
Speci�cation-based Testing of Reactive Software:A Case Study in Technology TransferLalita Jategaonkar Jagadeesan �, Adam Portery, Carlos Pucholz,J. Christopher Rammingx, and Lawrence G. Votta�February 28, 1997AbstractWe describe a case study in which we tried to transfer a speci�cation-based testing system from researchto practice. We did the case study in two steps: First we conducted a feasibility study in a laboratory settingto estimate the potential costs and bene�ts of using the system. Next we conducted a usability study, in anindustrial setting, to determine whether it would be e�ective in practice.The case study illustrates that technology transfer e�orts can bene�t from a greater focus on practitioners'needs, and that this focus helps identify some of the open problems that limit formal methods technologytransfer.We also found that there is often a tension between the scope of the problem to be solved and the speci�cityof the solution. The greater the scope of the problem, the more general the formal method solution and, thus,the more customization that must be done to use it in a particular environment.We suggest that researchers limit the scope of the problems they try to solve to minimize the risk oftechnology transfer failure.1 IntroductionFormal languages research has had an enormous e�ect on the practice of software development. Speci�cally, ithas laid the foundation for the tools developers use daily { compilers, case tools, con�guration management andmodule interconnection systems.Formal methods research, however, has not had the same success. This seems odd since formal methodsresearch is based on general formal language research. This problem has been widely discussed and many articleshave pointed out possible causes. We argue that many of these articles are \outward-looking". That is, theysuggest that the biggest barriers to transfer lie outside the technology itself.For example, Sam Redwine and William Riddle [25] claim that it takes about 20 years for technology to getinto use. Tom Allen [1] suggests that social factors can lengthen or reduce this interval. We also hear that thatpractitioner's resist change and that they lack the required mathematical training to use formal methods [13].Surely, these and other factors play important roles in technology transfer. Nevertheless, we believe that evenif all these issues disappeared, formal methods would still be di�cult to put into practice. This is because thereis a gap between the solutions o�ered by research and the needs of practitioners.Our experience in attempting to use a formal method in an industrial setting has convinced us that we mustalso take an \inward-looking" view. That is, that we must think harder about whether technology really solvespractitioners' needs.We came to this conclusion while trying to introduce a formal speci�cation-based testing method into a Lucentdevelopment setting. We found that the greatest barriers to transfer did not come from the developer community� Software Production Research Department, Bell Laboratories, 1000 E. Warrenville Rd., Naperville, IL 60566 (USA),flalita,vottag@bell-labs.comy Department of Computer Science, University of Maryland at College Park. aporter@cs.umd.edu. This work is supported inpart by a National Science Foundation Faculty Early Career Development Award, CCR-9501354z Department of Computer Sciences, The University of Texas at Austin, cpg@cs.utexas.edu. This work was partially supportedby a Fulbright fellowship at The University of Texas at Austin . This work was performed while the author was visiting BellLaboratoriesx Innovative Services Research Department, AT&T Laboratories, jcr@research.att.com1



(which was motivated to use our work), but came from mismatched between the system and the users' needs.Moreover, we believe that these problems are characteristic of many e�orts to transfer formalmethods technology.There are several common ways in which formal methods can fail to meet practitioners' needs.� Inappropriate simpli�cations. Formal methods must abstract certain aspects the system. Sometimes,however, these details are very important. For example, a system's inputs are constrained by the physicalhardware over which a software system runs. Sometimes, ignoring this detail can create enormous numbersof spurious input sequences.� Scale issues. As systems get larger they present problems and opportunities that are absent in the smallsystems usually used in research. For example, state space explosion makes many types of formal methodsinfeasible in practice. On the other hand many interesting problems don't fully appear in the lab but doso in larger systems (verifying properties of module interfaces).� Requiring complete and/or stable speci�cations. Many formal methods assume relatively complete, stablespeci�cations. This is often impossible in practice. Even if it is possible, it would require enormous changesin the way work is done today, and it is risky because small changes in requirements can force large changesto the speci�cations.In this article we describe a case study to transfer a speci�cation-based testing method into industrial practice.Our approach was to �rst conduct a small laboratory study to test out our ideas and then to conduct an industrialcase study to exercise the tools in a more realistic setting. From these two studies we draw several lessons aboutformal methods technology transfer, point out the technical problems that make it hard, and suggest ways toimprove the situation.1.1 Historical PerspectiveAs often happens in research we built a tool for one reason and then discovered other applications for it. We hadbeen experimenting with software inspection methods. To do these experiments we needed a cheap and accurateway to determine the number of defects in a piece of software. We realized that if we formally speci�ed the codeto be inspected, we might be able to create oracles and automatically test it. Therefore, we built a system to dothis [18].We soon realized that this system might be applicable in an industrial setting. We grabbed the nearestdevelopment manager and tried to sell our idea to her. She didn't buy it! Instead she suggested that we collectdata to identify the strengths and weaknesses of the system, and to estimate the cost of adopting the system andits impact to her group.1.2 Strategy of the Case StudyTo do this we needed to explore the e�ectiveness of the system, while keeping down our costs and the risk toour industrial partner. Most of our previous empirical work involves controlled experiments of well-establishedtechnology. However, since this study involved new technology, we felt that a more descriptive, less controlledapproach was needed [19]. Also it was important to �nd a good compromise between the cost to perform thestudy, the information learned, and the degree to which we intruded on the projects we would be working with.Therefore, we decided to perform a case study (See Figure 1).We conducted the case study in two phases [29]. First, we ran a feasibility study in a laboratory setting. Todo this we formally modeled the requirements of a small, but real, telephony application, asked several graduatestudents in computer science to implement them, and then tested the resulting applications using our system.Next we tried to study the usability of the system by deploying it in a live, large-scale software development (theone from which we drew the telephony application used in the �rst study).2 Background and Related WorkReactive systems are those that must respond continually to stimuli from their environment: computation andoutputs to the environment are driven by inputs received from the environment. Examples of reactive systemsinclude elevators, tra�c controllers, and avionics controllers; most real-time systems are also reactive in nature.2



Case

Validity

Dependence

Experiments

Causal

Expensive

General

Good

Anecdotal

Related

Specific

Poor

Study

Test of Theory

Cost
CheapFigure 1: Spectrum of Empirical Work The plot depicts the range of empirical work along four importantaxes; dependence, validity, test of theory, and the cost to perform the study. As you move from left to right theseproperties change as indicated.Reactive systems are also ubiquitous in the software for Lucent Technologies' 5ESSR
 telephone switching system[21], which provides telecommunications services.Reactive systems are often safety-critical and must be thoroughly tested to ensure that they meet stringentrequirements. Since the number of potential input sequences that a reactive system must handle is in�nite,much testing is needed to establish con�dence in the system. The testing of a typical 5ESS feature, for example,consumes a signi�cant portion of its development resources. Although many other factors contribute to thissituation { such as the need to use sophisticated hardware labs and the need to regression test the core systemafter new features are added { the cost of having people select tests and evaluate test data �gures prominentlyamong them.Despite advances in testing that have lessened the dependence on human e�ort, we believe that reactivesystems have some special characteristics that inhibit the use of these advances and force manual performanceof many testing activities:� Time-dependent behaviors.A reactive system's output often depends not only on its current input, but also on the system history.This makes it di�cult to calculate the input-output relations needed to evaluate test results.� Multiple acceptable outputs.Many techniques assume that test results are unique. This is untrue for nondeterministic systems and whenan application's requirements are underspeci�ed.� Incomplete speci�cations.In practice it is rare for an entire feature to be formally speci�ed. Consequently, testing techniques thatdevelop oracles from a complete speci�cation of a system are often impractical.� Low failure rates.To gain con�dence in a reactive system's reliability and availability it is often necessary to run a largenumber of tests. As failures become less frequent, the e�ciency of having people evaluate test results dropsdramatically. Testing techniques should alert developers only when a failure has occurred, rather thanrequire developers to evaluate test results by hand.2.1 Speci�cation-Based TestingInformally, speci�cation-based testing refers to a class of techniques in which speci�cations are analyzed (de-pending on the speci�c approach) to develop test cases, execute them with an application, and validate theresults.In our approach requirements are speci�ed as a restricted class of temporal logic safety properties [20]. Fromthese speci�cations we automatically generate �nite state machines (FSMs) that accept the language of input-output traces that violate the safety properties. The resulting FSM's are used to generate test inputs, which3



are fed to the actual system to determine whether or not its output violates one of the safety properties. If aviolation occurs, our tools automatically alert the user and indicate which safety property has been violated.Furthermore, our tools provide an execution trace leading to the violation.Temporal logic is the basis of our approach, so by de�nition it supports time-dependent behaviors. Temporallogic naturally describes non-determinism and, therefore, multiple acceptable outputs are easily accommodated.We do not assume that speci�cations are complete; any well-formed temporal logic safety property can be tested.Most importantly, our approach completely eliminates human involvement in the selection of test data, thedevelopment of test harnesses, and the evaluation of test results.This work was inspired by Dillon&Yu [9], who present a method for testing reactive software against speci�-cations written in a version of temporal logic called Graphical Interval Logic [8]. Properties written in this logicare translated into FSM's whose language is the set of executions that violate the given property; the resultingFSM's are then used to generate test inputs. Dillon and Yu indicate that they are currently developing tools tosupport this method, and that they will be integrated with Richardson's TAOS [26] test management system.Parissis&Ouabdesselam [23] present a technique for testing whether reactive software satis�es speci�cationswritten in Lustre [12], a synchronous data-
ow language that can also be viewed as a temporal logic.We have used standard temporal logic { rather than Graphical Interval Logic or Lustre { mainly to takeadvantage of some temporal logic tools that we had developed in the course of earlier work [16].Richardson et al. [27] present an approach for deriving oracles from formalmulti-paradigm speci�cations. Ourapproach is focused on temporal logic safety properties, and oracles are derived automatically.Our approach is a form of conformance testing { black-box testing for determining whether an implementationexhibits the behavior prescribed by its speci�cation. Many approaches to conformance testing have been proposed,corresponding to a variety of speci�cation languages. For example, Gaudel [10] presents a framework for thetesting of algebraic speci�cations. Brinksma et al. [5, 6] present a theory of testing based on labeled transitionsystems, and applications to the speci�cation language LOTOS are shown in [6, 24].3 The Testing Framework And Tools3.1 The Computation ModelOur tools test reactive applications [11]. Speci�cally, applications must conform to the synchrony hypothesis [4],which implies that applications must appear to operate in discrete \steps." The application receives a set ofinputs (input signals), reacts to the inputs by computing and producing a set of outputs (output signals), andthen quiesces, waiting for new inputs.The synchrony hypothesis also implies that the computations performed by the application are atomic with re-spect to their environment. In particular, no new inputs should arrive from the environment while the applicationis computing or alternatively, if inputs do arrive, they are registered for processing in the next step.3.2 The Speci�cation LanguageInformally, safety properties stipulate that \something bad never happens." Since reactive systems usually haveto respond in a bounded amount of time, liveness properties { which stipulate that \something must eventuallyhappen" { are reduced to safety properties. Consequently, safety properties are su�cient to describe the intendedbehavior of most reactive systems.Temporal logic is a well-known formalism for specifying safety properties, and our speci�cation language isbased on its propositional linear-time variant [20]. The speci�cations used by our tool are written with a speciallydesigned notation. As an example, consider the property \the elevator's door is never open while the elevator ismoving, and if someone pushes the third 
oor button then the elevator will reach the third 
oor in 10 ticks orless". Figure 2 shows a speci�cation of this property1.Figure 2 also shows a special relation directive that is a feature of our testing system. This directive is usedto help the system derive more compact oracles by indicating that two or more signals are mutually exclusive.In our example the directives state that the elevator will never be moving and stopped at the same time, norwill the door be both open and closed simultaneously. The input language also includes an implication directive,which indicates that the presence of one signal implies the presence of another.1The special signal TICK models the passage of discrete units of time, or steps, not necessarily real time.4



Inputs: MOVING, STOPPED, OPEN, CLOSED,F-3, GO-3;Relation: MOVING # STOPPED;Relation: OPEN # CLOSED;S0 := { (OPEN -> not MOVING)and (MOVING -> not OPEN) }S1 := { F-3 RespondsTo GO-3 In 10 TICK }P := Always { S0 and S1 } Figure 2: Input Syntax for Temporal Logic
TEST-ENABLED

TEST OUTCOME

FSM DESCRIPTION

TEST PARAMETERS

SAFETY PROPERTY

ESTEREL PROGRAM

APPLICATION HARNESS

APPLICATIONFigure 3: Architecture of the testing system.These directives allow the compiler to omit some of the oracle's states and transitions, reducing its size. Thisalso prevents the test harness from generating unnecessary test cases.The safety properties themselves are composed of signals, the standard boolean operators, simple temporaloperators: previous, since, has-always-been, once, and back-to, and a bounded-response operator (property S1 inFigure 2 is an example of a bounded response property). See [20, 16] for formal de�nitions of the operators.3.3 The ToolsetWe have developed techniques and tools that automatically test whether a software application satis�es temporallogic safety properties. Testing whether an application satis�es a safety property is equivalent to observingwhether it has any �nite executions that violate the safety property. Thus, our testing system has two goals: togenerate test cases that lead to violations, and to identify violations as quickly as possible and without humanintervention. To achieve these goals, the testing system has three components (see Figure 3): the applicationunder test, the test harness, and the oracle state machines. These components are automatically assembled toproduce an executable object called the test-enabled application. This application can then be run with variousparameter settings to adjust the number of test runs, the number of reactive cycles per test run, and the formatof the test output.Below we describe the test harness, the oracle state machines, how the test-enabled application is producedand optimizations to the testing process.3.3.1 Test HarnessThe job of the test harness is to drive the testing process and to coordinate the behaviors of the oracle state ma-chine and the application. The test harness is automatically generated from the safety property and a descriptionof the input and output signals.During the testing process the test harness repeatedly exercises the application. For this to be possible, theapplication must be designed to conform to the harness interface. This interface enables the test harness to5



structure { /* ... */ } ELEVinputs;structure { /* ... */ } ELEVoutputs;void ELEV_set<SIGNAME>(BOOL, ELEVoutputs *);void ELEV_set<SIGNAME>(BOOL, ELEVinputs *);void ELEV_test<SIGNAME>(BOOL, ELEVoutputs *);void ELEV_test<SIGNAME>(BOOL, ELEVinputs *);void ELEV_RESET();void ELEV_CLEANUP();void ELEV(ELEVinputs *inputs,ELEVoutputs *outputs);Figure 4: Interface functions generated for an elevator application.observe the application as well as to in
uence its behavior.One aspect of the harness interface is a data structure that the test harness sets and that the applicationqueries to transmit inputs between them. The interface contains a similar data structure for output signals bywhich the application returns data to the test harness. Both of these structures come with a set of functions forquerying and modifying them. The �nal interface component is a set of functions for initializing, executing, andshutting down the application.As long as this interface is respected, the application can be linked with the the test harness to create anexecutable system. A portion of the interface functions (written in C) appears in Figure 4.3.3.2 Oracle State MachinesIn order to generate test cases, our system uses the following important fact about safety properties [30]:For any safety property, there exists a �nite-state machine whose language is the set of all possible�nite executions that violate the property.We refer to these �nite-state machines as oracles, and they are the mechanism by which an application's 
awsare revealed. In our toolset, oracle state machines are constructed through the following chain of events. First,safety properties are speci�ed by the system engineer using the temporal logic syntax described earlier [16]. Next,as an engineering convenience, our toolset automatically translates the temporal logic formulae into Esterel [4]programs. These programs express deterministic �nite-state machines, which we extract easily by invoking theEsterel compiler. The resulting information is then automatically analyzed and eventually linked with the testharness and the application.The state machine information includes a list of states, the start state, the accepting states, and a set oftransitions labeled with both input and output signals. Each state transition is labeled with a pair < I;O >,where I is a set of simultaneous input signals to be provided to the application under test, and O is a possible setof simultaneous output signals produced in response by the application. Therefore, state transitions are basedon a combination of the inputs given to the system and the outputs received from it.The language of the generated state machine is the set of all sequences < I1; O1 >< I2; O2 > � � � < In; On >that violate the safety property. Thus, accepting states of the state machine indicate a violation | the machineis driven into a accepting state if and only if a safety property has been violated.3.3.3 The Test-enabled ApplicationThe oracle, the test harness, and the application are automatically linked to produce the test-enabled application.This application operates in a simple stimulus-response cycle. First the harness queries the oracle to determinewhich inputs should be given to the application. Next, the oracle randomly selects a set of inputs from its currentstate. The harness then invokes the application with these inputs, and waits for the application to produce a setof outputs in reaction. Once these outputs are received by the harness, they are combined with the inputs andare sent to the oracle. From its current state, the oracle then takes the transition that is labeled with this set ofsignals (this transition exists and it is unique, since the oracle is deterministic). The oracle then moves to thetarget state of the transition, and the cycle is repeated.6



If the oracle reaches an accepting state, the safety property has been violated. Otherwise, the cycle repeatsuntil a violation is detected or the maximumtest sequence length has been reached, after which the test is deemedinconclusive and is aborted. The user can set at run time the maximum test sequence, the number of sequencesto generate and the format and content of the test results.As a convenience, the system can be made to report entire test traces. In the event that a violation is detectedthis allows users to reproduce and analyze the violation using a debugger.3.3.4 OptimizationsAutomated analysis of the FSM allows us to optimize the testing process. One optimization involves separatingthe oracle's states into safe and unsafe states. Unsafe states are those from which an accepting state is reachable:all the rest are safe. If the oracle reaches a safe state during testing, the test is aborted. This avoids uselesscycling, for instance, when an initialization property is being tested and the application initializes successfully.Another optimization is to actively avoid safe states by selecting only input signals that have a chance ofdriving the machine into an unsafe state. However, because each transition depends both on the input signals(controllable by the harness) and the output signals (not controllable by the harness), it may not be possible toavoid all safe states. This optimization is most useful when the application contains an \exit" signal, or containsother signals that change the system's mode in such a way that the safety properties can no longer be violated.The e�ect of this optimization is to generate longer, more useful test sequences.Oracle state machines can be quite large. One size-reducing optimization is to use mutual exclusion andimplication directives within the speci�cation. This information is passed to the Esterel compiler, which usesit to construct more space-e�cient oracles.3.4 A Small ExampleAs a small example of this technique, suppose we have a simple elevator in a building with three 
oors. The inputsto the elevator are GO-1, GO-2, and GO-3, corresponding to request buttons for each 
oor. The outputs from theelevator are OPEN and CLOSED { corresponding to the state of the door, MOVING and STOPPED { corresponding tothe motion of the elevator, and F-1, F-2, and F-3 { corresponding to the 
oor the elevator is currently on. Weassume that the elevator is on exactly one 
oor at any given time (if it is between 
oors, it outputs the numberof the 
oor it last visited). We also assume that it is either moving or stopped (but clearly not both), and itsdoor is either open or closed (but clearly not both). It is initially stopped on the �rst 
oor with its door open.A very basic safety property of most elevators is that when the door is open, the elevator is stopped: that is,there is no execution of the elevator in which both OPEN and MOVING are simultaneously output.The set of all possible �nite executions (over the elevator's inputs and outputs) violating this property consistsof sequences of the form < I1; O1 > � � � < Ik; Ok >, where the Ii are any combinations of the inputs, and atleast one of the Oj contains both OPEN and MOVING. This is also the (in�nite) language of the oracle �nite statemachine corresponding to the safety property.If our tool were testing an elevator application, it would randomly generate a sequence of input sets. Forexample, the �rst set of inputs might be fGO-2; GO-3g, corresponding to people getting on the elevator andrequesting 
oors 2 and 3. This set of inputs is automatically provided to the application. Suppose that, inresponse, the application generates the set of outputs fF-1; CLOSED; MOVINGg, corresponding to the doors closingand the elevator starting to move. For the next step, the tool for example may (automatically) provide an emptyset of inputs to the application under test, corresponding to the lack of any new 
oor requests. Suppose that theapplication in response generates the set of outputs fF-2; OPEN; MOVINGg, corresponding to the elevator arrivingat 
oor 2, opening its doors, and continuing to move with its door open, clearly an undesirable situation! Sincethe output set contains both OPEN and MOVING, the safety property has been violated. The sequence consistingof the pair < fGO-2; GO-3g; fF-1; CLOSED; MOVINGg > followed by the pair < f;; fF-2; OPEN; MOVINGg > is in thelanguage of the oracle �nite-state machine and leads it to an accepting state; hence our toolset automaticallyreports the violation.4 The Case StudyIn this section we describe a technology transfer case study whose goal was to understand how our speci�cation-based testing system could be moved into industrial practice. The case study was conducted in two parts. The7



Protection Line

Working Line

Transmit ReceiveFigure 5: Architecture for 1+1 unidirectional APS�rst part involved a small laboratory study to determine the feasibility of the approach. The second part involvedan industrial study to determine the system's usefullness in practice.4.1 Feasibility StudyWe conducted the feasibility study to assess the strengths and weaknesses of our testing system. Our speci�cgoals were to evaluate the costs and bene�ts of the tools and to determine what steps are needed to use themin practice. To conduct the study we developed a testbed of model systems to which we could apply our testingtools. Since we wanted the testbed to be as realistic as possible, we modeled it after the APS system describedbelow.4.1.1 The Automatic Protection Switching SystemAs described in [2], communication channels bridging switching systems need to interface to components manu-factured by di�erent vendors. In order to facilitate cooperation between components, standards have been estab-lished. One of the standards for maintaining connectivity is called \Automatic Protection Switching (APS)" [3].The idea is to provide more than one line for each communication channel (in switching systems, reliability isoften provided by duplicating critical elements). If a line degrades or fails, a backup line, called the \protectionline" is used instead. The original version of APS is termed 1+1 unidirectional non-revertive. In this strategy, aprotection line is allotted for each working line (1+1), the decision to switch lines is only made by the receivingside (unidirectional), and a switch to the protection line remains in e�ect even after the working line clears to anequivalent condition (non-revertive).Figure 5 shows the architecture for this style of APS. The transmitting side sends the same messages alongboth the working and protection lines. The receiving side monitors the status of the two lines, and selects one ofthem to accept messages. Each component may be assumed to fail independently of all others.A standard redundancy method is used to check the accuracy of transmission of messages. We can assumethat the number of erroneous bits received on the working line is continuously recorded, and that correction ofmessages is not an issue. (Some other protocol will take care of repair or retransmission of faulty messages.)A line signal is considered degraded when it has a bit error rate (erroneous bits vs. total bits) within adangerous range, typically between 10�5 and 10�9. A line signal is considered to have failed when the bit errorrate exceeds the degraded range, or whenever other hard failures have occurred, such as a complete loss of signal.Either a degraded or failed line may clear itself spontaneously. That is, the error rate may decrease to the normal,accepted range without any intervention by operators.The expected response to a degraded or failed signal on the working line is to (automatically) switch to theprotection line. However, that might not be appropriate if the protection line has already degraded or failed. Oncea line has degraded or failed it will probably need to be replaced or repaired by a craft technician. Accordingly,operators are provided with a set of commands to change the con�guration of the channel:Remove line: The line is taken out of service.Restore line: The line is placed in service.Forced switch: The speci�ed line is selected for communication, regardless of its current state.Conditional switch: The speci�ed line is selected for communication, as long as it is available and not in thefailed state.The application in this case is a protocol that will maintain the highest quality communication available whileresponding to operator requests and signal degradation and failure. The standards do not de�ne a protocol, butthey include example scenarios for one of the APS paradigms.8



The inputs to the system are thus the states of the two lines and the operator commands. The output of thesystem consists of the state of the switch that selects the current communication line.As we described earlier, the requirements of the APS were formally speci�ed as part of a formal methods casestudy by Ardis et al. [2]. We used this speci�cation as the starting point for the following feasibility study.Like the original APS, the model used in the feasibility study is unidirectional and non-revertive, but has oneprotection line for every two working lines (i.e., 2+1 rather than the original 1+1). We chose this slightly morecomplex version in order to exercise a richer set of temporal logic safety properties.4.1.2 Building the testbedAlong with the initial speci�cation we developed �ve modi�ed speci�cations. The modi�cations incrementallyadded new input signals, new line quality indications, and new operation semantics. The modi�cations wereintroduced to increase the variety and complexity of the safety properties under test. The speci�cations werebetween 12 and 17 pages in length and contained between 20 and 35 safety properties. The acceptance test foreach application consisted of testing each safety property for 50 runs, each being a test sequence of length 1000.We asked several developers to implement and test the initial speci�cation. After each application passedacceptance test, we assigned them to di�erent developers and asked them to implement and test the next modi-�cation request. We continued this process until all �ve modi�cation requests were completed.4.1.3 The StudyTo create this testbed we designed and conducted the following study. Our goal was to create a set of codeartifacts to be tested by our tools.Study Setting. We ran this study during Spring 1996 at the University of Maryland. Sixteen graduate studentsin computer science acted as developers and the entire project took 6 weeks to complete.Variables. For each modi�cation we captured several dependent variables.1. Self-reported development e�ort.2. The number of test runs needed to pass acceptance test.3. The results of each test run (i.e., which speci�c safety properties were violated).4. The e�ect of each code modi�cation (i.e., some previously accepted safety properties now violated, no e�ect,some previously violated properties now accepted { no new violations).Threats to validity. There are several threats to validity of this study. Since this is a feasibility study we aremost interested in threats to external validity.Threats to external validity compromise our ability to generalize our results. We are aware of the followingthreats.� System size. Our applications are very small compared to industrial systems. However, much of thisdi�erence is due to the absence of code to support fault tolerance, auditing and logging, and interfaces tothe 5ESS system. This shouldn't compromise our test results, but may hide di�culties that appear whentesting complex systems.� Subject representativeness. Our subjects are competent programmers, but may not be representative ofprofessional programmers. That is, they may make di�erent types of errors than professional developersdo.� Development context. Professional developers may have workloads, responsibilities, organizational con-straints, etc., that may make this tools di�cult to use in practice.9



Conducting the Experiment. We conducted the experiment in two phases: training and operation. In thetraining phase, we gave 6 hours of in-class instruction on temporal logic. We also provided 3 hours of instructionon the algorithms for converting temporal logic safety properties into test oracles.We gave each student the initial requirements speci�cation, which they implemented and tested within oneweek. Once a week for the following 5 weeks each student received an implementation generated in the previousweek, all previous requirements speci�cations, and a new speci�cation detailing the intended modi�cation. Theyagain implemented and tested the modi�cation within one week. All the students successfully completed all themodi�cations.Each time the students ran the testing tools we captured and timestamped the source code, and gatheredtesting statistics. By the end of the study the testbed consisted of 30 implementations of 300{500 lines of C codeeach.During the study the developers ran the test tools over 200 times. Every time the test tools were run, eachsafety property underwent 50 test runs with 1,000 inputs per run. Since there were between 20 and 40 safetyproperties in each speci�cation, each complete test involved 1 to 2 million test cases.4.2 Observations from the Feasibility StudyAfter generating the testbed we examined the implementations and the test results, and surveyed the developersto assess the tool's performances and characteristics. We grouped these observations into �ve categories: testingcompleteness and e�ciency, the nature of errors found, usability from the developer's perspective, usability fromthe speci�er's perspective, and heuristics for generating the testing engines.Testing Performance. While building the testbed the developers ran the testing tools over 200 times �ndingmany violations. As we will describe shortly, many of the violations occurred only when the applications gotinto speci�c states. For example, some violations occurred only when a speci�c sequence of inputs was received,when a large amount of memory went unreclaimed, or when counters over
owed. These errors would have beenextremely di�cult to identify through ad hoc testing or code reading and �nding them would have required vastlymore human e�ort. From this perspective the tools are highly cost-e�ective.On the other hand, the tools are clearly not useful for detecting performance inadequacies, system behaviorunder load (stress testing), or fault-tolerance, all of which are critical for an industrial APS system.Also, the tools are not necessarily resource e�cient. If each computation cycle is lengthy, running vastnumbers of tests may be infeasible. In this case more traditional coverage-based testing methods may be moreappropriate.Error Detection. We drew several interesting observations about the kinds of errors made by developers andfound by the testing tools. First, the most common errors were failures to handle rare cases, incorrect logic,and requirements misunderstandings. In our experience, relatively few failures resulted from faults appearing atsingle points in the program, although many testing techniques and studies appear to focus on such faults.The test results showed two patterns: incorrect logic and requirements misunderstandings that caused failureson nearly every test run (40-50 violations on 50 test runs), and rare cases (violations on 1 or 2 runs out of 50).Again, this brings up an e�ciency trade-o�. Given enough time, the tools will uncover problems in handlingrare cases without human e�ort. Coverage-based approaches might �nd them more quickly, but require morehuman e�ort to construct appropriate test cases.Usability from Developer's Perspective. We surveyed the developers to get their reactions on using thetesting tools. Almost all of them were impressed with the speed and ease of generating test cases and runningthem. Essentially, this involves typing a single command. They also found that replaying the test traces whileusing a debugger helped them debug their errors quickly.The biggest dissatisfaction came from having to wait on compiles. Each time an application is modi�ed itneeds to be linked with the test engine. This time was noticeable because the applications were small and theircompilation time was negligible in comparison with that of the linking phase. This problem could be corrected,for instance, by adopting a client-server model rather than linking the application and test engine into a singleexecutable. 10



Usability from Speci�er's Perspective. Using formal methods requires programming activities at earlierstages of the life-cycle. However, there is little development support for programmingat this stage. Our experiencebears this out. We made many mistakes in specifying the APS. As with traditional programming, we madesyntax errors, forgot to handle rare cases, and misunderstood our requirements. Unlike traditional programming,however, we had little development support.For example, in one case we forgot to include a potential input in the input speci�cation. The resulting test-engine never generated tests containing this input. Therefore, some safety properties violations went undetectedwithout our knowledge. We found the problem by examining the traces.When we implemented the small elevator example we accidentally left out an important bounded responseformula (our only way to ensure progress). The developers assumed its presence anyway, but one made a logicerror that caused the elevator to move to the third 
oor and stay there forever. Of course, no violations weredetected, but the behavior was clearly inappropriate. Obviously, several things went wrong, but the end resultwas a 
awed program that \appeared" to be correct.Finally, because the tool has several translation steps, errors at one stage sometimes caused failures sev-eral stages later. Since building the testing engine is computationally expensive, this led to lots of frustratingdebugging and rework of the speci�cations.As the three previous examples show, technology such as simulators, syntax checkers, and debuggers will becrucial any time formal methods are used.Heuristics for Generating the Testing Engine. Since the alphabet for APS has over 20 symbols, buildingthe FSM requires large amounts of memory and computation time. As the speci�cation got more complex wewere unable to build the testing engine on a Sparc-4 with 32M of memory. Sometimes we ran out of virtualmemory, sometimes we crashed the Esterel compiler. To work around this problem we used several heuristicsto pare down the state space.The �rst heuristic was to to divide large safety properties with conjunctions into their subformulas and testeach subformula separately. The FSM's for the subformulas were smaller, but required us to run many moretests.The second heuristic was to put \mutual exclusion" and \implication" directives in the speci�cations. Themutual exclusion directives inform the compiler that some signals will not appear at the same time (for instance,the elevator will not be on two 
oors at the same time and therefore will not emit signals F-1 and F-2 simul-taneously). This allowed the Esterel compiler to omit many FSM state transitions. For example, an APSimplementation is guaranteed to receive only one input signal at any step, so all inputs can be written into amutual exclusion directive.The last heuristic was to assert that once a safety property was tested it remained valid in the test ofsubsequent safety properties. Speci�cally, we used relation and implication directives to assert valid safetyproperties throughout the remaining tests of an application. For example, the implication relation OPEN =>STOPPED asserts that when the OPEN signal appears, the STOPPED signal appears as well. Again, this allowed usto reduce the state space, but required us to re-test all properties when the application was modi�ed.4.3 Usability StudyIn this section we describe an ongoing industrial case study to determine the e�ectiveness of this approach withina live software development.4.3.1 The Industrial ApplicationsWe considered the use of our testing technique and toolset on two applications in the Lucent Technologies'5ESS telephone switching system. The �rst of these applications was some software in Lucent Technologies'5ESS telephone switching system. In addition to traditional land-line networks, the 5ESS switch also supportswireless networks such as personal communications systems. The particular 5ESS application we considered isresponsible for providing call processing features { such as originations, terminations, location registration, handover, roaming, and call forwarding { for speci�c personal communication systems. The second application weconsidered was a hardware and software combination for interactive voice response systems under developmentat AT&T.In both applications, part of the user input is derived from telephone events: establishing calls, disconnecting,and pressing telephone keys. In each case, the application responds to these user events with a variety of activity11



ranging from call connections to database transactions to speech recognition. Furthermore, both applicationsconsist of a set of processes communicating largely through a messaging substrate.4.3.2 The StudyStudy Setting. Moving from the laboratory setting, we have attempted to apply our testing technique andtoolset to the two reactive applications described above. In both applications, we worked with the developers,using the system to test their application. This step is necessary because the system is not a robust productiontool.Threats to Validity. There are several threats to validity in this study. Threats to internal validity compromiseour ability to draw conclusions from our results. The major threat we considered was that important data wouldnot be recorded. We limited this threat by being present whenever the system was being used.Threats to external validity compromise our ability to generalize our results. We are aware of the followingthreats.� Domain e�ects. Our applications are reactive systems that are embedded inside a large hardware infras-tructure. These peculiarities may make our applications di�erent from others.� Development context. Professional developers may have workloads, responsibilities, organizational con-straints, etc., that may make this system di�cult to use in practice.4.4 Observations from Usability StudyThe experiences we gathered from this study are overwhelmingly positive. They compel us to believe thatspeci�cation-based testing is indeed cost-e�ective in its intended setting. However, our system did not integrateeasily with these pre-existing applications. Our attempts to use it revealed several issues that must be addressedbefore we can transfer this technology to industrial software development.4.4.1 Bene�tsBridges the gap between formal veri�cation and actual industrial applications. Formal veri�cationtechniques { such as those based on model-checking [7] { can be very useful as an aid to debugging applications.However, a signi�cant limitation is that most formal veri�cation systems analyze abstract models of the applica-tion, rather than the implementation itself. Thus, the abstract model must �rst be described { typically usinga manual process. For large applications, this phase is costly and can be error-prone; in particular, the abstractmodel may not be faithful to the actual implementation. Thus, even if the model is proved to be correct, theactual implementation may still contain errors.Our approach makes a step toward bridging the gap between formal veri�cation and actual industrial applica-tions, since the testing is based on formal methods but is performed on actual implementations. Furthermore, webelieve that introducing our approach into the current process may aid in making further progress in the transferof formal methods. For example, once software developers become familiar with the the concepts introduced byour toolset, they may well decide to implement applications directly using synchronous formalisms [11] instead ofthe usual general purpose programming language. These formalisms have the advantage that they have a formalsemantics { which allows for automatic veri�cation such as model-checking, and support code generation { whichensures that the automatic veri�cation is closely related to the actual implementations.Supports testing of individual properties of the application. Our experience shows that testing individ-ual properties of an application individually can be considered complementary to system-wide integration testing.Our approach can bring more focus to the testing activities by highlighting the individual properties that are ofinterest to developers. Another bene�t of our approach is that the scale of the testing activities depends on theproperties being tested, not on the size of the application. Since properties can be separated into conjunctionsof smaller properties, it is possible to balance computational memory resources against test execution times.12



Applies to a large class of reactive applications. Early in this project we expected that the synchronyhypothesis would drastically limit the types of applications we could test. This fear has not materialized. Thereare certainly many applications for which our tools are inappropriate. However, in practice, most reactiveapplications can easily be designed to satisfy this hypothesis, since their computations are typically quite short,and inputs that arrive during a computation can be queued. In fact, we argue that large portions of the 5ESSswitching system satisfy the synchrony hypothesis for these reasons.Even when existing switch software is not compatible with our testing technique, it may still be possible toupgrade the software to satisfy the tool's requirements. For example, in a separate study [17], we re-wrote partof the 5ESS software. This new system satis�ed the synchrony hypothesis and would have met our testing tool'sinterface requirements.Provides a limited scope, but cost-e�ective testing strategy. We saw that this approach was excellentat �nding problems involving rare scenarios. Since this is the most frequent root cause of problems detected inthe �eld [31] (when the cost to repair defects is by far the greatest), the tool is very useful in these cases.The value of this tool depends on a tradeo� between machine expense and human expense. Our approach ismachine intensive but very inexpensive in human terms; therefore, with decreasing computing costs, the tradeo�appears to be worthwhile. Also, even though we sometimes found it necessary to re-engineer safety properties toyield smaller state machines (by indicating signal exclusion properties or simply splitting conjuncts), we foundthat the ordinary computing environments in a development setting was su�cient to handle the computationalexpense.4.4.2 Challenges and OpportunitiesWe also found several new challenges and opportunities that must be addressed before our system can completeits transitions into practice.Driving the Test Oracle. Our testing technique involves a form of black-box testing. Therefore, it is ap-propriate for modules that have clear entry and exit points, whose reactions can be completely controlled byan outside environment, and whose state and operations can be observed through outputs. In other words, themodules must �t into the test harness as stand-alone objects.In our laboratory study, the applications were designed to satisfy these restrictions. However, in our industrialstudies, the existing applications we considered did not satisfy these restrictions. In particular, we found twokinds of limitations.First, since neither of these applications was a pure software application without mechanical side-e�ects,executing a generated test in an automated fashion sequence proved impractical. Real phone calls needed tobe established in order to test the application; real timeouts would have to be simulated in order to triggercertain interesting behavior. Furthermore, it is the de�nition of these hardware systems that triggers certaininternal signals (such as timeouts, speech recognition events, and recording-terminated-on-silence events) crucialto the behavior of the overall systems. Thus, e�ective testing using our technique would require working with anabstraction of the application, in which the actual hardware interfaces had been replaced by abstract models ofthe hardware systems.The second kind of limitation concerned the environment of the applications. Typically, the environmentsatis�es many constraints; for example, certain input sequences are never generated by the environment. Thus,purely random testing of the form supported by our tools will typically generate many spurious errors that willnever arise in practice. We are currently investigating whether temporal logic is a suitable paradigm in which toexpress environment constraints.Despite these limitations, we believe that our approach could usefully and e�ectively be used in a monitoringmode to evaluate the run-time system behavior. Rather than generate inputs, the system could simply observepassing signals and consult the oracles to determine whether any safety properties have been violated. We believethat such a passive form of testing would still be very valuable; furthermore, it has the added bene�t that noinstrumentation of the application is needed.An interesting observation is that object-oriented designs naturally conform to our interface. They have con-structors, destructors, and driver methods. Also, since some of the system design in the telecommunications indus-try is done using object-oriented CASE tools such as Real-TimeObject-Oriented Modeling (ROOM)/ObjecTime [28]and O-Charts/O-MATE [15] { an object-oriented extension of Statecharts [14], there is a clear opportunity tocreate test-enabled applications in conjunction with these executable design tools.13



This looks promising because these objects satisfy the synchrony hypothesis by design [28]. The objects areessentially hierarchical �nite-state machines, whose inputs are the external inputs to the system and the outputsfrom other objects. We are currently exploring this connection.The Signal Mapping Problem. One di�cult problem that arises in practice involves mapping speci�cationnames onto implementation names. This can be necessary when the speci�cations are written at a higher level ofabstraction than the implementation. The work of Richardson et al [27] takes a signi�cant step towards solvingthis problem, but more work is still needed in this direction.Tool Enhancements. Although our current tools are written in C, the test system is inherently language-independent. We are exploring the construction of an oracle server to enable the seamless testing of reactiveapplications written in di�erent programming languages, on di�erent platforms, and at di�erent geographiclocations.Another enhancement to our tool that might be useful is to allow inputs to be selected with non-uniformweights. Sometimes testers may wish to exercise the systems in conditions closely approximating its intendeduse, for example, using notions of operational pro�ling [22]. Other times they may want to overload the systemwith a certain type or sequence of operations, for example, when performing stress-testing.Error Detection E�ectiveness. One aspect of the tool's cost-bene�ts is that it is designed to ensure confor-mance to certain speci�cations. It �nds only errors that can be speci�ed in this paradigm. We need to developa better understanding of error coverage provided by this approach.Temporal Logic Speci�cations. We found in our case study that temporal logic can be a cumbersomenotation for describing system properties. For example, our subjects were sometimes confused by the nestingof complicated formulas. We expect that these problems would be exacerbated in an industrial setting, wherethe safety properties are typically even more complex and contain many clauses corresponding to exceptions.Furthermore, small changes in the requirements can lead to signi�cant changes in the speci�cations. This isa problem that we believe can be solved by more mature forms of speci�cation where modularity, reuse andscalability are considered as a fundamental part of the design of the methodology. Maintainability and evolutionare important parts of any technology to be transferred to industrial settings.Graphical Interval Logic (GIL) [8, 9] o�ers a promising graphical alternative to standard text-based temporalspeci�cations. Since our testing approach is based on that [9], it would be useful to explore whether the use ofGIL { in place of our temporal logic language { mitigates some of these problems of text-based speci�cations.5 ConclusionsTo better understand the practical potential of these tools we conducted a two-part case study. The �rst studywas designed to explore the approach's feasibility. This small-scale laboratory study was highly cost-e�ective andenabled us to thoroughly exercise our tools on a realistic application, while keeping costs to a minimum.As part of the feasibility study, we formally modeled a common telephone switching application called theAutomatic Protection System. We developed �ve extended speci�cations and asked a number of developersto implement them. We then applied our testing tools to all of the implementations. In total, we developed30 implementations of six increasingly more complex APS speci�cations. (This was intended to simulate theapplication's evolution over time.) During the study we ran the test tools over 200 times. Each use mayinvolve the testing of between one and two million inputs depending on the number of safety properties in thespeci�cation.We found our tools to be highly e�ective at �nding defects in the implementations. We were pleasantlysurprised to �nd that there were no unexpected tool failures despite the wide variety of properties tested, imple-mentation styles and compilers used to develop the code.However, we did �nd that our current implementation still needed work before an industrial study could beattempted. Some of the areas that needed work were the management of the state space and the methods forgenerating test sequences.In the second study we focused on the usefulness of the system for testing industrial software. As part ofthis study we worked with two development projects, helping them to test their software with our system. One14



of our major �ndings was the tool was very cost-e�ective. This was so for several reasons. This approach testscode, rather than abstract models. Therefore, the developers did not have to change their development practicesgreatly. Also since the approach tests individual properties rather than all properties, developers can managetheir testing resources better. Finally, the approach was general enough to be used by more than one project.From both these studies we drew several conclusions about the process of technology transfer.The more the transfer process progressed, the more our focus shifted from developing basic technology tocustomizing it for use at the customer site. The feasibility study gave us a cost-e�ective way to identify general,context-independent issues, while the usability study was better at identifying speci�c, context-dependent issues.We want to stress that both studies were important and identi�ed open research questions. Thus, we suggestthat researchers should consider similar multi-phase strategies when transferring their technology.Our system did not integrate easily into the projects in our industrial case study. We feel that customizatione�ort is one of the biggest hurdles to transferring the system into practice. We're not suggesting that the systemmust run \out-of-the-box", but the more e�ort it takes to customize it, the less cost-e�ective the system becomes.We believe that there are many opportunities for research in this area. This also highlights the potential bene�tsof industry-academic collaborations.The conclusion we drew from the discussion in the previous two paragraphs is that tools with narrow scopewill be easier to transfer than those with broader ones. In other words, technology development may be easierwhen approached from a top-down perspective, however, technology transfer is much easier when approachedfrom a bottom-up perspective.Acknowledgements We would like to recognize the e�orts of the experimental participants { an excellent jobwas done by all.References[1] T. J. Allen. Managing the Flow of Technology. MIT Press, Cambridge, MA., 1977.[2] M. Ardis, J. Chaves, L. Jagadeesan, P. Mataga, C. Puchol, M. Staskauskas, and J. Von Olnhausen. A frame-work for evaluating speci�cation methods for reactive systems. IEEE Transactions on Software Engineering,22(6):378{389, June 1996.[3] Bellcore. Synchronous optical network (SONET) transport systems: Common generic criteria. TechnicalReport TR-NWT-000253, Issue 2, Bellcore, 1991.[4] G. Berry and G. Gonthier. The Esterel synchronous programming language: design, semantics, imple-mentation. Science of Computer Programming, 19:87{152, 1992.[5] E. Brinksma. A theory for the derivation of tests. In Proceedings of the Symposium on Protocol Speci�cation,Testing, and Veri�cation, 1988.[6] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS speci�cations, their implementations and their tests.In Proceedings of the Symposium on Protocol Speci�cation, Testing, and Veri�cation, 1986.[7] E. Clarke and R. Kurshan. Computer-Aided Veri�cation. IEEE Spectrum 33(6), pages 61{67, (1996).[8] L. Dillon, G. Kutty, L. Moser, P. M. Melliar-Smith, and Y. Ramakrishna. A graphical interval logic forspecifying concurrent systems. ACM Transactions on Software Engineering and Methodology, 3(2):131{165,April 1994.[9] L. Dillon and Q. Yu. Oracles for checking temporal properties of concurrent systems. Software EngineeringNotes, 19(5):140{153, December 1994. Proceedings of the 2nd ACM SIGSOFT Symposium on Foundationsof Software Engineering.[10] M. Gaudel. Testing can be formal, too. In Proceedings of International Joint Conference on Theory andPractice of Software Development, Volume 915 of the Lecture Notes In Computer Science, 1995.[11] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic, 1993.15



[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-
ow programming languagelustre. Proceedings of the IEEE, 79(9):1305{1320, 1991.[13] A. Hall. Seven myths of formal methods. IEEE Software, pages 11{19, September 1990.[14] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8:231{274, 1987.[15] D. Harel and E. Gery. Executable object modeling with statecharts. In Proceedings of the 18th InternationalSymposium on Software Engineering, pages 246{257, 1996.[16] L. Jagadeesan, C. Puchol, and J. Von Olnhausen. Safety property veri�cation of Esterel programs andapplications to telecommunications software. In Proceedings of the 7th International Conference on ComputerAided Veri�cation, Volume 939 of the Lecture Notes in Computer Science, pages 127{140, July 1995.[17] L. Jagadeesan, C. Puchol, and J. Von Olnhausen. A formal approach to reactive systems software: Atelecommunications application in Esterel. Formal Methods in System Design, 8(2), March 1996.[18] L. Jangadeesan, C. Puchol, A. Porter, J. C. Ramming, , and L. G. Votta. Speci�cation-based testingof reactive software: Tools and experiments. In The Nineteenth International Conference on SoftwareEngineering, May 1997.[19] A. S. Lee. A scienti�c methodology for mis case studies. MIS Quarterly, pages 33{50, March 1989.[20] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems, Speci�cation. Springer-Verlag, 1992.[21] K. Martersteck and A. Spencer. Introduction to the 5ESS(TM) switching system. AT&T Technical Journal,64(6 part 2):1305{1314, July-August 1985.[22] J. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement, Prediction, Application. McGraw-Hill Book Company, 1987. See pages 227�.[23] O. Parissis and F. Ouabdesselam. Speci�cation-based testing of synchronous software. In Proceedings of the4th ACM SIGSOFT Symposium on the Foundations of Software Engineering, 1996.[24] D. Pitt and D. Freestone. The derivation of conformance tests from LOTOS speci�cations. IEEE Transac-tions on Software Engineering, 16(12):1337{1343, December 1990.[25] S. Redwine and W. Riddle. Software technology maturation. In Proceedings of 8th International Conferenceon Software Engineeering, May 1985.[26] D. Richardson. TAOS: Testing with analysis and oracle support. In Proceedings of the International Sym-posium on Software Testing and Analysis, August 1994.[27] D. Richardson, S. Aha, and T. O'Malley. Speci�cation-based test oracles for reactive systems. In Proceedingsof the 14th International Conference on Software Engineering, May 1992.[28] B. Selic, G. Gullekson, and P. Ward. Real-Time Object Oriented Modeling. John Wiley and Sons, Inc., 1994.[29] L. Votta and A. Porter. Experimental software engineering: A report on the state of the art. In TheSeventeenth International Conference on Software Engineering, May 1995.[30] P. Wolper, M. Vardi, and A. Sistla. Reasoning about in�nite computation paths. In IEEE Symposium onFoundations of Computer Science, pages 185{194, 1983.[31] Personal communication. Mary Zajac. 16


