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1 IntroductionSoftware inspection has long been regarded as a simple, e�ective, and inexpensive way of detectingand removing defects from software artifacts. Most organizations follow a three-step procedureof Preparation, Collection, and Repair. First, each member of a team of reviewers reads theartifact, detecting as many defects as possible (Preparation). Next, the review team meets, looksfor additional defects, and compiles a list of all discovered defects (Collection). Finally, these defectsare corrected by the artifact's author (Repair).Several variants of this method have been proposed in order to improve inspection performance.Most involve restructuring the process, e.g., rearranging the steps, changing the number of peopleworking on each step, or the number of times each step is executed. Some of these variantshave been evaluated empirically. However, focus has been on their overall performance. Very fewinvestigations attempted to isolate the e�ects due speci�cally to structural changes. However, wemust know which e�ect are caused by which changes in order to determine the factors that driveinspection performance, to understand why one method may be better than another, and to focusfuture research on high-payo� areas.Therefore, we conducted a controlled experiment in which we manipulated the structure ofthe inspection process[21]. We adjusted the size of the team and the number of sessions. Defectswere sometimes repaired in between multiple sessions and sometimes not. Comparing the e�ects ofdi�erent structures on inspection e�ectiveness and interval1 indicated that none of the structuralchanges we investigated had a signi�cant impact on e�ectiveness, but some changes dramaticallyincreased the inspection interval.Regardless of the treatment used, both the e�ectiveness and interval data seemed to varywidely. To strengthen the credibility of our previous study and to deepen our understanding of theinspection process, we must now study this variation.1Inspections have many di�erent costs and bene�ts. In this study we restricted our discussion of bene�ts to thenumber of defects found, and costs to inspection interval (the time from the start of the inspection to its completion)and person e�ort. 2



1.1 Problem StatementWe are asking two questions: (1) Are the e�ects of process structure obscured by other sources ofvariation, i.e., is the \signal" swamped by \noise"? (2) Are the e�ects of other factors more in
u-ential than the e�ects of process structure, i.e., are researchers focusing on the wrong mechanisms?To answer the �rst question, we will attempt to separate the e�ects of some external sourcesof variation from the e�ects due to changes in the process structure. By eliminating the e�ects ofexternal variation we will have a more accurate picture of the e�ects of our experimental treatments.Also, by understanding the external variation we may be able to evaluate how well our experimentaldesign controlled for it, which will aid the design of future experiments.To answer the second question, we will compare the variation due to process structure with thatdue to other sources. If the other sources are more in
uential than process structure, then it maybe possible to signi�cantly improve inspections by properly manipulating them. We expect thatidentifying and understanding these sources will aid the development of better inspection methods.Therefore, we have extended the results of our experiment by identifying some sources of vari-ation and modeling their in
uence on inspection e�ectiveness and interval. We will show that ourprevious results do not change even after these sources of variation are accounted for. This analysisalso suggests some improvements for the inspection process and raises some implications about pastresearch and future studies.1.2 Analysis PhilosophyWe hope to identify mechanisms that drive the costs and bene�ts of inspections so that we canengineer better inspections. To do this we will rely heavily on statistical modeling techniques.However, these techniques are not completely automated. Therefore, we must make judgmentsabout which variables or combinations of variables to allow in the models. These choices areguided by our desire to create models that are robust and physically interpretable.To improve robustness we avoided �tting the data with too many factors. Doing so could resultin a model that explains much of the variation in the current data, but has no predictive powerwhen used on a di�erent set of data. 3



To improve interpretability we omitted factors for which we have no readily available measure.We also omitted factors whose e�ects were known to be confounded with other factors in themodel. Finally, we rejected models for which, based on our experience, we could not argue thattheir variables were causal agents of inspection performance. Speci�cally, there are four conditionsthat must be satis�ed before factor A can be said to cause response B[13]:1. A must occur before B.2. A and B must be correlated.3. There is no other factor C that accounts for the correlation between A and B.4. A mechanism exists that explains how A a�ects B.One implication of all these is that the \best" model for our purpose is not necessarily the onethat explains the largest amount of variation. Throughout this research we have chosen certainmodels over others. Some were rejected because a smaller, but equally e�ective model could befound, or because one variable was strongly confounded with another, or because a variable failedto show a causal relationship with inspection performance. We will point out these cases as theyarise.2 Summary of ExperimentWith the cooperation of professional developers working on an actual software project at LucentTechnologies (formerly AT&T), we conducted a controlled experiment to compare the costs andbene�ts of making several structural changes to the software inspection process. (See Porter, etal.[21] for details.) The project was to create a compiler and environment to support developers ofLucent Technologies' 5ESS(TM) telephone switching system. The �nished compiler contains over55K new lines of C++ code, plus 10K which was reused from a prototype. (See Appendix A for adescription of the project.)The inspector pool consisted of the 6 developers building the compiler plus 5 developers working4



on other projects.2 They had all been with the organization for at least 5 years and had similardevelopment backgrounds. In particular, all had received inspection training at some point in theircareers. Data was collected over a period of 18 months (June 1994 to December 1995), duringwhich 88 code inspections were performed.2.1 Experimental DesignWe hypothesized that (1) inspections with large teams have longer intervals, but �nd no moredefects than smaller teams; (2) multiple-session inspections3 are more e�ective than single-sessioninspections, but at the cost of a signi�cantly longer interval; and (3) although repairing the defectsfound in each session of a multiple-session inspection before starting the next session will catcheven more defects, it will also take signi�cantly longer than multiple sessions meeting in parallel.We manipulated these independent variables: the number of reviewers (1, 2, or 4); the numberof sessions (1 or 2); and, for multiple sessions, whether to conduct the sessions in parallel orin sequence. The treatments were arrived at by selecting various combinations of these (e.g., 1session/4 reviewer, 2 sessions/2 reviewers without repair, etc.).Among the dependent variables measured were inspection e�ectiveness|in terms of observednumber of defects, as explained in Appendix B|and inspection interval|in terms of working daysfrom the time the code was made available for inspection up to the collection meeting.42.2 Conducting the ExperimentTo support the experiment, one of us joined the development team in the role of inspection qualityengineer (IQE). He was responsible for tracking the experiment's progress, capturing and validatingdata, and observing all inspections. He also attended the development team's meetings, but hadno development responsibilities.When a code unit was ready for inspection, the IQE randomly assigned a treatment and ran-2In addition, 6 more developers were called in at one time or another to help inspect 1 or 2 pieces of code, mostlyto relieve the regular pool during the peak development periods.3In this experiment, we used the term \session" to mean one cycle of the preparation-collection-repair process. Inmultiple-session inspections, di�erent teams inspect the same code unit.4For 2-session inspections, the longer interval of the two is selected.5



domly drew the review team from the inspector pool. In this way, we attempted to control fordi�erences in natural ability, learning rate, and code unit quality.The names of the reviewers were then given to the author, who scheduled the collection meeting.If the treatment called for 2 sessions, the author scheduled 2 separate collection meetings. If repairwas required between the 2 sessions, then the second collection meeting was not scheduled untilthe author had repaired all defects found in the �rst session.The reviewers were expected to prepare su�ciently before the meeting. During preparation,reviewers did not merely acquaint themselves with the code, but carefully examined it for defects.They were not given any speci�c technical roles (e.g., tester or end-user) nor any checklists. On anindividual preparation form, they recorded the time spent on preparation, and the page and linenumber and the description of each issue (each \suspected" defect).5 The experiment placed nolimit on preparation time.For the collection meeting one reviewer was selected as the moderator and another as thereader. The moderator ran the meeting and recorded administrative data on a moderator reportform. This comprised the name of the author, lines of code inspected, hours spent testing thecode before inspection, and inspection team members. The reader paraphrased the code. Duringthis activity, reviewers brought up any issues found during preparation or brie
y discussed newlydiscovered issues. On a collection form, the code unit's author recorded the page and line numberand description of each issue regarded as valid, as well as the start and end time of the collectionmeeting. Each valid issue was tagged with a unique Issue ID. If a reviewer had found that particularissue during preparation, he or she recorded that ID next to the issue on his or her preparationform. This enabled us to trace issues back to the reviewers who found them. No limit was placedon meeting duration, although most lasted less than 2 hours.After the collection meeting, the author kept the collection form and resolved all issues. In theprocess he or she recorded on a repair form the disposition (no change, �xed, deferred), nature (non-issue, optional, requires change not a�ecting execution, requires change a�ecting execution), locality(whether repair is isolated to the inspected code), and e�ort spent (� 1hr;� 4hr;� 8hr; > 8hr) on5A sample of this, and all other forms we used may be found at http://www.cs.umd.edu/users/harvey/variance.html. 6



each issue. Afterwards, the author returned all paperwork to us. We used the information fromthe repair form and interviews with the author to classify each issue as a true defect (if the authorwas required to make an execution a�ecting change to resolve it), soft maintenance issue (any otherissue which the author �xed), or false positive (any issue which required no action).In the course of the experiment, several treatments were discontinued because they were eithernot performing e�ectively, or were taking too long to complete. These were the 1-session, 1-persontreatment and all 2-session treatments which required repair between sessions.After 18 months, we managed to collect data from 88 inspections, with a combined total of 130collection meetings and 233 individual preparation reports. The entire data set may be examinedonline at http://www.cs.umd.edu/users/harvey/variance.html.2.3 Self-Reported DataSelf-reported data tend to contain systematic errors. Therefore we minimized the amount of self-reported data by employing direct observation[20] and interviews[2]. The IQE attended 125 of the130 collection meetings6 to make sure the meeting data was reported accurately and that reviewersdo not mistakenly add to their preparation forms any issues that were not found until collection.We also made detailed �eld notes to corroborate and supplement some of the data in the meetingforms. The repair information was veri�ed through interviews with the author, who completed theform. Our defect classi�cation was not made available to the reviewers or the authors to avoidbiasing them.Among the data that remained self-reported were the amount of preparation time and pre-inspection testing time expended. We had two concerns in dealing with these data: a participantmight deliberately fail to tell the truth (e.g., reporting 2 hours preparation time when he or shereally did not prepare at all); participants might make errors in recording data (e.g., reporting2 hours of preparation time when the correct �gure was 1.9 hours).During the experiment, the IQE had an o�ce next to those of the compiler development team,and after working with the team for 18 months, a great deal of trust was built up. Also, the6The unattended ones are due to schedule con
icts and illness.7



development environment routinely collects self-reported data, which is unavailable to managementat the individual level. Thus developers are conditioned to answer as reliably as they can. Wetherefore see no reason to suspect that participants ever deliberately misrepresented their data.As for the element of error, previous observational studies on time usage conducted in thisenvironment have shown that although there are always inaccuracies in self-reported data, theself-reported data is generally within 20% of the observed data[19].2.4 Results of the ExperimentOur experiment produced three general results:1. Inspection interval and e�ectiveness of defect detection were not signi�cantly a�ected by teamsize (large vs. small).2. Inspection interval and e�ectiveness of defect detection were not signi�cantly a�ected bynumber of sessions (single vs. multiple).3. E�ectiveness of defect detection was not improved by performing repairs between sessions oftwo-session inspections. However, inspection interval was signi�cantly increased.From this we concluded that single-session inspections by small teams were the most e�cient,since their defect detection rate was as good as that of other formats, and inspection interval wasthe same or less.The observed number of defects and the intervals per treatment are shown as boxplots7 inFigures 1 and 2, respectively. The treatments are denoted [1,or 2] sessions X [1,2, or 4] persons[No-repair,Repair]. (For example, the label 2sX1pN indicates a two-session, one-person, without-repair inspection.) It can be seen that most of the treatment distributions are similar but that theyvary widely within themselves.7We have made extensive use of boxplots to represent data distributions. Each data set is represented by a boxwhose height spans the central 50% of the data. The upper and lower ends of the box marks the upper and lowerquartiles. The data's median is denoted by a bold line within the box. The dashed vertical lines attached to thebox indicate the tails of the distribution; they extend to the standard range of the data (1.5 times the inter-quartilerange). All other detached points are \outliers."[6] 8



0
5

10
15

20

TREATMENT

O
B

S
E

R
V

E
D

 T
R

U
E

 D
E

F
E

C
T

S

1sX1p 1sX4p 2sX1pR 2sX2pR
1sX2p 2sX1pN 2sX2pN ALLFigure 1: Observed Number of Defects by Treatment. The treatment labels are interpretedas follows: the �rst digit stands for the number of sessions, the second digit stands for the numberof reviewers per session, and, for 2-session inspections, the `R' or `N' su�x indicates \with repair"or \no repair". As seen here, the distributions all seem to be similar except for 1sX1p and 2sX2pR,which were discontinued after 7 and 4 data points, respectively.

0
10

20
30

40

1sX1p 1sX4p 2sX1pR 2sX2pR
1sX2p 2sX1pN 2sX2pN ALL

TREATMENT

P
R

E
M

E
E

T
IN

G
 IN

T
E

R
V

A
L 

(w
or

ki
ng

 d
ay

s)

Figure 2: Pre-meeting Interval by Treatment. As seen here, the distributions all seem to besimilar except for 2sX2pR, which was signi�cantly higher.3 Sources of Variation3.1 Process Inputs as Sources of VariationIn addition to the process structure, we see that di�erences in process inputs (e.g., code unit andreviewers) also a�ects inspection outcomes. Therefore, we will attempt to separate the e�ects of9
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AuthorFunctionality 1 2 3 4 5 6 SubtotalsCodeGen 8 6 8 6 28Report 3 3I/O 9 9Library 12 12Misc 11 11Optimizer 2 2Parser 4 4SymTab 2 17 19Subtotals 6 12 8 17 10 35 88Table 1: Assignment of Authors to Functionality. Each cell gives the number of code unitsimplemented by an author for a functionality.code units in SymbTab were written by author 6, who has the lowest number of reported defects.Nevertheless, we may still be able to speculate about the relative impact of the two factors byexamining those functionalities with more than one author (CodeGen) and authors implementingmore than one functionality (author 6).In addition, functionality is also confounded with development phase as Phase 1 had most ofthe code for the front end functionalities (input-output, parser, symbol table) while Phase 2 hadthe back end functionalities (code generation, report generation, libraries).Because author, phase, and functionality are related, they cannot all be considered in the modelas they account for much of the same variation. In the end, we selected functionality as it is theeasiest to explain.Pre-inspection Testing. The code development process employed by the developers allowedthem to perform some unit testing before the inspection. Performing this would remove some of thedefects prior to the inspection. Figure 10 is a scatter plot of pre-inspection testing e�ort againstobserved defects in inspection (cor = 0.15). One would suspect that the number of observed defectswould go down as the amount of pre-inspection testing goes up, but this pattern is not observed inFigure 10.A possible explanation to this is that testing patterns during code development may havechanged across time. As the project progressed and a framework for the rest of the code was set16
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Figure 10: Pre-inspection Testing E�ort vs. Defects Found. This is a scatter plot showinghow the amount of pre-inspection testing related to the number of defects found in inspection (cor= 0.15). Note that the pre-inspection testing data was self-reported by the author. Points clusterat the quarter hours because we asked the authors to only record to that precision.up, it may have become easier to test the code incrementally during coding. This may result incode which has di�erent defect characteristics compared to code that was written straight through.It would be interesting to do a longitudinal study to see if these areas had high maintenance cost.3.2.2 Reviewer FactorsHere we examine how di�erent reviewers a�ect the number of defects detected. Note that we onlylook at their e�ect on the number of defects found in preparation, because their e�ect as a groupis di�erent in the collection meeting's setting.Reviewer. Reviewers di�er in their ability to detect defects. Figure 11 shows that somereviewers �nd more defects than others.10 Even for the same code unit, di�erent reviewers may�nd di�erent numbers of defects (Figure 12). This may be because they were looking for di�erentkinds of issues. Reviewers may raise several kinds of issues, which may either be suppressed atthe meeting, or classi�ed as true defects, soft maintenance issues (issues which required some non-10In addition to the 11 reviewers, 6 more developers were called in at one time or another to help inspect 1 or 2pieces of code, mostly to relieve the regular pool during the peak development periods. We did not include them inthis analysis because they each had too few data points. 17
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Figure 16: Meeting Duration vs. Defects Found in Meeting. This is a scatter plot showinghow the amount of time spent in the meeting related to the number of defects found in the meeting(cor = 0.57).partly dependent on the number of defects found, as detection of more defects may trigger morediscussions, thus lengthening the duration. It is also dependent on the complexity or readabilityof the code. Further investigation is needed to determine how much of the meeting duration isdue to the team e�ort independent of the complexity and quality of the code being inspected. Forsimilar reasons as with preparation time (see the previous discussion on preparation time), we didnot include this in the model.Combined Number of Defects Found in Preparation. The number of defects alreadyfound going into the meeting may also a�ect the number of defects found at the meeting. Eachreviewer gets a chance to raise each issue he found in preparation as a point of discussion, possiblyresulting in the detection of more defects. Figure 17 shows some correlation between number ofdefects found in the preparation and in the meeting (cor = 0.4).
22
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Figure 17: Defects Found in Preparation vs. Defects Found in Meeting. This is a scatterplot showing how the combined amount of defects found in the preparation related to the numberof defects found in the meeting (cor = 0.4).4 A Model of Inspection E�ectiveness4.1 Building the ModelTo explain the variance in the defect data, we built statistical models of the inspection process,guided by what we knew about it. Model building involves formulating the model, �tting themodel, and checking that the model adequately characterizes the process. We built the models inthe S programming language[3, 7].Using the factors described in the previous section, we modeled the number of defects found witha generalized linear model (GLM) from the Poisson family.12 We started with a model which hadall code unit factors, all reviewers, and the original treatment factors, represented by the followingformula:13Defects � TeamSize+ Sessions +Repairs+ Phase +Author + Func + log(Size) +12The generalized linear model and the rationale for using it are explained in Appendix C.13We used S language notation to represent our models[7, pp. 24-31]. For example, the model formula y � a+ b+cis read as, \y is modeled by a, b, and c." 23



RA + RB +RC + RD + RE + RF +RG + RH +RI +RJ +RK (1)In this model, Functionality and Author are categorical variables represented in S as sets ofdummy variables[7, pp. 20-22,32-36]. They have 7 and 5 degrees of freedom, respectively.Stepwise model selection heuristic14 selected the following model.Defects � TeamSize+ Sessions +Repairs+ Phase +Author + Func + log(Size) +RB + RC +RF + RG +RH + RIThis resulting model is not satisfactory because it retained many factors, making it di�cultto interpret. Also, even though these factors were considered important by the stepwise selectioncriteria, some of them do not explain a lot of the variance. So we increased the selection thresholdto produce a smaller model.15 Increasing the selection threshold did not simplify the model initially,until, at one point, a large number of factors were suddenly dropped. The resulting model thenwas: Defects � Phase + log(Size) +RB + RFIt must be noted that the factors left out of the model are not necessarily unimportant. Webelieve that there are other possible models for our data. In particular, Phase was consideredimportant. Phase is a surrogate variable representing the change in defects being found over time.Figure 7 clearly showed that something had changed over time but it is not clear what caused it. Thereason why this change over time explains a signi�cant part of the variability may be attributableto other factors. It is not clear which mechanism explains why Phase a�ects the number of defects.We also knew that Phase was confounded with Functionality (e.g., parser was implemented beforecode generator). Since we knew also that some parts of the compiler are harder to implement than14Stepwise model selection techniques are a heuristic to �nd the best-�tting models using as few parameters aspossible. To avoid over�tting the data, the number of parameters must always be kept small or the residual degreesof freedom high. To perform stepwise model selection we used the step() function in S[7, pp. 233-238].15In S, increase the scale parameter of the step() function.24
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estimated by the model compared to the residuals. The residuals appear to be independent of the�tted values.4.2 Lower Level ModelsThe inspection model is a high level description of the inspection defect detection process. Thee�ects of the process input and of the process structure can be compared using this model. But wealso know that defect detection in inspections is performed in two steps: preparation and collection.These two steps may be considered as independent processes which can be modeled separately.Doing so has several advantages. We can understand the resulting models of the simpler separateprocesses better than the model for the composite inspection process. In addition, there are moredata points to �t { 233 individual preparations and 130 collection meetings, as opposed to 88inspections.4.2.1 A Model for Defect Detection During PreparationTo build the preparation model, we started with the same variables as in inspection model 1. Sincethe same code unit was inspected several times, we added a categorical variable, CodeUnit, to theregression model. CodeUnit is a unique ID for each code unit inspected.Using stepwise model selection, we selected the variables that signi�cantly a�ect the variancein the preparation data. These were Functionality, Size, and Reviewers B, E, F, and J. This isrepresented by the model formula:PrepDefects � Func+ log(Size) + RB +RE +RF +RJIn this model, PrepDefects is the number of defects found in each of the 233 preparationreports. The presence of all the signi�cant factors from the overall model at this level gives us morecon�dence on the validity of the overall model. 26



4.2.2 A Model for Defect Detection During CollectionWe started with the same variables as in preparation model (see above). Using stepwise modelselection to select the variables that signi�cantly a�ect the meeting data we ended up with Func-tionality, Size, and the presence of Reviewers B, F, H, J, and K. This is represented by the modelformula: MeetingGains � Func + log(Size) +RB + RF +RH + RJ +RKIn this model, MeetingGains is the number of defects found in each of the 130 collectionmeetings. This is again consistent with the previous two models.4.3 Answering the QuestionsWe are now in a position to answer the questions raised in Section 3.1 with respect to inspectione�ectiveness.4.3.1 Will previous results change when process inputs are accounted for?In this analysis, we build a GLM composed of the signi�cant process input factors plus the treatmentfactors and check if their contributions to the model would be signi�cant.The e�ect of increasing team size is suggested by plotting the residuals of the overall inspectionmodel, grouped according to Team Size (Figure 19(a)). We observe no signi�cant di�erence in thedistributions. When we included the Team Size factor into the model, we saw that its contributionwas not signi�cant (p = 0:6, see Table 2).16The e�ect of increasing sessions is suggested by plotting the residuals of the overall inspectionmodel, grouped according to Session (Figure 19(b)). We observe no signi�cant di�erence in thedistributions. When we included the Session factor into the model, we saw that its contributionwas not signi�cant (p = 0:5).The e�ect of adding repair is suggested by plotting the residuals of the overall inspection model16Appendix C Section C.3.1 describes how Tables 2 and 3 were constructed.27
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(c)Figure 19: Examining the Signi�cance of the Experimental Treatment Factors. Thesethree panels depict the distribution of the residual data grouped according to Team Size, Sessions,and Repair.(for those inspections that had 2 sessions), grouped according to Repair policy (Figure 19(c)). Weobserve no signi�cant di�erence in the distributions. When we included the Repair factor into themodel, we saw that its contribution was not signi�cant (p = 0:2).4.3.2 Did design spread process inputs uniformly across treatments?We want to determine if the factors of the process inputs which signi�cantly a�ect the variance arespread uniformly across treatments. This is useful in evaluating our experimental design. Althoughrandomization guarantees that the long run distribution of the factors will be independent of thetreatments, we had a single set of 88 data points. Thus we felt it is important to know of anyimbalances in this particular randomization.As an informal sanity check we took each of the signi�cant factors in the overall inspectionmodel and tested if they are independent of the treatments. For each factor, we built a contingencytable, showing the frequency of occurrence of each value of that factor within each treatment. Wethen used Pearson's �2-test for independence[4, pp. 145-150]. If the result is signi�cant, then thefactor is not independently distributed across the treatments. Although the counts in the table cells28



Factor Degrees of Sum of F Value Pr(F)Freedom SquaresTreatment Team Size 2 2.65 0.50 0.6062factors Sessions 1 1.12 0.43 0.5146Repair 1 4.01 1.53 0.2207Input log(Code Size) 1 59.63 22.66 0.0000factors Functionality 7 43.76 2.38 0.0303RB 1 32.60 12.39 0.0007RF 1 34.67 13.17 0.0005Residuals 73 192.11Table 2: Factors A�ecting Inspection E�ectiveness. The sum of squares measure the rela-tive contribution of each factor to the variance of the defect data. The probabilities indicate thesigni�cance of the contribution.are too low for this �2-test to be valid, we use it as informal means to indicate gross nonuniformitiesin the assignment of treatments.Results show that the distribution of Reviewer B is independent of treatment (p = 0:6) whileFunctionality (p = 0:05) and Reviewer F (p = 0:06) may be unevenly assigned to treatments.Examining further shows us that Reviewer F never got to do any 1sX1p inspections, and thatFunctionality was not distributed evenly because some functionalities were implemented earlierthan others, when there were more treatments.Contingency tables only work with data which have discrete values. To test the independenceof log(Size) to treatment, we modeled it instead with a linear model, log(Size) � Treatment, todetermine if treatment contribution to log(Size) is signi�cant. The ANOVA result (p = 0:7) showsthat it is not, indicating that there is no dependence between code sizes and treatment.4.3.3 Are di�erences due to process inputs larger than di�erences due to processstructure?Table 2 shows the analysis of variance for our model. The signi�cance of the treatment factors'contribution were included for comparison.The table shows that di�erences in code units and reviewers drive inspection performance morethan di�erences in any of our treatment variables. This suggests that relatively little improvement29



in e�ectiveness can be expected of additional work on manipulating the process structure.4.3.4 What factors a�ecting process inputs have the greatest in
uence?The dominance of process inputs over process structure in explaining the variance also suggeststhat more improvements in e�ectiveness can be expected by studying the factors associated withreviewers and code units that drive inspection e�ectiveness.Di�erences in code units strongly a�ect defect detection e�ectiveness. Therefore, it is importantto study the attributes that in
uence the number of defects in the code unit. Of the code unitfactors we studied, code size was the most important in all the models. This is consistent with theaccepted practice of normalizing the defects found by the size of the code. The next most importantfactor is functionality. This may indicate that code functionalities have di�erent levels of imple-mentation di�culty, i.e., some functionalities are more complex than others. Because functionalityis confounded with authors, it may also be explained by di�erences in authors. And because itis also confounded with development phase, another possible explanation is that code function-alities implemented later in the project may have less defects due to improved understanding ofrequirements and familiarity with implementation environment.The choice of people to use as reviewers strongly a�ects the defect detection e�ectiveness of theinspection. The presence of certain reviewers (in particular, Reviewer F) is a major factor in allthe models. It suggests that improvements in e�ectiveness may be expected by selecting the rightreviewers or by studying the characteristics and background of the best reviewers and the implicittechniques by which they study code and detect defects.5 A Model of Inspection IntervalUsing the same set of factors, we also built a statistical model for the interval data. We measuredthe interval from submission of the code unit for inspection up to the holding of the collectionmeeting. Unlike defect detection, we do not see any further decomposition of the inspection processthat drives the interval. The author schedules the collection meeting with the reviewers and thereviewers spend some time before the meeting to do their preparation. So instead of splitting the30



inspection process into preparation and collection, we just modeled the interval from submissionto meeting.A linear model was constructed from the factors described in the previous section.17 We startedby modeling interval with the same initial set of factors as in the previous section. Using stepwisemodel selection heuristic we arrived at the following model.Interval � Phase + Func +RE +RH +RKEven though we ended up with a small set of factors, the model was hard to interpret. It didnot make sense for Functionality to be an important factor in
uencing the length of the inspectioninterval. In addition Functionality and Phase were confounded so they may be explaining partof the same variance. Our belief was that they were masking the e�ect of the other confoundedfactor, Author. It makes more sense for Author to be in the model since he is the central personcoordinating the inspection. So we re-ran the stepwise model selection heuristic, instructing it toalways retain the Author factor. The result was:Interval � Author + RI + RepairIn this model, Interval is the number of days from availability of code unit for inspection upto the last collection meeting.The analysis of variance for this model is in Table 3. For comparison, all the treatment factorswere added to the model. The model explains � 25% of the variance using just 7 degrees of freedom.This indicates the extent to which structure and inputs a�ect interval.5.1 Model CheckingFigure 20 gives a graphical summary of the model's goodness-of-�t. The left plot shows the valuesestimated by the model compared to the original values. The presence of a correlation suggests that17The linear model was used here rather than the generalized linear model because the original interval dataapproximates the normal distribution. 31
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Figure 20: Examining the �t of the model. The left plot compares values estimated by themodel with the original values (a perfect �t would imply that everything is on the line y = x).There is some correlation between the two (cor = 0.48). The right plot shows the relation of the�tted values to the residuals. The residuals appear to be independent of the �tted values.the model reasonably estimates the original data. The right plot shows the values estimated by themodel compared to the residuals. The residuals appear to be independent of the �tted values.5.2 Answering the QuestionsWe are now in a position to answer the questions raised in Section 3.1, with respect to inspectioninterval.5.2.1 Will previous results change when process inputs are accounted for?In this analysis, we build a linear model, composed of the signi�cant process input factors plus thetreatment factors and check if their contributions to the model are signi�cant.The e�ect of increasing team size is suggested by plotting the residuals of the interval modelconsisting only of input factors, grouping them according to Team Size (Figure 21(a)). We observeno signi�cant di�erence in the distributions. When we included the Team Size factor into themodel, we saw that its contribution was not signi�cant (p = 0:4, see Table 3).The e�ect of increasing sessions is suggested by plotting the residuals of the interval modelconsisting only of input factors, grouping them according to Session (Figure 21(b)). We observe nosigni�cant di�erence in the distributions. When we included the Session factor into the model, we32
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(c)Figure 21: Examining the Signi�cance of the Experimental Treatment Factors. Thesethree panels depict the distribution of the residual data grouped according to Team Size, Sessions,and Repair.saw that its contribution was not signi�cant (p = 0:3).The e�ect of adding repair is suggested by plotting the residuals of the interval model consistingonly of input factors (for those inspections that had 2 sessions), grouping them according to Repairpolicy (Figure 21(c)). We have already seen that Repair has a signi�cant contribution (p = 0:04)to the model in the previous section and this is supported by the plot.5.2.2 Are di�erences due to process inputs larger than di�erences due to processstructure?Table 3 shows the factors a�ecting inspection interval and the amount of variance in the in-terval that they explain. We can see that some treatment factors and some process input factorscontribute signi�cantly to the interval. Among treatment factors Repair contributes signi�cantlyto the interval. This shows that while changes in process structure do not seem to a�ect defectdetection, it does a�ect interval. 33



Factor Degrees of Sum of F Value Pr(F)Freedom SquaresTreatment Team Size 2 206.6 0.85 0.4308factors Sessions 1 161.6 1.28 0.2619Repair 1 532.0 4.39 0.0395Input Author 5 2195.0 3.62 0.0054factors RI 1 242.1 2.00 0.1618Residuals 77 9340.86Table 3: Factors A�ecting Interval. The sum of squares measure the deviation contributedby each factor to the mean of the interval data. The probabilities indicate the signi�cance of thecontribution.5.2.3 What factors a�ecting process inputs have the greatest in
uence?The results of modeling interval show that process inputs explain only � 25% of the variance ininspection interval even after accounting for process structure factors. Clearly, other factors, apartfrom the process structure and inputs a�ect the inspection interval. Some of these factors maystem from interactions between multiple inspections, developer and reviewer calendars, and projectschedule and may reveal a whole new class of external variation which we will call the processenvironment. These are beyond the scope of the data we observed for this study but they deservefurther investigation.6 Conclusions6.1 Intentions and CautionsOur intention has been to empirically determine the in
uence upon defect detection e�ectivenessand inspection interval resulting from changes in the structure of the software inspection process(team size, number of sessions, and repair between multiple sessions). We have extended theanalysis to study as well the in
uence of process inputs.All our results were obtained from one project, in one application domain, using one lan-guage and environment, within one software organization. Therefore we cannot claim that ourconclusions have general applicability until our work has been replicated. We encourage any-34



one interested to do so, and to facilitate their e�orts we have described the experimental condi-tions as carefully and thoroughly as possible and have provided the instrumentation online. (Seehttp://www.cs.umd.edu/users/harvey/variance.html.)6.2 The Ratio of Signal to Noise in the Experimental DataOur proposed models of the inspection process proved useful in explaining the variance in the datagathered from our previous experiment. From them we could show that the variance was causedmainly by factors other than the treatment variables. When the e�ects of these other factors wereremoved, the result was a data set with signi�cantly reduced variance across all of the treatments,which improved the resolution of our experiment. After accounting for the variance (noise) causedby the process inputs, we showed that the results of our previous experiment do not change (wesee the same signal).This has several implications for the design and analysis of industrial experiments. Past studieshave cautioned that wide variation in the abilities of individual developers may mask e�ects due toexperimental treatments[9]. However, even with our relatively crude models, we managed to devisea suitable means of accounting for individual variation when analyzing the experimental results.But ultimately, we will get better results only if we can identify and control for factors a�ectingreviewer and author performance.Note also that the overall drop in defect data over time (see Figure 7) underscores the fact thatresearchers doing long term studies must be aware that some characteristics of the processes theyare examining may change during the study.6.3 The Need for a New Approach to Software InspectionWhen process inputs are accounted for, the results of the experiment show that di�erences inprocess structure have little e�ect on defect detection. This reinforces the results of our previousexperiment. That work showed that single session inspection by a small team is the most e�cientstructure for the software inspection process (fewest personnel and shortest interval, with no lossof e�ectiveness|see summary in Section 2.4 above).35



If this is the case, and we believe that it is, then further e�orts to increase defect detectionrates by modifying the structure of the software inspection process will produce little improvement.Researchers should therefore concentrate on improving the small-team-single-session process by�nding better techniques for reviewers to carry it out (e.g., systematic reading techniques[1] for thepreparation step, meetingless techniques[10, 18, 12] for the collection step, etc.).7 Future Work7.1 Framework For Further StudyOur study revealed a number of in
uences a�ecting variation in the data, some internal and someexternal to the inspection process.Internal sources included factors from the process structure (the manner in which the steps areorganized into a process, e.g., team sizes, number of sessions, etc.), and from the process techniques(the manner in which each step is carried out, the amount of e�ort expended, and the methodsused, e.g., reading techniques, computer support, etc.).External sources included factors from the process inputs (di�erences in reviewers' abilities andin code unit quality) and from the process environment (changes in schedules, priorities, workload,etc.).7.2 Premise for Improving Inspection E�ectivenessWe believe that to develop better inspection methods we no longer need to work on the way thesteps in the inspection process are organized (structure), but must now investigate and improvethe way they are carried out by reviewers (technique).7.3 Need for Continued Study of Inspection IntervalWe have not yet adequately studied the factors a�ecting interval data. Some of the factors arefound in process structure (speci�cally repairing in between sessions) and process inputs, but muchof its variance is still unaccounted for. To address this, we must examine the process environment,36
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A Project OverviewIn this appendix, we present the compiler project in some detail so that the reader may be awarethat the code units being inspected in the experiment are not uniform and may vary in numberof injected defects in a systematic manner, as when certain functionalities are tied to certaindevelopers. For an experiment to gain credibility, it must be replicated in many di�erent settings,which may or may not give consistent results. In either case, a description of the original projectmay be used to strengthen corroborating results or give non-corroborating results some alternativeexplanation.A.1 Project BackgroundThe 5ESS is Lucent Technologies' 
agship local/toll switching system, containing an estimated 10million lines of code in product and support tools. At the heart of the 5ESS software is a dis-tributed relational database with information about hardware connections, software con�guration,and customers. For the switch to function properly, this data must conform to certain integrity con-straints. Some of these are logical constraints; for example, \call waiting and call forwarding/busyshould never be active on the same line." Other constraints exist to document data design choices(redundancy, functional dependencies, distribution rules) that support e�cient 5ESS operation andcall processing. Enforcing these constraints are done through data audits, which check for all dataviolations on a snapshot of the database, and transaction guards, which ensure that incrementalchanges to the database leave it in a consistent state.PRL5[15], a declarative language based on �rst-order predicate logic, was created to specifythese integrity constraints. PRL5 speci�cations were to be translated automatically into data au-dits and transaction guards in C, with is then compiled on multiple platforms. Due to the constantlychanging integrity constraints to be provided to di�erent communication service providers world-wide, compilation speed is crucial. The generated C code also had to be optimized to make as fewdisk accesses as possible. (For more details on the history of PRL5, see Ladd and Ramming[16]).The basic compilation scenario for P5CC is shown in Figure 22. The assignment of the devel-opment team is to implement P5CC as well as the P5CC runtime library.40
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B Measuring E�ectivenessIn any empirical study, it is important to precisely de�ne the variables we intend to measure. Tomeasure the inspection's defect detection e�ectiveness, there are several choices, each with its ownadvantages and disadvantages. The artifact has a certain total defect density, �TOTAL (defectsdivided by size), before the inspection. A certain portion of it, �OBSERVED is detected by theinspection and the rest, �REMAINING remains in the artifact after the inspection. We can write�TOTAL = �OBSERVED + �REMAINING. When assessing inspection e�ectiveness, some naturalmetrics include the remaining defect density in the artifact, �REMAINING and the percentage ofdefects removed �OBSERVED=�TOTAL. The �rst gives an excellent view of the suitability of theartifact for use in subsequent phases of the software life cycle. The second gives an excellent viewof the e�ectiveness of the process.Unfortunately, neither quantity can be measured directly since we never know how many actualdefects exist in the original artifact. There is no easy solution to this problem. Attempts atcapture-recapture sampling techniques[11, 22] have been disappointing. Longitudinal studies whichtrack the artifact and the defects found throughout its life cycle take a long time to complete andtherefore are not capable of providing immediate feedback. In addition, it may be extremely di�cultto determine whether additional defects found were due to mistakes in implementing the originalrequirements or in customer-requested enhancements.An alternative metric is the observed defect density, �OBSERVED. It has the advantage of beingavailable as soon as the inspection has been completed. However, it is just a surrogate measure anddoes not give an accurate picture of the inspection's e�ectiveness. For example, if the number ofobserved defects is low, there is no way to tell if it is because the inspection was poorly executed,or if the artifact did not have many defects to start with.Another issue is whether to use observed defect density or just the actual number of observeddefects. The choice depends on the analysis technique we will be using later on. The defect densityis approximately normally distributed and we can use simple and well-known linear models[4] toanalyze the data. On the other hand, the actual number of defects is a more natural responsevariable because we can think of the inspection process as a process for counting the number of42
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Figure 24: Size vs. Number of Defects. This is a scatter plot showing the relation between thesize of the code and the number of defects found. The straight line is �tted using linear modelingwhile the curved line is �tted using generalized linear modeling.defects. In this case, we can apply the methods of generalized linear modeling[17], in particular,the Poisson family of generalized linear models. Figure 24 shows the number of defects versus size.The dashed straight line and the curved solid line show the �tted data when we try to explainthe variance with just the size variable, using linear modeling and generalized linear modeling,respectively. We can see that they give approximately the same �t so we can use either one. Wedecided to use the generalized linear model because it is more natural for our problem (�ttedvalues will always be nonnegative counts). Hence we used actual number of defects as our measureof e�ectiveness.
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C Statistical Modeling in SC.1 Statistical ModelingA statistical model takes the general form, y = �(X1) + �(X2), where y is the vector of observeddata, � is a function taking as input a set X1 of factors with associated coe�cients, x11; : : : ; x1nand giving as output ŷ, the expected value of y. The residuals � represent a process whose e�ectsare ignored or whose presence is unknown to us. Model formulation deals mainly with describing�, specifying factors and the interaction between them. Model �tting deals with moving factorsbetween X1 and X2 and adjusting the coe�cients to give the best �t to y. A model may beconsidered adequate when the residuals y � ŷ are independently distributed with zero mean andconstant variance.S is a programming environment for data analysis[3, 7]. In this appendix, we will outline ourapproach in using S to build and analyze statistical models for defect and interval data.C.2 Model FormulationC.2.1 Identifying Possible VariablesThe possible factors to be incorporated into the model are usually determined from prior knowledgeof the process being modeled. The initial model is normally speci�ed with the full set of availablefactors.Note that the e�ect caused by one factor may depend on the level of another factor. Each set ofpossibly related factors can be represented as an additional interaction term in the model[7, p. 22].Since we had a limited number of observations and had di�culty interpreting interaction terms weavoided �tting interactions between factors.C.2.2 Selecting the Model Function FormWith our defect data, the linear model[4] for defect density and the generalized linear model[17] fordefect counts appear to perform equally well (see Appendix B). Defect counts are naturally modeledas a counting process. In our data the counts were too small to use Gaussian approximation.44



Hence, we used the generalized linear model (as opposed to linear model where the distribution ofthe response variable is assumed to be Gaussian).For the interval data, the linear model was used because the distribution of intervals approxi-mated a normal distribution.S o�ers two functions for specifying models, lm() for linear models and glm() for generalizedlinear models. Both take as basic parameters a model speci�cation and the data for the model. Inaddition, in glm(), we can specify a distribution family (Poisson, Gaussian, etc.)C.3 Model FittingWe did model �tting by iteratively adding or dropping factors and adjusting the coe�cients to givethe best �t for the given data (the particular implementation was S function step)[7, pp. 233-238]. In each iteration, a new factor is added to the model if it signi�cantly reduces the residualvariance. Conversely, a factor may be dropped if its removal does not signi�cantly increase theresidual variance.While it is desirable to add as many explanatory factors in the model, there is the danger ofadding too many factors. This is known as over�tting[8]. The problem is that while the modelmight �t the particular dataset well, it may be inexplainable, may not make physical sense, or haveno predictive power when used on a di�erent dataset.We looked for a parsimonious model with the help of stepwise model selection. In stepwisemodel selection, we start with an existing model and iteratively add or drop one term, minimizingthe number of parameters while maximizing the �t according to some speci�ed criterion. In S, weused the function step(), increasing the scale parameter until the number of factors in the modelare su�ciently reduced. There are other methods and criteria to select the best model but this isbeyond the scope of this paper.The model selection algorithm may not give the best model in terms of explaining the physicalmeaning of the factors it manipulates. At the end, we must use our prior knowledge of the processin order to �ne-tune the model to one that is interpretable.45



C.3.1 Calculating the Signi�canceTo calculate the signi�cance of a factor's contribution into the model, we used the summary.aov()function to perform analysis of variance, passing the model speci�cation into it, with the factor ofinterest at the end of the formula. For example, if we have a model y � a + b+ c, we perform theanalysis of variance on y � b+ c+ a, y � a+ c+ b, and y � a+ b+ c to calculate the signi�canceof the contributions of a, b, and c to the model. Essentially, this is how step() determines whichfactor to retain and which to drop.C.4 Model CheckingOnce a model has been speci�ed and �tted, it is checked to see if it is an adequate model. Themodel is adequate when it su�ciently explains the variance, i.e., adding the additional factors doesnot substantially reduce the residual variance. An informal check is to look for patterns in the setof residuals. The presence of patterns in the residuals is taken as an indication of presence of abetter model.
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