
Understanding the E�ects of Developer Activities on InspectionIntervalAdam A. Porter�, Harvey P. Siy Lawrence G. Votta, Jr.Computer Science Department Software Production Research DepartmentUniversity of Maryland Lucent TechnologiesCollege Park, MD 20742 USA Naperville, IL 60566 USA+1 630 224 6830 +1 630 713 4612faporter,harveyg@cs.umd.edu votta@research.bell-labs.comMarch 6, 19971 ABSTRACTWe have conducted an industrial experiment to assess the cost-bene�t tradeo�s of several software inspection pro-cesses. Our results to date explain the variation in observed e�ectiveness very well, but are unable to satisfactorilyexplain variation in inspection interval.In this article we examine the e�ect of a new factor { process environment { on inspection interval (calendartime needed to complete the inspection). Our analysis suggests that process environment does indeed inu-ence inspection interval. In particular, we found that non-uniform work priorities, time-varying workloads, anddeadlines have signi�cant e�ects.Moreover, these experiences suggest that regression models are inherently inadequate for interval modeling,and that queueing models may be more e�ective.1.1 KeywordsSoftware inspection, empirical studies, statistical modeling, interval reduction, queueing.2 INTRODUCTIONCompanies that cannot build quality products as quickly as their competitors may �nd themselves at a se-vere competitive disadvantage. Therefore understanding, identifying, and eliminating bottlenecks in softwaredevelopment is extremely important. Until recently, however, little research has addressed this issue.Previously we conducted an industrial experiment at Lucent Technologies to determine which factors drivethe cost and bene�ts of di�erent software inspection processes [8]. To date we have explored the following factors.� process structure (e.g., team size, number and sequencing of sessions),� process techniques (e.g., preparation times, inspection rates), and� process inputs (e.g., reviewers, authors, code quality).Using regression analysis, we found that although these factors explain much of the variation in e�ectiveness,they do not adequately explain variation in inspection interval [7].In this article we examine whether a fourth factor { process environment { explains this variation. The processenvironment is the logistic, organization, and execution context in which a process operates.We conjecture that process environment a�ects interval when development processes subtly inuence oneanother. These inuences manifest themselves in several ways.� This work is supported in part by a National Science Foundation Faculty Early Career Development Award, CCR-9501354.Dr. Siy was also partly supported by AT&T 's Summer Employment Program1



� The coding process provides input to the inspection process; code must be written before it is inspected.However, when many inspections are in progress, there's little time left to write new code. So inspectionsa�ect coding as well.� Inspection tasks are always interleaved with other development processes { writing other code, developingtests, inspecting other units, etc. Therefore, the completion of an inspection may depend on the completionof a seemingly unrelated task.� Developers often work on multiple projects simultaneously. This means that working on one project's taskmay delay the completion of another's.� Coding assignments are not always distributed uniformly in time or uniformly throughout the developmentteam. One developer may build an entire subsystem early in the project while another builds a di�erentsubsystem later. Consequently, coding assignments may come in bursts.� Most tasks have some deadlines. As they approach, some tasks whose deadline is not near may be deferredto a later date.Through direct observation and surveys we found that developers often have to choose which of their manyactivities to perform at any given time. We hypothesize that the process environment inuences these choicesand that they, in turn, inuence inspection interval.Our analysis suggests that process environment does indeed inuence inspection interval. In particular, wefound that di�erent coding and inspection tasks have di�erent priorities. Therefore, when a developer's workloadis high, low priority tasks are deferred. Since some inspection tasks have very low priority, this lengthensinspection interval.Moreover, this situation suggests that regression modeling is inadequate for intervals. Instead we mustinvestigate models that capture time- and workload-dependent behaviors. Priority queueing networks are a goodexample of such models.Below we review our previous research, describe process environment and develop several measures of it,analyze our data to �nd support for our hypotheses, present a queueing model formulation of this inspectioninterval, and discuss future research.3 BACKGROUNDThe software inspection process has three steps, Preparation, Collection, and Repair. First, each reviewerindividually analyzes the document looking for its defects (Preparation). Next, these defects are collected anddiscussed, usually at a team meeting (Collection). Finally, a list of known defects are presented to the document'sauthor, who �xes them (Repair).With the cooperation of professional developers working on an industrial software project at Lucent Tech-nologies, we conducted a controlled experiment to compare the costs and bene�ts of several di�erent softwareinspection processes (see Porter, et al. [8] for details). The project was to develop a compiler and environmentto support developers of the 5ESSTM telephone switching system. The complete system contains over 55K newlines of C++ code, plus another 10K which was reused from a prototype.Our inspection pool consisted of 11 experienced developers1, each of whom had received inspection train-ing within the previous �ve years. The experiment ran for 18 months during which 88 code inspections wereperformed.We manipulated several independent variables including, the number of reviewers (1, 2, or 4), the numberof sessions (1 or 2), and, for multiple sessions, whether to require or prohibit repair of known defects prior toholding the second session. A treatment is speci�ed by assigning a value to each of these three variables. Forexample, one treatment involves 2-sessions, with 2-persons per session with Repair in between the �rst andsecond sessions. This is denoted 2sX2pR.For each inspection our dependent variables included observed defect density (e�ectiveness), and working daysto complete (interval). Whenever a new code unit became available for inspection, it was randomly assigned atreatment and a set of reviewers. In this way we attempted to control for di�erences in natural ability, learningrate, and code quality.1In addition, 6 more developers were called in at one time or another to help inspect 1 or 2 code units, mostly to relieve theregular pool during peak development periods. We did not include them here because they contribute too few data points.2



0
10

20
30

40

1sX1p 1sX4p 2sX1pR 2sX2pR
1sX2p 2sX1pN 2sX2pN ALL

TREATMENT

P
R

E
M

E
E

T
IN

G
 IN

T
E

R
V

A
L 

(w
or

ki
ng

 d
ay

s)

Figure 1: Pre-meeting Interval by Treatment. The distributions are similar except for 2sX2pR, which wassigni�cantly higher.
0

5
10

15
20

25
30

M
E

A
N

 S
U

B
IN

T
E

R
V

A
LS

1s
X1p

1s
X2p

1s
X4p

2s
X1p

N

2s
X1p

R

2s
X2p

N

2s
X2p

R

Gap
Postmeeting
Premeeting

Figure 2: Subinterval by Treatment. This stacked barchart depicts the mean pre- and post-meeting intervalby treatment. Note the pronounced gap between the �rst and second sessions of 2sX2pR inspections.Our initial results showed the process structure (number of reviewers, the way they are organized, etc.)doesn't inuence e�ectiveness. However, repairing defects in between multiple sessions did signi�cantly increaseinterval.2.Figure 1 depicts the distribution of pre-meeting inspection intervals by treatment. The pre-meeting interval istime in working days from the time the code unit was ready for inspection to the time of the Collection meeting.Our initial analysis focused on pre-meeting rather than total interval because authors sometimes deferred repair,which inated the total interval.3We saw that most of the distributions are similar except for the 2sX2pR treatment. Although, our statisticalanalysis indicated that repairing defects in between two sessions signi�cantly increased interval, Figure 2 showsthat the di�erence is really due to a time lapse between the end of the �rst session and the start of the second.Furthermore, this gap does not appear in 2sX1pR inspections, which suggests that repair does not necessarilyincrease interval. One interpretation is that multiple sessions increase interval as the number of reviewers increases(possibly due to scheduling di�culties).When we consider total interval, there are no signi�cant di�erences due to the treatments, but there is still ahuge amount of variation within them. Therefore in the remainder of this article we will consider total interval2In this experiment, we consider two data distributions to be signi�cantly di�erent only if the Student's t and the Wilcoxon ranksum test both reject the null hypothesis that the observations are drawn from the same population with a con�dence level � 0:9,i.e., pt < 0:1;pw < 0:1. In most cases, the two tests agree and when they don't agree, it is usually the case that one is near theborderline.3Each session of a two-session inspection has its own interval. We calculate the entire inspection's pre-meeting interval as follows.For inspections without repair, it is the longer of the two pre-meeting intervals, since both begin at the same time. For those withrepair, it is the two sessions placed end-to-end, excluding the post-meeting interval from the second session.3



and attempt to explain its variation.A �nal issue is that we have chosen to analyze each session of a 2-session inspection separately. This simpli-�cation allows us to model one- and two-session inspections uniformly.4 MODELING INSPECTION INTERVALIn order to understand the e�ect of process environment on inspection interval, it is important to have a detailedunderstanding of the inspection process and its interface to the coding process. In our environment developersenacted the following process.4.1 The Inspection Process1. Modi�cation Requests (MR's) are issued whenever additions or enhancements to code are needed.2. A developer accepts one or more MR's and develops the necessary code.3. The author then makes a code unit available for inspection. A code unit may implement one or more MR's.4. A particular inspection treatment and a review team is randomly assigned to the inspection.5. The author contacts the review team and schedules the inspection meeting. (If the treatment calls for2 sessions with no repair in between, the author contacts 2 sets of reviewers and sets up two separatemeetings.)6. Prior to the meeting, the reviewers analyze the code unit looking for defects.7. The author and reviewers conduct the collection meeting. One of the reviewers is assigned to be themoderator, who makes sure the meeting does not get bogged down on any single point of discussion.8. After the meeting the author collects the consolidated list of issues. Issues are the potential defects discov-ered during the inspection.9. The author determines which issues must be repaired, and does so.10. The author brings the reworked code to the inspection moderator who ensures that all issues have beenaddressed and signs o� the inspection.11. If the treatment calls for 2 sessions with repair in between, then the author repeats all inspection steps onemore time.4.2 Analysis StrategyThe goal of this analysis is to determine whether the data supports our hypothesis that the interaction of processenvironment and task priorities explain variation in inspection interval.We analyzed inspection interval using linear regression models [2]. We built one model for the pre-meetinginterval (time from availability to meeting) and another for the post-meeting interval (time from meeting to thecompletion of repair). Our reasoning was that since only one reviewer (the moderator) is involved after themeeting, it is likely that di�erent factors come into play during each of these two inspection phases.4.3 Potential Sources of VariationThe factors we investigated captured information about the process structure, the process inputs, the processtechniques, and the process environment. Data for these factors were extracted from the inspection data collectedfor the experiment and the change management database being used by the developers.4



0
10

20
30

40

1 2 3 4 5 6

AUTHOR ID

P
R

E
M

E
E

T
IN

G
 IN

T
E

R
V

A
L 

(W
O

R
K

IN
G

 D
A

Y
S

)

Figure 3: E�ect of Authors on Pre-meeting Interval. This boxplot show the e�ect of authors on pre-meetinginterval.
0

10
20

30
40

50
60

1 2 3 4 5 6

AUTHOR ID

P
O

S
T

M
E

E
T

IN
G

 IN
T

E
R

V
A

L 
(W

O
R

K
IN

G
 D

A
Y

S
)

Figure 4: E�ect of Authors on Post-meeting Interval. This boxplot shows the e�ect of authors on post-meeting interval.4.3.1 Process StructureProcess structure factors describe the manner in which inspection steps and resources are organized into a process.In this study we examine three such factors: Team size, number of sessions, and repair policy. (These variablesare described in the BACKGROUND Section.) Team size and number of sessions have no signi�cant e�ect oninterval; As described earlier, the sessions of a two-session with repair inspections tend to have a smaller thanaverage interval.Because we plan to model each session of two-session inspections separately, we must take care not to ignorepossible e�ects of interactions in between two-session inspections. Hence, we will add variables to tell us whethera particular session is the �rst or second session and whether there was repair in between or not.4.3.2 Process InputProcess inputs describe the raw materials used to conduct the inspection. This includes the code itself and thevarious participants.Code Size. The size of a code unit is given in terms of non-commentary source lines. Code size does nothave a signi�cant e�ect on interval.Author. The author is the central person in the inspection. He or she writes the code being inspected,coordinates the inspection, and resolves and repairs the issues that are raised. As shown in Figures 3 and 4,the e�ect of the unit's author is signi�cant.4Reviewers. The reviewers in our study are labeled A through K. Reviewers A through F are members ofthe development team and are called internal reviewers. Reviewers G to K are not team members and are called4Signi�cance tests for multiple comparisons like this were computed using the F-test.5



0
10

20
30

40

A B C D E F G H I J K

REVIEWER ID

P
R

E
M

E
E

T
IN

G
 IN

T
E

R
V

A
L 

(W
O

R
K

IN
G

 D
A

Y
S

)

Figure 5: E�ect of Reviewers on Pre-meeting Interval. This boxplot shows the e�ect of reviewers on thepre-meeting interval. Reviewers do not have a signi�cant e�ect on post-meeting interval.
NUMBER OF MAJOR ISSUES

W
O

R
K

IN
G

 D
A

Y
S

0 2 4 6 8

0
10

20
30

40
50

60

Figure 6: E�ect of Major Issues on Post-meeting Interval. This plot shows the e�ect of major issues onthe post-meeting interval.external reviewers. Reviewers have a signi�cant e�ect on the pre-meeting interval, as shown in Figure 5. Theyhave no e�ect on the post-meeting interval.4.3.3 Process TechniquesProcess techniques refer to the technical activities, the methods and outcomes of inspection itself. We examinedthe following aspects of process techniques.5Major Issues. This is the number of issues recorded during the inspection, whose repair required more thanfour hours to complete. Figure 6 shows that major issues signi�cantly a�ected the post-meeting interval.Total Issues. The total number of issues recorded during the inspection. One might expect that a greaternumber of issues would take longer to resolve, however, the e�ect on post-meeting interval is not signi�cant.True Defects. The total number of issues that the author repaired and whose repair a�ected the executionbehavior of the system. This is contrasted with issues that involved coding standards, documentation, etc. Thenumber of true defects did not have a signi�cant e�ect on post-meeting interval.4.3.4 Process EnvironmentThe process environment factors we examined include measures of workload, lifecycle phase during which thecode is inspected, and the presence of deadlines.Workload Measures. The workload measures are an estimate of how busy a developer might have been at thetime of the inspection. We calculated several workload measures by summing the number of pending inspections5Since issues are raised before or during the inspection meeting, these measures only apply to the post-meeting interval.6



TIMELINE OF INSPECTIONS

W
O

R
K

IN
G

 D
A

Y
S

0
20

40
60

80
10

0

7/
94

8/
94

9/
94

10
/9

4
11

/9
4

12
/9

4
1/

95
2/

95
3/

95
4/

95
5/

95
6/

95
7/

95
8/

95
9/

95
10

/9
5

11
/9

5
12

/9
5Figure 7: Timeline of Inspection Activities. This plot is a timeline representing the inspection tasks thatoccurred during the study. Each diagonal line represents one session. The lower end of the line indicates thestart of the inspection. The line's length is proportional to the inspection's interval. Each line contains an \X"which marks the point in time when the inspection meeting occurred. Note that inspections often come in burstsand that during these periods repair is frequently deferred.(inspection load), inspections with un�nished rework (rework load), and pending MR's (coding load). Figure 7 isa timeline of inspections over the duration of the study. This �gure points out that rework tends to be deferredwhen many inspections are taking place.We calculated pre-meeting workloads for the 2-week period spanning the week before and after the code unitbecame available. For post-meeting workloads, we considered the week before and after the inspection meeting.We calculated workload measures for the author and for the inspection team. Since the busiest person isoften the bottleneck in scheduling, the workload measures for the inspection team were the maximum scores ofeach task type among the participating reviewers. Reviewer workloads did not have a signi�cant e�ect on pre- orpost-meeting interval. The plots in Figure 8 show the e�ect of author workload on pre-meeting and post-meetingintervals.Month Into Project. Through the 18 months when data was collected, the overall mean time to complete aninspection may change, i.e., may have a tendency to increase or decrease over time. Figure 7 does not show anyincreasing or decreasing trend in the length of the inspection intervals.5 REGRESSION ANALYSISWe built models of the pre- and post-meeting intervals using factors from the process structure, process inputs,process techniques, and process environments which signi�cantly explain their variance. More details on modelbuilding can be found in the appendix.65.1 Pre-meeting IntervalThe following model of pre-meeting interval explains 35% of the variance using only 10 out of 130 degrees offreedom. Premeet � Author + ExternalMember +AuthorCodingLoad+6For example, the section entitled \Calculating the Signi�cance" describes the test determining which factors are consideredsigni�cant to the model. 7



0 5 10 15

0
10

20
30

40
50

60

P
R

E
M

E
E

T
IN

G
 IN

T
E

R
V

A
L

(a)

AUTHOR INSPECT LOAD

0 5 10 15

0
10

20
30

40
50

60

(b)

AUTHOR REWORK LOAD

0 5 10 15

0
10

20
30

40
50

60

(c)

AUTHOR CODING LOAD

0 5 10 15

0
10

20
30

40
50

60

P
O

S
T

M
E

E
T

IN
G

 IN
T

E
R

V
A

L

(d)
0 5 10 15

0
10

20
30

40
50

60

(e)
0 5 10 15

0
10

20
30

40
50

60

(f)Figure 8: E�ect of Author's Workload on Interval. This matrix of plots shows the correlation betweensome inspection interval and some measure of workload. The plot has two rows and three columns. Plots in theupper row are for pre-meeting intervals, plots in the lower row are for post-meeting intervals. Reading left toright, the columns represent the author's inspection load, rework load, and coding load.1stSessionRepair +2ndSessionRepair +1stSessionNoRepairAs we mentioned previously, repairing defects in between two-session inspections a�ects interval, but this isbecause the pre-meeting intervals of the sessions involving repair are signi�cantly less than that of the rest ofthe treatments (see Figure 2). In addition, the �rst session of the inspections with no repair is also signi�cantlyless than the rest of the treatments. These indicate the presence of an implicit deadline to get all sessions of aninspection completed in a reasonable amount of time.7The code unit's author also a�ects the pre-meeting interval, as shown in Figure 3. This possibly occurs becausehe or she initiates the inspection process by making the code unit available for inspection and coordinates thescheduling of the inspection meeting.The presence of at least one external reviewer signi�cantly increases the pre-meeting interval. This may bebecause most of the external reviewers are not immediately available for inspections and take longer to schedule.Figure 5 shows that, with the possible exception of Reviewer G, inspections involving external reviewers havehigher interval distributions than those involving internal reviewers.The model shows that reviewer and author inspection workloads do not explain the variance in pre-meetinginterval. However, the author's coding load { number of pending MR's { is signi�cant, but it turns out to be anegative contributor to the interval! Figure 8(c) shows the negative relationship between author coding load andpre-meeting interval.5.1.1 Residual AnalysisA model is adequate if it reasonably estimates the data and its residuals are just \white noise," i.e., there is nodetectable pattern in the residuals. Figure 9 gives a graphical test of these two conditions. The plot on the leftcompares estimated with the original values. The correlation between them suggests that the model reasonablyestimates the original data. The plot on the right compares estimated values with the residuals. The variance in7In the case of two-session inspections with no repair, we took the convention of labeling the session whose meeting occurredearlier as the �rst session. This implies that (1) the �rst interval will always be less than the second interval, and (2) if there is animplicit deadline, the second session's meeting should occur at about the same time as for any one-session inspection.8



FITTED VALUES

O
R

IG
IN

A
L 

V
A

LU
E

S

0 5 10 15 20

0
10

20
30

40

FITTED VALUES

A
B

S
(R

E
S

ID
U

A
L 

D
A

T
A

)

0 5 10 15 20

0
5

10
15

20
25

Figure 9: Examining the �t of the pre-meetingmodel. The plot on the left compares the model's estimatedvalues the original values (if the model were perfect all the points would line on the line y = x). There is asubstantial correlation between the two (cor = 0.59). The plot on the right compares the estimated values withthe residuals. The variance appears to increase as the estimates do. This may suggest non-linear e�ects.the residuals appears to increase with the estimated values. This suggests that the functional form of the model(i.e., linear e�ects) is inadequate.5.2 Post-meeting IntervalThe following model of post-meeting interval explains 32% of the variance using only 8 out of 130 degrees offreedom. Postmeet � Author +AuthorInspectload +AuthorReworkLoad+MajorIssuesThe number of major issues found during an inspection signi�cantly lengthens the post-meeting interval. Thismay occur because major issues require the author to reserve a signi�cant block of time (like half a day) just to�x it, so it has to be explicitly scheduled into the author's (normally busy) work schedule. Figure 6 shows thepositive relationship between major issues and post-meeting interval.The author is signi�cant possibly because he or she plays the central part in the post-meeting interval; decidingwhether to perform rework immediately, postpone it, or spread it out over time. Figure 4 shows that di�erentauthors apparently have di�erent preferences.The model also shows that author inspection and repair loads increase the post-meeting interval. Figures 8(d)and 8(e) show the positive relationship between inspection and repair loads, and post-meeting interval.5.2.1 Residual AnalysisFigure 10 gives a graphical test of the adequacy of the post-meeting model. We see that the model reasonablyestimates the original data. Again the variance in the residuals appears to be increasing, suggesting that themodel is inadequate.6 INTERPRETATIONIn the previous sections we examined the data from a long-term, controlled, industrial experiment in order tomodel and understand variation in inspection interval. We had previously been unable to explain this variationusing information about the process' structure, inputs, and techniques only. Therefore we we added a fourthfactor, process environment to our models.This additional information explains more variation than did the other three factors combined. However, weare still far from explaining the majority of variation in inspection interval. Nevertheless, this exercise has severalvery important implications.In particular, it is instructive to compare the pre- and post-meeting models. We �nd that pre-meeting intervalis not signi�cantly a�ected by the workload of the author nor that of the inspection team. The author's coding9



FITTED VALUES

O
R

IG
IN

A
L 

V
A

LU
E

S

0 10 20 30

0
10

20
30

40
50

60

FITTED VALUES

A
B

S
(R

E
S

ID
U

A
L 

D
A

T
A

)

0 10 20 30

0
10

20
30

Figure 10: Examining the �t of the post-meeting model. There is a correlation of 0.56 between the actualand estimated values. As with the pre-meeting model, the variance of the residuals is positively correlated withestimated values. See the previous Figure caption for a discussion of this plot.load is signi�cant but it is a negative contributor. This suggests that inspections progress despite increases inthe number of code units on which the author is working. These observations imply that authors and reviewersgive a higher priority to pre-meeting inspection tasks than they do to pending coding assignments.On the other hand, the post-meeting interval is signi�cantly a�ected by pending inspections and rework. Thisimplies that the authors defer rework to complete coding tasks and that rework has a low priority.Our interpretation of these results is that:1. Developer workload a�ects interval. We saw that as an author's coding workload increased, his or herpost-meeting intervals grew. Consequently, inspection interval depends on factors outside the inspectionprocess.2. Developers prioritize their work. At any given time developers may have several un�nished tasks. Wesaw that even though the author's coding workload increased, their pre-meeting intervals decreased. Aconservative interpretation is that pre-meeting inspection tasks are not hindered by pending coding tasks.Another interpretation is that pre-meeting tasks actually delay coding tasks, i.e., they have higher priority.3. Deadlines alter priorities. We saw that the potentially lengthy two-session inspections had compressed �rstsessions. This suggests that implicit and explicit deadlines can increase a task's priority.A �nal observation is that these factors appear to have complex, non-linear e�ects and, therefore, linearregression models are probably inadequate for interval analysis. Although problemsmight lie in poor experimentalcontrols, poor research skills, etc., our �ndings suggest the need for models that explicitly capture workloads,multiple task types with priorities, and deadlines. Queueing networks are an example of such a model.7 QUEUEING MODELS FOR INTERVAL ANALYSISThe idea of modeling software development processes as queueing systems was �rst proposed by Bradac, et al.[3], but little work has since been conducted on analyzing queues for particular applications. Our applicationsuggests a queueing model in which each developer is a server, handling di�erent tasks with di�erent priorities.Figure 11 depicts a queueing model of a single developer who performs at least three tasks, reviewing others'code, writing their own, and resolving issues from previous inspections. At any given time, developers can performat most one task. Based on the previous analysis, these tasks appear to have the given relative priorities.Figure 12 depicts a global queueing model involving a 3-member development team. New coding tasks entereach developer's queue. When a code unit is �nished, it is sent to the inspect queue of the other developers.Once the inspection is completed, the code unit is sent into the rework queue of the original developer. Finally,when rework is done, the code unit exits the system.This queueing system may be treated as a preemptive priority queue with feedback. Preemptive priorityqueues are analyzed in Kleinrock [6]. Simon [9] analyzed the case with feedback, where tasks are allowed to feedback into the system and change their priority and service requirements.10



Developer

(Low)

Rework

Inspection

(High)

Inspections

New

(Medium)

New Coding

Other Tasks

(Low)Figure 11: Modeling a Developer's Task Queues. This �gure illustrates how a single software developerprioritizes and services his or her tasks. New Inspections require the developer to inspect another's code. NewCode represents un�nished code the developer is writing. Inspection Rework refers to the uncompleted repair forpreviously inspected code. The relative priorities of each task type are given in parentheses.While it is unlikely that a closed form solution can be found, it is still helpful to model the interval process asnetworks of queues because queues have well-studied properties and relevant dependent variables (time in queue,waiting time, throughput, etc.).We are currently developing queueing models of inspection interval and attempting to validate them againstour data. One interesting statistic that can be derived from these models is the average time a code unit isresident in the system (sojourn time). Our initial analysis indicates that code units enter the system and theirdevelopment is high priority. After the inspection meeting, however, working on them (reworking defects foundin inspection) becomes a low priority. This behavior actually increases the average sojourn time of all code units!There are several challenges that we must consider in order to apply this approach.Human Servers. Unlike the uniform servers normally seen in the queueing literature, people have varyingabilities and working patterns. They also experience frequent and irregular downtime.Mapping Code Units to Inspections. Several code units may be collected together and sent as a group toone or more inspection queues. Conversely, one code unit may be split into several smaller pieces, each of whichmay be inspected independently. The former case is known as bulk arrivals and the latter is known as branching.The presence of bulk arrivals and branching means that tasks may not be independent of each other. There hasbeen some previous work on this problem [9].Hidden Dependencies. There may be other unknown dependencies between tasks which may cause one towait on another.Miscellaneous Tasks. There may be other tasks that consume a signi�cant amount of the developers' timeand that must be accounted for.External Servers. Some inspection work is conducted using people from outside the team, external serverswhose loads may be extremely di�cult to estimate since we do not have data on their assignments outside ofthis project. The statistical model for the pre-meeting interval shows that having at least one reviewer who isnot part of the development team signi�cantly increases the interval. This suggests that external reviewers mayhandle incoming tasks with a di�erent priority scheme since their main coding tasks are not dependent on theearly completion of the inspections.8 CONCLUSIONSPreviously, we conducted an industrial experiment to understand the factors driving the costs and bene�ts ofsoftware inspections. In this article we described the continued analysis of that experiment. Our goal was todevelop an adequate explanatory model of inspection interval.The analysis suggests that the process environment explains more variation in interval than just the processstructure, process inputs, and process techniques. In particular, we �nd e�ects due to non-uniformwork priorities,time-varying workloads, and the presence of deadlines.11



Dev 1

Dev 2

Dev 3

Coding 1

Others 1

Coding 2

Others 2

Coding 3

Others 3

Figure 12: Global Queueing Model. This �gures depicts a queueing network. The network represents a3-person development team who interact to develop and inspect software.We further conjectured that the e�ects are non-linear and, therefore, linear regression models are inherentlyinadequate for interval analysis. Instead queueing models may be more appropriate. We also presented a simpleexample of a queueing model and described some preliminary work to validate them.8.1 Implications for Software Process ResearchOne of the advantages of studying software inspection is that they are frequently conducted, they aren't toolong in duration, and they share many characteristics of other development processes. Therefore, they are anexcellent model for studying the team interaction, communication, scheduling, and analysis found in more generaldevelopment processes.Consequently, we believe that many processes besides inspections can bene�t from this type of analysis.8.2 Implications for PractitionersThe ability to model and understand interval has many practical implications. One of the advantages of queueingmodels is that there is a wide body of literature describing their behavior.For example, many practitioners have experienced the situation in which a project they thought was nearcompletion dragged on for much longer than they expected. Our results suggest an explanation for some ofthis behavior. We see that code units enter the system with high priority. However, during the last half of theinspection their priority drops. Queueing analysis tells us that this situation does not minimize sojourn time.These results and others may provide tremendous insight into where bottlenecks exist and what strategies mightalleviate them. 12



References[1] Richard A. Becker, John M. Chambers, and Allan R. Wilks. The New S Language. Wadsworth andBrooks/Cole, 1988.[2] George E. Box, WilliamG. Hunter, and J. Stuart Hunter. Statistics for Experimenters. John Wiley and Sons,Inc., 1978.[3] Mark G. Bradac, Dewayne E. Perry, and Lawrence G. Votta. Prototyping a process monitoring experiment.In Proceedings of the 15th International Conference on Software Engineering, pages 155{165, Baltimore,Maryland, May 1993.[4] John M. Chambers and Trevor J. Hastie, editors. Statistical Models in S. Wadsworth & Brooks, 1992.[5] Chris Chat�eld. Model uncertainty, data mining and statistical inference. Journal of the Royal StatisticalSociety, Series A, 158(3), 1995.[6] Leonard Kleinrock. Queueing Systems, volume II: Computer Applications. John Wiley and Sons, Inc., 1976.[7] Audris Mockus, Adam A. Porter, Harvey P. Siy, and Lawrence G. Votta. Understanding the sources ofvariation in software inspections. Technical Report BL0112590-960416-12TM, Bell Laboratories, LucentTechnologies, Naperville, IL, April 1996. Submitted to ACMTrans. on Software Engineering andMethodology.[8] Adam A. Porter, Lawrence G. Votta, Harvey P. Siy, and Carol A. Toman. An experiment to assess the cost-bene�ts of code inspections in large scale software development. In The Third Symposium on the Foundationsof Software Engineering, Washington, D.C., Oct. 1995.[9] B. Simon. Priority queues with feedback. Journal of the ACM, 31(1):134{149, Jan. 1984.A APPENDIX: STATISTICAL MODELING IN SA statistical model takes the general form, y = �(X1) + �(X2), where y is the vector of observed data, � is afunction taking as input a set X1 of factors with associated coe�cients, x11; : : : ; x1n, describing the process andgiving as output ŷ, the expected value of y, and � is a function giving the di�erence between y and ŷ, with X2being the set of factors, x21; : : : ; x2m, in the process whose e�ects are ignored or whose presence is unknownto us. Model formulation deals mainly with describing �, specifying factors and the interaction between them.Model �tting deals with moving factors to and from X1 and X2 and adjusting the coe�cients to give the best�t to y. A model may be considered adequate when � is just white noise, i.e., the residuals y � ŷ is a vector ofindependently distributed values having zero mean and constant variance.S is a programming environment for data analysis [1, 4]. In this appendix, we will outline our approach inusing S to build the statistical models and analyze the data.A.1 Model FormulationThe possible factors to be incorporated into the model are usually determined from prior knowledge of the processbeing modeled. The initial model is normally speci�ed with the full set of available factors.Note that factors may also depend on each other, i.e., have interactions with each other. Each set of possiblyinteracting factors is represented as an additional factor. (Since we had a limited number of observations, weavoided �tting interaction between factors.)S has a function, lm() for specifying a linear regression model. It takes as basic parameters a model formula8and the data for the model.8A model formula is a notation for the structural part of the model, the variable being modeled as well as the factors to explainit. For example, the model formula y � a+ b+ c is read as, \y is modeled by a, b, and c."13



A.2 Model FittingModel �tting is done by iteratively adding or dropping factors and using regression to adjust the coe�cients togive the best �t with the given data. In each iteration, a new factor is added to the model if it signi�cantlyreduces the residual variance. Conversely, a factor may be dropped if its removal does not signi�cantly increasethe residual variance.While it is desirable to add as many explanatory factors in the model, there is the danger of adding too manyfactors. This is known as over�tting [5]. The problem is that while the model might be a good �t to the data it ismodeled on, it may be inexplainable or may not make physical sense. In addition, it cannot reliably characterizeand predict additional data. One way to check this is to partition the data and build the model on one set andtest its reliability on the other set. However, as in our case, there are usually too few data points to begin with.We looked for a parsimonious model with the help of stepwise model selection. In stepwise model selection,we start with an existing model and iteratively add or drop one term, minimizing the number of parameterswhile maximizing the �t according to some speci�ed criterion. In S, we used the function step(), increasing thescale parameter until the number of factors in the model are su�ciently reduced.The model selection algorithm may not give the best model since it does not know the physical meaning ofthe factors it manipulates. At the end, we must use our prior knowledge of the process in order to �ne-tune themodel to one that is physically interpretable.A.2.1 Calculating the Signi�canceTo calculate the signi�cance of a factor's contribution into the model, we used the summary.aov() function toperform analysis of variance, passing the model speci�cation into it, with the factor of interest at the end of theformula. For example, if we have a model y � a + b + c, we perform the analysis of variance on y � b+ c + a,y � a + c + b, and y � a + b + c to calculate the signi�cance of the contributions of a, b, and c to the model.Essentially, this is how step() determines which factor to retain and which to drop.A.3 Model CheckingOnce a model has been speci�ed and �tted, it is checked to see if it is an adequate model. The model is adequatewhen it reasonably estimates y, i.e., there is a high linear correlation between y and ŷ, and has su�cientlyexplained the variance, i.e., the residuals are reduced to a patternless set of data as plotted against y and againstŷ.

14


