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Chapter 1IntroductionSupercomputers have dramatically increased the amount of computing power available to sci-entists. These performance improvements have made it feasible to realistically model a muchlarger class of scienti�c problems than has previously been possible. Examples of such problemsinclude atmospheric modeling, molecular dynamics and uid dynamics.Two basic methods have been used to achieve the very high levels of performance of thesenew machines. The �rst method is to make the processor more powerful. This is primarily howthe earliest supercomputers such as the Cray 1 achieved their high performance. The problemwith this approach is that physical factors such as the speed of light and heat dissipationplace an absolute upper bound on obtainable performance. The other method used to increasecomputing power is to use multiple processors that can work in parallel. Over the last �ve years,the trend has been towards massively parallel computers, where hundreds or even thousandsof processors are used [Ken92].The problem with using multiple processors is that it is very di�cult to write programsthat can attain the theoretical peak performance of these machines. The reasons for thesedi�culties include load balancing problems, memory contention, interprocessor communicationbottlenecks, and lack of explicit parallelism. So, while massively parallel machines promise agreat deal, the results obtained in practice have been disappointing.Two approaches have been used to programmassively parallel machines. The �rst approachrequires the programmer to write explicitly parallel code, i.e all responsibility is placed on theprogrammer. The programmer must specify what computations should be performed on whichprocessors, and what communications are required. This approach is clearly not acceptable inthe long term, as it places too onerous a burden on the programmer.The other approach is to have the programmer write normal sequential programs, and thenhave a compiler convert these sequential programs into explicitly parallel programs. This ap-proach has the advantage that no additional responsibilities are placed on the programmer. Thesource programs used with this approach also tend to be more portable than explicitly paral-lel source programs. Of course, the problem with this approach is that converting sequentialprograms into e�cient parallel programs is a very di�cult task. So, not surprisingly, existingparallelizing compilers for massively parallel machines often fail to produce satisfactory results[Blu92, SH91].There are two basic choices to be made when parallelizing a program. First, the computa-tions of the program need to be distributed amongst the set of available processors. Second,the computations on each processor need to be ordered. Approaches taken to the second ofthese tasks have traditionally been very ad-hoc. Speci�cally, parallelizing compilers have at-tempted to parallelize programs and improve their performance by applying a sequence ofsource to source transformations, such as loop interchange, loop skewing and loop distribution[Wol89a]. Each of these transformations has its own legality checks and transformation rules.These checks and rules make it hard to analyze or predict the e�ects of compositions of these3



transformations, without actually performing the transformations and analyzing the resultingcode.I have developed a new framework that uni�es the problems of distributing and orderingcomputation. This framework is based on a simple but powerful mathematical abstraction forrepresenting these decisions. I have also developed algorithms for making these decisions withinthis framework. These algorithms are extremely extensible, in that the set of transformationsconsidered and the performance estimators used to decide which transformation to apply, arenot hard wired into the system. Users are able to modify or write their own performance esti-mators to reect the factors which a�ect performance on their particular architecture. They canalso modify the set of transformations considered, so as to obtain the trade-o� between e�ciencyand e�ectiveness that best suits their individual needs. Conversely, many of the abstractionsand algorithms I have developed have applications outside of the framework developed here.
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Chapter 2The AbstractionsThere are two basic choices to be made when parallelizing a program. First, the computationsof the program need to be distributed amongst the set of available processors. Second, thecomputations on each processor need to be ordered. In this chapter I describe the abstractionsthat have traditionally been used to represent these choices. I'll discuss the problems associ-ated with these traditional abstractions and I'll propose new abstractions that are designed tosolve some of these problems. Before discussing these new abstractions I will �rst describe anabstraction called tuple relations upon which the other new abstractions are based.2.1 Tuple Relations and SetsAn integer k-tuple is simply a point in Zk. A tuple relation is a mapping from tuples to tuples.A single tuple may be mapped to zero, one or more tuples. All the relations I consider map fromk-tuples to k0-tuples for some �xed k and k0. I introduce variables corresponding to each of theinput and output positions. Relationships between these variables and those corresponding tosymbolic constants are represented as logical formulas involving a�ne equality and inequalityconstraints. For example, the following relation maps all tuples [i; j] to the tuple [i; i] if i iseven and j is between 1 and the symbolic constant n, or i is less than j:f[i; j]! [i; i] j (9� s:t: i = 2�^ 1 � j � n) _ i < jgI have helped develop the Omega Library [KMP+95, KPRS95] which is a set of C++ classesfor representing and manipulating tuple relations and sets. The Omega Library can representany tuple relation or set that can be described using Presburger arithmetic. Presburger for-mulas are made up from logical quanti�ers (8; 9); logical operations (_;^;);:); and a�neequality and inequality constraints on integer valued variables. Although Presburger arith-metic has extremely high theoretical worst case complexity, O(222n ), the Omega library hasbeen extensively tuned to handle simple cases, and typically takes only a few milliseconds toproduce a result.Table 2.1 gives a brief description of some of the operations on integer tuple relations and setsthat we have implemented. The following are some examples of operations on tuple relations
5



and sets:If I = f[i; j] j 1 � i � n ^ 1 � j � igand T = f[i; j]! [i+ j; i]gthen Range(Restrict Domain(T; I)) = f[x; y] j y + 1 � x � 2y ^ y � ngIf C22 = f[i; j; k]! [i0; j0; k0] j (i = i0 ^ j0 = j + 1 ^ k = k0) _ i0 = i+ 1gT12 = f[i; j]! [i; j; k]gT21 = f[i; j; k]! [i0; j0] j i0 = i+ 1 ^ j0 = j + 1gthen T21 �C�22 � T12 = f[i; j]! [i0; j0] j i < i0gOperation De�nitionComposition x!z 2 F �G, 9y s:t: x!y 2 F ^ y!z 2 GInverse x!y 2 F�1 , y!x 2 FUnion x!y 2 F [G, x!y 2 F _ x!y 2 GIntersection x!y 2 F \G, x!y 2 F ^ x!y 2 GRestrict Domain x!y 2 Restrict Domain(F; S) , x!y 2 F ^ x 2 SRestrict Range x!y 2 Restrict Range(F; S), x!y 2 F ^ y 2 SDomain x 2 Domain(F ), 9y s:t: x!y 2 FRange y 2 Range(F ), 9x s:t: x!y 2 FProjection x 2 �1;:::;v S , jxj = v ^ 9y s:t: xy 2 STransitive Closure x!y 2 F � , x!y 2 F _ 9z s:t: x!z 2 F ^ z!y 2 F �Is satis�able ? Is Satisfiable(S) , 9x 2 STable 2.1: Operations on tuple sets and relationsTuple relations and sets and their associated operations have an enormous number of appli-cations other than those described in this dissertation. Some of the applications to which theyhave already been applied include:� Data dependence analysis� Program transformations� Redundant synchronization removal� Code generation� Induction variable analysis� Safety and Coverage analysis for �nite state systems2.2 Distributing ComputationThe units of computation that are distributed amongst the processors of a multiprocessor ma-chine may be either entire tasks or individual iterations of loops. Task-level parallelism worksbest on distributed systems such as networks of workstations because it generally involves alesser amount of inter-processor communication, which is particularly expensive on such sys-tems. Loop-level parallelism works best on tightly-coupled massively parallel machines becauseit is more likely to provide su�cient parallelism to make use of all available processors. Suchparallelism is most likely to be found in programs for scienti�c applications which consist mainlyof for loops and assignment statements involving arrays. The scienti�c community is conse-quentially the largest group of users of massively parallel computers today. This thesis dealsexclusively with loop-level parallelism. 6



doall i = 1 to n1: a(i) = idoall i = 1 to n2: b(i) = a(i-1)Figure 2.1: Why doall loops are insu�cient for NUMA machines2.2.1 Traditional AbstractionsTraditionally, the distribution of computations is speci�ed via either doall and doacrossloops or via a data distribution for each array.Doall and Doacross LoopsOne way to specify the parallelism available in a program written in a sequential language isto annotate the do loops in that program as being either doall, doacross or dosequential[ZC91].A doall loop indicates that all of the iterations of that loop are independent and thereforecan be executed in any order (including in parallel). A doall loop does not indicate whichiterations should be performed on which processors. The mapping of iterations to proces-sors is determined either statically by some latter phase of the compilation/linking process ordynamically by the runtime system.A doacross loop indicates that it is possible to partially overlap the execution of the loopsiterations. There are generally some ordering constraints on the loop iterations, but not somany that the iterations must be executed entirely sequentially. These ordering constraintsare enforced by explicit synchronization statements that must be inserted in the body of suchloops.A dosequential loop indicates that it is not possible to overlap the execution of any of theloop iterations. In practice, a loop could be marked as being dosequential even if it couldbe marked as being doall or doacross. This is generally done when it is estimated that theoverhead associated with executing the loop in parallel is higher than the potential savings dueto parallelism.In the case of Uniform Memory Access (UMA) [AG94] machines, the fact that doall anddoacross loops cannot control the mapping of iterations onto processors is of no consequencesince the choice of mapping can not a�ect performance (provided some care is taken to ensureload balancing). However, in the case of Non-Uniform Memory Access (NUMA) machines[AG94], the choice of mapping can have a substantial a�ect on performance. For NUMAmachines, the choice of mapping will determine which data accesses will be satis�ed locally andwhich data accesses will require communication with other processors.Consider for example the program shown in Figure 2.1. If for both loops, iteration i isassigned to processor i, then inter-processor communication will be required. If, however,iteration i of the �rst loop is assigned to processor i and iteration i of the second loop isassigned to processor i � 1, then no inter-processor communication will be required. In mostmodern NUMA architectures, the time required to access data from another processor is ordersof magnitudes longer than the time required to access data that is on processor.Data DistributionsIn order to control the mapping of iterations onto processors, a di�erent method of representingparallelism in programs is required. A common approach is the so called data parallel paradigm.In this model, parallelism is achieved by performing the same operation on di�erent dataelements at the same time. The distribution of computation to processors is speci�ed implicitly7



PROCESSORS procs(32)TEMPLATE T(1024)ALIGN a(i) with T(i)ALIGN b(i) with T(i-1)DISTRIBUTE T(block) onto procsFigure 2.2: Data distributiondo i = 1 to ns = 0.do j = 1 to i - 1s = s + a(n-i+1,n-j+1) * x(n-j+1)x(n-i+1) = (a(n-i+1,n+1) - s) / a(n-i+1,n-i+1)Figure 2.3: Reduction example where a data distribution is not optimalin such systems via data distribution annotations [HKT91, For92] and the owner-computes rule[CK88]. A data distribution is an a�ne mapping from the elements of an array to a virtualprocessor array. The owner-computes rule states that each iteration should be performed on thevirtual processor that \owns" the array element being written. Virtual processors are foldedonto physical processors in either a block, cyclic or block-cyclic manner. Data distributionsmay be either static or dynamic. A static distribution means that the same distribution isused throughout the entire execution of the program and a dynamic distribution means thatdi�erent distributions will be used during various phases of the program's execution. Figure2.2 shows an example of a data distribution (and corresponding alignment statement) for theprogram in Figure 2.1.Data distributions are an appropriate abstraction for machines with logically distributedmemories. Such machines require the programmer or compiler to explicitly manage the storageand transfer of data. On machines with logically shared memories, however, data distributionsmay not be the most appropriate abstraction. On such machines, data is automatically trans-ferred from one processor's memory to another's as required. In this context, data distributionsare simply an indirect way to specify a computation distribution and as such are unnecessarilyrestrictive. Data distributions, when used with the owner-computes rule, do not allow di�erentiterations of the same statement that write to the same array element to be executed on dif-ferent processors. Such computation distributions are often desirable, especially for statementsthat are performing a reduction. A reduction is a set of operations that compute a scalar valuefrom an array[ZC91]. For example, in the program shown in Figure 2.3, it would be best toassign iteration [i; j] to virtual processor j in order to perform the reduction in parallel.The other drawback with data distributions is that either a static data distribution mustbe chosen, or the program must be divided into phases between which data redistributions willbe performed. If the compiler is not going to consider restructuring the program in a majorway then this is not a major problem. If, however, the compiler is trying to both automaticallyselect data distributions and restructure the program, then deciding how to divide a programinto phases can be particularly di�cult as it also involves making decisions about the best orderin which to perform the computations.2.2.2 My New AbstractionI use a relatively new abstraction called a space mapping [Fea94, AL93b] to directly map thecomputations of a program to a virtual processor array. I associate a tuple relation Sp, with8



S1 : f[i]! [i]gS2 : f[i]! [i� 1]gblock size = max(0,ceiling((n+1)/nprocs))lb = 0+my id*block sizeub = min(n,lb+block size-1)do t = max(1,lb) to min(n,ub)a(t) = tdo t = max(0,lb) to min(n-1,ub)b(t+1) = a(t)Figure 2.4: Space mappings and corresponding SPMD code.each statement p. It speci�es that each iteration i of statement p will be executed on virtualprocessor Sp(i). The input arity of Sp is equal to the number of loops surrounding statementp and the output arity is equal to the dimensionality of the virtual processor array. I will onlyconsider space mappings that are functions (i.e., each iteration i of statement p is mapped toa unique virtual processor Sp(i)). As with data distributions, the virtual processor array isfolded onto the physical processor array in either a blocked, cyclic, or block-cyclic fashion.By directly mapping iterations to virtual processors (rather than using data decomposi-tions), I am able to represent a wider range of computation distributions and hence have morefreedom in trying to minimize inter-processor communication. In addition, I can represent dy-namic data distributions without having to partition the program into phases between whichredistribution will occur. Figure 2.4 shows an example of space mappings that could be usedfor the program in Figure 2.1, together with the SPMD code that would result from applyingthese space mappings with a blocked distribution. In the (SPMD) Single Program MultipleData programming model, all processors execute an identical copy of the program. The key toSPMD programming is that each processor can access a variable (commonly called my proc)that allows the program running on that processor to know which processor it is running on.This makes it possible to explicitly control which iterations are performed on which processors.A separate space mapping is associated with each statement, however, what constitutes astatement may vary. In this dissertation, I generally assume that each assignment statementin the original program is a separate statement. However, an entire basic block, or any otherwell nested section of code could be considered a single statement. At the other extreme,an assignment statement could be decomposed into the machine code instructions required toexecute it, each of which could be considered a separate statement. Obviously, there is a trade-o� between the exibility of mapping �ner-grained statements, and the extra time required toconsider a greater number of possibilities.2.3 Ordering ComputationProgram transformations can generally be classi�ed into one of three classes:Reordering transformations, where the same set of computations are performed but in adi�erent order. Examples of this class include loop interchange, statement reordering andloop distribution.Storage modifying transformations, where the same computations are performed in thesame order but with the intermediate results being stored in di�erent locations. Examplesof this class include array and scalar expansion and privatization.9



for i = 1,n dofor j = 1,n doa(i,j)=a(i-1,j)+a(i,j-1)b(i,j)=b(i,j)+b(i-1,j+1)Loop distribution
for i = 1,n dofor j = 1,n doa(i,j)=a(i-1,j)+a(i,j-1)for i = 1,n dofor j = 1,n dob(i,j)=b(i,j)+b(i-1,j+1)Figure 2.5: A sequence of traditional transformationsAlgorithm modifying transformations, where a di�erent set of computations are per-formed to compute the same �nal result. Examples of this class include induction variablereplacement and reordering reduction operations.In this thesis I deal only with reordering transformations; however, I assume that some othertransformations such as induction variable replacement, and scalar/array expansion will havebeen performed before the transformations described here. I also assume that other transforma-tions such as code hoisting and strength reduction will be performed after the transformationsdescribed here.2.3.1 Traditional AbstractionsOptimizing compilers reorder iterations of statements to improve instruction scheduling,register use, cache utilization, and to expose parallelism. Many di�erent reordering transfor-mations have been developed and studied, such as loop interchange, loop distribution, skewing,tiling, index set splitting and statement reordering [AK87, Wol89c, Wol90, CK92]. Figures 2.5through 2.8 show an example of such a sequence of transformations (black dots correspond toiterations of the �rst statement and white dots correspond to iterations of the second state-ment). Each of these transformations has its own special legality checks and transformationrules. These checks and rules make it hard to analyze or predict the e�ects of compositionsof these transformations, without actually performing the transformations and analyzing theresulting code. 10



for i = 1,n dofor j = 1,n doa(i,j)=a(i-1,j)+a(i,j-1)for i = 1,n dofor j = 1,n dob(i,j)=b(i,j)+b(i-1,j+1)Loop reversal (second loop nest)
for i = 1,n dofor j = 1,n doa(i,j)=a(i-1,j)+a(i,j-1)for i = 1,n dofor j = -n,-1 dob(i,-j)=b(i,-j)+b(i-1,-j+1)Figure 2.6: A sequence of traditional transformations, continued
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for i = 1,n dofor j = 1,n doa(i,j)=a(i-1,j)+a(i,j-1)for i = 1,n dofor j = -n,-1 dob(i,-j)=b(i,-j)+b(i-1,-j+1)Loop skewing (both loop nests)
for i = 1,n dofor j = 1+i,n+i doa(i,j-i)=a(i-1,j-i)+a(i,j-i-1)for i = 1,n dofor j = -n-i,-1-i dob(i,-j-i)=b(i,-j-i)+b(i-1,-j-i+1)Figure 2.7: A sequence of traditional transformations, continued
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for i = 1,n dofor j = 1+i,n+i doa(i,j-i)=a(i-1,j-i)+a(i,j-i-1)for i = 1,n dofor j = -n-i,-1-i dob(i,-j-i)=b(i,-j-i)+b(i-1,-j-i+1)Loop interchange (both loop nests)
for j = 2,2n doforall i = max(1,j-n),min(n,j-1) doa(i,j-i)=a(i-1,j-i)+a(i,j-i-1)forall j = -2n,-2 dofor i = max(1,-n-j),min(n,-1,-j) dob(i,-j-i)=b(i,-j-i)+b(i-1,-j-i+1)Figure 2.8: A sequence of traditional transformations, continued13



Program:do i = 1 to n1 s(i) = 0do j = 1 to i-12 s(i) = s(i) + a(j,i)*b(j)3 b(i) = b(i) - s(i)Iteration space: I1 : f [ i ] j 1 � i � n gI2 : f [ i; j ] j 1 � i � n ^ 1 � j � i � 1 gI3 : f [ i ] j 1 � i � n gFigure 2.9: Program and associated iteration spaceUnimodular transformations [Ban90, WL91] go some way towards solving this problem.Unimodular transformations are able to describe any transformation that can be obtained bycomposing loop interchange, loop skewing, and loop reversal. Such a transformation is describedby a unimodular linear mapping from the original iteration space to a new iteration space. Forexample, loop interchange in a doubly nested loop maps iteration [i; j] to iteration [j; i]. Thistransformation can be described using a unimodular matrix:� 0 11 0 �Unfortunately, unimodular transformations are limited in two ways: they can only be appliedto perfectly nested loops, and all statements in the loop nest are transformed in the sameway. They therefore cannot represent some important transformations such as loop fusion,loop distribution and statement reordering [Wol89c].2.3.2 My New AbstractionBefore describing the abstraction I use to represent the ordering of computations, I �rst needto de�ne some terms.Iteration spacesEach statement p has associated with it an iteration space Ip, which is a subspace of Znp(where np is the number of loops nested around p). A statement's iteration space is the set ofiterations for which that statement will be executed.More formally [x1; : : : ; xn] 2 Ip if and only if:8j; 1 � j � n) Lj(x1; : : : ; xj�1; ~s) � xj � Uj(x1; : : : ; xj�1; ~s)where Lj and Uj are functions representing the lower and upper bounds respectively of the jthloop around p, and ~s is a vector of symbolic constants.For example, Figure 2.9 shows a program and its associated iteration space.Time mappingsI have developed a new abstraction called time mappings for specifying the order in whichiterations should be executed. I associate a separate time mapping, Tp, with each statement p.A time mapping is a tuple relation that maps each point (or iteration) in the original iterationspace Ip to a unique point in a new iteration space I 0. The set of time mappings as a whole,14



Time Mapping: T1 : f[ i ] ! [0; i ] gT2 : f[ i; j ] ! [1; j; 0; i ] gT3 : f[ i ] ! [1; i � 1; 1 ] gTransformed program:do i = 1 to n1 s(i) = 0do t = 1 to n-1do i = t+1 to n2 s(i) = s(i) + a(t,i)*b(t)3 b(t+1) = b(t+1) - s(t+1)Figure 2.10: Time mapping and associated transformed programdescribe a 1-1 mapping from the set of original iteration spaces to a single new iteration space.That is: 8p; q; i; j Tp(i) = Tq(j)) p = q ^ i = j (2.1)The iterations will be executed in lexicographic order based on their coordinates in the newiteration space. So, specifying a time mapping is e�ectively specifying a reordering of theiterations.Figure 2.10 shows an example of a set of time mappings for the program in Figure 2.9. Thistime mapping maps iteration [5; 7] in the original iteration space of statement 2 to iteration[1; 7; 0; 5] in the new iteration space and maps iteration [6] in the original iteration space ofstatement 1 to iteration [0; 6]. Iteration [0; 6] is lexicographically less than iteration [1; 7; 0; 5],so in the transformed code, the iteration originally referred to as iteration [6] of statement 1will be executed before the iteration originally referred to as iteration [5; 7] of statement 2. So,as this example demonstrates, by mapping to a single new iteration space, I can specify therelative order in which iterations should be executed, even for iterations belonging to di�erentstatements.The transformed code will always contain the same elementary statements as the originalcode, but will contain di�erent loop structures. The new loop structures execute in lexicographicorder, all and only those iterations in the new iteration space. In Section 3.5 I will describe analgorithm I have developed for generating transformed code given a set of time mappings.Time mappings can be considered a generalization of Unimodular transformations. Timemappings are more general in the following respects:� I associate a separate time mapping with each statement, whereas unimodular transfor-mations require a single unimodular matrix to be used to transform all statements in thebody of a perfectly nested loop.� Unimodular transformations only allow linear mapping to be speci�ed. Time mappingsallow any mapping to be speci�ed that can be expressed in Presburger arithmetic.{ In particular, time mappings can easily represent a�ne mappings. An a�ne expres-sion is equivalent to a linear expression plus a constant term. For example, i + j islinear, i+ j +1 is a�ne. There is no advantage in using a�ne mappings rather thanlinear mappings if only one mapping is being used to transform all statements (as isthe case for unimodular transformations), since a constant term will simply translateall points in the new iteration space and not a�ect their relative order. However, ifmore than one mapping is speci�ed (as is the case for time mappings), then usingdi�erent constant terms in di�erent mappings can a�ect the relative order of the15



Code adapted from OLDA in Perfect club (TI)do 20 mp = 1, npdo 20 mq = 1, mpdo 20 mi = 1, morb10 xrsiq(mi,mq)+=xrspq((mp-1)*mp/2+mq)*v(mp,mi)20 xrsiq(mi,mp)+=xrspq((mp-1)*mp/2+mq)*v(mq,mi)Time Mapping (to expose parallelism)T10 : f [ mp; mq; mi ] ! [ mi; mq; mp; 0]gT20 : f [ mp; mq; mi ] ! [ mi; mp; mq; 1]gTransformed codedo 20 mi = 1,morb /* parallel */do 20 t2 = 1,np /* parallel */do 10 t3 = 1,t2-110 xrsiq(mi,t2)+=xrspq((t3-1)*t3/2+t2)*v(t3,mi)xrsiq(mi,t2)+=xrspq((t2-1)*t2/2+t2)*v(t2,mi)xrsiq(mi,t2)+=xrspq((t2-1)*t2/2+t2)*v(t2,mi)do 20 t3 = t2+1,np20 xrsiq(mi,t2)+=xrspq((t2-1)*t2/2+t3)*v(t3,mi)Figure 2.11: OLDA with time mappings, and resulting transformationpoints in the new iteration space (as was demonstrated in the previous example).A�ne mappings allow me to represent a number of traditional transformations in ad-dition to those representable using unimodular transformations, including statementreordering, loop distribution, loop fusion, and loop alignment.{ Time mappings can also represent pseudo-a�ne mappings. A pseudo-a�ne expres-sion is an expression that involves a�ne expressions and integer division and modulooperations (provided the denominator is a known integer constant). Pseudo-a�nemappings allow me to represent a number of additional transformations includingstrip mining (or tiling).{ Time mappings allow di�erent a�ne (or pseudo-a�ne) mappings to be speci�edfor di�erent parts of the iteration space of a single statement. This allows me torepresent index set splitting transformations.Time mappings can represent not only all of the traditional transformations mentionedabove, but also any sequence of these traditional transformations. I have therefore simpli�edthe problem of reordering the iterations of a program to �nding a time mapping for each state-ment. This simple and elegant representation makes it much easier to reason about reorderingtransformations.Some more examples of time mappings are given in Figures 2.11 through 2.14.LegalityNot all time mappings correspond to legal transformations, so I need a way to distinguishbetween legal and illegal time mappings. A time mapping is legal if the transformation itdescribes preserves the semantics of the original code. This is true if the new ordering of theiterations respects all of the dependences in the original code.I assume that the programs contain only static control ow, so control dependences do nothave to be considered. Three types of data dependences can occur; ow, output and anti. It16



LU Decomposition without pivotingdo 20 k = 1, ndo 10 i = k+1, n10 a(i,k) = a(i,k) / a(k,k)do 20 j = k+1, n20 a(i,j) = a(i,j) - a(i,k) * a(k,j)Time Mapping (for locality)T10 : f[k; i ]! [64((k�1) div 64)+1; 64(i div 64); k; k; i]gT20 : f[k; i; j]! [64((k�1) div 64)+1; 64(i div 64); j; k; i]gTransformed codedo 30 kB = 1, n-1, 64do 30 iB = kB-1, n, 64do 20 kj = kB, min(kB+63, n)do 10 k = kB, kj-1do 10 i = max(k+1,iB), min(iB+63,n)10 a(i,kj)=a(i,kj)-a(i,k)*a(k,kj)do 20 i = max(iB,kj+1), min(iB+63,n)20 a(i,kj)=a(i,kj)/a(kj,kj)do 30 kj = kB+64, ndo 30 k = kB to kB+64do 30 i = max(k+1,iB), min(iB+63,n)30 a(i,kj)=a(i,kj)-a(i,k)*a(k,kj)Figure 2.12: LU with time mappings, and resulting transformationCode adapted from CHOSOL in the Perfect club (SD)do 30 i=2,n10 sum(i) = 0.do 20 j=1,i-120 sum(i) = sum(i) + a(j,i)*b(j)30 b(i) = b(i) - sum(i)Time Mapping (to expose parallelism)T10 : f [ i ] ! [ 0; i; 0; 0 ] gT20 : f [ i; j ] ! [ 1; j; 0; i ] gT30 : f [ i ] ! [ 1; i � 1; 1; 0 ] gTransformed codedo 10 i = 2,n /* parallel */10 sum(i) = 0.do 30 t2 = 1, n-1do 20 i = t2+1,n /* parallel */20 sum(i) = sum(i) + a(t2,i)*b(t2)30 b(t2+1) = b(t2+1) - sum(t2+1)Figure 2.13: CHOSOL with time mappings, and resulting transformation17



Banded SYR2K adapted from BLASdo 10 i = 1, ndo 10 j = i, min(i+2*b-2,n)do 10 k = max(i-b+1,j-b+1,1),min(i+b-1,j+b-1,n)10 C(i,j-i+1) = C(i,j-i+1) +$ alpha*A(k,i-k+b)*B(k,j-k+b) +$ alpha*A(k,j-k+b)*B(k,i-k+b)Time Mapping (for locality and to expose parallelism)T10 : f [ i; j; k] ! [ j � i + 1; k � j; k ] gTransformed codedo 10 t1 = 1, min(n,2*b-1) /* parallel */do 10 t2 = max(1-b,1-n), min(b-t1, n-t1)do 10 k = max(1,t1+t2), min(n+t2,n) /* parallel */10 C(-t1-t2+k+1,t1) = C(-t1-t2+k+1,t1) +$ alpha*A(k,-t1-t2+b+1)*B(k,-t2+b) +$ alpha*A(k,-t2+b)*B(k,-t1-t2+b+1)Figure 2.14: SYR2K with time mappings, and resulting transformationis generally possible (though not always desirable) to remove output and anti dependences byperforming array expansion. Two possible approaches can be taken:� Determine legality based on only ow dependences and then remove any output and antidependences that are not respected, by performing array expansion on the arrays involvedin those dependences.� Determine a priori, which arrays will be expanded and then determine legality based onow dependences and whichever output and anti dependences remain.Most of the previous work on program transformations uses data dependence directions ordistances to summarize dependences between array references. These abstractions are su�cientfor simple transformations such as unimodular transformations, but they are not precise enoughto determine the legality of loop fusion and a number of other transformations without actuallyapplying the transformation and re-evaluating dependences. Since my framework includes loopfusion, they are not su�cient for my purposes either. I evaluate and represent dependencesexactly using integer tuple relations. If there is a data dependence from sp[i] (i.e., iteration iof statement p) to sq [j] then the tuple relation Dpq representing the dependences from p to qwill map tuple i to tuple j.The legality requirement is then simply:8i; j; p; q; Sym i!j 2 Dpq ) Tp(i) � Tq(j) (2.2)where � means lexicographically precedes and Sym is the set of symbolic constants in Dpq.Intuitively, if there is a data dependence from sp[i] to sq[j] then iteration i must be executedbefore iteration j in the transformed program. To be well-formed, the time mappings must alsobe 1-1 (see Equation 2.1).Representing Traditional TransformationsIn this section I demonstrate how time mappings can be used to represent all transformationsthat can be obtained by applying any sequence of the following traditional transformations:18



Orig(S, [i1; :::; ik]! [f1; :::; fa])case S of\for ik+1 = : : : to : : : do S1":return Orig(S1; [i1; : : : ; ik; ik+1]! [f1; : : : ; fa; ik+1])\S1;S2; : : : ;Sm":return Smp=1 Orig(Sp; [i1; : : : ; ik]! [f1; : : : ; fa; p])\assignment #p":return Tp : f [i1; : : : ; ik]! [f1; : : : ; fa] gFigure 2.15: Computes mapping that corresponds to the original execution order
for i =  1 to n do

for j = 1 to n do

S1; S2

assignment #1 assignment #2Figure 2.16: Abstract syntax tree� Loop Distribution� Statement Reordering� Loop Fusion� Loop Interchange� Loop Skewing� Loop Reversal.� Strip-mining� Index Set SplittingI will describe how to construct time mappings to represent traditional transformations bydescribing how to modify time mappings that correspond to the original execution order ofprograms. The time mapping that corresponds to the original execution order of a programcan be constructed by a recursive descent of the abstract syntax tree (AST). Nodes in the ASThave three forms: loops, statement lists and assignment statements. The function Orig (seeFigure 2.15), when called with arguments of S and [ ] ! [ ], returns a time mapping thatcorresponds to the original execution order for each of the assignment statements in S.For example, the program in Figure 2.5 has the AST shown in Figure 2.16 and the timemapping that corresponds to the original execution order is:19



T1 : f[i; j]! [i; j; 0] gT2 : f[i; j]! [i; j; 1] gThe general form of these time mappings is:Tp : [i1p; : : : ; impp ]! [f1p ; : : : ; fnpp ]The fjp expressions are referred to as mapping components and are classi�ed as being eithersyntactic components (always an integer constant) or loop components (a linear function of theloop variables of that statement). syntactic(fjp ) is a boolean function which is true i� fjp is asyntactic component. loop(fjp ) is true i� fjp is a loop component. The common syntactic levelof two statements sp and sq is de�ned as:csl(sp; sq) � minfj � 1 j 1 � j ^ fjp 6= fjq ^ syntactic(fjp ) ^ syntactic(fjq )gIntuitively, the common syntactic level of two statements is the deepest loop which surroundsboth statements. Figures 2.17 and 2.18 describe how to construct time mappings to representtraditional transformations by modifying the time mappings I have just described. Since theserules can be applied repeatedly, I can represent not only standard transformations but also anysequence of standard transformations.Figures 2.19 through 2.20 show how these rules are used to derive the time mapping:T1 : f[i; j]! [1; i + j; i; 1]gT2 : f[i; j]! [2; i � j; i; 2]gwhich is equivalent to the sequence of traditional transformations shown in Figures 2.5 through2.8.2.4 Combining Distribution and Ordering of Computa-tionThe abstractions used for reordering computation can be used in isolation to specify a new totalordering of the iterations, or they can be used together with the abstractions for distributingcomputation to specify a new partial ordering of the iterations. When used with space map-pings (or any other abstraction for specifying the distribution of computation), time mappingsare used only to specify the relative execution order for iterations on the same physical pro-cessor. That is, if two iterations are executed on di�erent physical processors, then the timemappings do not specify the relative order in which these iterations should be executed. Ifdata dependences exist between iterations on di�erent physical processors then synchroniza-tion statements will be used to ensure that those iterations are executed in the appropriateorder. These ordering constraints together with the ordering constraints implied by the timemappings will generally only specify a partial ordering of the iterations. The absence of a totalordering is what allows parallelism to be exploited.
20



Distribution: distribute the loop at depth L over the set of statements D, with statement pgoing into rpth loop.Requirements: 8p; q p 2 D ^ q 2 D ) loop(fLp ) ^ L � csl(p; q)Transformation: 8p 2 D, replace Tp by [f1p ; : : : ; f (L�1)p ; rp; fLp ; : : : ; fnp ]Statement Reordering: reorder the set of statements D, at level L so that the new positionof statement p is rp.Requirements: 8p; q p 2 D^q 2 D ) syntactic(fLp )^L � csl(p; q)+1^(L � csl(p; q),rp = rq)Transformation: 8p 2 D, replace Tp by [f1p ; : : : ; f (L�1)p ; rp; f (L+1)p ; : : : ; fnp ]Fusion: fuse the loops at level L for the set of statements D, with statement p going into therpth loop.Requirements: 8p; q p 2 D^q 2 D ) syntactic(f (L�1)p )^loop(fLp )^L�2 � csl(p; q)+2 ^ (L� 2 < csl(p; q) + 2) rp = rq)Transformation: 8p 2 D, replace Tp by[f1p ; : : : ; f (L�2)p ; rp; f (L)p ; f (L�1)p ; f (L+1)p ; : : : ; fnp ]Unimodular Transformation: Apply a k � k unimodular transformation U to a perfectlynested loop containing the set of statements D, at depth L. Note: Unimodular transfor-mations include loop interchange, skewing and reversal [Ban90, WL91].Requirements: 8i; p; q p 2 D^q 2 D^L � i � L+k�1) loop(f ip)^L+k�1 � csl(p; q))Transformation: 8p 2 D, replace Tp by[f1p ; : : : ; f (L�1)p ; U [fLp ; : : : ; fL+k�1p ]>; fL+kp ; : : : ; fnp ]Strip-mining: strip-mine the level L loop for the set of statements D, with block size BRequirements: 8p; q p 2 D ^ q 2 D ) loop(fLp ) ^ L � csl(p; q))^ B is a known integerconstantTransformation: 8p 2 D, replace Tp by[f1p ; : : : ; f (L�1)p ; B(f (L)p div B); f (L)p ; : : : ; fnp ]Figure 2.17: Representing traditional transformationsIndex Set Splitting: split the iteration spaces of the set of statements D, using condition CRequirements: C is a�ne expression of constants and indexes common to the set ofstatements D.Transformation: 8p 2 D, replace Tp by (Tp j C) [ (Tp j :C)Figure 2.18: Representing traditional transformations, continued21



Original Time Mappings:T1 : f[i; j]! [i; j; 1]gT2 : f[i; j]! [i; j; 2]gf11 = i; f21 = j; f31 = 1; f12 = i; f22 = j; f32 = 2loop(i) = True; loop(j) = True; loop(1) = False; loop(2) = Falsecsl(1; 2) = 2Loop distribution: L = 1; D = f1; 2g; r1 = 1; r2 = 2Requirements:8p; q p 2 f1; 2g^ q 2 f1; 2g ) loop(f1p ) ^ 1 � csl(p; q)Transformation:T1 : f[i; j]! [1; i; j; 1]gT2 : f[i; j]! [2; i; j; 2]gLoop reversal second loop (Unimodular Transformation):k = 1; U = (�1); D = f2g; L = 3Requirements:8i; p; q p 2 f2g ^ q 2 f2g ^ 3 � i � 3) loop(f ip) ^ 3 � csl(p; q)Transformation:T1 : f[i; j]! [1; i; j; 1]gT2 : f[i; j]! [2; i; �j; 2]gLoop skewing �rst loop (Unimodular Transformation):k = 2; U = � 1 01 1 � ; D = f1g; L = 2Requirements:8i; p; q p 2 f1g ^ q 2 f1g ^ 2 � i � 3) loop(f ip) ^ 3 � csl(p; q)Transformation:T1 : f[i; j]! [1; i; i+ j; 1]gT2 : f[i; j]! [2; i; �j; 2]gFigure 2.19: Deriving time mappings22



Loop skewing second loop (Unimodular Transformation):k = 2; U = � 1 01 1 � ; D = f2g; L = 2Requirements:8i; p; q p 2 f2g ^ q 2 f2g ^ 2 � i � 3) loop(f ip) ^ 3 � csl(p; q)Transformation:T1 : f[i; j]! [1; i; i+ j; 1]gT2 : f[i; j]! [2; i; i� j; 2]gLoop interchange �rst loop (Unimodular Transformation):k = 2; U = � 0 11 0 � ; D = f1g; L = 2Requirements:8i; p; q p 2 f1g ^ q 2 f1g ^ 2 � i � 3) loop(f ip) ^ 3 � csl(p; q)Transformation:T1 : f[i; j]! [1; i+ j; i; 1]gT2 : f[i; j]! [2; i; i� j; 2]gLoop interchange second loop (Unimodular Transformation):k = 2; U = � 0 11 0 � ; D = f2g; L = 2Requirements:8i; p; q p 2 f2g ^ q 2 f2g ^ 2 � i � 3) loop(f ip) ^ 3 � csl(p; q)Transformation:T1 : f[i; j]! [1; i+ j; i; 1]gT2 : f[i; j]! [2; i� j; i; 2]gFigure 2.20: Deriving time mappings continued
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Chapter 3The Algorithms3.1 The IssuesAs was stated earlier, the task of mapping a program written in a sequential programminglanguage onto a multi-processor machine can be divided into two major subproblems: decidinghow to distribute the computation amongst the available processors and deciding how to orderthe computations. Finding a close to optimal solution in a feasible amount of time for eitherof these problems in isolation is still an open problem; it is even more di�cult to solve theseproblems simultaneously.To simplify the problem, I �rst decide how to distribute the computations amongst theavailable processors, and then, based on that decision, decide how to order the computations.In making this simpli�cation however, I am very mindful of the fact that the two problemsare tightly coupled. As much as possible, I have tried to take this into account when devisingmethods to solve the �rst of these problems, namely distributing the computations.In deciding how to distribute the computations amongst the available processors, I want tominimize the amount of communication between processors while at the same time preservingsome degree of parallelism. Minimizing communication between processors can be accomplishedwithout regard to the order of the computations. However, achieving su�cient parallelism doesdepend on the execution order.Through a combination of scalar and array expansion or privatization, loop distribution,statement reordering and loop interchange, it is often possible to expose parallel loops that didnot exist in the original program. Even if parallel loops exist in the original program, distribut-ing the iterations of the newly exposed parallel loops rather than the original parallel loopsmight result in a higher granularity of parallelism or in lower inter-processor communicationcosts. In some cases, there may be no parallel loops to exploit, but the program may be able tobe transformed to use doacross/pipelining techniques to allow computation and communicationto be overlapped.The phase that distributes the computations will be followed by a phase that reorders thecomputations so as to achieve maximal parallelism from the chosen distribution. So, it isimportant not to be inuenced by the original computation order when evaluating how muchparallelism could be achieved by distributing the iterations of a particular loop.An overview of my entire optimization system is shown in Figure 3.1. Each of the sub-tasksshown in this overview will be explained in the remained of this chapter. The reader is advisedto refer back to this overview from time to time, as they progress through this material.24



Select Space Mappings:Calculate extended direction vectors for communication analysisCalculate transitive data dependences for parallelism analysisAnalyze blocked distribution:Analyze comm. for each pair of candidate space mappingsAnalyze parallelism for each candidate space mappingSearch for best combination of candidate space mappingsif (any statement has an unbalanced workload)Analyze cyclic distribution:Analyze comm. for each pair of cand. space mappingsAnalyze parallelism for each cand. space mappingSearch for best combination of cand. space mappingsif (cost of cyclic solution < cost of blocked solution)then Unbalanced, so use cyclic distributionelse Unbalanced, but use a blocked distributionelse Balanced, so use a blocked distributionForm a�ne space mappings by adding constantsSelect Time Mappings:Analyze locality for each candidate loop permutationAnalyze compatibility for each pair of cand. loop permutationsSearch for best combination of candidate loop permutationsForm time mappings by adding constant levels to best perm.Generate Code:Generate new loop structures using time mappingsGenerate SPMD code using space mappingsInsert synchronization for inter-processor dependencesFigure 3.1: Overview of the entire optimization process
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3.2 Selecting Space Mappings3.2.1 IntroductionThe problem of automatically distributing computation has been addressed by a large numberof authors [Gup92, Fea94, AL93a, BKK93, GAL95, SSP+95]. My work improves on mostprevious work in the following ways:1. I am not inuenced by the order of the computation of the original program. I usemethods to determine the parallelism inherent in the program rather than the parallelismthat can be obtained using the computation order in the original program.2. When analyzing parallelism, I not only examine each loop to determine whether its itera-tions can be run entirely independently, but also whether its iterations can be pipelined (alesser but still important form of parallelism). Exploiting this form of parallelism requiresthat a SPMD rather than a SIMD model be used.3. I associate a space mapping with each statement, which allows me to represent dynamicdata distributions without having to partition the program into phases, as well as allowingme to represent non-data distributions.4. I obtain accurate indications of the relative volumes of di�erent inter-processor communi-cations by computing the dimensionality of value-based ow dependence relations[PW93](an abstraction that precisely describes which iterations actually read values written bywhich other iterations). This allows me to analyze communication costs without knowingthe order of the computations.5. I solve the resulting graph search problem exactly, and have shown experimentally that Ican normally do so in a feasible amount of time by using a number of very e�ective butsafe pruning strategies. Other researchers use heuristic or greedy algorithms.6. I simultaneously optimize for communication and parallelism, trading one o� for the otherwhere necessary to obtain an overall optimal solution.Throughout this section, I make a number of simplifying assumptions, such as the assump-tion that all loops have an equal number of iterations (which I denote as n). Some of theseassumptions could be eliminated at the cost of substantial complications to my framework.However, the point of my algorithm is not to identify that one decomposition is 10% betterthan another; my cost model is not sensitive or accurate enough to answer those kinds ofquestions. It is unclear if there is any way to answer those kinds of questions other than byperforming time trials on the target machine. My methods are designed to �nd a distributionsuch that no signi�cantly better distribution exists, and could be easily altered to generate alist of all such decompositions.3.2.2 Candidate Space MappingsTwo basic approaches can be taken to selecting space mappings:� First generate a �nite set of candidate space mappings for each statement. This createsa �nite search space where each solution corresponds to selecting one candidate spacemapping for each statement. Exact or heuristic search procedures can then used to �ndan optimal or close to optimal solution from amongst this set of solutions.� Use a method that directly synthesizes the optimal space mapping for each statement.26



for i = 1 to nfor j = 1 to n1: a(i,j) = ...for k = 1 to n2: ... = a(i,k+1)Figure 3.2: Extended direction vectorsThe disadvantage of the �rst approach is that if the optimal space mapping is not includedin the set of candidate space mappings then it will not be selected. This is not a serious problemin practice because optimal space mappings tend to be very simple in realistic examples. It istherefore very easy to generate a small set of candidate space mappings that will likely containthe optimal space mapping.The second approach has two major disadvantages. First, it is very di�cult to accuratelyestimate complex performance properties such as communication latency and data localitywithout having actual space mappings in mind. Second, the synthesis process is inherentlyglobal rather than local (i.e., the space mapping chosen for one statement may a�ect the spacemappings that should be chosen for all other statements). The size of the resulting optimizationproblem (which often can be formulated as an integer programming problem) will therefore beat least proportional to the number of statements in the program. The exponential nature ofsuch problems means that this approach will generally scale poorly to larger programs.I have therefore decided in favor of the �rst approach. In my current implementation, I onlyconsider space mappings that map to one dimensional processor arrays. My set of candidatespace mappings consists of each dimension in the original iteration space, plus zero (whichcorresponds to not distributing the computation). For example, the candidate space mappingsfor statement 1 in the program shown in Figure 3.2 are:f[i; j]! [i]gf[i; j]! [j]gf[i; j]! [0]gIt would be possible to extend my implementation to consider other candidates (includingskewed mappings) whenever there is some reason to believe they might be desirable. In anycase, the candidate space mappings will be linear (as opposed to a�ne). In Section 3.2.7, I willdescribe how to select constant o�sets to add to these linear space mappings.In order for my search procedure to select an optimal solution from amongst the set ofall possible solutions there must be some metric for comparing solutions. In the next twosections, I will describe how to estimate the parallelism that will result from selecting each ofthe candidate space mappings and the amount of inter-processor communication that will resultfrom selecting various pairs of candidate space mappings. The parallelism and communicationestimates are combined to give an overall performance estimate for each solution.3.2.3 Estimating ParallelismIn this section I describe my methods to determine the parallelism inherent a program. My�rst observation is that the most useful form of parallelism is between di�erent iterations ofthe same statement, rather than between iterations of di�erent statements. This implies thateach statement should be examined separately to determine whether any of its iterations canbe executed in parallel. In doing so, however, I want to ignore any constraints on parallelismimposed by the original loop order or by other statements that just happen to be in the sameloop nest. On the other hand, it is clearly not su�cient to examine each statement in isolation.It turns out that what I need to consider are all direct and transitive self data dependences of27



for r = 1 to nfor p = 1 to nfor q = 1 to nepq = epq _ (epr ^ erq)Figure 3.3: Floyd-Warshall algorithmfor i = 1 to nfor j = 1 to nD0ij = Dijfor r = 1 to nfor p = 1 to nfor q = 1 to nD0pq = D0pq [ (D0pr �D0�rr �D0rq)Figure 3.4: Modi�ed form of Floyd-Warshall algorithmeach statement. This takes into account constraints on parallelism imposed by other statements,but only those that can't be avoided. I consider all ow dependences, and whichever outputand anti dependences remain after array expansion has been performed (deciding when toapply array expansion is outside the scope of this thesis, and was performed manually for theexperiments presented in Section 4).I have developed two methods for computing transitive self data dependences. Both methodsuse the same basic algorithm, which is a modi�ed form of the Floyd-Warshall algorithm forcomputing the transitive closure of a graph (see Figure 3.4). The input to this algorithm is a setof variables Dpq representing all direct data dependences from statement p to statement q. Theoutput is a set of variables D0pq representing all transitive data dependences from statement pto statement q.The original Floyd-Warshall algorithm (see Figure 3.3) can be used to determine the ex-istence of a transitive dependence from any given statement to any other given statement(including itself); however, it cannot determine which iterations of those statements are depen-dent. To obtain this additional information, rather than using boolean valued variables, I usevariables that describe which iterations are dependent on which other iterations. These valuesneed to be combined using union and composition operations rather than boolean \and'' and\or'' operations. The other modi�cation to the algorithm is somewhat subtle and involves theaddition of the D0�rr term. This transitive closure term is added because to �nd all transitivedependences from statement p to statement q, I need to consider dependence \chains" of thefollowing form:If there is a transitive dependence from some iteration i of statement p to some
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iteration j of statement q and a transitive self dependence from iteration j ofstatement q to iteration k of statement q and �nally a dependence from iterationk of statement q to some iteration m of statement r, then there is a transitivedependence from iteration i of statement p to iteration m of statement r (seeFigure 3.5).Computing transitive data dependences is very useful for a number of applications otherthat parallelism analysis, for example they can also be used to detect redundant synchronizationstatements.The only di�erence between the two methods that I have developed is the abstraction usedto represent dependences.An exact methodThe �rst method uses tuple relations to represent data dependences, and uses the operatorsdescribed in Table 2.1. This method will generally compute the set of transitive dependencesexactly. The problem with this method, however, is that the size of the dependence relationsgenerated, and hence the time required to generate them, tends to increase rapidly as thenumber of the statements is increased. I have found that this method is infeasible for analyzinglarge programs.A faster but less accurate methodMy other approach is to use extended direction vectors[WB87, Wol91a] to represent depen-dences. A dependence direction vector is a vector (v1; : : : ; vm), where vi is either `-', `0', or`+', indicating whether the di�erence between the level i index variable at the source of thedependence is less than, equal to, or greater than the level i index variable at the sink of thedependence. For a normal direction vector, the length of the vector is equal to the maximumcommon loop depth of the two statements. An extended direction vector has length equal tothe minimum loop depth of the two statements. For example, for the ow dependence fromstatement 1 to statement 2 in Figure 3.2, the value of the level 1 index variable i, at the sourceof the dependence, is equal to the value of the level 1 index variable i, at the sink of the depen-dence. Also, the value of the level 2 index variable j, at the source of the dependence, is lessthan the value of the level 2 index variable k, at the sink of the dependence. So, the dependenceis represented by the direction vector (0) and by the extended direction vector (0;�).When taking the union of two sets of extended direction vectors, vectors are combined if andonly if doing so will not lead to the loss of information (i.e., if the entries are all identical butone). For example, (0;+) and (0; 0) can be combined to produce (0; 0+); however, (0;+) and(+; 0) can't be combined to produce (0+; 0+) (as that would imply that (0; 0) and (+;+) arepossible direction vectors). When taking the union of sets of extended direction vectors withdi�erent lengths (which occurs when considering transitive dependences through statementswhich are not as deeply nested as the statement in question), the shorter vectors are paddedwith `*', indicating that `-', `0' and `+' are all possible. The composition of direction vectorsis performed element-wise and is de�ned in the obvious manner (i.e. composing `+' and `0'produces `+', composing `+' and `-' produces `*', etc). For extended direction vectors, thetransitive closure operation is simply a \no-op" (i.e., `+'� = `+', `0'� = `0' and `-'� = `-').Loop TransformationsI wish to analyze the parallelism that would result from selecting each candidate space mappingswithout being inuenced by the original loop order. My current implementation considers alllegal loop permutations of the loops surrounding each statement (including all combinationsof reversing the loops). It would also be possible to extend my implementation to consider29



for t1: : : for tz�1for tPzfor tBzfor tz: : : for tmstmtFigure 3.6: Straight forward loop structure for block-cyclicother unimodular loop transformations (including skewed transformations) when there is somereason to believe they might be desirable.The candidate space mappings are classi�ed according to the amount of synchronization theywill require (and hence how much parallelism they permit) within each particular permutation.Even if all permutations of the loops are legal (a number which is exponential in the numberof loops), only a very small amount of time will be required, since each statement is consideredseparately and statements are seldom nested within more than 4 or 5 loops. Each candidatespace mapping is given an overall classi�cation based on the amount of synchronization it willrequire using the best permutation for that particular candidate. The set of best permutationsfor the candidate space mapping that is ultimately selected will later be used as the startingpoint for selecting a time mapping for that statement.Synchronization costsTo analyze the amount of synchronization that will be required for a particular candidate usinga particular permutation, the structure of the loops that would ultimately be used must beconsidered. I analyze the general case of using a block-cyclic distribution rather than separatelyanalyzing both the block and cyclic cases. If the loop of the candidate space mapping is atlevel z in the current permutation (and the statement is nested within m loops), then a straightforward implementation of block-cyclic distribution would lead to the loop structure shown inFigure 3.6.The tPz loop iterates over the set of physical processors, the tBz loop iterates over the blocksand the tz loop iterates over the iterations within each block. In a block distribution the tBzloop will be degenerate and in a cyclic distribution the tz loop will be degenerate.
30



for t1: : : for txfor tBzfor tx+1: : : for tz�1for tPzfor tz: : : for tmstmtFigure 3.7: Improved loop structure for block-cyclicWe de�ne:x as the deepest loop level that carries a transitive self-dependence with a negative dependencedistance at the distributed loop level.y as the deepest loop level that carries a transitive self-dependence with a positive dependencedistance at the distributed loop level.It is legal to move the tBz loop out to just inside the tx loop, so a better loop structure isshown in Figure 3.7.This can be converted to SPMD code as follows:� Remove the tPz loop.� Insert a barrier inside the tBz loop, if necessary, to enforce any dependences going fromhigher numbered physical processors to lower numbered physical processors.� Insert post-and-wait style synchronization inside the ty loop, if necessary (i.e. if x < y),to enforce any dependences going from lower numbered physical processors to highernumbered physical processors. The form of post-and-wait style synchronization that Iuse causes each processor (except the lowest numbered processor) to wait for the nextlowest numbered processor.My decision to use this style of post-and-wait synchronization and to use it only to syn-chronize dependences from lower numbered physical processors to higher numbered physicalprocessors was made in order to simplify analysis, to allow multiple dependences to be satis�edby a single post-and-wait pair, and to avoid the possibility of deadlock. It is certainly notthe only choice that could be made; for example, post-and-wait style synchronization couldbe used to synchronize only those dependences from higher numbered physical processors tolower numbered physical processors. If more sophisticated techniques were used to avoid dead-lock or if other forms of post-and-wait style synchronization were used, then post-and-wait stylesynchronization could even be used to synchronize at least some dependences in both directions.By moving the tBz loop out as far as possible, a minimal number of barriers will be executed.The placement of the tBz loop also implies that any dependences carried by loops tx+1 throughtz�1 will be from a lower numbered physical processor to a higher numbered physical processor,so some form of parallelism (either pure or pipelined) will result within each iteration of the tBzloop.On some architectures it is more e�cient to synchronize using forms of synchronization otherthan barriers, for example using send and receive pairs on a distributed memory machine. The31



point I am trying to make is not that barriers should be used, but rather that at the placeswhere I have said barriers should be inserted, some form of non-pipelined synchronization willbe used. So from a purely cost point of view, it is reasonable to model this as a barrier.The maximum amount, D, by which di�erent processors can be expected to be out oflock-step, is computed as follows:� If any dependences are carried by the distributed loop, the expected delay between thetime processor p can start, and the time processor p + 1 can start, will be L + Bnm�y,where L is the inter-processor message latency, B is the block size, n is the number ofiterations per loop, and P is the number of physical processors1 . The wait from whenthe �rst processor reaches a barrier until the last reaches the barrier will be P � 1 timesthe delay between successive processors. I simplify this slightly to D = P (L+ Bnm�y).� If no dependences are carried by the distributed loop, but there are inter-processor de-pendences carried by loops tx+1 through ty�1, then those dependences from processor pto processor p+ 1 may force processor p+ 1 to lag L behind processor p. I again simplifyslightly and estimate D = PL.� If no inter-processor dependences are carried by loops tx+1 through ty, then the processorsshould remain synchronized to within D = L.The number of barrier synchronizations performed will be nx+1BP . To perform a barriersynchronization, the processors must exchange messages (costing L) and synchronize (costingD). Since D � L, I simplify the cost per barrier to D. The total synchronization cost for eachstatement is therefore nx+1DBP .Load balanceThe loop bounds of each statement are examined to determine whether the amount of workin each iteration will be constant. If any statements have unbalanced loops, then a cyclicdistribution is considered in addition to considering a block distribution. When evaluatingblock distributions for candidates with unbalanced workloads, an additional nm2 time is addedto the overhead estimate. This heuristic is based on the fact that most unbalanced workloadsare a result of triangular loops and the di�erence between the amount of work in a triangularloop and a rectangular loop is nm2 . In Section 3.2.5 higher communication estimates will beused for some dependences when using a cyclic distribution.Compatible candidatesAfter synchronization analysis has been performed, the minimum degree of synchronizationrequired for each candidate will be known. For each candidate there will be a set of legalloop permutations that lead to this minimum degree of synchronization. For example, thecandidate space mapping f[k; i] ! [k]g for statement 1 in Figure 3.8 will produce parallelexecution at loop depth 2, only if loop permutation (i; k) is used for statement 1. Similarly,the candidate space mapping f[k; i; j] ! [j]g for statement 2 will produce parallel executionat loop depth 2, only if one of the following legal loop permutations are used for statement 2:f(k;�j;�i); (k;�j; i); (k; j;�i); (k; j; i)g.Unfortunately, in this case, because of data dependences, the �rst statement's permutation:(i; k), can not be used with any of the second statement's permutations: f(k;�j;�i); (k;�j; i);(k; j;�i); (k; j; i)g. In other words, if candidate f[k; i]! [k]g is selected for the �rst statementand candidate f[i; j; k]! [j]g for the second statement, then parallelism will not be able to beachieved at loop depth 2 for both statements no matter how the iterations are reordered. Thus,analyzing parallelism for each statement in isolation can lead to overestimation of parallelism.1In my current implementation I simply set L = 10, n = 100, P = 10 and B = 1 or 10, for cyclic and blockdistributions respectively 32



for k = 1 to nfor i = k+1 to n1 a(i,k) = a(i,k) / a(k,k)for j = k+1 to i2 a(i,j) = a(i,j) - a(k,j)*a(i,k)Figure 3.8: Gaussian eliminationTo address this problem, I consider all pairs of statements (p; q), and determine whichcandidates of statement p are compatible with which candidates of statement q. CandidateCp of statement p is compatible with candidate Cq of statement q if there exist permutations�p and �q for statements p and q respectively such that �p produces the minimum degree ofsynchronization for Cp, �q produces the minimum degree of synchronization for Cq, and �p iscompatible with �q (see the next subsection on compatible permutations).This compatibility information will be used when constructing the search problem describedin Section 3.2.6 to try to ensure that parallelism is not overestimated as described above. Thecompatibility tests are only performed on each pair of statements in isolation. It is theoreticallypossible for each pair of selected candidates to be compatible but for the set of candidates asa whole to be incompatible. However, since transitive dependences are used in determiningwhich permutations are compatible, it is very unlikely that this will occur. This problem hasnot arisen in any of the examples I have tried. If this ever did occur it would be very easyto detect, and it would be necessary to expand the search space in order to �nd a compatiblesolution.Compatible permutationsThe following test is used to determine whether permutation �p for statement p is compatiblewith permutation �q for statement q. First, a set of direction vectors is constructed thatdescribe the order in which the iterations of statement q will be executed if loop permutation�q is applied. These direction vectors do not correspond to actual data dependences, butrather to ordering constraints that will be satis�ed if that permutation is used. For example,if permutation (k; i; j) is used for statement 2 in Figure 3.8 then the following set of directionvectors f(0; 0;+); (0;+; �); (+; �; �)g would be constructed. In general, the set will be:cqq = [m2f0;:::;n�1g8<:�q(0; : : : ; 0| {z }m ;+; �; : : :; �| {z }n�m�1 )9=; (3.1)where �q(x1; : : : ; xn) means apply permutation �q to the vector (x1; : : : ; xn). Applying apermutation to a direction vector also involves reversing directions as indicated by the permu-tation. For example, if permutation (k; j;�i) was used for statement 2 then the following setof direction vectors would be constructed f(0;+; 0); (0; �;�); (+;�; �)g.Next, these ordering constraints are combined with the transitive dependences betweenstatements p and q to infer new ordering constraints on statement p under the assumption thatpermutation �q will be used for statement q. The new ordering constraints are:cpp = D0pq � cqq �D0qp (3.2)This calculation can be performed using either tuple relations or extended direction vectors.Permutation �p is compatible with permutation �q if and only if �p is legal with respect to thenew set of ordering constraints cpp. 33



For example, if in the example from Figure 3.8, �2 = (k; j;�i) then:c22 = f(0;+; 0); (0; �;�); (+; �;�)g (from Eqn 3.1)D012 = f(0; 0)g (from Fig 3.4)D021 = f(+; 0+)g (from Fig 3.4)c11 = f(+; �)g (from Eqn 3.2)So permutation (i; k) for statement 1 is incompatible with permutation (k; j;�i) for statement2 because (i; k) is not legal with respect to c11 (since the permuted direction vector �1(c11) =f(�;+)g is not lexicographically positive).3.2.4 False Sharing on Shared Memory ArchitecturesFalse sharing is a problem commonly encountered when trying to programmachines with cachecoherent shared memory architectures. It occurs when one processor performs a write, and soonafter, some other processor accesses a di�erent memory location belonging to the same cacheline. The write performed by the �rst processor will cause an entire cache line on secondprocessor to be invalidated, resulting in a cache miss for the second access, despite the fact thatthe memory location actually being referenced may be up to date.False sharing may occur due to references belonging to di�erent statements. To determineif false sharing will result between a given pair of references, it is generally necessary to knowboth the time and space mappings used for the statement(s) containing those references. Itis therefore very di�cult and expensive to accurately predict all cases of false sharing for thepurpose of evaluating space mappings. I therefore use a rather crude model for predictingfalse sharing, that detects many common cases of false sharing, but misses some cases, andoccasionally predict false sharing when it will not occur. Improving this model is a high priorityfor future work.I assume that arrays are laid out according to the C programming language conventions (i.e.,a(i,j) and a(i,j+1) occupy adjacent memory locations). The main simplifying assumptionthat I make, is that false sharing will only occur due to two di�erent iterations of a singlestatement writing to the same cache line. So, if a block distribution is used and the candidatedistributed loop's index variable occurs in at least one of the left side subscript expressions,then I assume that false sharing will not occur. Similarly, if a cyclic distribution is used andthe candidate distributed loop's index variable occurs in at least one of the �rst m� 1 left sidesubscript expressions (where m is the dimensionality of the left side array), then I assume thatfalse sharing will not occur. Otherwise, I assume pessimistically that false sharing will occurand assign a very high cost to that candidate.False sharing can also be eliminated in some cases by transforming the layout of the arrays.Deciding when and how to do this is very di�cult since a given array is normally accessed inmore than one statement, each of which implies a preferred layout for the array.3.2.5 Estimating CommunicationMy primary assumption is that communication will only be required between processors if oneprocessor writes a value to a location and some other processor later reads that value from thatlocation. Value-based ow dependence relations [PW93] are used to obtain accurate indicationsof the relative volumes of di�erent inter-processor communications. I always use value basedow dependence relations in this section regardless of the abstraction chosen in the previoussection. Value based dependence relations precisely describe which iterations actually readvalues written by which other iterations. For example, there is no value based ow dependencefrom statement 1 to statement 3 in Figure 3.9, since all memory locations written by statement1 are overwritten by statement 2 before statement 3 can read them. The value based owdependence from statement 2 to statement 3 would be represented by the dependence relationf[i; i]! [i; i] j 1 � i � ng. From this information, it can be determined that only n values will34



for i = 1 to nfor j = 1 to n1: a(i,j) = ......2: a(i,j) = ...3: ... = a(i,i)Figure 3.9: Value based dependence examplefor t = 0 to ITERSfor j = 0 , DIM-1for k = 1, DIM-11: X[j, k] = ...for j = 0 , DIM-12: ... = X[j, DIM-1] + ...d12 : f[t; j; k]! [t; j] j k = DIM� 1 ^ 0 � t � ITERS^ 0 � j < DIM ^ 2 � DIMgFigure 3.10: Constant distance examplebe communicated from statement 2 to statement 3, despite the fact that both statements haven2 iterations.I simplify matters by assuming that all loops have some unknown constant number of it-erations \n" (even those with known constant loop bounds). This allows me to associate adimensionality (or rank) with each value based ow dependence. For example, the dimension-ality of the dependence relation given in Figure 3.9 is 1. The dimensionality of a relation iscomputed as the dimensionality of the relation's domain minus the number of equality con-straints required to describe the domain.Using dimensionality allows me to obtain accurate indications of the relative volumes ofdi�erent inter-processor communications without having to resort to complex and expensivesymbolic volume estimation algorithms [Pug94]. Dimensionality, however, only provides anasymptotic indication of the amount of communication that will result. It may, for example,indicate that O(n2) or O(n3) communication is required. It can not distinguish between, forexample, 2n2 and 3n2 communication. So, there is no point in considering factors such as theaggregation of messages from two di�erent writes, or the orientation of cache lines, since suchfactors can only e�ect the amount of communication by a constant factor.For each value-based ow dependence, each combination of candidate space mappings forthe two statements involved in the dependence is considered. The equality constraints in thedependence relations are examined and the di�erence between the virtual processor to which the�rst statement is mapped and the virtual processor to which the second statement is mapped isStmt 20 t j0 zero not constant not constantStmt t not constant zero not constant1 j not constant not constant zerok DIM-1 not constant not constantTable 3.1: Virtual processor di�erences35



determined. The possible di�erences are: zero , a constant other than zero, and a non-constantdi�erence. Table 3.1 shows each combination of candidate space mappings for statements 1and 2 in Figure 3.10, with information about the di�erence in virtual processors for the valuebased ow dependence shown.If the di�erence in virtual processors is zero then I estimate that no communication willoccur. In the case of self dependences, this estimate is always exact. In the case of non-selfdependences, this constitutes an optimistic assumption that the statements will be assignedidentical constant o�sets in Section 3.2.7. If the di�erence in virtual processors is a constantother than zero, then it is assumed that nearest-neighbor communication will occur. Again,in the case of self dependences, this is always true. In the case of non-self dependences, thisconstitutes a pessimistic assumption that the di�erence between the constant o�sets assignedto the statements will not be the same as the non-zero constant di�erence between the virtualprocessors (if that were the case, then there would be no communication).If a blocked distribution is being considered and communication is nearest-neighbor, thenmany of the dependences will be between di�erent virtual processors that are mapped to thesame physical processor. So, for a dependence of dimension nd, I estimate that the amount ofinter-processor communication will be nd=B (where B is the number of virtual processors ineach block). If the communication is not nearest-neighbor, or if a cyclic distribution is beingconsidered, then a dependence with dimensionality nd has a communication estimate of nd.3.2.6 The Search ProblemThe space mapping selection problem is now represented as a weighted graph. With the ex-ception of the candidate space mappings described in Section 3.2.6, the graph will contain anode corresponding to each candidate space mapping of each statement. The node weightswill be the parallelism overheads as derived in Sections 3.2.3 and 3.2.4 and the edge weightswill be the communication estimates as derived in Section 3.2.5. Parallelism overheads are �rstmultiplied by a machine dependent constant that represents the ratio of computation speed tocommunication speed on the target machine. By varying this parameter, it can be determinedwhether or not a given solution is likely to be optimal across a wide variety of machines.Incompatible candidatesIf incompatible candidates exist (see Sub-section 3.2.3), the parallelism that can be achievedusing some candidate space mapping may depend on which candidates are chosen for otherstatements. I therefore use two nodes to represent such candidates. For one node, it is op-timistically assumed that the degree of parallelism estimated when considering the statementin isolation can be achieved, and for the other node, it is pessimistically assumed that choicesmade for other statements will force the use of a permutation that leads to the least possi-ble degree of parallelism for this statement. The communication costs will be the same forboth nodes, but the parallelism overhead estimate will be higher for the pessimistic version.If two candidates are incompatible then the optimistic version of both candidates should notbe selected simultaneously. To ensure that does not occur, an edge with in�nite cost is addedbetween the optimistic versions of incompatible candidates.It is possible for good solutions to be overlooked by this algorithm, since it is occasionallyoverly pessimistic about the amount of parallelism that can be achieved by using incompatiblecandidate space mappings. My intuition is that this is not a major problem in practice, however,investigating this problem and possibly improving the algorithm is also a high priority for futureresearch.The search procedureThe search problem is to select exactly one node for each statement, such that the sum ofthe node costs of selected nodes and sum of edge costs between selected nodes is minimized.36



inout real a[1024,1024]for k = 1, 1023 dofor i = k+1, 1024 doa[i,k] = a[i,k]/a[k,k]for j = k+1, 1024 doa[i,j] = a[i,j]-a[k,j]*a[i,k]endforendforendfor Figure 3.11: Gaussian elimination exampleMany previous approaches to automatically minimizing inter-processor communication solvesimilar formulations with heuristic or greedy algorithms. I instead solve the problem exactly.Admittedly, my approach is not guaranteed to �nd the optimal set of space mappings sincethe edge weights in the graph problem I am trying to solve are only estimates of actual cost.However, by using an exact algorithm to solve the search problem, I know that any imprecisionis bounded by the imprecision of the performance estimates, rather than being unbounded aswould be the case if I used a heuristic algorithm to solve the search problem. Within thisframework, I can easily substitute di�erent performance estimation algorithms until I �nd theone that best trades o� precision for e�ciency. The actual algorithm for performing the searchis described in Section 3.4.Figure 3.12 shows the graph that results from the Gaussian elimination program shown inFigure 3.11 when a cyclic distribution is being considered and a computation to communicationratio of 5 is used. The nodes labeled with primes are the pessimistic versions of their respectivecandidates. The search algorithm selects the i node for both statements, with an overall minimalcost of 101020.3.2.7 AlignmentAdding a constant to the linear space mappings selected in the previous section can eliminatesome nearest-neighbor communications. A constant o�set will have no a�ect on communicationbetween di�erent iterations of the same statement. For dependences between di�erent state-ments, however, if the dependent iterations map to virtual processors separated by a constantdistance, then adding appropriate constants to the selected space mappings can map them tothe same virtual processors. The alignment algorithm described here adds constants that arean a�ne function of the symbolic constants in the program. For example, for the program inFigure 3.10, the alignment algorithm might select \DIM-1" as the constant to add to the spacemapping of statement 1.In the previous section, I tentatively assumed that the same constant would be added toall space mappings, so nearest-neighbor communications would be eliminated only if the linearspace mappings assigned to their respective statements in the previous section were equal. Inthis section I try to improve on this by adding potentially di�erent constants to each spacemapping. However, I regard any such improvements as a bonus, and certainly don't claim tosolve the problem optimally (doing so would be too expensive). My alignment algorithm usesa greedy approach to decide which dependences with constant virtual processor distances willbe made intra-processor. The alignment algorithm maintains a partitioning of the statementssuch that within each partition, the relative di�erences between the statements' constant partsare known. Initially all statements are in separate partitions. The algorithm processes allconstant distance dependences in decreasing order based on their dimensionalities. If there isa dependence from statement p to statement q and p and q are in di�erent partitions, then the37
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for t = 0 to ITERSfor j = 0 to DIM-1for k = 1 to DIM-11 X[j,k] = X[j,k]-X[j,k-1]*A[j,k]/B[j,k-1]2 B[j,k] = B[j,k]-A[j,k]*A[j,k]/B[j,k-1]for j = 0 to DIM-13 X[j,DIM-1] = X[j,DIM-1]/B[j,DIM-1]for j = 0 to DIM-1for k = DIM-2 to 0 by -14 X[j,k] = (X[j,k]-A[j,k+1]*X[j,k+1])/B[j,k]for j = 1 to DIM-1for k = 0 to DIM-15 X[j,k] = X[j,k]-X[j-1,k]*A[j,k]/B[j-1,k]6 B[j,k] = B[j,k]-A[j,k]*A[j,k]/B[j-1,k]for k = 0 to DIM7 X[DIM-1,k] = X[DIM-1,k]/B[DIM-1,k]for j = DIM-2 to 0 by -1for k = 0 to -1+DIM8 X[j,k] = (X[j,k]-A[j+1,k]*X[j+1,k])/B[j,k]Figure 3.13: Adidependence can be made intra-processor. In this case, the partitions containing statements pand q are merged and the virtual processor di�erence between statements p and q is recorded.When all dependences have been processed or when only one partition remains, a constant isarbitrarily chosen for one statement in each partition and is used to compute constants for theother statements in the partition.3.2.8 An Example: adiFigure 3.13 shows a program fragment called adi that is used in alternating direction implicitintegration. My parallelism analysis phase produces the results shown in Table 3.2. If I setthe communication to computation ratio parameter to a low value such as 0:01, then the spacemappings shown in Figure 3.14(a) are obtained. These space mappings result in all statementsbeing executed in parallel; however, they also result in 4 n3 and 12 n2 inter-processor com-munications. If I set the communication to computation ratio parameter to a more realisticvalue such as 5:0, then the space mappings shown in Figure 3.14(b) are obtained. These spacemappings result in the �rst four statements being parallelized and three of the last four state-ments being pipelined, but they result in only 4 n3 and 4 n2 inter-processor communications.If I set the communication to computation ratio parameter to an even higher value such as100:0 (as might be the case for a network of workstations), then the space mappings shownin Figure 3.14(c) are obtained. These space mappings result in all statements being executedsequentially, with no inter-processor communication.3.3 Selecting Time Mappings3.3.1 IntroductionAfter having chosen a space mapping for each statement as described in the previous section, Inow need to select time mappings that will achieve the degrees of parallelism that I estimated39



Stmts Transitive Candidate space mappingsDependences t j kbarriers � cost barriers � cost barriers � cost1,2,4 (+,*,*) (0,0,+) 1� P (L+ Bn2) n� L n � P (L+ B)3 (+,*) 1� P (L+ Bn) n� L5,6,8 (+,*,*) (0,+,0) 1� P (L+ Bn2) n� P (L+B) n � L7 (+,*) 1� P (L+ Bn) n � LTable 3.2: Synchronization costs for adi1 : f[t; j; k]! [j]g2 : f[t; j; k]! [j]g3 : f[t; j] ! [j]g4 : f[t; j; k]! [j]g5 : f[t; j; k]! [k]g6 : f[t; j; k]! [k]g7 : f[t; k] ! [k]g8 : f[t; j; k]! [k]g(a) : r = 0:01 1 : f[t; j; k] ! [j]g2 : f[t; j; k] ! [j]g3 : f[t; j] ! [j]g4 : f[t; j; k] ! [j]g5 : f[t; j; k] ! [j]g6 : f[t; j; k] ! [j]g7 : f[t; k]![DIM � 1]g8 : f[t; j; k] ! [j]g(b) : r = 5:0 1 : f[t; j; k]! [0]g2 : f[t; j; k]! [0]g3 : f[t; j] ! [0]g4 : f[t; j; k]! [0]g5 : f[t; j; k]! [0]g6 : f[t; j; k]! [0]g7 : f[t; k] ! [0]g8 : f[t; j; k]! [0]g(c) : r = 100:0Figure 3.14: Selected space mappings for adicould be achieved. To do so, I reuse much of the analysis performed to select the spacemappings. In particular, the loop permutations considered in order to analyze parallelism, willbecome the candidate time mappings. In general, for each candidate space mapping, there willexist a set of loop permutations that achieve the minimal degree of synchronization possiblefor that candidate. If the space mapping selection algorithm selects the optimistic version of agiven space mapping, then I use the sets of loop permutations that achieve the minimal degreeof synchronization possible for that space mapping as the candidate loop permutations forthat statement. If the pessimistic version is selected, or if the zero space mapping is selected,then all legal loop permutations are considered candidates for that statement. These sets ofcandidate loop permutations are actually computed during parallelism analysis for selectingspace mappings, so no further work is required at this stage. These candidates are evaluatedaccording to a number of criteria including the degree of cache reuse they will cause. A searchprocess similar to that used in Section 3.2.6 is used to select the best overall set of looppermutations. These loop permutations are then formed into time mappings by adding constanto�sets and constant levels as described in Section 3.3.5. Constant o�sets and constant levelsallow loop alignment and loop �ssion/fusion decisions to be represented respectively.3.3.2 Estimating Data LocalityMy estimate of data locality is an estimate of the number of cache misses that will occur. Tosimplify the problem I only take into account self reuse, i.e., reusing a cache line used by aprevious iteration of the same reference. This simpli�cation is justi�able because self reuse canreduce the number of cache misses by a factor of 
(n), whereas group reuse can only reducethe number of cache misses by a factor of O(1). I do, however, take into account both temporaland spatial locality [WL91].I say that an array reference (with dimensionality m):� is completely pinned at depth k if and only if at least one of the subscript expressions40



involves the index variable at depth k in the candidate loop permutation, but no subscriptexpressions involve index variables deeper than depth k in the candidate loop permutation.Intuitively, if a reference is completely pinned at depth k then all iterations of loops insidethe kth loop will access the same memory location.� is partially pinned at depth k if and only if at least one of the �rst m � 1 subscriptexpressions involves the index variable at depth k in the candidate loop permutation, butnone of the �rst m� 1 subscript expressions involve index variables deeper than depth kin the candidate loop permutation. Intuitively, if a reference is partially pinned at depthk then all iterations of loops inside the kth loop will access the same row of the array (andhence, often the same cache line).For example, the array reference a[2�j+1][j+k] is partially pinned at depth 1 and completelypinned at depth 2 by the candidate loop permutation (j; k; i).I make two basic assumptions regarding whether an array element is expected to remain inthe cache from one use to the next:� If a particular cache line is being accessed every iteration during any interval of time,then I assume that that cache line will remain in the cache for that interval of time.� Otherwise, I assume that it will be ushed from the cache by intervening references.If a reference becomes completely pinned at depth k and was already partially pinned atdepth k0 < k, then successive iterations of the kth loop will access array elements that map tothe same cache line approximately C � 1=C of the time (where C is the cache line size). So,given the above assumption, the expected number of cache misses is nk=C.If a reference becomes completely pinned at depth k, but was not already partially pinned,then successive iterations of the loops inside the k loop will access the same array element. So,given the above assumption, the expected number of cache misses is nk.The cache misses incurred by the entire statement is the sum the cache misses incurred forall array references in the statement.Although relatively simple, I have found that this model for data locality produces adequateresults and could easily be adapted for use in other transformation systems.3.3.3 Incompatible Time MappingsIn Section 3.2.3, I described how to determine which permutations are compatible with whichother permutations. It is not possible to generate semantically correct code using incompatiblepermutations, so I do not want to select incompatible permutations. I take care of this byintroducing an edge with in�nite weight between such permutations.The incompatibility tested for in Section 3.2.3 dealt only with legality, that is, whether ornot code could be generated that respected all data dependences in the original program. Thereare other ways in which permutations can be incompatible. A di�erent form of incompatibilitythat I will deal with here, is whether or not the permutations allow the maximal amount ofparallelism to be exploited for both statements. For example, consider the case where afterapplying permutations �1 and �2 to statements 1 and 2 respectively, statement 1 is distributedat depth 1 and is completely parallel and statement 2 is distributed at depth 2 and is completelysequential. If the inter-statement dependences are such that it is not possible to place statements1 and 2 in di�erent loops at depth 1 (i.e. apply loop distribution), then �1 and �2 would beconsidered incompatible because they do not allow the maximal amount of parallelism to beexploited for statement 1.To determine which permutations are incompatible in this new way, I �rst determine theminimum depth at which each pair of statements can be separated (i.e., placed in separateloops), using each of the candidate loop permutations. I again use cpp as de�ned in Equation3.2, but now, rather than determining whether �p is legal with respect to cpp, I determine the41



maximum depth (according to �p), at which any of these dependences are carried. This givesthe minimum depth at which the statements can be separated.For example, consider the Gaussian elimination program shown in Figure 3.11. If �1 = (k; i)and �2 = (k; i; j) thenc22 = f(+; �; �); (0;+; �); (0; 0;+)g (from Eqn 3.1)D012 = f(0; 0)g (from Fig 3.4)D021 = f(+; 0)g (from Fig 3.4)c11 = f(+; �)g (from Eqn 3.2)�1(c11) = f(+; �)g, so the minimum depth at which the statements can be separated is 1. If�1 = (i; k) and �2 = (i; k; j) thenc22 = f(�;+; �); (+; 0; �); (0; 0;+)g (from Eqn 3.1)D012 = f(0; 0)g (from Fig 3.4)D021 = f(+; 0)g (from Fig 3.4)c11 = f(+; 0); (�;+)g (from Eqn 3.2)�1(c11) = f(0;+); (+; �)g, so the minimum depth at which the statements can be separated is2. If both statements are completely sequential (i.e., their synchronization costs are at least nd,where d is the depth of the loop nest), then their permutations are not considered incompatible.If only one of the statements is completely sequential, then the permutations will be consideredcompatible if and only if the depth at which the distributed loop of the parallel statementoccurs, is greater than the minimum depth at which the statements can be separated from oneanother. If neither statement is completely sequential, then the permutations are consideredcompatible if and only if:� both distributed loops occur at depths greater than the minimum depth at which thestatements can be separated, or� both distributed loops occur at the same depth and have the same synchronization costs.3.3.4 The Search ProblemThe time mapping selection problem can now be represented as a weighted graph. The graphwill contain a node corresponding to each candidate loop permutation of each statement. Thecandidate loop permutations are those that achieve the minimal degree of synchronizationpossible for the space mappings chosen in the previous section. If the zero space mapping, orthe pessimistic version of a candidate space mapping is chosen, then all legal loop permutationsbecome candidates. The node weights will be the data locality costs as derived in Section3.3.2 and the edge weights will be zero or in�nity, depending on whether or not the candidatepermutations are incompatible as de�ned in Section 3.2.5. The same algorithm is used to solvethis graph problem as is used to solve the space mapping selection problem (see Section 3.4).3.3.5 Constant Levels and O�setsGiven a loop permutation for each statement, I now need to create a time mapping for eachstatement. In addition to representing the loop permutations, the time mappings must alsorepresent the loop level at which statements should be separated from one another, and howthey should align with one another in the loops they do share.Given a permutation, �p, for statement p, I generate a time mapping of the following form:Tp : f[i1; : : : ; im]! [c0p; i�1p � d1p; c1p; i�2p � d2p; : : : ; i�mp � dmp ; cmp ]g42



where �jp is the number of the loop in position j according to the given permutation �p,and c0p; : : : cmp ; d1p; : : : ; dmp are integer constants. If I want statements p and q to be in the sameloops up to loop depth d and for statement p to come before statement q, then I will selectconstants such that c0p = c0q; : : : ; cd�1p = cd�1q and cdp < cdq (these constants correspond to loopfusion/�ssion and statement reordering transformations). Similarly, if I want iteration x ofstatement p to occur in the same iteration of the level d loop as iteration x+ � of statement q,then I will select constants such that ddp = ddq +� (these constants correspond to loop alignmenttransformations [ACK87]).My current implementation separates statements at the minimum loop depth possible. Thisallows the maximal degrees of parallelism to be exploited for all statements. In some cases itmay be possible and in fact preferable to separate statements at a depth greater that theminimal allowable. Whether or not this is preferable will depend on, amongst other things,the way the statements interact with one another via the cache. In some cases, separatingstatements at a deeper level will improve cache reuse, but in others it will degrade cache reuse.Since it is di�cult to predict when separating at a deeper level will improve performance, andsince the potential gain from doing so is small, I decided to always separate at the minimumdepth possible. This is not a limitation of the overall framework, which easily could be alteredto select another depth at which to separate.The actual algorithm for selecting constants is as follows. I maintain a data dependencegraph with each node corresponding to a statement and store a tuple relation, Dpq , with eachdirected edge from p to q, representing the data dependences from statement p to statementq. A topological sort is performed on reduced graph and a constant c0p is assigned to eachstatement p according to the position of the connected component that it belongs to. Thedependence graph is then updated so that only dependences between statements in the sameconnected component remain: Dpq = Dpq \ fi! jjc0p = c0qgI then move on to selecting the �rst set of constant o�sets. If:Sp = f[i1; : : : ; im]! [i�1p + �]gthen d1p is set equal to �, otherwise d1p is set equal to 0. This selection of constant o�setsmakes code generation easier because the index variable of the new distributed loop will besynonymous with the virtual processor number.It is possible that this selection of constant o�sets will not result in a legal set of timemappings. To determine if this is the case, I test for each pair of statements p and q, whether:�1p(i) + d1p � �1q (j) + d1q (3.3)for all i! j remaining in Dpq.This test has never failed in any of the examples I have looked at; I have therefore beenable to avoid handling that situation in my current implementation. This test usually succeeds,however, only because I separate statements (and hence remove as many dependences as possi-ble) as early as possible. If I changed this policy, then alignment would become a much biggerproblem. To solve the problem completely, it would be necessary to implement an algorithmto select constant o�sets that properly align the statements, such as the algorithm I developedin [KP93]. The problem with that approach is that it may be too slow to use for large pro-grams. Another approach is to backtrack in the search procedure to �nd a di�erent set of spacemappings or time mappings that don't need to be specially aligned. Such a set of time andspace mappings always exists since the time mappings corresponding to the original program'sexecution order do not require any alignment.If the given selection of constant o�sets does satisfy condition 3.3, then I again update thedependence graph by removing any dependences that are now guaranteed to be satis�ed bythis choice of loop permutations and constant o�sets:43



out real a[1024,1024]for i = 1, 1024 dofor j = 1, 1024 do1 a[i,j] = ...endforendforfor i = 1, 1024 do2 a[i,i] = ...endforfor k = 1, 1024 do3 a[k,k] = sqrt(a[k,k])for i = k+1, 1024 do4 a[i,k] = a[i,k]/a[k,k]for j = k+1, i do5 a[i,j] = a[i,j]-a[i,k]*a[j,k]endforendforendfor Figure 3.15: Cholesky decompositionDpq = Dpq \ fi! jj�1p(i) + d1p = �1q (j) + d1qgThis process continues, alternating between selection of the constant levels using topologicalsort and selection of constant o�sets using the rules described above.For example, consider the Cholesky decomposition program shown in Figure 3.15. Theselected space mappings and loop permutations are:S1 : f[i; j]! [i]g �1 : (i)S2 : f[i]! [i]g �2 : (i)S3 : f[k]! [k]g �3 : (k)S4 : f[k; i]! [i]g �4 : (k; i)S5 : f[k; i; j]! [i]g �5 : (j; i; k)The initial dependence graph is shown in Figure 3.16(a). Applying topological sort to thisgraph produces the following constants: c01 = 1; c02 = 2; c03 = 3; c04 = 3; c05 = 3. The updateddependence graph is shown in Figure 3.16(b).For statements 1,2 and 3, Sp = f[i1; : : : ; im] ! [i�1p + �]g, with � = 0, so d11 = 0, d12 = 0and d13 = 0. This is not true for the other statements, so d14 = 0 and d15 = 0. The updateddependence graph is shown in Figure 3.16(c).Applying topological sort to each connected component in this graph produces the followingconstants: c11 = 1; c12 = 1; c13 = 2; c14 = 3; c15 = 1. The updated dependence graph is shown inFigure 3.16(d). The time mappings for statements 2 and 3 are now complete.For statements 4 and 5, Sp = f[i1; : : : ; im]! [i�2p + �]g, with � = 0, so d24 = 0 and d25 = 0.This is not true for statement 1, so d21 = 0. The updated dependence graph is shown in Figure3.16(e).Applying topological sort to each connected component in this graph produces the followingconstants: c21 = 1; c24 = 1; c25 = 1. The updated dependence graph is shown in Figure 3.16(f).The time mappings for statements 1 and 4 are now complete.It is not the case that Sp = f[i1; : : : ; im]! [i�3p+�]g, for statement 5, so d35 = 0. The updateddependence graph is shown in Figure 3.16(g). Applying topological sort to each connectedcomponent in this graph produces the following constants: c25 = 1.44
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Figure 3.16: Dependence graphThe �nal time mappings are:T1 : f[ i; j ] ! [ 1; i; 1; j; 1 ]gT2 : f[ i ] ! [ 2; i; 1 ]gT3 : f[ k ] ! [ 3; k; 2 ]gT4 : f[ k; i ] ! [ 3; k; 3; i; 1 ]gT5 : f[ k; i; j ] ! [ 3; j; 1; i; 1; k; 1 ]g3.4 The Search Procedure3.4.1 The Simple Search ProcedureThe basic approach to solving the search problem is simple; an exhaustive search is performedthrough all possible selections of nodes and the one with the lowest overall cost is chosen. Inorder to solve the problem in a feasible amount of time, I have developed a number of e�ectivebut optimality-preserving, branch and bound style pruning strategies. Figure 3.17 shows asimpli�ed version (without any optimizations) of the recursive depth-�rst search algorithm. Ckis the list of nodes for statement k, N is the number of statements, vi(s) is the node cost forcandidate s of statement i, and eij(si; sj) is the edge cost between statements i and j usingcandidates si and sj respectively.3.4.2 Pruning StrategiesOnce the cost of at least one solution has been determined, its cost can be used to prune thesearch space. Suppose a solution with cost c has been found and I am currently considering apartial solution de�ned by a function S from some subset of the statements to the candidatescurrently being considered for those statements. I de�ne:P (S) = Xi2domain(S) vi(S[i]) + Xj2domain(S)^j�i eij(S[i]; S[j])45



search (statement k)foreach candidate s 2 CkS[k] = sif (k < N )search(k+ 1)elsecost =PNi=1(vi(S[i]) +Pij=1 eij(S[i]; S[j]))if (cost < best cost)best cost = costrecord fS[1]; : : : ; S[N ]g as bestStart by calling search(1)Figure 3.17: Simpli�ed search algorithmIf P (S) � c, then consideration of the partial solution can be terminated, since its total costcannot be better than that of the solution already found.Further pruning can be performed if I can determine a lower bound on the cost that will becontributed by those statements for which a candidate has not yet been chosen (i.e., withoutactually considering all combinations of selections and choosing the best one). The lower boundthat I use is: lb(S) = Xi 62domain(S)mins2Ci(P (S [ fi! sg) � P (S))That is, lb(S) is the sum of the edge costs from all statements for which a candidate has beenchosen, to the best candidates of each of the statements for which a candidate has not beenchosen, plus the node costs of each of these candidates. If P (S) + lb(S) � c then considerationof the partial solution can be terminated.Given that low-cost solutions allows me to prune more than high-cost solutions, it is advan-tageous to �nd low cost solutions early in the search process. The candidates of each statementcan be considered in any order, so I choose an order that is most likely to lead to a completelow cost solution as early as possible. For each unselected statement i, the candidates s areordered according to P (S [ fi! sg).The statements can also be considered in any order. The best candidate for each statementwill usually have to be considered with many other combinations of candidates for the remainingstatements. It is highly desirable, however, if the candidates other than the best candidate, arenot considered with many other combinations of candidates for the remaining statements. Ifselecting the second-best candidate of a statement will cause the total cost to rise substantiallythen only a few more statements (if any) will have to be considered before the total cost rises toa point where the partial solution can be pruned. So, when selecting the statement to explorenext, I choose the one whose second best candidate will add the most to the total cost; that is,the statement i whose second best candidate s is most expensive according to:P (S [ fi! sg) + lb(S [ fi! sg)Note that there is no �xed order in which the statements are considered. At each stage, thestatement considered next will depend on the current context.According to the above formula, deciding which statement to consider next would take ap-proximately O(N4M2) time, where M is the average number of candidates per statement. Bystoring partial sums, this can be reduced to O(NFM2), where F is the average number ofstatements that have value-based ow dependences reaching a statement. While this is still46



Program Nr Max Un-optimized OptimizedStmt Nest Calls Time Calls Timege 2 3 4 0.00 2 0.00ch 3 3 9 0.00 2 0.00relax 1 3 1 0.00 1 0.00jacobi 3 3 6 0.00 3 0.00burg2 11 2 17839 0.99 11 0.01lczos 23 3 7132375 563.93 23 0.02cholsky 14 4 458656 69.04 14 0.02mxm 2 3 4 0.00 2 0.02adi 17 3 2:3� 107 � 20 minutes 17 0.02intba1 41 2 7:1� 107 � 1 hour 41 0.03eux 27 3 2:9� 1011 � 6 months 27 0.04vpenta 53 2 3:7� 1016 � 105 years 53 0.17shallow 65 2 4:6� 1014 � 700 years 90 0.18erle 60 3 3:6� 1021 � 1010 years 105 0.30(All times are in seconds unless otherwise speci�ed)Table 3.3: Space mapping search times for various benchmark programsrelatively expensive, it more than pays for itself by substantially increasing the amount of prun-ing. In my experiments I have not found the cost prohibitive and the theoretical exponentialworst-case behavior has not been seen in practice.Table 3.3 shows the number of recursive calls to the search procedure, and the overall execu-tion time of the search procedure when used to select space mappings for a variety of benchmarkprograms. Data is shown for both the un-optimized version of the search algorithm (Figure3.17) and the fully optimized pruning search algorithm. Times marked with a � are projectedtimes. The execution times for the un-optimized search algorithm clearly grows at an exponen-tial rate, however, the fact that most practical programs don't have an exponential number of\interesting" candidate solutions, means that the heuristic search algorithm's execution timesgrow at a much more acceptable rate.3.4.3 Time-limited SearchesWhile the optimized execution times shown in Figure 3.3 are relatively low, there is no guaranteethat they will be low for all programs. There are, however, ways to modify the algorithm toplace an arbitrary constant upper bound on the time spent performing the search, at the expenseof no longer being guaranteed an optimal solution. The entire algorithm has exponential worstcase performance; however, a complete (but not necessarily optimal) solution can trivially befound in a linear amount of time. In the case of searching for space mappings, the algorithmcan be terminated at any point after a complete solution has been found, with the best solutionfound so far being returned. In the case of searching for time mappings, the algorithm canbe terminated at any point after a complete solution with a non-in�nite cost (indicating thatthe solution is legal) has been found. This kind of termination could be triggered wheneverthe number of recursive calls to the search procedure increases past some �xed limit or whenthe system clock indicates that more than a certain amount of cpu time has been spent in thesearch procedure.3.4.4 Semi-automatic SystemsThe search algorithm as it has been described here is designed to automatically select aspace/time mapping for each statement. It is very easy, however, to modify the algorithm47



for use in an environment where a human user or some outside system makes some or all ofthe selections of the space mappings and/or time mappings. This is useful in an interactiveenvironment where the user may for example want to experiment with various permutationsand/or distributions for the most deeply nested statements. In such a setting, they may notcare, or be bothered to determine the best permutations and/or distributions for the otherstatements, but the system can automatically select these.3.5 Code Generation3.5.1 IntroductionGiven a space mapping and time mapping for each statement, it is now necessary to generatethe transformed code that will realize these mappings. I will be generating SPMD code writtenin C. This C code must then be compiled to produce executable code for the target machine.I �rst generate code that takes into account the time mappings but not the space mappings;that is, the transformed code executes all iterations in lexicographic order based on their co-ordinates in the transformed iteration space. I then modify this code to produce SPMD codeby restricting the iterations to those that belong to a particular physical processor. Finally, Iinsert synchronization statements to enforce any inter-processor data dependences.3.5.2 Scanning Multiple PolyhedraA one-to-one and onto time mapping applied to a convex iteration space will result in a convexiteration space. The problem of generating perfectly nested loops to iterate over all and onlythose points in such a convex region has been studied by a number of researchers starting withthe seminal work of Ancourt and Irigoin [AI91].If the original iteration space is non-convex (as a consequence of non-unit loop steps), or ifthe time mapping applied is not onto, then the transformed iteration space may be non-convex.In these cases it is still possible to generate suitable perfectly nested loops; however, some of theloop steps will be non-unit. Techniques for handling this case are described by Li and Pingali[LP92].The algorithm I describe in this section addresses the more general case, where a potentiallydi�erent time mapping is used for each statement. The corresponding transformed iterationspace can be \very" non-convex; that is, there is no set of perfectly nested loops withoutconditionals, even with non-unit steps, that can scan the space.In earlier work Pugh, Rosser and I [KPR95] developed an e�ective code generation algorithmfor this most general class of time mappings. That work included techniques to generate non-unit steps to iterate over non-convex regions and to split iteration spaces to handle the overlapof the transformed iteration spaces caused by multiple time mappings. It also included aframework to trade-o� control overhead for code duplication. This algorithm and frameworkfor reducing control overhead is useful for generating code even for transformation systems thataren't based on time mappings.In this section I will describe a simpler, more e�cient algorithm that is designed speci�callyfor the form of time mappings selected by the algorithms described in the previous sections.The �rst thing to note about the form of these time mappings is that every odd level consistsentirely of constants. These constant levels will lead to sequences of statements at variousdepths.Consider the program and time mappings shown in Figure 3.18. The �rst constant level willproduce a sequence of two compound statements at the outermost level, the �rst containingstatement 1 and the second containing statements 2 and 3 (see Figure 3.19).Code is generated for each compound statement in turn. Compound statements will gener-ally consist of a for loop that iterates over a continuous range of values, containing all values48



do i = 1 to n1 a[i] = 12 b[i] = a[i]do t = 0 to mdo j = t to n3 c[t][j] = a[t] * b[j]T1 : f[i] ! [ 0; i; 0]gT2 : f[i] ! [ 1; i� 1; 0]gT3 : f[t; j] ! [ 1; j; 1; t; 0]gFigure 3.18: Program and time mappingsfor (t2=1; t2<=n; t2++)a[t2] = 1for (t2=0; t2<=n; t2++){if (t2 < n)b[t2+1] = a[t2+1];for (t4=t2; t4<=n; t4++)c[t4][t2] = a[t4] * b[t2];} Figure 3.19: Transformed codethat could be taken on by any of the expressions at the next level of the time mappings for state-ments involved in that compound statement. That for loop, will contain, in turn, a sequenceof compound statements based on the next constant level of those statements.For example the �rst compound statement contains only statement 1 which has the expres-sion i at the second level of its time mapping. So, the �rst compound statement will be a forloop which iterates from 1 to n. The second compound statement contains statements 2 and 3which have the expressions i� 1 and j respectively at the second level of their time mappings.The expression i � 1 can take on the values 0 through n� 1 and the expression j can take onthe values 0 through n (when t = 0). So, the second compound statement will be a for loopwhich iterates from 0 to n.The body of this second for loop will in turn be a sequence of two compound statements,the �rst containing statement 2 and the second containing statement 3. The loop bounds forthe loop in the second of these compound statements are derived from the expression t in thetime mapping for statement 3. In this case, I want the loop to iterate over the values j throughn rather than 0 through n, because in this context I am generating code inside the j loop, andso the value of j can be considered a constant. In fact, the new outermost loop of statement3 (the one that iterates form 0 to n), may not use the variable j as its index variable, sincethe same loop must also be used to iterate over all possible values of the expression i � 1 forstatement 2. For this reason, I instead use tL as the index variable for level L of the transformediteration space.The guard (t2 < n) is placed around statement 2 because it should not be executed for allvalues of t2 (representing i � 1) in the range 0 through n.The actual code generation algorithm is given in Figures 3.20 and 3.21. The mutuallyrecursive procedures gen constant level and gen variable level are responsible for generatingcode corresponding to the odd and even levels of the new iteration space respectively. The49



procedure gen code()gen constant level(1, f1; : : : ; ng, True)procedure gen constant level(level L, set of statements active,tuple set known)print(\f")for posn = min(cL0 ; : : : ; cLn) to max(cL0 ; : : : ; cLn)new active = fp j p 2 active ^ cLp = posngnew known = known \(tL = posn)\gen guard(L, new active, known)if (L < maxfoutput dimension(Tp) j p 2 new activeg)gen variable level(L+1, new active, new known)elsegen assignment(new active)print(\g")procedure gen variable level(level L, set of statements active,tuple set known)index set = combine new IS(L, active, known)new known = known \ gen for loop(L, index set)gen constant level(L+1, active, new known)function gen guard (level L, set of statements active,tuple set known) : tuple setS = combine new IS(L-1, active, known)if (S is not a tautology)print(\if (")for each constraint c in Sprint(c)if (c is not last constraint in S) print(\&&")print(\)")return S Figure 3.20: Code generation algorithm
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function gen for loop(level L, tuple set index set) : tuple setnew known = Falseprint(\for (t"L\ = max (")for (each lower bound constraint (expr � m tL) in index set)print(\("expr\+"m-1\)/"m)new known = new known \ (expr � m tL)print(\); t"L\<=min(")for (each upper bound constraint (m tL � expr) in index set)print(\("expr\)/"m)new known = new known \ (m tL � expr)print(\; t"L\++)")return new knownfunction combine new IS(level L, set of statements active,tuple set known) : tuple setforeach statement p 2 activenew IS[p] = Range(Restrict Domain(Tp; Ip))proj new IS[p] = project(new IS, ft1; : : : ; tLg)return gist(hull(fproj new IS[p] j p 2 activeg), known)procedure gen assignment(set of statements active)p = only active statementfor each IndexPosition ireplace ij by t2x � d2xp in original statement p, where �xp = ijprint(modi�ed original statement p)Figure 3.21: Code generation algorithm continuedactual code generation procedure, gen code, simply calls gen constant level to generate asequence of compound statements at the outermost level and the bodies of those statementsrecursively.A set of statements, called the active set, is maintained that represents the set of state-ments contained in the current compound statement. Initially, all n statements are in thisset.The current context, or known information is also maintained. This represents constraintsknown about index variables of the outer levels, and is used to simplify loop bounds and guardsgenerated at inner levels. The known information is usually initialized to True, although anyuser or system generated assertions about global variables could be included if desired.When generating loop bounds and guards, I �rst determine the new iteration spaces of thestatements inside that loop or conditional. The new iteration space of statement p is:Range(Restrict Domain(Tp; Ip))where Tp is the time mapping selected for statement p, Ip is the original iteration space ofstatement p and Range and Restrict Domain are relational operations as de�ned in Section2.1. The constraints in Ip must be a complete description of the iteration space for statementp. This implies that all loop bounds and conditionals in the original program must be a�nefunctions of outer level index variables and symbolic constants. Before constructing these tuplesets, I normalize all loops in the original program to have a step of 1. This coupled with thefact that all coe�cients used in the time mappings are unary, implies that the transformedprogram will not contain non-unit steps which in turn substantially simpli�es the algorithm.When generating code at level L, I want the loop bounds or guards to be a�ne functionsof symbolic constants and index variables from earlier levels. The function combine new IStherefore projects the new iteration spaces onto (t1; : : : ; tL�1). Since I want the loops and51



guards to include all of the iterations of all of the statements in the current active set, the hulloperation is used to combine their iteration spaces. Hull is a relational operation that takesas arguments a �nite set of tuple sets and returns a tuple set that includes all tuples in thesesets. The input tuple sets must be convex (as my iteration spaces always are) and the result(by de�nition of the hull operation) will also be convex. A tuple set is convex if it can berepresented as a conjunction of a�ne equality and inequality constraints.The gist operator [PW92, Won95] is used to simplify a set of constraints given that someother set of constraints is known to be true. The only guaranteed property of the gist operatoris: gist(A; B) ^B , A ^BHowever, the techniques used to compute gist are designed to produce simple (often minimal)sets of constraints for which this condition holds. For example gist(1 � j � n^ j � i; 1 � i �n) is 1 � j � i.The projection operation has a number of applications in code generation other than thosedescribed here, for example it can be used to generate the set of array elements that need to besent from one processor to another. The gist operation also has many code generation relatedapplications other than its use in combine new IS.Finally, the actual assignment statements have to be generated. The assignment statementshave the same form as in the original code, except that the original index variables are replacedby expressions involving the new index variables. For example, if the time mapping is f[i; j]![0; j + 1; 0; i; 0]g then i is replaced by t4 and j is replaced by t2 � 1.3.5.3 Generating SPMD CodeI will now describe how to modify the code produced in the previous section to produce SPMDcode by restricting the iterations to those that belong to a particular physical processor. Thespace mapping selection algorithm described in Section 3.2.3 determines whether it is better touse a block or cyclic distribution of virtual processors to physical processors.Blocked DistributionsIf a block distribution is used then each physical processor will �rst need to compute twoquantities, the lowest and highest numbered virtual processors that map to that physical pro-cessor, represented by variables lb and ub. To compute these quantities, it is �rst necessaryto compute the lowest and highest numbered virtual processors that are used in the entirecomputation. The set of virtual processors used by statement p is given by:Vp = Range(Restrict Domain(Sp; Ip))The lowest and highest numbered virtual processors used in the entire computation are thereforecomputed as: global lb = minfi j 9p s:t: i 2 Vpgglobal ub = maxfi j 9p s:t: i 2 VpgFor example, if: I1 : f[i] j 1;m � i � 10; ngI2 : f[i; j] j 1;m � i � 10; n^ 1 � j � pgS1 : f[i]! [i]gS2 : f[i; j]! [j � 1]gthen V1 : f[v] j 1;m � v � 10; ngV2 : f[v] j 0 � v � p� 1gand the computation would be: 52



global_lb = 0;global_ub = max(min(n,10),p-1);Each processor's lower and upper bound on virtual processors can then be easily computedas:block_size = max(0,(global_ub-global_lb+1+(nprocs-1))/nprocs);lb = global_lb+my_id*block_size;ub = min(global_ub,lb+block_size-1);where nprocs and my id are variables initialized by the runtime system to be the total numberof physical processors and the number of the physical processor that is executing the currentthread respectively.In Section 3.3.5, I conveniently selected the constant o�set for the time mapping expressionthat contains the distributed loop to be the same as the constant o�set for the space mappingof that statement. This means that the index variable at the level at which the statement isdistributed can be used as the virtual processor number. So, if statement p is distributed atlevel L then the code needs to be modi�ed to enforce the constraint that lb � tL � ub.If all of the other statements in the same loop as statement p at level L are also distributedat level L then the level L loop itself can be directly modi�ed. I replace a loop of the form:for (tL=max(a1; : : :ar); tL<=min(b1; : : : bs); tL++)by: for (tL=max(a1; : : :ar,lb); tL<=min(b1; : : :bs,ub); tL++)Otherwise, the representation of this constraint will have to be delayed to the minimumlevelat which all other statements in p's compound statement at that level are all distributed at thesame level (such a level will always exist because every statement is eventually in a compoundstatement by itself). At this level, a guard of the following form is inserted:if (lb <= tL && tL <= ub)Cyclic DistributionsQuantities analogous to lb and ub are not required when generating cyclic code. In the cycliccase, if statement p is distributed at level L then the code needs to be modi�ed to enforce theconstraint that (tL mod nprocs) = my id. The method used to determine the level at whichthis constraint can be enforced is identical to the method used in the blocked case. If theconstraint can be enforced by modifying the level L loop itself, then it is replaced by:for (tL = adjust(max(a1; : : : ; ar));tL <= min(b1; : : : ; bs);tL += nprocs)where adjust(s) is de�ned as max(s, (s/nprocs)*nprocs + my id). Otherwise, the fol-lowing guard is inserted at a later level:if (tL % nprocs == my id)For example, consider generating code for the Cholesky decomposition program in Figure3.15 using the following space and time mappings:S1 : f[i; j]! [i]gS2 : f[i]! [i]gS3 : f[k]! [k]gS4 : f[k; i]! [i]gS5 : f[k; i; j]! [i]g53



for (t2 = 1; t2 <= 1024; t2++){if (2 <= t2)for (t4 = adjust(t2); t4 <= 1024; t4 += _my_nprocs)for (t6 = 1; t6 <= t2-1; t6++)a[t4][t2] = a[t4][t2]-a[t4][t6]*a[t2][t6];if (t2 % _my_nprocs == _my_id)a[t2][t2] = sqrt(a[t2][t2]);...} Figure 3.22: Sample SPMD codeT1 : f[ i; j ] ! [ 1; i; 1; j; 1 ]gT2 : f[ i ] ! [ 2; i; 1 ]gT3 : f[ k ] ! [ 3; k; 2 ]gT4 : f[ k; i ] ! [ 3; k; 3; i; 1 ]gT5 : f[ k; i; j ] ! [ 3; j; 1; i; 1; k; 1 ]gStatement 3 is distributed at level 2; statement 5 is in the same loop as statement 3 at level2, but is not distributed until level 4. So, the constraint for statement 3 will not be able to beenforced until after level 3 at which point all statements in the same loop as statement 3 atthat level are distributed. The code will have the form shown in Figure 3.22.3.5.4 Inserting SynchronizationI will now describe how to insert synchronization statements to enforce any inter-processor datadependences. I use two forms of synchronization: barriers and post-wait pairs. I try to use postand wait pairs rather than barriers whenever possible, since they impose weaker constraints onthe execution order, and hence allow more computation to be performed in parallel. The formof post-wait statements that I use only allow me to synchronize data dependences from lowernumbered to higher numbered physical processors, so barriers are often needed as well.To insert synchronization, I �rst examine all inter-processor data dependences and classifythem according to:1. Whether they go forward or backward with respect to the physical processor number towhich their sources and destinations map.2. The deepest level in the transformed iteration space at which they are carried.The deepest level at which a dependence is carried in the transformed iteration space is theshallowest and therefore most e�cient level at which to insert synchronization to enforce thatdependence (the same basic idea has been used in the past to decide the outermost level atwhich communication statements can be legally placed [HKT91]). Synchronization inserted atdeeper levels can make synchronization inserted at shallower levels redundant, so I �rst insertsynchronization for dependences carried at deeper levels. Similarly, barrier synchronization canmake post-and-wait synchronization inserted at the same level redundant, so at each level, Iinsert barriers and then post-and-wait synchronization.Inserting BarriersAll backward dependences (with respect to physical processor number) carried at levels 2L and2L + 1 will have to be enforced by barriers placed inside the body of loops created for level54
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3Figure 3.23: Barrier Example2L (recall that all odd levels are constant levels and will produce a sequence of statements,while even levels will generally produce loops). If a backward dependence from statement p tostatement q is carried at level 2L+1 then it must be the case that c2L+1p < c2L+1q and a barrierwill have to be inserted somewhere in that range of positions. If a backward dependence fromstatement p to statement q is carried at level 2L then:� if c2L+1p > c2L+1q , a barrier will have to be inserted either between position c2L+1p and theend of the loop, or between the start of the loop and position c2L+1q .� Otherwise, a barrier inserted anywhere in the loop will su�ce.It is possible for one barrier to enforce more than one dependence. In order to minimize thetotal number of barriers it is necessary to consider all backward dependences carried at levels2L and 2L+ 1 at the same time. Consider the situation illustrated in Figure 3.23. There aredependences from position 1 to position 2 and from position 2 to position 4 which are carried atlevel 2L+ 1, and a dependence from position 3 to position 1 carried at level 2L. If I examinedthe dependence from 2 to 4 in isolation, I might decide to place a barrier between statements 2and 3. However, that would result in a total of 3 barriers being placed, whereas by examiningall dependences simultaneously, it can be determined that only 2 barriers are actually required(as shown by the heavy bars in Figure 3.23).My barrier placement algorithm works as follows. First, any dependences that are alreadyenforced by barriers placed at deeper levels are removed from consideration. A barrier placedinside a deeper loop can only make a barrier at a higher level redundant if it can be provedthat the loop always executes at least one iteration (otherwise the barrier won't be executed).If any barriers are required inside the current loop, then an arbitrary position is tentativelyselected at which to insert the �rst barrier. The e�ect of placing this �rst barrier is that a totalorder can now be assigned to the statements in the loop. Statements can be numbered in orderstarting immediately following the barrier. All dependences that remain to be enforced go fromlower numbered to higher numbered statements. If the �rst barrier is placed at position b0,then the total order is de�ned as p � q if and only if:(b0 � c2L+1p < c2L+1q ) _ (c2L+1p < c2L+1q < b0) _ (c2L+1q < b0 � c2L+1p )55



(A barrier placed at position b is actually placed between the assignment statements at positionsb � 1 and b). Intuitively, placing this �rst barrier splits a \ring" of statements into a \chain"of statements.It is then easy to place the remaining barriers optimally. This problem reduces to �ndinga minimal clique cover for an interval graph and is known to be solvable in polynomial time[Gav72]. All ordering of statements and positions will now implicitly be with respect to theabove total order. Let bi be the position of the ith barrier after b0. In order to insert theminimal number of barriers, I need to place the ith barrier as far after the i � 1st barrier aspossible. So, bi is calculated as the maximum position such that any dependence whose sourceis between bi�1 and bi, has a destination after bi.This process is repeated until all remaining dependences are enforced. At that point, thenumber of barriers required, given the arbitrary placement of the initial barrier, will be known.By repeating this entire process for all possible placements of the initial barrier, the overallminimal number of barriers can be determined. Only positions that enforce at least one datadependence need to be considered as initial placements. A sub-optimal placement of the initialbarrier can only alter the total number of barriers inserted in a given loop by at most 1, so, theoptimal solution will be known as soon as two initial placements produce a di�erent number ofbarriers.Let's see how this algorithm works for the example in Figure 3.23:b0 = 1 ) b1 = 2; b2 = 4 : 3 barriers requiredb0 = 2 ) b1 = 4 : 2 barriers requiredThe number of barriers di�ers by 1, so the second one must be an optimal solution.The basic idea used in this algorithm can also be used for applications other than insertingbarriers, for example it could be used to determine the optimal placement of blocking com-munication statements for distributed memory machines. See [CGC96] for a discussion of thisproblem.Inserting Post-Wait PairsPost-wait pairs are used to enforce any forward dependences that haven't already been enforcedby barriers. Any dependences that are already enforced by post-wait pairs at deeper levels areremoved from consideration.A dependence from statement p to statement q carried at level 2L + 1 will normally beenforced by inserting a post statement immediately after statement p and inserting a waitstatement immediately before statement q. If, however, there is another dependence, from somestatement r to some statement s, carried at the same level, such that c2L+1p � c2L+1r ^ c2L+1s �c2L+1q , then enforcing the dependence from p to q would be redundant.If there are any dependences carried at level 2L, between the statements in a given loop,then a single pair of post and wait statements will be inserted to enforce those dependences. Bydefault the wait statement will be inserted at the start of the loop body and the post statementwill be inserted at the end of the loop body. If, however, the iterations of the level 2L loop aredistributed in a blocked fashion then the wait statement can be hoisted to before the loop andthe post statement can be hoisted to after the loop.3.5.5 Reduction OptimizationsIf the user is willing to accept inaccuracies that may result from treating machine arithmeticoperations such as addition and multiplication as if they are commutative and associativeoperations, then a number of additional optimizations are possible. Any assignment statementof the form:var_expr = var_expr ? expr 56



double s[m];for (t2 = adjust(1); t4 <= n; t4 += _my_nprocs)for (t4 = 1; t4 <= n; t4++)s[t2+t4] = s[t2+t4] + a[t2][t4]Table 3.4: Before reduction optimizationdouble s[m];private double _s1[m];init_sum_double(&_s1, m);for (t2 = adjust(1); t4 <= n; t4 += _my_nprocs)for (t4 = 1; t4 <= n; t4++)_s1[t2+t4] += a[t2][t4]reduction_lock(0);reduce_sum_double(&s, &_s1, m);reduction_unlock(0); Table 3.5: After reduction optimizationwhere ? is a commutative and associative operator is referred to as an update operation.Consider two update operations, p and q (possibly the same), that update overlapping regionsof the same array:p: var[expr1] = var[expr1] ? ...q: var[expr2] = var[expr2] ? ...Rather than creating ow, output and anti dependences between these references to var,I instead create a new type of data dependence called a reduction dependence between thesereferences [Wol82, PW94b]. Reduction dependences have a di�erent semantics from other typesof data dependences. Rather than specifying that one operation must be performed after someother operation, they specify that a set of operations can be performed in any order.Reduction operations are ignored when inserting synchronization. It is important, how-ever, to make sure that if there is a reduction dependence between two iterations executingon di�erent processors, that they don't simultaneously write to the same location. If there areinter-processor reduction dependences between statements in a given distributed loop, but noother type of inter-processor dependences between those statements (that would cause synchro-nization to be inserted), then private versions of the variables being updated are created foreach processor. Each processor then updates its private version of the variable rather than theoriginal, hence avoiding di�erent processors simultaneously writing to the same location. Theseprivate versions are initialized to the identity element for the operation in question prior to thestart of the loop. After the loop each processor takes its turn to \add" its private version ofthe variable to the global variable.For example, the program in Figure 3.4 is converted into the program in Figure 3.5. Thefunction init sum double(double *v, size t n) initializes the �rst n elements of array vto the value 0 and reduce sum double(double *g,double *l,size t n) adds the �rst n el-ements of array l to the corresponding elements of array g.Creating these private variables changes the amount of interprocessor communication, so thecommunication volume estimates used to select space mappings (see Section 3.2.5), need to bechanged whenever these optimizations are going to be applied. Each self reduction dependenceis given a revised volume estimate of Pnd where P is the number of physical processors andd is the dimensionality of the array being updated. This is the amount of communication57



const n = 1024out real a(n,n)do i = 1, n {do j = 1, n {0 a[i,j] = 1}}do k = 1, n {do i = k+1, n {1 a(i,k) = a(i,k)/a(k,k)do j = k+1, n {2 a[i,j] = a[i,j] - a[k,j]*a[i,k]}}}Unbalanced, use Cyclic DistributionS0: {[i,j] -> [i] }S1: {[k,i] -> [i] }S2: {[k,i,j] -> [i] }T0: {[i,j] -> [0,i,0,j,0] }T1: {[k,i] -> [1,k,0,i,0] }T2: {[k,i,j] -> [1,k,1,i,0,j,0] }Figure 3.24: Gaussian elimination (ge.t) with time and space mappingsthat occurs when each processor takes its turn to \add" its private version of the variable tothe global variable. Reduction dependences between di�erent statements are given a revisedvolume estimate of 0, since both updates are to local versions of the variable. These reductionoptimizations also prevent false sharing from occurring.3.5.6 ExamplesFigures 3.24, 3.25, 3.26 and 3.27 show a number of complete examples with output as generatedby my current implementation.
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static void doall_body(int _my_id) {int _my_nprocs = num_total_ids();for (int t2 = max(1,_my_id); t2 <= 1024; t2 += _my_nprocs)for (int t4 = 1; t4 <= 1024; t4++)a[t2][t4] = 1;for (int t2 = 1; t2 <= 1023; t2++) {global_barrier(0);for (int t4 = adjust(t2+1); t4 <= 1024; t4 += _my_nprocs)a[t4][t2] *= 1/a[t2][t2];for (t4 = adjust(t2+1); t4 <= 1024; t4 += _my_nprocs)for (int t6 = t2+1; t6 <= 1024; t6++)a[t4][t6] += -a[t2][t6]*a[t4][t2];}} Figure 3.25: Transformed code for Gaussian elimination (ge.c)const n = 512const l = 512out real a(n,n)do j = 1, n {do k = 1, n {0 a[j,k] = 1}}do i = 1, l {do j = 2, n - 1 {do k = 2, n - 1 {1 a[j,k] = (a[j,k-1]+a[j,k+1]+a[j-1,k]+a[j+1,k]) * .25}}}Balanced, use Block DistributionS0: {[j,k] -> [j] }S1: {[i,j,k] -> [j] }T0: {[j,k] -> [0,j,0,k,0] }T1: {[i,j,k] -> [1,i,0,k,0,j,0] }Figure 3.26: Red-black relaxation (relax.t) with time and space mappings59



static void doall_body(int _my_id) {int _counter0 = 1;int _my_nprocs = num_total_ids();int global_lb = 1;int global_ub = 512;int block_size =max(0,(global_ub-global_lb+1+(_my_nprocs-1))/_my_nprocs);int lb = global_lb+_my_id*block_size;int ub = min(global_ub,lb+block_size-1);for (int t2 = max(1,lb); t2 <= min(512,ub); t2++)for (int t4 = 1; t4 <= 512; t4++)a[t2][t4] = 1;for (int t2 = 1; t2 <= 512; t2++) {global_barrier(0);for (int t4 = 2; t4 <= 511; t4++) {if (_my_id > 0) counter_wait(_my_id-1,0,_counter0++);for (int t6 = max(2,lb); t6 <= min(511,ub); t6++)a[t6][t4]=(a[t6][t4-1]+a[t6][t4+1]+a[t6-1][t4]+a[t6+1][t4])*.25;counter_incr(_my_id, 0);}}} Figure 3.27: Transformed code for Red-black relaxation (relax.c)
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Chapter 4Experimental Results4.1 The ImplementationThe algorithms described in the previous chapter have been implemented and are now partof the PETIT analysis and transformation system. PETIT is based on Michael Wolfe's Tinytool[Wol91b] for loop restructuring research and has been extended over the last �ve yearsby myself and other members of the Omega Project (see http://www.cs.umd.edu/projects/omega for more information). PETIT accepts as input, programs written in a toy languagecalled Tiny. Tiny programs consist of a single procedure containing for loops and assign-ment statements involving array expressions. In addition to the transformation system de-scribed here, PETIT has been extended to include array expansion, induction variable recog-nition and advanced dependence analysis using the Omega Test [Pug92, Won95]. All of theseextensions have been implemented using the Omega Library [KMP+95] which is set of C++classes for representing and manipulating tuple relations and sets.PETIT and the Omega Library are freely available via anonymous ftp from ftp://ftp.cs.umd.edu/pub/omega/omega system. The automatic parallelization system is invoked byusing the �W ag on the PETIT command line and produces as output the �le aux.out whichcontains the transformed SPMD C code.The rest of this chapter gives a number of experimental results obtained using this systemthat demonstrate that it is both e�cient and e�ective in parallelizing small to medium sizednumeric kernels.4.2 E�ciencyThis section gives experimental results to show that my system normally executes in a rea-sonable amount of time. Table 4.1 gives a breakdown of my system's execution times for avariety of benchmark programs. Tables 4.2, 4.3 and 4.4 give a further breakdown of thesetimes. The times listed are in seconds and are as measured by Quantify1 on a SPARCstation10/51. These benchmark programs and the results that we obtain for them are available fromftp://ftp.cs.umd.edu/pub/omega/results KP95.For most programs, the largest amount of time is spent in the �nal code generation phase.Most of this code generation time is spent performing synchronization analysis, which is cur-rently performed very precisely and involves many complex tuple relation operations. By sac-ri�cing some of this precision, it would be possible to substantially speed up that part of thealgorithm.1Registered trademark of Pure Software Inc. 61



Program Number Max Select Select Code Totalname of loop space time generationstatements nest mappings mappingsmxm1 3 3 0.02 0.02 0.26 0.33ge 3 3 0.08 0.04 0.25 0.40relax 2 3 0.11 0.04 0.26 0.45ch 4 3 0.10 0.07 0.40 0.62jacobi 4 3 0.16 0.05 0.39 0.66burg2 12 2 0.39 0.31 1.28 2.06lczos 24 3 0.26 0.27 1.79 2.41intba1 42 2 0.34 0.23 1.82 2.48cholsky2 15 4 1.12 0.28 1.48 2.96eux 28 3 0.86 0.43 2.78 4.21adi 17 3 1.56 0.78 2.67 5.15shallow 66 2 1.59 0.71 4.41 6.90erle 61 3 3.16 1.41 7.36 12.20vpenta 54 2 3.44 1.41 9.57 14.89(All times are in seconds)Table 4.1: Breakdown of compilation times for various benchmark programsProgram Parallelism Communication Search Alignment Totalname analysis analysismxm1 0.01 0.01 0.00 0.00 0.02ge 0.06 0.01 0.00 0.00 0.08ch 0.08 0.01 0.00 0.00 0.10relax 0.08 0.02 0.00 0.00 0.11jacobi 0.12 0.03 0.00 0.00 0.16lczos 0.11 0.11 0.02 0.01 0.26intba1 0.11 0.17 0.02 0.02 0.34burg2 0.25 0.08 0.02 0.02 0.39eux 0.34 0.44 0.04 0.02 0.86cholsky2 0.99 0.10 0.02 0.01 1.12adi 1.28 0.24 0.01 0.01 1.56shallow 0.47 0.81 0.20 0.07 1.59erle 1.32 1.24 0.49 0.08 3.16vpenta 0.99 2.10 0.23 0.10 3.44(All times are in seconds)Table 4.2: Breakdown of select space mappings times62



Program Locality Search Alignment Totalname analysismxm1 0.00 0.00 0.02 0.02relax 0.00 0.00 0.04 0.04ge 0.00 0.00 0.04 0.04jacobi 0.00 0.00 0.05 0.05ch 0.00 0.00 0.07 0.07intba1 0.00 0.01 0.21 0.23lczos 0.00 0.01 0.26 0.27cholsky2 0.00 0.01 0.26 0.28burg2 0.00 0.00 0.30 0.31eux 0.00 0.04 0.32 0.43shallow 0.00 0.09 0.56 0.71adi 0.00 0.00 0.76 0.78erle 0.01 0.20 0.90 1.41vpenta 0.00 0.09 1.24 1.41(All times are in seconds)Table 4.3: Breakdown of select time mappings timesProgram Synchronization Reduction Generate Totalname analysis analysis codege 0.11 0.00 0.13 0.25mxm1 0.06 0.00 0.19 0.26relax 0.15 0.00 0.11 0.26jacobi 0.22 0.00 0.16 0.39ch 0.16 0.00 0.23 0.40burg2 0.73 0.00 0.53 1.28cholsky2 0.49 0.00 0.97 1.48intba1 0.57 0.00 1.21 1.82lczos 0.60 0.01 1.16 1.79adi 1.75 0.00 0.90 2.67eux 1.00 0.00 1.74 2.78shallow 1.90 0.01 2.33 4.41erle 3.59 0.02 3.52 7.36vpenta 5.80 0.01 3.61 9.57(All times are in seconds)Table 4.4: Breakdown of code generation times63



Program Problem Number of processorsname size 1 2 4 8 12 16mxm1 512 x 512 8.4 4.3 2.2 1.5 1.2 1.2ge 1024 x 1024 33.6 30.1 20.3 18.2 19.8 15.9relax 512 x 512 26.8 14.5 8.3 5.8 4.8 8.3ch 1024 x 1024 27.7 20.2 11.1 6.1 4.5 3.6jacobi 512 x 512 15.4 8.3 6.0 5.1 4.8 4.1burg2 16384 50.7 35.4 20.1 12.3 9.9 8.8cholsky 256 x 256 x 64 12.4 12.4 12.3 5.1 2.5 1.9intba1 1024 x 1024 8.2 4.5 2.7 2.2 1.7 1.8lczos 512 x 512 8.4 5.1 2.8 5.0 7.2 15.4adi 1024 x 1024 133.1 64.6 28.2 12.8 8.9 7.2eux 512 x 512 9.4 4.0 1.9 1.4 1.5 1.7shallow 1024 x 1024 5.1 3.0 2.0 1.7 1.7 1.7vpenta 1024 x 1024 6.6 4.1 3.1 3.2 5.5 58.9erle 256 x 256 x 256 42.4 23.9 15.7 11.1 10.0 9.5(All times are in seconds)Table 4.5: Execution times using my parallelization system4.3 E�ectivenessThe machine that I used for my experiments was a 16 processor SGI POWER CHALLENGE. Ithas a shared-memory multiprocessor architecture based on the MIPS super-scalar RISC R8000chip. The cache system consists of a 16 kilobyte direct-mapped on-chip integer data cache,and a 4 megabyte four-way set associative external cache. The processors communicate viaa cache-coherent shared-bus interconnect with a bandwidth of 1.2 gigabytes per second. Seehttp://www.ncsa.uiuc.edu/Pubs/UserGuides/Power for more details.Each of the benchmark programs listed in Table 4.1 were parallelized using both my systemand the parallelizing C compiler native to the SGI POWER CHALLENGE (based on Kuckand Associates' parallelizing compiler). All programs were then compiled using the native Ccompiler \cc" with the following options:{O3 turns on aggressive optimization including standard software pipelining{32 generate 32 bit object code for compatibility with SUIF runtime library assemblycode{sopt invoke extra scalar optimization pass which performs loop unrolling and other mis-cellaneous optimizations{r=3 sets tolerable roundo� error to maximum{o=5 sets general optimization level to maximum{so=5sets serial optimization level to maximumThe resulting executables were executed using 1; 2; 4; 8; 12 and 16 processors. The wall clockexecution times measured on a dedicated machine are shown in Tables 4.5 and 4.6 respectively.The speedups for some of these programs are graphed in Figures 4.1 through 4.9. The speedupsare based on the minimum of the execution times obtained by my system and the nativeparallelizing compiler when executed on a single processor.The native parallelizing C compiler produces doall loops and so cannot express pipelinestyle parallelism and is unable to control communication between parallel loops nests. Mysystem generally performs more dramatic iteration reordering transformations than the nativeparallelizing compiler and made more use of array privatization.64



Program Problem Number of processorsname size 1 2 4 8 12 16mxm1 512 x 512 9.8 5.5 3.3 2.7 4.4 3.8ge 1024 x 1024 39.5 17.7 12.0 8.8 6.5 7.2relax 512 x 512 49.3 46.7 47.4 47.9 48.3 48.5ch 1024 x 1024 26.8 20.9 14.5 13.0 9.6 16.1jacobi 512 x 512 23.9 13.0 8.4 5.8 5.1 6.5burg2 16384 27.9 20.1 12.3 8.2 8.8 15.9cholsky 256 x 256 x 64 27.6 44.3 52.9 56.6 70.8 190.6intba1 1024 x 1024 7.9 7.5 7.7 9.3 9.3 9.5lczos 512 x 512 6.1 4.1 3.4 3.8 3.9 5.7adi 1024 x 1024 77.1 44.2 25.7 19.1 13.0 16.9eux 512 x 512 4.6 3.1 2.3 2.9 8.7 5.9shallow 1024 x 1024 5.7 4.7 4.4 4.5 4.5 4.7vpenta 1024 x 1024 3.7 3.0 2.9 3.3 4.6 4.7erle 256 x 256 x 256 38.4 26.2 20.3 15.9 15.4 15.1(All times are in seconds)Table 4.6: Execution times using native parallelizing C compiler
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Figure 4.1: Speedup graph for mxm1
0

2

4

6

8

10

12

2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

my system
native compiler

Figure 4.2: Speedup graph for relax65
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Figure 4.3: Speedup graph for ch
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Figure 4.4: Speedup graph for jacobi
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Figure 4.5: Speedup graph for cholsky66
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Figure 4.6: Speedup graph for intba1
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Figure 4.7: Speedup graph for adi
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Figure 4.8: Speedup graph for eux67
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Figure 4.9: Speedup graph for erle4.4 RobustnessMany papers have been written about automatic data decomposition and iteration reordering.Most contain examples to show the performance of their respective algorithms. Whilst thepapers themselves contain impressive results, I have found that in the few implementationsthat I have been able to experiment with, most of these algorithms are very fragile. That is,the programs as given in these papers can be compiled very e�ciently, but minor, semantic-preserving changes to these programs (such as performing loop interchange, loop fusion orstatement reordering), often result in completely di�erent and often far from optimal programs.My aim was a system that produces the same result (hopefully an optimal result) regardlessof the form in which the program is originally presented. In Figures 4.10 through 4.15, Idemonstrate this aspect of my system by showing the space and time mappings selected bymy system for all six legal loop permutations for Cholesky decomposition. For this example,identical code is produced by my system, for all six permutations (see Figure 4.16). I have notfound any other system that is able to reproduce these results. I also produce identical code forall 6 legal permutations of Gaussian elimination, and for various loop restructurings of adi. Infact, my system is guaranteed to produce the same space mappings if the transitive dependencescan be calculated exactly. If extended direction vectors are used, then the calculations maynot be exact, although I have observed this phenomenon only in the presence of imperfectlynested loops. The system may not always produce the same time mappings since the selectionof constant levels and alignments contains heuristics; however, the same loop permutationsshould always be selected.Table 4.7 shows the execution times and Figures 4.17 through 4.22 show the speedupsobtained for each permutation of Cholesky decomposition using both my system and the nativeparallelizing C compiler. As the �gures show, the native compiler produces good speedups forsome permutations but terrible slowdowns for others, while my system produces good speedupsfor all permutations. Table 4.8 shows similar results for all size legal permutations of Gaussianelimination.
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for ki = 1 to 1024if (2 <= ki) thenfor kj = 1 to kifor k = 1 to kj-13 a[ki][kj] += -a[ki][k]*a[kj][k]if (kj <= ki-1) then2 a[ki][kj] *= 1/a[kj][kj]1 a[ki][ki] = sqrt(a[ki][ki])S1 : f[ki] ! [ki]g T1 : f[ki] ! [0; ki; 0]gS2 : f[ki; kj] ! [1]g T2 : f[ki; kj] ! [0; kj; 1; ki; 0]gS3 : f[ki; kj; k] ! [kj]g T3 : f[ki; kj; k]! [0; k; 2; kj; 0; ki; 0]gFigure 4.10: IJK permutation of Cholesky decompositionfor ki = 1 to 1024for k = 1 to ki-12 a[ki][k] *= 1/a[k][k]for j = k+1 to ki3 a[ki][j] += -a[ki][k]*a[j][k]1 a[ki][ki] = sqrt(a[ki][ki])S1 : f[ki] ! [ki]g T1 : f[ki] ! [0; ki; 0]gS2 : f[ki; k] ! [1]g T2 : f[ki; k] ! [0; k; 1; ki; 0]gS3 : f[ki; k; j] ! [j]g T3 : f[ki; k; j]! [0; k; 2; j; 0; ki; 0]gFigure 4.11: IKJ permutation of Cholesky decompositionfor kj = 1 to 1024for i = kj to 1024for k = 1 to kj-13 a[i][kj] += -a[i][k]*a[kj][k]1 a[kj][kj] = sqrt(a[kj][kj])for i = kj+1 to 10242 a[i][kj] *= 1/a[kj][kj]S1 : f[kj] ! [kj]g T1 : f[kj] ! [0; kj; 0]gS2 : f[kj; i] ! [1]g T2 : f[kj; i] ! [0; kj; 1; i; 0]gS3 : f[kj; i; k] ! [kj]g T3 : f[kj; i; k]! [0; k; 2; kj;0; i;0]gFigure 4.12: JIK permutation of Cholesky decomposition69



for kj = 1 to 1024for k = 1 to kj-1for i = kj to 10243 a[i][kj] += -a[i][k]*a[kj][k]1 a[kj][kj] = sqrt(a[kj][kj])for i = kj+1 to 10242 a[i][kj] *= 1/a[kj][kj]S1 : f[kj] ! [kj]g T1 : f[kj] ! [0; kj; 0]gS2 : f[kj; i] ! [1]g T2 : f[kj; i] ! [0; kj; 1; i; 0]gS3 : f[kj; k; i] ! [kj]g T3 : f[kj; k; i]! [0; k; 2; kj;0; i;0]gFigure 4.13: JKI permutation of Cholesky decompositionfor k = 1 to 10241 a[k][k] = sqrt(a[k][k])for i = k+1 to 10242 a[i][k] *= 1/a[k][k]for i = k+1 to 1024for j = k+1 to i3 a[i][j] += -a[i][k]*a[j][k]S1 : f[k] ! [k]g T1 : f[k] ! [0; k; 0]gS2 : f[k; i] ! [1]g T2 : f[k; i] ! [0; k; 1; i; 0]gS3 : f[k; i; j] ! [j]g T3 : f[k; i; j]! [0; k; 2; j; 0; i; 0]gFigure 4.14: KIJ permutation of Cholesky decompositionfor k = 1 to 10241 a[k][k] = sqrt(a[k][k])for i = k+1 to 10242 a[i][k] *= 1/a[k][k]for j = k+1 to 1024for i = j to 10243 a[i][j] += -a[i][k]*a[j][k]S1 : f[k] ! [k]g T1 : f[k] ! [0; k; 0]gS2 : f[k; i] ! [1]g T2 : f[k; i] ! [0; k; 1; i; 0]gS3 : f[k; j; i] ! [j]g T3 : f[k; j; i]! [0; k; 2; j; 0; i;0]gFigure 4.15: KJI permutation of Cholesky decomposition70



for (t2 = max(1,_my_id); t2 <= 1024; t2 += _my_nprocs)for (t4 = 1; t4 <= 1024; t4++)a[t2][t4] = 0;for (t2 = max(1,_my_id); t2 <= 1024; t2 += _my_nprocs)a[t2][t2] = 1;for (t2 = 1; t2 <= 1024; t2++){if (t2 % _my_nprocs == _my_id)a[t2][t2] = sqrt(a[t2][t2]);global_barrier(0);if (t2 <= 1023 && 1% _my_nprocs == _my_id)for (t4 = t2+1; t4 <= 1024; t4++)a[t2][t4] *= 1/a[t2][t2];global_barrier(0);if (t2 <= 1023)for (t4 = adjust(t2+1); t4 <= 1024; t4 += _my_nprocs)for (t6 = t4; t6 <= 1024; t6++)a[t4][t6] += -a[t2][t6]*a[t2][t4];}Figure 4.16: Transformed code for all permutations of Cholesky decompositionCompiler Permutation Number of processors1 2 4 8 12 16Native IJK 18.2 22.3 21.4 27.5 26.4 66.7parallelizing IKJ 22.1 26.8 27.1 56.1 43.6 96.5compiler JIK 25.8 18.8 13.5 17.2 14.4 46.8JKI 14.9 10.5 8.6 11.1 10.5 32.9KIJ 26.8 20.9 14.5 13.0 9.6 16.1KJI 15.3 11.3 8.3 7.1 5.3 15.4My system Any 27.7 20.2 11.1 6.1 4.5 3.6(All times are in seconds)Table 4.7: Execution times for all six permutations of Cholesky decompositionCompiler Permutation Number of processors1 2 4 8 12 16Native IJK 92.8 88.4 88.7 88.1 87.4 87.9parallelizing IKJ 38.5 36.5 33.4 30.7 50.9 100.8compiler JIK 95.9 93.5 97.7 92.2 92.1 106.5JKI 50.7 36.6 37.9 64.2 54.6 103.7KIJ 39.5 17.7 12.0 8.8 6.5 7.2KJI 37.5 17.6 10.8 8.9 7.2 7.9My system Any 33.6 30.1 20.3 18.2 19.8 15.9(All times are in seconds)Table 4.8: Execution times for all six permutations of Guassian elimination71
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Figure 4.17: Speedup graph for IJK permutation of Cholesky decomposition
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Figure 4.18: Speedup graph for IKJ permutation of Cholesky decomposition
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Figure 4.19: Speedup graph for JIK permutation of Cholesky decomposition72
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Figure 4.20: Speedup graph for JKI permutation of Cholesky decomposition
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Figure 4.21: Speedup graph for KIJ permutation of Cholesky decomposition
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Figure 4.22: Speedup graph for KJI permutation of Cholesky decomposition73



Chapter 5Related Work5.1 Distributing ComputationMy work is most distinguished from all other related work by the fact that I am not inuenced bythe order of the computation in the original program. Most related works estimate parallelismor partition the program into phases based on the original loop structure.Anderson and Lam [AL93b] have developed methods to automatically �nd computationand data decompositions that optimize both parallelism and locality. They �rst perform loopdistribution and unimodular transformations to produce a canonical form consisting of fullypermutable loop nests. Each loop nest is optimized in isolation to determine the computationand data decompositions that maximize parallel and data locality for that particular loop nest.Extra degrees of parallelism are traded o� to eliminate non-nearest neighbor communication.If eliminating all non-nearest neighbor communication reduces the degree of parallelism tozero, then blocked distributions are used instead to produce pipeline style parallelism. Agreedy approach is then used to possibly reduce communication between loop nests. The mostexpensive communications are considered �rst. If it is estimated that the cost of redistributingdata between one loop nest and another is higher than the parallelism and locality bene�ts thatwould result from using di�erent distributions for the two loop nests then the two loop nestsare merged with respect to selecting distributions.Feautrier's approach [Fea94] is to �nd a schedule for executing the program with maxi-mum parallelism, ignoring locality and latency. Then, he uses a greedy algorithm, based onthe dimensionality of value-based ow dependences, to select a computation distribution. Itminimizes the volume of communications but doesn't place on the same virtual processor anytwo computations that could be run in parallel. The problem with this approach is that it isnot possible to sacri�ce some parallelism in a particular statement (by instead pipelining it ornot distributing it), in order to reduce overall communication costs.Although some other systems [BKK93, GAL95] also use exact rather than greedy heuristicalgorithms, the size of the problems and the methods used are very di�erent. I consider a list ofcandidate distributions for each statement, whereas these systems consider a list of candidatedistributions for each array in each phase. My search spaces will therefore tend to be muchlarger. These systems use 0-1 integer programming formulations, whereas I have developedmy own graph search algorithm. The performance numbers given in [GAL95] (which uses acommercial 0-1 integer programming system called LINGO) tend to suggest that the searchalgorithms are comparable in speed.In Kremer's system [BKK93], an admittedly arbitrary scheme is used to identify a sequen-tial loop nest that contains a series of phases, which are executed atomically (i.e., withoutoverlap). Parallelism is exploited within each phase but not between them. Using techniquesnot described in their 1993 paper [BKK93], a set of candidate distributions are generated foreach phase, and the system determines the cost of executing each phase in each distribution74



and the cost of re-mapping variables between each transition. The system is very dependenton obtaining a good partitioning of the program into phases and on having a good method togenerate and evaluate distributions for each phase.The system described by Garcia et.al. [GAL95] uses a static data decomposition for theentire program. They minimize communication volume and try to insure that the programcan be executed in parallel simply by making some of the loops in the original program doallloops. They do not consider transformations such as loop distribution or interchange and donot consider pipelined parallelism nor the di�erences in synchronization costs between di�erentcandidate loops.5.2 Ordering ComputationThe framework of Unimodular transformations [Ban90, WL91, ST92, KKB92] has the samegoal as my work, in that it attempts to provide a uni�ed framework for describing loop trans-formations. It is limited by the facts that it can only be applied to perfectly nested loops,and that all statements in the loop nest are transformed in the same way. It therefore cannotrepresent some important transformations such as loop fusion, loop distribution and statementreordering.Unimodular transformations are generalized by Li and Pingali in [LP92]. to include map-pings that are invertible but not unimodular. This allows the resulting programs to have stepsin their loops, which can be useful for optimizing locality. Li and Pingali use a techniquecalled access normalization to improve data locality and reduce communication on non-uniformmemory access computers.Unimodular transformations are combined with blocking in [WL91, ST92]. A similar ap-proach, although not using a unimodular framework, is described in [Wol89b].McKinley [McK92] and Wolf [Wol92] have both developed models to estimate data localityand parallelism. Both papers highlight the importance of the tradeo� between parallelism andlocality. Wolf's system is based on unimodular transformations while McKinley's system usestraditional transformations.McKinley determines the preferred loop order for each loop nest based on data locality. Ifthis loop order is not legal then a close to optimal loop ordering is used instead. Parallelism isthen introduced by �nding the outermost loop that has su�cient parallelism or an inner loopthat becomes parallel when moved to an outer position. Parallelism granularity is maximizedand data locality is maintained by strip mining the parallel loop { moving the outer loop as farout as possible and leaving the inner loop in the position preferred for data locality. A doallstyle of parallelism is used, so inter-processor communication cannot be controlled and pipelineparallelism cannot be used.Wolf determines a unimodular transformation that produces the largest outermost fullypermutable loop nest. A fully permutable loop nest is a set of adjacent loops such that allpermutations of those loops are legal. The loops in this outermost fully permutable loop nestare then tiled so that the tiles can executed in parallel in pipelined fashion, unless of course oneof these loops can be made a doall loop, in which case pipelining is not required. The loopswithin each tile are then optimized for data locality. Unimodular and tiling transformations aredetermined to maximize the overlap between the localized vector space (the directions in theiteration space along which reuse can be exploited) and the reuse vector space (the directionsin the iteration space along which reuse occurs). The importance of exploiting locality betweendi�erent iterations of the sequential loops that surround the parallel loops is discussed but notsolutions are proposed.The data locality models used by McKinley [McK92], Wolf [Wol92] and Li [Li95] di�er frommine in two major respects. I assume that a data item will only remain in the cache duringsome period of time if it is reused every iteration during that time period. They don't imposethis condition, but instead assume that a data item will remain in the cache if the period of75



time is relative short.The second way in which McKinley, Wolf and Li's locality models di�er from mine is thatthey are able to consider group reuse (i.e., when di�erent references access the same memorylocations). They are able to do this because they use simpler transformation systems in which allstatements in a loop nest are transformed in the same way. This allows them to form equivalenceclasses of memory references that exploit group reuse with respect to a given transformation ofthe inner most loops. It is not feasible for me to do this since in my case; this inner most set ofloops is the entire loop nest, and I apply potentially di�erent transformations to each statement.I would therefore have to analyze the locality that would result from all combinations of thetransformations that could be applied to each pair of statements that contain memory referencesthat might exhibit group reuse. I felt that the high cost of this analysis would not be justi�edby the small potential bene�ts of exploiting group reuse.The locality model used by Li and Pingali [LP92] is di�erent in that it is used to deriveboth a loop transformation and a computation distribution given a data distribution. The �rstgoal is to minimize o�-processor data accesses by as much as possible performing computationson the same processor that owns the data being referenced. The second goal is to exploit blocktransfers by restructuring the loops so that communication can be performed at the outermostloop possible. Their work does not address cache locality within each processor and so isorthogonal to the locality models of McKinley and Wolf. With respect to my work, it is morerelated to my selection of space mappings to minimize communication, than it is to my localityestimator.The only work that directly addresses the problem of reordering iterations given a com-putation distribution is the work on cross-processor loops in Fortran D [HKT91]. Fortran Dnormally uses an owner-computes rule and user-supplied data decompositions. An algorithmis given in [HKT91] to identify \cross-processor loops". Cross-processor loops are informallyde�ned as:Sequential space-bound loops causing computation wavefronts that cross processorboundaries (i.e., sweeps over the distributed dimensions).For a block decomposition, cross-processor loops are interchanged inward; for a cyclic decompo-sition cross-processor loops are interchanged outward. While the de�nition and strategy workfor stencil computations, it is not theoretically sound and the conditions it checks are neithernecessary nor su�cient for a loop to be able to carry interprocessor dependences. The proposedstrategy for moving loops is just a heuristic that works well on stencil computations; it isn'tclear that it is valid for loops in other applications, such as linear algebra kernels, and it makesno predictions for block-cyclic decompositions.Figure 5.1 shows some of these problems. Loops identi�ed by [HKT91] as cross-processorare marked as do*. In the False Positives column, loops are marked as cross-processor eventhough there are no inter-processor dependences. In the False Negatives column, no loopsare marked as do-across even though there are interprocessor dependences. These examplesare designed to be demonstrative rather than realistic. There may not be any realistic stencilcomputations that demonstrate the problems with the above de�nition. But for non-stencilcomputations, there are some real codes on which the problems are manifested. For Choleskydecomposition (Figure 3.15) with the �rst dimension distributed, it identi�es all 3 loops asbeing \cross-processor", providing no guidance.The basis for systolic techniques was laid by Karp, Miller and Winograd's paper [KMW67]on uniform recurrences. The basic idea is that given a set of function values to be computed,and a set of recurrence equations constraining the function values, the computation can beorganized by specifying a schedule that de�nes the \time" at which each function value shouldbe computed. Lamport's paper [Lam74] on Hyper-planes, was the �rst to apply these ideasto parallelizing compilers. These ideas have continued to evolve following the development ofsystolic arrays. Lengauer [Len93] provides a good summary of traditional systolic techniques.76



False Positives False NegativesDecomposition T(N)real A(N)Align A(j) with T(j)Distribute T(block)do* i = 1 to ndo* j = i+1 to nA(i) = A(i) + 1A(j) = A(j) - 1 Decomposition T(N)real A(N,N), B(N,N)Align A(i,:) with T(i)Align B(i,:) with T(i)Distribute T(block)do i = 1 to ndo j = 1 to nA(i,j) = B(i+1,j-1)B(i+1,j) = A(i,j)Decomposition T(N)real A(N), B(N)Align A(i) with T(i)Align B(i) with T(i+1)Distribute T(block)do* i = 1 to nA(i) = ...B(i) = A(i+1) Decomposition T(N)real A(N,N), B(N,N)Align A(i,:) with T(i)Align B(i,:) with T(i+1)Distribute T(block)do i = 1 to ndo j = 1 to nA(i,j) = B(i,j-1)B(i,j) = A(i,j)Figure 5.1: Errors made by the Fortran-D \cross-processor" identi�cationPugh [Pug91] gives techniques to represent loop fusion, loop distribution and statementreordering in addition to the transformations representable by unimodular transformations.Because it uses only single level a�ne schedules and requires that all dependences be carriedby the outer loop, it can only be applied to programs that can be executed in linear time on aparallel machine.Paul Feautrier [Fea92a, Fea92b] independently developed a framework which is very similarto my own. It is similar in the following respects:� He represents reordering transformations using multi-dimensional schedules which aresimilar in form to my time mappings.� He generates a separate schedule for each statement.However, my work di�ers from Feautrier's in the following respects:� Unlike my time mappings, Feautrier's schedules are not required to be 1-1. Instead,iterations that are to be executed in parallel are scheduled at the same point in time.Therefore, Feautrier's schedules only partially specify the transformed code. In a separatedecision process, parallel loops are generated to enumerate all the computations that needto be executed at each time point. This framework only allows the generation of innermostparallel loops; outer parallel loops are often desirable.� His methods are designed to generate a schedule that produces code with a \maximal"amount of parallelism. He does this by generating a large set of constraints which describeall legal schedules. This set of constraints has a variable for each coe�cient and eachconstant term of the schedule for each statement. For example, for the code from OLDA inFigure 2.11, the problem generated by Feautrier would have 6 variables for each statement:3 each for the coe�cients of p, q and i, 2 each for the coe�cients of n and orb and 1 eachfor the constant term. He then introduces two linear functions of these variables, onerepresenting the number of iterations that will be executed sequentially and a second77



representing how many dependences will be carried. These functions and constraints arethen combined and transformed into a dual programming problem that is solved usingParametric Integer Programming (PIP). The net result of this process is that the scheduleselected carries as many dependences as possible and among all such schedules, the oneselected has as few sequential iterations as possible. These schedules will often not beoptimal in practice because he ignores issues such as granularity, data locality and codecomplexity. It is unclear if his method could be extended to include other criteria, suchas good cache performance or parallel outer loops. I expect it would be di�cult to encodesuch an optimization function for a code segment containing several statements.My approach di�ers fundamentally from Feautrier's in that at each stage I am \trying"speci�c loop permutations. Working with actual loop permutations, rather than withformulas describing schedules, makes it much easier to analyze complex performanceissues such as data locality.5.3 Generating CodeThe problem of generating code for a convex region was �rst addressed by Ancourt and Irigoin[AI91]. They use Fourier pairwise elimination at each level to provide bounds on each of theindex variables. They then form the union of all of these projections to produce a single set ofconstraints which explicitly contains all of the information necessary to generate code. Theypropose that fast inexact techniques be used to remove redundancies from this set before it isused to generate code. They consider only the single mapping convex case.Lassez et.al. [HLL92] provide a good perspective on di�erent methods used to projectinteger convex polyhedra.Li and Pingali [LP92] consider the non-convex case resulting from mappings that are notnecessarily onto. They use a linear algebra framework and compute loop bounds and stepsusing Hermite normal form. They do not consider the multiple mapping case.Ayguad�e and Torres [AT93] consider a limited case of the multiple mapping case where eachstatement can have a potentially di�erent mapping but all mappings must have the same linearpart (i.e., they only di�er in their constant parts).Chamski [Cha93a, Cha93b] generates Nested Loop Structures. He discusses generating codeonly for the single mapping convex case. He reduces control overhead by generating sequencesof loops to remove all min and max expressions in loop bounds. The cost of code duplicationmay be large when all such overheads are removed.Chamski claims [Cha93a] that Fourier variable elimination is prohibitively expensive forcode generation. I have found it to be a very e�cient method, and suspect he used unrealisticexamples and/or a poor implementation of Fourier variable elimination. It is well known thatFourier variable eliminate performs poorly on moderate to large systems of constraints wherethe constraints are dense (each constraint involves many variables). However, the constraintsI have seen in both dependence analysis and code generation are quite sparse, and Fourierelimination is quite e�cient for sparse constraints [PW94a].Collard, Feautrier and Risset [CFR93] show how PIP, a parametrized version of the DualSimplex Method, can be used to solve the single mapping case. Collard and Feautrier [CF93]address the multiple mapping case; however, only one dimensional iteration spaces are consid-ered and many guards are generated. They provide some interesting solutions to the situationwhere statements have incompatible stride constraints (e.g., t1 is even and t1 is odd). Suchstride constraints arise frequently in Feautrier's parallelization framework [Fea92a, Fea92b]; Itry to avoid them in my framework, since generating good code for them is di�cult.In earlier work Pugh, Rosser and I [KPR95] developed an e�ective code generation algorithmfor the general multiple time mapping problem. That earlier work included techniques togenerate non-unit steps to iterate over non-convex regions and a framework within which totrade-o� control overhead for code duplication. Our algorithm can be summarized as follows:78



We �rst construct an abstract syntax tree (AST) that de�nes an initial structure of the loops andconditions. In determining the initial structure, we try to introduce as little control overheadas possible under the restriction that no code duplication is introduced. We augment this treewith more detailed information regarding the conditions and loop bounds of the conditionalsand loops respectively. Next we consider removing control overhead. Sources of overhead nestedinside the most deeply nested loops will be executed most frequently and are the most importantto remove. Unfortunately, further removing overhead requires code duplication and an increasein code size. This trade-o� is controlled by specifying the depths from which overhead will beeliminated. Once we have performed these optimizations, we generate the actual code usingthe abstract syntax tree and the information that it contains.
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Chapter 6Future Work6.1 Distributed MemorySo far, I have targeted my system at machines with logically shared but physically distributedmemory systems, such as the Stanford DASH and SGI POWER CHALLENGE. In the fu-ture, I would like to also target machines with logically distributed memory systems. Botharchitectures require communication volume to be minimized, however, in a distributed mem-ory setting, it may be necessary to augment or replace computation decompositions with datadecompositions. It is much harder to select a data decomposition than a computation decom-position if the computation order is not known. Having to explicitly manage data storage andcommunication also gives rise to a few additional problems such as how to aggregate messages.6.2 Arbitrary Control FlowI would also like to extend my system to accept a wider range of input programs. Speci�cally, Iwould like to accept programs with arbitrary control ow constructs, such as conditionals withnon-a�ne conditions, loops with non-a�ne bounds, while loops, and gotos.6.3 Multiple ProceduresI would also like to accept as input entire programs rather than just single procedures. In sucha system, I would have to decide whether each procedure would be optimized in isolation or thewhether the entire program would to optimized as a whole. If each procedure is to be optimizedin isolation then the order in which procedures are optimized becomes important; for example,there is no point in trying to parallelize a procedure if it is always called from within a loop thatis totally parallel. If only some of the calls to a procedure are from within a parallel loop thenit may be desirable to clone the procedure and only parallelize one of the clones. If any cloningis considered then care must be taken that it doesn't occur so often that the code size becomesunreasonably large. Assumptions made about the interfaces between procedures such as howthe procedure parameters are distributed in memory also becomes an interesting question.6.4 Improved Space MappingsMy space mapping selection algorithm remains heuristic in one major way: I combine the e�ectsof parallelism and communication simply by multiplying one by a constant parameter and thenadding them together. This method of combination will be inaccurate if communication can besubstantially overlapped with computation or with other communication. This heuristic was80



forced on me by a \chicken and egg" problem: it is di�cult to distribute the computations untilthe �nal order of the computations is known, but it is also di�cult to order the computationsuntil the distribution is known. The heuristic works well in practice because the largest com-munications are unlikely to be substantially overlapped with computation. I would, however,like to improve this aspect of the system.The algorithm that I use to detect false sharing in Section 3.2.4 is overly pessimistic insome cases and overly optimistic in others. I would like to correct this situation by betterunderstanding when false sharing occurs and how much of an impact it has.I would also like to extend my algorithms to produce multi-dimensional space mappings.Multi-dimensional virtual processor spaces often map better to the physical topology of ac-tual machines and can reduce communication costs by reducing the ratio of \surface area"to \volume" on each processor, and by making use of faster nearest neighbor interconnectionnetworks.6.5 Improved Time MappingsMy time mapping selection algorithm is also heuristic. When selecting constant levels I al-ways separate statements from one another as soon as possible. This corresponds to applyingmaximal loop distribution and is not always desirable. The issues governing whether or not todistribute are very complex and need to be better understood before a attempting anythingother than maximal distribution.The selection of alignment constants is also heuristic. The current approach works very wellin practice but this is probably only because maximal separation of statements is also beingperformed. If I decide to change that policy then I will also have to reconsider the alignmentproblem.The time mapping selection algorithm is only capable of producing a small subset of thetransformations that can be represented using time mappings. I would like to extend thealgorithm to produce time mappings that correspond to additional transformations such asloop skewing, loop tiling and index set splitting.Other, non iteration reordering transformations, such as the data transformations proposedby Anderson et.al. [AAL95], should also be incorporated into the overall framework.6.6 My Ultimate GoalMy ultimate goal is to strengthen the system, both in terms of e�ciency and e�ectiveness, to apoint where it could be directly incorporated into a production-quality parallelizing compiler.
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Chapter 7ConclusionsThe main contribution of my work has been to improve the state of the art for parallelizingcompilers by replacing existing ad hoc parallelization techniques with a sound underlying foun-dation on which future work can be built. I have developed a new framework that uni�es theproblems of distributing and ordering computation. The new framework is based on a sim-ple but very powerful mathematical abstraction for representing these decisions. I have alsodeveloped algorithms for making these decisions within this framework.The framework is extremely extensible, in that the set of transformations considered andthe performance estimators used to decide which transformation to apply, are not hard wiredinto the system. Users can to modify or write performance estimators to reect the factorswhich a�ect performance on their particular architecture. They can also modify the set oftransformations considered, to obtain the trade-o� between e�ciency and e�ectiveness thatbest suits their individual needs.Conversely, many of the abstractions and algorithms I have developed have applicationsoutside of the framework. For example, my data locality model could be used by any transfor-mation system, our code generation algorithm could be used to generate code even for trans-formation systems that aren't based on time and space mappings and my barrier placementalgorithm could be used to optimally place communication statements in a distributed memoryenvironment.The generality and exibility of my system stems from the fact that all of my abstractions(such as space mappings, time mappings and data dependence relations) and operations (suchas testing legality and generating code) are represented in a common mathematical framework(Presburger arithmetic). By making use of the Omega library, I have been able to producea system that is extremely general, while still practical for everyday problems. Using a highlevel language such as Presburger arithmetic also has the e�ect that many problems can beexpressed and solved in a simple and elegant way.Most of the problems dealt with in this thesis are either undecidable or NP-hard. Two basicapproaches have been taken in this thesis:� Use polynomial time heuristic based algorithms that sometimes produce sub-optimal re-sults, but demonstrate that acceptable results are obtained in most realistic cases.� Use algorithms that theoretically have exponential worst case execution time, but demon-strate that in realistic cases, either the exponential behavior does not occur, or the prob-lem size is small enough that exponential behavior is not a concern.In both cases, it is necessary to implement the algorithms and perform many experiments toprove that they are both e�cient and e�ective. In fact, it is even necessary to perform experi-ments to determine which of these two approaches to use for a given problem. Implementationand experimentation have therefore been the primary tools that I have used to develop andre�ne new algorithms. 82



The most important aid to developing good algorithms is the use of the appropriate abstrac-tion for representing the major data objects being manipulated. For example, data dependencescan be represented exactly using tuple relations or they can be summarized using dependencedirections. Tuple relations provide the most information but are too expensive for some ap-plications. The appropriate abstraction must be chosen by considering how much informationis actually required and, if necessary, sacri�cing some e�ectiveness for e�ciency. The primarylesson that I have learned from this experience is that it is easier to develop new algorithms bystarting with the most exact abstraction possible and only resorting to a weaker abstractionif the more exact abstraction is unnecessary or too expensive. Starting with the most exactabstraction makes it easier to identify and understand the problem inherently being solved andmakes the algorithm designer aware of any compromises bring made and the scope of theire�ect.
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