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Abstract

Pointer analysis is essential for optimizing and parallelizing compilers. It examines pointer as-
signment statements and estimates pointer-induced aliases among pointer variables or possible shapes of
dynamic recursive data structures. However, previously proposed techniques are not able to gather useful
information or have to give up further optimizations when overall recursive data structures appear to be
cyclic even though patterns of traversal are linear. The reason is that these proposed techniques perform
pointer analysis without the knowledge of traversal patterns of dynamic recursive data structures to be
constructed. This paper proposes an approach, traversal-pattern-aware pointer analysis, that has the
ability to first identify the structures specified by traversal patterns of programs from cyclic data structures
and then perform analysis on the specified structures. This paper presents an algorithm to perform shape
analysis on the structures specified by traversal patterns. The advantage of this approach is that if the
specified structures are recognized to be acyclic, parallelization or optimizations can be applied even
when overall data structures might be cyclic. The DEF/USE information of pointer statements is used to
relate the identified traversal patterns to the pointer statements which build recursive data structures.

�This work was sponsored in part by NSF (ASC-9213821 and CDA9401151).



1 Introduction

Pointer analysis is essential for optimizing and parallelizing compilers that support languages with pointers

like C and Fortran 90. There has been a considerable number of techniques being proposed in this field.

Researchers have developed algorithms to detect pointer-induced aliases [3, 5, 6, 9, 15], analyze side

effects [3, 10], and identify conflicts/interferences among statements by static analysis [8, 11]. The results

of these analysis procedures can be supplied to compilers for optimizations and parallelization on programs

with dynamic recursive data structures. The characteristic of these pointer analysis approaches is that they

estimate the possible locations referenced by each pointer.

Shape analysis is another form of pointer analysis. It differs from previous methods by estimating the

possible shapes of recursive data structures accessible from pointers [2, 7, 13, 14]. The shape information

can be exploited to parallelize or optimize programs by providing compilers more insight into the properties

of data structures used by programs. However, there are cases that even precise shape estimation does not

provide useful information for parallelization or optimizations, especially for programs with cyclic data

structures but with linear traversal patterns [7]. The main reason is because these proposed techniques are

performed without taking account of traversal patterns on dynamic recursive data structures by programs.

They might gather information that is inappropriate for parallelization and optimizations.

Although many programs create recursive data structures which appear to be cyclic overall, they usually

follow linear structures to reference all nodes on the data structures. For instance, graph algorithms frequently

extract linear structures, such as spanning trees, from cyclic graphs and traverse the graphs following the

links of the linear structures, while the rest of edges are merely used to reference values on neighboring

nodes. Furthermore, recursive data structures can have unbounded numbers of nodes and are commonly

traversed by either iterative or recursive program constructs, such as loops or recursive functions. The edges

along which the iterative or recursive program constructs traverse a recursive data structure constitute the

main traversal structure, which can be viewed as the skeleton of the recursive structure and can be served

as the way to represent traversal patterns of the program constructs. Hence, these edges can be called as the

main traversal edges. On the other hand, the remaining edges of the recursive data structures are generally

used to reference values on other nodes, and they will be called as reference edges or secondary traversal

edges. Accordingly, it will be beneficial if compilers have the knowledge of which pointer statements build

the main traversal structures when pointer analysis is performed.

One example is the bipartite graph shown in Figure 1(a) constructed by the program EM3D [12], which

models the propagation of electromagnetic waves. It updates the values of E nodes (electric field) by a

weighted sum of neighboring H nodes (magnetic field), and then H nodes are similarly updated using the

E nodes. As a result, it traverses the list of E nodes through the solid (main traversal) links and reads

information from H nodes by dashed (secondary traversal) links, and then similarly traverses the H node

list and references E nodes. Although the bipartite graph is cyclic, the main traversal structures (lists of E

and H nodes) are not. Another example is leaf-connected tree created by the Barnes-Hut N-Body solver [1],

as depicted in Figure 1(b). The structures traversed by the program are a list and a tree, respectively.
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Figure 1: Cyclic Graphs with Acyclic Traversing Patterns

Figure 1(c) shows the cyclic structures used to represent sparse matrixes, which are common in programs

that simulate interactions among entities. These type of cyclic data structures are common in computational

scientific simulation programs. Most of these simulation programs exhibit high degree of parallelism since

their main traversal structures are either lists or trees, even though the overall data structures appear to be

cyclic.

These examples show that the knowledge of future traversal patterns can provide important hints for

compilers to perform proper pointer analysis on programs even with cyclic recursive data structures. This

paper proposes an approach to perform pointer analysis that utilizes the information of traversal patterns,

called traversal-pattern-aware pointer analysis. The advantages of traversal-pattern-aware pointer analysis

come from its ability to isolate the main traversal structures from overall (cyclic) graphs.

In order to perform pointer analysis with awareness of traversal patterns, the traversal patterns defined

by iterative or recursive flow control constructs will be collected before pointer analysis is performed and the

relationship between each statement that connects edges of recursive data structures and all corresponding

traversal patterns must be identified. This paper proposes an algorithm to identify the traversal patterns of

loops that reference recursive data structures and then propagate the information back to the statements that

construct the structures. This process will establish the DEF/USE chains between statements that construct

and traverse dynamic recursive data structures.

The traversal-pattern-aware pointer analysis algorithm presented in this paper is a shape analysis method,

which estimates the possible shapes of the main traversal structures of dynamic recursive data structures,

by utilizing this DEF/USE information. The advantage of this shape analysis approach is that it can identify

the linear shapes from cyclic data structures if the patterns of traversal are acyclic. This information will

facilitate compilers to perform optimizations or parallelization for programs even with cyclic recursive data

structures. Consequently, a simple dependence test algorithm will also be presented in this paper to exploit

the possibility of parallelization from this information.

The rest of this paper is organized as follows. Section 2 describes the programming model and

background information of traversal-pattern-aware pointer analysis. Section 3 presents the algorithm to

build DEF/USE chains of pointer statements. Section 4 describes algorithms to perform traversal-pattern-

aware shape estimation and dependence test. Summary is presented in Section 5.
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2 Background

This section describes the programs accepted by the algorithms proposed in this paper, and outlines the

traversal-pattern-aware pointer analysis approach.

2.1 Programming Model

The algorithms presented in this paper are designed to analyzes programs with dynamic recursive data

structures that are connected through pointers defined in the languages like Pascal and Fortran 90. Pointers

are specified by declared pointer variables, and are simply references to nodes with a fixed number of fields,

some of which are pointers. Memory allocations are done by the function new(). Pointer arithmetic in

languages such as C is not allowed. Although multi-level pointers are not considered in this paper, they can

be handled by converting them into levels of records, each of which contains only one field that carries the

node location of the next level. Consequently, pointer dereferences of multi-level pointers can be treated as

traversal of multi-level records.

Programs will be normalized such that each statement contains only simple binary access paths, each

of which has the form v:n where v is a pointer variable and n is a field name. Therefore, excluding regular

assignment statements, the three possible forms of pointer assignment statements are

1. p = q
2. p = q:n
3. p:n = q

The first two forms of statements will induce aliases without changing any connections of recursive data

structures, whereas the execution of each statement of the last form will remove one (maybe null) link from

existing dynamic data structures and then introduce a new link. Note that although the other possibilitypi:m = qj :n is also valid, it is represented by two consecutive statements, tk = qj :n and pi:m = tk , for the

reason of simplicity.

The DEF/USE chains will be constructed to identify the relationships between statements of second

and third forms. The execution of a statement p = q:n constitutes a USE of q:n, and it traverses the link

from node q to node q:n. On the other hand, executing a statement p:n = q establishes a link from node p
to node q, and this link information is stored in the field p:n and hence constitutes a DEF. Therefore, the

second form of statements can be called link traversing statements, and the third can be called link defining

statements. The first type of statements will not be part of DEF/USE chains since they merely introduce

aliases among declared pointer variables and allocated locations (if right hand side is new()). No link

traversal is performed by the first form of statements, and hence they can be named as aliasing statements.

2.2 Traversal-Pattern-Aware Pointer Analysis

Most pointer analysis algorithms have to give up further optimizations or parallelization when cyclic data

structures are encountered, since conservative estimation on cyclic structures might not provide any useful
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information to compilers. However, with awareness of future traversal patterns, pointer analysis can still

gather helpful hints for compilers to perform optimizations or parallelization even on programs with cyclic

data structures. The knowledge of traversal patterns can direct compilers to focus analysis on statements

that are crucial to optimizations or parallelization.

C Build a doubly-linked list C Forward traverse the doubly-linked list
S1 list = new() S11 ptr = list.next
S2 do i = 1, N S12 do while (ptr.next)
S3 node = new() S13 prv = ptr.prev
S4 node.value = ... S14 ptr.result += prv.value
S5 node.next = list S15 ptr = ptr.next
S6 list.prev = node S16 end do
S7 list = node
S8 end do

Figure 2: Build and Traverse a Doubly Linked List

Consider the example in Figure 2. When the traversal pattern is unknown, pointer analysis has to be

performed on all pointer statements, and the cycles connected by next and prev edges will force compilers

to make conservative summary estimation. This information will not provide much help for compiler

optimizations or parallelization because of properties of cyclic structures. However, if the traversal pattern

of the second loop is identified before pointer analysis, this knowledge will instruct compilers to focus on

analyzing the data structures connected by thenext links, while still keeping track of prev edges. Compilers

will be able to identify that the main traversal structure comprised of next edges is a singly-linked list.

Consequently, this knowledge enables compilers to exploit parallelism from a recursive data structure which

appears to be cyclic overall.

C flist is a cyclic list as Figure 1(c)g
C Reverse the cyclic list C Traverse the reversed cyclic list
S1 rev-list = nil S11 ptr = rev-list
S2 do while (list) S12 do while (ptr)
S3 tmp = rev-list S13 neigh = ptr.neigh
S4 rev-list = list S14 ptr.result += neigh.value
S5 list = list.next S15 ptr = ptr.next
S6 rev-list.next = tmp S16 end do
S7 end do

Figure 3: Reverse and then Traverse a Cyclic List
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The awareness of future traversal patterns can simplify pointer analysis on programs with destructive

updating as well. For instance, the program shown in Figure 3 reverses a cyclic list with the shape like

Figure 1(c), and then traverses the list through the link next. Without the knowledge of this linear traversal

pattern, pointer analysis on the loop that reverses the cyclic list will be difficult. On the other hand, a

traversal-pattern-aware pointer analysis algorithm will be able to identify the linear main traversal structure

and collect useful information for compilers with help of DEF/USE chains.

Program SSA Representation

S1 ptr = list S1 ptr1 = list1
S2 do while (ptr.next) S2 ptr2 = � (ptr1, ptr3)

S20 do while (ptr2.next)
S3 ptr = ptr.next S3 ptr3 = ptr2.next
S4 end do S4 end do
S5 ptr.next = node S5 ptr2.next = node1

Figure 4: List Append Function and Its SSA Form

2.3 Intermediate Program Representation

Programs will be transformed into an SSA (Static Single Assignment) intermediate representation [4]. A

program is defined to be in SSA form if, for every original variable V , trivial merging functions,�-functions,

for V have been inserted and each mention for V has been changed to mention of a new name Vi such that

the following conditions hold:� If a program flow graph node Z is the first node common to two non-null paths X +! Z and Y +! Z
that start at nodes X and Y containing assignments to V , then a �-function for V has been inserted

at Z.� Each new name Vi for V is the target of exactly one assignment statement in the program.� Along any program flow path, consider any use of a new name Vi for V (in the transformed program)

and the corresponding use of V (in the original program). Then V and Vi have the same value.

Although SSA form is designed specially for programs with fixed-location variables only, e.g. Fortran-77

programs, same transformation can be applied to pointer variables since contents (location addresses) of

pointer variables can be treated as values in regular variables. Once normalized programs are transformed

into SSA representation, a new form of pointer assignments will be introduced:pi = � (pj ; pk)
which will be placed at merging points of programs. For instance, Figure 4 presents a list append function

and its SSA representation.
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The process of traversal can be defined by the execution of series of link referencing statements. Fur-

thermore, a new pointer instance is created when each link referencing statement is executed. Consequently,

every pointer instance can be represented by a path expression, which is denoted by a tuple< p; e; f; r >
where p is the the pointer variable instance, e is the entry point of the referenced data structure, and f is the

path that induction pointer advances forward at each iteration, and r is the relative path from the induction

pointer to the instance. Similarly, for nested loops that traverse lists of lists, the traversing patterns can be

described as < p; e; f; < p 0; e 0; f 0; r 0 >>
where <p, e, f, –> represents the induction pointer of outer loop while <p 0, e 0, f 0, r 0> is the traversal

patterns of inner loop.

3 Building DEF/USE Chains

This sections presents the algorithm to build DEF/USE chains between link defining statements and link

traversing statements. It consists of two passes:� Forward Pass

Static aliases induced by aliasing statements are identified. These static aliases will not be affected

by link defining or traversing statements.

Path expression of each pointer variable will be specified also.� Backward Pass

Traversal patterns represented by path expressions are gathered and propagated to build DEF/USE

chains between link defining and traversing statements.

The second pass conducts backward analysis to avoid constructing graphs that summarize connections of

dynamic recursive data structures without the awareness of traversal patterns. Each traversal pattern is

assumed performing references on a linear structure, either a list or a tree. During the process of analysis,

multiple traversal patterns will reach the same locations if dynamic recursive data structures are either DAGs

(directed acyclic graphs) or cyclic graphs.

3.1 Identifying Static Aliases and Path Expressions

This phase performs forward analysis through the links of SSA representation to identify aliases among

pointer variable instances and allocated locations, and to compute path expression of every pointer variable

instance. The algorithm works as follows:� Examine all pointer assignment statements. If a statement has the form pi = qj and qj is either a

storage allocation call new() or nil, initialize the MustAlias set of pi to fqjg and set both MayAlias
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set and PathExpression set as ;. All SSA edges with their source at this node will be added to the

WorkList. For other statements, initialize MustAlias, MayAlias, and PathExpression sets to ;, with

the exception that the MustAlias sets of statements pi = � (pj ; pk) are set as U (i.e. all variables).� The algorithm terminates when the WorkList becomes empty.� An SSA edge is taken off from the WorkList. The sets at the definition end of the SSA edge are

compared with those at the use end of the SSA edge.� If the sets are different, update the sets at the use end of the SSA edge, compute new sets for the

pointer variable at left-hand-side of the statement at the use end of the SSA edge based on the type of

statement, and then add all SSA edges with their source at this node to the WorkList.

– pi = qjMustAlias pi = MustAlias qj [ fqjgMayAlias pi = MayAlias qjPathExpression pi = f< pi; e; f; r > j 8 < qj ; e; f; r >2 PathExpression qjg
– pi = qj :nMustAlias pi = ;MayAlias pi = ;PathExpression pi = f< pi; qj;�; n >g if PathExpression qj � ;f< pi; e;�; r:n > j 8 < qj ; e;�; r >2 PathExpression qjg Otherwise
– pi:n = qj
– pi = � (pj ; pk) (conditionals)MustAlias pi = MustAlias pj \MustAlias pkMayAlias pi = MayAlias pj [MayAlias pk[ (MustAlias pj [MustAlias pk �MustAlias pi)PathExpression pi = PathExpression pj ] PathExpression pk
– pi = � (pj ; pk) (loops: pj is from the entry edge and pk the iteration edge)MustAlias pi = MustAlias pj \MustAlias pkMayAlias pi = MayAlias pj [MayAlias pk[ (MustAlias pj [MustAlias pk �MustAlias pi)PathExpression pi = f< pi; pj; r;� > j 8 < pk; pi;�; r >2 PathExpression pkg[ f< pi; e; f; r > j 8 < pk;:pi; f; r >2 PathExpression pkg

The special union operator ] is to calculate path expressions of pointer instances after merging by�-functions at end of conditionals. It first examines the entry points of each pair of path expressions from

the Reference sets of both operands of a �-functions. If the entries are identical, the operator will create

a new path expression with the same entry point such that relative path is the union of relative paths from

both path expressions. For instance, the result of f<pj , node, –, left>g ] f<pk, node, –, right>g will bef<pi, node, –, left|right>g. Otherwise, the operator simply performs set union operations.

The identification of induction pointers is performed only on the statements with �-functions at the

headers of loops. A pointer instance at definition side of a statement with a �-function represents an

induction pointer in the original program when the entry of its path expression is itself before the execution
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of the statement. Furthermore, the relative path of the path expression is the path that the iteration pointer

will advance at each iteration. In other words, if the path expression of pk of the statement pi = � (pj ; pk)
has the form <pk, pi, –, r>, then pi is the instance of an induction pointer and its path expression will be

<pi, pj , r, –>. It means the induction pointer will start from pj , and advance along the structure by path r
at every iteration.

φ

ptr  = list

end do

ptr  = ptr  .next

ptr  .value = ...
...

1 1

2 1 3

2

3 2

2

truefalse

ptr   = n  .left1 1

(a) Loop (b) Conditional

ptr   =    (ptr  , ptr  )3 1 2

end if
φ

2ptr   = n  .right1

n   = tree
if (...) then

1

true false

do while (ptr  .next)
ptr  =    (ptr  ,  ptr  )

Figure 5: Basic Blocks in CFG

3.2 Building DEF/USE Chains

This phase performs backward analysis to gather traversal patterns and propagate this information back to

link defining statements. The process will construct the DEF/USE chains between link defining statements

and link referencing statements. The analysis is operated on CFG: [VCFG; ECFG], where VCFG is the set

of basic blocks of CFG and ECFG is the set of edges. Statements will be grouped into basic blocks, while

statements with �-functions will be placed in the header nodes of loops or merging nodes of conditionals,

as shown in Figure 5.

The algorithm works as follows:� Initialize all sets of nodes and StatList to ; and

set WorkList = fB | B 2 VCFG ^ <B, EXIT> 2 ECFGg.� The algorithm terminates when the both WorkList and StatList become empty. Execution may proceed

by processing items from either list. If any new sets of any statements in the block are different from

old sets, then add all preceding basic blocks to the WorkList.

8



� If a basic block is taken off from the WorkList. Compute new sets of every statement in the basic

block based on the statement types. 1

– S : pi = qjReferenceS = Referencein �Referencepi [Referenceqjwhere Referencepi = f< s; p; e; n > j < s; p; e; n >2 Referencein ^E(e) � pigReferenceqj = f< s; p; e0; n > j < s; p; e; n >2 Referencepi ^ e0 = e : E(e) qjgDefineS = Definein
– S : pi = qj :nReferenceS = Referencein [ f< S; qj ; P (qj); n >gDefineS = Definein
– S : pi:n = qjReferenceS = Referencein �Referencepi �Referenceprefix [ ReferencesuffixUseS = UseS [ fsj < s; p; e; n >2 (Referencepi [Referencemay [ Referencepath)gwhere Referencepi = f< s; p; e; n > j < s; p; e; n >2 Referencein ^ (p � pi _ e 2MustAlias(pi))gReferencemay = (< s; p; e; n > ����� < s; p; e; n >2 Referencein^(9a 2MayAlias(E(e)) 3 pi 2 D(a:SX(e)) )Referenceprefix = (< s; pi; e; n > ����� < s; pi; e; n >2 Referencein^PX(e) � a:n ^ a 2MustAlias(pi) )Referencesuffix = (< s; p; es; n > ����� < s; p; e; n >2 Referenceprefix^e � a:n:SX(e)^ es = qj :SX(e) )Referencepath = f< s; pi; e; n > j < s; pi; e; n >2 Referencein ^ pi 2 D(e)gDefineS = Definein [ f< s; pi; n >gStatList = StatList [ f< s; qj ; pi:n > j < s; p; t >2 Definein ^ P (qj) � PX(P (p))g[f< s; pi:n; qj > j < s; p; t >2 Definein ^ P (pi:n) � PX(P (p))g
– S : pi = �(pj ; pk)ReferenceSpj = Referencein � Referencepi [ ReferencepjReferenceSpk = Referencein � Referencepi [Referencepkwhere Referencepi = f< s; p; e; n > j < s; p; e; n >2 Referencein ^ E(e) � pigReferencepj = f< s; p; e0; n > j < s; p; e; n >2 Referencepi ^ e0 = e : E(e) pjgReferencepk = f< s; p; e0; n > j < s; p; e; n >2 Referencepi ^ e0 = e : E(e) pkg� If the item is an element <S, x, y> from StatList, compute new sets for the statement S: pi.n = qj .Referencey = f< s; p; e; n > j < s; p; e; n >2 ReferenceS ^ PX(e) � P (y)gReferencex y = f< s; p; e0; n > j < s; p; e; n >2 Referencey ^ PX(e0) = PX(e) : P (y) P (x)gReferencepi = f< s; p; e; n > j < s; p; e; n >2 Referencex y ^ pi 2 D(e)gUseS = UseS [ fsj < s; p; e; n >2 ReferencepigStatList = StatList [ f< s; qj ; e:n > j < s; p; t >2 DefineS ^ P (qj) � PX(P (p))g[f< s; e:n; qj > j < s; p; t >2 DefineS ^ e:n � PX(P (p))gReferenceS = ReferenceS [ f< s; p; es; n > j < s; p; e; n >2 Referencepi ^ es = qj :SX(e)g

1Abbreviations: E = ENTRY, P = PATH, D = DESTINATION, SX = SUFFIX, and PX = PREFIX
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4 Traversal-Pattern-Aware Pointer Analysis

This section presents an algorithm to perform traversal-pattern-aware shape analysis and outlines the

approach to apply results of shape analysis to dependence test.

4.1 Shape Analysis

This algorithm is adapted from the shape analysis algorithm proposed by Sagiv et al [14]. The main

difference is its ability to represent the links of main traversal structures and to maintain the connection

information of secondary traversal links on the same shape graphs. It explicitly represents the main traversal

links by edges on shape graphs and performs shape estimation on these links, whereas the information of

secondary traversal links is stored implicitly in the nodes of shape graphs. The shape estimation of main

traversal structures will be especially useful for parallelization since it can aid dependence test to determine

any dependence among instances of iterative or recursive traversal.

This algorithm has two phases. First phase gathers traversal patterns and builds the DEF/USE chains.

The technique to perform the first phase has been presented in Section 3. The remaining of this section will

present the second phase of this shape analysis algorithm.

4.1.1 Shape Graphs

Shape analysis is performed on finite directed graphs, called shape graphs, which represent unbounded

recursive data structures. The shape graphs presented in this paper are closely related to the Storage Shape

Graph (SSG) proposed by Chase et al. [2], the Abstract Storage Graph (ASG) by Plevyak et al. [13], and

Shape-Graphs by Sagiv et al. [14]

Shape graphs have two types of nodes: pointer stances and storage nodes, which can be further divided

into simple nodes that represent allocated allocations and summary nodes each of which represents a set of

allocated locations. New storage nodes can be created by calling the storage allocation function new() or

extracted from summary nodes by link traversing statements (it is called materialization [14]). On the other

hand, storage nodes will be removed when they are no longer reachable, or be absorbed by summary nodes

when they are not directly connected to any pointer instances (i.e. summarization). In order to uniquely

name each storage node, every storage node will be annotated by a distinct tag. The purpose of assigning

tags to storage nodes is to specify secondary traversal links without creating edges on shape graphs such

that shape analysis on main traversal structures will be simplified.

Each tag is denoted by the form c:<s, l>, where c is a unique number generated from a global counter,s is the statement that generates the corresponding node, and l is the link to the tag of a summary node if

the node is extracted (materialized) from the summary node and is nil otherwise. Figure 6 depicts the tag

creation processes and corresponding nodes operations. A new storage node with tag 1:<S1, –> is created

when S1: q = new() is executed. On the other hand, the tag of the summary node will remain the same when

summarization is performed after S2: p = nil is executed, since both nodes are allocated at S1. However,

the tag of the summary node is modified after materialization by the statement S3: p = list.n to reflex the
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S1:  q = new()

q
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Figure 6: Storage Nodes and Tags

fact that the summary node before execution of S3 is different from that after execution. The new summary

node has the tag 5:<S3, 2> and the materialized node is denoted by tag 6:<S3, 2>.

Since each summary node represents a set of nodes, extra tags (called sharing tags) are required to

specify the connection relationships among these nodes. The tag has the form ff1; f2; � � � ; fng, where f1,f2, � � �, fn are the field names of self-cyclic edges of the summary node. This tag means all nodes along

any paths specified by the regular expression (f1jf2j � � � jfn)? will be distinct. For example, the summary

node with sharing tag fng in Figure 7(a) represents an unshared list specified by the path (n)?. Similarly,

the summary node with tag fl; rg of Figure 7(b) is a tree-like structure accessible via the path (ljr)?. On the

other hand, if a summary carries more than one sharing tag, it means nodes on the path designated by the

field names of the same tag will be distinct, but the same assertion might not hold when field names are not

from the same tag. Figure 7(c) symbolizes that (n)? and (p)? each references a list of unshared nodes, but(njp)? or (n)?(p)? might reference cycles. Similarly, Figure 7(d) means multiple paths of the form (ljr)?
might reach the same node.

p

(a) (b)

(c) (d)

{n}

{l} {r}

n

n

r

l

r

l

l

r

n

r

{n} {p}

{l, r}

l

l

l

r
r

p

n

n

n

p

Figure 7: Sharing Information of Summary Nodes

Tail nodes of recursive data structures usually are not summarized into summary nodes to distinguish

cyclic structures from acyclic structures. Figure 8 depicts the shape graphs that characterize different types

of data structures. The difference between the tail nodes of Figure 8(a) and Figure 8(d) distinguishes a

singly-linked list from a circular list. However, the tail nodes will be summarized when it is not possible to

locate them, such as the arbitrary graphs shown in Figure 8(f).
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Figure 8: Data Structures Represented by Shape Graphs

The edges presented on shape graphs are used to symbolize the links of main traversal structures. The

secondary traversal links are not represented as edges on shape graphs, but the connections caused by

these links are described by node tags. Figure 9 depicts some examples of cyclic recursive data structures

with acyclic traversal patterns, where the dashed edges represent the secondary traversal links and their

destinations are specified by tags of storage nodes. When cyclic structures with acyclic traversal patterns

are modeled by the shape graphs, their acyclic structures specified by the traversal patterns can be easily

characterized. As a result, this representation can facilitate pointer analysis on programs even with cyclic

data structures.
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Figure 9: Cyclic Structures with Acyclic Traversal Patterns

In summary, a shape graph is a finite directed graph G = (V;E) where V is the set of nodes and E is

the set of edges.� V consists of two types of nodes: pointer stances and storage nodes, which can be further divided
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into simple nodes that represent allocated allocations and summary nodes each of which represents a

set of allocated allocations.� The set of edges is comprised of two kinds of edges: pointer edges each of which has the form [v; n]
where v is a pointer instance and n is a storage node, and field edges, each of which is denoted by a

tuple <s, f, t> where s and t are storage nodes and f is a field name. Consequently, E = <Ep, Ef>.� A unique tag is associated with each storage node.� Sharing tags are annotated on each summary node to characterize the sharing information along the

path specified by the field names of self-cyclic edges.� Edges which are not part of main traversal structures are not represented as edges on shape graphs.

They are described by connections to node tags.

4.1.2 Algorithm

This algorithm performs traversal-pattern-aware shape analysis, which estimates the possible shapes of

dynamic recursive data structures specified by traversal patterns. It works as follows:� The algorithm presented in the previous section is performed to establish the DEF/USE relationships

of pointer statements. The traversal patterns by iterative or recursive program constructs will be

gathered during the DEF/USE construction process.� Perform the iterative algorithm to compute a shape graph for every pointer statement. The transfor-

mations of shape graphs are defined by the types of pointer statements. Only those sets that will be

modified are presented.

– S : pi = new()V = Vin [ fC :< S;� >gEp = Epin [ f[pi; C :< S;� >]g
– S : pi = qjEp = Epin [ f[pi; s]j[qj; s] 2 Eping
– S : pi = qj :nEp = Epin [ f[pi; t]j[qj; s] 2 Epin ^ [s; n; t] 2 Efing

Materialization will occur if [pi; t] 2 Ep and t is a summary node.

– S : pi:n = qjEf = Efin [ f[s; n; t]j[pi; s] 2 Epin ^ [qj ; t] 2 Eping
– S : pi = �(pj ; pk)V = Vin j [ Vin kEi = Ein j [ Ein kEp = Ei [ f[pi; s]j[pj; s] 2 Eig [ f[pi; s]j[pk; s] 2 Eig � f[pj ; ?]g� f[pk; ?]g
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Figure 10: Shape Graphs Generated by Doubly-Linked List Building Program

4.1.3 Examples and Features

Take the example shown in Figure 2 which builds a doubly-linked list and forward traverses the list through

the next link. The main traverse structure is determined by statements S11 and S15, and the statement that

constructs this structure is S5. This fact will be identified by the first phase of the algorithm for traversal-

pattern-aware shape analysis. Consequently, only the edges constructed by statement S5 will be shown

on shape graphs explicitly and hence only these edges will participate in the process of deciding possible

shapes of the constructed data structure. The shape graphs which will be generated when the second phase

of algorithm is applied to this example are listed in Figure 10. This process estimates that the shape of main

traversal structure is a singly-linked list.

The same process can be applied to the program that reverses a cyclic list and then traverses the reversed

list, as shown in Figure 3. The algorithm recognizes the linear traversal structure of the cyclic list and

performs shape analysis on the cyclic list reverse program. Note that the neigh links do not change during

the course of analysis process. The destinations of the these links can be recognized through the tags of

storage nodes. For instance, the tags of summary nodes in Figure 11(b), 6:<S5,2> and 5:<S5,2>, mean
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they represent sets of storage locations retrieved from the summary node 2:<S0,–>. This message reflects

the fact that both sets of storage locations are the possible destination of any neigh link.
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Figure 11: Shape Graphs Generated by Cyclic List Reverse Program

A similar example can be presented and compared with this cyclic list reverse program to demonstrate

the special ability of this approach. If a program splits a singly-linked (unshared) list into two lists and

then converts both singly-linked lists into cyclic lists, this approach will be able to specify that the set of

destinations specified by neigh links of one list will be distinct from the set of the other list (see Figure 12).
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Figure 12: Shape Graphs Generated by Program that Splits a List and Constructs Cyclic Lists

One feature of this algorithm is that shape graphs will not be computed for certain statements in programs

if these statements can be identified that they will not affect the shapes of constructed recursive data structures.

Typical examples are the loops that only traverse data structures. They only reference nodes of recursive

data structures and will not cause any changes in the shapes of data structures. Therefore, the construction

of shape graphs for these type of statements will not affect the outcome of shape analysis. The statements

which have no effects on shape analysis will be identified during the first phase of traversal-pattern-aware

pointer analysis.

Another interesting feature of this shape analysis algorithm is its ability to detect that a circular list
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is broken into an unshared list, as the outcome of execution of the program shown in Figure 13(a). This

program traverse the circular list and stops at a node when the condition is met. It then removes the next
link of the node pointed by tail after forwarding list to the next node. The result of this program execution

is to turn a circular list into an unshared list. The shape graphs for this program, shown in Figure 13,

demonstrate this ability.

(e) Unshared List After S6
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next next next
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nextnext
{next}
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(b) Circular List Before S1(a) Program
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next

next
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Figure 13: Shape Graphs Generated by Program that Breaks a Circular List

4.2 Dependence Test

The results of traversal-pattern-aware shape analysis can be applied to dependence test because the properties

of main traversal structures defined by iterative or recursive program constructs can be inferred. Access

conflict analysis is first conducted for each instance of iterative or recursive traversal on the assumption

that each unique path expression leads to a distinct location. The rationale is that if any loops or recursive

functions are deemed to have dependent iterations, they are inherently sequential no matter if the actual data

structures contain cycles or not. Once the access conflict analysis reports that loops or recursive functions

are not inherently sequential, traversal-pattern-aware shape analysis will be performed to confirm the results.

Consider the loop S11 of the program in Figure 2. At each iteration this loop reads from and writes to

the same location of a node on the main traversal structure, and references a value from the neighboring

node. The result of analysis shows that the iterations of this loop can be executed independently. However,

if the statement S14 is replaced by

S14 ptr.result += prv.result

then iterations of the loop will not be independent.

16



5 Summary

This paper presents algorithms to apply the DEF/USE information to traversal-pattern-aware pointer anal-

ysis. Instead of performing analysis on the whole recursive data structures, this technique can first identify

structures specified by traversal patterns and then perform analysis on the structures. This approach can

perform pointer analysis on programs even with cyclic data structures.
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