
Query Scrambling for Bursty Data Arrival�Laurent AmsalegUniversity of Marylandamsaleg@cs.umd.edu Michael J. FranklinUniversity of Marylandfranklin@cs.umd.edu Anthony TomasicINRIAAnthony.Tomasic@inria.frTechnical Report CS-TR-3714 and UMIACS-TR-96-84AbstractDistributed databases operating over wide-area networks, such as the Internet, must deal with theunpredictable nature of the performance of communication. The response times of accessing remotesources may vary widely due to network congestion, link failure, and other problems. In this paper weexamine a new class of methods, called query scrambling, for dealing with unpredictable response times.Query scrambling dynamically modi�es query execution plans on-the-y in reaction to unexpected delaysin data access. We explore various choices in the implementation of these methods and examine, througha detailed simulation, the e�ects of these choices. Our experimental environment considers pipelinedand non-pipelined join processing in a client with multiple remote data sources and it focuses on burstyarrivals of data. We identify and study a number of the basic trade-o�s that arise when designingscrambling policies for the bursty environment. Our performance results show that query scrambling ise�ective in hiding the impact of delays on query response time for a number of di�erent delay scenarios.1 IntroductionThe continued dramatic growth in global interconnectivity via the Internet has made around-the-clock, on-demand access to widely-distributed data a common expectation for many computer users. At present,such access is typically obtained through non-database facilities such as the World-Wide-Web. Advancesin distributed heterogeneous databases (e.g., [Kim95, SAD+95, BE96, TRV96]) and other non-traditionalapproaches (e.g., WebSQL [MMM96]), however, aim to make the Internet a viable and important platformfor distributed database technology.The Internet environment presents many interesting problems for database systems. In addition to theissues of data models, resource discovery, and heterogeneity addressed by the work in the areas cited above,a major challenge that must be addressed for wide-area distributed information systems is that of response-time unpredictability. Data access over wide-area networks involves a large number of remote data sources,intermediate sites, and communications links, all of which are vulnerable to congestion and failures. Suchproblems can introduce signi�cant and unpredictable delays in the access of information from remote sources.Current distributed query processing technology performs poorly in the wide-area environment becauseunexpected delays encountered during a query execution directly increase the query response time. Queryexecution plans are typically generated statically, based on a set of assumptions about the costs of performing�This work was partially supported by the NSF under Grant IRI-94-09575, by Bellcore, and by an IBM Shared UniversityResearch award. Laurent Amsaleg was supported in part by an INRIA Fellowship.1



various operations and the costs of obtaining data. The execution of a statically optimized query plan islikely to be sub-optimal in the presence of unexpected response time problems that arise during the queryrun-time. In the worst case, a query execution may be blocked for an arbitrarily long time if needed data failto arrive from remote data sources. The apparent randomness of such delays in the wide-area environmentmakes planning for them during query optimization nearly impossible.To address the issue of unpredictable delays in the wide-area environment, we have developed a dynamicapproach to query execution, called query scrambling. Query scrambling reacts to unexpected delays by on-the-y rescheduling the operations of a query during its execution. Query scrambling attempts to hide delaysencountered when obtaining data from remote sources by performing other useful work, such as transferringother needed data or performing query operations, such as joins, that would normally be scheduled for alater point in the execution. Query scrambling can be e�ective at hiding signi�cant amounts of delay; in thebest case, it can hide all of the delay experienced during a query execution. That is, a query can execute inthe presence of certain delays with little or no response time penalty observable to the user.1.1 Coping With Bursty ArrivalIn a previous paper [AFTU96], we identi�ed three types of delay that can arise when requesting data fromremote sources:Initial Delay There is an unexpected delay in the arrival of the �rst tuple from a particular remote source.This type of delay typically appears when there is di�culty connecting to a remote source, due to afailure or congestion at that source or along the path between the source and the destination.Slow Delivery Data is arriving at a regular rate, but this rate is much slower than the expected rate. Thisproblem can be the result, for example, from network congestion, resource contention at the remotesource, or because a di�erent (slower) communication path is being used (e.g., due to a network linkfailure).Bursty Arrival Data is arriving at an unpredictable rate, typically with bursts of data followed by longperiods of no arrivals. This problem can arise from uctuating resource demands and the lack of aglobal scheduling mechanism in the wide-area environment.The algorithm presented in [AFTU96] focused on the problem of Initial Delay. As such, it was assumedthat once data started to arrive from a remote source, the remaining data from that source would arrivein an uninterrupted fashion. This assumption facilitated the development and study of an initial approachbut limited the applicability of the resulting algorithm, as wide-area data access seldom fails in such a well-behaved manner. In this paper, we extend the scope of query scrambling by investigating approaches tocope with the additional problem of bursty arrivals.Bursty arrivals are more di�cult to manage than initial delays for several reasons. First, the run-timesystem must constantly monitor the arrival of data from remote sources and must be able to react to delays2



that arise at any time. Such continuous monitoring of remote sources is not necessary in the initial delayenvironment. Second, due to the unpredictable nature of bursty arrivals, care must be taken to avoidinitiating overly-expensive scrambling actions for short, transient delays, while remaining reactive enoughto initiate scrambling without undue hesitation in situations where there is signi�cant delay. Given thedi�culty of predicting the future short-term behavior of remote access, scrambling for a bursty environmentmust be implemented such that it can be initiated, halted, and restarted in a lightweight manner.1.2 A Reactive ApproachQuery scrambling shares some common goals with other approaches to dynamic query processing. In general,methods that attack poor run-time performance for queries fall into two broad categories: proactive andreactive. Proactive methods (e.g., [ACPS96, CG94, SAL+96]) attempt at compile-time to predict thebehavior of query execution and plan ahead for possible contingencies. These approaches use a form of latebinding in order to postpone making certain execution choices until the state of the system can be assessedat run-time. Typically the binding is done immediately prior to executing the compiled plan, and remains�xed for the entire execution.Reactive methods (e.g., [TTC+90, Ant93, ONK+96]) monitor the behavior of the run-time system duringquery execution. When a signi�cant event is detected, the run-time system reacts to the event. Queryscrambling is a reactive approach | the query execution is changed on-the-y in response to run-timeevents. While other reactive approaches have been aimed towards adjusting to errors in query optimizerestimates (e.g., selectivities, cardinalities, etc.), query scrambling is focused on adjusting to the problems thatarise due to the time-varying performance of loosely-coupled data sources in a wide-area network. Relatedwork is discussed in more detail in Section 6.The basic technique used by query scrambling is to change the scheduling of operators in a query planif a delay is detected while accessing data from a remote site. Such rescheduling permits delays fromdi�erent remote sources to overlap with each other and to overlap with useful work performed by thequery processor. In order to implement this rescheduling, the run-time system must sometimes introduceadditional materializations of intermediate results and base data into the query execution plan. For thisand other reasons, query scrambling may increase the total cost of query execution in terms of networkcontention, memory usage, and/or disk I/O.1.3 Overview of the PaperBecause scrambling introduces both bene�ts and costs, it must be regulated in an e�ective way. Thus,the key questions for implementing scrambling are: 1) when should scrambling start; 2) what should bescrambled; and 3) when should scrambling stop. In this paper we explore these key questions by examiningseveral sets of policies to control scrambling, and we describe the architecture of a run-time scheduler that iscapable of implementing these policies. We then use a detailed simulation of a run-time system based on theiterator query processing model [Gra93] in order to examine the tradeo�s of the various scrambling policies3



for both pipelined and non-pipelined execution.In this paper, we focus on query processing using a data-shipping or hybrid-shipping approach [FJK96],where data is ultimately collected from remote sources and integrated at the query source. This approachmodels remote data access and is also typical of mediated database systems that integrate data from dis-tributed, heterogeneous sources, (e.g., [TRV96]). In this work, the remote sources are treated as black boxes,regardless of whether they provide raw data or the answers to subqueries. Only the query processing that isperformed at the query source is subject to scrambling. Our results show that scrambling, if done correctly,can produce dramatic response time savings under a wide range of delay scenarios. It can in some cases,reduce the slowdown observed due to random delays by a factor proportional to the number of bursty remotesources. It can also, in some cases completely hide the delay from the user.The paper is organized as follows. Section 2 describes the basic trade-o�s for query scrambling to copewith bursty arrivals. Section 3 addresses the architecture of a run-time scheduler for implementing queryscrambling. Section 4 describes the experimental framework and Section 5 describes the experimental resultsfor the non-pipelined and pipelined cases. Section 6 describes related work. Section 7 concludes the paper.2 Query Scrambling OverviewIn this section we �rst discuss the behavior of a traditional iterator based run-time system and its behaviorin the bursty environment. We then describe how scrambling can be applied to such a run-time system inorder cope with unexpected delays. Finally, we discuss the basic tradeo�s and design decisions that arise inthe development of a scrambling algorithm.2.1 Query Scrambling for Iterator-Based Execution EnginesRather than relying on the operating system, most database systems provide their own execution engine,which performs scheduling and memory management for the operators of compiled query plans. The iteratormodel is one way to structure such an execution engine [Gra93]. In this model, each node of the query tree isan iterator. Iterators support three di�erent calls: open() to prepare an operator for producing data; next()to produce a single tuple, and close() to perform �nal housekeeping. To start the execution of a query, theDBMS initiates an open() call on the root operator of the query tree, and this call iteratively propagatesdown the query tree.A key attribute of the iterator approach is that the scheduling of the query operators is, in some sense,compiled into the query tree itself. The scheduling of the operators in the tree is determined by the wayin which operators make open(),next(), and close() calls on their children operators. The data ow amongnodes in this model is demand-driven. A child node passes a tuple to its parent node in response to anext() call from the parent. As such, iterator-based plans allow for a natural form of pipelining. Each timean operator needs data, it calls its child operator(s) and waits until the requested data is delivered. Theproducer-consumer relationship allows the operators to work as co-routines, and avoids the need for storage4



of intermediate results, as long as the child operator produces tuples at about the same rate or slower thanthey can be consumed by its parent operator. This scheduling dependency can be avoided, however, if thechild operator �rst materializes its result (e.g., as part of open() processing) either in memory or to disk.After materialization, the child can then provide tuples to the parent operator in the typical one-at-a-timefashion in response to next() requests. A completely non-pipelined schedule can be constructed by introducingmaterialization between each pair of operators in the tree.This simple, static scheduling approach works well when the response times of operators and data sourcescan be predicted with some accuracy. When processing queries with data from remote sources, however,unpredictable delays in obtaining that data can arise. The e�ect of such unexpected delays on a precompiledschedule can be severe. When a remote source blocks, all of its ancestors in the query tree will also block. Inaddition to delaying the initiation of operators that are scheduled to execute later in the plan, such blockingcan also block other operators that are already executing. For example, if a binary operator (e.g., a join)becomes blocked because one of its children blocks, then it will stop requesting tuples from its other child,thereby inducing blocking on the subtree rooted at that child as well. This blocking can propagate down thesubtree to the leaves of the tree, unless a materialization (which breaks the producer-consumer dependency)is encountered.1 With a static schedule, progress on the query can, in some cases, grind to a halt even ifonly a single data source becomes delayed.Query scrambling applies dynamic scheduling to query execution in order to avoid the problems causedby unexpected delays. It depends on two basic techniques: rescheduling and materialization. Simply stated,when a delay in obtaining data from a remote source is detected, scrambling changes the scheduling of oper-ators in the query tree in order to allow other portions of the plan to execute. To perform this rescheduling,scrambling introduces any materializations that are required to allow the re-scheduled operators to run.Materializations can be added to the plan by placing a materialization operator between the re-scheduledoperator and its parent.2 A materialization operator is a unary operator, which when opened, obtains theentire input from its child and places it in storage (typically disk, unless there is su�cient memory). Thematerialization operator provides tuples in response to next() requests from its parent operator when theparent is eventually able to execute.As stated in the introduction, there are three key policy questions for the implementation of a scramblingrun-time system: (1) when to start scrambling, (2) what to scramble, and (3) when to stop scrambling. Inthe following three sections we describe the options and the basic tradeo�s that arise for each of these.2.2 Initiating ScramblingA fundamental principle of our approach to Query Scrambling is that the normal scheduling of a query execu-tion should proceed unperturbed in the absence of unexpected delays. The assumption is that the executionplan generated by the optimizer is in fact, an e�cient plan, and that re-scheduling and materialization can1Note that this blocking phenomenon arises even if operators are ones that support intra-operator parallelism such theexchange operator of Volcano [CG94].2This notion of a materialization operator is not related to the operator for path expressions described in [BMG93].5



result in additional memory, disk I/O, and other costs. Thus, the original plan should be tampered withonly if an unexpected problem arises during the execution.In order to determine when a delay has occurred, the system associates a timer with each operator thatdirectly accesses data from a remote site. This timer is started when the operator begins waiting for a chunk(i.e., a page or packet) of data to arrive from the remote site, and is reset when the data arrives. If thetimer goes o� before the data arrives, then the scrambling mechanism is informed that a signi�cant delayhas occurred.Given such a timer mechanism, the main policy question is to determine at which point there are su�cientproblems to warrant the initiation of re-scheduling. There is a knob that can be used to �ne-tune such apolicy. The timeout-value is the value with which the timer is initialized when an operator enters a waitingstate. The length of this value determines how long the operator waits before a timeout alarm is raised.The timeout-value limits the degree of response time variance that will be tolerated for any remote source.This knob allows the sensitivity of the scrambling policy to be adjusted across a range from aggressive (i.e.,low settings for the knob) to tolerant (i.e., high setting). The tradeo�s between these two extremes arefairly straightforward: A tolerant policy runs the risk of allowing too much delay to accumulate beforereacting, while an aggressive policy can potentially waste resources in an e�ort to solve non-existent (orminor) problems. The decisions covered in the next two sections, however, can help limit the extent of thedamage caused by an overly aggressive approach.2.3 What to ScrambleOnce scrambling has been initiated, the next decision to be made is the extent of the scrambling action to beperformed. As stated previously, scrambling involves the rescheduling of operations in the execution plan.There are two types of policy decisions that must be made with respect to the extent of scrambling: i) wherein the tree to initiate scrambling; and ii) how many scrambling operations should be initiated.For the �rst question, we consider two options: i) early initiation of a non-leaf operator in the plan; andii) early retrieval of data from a remote source. The �rst case, initiating a non-leaf operator, requires thescrambling system to arti�cially call open() on that operator. The open() has the usual e�ect of initiatingthe sub-tree of the query rooted at that operator. It is relatively simple to execute a non-pipelined operatorout-of-turn (i.e., before its parent operator) because such an operator simply writes its result to a temporary�le (or to an allocated area in memory). On the other hand, rescheduling pipelined operators is more di�cult;it requires the introduction of a materialization operator as a surrogate parent, in order to temporarily storethe result of the operator. A surrogate parent is also needed in the case of early retrieval of data from aremote source. In that case, a materialization operator is inserted in the tree to pull tuples from the remotesource and store them locally at the query execution site.The tradeo�s between these two choices are as follows: Starting a non-leaf operator allows the entiresubtree rooted at that operator to be initiated at the cost of at most, a single additional materialization.The downside of this approach is that su�cient memory must be allocated to allow the subtree to execute.6



In contrast, early retrieval from a remote source requires very little memory (e.g., one or two pages, forstaging tuples to disk), however, an additional materialization is required for every remote source opened inthis way.The second decision that must be made is how many scrambling operations should be initiated. Thefundamental tradeo� here is as follows. The more operations that are initiated, the more remote sources canbe accessed in parallel, and hence, the greater the potential for overlapping the delays that might arise fromthose remote sources.3 There are, however, signi�cant dangers in starting too many operators. First, if careis not taken, the data arriving from multiple sources can cause contention in the network or at the queryexecution site. On the network, contention can result in the invocation of congestion avoidance mechanisms,which can force sources to send data at a low rate. At the query execution site, thrashing can arise if thespeed of materializations to disk can not keep up with the rate at which the remote sources are deliveringdata. These problems can be mitigated, to some extent, if the query execution site controls the arrival ofdata from remote sources. Such control can be achieved using a page-at-a-time protocol (as opposed to astreaming protocol) between the query execution site and the remote sources.Another problem that can arise from initiating too many scrambling operations is the randomizationof disk access. When multiple relations are placed on the disk of the query execution site, access to thoserelations may interfere with other disk I/O performed by the query. For example, in the case of a non-pipelined join, accessing the input relations from disk may interfere with the writing of the join result todisk, thereby turning both processes into random rather than sequential I/O. Such interference can slowdisk access substantially. Note that this latter problem can arise regardless of whether a streaming orpage-at-a-time protocol is used to obtain data from remote sources.2.4 Stopping ScramblingThe third key decision for scrambling is that of when to stop scrambled operations once they have beeninitiated. There are two basic choices here. One option is to simply suspend all scrambled operations whenthe remote source that triggered scrambling resumes sending data. The other option is to ignore the statusof the blocked remote source, and continue scrambling. Perhaps the most intuitive approach is to suspendscrambling and resume normal processing as soon as a blocked operator becomes unblocked. Since scramblingis a reaction to an unanticipated event, it makes sense to resume the original plan as soon as possible. Inaddition, scrambling has the potential to add costs to the execution of the query, so returning to the originalschedule can help avoid such costs.In cases where a remote source temporarily experiences delays but then performs smoothly, the approachof returning to the original plan is likely to work well. In other cases, however, going back too soon cancarry its own costs. Recall that some scrambled operators (e.g., those higher in the query tree) may consumeconsiderable amounts of memory. If the suspension of scrambling causes the scrambled operators to be3In general, if n remote sources are subject to signi�cant, independent delays, then by accessing those sources in parallel,scrambling has the potential to improve performance (over not scrambling) by as much as n times.7



swapped out then it is possible to encounter a thrashing condition if the remote source repeatedly delays andresumes. On the other hand, not swapping the scrambled operators out could result in a signi�cant wasteof memory and could hurt performance. Thus, for very unreliable remote sources, it could be bene�cial tocontinue scrambling, even if the remote source resumes. A useful option in this case might be to materializethe delayed source in the background while continuing to complete the scrambling operations. Materializingan operator that was started normally, however, would require additional mechanism beyond what has beendescribed above.2.5 DiscussionThe above sections described the main decisions that must be addressed when designing a query scramblingpolicy for the bursty environment. These decisions and their possible settings are summarized in Table 1.The settings allow the scrambling policy to be adjusted between tolerant and aggressive approaches towardsdealing with delays. In general, tolerant policies favor sticking to the original query plan wherever possible,while aggressive policies are more willing to commit resources in order to hide potential delay. As statedabove, it is possible to implement scrambling in a way that can reduce the potential for problems. Forexample, using a page-at-a-time protocol rather than a streaming one for obtaining data from remote sourcescan reduce the potential for network and local disk congestion.Decision Values(tolerant) (aggressive)Start timer-value high lowWhich Operators remote source non-leafHow Many Operators few manyStop suspend ignoreTable 1: Summary of Scrambling OptionsIn this paper, we assume that the query execution tree shape is �xed during execution, i.e. join ordering isnot changed, and we assume that the physical network topology is �xed. Both of these assumptions impactthe performance of scrambling.Consider the impact of tree shape on scrambling. If the �rst (left-most) remote source, say A, in thequery execution order, has a long delay, then scrambling will perform very well. The rest of the query willexecute during the time that A is delayed, e�ectively overlapping the delay of A with all other delays andwork. However, suppose the last remote source, say Z, is delayed. Scrambling will be ine�ective, since thereis no work after Z and thus no work to scramble. In general, delays which appear early in query executionorder have much less impact than delays which appear late.4Consider the impact of physical network topology. If a network delay a�ects only a single remote source,4Thus, a query optimizer for a run-time system that supports scrambling may favor query execution plans where historicallyunreliable remote sources appear early in the plan. 8



scrambling will perform as if the delay was due to the remote source itself. However, if a network delaya�ects all remote sources equally (e.g. a delay in the network link between the client and the local Internetrouter of the client), scrambling will be ine�ective, because all remote sources are equally delayed and thusno work can be overlapped.3 ArchitectureIn this section we describe the architecture of a scrambling run-time system. We �rst extend the iteratormodel with a scheduler. We then describe how materialization operators are inserted into the query tree.3.1 The Query Scrambling EngineWe extend an iterator run-time system such that each operator has an independent internal process state. Ascheduler dictates the state of each operator. Operators can be suspended, resumed, or terminated just likeoperating system threads. An operator can be in �ve possible states. Among these �ve states, six transitionsare possible. Operator states and transitions are showed in Figure 1.
Closed

Not Started Stalled

SuspendedActive

1 opened
2 timed-out

6 closed 4 reactivated

3 resumed

5 suspendedFigure 1: State Diagram for Query OperatorsThese states are:� Not Started. State of an operator before being opened.� Active. State of the operators that can be scheduled by the OS for execution. The actual order inwhich the OS schedules the Active operators is identical to the one that would normally be producedby the iterator model under traditional scheduling.� Suspended. State of an operator explicitly suspended by the query scrambling scheduler.� Stalled. State of an operator stalled due to the unavailability of the requested data.� Closed. State of an operator once it has produced all its possible results.The query scrambling scheduler moves one or more operators from one state to another via a transitionin response to an external event. Three possible external events are de�ned:9



� Time-Out. When the timer embedded in an operator goes-o�, the operator informs the scheduler ofthe time-out. In turn, the scheduler then knows this operator can not be run.� Resume. When pending data eventually arrive at the query execution site the scheduler determinesthe operator for which the data is intended. The scheduler then knows this operator can potentiallybe run again.� End of Stream. An operator that produced all its possible results tells the scheduler it has reached theend of stream. Such an operator goes out of the scope of scrambling.The reactions of the query scrambling scheduler to the occurrence of these events can be easily expressedin terms of transitions between states for the operators concerned by the events. The transitions betweenthe states are:1. opened. Every time an operator opens, the scheduler moves this operator fromNot Started toActive.2. timed-out. The scheduler moves an operator from Active to Stalled when the operator times-out(�rst external event). The scheduler also forces the ancestors of the stalled operator to go through thistransition as well, indicating that a whole branch of the query tree is blocked and can not run.3. resumed. When the pending data eventually arrives (second external event) the scheduler moves thecorresponding operator, as well as its ancestors, from Stalled to Suspended indicating that they canpotentially be run again.4. reactivated. The scheduler moves an operator from Suspended toActivewhen it decides to reactivateit. Every time an operator is moved through the transitions timed-out or resumed, the query scramblingscheduler checks to see if one (or more) suspended operations need to be re-activated. For example, ifno operators are Active because they are all timed-out, then the scheduler will try to reactivate thescrambling of Suspended operators.5. suspended. The scheduler moves Active operators to the Suspended state when it decides to tem-porarily suspend their execution. This happens, for example, when the regulation mechanism of queryscrambling decides to halt all materializations because the problem that triggered scrambling is re-solved. Later, suspended materializations can be reactivated, for example in response to the time-outof one active operator.6. closed. When an operator completes (end of stream, third external event), it closes and the schedulermoves it to the Closed state.3.2 Modifying the Query TreeAfter it has chosen an operator to reschedule, the query scrambling scheduler analyses the query tree todetermine if it has to introduce a materialization operator as a surrogate parent to allow this operator to10



run. If not, then the scheduler simply starts a thread that opens the operator. In contrast, if a surrogateparent is required, then the scheduler creates a new materialization operator and inserts it between therescheduled operator and its parent. Patching a query tree is fairly simple with iterators, since they interactthrough well de�ned, implementation independent, interfaces. As such, neither the parent nor the childoperator needs to be aware of the patch.Once the surrogate parent is placed in the tree, the scheduler opens it. After calling open() on its child,the materialization operator continuously calls next() and materializes the received tuples to disk. The childoperator is closed when it produces its last tuple. At this point the materialization is complete.Eventually, the original parent of the rescheduled operator will be scheduled to execute. Due to thepatching of the query tree, when it calls open() on its child, it actually re-opens the materialization operator.In response to next() calls, the materialization operator returns the tuples that it previously materialized.If the materialization was complete then its child operator need never be called. On the other hand, if thematerialization was incomplete, then once its supply of materialized tuples is exhausted, it simply passesany subsequent next() calls to its child, and passes each tuple obtained in this manner back to its parent.4 Experimental FrameworkIn this section we �rst describe the simulation environment used to evaluate several di�erent policies forscrambling queries. We then present the workload used to perform these experiments and also the mainsettings for con�guring the query scrambling scheduler.4.1 Simulation EnvironmentTo study the performance of query scrambling in a bursty environment, we implemented the schedulingengine and several policies on top an existing simulator that models a heterogeneous, peer-to-peer databasesystem such as SHORE [CDF+94]. The simulator we used provides a detailed model of query processingcosts in such a system. Here, we briey describe the simulator, focusing on the aspects that are pertinentto our experiments. More detailed descriptions of the simulator can be found in [FJK96, DFJ+96].Table 2 shows the main parameters for con�guring the simulator, and the settings used for this study.Every site has a CPU whose speed is speci�ed by the Mips parameter, NumDisks disks, and a main-memorybu�er pool of size Memory. For the current study, the simulator was con�gured to model a client-serversystem consisting of a single client connected to eight servers. Each site, except the query execution site,stores one base relation.In this study, the disk at the query execution site (i.e., client) is used to store temporary results. Disksare modeled using a detailed characterization that was adapted from the ZetaSim model [Bro92]. The diskmodel includes costs for random and sequential physical accesses and also charges for software operationsimplementing I/Os. The unit of disk I/O for the database and the client's disk cache are pages of sizeDskPageSize. The unit of transfer between sites are pages of size NetPageSize. The network is modeled11



Parameter Value DescriptionNumSites 9 number of sitesMips 30 CPU speed (106 instr/sec)NumDisks 1 number of disks per siteDskPageSize 4096 size of a disk page (bytes)NetPageSize 8192 size of a network page (bytes)Compare 4 instr. to apply a predicateHashInst 25 instr. to hash a tupleMove 2 instr. to copy 4 bytesMemory 2048 size of memory (disk pages)Table 2: Simulation Parameters and Main Settingssimply as a FIFO queue with a bandwidth set as a parameter of the experiments described in the nextsection. The details of a particular technology (Ethernet, ATM) are not modeled. The cost of sendingmessages, however, is modeled and the simulator charges for the time-on-the-wire (depending on the messagesize and the network bandwidth) as well as CPU instructions for networking protocol operations. The CPUis modeled as a FIFO queue and the simulator charges for all the functions performed by query operatorslike hashing, comparing, and moving tuples in memory.We extended this simulator by adding a query scrambling scheduler that follows the description givenSection 3. We also implemented several query scrambling policies that behave di�erently when operators ofthe query time-out or resume. Finally, we modeled a bursty environment by adding to each remote servera small piece of software. Every time a message is about to be sent by a site, the software checks to see ifit has to delay this message. The duration of the delay as well as the moment when the delay is e�ectivelyenforced are fully con�gurable, and can range from a �xed duration enforced every time a given numberof messages have been exchanged to a random duration and a random occurrence of delays using severalprobability distributions.For all the experiments, we have set the value of the timer as a multiple of the expected round-triptime for requesting and obtaining a data page from an unloaded source in an unloaded network. In ourexperiments (except where noted) the timer is set to ten times the duration of this round-trip. We evaluatethe performance of scrambling with three di�erent network speeds: a fast network (100Mbits per second),a slow network (0.1Mbps) and also a network speed that is roughly equal to the observed bandwidth of thedisk local to the client (5Mbps). This bandwidth is determined by the average performance of the local diskwhen it alternates between period of sequential and random I/Os as it does during the execution of a query.In the model, all processing sites share a single communication link. This con�guration enables us tomodel increasing latencies on the wire when the network is over-utilized. However, we do not model networkcongestion and the dropping of packets that could happen in this case. Congestion, however, is unlikely inour environment because we use a page-at-a-time approach to obtaining data from remote sources, ratherthan a streaming approach. Thus, when an operator requests a data page, this operator has to wait untilthe page is received before requesting the next one.A way to tune the sensitivity of query scrambling is to decide when to stop scrambling, as described inSection 2. In all the experiments described in the next section, we force query scrambling to suspend when12



the left-most operator resumes and to return control to the normal iterator-based scheduling of operators.The left-most operator is favored over the others because it corresponds to the last operator opened bythe normal iterator-based execution of operators and not by the scrambling scheduler. If no other delayis experienced by the query, than the query will complete its execution with no other extra costs than theones charged while the left-most operator was stalled. Section 5.1.3 demonstrates the importance of thisregulation mechanism.4.2 WorkloadIn this section we present the workload used for all the experiments described in Section 5.
Network
Comm.

Data Servers

Execution
Site

Queryresult

GFA EC DB HFigure 2: Query Tree Used for the ExperimentsFor all the experiments described in the next section, we use the query tree represented in Figure 2.The query tree is an 8-way join structured as a balanced bushy tree. For this query tree, all base relations(A through H) are stored on remote sites and their tuples are sent a page-at-a-time when requested tothe query execution site through the network. All other operators, i.e., joins, are executed at the queryexecution site. This 8-way join query tree is used to explore fundamental tradeo�s of query scramblingpolicies. This tree is big enough to provide su�cient latitude for the policies to possibly perform multiplerounds of scrambling, highlighting di�erent behaviors and their costs. This tree, which is more general thanleft- or right-deep trees, o�ers opportunities to reschedule many base relations scans and also subtrees ofvarious sizes, each incurring di�erent costs.Each base relation used in the study has 10,000 tuples of 100 bytes each, which represents 250 pages of4Kbytes. In our experiments, all the joins in the query tree produce the same number of tuples, i.e., 10,000tuples also of 100 bytes each. The main memory needed by one operator is requested and reserved whenthis operator opens. In the case of a join, the size of its hash-table is of 250 pages. The memory used by anoperator is freed when this operator closes.Query scrambling needs memory to reschedule and materialize operators. Before rescheduling an opera-tor, the scheduler computes the maximum amount of main memory this operator (and its child operators)will need for their execution. This amount depends on the length of the longest branch of the subtree rootedat the rescheduled operator. If there is not enough memory (because other operators already reserved some),then the scheduler does not reschedule the operator nor pre-reserve the memory this subtree needs. Later,when some memory will be freed by other closing operators, the scheduler may try to reschedule again this13



operator. Note that in the current implementation of the simulator, the memory of a stalled operator is notfreed.5 Experiments and Results5.1 Non-Pipelined PerformanceIn the �rst set of experiments, we investigate the performance of query scrambling for an execution model inwhich no pipelining is performed. That is, the result of each join operator (excluding the root) is materializedto a temporary �le on disk before it is consumed by its parent operator. A non-pipelined execution modelis used initially in order to allow us to explore several fundamental tradeo�s of scrambling in the absence ofcomplications due to memory management. In Section 5.2 we study the impact of limited memory.5.1.1 PoliciesThree di�erent query scrambling policies are evaluated in this section. We compare these three policies tothe case where no scrambling is performed, that is, the processing of the query incurs the cost of every delay.The performance of non-scrambled query is what would arise under traditional, iterator-based schedulingwith no scrambling facilities. All policies perform the same under normal execution. That is, they are notapplied until scrambling is invoked. The three policies are:Materialize-All . When scrambling is initiated, this policy simultaneously materializes all base relations.When both sides of a join are entirely materialized, then this join becomes eligible to run underscrambling. Although only a single join can be materialized at a time, this join is allowed to runconcurrently with the on-going materializations of base relations.All-Builds. Rather than opening all base relations when scrambling starts, this policy opens all of thosebase relations that are on the build side (i.e., the left input) of joins. When a build relation is entirelymaterialized, then the corresponding join becomes eligible to run under scrambling. Again, such joinsare allowed to run concurrently with the on-going materializations of other base relations. Note thatin this policy, probe base relations (i.e., those that are the right input of a join) are never materializedbut are always obtained directly from remote servers through the network.Next-Build . This policy is similar to All-Builds but it only opens one build relation at a time. If a proberelation or an on-going materialization of a build relation times-out, then the scheduler then opens thenext build relation.5.1.2 Multiple-Delay ExperimentsIn the �rst set of experiments we examine the performance of the policies when some or all of the baserelations are subject to random delays throughout the entire execution of a query. Delay is applied in the14



following way: Each remote source ips a weighted coin before sending a page of tuples to the query executionsite. The outcome of the coin toss determines if the source should transmit the page normally, or if it shouldstall for a speci�ed period before sending its page.5 In these experiments the delay period is �xed at 0.78seconds, or three times the value of the timer used by the query processor to detect problems with a remotesource. Because of the �xed value for the delay period, it is known that the query processor will timeouton a source each time that source delays. In this case, the timeout will be detected one-third of the waythrough the delay (0.26 seconds).Figure 3 shows the percentage slowdown of the query as the probability of delay for each page transmissionis increased along the x-axis. In this �rst experiment, random delay is applied to the page transmissions ofall eight base relations. The slowdown is computed by subtracting the normal running time for the query(in this case, 45.8 seconds) from the observed running time in the delayed case, and dividing by the normalrunning time. As can be seen in the �gure, the slowdown for all policies shown increases linearly with thedelay probability, but there are dramatic di�erences in the slopes of the lines.
0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S
lo

w
do

w
n 

(r
el

at
iv

e 
to

 4
5.

8 
se

c)
 

Delay Probability

No Scrambling
Materialize-All

All-Build
Next-Build

Figure 3: Slowdown, Delay on All RelationsNet: 5 Mbps, Delay: 0.78 sec (3x Timer) 0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S
lo

w
do

w
n 

(r
el

at
iv

e 
to

 4
5.

8 
se

c)
 

Delay Probability

No Scrambling
Materialize-All

All-Build
Next-Build

Figure 4: Slowdown, Delay on A OnlyNet: 5 Mbps, Delay: 0.78 sec (3x Timer)The top line of the �gure shows the performance of the query if no scrambling is done; that is, it is theperformance that would arise under traditional, iterator-based scheduling. When using the iterator modelwith no scrambling, query processing incurs the cost of every delay | in this experiment at 90% delayprobability the query runs 30 times slower than when there are no delays. In this case, the response timeof the query is 1449.8 seconds. Such a result is to be expected. The normal scheduler is unable to overlapany delays, so query execution time is increased by the sum of the delays experienced from all of the remotesources. At 90% delay probability, there are 1800 delays of 0.78 seconds each, so the total delay is 1404seconds, compared to a normal query execution time of only 45.8 seconds. The slowdown for no scramblingat 90% delay probability is (1449:8� 45:8)=45:8 = 30:7.5In those cases where random delays are used we ran each experiment 12 times and then averaged the results to get the �nalresults presented here. 15



Turning to the scrambling policies, it can be seen that they too incur a linear slowdown as the delayprobability is increased. The slopes of the increases, however, are much lower than for the no scramblingapproach. The best policy for coping with delay in this case is Materialize-All . Materialize-All is the mostaggressive policy; it opens all base relations simultaneously. As a result, it has the potential to overlap themost delay. That is, by requesting data from multiple sources, it can tolerate delays of a subset of thosesources. In this experiment, since all sources experience delay, the aggressive approach of Materialize-All isbene�cial. At 90% delay probability, the query is slowed down by a factor of 3.65 or 167 seconds. Since thetotal delay in this case is 1404 seconds, Materialize-All is able to hide 1237 seconds of delay by overlapping itwith other useful work, such as retrieval of other base relations and join processing. The other two scramblingpolicies, All-Builds and Next-Build are also able to overlap delay, but to a lesser extent than Materialize-All .In this case, Next-Build performs the same as All-Builds because although it initially tries to materializeonly one build relation at-a-time, as soon as it detects a delay on such a relation, it proceeds to open thenext build. Thus, under any signi�cant delay probability, it will quickly reach the state where it has all buildrelations open simultaneously. Both policies hide less delay than Materialize-All because they do not opena probe-side base relation until the entire corresponding build relation has been materialized. Thus, theyhave less opportunity to overlap delays on the probe relations.One lesson from the preceding discussion is that if multiple sources are likely to have multiple delays,then policies that open more remote sources have a better opportunity to hide delay. Figure 4 shows theperformance of the non-pipelined policies when only relation A (the leftmost relation) is subject to delays.In this case, beyond a delay probability of 30% the three policies perform roughly the same. This is becauseat this point, the policies are all able to complete their scrambling work within the delay of A (30% delayfor A is 58.5 seconds) so their performance becomes roughly identical as delay is further increased. Prior tothis point, All-Builds has a slight advantage over Materialize-All because it does not materializes any proberelations, so it does not incur disk contention.5.1.3 Single-Delay ExperimentsThe multiple-delay experiments described in the previous section showed that the opening of multiple remotesources can improve the performance of scrambling policies by maximizing the potential to overlap delay.In this set of experiments we examine the potential negative impact of scrambling too aggressively byinvestigating a case where there is much less delay than in the previous cases. To accomplish this, we varythe length of a single, initial delay on relation A. The x-axis on the graphs shows this delay as a percentage ofthe time required to execute the query in the absence of any delay. The y-axis shows, as before, the percentslowdown compared to normal execution.Balanced Network Figure 5 shows the performance of the non-pipelined policies using the same networkspeed as used in the previous experiments (i.e., 5 Mbps, roughly equivalent to the observed speed of thedisk). In this case we see that all three scrambling policies are able to hide much of the delay up to 80%16



of the normal execution time (36.6 seconds) at which point they increase linearly with the delay. Prior to80%, the All-Builds policy performs the best. Its performance has three stages: up until a delay of 20%its response time increases, it then remains at until 60%, after which it increases linearly with the delay.During the �rst stage, it is materializing the non-delayed build relations (C, E, and G). If at anytime duringthis materialization the arrival of tuples from A resumes, then scrambling is suspended, and control returnsto normal operation. Once all the scrambling materializations have been performed, the slowdown attensout for higher delays because the joins can be run, and the work to perform the joins e�ectively hides thedelay of A at that point.6 If the delay of A is large enough so that all the joins that do not involve A arecompleted, then beyond that point the slowdown grows linearly with the delay, as there is no more work forscrambling to do.
0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

S
lo

w
do

w
n 

(r
el

at
iv

e 
to

 4
5.

8 
se

c)
 

Delay % (relative to 45.8 sec)

No Scrambling
Materialize-All

All-Build
Next-Build

Figure 5: Slowdown, Initial Delay on ANet: 5 Mbps, Delay % of 45.8 sec
0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

S
lo

w
do

w
n 

 (
re

la
tiv

e 
to

 7
01

.6
 s

ec
) 

Delay % (relative to 701.6 sec)

No Scrambling
Materialize-All

All-Build
Next-Build

Figure 6: Slowdown, Initial Delay on ANet: 0.1 Mbps, Delay % of 701.6 sec 0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

S
lo

w
do

w
n 

(r
el

at
iv

e 
to

 3
4.

8 
se

c)
 

Delay % (relative to 34.8 sec)

No Scrambling
Materialize-All

All-Build
Next-Build

Figure 7: Slowdown, Initial Delay on ANet: 100 Mbps, Delay % of 34.8 sec6In these experiments, for All-Builds the build relations tend to become completely materialized all at about the same time,because they are the same size, and they are not delayed, and they are materialized in parallel. In a real environment, it isexpected that they would arrive at di�erent times. 17



The Materialize-All policy has similar behavior to All-Builds, but it performs worse because it materi-alizes probe relations in addition to build relations, even though none of the probe relations incur delay. Asseen in the previous experiments, the reading of the probe relations from disk introduces disk contentionwith the writes of the join results, so the overall performance su�ers. It is interesting to note in the linearportion of the graph (beyond 80%) Materialize-All has a slight advantage over the others because it hasalready materialized relation B at that point, while the others wait until all tuples of A have arrived beforerequesting tuples from B. Finally, the Next-Build policy performs slightly worse than the others because itrequests all remote relations one-at-a-time. Materializing relations in parallel provides a small bene�t evenif they are not abnormally delayed because the parallel requests to the remote data sources allows them todo some work (e.g., local I/O) in parallel with each other.Varying Network Speed Many of the results in the previous experiments were driven to some extentby the fact that the network speed and observed disk speed were roughly equivalent. This balance makesscrambling materialization a fairly inexpensive technique, as the materialized data can be later read fromthe disk at about the same speed it could be obtained from the network (in the absence of delays). Thus,trading predictable local disk I/O for avoiding possible future delays from accessing remote sources is a gooddeal. In this section we show results that were obtained using other network speeds, in order to examinethis tradeo� more closely.Figure 6 shows the performance of the policies in the case of a single, initial delay of relation A, whenthe network is signi�cantly slower than the disk. In this case, the network speed is 0.1 Mbps.7 With theslow network, the normal execution time of the query climbs to 701.6 seconds, and is completely dominatedby the network cost. The result of this imbalance is that the use of local resources at the query processingsite is e�ectively free, so all scrambling policies can hide virtually all of the delay up to 80%, after which (asin the balanced network case), they run out of scrambling work and the slowdown increases linearly withthe delay. As in the previous case, Materialize-All has a (now larger) advantage beyond that point becauseit has already materialized relation B.If a slow network makes local disk I/O virtually free, then a faster network makes local I/O moreexpensive. Figure 7 shows the performance of the polices in the same workload as Figures 5 and 6, but withthe network speed increased to 100 Mbps. In this case, the normal execution time drops to 34.8 seconds,much of which is due to the cost of local work at the query processing site. When disk I/O is expensive,the relative performance of the polices changes dramatically. First, the Next-Build policy, which usuallyhad the worst performance of the scrambling policies the cases examined up to now, actually has the bestperformance with shorter delays (e.g., up to 30%). It performs better because it materializes less data. Thestep-shape of the curve for Next-Build clearly shows when each of the three non-delayed build relations ismaterialized and then joined with its corresponding probe. More importantly, the Materialize-All policy,7This is about 12K Bytes per second, the same order of magnitude as the what can be currently obtained while sur�ng theInternet with a good connection. 18



which was typically best up to this point, is in this case relatively expensive. As usual, it materializes thelargest amount of data, including both build and probe relations, to the local disk. These materializations,however, combined with the interference of joins results and probe relations result in signi�cant overhead forMaterialize-All here.Controlling Overhead The previous experiment (shown in Figure 7) demonstrated that as networksbecome faster relative to local disk processing query scrambling will have to be more intelligent about its useof local disk resources. Up to this point, however, none of the scrambling policies were seen to perform worsethan not scrambling. For example, in Figure 7 the Materialize-All policy approaches, but does not exceedthe slowdown of the no scrambling policy when the delay is below 40%. The reason that Materialize-All doesnot become worse than no scrambling is because the scrambling policies all suspend (cf. Section 2). Thatis, if the left-most delayed relation resumes sending tuples, scrambling is suspended and control is returnedback to the resumed operator. This policy limits the extent of the damage that can be caused by scramblingtoo aggressively.Figure 8 shows the performance of the policies if the suspend decision is replaced by the ignore decision.In this case, once the initial delay of A is detected, query scrambling is initiated and run to completionregardless of when A returns. As a result, if the delay of A is short, then the aggressive initiation ofmaterializations as performed by Materialize-All (and to a lesser extent by the others) can result in worseperformance than simply waiting for A to return.
0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

S
lo

w
do

w
n 

(r
el

at
iv

e 
to

 3
4.

8 
se

c)
 

Delay % (relative to 34.8 sec)

No Scrambling
Materialize-All

All-Build
Next-Build

Figure 8: Slowdown, Initial Delay on ANet: 100 Mbps, ignore, Timer: 10x 0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

S
lo

w
do

w
n 

(r
el

at
iv

e 
to

 3
4.

8 
se

c)
 

Delay % (relative to 34.8 sec)

No Scrambling
Materialize-All

All-Build
Next-Build

Figure 9: Slowdown, Initial Delay on ANet: 100 Mbps, ignore, Timer: 500xAt �rst, it might appear that the problems encountered by the scrambling algorithms were caused byhaving a timer that was set at too short an interval. Figure 9 shows the performance impact of increasingthe timer by a factor of 50. The net result of increasing the timer is that there is a longer amount of delayfor which scrambling remains inactive, after which it is subject to the problems identi�ed in the Figure 8.Thus, a more e�ective approach to scrambling is to use a fairly short timer, in order to allow scrambling to19



hide more delay, but to introduce regulation mechanisms such as suspend, in order to ensure that scramblingdoes not harm performance. Such considerations will become increasingly important as high-speed networkaccess becomes more prevalent.5.2 Pipelined PerformanceIn this set of experiments, we evaluate the performance of query scrambling for an execution model thatpipelines hash joins. On an open() call, the hash join materializes its left child operator into a hash table. Oneach next(), the hash join continues to access tuples from its right child operator and joining them with thehash table until a matching tuple is generated. The matching tuple is returned as the result of the next() call.Pipelining is a typical way to perform joins. Pipeline execution requires more memory than non-pipelinedexecution and more choices are available for scrambling. Each time an operator is scrambled, su�cientmemory must be available for the scrambled operator. If no memory is available, in our experiments, theoperator is not scrambled. In this way we avoid the thrashing of memory.5.2.1 PoliciesWe use three di�erent policies to evaluate the performance of scrambling in a pipelined environment.These policies are Materialize-Leaves, Next-Leaf and Pipe-MRS . The last policy uses a notion developedin [AFTU96], that is, the notion of a Maximal Runnable Subtree (MRS). A runnable subtree is a subtree inwhich all the operators are in the Not Started state. A runnable subtree is maximal if its root is the directdescendant of a Stalled operator.As in the previous set of experiments, we compare those policies to the case where no scrambling isperformed on the query. The policies are de�ned as follows:Materialize-Leaves. This policy starts simultaneously the materialization of all base relations (the leavesof the query tree) when the �rst time-out is observed. No other materializations are performed, i.e.,no joins are never rescheduled. This policy terminates scrambling once all base relations have beenentirely materialized.Next-Leaf . This policy starts the materialization of the next relation when another relation times-out forthe �rst time. Once a relation is entirely materialized, and if some operators are still stalled, thenthe policy initiates the materialization of another leaf. As for Materialize-Leaves, this policy does notscramble any joins.Pipe-MRS . This policy initiates the materialization of the root of the next maximal runnable subtree (MRS)when a relation times-out. This policy does not materialize any base relations, but instead, materializesonly joins. 20



5.2.2 Impact of Limited MemoryThe general principles of performance demonstrated in the non-pipeline section also apply to pipelinedexecution. Instead of repeating those results for pipelined execution, we focus instead on the impact of limitedmemory. Each experiment varies the amount of memory available at the client. The minimum memoryrequired is 3 hash tables of 250 pages each (750 pages) plus an addition 10 pages for miscellaneous stagingbu�ers. No query can execute, regardless of its policy, with less memory. We increase the amount of memoryfor each experiment by 260 pages. Additional memory permits more pipelines to execute simultaneously. Ata memory size of 1820 pages, the behavior of pipelined scrambling is no longer limited by memory, so anyexperiment with more memory will perform exactly the same way.
0

1

2

3

4

5

6

7

780 1040 1300 1560 1820 2080

S
lo

w
do

w
n 

(r
el

at
iv

e 
to

 2
3.

58
 s

ec
) 

Memory Size (pages of 4K)

No Scrambling
Pipe-MRS

Materialize-Leaves
Next-Leaf

Figure 10: Slowdown, Delay 10% on All RelationsNet: 5 Mbps, Delay: 0.78 sec (3x Timer) 0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

780 1040 1300 1560 1820 2080

T
ot

al
 #

 o
f I

O

Memory Size (pages of 4K)

No Scrambling
Pipe-MRS

Materialize-Leaves
Next-LeafFigure 11: Total IO, Delay 10% on All RelationsNet: 5 Mbps, Delay: 0.78 sec (3x Timer)Figure 10 shows the relative performance of the three policies and the non-scrambled query when all baserelations are subject to random delays at a 10% probability throughout the entire execution of a query. Inthis case, the response time of the unscrambled query is independent of the memory size, because in thisexperiment there is always enough memory to execute the original query.In addition to the memory needed to complete the query,Materialize-Leaves and Next-Leaf need the sameamount of memory as the original query, plus a few additional pages for staging tuples from materializedbase relations out to disk. Consequently, they are able to execute in all cases of memory size with thesame performance and always consume a �xed amount of memory. Not surprisingly, the scrambling policythat maximizes the overlap between delays (i.e., policy Materialize-Leaves) performs the best. Next-Leafoverlaps less delay, since relations are materialized one at a time. As such, it performs slightly worse thanMaterialize-Leaves. The performance of Materialize-Leaves and Next-Leaf are to be expected: these policiesare similar in spirit to the ones evaluated during the no-pipeline experiments, and as such highlight the sametradeo�s.In contrast, the performance of Pipe-MRS improves with additional memory. The fundamental reason is21



that more concurrent MRSs can be rescheduled as the amount of available memory increases. With a memorysize of 780 pages, the non-scrambled query and Pipe-MRS have the same performance. With this setting,the scheduler is never able to reschedule a subtree when a relation times out because there is not enoughmemory for any additional hash-tables. With 1040 pages, the scheduler is able to initiate the materializationof the join of C and D while the query tree stalls on relations A and B, and with 1820 pages, Pipe-MRS isable to activate all MRSs in the tree (three in this case). As expected, increasing the number of concurrentMRSs tends to augment the overlapping of delays, thus reducing the response time.Figure 11 shows the I/O performance for the same experiment. Comparing this �gure to the previous�gure, we see that better policies also perform additional I/O, which is expected. The surprising aspect ofthis graph is the rise and drop in I/Os for Pipe-MRS . From 780 page to 1040 pages, the rise is due to theadditional simultaneous execution of the join between C and D. The result of this join is written to disk.As memory increases again, the next maximal runnable subtree is the parent of the join between E and F.Now, two e�ects combine to slow the execution of each pipeline. First, since they execute in parallel, theyshare resources. Second, a larger subtrees takes more time to materialize data on the disk since a larger partof the entire tree must execute before the materialization operator starts issuing I/O. Since the pipelinesare slowed by these e�ects, the normal, unscrambled execution of the query catches up with the scrambledpipelines. When normal execution catches up, the scrambling materializations are stopped, thus saving I/O!6 Related WorkNetwork congestion, network link failure, server load, and temporary server unavailability all introduceunexpected delay in the accessing of remote sources. The techniques that attack this problem fall into twobroad categories: the proactive and reactive.In the proactive category, the techniques gather as much information as possible to predict the state ofthe run-time system during query execution and use this information to construct the best query executionplan. At query start-up time, the plan is �xed, and query execution corresponds exactly to the plan.The Volcano optimizer [CG94, Gra93] provides a framework for the application of proactive techniquesfor distributed query processing. During optimization, if a cost comparison returns incomparable, the choicefor that part of the search space is encoded in a choose-plan operator. All decisions regarding query executionare then made �nal at query start-up time.HERMES [ACPS96] uses a proactive technique for recording the costs of previous calls to remote sources(in addition to caching the results) and can use resulting history of costs to estimate the cost of new calls.As in Volcano, this system optimizes a query both at query compile and query start-up time, but does notchange the query plan during query run-time.Mariposa [SAL+96] bases the optimization of distributed queries on an economic paradigm. Althoughthe query optimizer of [SAL+96] adopts a radical approach since it is �rst based on negotiation and secondit is not based on costs, optimization still builds a plan that is �xed for the duration of the execution of the22



query.In contrast to the proactive category, techniques in reactive category monitor the progress of queries andmodify query execution after execution has started. (Note that techniques in the proactive and reactivecategories are generally complementary.) Monitoring determines if execution should deviate from the planfor some unforeseen reason. Reasons include inaccurate estimates for intermediate result sizes and directconsiderations of problems with response times from remote sources are not accounted for.[BRJ89] proposes a reactive technique in which the execution of a distributed query proceeds throughthree phases: (i) a monitoring phase observing the progress of the execution of the query; (ii) a decisionmaking phase during which a new strategy for executing the query is computed; and (iii) a corrective phasein which the current execution is aborted and a new execution is initiated. A similar approach is used inRdb/VMS [Ant93].Both InterViso [TTC+90] and MOOD [ONK+96] are heterogeneous distributed databases that performquery optimization while the query is executing. Heterogeneous distributed database divide a query intoa collection of subqueries and a composition query. There is one subquery for each remote source and acomposition query than combines the results of the subqueries. These systems use a reactive technique thatinterleaves the execution of subqueries with the execution of the composition query by monitoring the arrivalof the answer to subqueries and dynamically executing the composition query.In the bursty data arrival environment, such as the Internet, existing techniques have several prob-lems. Proactive techniques are limited because the history of query execution poorly predicts future queryperformance. The primary problem with existing reactive techniques is the weight of monitoring and oper-ations. We classify reactive techniques as heavyweight if the unit of monitoring or operation is large, e.g. ajoin. Heavyweight reactive techniques also perform poorly in our environment since delays are not quicklydetected.In [AFTU96], we developed a collection of reactive techniques that both rescheduled operators andincrementally reorganized the query execution plan. In this paper, we extend query scrambling to dealwith the bursty arrival environment by exploring lightweight reactive techniques, namely where the unit ofmonitoring and operation is small, e.g. less than a join. Lightweight query scrambling constantly monitorsthe execution of the query with a granularity a single data page access and it also monitors the behavior ofany changes introduced into execution. Additionally, if necessary, only small changes in computation mayoccur with query scrambling, again at the level of a single data page access. Thus, query scrambling adaptsquickly to the changing properties of the environment.7 ConclusionTo address the issue of unpredictable delays in the wide-area environment, we have developed a class oftechniques for query execution, called query scrambling. Query scrambling monitors query execution andreacts to unexpected delays by on-the-y rescheduling the operations of a query during its execution.23



In this paper we explored the key questions to query scrambling: when should scrambling start, whatshould be scrambled, and when should scrambling stop. We examined several sets of policies to controlscrambling and described the architecture of a run-time scheduler that is capable of implementing thesepolicies. We then used a detailed simulation of a run-time system in order to examine the performancetradeo�s of the various scrambling policies under both pipelined and non-pipelined execution models.Our results show that query scrambling can in most cases hide a signi�cant portion of the delay expe-rienced by a query, i.e. the user does not experience any delay in the processing of a query. In some casesall the delay can be hidden at essentially negligible additional cost to query execution. In addition, sincequery scrambling introduces parallel access to remote sources into query execution, all the performance gainsthereof also occur.For example, we show that if many sources exhibit bursty arrival, then the overlap of delay is the mostimportant consideration, regardless of network speed, policies or join operator. If network speed is slowrelative to the disk and delays are long relative to disk, then materializing the results of remote source tolocal disk is very e�ective. If network speed is fast relative to disk (either because of point-to-point networkor gigabit technology), then the bottleneck moves from the network to the disk, and thus materializing theresults performs less well since it aggravates the bottleneck.In some cases, improper use of scrambling can introduce network congestion and thrashing during queryprocessing. We carefully documented the cases where these situations occur and show, both in terms ofarchitecture and in terms of implementation policies, how to avoid them.We showed that scrambling under pipelined execution models works well, however pipelined executionrequires the reservation of memory to perform well. Multiple scrambled pipelines compete for memoryresources, potentially introducing thrashing. We showed how to avoid this behavior by limiting the numberof simultaneously scrambling pipelines.For future work, we intend to build a run-time system which continuously scrambles and throttles thebehavior of query execution to balance trade-o�s between performance gains and performance losses.AcknowledgmentsWe would like to thank Bj�orn J�onsson and Tolga Urhan for providing invaluable assistance and informationabout the simulator used for this work. Thanks to Philippe Bonnet and Luc Bouganim for comments on thedraft version of this paper. We would also like to thank Dennis Shasha for discussions on query scrambling.References[ACPS96] S. Adali, K. Candan, Y. Papakonstantinou, and V. Subrahmanian. Query Caching and Opti-mization in Distributed Mediator Systems. In Proc. of the ACM SIGMOD Int. Conf., Montreal,Canada, 1996.[AFTU96] L. Amsaleg, M. Franklin, A. Tomasic, and T. Urhan. Scrambling Query Plans to Cope withUnexpected Delays. In Proc. of the Int. Conf. on Parallel and Distribution Information Systems(PDIS), Miami Beach, Florida, December 1996.24



[Ant93] G. Antoshenkov. Dynamic Query Optimization in Rdb/VMS. In Proc. of the Data EngineeringInt. Conf., pages 538{547, Vienna, Austria, 1993.[BE96] O. Bukhres and A. Elmagarmid. Object-Oriented Multidatabase Systems. Prentice Hall, 1996.[BMG93] J. Blakeley, W. McKenna, and G. Graefe. Experiences Building the Open OODB Query Opti-mizer. In Proc. of the ACM SIGMOD Int. Conf., page 287, Washington, DC, May 1993.[BRJ89] P. Bodorik, J. Riordon, and C. Jacob. Dynamic Distributed Query Processing Techniques. InProc. of the 17th annual ACM Computer Science Conf., pages 348{357, Louisville, Kentucky,February 1989.[Bro92] K. Brown. PRPL: A Database Workload Speci�cation Language. Master's thesis, University ofWinsconsin, Madison, Winsconsin, 1992.[CDF+94] M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuli�e, J. Naughton, D. Schuh, M. Solomon,C. Tan, O. Tsatalos, S. White, and M. Zwilling. Shoring Up Persistent Applications. In Proc. ofthe ACM SIGMOD Int. Conf., Minneapolis, Minnesota, May 1994.[CG94] R. Cole and G. Graefe. Optimization of dynamic query execution plans. In Proc. of the ACMSIGMOD Int. Conf., pages 150{160, Minneapolis, Minnesota, May 1994.[DFJ+96] S. Dar, M. Franklin, B. J�onsson, D. Srivastava, and M. Tan. Semantic Data Caching andReplacement. In Proc. of the 22th VLDB Int. Conf, Bombay, India, September 1996.[FJK96] M. Franklin, B. J�onsson, and D. Kossmann. Performance Tradeo�s for Client-Server QueryProcessing. In Proc. of the ACM SIGMOD Int. Conf., Montr�eal, Canada, June 1996.[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Surveys,25(2):73{170, June 1993.[Kim95] W. Kim. Modern Database Systems: The Object Model, Interoperability, and Beyond. ACMPress, New York, NY, 1995.[MMM96] A. Mendelzon, G. Mihaila, and T. Milo. Querying the World Wide Web. In Proc. of the Int. Conf.on Parallel and Distribution Information Systems (PDIS), MiamiBeach, Florida, December 1996.[ONK+96] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac. Dynamic query optimization on adistributed object management platform. In CIKM, Baltimore, Maryland, November 1996.[SAD+95] M. Shan, R. Ahmen, J. Davis, W. Du, and W. Kent. Modern Database Systems: The ObjectModel, Interoperability, and Beyond, chapter Pegasus: A Heterogeneous Information Manage-ment System. ACM Press, 1995.[SAL+96] M. Stonebraker, P. Aoki, W. Litwin, A. Pfe�er, A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa:A Wide-Area Distributed Database System. The VLDB Journal, 5(1):48{63, January 1996.[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. Scaling Heterogeneous Databases and the Design ofDISCO. In The IEEE Int. Conf. on Distributed Computing Systems (ICDCS-16), Hong Kong,1996.[TTC+90] G. Thomas, G. Thompson, C. Chung, E. Barkmeyer, F. Carter, M. Templeton, S. Fox, andB. Hartman. Heterogeneous Distributed Database Systems for Product Use. ACM ComputingSurveys, 22(3), 1990. 25


