Query Scrambling for Bursty Data Arrival®

Laurent Amsaleg Michael J. Franklin Anthony Tomasic
University of Maryland University of Maryland INRIA
amsaleg@cs.umd.edu franklin@cs.umd.edu Anthony. Tomasic@inria.fr

Technical Report CS-TR-3714 and UMIACS-TR-96-84

Abstract

Distributed databases operating over wide-area networks, such as the Internet, must deal with the
unpredictable nature of the performance of communication. The response times of accessing remote
sources may vary widely due to network congestion, link failure, and other problems. In this paper we
examine a new class of methods, called query scrambling, for dealing with unpredictable response times.
Query scrambling dynamically modifies query execution plans on-the-fly in reaction to unexpected delays
in data access. We explore various choices in the implementation of these methods and examine, through
a detailed simulation, the effects of these choices. Our experimental environment considers pipelined
and non-pipelined join processing in a client with multiple remote data sources and it focuses on bursty
arrivals of data. We identify and study a number of the basic trade-offs that arise when designing
scrambling policies for the bursty environment. Our performance results show that query scrambling is
effective in hiding the impact of delays on query response time for a number of different delay scenarios.

1 Introduction

The continued dramatic growth in global interconnectivity via the Internet has made around-the-clock, on-
demand access to widely-distributed data a common expectation for many computer users. At present,
such access is typically obtained through non-database facilities such as the World-Wide-Web. Advances
in distributed heterogeneous databases (e.g., [Kim95, SADT95 BE96, TRV96]) and other non-traditional
approaches (e.g., WebSQL [MMMO96]), however, aim to make the Internet a viable and important platform
for distributed database technology.

The Internet environment presents many interesting problems for database systems. In addition to the
issues of data models, resource discovery, and heterogeneity addressed by the work in the areas cited above,
a major challenge that must be addressed for wide-area distributed information systems is that of response-
time unpredictability. Data access over wide-area networks involves a large number of remote data sources,
intermediate sites, and communications links, all of which are vulnerable to congestion and failures. Such
problems can introduce significant and unpredictable delays in the access of information from remote sources.

Current distributed query processing technology performs poorly in the wide-area environment because
unexpected delays encountered during a query execution directly increase the query response time. Query

execution plans are typically generated statically, based on a set of assumptions about the costs of performing

*This work was partially supported by the NSF under Grant IRI-94-09575, by Bellcore, and by an IBM Shared University
Research award. Laurent Amsaleg was supported in part by an INRIA Fellowship.

various operations and the costs of obtaining data. The execution of a statically optimized query plan is
likely to be sub-optimal in the presence of unexpected response time problems that arise during the query
run-time. In the worst case, a query execution may be blocked for an arbitrarily long time if needed data fail
to arrive from remote data sources. The apparent randomness of such delays in the wide-area environment
makes planning for them during query optimization nearly impossible.

To address the issue of unpredictable delays in the wide-area environment, we have developed a dynamic
approach to query execution, called query scrambling. Query scrambling reacts to unexpected delays by on-
the-fly rescheduling the operations of a query during its execution. Query scrambling attempts to hide delays
encountered when obtaining data from remote sources by performing other useful work, such as transferring
other needed data or performing query operations, such as joins, that would normally be scheduled for a
later point in the execution. Query scrambling can be effective at hiding significant amounts of delay; in the
best case, it can hide all of the delay experienced during a query execution. That is, a query can execute in

the presence of certain delays with little or no response time penalty observable to the user.

1.1 Coping With Bursty Arrival

In a previous paper [AFTU96], we identified three types of delay that can arise when requesting data from

remote sources:

Initial Delay There is an unexpected delay in the arrival of the first tuple from a particular remote source.
This type of delay typically appears when there is difficulty connecting to a remote source, due to a

failure or congestion at that source or along the path between the source and the destination.

Slow Delivery Data is arriving at a regular rate, but this rate is much slower than the expected rate. This
problem can be the result, for example, from network congestion, resource contention at the remote
source, or because a different (slower) communication path is being used (e.g., due to a network link

failure).

Bursty Arrival Data is arriving at an unpredictable rate, typically with bursts of data followed by long
periods of no arrivals. This problem can arise from fluctuating resource demands and the lack of a

global scheduling mechanism in the wide-area environment.

The algorithm presented in [AFTU96] focused on the problem of Initial Delay. As such, it was assumed
that once data started to arrive from a remote source, the remaining data from that source would arrive
in an uninterrupted fashion. This assumption facilitated the development and study of an initial approach
but limited the applicability of the resulting algorithm, as wide-area data access seldom fails in such a well-
behaved manner. In this paper, we extend the scope of query scrambling by investigating approaches to
cope with the additional problem of bursty arrivals.

Bursty arrivals are more difficult to manage than initial delays for several reasons. First, the run-time

system must constantly monitor the arrival of data from remote sources and must be able to react to delays

that arise at any time. Such continuous monitoring of remote sources is not necessary in the initial delay
environment. Second, due to the unpredictable nature of bursty arrivals, care must be taken to avoid
initiating overly-expensive scrambling actions for short, transient delays, while remaining reactive enough
to initiate scrambling without undue hesitation in situations where there is significant delay. Given the
difficulty of predicting the future short-term behavior of remote access, scrambling for a bursty environment

must be implemented such that it can be initiated, halted, and restarted in a lightweight manner.

1.2 A Reactive Approach

Query scrambling shares some common goals with other approaches to dynamic query processing. In general,
methods that attack poor run-time performance for queries fall into two broad categories: proactive and
reactive. Proactive methods (e.g., [ACPS96, CG94, SALT96]) attempt at compile-time to predict the
behavior of query execution and plan ahead for possible contingencies. These approaches use a form of late
binding in order to postpone making certain execution choices until the state of the system can be assessed
at run-time. Typically the binding is done immediately prior to executing the compiled plan, and remains
fixed for the entire execution.

Reactive methods (e.g., [TTCT90, Ant93, ONK'96]) monitor the behavior of the run-time system during
query execution. When a significant event is detected, the run-time system reacts to the event. Query
scrambling is a reactive approach — the query execution is changed on-the-fly in response to run-time
events. While other reactive approaches have been aimed towards adjusting to errors in query optimizer
estimates (e.g., selectivities, cardinalities, etc.), query scrambling is focused on adjusting to the problems that
arise due to the time-varying performance of loosely-coupled data sources in a wide-area network. Related
work 1s discussed in more detail in Section 6.

The basic technique used by query scrambling is to change the scheduling of operators in a query plan
if a delay is detected while accessing data from a remote site. Such rescheduling permits delays from
different remote sources to overlap with each other and to overlap with useful work performed by the
query processor. In order to implement this rescheduling, the run-time system must sometimes introduce
additional materializations of intermediate results and base data into the query execution plan. For this
and other reasons, query scrambling may increase the total cost of query execution in terms of network

contention, memory usage, and/or disk 1/0.

1.3 Overview of the Paper

Because scrambling introduces both benefits and costs, it must be regulated in an effective way. Thus,
the key questions for implementing scrambling are: 1) when should scrambling start; 2) what should be
scrambled; and 3) when should scrambling stop. In this paper we explore these key questions by examining
several sets of policies to control scrambling, and we describe the architecture of a run-time scheduler that is
capable of implementing these policies. We then use a detailed simulation of a run-time system based on the

iterator query processing model [Gra93] in order to examine the tradeoffs of the various scrambling policies

for both pipelined and non-pipelined execution.

In this paper, we focus on query processing using a data-shipping or hybrid-shipping approach [FJK96],
where data 1s ultimately collected from remote sources and integrated at the query source. This approach
models remote data access and is also typical of mediated database systems that integrate data from dis-
tributed, heterogeneous sources, (e.g., [TRV96]). In this work, the remote sources are treated as black boxes,
regardless of whether they provide raw data or the answers to subqueries. Only the query processing that is
performed at the query source is subject to scrambling. Our results show that scrambling, if done correctly,
can produce dramatic response time savings under a wide range of delay scenarios. It can in some cases,
reduce the slowdown observed due to random delays by a factor proportional to the number of bursty remote
sources. It can also, in some cases completely hide the delay from the user.

The paper is organized as follows. Section 2 describes the basic trade-offs for query scrambling to cope
with bursty arrivals. Section 3 addresses the architecture of a run-time scheduler for implementing query
scrambling. Section 4 describes the experimental framework and Section 5 describes the experimental results

for the non-pipelined and pipelined cases. Section 6 describes related work. Section 7 concludes the paper.

2 Query Scrambling Overview

In this section we first discuss the behavior of a traditional iterator based run-time system and its behavior
in the bursty environment. We then describe how scrambling can be applied to such a run-time system in
order cope with unexpected delays. Finally, we discuss the basic tradeoffs and design decisions that arise in

the development of a scrambling algorithm.

2.1 Query Scrambling for Iterator-Based Execution Engines

Rather than relying on the operating system, most database systems provide their own execution engine,
which performs scheduling and memory management for the operators of compiled query plans. The iterator
model is one way to structure such an execution engine [Gra93]. In this model, each node of the query tree is
an iterator. Iterators support three different calls: open() to prepare an operator for producing data; nezt()
to produce a single tuple, and close() to perform final housekeeping. To start the execution of a query, the
DBMS initiates an open() call on the root operator of the query tree, and this call iteratively propagates
down the query tree.

A key attribute of the iterator approach is that the scheduling of the query operators is, in some sense,
compiled into the query tree itself. The scheduling of the operators in the tree is determined by the way
in which operators make open(),next(), and close() calls on their children operators. The data flow among
nodes in this model is demand-driven. A child node passes a tuple to its parent node in response to a
next() call from the parent. As such, iterator-based plans allow for a natural form of pipelining. Each time
an operator needs data, it calls its child operator(s) and waits until the requested data is delivered. The

producer-consumer relationship allows the operators to work as co-routines, and avoids the need for storage

of intermediate results, as long as the child operator produces tuples at about the same rate or slower than
they can be consumed by its parent operator. This scheduling dependency can be avoided, however, if the
child operator first materializes its result (e.g., as part of open() processing) either in memory or to disk.
After materialization, the child can then provide tuples to the parent operator in the typical one-at-a-time
fashion in response to nezt() requests. A completely non-pipelined schedule can be constructed by introducing
materialization between each pair of operators in the tree.

This simple, static scheduling approach works well when the response times of operators and data sources
can be predicted with some accuracy. When processing queries with data from remote sources, however,
unpredictable delays in obtaining that data can arise. The effect of such unexpected delays on a precompiled
schedule can be severe. When a remote source blocks, all of its ancestors in the query tree will also block. In
addition to delaying the initiation of operators that are scheduled to execute later in the plan, such blocking
can also block other operators that are already executing. For example, if a binary operator (e.g., a join)
becomes blocked because one of its children blocks, then it will stop requesting tuples from its other child,
thereby inducing blocking on the subtree rooted at that child as well. This blocking can propagate down the
subtree to the leaves of the tree, unless a materialization (which breaks the producer-consumer dependency)
is encountered.! With a static schedule, progress on the query can, in some cases, grind to a halt even if
only a single data source becomes delayed.

Query scrambling applies dynamic scheduling to query execution in order to avoid the problems caused
by unexpected delays. It depends on two basic techniques: rescheduling and materialization. Simply stated,
when a delay in obtaining data from a remote source is detected, scrambling changes the scheduling of oper-
ators in the query tree in order to allow other portions of the plan to execute. To perform this rescheduling,
scrambling introduces any materializations that are required to allow the re-scheduled operators to run.
Materializations can be added to the plan by placing a materialization operator between the re-scheduled
operator and its parent.? A materialization operator is a unary operator, which when opened, obtains the
entire input from its child and places it in storage (typically disk, unless there is sufficient memory). The
materialization operator provides tuples in response to next() requests from its parent operator when the
parent is eventually able to execute.

As stated in the introduction, there are three key policy questions for the implementation of a scrambling
run-time system: (1) when to start scrambling, (2) what to scramble, and (3) when to stop scrambling. In

the following three sections we describe the options and the basic tradeoffs that arise for each of these.

2.2 Initiating Scrambling

A fundamental principle of our approach to Query Scrambling is that the normal scheduling of a query execu-
tion should proceed unperturbed in the absence of unexpected delays. The assumption is that the execution

plan generated by the optimizer is in fact, an efficient plan, and that re-scheduling and materialization can

INote that this blocking phenomenon arises even if operators are ones that support intra-operator parallelism such the
exchange operator of Volcano [CG94].
2This notion of a materialization operator is not related to the operator for path expressions described in [BMG93].

result in additional memory, disk /O, and other costs. Thus, the original plan should be tampered with
only if an unexpected problem arises during the execution.

In order to determine when a delay has occurred, the system associates a timer with each operator that
directly accesses data from a remote site. This timer is started when the operator begins waiting for a chunk
(i.e., a page or packet) of data to arrive from the remote site, and is reset when the data arrives. If the
timer goes off before the data arrives, then the scrambling mechanism is informed that a significant delay
has occurred.

Given such a timer mechanism, the main policy question is to determine at which point there are sufficient
problems to warrant the initiation of re-scheduling. There is a knob that can be used to fine-tune such a
policy. The timeout-value is the value with which the timer is initialized when an operator enters a waiting
state. The length of this value determines how long the operator waits before a timeout alarm is raised.

The timeout-value limits the degree of response time variance that will be tolerated for any remote source.
This knob allows the sensitivity of the scrambling policy to be adjusted across a range from aggressive (i.e.,
low settings for the knob) to tolerant (i.e., high setting). The tradeoffs between these two extremes are
fairly straightforward: A tolerant policy runs the risk of allowing too much delay to accumulate before
reacting, while an aggressive policy can potentially waste resources in an effort to solve non-existent (or
minor) problems. The decisions covered in the next two sections, however, can help limit the extent of the

damage caused by an overly aggressive approach.

2.3 What to Scramble

Once scrambling has been initiated, the next decision to be made is the extent of the scrambling action to be
performed. As stated previously, scrambling involves the rescheduling of operations in the execution plan.
There are two types of policy decisions that must be made with respect to the extent of scrambling: i) where
in the tree to initiate scrambling; and ii) how many scrambling operations should be initiated.

For the first question, we consider two options: i) early initiation of a non-leaf operator in the plan; and
ii) early retrieval of data from a remote source. The first case, initiating a non-leaf operator, requires the
scrambling system to artificially call open() on that operator. The open() has the usual effect of initiating
the sub-tree of the query rooted at that operator. It is relatively simple to execute a non-pipelined operator
out-of-turn (i.e., before its parent operator) because such an operator simply writes its result to a temporary
file (or to an allocated area in memory). On the other hand, rescheduling pipelined operators is more difficult;
it requires the introduction of a materialization operator as a surrogate parent, in order to temporarily store
the result of the operator. A surrogate parent is also needed in the case of early retrieval of data from a
remote source. In that case, a materialization operator is inserted in the tree to pull tuples from the remote
source and store them locally at the query execution site.

The tradeoffs between these two choices are as follows: Starting a non-leaf operator allows the entire
subtree rooted at that operator to be initiated at the cost of at most, a single additional materialization.

The downside of this approach is that sufficient memory must be allocated to allow the subtree to execute.

In contrast, early retrieval from a remote source requires very little memory (e.g., one or two pages, for
staging tuples to disk), however, an additional materialization is required for every remote source opened in
this way.

The second decision that must be made is how many scrambling operations should be initiated. The
fundamental tradeoff here is as follows. The more operations that are initiated, the more remote sources can
be accessed in parallel, and hence, the greater the potential for overlapping the delays that might arise from
those remote sources.> There are, however, significant dangers in starting too many operators. First, if care
is not taken, the data arriving from multiple sources can cause contention in the network or at the query
execution site. On the network, contention can result in the invocation of congestion avoidance mechanisms,
which can force sources to send data at a low rate. At the query execution site, thrashing can arise if the
speed of materializations to disk can not keep up with the rate at which the remote sources are delivering
data. These problems can be mitigated, to some extent, if the query execution site controls the arrival of
data from remote sources. Such control can be achieved using a page-at-a-time protocol (as opposed to a
streaming protocol) between the query execution site and the remote sources.

Another problem that can arise from initiating too many scrambling operations is the randomization
of disk access. When multiple relations are placed on the disk of the query execution site, access to those
relations may interfere with other disk 1/O performed by the query. For example, in the case of a non-
pipelined join, accessing the input relations from disk may interfere with the writing of the join result to
disk, thereby turning both processes into random rather than sequential 1/O. Such interference can slow
disk access substantially. Note that this latter problem can arise regardless of whether a streaming or

page-at-a-time protocol 1s used to obtain data from remote sources.

2.4 Stopping Scrambling

The third key decision for scrambling is that of when to stop scrambled operations once they have been
initiated. There are two basic choices here. One option is to simply suspend all scrambled operations when
the remote source that triggered scrambling resumes sending data. The other option is to ignore the status
of the blocked remote source, and continue scrambling. Perhaps the most intuitive approach is to suspend
scrambling and resume normal processing as soon as a blocked operator becomes unblocked. Since scrambling
is a reaction to an unanticipated event, it makes sense to resume the original plan as soon as possible. In
addition, scrambling has the potential to add costs to the execution of the query, so returning to the original
schedule can help avoid such costs.

In cases where a remote source temporarily experiences delays but then performs smoothly, the approach
of returning to the original plan is likely to work well. In other cases, however, going back too soon can
carry its own costs. Recall that some scrambled operators (e.g., those higher in the query tree) may consume

considerable amounts of memory. If the suspension of scrambling causes the scrambled operators to be

3In general, if n remote sources are subject to significant, independent delays, then by accessing those sources in parallel,
scrambling has the potential to improve performance (over not scrambling) by as much as n times.

swapped out then it is possible to encounter a thrashing condition if the remote source repeatedly delays and
resumes. On the other hand, not swapping the scrambled operators out could result in a significant waste
of memory and could hurt performance. Thus, for very unreliable remote sources, i1t could be beneficial to
continue scrambling, even if the remote source resumes. A useful option in this case might be to materialize
the delayed source in the background while continuing to complete the scrambling operations. Materializing
an operator that was started normally, however, would require additional mechanism beyond what has been

described above.

2.5 Discussion

The above sections described the main decisions that must be addressed when designing a query scrambling
policy for the bursty environment. These decisions and their possible settings are summarized in Table 1.
The settings allow the scrambling policy to be adjusted between tolerant and aggressive approaches towards
dealing with delays. In general, tolerant policies favor sticking to the original query plan wherever possible,
while aggressive policies are more willing to commit resources in order to hide potential delay. As stated
above, it is possible to implement scrambling in a way that can reduce the potential for problems. For
example, using a page-at-a-time protocol rather than a streaming one for obtaining data from remote sources

can reduce the potential for network and local disk congestion.

Decision Values
(tolerant) | (aggressive)
Start {imer-value high low
Which Operators remote source non-leaf
How Many Operators few many
Stop suspend tgnore

Table 1: Summary of Scrambling Options

In this paper, we assume that the query execution tree shape is fixed during execution, i.e. join ordering is
not changed, and we assume that the physical network topology is fixed. Both of these assumptions impact
the performance of scrambling.

Consider the impact of tree shape on scrambling. If the first (left-most) remote source, say A, in the
query execution order, has a long delay, then scrambling will perform very well. The rest of the query will
execute during the time that A is delayed, effectively overlapping the delay of A with all other delays and
work. However, suppose the last remote source, say Z, is delayed. Scrambling will be ineffective, since there
is no work after Z and thus no work to scramble. In general, delays which appear early in query execution
order have much less impact than delays which appear late.?

Consider the impact of physical network topology. If a network delay affects only a single remote source,

4Thus, a query optimizer for a run-time system that supports scrambling may favor query execution plans where historically
unreliable remote sources appear early in the plan.

scrambling will perform as if the delay was due to the remote source itself. However, if a network delay
affects all remote sources equally (e.g. a delay in the network link between the client and the local Internet
router of the client), scrambling will be ineffective, because all remote sources are equally delayed and thus

no work can be overlapped.

3 Architecture

In this section we describe the architecture of a scrambling run-time system. We first extend the iterator

model with a scheduler. We then describe how materialization operators are inserted into the query tree.

3.1 The Query Scrambling Engine

We extend an iterator run-time system such that each operator has an independent internal process state. A
scheduler dictates the state of each operator. Operators can be suspended, resumed, or terminated just like
operating system threads. An operator can be in five possible states. Among these five states, six transitions

are possible. Operator states and transitions are showed in Figure 1.

2|timed-out

Figure 1: State Diagram for Query Operators

These states are:
e Not Started. State of an operator before being opened.

e Active. State of the operators that can be scheduled by the OS for execution. The actual order in
which the OS schedules the Active operators is identical to the one that would normally be produced

by the iterator model under traditional scheduling.
e Suspended. State of an operator explicitly suspended by the query scrambling scheduler.
e Stalled. State of an operator stalled due to the unavailability of the requested data.
e Closed. State of an operator once it has produced all its possible results.

The query scrambling scheduler moves one or more operators from one state to another via a transition

in response to an external event. Three possible external events are defined:

e Time-Out. When the timer embedded in an operator goes-off, the operator informs the scheduler of

the time-out. In turn, the scheduler then knows this operator can not be run.

e Resume. When pending data eventually arrive at the query execution site the scheduler determines
the operator for which the data is intended. The scheduler then knows this operator can potentially

be run again.

e End of Stream. An operator that produced all its possible results tells the scheduler it has reached the

end of stream. Such an operator goes out of the scope of scrambling.

The reactions of the query scrambling scheduler to the occurrence of these events can be easily expressed
in terms of transitions between states for the operators concerned by the events. The transitions between

the states are:

1. opened. Every time an operator opens, the scheduler moves this operator from Not Started to Active.

2. timed-out. The scheduler moves an operator from Active to Stalled when the operator times-out
(first external event). The scheduler also forces the ancestors of the stalled operator to go through this

transition as well, indicating that a whole branch of the query tree is blocked and can not run.

3. resumed. When the pending data eventually arrives (second external event) the scheduler moves the
corresponding operator, as well as its ancestors, from Stalled to Suspended indicating that they can

potentially be run again.

4. reactivated. The scheduler moves an operator from Suspended to Active when it decides to reactivate
it. Every time an operator is moved through the transitions timed-out or resumed, the query scrambling
scheduler checks to see if one (or more) suspended operations need to be re-activated. For example, if
no operators are Active because they are all timed-out, then the scheduler will try to reactivate the

scrambling of Suspended operators.

5. suspended. The scheduler moves Active operators to the Suspended state when it decides to tem-
porarily suspend their execution. This happens, for example, when the regulation mechanism of query
scrambling decides to halt all materializations because the problem that triggered scrambling is re-
solved. Later, suspended materializations can be reactivated, for example in response to the time-out

of one active operator.

6. closed. When an operator completes (end of stream, third external event), it closes and the scheduler

moves it to the Closed state.

3.2 Modifying the Query Tree

After it has chosen an operator to reschedule, the query scrambling scheduler analyses the query tree to

determine if it has to introduce a materialization operator as a surrogate parent to allow this operator to

10

run. If not, then the scheduler simply starts a thread that opens the operator. In contrast, if a surrogate
parent is required, then the scheduler creates a new materialization operator and inserts it between the
rescheduled operator and its parent. Patching a query tree 1s fairly simple with iterators, since they interact
through well defined, implementation independent, interfaces. As such, neither the parent nor the child
operator needs to be aware of the patch.

Once the surrogate parent is placed in the tree, the scheduler opens it. After calling open() on its child,
the materialization operator continuously calls next() and materializes the received tuples to disk. The child
operator 1s closed when it produces its last tuple. At this point the materialization is complete.

Eventually, the original parent of the rescheduled operator will be scheduled to execute. Due to the
patching of the query tree, when it calls open() on its child, it actually re-opens the materialization operator.
In response to next() calls, the materialization operator returns the tuples that it previously materialized.
If the materialization was complete then its child operator need never be called. On the other hand, if the
materialization was incomplete, then once its supply of materialized tuples is exhausted, it simply passes

any subsequent nezt() calls to its child, and passes each tuple obtained in this manner back to its parent.

4 Experimental Framework

In this section we first describe the simulation environment used to evaluate several different policies for
scrambling queries. We then present the workload used to perform these experiments and also the main

settings for configuring the query scrambling scheduler.

4.1 Simulation Environment

To study the performance of query scrambling in a bursty environment, we implemented the scheduling
engine and several policies on top an existing simulator that models a heterogeneous, peer-to-peer database
system such as SHORE [CDF*94]. The simulator we used provides a detailed model of query processing
costs in such a system. Here, we briefly describe the simulator, focusing on the aspects that are pertinent
to our experiments. More detailed descriptions of the simulator can be found in [FJK96, DFJ*96].

Table 2 shows the main parameters for configuring the simulator, and the settings used for this study.
Every site has a CPU whose speed is specified by the Mips parameter, NumDisks disks, and a main-memory
buffer pool of size Memory. For the current study, the simulator was configured to model a client-server
system consisting of a single client connected to eight servers. Each site, except the query execution site,
stores one base relation.

In this study, the disk at the query execution site (i.e., client) is used to store temporary results. Disks
are modeled using a detailed characterization that was adapted from the ZetaSim model [Bro92]. The disk
model includes costs for random and sequential physical accesses and also charges for software operations
implementing I/Os. The unit of disk I/O for the database and the client’s disk cache are pages of size

DskPageSize. The unit of transfer between sites are pages of size NeiPageSize. The network is modeled

11

Parameter | Value | Description |

NumSites 9 | number of sites
Mips 30 | CPU speed (10° instr/sec)
NumDisks 1 | number of disks per site

DskPageSize | 4096 | size of a disk page (bytes)
NetPageSize | 8192 | size of a network page (bytes)

Compare 4 | instr. to apply a predicate
HashlInst 25 | instr. to hash a tuple

Mowe 2 | instr. to copy 4 bytes
Memory 2048 | size of memory (disk pages)

Table 2: Simulation Parameters and Main Settings
simply as a FIFO queue with a bandwidth set as a parameter of the experiments described in the next
section. The details of a particular technology (Ethernet, ATM) are not modeled. The cost of sending
messages, however, is modeled and the simulator charges for the time-on-the-wire (depending on the message
size and the network bandwidth) as well as CPU instructions for networking protocol operations. The CPU
is modeled as a FIFO queue and the simulator charges for all the functions performed by query operators
like hashing, comparing, and moving tuples in memory.

We extended this simulator by adding a query scrambling scheduler that follows the description given
Section 3. We also implemented several query scrambling policies that behave differently when operators of
the query time-out or resume. Finally, we modeled a bursty environment by adding to each remote server
a small piece of software. Every time a message is about to be sent by a site, the software checks to see if
it has to delay this message. The duration of the delay as well as the moment when the delay is effectively
enforced are fully configurable, and can range from a fixed duration enforced every time a given number
of messages have been exchanged to a random duration and a random occurrence of delays using several
probability distributions.

For all the experiments, we have set the value of the timer as a multiple of the expected round-trip
time for requesting and obtaining a data page from an unloaded source in an unloaded network. In our
experiments (except where noted) the timer is set to ten times the duration of this round-trip. We evaluate
the performance of scrambling with three different network speeds: a fast network (100Mbits per second),
a slow network (0.1Mbps) and also a network speed that is roughly equal to the observed bandwidth of the
disk local to the client (5Mbps). This bandwidth is determined by the average performance of the local disk
when it alternates between period of sequential and random I/Os as it does during the execution of a query.

In the model, all processing sites share a single communication link. This configuration enables us to
model increasing latencies on the wire when the network is over-utilized. However, we do not model network
congestion and the dropping of packets that could happen in this case. Congestion, however, is unlikely in
our environment because we use a page-at-a-time approach to obtaining data from remote sources, rather
than a streaming approach. Thus, when an operator requests a data page, this operator has to wait until
the page is received before requesting the next one.

A way to tune the sensitivity of query scrambling is to decide when to stop scrambling, as described in

Section 2. In all the experiments described in the next section, we force query scrambling to suspend when

12

the left-most operator resumes and to return control to the normal iterator-based scheduling of operators.
The left-most operator i1s favored over the others because it corresponds to the last operator opened by
the normal iterator-based execution of operators and not by the scrambling scheduler. If no other delay
is experienced by the query, than the query will complete 1ts execution with no other extra costs than the
ones charged while the left-most operator was stalled. Section 5.1.3 demonstrates the importance of this

regulation mechanism.

4.2 Workload

In this section we present the workload used for all the experiments described in Section 5.

Query
Execution
Site

Network
Comm.

Data Servers

Figure 2: Query Tree Used for the Experiments

For all the experiments described in the next section, we use the query tree represented in Figure 2.
The query tree 1s an 8-way join structured as a balanced bushy tree. For this query tree, all base relations
(A through H) are stored on remote sites and their tuples are sent a page-at-a-time when requested to
the query execution site through the network. All other operators, i.e., joins, are executed at the query
execution site. This 8-way join query tree is used to explore fundamental tradeoffs of query scrambling
policies. This tree is big enough to provide sufficient latitude for the policies to possibly perform multiple
rounds of scrambling, highlighting different behaviors and their costs. This tree, which is more general than
left- or right-deep trees, offers opportunities to reschedule many base relations scans and also subtrees of
various sizes, each incurring different costs.

Each base relation used in the study has 10,000 tuples of 100 bytes each, which represents 250 pages of
4Kbytes. In our experiments, all the joins in the query tree produce the same number of tuples, i.e., 10,000
tuples also of 100 bytes each. The main memory needed by one operator is requested and reserved when
this operator opens. In the case of a join, the size of its hash-table is of 250 pages. The memory used by an
operator 1s freed when this operator closes.

Query scrambling needs memory to reschedule and materialize operators. Before rescheduling an opera-
tor, the scheduler computes the maximum amount of main memory this operator (and its child operators)
will need for their execution. This amount depends on the length of the longest branch of the subtree rooted
at the rescheduled operator. If there is not enough memory (because other operators already reserved some),
then the scheduler does not reschedule the operator nor pre-reserve the memory this subtree needs. Later,

when some memory will be freed by other closing operators, the scheduler may try to reschedule again this

13

operator. Note that in the current implementation of the simulator, the memory of a stalled operator is not

freed.

5 Experiments and Results
5.1 Non-Pipelined Performance

In the first set of experiments, we investigate the performance of query scrambling for an execution model in
which no pipelining is performed. That is, the result of each join operator (excluding the root) is materialized
to a temporary file on disk before 1t is consumed by its parent operator. A non-pipelined execution model
is used initially in order to allow us to explore several fundamental tradeoffs of scrambling in the absence of

complications due to memory management. In Section 5.2 we study the impact of limited memory.

5.1.1 Policies

Three different query scrambling policies are evaluated in this section. We compare these three policies to
the case where no scrambling is performed, that is, the processing of the query incurs the cost of every delay.
The performance of non-scrambled query is what would arise under traditional, iterator-based scheduling
with no scrambling facilities. All policies perform the same under normal execution. That is, they are not

applied until scrambling is invoked. The three policies are:

Materialize-All. When scrambling is initiated, this policy simultaneously materializes all base relations.
When both sides of a join are entirely materialized, then this join becomes eligible to run under
scrambling. Although only a single join can be materialized at a time, this join is allowed to run

concurrently with the on-going materializations of base relations.

All-Builds. Rather than opening all base relations when scrambling starts, this policy opens all of those
base relations that are on the build side (i.e., the left input) of joins. When a build relation is entirely
materialized, then the corresponding join becomes eligible to run under scrambling. Again, such joins
are allowed to run concurrently with the on-going materializations of other base relations. Note that
in this policy, probe base relations (i.e., those that are the right input of a join) are never materialized

but are always obtained directly from remote servers through the network.

Next-Build. This policy is similar to All-Builds but it only opens one build relation at a time. If a probe
relation or an on-going materialization of a build relation times-out, then the scheduler then opens the

next build relation.

5.1.2 Multiple-Delay Experiments

In the first set of experiments we examine the performance of the policies when some or all of the base

relations are subject to random delays throughout the entire execution of a query. Delay is applied in the

14

following way: Each remote source flips a weighted coin before sending a page of tuples to the query execution
site. The outcome of the coin toss determines if the source should transmit the page normally, or if it should
stall for a specified period before sending its page.® In these experiments the delay period is fixed at 0.78
seconds, or three times the value of the timer used by the query processor to detect problems with a remote
source. Because of the fixed value for the delay period, it is known that the query processor will temeout
on a source each time that source delays. In this case, the timeout will be detected one-third of the way
through the delay (0.26 seconds).

Figure 3 shows the percentage slowdown of the query as the probability of delay for each page transmission
is increased along the x-axis. In this first experiment, random delay is applied to the page transmissions of
all eight base relations. The slowdown is computed by subtracting the normal running time for the query
(in this case, 45.8 seconds) from the observed running time in the delayed case, and dividing by the normal
running time. As can be seen in the figure, the slowdown for all policies shown increases linearly with the

delay probability, but there are dramatic differences in the slopes of the lines.

35 4.0
30 No Scrambling <— f 35 No Scrambling <— 1
P Materialize-All -+-- s Materialize-All -+--- %
3 All-Build -3 3 All-Build {3~
& Next-Build X & 3.0 - Next-Build - A 1
© 25 ext-Bul 4 © P
o o
S § 2sf]
g X 1 e
B k 20 R
S 15] ©
g g 15 9
3 10 i 3
3 3 10+ g
7 - S 7]
5 1 05 | 1
O >>>>>>>>>>> O - L i L L L L L L L L
0 01 02 03 04 05 06 07 08 09 10 0 01 02 03 04 05 06 07 08 09 10
Delay Probability Delay Probability
Figure 3: Slowdown, Delay on All Relations Figure 4: Slowdown, Delay on A Only
Net: 5 Mbps, Delay: 0.78 sec (3x Timer) Net: 5 Mbps, Delay: 0.78 sec (3x Timer)

The top line of the figure shows the performance of the query if no scrambling is done; that is, 1t is the
performance that would arise under traditional, iterator-based scheduling. When using the iterator model
with no scrambling, query processing incurs the cost of every delay — in this experiment at 90% delay
probability the query runs 30 times slower than when there are no delays. In this case, the response time
of the query is 1449.8 seconds. Such a result is to be expected. The normal scheduler is unable to overlap
any delays, so query execution time is increased by the sum of the delays experienced from all of the remote
sources. At 90% delay probability, there are 1800 delays of 0.78 seconds each, so the total delay is 1404
seconds, compared to a normal query execution time of only 45.8 seconds. The slowdown for no scrambling

at 90% delay probability is (1449.8 — 45.8)/45.8 = 30.7.

5In those cases where random delays are used we ran each experiment 12 times and then averaged the results to get the final
results presented here.

15

Turning to the scrambling policies, it can be seen that they too incur a linear slowdown as the delay
probability is increased. The slopes of the increases, however, are much lower than for the no scrambling
approach. The best policy for coping with delay in this case is Materialize-All. Materialize-All 1s the most
aggressive policy; it opens all base relations simultaneously. As a result, it has the potential to overlap the
most delay. That is, by requesting data from multiple sources, it can tolerate delays of a subset of those
sources. In this experiment, since all sources experience delay, the aggressive approach of Materialize-All is
beneficial. At 90% delay probability, the query is slowed down by a factor of 3.65 or 167 seconds. Since the
total delay in this case is 1404 seconds, Materialize-All is able to hide 1237 seconds of delay by overlapping it
with other useful work, such as retrieval of other base relations and join processing. The other two scrambling
policies, All-Builds and Next-Build are also able to overlap delay, but to a lesser extent than Materialize-All.
In this case, Next-Build performs the same as All-Builds because although it initially tries to materialize
only one build relation at-a-time, as soon as i1t detects a delay on such a relation, it proceeds to open the
next build. Thus, under any significant delay probability, it will quickly reach the state where it has all build
relations open simultaneously. Both policies hide less delay than Materialize-All because they do not open
a probe-side base relation until the entire corresponding build relation has been materialized. Thus, they
have less opportunity to overlap delays on the probe relations.

One lesson from the preceding discussion is that if multiple sources are likely to have multiple delays,
then policies that open more remote sources have a better opportunity to hide delay. Figure 4 shows the
performance of the non-pipelined policies when only relation A (the leftmost relation) is subject to delays.
In this case, beyond a delay probability of 30% the three policies perform roughly the same. This is because
at this point, the policies are all able to complete their scrambling work within the delay of A (30% delay
for A is 58.5 seconds) so their performance becomes roughly identical as delay is further increased. Prior to
this point, All-Bu:lds has a slight advantage over Materialize-All because it does not materializes any probe

relations, so it does not incur disk contention.

5.1.3 Single-Delay Experiments

The multiple-delay experiments described in the previous section showed that the opening of multiple remote
sources can improve the performance of scrambling policies by maximizing the potential to overlap delay.
In this set of experiments we examine the potential negative impact of scrambling too aggressively by
investigating a case where there is much less delay than in the previous cases. To accomplish this, we vary
the length of a single, initial delay on relation A. The x-axis on the graphs shows this delay as a percentage of
the time required to execute the query in the absence of any delay. The y-axis shows, as before, the percent

slowdown compared to normal execution.

Balanced Network Figure 5 shows the performance of the non-pipelined policies using the same network
speed as used in the previous experiments (i.e., 5 Mbps, roughly equivalent to the observed speed of the

disk). In this case we see that all three scrambling policies are able to hide much of the delay up to 80%

16

of the normal execution time (36.6 seconds) at which point they increase linearly with the delay. Prior to

80%, the All-Builds policy performs the best. Its performance has three stages: up until a delay of 20%

its response time increases, it then remains flat until 60%, after which it increases linearly with the delay.

During the first stage, it is materializing the non-delayed build relations (C, E, and G). If at anytime during

this materialization the arrival of tuples from A resumes, then scrambling is suspended, and control returns

to normal operation. Once all the scrambling materializations have been performed, the slowdown flattens

out for higher delays because the joins can be run, and the work to perform the joins effectively hides the

delay of A at that point.5 If the delay of A is large enough so that all the joins that do not involve A are

completed, then beyond that point the slowdown grows linearly with the delay, as there is no more work for

scrambling to do.

Slowdown (relative to 45.8 sec)

1.2

1.0

0.8

0.6

0.4

0.2

No Scraﬁbling %‘
r Materialize-All —-- T
All-Build -3
Next-Build <
L % D e Pas ><4‘ g
XA A
Sxxtdososens” |
20 40 60 80 100 120

Delay % (relative to 45.8 sec)

Figure 5: Slowdown, Initial Delay on A

Net: 5 Mbps, Delay % of 45.8 sec

No Scrambling <©—

1.2 Materialize-All —-—
All-Build -£3-

Next-Build <

Slowdown (relative to 701.6 sec)

Figure 6: Slowdown, Initial Delay on A
Net: 0.1 Mbps, Delay % of 701.6 sec

o
80
Delay % (relative to 701.6 sec)

No Scraﬁbling %‘
1.2 |- Materialize-All —-- 1
All-Build £
. Next-Build <
1 2 10f 1
2]
@
8
9 ° 0.8 9
% P
: $ osr %// 1
P4 <
E R
g o4l Tt TR]
: gz
2 il oo
02| 4 1
5058588
FURVEVES
L O j L L L L
100 120 0 20 40 100 120

Delay % (relative to 34.8 sec)

Figure 7: Slowdown, Initial Delay on A
Net: 100 Mbps, Delay % of 34.8 sec

61n these experiments, for All-Builds the build relations tend to become completely materialized all at about the same time,
because they are the same size, and they are not delayed, and they are materialized in parallel. In a real environment, it is
expected that they would arrive at different times.

17

The Materialize-All policy has similar behavior to All-Builds, but 1t performs worse because it materi-
alizes probe relations in addition to build relations, even though none of the probe relations incur delay. As
seen in the previous experiments, the reading of the probe relations from disk introduces disk contention
with the writes of the join results, so the overall performance suffers. It is interesting to note in the linear
portion of the graph (beyond 80%) Materialize-All has a slight advantage over the others because it has
already materialized relation B at that point, while the others wait until all tuples of A have arrived before
requesting tuples from B. Finally, the Nezt- Build policy performs slightly worse than the others because it
requests all remote relations one-at-a-time. Materializing relations in parallel provides a small benefit even
if they are not abnormally delayed because the parallel requests to the remote data sources allows them to

do some work (e.g., local 1/0) in parallel with each other.

Varying Network Speed Many of the results in the previous experiments were driven to some extent
by the fact that the network speed and observed disk speed were roughly equivalent. This balance makes
scrambling materialization a fairly inexpensive technique, as the materialized data can be later read from
the disk at about the same speed it could be obtained from the network (in the absence of delays). Thus,
trading predictable local disk I/O for avoiding possible future delays from accessing remote sources is a good
deal. In this section we show results that were obtained using other network speeds, in order to examine
this tradeoff more closely.

Figure 6 shows the performance of the policies in the case of a single, initial delay of relation A, when
the network is significantly slower than the disk. In this case, the network speed is 0.1 Mbps.” With the
slow network, the normal execution time of the query climbs to 701.6 seconds, and is completely dominated
by the network cost. The result of this imbalance is that the use of local resources at the query processing
site is effectively free, so all scrambling policies can hide virtually all of the delay up to 80%, after which (as
in the balanced network case), they run out of scrambling work and the slowdown increases linearly with
the delay. As in the previous case, Materialize-All has a (now larger) advantage beyond that point because
it has already materialized relation B.

If a slow network makes local disk T/O virtually free, then a faster network makes local I/O more
expensive. Figure 7 shows the performance of the polices in the same workload as Figures 5 and 6, but with
the network speed increased to 100 Mbps. In this case, the normal execution time drops to 34.8 seconds,
much of which is due to the cost of local work at the query processing site. When disk I/O is expensive,
the relative performance of the polices changes dramatically. First, the Nezi-Build policy, which usually
had the worst performance of the scrambling policies the cases examined up to now, actually has the best
performance with shorter delays (e.g., up to 30%). It performs better because it materializes less data. The
step-shape of the curve for Next-Build clearly shows when each of the three non-delayed build relations is

materialized and then joined with its corresponding probe. More importantly, the Materialize-All policy,

"This is about 12K Bytes per second, the same order of magnitude as the what can be currently obtained while surfing the
Internet with a good connection.

18

which was typically best up to this point, is in this case relatively expensive. As usual, it materializes the
largest amount of data, including both build and probe relations, to the local disk. These materializations,

however, combined with the interference of joins results and probe relations result in significant overhead for

Materialize-All here.

Controlling Overhead The previous experiment (shown in Figure 7) demonstrated that as networks
become faster relative to local disk processing query scrambling will have to be more intelligent about its use
of local disk resources. Up to this point, however, none of the scrambling policies were seen to perform worse
than not scrambling. For example, in Figure 7 the Materialize-All policy approaches, but does not exceed
the slowdown of the no scrambling policy when the delay is below 40%. The reason that Materialize-All does
not become worse than no scrambling is because the scrambling policies all suspend (cf. Section 2). That
18, if the left-most delayed relation resumes sending tuples, scrambling is suspended and control is returned
back to the resumed operator. This policy limits the extent of the damage that can be caused by scrambling
too aggressively.

Figure 8 shows the performance of the policies if the suspend decision is replaced by the ignore decision.
In this case, once the initial delay of A is detected, query scrambling is initiated and run to completion
regardless of when A returns. As a result, if the delay of A is short, then the aggressive initiation of
materializations as performed by Materialize-All (and to a lesser extent by the others) can result in worse

performance than simply waiting for A to return.

No Scraﬁbling %‘ No Scraﬁbling %‘
1.2 Materialize-All - 1 1.2 Materialize-All —-— 1
All-Build - All-Build £
. Next-Build < . Next-Build <
S 10f : S 10f :
2] 2]
[ce) @
) 8
° 0.8 R ° 0.8 R
g g g 7)———5——1 [s s t t t t %
©] © L H =
s 06f s 06 /
< e = f NI |
E Ao g A A E e i et I I I o
§ o4l TTHETH - o] 8 o4l [POGANgRETEa--0-0]
2 : 2 [XX
o : o
® KA ® :
0.2 R 0.2 R
ENE)=ieiaialataletainizlzlzal
A N3¢ XK
O L L L L L L O L L L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Delay % (relative to 34.8 sec) Delay % (relative to 34.8 sec)
Figure 8: Slowdown, Initial Delay on A Figure 9: Slowdown, Initial Delay on A
Net: 100 Mbps, ¢tgnore, Timer: 10x Net: 100 Mbps, ignore, Timer: 500x

At first, it might appear that the problems encountered by the scrambling algorithms were caused by
having a timer that was set at too short an interval. Figure 9 shows the performance impact of increasing
the timer by a factor of 50. The net result of increasing the timer is that there is a longer amount of delay
for which scrambling remains inactive, after which it is subject to the problems identified in the Figure 8.

Thus, a more effective approach to scrambling is to use a fairly short timer, in order to allow scrambling to

19

hide more delay, but to introduce regulation mechanisms such as suspend, in order to ensure that scrambling
does not harm performance. Such considerations will become increasingly important as high-speed network

access becomes more prevalent.

5.2 Pipelined Performance

In this set of experiments, we evaluate the performance of query scrambling for an execution model that
pipelines hash joins. On an open() call, the hash join materializes its left child operator into a hash table. On
each next(), the hash join continues to access tuples from its right child operator and joining them with the
hash table until a matching tuple is generated. The matching tuple is returned as the result of the next() call.
Pipelining is a typical way to perform joins. Pipeline execution requires more memory than non-pipelined
execution and more choices are available for scrambling. Each time an operator is scrambled, sufficient
memory must be available for the scrambled operator. If no memory is available, in our experiments, the

operator 1s not scrambled. In this way we avoid the thrashing of memory.

5.2.1 Policies

We use three different policies to evaluate the performance of scrambling in a pipelined environment.
These policies are Materialize-Leaves, Next-Leaf and Pipe-MRS. The last policy uses a notion developed
in [AFTU96], that is, the notion of a Mazimal Runnable Subtree (MRS). A runnable subtree is a subtree in
which all the operators are in the Not Started state. A runnable subtree is maximal if its root is the direct
descendant of a Stalled operator.

As in the previous set of experiments, we compare those policies to the case where no scrambling is

performed on the query. The policies are defined as follows:

Materialize-Leaves. This policy starts simultaneously the materialization of all base relations (the leaves
of the query tree) when the first time-out is observed. No other materializations are performed, i.e.,
no joins are never rescheduled. This policy terminates scrambling once all base relations have been

entirely materialized.

Next-Leaf. This policy starts the materialization of the next relation when another relation times-out for
the first time. Once a relation is entirely materialized, and if some operators are still stalled, then
the policy initiates the materialization of another leaf. As for Materialize-Leaves, this policy does not

scramble any joins.

Pipe-MRS. This policy initiates the materialization of the root of the next maximal runnable subtree (MRS)
when a relation times-out. This policy does not materialize any base relations, but instead, materializes

only joins.

20

5.2.2 Impact of Limited Memory

The general principles of performance demonstrated in the non-pipeline section also apply to pipelined
execution. Instead of repeating those results for pipelined execution, we focus instead on the impact of limited
memory. Each experiment varies the amount of memory available at the client. The minimum memory
required is 3 hash tables of 250 pages each (750 pages) plus an addition 10 pages for miscellaneous staging
buffers. No query can execute, regardless of its policy, with less memory. We increase the amount of memory
for each experiment by 260 pages. Additional memory permits more pipelines to execute simultaneously. At
a memory size of 1820 pages, the behavior of pipelined scrambling i1s no longer limited by memory, so any

experiment with more memory will perform exactly the same way.

7 5500 T T T T T
[= = = = £l
5000 R
°r | 4500
g No Scrambling <©—
- Pipe-MRS —-— < q
8 5r Materialize-Leaves = | 4000
< Next-Leaf X o 3500 -]
e al] =
%5 3000 - 1
g . % A A
T e T L e T
® 3t B S 1 g 2001 - e _
= AR N = 2000
o 2 K
E‘ 1500 b
o No Scrambling <©—
2 1000 F Pipe-MRS ——
1m =) = =] =) 3 Materialize-Leaves -3
500 | Next-Leaf - T
O L L L L L L O L L L L L L
780 1040 1300 1560 1820 2080 780 1040 1300 1560 1820 2080
Memory Size (pages of 4K) Memory Size (pages of 4K)
Figure 10: Slowdown, Delay 10% on All Relations Figure 11: Total 10, Delay 10% on All Relations
Net: 5 Mbps, Delay: 0.78 sec (3x Timer) Net: 5 Mbps, Delay: 0.78 sec (3x Timer)

Figure 10 shows the relative performance of the three policies and the non-scrambled query when all base
relations are subject to random delays at a 10% probability throughout the entire execution of a query. In
this case, the response time of the unscrambled query is independent of the memory size, because in this
experiment there is always enough memory to execute the original query.

In addition to the memory needed to complete the query, Materialize-Leaves and Next-Leaf need the same
amount of memory as the original query, plus a few additional pages for staging tuples from materialized
base relations out to disk. Consequently, they are able to execute in all cases of memory size with the
same performance and always consume a fixed amount of memory. Not surprisingly, the scrambling policy
that maximizes the overlap between delays (i.e., policy Materialize-Leaves) performs the best. Next-Leaf
overlaps less delay, since relations are materialized one at a time. As such, it performs slightly worse than
Materialize-Leaves. The performance of Materialize-Leaves and Next-Leaf are to be expected: these policies
are similar in spirit to the ones evaluated during the no-pipeline experiments, and as such highlight the same
tradeoffs.

In contrast, the performance of Pipe-MRS improves with additional memory. The fundamental reason is

21

that more concurrent MRSs can be rescheduled as the amount of available memory increases. With a memory
size of 780 pages, the non-scrambled query and Pipe-MRS have the same performance. With this setting,
the scheduler is never able to reschedule a subtree when a relation times out because there is not enough
memory for any additional hash-tables. With 1040 pages, the scheduler is able to initiate the materialization
of the join of C and D while the query tree stalls on relations A and B, and with 1820 pages, Pipe-MRS is
able to activate all MRSs in the tree (three in this case). As expected, increasing the number of concurrent
MRSs tends to augment the overlapping of delays, thus reducing the response time.

Figure 11 shows the I/O performance for the same experiment. Comparing this figure to the previous
figure, we see that better policies also perform additional I/O, which is expected. The surprising aspect of
this graph is the rise and drop in 1/Os for Pipe-MRS. From 780 page to 1040 pages, the rise is due to the
additional simultaneous execution of the join between C and D. The result of this join is written to disk.
As memory increases again, the next maximal runnable subtree is the parent of the join between E and F.
Now, two effects combine to slow the execution of each pipeline. First, since they execute in parallel, they
share resources. Second, a larger subtrees takes more time to materialize data on the disk since a larger part
of the entire tree must execute before the materialization operator starts issuing I/O. Since the pipelines
are slowed by these effects, the normal, unscrambled execution of the query catches up with the scrambled

pipelines. When normal execution catches up, the scrambling materializations are stopped, thus saving I/0!

6 Related Work

Network congestion, network link failure, server load, and temporary server unavailability all introduce
unexpected delay in the accessing of remote sources. The techniques that attack this problem fall into two
broad categories: the proactive and reactive.

In the proactive category, the techniques gather as much information as possible to predict the state of
the run-time system during query execution and use this information to construct the best query execution
plan. At query start-up time, the plan is fixed, and query execution corresponds exactly to the plan.

The Volcano optimizer [CG94, Gra93] provides a framework for the application of proactive techniques
for distributed query processing. During optimization, if a cost comparison returns incomparable, the choice
for that part of the search space is encoded in a choose-plan operator. All decisions regarding query execution
are then made final at query start-up time.

HERMES [ACPS96] uses a proactive technique for recording the costs of previous calls to remote sources
(in addition to caching the results) and can use resulting history of costs to estimate the cost of new calls.
As in Volcano, this system optimizes a query both at query compile and query start-up time, but does not
change the query plan during query run-time.

Mariposa [SALT96] bases the optimization of distributed queries on an economic paradigm. Although
the query optimizer of [SALT96] adopts a radical approach since it is first based on negotiation and second

it 1s not based on costs, optimization still builds a plan that is fixed for the duration of the execution of the

22

query.

In contrast to the proactive category, techniques in reactive category monitor the progress of queries and
modify query execution after execution has started. (Note that techniques in the proactive and reactive
categories are generally complementary.) Monitoring determines if execution should deviate from the plan
for some unforeseen reason. Reasons include inaccurate estimates for intermediate result sizes and direct
considerations of problems with response times from remote sources are not accounted for.

[BRJ89] proposes a reactive technique in which the execution of a distributed query proceeds through
three phases: (i) a monitoring phase observing the progress of the execution of the query; (ii) a decision
making phase during which a new strategy for executing the query is computed; and (iii) a corrective phase
in which the current execution is aborted and a new execution is initiated. A similar approach is used in
Rdb/VMS [Ant93].

Both InterViso [TTC%90] and MOOD [ONK™T96] are heterogeneous distributed databases that perform
query optimization while the query is executing. Heterogeneous distributed database divide a query into
a collection of subqueries and a composition query. There 1s one subquery for each remote source and a
composition query than combines the results of the subqueries. These systems use a reactive technique that
interleaves the execution of subqueries with the execution of the composition query by monitoring the arrival
of the answer to subqueries and dynamically executing the composition query.

In the bursty data arrival environment, such as the Internet, existing techniques have several prob-
lems. Proactive techniques are limited because the history of query execution poorly predicts future query
performance. The primary problem with existing reactive techniques is the weight of monitoring and oper-
ations. We classify reactive techniques as heavyweight if the unit of monitoring or operation is large, e.g. a
join. Heavyweight reactive techniques also perform poorly in our environment since delays are not quickly
detected.

In [AFTU96], we developed a collection of reactive techniques that both rescheduled operators and
incrementally reorganized the query execution plan. In this paper, we extend query scrambling to deal
with the bursty arrival environment by exploring lightweight reactive techniques, namely where the unit of
monitoring and operation is small, e.g. less than a join. Lightweight query scrambling constantly monitors
the execution of the query with a granularity a single data page access and it also monitors the behavior of
any changes introduced into execution. Additionally, if necessary, only small changes in computation may
occur with query scrambling, again at the level of a single data page access. Thus, query scrambling adapts

quickly to the changing properties of the environment.

7 Conclusion

To address the issue of unpredictable delays in the wide-area environment, we have developed a class of
techniques for query execution, called query scrambling. Query scrambling monitors query execution and

reacts to unexpected delays by on-the-fly rescheduling the operations of a query during its execution.

23

In this paper we explored the key questions to query scrambling: when should scrambling start, what
should be scrambled, and when should scrambling stop. We examined several sets of policies to control
scrambling and described the architecture of a run-time scheduler that is capable of implementing these
policies. We then used a detailed simulation of a run-time system in order to examine the performance
tradeoffs of the various scrambling policies under both pipelined and non-pipelined execution models.

Our results show that query scrambling can in most cases hide a significant portion of the delay expe-
rienced by a query, i.e. the user does not experience any delay in the processing of a query. In some cases
all the delay can be hidden at essentially negligible additional cost to query execution. In addition, since
query scrambling introduces parallel access to remote sources into query execution, all the performance gains
thereof also occur.

For example, we show that if many sources exhibit bursty arrival, then the overlap of delay is the most
important consideration, regardless of network speed, policies or join operator. If network speed is slow
relative to the disk and delays are long relative to disk, then materializing the results of remote source to
local disk is very effective. If network speed is fast relative to disk (either because of point-to-point network
or gigabit technology), then the bottleneck moves from the network to the disk, and thus materializing the
results performs less well since it aggravates the bottleneck.

In some cases, improper use of scrambling can introduce network congestion and thrashing during query
processing. We carefully documented the cases where these situations occur and show, both in terms of
architecture and in terms of implementation policies, how to avoid them.

We showed that scrambling under pipelined execution models works well, however pipelined execution
requires the reservation of memory to perform well. Multiple scrambled pipelines compete for memory
resources, potentially introducing thrashing. We showed how to avoid this behavior by limiting the number
of simultaneously scrambling pipelines.

For future work, we intend to build a run-time system which continuously scrambles and throttles the

behavior of query execution to balance trade-offs between performance gains and performance losses.

Acknowledgments

We would like to thank Bjorn Jénsson and Tolga Urhan for providing invaluable assistance and information
about the simulator used for this work. Thanks to Philippe Bonnet and Luc Bouganim for comments on the

draft version of this paper. We would also like to thank Dennis Shasha for discussions on query scrambling.

References

[ACPS96] S. Adali, K. Candan, Y. Papakonstantinou, and V. Subrahmanian. Query Caching and Opti-
mization in Distributed Mediator Systems. In Proc. of the ACM SIGMOD Int. Conf., Montreal,
Canada, 1996.

[AFTU96] L. Amsaleg, M. Franklin, A. Tomasic, and T. Urhan. Scrambling Query Plans to Cope with
Unexpected Delays. In Proc. of the Int. Conf. on Parallel and Distribution Information Systems
(PDIS), Miami Beach, Florida, December 1996.

24

[Ant93]

[BE96]
[BMG93]

[BRISY)

[Bro92]

[CDF+94]

[CGY4]

[DFI+96]

[FIK96]

[Gra93]

[Kim95]

[MMM96]

[ONK*96]

[SAD+95]

[SAL+96]

[TRV96]

[TTC+90]

G. Antoshenkov. Dynamic Query Optimization in Rdb/VMS. In Proc. of the Data Engineering
Int. Conf., pages 538-547, Vienna, Austria, 1993.

O. Bukhres and A. Elmagarmid. Object-Oriented Multidatabase Systems. Prentice Hall, 1996.

J. Blakeley, W. McKenna, and G. Graefe. Experiences Building the Open OODB Query Opti-
mizer. In Proc. of the ACM SIGMOD Int. Conf., page 287, Washington, DC, May 1993.

P. Bodorik, J. Riordon, and C. Jacob. Dynamic Distributed Query Processing Techniques. In
Proc. of the 17th annual ACM Computer Science Conf., pages 348-357, Louisville, Kentucky,
February 1989.

K. Brown. PRPL: A Database Workload Specification Language. Master’s thesis, University of
Winsconsin, Madison, Winsconsin, 1992.

M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuliffe, J. Naughton, D. Schuh, M. Solomon,
C. Tan, O. Tsatalos, S. White, and M. Zwilling. Shoring Up Persistent Applications. In Proc. of
the ACM SIGMOD Int. Conf., Minneapolis, Minnesota, May 1994.

R. Cole and G. Graefe. Optimization of dynamic query execution plans. In Proc. of the ACM
SIGMOD Int. Conf., pages 150-160, Minneapolis, Minnesota, May 1994.

S. Dar, M. Franklin, B. Jénsson, D. Srivastava, and M. Tan. Semantic Data Caching and
Replacement. In Proc. of the 22th VLDB Int. Conf, Bombay, India, September 1996.

M. Franklin, B. Jonsson, and D. Kossmann. Performance Tradeoffs for Client-Server Query

Processing. In Proc. of the ACM SIGMOD Int. Conf., Montréal, Canada, June 1996.

G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Surveys,
25(2):73-170, June 1993.

W. Kim. Modern Database Systems: The Object Model, Interoperability, and Beyond. ACM
Press, New York, NY, 1995.

A. Mendelzon, G. Mihaila, and T. Milo. Querying the World Wide Web. In Proc. of the Int. Conf.
on Parallel and Distribution Information Systems (PDIS), Miami Beach, Florida, December 1996.

F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac. Dynamic query optimization on a
distributed object management platform. In CIKM, Baltimore, Maryland, November 1996.

M. Shan, R. Ahmen, J. Davis, W. Du, and W. Kent. Modern Database Systems: The Object
Model, Interoperability, and Beyond, chapter Pegasus: A Heterogeneous Information Manage-
ment System. ACM Press, 1995.

M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer; A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa:
A Wide-Area Distributed Database System. The VLDB Journal, 5(1):48-63, January 1996.

A. Tomasic, L. Raschid, and P. Valduriez. Scaling Heterogeneous Databases and the Design of
DISCO. In The IEEE Int. Conf. on Distributed Computing Systems (ICDCS-16), Hong Kong,
1996.

G. Thomas, G. Thompson, C. Chung, E. Barkmeyer, F. Carter, M. Templeton, S. Fox, and
B. Hartman. Heterogeneous Distributed Database Systems for Product Use. ACM Computing
Surveys, 22(3), 1990.

25

