MODIFIED STREAMLINE DIFFUSION SCHEMES FOR
CONVECTION-DIFFUSION PROBLEMS

YIN-TZER SHIH* AND HOWARD C. ELMAN'

Abstract. We consider the design of robust and accurate finite element approximation meth-
ods for solving convection—diffusion problems. We develop some two—parameter streamline diffusion
schemes with piecewise bilinear (or linear) trial functions and show that these schemes satisfy the
necessary conditions for L?-uniform convergence of order greater than 1/2 introduced by Stynes and
Tobiska. For smooth problems, the schemes satisfy error bounds of the form O(h)|ul|z in an energy
norm. In addition, extensive numerical experiments show that they effectively reproduce boundary
layers and internal layers caused by discontinuities on relatively coarse grids, without any requirements
on alignment of flow and grid.
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1. Introduction. Consider the two—dimensional convection—diffusion equation

(1) —eAu+G-Vu = f in Q,
(2) u g on 0Q,

where 3 = (1, f2) is a flow velocity field, ¢ is a diffusion or viscosity coefficient, and f, g
are given functions. For small values of ¢, it is well known that standard Galerkin finite
element discretizations yield inaccurate oscillatory solutions near boundary layers,
and if ¢ is decreased without proportional reduction of the discretization mesh size
h, then these inaccuracies propagate into regions where the solution is smooth [9],
[20, p. 259]. It is also known that these difficulties can be ameliorated using the
streamline diffusion method [12], a Petrov—Galerkin finite element method in which
the test functions are modified to produce a small amount of artificial diffusion in the
direction of streamlines, thereby enhancing stability.

When solutions to (1)-(2) contain internal layers caused by discontinuities in
boundary conditions, the approximate solution obtained by the streamline diffusion
method may suffer from overshooting and undershooting along discontinuities [13],
[14, p. 186]. “Shock—capturing” streamline diffusion methods add a discontinuity
capturing term (in the test functions) to reduce the local oscillations [13, 25]. Unfor-
tunately, the shock—capturing term depends on the unknown discrete solution and this
leads to a nonlinear discrete system even though the original problem is linear. An
alternative approach is to add artificial diffusion in the crosswind direction, although
this may lead to overly diffuse numerical solutions in numerical experiments (see [16]
and Section 5).

In this paper, we present some new variants of the streamline diffusion method that
improve its performance. Our starting points are the papers of Roos [21], Stynes and
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Tobiska [24], and Fischer, et. al. [8]. The first two of these are concerned with neces-
sary conditions on the structure of discretization operators for the convection—diffusion
equation for convergence of the discrete solution to be uniform in e. (Establishment
of sufficient conditions appears to be a difficult problem.) In particular, Roos derives
three conditions needed for uniform convergence in L of order kY, v > 0, and Stynes
and Tobiska show that two of Roos’ conditions are needed for uniform convergence
in L? of order A7, v > % The third paper [8] considers the problem of choosing the
parameter that determines the amount of artificial diffusion included in the streamline
diffusion discretization; it is shown that a good choice of this parameter leads to both
small discretization errors and rapid convergence of certain iterative solvers for the
discrete equations.

Here, we build on these points by introducing some two—parameter versions of
streamline diffusion methods for bilinear (or linear) elements on uniform grids. The
parameters determine the amount of artificial diffusion, but rather than being free
parameters, they can be uniquely specified by requiring that the necessary conditions
for L?-uniform convergence established in [24] are satisfied. We present two versions
of this idea that differ in their treatment of crosswind diffusion.

The contents of the rest of the paper are as follows. In Section 2, we outline some
properties of the streamline diffusion method and variants that add crosswind diffu-
sion. In Section 3, we summarize the necessary conditions for uniform convergence. In
Section 4, we use the necessary conditions to derive the two new methods, and present
an error analysis indicating that for linear or bilinear elements, they satisfy global er-
ror bounds in an energy norm of order h|u|y. In Section 5, we present the results of
numerical experiments on benchmark problems that demonstrate the effectiveness of
the new methods.

2. Streamline diffusion methods. For simplicity, we assume homogeneous
Dirichlet boundary conditions on all boundaries; the ideas considered here gener-
alize in a straightforward manner to other boundary conditions. Let V! = {v €
HY(Q) ] v=0o0n 9N} denote the finite element space. Let vz = - Vv denote the
derivative in the streamline direction. Let 7 = 7 denote a partitioning of Q. For our
numerical examples, we will emphasize partitionings consisting of quadrilaterals; all
the results of the paper apply naturally to triangles as well.

The streamline diffusion method (SD) is defined [14, p. 185] as: find v € V?
such that

(3) Ba(u",v)=F, YveVy,
where Byy(+,-) is the bilinear form

(4) Bsd(uh, v) = Bg(uh, v)+ 65(ug, vg)
(5) F, (f;0) + 65(f,05),

By(u,v) = £(Vu,Vv) + (ug,v) denotes the bilinear form of the standard Galerkin
method and (-,-) denotes the usual scalar L? inner product. On a uniform grid with

mesh parameter h for which the mesh Péclet number “%Eﬁ is greater than 1, the
parameter ¢, is given by

(6) by = wsh
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where w, is a fixed positive constant.!
The form B, satisfies the coercivity condition

Bua(v,0) > e[ VolZagq) + Sslluallaey Vo € Vi

in which the lower bound is positive in the limit ¢ \, 0. In particular, the finite
element matrix has positive definite symmetric part and the discrete solution u” of
(3) is unique. If u is the strong solution and f € L*(Q), then Axelsson [1] and Névert
[18] have shown that for a piecewise linear finite element space there is a constant C'
(independent of h,d, and ¢) such that

2V (= a4+ 83| = whyll < € (20 61/2R) Juls,

where || - || and | - |2 denote the usual L? norm and H? seminorm respectively. It is
also shown in [2] that if 6, = O(h), ¢ < ch and =V - 3 > dy > 0 for positive constant
dg, then the error for SD satisfies

(7) lu— || < CH*? ul;

this is shown without a duality argument or elliptic regularity.

In practice, when using SD to solve problems with characteristic internal and
boundary layers, the choice of w; is crucial. Fischer et. al. [8] show that if p is the
angle of flow to the horizontal, the choice

1 /1 ¢
(8) s =1 (5 = 7l cos Q|)
is a good choice with respect to both clustering of the spectrum of the discrete operator
and performance of an iterative solution algorithm.

Despite the success of SD, in practice, it suffers from excessive overshooting and
undershooting of front following characteristics when discontinuities are present [13].
Johnson, Schatz and Wahlbin [15] introduced a modification of the SD discretization
that improves its performance by adding artificial crosswind diffusion. The streamline—
crosswind diffusion method (SCD) as generalized by Lube [16] is given as follows: find
u € V) such that

(9) Boa(u",v)=F, Yve VP,
where
(10) Bscd(uh, v) = Bsd(uh, V) + (€m — 5)(uZ, Va),

a = (=32, 1) is the crosswind vector and the artificial crosswind diffusion is defined

by

Lo_)c for & > h3/?
™) R32 for e < B3/Z,

VIf 7 is not quasi—uniform or # is a variable, then let & be the diameter of local element and
determine 8, elementwise as in (6) (see [14, p. 186]).
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For this method with piecewise linear elements, pointwise error bounds of order
O(h*|logh]) have been obtained for special meshes in [27], where it is also shown
that the width of the characteristic boundary layers and interior layers along stream-
lines are of order h°/3 log? h. See also [22, pp. 229fT.] for discussion of such results.
Assume © = (0,1) % (0,1) and a square mesh is generated by the nodes (z;,y;) =
(ih,jh), for 0 <i,j < N, where N is a positive integer and the mesh size h = 1/N.
The SD discretization (3) leads to a system of linear equations with (N —1) unknowns.
Following the notation in [8], the resulting coefficient matrix can be expressed as

(11) Asg =eH+S+6,U
where
Hij = (V¢;j Vi), Sij=(8-Voj, i), Uiy =(8-V¢;0- V)
and {(bi}gfl_l)rz are the finite element basis functions. The right hand side b is given
by

If V.3 =0, then for each basis function ¢; having value 0 on the boundary, it follows
from integration by parts that

that is, S is skew-symmetric. It is then easy to see that the symmetric part, eH 4 6:,U,
is positive definite. For constant 3 and bilinear basis functions, the constituent 9-point
stencils are as follows:

-1 -1 -1
(12) H : -1 8 -1
-1 -1 -1
~1 0 1 14 1
h h
(13) S: Bhl 4 0 4 |4+2] 0 0 o0
~1 0 1 —1 -4 -1
—f7 = B3 + 36182 207 —4B5  —B7 — B3 — 3B1 52
(14) u: ¢ —4B7 +267  8(BT+B3)  —4B7 + 263

—B7 = B3 = 3P182 287 —4B5  —B7 — B3 + 3515
The coefficient matrix of the SCD discretization can be expressed as
(15) Ased =eH+ S +6,U + (6, — €)C
where
CZ'J‘ = (Oé : V(b]‘, (e V(bz)
The matrix eH 4 6sU + (g, — €)C is also symmetric and positive definite, and the
9—point stencil of C is given by
1 —f7 = B3 = 36182 AP + 285 —B7 — B3 + 3615

(16) C: = 201 — 483 8(5% + 52) 201 — 483

—B — B3+ 301082 —4B7 + 265 —57 — B85 — 36152
In our numerical experiments, we find that this method dramatically reduces the

oscillations of discrete solutions near boundary layers and internal layers, although
there are still problems with smearing near sharp fronts (see Section 5).
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3. Necessary conditions. In this section, we outline some convergence criteria
and analysis for the dependence of discrete solutions of (1)-(2) on the diffusion co-
efficient ¢. In particular, let 7, be a set of triangulations of € depending on a mesh
parameter h. We will say that convergence of the discrete solution v = U p, is uniform
in ¢ if, for varying ¢, and the parameter h chosen such that h/e is constant, there is
an error bound of the form

(17) lu— "l < Ch*,

where o > 0, C' is independent of ¢, and || - || is a norm. Convergence criteria of this
type are considered in [10], [19], [21] and [24].

Here, we are concerned with necessary conditions for (17) to hold for the L? norm
and a > % Assume (1 and 3, are constant and the discretization is on a uniform grid
using bilinear or linear elements. The discrete problem then has the form
(18) Z czlwuf»b_l_m_l_M = hﬂj, for1<14,7 <N,

v,u=—1,0,1
where f depends only on f, uf{j = u"(z;,y;) and > vp=—1,01 Gy = 0.

THEOREM 3.1. [24] Let f € L*(Q) such that the solution u, of the reduced prob-

lem

B-Vu, = f in Q
(19) {uo =0 on 09_

is in CH(Q)NC?(Q) where 9Q_ = {(x,y) € IQ| 8-n < 0,nis an outward unit normal vector}.
Assume that the scheme (18) yields a solution u" that satisfies

||u — uhH < Ch® uniformly in ¢

for a > % Then the coeflicients of the scheme must satisly
—B1h Bk
(20) (Z a—1,u) — + ZQOM + (Z al,u) et =0
1 1 1
and
—Boh foh
(21) (Z a%_l) €T2 —I— Zawo —I— (Z al/,l) € i = 0

For the streamline diffusion method, the “stencil” coefficients {a,,,} depend lin-
early on the parameter ws. In the case §; = 2 = 3, the two conditions (20) and (21)
are identical and they are satisfied by the choice

(22) w L (coth@ 2—5) .
2e

=3 3
If the streamlines are aligned with the grid (e.g. 32 = 0) then one of the equations
((21) in this case) is degenerate and the choice

1 (g 2
(23) Wy = 3 (coth 5 ﬁ1h)

satisfies (20). These results coincide with a well known “optimal value” in the one-
dimensional problem (see [6]) for which the discrete solution is exact at the nodes.
Otherwise, if 1 # (32, then (20) and (21) constitute two linear equations with a single
unknown wg, for which there is no solution [24]. Therefore, the streamline diffusion
method does not satisfy these necessary conditions for uniform convergence.
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4. Two—parameter streamline diffusion schemes. Using the observations
of the previous section as motivation, we now present two variants of the streamline
diffusion method that contain two free parameters, which allow the necessary condi-
tions of (20)—(21) to be satisfied. One of these techniques (the first) was presented for
linear elements by Roos [21, p. 1465].2

In this section, we will assume that the velocity field 3 satisfies =V -3 > dy > 0
for constant dy. A case of primary interest is where both inequalities here are replaced
by equality, as in the incompressible Navier-Stokes equations. We will also consider
the case dy > 0; this is a technical assumption [2] which is used in the derivation of
L2-error bounds. (An alternative is to include a zero-order term in (1), see [4], [5],
[26].) Experimental results described in Section 5 use benchmark problems in which
[ is divergence free.

In our first variant, we add crosswind diffusion to the weak formulation, producing
the new weak form (denoted SD-A)

(24) Bsda(uh,v) =1, VYv¢€ Vf?,
where
(25) Bsda(uh, v) = Bsd(uh, v)+ 6C(ug, Vo)

and 8, > 0.2 For =V -3 > dy > 0, let
1
ol = <[V ol + &lJvs]|* + 6cllvall* + §do\!v\!2-

The stability of method (24) is a consequence of the following result.
LEMMA 4.1. The bilinear form By, satisfies

(26) Bsaa(v,0) > o> for any v € V2(Q).

Proof. By Green’s formula,
0:/ vzﬂ-ndS:/V-(vzﬂ)dQ:/V-ﬁvde—l—Q(vﬁ,v),
o0 Q Q
and thus (vg,v) = =% [ V- 8 v2dQ > Ldo||v]|?. Hence

1
Boia(v,0) 2 e[ VOl[* + & |opl|* + bcl|vall® + dollof”. O

Therefore, the SD-A discretization has a unique solution.
We have the following error estimate, the proof of which follows [1], [15], [26].
THEOREM 4.2. Let u be the solution of (1)-(2) with ¢ = 0 and u € H*(Q) N
HJ(Q). Let 3 € W1>(Q) and either V-3 =0 or =V - 3 > dy > 0, for constant dy.
If u” is the discrete solution obtained by SD-A on either bilinear or linear elements,
then the discretization error satisfies

(27) = ull < C (/20 + 622k + 8220 + 67720% + B + 6. Jula,

for constant C' > 0.

2 There it was observed that this scheme does not satisfy the conditions for L°°—uniform convergence
when £1 # fo.

®If 7 is not quasi-uniform or @ is a variable, then let & be the diameter of local element and
determine 6. and é. elementwise as in SD.



Proof. Let ( = u! — u, where u! is the bilinear (or linear) interpolant of u. It
follows that

(28) €l
(29) 9

ch?lulz,  [|[V¢|| < chlulz
¢ (Y2 + 612 + 6120 + h?) Jul,

IN A

(see [14, p. 176], [22, p. 232]). Setting n = u! — u” yields
(30) 71> < Bsaa(n,n) = Bsga(Cn) + Bsaalu — u", 7).
The quasi—orthogonality relation holds,
Biga(u —u",v) = Per(u,v) forall ve VP,
where Per(u,v) is the truncation error
Per(u,v) = e(Au,b5v3) + 6:(ua, va).
But Green’s formula and the Poincaré inequality leads to

62| Aul|6}|nsll + 8e(]l(wa)all + IV - allolluall) (7]l
(<61 lulz + c8.lul2) I}
31) < (012 + . fula Il

Bsda(u - uha 77)

AN VAN

and
BuaalG,m) = (V6 V)4 86,1 + belCas o) = (Gom) = [ (T B)ima
If V-3 =0 (divergence free case), then

Baaa(Cm) < el VIVl + 8511l (Imsll + 8ellCall lmall + €11 l1ms]
< (I + 821G + 6 NCll + 6511 il

If =V -32>dy >0, then

(9 B)cnas < ¢l lnll < Yl
and
Baaa(C,m) < (Y21VC) + 612)1Gsll + 62721Call + 65 201CI + €lICH) Il
Use (28)—(29) to get
(32) Baaa(Cn) < ¢ (Y20 + 6120 + 6120 + 67120 + 12) Jul]n]).
Combining (30), (31) and (32), gives

Inll < ¢ (/2R + 61/2h + 81/2h + 671202 + b2 4 261/ + 6. [ul.
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Thus, using the triangle inequality, it follows that

lu =™ < llull + 1<)
C (204 6120 + 612h + 67120 + 0 + 26}/ +6.) [uly. O

IN A

As shown in [15], if ¢ < ch, then for the choices §; = O(h) and é, = O(R%/?), all the
terms of (27) depending on 6, and 6. are of same order of magnitude, and the error
bound (27) implies that |Ju — u*|| < Ch*?|u|y. When —V - 3 > dy > 0, one can also
get an L2 bound |Ju — u”|| < Ch*?|uly which is the same estimate for SD shown in
[2].

We now consider a different approach for choosing é5 and 6. based on [24]. Suppose
the discretization is on a uniform square mesh of width & with bilinear shape functions.
The resulting coefficient matrix has the form

(33) At = eH + S+ 6,U + 6.C,

where C is as in (16). For 31 # 0, 3 # 0, the presence of two parameters in (33) allows
us to impose conditions (20)—(21). The result is a system of linear equations

34 26, + ﬁ26C = @ coth @ —¢

( ) ﬁl 2 9
2 2e

35 26, + ﬁ26C = @ coth @ —¢

(The case 1 = 0 or f3 = 0 is addressed in Section 3.) For §; # f3, this system is
nonsingular so the parameters d,, 6. are uniquely determined and have the values

h (18 coth B — 33 coth 22
(36) 8 &7 3 L AN
(37) 5, o= (lﬂfﬂz coth 2 — 325, coth 1 5)
’ |52 \ 2 ﬁ% _ ﬁ%

In case of §; = §9, we may choose the limit values of 6, and 6. as 31 — 0.

Let us compare these choices with &, defined by (6), (8) and &, = h%/2. Assume
e € hand 1 = cos® # 0,8, = sinf # 0. The function coth y is very close to
1 for large x, and therefore the quantities in parentheses are essentially constant.
Consequently, 65 of (36) and 6. of (37) are effectively proportional to h. This implies
in particular that the asymptotic bound of (27) is of size O(h), larger than that of
SCD. Figure 1 expands on this point. Plot (a) on the left compares the values of
65/h from (36) to w, from (8) and indicates that SD-A includes more diffusion in the
upwind direction. Plot (b) compares é./h to h'/2 for several values of h; for moderate
values of h or values of # near 0° or 90°, the amount of added crosswind diffusion is
comparable to that of SCD.

In the second two—parameter variant of SD, we introduce an extra parameter
by modifying the contribution to the discrete diffusion operator in the coordinate
dimension in which the flow is weaker. That is, the weak form (SD-B) is given by

(38) Bogy(u",v)=F, Yve VP,
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(a) Solid lines are 6:/h from (36); (b) Solid lines are 6./h from (37);
dashdot line is w. from (8). dashdot lines are h'/2.

Fic. 1. The values of 6s/h,6c/h for e = 107°,8 = (cosf,sinf),0° < 8 < 90° and h =
1/20,1/40,1/80, 1/160.

where
(39) Boap(u”,v) = Bog(u,v) + é(u?, Ve ),
¢ = y i 0<|Ba] < B
z if 0 < [B1] < [Bal;
and € > 0. If |81] = |B2| or the streamlines are aligned with the grid, then we use

€ = 0 and impose the necessary conditions using the SD method as in Section 3.
The stability and error bounds for the SD-B scheme are summarized below. The
proofs are analogous to those for SD-A and we omit them.
LemMma 4.3, If =V - 8 > dg > 0 for constant dy, then

i 1
(40)  Bsan(v,v) > e[| Voll* + &sllvsll® + Ellvel|* + Sof[o]|* for any v € Hg(Q)

THEOREM 4.4. Let u" be the discrete solution obtained by SD-B on either bilinear
or linear elements. Under the assumptions of Theorem 4.2, we have

= whll < € (V2R + 61%h + E/%h 4 671202 + B2 4 £) [ul..

As above, the parameters §, and ¢ can be used to satisfy the conditions (20)—(21).
The coefficient matrix derived from (39) is

Asip = eH + S+ 6,U +EP,

where

(%)



Consider the case when the streamlines are not aligned with the mesh, for example,
B1 > 2 > 0. Then the necessary conditions (20)-(21) lead to

h h
(—g - % - mf) LI (g + mf) + <—g + % - 65ﬂf) LI

h h
(_5_5_&_55 %)e‘ﬁih—|—2(§—|—5—|—65ﬂ§)—|—(—é—g—l—%—ésﬂ%) 2

2
That is,
_h bih
(41) by = 55, coth 5 ~ 6
. Bah Bah
(42) e = T coth % - 6sﬁ% -

07r

0651

o
>
epsilon_tilde / h

delta_s/h

I
o
a

0.5

(a) Solid lines are 6./h from (41);
dashdot line is w. from (8).

(b) €/h obtained by (42)

Fic. 2. The values of 6. and é for e = 107°,8 = (cos¥,sind),0° < § < 45° and h =
1/20,1/40,1/80, 1/160.

Let us compare these choices with é5 defined by (6) and (8). In Figure 2, for ¢ =
1075, 3 = (cos f,sin 8),0° < 0 < 45° and various mesh sizes h = 1/20,1/40,1/80,1/160,
Plot (a) on the left compares the value of é5/h from (41) to w, from (8) and indicates
that SD-B also includes more diffusion in the upwind direction. Plot (b) shows the val-
ues of £/h obtained by (42) which determines the amount of crosswind-like diffusion.
We see that ¢ dissipates when the streamlines are aligned with the mesh or 5y = fs.

Remark 4.1 We are using the necessary conditions for the uniform convergence as
a means of specifying the parameters in these discretizations. The conditions are not
known to be sufficient for uniform convergence and we are not considering this issue
here. Cf. [22, pp. 273ff.] for other discretizations that display uniform convergence.

5. Numerical experiments. The analytic results used and cited in Section 4
are for smooth problems, i.e., u € H?(Q2). However, the real need for streamline dif-
fusion methods occurs for problems with steep boundary layers or discontinuities. In
this section, we present the results of numerical experiments that show the perfor-
mance of the new streamline diffusion methods for such problems and compare it to
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that of the classical methods SD and SCD. We use three test problems. One has a
known solution given by the sum of two one-dimensional examples and containing
downstream boundary layers, one has a downstream boundary layer and a charac-
teristic internal layer, and one has variable flow. All experiments use bilinear shape
functions on square elements on a uniform N x N element grid with A = 1/N, and
they were performed with MATLAB Version 4.2¢c on a SUN SPARC-20 workstation.
The coefficient 6, = w,h of the streamline diffusion term for both SD and SCD was
chosen using (8).

0.5 1

0.5 1

FiG. 3. Numerical solutions for problem 1 for e =107*,8 = 75° h = 1/20.

TABLE 1
Mazimum absolute errors at the nodes for h = 1/20.

0 € SD SCD SD-A SD-B
0 l.e—2 8.58e—3 8.55e—3 1.3e—15 1.1le—15
l.e—4 4.3e—15 2.8e—15 4.3e—15 4.3e—15
150 l.e—2 1.81e—2 2.55e—-2 3.9¢e—16 2.2e—16
l.e—4 597e—1 3.11e—-1 9.5e—17 2.7e—16
A5° l.e—2 1.94e—-2 2.68e—2 6.9e—17 9.7¢—-17
l.e—4 3.89e—1 2.11e—-2 3.3e—16 l.e—146

Problem 1: Downstream boundary layers/analytic solution. We first con-
sider the problem with exact known solution given by

efrefe _ 1 ebey/e _

u(xvy) =

efr/e — 1 ef2/e — 17

where (31, 82) = (cos,sin @) for 0° < § < 90°. (For 6§ = 0°, u(z,y) = etle—1 4 y, the

T elle—q
limit value.) The Dirichlet boundary conditions and right hand side f are determined
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from the exact solution. Figure 3 depicts the numerical solutions for ¢ = 1074, § = 75°
and h = 1/20. The results indicate that the two new schemes reduce the oscillations or
excess diffusivity exhibited by SD and SCD, respectively. Indeed, for these problems
we find that the new schemes reproduce the exact solution at the nodes essentially to
within machine precision, as shown in Table 1.

Problem 2: Characteristic and downstream boundary layers. This prob-
lem was first considered in [12] for studying a downstream boundary layer and a char-
acteristic internal layer that propagates along the characteristics when inflow boundary
conditions are discontinuous. Assume the velocity field 3 is given by (cos#,sin §), and
boundary values are as follows:

" 1 if 0<y<1/2,2=0o0or y=0,0<2<1
"] 0 otherwise.

The reduced problem (19) has discontinuous solution

1 y<g—j’x+%
0 y>g—fx—|—%.

For ¢ > 0, there is an internal layer of width O(y/¢) across the characteristic y =
g—fw + %, and a boundary layer of width O(¢) at @ = 1 [7].

FIG. 4. Numerical solutions and contours for e = 107° h = 1/20 and § = 15°.

We first examine the accuracy with which the internal layer is approximated by the
various discretizations. Figure 4 depicts the three-dimensional structure and contour
plots of the numerical solutions obtained by the four methods tested, for ¢ = 107, h =
1/20 and 8 = (cos 15°,sin 15°). Figure 5 shows contour plots for ¢ = 107> and several
mesh sizes. It is evident that the solutions obtained by SD oscillate around the internal
layer and those obtained by SCD are overly diffuse. The two new variants appear to
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SD-A

SD-B

(a) 8 x 8 grids

(b) 16 x 16 grids

(c) 32 x 32 grids

F1G. 5. Contour plots showing numerical internal and boundary layers for e = 107> and 8 = 15°.

crosswind smear width

L L L L ! T
20 40 60 80 100 120
1/h

Fig. 6. The crosswind smear width (Ay) when mesh is refined and e = 107, 0 =107° and 6§ = 15°

TABLE 2
The measure of overshoots and undershoots for e = 107°.

h shooting SD SCD SD-A SD-B
1/16 Uyt 1.12e—-1 0 5.49e—5 0
U_ —3.44e—2 0 —1.20e—4 —2.79¢—4
1/32 Ut 1.10e—1 0 9.54e—7 1.3e—15
U_ —4.16e—2 0 —6.02¢—6 —2.29¢—5
1/64 Ut 9.78¢—2 3.6e—12 3.07e-9 2.7e—15
U_ —3.44e—2 —6.8e—14 —5.45e—8 —3.52e—-7




produce a more accurate representation of the internal layer. We can quantify this
statement as follows. Let
_ : h _ h _

Yu = 02}21 {y | u"(0.5,y) > O'}, Y= 01%1;2(1 {y | u"(0.5,y) <1 O'}, for small ¢ > 0.
Then Ay = y, — y; is a measure of the width of the numerical internal layer and the
effect of crosswind smearing at z = 0.5. Figure 6 plots this quantity for various mesh
sizes and 0 = 1072, The results indicate that the two-parameter schemes introduce
less crosswind smearing than SCD. Moreover, the lower-order O(h) asymptotic bound
(Theorem 4.2) obtained for smooth problems does not appear to have a deleterious
effect as A\, 0 in this nonsmooth example.

It is known that SD produces overshooting and undershooting about sharp lay-
ers [13]. We can use a similar device to examine the size of these overshoots and
undershoots. Let

Uy = ma {uh(0.5,y)— 1}, %_ = min {uh(0.5,y)}.

0<y<1 0<y<1

Thus u, u_ give a measure of the sizes of overshooting and undershooting respectively,
at x = 0.5. Table 2 shows the effectiveness of SD-A and SD-B in this measure.

Remark 5.1 These results for 5 = (cos 15%,sin 15%) are representative of our expe-
rience with other velocity fields g = (cos#,sin 8) for 8 € (—90°,907).

Problem 3: Variable flow field. For variable flows, we can define local (to ele-
ment) values of parameters determining the amounts of artificial diffusion. We follow
the approach given in [3]: on any element 7, let (2,,y,) denote the element center,
let B, = B(2;,y:), and let these constant values be used to define the parameters
in formulas (8), (36)—(37) and (41)—(42) in the local matrix computations associated
with the element 7. Note that a similar approach could also be used for irregular
grids.

For our third benchmark problem, with variable flow, we consider two variants of
the “IAHR/CEGB” workshop problem [23] in common use for testing discretization
strategies (see e.g. [11], [17]). As in [23], let the domain be the rectangular region

Q={(z,y)| —1l<z<l, 0<y<l1},
and the velocity field be

5= (2y(1 —2?), —22(1 —y?)).

The inflow boundary is the interval {(z,0)| — 1 < z < 0}, and Dirichlet conditions
specified there represent an inlet temperature which is convected in a circular flow to
the outflow boundary {(z,0)|0 < = < 1}, where natural boundary conditions

du(z,0)
an
are assigned. For both our variants, Dirichlet boundary conditions are given on the

remainder of 0€).
The first choice is defined by values

=0, for0<a<1

(43) u(z,0) = 1+ tanh(10 4 20z)
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at the inlet together with w = 0 at z = &1 and y = 1. This is essentially the problem
of [23] and it has also been examined in [11]. It contains a fairly smooth characteristic
internal layer and no boundary layer. Representative pictures of the three-dimensional
structure and contour plots of the numerical solutions obtained by the four methods
tested, for ¢ = 107° and h = 1/16, are shown in Figure 7. (The three-dimensional
plots are rotated 180° to give a clearer picture of the layer.) Our second variant of this
problem uses the value v = 1 (a hot wall) at = 1 as in [17]; this introduces a thin
boundary layer at the right boundary. In addition, we add a discontinuity in the inlet

profile
0 -1 <x<-05
(44) u(e,0) = { 1 —05<z<0.
The homogeneous Dirichlet conditions at z = —1 and y = 1 remain intact. The results

for this example, again for ¢ = 1075, h = 1/16, are shown in Figure 8.

Consideration of Figure 7 shows that for the (relatively smooth) example deter-
mined by (43) and the homogeneous condition at z = 1, the best solution is obtained
by pure streamline-diffusion (SD). The new variants SD-A and SD-B produce solu-
tions that are somewhat overdiffuse, but quite a bit less so than SCD. We also remark
that the solution obtained by the Galerkin method without any upwinding is quali-
tatively similar to that obtained by SD. Figure 8 shows that the situation is different
when discontinuities are present. None of the methods eliminate oscillations com-
pletely (showing that none are monotonic), but the new methods clearly improve the
accuracy of the solution near the boundary layer. They also produce more accurate
approximations to the internal layer than SCD, and, in contrast with those obtained
by SD, these components of the solutions are nonoscillatory. There may still be some
smearing of the crosswind layer; here SD-B seems to be slightly more effective than

SD-A.
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