
MODIFIED STREAMLINE DIFFUSION SCHEMES FORCONVECTION-DIFFUSION PROBLEMSYIN-TZER SHIH� AND HOWARD C. ELMANyAbstract. We consider the design of robust and accurate �nite element approximation meth-ods for solving convection{di�usion problems. We develop some two{parameter streamline di�usionschemes with piecewise bilinear (or linear) trial functions and show that these schemes satisfy thenecessary conditions for L2-uniform convergence of order greater than 1=2 introduced by Stynes andTobiska. For smooth problems, the schemes satisfy error bounds of the form O(h)juj2 in an energynorm. In addition, extensive numerical experiments show that they e�ectively reproduce boundarylayers and internal layers caused by discontinuities on relatively coarse grids, without any requirementson alignment of 
ow and grid.Key words. Convection{di�usion, streamline di�usion, crosswind di�usion, boundary layer,characteristic layer.AMS(MOS) subject classi�cations. primary 65N30, 65F101. Introduction. Consider the two{dimensional convection{di�usion equation�"�u + � �ru = f in 
;(1) u = g on @
;(2)where � = (�1; �2) is a 
ow velocity �eld, " is a di�usion or viscosity coe�cient, and f; gare given functions. For small values of ", it is well known that standard Galerkin �niteelement discretizations yield inaccurate oscillatory solutions near boundary layers,and if " is decreased without proportional reduction of the discretization mesh sizeh, then these inaccuracies propagate into regions where the solution is smooth [9],[20, p. 259]. It is also known that these di�culties can be ameliorated using thestreamline di�usion method [12], a Petrov{Galerkin �nite element method in whichthe test functions are modi�ed to produce a small amount of arti�cial di�usion in thedirection of streamlines, thereby enhancing stability.When solutions to (1){(2) contain internal layers caused by discontinuities inboundary conditions, the approximate solution obtained by the streamline di�usionmethod may su�er from overshooting and undershooting along discontinuities [13],[14, p. 186]. \Shock{capturing" streamline di�usion methods add a discontinuitycapturing term (in the test functions) to reduce the local oscillations [13, 25]. Unfor-tunately, the shock{capturing term depends on the unknown discrete solution and thisleads to a nonlinear discrete system even though the original problem is linear. Analternative approach is to add arti�cial di�usion in the crosswind direction, althoughthis may lead to overly di�use numerical solutions in numerical experiments (see [16]and Section 5).In this paper, we present some new variants of the streamline di�usion method thatimprove its performance. Our starting points are the papers of Roos [21], Stynes and� Interdisciplinary Applied Mathematics Program, University of Maryland, College Park, MD20742, email: yts@cs.umd.edu.y Department of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742, e-mail: elman@cs.umd.edu. This work was supported by U. S.National Science Foundation under grant DMS-9423133.1



Tobiska [24], and Fischer, et. al. [8]. The �rst two of these are concerned with neces-sary conditions on the structure of discretization operators for the convection{di�usionequation for convergence of the discrete solution to be uniform in ". (Establishmentof su�cient conditions appears to be a di�cult problem.) In particular, Roos derivesthree conditions needed for uniform convergence in L1 of order h
 , 
 > 0, and Stynesand Tobiska show that two of Roos' conditions are needed for uniform convergencein L2 of order h
 , 
 > 12 . The third paper [8] considers the problem of choosing theparameter that determines the amount of arti�cial di�usion included in the streamlinedi�usion discretization; it is shown that a good choice of this parameter leads to bothsmall discretization errors and rapid convergence of certain iterative solvers for thediscrete equations.Here, we build on these points by introducing some two{parameter versions ofstreamline di�usion methods for bilinear (or linear) elements on uniform grids. Theparameters determine the amount of arti�cial di�usion, but rather than being freeparameters, they can be uniquely speci�ed by requiring that the necessary conditionsfor L2-uniform convergence established in [24] are satis�ed. We present two versionsof this idea that di�er in their treatment of crosswind di�usion.The contents of the rest of the paper are as follows. In Section 2, we outline someproperties of the streamline di�usion method and variants that add crosswind di�u-sion. In Section 3, we summarize the necessary conditions for uniform convergence. InSection 4, we use the necessary conditions to derive the two new methods, and presentan error analysis indicating that for linear or bilinear elements, they satisfy global er-ror bounds in an energy norm of order hjuj2. In Section 5, we present the results ofnumerical experiments on benchmark problems that demonstrate the e�ectiveness ofthe new methods.2. Streamline di�usion methods. For simplicity, we assume homogeneousDirichlet boundary conditions on all boundaries; the ideas considered here gener-alize in a straightforward manner to other boundary conditions. Let V 0h = f v 2H1(
) j v = 0 on @
 g denote the �nite element space. Let v� = � � rv denote thederivative in the streamline direction. Let T = �h denote a partitioning of 
. For ournumerical examples, we will emphasize partitionings consisting of quadrilaterals; allthe results of the paper apply naturally to triangles as well.The streamline di�usion method (SD) is de�ned [14, p. 185] as: �nd uh 2 V 0hsuch that Bsd(uh; v) = Fv 8v 2 V 0h ;(3)where Bsd(�; �) is the bilinear formBsd(uh; v) = Bg(uh; v) + �s(uh� ; v�)(4) Fv = (f; v) + �s(f; v�);(5)Bg(u; v) = "(ru;rv) + (u�; v) denotes the bilinear form of the standard Galerkinmethod and (�; �) denotes the usual scalar L2 inner product. On a uniform grid withmesh parameter h for which the mesh P�eclet number k�kh2" is greater than 1, theparameter �s is given by �s = !sh(6) 2



where !s is a �xed positive constant.1The form Bsd satis�es the coercivity conditionBsd(v; v)� "krvk2L2(
) + �skv�k2L2(
) 8v 2 Vhin which the lower bound is positive in the limit " & 0. In particular, the �niteelement matrix has positive de�nite symmetric part and the discrete solution uh of(3) is unique. If u is the strong solution and f 2 L2(
), then Axelsson [1] and N�avert[18] have shown that for a piecewise linear �nite element space there is a constant C(independent of h; �s and ") such that"1=2kr(u� uh)k+ �1=2s k(u� uh)�k � C �"1=2h+ �1=2s h� juj2;where k � k and j � j2 denote the usual L2 norm and H2 seminorm respectively. It isalso shown in [2] that if �s = O(h), " � ch and �r � � � d0 > 0 for positive constantd0, then the error for SD satis�esku� uhk � Ch3=2juj2;(7)this is shown without a duality argument or elliptic regularity.In practice, when using SD to solve problems with characteristic internal andboundary layers, the choice of !s is crucial. Fischer et. al. [8] show that if % is theangle of 
ow to the horizontal, the choice!s = 1k�k �12 � "h j cos%j�(8)is a good choice with respect to both clustering of the spectrum of the discrete operatorand performance of an iterative solution algorithm.Despite the success of SD, in practice, it su�ers from excessive overshooting andundershooting of front following characteristics when discontinuities are present [13].Johnson, Schatz and Wahlbin [15] introduced a modi�cation of the SD discretizationthat improves its performance by adding arti�cial crosswind di�usion. The streamline{crosswind di�usion method (SCD) as generalized by Lube [16] is given as follows: �ndu 2 V 0h such that Bscd(uh; v) = Fv 8v 2 V 0h ;(9)where Bscd(uh; v) = Bsd(uh; v) + ("m � ")(uh�; v�);(10)� = (��2; �1) is the crosswind vector and the arti�cial crosswind di�usion is de�nedby "m = ( " for " � h3=2h3=2 for " < h3=2:1 If T is not quasi{uniform or � is a variable, then let h be the diameter of local element anddetermine �s elementwise as in (6) (see [14, p. 186]).3



For this method with piecewise linear elements, pointwise error bounds of orderO(h2j loghj) have been obtained for special meshes in [27], where it is also shownthat the width of the characteristic boundary layers and interior layers along stream-lines are of order h5=8 log2 h. See also [22, pp. 229�.] for discussion of such results.Assume 
 = (0; 1)� (0; 1) and a square mesh is generated by the nodes (xi; yj) =(i h; j h), for 0 � i; j � N , where N is a positive integer and the mesh size h = 1=N .The SD discretization (3) leads to a system of linear equations with (N�1)2 unknowns.Following the notation in [8], the resulting coe�cient matrix can be expressed asAsd = "H + S + �sU(11)where Hi;j = (r�j ;r�i); Si;j = (� � r�j ; �i); Ui;j = (� � r�j ; � � r�i)and f�ig(N�1)2i=1 are the �nite element basis functions. The right hand side b is givenby bi = (f; �i + �s� � r�i):If r � � = 0, then for each basis function �i having value 0 on the boundary, it followsfrom integration by parts that(� � r�j ; �i) = �(� � r�i; �j);that is, S is skew-symmetric. It is then easy to see that the symmetric part, "H+�sU ,is positive de�nite. For constant � and bilinear basis functions, the constituent 9-pointstencils are as follows:H : 13 264 �1 �1 �1�1 8 �1�1 �1 �1 375(12) S : �1h12 264 �1 0 1�4 0 4�1 0 1 375+ �2h12 264 1 4 10 0 0�1 �4 �1 375(13) U : 16 264 ��21 � �22 + 3�1�2 2�21 � 4�22 ��21 � �22 � 3�1�2�4�21 + 2�22 8(�21 + �22) �4�21 + 2�22��21 � �22 � 3�1�2 2�21 � 4�22 ��21 � �22 + 3�1�2 375 :(14)The coe�cient matrix of the SCD discretization can be expressed asAscd = "H + S + �sU + ("m � ")C(15)where Ci;j = (� � r�j ; � � r�i):The matrix "H + �sU + ("m � ")C is also symmetric and positive de�nite, and the9{point stencil of C is given byC : 16 264 ��21 � �22 � 3�1�2 �4�21 + 2�22 ��21 � �22 + 3�1�22�21 � 4�22 8(�21 + �22) 2�21 � 4�22��21 � �22 + 3�1�2 �4�21 + 2�22 ��21 � �22 � 3�1�2 375(16)In our numerical experiments, we �nd that this method dramatically reduces theoscillations of discrete solutions near boundary layers and internal layers, althoughthere are still problems with smearing near sharp fronts (see Section 5).4



3. Necessary conditions. In this section, we outline some convergence criteriaand analysis for the dependence of discrete solutions of (1){(2) on the di�usion co-e�cient ". In particular, let �h be a set of triangulations of 
 depending on a meshparameter h. We will say that convergence of the discrete solution uh = u";h is uniformin " if, for varying ", and the parameter h chosen such that h=" is constant, there isan error bound of the form jjju� uhjjj � Ch�;(17)where � > 0, C is independent of ", and jjj � jjj is a norm. Convergence criteria of thistype are considered in [10], [19], [21] and [24].Here, we are concerned with necessary conditions for (17) to hold for the L2 normand � > 12 . Assume �1 and �2 are constant and the discretization is on a uniform gridusing bilinear or linear elements. The discrete problem then has the formX�;�=�1;0;1 a�;�uhi+�;j+� = hf̂i;j ; for 1 � i; j � N;(18)where f̂ depends only on f , uhi;j = uh(xi; yj) and P�;�=�1;0;1 a�;� = 0.Theorem 3.1. [24] Let f 2 L2(
) such that the solution uo of the reduced prob-lem ( � �ruo = f in 
uo = 0 on @
�(19)is in C1(�
)\C2(
)where @
� = f(x; y) 2 @
 j ��n < 0; n is an outward unit normal vectorg.Assume that the scheme (18) yields a solution uh that satis�esku� uhk � Ch� uniformly in "for � > 12 . Then the coe�cients of the scheme must satisfy X� a�1;�! e��1h" +X� a0;� +  X� a1;�! e�1h" = 0(20)and  X� a�;�1! e��2h" +X� a�;0 +  X� a�;1! e�2h" = 0:(21)For the streamline di�usion method, the \stencil" coe�cients fa�;�g depend lin-early on the parameter !s. In the case �1 = �2 = ��, the two conditions (20) and (21)are identical and they are satis�ed by the choice!s = 12��  coth ��h2" � 2"��h! :(22)If the streamlines are aligned with the grid (e.g. �2 = 0) then one of the equations((21) in this case) is degenerate and the choice!s = 12�1 �coth �1h2" � 2"�1h�(23)satis�es (20). These results coincide with a well known \optimal value" in the one{dimensional problem (see [6]) for which the discrete solution is exact at the nodes.Otherwise, if �1 6= �2, then (20) and (21) constitute two linear equations with a singleunknown !s, for which there is no solution [24]. Therefore, the streamline di�usionmethod does not satisfy these necessary conditions for uniform convergence.5



4. Two{parameter streamline di�usion schemes. Using the observationsof the previous section as motivation, we now present two variants of the streamlinedi�usion method that contain two free parameters, which allow the necessary condi-tions of (20){(21) to be satis�ed. One of these techniques (the �rst) was presented forlinear elements by Roos [21, p. 1465].2In this section, we will assume that the velocity �eld � satis�es �r � � � d0 � 0for constant d0. A case of primary interest is where both inequalities here are replacedby equality, as in the incompressible Navier-Stokes equations. We will also considerthe case d0 > 0; this is a technical assumption [2] which is used in the derivation ofL2-error bounds. (An alternative is to include a zero-order term in (1), see [4], [5],[26].) Experimental results described in Section 5 use benchmark problems in which� is divergence free.In our �rst variant, we add crosswind di�usion to the weak formulation, producingthe new weak form (denoted SD-A)Bsda(uh; v) = Fv 8v 2 V 0h ;(24)where Bsda(uh; v) = Bsd(uh; v) + �c(uh�; v�)(25)and �c � 0.3 For �r � � � d0 � 0, letjjjvjjj2 = "krvk2 + �skv�k2 + �ckv�k2 + 12d0kvk2:The stability of method (24) is a consequence of the following result.Lemma 4.1. The bilinear form Bsda satis�esBsda(v; v) � jjjvjjj2 for any v 2 V 0h (
):(26)Proof. By Green's formula,0 = Z@
 v2� � n dS = Z
r � (v2�) d
 = Z
r � � v2 d
+ 2(v�; v);and thus (v� ; v) = �12 R
r � � v2 d
 � 12d0kvk2. HenceBsda(v; v) � "krvk2 + �skv�k2 + �ckv�k2 + 12d0kvk2: 2Therefore, the SD-A discretization has a unique solution.We have the following error estimate, the proof of which follows [1], [15], [26].Theorem 4.2. Let u be the solution of (1){(2) with g = 0 and u 2 H2(
) \H10(
). Let � 2 W 1;1(
) and either r � � = 0 or �r � � � d0 > 0, for constant d0.If uh is the discrete solution obtained by SD-A on either bilinear or linear elements,then the discretization error satis�esjjju� uhjjj � C �"1=2h + �1=2s h+ �1=2c h+ ��1=2s h2 + h2 + �c� juj2;(27)for constant C > 0.2 There it was observed that this scheme does not satisfy the conditions for L1{uniform convergencewhen �1 6= �2.3 If T is not quasi{uniform or � is a variable, then let h be the diameter of local element anddetermine �s and �c elementwise as in SD. 6



Proof. Let � = uI � u, where uI is the bilinear (or linear) interpolant of u. Itfollows that k�k � ch2juj2; kr�k � chjuj2(28) jjj�jjj � c �"1=2h + �1=2s h+ �1=2c h+ h2� juj2(29)(see [14, p. 176], [22, p. 232]). Setting � = uI � uh yieldsjjj�jjj2 � Bsda(�; �) = Bsda(�; �) +Bsda(u� uh; �):(30)The quasi{orthogonality relation holds,Bsda(u� uh; v) = Per(u; v) for all v 2 V 0h ;where Per(u; v) is the truncation errorPer(u; v) = "(�u; �sv�) + �c(u�; v�):But Green's formula and the Poincar�e inequality leads toBsda(u� uh; �) � "�1=2s k�uk�1=2s k��k+ �c(k(u�)�k+ kr � �k1ku�k) k�k� �"�1=2s juj2 + c�cjuj2� jjj�jjj� �"�1=2s + c�c� juj2 jjj�jjj(31)and Bsda(�; �) = "(r�;r�) + �s(�� ; ��) + �c(��; ��)� (�; ��)� Z
(r � �)�� d
:If r � � = 0 (divergence free case), thenBsda(�; �) � "kr�k kr�k+ �sk��k k��k+ �ck��k k��k+ k�k k��k� �"1=2kr�k+ �1=2s k��k+ �1=2c k��k+ ��1=2s k�k� jjj�jjj:If �r � � � d0 > 0, thenZ
(r � �)�� d
 � ck�k k�k � c0k�kjjj�jjjand Bsda(�; �) � �"1=2kr�k+ �1=2s k��k+ �1=2c k��k+ ��1=2s k�k+ c0k�k� jjj�jjj:Use (28){(29) to getBsda(�; �)� c �"1=2h+ �1=2s h + �1=2c h+ ��1=2s h2 + h2� juj2jjj�jjj:(32)Combining (30), (31) and (32), givesjjj�jjj � c �"1=2h + �1=2s h+ �1=2c h+ ��1=2s h2 + h2 + "�1=2s + �c� juj2:7



Thus, using the triangle inequality, it follows thatjjju� uhjjj � jjj�jjj+ jjj�jjj� C �"1=2h+ �1=2s h+ �1=2c h+ ��1=2s h2 + h2 + "�1=2s + �c� juj2: 2As shown in [15], if " � ch, then for the choices �s = O(h) and �c = O(h3=2), all theterms of (27) depending on �s and �c are of same order of magnitude, and the errorbound (27) implies that jjju� uhjjj � Ch3=2juj2. When �r � � � d0 > 0, one can alsoget an L2 bound ku � uhk � Ch3=2juj2 which is the same estimate for SD shown in[2]. We now consider a di�erent approach for choosing �s and �c based on [24]. Supposethe discretization is on a uniform square mesh of width h with bilinear shape functions.The resulting coe�cient matrix has the formAsda = "H + S + �sU + �cC;(33)where C is as in (16). For �1 6= 0; �2 6= 0, the presence of two parameters in (33) allowsus to impose conditions (20){(21). The result is a system of linear equations�21�s + �22�c = �1h2 coth �1h2" � ";(34) �22�s + �21�c = �2h2 coth �2h2" � ":(35)(The case �1 = 0 or �2 = 0 is addressed in Section 3.) For �1 6= �2, this system isnonsingular so the parameters �s; �c are uniquely determined and have the values�s = hj�j2  12 �31 coth �1h2" � �32 coth �2h2"�21 � �22 � "! ;(36) �c = hj�j2  12 �21�2 coth �2h2" � �22�1 coth �1h2"�21 � �22 � "! :(37)In case of �1 = �2, we may choose the limit values of �s and �c as �1 ! �2.Let us compare these choices with �s de�ned by (6), (8) and �c = h3=2. Assume" � h and �1 = cos � 6= 0; �2 = sin � 6= 0. The function coth� is very close to1 for large �, and therefore the quantities in parentheses are essentially constant.Consequently, �s of (36) and �c of (37) are e�ectively proportional to h. This impliesin particular that the asymptotic bound of (27) is of size O(h), larger than that ofSCD. Figure 1 expands on this point. Plot (a) on the left compares the values of�s=h from (36) to !s from (8) and indicates that SD-A includes more di�usion in theupwind direction. Plot (b) compares �c=h to h1=2 for several values of h; for moderatevalues of h or values of � near 0o or 90o, the amount of added crosswind di�usion iscomparable to that of SCD.In the second two{parameter variant of SD, we introduce an extra parameterby modifying the contribution to the discrete di�usion operator in the coordinatedimension in which the 
ow is weaker. That is, the weak form (SD-B) is given byBsdb(uh; v) = Fv 8v 2 V 0h ;(38) 8
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):(40)Theorem 4.4. Let uh be the discrete solution obtained by SD-B on either bilinearor linear elements. Under the assumptions of Theorem 4.2, we havejjju� uhjjj � C �"1=2h+ �1=2s h + ~"1=2h + ��1=2s h2 + h2 + ~"� juj2:As above, the parameters �s and ~" can be used to satisfy the conditions (20){(21).The coe�cient matrix derived from (39) isAsdb = "H + S + �sU + ~"P ;where Pi;j = �@�j@� ; @�i@� � :9



Consider the case when the streamlines are not aligned with the mesh, for example,�1 > �2 > 0. Then the necessary conditions (20){(21) lead to��" � �1h2 � �s�21� e��1h" + 2 �" + �s�21�+ ��" + �1h2 � �s�21� e�1h" = 0��~"� "� �2h2 � �s�22� e��2h" + 2 �~"+ "+ �s�22�+ ��~" � "+ �2h2 � �s�22� e�2h" = 0:That is, �s = h2�1 coth �1h2" � ";(41) ~" = �2h2 coth �2h2" � �s�22 � ":(42)
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). However, the real need for streamline dif-fusion methods occurs for problems with steep boundary layers or discontinuities. Inthis section, we present the results of numerical experiments that show the perfor-mance of the new streamline di�usion methods for such problems and compare it to10



that of the classical methods SD and SCD. We use three test problems. One has aknown solution given by the sum of two one{dimensional examples and containingdownstream boundary layers, one has a downstream boundary layer and a charac-teristic internal layer, and one has variable 
ow. All experiments use bilinear shapefunctions on square elements on a uniform N � N element grid with h = 1=N , andthey were performed with MATLAB Version 4.2c on a SUN SPARC{20 workstation.The coe�cient �s = !sh of the streamline di�usion term for both SD and SCD waschosen using (8).
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from the exact solution. Figure 3 depicts the numerical solutions for " = 10�4; � = 75oand h = 1=20. The results indicate that the two new schemes reduce the oscillations orexcess di�usivity exhibited by SD and SCD, respectively. Indeed, for these problemswe �nd that the new schemes reproduce the exact solution at the nodes essentially towithin machine precision, as shown in Table 1.Problem 2: Characteristic and downstream boundary layers. This prob-lem was �rst considered in [12] for studying a downstream boundary layer and a char-acteristic internal layer that propagates along the characteristics when in
ow boundaryconditions are discontinuous. Assume the velocity �eld � is given by (cos �; sin �), andboundary values are as follows:u = ( 1 if 0 � y < 1=2; x = 0 or y = 0; 0 � x < 10 otherwise.The reduced problem (19) has discontinuous solutionu = ( 1 y < �2�1 x+ 120 y > �2�1 x+ 12 :For " > 0, there is an internal layer of width O(p") across the characteristic y =�2�1x+ 12 , and a boundary layer of width O(") at x = 1 [7].
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produce a more accurate representation of the internal layer. We can quantify thisstatement as follows. Letyu = min0�y�1 ny j uh(0:5; y)� �o ; yl = max0�y�1 ny j uh(0:5; y) � 1� �o ; for small � > 0:Then �y = yu � yl is a measure of the width of the numerical internal layer and thee�ect of crosswind smearing at x = 0:5. Figure 6 plots this quantity for various meshsizes and � = 10�3. The results indicate that the two{parameter schemes introduceless crosswind smearing than SCD. Moreover, the lower-order O(h) asymptotic bound(Theorem 4:2) obtained for smooth problems does not appear to have a deleteriouse�ect as h& 0 in this nonsmooth example.It is known that SD produces overshooting and undershooting about sharp lay-ers [13]. We can use a similar device to examine the size of these overshoots andundershoots. Letu+ = max0�y�1 nuh(0:5; y)� 1o ; u� = min0�y�1nuh(0:5; y)o :Thus u+; u� give a measure of the sizes of overshooting and undershooting respectively,at x = 0:5. Table 2 shows the e�ectiveness of SD-A and SD-B in this measure.Remark 5:1 These results for � = (cos 15o; sin 15o) are representative of our expe-rience with other velocity �elds � = (cos �; sin �) for � 2 (�90o; 90o).Problem 3: Variable 
ow �eld. For variable 
ows, we can de�ne local (to ele-ment) values of parameters determining the amounts of arti�cial di�usion. We followthe approach given in [3]: on any element � , let (x� ; y�) denote the element center,let �� = �(x� ; y�), and let these constant values be used to de�ne the parametersin formulas (8), (36){(37) and (41){(42) in the local matrix computations associatedwith the element � . Note that a similar approach could also be used for irregulargrids.For our third benchmark problem, with variable 
ow, we consider two variants ofthe \IAHR/CEGB" workshop problem [23] in common use for testing discretizationstrategies (see e.g. [11], [17]). As in [23], let the domain be the rectangular region
 = f(x; y) j � 1 < x < 1; 0 < y < 1g ;and the velocity �eld be � = (2y(1� x2); �2x(1� y2)):The in
ow boundary is the interval f(x; 0) j � 1 � x < 0g, and Dirichlet conditionsspeci�ed there represent an inlet temperature which is convected in a circular 
ow tothe out
ow boundary f(x; 0) j 0< x � 1g, where natural boundary conditions@u(x; 0)@n = 0; for 0 < x � 1are assigned. For both our variants, Dirichlet boundary conditions are given on theremainder of @
.The �rst choice is de�ned by valuesu(x; 0) = 1 + tanh(10 + 20x)(43) 14
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at the inlet together with u = 0 at x = �1 and y = 1. This is essentially the problemof [23] and it has also been examined in [11]. It contains a fairly smooth characteristicinternal layer and no boundary layer. Representative pictures of the three-dimensionalstructure and contour plots of the numerical solutions obtained by the four methodstested, for " = 10�5 and h = 1=16; are shown in Figure 7. (The three-dimensionalplots are rotated 180o to give a clearer picture of the layer.) Our second variant of thisproblem uses the value u = 1 (a hot wall) at x = 1 as in [17]; this introduces a thinboundary layer at the right boundary. In addition, we add a discontinuity in the inletpro�le u(x; 0) = ( 0 �1 � x < �0:51 �0:5 � x � 0:(44)The homogeneous Dirichlet conditions at x = �1 and y = 1 remain intact. The resultsfor this example, again for " = 10�5, h = 1=16, are shown in Figure 8.Consideration of Figure 7 shows that for the (relatively smooth) example deter-mined by (43) and the homogeneous condition at x = 1, the best solution is obtainedby pure streamline-di�usion (SD). The new variants SD-A and SD-B produce solu-tions that are somewhat overdi�use, but quite a bit less so than SCD. We also remarkthat the solution obtained by the Galerkin method without any upwinding is quali-tatively similar to that obtained by SD. Figure 8 shows that the situation is di�erentwhen discontinuities are present. None of the methods eliminate oscillations com-pletely (showing that none are monotonic), but the new methods clearly improve theaccuracy of the solution near the boundary layer. They also produce more accurateapproximations to the internal layer than SCD, and, in contrast with those obtainedby SD, these components of the solutions are nonoscillatory. There may still be somesmearing of the crosswind layer; here SD-B seems to be slightly more e�ective thanSD-A. REFERENCES[1] O. Axelsson. On the numerical solution of convection dominated convection-di�usion prob-lems. In K. I. Gross, editor, Mathematics Methods in Energy Research, pages 3{21. SIAM,Philadelphia, 1984.[2] O. Axelsson, V. Eijkhout, B. Polman, and P. Vassilevski. Incomplete block-matrix factorizationiterative methods for convection-di�usion problems. BIT, 29:867{889, 1989.[3] A. Brooks and T. Hughes. Streamline upwind/Petrov-Galerkin formulations for convectiondominated 
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