
Analysis and Applications of Receptive Safety Properties inConcurrent Systems1Gilberto Matos
1This research is Supported by the O�ce of Naval Research under contract ONR N000149410320

ABSTRACT:Formal veri�cation for complex concurrent systems is a computationally intensive and, in somecases, intractable process. The complexity is an inherent part of the veri�cation process due tothe system complexity that is an exponential function of the sizes of its components. However,some properties can be enforced by automatically synchronizing the components, thus elimi-nating the need for veri�cation. Moreover, the complexity of the analysis required to enforcethe properties grows incrementally with addition of new components and properties that makethe system complexity grow exponentially. The properties in question are the receptive safetyproperties, a subset of safety properties that can only be violated by component actions. Thereceptive safety properties represent the realizable subset of the general safety properties becausea system that satis�es any non{receptive safety properties must satisfy related receptive safetyproperties. This implies that any system with realizable safety requirements can be describedas a set of components and receptive safety properties that specify the component interactionthat satis�es the requirements. We have developed a method that automatically synchronizescomplex concurrent systems to enforce their receptive safety properties. Many non{safety andnon{receptive properties can be represented using receptive safety properties, and automatedsynchronization can be used to enforce them.

1

Contents1 Introduction 61.0.1 Components, Interaction and Synchronization : : : : : : : : : : : : : : : : : 61.0.2 Enforcement vs. Veri�cation : 71.0.3 Scope of the Thesis : 81.0.4 Overview of the Thesis : 91.1 Related Work : 101.1.1 System Control, Synchronization and Receptiveness : : : : : : : : : : : : : 101.1.2 Composability of Safety Properties : 111.1.3 Veri�cation of Safety Properties : 111.2 Design Notations for Reliable Concurrent Systems : : : : : : : : : : : : : : : : : : 121.3 Requirement Decomposition and Enforcement : 131.3.1 Interface Speci�cations, Veri�cation and Synthesis : : : : : : : : : : : : : : 142 Systems, Components and Interaction Properties 162.1 Open Control Systems : 162.1.1 Dining Philosophers : 172.2 Systems as Sets of Components : 182.3 Semantic Models of System Execution : 202.3.1 Agent Set Semantic Model : 202

2.3.2 Synchronous Transitions Semantic Model : : : : : : : : : : : : : : : : : : : 212.4 System Interaction and its Properties : 222.4.1 Finite State Representation of Safety Properties : : : : : : : : : : : : : : : 242.5 Realizability and Receptiveness : 252.6 Receptive Safety Properties : 272.7 Enforcement of Receptive Safety Properties : 282.7.1 Possible and Reachable Safety Violations : : : : : : : : : : : : : : : : : : : 292.7.2 Synchronization by Delayed Transition Mechanism : : : : : : : : : : : : : : 292.8 Subclasses of Receptive Safety Properties : 312.8.1 Synchronization for Di�erent Types of Receptive Properties : : : : : : : : : 312.9 Guidelines for System De�nition : 343 The GenEx Toolset 363.1 System Development Using the GenEx Toolset : 373.2 Automated Computation of Synchronization Conditions : : : : : : : : : : : : : : : 383.3 Reachability Analysis of Receptive Safety Rule Violations : : : : : : : : : : : : : : 393.3.1 Reachability Graph Construction Algorithm : : : : : : : : : : : : : : : : : : 403.3.2 Analysis and Automated Synchronization for the Reachability AnalysisMethod : 413.4 Static Detection of Possible Safety Violations : 443.4.1 Comparison of the Static and the Reachability Analysis Method : : : : : : 443.5 Formal Model Generator : 473.5.1 Implicit Rule Generation : 473.6 Code Generator : 483.7 Runtime Support Kernel : 513.7.1 Distributed Execution Support : 523

3.8 Accessory tools : 533.8.1 Script Generator : 533.8.2 Speci�cation Analysis Tools : 543.8.3 Visualization and Debugging Tool : 563.9 Summary : 574 Dining Philosophers 584.1 Classic Solutions : 584.2 Automated Synchronization for Dining Philosophers : : : : : : : : : : : : : : : : : 604.2.1 Liveness of the Synchronized Philosophers : : : : : : : : : : : : : : : : : : : 624.2.2 Explicit Starvation Freedom Enforcement : : : : : : : : : : : : : : : : : : : 634.3 Complexity Growth for Dining Philosophers : 644.4 Summary : 655 Production Cell Controller 665.1 Production Cell System : 675.1.1 Components : 695.1.2 Safety Rules : 715.1.3 Synchronization of the Production Cell Controller : : : : : : : : : : : : : : 735.2 Two Press Production Cell System : 745.3 Fault Tolerant Production Cell Controller : 755.3.1 Failure Detection and Recovery : 765.4 Bene�ts of Using GenEx to Synchronize the Production Cell Controller : : : : : : 795.5 Summary : 806 Reliability of Automated Synchronization 816.1 Correctness and Decomposability of GenEx Synchronization : : : : : : : : : : : : : 814

6.1.1 Closure of Regular Languages Under Intersection : : : : : : : : : : : : : : 826.1.2 Compositional Enforcement of System Requirements : : : : : : : : : : : : : 826.1.3 Enforcement of Receptive Safety Rules : 836.1.4 Noncon
icting Nature of Safety Enforcement : : : : : : : : : : : : : : : : : 856.1.5 Correctness of Integrated Systems : 856.2 Design Patterns for Deadlock{Free Systems : 866.2.1 Patterns for Deadlock{Free Design Using Limited Resource Access Rules : 876.2.2 Deadlock{Free Systems using Sequencing Rules : : : : : : : : : : : : : : : 896.3 Detection of Non{receptive Safety Properties : 916.3.1 Detection of Time Dependent Safety Rules : : : : : : : : : : : : : : : : : : 926.4 Enforcement of Non{receptive Safety Properties : 947 Automated Synchronization in Reengineering 967.1 The AEGIS Tracking System : 967.1.1 Synchronization by a Controller Process : 977.2 Automated data processing extraction : 987.3 System Speci�cation : 997.4 Requirement Modi�cations : 1007.5 Summary : 1018 Conclusion 1028.1 Future Work : 1028.1.1 Extension of the Property Domain : 1028.1.2 Optimized Synchronization Mechanism : 1038.1.3 Dynamic Recon�guration, Migration and Substitution : : : : : : : : : : : : 1045

Chapter 1IntroductionModern software systems must address diverse requirements including user pro�les, heteroge-neous hardware, distributed execution, reusability and maintainability, in addition to the classicset of requirements like correctness, performance, reliability, fault tolerance and security. Thecomplexity of the combined requirements can be overwhelming and designers usually try to re-duce it using decomposition. Concurrent systems include multiple autonomous processes thatinteract with each other and the environment. These processes are considered to be components ofthe system. This thesis explores how the interaction between components can be speci�ed usingreceptive safety properties, a class of system properties that can be enforced automatically at thesystem level. We introduce a toolset, GenEx, that integrates the components with automaticallygenerated synchronization mechanisms that enforce the speci�ed receptive safety properties whilepreserving the component functionality.1.0.1 Components, Interaction and SynchronizationComponents in a concurrent system can interact in a variety of ways, from shared memory andmessage passing methods to explicit synchronization mechanisms like semaphores. In systemsthat interact with the environment, components may also interact indirectly through environmentreactions. Component interaction determines how the system as a whole satis�es its requirements.Consequences of incorrect interactions range from loss of performance to total and catastrophicsystem failures, while correct interaction is required in reliable and high performance systems. Wecan specify the desired interaction by a set of system safety and liveness properties, and designsthat satisfy those properties are considered correct. These interaction properties are usually bothconceptually and computationally simple, given that the components encapsulate the complexfunctionality of the system.Despite the simplicity of individual interaction properties, the aggregate complexity of the systembehavior tends to be an exponential function of the number of components. The combinatorialcomplexity of concurrent system behavior makes them hard to analyze and verify using formalmethods, and increases the need for reliable design methods. Many interaction properties are, orcan be represented by receptive safety properties. These properties specify the interactions that6

can guarantee the safety and reliability, or improve the performance, fault tolerance, and real{time behavior of the system. Synchronization in a concurrent system has the role of adjustingthe behavior of individual components to the behavior of the system, to keep the system ina consistent and safe global state. Our research shows that receptive safety properties can beenforced by automatically synchronizing the components.The speci�cation of each component determines what the its next action is in any system state,and we assume that the resulting behavior is correct with respect to the components' functionalrequirements. Information about other components in the system is necessary to determine whenthat action is acceptable. System synchronization modi�es the when decisions made by the in-dividual components, and superimposes additional delays on some of those actions as requiredby the synchronization mechanism. When the what and when aspects of the system's behav-ior can be separated, i.e. when the functional and interaction requirements can be expressedindependently, then receptive safety rules can be enforced by implicit synchronization, using au-tomatically generated code stubs that modify the component behavior to satisfy the interactionproperties. When the interaction between components is speci�ed and enforced at the systemlevel, the components' design is simpli�ed because they must satisfy only their functional require-ments. The use of simpler components and automated synchronization simpli�es the softwareintegration process.1.0.2 Enforcement vs. Veri�cationSystem correctness is de�ned as consistency with a set of system requirements or speci�cations.To declare a system correct, all of its behaviors must satisfy the relevant system requirements.Consistency of a system with its requirements can be veri�ed manually or by using automatedmodel checking or proof techniques. Model checking tools [McM93] can verify that a systemimplementation satis�es all de�ned requirements by analyzing a symbolic representation of itsstate space. Proof techniques generally support the user in the construction of proofs that thesystem implementation implies that its requirements are satis�ed. These formal veri�cationmethods are widespread in the research environments, but their acceptance in the industrial anddevelopment organizations is lagging.One of the biggest problems with the formal veri�cation approach is their complexity and thestringent training requirements for their users. The most accessible and accepted formal methodsare based on the �nite state machine formalism, being the best understood and most often usedin programming. Even when componentsare �nite state machines, the complexity of the systembehavior is an exponential function of the number of components. Many veri�cation tools attemptto reduce the complexity by various methods, but the veri�cation in the general case requires alevel of complexity proportional to the complexity of the system behavior.Formal veri�cation is gaining acceptance in practical design environments wherever the systemreliability is paramount. Some factors contributing to the wider use of formal veri�cation areincreased complexity and criticality of software systems, regulatory requirements, and improve-ments in the computer performance that makes more complex systems veri�able in acceptabletime. 7

In some systems, it is easier to modify the components to enforce some system property thanit is to verify whether the system satis�es the properties. The problem with formal veri�cation,even for �nite state based systems is that the system behavior is related to the data processing inthe components. Veri�cation must take into account the in
uence of the computed data valueson component behavior, and the possibly in�nite or erroneous computations that may interferewith the system.Receptive safety properties de�ne the correct and incorrect sequences of system actions in atime{independent form. Their time{independent nature means that every incorrect executiontrace contains a speci�c action that causes a property violation. Preconditions of the propertyviolations can be determined from the property speci�cations, as can the violating actions and thecomponents that cause them. Enforcement of the receptive safety properties is both conceptuallyand technically simple, requiring a delay of the violating components as long as the violationpreconditions are satis�ed by the system state. Only the actions that cause the safety violationsneed to be delayed, while all other actions can remain unchanged and execute when enabledwithout delay. The complexity of the analysis needed for safety enforcement is therefore limitedto the number of possible safety violations, and is not necessarily proportional to the state spaceof the system or its parts.1.0.3 Scope of the ThesisThis thesis develops and implements a theory for automated software synchronization, driven byreceptive safety rules. This requires developing a formal model of component synchronization,relating this model to the receptive safety rules, and constructing a program that implementsthe synchronization based on an analysis of component interaction with respect to system rules.Boundaries of this investigation have been chosen to concentrate it on practical issues and tolimit the scope of the project.First, only receptive safety properties are used to de�ne the desired system behavior, and synchro-nize the components to enforce it. Many safety properties used in practice are non{receptive, andthey can not be automatically enforced by our method. However the non{receptive properties cannot be satis�ed completely even by manual system design; a system that satis�es a non{receptivesafety property, also satis�es a more restricted receptive safety property. Receptiveness of safetyproperties is an important issue in the practical implementation of reliable software.Another restriction is that the thesis is primarily concerned with the control aspect of componentand system behavior. Methods for design and analysis of control and data processing systemsexhibit important di�erences, due to the di�erent nature of the two aspects of computation. Dataprocessing is primarily concerned with the relationship between complex sets of values, possiblynon{discrete ones. Conversely, the control aspect of computing has to do with the sequencing ofsystem events, a de�nitely discrete domain.Our synchronization method uses �nite state machines to specify both components and sequenc-ing rules. Restriction to �nite state machines may seem to be very limiting, but in practiceit is rare to �nd safety rules more complex than regular languages. Components de�ned usingmost modern programming languages exhibit a �nite state behavior as modeled by their control8

graph. This restriction is not of primary importance for automated synchronization, because theanalysis and enforcement mechanism could handle the use of pushdown automata correspondingto components and safety rules in the context free domain, or state{based representations of evenmore complex languages.Finally, the implementation of this method works with a speci�c FSM notation geared toward thespeci�cation of system properties. This notation is theoretically equivalent to the FSM notationsused in other formal design methods, but in practical terms it makes a clear distinction betweenthe component states and signal values, important from the standpoint of their e�ect on thesystem behavior.1.0.4 Overview of the ThesisThe organization of this thesis re
ects its orientation toward practical applications. Besidespresenting the formal foundations of the method, we make heavy use of examples to show howour method and the supporting GenEx toolset can be applied in complex system development.The remainder of chapter 1 gives an overview of related work in this area.Chapter 2 gives an extended introduction of the terms and notations used in this document,as well as the classi�cation of system properties and their relationship to the realizability ofthe systems. The most important notion in this thesis is that of a receptive safety propertythat describes a set of system properties whose realizability is not a�ected by the environmentalevents. We also introduce the �nite state notations accepted by our system and the basics of thedelayed transition mechanism we use to synchronize components.Chapter 3 describes the GenEx toolset and its main functions. We describe the details of theinput notations for GenEx and how the components and safety rules are related to each other.We also describe some of the problems that may occur in designing systems using GenEx, andthe ways to detect and solve them.Chapter 4 describes the design of a reliable and starvation free dining philosophers system us-ing the automated synchronization to produce the integrated system. This example shows howGenEx supports the use of simpler components by eliminating the need for explicit use of syn-chronization mechanisms. Our synchronization mechanism satis�es the starvation freedom forthe philosophers, and we also show how the starvation freedom can be represented by an explicitreceptive safety property and enforced.Chapter 5 introduces another example of automated synchronization used in a complex concurrentsystem. The production cell controller was used as the basis for a case study of concurrent systemdesign and veri�cation methods [LL95]. We show how a controller for this system can be designedand automatically synchronized using GenEx, and how easy it is to modify that controller toimplement a more complex fault tolerant version.Chapter 6 includes the formal consideration of the compositional nature of �nite state implemen-tations of components and receptive safety properties. It also contains a description of severalpatterns for system design that guarantee the deadlock freedom of the automatically synchro-9

nized applications. Finally, this chapter also includes some examples showing how receptive safetyproperties can be used to enforce nonreceptive properties like real{time execution.Chapter 7 describes the use of GenEx in the reengineering of an existing system, where thecomponent code can be reused and automatically synchronized to satisfy the original requirementsand facilitate further modi�cations.1.1 Related WorkThis section shows some related approaches in the design and veri�cation of concurrent systems.Theoretical work by Abadi and Lamport [AL93] established a framework for the proof of cor-rectness and safety of systems synchronized automatically using GenEx. They also identi�ed thereceptive safety properties and de�ned the relationship between receptiveness and realizability.Other approaches are practical design methods dealing in di�erent ways with the individual andaggregate behavior of components in a system. Some of these methods attempt to automate theveri�cation of user{designed synchronized systems. Our approach in GenEx is to automate thedesign of one aspect of the system components, that related to their control behavior. We modifythe components to make the system enforce a given set of receptive safety properties.1.1.1 System Control, Synchronization and ReceptivenessClarke [EC82, CE82] has shown that properties of the control aspect for many systems are simplerthan the properties of their data processing, and that the implementation of these two aspects canbe separated. He discussed the generation of synchronization skeletons from temporal descriptionsof system behavior. This approach was mostly theoretical because the discussed complexity ofanalysis exceeded exponential growth. While the method was not practically applicable to evenmedium size systems, it introduced the notion of enforcement for aggregate system properties.The intractability of analysis in this method stems from the unrestricted nature of temporalproperties that are enforced; our method selects a restricted set of properties whose enforcementrequires dramatically lower complexity of analysis.The concept of property receptiveness, introduced by Dill [Dil88], gives an intuitive classi�cationof properties for open systems. Open systems consist of a controller and its environment andthe interaction between them determines the system behavior. The environment in open systemscan not be controlled, and no restrictions can be imposed on its behavior. Dill distinguishesproperties that require restrictions on the environment behavior from those that can be satis�edby a system regardless of the environment actions. Receptive properties are those whose validbehaviors are closed under concatenation of environment events.Receptiveness was further developed by Abadi and Lamport [AL93], through the relationshipbetween a property and a controlled agent set that can enforce it. Moreover, they isolatedsafety properties as a speci�c domain of receptive properties that can be preserved under com-position. Receptiveness is also strongly related to the concepts of realizable and unrealizableproperties [AW89]. Intuitively, a rule is receptive if a system can enforce that rule regardless10

of environment actions. In general, any rule that can be violated by a sequence of environmentactions is nonreceptive because no strategy of the system can prevent the violation from happen-ing. A safety rule that restricts only controlled components is receptive because no environmentaction can force the rule violation as long as the system uses a safe synchronization strategy forthe components.1.1.2 Composability of Safety PropertiesThe work on speci�cation composition [AL93] proved that a composed system preserves sometypes of properties enforced by its components. These results make a clear distinction between thecomposability of safety properties, and that of more complex properties that include liveness, andfair behaviors. When a subsystem satis�es a given safety property, provided a set of assumptionsin the form of safety rules is valid, the composed system satis�es the safety property unless somepart of the system violates its assumptions. Composability of safety rule enforcement is rootedin the restrictive nature of their enforcement. Safety properties can be enforced by restrictingcomponent execution using synchronization mechanisms, and composition of restrictions is alsoa restriction.1Reachability, liveness and real{time properties may require the completion of certain transitionsas a way to enforce them. A composition of two such properties may require the simultaneouscompletion of incompatible transitions, thus making the system that satis�es the composed spec-i�cations unrealizable. This shows that composition of non{safety properties is a harder problemthan that of safety, and that those two classes of properties should not be treated as equals. Thespeci�cation composition method can be generalized to these types of properties if their precon-ditions can be speci�ed in the form of safety properties. These safety properties can be enforcedby automated synchronization, and provide a tool for enforcing the nonreceptive properties.1.1.3 Veri�cation of Safety PropertiesCorrectness veri�cation is an essential part of the development of complex concurrent and dis-tributed applications. Testing can provide an estimate of the system reliability and correctness,but it covers only a subset of all executions, so errors can remain undetected. Formal checkinge�orts in the area of concurrent systems have been concentrated in two major areas: provingtemporal properties of �nite system abstractions, and trying to prove that implementations sat-isfy the speci�cations. Proving correctness of abstract descriptions is of limited use because ofthe possible discrepancies between the implementation and the description. In general the scala-bility of this approach is limited by the complexity of the system. When complexity is kept low,mcb [Bro86, CES86] can successfully and e�ciently check formulas in �rst order temporal logicCTL.Proofs on real code are rarely used because their complexity is generally unacceptably high,and they are often undecidable. Some systems try to extract abstract information from the1To illustrate this, consider an example: given any set of time{independent safety rules with consistent initialstates, a system that stays in an acceptable initial state trivially satis�es the safety rules. This example shows theconceptual simplicity of composing systems for safety as well as a potential pitfall in automated synchronization.11

source and do partial analysis. STeP [ZM+94] tries to prove the given assertions automaticallyand when that fails it lets the designer guide the proof by choosing the assertions that areto be proved. Analyzer [CG94, Che96] requires additional information related to the abstractcomponent description to be inserted in the source code, and combines it with the programreachability graph to check the consistency of the program and SCR [Hen80] style speci�cations.Due to the undecidability of the program behavior, this analysis is either optimistic or pessimistic,and exact analysis is impossible. However, he requirement to annotate the code for analysis hasa positive side{e�ect, it forces the designer to understand and document the relationship andthe mapping between the speci�cations and the code. These two systems both support theidea that automatic checking is unable to deal with the data processing aspect of computation,and human involvement is required in system validation and veri�cation. GenEx is de�ned inthe domain of system interaction, where automated veri�cation and synchronization is possiblebecause it is isolated from the data processing aspect, and its complexity is inherently limited tothe �nite{state domain.Compositional and symbolic model checking are two approaches that try to reduce the complex-ity of the state space representations. Compositional model checking [CLM89], [FG94] tries tolimit the complexity by constructing abstractions that can represent system components in fur-ther analysis of the given properties. By eliminating states that are irrelevant to the property, itcan achieve signi�cant reduction in the complexity of the analysis. This approach is orthogonalto automatic synchronization, and the same abstraction and removal of irrelevant states can beused in GenEx to reduce the complexity of the reachability analysis. Symbolic model check-ing [BCM+90] relies on the symbolic representation of the state space, where regularities in thestate space are exploited to minimize the complexity of the representation. These techniques arevery powerful analysis tools, but they require the designer to correct all inconsistencies. Also thecorrectness of the abstraction in no way guarantees the correctness of the implementation doneby hand, a fact that reduces the practical applicability of those systems.1.2 Design Notations for Reliable Concurrent SystemsFormal veri�cation su�ers from the system complexity and state space explosion problems, as wellas high requirements for user training. Many programming languages and speci�cation notationshave been developed to help produce reliable concurrent systems, where some properties orbehaviors are guaranteed by design, and do not require any veri�cation. One of the �rst broadlyused formal notations for concurrent systems was StateCharts [Har87], a graphical notationusing states and transitions to represent complex systems. They use hierarchical clustering andre�nement to specify complex components from sets of simpler ones. Simple components may becombined sequentially or in parallel within a larger subsystem, and transitions can be combinedto represent di�erent forms of component interaction. The explicit graphical nature of this modelmakes the system structure behavior and structure very intuitive, making it easier for the usersto understand the implications of their design decisions. The computational complexity of thesystem used for formal veri�cation remains proportional to a product of the parallel subsystems,possibly exponential for larger systems. 12

Several programming languages for reliable concurrent systems are based on the tabular approach,where every component is de�ned by a table specifying its reactions to speci�c system states.Two examples of this approach are SCR [Hen80, AFB+88] and RSML [LHHR94]. The tabularapproach has the advantage of being simple for the end users to understand and comment onfrom the domain knowledge point of view. The tabular notation makes these languages simpleto automatically analyze for completeness and consistency [HL96], and re�ne their behaviorby modifying the speci�cation table [AG93]. We use this basic notation for the componentspeci�cations in GenEx, because of the simplicity of component behavior modi�cations.Several systems have used the code generation to implement synchronized concurrent systems,LUSTRE [CRR91] and Esterel[BG92] being based on a similar model of computation as GenEx.These systems use a synchronous transitions model of computation, where every componentexecutes one action in every system cycle. The synchronous transitions model makes themsimple to analyze and generate code for. Both LUSTRE and Esterel support the veri�cation ofgiven system properties versus the system behavior. GenEx di�ers from these languages becauseinstead of verifying that the speci�ed system satis�es the given properties, it actually computesthe necessary synchronization of the components that makes the system enforce receptive safetyproperties. This di�erence is fundamental because GenEx allows the programmer to give a partialsystem description, and have it automatically re�ned to satisfy the given set of rules; the othersystems would notify the programmer if the description satis�es the rules and if not, the designwould require some changes by the programmer. Apart from requiring high skill, the manualre�nement might also involve sizeable e�ort because the physical size of the description mighthave to increase.Labeled transition system(LTS) [CK95, CK96, CGK97] is another �nite state notation for com-ponent speci�cations that uses a synchronous transition model. The assumptions in this modelare even more restrictive than the other synchronous transition models because the set of com-ponents that will execute a transition in any given cycle is determined based on the system stateafter the previous transition is completed. A transition with the label l can be executed only if allcomponents that use that label for any transition have a transition with that label enabled. Thisformalism makes it trivial to enforce certain types of safety properties, by adding a componentthat uses a labeled transition when it is safe, and disables it when it may cause a safety violation.The problem with the LTS approach is that the constraint is very restrictive and results in veryeasy occurrence of deadlock states when all labels are disabled.1.3 Requirement Decomposition and EnforcementThe concept of product state machines, as described in [Lim93, Lim96], is conceptually verysimilar to GenEx. The main di�erence between them is the scalability. In this system, theglobal reachability graph is constructed and then restricted to eliminate violation states. Therestricted graph is then used in the execution. The reachability graph may be too complex to beuseful in practice, even using their abstraction and composition trechniques to reduce the statespace. Other similar approaches exist in the hardware design area where the behavior of circuitscan be completely modeled and the sequential circuit is generated as an instance of the veri�ed13

model. Conceptually, GenEx does the same thing, but the emphasis is on the local analysisand synchronization of components, and the complexity is kept low because the synchronizationmechanism for every safety rule is independent.Another related concept is that of Safety Kernel [WK95] that is less formal, but involves the codegeneration capability and automatic safety implementation. This centralized, and more impor-tantly sequential, paradigm makes the code generation trivial by reducing it to a simple runtimecheck of the desired property. The main shortcoming of this system is its centralized safety ker-nel, making it useful in its domain of physical safety enforcement, but not really applicable tothe concurrent and potentially distributed systems. Despite this shortcoming, the system is anexample of how simple methods can solve complex problems, given the right domain.Brewer and Kuszmaul [BK93] investigated the impact of synchronizationon system performance,and found that synchronization in some cases can contribute to improving the performance of asystem beyond what could be achieved by asynchronous execution. This shows that performancerequirements can sometimes be reduced to safety properties which can be enforced using synchro-nization. We will show later how other non{safety properties can often be reduced to receptivesafety properties and enforced by automated synchronization.Aspect{oriented computing [KIL+97] is closely related to our work by its emphasis on separatingdi�erent aspects of system behavior and the use of automated integration to generate systemimplementations. This �eld is very broad, and involves many types of system properties, anddi�erent types of systems and objects. The idea in aspect based computing is that the usersupplements the component sources with descriptions of some global aspects of component in-teraction. Aspects guide the integration of the procedural components, according to the aspect"weaving" rules given with the aspect descriptions. This makes components reusable across manyapplications regardless of their global structure and requirements, and makes the aspects reusablein many applications with similar global properties regardless of the system components.GenEx de�ned systems have a similar structure to aspect based computing, where componentsare the main building blocks, safety rules are the aspects the system should satisfy, and the com-putation and decomposition of synchronization conditions corresponds to the aspect "weaving"method. The GenEx approach is focused on one class of aspects and comes with a prede�nedintegration method for enforcing them. By limiting the approach to a certain class of systems,we can make better tools for integration and system veri�cation, allowing us to automaticallygenerate correct implementations.1.3.1 Interface Speci�cations, Veri�cation and SynthesisGarlan and others [GS93, AG94] investigated the interface speci�cations from the standpoint ofexternal control, and introduced the concept of glue protocols. Behavior of individual componentinterfaces is a set of possible execution traces, but some traces incompatible with the glue are madeunreachable to make the interface consistent with the glue. The interface and glue speci�cationsare manually designed, and may be veri�ed for consistency and compatibility. Another similarapproach was developed by Katz [Kat93], where control constructs are superimposed on thebehavior of the components to achieve speci�c system behaviors.14

Yellin and Strom [YS97] discuss the automated synthesis of interface adaptors according to �nitestate protocol descriptions for the connectors being interfaced. This work is conceptually similarto the GenEx synchronization, but lacks the modular nature in the adaptor synthesis, and islimited to the message passing constraints, not the component behavior itself. Modularity of thesynchronization process makes GenEx applicable for systems with complex interactions betweenmultiple components. The adaptor synthesis approach is de�ned for interfaces between twocomponents, and all constraints for a given interface are handled together, potentially leadingto exponential complexity of the adaptor. While they work with interfaces and parameters ofnon{�nite state nature, they extract a �nite state speci�cation using a dependence mapping ofparameters. The mapping speci�es a partial order for the messages according to the dependencebetween their parameters. This partial order makes a �nite state structure where the synthesisby state enumeration is possible.Park and Miller [PM97] worked on automatic synthesis of interfaces to implement a service spec-i�cation involving a number of components with real{time characteristics. Their work is basedon timed �nite state machines, and the individual protocol synthesis concentrates on intervalplanning, and introduction of synchronizing actions in the machines. Since the system handlesreal{time requirements, it has no guarantee of success, but does guarantee to satisfy a maximalset of requirements. As in the case of Yellin and Strom, the complexity of this method is propor-tional to the size of the service speci�cation, reducing its applicability for complex systems andinteractions when the full speci�cation is a composition of numerous components.

15

Chapter 2Systems, Components andInteraction PropertiesConcurrent systems are a very active research area, and numerous notations and supportingsemantic domains have been developed. These systems are based on various divergent and evencon
icting assumptions. These assumptions deal with the semantics of component execution,whether they execute asynchronously [Hen80], synchronously [HLR92, BG92], or with runtimedetermination of synchronization requirements [CK95]. Other important di�erences betweenconcurrent system speci�cation methods arise in the area of time, where some systems assume acontinuous timeline model [GMM90], some operate with �nite intervals and a timeline made ofdiscrete events [BG92], and others work with branching time model [McM93, CLM89].In this chapter we will de�ne the type of concurrent systems that our system handles, as wellas the semantics of their behavior and properties. We will introduce the assumptions of oursemantic model and show that it is a subset of a more general semantic model used to de�nethe relationship between system properties, components and realizability. We will also give anoverview of the theory of system realizability, and a classi�cation of system properties that identi-�es the properties that can be enforced automatically. We use the delayed transition mechanism,introduced in Section 2.7, to synchronize the components and enforce the properties. Section 2.8describes some types of enforceable properties and shows the synchronization mechanisms theyrequire.2.1 Open Control SystemsOur synchronization method and the associated analysis tools are speci�cally designed to processopen control systems. Open control systems are interactive systems where some events may beunpredictable, possibly controlled by a malicious environment entity. Our goal is to design acontroller that will enforce the required system behaviors, assuming the environment behaviorsatis�es a set of assumptions. The environment comprises all parts of the system that are not16

STATE
SYSTEM

OBSERVABLE

REQUIREMENT OBSERVER

ENVIRONMENTCONTROLLER

SYSTEM STATE

BY CONTROLLER
UNOBSERVABLEFigure 2.1: The structure of an open control systemdirectly controlled by the controller Some events may be completely or partially controlled bythe environment, as shown in Figure 2.1. The controller monitors the observable state of theenvironment and uses a prede�ned and limited range of actions to in
uence the environmentbehavior. The environment reacts to controller actions, and the interaction between the controllerand the environment produces the system behavior. User speci�es the system requirements toaccept or reject individual system behaviors based on the occurrence of speci�c events or lackthereof. Some aspects of environment behavior may be unobservable by the controller, but stillcontribute to the system state, and may in
uence the satisfaction of system requirements.The controller essentially plays a game with the environment, where the controller wins if thesystem requirements are satis�ed and the environment wins if some requirement can be violated.Controller tries to prevent the system behavior from violating any requirements, always assumingthat the environment has the opposite goal. In this game oriented abstraction, the controller issaid to implement a strategy, and a winning strategy is one where the environment does nothave any possible action that may violate the system requirements. In practice, a program (aset of system speci�cations) represents a winning strategy i� it can be proved to satisfy therequirements regardless of the given inputs or the timing of the environmental events.2.1.1 Dining PhilosophersWe will illustrate these concepts using the dining philosophers example. The system consistsof a set of processes (philosophers) which perform two functions, thinking and eating. Thephilosophers' behavior is simple, they think until they get hungry, and eat until they stop being17

hungry. Every philosopher can think regardless of the state of the other philosophers, but due tothe lack of forks on the table there are constraints on when they can eat. There is exactly onefork between each two chairs, and every philosopher needs both adjacent forks for eating. Thismeans that when one philosopher is using the two adjacent forks to eat, the two neighboringphilosophers cannot eat.The dining philosophers can be viewed as an open control system, where the environment controlsthe hunger of the philosophers, while their decisions to start and stop eating are considered to becontroller actions. The assumption about the environment behavior is that a philosopher that eatseventually stops being hungry. The requirements for the system behavior de�ne the interactionbetween the philosophers, in this case the constraints on when they are allowed to eat. Anothersystem requirement is that any hungry philosopher eventually gets to start eating. The gametheory aspect of system design is simple in this case because the controller has total visibility ofthe system state, and its actions can be determined based on the current situation. This systemhas been extensively studied in literature, both for synchronization design [Dij, Hoa78] and forsystem veri�cation [YY91]. We will use this system to illustrate di�erent aspects of automatedsynchronization.2.2 Systems as Sets of ComponentsThe modular architecture of software systems is based on active concurrent components thatcommunicate through passive interfaces. A component can be described by its control behaviorand its data processing aspect. The control behavior of a component determines the sequenceof its actions, while the data processing aspect speci�es the data that is used and produced bythe component during speci�c control actions. The data processing aspect includes potentiallyundecidable problems, and is hard to analyze and verify for correctness. The control behavior isgenerally simpler than the data processing, and often can be represented by regular languages or�nite state machines (FSM in the remainder of this document). The regular language domain ofcontrol behaviors makes it possible to e�ectively analyze and verify their correctness using formalmethodology.Many formal methods for concurrent software design use FSMs to model the components. FSMsroughly represent the control graph of component implementation. The data processing aspectis implemented separately, but linkable to the �nal implementation. Systems are composed byexecuting the components concurrently, in some cases in lockstep with each component executingone transition in parallel, and this model is known as the synchronous transition model.In our system we use components de�ned in the form of Mealy �nite state machines [JEH79],whose output depends on the executed transition. Every component is de�ned as a tuple(S;A; I; �) where S is a set of states, A is a set of boolean system variables the component canread or write, I is the initial state, and � : (S�2A)! (S�2A) is the transition relation mappingcomponent state and inputs to the next state and the component outputs. The component canread and write the same set of variables and can use any combination of variables to determinethe enabled transitions. This makes its alphabet the set of all possible combinations of boolean18

init([philo],[thinking],[[]]).

trans([philo],[thinking],[eating],[[t]]).

trans([philo],[thinking],[thinking],[[f]]).

trans([philo],[eating],[thinking],[[f]]).

trans([philo],[eating],[eating],[[t]]).

mode([philo],[[hungry]]).PHILOSOPHER

Thinking Eating

!Hungry / Drop_Forks

Hungry / Pick_Forks

a) b)Figure 2.2: The control structure of a philosophervalues for the variables in A, represented above by the powerset 2A. This de�nition of componentbehavior is similar to the tabular approaches in SCR [Hen80, AFB+88] and RSML [LHHR94].Variables used to determine the enabled transitions for a given component are considered tobe monitored, while the variables altered by its e�ects are controlled as de�ned in the SCRnotation [Hen80]. Variables may be used for communication between components when theywould be controlled by some components and monitored by others. From the standpoint of acontroller system, variables are controlled if they are controlled by any of its components, andmonitored if they are controlled by its environment. The main distinction between monitoredand controlled variables is the independence of the monitored variables from system state andcomponent transitions. The monitored variables can have arbitrary values at any point in time,while the controlled variable values are a function of the controller behavior.The dining philosophers system consists of a set of components (philosophers) with identicalbehavior. The behavior of a philosopher is given in Figure 2.2a), using the �nite state machinenotation. The FSM notation is elementary with each transition labeled by an ordered paircondition/e�ect where the condition represents the enabling condition for the transition andthe e�ect represents the change in system state that results from the completion of the transition.Each philosopher component monitors the respective boolean variable hungry and determines theenabled transitions based on its values. Figure 2.2b) shows the same speci�cation in the form ofProlog predicates, used by our automated synchronization tools.Predicate mode declares an ordered list of system variables referenced by the component. This listspeci�es the positions where the variable values will appear in the speci�cations of the componentbehavior. Predicate init speci�es the initial state of the component and the initial values of itscontrolled variables, value in this list determines the variable whose value it sets. Every variablecan be referenced in 3 possible ways: [t] for true, [f] for false or [] for unde�ned. Philosophersonly use monitored variables that specify whether they are hungry or not, so initial values inthis case are left blank. Predicate trans speci�es a transition by giving its source and destinationstates, its enabling condition and the e�ect on the controlled variables. The enabling conditionsfor the transitions depend on the monitored variables, so they specify the required values. Sincephilosophers have no controlled variables, the transition e�ect list includes only bank elements.19

2.3 Semantic Models of System ExecutionThe system behavior can be described as a game between the controller and the environment.The basic rules of this game are described by the semantic execution model that speci�es whenthe players can make a move and what are the legal moves at any instant. The interactionbetween control systems and environments was studied by Abadi and Lamport [AL93], and wewill use their classi�cation of properties and their relationship to controller strategies to clarifythe need for identifying receptive safety properties. This classi�cation and theorem proofs arebased on the agent set semantic model. This semantic model represents the controller actions asatomic and as members of a prede�ned set, and provides an elegant notation for de�ning systemproperties and reasoning about their relationship.Our research concentrates on the composability of systems from independent components, and weselected a di�erent but related semantic execution model. The synchronous transition model [McM93,BG92] de�nes controller actions as a combination of parallel component actions, and speci�esstrict interleaving between the controller and environment actions. This semantic model is basedon the states of the individual components and the system variables, and is more oriented to-ward practical system design where individual components are the primary building block. Thesynchronous transitions semantic model represents a special case of the agent set model, andthe theory of receptive safety properties developed for the agent set model also applies to thesynchronous component execution model.2.3.1 Agent Set Semantic ModelThe agent set semantic model describes system behaviors using states and agents. We will givea short overview of their de�nitions, and more details can be found in [AL93].De�nition 2.1 A state is an element of a nonempty set S of states. Every element of S repre-sents the state, at some instant, of the system universe. System state represents a combinationof the current controller state and environment state.De�nition 2.2 An agent is an element of a nonempty set A. A set of agents � is an agentset if it is a nonempty proper subset of A.Agents in the agent set semantic model represent the entities that change the system state. Theset of agents A is divided into two disjoint nonempty subsets � and :� = A� �, that representthe agents controlled by the controller and the environment respectively. The disjointness ofthe controller and environment agent sets implies that they always execute in some interleavingpattern and never in parallel. Both agent sets can be reduced to a single agent each, representingall disjoint controller and environment actions [AW89].The following de�nitions introduce the notion of system behavior in this semantic model.20

De�nition 2.3 A behavior pre�x is a sequences0 a1�! s1 a2�! s2:::where each si is a state and each ai is an agent that modi�es the system state si�1 into si. Abehavior pre�x is either in�nite or ends in a state sm for some m � 0.De�nition 2.4 A behavior is an in�nite behavior pre�x.2.3.2 Synchronous Transitions Semantic ModelWe use synchronous transitions as the semantic model of controller behavior. This model assumesthat the controller is composed from a set of components, executing in parallel. Every compo-nent selects one enabled transition in every system cycle and they all execute the transitionssynchronously. The enabling conditions of component transitions are de�ned as a function of thesystem state, including both controlled and monitored system variables. Every component mustselect some transition in every cycle, and for every state there is an implicit default self{looptransition that is enabled in the absence of other enabled transitions. The e�ect of the completedtransitions results in the change of component states and controlled variable values. To simplifythe composition of transitions, every controlled variable should be controlled by at most onecomponent; more complex variables can be represented as boolean functions of simple variables.Parallel component transitions represent a controller action, and changes in monitored variablesrepresent the e�ects of environment actions. The controller and environment actions are strictlyinterleaved, so that an environment action is allowed after every controller action.The system can be represented by an equivalent �nite state machine that represents the combinedbehavior of the components. This equivalent FSM has a state for every combination of componentstates reachable in the system execution. The input alphabet of the equivalent FSM containssymbols that represent all combinations of monitored system variables. The output alphabet isde�ned similarly, as a set of symbols representing the combinations of controlled variable values.Given two components C1 = (S1; A1; I1; �1) and C2 = (S2; A2; I2; �2), the equivalent combinedFSM is de�ned as Ceq = (Seq; Aeq; Ieq; �eq) where Seq = S1 � S2; Aeq = A1 [A2; Ieq = I1 � I2and the transition set is de�ned as �eq : (Seq � 2Aeq) ! (Seq � 2Aeq). If component transitionsinclude �1(s1s; a1s) = (s1d; a1d) and �2(s2s; a2s) = (s2d; a2d), and the enabling conditionsof those transitions are consistent, a1s \ a2s 6= ;, then the combined transition set includes�eq((s1s; s2s); (a1s \ a2s)) = ((s1d; s2d); (a1d[a2d)). This de�nition of combined transitionsimplies that two component transitions can be combined when their enabling conditions are notcontradictory. The controlled variables are controlled by at most one component, so the e�ectsof transitions by distinct components are always consistent and can be combined. We say that acombined transition includes a speci�c individual component transition, if the combined transitionrepresents the parallel execution of that component transition with arbitrary transitions of othercomponents.For any system de�ned using the synchronous transition model, we can construct its representa-tion in the agent set semantic model, by representing the controller actions as agents and enforcingstrict interleaving of controller and environment agents. For the system Ceq = (Seq; Aeq; Ieq; �eq)in the synchronous transition semantic model, we can construct a system SY Sas = (S; �;:�)21

using the agent set semantic model with the identical set of possible behaviors. The set of statesS = Seq�2Aeq �f1; 2g corresponds to all combinations of system component states and all valuesof system variables. The last part of the Cartesian product is a phase selector that speci�es theinterleaving between the controller and the environment. The environment agent set consists of asingle agent a:�, enabled when the current state of the behavior pre�x contains a phase selectorvalue of 1. The e�ect of the environment agent on the system state is to change the value of thephase selector from 1 to 2, and to change the values of any subset of monitored variables. Thecontrolled agent set � also consists of a single agent a� enabled when the phase selector in thecurrent state has the value 2. The e�ect of the agent a� on the current state is the union of thee�ect of a transition in �eq enabled by the current system states and variables, and the change ofvalue of the phase selector from 2 to 1.This system is obviously de�ned using a state set and a set of agents. The set of agents containstwo subsets � and :� corresponding to the controller and environment actions respectively. Theagent sets are disjoint since their e�ects on the system state always include a di�erent e�ect onthe phase selector variable. The inclusion of the phase selector in the enabling conditions of theagents makes the selection of enabled agent set deterministic in every state of the system, andenforces strict interleaving between the controller and the environment. This mapping showsthat our semantic model represents a special case of the model used by Abadi and Lamport, andthat their classi�cation of properties and their relationship between properties apply to systemsdesigned using our model.2.4 System Interaction and its PropertiesThe behavior of the controller is more complex than just the parallel execution of its components.Behavior of all components and their interaction both contribute to determine the overall behaviorof the controller. In addition to the speci�cation of every component's individual behavior, wewant to explicitly de�ne their aggregate behavior as a part of the controller speci�cation. We canspecify the acceptable and unacceptable controller behaviors by de�ning controller properties.The following de�nitions specify the relationship between properties and system behaviors.De�nition 2.5 A stuttering step occurs when the execution of an enabled agent results in anunchanged system state. Two behaviors are stuttering equivalent i� they consist of the samesequences of system states, with di�erent number of stuttering steps.De�nition 2.6 A property is a set of behaviors closed under stuttering equivalence. If a prop-erty accepts one behavior, it will accept variations of that behavior where events occur in the sameorder, but at di�erent intervals.A designer's goal is to produce a controller that will satisfy a set of required system properties.The controller in
uences the system behavior by executing some of its agents enabled in a givenstate. The enabling conditions and e�ects of the controller agents de�ne the behavior of the22

controller and what system behaviors will be enforced by it. These agents form the controllerstrategy. The strategy de�nes the behavior of the controller, but the behavior of the system isde�ned as the result of the interaction between the controller and the environment.De�nition 2.7 A ��strategy is a partial function mapping behavior pre�xes to agents in thecontrolled agent set �. Any behavior pre�x that is not mapped to an agent in � must enable anenvironment agent, or represents the halting state for the system.De�nition 2.8 A ��outcome of a ��strategy f is a behavior � such that for every behaviorpre�x �m followed by a ��agent a�, the function f includes f(�m) = a�. A ��outcome is fair i�it is achieved by executing agents in :� an in�nite number of times.The fairness requirement eliminates in�nite sequences of actions generated by the controllerstrategy without any environment reactions. An unfair system, according to this de�nition, isin�nitely faster than the environment or blocks its execution; unfair systems can not be classi�edas being open with respect to the environment, or as being realizable in practice.De�nition 2.9 If f is a ��strategy, then O�(f) is the set of all fair ��outcomes of f.Interaction properties are often classi�ed as safety and liveness properties. Safety rules aregenerally de�ned as rules that specify that certain bad states will not occur during execution, whileliveness speci�es that good states will eventually occur. This informal and practical de�nitionrestricts the domain of safety properties because it ignores the possibility that some states maybe bad only after the occurrence of some sequence of events. Similarly, liveness properties mayrequire some preconditions to occur before they require the eventual occurrence of some state.A formal de�nition for these types of properties is based on the �niteness of the execution tracesthat violate the properties. If all violations of a given property are detectable on �nite traces,that is a safety property, while the liveness properties apply only to in�nite execution traces.Some hybrid properties may be violated by both �nite and in�nite execution traces, but all suchproperties can be decomposed into pure safety and liveness properties.De�nition 2.10 A safety property may reject a behavior only if that behavior contains a �nitepre�x that violates the property.De�nition 2.11 A liveness property cannot be violated by any �nite behavior pre�x, but itmay reject some in�nite system behaviors.Since safety rules can be veri�ed on �nite execution traces, the preconditions of their violationsmust occur along those traces. That means that the occurrence of safety violations can bepredicted, and corrective actions can be taken by the system and its components to avoid theviolations. The same principle does not apply to the liveness properties whose violations onlyoccur on in�nite traces. A useful concept in reasoning about system properties is the safetyclosure [AWZ88], which de�nes a safety approximaton for arbitrary properties.23

IDLE
hungry2 & Thinking2 & Eating1

DONE_ACCESS

Eating2

Eating1

1-BOUND_12

REJECT

IN_ACCESS

Thinking1

b)

SAFE_OK

MUTEX_12

Philo1 = Eating & Philo2 = Eating
REJECT

a)

trans_r([mutex_12],[safe_OK],[reject],[[eating],[eating]],[]).
trans_r([mutex_12],[safe_OK],[safe_OK],[[],[]],[]).

restrict_comps([mutex_12],[[philo1],[philo2]],[]).
init_r([mutex_12],[safe_OK],[[thinking],[thinking]],[]).Figure 2.3: Mutual exclusion and 1{bounded overtaking for dining philosophersDe�nition 2.12 The safety closure P of a property P is the smallest safety property thataccepts all behaviors accepted by P.2.4.1 Finite State Representation of Safety PropertiesThe safety properties in our system are de�ned using the same formalism used for the components,the �nite state machines. Safety rules are de�ned as �nite state machines whose behavior dependson the system states, similarly to the Esterel concept of Observer [BG92]. A safety rule observesthe components in the sense that it uses their states to determine its enabled transitions. Inpractice, this means that the components and safety rules are interleaved during execution, andthe states of both components and safety rule observers combined represent the system state.Every safety property is de�ned as P = (S; (C[A); I; �;R) where S is a set of states, C is the setof states for components observed by the property, A is the set containing all variables that thesafety property can read, I is the initial state, and � : (S � 2C[A)! (S [fRg) is the transitionrelation mapping the safety rule state and inputs to the next state. Transitions of the safetyrule FSM are enabled by combinations of states of the referenced components and the values ofsystem variables. The last parameter R speci�es the rejecting state that represents the safetyviolation for this rule. All other states for a safety rule FSM are accepting states.In the dining philosophers example, safety rules refer to component pairs and Figure 2.3 showstwo rules that specify the interaction between two adjacent philosophers. The �rst rule acceptsall system behaviors except those where the two adjacent philosophers are in their EATINGstate simultaneously. This rule represents the mutual exclusion requirement for two identi�edcomponents and it monitors the states of those two components waiting for the safety violation.This FSM reacts to the occurrence of a safety violation by executing its transition to the stateREJECT. The overall system behavior can be speci�ed by asserting mutual exclusion safetyproperties for every pair of adjacent philosophers. Figure 2.3a) shows the mutual exclusionproperty both in the form of a graphical FSM and in Prolog speci�cations accepted by ourautomated synchronization tool. The predicate restrict comps speci�es the components whosestates are used to compute the enabling conditions of the safety rule FSM, while the init r and24

trans r predicates specify the initial state and the transitions of the safety rule. The initial statecan specify the expected initial states of some of the restricted components, and the transitionscan use both the component states and a set of system variables in their enabling conditions.The second property shown in Figure 2.3b) is the 1{bounded overtaking property, and it can beused to specify balanced table access by all philosophers. This property rejects those behaviorsthat have one philosopher eating repeatedly while one of its neighbors is hungry and waiting toeat. The enforcement of this property in a dining philosopher system implies that the starvationfreedom holds, because every philosopher must be allowed to eat after waiting for each of its twoneighbors to eat once. This safety property implies that the philosopher access is fair.For every safety rule, we can de�ne the set of its referenced components, Ref(Sp), as the set ofcomponents whose states are used in the enabling conditions of the safety property. We can alsode�ne the set of restricted components, Res(Sp), as the set of components whose behavior maybe restricted by the property. The referenced components set contains all components whosestate is used in some transition of the safety rule, while the restricted components set containsthose referenced by some transition to the REJECT state. The component sets de�ned for themutual exclusion and 1{bounded overtaking are the following:Ref(Mutex12) = fphilo1; philo2g; Res(Mutex12) = fphilo1; philo2gRef(Bound12) = fphilo1; philo2g; Res(Bound12) = fphilo1gWe can also distinguish between several types of transitions within safety properties. The transi-tions leading to the REJECT state are the violating transitions and they occur when the behaviorof the system becomes unacceptable by the safety property. If a state has some outgoing violatingtransitions, all other outgoing transitions from that state are called synchronization transitions.Synchronization transitions may remove a restriction on the execution of some component, andallow that component to advance if it was in a delayed state. All other transitions in a safetyrule are observer transitions because their purpose is to make the safety rule follow the behaviorof the system. The mutual exclusion property contains only one violating transition because itde�nes an invariant condition. In the case of the 1{bounded overtaking property, the transitionfrom DONE ACCESS to REJECT is the violating transition while the one from DONE ACCESSto IDLE is a synchronization transition. Transitions to and from the state IN ACCESS are theobserver transitions for this property.2.5 Realizability and ReceptivenessSafety properties classify system behaviors based on their membership in the property behaviorsets. Acceptable behaviors belong to the intersection of the safety property behavior sets, and theunacceptable ones violate one or more safety properties. Unacceptable system behaviors violate asafety rule due to the occurrence of some property{speci�c violating event, whether caused by thecontroller or by its environment. Safety properties whose violations are caused by environmentagents may be independent from the controller and thus impossible for it to enforce. Makingthese safety properties a part of system requirements, makes the system unrealizable. The system25

is unrealizable because its requirements can be violated regardless of the controller design. Anexample of an unrealizable safety property is a requirement for freedom from user reset. Thisproperty is violated when the user resets the system, and there is no way the controller canprevent it, so it can't satisfy the property. In order to automatically enforce system properties,we must be able to distinguish between properties that can be enforced by the controller andthose whose violations may be unavoidable. The following de�nitions introduce the concept ofproperty realizability.De�nition 2.13 A ��strategy f satis�es a property P i� O�(f) � P . A winning strategysatis�es all required properties for a system.De�nition 2.14 The realizable part R�(P) of a property P is the union of all sets O�(f),such that f is a ��strategy and O�(f) � PDe�nition 2.15 A property P is ��realizable i� R�(P) is nonempty.There are some safety properties whose violations are caused by environmental events, but onlyafter speci�c system behaviors. While these properties are realizable, they lead to problemsin system testing. These properties accept some behaviors that can only be an outcome ofincorrect controller strategies because the environment does not exhibit its worst case behavior.The problem is that the same controller behaviors can result in safety violations, when theenvironment executes the violating actions. In order to enforce those properties, the controllerstrategy must be restricted to generate a set of outcomes that is a subset of the property.We have shown that safety properties can be unrealizable, but even the enforcement of realiz-able ones may require severe restrictions of the component and system behavior. The severityof the necessary restrictions may be so great to prevent the system from ful�lling its functionalrequirements. One such property is the requirement that reset does not occur while the systemexecutes some important action; it is trivially realized by not allowing the system to ever executethe action. Receptiveness provides a tool for distinguishing between realizable and unrealizablesafety properties. Distinguishing between these properties enables us to use the automated syn-chronization method only for the properties that can be enforced with the preservation of systemfunctionality.The intuitive distinction between these properties is that the unrealizable ones require restrictionson the environment events, while the realizable properties can be satis�ed by controller strategies.Dill [Dil88] introduced the notion of receptiveness as the lack of restrictions on external events.The term receptive property suggests that the property is not in
uenced by the environment,regardless of its behavior. Abadi and Lamport applied this notion to the system properties,de�ning a property to be receptive if all behaviors it accepts belong to outcome sets of winningstrategies. They also proved that a receptive safety property can only be violated by a controlledevent, making receptiveness for safety properties equivalent to the limitation of constraints to thecontroller actions. The following de�nitions formally introduce the notion of receptiveness andits relationship with controller behavior. 26

De�nition 2.16 A ��receptive property P is equal to its realizable part R�(P).The name for receptive safety properties is derived from the relationship between the strategiesthat enforce those properties and the environment. Any strategy that satis�es a receptive safetyproperty does so regardless of the environment behavior, meaning that it is prepared to reactto the environment events without restricting them. This strategy treats the environment as anunconstrained input.The receptiveness of safety rules is a theoretical concept, but it has profound implications on therealizability of properties. The realizability of all properties is based on their nonempty realizablepart. Since the realizable part is a set of behaviors it is also a property. The following theoremshows the relationship between the realizability and receptiveness for arbitrary system properties.Theorem 2.1 For any property P de�ned as a set of acceptable behaviors, its realizable partR�(P) is a receptive property.Proof: Proof in [AL93]This theorem shows that for any realizable property, there exists a receptive property that mustbe satis�ed by any implementation that satis�es the original property. The importance of thereceptive properties is even greater in the safety domain, because any receptive safety propertyconstrains only the controlled agent set.Theorem 2.2 A receptive safety property constrains at most the controller agents.Proof: Proof in [AL93]A corollary to theorem 2.2 is that violations of receptive safety properties are always caused bya controlled agent. The controlled agents in our semantic model represent groups of componenttransitions and one or more of the components must cause the event that triggers the safetyviolation. By delaying the components that cause the violation, the violation itself is delayedwhile the other components may proceed with their execution. If the system state changes whilecomponents are delayed, the safety violation preconditions may no longer hold, thus allowingthe delayed components to proceed while preserving the safety of the system. Any receptivesafety property can be enforced by restricting the behavior of components that may cause itsviolations. This establishes a basis for the enforcement of receptive safety rules by automatedsynchronization of components.2.6 Receptive Safety PropertiesThe previous sections represent a theoretical overview of the behavior based system properties.We now need to show some extensions that apply speci�cally to the safety properties and their27

realizability. These theorems are simple extensions to the work in [AL93], but were not clearlyexpressed there, probably because their goal was to prove composition of working componentsrather than deal with automated property enforcement. The following theorems show that anyrealizable safety property can be represented in the form of constraints on system componentexecution.Theorem 2.3 The realizable part of a realizable safety property is a safety property.Proof:Abadi and Lamport proved that the realizable part of a property may be represented asR�(P) = R�(P) \ Pwhere R�(P) represents the safety closure of a property. The property P is a safety property soR�(P) � PRp(P) = Rp(P)The realizable part of a safety property is equal to its safety closure, so it is a safety property aswell.Theorem 2.4 Realizable parts of safety properties are receptive safety properties and constrainat most the component actions.Proof:Theorem 2.1 shows that the realizable part of any property is receptive. Theorem 2.3 shows thatthe realizable part of a safety property is a safety property. Since the realizable part is a receptivesafety property, by theorem 2.2 it constrains at most the controlled agents. The constraint on thecontrolled agents maps to constraints on the components whose actions combine to de�ne thoseagents.The last theorem shows that the realizable parts of safety properties can be enforced by con-straining components whose behavior contributes to the safety violations. We will show how theconditions for these constraints can be computed from the description of the components andreceptive safety rules using simple behavior analysis. We will also show how the constraints canbe incorporated into executable applications that enforce multiple receptive safety properties.2.7 Enforcement of Receptive Safety PropertiesThe speci�cation of system components de�nes a controller strategy f where components executeone enabled transition in every iteration. This strategy produces a set of outcomes that mayor may not satisfy the system requirements. We will show how receptive safety properties canbe enforced by producing a modi�ed controller strategy fs where the components synchronize28

to enforce the properties. Theorem 2.2 shows that a receptive property can only be violatedby controlled actions, and therefore a controller strategy that avoids the violating actions willsatisfy the properties. We can analyze the system behaviors generated by the strategy f, �nd thepreconditions of safety violations, and use them to enable the modi�ed agents that enforce thesafety properties.2.7.1 Possible and Reachable Safety ViolationsWe de�ne a safety violation to be possible if the states that cause the safety violation do exist in thereferenced components. This means that we can select a combination of states for the componentsand the safety rule, and a combination of monitored variables that cause the components toexecute the transitions that violate the safety. A state is reachable if it is contained in somebehavior in the outcome set O�(f). Obviously every reachable safety violation is possible, butsome possible violations may not be reachable.The possible safety violations have very little meaning in the context of system veri�cation,because every receptive safety property will have possible violations. Only a proof of their reach-ability means that the system is unsafe, and conversely only a proof that they are unreachablevalidates the safety of the system. In the context of safety enforcement, it is not necessary toknow whether a particular safety violation is reachable, since our goal is to make it provablyunreachable. The distinction between the possible and reachable safety violations is importantbecause static analysis can detect the possible violations while reachability analysis is requiredfor the reachable ones. The use of possible safety violations makes it possible to analyze andsynchronize systems whose complexity makes reachability analysis prohibitively expensive, dueto their complexity.If static analysis detects a possible safety violation state, and we produce a new strategy fs thatactivates a di�erent agent when its precondition holds, we guarantee that the safety violationis unreachable in the behaviors belonging to the outcome set O�(fs). This applies to all safetyviolations, regardless of whether they were reachable in the system controlled by the strategyf. If a safety violation was unreachable with strategy f, its precondition may never be satis�ed,and the modi�ed agents will not be executed.. This shows that synchronizing a system to avoidpossible but unreachable safety violations results in a system that satis�es the safety propertiesand preserves as much of the original strategy as possible.2.7.2 Synchronization by Delayed Transition MechanismThe word synchronous is a combination of the Greek words synmeaning same and chronos mean-ing time. It describes certain events as occurring at the same time or with the same periodicity.Synchronization is the process of making the events occur simultaneously. In the domain ofcomputer science, synchronization has a broader meaning of making events occur at appropri-ate times or intervals, as de�ned by the system speci�cation. In the domain of concurrent anddistributed computing, synchronization includes the adjustment of local clocks within speci�edtolerances; synchronization also refers to the system activities whose goal is to in
uence thetemporal ordering of certain system events. 29

(a) (b)

DELAY

!ERRCOND

REQ & !ERRCOND

REQ & ERRCOND

ERRCOND

SRC

DELAYED TRANSITION
SYNCHRONIZED

TRANSITION

REQ

SRC

DEST

ORIGINAL

DESTFigure 2.4: Overview of delayed transition implementationOne example of synchronization are barriers whose purpose is to make components execute acertain operation only when all components are ready. Conversely, locks guarantee that somesets of events do not occur simultaneously while their ordering is unrestricted. More generalsynchronization tools like semaphores or blocking messages can enforce both inclusion, exclusionand arbitrary ordering of events. The common element for these synchronization mechanisms isthe delayed execution concept, where the component actions are blocked as long as necessary toenforce some system behavior.The synchronization mechanism in GenEx is based on the delaying of component transitions.Delayed transitions are implemented by introducing one additional state where the FSM blocksas long as the completion of the transition may cause a safety violation. Figure 2.4(b) illustratesthe implementation of a delayed transition for the transition in Figure 2.4(a). If the safety analysis�nds that the transition could lead to a safety violation, the delayed transition is added to blockthe component whenever the safety violation preconditions hold. The enabling condition of theoriginal transition REQ is combined with the condition ERRCOND that is the preconditionof the detected safety violation, and the resulting conditions enable the delayed transition. Thedelayed transition leads to a state DELAY that, for safety monitoring purposes, represents anextension of the source state SRC. The original transition from the state SRC to the stateDEST will be enabled only when its enabling condition REQ is satis�ed and the safety violationprecondition ERRCOND is not.The transition from the delayed to the destination state will occur only when there is no potentialfor a safety violation. The transition occurs even if the original enabling condition of the transitionno longer holds because the semantic of the component speci�cation is that the enabling condition,once activated, determines the next state for the component. Since the delayed state is consideredto be the same as the source state, the transition to the DEST state must be completed to satisfy30

the functional speci�cation of the component.2.8 Subclasses of Receptive Safety PropertiesReceptive safety properties are de�ned as safety properties whose violations are caused by thecomponent actions. We can distinguish two basic types of violations caused by the components.The simplest type is a sequencing violation, caused by an action of one component independentlyfrom the actions of other components. A more complex type of violation is caused by a com-bination of states for several components, and we call that a limited resource access violation.If all violations for a given safety property are of the sequencing type, that property is called asequencing property. Similarly, if all violations of a safety property are of the limited resourceaccess type, that property is called a limited resource access property. Examples of both typesof properties are given in Figure 2.3, where the 1{bounded overtaking is a sequencing propertyand the mutual exclusion is a limited resource access property. Properties including both typesof violations can be decomposed into two properties of the individual type.The 1{bounded overtaking property references two components, but the only transition to theREJECT state is caused by the �rst philosopher in state EATING. This property is violated ifthe �rst philosopher starts to eat while the safety property FSM is in the state DONE ACCESS.The violation by a single component makes the 1{bounded overtaking a sequencing property.The mutual exclusion property violations require the simultaneous EATING by both philosophers,and this condition can occur when one philosopher joins another that is already eating, or whentwo philosophers get hungry at the same time and simultaneously enter the EATING state. If onephilosopher is eating, the mutual exclusion is enforced by delaying the other one until the forkbetween them is free. When both philosophers try to access the EATING state simultaneously,the mutual exclusion can be enforced by delaying one component and allowing the other one toproceed. The choice of delayed component should be nondeterministic and fair.2.8.1 Synchronization for Di�erent Types of Receptive PropertiesSequencing properties specify the global behavior in terms of allowed sequences of events, byrejecting the occurrence of individual component states. This means that a transition to theREJECT state for the safety rule is enabled by the occurrence of a particular state for onecomponent, independently from the behavior of other components in the system. The only wayto prevent this safety violation is to delay the component until the safety rule monitor leavesits current state. The synchronization condition that enables a delayed transition of the �rstphilosopher to enforce the 1{bounded overtaking is:Delay = (philo1 = thinking) ^ hungry1 ^ (bound12 = access done)While a single rule may impose restrictions on the behaviors of several components, these re-strictions depend only on the state of the receptive safety property FSM and the respectivecomponents. The safety violation is caused by a single component regardless of any simultaneous31

actions by the other components. Every possible safety violation of a sequencing property canbe avoided by delaying one system component.The subclass of limited resource access properties speci�es requirements like the mutual exclusion,whose violations may be a result of simultaneous accesses by two or more components to acritical section where exclusive access is required. Our model assumes synchronous execution ofa single transition by all components, so two or more of them could enter the critical sectionsimultaneously, thus causing a safety violation. This safety violation would not occur if only onecomponent had entered its critical section, so not all components must be delayed to enforce theproperty. In the case of the dining philosophers, a single philosopher making the transition fromTHINKING to EATING does not cause a violation, but two adjacent philosophers making thesame transition do. We will use this example to describe the method of computing the componentsynchronization conditions for limited resource access rules.The precondition for the safety violation by simultaneous entry into the EATING state consistsof the state that precedes the violation and the conditions that enable the transitions to occur.The safety violation precondition for one pair of adjacent philosophers is given below:SV Cond12 = ((philo1 = thinking) ^ (philo2 = thinking) ^ hungry1 ^ hungry2When the safety violation precondition holds, some of the components must be delayed in orderto preserve the safety of the execution. For limited resource properties, all components butone referenced in the violation transition are allowed to proceed without causing the violation.1In the case of mutual exclusion of philosophers, that means that one component is allowed toaccess the EATING state while the other one is delayed waiting for its turn. The synchronizationconditions of the two philosophers need to be consistent so that exactly one component is delayedto preserve this property. We derive the individual synchronization conditions from the safetyviolation precondition having three rules in mind:� Complete coverage of the violation precondition.The union of individual components' synchronization conditions must cover all system statesthat satisfy the violation precondition. Incomplete coverage means that in some cases thesafety violation might occur regardless of the synchronization because no components aredelayed. If two components must be delayed to prevent a safety violation, then the completecoverage principle means that any state that satis�es the violation precondition, enablesthe delayed transitions for at least two components.� Minimal coverage of the violation precondition.This principle implies that no unnecessary components will be delayed in the synchroniza-tion for any particular safety rule. If one delayed component satis�es the property, theintersection of its synchronization condition with those of the other components will beempty. Similarly, if only two components must be delayed, the intersections of synchroniza-tion conditions for any three components will be empty.1Every violating transition is enabled by a combination of component states, and if one component is not inthe speci�ed state, the violation does not occur. Compound safety properties such as mutual exclusion of multiplecomponents are decomposed into simple pairwise exclusions. Every pairwise exclusion requires the delay of onecomponent, but the compound e�ect of all properties is that all but one component must be delayed.32

� No component can be prede�ned for delays in particular system states.The complete and minimal coverage principles can be trivially satis�ed by picking one(or more, as necessary) component, and delaying it every time the violation preconditionshold. This creates an asymmetric system, and can lead to implementations with a numberof undesirable characteristics, such as unnecessary deadlocks, livelocks or starvation ofcomponents. The synchronization conditions need to satisfy some form of fairness in theselection of delayed components.In the case of the philosophers and their mutual exclusion, one delayed philosopher is alwayssu�cient to guarantee the preservation of the safety property referencing two philosophers. Therelationship between the individual synchronization conditions and the violation precondition isspeci�ed by the following system of equations:Delay1 _Delay2 = SV CondDelay1 ^Delay2 = falseThese equations correspond to the complete and minimal coverage requirements in the case of onedelayed component out of two. Similar equation systems can be created for any other combinationof numbers of total and delayed components. A number of di�erent values forDelay1 andDelay2would satisfy this equation set, but the third principle(fairness) requires them to occur withequal frequency for all combinations of safety violation preconditions. This implies that we needa nondeterministic selection facility that enables the delayed transitions for either component.A simple solution to this problem is the introduction of a nondeterministic selection signal,ndet prio 21 that represents the nondeterministic relative priority of the components. Then thedelay conditions for the two components are:Delay1 = SV Cond ^ ndet prio 21Delay2 = SV Cond ^ :ndet prio 21These two delay conditions satisfy the equation system, and also satisfy the third principle, sinceno component is treated preferentially regardless of the system state. The nondeterministic signalndet prio 21 enables the delayed transition of the �rst philosopher when it has the value true,and thus allows the second philosopher to advance into the state eating. The second componentis delayed and the �rst is allowed to proceed when this signal has the value false. This signalamounts to a decision on the relative priority between the �rst and second components, thus itsname. Similar signals may be used to order all pairs of components and produce a total orderingof all components.This structure of synchronization conditions can be used even for the complex safety violationscaused by the occurrence of three or more simultaneous actions. If k components can proceed butthe (k+1)th must be delayed, the relationship between the individual synchronization conditionsand their speci�cation are as follows:Delay1 _Delay2 _ :::Delay(k+ 1) = SV CondDelay1 ^Delay2 ^ :::Delay(k+ 1) = falseDelay1 = SV cond ^ ndet prio 21 ^ :::^ ndet prio (k + 1)1This is the most complex synchronization condition that can occur with our speci�cation ofsafety rules, because the enabling conditions of the violating conditions are simple conjunctionsof component states. For any such conjunction it is su�cient to delay one component to guarantee33

that the safety property is preserved.2.9 Guidelines for System De�nitionOur method modi�es given component speci�cations by delaying some of their actions in orderto preserve the safety of the system behavior. Behavior of the modi�ed components is stuttering{equivalent to the behavior of the originals, but it is unlikely to be identical if the component hasthe potential for causing safety violations. The synchronized application is guaranteed to satisfythe speci�ed receptive safety rules, but inconsistent speci�cations of components and safety rulesmay lead to the occurrence of deadlocks or the undetected occurrence of safety violations.The system speci�cation must be partitioned into components and receptive safety rules, andthis decomposition is determined by the nature of the speci�ed functionality. Components shouldspecify the functional aspect of system behavior, while the receptive safety properties specify theconstraints on interactions between the components. Our method is most e�ective in enforcingpartial ordering of actions for separate components. Enforcement of simultaneous actions orselection of actions requires speci�c component design. Behavior requiring limited time reactioncan not be speci�ed as a receptive safety rule, so it must be implemented at the component levelor by enforcing its realizable part. Time{dependent properties can be automatically detected aspotentially nonreceptive, and the user warned of their existence.The following list illustrates some of the basic guidelines for system decomposition and speci�-cation.� Components are related to one controlled signal, or a set of closely related signals. Signalsare closely related if they change value simultaneously or if their intervals of activity aremutually exclusive. Generally, the signals controlling one physical device, or one aspect ofthe behavior of a complex device are closely related and should be speci�ed by one compo-nent. This way of decomposing systems produces simple components whose interaction isspeci�ed by simple receptive safety properties.� States embody the decision{making capabilities of a component. A component stays in astate until it can select another state to go to. Components should employ a greedy strategyin their behavior decisions, their transitions should be enabled as soon as the state of thesystem and the environment is such that the transition will eventually be completed. Theautomated synchronization will ensure that the selected transitions are not completed aslong as that may violate the receptive safety properties.� The components should be de�ned using a state oriented semantics, where their transitionshave no meaning to the overall system behavior. The receptive safety properties are de�nedas sequences of states, and only component states can be used to detect safety violations.In cases when individual transitions are important for the system behavior, the safetyproperties must detect their source state, and then reject their destination state until thetransition becomes acceptable. 34

� Controller actions with limited time requirements must be speci�ed as transitions of indi-vidual components. In order to guarantee that the behavior is preserved in a synchronizedsystem, the safety rules must not impose constraints on the completion of those transitions.� Safety properties specify the interpretation of the interaction between two or more compo-nents. A safety property is de�ned using the states of components to enable its transitions,and it reaches the prede�ned REJECT state when the component interaction is unaccept-able.� If a component transition is delayed by some state of a safety rule, the actions of otherreferenced components must be able to make that transition acceptable to the safety rule.If this condition is not met, a safety rule may block a component forever thus removing itsfunction from the system.

35

Chapter 3The GenEx ToolsetWe use receptive safety properties to specify acceptable interactions between system components.The receptiveness guarantees that the properties can be enforced by synchronizing the compo-nents. We developed a set of analysis and code generation procedures, integrated in the GenExtoolset, that compute the necessary synchronization conditions and produce an executable imple-mentation of the desired controller. This chapter contains the description of the GenEx toolsetand the design and development methods it supports.The GenEx toolset contains a number of independent tools whose functionality can be inte-grated to analyze systems and produce executable applications. The analysis tools detect theviolations of safety rules and compute the synchronization conditions for individual components.Integration and code generation tools combine the component speci�cations with the associatedsynchronization mechanisms and produce executable C code or formal models for the system.The generated code links with an environment dependent runtime support library that imple-ments the underlying semantic model. Additional veri�cation and analysis tools can detect if theasserted system properties are nonreceptive or inconsistent with the referenced components. Thefunctionality of these tools is integrated using an automated script generator.In the Section 3.1 we describe the basic steps in the production of automatically synchronizedconcurrent systems. The following three sections describe the tools used to analyze the componentbehavior with respect to the safety properties and compute their synchronization conditions.Section 3.6 describes the code generation algorithm and its results, while Section 3.7 describesthe runtime support library. Finally, Section 3.8 introduces a number of auxiliary tools suchas the script generator that integrates the functionality of the other system tools, veri�cationalgorithms for system consistency, and a runtime visualization tool.36

3.1 System Development Using the GenEx ToolsetGenEx tools automate the synchronization and integration of controller components, and producean implementation of the controller that satis�es the given receptive safety properties. Thesystem designer must, manually or using other tools, generate the component speci�cations andthe receptive safety properties. The components and safety rules are speci�ed using �nite statemachines, and the safety rule transitions are enabled by the states of the components whoseinteraction constraints they describe. The following list illustrates the major steps in the systemdesign using automated synchronization supported by GenEx, with the pluses denoting the stepsperformed by the automated tools.� De�ne System Components. The components are concurrent elements of the controller,and their goals are largely independent. In the case of the dining philosophers, one compo-nent models each philosopher, and the guidelines in Section 2.9 describe how the componentsshould be de�ned in more complex examples. Components must be de�ned by �nite statemachines de�ned in a tabular form, either with their local signals or using the global signalset for the system.� Specify System Requirements as Receptive Safety Properties. The system require-ments specify a set of properties that the controller strategy must satisfy. These propertiescan be automatically enforced only if they are represented in the receptive safety form.For all realizable safety properties, their realizable part is a receptive safety property thatcan be enforced automatically. Some liveness properties contain behavior subsets that arereceptive safety properties, and those liveness properties can be enforced automatically us-ing GenEx. Required properties can be analyzed independently to �nd receptive safetyproperties that represent them.+ Verify Consistency and Receptiveness of the Properties. This automated step com-pares given receptive safety properties with the system components and attempts to verifythat the enabling conditions for the property transitions use existing states of the referencedcomponents. Safety properties are receptive if they impose no restrictions on the behav-ior of the environment, represented by the monitored variables. Time is also a monitoredvariable, and the receptive properties must not be violated by time{related events. GenExtoolset includes a mechanism that veri�es all of these factors, and can even suggest possiblerule modi�cation that eliminate problems like time{dependence.+ Analyze and Enforce the Receptive Safety Properties. The receptive safety propertiesreject some controller behaviors, and system behavior analysis detects those violations and�nds the components that cause them. Components are modi�ed to delay the actions thatcause the safety violations, making the violations unreachable. The analysis of every safetyproperty is independent and global analysis is not required. Total complexity of this processis equal to the sum of the analysis complexity for the individual safety properties.+ Generate a Controller Implementation. GenEx includes the capability to generate acontroller implementation in C, whose structure makes it easy to link to data processingcode segments and to system interface functions. The generated code makes no assumptions37

about the execution environment and supports di�erent implementations, ranging fromsingle centralized process to distributed execution with multiple processes.+ Generate a Controller and System Model. The formal model of the system or its partscan be used to verify the correctness of the design using the symbolic model checking toolSMV [McM93]. While GenEx synchronizes the components to enforce the given receptivesafety properties, and the generated controller is guaranteed to satisfy them, other systemrequirements may be violated. If the receptive safety properties are not consistent witheach other or with the components, the intersection of their behaviors may be empty orlimited to behaviors where sets of components are deadlocked. A partial or total systemmodel can be generated using the SMV notation to verify that subsystems execute correctlytogether.Software development using GenEx is applicable to component{based systems where the compo-nent interaction is in the domain of control behavior rather than the data processing. Componentdesign should be partitioned into a control{oriented structure and data processing segments re-lated to speci�c control actions. Component control structure is synchronized with the othercomponents, and the generated code includes calls to the data processing code segments suppliedby the designer.Automated synchronization of control systems produces sets of modi�ed components that includethe functionality of the original components, but also satisfy the receptive safety rules that specifythe component interaction. The code generated for the synchronized components can be linkedwith a runtime support kernel, and compiled into an executable application.3.2 Automated Computation of Synchronization ConditionsThe enforcement of receptive safety properties requires individual components to delay their ac-tions when completion of those actions may violate the properties. To avoid having a centralizedscheduler that becomes a bottleneck for distributed systems, we enable the components to deter-mine when their actions are safe to complete. Every transition that has the potential to violatesome receptive safety property is modi�ed to satisfy a minimal delay required to preserve theproperty. When the system state satis�es the preconditions of a safety violation, the enablingconditions for the delayed transitions of one or more components become true, making thosecomponents stay in their previous state. Delay conditions for the components are constructed tobecome true only when the completion of the respective transitions may cause safety violations,and to remain false when the behavior of a component is safe.Our method analyzes the system behavior and, upon �nding safety violations, modi�es individualcomponents to make those safety violations unreachable. The modi�cation of any componentresults in a modi�ed reachability graph for the whole system, and possibly makes new safetyviolations reachable. Since the system state space is �nite, the number of possible safety violationstates must also be �nite. Repeated execution of the analysis algorithm would lead to a �xed pointwhere all reachable safety violations have been detected and corrected, and the system behavior38

satis�es the receptive safety rules. The problem with such an approach is that executing thereachability analysis an unspeci�ed number of times may require unacceptable amounts of timeand CPU resources, and is thus not a practical approach.We modify the components before the analysis by adding nondeterministic delayed transitions toany transition that may cause any safety violation. By analyzing the behavior of the modi�edcomponents, our system can detect all reachable safety violations, even those that become reach-able only after component behavior is modi�ed to prevent other violations. The complexity ofthe analysis for components with nondeterministic delayed transitions is obviously bigger than itwould have been for the original component speci�cations without delays. Since many if not allof the delayed transitions must eventually be added to the components in order to prevent thesafety violations, the complexity of the analysis is similar to the last analysis-correction iterationif the �xed point approach had been used.We have developed two di�erent methods for analyzing the system behavior and computingsynchronization conditions. The �rst approach is based on reachability analysis of the systembehaviors, its advantages are the capability for exact determination of safety violations and forthe detection of reachable deadlock states. The other approach is static, based on backwardtracking of combined violation transitions. The next two sections describe these synchronizationalgorithms.3.3 Reachability Analysis of Receptive Safety Rule ViolationsReachability analysis of system behavior is a well known method for verifying correctness of asystem with respect to its safety requirements [CES86]. The strength of this method is thatit naturally produces proof for the detected safety violations, by tracing back along the pathfrom the starting state to the violating one. The safety violation sequence helps the user in thereconstruction of the causes that lead to the violation, making this method useful in testing anddebugging. Reachability analysis is limited in use to relatively small systems whose state spacecan be represented and analyzed e�ciently. Complexity of the state space is, as a general rule,proportional to the product of the sizes of its components, thus making the reachability analysisan exponentially large problem for systems with numerous components.We use reachability analysis in the context of safety enforcement, speci�cally for receptive safetyproperties. The controlled violations of receptive safety properties mean that every propertyde�nes a subset of components that can violate it, and those are the components that need tobe synchronized to satisfy the properties. We can restrict the reachability analysis to the setof potentially violating components, and thus reduce the complexity of the reachability analysisgraph to a fraction of the overall system complexity. The complexity of the reachability graphfor any single safety rule depends only on the number and complexity of components referencedby that rule. 39

- Initialize state set S with the initial state I, representing the initialstates for all components and the safety rule monitor- Initialize transition set T as empty- Mark state I as leaf- Loop- Get a leaf state s in S- Foreach combination t of nondeterministic componenttransitions enabled in state s- Find enabling condition c that satisfies the enablingconditions of all component transitions in t- Create a state comp st containing the destination states oftransitions in t, with the monitored variable values specified in c- Identify the safety monitor state sm in state s, and compute its nextstate sm next that occurs as a reaction to state comp st- Create a state new state by combining the comp st with thenew safety monitor state sm next.- If new state is not in the set S, add it to the set and mark it as leaf.- If state sm next is REJECT, mark new state as processed state.- Add the tuple(s, c, t, new state) to transition set T.- Endfor- Mark state s as processed state- Until S has no more leaf nodesFigure 3.1: Finite State Machine Composition Algorithm3.3.1 Reachability Graph Construction AlgorithmThe descriptions of components referenced by the safety rule are combined to generate an equiv-alent FSM representation for the component behavior, as described in the semantic model insection 2.3.2. The component reachability graph is combined with the FSM representation of thereceptive safety rule to �nd the safety violations states. The combination algorithm is given inFigure 3.1 in a pseudocode form. This algorithm conducts a breadth{�rst search of the systemstate space, expanding all states except those that violate the safety property. Since these safetyviolation states will be made unreachable by the component synchronization, their successorstates will also be unreachable and are thus irrelevant for the analysis.The expansion of every system state is driven by the number of individual component transitionsenabled in that state. For every combination of component transitions, the algorithm attemptsto �nd an enabling condition that activates all selected transitions. If the enabling conditionexists, the selected combination of transitions can occur during execution, and the resulting stateis added to the reachability graph. We use the selection of component rather than the selectionof input combinations in order to reduce the complexity of the analysis. The input consistsof a number of independent monitored variables, so there are up to 2num vars combinations oftheir possible values. When combining transitions, the complexity for each state is limited by theproduct of the number of outgoing transitions for each component state. The number of outgoingtransitions is at least 2 for every state since every state has a default self{loop transition, but the40

number of components referenced by the receptive safety rules tends to be small, thus keepingthe number of combinations within bounds for practical analysis. The enabling condition for aselected set of transitions is the intersection of their individual enabling conditions.The resulting state must also be characterized by the state of the safety rule monitor for theenforced receptive safety property. The safety rule monitor acts as an observer of the componentstates, so its state is a function of component behavior. The state of the safety monitor is nota function of the component states, but of the states along the behavior pre�x leading to thecurrent state. This means that di�erent paths leading the components to the same states maycause the safety rule observer to reach di�erent states. An example of this is the 1{boundedovertaking property, that allows the second philosopher to enter its EATING state once whilethe �rst one is waiting, but rejects it when it occurs a second consecutive time.3.3.2 Analysis and Automated Synchronization for the Reachability Analysis MethodThe primary goal of the analysis phase is to �nd whether a safety rule is satis�ed by the systemand, if it is not, to compute the synchronization conditions that make the system safe. Thecombined reachability graph contains all reachable states of the system, including safety violationstates. It also contains the predecessor states of the safety violations, and the transitions to theviolation states with their enabling conditions. The predecessor of the violation state and theenabling condition of the violating transition de�ne the precondition of the safety violation. Thesafety violation preconditions specify when some components must be delayed to preserve thesafety. The violation preconditions do not identify the components or specify how many of themneed to be delayed to preserve the safety.All safety violations of receptive safety properties are caused by component actions. The sameenabling conditions that activate a violating transition also enable its nondeterministic delayedversions that preserve the safety. By comparing a violating combined transition with one thatpreserves the safety under the same enabling conditions, we can identify a set of components thatmay contribute to cause the safety violation. Delaying all those components guarantees that thedetected violating transition does not occur, but the safety may be preserved even by delayingjust a subset of these components.To identify minimal delay requirements, we must identify combined transitions in the reachabilitygraph with the minimal di�erence in the number of delayed components. We are looking for asafety preserving combined transition that di�ers from the violating transition by the includedtransition of exactly one component. Further, that component should complete its transition inthe combined violating transition while being delayed in the safety preserving combined transition.The component that is delayed in the safety preserving combined transition is identi�ed as onecause of the violation, and it must be delayed to prevent the occurrence of this particular safetyviolation. The pattern of system states shown in Figure 3.2 illustrates the relationship between thereachable states used to identify the minimal set of delayed components. State EE represents themutual exclusion violation with two adjacent philosophers in their EATING state, TT representsthem in the THINKING state, and ED represents the �rst philosopher in the EATING state andthe second in the THINKING DELAY state. Both transitions t and td are enabled by the samecondition, namely (hungry1 ^ hungry2). Combined transition td includes a delayed transition41

ED

One Component
Delayed

Both Components

Source State

Safety violation

Complete Transitions

State reached when the first philosopher
completes the transition to EATING
state, and the second one is delayed.

s1

sv

t

td

sd

TT

EE
When both philosophers complete their
transition, they trigger a safety violation.
A comparison with a delayed transition
that preserves the safety points to
the component that should be delayed.Figure 3.2: Analysis domain for one safety violationfor the second philosopher, instead of the completed transition to the EATING state that causesthe safety violation. The comparison of these two combined transitions identi�es the secondphilosopher as one possible cause of the safety violation, and shows that the violation is avoidedby delaying the second philosopher. A separate analysis that uses another delayed version of thetransition t will detect the conditions for avoiding this violation by delaying the �rst philosopher.The algorithm that computes the component synchronization conditions is given in Figure 3.3,and it looks for this pattern of combined transitions in the system reachability graph. Whenit detects two such transitions, it identi�es the component that needs a delay, and the minimalconditions that should enable their delay to prevent the safety violation. The algorithm usesvariable names introduced in Figure 3.2 for the combined transitions and states. The enablingconditions of the combined transitions, and the invariant of the source state s1 form the safetyviolation precondition.The synchronization conditions for the component must incorporate another parameter, the non-deterministic relative priority condition described in section 2.8.1. This parameter is importantfor the limited resource access rules whose violations may be caused by the simultaneous occur-rence of multiple component actions, while the individual actions preserve the safety. If severalcomponents attempt to enter the critical section, the choice between them must be nondeter-ministic to guarantee the fairness of the implementation. The comparison between a violatingcombined transition and its delayed version that preserves the safety results in the identi�cationof a component that must be delayed. The identi�ed component is said to have a lower prioritythan all components that complete their individual transitions in the safety preserving combinedtransition. 42

- Foreach safety violation state sv in S do- Foreach transition t in T whose destination is sv- Identify source state of t in s1, and its enabling condition in cv- Identify set of components CV whose state in the system state svis a delayed state, and store the number of components in CV as nv- Foreach transition td in T whose source state is s1and enabling condition is cv- Identify destination state of td in sd.- If sd is a rejecting state then goto Next Delayed- Identify set of components CD whose state in the system state sdis a delayed state, and store the number of components in CD as nd- If (nd 6= nv+ 1)or(CV 6� CD) then goto Next Delayed- Identify component C as CD � CV- If any component except C uses a different transition int and td then goto Next Delayed- Identify the state of component C in system states s1, sd, svin cs1, csd, csv respectively- Identify set of components CP whose state in the system state sdis not delayed, and is different from their state in s1- Create the priority condition cp that is true when all components in CPhave higher priority than C- Create a transition for component C from state cs1 to csdwith the enabling transition cv ^ cp- Modify the enabling conditions of the transition from cs1 to csvto exclude the condition cv ^ cp- :Label Next Delayed- Endfor- Endfor- EndforFigure 3.3: Algorithm for computation of component synchronization conditionsIn the case of the two philosophers, shown in Figure 3.2, the second philosopher is said to havelower priority, and its delaying condition is computed as:S Cond2 = hungry1 ^ hungry2 ^ ndet prio 12Another delayed combined transition exists that takes the �rst philosopher to its THINK-ING DELAY state while the second one completes the transition to EATING. When that com-bined transition is compared with the violating transition, the �rst philosopher is identi�ed asthe component that must be delayed with the synchronization condition:S Cond1 = hungry1 ^ hungry2 ^ :ndet prio 12By examining all combinations of violating transitions with their delayed alternatives, our al-gorithm will identify all components whose delays may enforce a safety property. It generatessynchronization conditions for each of the components and the aggregate e�ect of all these syn-chronizations is that the safety violations will be avoided by delaying a minimal number of43

components.3.4 Static Detection of Possible Safety ViolationsThe reachability analysis of component subsets detects all reachable violations of a given safetyrule, and computes the necessary synchronization that will make the components satisfy the rule.The drawback of this method is that the complexity of the reachability graph may be an expo-nential function of the number of referenced components and their sizes. Given safety rules thatreference several complex components, the complexity and the required time for analysis maybecome excessive for use in a practical development environment. Another potential problemwith this approach is the redundancy of the generated synchronization conditions, The synchro-nization conditions computed for each of those states may not be equivalent and thus will all beimplemented in the integrated system. Their redundancy will increase the condition evaluationoverhead and decrease the performance of the application.In the earlier discussion, we mentioned the di�erence between reachable and possible safety vi-olations. We can use the possible violations to compute the synchronization conditions withoutconstructing a reachability graph for the subset of components. The predecessor state of a safetyviolation and the respective violating transitions de�ne the violation preconditions, Since theimmediate violation precondition states determine the delayed components and their synchro-nization conditions, the previous states in the trace leading to the safety violation are irrelevantfor the purpose of enforcing safety.The static method for detecting possible safety violations is based on the backtracking of compo-nent transitions from a safety violation state. Every safety violation is speci�ed as a transitionto the REJECT state of the safety rule observer. The enabling conditions for that transitionspecify the states of individual components that contribute to cause the violation. The safetyviolation preconditions are all combinations of component states whose next state enables thegiven violation. This algorithm is given in Figure 3.4.In the dining philosophers example, the static analysis method detects the same violation statesand preconditions and produces the same delay conditions to enable the delayed transitions.The equivalent results are due to the simplicity of the components and their independence withrespect to monitored variables that enable their transitions.3.4.1 Comparison of the Static and the Reachability Analysis MethodIn the preceding description of the reachability and static analysis methods, we have shown howboth methods detect the safety violation preconditions for the given safety rules, and how thepreconditions are used to determine the delayed components and their synchronization conditions.The di�erence between these two methods is mainly in their complexity and sometimes in thee�ciency of the generated applications. Figure 3.5 illustrates the parts of the system behaviorgraph analyzed by the reachability and static analysis methods. The reachability method mustgenerate the full reachability graph for the components referenced by the safety property and44

- Foreach violating transition tv in safety rule Safe do- Identify set of components CV whose states enable the transition tv- Foreach combined transition t comb of components in CV whose destinationstate enables the transition tv- Identify the source state s prev and the enabling conditionc comb for the transition t comb- Create safety violation precondition cv pre, satisfied when c combis true and the components are in states specified in s prev- Foreach component C in CV do- Identify set of priority components SP whose transitionsin t comb are between distinct states.- Create priority condition c prio that encodes the nondeterministicpriority signals when all components in SP have higher priority than C- Create synchronization condition for c sync = cv pre ^ c prio- Identify transition tc of component C in combined transition t comb- Add delayed version of transition tc to component C enabled by c sync- Modify the enabling conditions of the transition tcto exclude the condition c sync- Endfor- Endfor- Endfor Figure 3.4: Algorithm for static computation of synchronization conditionsthen identify state patterns on this graph. The static analysis method identi�es all possiblesafety violations and uses backward tracing from the safety violation states to construct theirpossible predecessors. The row of encircled states in Figure 3.5 represents the possible violationpredecessor states generated by the static violation analysis method. The intersection of the statespaces analyzed by these methods is the set of reachable safety violations and their preconditions,the very set of violations the system must be synchronized to prevent.The complexity of the reachability analysis is proportional to the size of the combined behaviorgraph for the set of components. For large components and for safety rules that reference manynon{trivial components, the complexity of the reachability graph will make this method non{viable. However, for subsystems with a few simple components, the complexity of the reachabilitygraphs is trivial for the capacity of current computers. The reachability graph analysis can detectbehavior anomalies such as deadlocks for some component subsets and alert the user.The static violation analysis method has a signi�cant advantage over the reachability method inthe synchronization of complex systems, because their reachability graphs may be too large to beexhaustively analyzed. The static method may be preferable even in systems whose reachabilitygraphs can be e�ectively analyzed, because it may generate simpler sets of synchronization condi-tions, without partial overlapping as in the case of reachability analysis. The main disadvantageof the static analysis approach is the potential unreachability of many possible safety violations.This can occur in systems with overlapping safety properties, systems where the components areenabled by shared monitored signals, or those using automated synchronization in combination45

REJECT

INIT

REMAINDER OF THE

REACHABILITY GRAPH

REJECT

PRECONDITIONS

SAFETY VIOLATION

REACHABLE

STATES

UNREACHABLE

BUT POSSIBLE STATES

Figure 3.5: State space required for the two analysis methodswith other synchronization mechanisms. If the component behaviors are strongly correlated, somepossible safety violations may not be reachable and the synchronization conditions computed fortheir preconditions are unnecessary. These unnecessary synchronization conditions will never beenabled since they only occur on unreachable states, so they will have no in
uence on the systembehavior. The existence of unnecessary synchronization conditions results in increased executionoverhead.The main trade{o� in the selection of the analysis method depends on the size of the analyzedstate spaces, as shown in Figure 3.5. If the state space of possible safety violations is much smallerthan the state space of the reachability graph, the static analysis method is faster and it may bethe only option if the complexity of the reachability graph exceeds the available resources. If thestate spaces are of comparable size, the reachability analysis algorithm may produce more e�cientsynchronization code. Reachability analysis can also be used to verify that the synchronizedsystem is deadlock{free, or that it satis�es some time{dependent properties.46

3.5 Formal Model GeneratorThe GenEx toolset produces integrated systems that satisfy given sets of receptive safety rules.The synchronization does not ensure the correctness of the system with respect to any othertypes of properties, except those that may be implied by the satis�ed receptive properties. Modelchecking of the system is necessary to verify the functionality of the synchronized system. If thegiven safety rules have some real{time requirements, or if a set of safety rules is inconsistentwith the system, the synchronization may result in the existence of deadlocked states. Anotherpossible source of deadlocks is the circular dependence between components synchronized forlimited resource access properties. Liveness and real{time properties are not enforced, and maybe violated by the delays used to synchronize the components. The synchronized system can evenexhibit safety failures if the synchronization rules were incorrectly speci�ed, or missing. Formalsystem veri�cation is a useful technique that can have a major in
uence on the production ofcorrect, functional and reliable systems. GenEx produces formal models of the system or itssubsystems to allow the users to verify the correctness of the generated synchronized systemswith respect to the implicit and explicit correctness criteria.GenEx generates models of the synchronized system in the SMV [McM93] notation that allowssymbolic model checking; However, the complexity of the synchronized systems quickly growsout of the range that can be veri�ed in practice, even with symbolic model checking. We addressthe system complexity problem by providing a
exible tool that generates di�erent versions ofthe model, and works with whole or partial systems. The model versions di�er by their time andmemory requirements, and by the �delity of system representation. The partial model generationcapability provides the possibility to verify properties on subsets of components; this capabilityis very important for large systems where some properties may not depend on the behavior of allcomponents.The toolset can generate two di�erent models, one optimized for faster veri�cation, and the otherthat minimizes memory use and increases the probability that the model �ts in the availablememory. The speed{optimized version models the component and safety rule transitions asseparate cycles, each resulting in a new system state. The number of reachable states using thismodel is larger than for the actual application, but the state computation is simple. The result is amemory{intensive but comparatively fast analysis, requiring the rules and fairness descriptions toaccount for the transitional states by including the phase information. The memory{use optimizedversion generates one state to represent every reachable system state, but the computation of eachstate is a complex process having to account for the di�erent phases for execution of componentand safety rule transitions. This model has the advantage that CTL formulae for the desiredproperties only refer to the system behavior, but the computation of next state is more complexthus requiring more time for the overall analysis.3.5.1 Implicit Rule GenerationOne of the main obstacles to the wider use of formal methods in industrial applications is theexpertise required to use them in practice. Our toolset also provides rule generation supportfor some often required types of properties. These include local deadlock freedom, reachability,47

immediate state succession, and liveness. These rules are generated for all components and allstates, and the user can pick those necessary and include them in the veri�cation.Deadlocks can involve components that are not referenced by a single rule, so the full systemmay have to be checked. The complexity of industrial scale systems is probably beyond thecapabilities of SMV, so other approaches to deadlock detection are necessary. As in the case ofsafety violation detection, a static method can be used to verify the existence of deadlocks.Static deadlock search method is based on a search for cycles in the delay{dependency graph.This graph can be constructed from the component and safety rule de�nitions, without combiningtheir behaviors, and is therefore of polynomial complexity. The drawback of this method is thatit can report unreachable deadlocks that prevent the user from using a deadlock{free system untila more detailed analysis proves its correctness.Together with deadlock veri�cation, model checking tools can verify that the synchronized sys-tem satis�es some reachability, liveness or real{time speci�cations. These are not receptive safetyproperties, and cannot be enforced by our synchronization method. These properties are veryimportant for the correctness of a system, so even if enforcing them is not an option, theirpreservation should be formally veri�ed. Automatically computed synchronization conditionsthat guarantee safety are also minimal in the sense that no acceptable states are made unreach-able. This guarantees the preservation of all reachability and liveness properties, as long as theyare consistent with the safety properties of the system.1 Model checking can be done with theoriginal components, and all the properties that can be satis�ed without violating safety will bepreserved in the synchronized system.3.6 Code GeneratorCode Generator produces executable versions of all synchronized components, as well as interfacesto the runtime support environment and links to the data processing code. Code is producedin C, since this is the most commonly used language in the area of embedded control systemswhich are the most likely targets for the application of GenEx synchronization. Main goals of thecode generation are the speed and the
exibility of the code, as well as a compact and intuitivestructure that can be mapped to the original speci�cation and facilitates application testing anddebugging.Generated applications have a simple structure. Every component and safety rule is implementedas an independent set of procedures that represent the behavior of the corresponding �nite statemachine. In Figures 3.6- 3.8 we show three procedures representing the main parts of the im-plementation of a dining philosopher. The main procedure for an automatically synchronizedphilosopher is in Figure 3.6. This procedure is called once in each system execution to selectan enabled transition for the component and execute it. This procedure merely selects a state{speci�c procedure for the current component state , and then updates the currentstate variable1A reachability property is inconsistent with the safety when the only way to satisfy the reachability requiressafety violations. 48

SMG philo1()f newstate= -1;trans=0;if(currentstate[MD philo1]== ST philo1 in thinking)fSMG philo1 in thinking();gif(currentstate[MD philo1]== ST philo1 thinking eating delay 1)fSMG philo1 thinking eating delay 1();gif(currentstate[MD philo1]== ST philo1 in eating)fSMG philo1 in eating();gif(newstate != -1)fcurrentstate[MD philo1]=newstate; change=1;gg Figure 3.6: Main procedure for a philosopher componentwith the resulting state.The state{speci�c procedure for the philosopher in state THINKING is partially shown in Fig-ure 3.7. It evaluates the enabling conditions of the component transitions in order of theirde�nition in the Prolog speci�cation. The �rst transition whose enabling condition is satis�edwill be selected for execution, and the remaining transitions will be ignored. Delayed transitionsare �rst in the order of evaluation and, if any of them is enabled, the original transition to stateEATING will not even be considered for execution. The original transition, shown in the bot-tom of the procedure, will be evaluated for execution when its completion would be safe, so itonly requires an evaluation of its original enabling conditions. When a transition is selected, itsdestination state is selected as the new state for the component, and the action associated withthe transition is executed.The action procedure shown in Figure 3.8 corresponds to the transition from the stateTHINKINGto state EATING. This procedure contains the e�ects of a speci�c transition on the systemvariables as well as links to the data processing code. Action procedures control two types ofvariables, the control variables de�ned in the component speci�cation, and the variables carryingstate data for synchronization with other components. The illustrated procedure modi�es twovariables used to represent the state of the �rst philosopher in the transition selection by othercomponents.2 Another purpose of the action procedures is to link the data processing codesupplied by the user, and this action procedure allows the user to supply a procedure executedwhen the philosopher is allowed to eat, probably including the picking of the two forks. The userprocedure must have a prede�ned name philo1 eating enter and must be accompanied by thede�nition of a preprocessor variable PHILO1 EATING ENTER.Action procedures do not modify the value of the variables directly or immediately, they issuerequests for modi�cation that will be stored in a bu�er until all components complete theirtransitions. Once all transition e�ects are accumulated, the new system state is computed byapplying them all in parallel. The e�ects are applied in the order of component evaluations, but2Notice how the second transition in the state{speci�c procedure consults the variable representing the secondphilosopher in state EATING. 49

SMG philo1 in thinking()f if((sig1[SG hungry1]==1)&&(sig1[SG hungry2]==1)&&(sig1[SG excl12 safety OK]==1)&&((num==0)||((num== -1)&&(newstate== -1))||(num==1)))fnewstate= ST philo1 thinking eating delay 1; SMG action 24(); gelseif((sig1[SG hungry1]==1)&&(sig1[SG hungry2]==1)&&(sig1[SG philo2 eating]==1)&&((num==0)||((num== -1)&&(newstate== -1))||(num==1)))fnewstate= ST philo1 thinking eating delay 1; SMG action 24(); g...elseif((sig1[SG hungry1]==1)&&(sig1[SG philo2 eating]==1)&&((num==0)||((num== -1)&&(newstate== -1))||(num==1)))fnewstate= ST philo1 in eating; SMG action 25(); gg Figure 3.7: Procedure for philosopher in state THINKINGSMG action 25()f#ifdefn PHILO1 EATING ENTERphilo1 eating enter();#endifset("philo1 eating");reset("philo1 thinking");g Figure 3.8: Action procedure for transition from THINKING to EATINGsince the controlled variable sets of components are disjoint, no con
icts will arise.Since code is generated for individual component states and not for the combined system states,the size of the generated code is smaller than the combined state space of the synchronizedsystem. It is roughly proportional to the sum of the sizes of all synchronized components, whilethe system state space can be as large as the their product. This means that our method willnot lead to code explosion where the system implementation is as complex as its state space.Components can be grouped for execution in arbitrary ways, in a variety of execution environ-ments. The runtime support kernel currently exists for both single process, multiple processeson a single machine, and heterogeneous distributed execution. Regardless of the execution envi-ronment, the generated code includes the speci�cation for all components and safety rules in thesystem, thus making it possible to migrate or replicate components for reliability with minimalcost. These activities are not supported by automated tools, but the code structure makes them50

trivial for components without data processing dependencies.3.7 Runtime Support KernelThe goal of this research is production of a practical method for synchronization and integrationof concurrent software systems. The most important characteristic of the generated code is itsaccurate representation of the formal model used in the analysis. Another important parameterof practical use is the executable nature of the generated applications. For a generated systemto be considered practically useful, it has to be simple to extend or integrate with externallygenerated code. The concurrent nature of the target applications may require execution onseparate machines, so execution support is needed for heterogeneous distributed systems.GenEx addresses these concerns by providing an open linking interface,and heterogeneous dis-tributed execution support. The structure of the executable code directly models the structureof the speci�ed system. Every component and receptive safety rule is represented by its �nitestate implementation, independent from the nature of the execution environment. The simplestexecution environment is the integration into a single process, and we will introduce the structureand execution ordering for that example. We will also show that the executable code correctlyimplements the assumptions about the execution environment made in our formal model.The generated code is structured as a set of concurrent �nite state machines, controlled by theexecution support routines that perform the exchange of state data between components andsafety rules regardless of their geographic placement. The environment interface routines samplethe monitored variables once in every cycle, and update the system state information with theirvalues. Each �nite state machine determines its enabled transition, based on the previous systemstate and the resulting values of monitored variables, and executes it. The e�ects of the transitionsare accumulated until all transitions are done, when they can be broadcast throughout the systemas one atomic state change. While the execution of all component transitions does not necessarilyoccur simultaneously their e�ect is equal to a parallel execution. The equivalence of the executionenvironment with the synchronous transition model means that the synchronization mechanismproduced for this semantic model satis�es the safety properties in the implementation.The receptive safety rules are implemented as �nite state machines, with a similar semanticsto that of the components. Their transitions are executed in a sequence, but based on theidentical state data, and therefore equivalent to a simultaneous execution. The safety rules actas observers, using the results of components' transitions to determine their enabled transitions.The transitions for the safety rules occur in a second phase, after the components make theirtransitions and their e�ects are incorporated in the system state. The results of the safetyrule observer transitions are accumulated during their execution in every phase and, when allsafety rule observers complete a transition, their e�ects are propagated to the system state. Theresults of safety rule observer transitions are a part of the system state and are available to thecomponents for use in determining the enabling conditions in the following execution cycle.The overall execution structure is given below:51

Initialize the component and safety rule observer states.Initialize signalsloopinput monitored signalsexecute component transitionspropagate effects to state dataoutput controlled signalsexecute safety rule transitionspropagate effects to state dataend loopThis sequence is implemented by the execution support routines that call the components andthe safety rule observers to make their transitions. The execution support routines also take careof propagating the transition e�ects to make them accessible to all components, and invoke theuser supplied input and output operations. This execution structure satis�es our assumptionsabout the relationship between the components, signals and safety rules. It is also an extendibleexecution structure, allowing the embedding of data processing segments in the component codewithout violating the synchronous execution assumption.3.7.1 Distributed Execution SupportIn the case of distributed execution, we use Polylith [Pur94] to provide a heterogeneous commu-nication mechanism that supports the synchronization and state data broadcasting throughoutthe system. Polylith is a software bus implementation, providing platform independent high levelcommunication support. The structure of distributed applications is a star of synchronized pro-cesses, with the control process in the center. The execution sequence is the same as in the singleprocess case, with an additional propagation phase occurring between the input and the com-ponent transitions. This phase can be skipped if there are no properties of the limited resourcetype that require the components to know other components' states and monitored signals. Thedistribution of components and safety rules between the distributed processes is left to the user,with a set of common{sense guidelines.� Component locality. Every component should be in a process located on a host whereits inputs and/or outputs are.� Grouping by shared data. Component clusters that share large sets of controlled or mon-itored signals should be grouped. This also applies to components with strong interaction,specially limited resource access rules that require more information for synchronization.� Safety rule observer locality. Safety rule observers should be on a leaf node if allcomponents they constrain are on that leaf node. Other safety rule observers should belocated at the center node to minimize the communication time.The most important parameter for distributed execution is the communication overhead, and itdepends on the geographical distribution of the network and on the amount of transmitted data.52

Our distributed runtime support kernel transmits only the signal change vectors instead of theentire system state information. Since only a part of the signals, hopefully a small one, is changedin every cycle, the change vectors will be short and take a short time to transmit. The localityof components and safety rules plays an important role in minimizing the communication cost,because the systems can be customized to transmit only the parts of their change vectors neededfor synchronization.3.8 Accessory toolsIn addition to the main analysis, generation and runtime support tools, GenEx also includes anumber of script generation and syntax veri�cation tools. The purpose of these accessory toolsis to simplify the synchronization and integration process, and to provide a �ltering mechanismthat quickly detects simple inconsistencies within the speci�cation.3.8.1 Script GeneratorThe script generator takes the speci�cation of the relationship between the receptive safety rulesand the components, and produces a script that includes all operations needed to verify theconsistency of the system and produce an executable system that satis�es the speci�cations. Thescript consists of a list of commands whose invocation results in the generation of an executablesystem implementation. The script contains invocations for both static and reachability analysisof the safety, and the user chooses the method to apply for any given system. Some of thecommands in the script are independent and can be executed in parallel, reducing the timeneeded to complete the integration.The script generator produces a list of commands and �les with Prolog predicates. The com-mands are in the form of Prolog invocations using the �les as command sources. Each Prologpredicate �le directs the interpreter to load the necessary predicate data and function speci�ca-tions, process the data and output the result into a new predicate data �le. The predicate data�les serve as the communication mechanisms between distinct integration phases. The script forthe synchronization of dining philosophers is given in Figure 3.9, and it contains the followingcommands.� The �rst script command veri�es the correctness of the relationship between the componentsand safety rules, and introduces the prototypes of delayed transitions into the componentswhere they may be necessary. It also combines all signals used by the components and safetyrules into a shared signal array that will be used for system state sharing, and generatesthe prototypes of delayed transitions for all transitions that may cause safety violations.� The second script command includes the veri�cation of correctness of component descrip-tions, where the transitions are veri�ed for the proper condition list length, and similarlyfor the appropriate e�ect list length. The safety rules are veri�ed for the proper enablingconditions. A safety rule transition must use valid component states for enabled transitions.53

prolog <scripts/expand components.txtprolog <scripts/global data.txtprolog <scripts/rule philo excl12.txtprolog <scripts/rule philo excl23.txtprolog <scripts/rule philo excl34.txtprolog <scripts/rule philo excl41.txtprolog <scripts/do static sync.txtprolog <scripts/priority philo excl12.txtprolog <scripts/priority philo excl23.txtprolog <scripts/priority philo excl34.txtprolog <scripts/priority philo excl41.txtcat philo exp.spec >>philo all joint uniq.specprolog <scripts/output smv model.txtprolog <scripts/output exec model.txtFigure 3.9: Script �le for the synchronization of four dining philosophersAnother type of veri�cation is the receptiveness of the safety rule, where nonreceptive safetyrules are detected by their constraints on environment events or their time dependent na-ture.� The script also includes two sets of commands for computing the synchronization conditions.The reachability analysis of component subsets is speci�ed for each safety rule separately,and each analysis may be executed in parallel on a di�erent machine. The static analysis,due to its lower complexity is combined into a single command for all safety rules.� Another set of commands adjusts the delayed transitions to include the priority signals,separately for each safety rule. This set of commands may also be executed in parallel.� The original transitions are combined with the delayed transitions, thus producing a systemwith synchronized components.� A command for generating executable implementation of the system produces a systemspeci�cation in a SCR like form accepted by our code generator.� A model generation command produces SMV models of the controller or subsets of its com-ponents and safety rules. These models are useful in formally verifying that the generatedsystem satis�es deadlock freedom or other liveness properties.3.8.2 Speci�cation Analysis ToolsThe speci�cations of components and receptive safety rules have to conform to a number ofconsistency and correctness rules in order to produce an executable and reliable system. Thefollowing rules are supported by automated veri�cation tools.� Correct signal lists. In the tabular speci�cation language, the length of the enablingcondition list has to be correct for the transition to be included in the component. If a54

transition is found with incorrect length of the condition list, an error report is generatedto the user. This analysis is completed before the synchronization process starts becauseit usually implies that a component is functionally incorrect and the synchronized systemwill be incorrect too.� Condition Overlapping and Completeness. Overlapping condition sets imply that thecomponent or safety rules are de�ned as nondeterministic �nite state machines. While thedeterminism can be imposed at runtime by giving higher priority to the earlier transitionsin the list, the reachability analysis is made more complex and more restrictive if di�erentnondeterministic paths lead to di�erent safety violations. The completeness of the enablingconditions in a given state is not a problem for the execution since a default self looptransition is always enabled and preserves the safety. However, incomplete set of transitionsmay be an indicator of incorrectly speci�ed components and safety rules. Both overlappingand completeness can be veri�ed by our tools, and if either is violated the user gets awarning documenting the violation.� Consistency between safety rules and components. The safety rules are de�ned as�nite state machines whose transitions are enabled by combinations of component states. Ifa safety rule transition requires a state that does not exist in the component, that transitionis never going to get executed. Detection of unde�ned states in safety rule transitions is anerror and is reported to the user.� Unique signal controller. Every signal has at most one component controlling its value.If multiple components control a single signal, the value of the signal may be inconsistentwith what the components expect due to their interleaved execution. The controlled signallists are computed as part of the integration and synchronization process, for code optimiza-tion purposes. If some lists are found to intersect, that implies the respective componentsshare control of a single signal, and the user is informed by a warning.� Safety rule receptiveness. The receptiveness of safety rules is a precondition for suc-cessful enforcement by component synchronization. The basic condition of receptivenessis that the safety rule can not be violated by monitored signals. While all signals can beused by the safety rules to enable their transitions, the transitions to reject state must beenabled only by combinations of component states. Rejecting transitions that use signalsin the enabling conditions are reported as errors.� Time dependent safety rule detection. The synchronization process produces delayedtransitions for components when their transitions lead to states that may activate a rejectingtransition by some safety rule. This synchronization process e�ectively uses a one steplookahead to detect transitions that immediately cause safety violations. A possible problemwith this enforcement strategy is the possibility that the safety rule observer will arrive ata state with the components already enabling its rejecting transition. Delaying componentsin this case will not help the enforcement of the safety because the only way to prevent aviolation is to force a component out of the state that causes the violation. The violationcan be prevented by a timely action that cannot be enforced by delays, so this property ispotentially time dependent. Time dependent safety rules are detected by �nding transitionsthat can be enabled by conditions that enable violating transitions in the next safety rulestate. Detected time dependent rules are reported as warnings, since the time dependent55

safety violations may not be reachable in actual executions. If they are reachable, they willmake the safety rule monitors reach their reject states and will be reported at runtime. j3.8.3 Visualization and Debugging ToolIn addition to the generation of code for the application, the code generator also includes aplacement routine that produces the drawing coordinates for the system visualization. Thecomponents are represented as sets of states connected by transitions on a two{dimensional grid.The states are grouped in a way to avoid intersection between transitions in distinct components.The generated visualization information includes state positions in the grid, state adjacency asrepresented by transitions, and state names that identify individual states. The set of systemsignals is also represented graphically as a list of boolean switches.The generated code supports the integration with a visual animation tool that allows interactivetesting and debugging. The tool represents the system at the level of formal components, safetyrule observers and signals, and provides an intuitive and familiar model of execution. This visu-alization tool is based on the xtango [Sta90, Sta92] algorithm animation engine, and is embeddedin the execution support kernel.The animation tool represents the components and safety rule observers as graphs, showing theircurrent and previously visited states. The signals are represented as switches and interactivelymodi�able, to allow the user to control the system execution. This tool can be used both as aprototype for visualizing and understanding the interactions between the components, and as aninteractive debugger allowing low{level control over the execution. It can be linked to integratedapplications that include embedded data processing, and can be used in parallel with a standarddebugger to analyze the data computation aspect of the application.Our visualization tool has some capabilities that are not present in standard debuggers, butare very useful in formal �nite state-based systems. The �nite state space makes it possibleto reconstruct previous states by backtracking the execution, without loss of information orinconsistencies in the state data. We can single step the execution of the control aspect of anapplication both forward and backward, to memorized previous states.3 Execution sequences canbe memorized, and rerun under di�erent conditions to analyze the system reactions to di�erentenvironment behaviors.The capability to reconstruct previous states provides a powerful technique for reconstructing thecauses of some undesirable system behavior. The integrated system enforces the given receptivesafety properties, but it may violate some real{time and liveness properties in the process ofsynchronization. Even receptive safety properties may be violated if the safety rules used tomodel those properties are incorrect or inconsistent with the components. Those failures can bedetected during debugging, and the executions can be traced backwards, reconstructing previousstates until the root causes of a violation are detected.3The reconstruction of the component states and signal values is reliable, because it is based on memorizedtraces. If an application is already linked with data processing code, it may contain some implicit internal statedata that will not be reconstructed. For those applications, the reconstructed control states are correct and canbe used for tracing backwards, but going forward again may lead to state corruption due to the possible in
uenceof data processing code on the interaction. 56

3.9 SummaryGenEx toolset consists of a number of analysis, generation and visualization tools that supportthe design of synchronized concurrent systems that enforce the requirements given as receptivesafety properties. GenEx tools simplify the speci�cation of system components by reducing theneed for explicit synchronization. The automated synchronization of components liberates thedesigner from a conceptually simple task with a potential for high combinatorial complexity. Thecode generation and runtime support library make the resulting application easy to replicateor relocate to a di�erent execution environment. Finally, the visualization and debugging toolprovides a very powerful intuitive interface to verify that the behavior of the synchronized systemis what the user intended it to be.

57

Chapter 4Dining PhilosophersThe dining philosophers is one of the classic synchronization problems. We have shown in theprevious chapters how the philosopher behavior and interactions can be speci�ed and automat-ically synchronized to produce a functional and correct implementation of this system. In thischapter we will show some details of the system speci�cation and of the computation of synchro-nization conditions. We will also explain how our method avoids deadlocks and starvation in thesynchronization for this and any other exclusion based system.Dijkstra introduced the dining philosophers problem [Dij] and analyzed its mutual exclusionrequirements and possible implementations. A group of n philosophers is alternatively thinkingand dining at a round table, but they are restricted by the lack of forks at the table. There areonly n forks at the table, one between every two plates and every philosopher can eat only whenboth adjacent forks are available. The purpose of this system is to synchronize the philosophersso they can all eat, in some order since the adjacent ones cannot do it simultaneously. Thissystem has a progress requirement specifying that any philosopher that becomes hungry willeventually be allowed to approach the table, take both adjacent forks and eat. This implies thatthe philosophers must avoid deadlocks, livelocks, and starvation of individual philosophers bytheir neighbors.4.1 Classic SolutionsDijkstra gives two algorithms that make the philosophers synchronize their accesses to the table,and satisfy the progress property. He also modeled the system as a polygon where nodes representthe philosopher and edges represent their mutual exclusion requirements; this is a simple andintuitive model of the system. One algorithm uses global mutual exclusion to isolate the criticalactions where the philosophers access shared data structures that hold the ordering informationin the form of a matrix of dependency edges. The second algorithm uses distinct semaphores toenforce mutual exclusion between adjacent philosophers. The semaphores can only be accessedin a prede�ned order to prevent deadlocks. These algorithms avoid starvation by enforcing either58

FIFO access in order of requests, or 1{bounded overtaking for some pairs of philosophers. Thisproperty speci�es that one philosopher can eat at most once while an adjacent philosopher ishungry. Both the 1{bounded overtaking property and FIFO access are proper subsets of therealizable part of the starvation freedom property, and thus limit the execution to unnecessarilyrestricted patterns. The limitation is evident in the fact that a philosopher that is still waitingfor some resources can be the only one blocking another philosopher. If the philosophers takecontrol of the resources atomically, the resources are only taken when they can be immediatelyused.Some later approaches to this problem use the forks as the synchronization mechanism wherebyone philosopher can take the fork, and the other adjacent philosopher is then blocked waitingfor that fork to become available. The forks are essentially equivalent to the semaphores thatenforce the mutual exclusion of pairs of adjacent philosophers in the second Dijkstra's algorithm.The explicit nature of the forks used as a synchronization mechanism leads to the analysis oftheir ordering, and the impact of that ordering on the system execution. Synchronization withsets of semaphores has one inherent problem in the occurrence of deadlocks whenever the accesspatterns to the semaphores create a closed circuit. If all philosophers reach for the fork on oneside �rst, and then for the other one, they could potentially all pick the �rst fork simultaneouslyand get deadlocked. The deadlock occurs because no forks are available, and every philosopheris waiting for another fork, thus not releasing the fork they are holding. The existence of thisdeadlock state implies that the progress property is not satis�ed by the system.One type of solution to this is the introduction of a global limitation on the number of philosophersthat may be trying to pick the forks and eat at the same time. It has been shown that by allowingat most n � 1 of the philosophers to attempt to eat, the cycle in semaphore access can never beclosed because at least one philosopher is always out of the critical section. This limitation onthe number of philosophers in the Dining Room is usually implemented in the form of a countingsemaphore with the capacity n � 1, that the components(philosophers) access before trying toreach for the forks(local semaphores), and release after returning the forks . A problem with thissolution is the potential for the serialization of accesses because when n� 1 philosophers all haveone fork, only one of them can pick another and eat. When the philosopher returns the forks andexits the dining room, only one other philosopher is allowed to pick its two forks and eat. Theprobability of the occurrence of serialized access grows with the higher access frequency, makingthis design a serious bottleneck. Reducing the number of philosophers allowed in the dining roomdoes not solve this problem and might not even alleviate it. All the philosophers allowed in thedining room may still be serialized, and they block the philosophers whose forks are availablefrom entering the dining room.Another type of solution for this problem is based on the breaking of the symmetry between thephilosophers, by making one or more philosophers reach for their forks in the opposite order.This way at most n � 1 forks may be picked simultaneously, and one fork is always availableor some philosopher is eating and will make both forks available when done. By reordering thesemaphore access for one philosopher, the cycle in access to the semaphores is broken and nofurther deadlocks can occur. The shortcomings of this solution must do with the maintenanceof di�erent implementations for the same component behavior, and the serialization of accessesunder heavier load. To address the serialization issue, the even/odd philosophers need to accesstheir forks in opposite order. This produces a system with reasonable performance, but with59

init([philo],[thinking],[[]]).

trans([philo],[thinking],[eating],[[t]]).

trans([philo],[thinking],[thinking],[[f]]).

trans([philo],[eating],[thinking],[[f]]).

trans([philo],[eating],[eating],[[t]]).

mode([philo],[[hungry]]).PHILOSOPHER

Thinking Eating

!Hungry / Drop_Forks

Hungry / Pick_Forks

a) b)Figure 4.1: Description of one philosophersome problems related to its con�guration and maintenance.These approaches show the tradeo�s that sometimes must be made between the simplicity andelegance of a system design and the performance of its implementation. The cause of the prob-lems in this case is the inappropriate level of atomicity for the synchronization mechanism. Thesemaphores can enforce mutual exclusion between two philosophers, but every philosopher hasto access two semaphores to synchronize with both of its neighbors. Since two separate synchro-nization calls are needed, the process is not atomic, and the interleaving with other componentsbecomes critical. To keep the interleaving controlled and acceptable, we sometimes need tointroduce arbitrary asymmetrical restrictions on individual component behaviors.4.2 Automated Synchronization for Dining PhilosophersWe present a di�erent approach to synchronizing the dining philosophers, one based on automatedsynchronization and with the appropriate atomicity for the problem. In our case the forks areno longer used as the synchronization mechanism, they are merely the limited resource that isthe cause for the synchronization. The synchronization mechanism is produced by analyzing thecomponent behavior with respect to the speci�ed interaction properties. The synchronization forlimited resource access properties was described in Section 2.8.1, using the mutual exclusion oftwo philosophers. We will quickly repeat the results of that analysis and explain how they applyto the integrated system with synchronization for multiple properties.The speci�cation of one philosopher component is given in Figure 4.1, using the same FSM nota-tion as in earlier examples. The behavior of a philosopher consists of two states, THINKING andEATING, and the transitions between them are caused by the hungry signal for the philosopher.The transition from THINKING to EATING is enabled when the philosopher is hungry, andit includes the actions needed to pick the forks; since forks are not used as a synchronizationmechanism, they can be omitted from the system speci�cation.This speci�cation represents the functional behavior of the philosopher, and it has to be modi�edto satisfy the mutual exclusion requirements of the system.Since each philosopher needs to have both adjacent forks to eat, two adjacent philosophers can60

SAFE_OK REJECT
Philo1 = Eating & Philo2 = Eating

PHILO_EXCL_12Figure 4.2: Philosopher mutual exclusionDelay2 = (philo1 = eating) _ (philo3 = eating) _(philo1 = thinking ^ hungry1 ^ :ndet prio 21)_(philo3 = thinking ^ hungry3 ^ ndet prio 32)Proceed2 = :Delay2Figure 4.3: Compound enabling conditions for the second philosophernot eat simultaneously. We use this restriction to create the receptive safety properties thatthe system must satisfy. The mutual exclusion property for two adjacent philosophers is given inFigure 4.2, and it allows at most one of them to be in the EATING state at any time. The mutualexclusion property is asserted for every pair of adjacent philosophers, and this set of propertiesmakes the system's global interaction speci�cation. We can use these components and receptivesafety properties to specify the system exactly as described in Dijkstra's original model; we assertthe desired mutual exclusion rules for every pair of adjacent philosophers as edges in the polygonmodel.The safety violations can occur when one philosopher is EATING and its neighbor attempts todo the same, or when two adjacent philosophers get hungry at the same instant, and executethe transition to EATING state simultaneously. The following synchronization conditions areproduced to delay the second philosopher and prevent it from violating its mutual exclusionproperty with the �rst one.Delay(1) = (philo1 = eating) ^ hungry1Delay(2) = (philo1 = thinking) ^ hungry1 ^ :ndet prio 21Similar synchronization conditions are computed for the mutual exclusion of the second philoso-pher with its other neighbor, and for all other philosophers and their mutual exclusion constraints.When the philosopher is synchronized with both adjacent philosophers, its delayed transition willbe enabled whenever one of the adjacent philosophers is either eating or has a higher priorityand is ready to make a transition to the EATING state. The transition to the EATING stateis enabled when all delay conditions associated with it are false. The compound enabling condi-tions for the second philosopher are given in Figure 4.3, and the delay condition shows how allreasons for a delayed transition can be aggregated into a single boolean expression for evaluationpurposes. Computing the condition that enables the philosopher to proceed could be a complextask in the case of a component with many states and many interactions. Fortunately we donot need to produce the boolean expression in DNF form since, for execution purposes, we canenable the transition whenever the delay condition produces the value false.61

4.2.1 Liveness of the Synchronized PhilosophersThe synchronized philosophers satisfy the safety rules used to compute their synchronizationconditions. The safety rules specify that the adjacent philosophers must eat at distinct times,and a hungry philosopher waits for its neighbors to �nish eating. Beside the safety of the system,we want to verify its consistency with some liveness properties.Liveness properties specify that a system eventually reaches some desired state starting from astate that satis�es its preconditions. The progress property requires that the any hungry philoso-pher will eventually be allowed to eat. Two conditions may occur that prevent the componentfrom ever reaching a reachable goal state. The component can get involved in a deadlock wherea number of components are blocked waiting on each other to release some resource. Anotherproblem is the possibility of starvation where one component in�nitely waits for a resource thatwill not become available.Deadlock states occur as a result of the components requesting resources nonatomically, andin di�erent orders. If component accesses to some resources form a cycle, then deadlocks arepossible. In the case of dining philosophers, every philosopher atomically requests to be allowedto the table, at a time when none of the adjacent philosophers is. Since the resource (license toeat) is acquired atomically, no cyclic request dependencies exist, and deadlock is impossible.The starvation problem may occur when a component competes for a resource with a group ofcomponents that do not require exclusive access between them. Some components in the groupcan keep the resources locked for the group while others release them, perform noncritical tasks,and return to the critical section. This way each component in the group sometimes exits thecritical section, but they as a group can block the access to the critical resource forever. In thecase of dining philosophers, starvation occurs when two philosophers deny access to the table tothe philosopher between them by always overlapping their accesses to the EATING state.In our implementation of the dining philosophers, this pattern is possible for �nite executions,but the starvation can not be inde�nite because the nondeterministic relative priority signalsimplement what amounts to extreme fairness. Extreme fairness is de�ned in [Fra86] [Mai93]and it applies to systems with probabilistic choice of possible executions. When a path to thedesired state has some �nite probability from an in�nitely often occurring state, the desiredstate is eventually reached along all paths. Extereme fairness is also required for the exit of thephilosophers from the critical section because strng fairness there is insu�cient to guarantee thestarvation freedom. Two philosophers that enter the critical section in overlapping intervals canstarve a philosopher between them while their exits from the critical section clearly satisfy thestrong fairness.The fairness assumptions needed to prove the starvation freedom are that the hungry signals areindependent from the states of other components in the system, and that when a philosopher isEATING, there is a minimal constant probability p that the hungry signal becomes false duringany cycle. This assumption is more restrictive than the weak and strong fairness assumptionsabout the components leaving the critical section, but this restriction is required to satisfy thestarvation freedom when philosophers do not reserve one fork waiting for the other. The assump-tion about the nondeterministic relative priorities is that they have a 0:5 probability of giving62

priority to any of the referenced components.Theorem 4.1 (Hungry1 = true) leads{to (Philo1 = Eating)Proof: Assume that the inverse of the statement holds, namely that there is an in�nite pathwhere (Hungry1 = true) holds, but (Philo1 = EATING) never occurs. If the philosopher is in thestate THINKING in the �rst state on this path, its transition to THINKING DELAY is enabledand immediately executed. Thus the philosopher has to be in the state THINKING DELAY with(Hungry1 = true) for an in�nite period.The only thing preventing the philosopher from advancing to the EATING state is the fact thatat least one of its neighbors is eating. The probability that the eating neighbor stops being hungryin the next state is p, and the probability that the other neighbor is allowed to enter its eatingstate before Philo1 is 0:5. There is a p=2 probability that Philo1 can advance to its EATINGstate without violating the exclusion properties. On an in�nite execution, the probability of thistransition being taken at least once is 1. Therefore a state with philosopher in EATING stateis reachable, contradicting the assumed existence of an in�nite starvation path. This proves thatour design for the dining philosophers system is starvation free.4.2.2 Explicit Starvation Freedom EnforcementThe guarantee of starvation freedom based on the nondeterministic priorities is a theoreticalconstruction, but for practical purposes we may need a more speci�c restriction on the perioda philosopher will wait before it is allowed to eat. That is exactly what the original Dijkstra'salgorithms do by enforcing the receptive properties of FIFO and partial 1{bounded overtakingfor the philosophers. These properties are not documented anywhere as a part of the systemspeci�cation, thus making it impossible to reason about the system behavior and performancewithout analyzing the implementation code. GenEx allows the explicit speci�cation of theseproperties, and automatically implements them by synchronizing the components.The starvation freedom property is implied by the receptive safety properties specifying FIFO ac-cess and 1{bounded overtaking. We can assert the 1{bounded overtaking property as a constrainton the interaction between any pair of adjacent philosophers. This makes the starvation freedomexplicit and limits the wait for those philosophers. The waiting period is obviously not de�ned asa function of speci�c timing intervals because that would make it a non{receptive property. Tomake the rules receptive, the interval that one philosopher can spend waiting should be speci�edin terms of controlled events occurring in the system. In the case of 1{bounded overtaking, theevents of interest are the access to the state EATING by the adjacent philosopher.The 1{bounded overtaking property is given in Figure 4.4. This safety rule is activated whenthe second philosopher is hungry, and the �rst one is eating. After the �rst philosopher exits theEATING state, the safety rule goes to the state DONE ACCESS where it rejects repeated accessto EATING by the �rst philosopher. The safety rule leaves the state DONE ACCESS once thesecond philosopher reaches the EATING state and the starvation is avoided. Similar rules canbe imposed for other pairs of philosophers to specify the interleaving of their eating.63

IDLE

DONE_ACCESS

Eating2

IN_ACCESS

REJECT

Thinking1

Eating1

hungry2 & Thinking2 & Eating1

Figure 4.4: The 1{bounded overtaking property for a pair of philosophers4.3 Complexity Growth for Dining PhilosophersThe complexity of the state space for the dining philosophers is an exponential function of thenumber of philosophers, with up to 3Nphilo states [YY91]. Every philosopher has 3 possible states,where the second state is reached when the philosopher takes one fork. In our implementation,every philosopher has only two states related to their functional behavior, and the delayed statethat is added to the components is reachable when a component is waiting to access the criticalsection. The analysis of this state space is clearly not a viable way to �nd the safety violationsand compute the synchronization conditions that prevent them.The analysis of the dining philosophers implementation does not require full state space traversalsas was shown by Young and Yeh [YY91, Yeh93]. Their method extracted the regularity of thephilosopher de�nition to reduce the complexity of the part of the state space that it had toanalyze, and limited its growth to a linear function of the number of philosophers. Constrainedexpressions [ABC+91] provide another way of analyzing the behavior of the philosophers wherethe time requirements are a linear function of the number of philosophers.Receptive safety rules in the dining philosophers example are de�ned for pairs of components,so only those components can violate the rules and need to be analyzed and modi�ed to makethe system satisfy the properties. For every safety property, there are two components whosebehavior must be analyzed in order to enforce the safety, and all other components can be ignored.The reachability graph for mutual exclusion enforcement for any pair of philosophers consists ofat most 9 states since each philosopher has 3. Every accepting state in the graph has an outgoingviolating transition, so every state must also be analyzed using the static analysis algorithm. Theanalysis must be performed on all pairs of adjacent philosophers, so the total complexity of theanalysis needed to enforce the mutual exclusion is:N States = 9 �N philoThe same complexity of the reachability and static analysis is a result of the simplicity of thecomponents and safety rules that makes every possible violation reachable, and every reachable64

state a potential source of safety violations. For more complex properties, the di�erence betweenthe reachability and static analysis becomes much clearer. The state space for the reachabilityanalysis of 1{bounded overtaking could have up to 36 states since the safety property has fourstates including the REJECT. There are less than 15 actual reachable states, and only two ofthem are predecessors of safety violations. The safety violations occur when the �rst philosopherenters the EATING state while the safety property is in the DONE ACCESS state and thesecond philosopher is in state THINKING DELAY. Using the static analysis, only the sources ofpossible safety violations are examined, and in that case we can see that the current state of thesecond philosopher is irrelevant for the safety violation, and that only the EATING by the �rstphilosopher with the safety rule in state DONE ACCESS can cause a violation. The complexityof the static analysis in this case is about 5 times lower then the reachability analysis.This reduction in complexity is the result of the independence between all mutual exclusionproperties. The symmetric nature of the problem was not taken advantage of and every pair ofcomponents is synchronized by performing the analysis of their behavior. Since all componentsand their interactions are identical, the synchronization conditions for every component are sym-metrical, each de�ned based on the states of the adjacent philosophers. The analysis of a singlepair of philosophers produces all the information that is necessary to compute the synchronizationconditions for this system. The synchronization conditions can be replicated for all other pairs ofcomponents, using replication and string substitution to generate the synchronization conditionsfor all philosophers. The complexity of the analysis for this system is a constant value since onlyone pair has to be analyzed. This approach however still requires linear time complexity becausethe new delayed transitions must be generated for every component.The dining philosophers problem can be generalized to include mutual exclusion constraints onan arbitrary adjacency graph. The process algebra and constrained expressions approaches thatuse the regularity of the dining philosophers to reduce the complexity could fail because of theirregular structure. The GenEx approach would still work linearly, whether by analyzing all pairsthat require mutual exclusion, or by analyzing one pair in constant time and then replicating thesynchronization conditions for all philosophers.4.4 SummaryWe have shown how the dining philosophers system can be implemented using the GenEx toolset.Our implementation is very natural and simple to construct from the speci�cation of the requiredmutual exclusions. The automatically generated synchronization is atomic and therefore the sys-tem is deadlock free. The nondeterministic priorities enforce extreme fairness for the componentactions, and the implemented system is starvation free. We have also shown how additionalreceptive safety rules can restrict the interaction to enforce stronger progress properties.65

Chapter 5Production Cell ControllerIn this chapter we will give an example of the use of our method in an industrial application. Thisexample will show how the complex behavior of the system can be decomposed into individualcomponent behaviors and interaction between pairs of components. System requirements includenonreceptive safety, bounded reaction time and fault tolerance. We give a receptive representationof these system requirements and show how they are enforced by automated synchronization. Theautomated synchronization process analyzes the system behavior and modi�es the componentsto make them enforce the speci�ed receptive properties. The analysis is static and limited tosubsets of components, and the generated implementation enforces all properties by allowingeach component to locally determine its actions based on the system state information.The Production Cell system was the object of a large case study involving over a dozen lead-ing formal design and veri�cation methods [LL95]. The goal of the case study was to producea controller for the production cell and to verify its correctness. Most of the implementationslimited themselves to the implementation without verifying its correctness. The main obstacleto the veri�cation of this controller is that the state space for the system was estimated at �ftymillion states. This implies that the veri�cation process entails excessive computational com-plexity. We will show how, using our method, the production cell controller can be automaticallygenerated by the integration of individual device controllers. The components of the controllerare modi�ed by adding the automated synchronization that enforces the receptive properties ofthe system. The synchronization conditions are computed to satisfy some of the receptive safetyrequirements, thus making their veri�cation unnecessary. More importantly, the analysis neededto automatically synchronize the components of the production cell controller is dramaticallylower than the analysis that would be required for the veri�cation of the same properties.A second Production Cell system was proposed as a subject for further study, with somewhatmodi�ed components and more complex requirements including fault tolerance and runtime re-con�guration. We use the original production cell system to introduce the problem and showone design of the controller. We use the second production cell system to show how the systemcan be evolved to satisfy nontrivial changes in speci�cations and requirements. The controllerthat we designed for the second production cell required minimal modi�cations of the system66

FEED BELT

DEPOSIT BELT

ARM1

ROBOT

ARM2

ROTATING TABLE

PRESS

CRANE

PRESS1Figure 5.1: The Production Cell systemcomponents, allowing a high level of reuse.5.1 Production Cell SystemThe production cell system in Figure 5.1 is a medium complexity industrial system with safety,reliability, real{time and liveness requirements. The goal of this system is to transport metalblanks to a press to be processed, and then transport them out of the processing system. Forsimulation purposes, the system is implemented as a closed loop where processed metal blanks arereturned to the entry point. The system contains six devices that respond to control directivesfrom a controller and return sensor data about their position and about detection of metal blankson the conveyor belts. The devices are: 1) a feed belt that brings the new metal blanks anddeposits them on the rotating table, 2) a rotating table that positions the blanks to be picked upby the robot, 3) a rotating robot with two extensible hands for loading and unloading the press,4) a press that processes the metal blanks deposited by the robot, 5) a deposit belt where therobot places the processed metal blanks, and 6) a traveling crane that closes the loop by bringingthe blanks from the deposit belt to the feed belt. A controller for this system has to direct thebehavior of each device keeping their combined behaviors within the set of speci�ed properties.The system has two types of safety requirements: 1) mobility restrictions for individual com-67

ponents, and 2) collision and blank loss avoidance requirements that describe safe interactionsbetween system devices. The system can be controlled by moving one device at a time to com-plete their part of the processing, so the system is realizable. Since the system is realizable, thereexists a receptive representation of its behavior, and of every individual required property. Whenthe properties are formulated in receptive form, each of them can be satis�ed by controlling thecomponents it references. The property receptiveness allows the partition of the analysis andintegration process.The goal of the controller is to synchronize the devices to accept the blanks, press them anddeposit the pressed blanks on the deposit belt, while restricting their movement to safe rangesand avoiding collisions. A single component that controls this system would su�er of insu�cientparallelism of execution and the resulting ine�ciency, or its size and complexity would makeit infeasible to design. A simpler and more reliable way to control this system is using simplecontrollers for each device, integrated for safe and reliable interaction. Every component operatesits assigned device at peak performance, while respecting the constraints that guarantee the safeexecution of the system. This architecture allows us to take advantage of the parallelism in thesystem without having to exhaustively analyze all system states.Some devices have individual mobility restrictions that specify the extremes of their movement,and exceeding those limits damages the devices. They also have positioning requirements thatspecify their position where interaction with other devices will succeed. In some cases, like therotating table, the extreme safe elevation corresponds to the position required for the robot to pickup the blank. Mobility restrictions and positioning requirements are of real{time nature, becausethe controller has to react and stop a moving device within a prede�ned time interval (immediatelyfor the rotating table). The safety of the system is also violated by component collisions and bythe inappropriate handling that results in metal blanks being dropped. Collisions occur whentwo machines work in the same area, while metal blanks can be dropped when the machines arenot in compatible states for transferring them, e.g. when the feeding belt unloads a blank withthe rotating table in a high or diagonal position. These safety violations are time{independentand depend only on the component interaction.The time{dependent requirements for the components to stop their movement in desired positionsmust be implemented within the component speci�cations, because they are not of the receptivenature that can be enforced by our synchronization mechanism. Time{independent safety prop-erties are speci�ed in the receptive safety rule form, and asserted as constraints on the behaviorof the components. We analyze the components and receptive rules using GenEx to produce asynchronized and executable controller application.The system also has a liveness requirement that every blank that enters the system eventually hasto be processed. This liveness requirement is the highest end{to{end functional requirement ofthis system; its satisfaction makes this system useful. The liveness property can not be formulatedin the form of a receptive safety property, and logically can not be enforced using componentdelays. We will introduce one pattern for the speci�cation of components and safety rules thatcreate no deadlocks and consequently preserve the liveness of the system.68

5.1.1 ComponentsThe desired behavior of the individual machines is outlined in the task description of the produc-tion cell system. We designed our controller components to satisfy those behaviors by initiatingand halting their movement in the correct sequence and in a timely fashion. The timelinessapplies in particular to the enforcement of real{time requirements for stopping a machine whenit reaches a desired or extreme position. These properties must be satis�ed by the componentdesign because they can not be enforced by imposing additional delays.Each individual component is de�ned as a �nite state machine(FSM). Every transition has anenabling condition that activates it, and the completion of the transition may result in changesto some system variables. Generally, the components use monitored environment variables forenabling conditions, and change the signals that control the movement of the devices in thesystem. Some of the controlled signals serve as system memory, to help relate later decisions toprevious behaviors. Figure 5.2 shows the �nite state machine speci�cation of two components.We use a single component to control every device except the robot that is controlled by threeinteracting components, one for each arm and one for the base.The states embody the decision making properties of the components, where the selection of atransition determines the future behavior of the component. Transitions represent the componentactions, taking them from one state to another and changing the values of the controlled signals inthe process. The components in our system are designed to perform two functions: they specifythe �nite state sequences of a device movements, and they implement the time-dependent aspectof control requirements, such as mobility restrictions and correct positioning.Press sensors distinguish three of its positions as interesting for the system behavior. When thepress reaches its high position, a loaded blank is successfully pressed, and the press opens so thatthe blank can be picked, and closes to its middle position to be loaded with a new blank. Metalblanks are loaded on the press by the �rst robot arm when the press is in its middle position,and the second robot arm picks processed blanks from the press in its low position. The presscontroller initializes the press by bringing it to the middle position, and then requires a cyclicalsequence: close to high position, stop, open to low position, stop, close to middle position, stop.The press may be in any initial position, including the undetectable ones, so the controller hasto close the press to detect its position and then guide it to the middle position. The behaviorof the press controller is illustrated in Figure 5.2. The transitions that stop the press movementsatisfy the time dependent requirements for correct press positioning and respect for maximalmovement range.The behavior of the robot, as speci�ed in the production cell study is as follows: �rst arm picksa new blank from the rotating table, second arm picks a processed blank from the press, secondarm drops the blank on the deposit belt and �nally the �rst arm drops its blank on the press.This behavior can be executed while the robot rotates counterclockwise from its rightmost toits leftmost position. The robot has three actuators, one for the base rotation and two for armsextension, and most of the time only one of them can be active. Robot rotation while any of thearms is not completely retracted may lead to a collision between the robot and the press. Thesesignals are closely related, according to the component de�nition guidelines given in section 2.9,so the robot could be controlled by one component. The signal dependency is restricted to mutual69

PRESS

PRESS_INITOPEN_EMPTY

LOW_EMPTY
SENS_off / -

CLOSE_EMPTY

MID_POS / STOP

MID_EMPTY
SENS_on / -

MID_LOADED CLOSE_LOADED
HI_POS / STOP

CLOSED

- / OPEN

OPEN_LOADED
LOW_POS / STOP

LOW_LOADED

- / CLOSE

- / CLOSE

- / RETRACT

ROBOT ARM 1

ARM_PRESS EXT_PRESS LOADED RETR_LOADED

ARM_TABLEEXT_TABLERETR_EMPTY EMPTY
- / EXTEND, Mag_ON

RET_POS / STOP

EXT_POS / STOP

- / EXTEND

RET_POS / STOP

- / RETRACT

EXT_POS /
 STOP, Mag_OFF

Figure 5.2: Components of the Production Cell systemexclusion, i.e. the rotation and arm extension signals are never active at the same time. Mutualexclusion can be enforced on separate components by the safety rules, so we can specify the robotusing three simpler components instead of one complex one.The arms alternatively extend and retract, turning the magnets on and o� when they need to pickor drop a blank. The arm controllers control both the arm extension and the magnet activationbecause the magnets are trivial to include as part of arm behavior. The behavior of the armsis simple, extracted from the robot behavior speci�cations. Both arms initialize by retracting toallow the robot to rotate to the position where the �rst arm points to the rotating table. The�rst arm extends with magnet on to the table and then extends again to reach the press; uponreaching the press the magnet is deactivated thus placing the blank on the press, and the arm isretracted to allow rotation back toward the rotating table. The second arm �rst extends towardthe press with activated magnet and then retracts �rst to the deposit belt where the magnet isdeactivated, and then to its minimum extension where it allows robot rotation. The behavior ofthe robot arms is shown in Figure 5.2.The robot base rotates, positioning the robot arms in a way to interact with the press, rotatingtable or deposit belt. The robot base operates in a prede�ned cycle: rotate clockwise until arm1points to table, stop, rotate counterclockwise stopping when arm2 points to press, and whenarm2 points to deposit belt and �nally when arm1 points to press. This control sequence is notappropriate for the initial state when the press is empty, so the second arm has nothing to pick.70

FREE
Press = Mid_Empty

UNLOADED

ARM1_PRESS1

Press = Close

PRS_READY

Arm1 = Extend

Arm1 = Extend

REJECT
Arm1 = Extend Press = Close

Table = Rise_Inline

UNLOADING
Arm1 = RetractedFigure 5.3: One safety rule for the Production CellThe initial rotation of the base will skip the positions where the second robot arm can interactwith other devices, so that arm will be idle until the next rotation when the press is alreadyloaded. The robot base uses a controlled variable that initially indicates the press to be empty,and is modi�ed to indicate a loaded press after the �rst rotation. When this controlled variableis false, the robot base only stops in the states where the �rst arm picks and drops a blank, andwhen it is true it stops in all selected positions.5.1.2 Safety RulesThe component descriptions are completely independent, each component responding only to thedevice sensor inputs. However, it is clear from the description of the system that the componentsmust be synchronized to pass the metal blanks. If the robot arm extends while the press isabove its middle position, the two devices will collide, and if it drops a metal blank while thepress is loaded, the two metal blanks will collide. Another requirement violation occurs if therobot drops the blank while the press is too low, because that makes the fall unsafe. Thesecomponents must be synchronized to satisfy the requirements violated by the previous scenarios.These safety violations are unobservable by the controller components because the controlleronly receives information on speci�ed device positions, while a collision may occur when bothdevices are in the indistinguishable intermediate positions. However, the safety violations in thephysical system are caused by previous decisions by the controller and its components. We needto map the safety requirements to decisions of controller components in order to integrate theminto a safe and reliable system. The press waits for the robot arm to deposit the metal blankand retract, than it closes to process the blank. The robot waits for the press to return to itsmiddle position when the new blank can be deposited. This informal description of the desiredinteraction between the components is easily formalized into a receptive safety rule requiring thatbehavior.The safety rule ARM1 PRESS in Figure 5.3 speci�es the interaction between the press andthe �rst robot arm. The �rst robot arm loads the press when it is empty and in its middleposition. The robot arm may collide with the press if it starts to extend before the press stopsin its middle position, or if the press starts to raise before the robot arm retracts after loading71

it. The safety rule speci�es that the robot arm has to wait for the press to stop in its middleposition before extending, and that the press stays in that position until the robot arm retractsafter dropping the blank on the press. The rule prohibits the press from closing until the robotarm loads it and retracts, and it prohibits the arm form extending until the press is stopped inits middle position where it can receive a new blank. Since the rule restricts only componentactions, it is a receptive safety property, and can be enforced by GenEx. Note that the ruleimposes no constraints on the component actions that stop the device movement because thesetransitions enforce the time{dependent aspects of behavior. Also, every state of the safety ruleconstrains only one of the referenced components. The other component is allowed to proceed,and its actions will eventually lead the safety rule to a state where the constraint is removed andimposed on another component. This is the pattern of safety rule de�nition that we introducedin chapter 2.This receptive safety rule enforces what is basically a handshaking algorithm for the robot arm1and the press components. It requires a speci�c interleaving of transitions by the two compo-nents, insuring that the robot arm unloads the metal blank on the press. Although the compo-nents are de�ned independently, this rule references both of them, telling the GenEx synchroniza-tion tool to analyze them together and to modify their interaction by delaying one or the otherand allowing them to complete the delayed transitions only when they preserve the safety. The in-dependence between the components simpli�es design and maintenance and promotes componentreuse for similar systems.The safety rule ARM1 BASE synchronizes the behavior of the �rst robot arm and the robotbase. Possible safety problems caused by bad interactions between the robot base and arms occurwhen the arms extend while the base is rotating, so the arms can collide with the press. If the�rst robot arm extends to drop a blank at a time when it is not turned toward the press, theblank is dropped in an unsafe location causing a di�erent safety violation. Another problemcan occur that does not cause a physical collision, but makes the system state inconsistent andleads to other failures; if the �rst robot arm extends to pick a blank when it is not turned tothe rotating table, the table then rotates back to the feed belt and accepts another blank thuscausing a collision.The basic safety that the rule requires is that the arm extends only when the base is stationaryin states where the arm points to the table or a selected press. Once the robot arm starts toextend, the base remains stationary until the arm retracts. This rule entails two instances ofhandshaking in a sequence, one for picking the blank from the table and the other for droppingit on the press. A similar rule is necessary to synchronize the second robot arm with the robotbase, and it has one di�erence related to the possibility that the arm might not need to extendand pick a blank if the press is empty. The base is restricted from rotating only if the press isloaded and the arm is ready to extend. The base may resume rotation if the arm is retractedand waiting for a loaded press to be selected.The robot arms interact directly with the press, so their interaction has to be speci�ed usinga pair of safety rules. These safety rules specify the position of the press that allows the robotarms to extend to the press, and that the press has to remain in that state until the arms retract.These rules guarantee that the press is in the right position for the arms to drop or pick theblank, and that the press will not close and cause a collision before the arms retract. The rule72

PRESS

PRESS_INITOPEN_EMPTY

LOW_EMPTY
SENS_off / -

CLOSE_EMPTY

MID_POS / STOP

MID_EMPTY
SENS_on / -

MID_LOADED CLOSE_LOADED
HI_POS / STOP

CLOSED

- / OPEN

OPEN_LOADED
LOW_POS / STOP

LOW_LOADED

DELAY_ARM2

DELAY_ARM1

not(DEL1) / CLOSE

not(DEL2) / CLOSE

not(DEL2) / CLOSE

not(DEL1) / CLOSE

DEL2 / -

DEL1 / -

Figure 5.4: A modi�ed version of the press componentARM1 PRESS1 enforces the following sequence of events: press empty in mid position, arm1extending to press, arm1 drops blank, arm1 retracted, press closes to process the blank. Thesynchronization of the second robot arm with the presses is speci�ed by the rule ARM2 BASEand the sequence: press loaded in low position, arm2 extending to press, arm2 picks blank, arm2retracted , press closes to middle position.5.1.3 Synchronization of the Production Cell ControllerThe components specify the functional behavior of the system and determine what actions indi-vidual devices will perform. The receptive safety rules specify the subsets of the set of possiblesystem executions that are acceptable with respect to the component interaction. The behaviorsthat violate some of the safety rules are considered unacceptable, and should not occur in theexecutable application. The components specify what their next action is, but they are not re-quired to be immediate. The system requirements are mapped to the component level, and theyare enforced by delaying the components that have the potential to violate the receptive safetyproperties.The process of making the components use other components' state data in determining theirtransitions is automated. The goal of the component modi�cations is to synchronize them,and make their behavior sensitive to the system state. The automated synchronization of localcontrollers requires safety analysis for all safety rules and the related components. All potentialsafety violations are detected, and their preconditions are used to compute the synchronizationconditions for the components. The synchronization conditions enable the components transitionsto a delayed state where they remain while they are a potential cause of safety violations.73

The synchronized version of the press component is given in Figure 5.4. Two transitions of theoriginal press had the potential to violate the receptive safety rules that speci�ed the interac-tion between the press and the robot arms. These transitions are modi�ed by the addition ofdelayed states, shown using dashed lines. The delayed states are reachable only when the com-pletion of the original transition would lead to a safety violation, and as long as those conditionspersist the press component stays in the delayed state. The transition from LOW EMPTY toCLOSE EMPTY is delayed as long as ARM2 PRESS is in state A2P PICKING. The safetyrule stays in the state A2P PICKING until the robot arm returns to the retracted position wherethe press can no longer collide with it once it starts to close. A similar delay applies to thetransition from state MID LOADED to CLOSE LOADED where the press has to wait for the�rst robot arm to retract before being allowed to close.5.2 Two Press Production Cell SystemWe will now examine a variation of the production cell system, to show how the automatedsynchronization approach helps us reuse the functional description for the device controllers.The production cell is expanded to include another identical press, on the assumption that thepress is the bottleneck device in the system. By using both presses in parallel, the performanceof the system improves because the robot can pick a processed blank from one press and place anew one while the other press is processing its blank.This production cell system has two identical presses, both reachable by the rotating robot, andidentical in construction and controls to the press used in the �rst system. The original controllercan be reused as a generic press controller and instantiated for the two presses using their speci�ccontrol and sensor signals. The controllers for the two robot arms can be reused without anychanges, since both presses are located at the same distance from the robot, thus requiring samearm extension. Since their interaction with both presses is equivalent, the robot arms have noneed to distinguish between them.The largest changes occur with the robot base whose functionality has to expand to handle twopresses. The base has to recognize six di�erent positions where it has to stop the rotation toallow the robot arms to interact with other devices. The robot base controller executes the pressselection, and guides the robot to the appropriate positions where the arms can pick and drop theblanks on other machines. The robot base controller selects the presses in alternated order, soeach press is used as much as possible. The press selection is based on a controlled variable thatrepresents the previous selection, and its value remains constant until the other press is selected.The robot base controller uses two controlled signals, one for each press, to handle the initialinteraction with the empty presses.Depending on the press selection, the robot base goes through two di�erent sequences of oper-ations in every rotation. If the �rst press is selected, the robot base allows the second arm topick a blank o� the press, rotates to point the �rst arm to the table, stops, rotates to point the�rst arm to the �rst press, stops, and rotates to point the second arm to the deposit belt. If thesecond press is selected, the �rst arm accesses the table �rst, then the second arm accesses both74

ARM1_PRESS1

SELECTED

REJECT
Press = Rise_to_top

Base = Select_one

ARM_ACTIVE

EMPTY_RDY

Arm1 = Retracted_Empty Press = Rise_to_top

Press = Rise_to_top

Arm1 = Ext_to_press

SEL_RDY

Press = Mid_pos

Arm1 = Ext_to_press

Press = Mid_pos
Press = Mid_pos

Base = Select_one &

PRS_LOADED
Base = Select_first

Figure 5.5: A safety property for the two press production cell systemthe press and the deposit belt, and �nally the �rst arm accesses the second press. In the initialrotations with empty presses, the operations of the second arm are skipped and the correspond-ing signals are set after the presses are loaded. After a rotation is completed, the robot baserotates clockwise to the position where second arm points to the �rst press where next rotationcan start. The robot base is the most complex component in the system, because it embodiesboth the sequencing and the decision aspects of this production cell.The safety rules for the presses and robot arms need to be modi�ed, and they must reference therobot base for information on the press selection. The safety rule for the press that is not selectedfor loading should not interfere with the behavior of the robot arms. This e�ect was not apparentin the single press system because there were no two safety rules that would alternatively block asingle transition. The safety rule ARM1 PRESS1 is given in Figure 5.5, and it shows how thesafety rule interleaving works. The rule accepts all behaviors until it gets enabled by the selectionof the �rst press, and then starts to reject behaviors that lead to safety violations involving the�rst press. When the desired interaction is completed, the rule deactivates and again waits forthe �rst press to be selected.5.3 Fault Tolerant Production Cell ControllerThe above described controller satis�es all safety, real{time and liveness requirements of theProduction Cell. We will show how the controller can be expanded to ensure fault tolerance forthe system. This example is a better approximation to the system requirements in the ProductionCell2 case study, that includes the two press production cell and imposes additional fault tolerancerequirements. The actual production cell 2 study assumes that all devices are failure prone, whilewe limit failures to the two presses. We consider press failures to be more \interesting" becausethe system can keep operating when one press fails. Failures of any other device require thesystem to stop execution until the device recovers and then restart. The most important aspect75

of the restart is the gathering of information about the state and position of components andblanks, a subject unrelated to our research.The presses are the failure prone devices, and their design is enhanced with the addition of sensorsthat detect the presence of metal blanks on the press. The mechanical press failures a�ect theircontrol mechanism making them nonresponsive to controller commands. Sensor failures maketheir output �xed at the value false, thus making it impossible to detect a blank on the press orto position the press in one of the prede�ned positions. To ensure fault tolerance, the controllerhas to detect press failures and recon�gure the system to use only the functional press until thefailed one recovers. If both presses fail, the controller leads the system to a safe state, and waitsthere until the presses recover to a functional state. The controller raises an alarm wheneverit detects a failure, and deactivates it when it gets a recovery signal from the production celloperator. The recovery signal is given when all devices are back in operative condition.5.3.1 Failure Detection and RecoveryFailure detection is a problem outside of the scope of this research, and we will explain the basicsof our approach, while concentrating on the interaction control. From the standpoint of thesystem controller, failures are not necessarily observable events, and in practice they are mostoften not directly observable. However, they must be indirectly observable1 and the controllertries to detect them by comparing the expected correct behavior of the press with the actualbehavior to detect previous failures.Failure detection is a real{time requirement while non{interaction with a failed press is a matterof decision and sequencing. The failure detection, like other real{time requirements, is enforcedby the controller components, as part of their functional behavior. The failure detection task ishandled by the press monitors, two equivalent components each instantiated for one press. Thepress monitors track the actions of the press controller and the monitored variables representingthe press position, and raise a fault alarm when the press shows unacceptable sensor inputs. Thepress monitor reinitializes together with the press controller when the user signals the system isfully recovered. The press controller and monitor interact using their controlled variables, thepress activation signals and the press failure signal, and both have access to the monitored signalsrepresenting press position. Monitor also uses some robot control signals to distinguish pickedblanks from sensor failures.The press monitor reacts to the following inconsistencies in the press behavior:� Failed position sensor.When the press is stopped in one of its three positions and the appropriate position sensorturns false without a movement command, the press monitor declares a press failure.� Failure to reach a position.When the press is moving from one position to another, if it fails to reach its destination1If a failure is totally unobservable, meaning that the behavior after the failure is equivalent to the behaviorwithout the failure, then the failure is irrelevant for the controller and the system.76

in a prede�ned amount of time the press monitor declares a press failure due to mechanicalor position sensor problems.� Failed blank detector.When the press is loaded with a blank, and the detection sensor has the value false, thesensor is assumed to have failed and a press failure is declared.The speci�cation of press behavior has to be changed to account for the possibility of failuresand the subsequent recovery. A version of the press controller with fault detection and recoveryis shown in Figure 5.6. Since a failure can be detected with the press in any state, every state hasan additional transition to the PRESS FAILED state, enabled by the failure signal from the pressmonitor. The press controller remains in the failed state until the press monitor deactivates thefailure signal, after receiving the recovery signal. After the recovery, the press has to repeat theinitialization protocol, to detect its current level and whether it is loaded or not. If the press isloaded after a recovery, it may be impossible to determine whether the blank has been processedor not. Due to the indirect and delayed detection of some failures, a blank may be processed bythe press without the press detecting it arrived to the upper position. This nondeterminism isresolved by assuming that a blank found on the press at initialization or recovery should not beprocessed, since it may be incorrectly positioned or already pressed.The initialization sequence for the press is used both at the start of execution and after a recovery,and it has to be able to restart the press from any position and regardless of the existence of ablank on the press. If the press is initialized without a blank, it moves to the middle position tobe loaded, and if it is already loaded at initialization, it moves to the lower position to allow therobot to pick the blank.Other components that must react to the press failures are the robot arms. They must be ableto interrupt an initiated approach to a press, to avoid colliding with it or unloading a blank withthe press out of proper position. The robot arm controllers react to press failures only when thearm is extending toward the failed press, making the arm return to its retracted position to tryrestart the approach once a press is available and functional. A robot arm controller that reactsto press failures is also given in Figure 5.6.The faults can occur at any time, and with the system and its components in any state. Inaddition to the real{time reactions to failures, the overall behavior of the system has to changeafter a failure, to recover the system to a consistent state. The production cells without faulttolerance have a de�ned repetitive behavior after they complete the initial loading. At the endof every rotation both robot arms are empty, and both presses are loaded. When presses fail,some actions in a rotation are completed and some must be aborted or ignored so at the end ofa rotation some press may be empty, and the �rst robot arm may still be carrying a blank thatwas to be loaded on the failed press. The behavior of the robot base needs some modi�cationsto account for the possibility that the �rst robot arm is loaded in the starting position, and thatthe picking of a blank from the rotating table has to be skipped. Another possible e�ect of pressfailures is that the press is loaded after recovery. The behavior of the robot base already handlesthis situation in the initial state, but now it can also occur after a failure.The safety rules that specify the interaction between the presses and the robot arms need an77

SENS_off / -

- / CLOSE

- / OPEN

PRESS

OPEN_EMPTY PRESS_INIT PRESS_FAIL

LOW_EMPTY LOW_LOADED OPEN_LOADED CLOSED

CLOSE_LOADEDMID_LOADEDCLOSE_EMPTY MID_EMPTY

- / CLOSE

MID_POS / STOP SENS_on / -

- / RETRACT

ROBOT ARM 1

ARM_PRESS EXT_PRESS LOADED

PRESS_FAIL

RETR_LOADED

ARM_TABLEEXT_TABLERETR_EMPTY EMPTY

RET_POS / STOP

EXT_POS / STOP

- / EXTEND

RET_POS / STOP

- / RETRACT

STOP, Mag_OFF
EXT_POS /

LOW_POS / STOP

HI_POS / STOP

- / EXTEND, Mag_ON

PRS_FAIL / STOP - / RETRACT

SENS_off / -

SENS_on / -

PRS_FAIL / STOP

LOW_POS / STOP

!PRS_FAIL / -Figure 5.6: Fault reactive version of the press and the robot armadditional failure state where they go when the respective press fails and stay until it recovers.While in their PRESS FAILED state, these rules impose no restrictions on the behavior of therobot arms, and they react to the press recovery by going back to the initialization state, justlike the press itself.Since the behavior of the robot arms is modi�ed, the safety rules for their interaction also mustbe slightly changed. The safety rules require the base to wait for the robot arms to completetheir interaction with the presses, but in the case of press failure the arms abort the interac-tion, requiring to repeat it with an available press. The safety rule has to react to the abortedinteraction, by returning to the initial state for that interaction. The rule ARM1 BASE alsoneeds an additional state to return to the start of the rotation with the arm loaded. This waythe arm is not required to pick another blank o� the rotating table before depositing the blankit is currently holding on the press.An additional safety rule speci�es the requirements for a press recovery. If a failed press recoverstoo quickly during the same rotation when it failed, it may lead the �rst arm to drop a new blank78

on the loaded press, causing a collision. In order to simplify the system we specify a sequencingrule that requires the failed presses and their monitors to delay their recovery until the end of arotation and the beginning of the next one. That way the system initiates a rotation with reliablestate data and any subsequent failures remain in force during the entire robot rotation.These minimal modi�cations are su�cient to handle all the possible executions that occur as aresult of press failures. The press monitors encapsulate the complexity of failure detection, andforce the presses to their failed states. The robot arms also have a small role in reacting to pressfailures during interactions. The safety rules specify the additional acceptable execution tracesthat capture the state space of fault consequences and recoveries.5.4 Bene�ts of Using GenEx to Synchronize the Production Cell Con-trollerThe use of GenEx allows us to specify the components of a production cell controller indepen-dently, and to integrate them into a functional system that satis�es the speci�ed safety rules andpreserves the time{critical behavior of the components. By using the receptive safety proper-ties to describe the desired interactions between the components, we can specify the aggregatebehavior of the system and have it automatically synchronized to satisfy the desired properties.The compositional nature of the generated applications allows us to create very complex systemsusing simple components, simple receptive safety properties. The enforcement of receptive safetyproperties is based on the analysis of violation preconditions, computationally far simpler thanthe reachability analysis. This means that all the design bene�ts come at a lower cost than doingformal and exhaustive system veri�cation.The local and functional emphasis in the component design provides a decoupling mechanism thatallows us to create components independently, even if those components must interact. Everycomponent de�nes its own behavior and determines its sequence of actions, while the systemsynchronization mechanism transparently delays the components that may violate the desiredsystem properties.The creation of complex systems is reduced to local decisions on the function and interactionbetween independent components. If the functional behavior of the components can be combined,their coupling is just a question of specifying the constraints for their interaction. Complexsystems can be designed by combining the components whose functions they require, and addingthe interaction properties in the form of receptive safety properties. Since the safety propertiesare speci�ed for small subsets of components in direct interaction, even the safety properties tendto be simple and organized into patterns that facilitate their reuse in di�erent systems.The reusability is illustrated by showing the simplicity of modifying the system to use two pressesinstead of one. The behavior of most components remains identical as in the single press example,with the exception of the robot base that has to recognize previously unde�ned positions andenforce the alternation between the presses. The safety rules require some modi�cations if theydeal with the modi�ed components, otherwise they can be reused in their entirety from the singlepress system controller. 79

The use of automated synchronization also supports the modi�cation of a system through theaddition of new requirements, such as fault tolerant behavior. We've shown that the system canbe upgraded to a fault tolerant version by modifying the components to include local reactions todetected failures, and by similarly making the safety rules deactivate on a detected press failure,and reactivate once the press recovers. The decoupling of the components makes it possible toseamlessly remove and add components to the executing system, depending on the need andavailability.5.5 SummaryWe have shown how a medium complexity system can be synchronized to satisfy its require-ments using our method. The complexity of the system was estimated to be around 50 millionstates [LL95], a hard problem to analyze even using the best of the existing automated veri�ca-tion tools. The complexity of the analysis required to synchronize the system for the speci�edproperties was up to 500 states for the reachability analysis, and up to 20 states per property us-ing static analysis. This reduced complexity is a result of decomposing the analysis by referencedcomponents, and looking only for possible violations.

80

Chapter 6Reliability of AutomatedSynchronizationIn this Chapter we will show how the requirements of complex systems can be speci�ed usingsimple receptive safety properties, and that enforcing each receptive safety property indepen-dently produces a system that satis�es all of its receptive safety requirements. We will also showthat our synchronization mechanism can enforce any receptive safety property, and that the en-forcement of one property will not contribute to violations of any other properties. We will alsodescribe a set of patterns for system design that specify ways to produce deadlock{free synchro-nized systems. Finally, we will show how we can distinguish receptive safety properties fromthe nonreceptive safety properties which can not be enforced using our method, and how somenonreceptive properties can be implemented manually or modi�ed for automatic enforcement.6.1 Correctness and Decomposability of GenEx SynchronizationOur automated synchronization method must satisfy several conditions to become a useful toolin the development of complex concurrent systems. It must produce systems that satisfy theirrequirements and it must produce them quickly. The correctness with respect to the requirementsis ensured by enforcing the receptive safety properties that represent the system requirements.Another correctness requirement is the guarantee that the synchronization mechanisms are com-posable, i.e. that their integration preserves the features of all individual safety properties. Thecomplexity of the analysis is reduced by partitioning it for individual receptive safety properties,and using a static violation detection method. In this section we will show that the automaticallycomputed synchronization mechanism satis�es the receptive safety property it was computed for.We will also show that these mechanisms can be combined to enforce multiple properties simul-taneously. 81

6.1.1 Closure of Regular Languages Under IntersectionThe closure of the set of regular languages under intersection shows one way of using simplelanguages to specify complex ones. Take the 1{bounded overtaking property for dining philoso-phers, shown in Figure 4.4. This property speci�es that the �rst philosopher can eat at most oncewhile the second philosopher is hungry. This property is speci�ed by a �nite state machine andtherefore de�nes a regular language we will call L1. Assume an equivalent 1{bounded overtakingproperty is asserted to limit the number of accesses by the third philosopher while the secondone is hungry, and we call the respective regular language L2.The regular language L = L1 \ L2 is the intersection of the two languages describing the systembehavior. This language describes the set of system behaviors where the second philosopher waitsfor its two neighbors to eat at most once while it is hungry. This limitation on the number ofaccesses by the adjacent philosophers guarantees that the second philosopher can not be starved.Since both L1 and L2 are regular languages, by closure of regular language intersection [JEH79],so is the language L. Knowing that L is a regular language guarantees that a �nite state machineM(L) can be produced. M(L) accepts system behaviors if they belong to the language L1 \ L2,and rejects them otherwise.If L de�nes a realizable property, there is a strategy f(L) that satis�es the property. We haveshown how a strategy f(L) can be based on observing the state of M(L) and preventing thecomponent actions that would lead to violations of the property. By enforcing the receptivesafety property L, we would e�ectively enforce both L1 and L2.The �nite state representations of L1 and L2 are FSMs with three non{rejecting states and oneviolation transition, while the M(L) has 9 non{rejecting states and 7 distinct violating transi-tions. While the �nite state representations of L1 and L2 are simple, the complexity of FSMrepresentation of a language intersection can be an exponential function of the number of inter-sected languages. This is because the size of the FSM for L is proportional to the complexityof the desired behavior. However, we can show that there exists an equivalent structure to theM(L) whose implementation does not require the explicit enumeration of all state combinations.Languages L1 and L2 are simple regular languages, corresponding to FSMs M(L1) and M(L2) thataccept all behaviors acceptable by the individual languages and reject them otherwise. Parallelexecution of M(L1) and M(L2) using the system events as input to both FSMs produces a systemwhose states are ordered pairs of states for the two FSMs. A behavior is accepted as long as bothFSMs are in a non{rejecting state, and rejected when any of the individual FSMs rejects it. Thestate space of this system is equivalent to the state space of M(L). The complexity of the codefor this implementation is equal to the sum of the sizes of the FSMs for the individual languages,drastically smaller than the size of the combined state space required by the FSM M(L).6.1.2 Compositional Enforcement of System RequirementsMost complex systems have multiple behavior requirements, and all those requirements must besatis�ed by the system execution. Every requirement is de�ned as a property, a set of acceptableexecution traces. The overall requirements for the system are equal to the intersection of the82

properties that specify the individual requirements. The system is realizable if there is a strategyfor the controller that generates only behaviors that belong to the requirement property inter-section. We will show that the controller for a realizable system can be produced by satisfyingthe individual requirements.Theorem 6.1 A realizable controller can be implemented by enforcing the realizable parts of itsindividual requirements.Proof:Given a set of required properties R1; R2; :::Rk, they de�ne a compound property R0 = R1 \R2:::Rk. Since the system is realizable, all properties have nonempty realizable parts(8i 2 [0; k])(Rpi = R�(Ri ^Rpi 6= ;)Assume there exists a ��strategy f that satis�es Rp1; Rp2; :::Rpk. Then, by de�nition of realizableparts and (8i 2 [1; k])(O�(f) � Rpi)O�(f) � R0O�(f) � Rp0Since the set of all fair outcomes of f is a subset of the realizable part of the system requirements,f is a winning strategy.6.1.3 Enforcement of Receptive Safety RulesTheorem 6.1 shows that a system with complex requirements can be produced by enforcing theindividual requirements. We will now show that our analysis and synchronization method canenforce individual receptive safety properties by delaying the violating transitions.Theorem 6.2 Given a set of component speci�cations and receptive safety properties Rp1; :::Rpk,GenEx automated synchronization method enforces the properties Rg1; :::Rgk where 8i : Rgi �Rpi.Proof :Analysis of the component behavior with respect to a receptive safety property detects all possiblesafety violations, and GenEx modi�es the components by adding delayed transitions enabled bythe preconditions of the safety violations. The delayed transitions prevent the components fromreaching the states that cause the property violations.Controller implements a strategy S and we de�ne property Rg to be the outcome set of S. Thisoutcome set excludes all behaviors rejected by the property Rp, and therefore Rg � Rp.This theorem shows that automated synchronization using GenEx can produce controller im-plementations for realizable systems de�ned using receptive safety properties. The di�erence83

between the behavior of the generated implementation and the realizable part of the requiredproperties represents the possibility that the synchronization produced by local analysis may notbe globally optimal. This manifests itself in the form of delayed component transitions, whentheir completion would have preserved the safety. The nonoptimal synchronization conditionscan be generated only for the limited resource access properties. The following example showshow these unnecessary delays occur, and how they could be avoided using global analysis.Example:Assume the �rst philosopher has some receptive safety property SP1 imposing a constraint onits return to the THINKING state after EATING. This means that it will also have a delayedstate EATING DELAY, where it waits to safely return to THINKING. A delayed transitionimplies that the �rst philosopher may not leave the EATING state immediately after the variablehungry1 becomes false. In the analysis of the philosopher mutual exclusion for the �rst andsecond philosopher, the condition :hungry1 no longer guarantees that in the next state the�rst philosopher will be in the state THINKING. The synchronization condition produced byanalyzing the components is: Delay2 = (philo1 = eating)The second philosopher must wait for the �rst one to completely exit the critical state EATINGbefore being allowed to safely reach its critical state. In the original dining philosophers system,one philosopher is allowed to proceed as soon as its neighbors are not hungry, meaning thephilosopher can start EATING simultaneously with the adjacent philosopher that moves to stateTHINKING. With a delayed transition enabled by the condition Delay2, the second philosopherwill not advance until the state of the �rst philosopher changes, so it waits an extra cycle.This delay is obviously unnecessary if the safety rule SP1 is in a state where the �rst philosophercan safely advance to the state THINKING. To allow the second philosopher to advance in thesesituations, it would need to observe the state of the SP1 property monitor in its synchronizationconditions. If the mutual exclusion and the property SP1 were combined into a single �nite stateproperty, the synchronization conditions for the combined property could exploit the dependenceto reduce the delays for the second philosopher. This bene�t would come at the cost of morecomplex analysis and more speci�c synchronization conditions with higher computation overhead.DELAY = (ARM1 PRESSinPRS READY) _ (ARM1 PRESSinUNLOADING)Nonoptimal delays cause di�erent types of problems for executable systems. A nonoptimal delaycauses the component to delay the completion of a transition by one interval until it can verifythat the other component in contention for the limited resource has completed its transition outof the access state. The delay results in a reduction of performance due to the unnecessary waituntil the component in the access state advances to its next critical section, and releases the onepreviously held. If the limited access properties apply to a cycle of consecutive states for a setof components, the unnecessary delays may form a cyclic dependency and result in a componentdeadlock. These deadlocks, as well as the reduction in performance due to delays, can be re-solved and the component delays reduced using global dependency analysis techniques. Anotherapproach to reducing the e�ects of nonoptimal component delays is the use of a system designpattern that breaks the dependency cycles and makes the consequent deadlocks unreachable. We84

will discuss this approach in section 6.26.1.4 Noncon
icting Nature of Safety EnforcementWe have shown that our synchronization method can enforce individual receptive safety prop-erties by delaying components whose actions may violate the safety. We have also shown thatby enforcing the individual receptive safety properties, we can produce a system that satis�esall those properties simultaneously. It also satis�es all nonreceptive properties whose receptiveparts include the intersection of the enforced properties. The next theorem will show that thesynchronization mechanisms that enforce individual receptive safety properties can be combinedinto a controller that enforces all those properties.Theorem 6.3 A delayed transition that enforces a receptive safety property P1 can not cause aviolation of another receptive safety property P2.Proof:Assume, on the contrary that the delayed transition � causes a violation of the safety rule P2.Transition � starts at state S1 and sinks in state S1d of a component comp, and the state S1dis the delayed state where the component remains to avoid violating the receptive safety propertyP1. The system state preceding the safety violation consists of the states Sr2 for the property P2and S1 for the delayed component. The transition � is executed and S1d becomes the new stateof the component comp, activating the P2 transition to the state REJECT. The transition tothe REJECT state is enabled by the current system state including the state S1d, and the safetyproperty P2 executes the transition and detects the safety violation.From the standpoint of the component, the transition from S1 to S1d does not count as a statechange, so it does not cause any event observable by the safety property. That means that thesafety property P2 is either violated by a di�erent controlled event, or that the property P2is a nonreceptive property and that it was violated by an environment event. Both possibilitiescontradict the assumptions of the theorem, and therefore the assumption that the transition � wasthe cause of the violation is false. The delayed transitions can not cause safety violations for thereceptive safety properties.This theorem proves that when GenEx modi�es the components by adding the delayed transitionsthat enforce the receptive safety properties, the integrated system satis�es all properties. Since allreceptive safety properties are enforced, the implementation satis�es its realizable requirements.6.1.5 Correctness of Integrated SystemsWe have shown that system interaction requirements, given in the form of receptive safety prop-erties, can be represented independently, and components can be synchronized to enforce them.We have also shown that a strategy that enforces individual system requirements in e�ect en-forces their intersection, which is the combined requirement of the system. Finally we have shown85

that the synchronization mechanism that enforces one receptive safety property can not enforcea behavior that violates other system requirements.This means that, given a set of components and receptive safety properties that specify thesystem requirements, our method produces synchronization mechanisms that enforce each re-ceptive safety property individually. Since these synchronization mechanisms are noncon
icting,the generated system enforces all of its required properties and satis�es its aggregate behaviorrequirements. Since the system includes a separate safety observer for each property rather thana combined state machine for all properties, the size of the generated code can remain smallerthan the system state space.6.2 Design Patterns for Deadlock{Free SystemsDeadlocks occur as a side e�ect of enforcing safety rules inconsistent with the component be-haviors or with each other. When GenEx synchronizes a system to satisfy some safety rule, thecomponent transitions are delayed for as long as the violation preconditions for that rule aresatis�ed by the system state. If the violation preconditions can not be invalidated by the con-tinued execution of other components or environmental events, the delayed component remainsblocked in the same state. If other components might invalidate the synchronization conditions,but are themselves blocked waiting for other components' actions, the system may deadlock withall blocked components waiting for each other to enable their progress.The veri�cation of deadlock freedom is a complex problem because it requires �nding the pos-sible deadlock states and then proving that those states are unreachable. The complexity ofthe reachability analysis is comparable to the complexity of the system state space, and makesthis approach non{viable for complex systems. Instead of detecting deadlocks, we will providesimple design patterns that ensure the freedom from deadlocks for the synchronized application.The design patterns specify the form of the system safety rules and their relationship with thecomponents, that will guarantee the deadlock freedom. The main goal of these patterns is toavoid the reachability analysis, and use static analysis instead.No restrictions on the structure of the components are necessary to guarantee the deadlockfreedom of a synchronized system, and they would not be acceptable because the main guidelinein component design is their intended functionality. The components of process control systemsgenerally have a cyclic control structure, corresponding to the nonterminating nature of theapplications, but some initialization activities may require acyclic components or acyclic segmentsinitializing the cyclic components. The structure is captured as a �nite state machine, and can beanalyzed using static methods. We regard the component control graph as consisting of advancingedges that lead it to new states, and returning edges that take the component to previously visitedstates. 86

6.2.1 Patterns for Deadlock{Free Design Using Limited Resource Access RulesLimited resource access properties specify combinations of component states that should not occursimultaneously. The synchronization mechanism that enforces limited resource access allows thespeci�ed number of components to access, while making all others wait for the resources to becomeavailable. A component that holds some exclusive resource blocks all components waiting for thatresource, and a cyclic blocking pattern produces a deadlock. The dining philosophers system isone example of deadlock{free design using limited resource access rules. We will now show adesign pattern that guarantees that a set of components can satisfy a set of limited resourceaccess rules and be deadlock-free.The design of the dining philosophers illustrates a simple instance of a system where the receptivesafety properties can be automatically enforced without the risk of generating deadlocks. Thereare no deadlocks because the philosophers are synchronized to either enter the critical sectionor wait in the THINKING DELAY state. Since any philosopher in the state EATING musteventually go back to THINKING, it will make the shared resources (forks) available to theadjacent philosophers. The key to deadlock freedom in this system is the atomic nature ofresource allocation. A philosopher waits until all the resources it needs for the EATING stateare available, and then allocates them all.We will de�ne a mapping of component states to the set of natural numbers that will helpus specify deadlock{free systems satisfying limited resource access properties. For the set ofcomponents' states Sall = S1[S2[:::, the mappingM : Sall �! N maps every state to a naturalnumber, and based on this mapping the transitions of individual components are classi�ed asbeing advancing or returning. A transition from state S1 to S2 is an advancing transition ifM(S1) < M(S2), and a returning transition if M(S1) > M(S2). Two distinct states connectedby a transition must be mapped to di�erent numbers.The deadlock freedom is guaranteed i� the limited resource access rules are speci�ed in a waythat satis�es two conditions for some mapping M:� All limited resource access properties apply to states of distinct components that map tothe same value.� There exists a value k in the mapping and every simple cycle for every component containsa state Sfree :M(Sfree) = k, such that no limited resource access properties apply to anyof those states.Systems satisfying these conditions will have the form of a sequence of layers with arbitrarymutual exclusion requirements within individual layers, as illustrated in Figure 6.1a). The �gureshows three components whose transitions are represented by full lines, and every state is markedwith its mapping value. The dashed lines in the �gure represent the mutual exclusion betweenthe speci�ed states. Every cycle for every component includes a state whose mapping is thenumber 1, and those states are free from access restrictions.The requirement for the mutual exclusion properties to apply to states within a single layer guar-antees that the speci�ed system is realizable, deadlock free, and starvation free. The requirement87

1 2 3 4

1 2 3 4

A B C D E

1 2 3 4

1 2 4

M2

M3

M1

a) b)

Single Lock-Multiple UnlockLayered Exclusion

M1

M2Figure 6.1: Patterns for deadlock{free design using limited resource access rulesfor a layer of states with no restrictions guarantees that the implementation generated usinglocal analysis will also be deadlock free. Deadlock freedom results from the fact that there isalways some component that can complete its selected transition. That component is either ina state whose successor is the unconstrained state, or its next state requires currently availableresources. Components advance until they eventually reach the unconstrained state. As a com-ponent enters its unconstrained state, it frees the resources reserved by its predecessor state, thusallowing other components to advance and free resources in previous exclusion layers. The proofof starvation freedom from the dining philosophers chapter applies to this system, and guaranteesthat every component will eventually be allowed to proceed to its next state, assuming strongextreme fairness for components leaving their critical states.This design pattern requires the components to access the shared areas in the same order andthat may not always be practical or appropriate. Another design pattern exists that allowsthe limited resource access properties to reference component states in arbitrary order. Theimplementation of a system with limited resource access properties will be deadlock{free if thespeci�cation satis�es the following conditions:� If state S2 is a successor of state S1 in component C1, and a nonempty set of limitedresource access properties applies to the state S1, any constraints on the access to state S2must apply to states referenced by the constraints on S1.� Along any simple cycle in any component, there must be a state with no restrictions onaccessThis design pattern models the single lock{multiple unlock strategy often used in the design ofdatabases and concurrent systems, and it is illustrated in Figure 6.1b). The component transitionsand mutual exclusion properties are again shown using full and dashed lines, respectively. Thestates are identi�ed by alphabet letters for the �rst component and by numbers for the second,88

and we will refer to the mutual exclusion properties by the names of states they reference. ThusA2 represents the mutual exclusion for state A of M1 and state 2 of M2. This example showsthat states 2, 3, 4 of M2 are subject to decreasingly restrictive mutual exclusion properties,thus the transitions within this sequence can never be blocked by the states of the componentM1. Since every cycle in a component has a state without mutual exclusion restrictions, thecomponent eventually releases the locked resources and allows the other components to accessthem.6.2.2 Deadlock{Free Systems using Sequencing RulesSequencing properties are de�ned by the fact that their violating transitions are enabled by thestate of one component. Every violating transition for a sequencing property can thus restrictthe execution for at most one component. A speci�c state of a sequencing property can restrictas many components as it has outgoing violating transitions enabled by states of di�erent com-ponents. These restrictions remain in force at least until one of the synchronization transitionsfor that state is enabled. The restricted components are essentially waiting to be released by thecomponents that enable the outgoing synchronization transitions. A deadlock occurs if there isa cyclic waiting pattern for the states of a set of safety properties and their respective restrictedcomponents.We have shown in section 6.1.3 that synchronization mechanism for sequencing properties is op-timal even when it is produced based on local analysis. That means that deadlocks can be causedby sequencing properties only if the properties are inconsistent with the system components. Theproduction cell is one example of a system speci�ed using only sequencing safety properties. Therestrictions imposed by the sequencing properties in this system always apply to one state of onecomponent, while the other restricted component enables safety rule transitions and eventuallycauses it to arrive in a state where the blocked component is allowed to proceed with its execution.The design pattern for the deadlock{free sequencing systems imposes certain constraints on thestructure of the sequencing rules. Every sequencing rule is limited to restricting at most twocomponents, and unrestricted components may be referenced only by observer transitions. Inany state of the sequencing property, only one of the restricted components may be used toenable violating transitions, while the other enables the synchronization transitions leading tothe relaxation or removal of the restriction. Sequencing properties with this structure can onlyrestrict one component at a time, and wait for the other one to relax the restriction or removeit altogether. The waiting pattern in this case corresponds to a directed graph and deadlockscan occur if there are cycles in this graph. Sequencing properties with this structure specifyinterleaving for speci�c actions of two components.The �rst deadlock{free design pattern is the acyclic restriction graph for sequencing rules andcomponents. Nodes in this graph correspond to the components and sequencing properties, andevery sequencing property has an undirected edge connecting it to its restricted components. Anycycle in this graph represents one or more possible deadlock states, and an acyclic graph impliesthat deadlocks will never be caused by the sequencing properties. Deadlocks require cycles in thereference graph because the sequencing rules can block at most one component at any time whilewaiting for an action by the other. Any component referenced by only one sequencing rule can89

either be blocked or be free to proceed and enable synchronization transitions of the sequencingrule thus unblocking the other restricted component. Since the graph contains no cycles, therecan be only �nite sequences of components blocking each other through the sequencing rules.The feed belt in the second version of the production cell is referenced by only one sequencingproperty, and as such can not be the cause of a deadlock state. The robot and the presses in theproduction cell system and their sequencing properties form a cyclic restriction graph, and couldpotentially deadlock, and then block the rot table and the feed belt, propagating the e�ect ofthe deadlock. This possible deadlock is not reachable, and we will describe a design pattern forsequencing properties that guarantees deadlock{freedom even if the restriction graph containscycles.If the acyclic assumption is not satis�ed, the speci�cation of deadlock{free systems using se-quencing properties requires additional constraints on the structure of the properties and theirrelationship to the components. The constraints informally require the safety properties to havetheir cyclic behavior synchronized with the components they restrict. When the componentscomplete their cycles, the safety properties also reach the states where they started the cycle andare ready to impose the same deadlock{free restriction sequence.Every sequencing property state with outgoing violating transitions blocks transitions of one re-stricted component while waiting for the other to reach a speci�c state. The blocked transitionof one component is said to be waiting for a transition of the other restricted component thatcauses the safety rule observer to advance and remove the block. We can de�ne a waiting depen-dency relation Waits, between transitions of components restricted by a sequencing property. Ifa transition t1 of component C1 is blocked waiting for transition t2 of component C2 with thesafety property P in state sp, we de�ne that Waits((C1; t1); (C2; t2); (P; sp)) holds.We will describe the design pattern for deadlock{free design using sequencing rules de�ned as asimple sequence of advancing accepting transitions, with possibly multiple returning acceptingtransitions. Violating transitions can not make a part of a cyclic behavior, because they lead toREJECT states which have no outgoing transitions. The 1-bound overtaking property de�ned forthe dining philosophers and shown in Figure 4.4 has one simple cycle of accepting states, and itis an example of a safety rule with one sequence of advancing transitions followed by a returningtransition. These properties have no conditional branches or alternative paths, but the approachcan be generalized to properties with branching and alternative ways of reaching the returningtransitions. Any sequencing property with multiple alternative ways of completing a cycle can bedecomposed into linear properties whose advancing sequence represents one individual executionpath of the original property.System consisting of components and sequencing properties is deadlock{free if there exists amapping M for the states of all components S = (S1 [S2 [:::) and sequencing properties P =(P1 [P2 [:::), and a mapping M1 for the component transitions � = (�1 [�2 [:::), where:� M : ((S [P) �! NandM1 : � �! N� (8t 2 �)M(src(t) < M1(t) < M(dest(t)� Waits((C1; t1); (C2; t2); (P; sp)) =) M1(C2; t2) < M1(C1; t1)90

� Waits((C1; t1); (C2; t2); (P; s1)^Waits((C2; t3); (C1; t4); (P; s2)^M(P; s1)< M(P; s2) =)M1((C1; t1))< M1((C1; t4))� Waits((C1; t1); (C2; t2); (P; s1)^Waits((C1; t3); (C2; t4); (P; s2)^M(P; s1)< M(P; s2) =)((M1((C1; t1))< M1((C1; t3))^M1((C2; t2))< M1((C2; t4)))� Any execution of components C1 and C2 up to a returning transition, leads all sequencingproperties P, where Res(P) = fC1; C2g to their initial state of the cycle.This mapping function labels every state and transition in the system, and its existence guaranteesthat the �rst execution of the advancing paths for the components and the sequencing propertieswill not cause a deadlock. The last condition speci�es that the sequencing properties are cycle{synchronized with the components and return to the initial state of the cycle when the componentsdo. This means that the execution of the system returns to a state that is equivalent to the initialstate after every cycle. The deadlock freedom proven for the �rst execution of the system cyclethus holds in the subsequent transitions.6.3 Detection of Non{receptive Safety PropertiesSafety properties are de�ned as sets that can exclude a behavior only if some of its �nite pre�xesviolates the property. Receptive safety properties are the subset of safety properties whoseviolations are caused by controlled actions. The class of safety properties includes many non{receptive properties, classi�ed into two main groups as properties violated by environmentalevents, and time{dependent properties. Our method enforces only the receptive safety propertiesby delaying the occurrence of controlled actions that violate the properties. An e�ective methodfor enforcing receptive safety properties must be able to identify the potentially non{receptiveproperties, and warn the user about their existence.The only way to verify that a safety property is not receptive is to detect a violation that is causedby an environmental event. This requires a full reachability analysis of the system behavior thatmay not be viable for complex systems. Static analysis can detect potentially nonreceptiveproperties by detecting possible safety violations caused by the environment that may not bereachable. These potential environment safety violations are reported to the designer who canchoose to redesign the rules if they really are nonreceptive, or to implement them if the violationsare unreachable in the system.To identify the properties whose violations are results of environmental events, our method looksfor violating transitions whose enabling conditions include monitored variables. Those transitionsare, at least partially, controlled by the environment possibly making the properties they belongto nonreceptive. User can choose to enforce those properties using GenEx, regardless of theirpossible nonreceptive nature. GenEx will synchronize the components to prevent the safetyviolations caused by the controller, while ignoring the violations caused by the environment.This approach produces a reliable safe system when the monitored variables that enable theviolating transitions are partially dependent on the system and the user can verify that they willnot cause any safety violations. 91

6.3.1 Detection of Time Dependent Safety RulesTime{dependent properties are identi�ed by the fact that their violations may occur indepen-dently of any explicitly de�ned event in the system. The term event refers to the occurrence of acondition due to a change in the system state. A violation can occur without the occurrence ofan event, i� any state for the FSM representation of the property is reachable with its violatingconditions already holding. When the violating condition holds at arrival to a particular stateand does not become invalid in the next execution cycle, that safety rule reaches its REJECTstate. This safety violation may not occur if the components execute the appropriate transitionsto make the violating condition invalid in the next cycle, before the transitions for the safetyrule FSMs are executed. This property accepts certain system behaviors without accepting thesame behaviors after a longer delay, thus it is clearly a time{dependent property.1 While thisproperty shows the potential of being time{dependent, it is by no means a given that it actuallyis, because the path that reaches the time{dependent violation may not be possible due to thecomponent dependencies and synchronization resulting from other rules.As was the case with safety properties whose receptiveness was questionable due to their relianceon environmental properties, GenEx can detect the potentially time{dependent safety rules andwarn the user of their existence. Those rules can be used to synchronize the components and,provided the time{dependent execution sequences are unreachable, the system will satisfy therules. The detection of possible time{dependent safety rules is done automatically, based onthe relationship between the incoming and violating transitions for a state of a safety rule. Forevery state we need to compute its rejecting conditions and its incoming invariant, and if thoseintersect, a time{dependent safety violation can occur. The incoming invariant of a given stateequals the union of the enabling conditions of all incoming transitions, and the rejecting conditionis the union of the enabling conditions of all violating transitions leaving that state.The incoming transitions, their enabling conditions and source states de�ne the incoming invari-ants for safety rule states.The union of enabling conditions for the violating transitions with asource in a given state de�nes the rejecting condition for that state. If the set of rejecting con-ditions for a particular state intersects its incoming invariant condition, that state may requiretime{dependent behavior.The pseudocode algorithm in Figure 6.2 illustrates the time{dependent property detection. Forevery violating transition with source state st, this algorithm analyzes the incoming invariantsfor the state st, and the enabling condition for the violating transition. If the enabling conditionof the violating transition intersects the incoming invariant of the source state, the source stateimposes a possible time{dependent requirement on the system behavior.The safety rule ARM1 PRESS1 given in Figure 5.5 in the two press system is an example of apotentially time{dependent property whose time{dependent execution sequences are unreachable.We will show how this detection algorithm �nds the possible time{dependent requirement inthe safety rule, and also show what makes this time{dependent restriction unreachable. Thesafety rule restricts the components robot arm1 and press1 and also references the robot base1It is not a real{time property since our system has no time guarantees cycle execution, but the requirement ofthis rule is that a certain action be completed by the immediate successor state making it a hard quasi{real{timeproperty. 92

- Foreach safety property P in the system- Foreach violating transition tv in P- Identify source state of tv in st- Identify enabling condition of tv in cv- Foreach transition t in with destination st- Identify source state of t in in s1- Initialize c ex, exiting invariant condition of state s1 as true- Foreach violating transition tr with source state s1- c ex = c ex \ :(enabling condition(tr))- Endfor- Identify enabling condition of t in in c in- Incoming invariant of st is c inv = c ex \ c in- If c inv \ cv 6= ; then output s1 and stas a possible time--dependent path for P- Endfor- Endfor- EndforFigure 6.2: Pseudocode algorithm for identi�cation of time{dependent safety rulescomponent.The time{dependent requirement of this safety rule is detected when tv identi�es the vio-lating transition from the state SELECTED with enabling condition cv = (robot arm1 =EXT TO PRESS), and t in identi�es the transition from PRS LOADED to SELECTED withenabling condition c in = (robot base = SELECT FIRST). The state PRS LOADED hasno outgoing violating transitions, and its exiting invariant c ex is true. The incoming invari-ant of the state SELECTED is equal to c in, the enabling condition of the incoming transitiont in. The intersection of c in and cv is not empty, so if the robot arm1 starts to extend topress before the robot base reaches the state Select FIRST, the safety property would imposea requirement for the �rst arm to leave the EXT TO PRESS state immediately.This safety property would impose time{dependent requirements if the components robot arm1and robot base happened to be in a speci�c pasir of states at the same instant. However, anothersafety rule ARM1 BASE blocks the robot arm1 from entering the state EXT TO PRESS untilthe robot base is positioned with the �rst arm pointing to the rotating table or the selected press.This makes the time{dependent safety violation of the rule ARM1 PRESS1 unreachable, andthus the rule is a receptive safety property when combined with the ARM1 BASE property.The exact veri�cation of time{dependency for the safety rules is impossible, in the general case,without the full reachability analysis of the system. Static veri�cation can show that a propertyhas the potential for time{dependent behavior, and identify the possible violation sequences byanalyzing a single safety property. 93

6.4 Enforcement of Non{receptive Safety PropertiesAn alternative way of enforcing the real{time, reachability and liveness rules uses the concept ofa realizable part for the property. Every property of a system has a realizable part, consistingof all system executions that satisfy the property without the possibility of its violations. Therealizable part of a safety property is a receptive safety property, and as such can be enforced usingGenEx automated synchronization. This approach may be used to enforce real{time propertiesand safety properties whose violations are caused by environment events.The production cell example shows the application of this technique to make a safe and reliablesystem. The safety properties that specify the occurrence of collisions and unsafely droppedblanks, use only sensor signals and/or timing data to determine whether a safety violation hasoccurred. The collisions between the robot arms and presses do not occur immediately when thepress starts to rise, but if the press starts to rise before the arm is retracted,it becomes a questionof timing whether the collision will occur. The only controlled action that determines the collisionoccurrence is the press closing. We construct the receptive safety rule that rejects press closinguntil the robot retracts. This rule speci�es a realizable part of the collision freedom property,and is thus enforceable using GenEx. If some information was available on the relative speeds ofthe press and the robot arm, the realizable part might include some additional behaviors wherepress may start closing after a prede�ned interval without waiting for the robot arm to retractcompletely. Without restriction on the speeds, the observable event of a retracted arm is theonly condition that guarantees the collision freedom for these devices.Similar approach is needed with real{time properties whose enforcement can not be implementedwithin a single component. As we have shown earlier, some real{time properties can be imple-mented by the individual components and preserved by not specifying those component tran-sitions as violating conditions for any safety rule. Other, more complex properties may notbe implementable within a single component and may require synchronization between severalcomponents. These must be enforced by enforcing their realizable parts.We will demonstrate this on a multiple server system with two classes of client requests, highpriority real{time requests with minimal CPU requirements and long running non{real{timerequests. The high priority tasks can be executed on either server, while the low priority tasksmay be server speci�c, and can not be preempted once they start. Assume for simplicity reasonsthat the system has two servers, and that each of them has the capacity to handle all real{time requests. The real{time property requires the availability of resources to process the highpriority requests, and this condition is satis�ed if one server is always reserved for the real{time requests. The lower priority tasks require speci�c servers, so the available server must beswitched periodically. The realizable part of the real{time execution property can be speci�edas all behaviors where at most one server can be executing a low priority task. The availablecapacity for the lower priority tasks is equal to one server, and if more is required the requests willget queued until over
ow or the server will become a bottleneck resource for the system. Evenif the servers are overloaded with the lower priority tasks, the high priority real{time tasks willalways have an available server to execute them. The slowdown of the lower priority processingis the result of the CPU idling that is required to satisfy the real{time requirement, and is not aside e�ect of the automated synchronization. 94

This system is scalable to any number of servers with any distribution of servers for real{timetasks. The system can also be modi�ed for di�erent types of tasks, possibly with better infor-mation on the expected running time. An upper limit on the running time of low priority taskswould allow us to design a better availability function with higher CPU utilization.

95

Chapter 7Automated Synchronization inReengineeringReengineering is the process of converting existing software into new applications suitable fordi�erent environment conditions. The term reengineering is more restricted then reuse, because itassumes the production of new software mostly from the components of the existing applications,while reuse envisions the use of some components in a number of systems. Reengineering is thusdriven more by changes in underlying technology then by new functional requirements. Someexamples of technology changes that drive the need for reengineering are the migration towarddistributed execution, visual interfaces and collaborative environments like the Internet. All ofthese advances require ever higher levels of parallelism and availability of system functions. Theincreases in parallelism and availability increase the system complexity and the importance ofcontrolling the component interactions. We will show how GenEx can be used to simplify thisprocess, even for existing applications de�ned in a sequential programming language.7.1 The AEGIS Tracking SystemThe AEGIS system tracks a number of moving objects and attempts to classify them based ontheir friendly or unfriendly nature and their proximity and movement toward strategic targets.The algorithms used in the classi�cation are not dependent on synchronization, and they areencapsulated in one component making them irrelevant for the system interaction. The systemalso requires information gathering and graphical presentation of the processed data. The originalsystem design is based on a set of independent processes sharing a common data repository.Each component of the system has a speci�c function and cooperates with other componentsto satisfy the system requirements. The initialization of the system is performed by a loaderthat requires exclusive access to the shared memory. After the loader completes its function, thespreadsheet and tracker are allowed to start executing and accessing the shared memory. The96

spreadsheet executes independently from the other components and has no further synchroniza-tion requirements. The spreadsheet acts as a producer of data, and all of its updates are atomic,so the consumers can read them at any time and get consistent data. The tracker componentuses the data produced by the spreadsheet, and computes the parameters to be used by thedisplay and list components. The display and list can only function when data is available fromthe tracker, so they have to synchronize with the tracker and access the shared memory after thetracker's acceses.7.1.1 Synchronization by a Controller ProcessThe manual implementation of the AEGIS Tracker is synchronized by a controller process and byimplicit delays in some components. The controller synchronization is based on message passing,where components send the controller a message when they complete their critical actions, andthe controller sends messages to the components that can proceed with their actions. This isa simple and e�cient method for synchronizing small numbers of components for a serializedprotocol. If additional constraints on interaction need to be imposed, the controller design is notscalable and would become a bottleneck instead of facilitating the component interaction.However, the synchronization by the controller process makes it very simple to identify theinteraction constraints in the system. A message arriving at the controller represents a systemstate where some actions are enabled, and outgoing messages correspond to the componentswhose actions are enabled. We can reconstruct the interaction requirements that the controlleris enforcing, and specify them in a formal notation to use them for automated synchronization.The �rst message the controller awaits is the message from the loader, con�rming the initializationis complete. After receiving the message from the loader, the controller sends a message enablingthe spreadsheet, and enters the body of the execution loop. The main loop consists of the trackeractivation, where the controller sends the tracker a message allowing it to start processing thetracking data. When the tracker is done, it sends a message to the controller, and the controllerthen activates the display and list component, using appropriate messages. After activating thedisplay and list, the controller goes back to the beginning of its loop and activates the trackeragain.The tracker component includes local delays that make it relinquish control of the CPU evenwhen it is active. Without the delays, the tracker takes all available CPU capacity, thus blockingthe interactive components. This implicit synchronization is never documented, and it is hard toreconstruct its purpose.The control aspect of component structure is very simple, and driven by the synchronizationmechanism. Each component has an initialization, and an active and passive state. The activestate is when the component is executing its function, and the passive state is when it is done, orwaiting to be allowed to activate again. The loader and tracker send messages to the controllerwhen they leave the active state and enter the passive state. The entrance to the active statefor all components except the loader is conditional upon the reception of a message from thecontroller. 97

7.2 Automated data processing extractionThe components of this system have signi�cant data processing functionality, within a simplecontrol structure. Our method operates with formal control structures, but the data processingaspect has to be preserved for the generated application to be equivalent to the original. We needto extract the data processing code embedded in the control structure of the component, andlink it with the code generated for the synchronized components. The �rst step in this process isde�ning the semantics of the connection between the control structure and data processing code.We consider the components to have a �nite state control behavior that roughly corresponds tothe control structure of the component implementation in a sequential programming language.Part of this control structure is unrelated with the interaction between the component and therest of the system, so it can be abstracted away in the representation whose goal is systemsynchronization. The abstracted part of of the component can be assumed to implement itsdata processing functionality. A simple example of the partition into control and data orientedfunctionality is given in Figure 7.1, using the code for the tracker component of the AEGISsystem. The left side of the �gure shows the structure of the manually designed component,and the right side shows the equivalent description in the form of a control oriented FSM andembedded data processing code segments. The data processing code is implemented in theform of procedures associated with FSM transitions, and called when their respective transitionsare executed. This example distinguishes between two types of data processing code: the reallocal data processing and the messages between the tracker and the controller. The local dataprocessing is a part of the component functional description, while the messages represent themanual implementation of the synchronization mechanism.A functional description of the tracker component is derived from the synchronized one byremoving its synchronization mechanisms. The purely functional component consists of its controlstructure, and the associated data processing code. Given the structure in the GenEx notation, animplementation of this component can be generated to automatically include the links to the dataprocessing procedures. The component preserves the data processing linkage information evenwhen its structure is modi�ed for synchronization purposes. After the system is synchronized,the generated code for each component preserves the functional behavior of the original.We use an automated code extraction tool to separate the data processing component code fromtheir control structure while preserving their relationship and the control dependencies. Thetool requires the user to annotate the code that has to be extracted, by specifying the beginningand end of the data processing code associated with individual states. The code between theannotations is extracted into procedures to be called on entry to the respective states. This toolcan handle embedded annotations where the data processing code for some states is between dataprocessing code segments associated with another state. An example of this is when the code forone state ends in a conditional branch, and both branches include code for successor states.The extracted code is copied into a separate header �le, and grouped into procedures called bythe generated code for the component control structure. Once the components are synchronizedand the code for them is generated, the executable application can be created by adding the dataprocessing code and the execution support kernel and compiling the system.98

Two nested loops:
 Looking for objects
 and processing their
 position, speed,etc.

Two nested loops:
 Looking for objects
 and processing their
 position, speed,etc.

Tracker_Initialization

Read(Tracker_enbl)

Write(Tracker_done)

INIT

Tracker_Initialization

IDLE

Read(Tracker_enbl)

ACTIVE

Write(Tracker_done)Figure 7.1: Tracker code structure7.3 System Speci�cationThe AEGIS system is speci�ed as a set of �nite state components and receptive safety rules thatdescribe their interactions. The control aspect of component behavior is almost trivial, as shownby the tracker component FSM description in Figure 7.1. The behavior of the display andlist components is identical to the tracker, while the loader and the spreadsheet operate assequences with a self{looping transition in the last state.The receptive safety rules are de�ned based on the system interaction requirements derived fromthe speci�cation of the controller component in the manually designed version. The �rst of thetwo safety rules is shown in Figure 7.2a), and it ensures the safety of the system initialization byblocking the tracker and the spreadsheet access to the shared memory until the loader setsthe initial values. When the loader completes the initialization, it proceeds to the LO DONEstate and enables the transition of the safety rule INIT SEQUENCE from INIT ENABLEDto the state SYS ENABLED where the spreadsheet and the tracker component can access theshared memory.The second receptive safety rule for this system, shown in Figure 7.2b), speci�es the valid se-quences of accesses to the shared memory by the tracker and the display and list components.The display and list are blocked in their access to the shared memory until the tracker com-pletes its access. This safety rule has a looping structure and it blocks the display and listwhenever the tracker is waiting to enter the TR ACTIVE state.99

REJECT

Spreadsheet = Sp_active
Tracker = Tr_Active

Loader = Lo_done

INIT_ENABLED

SYS_ENABLED

REJECT

LOOP_SEQUENCEb)a) INIT_SEQUENCE

Display = Di_active
List = Li_active

TR_ENABLED

Tracker = Tr_done

Tracker = Tr_active

TR_DONEFigure 7.2: Receptive safety rules for the AEGIS systemAutomated synchronization using GenEx produces an integrated system where the componentsconsult the safety rules' state data in determining their enabled transitions. The synchroniza-tion of the components works independently of the runtime organization of the systems. Thesame generated code can, depending on the runtime support library, execute in a single processform or as a collection of distributed processes comprising one or more components and safetyrules. This
exibility makes the automatically generated aegis system portable to a variety ofenvironments including those without support for multiprocess execution required by the originalmanual implementation.7.4 Requirement Modi�cationsPrevious section has demonstrated how the control aspect of the aegis system can be separatedfrom the data processing, and how the system can be reintegrated using automated synchroniza-tion. The resulting application is equivalent to the original implementation synchronized by amanually designed controller. If the system synchronization requirements change, increasing thecontroller complexity, a manual implementation may become a source of errors and ine�ciencies.The system synchronized using GenEx can be modi�ed by adding new receptive properties to thespeci�cation and the components will be automatically modi�ed to enforce the new properties.We can see that in the manual implementation, the tracker never waits for the display andlist components to complete their actions before going back to the ACTIVE state. This meansthat the purpose of the synchronization is not to enforce exclusion of memory accesses, but toslow the display and list and reduce their CPU usage.1 Neither tracker nor the display of listcomponents have any sort of synchronization with the spreadsheet component, even thoughthey are involved in reader{writer interaction on the shared memory. This causes no problemsin the original implementation because the spreadsheet performs atomic updates of the values inthe shared memory since at most one element of the spreadsheet, the one under the cursor, canbe modi�ed at a time. Were the spreadsheet to be substituted by a radar tracking device, all1The tracker can access the shared memory before the display and list components complete their accessespreviously authorized by the controller. 100

values would become modi�able at any time, and the question of shared memory updates wouldbecome critical.Let us assume the speci�cations change, and require the mutual exclusion between the writer(spreadsheet or whatever substitutes it) and the readers. This requires an additional safetyproperty that speci�es that the writer can not be active writing data to shared memory while thereaders are reading it. The simplest way to manually enforce this rule is to serialize the accessesof all four components, by requiring the controller to allow their accesses in a speci�c order. Thisimposes an unnecessary restriction on the execution of the critical components in the system, thetracker and the data acquisition component (the spreadsheet in the original implementation).These components must be executed regularly in order to guarantee the timely identi�cation ofthe observed objects.We can specify a modi�ed system where the tracker and observer have higher priorities thanthe display and list, and all components require exclusive access to the shared memory. Theexclusive access for the display and list serves to reduce the latency of the activation for thetracker and observer, since our system can not enforce preemptive priority. Additional con-straint for the initial order of activation speci�es that the observer activates �rst, the trackeris next, and the display and list can activate later.The receptive safety rules for mutual exclusion and priority access are de�ned by simple �nitestate machines. The observer and tracker also must enforce bounded overtaking describedto prevent any one of them from using too much CPU. When all these properties are speci�es,GenEx produces a new synchronized implementation of the AEGIS system satisfying all modi�edrequirements.7.5 SummaryWe have shown how a manually implemented and synchronized system can be modi�ed into a setof components with data processing calls. These components can be automatically synchronizedfor any set of receptive safety properties and, assuming the properties de�ne a realizable system,synchronized using GenEx and used to produce a reliable safe implementation.
101

Chapter 8ConclusionWe have identi�ed a subset of safety properties that can be enforced at the system level with-out requiring explicit synchronization mechanisms at the component level. We have developed amethodology and the supporting tools for the automated synchronization of concurrent softwaresystems that enforces their receptive safety properties. By limiting the domain of enforcement tothe receptive safety properties, we eliminated the need for the computationally costly reachabilityanalysis. The constraint to receptive safety properties is not an overly restrictive requirement,since they are the only safety properties that can be enforced by open systems. Our synchroniza-tion method partitions the system analysis, and uses static techniques to drastically reduce thecomplexity of violation detection, as well as prevention.8.1 Future WorkWe currently have a functional set of tools that analyze systems with receptive safety require-ments, and produce synchronized implementations that satisfy those requirements. Our tools alsosupport model generation needed for formal system veri�cation, and graphical representation ofsystem state that makes system veri�cation more intuitive. The generated applications are hard-ware and enviroment independent thus giving a lot of con�guration
exibility to the user. Thissynchronization method could be improved by reducing some of the restrictions imposed by thede�nition of property domain, and by the current implementation method. Other improvementsmay be achieved in the runtime
exibility of the generated applications.8.1.1 Extension of the Property DomainOur method can synchronize systems to satisfy any set of �nite state receptive properties. Anobvious extension is to the set of context{free receptive properties, and also for context sensitiveand unrestricted domain. The mechanism we use to enforce �nite state receptive propertiescan enforce more complex properties, with only one additional reqirement. The enforcement102

of receptive properties demands the identi�cation of violating transitions, thus the propertieshave to be represented in a form that makes their violating transitions explicit to the analyzer.Pushdown automata (PDA) style of representation for context{free receptive properties satis�esthis condition.1The receptiveness of a property is the fundamental condition that makes it possible to automati-cally produce an implementation that satis�es it. However, for many nonreceptive but realizableproperties there exists a receptive property that represents their realizable part as de�ned inchapter 2. In some cases it may be possible to produce receptive properties by strenghtening theconstraints of the given nonreceptive properties. One example where this may work was discussedin chapter 6 as time{dependent safety properties. The possibility of modifying time{dependentproperties to ensure that incoming transitions are enabled by non{violating component statesshows how this approach may work in some cases.Another avenue of further research is the veri�cation that the receptive properties are minimallyand su�ciently restrictive to imply some non{receptive properties. The su�cient restrictionmeans that a receptive property does imply the satisfaction of a non{receptive property, andthe minimality implies that no unnecessary restrictions are made by the receptive property. If areceptive safety property is minimally and su�ciently restrictive, then it describes the receptivepart of the respective nonreceptive property.8.1.2 Optimized Synchronization MechanismThe implementation of the synchronized systems is automatically generated from the componentspeci�cations and the modi�cations required by the synchronization. The code for each com-ponent contains procedures for every state, and they determine what transition is enabled forthe current state. Only the procedure for the current state is executed, so the overhead in theexecution is not excessive, but it can always be reduced. Some possible optimizations in theexecutable code include the elimination of redundant conditions, unreachable transitions, andthe use of binary decision diagrams to shorten the decision tree.The transitive blocking of sets of components synchronized for limited resource access propertiesleads to unnecessary slowing down that can be eliminated using global runtime analysis. Thetransitive and even cyclic blocking that causes deadlocks can be detected and components can beenabled to advance simultaneously while preserving the safety. This capability requires a globalsystem state analyzer that detects the occurrence of transitive blocking patterns, and a di�erentimplementation of delayed transitions that disables the delays when based on a particular bypasssignal.An important source of ine�ciency for systems synchronized using our method is the completesynchronous execution assumption. This assumption can and should be weakened, speciallyin distributed systems where the communication is both expensive and time consuming. Thesynchronization between components is required only when they may lead to the occurrence of1Context{free or higher order languages are not closed under intersection, so their equivalent representation maynot be a PDA. The synchronization conditions would be based on the states of the individual PDAs representingthe receptive safety properties, so these properties would be enforced similarly to the �nite state ones.103

safety violations, and they can be allowed to execute freely when their actions have no in
uenceon the system safety. Also the synchronization between certain components can be contained in ageographically or topologically limited area of the system without forcing synchronous executionwith other non{local components. If a component can determine a unique enabled transitionwithout knowledge of other components' states and system signals, it can execute asynchronouslyfrom other components.8.1.3 Dynamic Recon�guration, Migration and SubstitutionThe present implementaton of the synchronized systems is con�gurable to di�erent executionenvironments, but only at compilation time. Once the application starts to execute, no com-ponents or receptive safety properties can be modi�ed or added to the system. Systems withuninterrupted execution requirements demand the capability for removing subsystems from arunning application and swapping new implementations in their place. The addition and modi-�cation of requirements is another example of a desirable runtime capability, as is the migrationof components or subsystems.These capabilities require no modi�cations to the analysis and computation of synchronizationconditions, and their implementation is purely a question of di�erent runtime structure of theapplications. The support for the migration aspect can be inserted into the runtime support andrequires minimal alterations of the user code that will enable the migration of data structuresused by a component's data processing part. Both dynamic recon�guration and substitutionmay require a di�erent implementation structure for the components, where the evaluation ofsynchronization conditions is separated from the body of the component implementation, sothat changes in the system have no in
uence on components' state and data processing. Bothdynamic recon�guration and substitution may require the user to specify the system states whenthe transformations are allowed, and how to get to those states.
104

Bibliography[ABC+91] G. S. Avrunin, U. A. Buy, J. Corbett, L. Dillon, and J. Wileden. \Experiments withan improved constrained expression toolset". In Proceedings of TAV4, October 1991.[AFB+88] T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Parnas, and J. Shore. \SoftwareRequirements for the A-7E Aircraft". Technical report, Naval Research Laboratory,March 1988.[AG93] J.M. Atlee and J. Gannon. \State-Based Model Checking of Event-Driven SystemRequirements". IEEE Transactions on Software Engineering, pages 22{40, January1993.[AG94] R. Allen and D. Garlan. \Formalizing Architectural Connection". In Proceedings ofthe 16th International Conference on SW Engineering, 1994.[AL93] Martin Abadi and Leslie Lamport. \Composing Speci�cations". ACM Transactionson Programming Languages and Systems, 15:73{132, January 1993.[AW89] Martin Abadi and Leslie Lamportand Pierre Wolper. \Realizable and UnrealizableSpeci�cations of Reactive Systems". Lecture Notes in Computer Science, 372:1{17,1989.[AWZ88] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. \Detecting Equalityof Variables in Programs". In Proceedings of the Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages 1{11, SanDiego, California, January 1988.[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.J. Dill, and L.J. Hwang. \Symbolic ModelChecking: 1020 States and Beyond". In Proceedings of the Fifth Annual Symposiumon Logic in Computer Science, pages 428{439, June 1990.[BG92] G. Berry and G. Gonthier. \The Esterel Synchronous Programming Language: De-sign, Semantics, Implementation". Science of Computer Programming, November1992.[BK93] Eric A Brewer and Bradley C. Kuszmaul. \How to Get Good Performance from theCM5 Data Network". In Proceedings of the 1994 International Parallel ProcessingSymposium, pages 858{867, April 1993.105

[Bro86] Michael C. Browne. \An Improved Algorithm for the Automatic Veri�cation of FiniteState Systems Using Temporal Logic". In Proceedings of the Symposium on Logic inComputer Science, pages 260{266, August 1986.[CE82] E. M. Clarke and E. A. Emerson. \Synthesis of synchronization skeletons from branch-ing time temporal logic". Lecture Notes Comp. Sci., 131:52{71, 1982.[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. \Automatic Veri�cation of Finite-StateConcurrent Systems Using Temporal Logic Speci�cations". ACM Transactions onProgramming Languages and Systems, 8(2):244{263, April 1986.[CG94] M. Chechik and J. Gannon. \Automatic Veri�cation of Requirements Implementa-tions". In Proceedings of the 1994 ISSTA, pages 1{14, Seattle, Washington, August1994.[CGK97] S. C. Cheung, Dimitra Giannakopoulou, and J. Kramer. \Veri�cation of LivenessProperties Using Compositional Reachability Analysis". In Proceedings of the 6thEuropean Software Engineering Conference, pages 227{243, September 1997.[Che96] M. Chechik. \Automatic Analysis of Consistency Between Requirements and De-signs". PhD thesis, University of Maryland, College Park, 1996.[CK95] S. C. Cheung and J. Kramer. \Compositional Reachability Analysis of Finite-StateDistributed Systems with User-Speci�ed Constraints". In SIGSOFT'95 Third ACMSIGSOFT Symposium on the Foundations of Software Engineering, pages 140{151,October 1995.[CK96] S. C. Cheung and J. Kramer. \Checking Subsystem Safety Properties in Composi-tional Reachability Analysis". In 18th International Conference on Software Engi-neering, pages 144{154, March 1996.[CLM89] E. M. Clarke, D. E. Long, and K. L. McMillan. \Compositional Model Checking". InProceedings of the Fourth Annual Symposium on Logic in Computer Science, pages464{475, June 1989.[CRR91] N. Halbwachs C. Ratel and P. Raymond. \Programming and veryfying critical systemsby means of the synchronous data{
ow programming language LUSTRE". SoftwareEngineering Notes, pages 112{119, ? 1991.[Dij] Edgser Dijkstra. \Two starvation{free solutions of a general exclusion problem".[Dil88] David L. Dill. \Trace Theory for Automatic Hierarchical Veri�cation of Speed-Independent circuits". PhD thesis, Carnegie Mellon University, 1988.[EC82] E. Allen Emerson and Edmund M. Clarke. \Using Branching Time Temporal Logic toSynthesize Synchronization Skeletons". Science of Computer Programming, 2(3):241{266, Dec 1982.[FG94] Je�rey Fischer and Richard Gerber. \Compositional Model Checking of Ada TaskingPrograms". Technical report, University of Maryland, College Park, February 1994.106

[Fra86] Nissim Francez. \Fairness". Springer Verlag, New York, 1986.[GMM90] Carlo Ghezzi, Dino Mandrioli, and Angelo Morzenti. \TRIO: A Logic Language forExecutable Speci�cations of Real-Time Systems". Journal of Systems and Software,12(2):107{123, May 1990.[GS93] D. Garlan and C. Scott. \Adding Implicit Invocation to Traditional ProgrammingLanguages". In Proceedings of the 15th International Conference on Software Engi-neering, 1993.[Har87] David Harel. \StateCharts: A Visual Formalism for Complex Systems". Science ofComputer Programming, 8:231{274, 1987.[Hen80] K. Heninger. \Specifying Software Requirements for Complex Systems: New Tech-niques and Their Applications". IEEE Transactions on Software Engineering, SE-6(1):2{12, January 1980.[HL96] M.P.E. Heimdahl and N.G. Leveson. \Completeness and Consistency in HierarchicalState{Based Requirements". IEEE Transactions on Software Engineering, 22(6):363{377, June 1996.[HLR92] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. \Programming and Ver-ifying Real-Time Systems by Means of the Synchronous Data-Flow Language LUS-TRE". IEEE Transactions on Software Engineering, 18(9):785{793, September 1992.[Hoa78] C.A.R. Hoare. \Communicating Sequential Processes". Communications of the ACM,21(8):666{677, August 1978.[JEH79] Je�rey D. Ullman John E. Hopcroft. Introduction to Automata Theory, Lan-guages and Computation. Addison Wesley, Reading, MA, 1979.[Kat93] Shmuel Katz. \A Superimposition Control Construct for Distributed Systems". ACMTransactions on Programming Languages and Systems, 15(2):337{355, April 1993.[KIL+97] Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier, Cristina Lopes,Chris Maeda, and Anurag Mendhekar. \Aspect Oriented Programming". In Proceed-ings of DSL97 { First ACM SIGPLAN Workshop on Domain{Speci�c Languages,January 1997.[LHHR94] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. \Requirements Speci-�cation for Process-Control Systems". IEEE Transactions on Software Engineering,20(9):684{707, September 1994.[Lim93] Alvin See Sek Lim. \A State Machine Approach to Reliable and Dynamically Re-con�gurable Distributed Systems ". PhD thesis, University of Wisconsin., Madison,Wisconsin, 1993.[Lim96] Alvin Lim. \Compositional Synchronization". In International Conference on DCS,1996. 107

[LL95] Claus Lewerentz and Thomas Lindner. \Formal Development of Reactive Systems".Springer Verlag, Berlin, 1995.[Mai93] Michael G. Main. \Complete proof rules for strong fairness and strong extreme fair-ness". Theoretical Computer Science, 111(1-2):125{143, April 1993.[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.[PM97] J.C. Park and R. Miller. \Synthesizing Protocol Speci�cationsfrom Service Spec-i�cations in Timed Extended Finite State Machines". In Proceedings of the 17thInternational Conference on Distributed Computing Systems, pages 253{260, May1997.[Pur94] James Purtilo. \The POLYLITH Software Bus". ACM Transactions on ProgrammingLanguages and Systems, 16(1):151{174, January 1994.[Sta90] John T. Stasko. \TANGO: A Framework and System for Algorithm Animation".IEEE Computer, 23(9):27{39, September 1990.[Sta92] John T. Stasko. \Animating Algorithms with XTANGO". SIGACT News, 23(2):67{71, Spring 1992.[WK95] Kevin G.Wika and John C. Knight. \On the Enforcement of Software Safety Policies".In Proceedings of the Tenth Annual Conference on Computer Assurance, pages 83{93,June 1995.[Yeh93] Wei Jen Yeh. \Controlling State Explosion in Reachability Analysis". PhD thesis,Purdue University, August 1993.[YS97] Daniel M. Yellin and Robert E. Strom. \Protocol speci�cations and component adap-tors". ACM Transactions on Programming Languages and Systems, 19(2):292{333,March 1997.[YY91] Michal Young and Wei Jen Yeh. \Compositional reachability analysis using pro-cess algebra". In Proceedings of the Symposium on Softvare Testing, Analysis andVeri�cation (TAV 4), pages 49{59, October 1991.[ZM+94] Nikolaj Bjorner Zohar Manna, Anuchit Anuchitanukul et al. \STeP: the StanfordTemporal Prover". June 1994.
108

