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Abstract

Disk drives are the most commonly used secondary storage devices in computer
systems. The way operating systems access these devices leads to a wide range of
variability in access time. In this paper we study the detailed temporal characteristics
of disk drives. We describe a comprehensive set of experiments designed to build a
model for the disk drive. Simulation is used to validate the model. This disk model
will help design a device driver which can achieve a high degree of temporal determinacy.

1 Introduction

During the recent years, disk drives have tremendously improved in terms of capacity, speed,
reliability, and physical size. Even though several other secondary storage technologies have
emerged, disk drives remain the dominant choice. However, the traditional method to access
a disk has not changed. Applications send a read/write request with the proper disk address
to an operating system process called the device driver. The application process requesting
the disk service is usually suspended until the service is completed. Meanwhile, the device
driver relays the request to the disk controller hardware using a standard bus interface such
as IDE or SCSI. When the controller is finished serving the request, it sends a hardware
interrupt signal to the device driver process. The latter eventually awakens the application
process. Throughout this procedure, no statement whatsoever is made about when a disk
request is to be completed. In fact, the disk service time is modeled as a random variable
with a high variance. This variability is mostly due to the mechanical activity involved. For
many applications, this approach is adequate, and they are designed to tolerate such lack of
knowledge about the service time.

When we consider real-time applications, they have to achieve both functional as well
as temporal correctness, and certain time constraints are imposed on the execution of such
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applications. The unpredictability of the traditional approach for disk service is unacceptable
to real-time applications. Consequently, early real-time applications avoided the use of disk
drives and operated entirely in main memory. As the complexity of real-time applications
increases, 1t becomes necessary to access disk-resident information. One example of such
applications is the video-on-demand services. Clearly, these applications suffer from the
temporally unpredictable behavior of disk drives. To alleviate this problem, disk controllers
have added large caches to hide some of, but not eliminate, the variability in disk service
time. In order to significantly reduce this variability, we should have a better understanding
of its cause(s), and use this knowledge in the design of better device drivers. As a starting
point, we study the delay components involved in a disk I/O operation such as a ”read
sector” request. We can identify the following delay components:

(a) A seek delay, during which the disk controller moves the head from its current
position to the cylinder containing the requested sector. This delay depends on,
among other factors, the head position prior to the request, and the distance
traveled.

(b) A rotational delay, during which the head waits for the requested sector to rotate
and arrive under the head. Since the disk rotates continuously, this delay also
depends on the head position prior to the request, as well as on the disk rotation
speed.

(¢) An off-surface transfer delay, during which the data is read from the surface and
stored in the controller’s cache.

(d) A host transfer delay, during which the data is transfered from the controller’s
cache to the host main memory.

Both transfer delays of steps (c¢) and (d) typically show very small variability. On the
other hand, seek and rotational delays have shown variability in the order of 10’s of millisec-
onds.

The key factor to minimize these variability is to continuously keep track of the head
position, and to have an accurate understanding of the disk dynamics. For example, seek
delays can be precisely determined once we have a better knowledge of the head dynamics.
The rotational delay is similarly determined by the disk rotation speed and the current an-
gular position of the head. A device driver which uses this kind of knowledge can accurately
predict the response time of a request.

In order to design a device driver which can accurately predict the service time of a
disk T/O request, it is necessary that not only the disk dynamics be known, but that the
physical layout of the information on the disk be also reflected in the temporal prediction.
Further, when a disk controller uses a cache, the cache organization and management has to
be incorporated into the device driver design. While general information about these topics
may be available in open literature, the details needed for accurate temporal predictions
are not easily available. Therefore, in the study presented here, we conducted a series of
experiments to determine the necessary information about a disk. Qur purpose in these
experiments was to ascertain that enough information about a disk drive can be obtained
this way. As the primary goal of our study was to determine the physical parameters of the
disk, we did not address the effect of using on board controller caches on the prediction of
service time. In fact, we disabled the controller cache in all the experiments. Clearly, the
methodology used here can be applied to any disk drive.

In this paper, we present an approach for modeling the disk for the purpose of designing
a device controller with the ability to accurately predict the service time of a request. The



remainder of this paper is laid out as follows: in section 3, we describe the structure of
a typical modern disk drive. In section 4 we describe the run-time environment under
which our experiments were conducted. The different experiments used to extract the main
parameters of the disk are explained in section 5. In section ??, we use of the extracted
parameters to build a model for predicting disk I/O service times. This model is validated
through a series of simulations in section 7. Finally, the conclusion and our future work are
presented at the end of the paper.

2 Related Work

The scheduling of disk 1/O requests has been a vital research problem whose results have
greatly affected the performance of computer systems. As the design of disk drives change
rapidly, there will always be a need for more research to find new disk scheduling algorithms,
or at least modify existing ones, to reflect this rapidly evolving technology.

Worthington, Ganger, and Patt [Worthington94], studied the performance of several
disk scheduling algorithms designed for modern disk drives. They examined the impact
of complex logical-to-physical address mappings and large prefetching caches on scheduling
effectiveness. Joined by J Wilkes, they later described, in [Worthington95], a suite of general-
purpose techniques and algorithms for acquiring data on the structure and organization of
SCSI disks via the ANSI-standard interface. We have started our work before their work was
published. Their 1deas were similar to ours. However, we present techniques that measure
more disk parameters such as sector rotation time, track skewness, and boundaries of the
recording zones. We also present, where applicable, a subjective study of the extracted
disk parameters. One of our major contributions is an analytic model to predict the disk
I/0 service time taking into account the current position of the head. We also presented a
374_degree piece-wise polynomial to model the seek time, contrary to the square-root curve
suggested by previous researchers [Chen94].

Abbott and Garcia-Molina [Abbott90] provided three algorithms for scheduling disk I/0
requests with deadlines. These are Earliest Deadline, ED-SCAN, and Feasible Deadline
SCAN.

3 Structure of a Modern Disk Drive

The recording media of a hard disk drive is organized into platters. Each platter has two
record-able surfaces. The surfaces are further organized into concentric recording paths
called tracks. The set of vertically aligned tracks is called a cylinder. The data is laid out on
the tracks in units called sectors. The size of each sector is determined by the disk formating
utility, and is typically 512 bytes per sector. The data is read from and written to the sectors
through a set of read/write heads. All the heads are built into one arm assembly, which is
controlled by an actuator. At any time, only one head 1s active. The head assembly itself
can move, seck, forward and backward to access a specific track. The platters rotate so
that the requested sector finally arrives under the head. Figure 1 depicts the structure of a
typical disk drive [Anderson95].

3.1 Zone-bit Recording

Since the circumference of a track increases as one moves away from the center, 1t is possible
to accommodate more data on the outer tracks than on the inner tracks without the need
to any special heads or medium [Schmidt95]. This is done by partitioning the cylinders into
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Figure 1: The structure of a hard disk Figure 2: Track Skewness

zones. The outer zones have more sectors-per-track than the inner zones. The published
specification for the disk drive we used do not contain such zone details as location and size.

3.2 Track Skewness

In many applications, the disk-resident data is accessed in a sequential order. If the requested
data spans more than one track, then, as the read/write head is switching tracks, the next
sector may be missed, and the head has to wait for one full revolution. To avoid such
performance degradation, the start of a track is not aligned with the start of the previous
one, and is skewed. This skewness is large enough to allow for the head switching time or
the seek activity, permitting the first sector of the new track to be accessed without waiting
for another revolution. Figure 2 shows an example for track skewness. While we believe
that the disk we used has skewness built in its low level formatting, exact details are not

published.

3.3 Block Addressing

The individual sectors of the disk can be referenced using either of two addressing schemes.
These are:

- Cylinder/Head/Sector, or CHS, addressing mode in which the cylinder number, the
head number, and sector number are specified. We observed that in the disk we used,
the cylinder and head numbers start from 0, whereas the sector numbers in every track
start from 1.

- Logical Block Addressing, or LBA, mode in which the disk is treated as a linear array
of blocks numbered starting from 0. Each block is the same size as a physical disk
sector, with a one-to-one mapping from block numbers to physical sectors.

For a more thorough discussion of the structure and modeling of modern disk drives, the
reader is referred to [Ruemmler94]



4 Design Considerations and the Run-Time System

In this section we discuss various issues affecting the design of our experiments. These
experiments were conducted using a Pentium 120 MHz computer with 16 MB of RAM and
a 1 GB AC21000 Western Digital (¢) hard disk. In order to avoid any interference with
the operating system, we conducted our experiments under the Maruti real-time operating
system. Maruti is a time-based hard real-time operating system developed by the System
Design and Analysis Group at the University of Maryland College Park [Marti94]. Maruti
guarantees that the process will run without being preempted for any reason which is helpful
when time measurements are taken.

All time measurements were taken with the help of the maruti_get_current_time library
function which reads the current system time directly from the the clock chip on the moth-
erboard. We conducted several experiments to measure the performance of this function
and found out it has an accuracy of +3 microseconds.

4.1 The Design of the Disk Driver

As a starting point, we wrote a special purpose device driver that runs under the Maruti
operating System. We started from the device driver that is a part of Net-BSD and made
the following changes:

- We took out all the code responsible for managing and scheduling the disk requests as
well as the functionality to 1ssue multiple-sector requests.

- The Interrupt-driven nature of the device driver was replaced by a busy-waiting loop.
This decision was mandated by the need for a higher accuracy in our time measure-
ments.

- Code was added to take time measurement at various phases of disk requests execu-
tions.

4.2 The On-board Controller Cache

It is observed that when the controller read-ahead cache is enabled, it is difficult to extract
any accurate information about the physical characteristics of a disk drive. The presence
of a cache conflicts with our analysis of the disk dynamics. Therefore, we had to disable
the read-ahead controller cache’. Once we have a sufficient understanding of the physical
characteristics of the disk, it would an easy task to incorporate the controller cache in the
prediction of a disk request service time.

5 Measuring Disk Parameters

In this section we describe several experiments which we used to measure the disk parame-
ters. We also provide in-depth discussion of the results we obtained using the WD AC21000
disk drive.

I Note that not all IDE disk drive manufacturers support the Set Feature command option which disables
that kind of cache.



5.1 Reading a Disk Block

Access Time
! Next Command

Time
Figure 3: Sending a command to the disk controller

Our experiments used a routine that reads a block from the disk. That routine consisted of

the following operations ( figure 3 ):

- Wait for the controller to be READY to receive the next request, then ( at time ¢y )
send the command to the disk controller through a set of on-board controller registers
connected to the host’s I/O ports. According to the IDE bus standard specifications,
the controller will ( at time #; ) become BUSY accessing the requested block.

- Wait for the controller’s READY signal ( at time t2 ).

- Transfer the data from the controller’s on-board sector buffer to the host’s main mem-

ory.

Our preliminary experiments showed that both the first and third phases had constant dura-
tions, and were independent of the requested sector. A typical duration of the Send command
phase was 16 microseconds. A one-sector data transfer phase lasted for 80 microseconds.

It is worth noting that, as shown in figure 3, the time period [t1,1s] encompasses any
necessary seek and/or latency delays, as well as the reading of the sector from the disk
surface.

In most of the experiments, we issued two requests to the disk, one immediately after
the other. In order to minimize the time before we may issue the next command to the
controller, we eliminated the data transfer phase from all our experiments. We have also
made use of in-line functions to reduce the host delay?. We will define ¢(k,) as the time
elapsed between the completion of reading sector & and the completion of reading sector [,
provided that the second request is issued as soon as the first one has been completed (figure

i A
| |
| |
|

A t(kl) 3
I I
I I
I I
| |
Sector k Access Time | |

Host Delay, Sendnext’  sestor | Access Time
@' command!

Time

Figure 4: Two successive requests

2This is the processing done by the host to prepare for sending the next disk request, e.g. calculation of
the block address



5.2 Disk Rotation Time ( DRT )

We first measured the rotation speed because it was essential in extracting all other disk
parameters. Rotation speed is usually reported by manufacturers as the number of revo-
lutions per minute. The WD AC21000 disk rotates at 5200 revolutions per minute. This
corresponds to a disk rotation time of 11538 microseconds/revolution.

We designed the following experiment to measure and study the stability of the actual
value of the disk rotation time:

1. Measure the time t(k, k) between two successive completions of reading the same block
k. This is equal to one revolution time.

2. Repeat step 1 for different blocks at scattered locations on the disk. Record the
maximum, minimum, variance, as well as the average time.

Table 1 shows some descriptive statistics on the measurements taken on the WD AC21000.
All times are in microseconds. We measured the disk rotation time reading blocks at more
than 2100 different locations on the disk.

It was observed that the disk rotation time had a mean of DRT = 11534 microseconds
and a standard deviation of 1.828 microseconds. The experiment was repeated several times
measuring the rotation time at the same set of blocks, and, except for few cases®, the same
readings were obtained.

Disk Rotation Time
Mean 11534.19
Standard Error 0.040
Median 11534
Mode 11534
Standard Deviation 1.828
Minimum 11516
Maximum 11551
Count 2117
95% Confidence Interval 0.0779

Table 1: Descriptive Statistics of the Disk Rotation Time Measurements

5.3 Boundaries of Recording Zones

Our next goal was to determine the exact logical-to-physical mapping of block numbers.
This included the number of sectors per track, which normally varies from the outer zones
to the inner zones. We also determined the number of cylinders per zone. The experiment
proceeded as follows:

1. Sequentially read the blocks of the disk and measure the time ¢(k, k + 1) between the
completion of reading two successive blocks.

3In two cases, we observed a disk rotation time of 11396 and 11667 microseconds. These two extreme
readings were not repeatable. We suspect that they were due to some random thermal and/or electrical
disturbances



(a) If both blocks are on the same track, then t(k, £+ 1) shall be equal to DRT plus
a one sector rotation time,

(b) If the two block are on different tracks, then due to track skewness, the later block
will be accessed during the same revolution and ¢(k,k 4+ 1) will be considerably
less than DRT.

2. By observing the readings of step 1, we could determine when the last block in a track
is reached.

3. By observing the changes in the number of sectors per track, we detected the end of
a recording zone and the start of another.

The partitioning of the WD AC21000 disk drive, together with the sectors-per-track
inside each zone, is given in table 2. This table provides the zone boundaries, in terms of
cylinder numbers and logical block addresses, as well as the number of sectors per track
(SPT). It was observed that a few tracks contained one or two less sectors than the rest in
that zone*. We also noticed that the last cylinder on the disk is partially available for user
data. We also found out that the tracks of the WD AC21000 drive are arranged in a Zig-Zag
ordering as shown in figure 5.

Cylinder 2 Cylinder 1 Cylinder 0

Track 8 Track 7 Track 0 T 7 T HeadO
T T T T T T

| | | | | |

| Track9 Track s | Track 11 N o Head1
| | | | | |

| Track 101 Mrack 5 | I Track 2 | P
T T T | T T

| | | | | |

Track 11 Track 4 Track 3 N lem3

-]

Figure 5: Track Arrangement in the WD AC21000

5.4 Sector Rotation Time ( SRT )

The sector rotation time SRT is the time required for one sector to rotate completely under
the read/write head. As the number of sectors per track increase as we move towards the
center of the disk, the sector rotation time increases.

The controller circuitry, however, does not report the completion of a read/write com-
mand immediately after the end of the sector passes by the head. In fact, if the end of a
sector n passes under the head at time e, , there is a completion overhead 6, that elapses
before the completion of the operation is reported to the host at time ¢, ( see figure 6 ).
Therefore, we can define the effective sector reading time of block n is equal to SRT(n) + 6,

However, without actually probing the internal electronics of the controller, we have no
way to determine when a sector precisely starts and/or ends. The smallest granularity we
can achieve in our experiments is to measure the time that elapses between the completion of
reading two physically adjacent sectors on the same track. This time is used to approximate
the sector rotation time SRT(n) by measuring

4The missing sectors may be due to bad sectors on the surface



Zone Cylinder Logical Block SPT
no. | From To From To
1 0 269 0 184538 171
2 270 374 184539 255098 168
3 375 544 255099 366618 164
4 545 768 366619 509977 160
5 769 1109 509978 720929 155
6 1110 1400 720930 895527 150
7 1401 1725 895528 1078824 141
8 1726 2103 | 1078825 1279919 133
9 2104 2344 | 1279920 1401381 126
10 2345 2628 | 1401382 1537694 120
11 2629 2858 | 1537695 1642574 114
12 2859 3271 | 1642575 1824292 110
13 3272 3497 | 1824293 1918308 104
14 3498 3706 | 1918309 2001908 100
15 3707 3887 | 2001909 2069963 94
16 3888 4018 | 2069964 2116599 89
17 4019 Heads 3&2 | 2116600 2116777 89
18 4019 Head 1 | 2116778 2116799 22

Table 2: Recording Zones of the WD AC21000 Hard Disk

e e e
n-1 n gap n
Disk surface n-1 nl| n n n+1 Time
DRT DRT
Fa e
Controller n-1] (N [ Time
A A
Host v v v Time
tn-l Request n tn Request n+1 a1

Figure 6: Measuring the Sector Rotation Time

SRT(n) “ t(n—1,n) — DRT

= SRT(n) + (5n - 677,—1)’

where, t(n — 1,n) = ¢, — t,_1 as defined in section 5.1. More specifically, we first read
sector n — 1, then we immediately ( with minimal host delay ) issue a request for sector n.
Notice that by the time the second request is 1ssued, sector n has just passed the head. We
will have to wait for a complete revolution before 1t comes back. This accounts for the DRT
term in the above equation.

We measured the SRT at different recording zones on our disk. In each zone, we took
measurements for 16300 sample sectors. Figure 7 shows a frequency histogram for the
different SRT values obtained at zone 1; the outermost zone, zone 9; in the middle, and
zone 16; which is very close to the center of the disk. We observed the following:

- The SRT values are clustered into two regions. The first cluster, representing ”short”
sectors, is centered around 40 microseconds and ranges from -10 to 90. The second
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Figure 7: Frequency Distribution of the Sector Rotation Time at 3 Different Zones

cluster, representing ”long” sectors, ranges from 130 to 220 microseconds, and is cen-
tered around 160.

- The number of “long” sectors per track is the same ( 50 sectors ) in all tracks.

- The same SRT value was obtained for the same sector every time the experiment was

repeated, with very few non-repeatable exceptions.

- The SRT values measured at different zones supported the theory that sectors on
inner cylinders take longer to rotate than those on outer cylinders.

These observations lead to the following:

1. The sector overhead ¢ is repeatable and constant for the same sector.

However, it

varies from 0 to 50 microseconds for different sectors. This accounts for the negative

SRT values.

2. there are 50 inter-sector gaps of approximate 120-microsecond length at equidistant
angular positions. These gaps are probably used for storing embedded servo-control

information.

5.5 Controller Overhead Time ( COT )

There is a command preprocessing overhead inside the controller before the actuation and/or
head switching starts.. Let sector ¢ be requested when sector ¢ — n is currently under the
read head. If the value of n 1s small enough, the preprocessing overhead inside the controller
may result in missing sector ¢ in the current revolution. To measure this kind of controller
overhead, we conducted the following experiment:

1. For some block k, repeat for all other blocks | on the same track as k,

- read block k& immediately followed by a request to read block [. Measure the time
elapsed between the completion of the two read requests, t(k,!).

2. Repeat step 1 for several values of k evenly distributed over the disk, and calculate

the minimum. The controller overhead is given by:

Controller Overhead Time COT

rvr}clﬁl t(k,0)

For the WD AC21000 disk drive, the controller overhead was measured to be 1377 microsec-

onds.

10



5.6 Head Switching Time ( HST )

When the requested block is not on the same surface as the most recently accessed block,
then the controller has to switch the active read/write head. This time is spent in addition to
the controller overhead time discussed in the previous section. For the purpose of predicting
the disk I/O service time, however, we consider the controller overhead time as part of the
head switching time. To measure this parameter, we conducted an experiment identical to
the experiment of section 5.5 except that the second block [ was selected from a different
track of the same cylinder as block k. Table 3 shows the head switching time to and from the
4 different recording surfaces of the WD A(C21000 disk drive. The controller overhead time
is also shown on the diagonal. We have observed that, with a precision of 50 microseconds,
this matrix 1s symmetric.

Switch from to Head
Head 0 1 2 3
0 1379 | 2301 | 2540 | 2541
1 2318 | 1375 | 2297 | 2091
2 2564 | 2296 | 1376 | 2062
3 2554 | 2147 | 1994 | 1375

Table 3: Head Switching Time ( in pgSeconds) of the WD AC21000 Hard Disk

5.7 Measuring Track Skewness

As pointed out earlier in section 3, the starting locations of adjacent tracks, either on the
same or on different cylinders, are not aligned. This improves the performance of the disk
when serving sequential requests by taking into account any seek or head-switching activity
involved. The track skewness has to be determined in order to calculate the latency time
of any disk I/O request. We can measure the skewness of all tracks, denoted by Skew(k)
for all tracks &, as the time required to rotate from a common reference point to the first
sector in track k. We can arbitrarily choose the common reference point to be the first user
accessible block; that 1s block number 0.

The value of Skew(k) was measured as follows:
1. Let Skew( 0) = 0;
2. Repeat for k = 1 to Last track number

(a) Let bl = First block in track & -1 ;
(b) Let b2 = First block in track k ;
(c) Let t*(b1,562) be the minimum of 5 different readings of ¢(b1, b2);
(d) Let Skew(k) = ( Skew(k — 1) + t*(b1,62) ) mod DRT
Table 4 shows some typical values of Skew(k) for the first few tracks. When these values
were plotted (figure 8), we observed a regular pattern for the track skewness values. The
pattern repeats itself every 19 tracks, except for the first time, where its period is 24 tracks.

This regularity helps reduce the amount of information that is required to determine the
track skewness.

11



Track Skewness | Track Skewness | Track Skewness
0 0 10 1007 20 2434
1 2321 11 3314 21 4740
2 4640 12 6096 22 7060
3 6946 13 8402 23 9367
4 9728 14 10720 24 613
5 500 15 1477 25 2919
6 2820 16 4254 26 5238
7 5127 17 6561 27 7544
8 7906 18 8879 28 10312
9 10223 19 11185 29 1084

Table 4: Track Skewness ( in pgSeconds) of the WD AC21000 Hard Disk

* ) 4 ¢ L 4
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Track no.

Figure 8: Track Skewness (relative to track 0) in the WD AC21000

5.8 Seek Operation

The objective here is to determine the characteristics of the seek operation and its depen-
dency on the seek distance. We observed that the seek time also depends on other factors

such as:

- the origin of the search; that is the current cylinder and sector, and

- the seek direction; forward or backward.

We conducted the following experiment to measure the seek time:

1. For distance d = 0 to the full seek distance

(a) Select a cylinder ¢ from which the seek will start.

(b) For all b € { 5 evenly spaced blocks in cylinder ¢ }

- Find the minimum of {#(b,{) — SRT({)} for all blocks { on cylinder ¢ + d

(forward seek), and on cylinder ¢ — d (backward seek). These two minima

represent instances of Seek(+d) and Seek(—d), respectively.

12



(¢) Record the maximum of the Seek(+d) and Seek(—d) values obtained above.

2. Repeat step 1 starting from a different cylinder ¢. It should be noted that the longer
the seek distance, the less the number of candidate cylinders c.

The basis of the above algorithm is that the minimum value of ¢(b,!) is achieved when
the latency between blocks b and [ is equal to the seek time. In this case, ¢(b,!) is equal to
SRT(l) + Seek(d).

We have noticed, see figure 9, that the seek time varied when starting from different
blocks in the same cylinder,; even with the seek distance and direction were fixed. The range
of this variability was of the order of £500 microseconds. As a conservative approach, we
decided to record the maximum of these seek times.

Next, we examined the dependence of the seek time on the starting cylinder, given a
fixed seek distance. Again, we have noticed, see figure 10, that there was a variability in the
range of £150 microseconds. Given these variations, we decided to plot the seek curve with
the seeks starting from 4 different cylinders, and recorded the maximum seek time for each
seek distance. The resulting curve is shown in figure 11.

SEEK Time & the Starting Cylinder

Seek Distnce (cylinders) Seek Distance ( Cylinders ) ‘Seck Distance ( cylinders)

Figure 9: Seeks originat- Figure 10: Seeks originat- Figure 11: Seek Curve of
ing from 3 different blocks ing from different cylin- the WD AC21000
on cylinder 0 ders

At this point, it is worth mentioning that when we repeated the same experiment three
times, with all factors being fixed, the seek time varied in a range of up to 1.2 millisecond in
some extreme cases. However, the average variation in the seek time, with all known factors
being fixed, was within 100 microseconds.

6 Prediction of the Disk Request Service Time

The objective in this section 1s to calculate an accurate estimate of the service time of a
disk I/O request. We assume that the request has been issued at time ¢,.,. For notational
simplicity, we will denote time ¢ as t,., + COT, where COT is the controller overhead
time. In figure 12, we assume that the position of the read/write head at time ¢ is denoted
by p(t) on track k —n. The requested sector s is on track &, which is n tracks away.

The service time may include one or more of the following:

- Seek(n) = time to seek to the target cylinder,
- HST = Head Switching Time to switch the read/write head to the proper surface,

- Latency( p(t) ,s,k) = time for the disk to rotate from the current position p(t) and
arrive at the target sector sin track k , and

- SRT(s) = time to transfer the data from the surface to the sector-buffer.

13



Figure 12: Disk Request Access Time

Typically, the first three components overlap in time. The data transfer component depends
on the recording density and the disk rotation speed. In our analysis, we have referred to
this component as the sector rotation time (SRT). The total access time of the request can
be estimated by the following equations:

Revs = {A—H;&éﬁJ
L = Latency( p(t) ,s,k)
Threshold = max( Seek(n) mod DRT [ HST )
. . L :1f L > Threshold
Service Time = SRT(s) + Revs * DRT + { L+ DRT - ifl < Threshold

where, DRT is the disk rotation time as measured in section 5.2. Rewvs is the number of
complete revolutions which occur while the head is seeking to the target cylinder. The value
of “T'hreshold” determines whether an extra revolution is needed.

The calculation of the Seek and Latency time components is discussed in the following
subsections

6.1 Prediction of the Seek Time

By closely inspecting the seek curve of figure 11, we could find a piece-wise polynomial
approximation function, see figure 13.

For short seek distances d < 140 cylinders away from the current position, we could
find the following least-squares third degree polynomial:

3677.09 + 128.202d — 1.37628d* 4 0.004767d>

For medium-length seeks, 140 < d < 1000, the seek curve could be approximated by
the following quadratic polynomial:

6528.4 + 8.53328d — 0.003381d”

Finally, long seeks, d > 1000, were linearly proportional to the seek distance, and could
be approximated by:
8643.65 + 3.14242d

Figure 13 also shows the fitting function as well as the original seek curve. This fitting
function could now be used to predict the seek time of any disk request.
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Figure 13: Piece-wise Polynomial Fit for the Seek Curve

6.2 Prediction of the Latency Time

In the this section, we develop a methodology to accurately predict the latency component,
i.e. Latency( p(t) ,s, k), of a disk I/O service time. We assume that the request has been
issued at time ?,.,. For notational simplicity, will will denote time ¢ as t,., + C'OT, where
COT is the controller overhead time. We first introduce the following notations:

1. gap(s,k) : The number of long (&~ 110 microseconds) inter-sector gaps between the
first sector of track & and sector s in the same track.

2. rot(s, k) : The time to rotate from the beginning of the first sector in track & to the
beginning of sector s on the same track.

3. p(t) : The rotational position of the read/write head arm at any time instance ¢ > 0.
At time ¢ = 0, the head is initialized at sector 1, head 0, of cylinder 0. The function
p(t) is periodic with a period of DRT.

Next, we show how the above quantities are computed.
Let LONG denote the total number of long inter-sector gaps in a whole track. On the
WD AC21000, LONG was found to be 50. In general,

gap(s, k) = {SP%(]C)*LONGJ ,

where SPT(k) is the number of sectors in track k. The rotation time rot(s, k) can thus be
computed as follows:

DRT — 120« LONG

rot(s, k) = 120 * gaps(s, k) + SPT(R) (s—1).

The calculation of Latency(p(t), s, k) depends on the current position p(t) relative to the
target sector as follows ( figure 14):

Case a If the target sector is still ahead in the current revolution, then

Latency( p(t) , s, k ) = Skew( k ) + rot(s, k)-(t mod DRT)

Case b If the target sector has just passed, then
Latency( p(t) , s, k ) = Skew( k ) + rot( s, k ) - (t mod DRT ) 4+ DRT
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Skew(k) was defined in section 5.7 as the time to rotate from p(0) to the beginning of
sector 1 of track k. This value is measured and saved in a look-up table for all the tracks
on disk.

T REV - (t%REV)

Latency(t,sk)

skew(k)

(a) (b)

Figure 14: The Latency Time

7 Simulation Results

In order to validate our model of the disk drive, we have conducted a comprehensive set of
experiments. In all these experiments, we recorded the actual service time of a read request
and compared that value with the our estimate of the service time that was based on our
model.

In the first experiment, we considered several sets of disk blocks. For each set, the blocks
were randomly selected such that they belonged to the same track. The objective was to
validate our modeling of the sector rotation times, the distribution of the long sector gaps,
and the controller overhead time. These parameters were the basis for our estimation of the
rotational displacement of each block relative to the beginning of its track.

Next, we relaxed the selection criterion so that blocks of the same set could now be on
any track, but in the same cylinder. Our objective here was to validate our modeling of the
track skewness as well as the head switching time.

Finally, we removed all restrictions and the blocks were randomly selected from any
location on the disk. In this experiment, we were able to validate our modeling of the seek
curve

In each experiment, we recorded an average of 15000 readings. The results that we
obtained were very impressive. In 96% of the cases, our model predicted the service time
within £200 microseconds of the actually measured value. In 3% of the cases, our prediction
deviated from the actual service time by one revolution. According to our model, if our
predicted value of the service time misses the requested block by as low as 1 microsecond
in the current revolution, then we will have to wait for the block to rotate up to one extra
revolution before we can catch it. The pie chart of figure 15 shows the distribution of the
absolute value of the prediction error in microseconds. The same figure applies to the results
of all the three experiments. We also observed that our model was consistent in predicting
the service time as the same block was repeatedly requested. The prediction errors were
stable, which suggests that we can further minimize them if we could get more in depth
understanding of the disk electromechanical characteristics.

Based on the results of our experiments, we conclude that our model of the disk drive
can achieve a high degree of temporal accuracy in 96% of the cases.
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Figure 15: Error in The Prediction of Service Time

8 Conclusion and Future Work

In this paper, we proposed several experiment to extract vital disk parameters necessary to
build a model for the disk drive. There are still some phenomena that need to be explained.
The variability in the sector rotation times is one example for such phenomena. However,
we have noticed that the temporal behavior of the disk is repeatable, even if not fully
understandable without access to the internal design of the drive.

The parameters that we have collected so far enabled us to proceed with building a
disk drive model. The model was verified by comparing simulation results with actual
measurements. An accuracy of up to 200 microseconds was achieved when predicting the
service time for 96% of the disk requests.

Being verified, the model will be used to simulate the performance of several real-time
disk scheduling policies, and hopefully propose some enhancements to existing policies.

The effect of the on-board controller cache organization and replacement algorithms will
be studied. The model will be expanded to accommodate for the existence of such cache.

Finally, a real-time disk scheduler will be built, and a special-purpose file system will
be embedded into the Maruti real-time operating system. As an application, MPEG video
playback will be tested on the final product.
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