
Symposium, pages 858-867, April 1993.

105

[Bro&6]

[CES2]

[CESS6]

[CGO4]

[CGKY7]

[Che96]

[CK95]

Michael C. Browne. “An Improved Algorithm for the Automatic Verification of Finite
State Systems Using Temporal Logic”. In Proceedings of the Symposium on Logic in
Computer Science, pages 260-266, August 1986.

E. M. Clarke and E. A. Emerson. “Synthesis of synchronization skeletons from branch-
ing time temporal logic”. Lecture Notes Comp. Sci., 131:52-71, 1982.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. “Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications”. ACM Transactions on
Programming Languages and Systems, 8(2):244-263, April 1986.

M. Chechik and J. Gannon. “Automatic Verification of Requirements Implementa-
tions”. In Proceedings of the 199/ ISSTA, pages 1-14, Seattle, Washington, August
1994.

S. C. Cheung, Dimitra Giannakopoulou, and J. Kramer. “Verification of Liveness
Properties Using Compositional Reachability Analysis”. In Proceedings of the 6th
Furopean Software Fngineering Conference, pages 227-243, September 1997.

M. Chechik. “Automatic Analysis of Consistency Between Requirements and De-
signs”. PhD thesis, University of Maryland, College Park, 1996.

S. C. Cheung and J. Kramer. “Compositional Reachability Analysis of Finite-State
Distributed Systems with User-Specified Constraints”. In SIGSOFT’95 Third ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 140-151,
October 1995.

S. C. Cheung and J. Kramer. “Checking Subsystem Safety Properties in Composi-
tional Reachability Analysis”. In 18th International Conference on Software Fngi-
neering, pages 144-154, March 1996.

E. M. Clarke, D. E. Long, and K. L. McMillan. “Compositional Model Checking”. In
Proceedings of the Fourth Annual Symposium on Logic in Computer Science, pages
464-475, June 1989.

N. Halbwachs C. Ratel and P. Raymond. “Programming and veryfying critical systems
by means of the synchronous data—flow programming language LUSTRE”. Software
Engineering Notes, pages 112-119, 7 1991.

Edgser Dijkstra. “Two starvation—free solutions of a general exclusion problem”.

David L. Dill. “Trace Theory for Automatic Hierarchical Verification of Speed-
Independent circuits”. PhD thesis, Carnegie Mellon University, 1988.

E. Allen Emerson and Edmund M. Clarke. “Using Branching Time Temporal Logic to
Synthesize Synchronization Skeletons”. Science of Computer Programming, 2(3):241-
266, Dec 1982.

Jeffrey Fischer and Richard Gerber. “Compositional Model Checking of Ada Tasking
Programs”. Technical report, University of Maryland, College Park, February 1994.

106

[Fra86)]
[GMM90]

[GS93]

[Har87]

[Hen80]

[HL96]

[HLR9?]

[HoaT78]

[JEHT9]

[Kat93]

[KIL*97]

[LHHR94]

[Lim93]

[Lim96]

Nissim Francez. “Fairness”. Springer Verlag, New York, 1986.

Carlo Ghezzi, Dino Mandrioli, and Angelo Morzenti. “TRIO: A Logic Language for
Executable Specifications of Real-Time Systems”. Journal of Systems and Software,
12(2):107-123, May 1990.

D. Garlan and C. Scott. “Adding Implicit Invocation to Traditional Programming
Languages”. In Proceedings of the 15th International Conference on Software Engi-
neering, 1993.

David Harel. “StateCharts: A Visual Formalism for Complex Systems”. Science of
Computer Programming, 8:231-274, 1987.

K. Heninger. “Specifying Software Requirements for Complex Systems: New Tech-
niques and Their Applications”. IFEF Transactions on Software Engineering, SE-
6(1):2-12, January 1980.

M.P.E. Heimdahl and N.G. Leveson. “Completeness and Consistency in Hierarchical
State-Based Requirements”. IEEFE Transactions on Software Engineering, 22(6):363—
377, June 1996.

Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. “Programming and Ver-
ifying Real-Time Systems by Means of the Synchronous Data-Flow Language LUS-
TRE”. IFEE Transactions on Software Engineering, 18(9):785-793, September 1992.

C.A.R. Hoare. “Communicating Sequential Processes”. Communications of the ACM,
21(8):666-677, August 1978.

Jeffrey D. Ullman John E. Hopcroft. Introduction to Automata Theory, Lan-
guages and Computation. Addison Wesley, Reading, MA, 1979.

Shmuel Katz. “A Superimposition Control Construct for Distributed Systems”. ACM
Transactions on Programming Languages and Systems, 15(2):337-355, April 1993.

Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier, Cristina Lopes,
Chris Maeda, and Anurag Mendhekar. “Aspect Oriented Programming”. In Proceed-
ings of DSLIT — First ACM SIGPLAN Workshop on Domain-Specific Languages,
January 1997.

N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. “Requirements Speci-
fication for Process-Control Systems”. IFEFE Transactions on Software Engineering,
20(9):684-707, September 1994.

Alvin See Sek Lim. “A State Machine Approach to Reliable and Dynamically Re-
configurable Distributed Systems ”. PhD thesis, University of Wisconsin., Madison,
Wisconsin, 1993.

Alvin Lim. “Compositional Synchronization”. In International Conference on DCS,

1996.

107

[LL95]

[Mai93]

[McM93]
[PM97]

[Pur94]

[Sta90]

[Sta92]

[WK95]

[Yeh93]

[YS97]

[YYO1]

[ZM+94]

Claus Lewerentz and Thomas Lindner. “Formal Development of Reactive Systems”.
Springer Verlag, Berlin, 1995.

Michael G. Main. “Complete proof rules for strong fairness and strong extreme fair-
ness”. Theoretical Computer Science, 111(1-2):125-143, April 1993.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

J.C. Park and R. Miller. “Synthesizing Protocol Specificationsfrom Service Spec-
ifications in Timed Extended Finite State Machines”. In Proceedings of the 17th
International Conference on Distributed Computing Systems, pages 253-260, May
1997.

James Purtilo. “The POLYLITH Software Bus”. ACM Transactions on Programming
Languages and Systems, 16(1):151-174, January 1994.

John T. Stasko. “TANGO: A Framework and System for Algorithm Animation”.
IFEE Computer, 23(9):27-39, September 1990.

John T. Stasko. “Animating Algorithms with XTANGO”. SIGACT News, 23(2):67—
71, Spring 1992.

Kevin G. Wika and John C. Knight. “On the Enforcement of Software Safety Policies”.
In Proceedings of the Tenth Annual Conference on Computer Assurance, pages 83-93,
June 1995.

Wei Jen Yeh. “Controlling State Explosion in Reachability Analysis”. PhD thesis,
Purdue University, August 1993.

Daniel M. Yellin and Robert E. Strom. “Protocol specifications and component adap-
tors”. ACM Transactions on Programming Languages and Systems, 19(2):292-333,
March 1997.

Michal Young and Wei Jen Yeh. “Compositional reachability analysis using pro-
cess algebra”. In Proceedings of the Symposium on Softvare Testing, Analysis and
Verification (TAV 4), pages 49-59, October 1991.

Nikolaj Bjorner Zohar Manna, Anuchit Anuchitanukul et al. “STeP: the Stanford
Temporal Prover”. June 1994.

108

